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Preface by the General Chair

Welcome to the 2014 Conference on Empirical Methods in Natural Language Processing.

The EMNLP conference series is annually organized by SIGDAT, the Association for Computational
Linguistics’ special interest group on linguistic data and corpus-based approaches to NLP. This year the
conference is being held from October 25, 2014 (Sat.) to October 29, 2014 (Wed.) in Doha, Qatar.

In the past five years, the EMNLP conference attendance has been continuously growing, reaching just
over 500 paying attendees in 2013, and it is nowadays considered as one of the leading conferences in
Computational Linguistics and Natural Language Processing.

Given the growing trend, we believed it was the right time to lead EMNLP into an organization structure
typical of large and important conferences. Therefore, we proposed several novelties: first of all, a large
organization committee consisting of twenty (plus twenty-six area chairs) well-known members of the
ACL community, who carried out several tasks required by the new achieved scale.

Secondly, as this is the first conference edition spanning five days, in addition to six workshops, we also
selected and included for the first time an excellent selection of eight tutorials. We defined a registration
policy that allows the participants to attend any of the tutorials and workshops (held on October 25th and
29th) by just paying a low flat rate on top of the registration fee for the main conference. We believe this
can greatly increase the spread of advanced technology and promote a unified view of the techniques and
foundations of our research field.

Thirdly, as a standalone conference, EMNLP required the definition of new administrative procedures
and policies, regarding sponsorship booklets, double submission, scholarship assignment, and the joint
EACL-ACL-EMNLP call for workshop proposals.

Next, EMNLP is finding new ways to foster the dissemination of research work by facing the increasing
number of papers to be presented at the conference. Our new approach consisted in presenting posters
in nine sessions each proposing a small numbers of papers: this way poster presentations can receive the
space and consideration that they deserve. Then, we are adding a surprise in terms of paper presentation
and dissemination, which will be unveiled only few days before the start of the conference.

Finally, this is the first time that an ACL conference is largely supported by a government research
foundation. The Qatar National Research Foundation (QNRF) has included EMNLP 2014 as one of its
local funding events. This enabled EMNLP and SIGDAT to perform unprecedented student scholarship
support: more than 30 students were sponsored (partially or entirely) for participating in the conference.
The obtained funds also allowed for offering a social dinner free of charge to all the attendees and
still closing the conference budget in active, thus creating additional resources that SIGDAT can use to
support the upcoming conferences.

The novelties above as well as the traditional activities that the EMNLP conference series proposes to its
members could not have been organized without the work of our large committee. In this respect, I would
like to thank our PC co-chairs Walter Daelemans and Bo Pang, who greatly used their large experience
with program committees of our community for selecting an excellent program.

Special thanks go to our publication chair Yuval Marton, who did a terrific job in organizing and
preparing the proceedings. As a side effect of his proactive action, workshop organizers and future
publication chairs using the SoftConf START/ACLPUB systems can now streamline the inclusion of
workshops and conference schedules in the proceedings, without heavy manual customization.

We are very grateful to Enrique Alfonseca and Eric Gaussier for selecting interesting and successful
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workshops and to Lucia Specia and Xavier Carreras, who, for the first time, carried out the new task of
selecting tutorials for an EMNLP conference. The workshops and tutorials nicely filled the additional
two days of EMNLP, making our conference even more valuable.

Many thanks are due to Katrin Erk and Sebastian Padó, who were challenged by the new activity (for
EMNLP) of defining policy for the selection and assignment of participation scholarships to the most
deserving students. The uncertainty over the final amount of funds and their diverse nature made this
task particularly difficult. Nevertheless, they were able to find appropriate and successful solutions.

As any large conference, we could count on the help of publicity co-chairs to advertise the old and new
EMNLP features. We give our gratitude to Mona Diab and Irina Matveeva for their professional work.

Fund hunting is a very important activity for conferences, in this respect, I would like to thank our
sponsorship co-chairs, Jochen Leidner, Veselin Stoyanov and Min Zhang, for helping us to look for
sponsors in three different continents.

Regarding the SIGDAT side, a special thank is devoted to Noah Smith, who promptly answered any
question I came out with. I am also grateful to the other SIGDAT officers (past and new): Eugene
Charniak, Mark Johnson, Philipp Koehn, Mark Steedman, who were always there to give suggestions
and solutions to critical issues that inevitably arise in any large event.

Many thanks also to Tim Baldwin, Anna Korhonen, Graeme Hirst and David Yarowsky who provided
much useful information from past conferences. Last but not least, I would like to thank Priscilla
Rasmussen for her help and advice, and her undoubtful qualities of soothsayer regarding the estimation
of conference numbers.

Coming back to the sponsor topic, we are enormously thankful to QNRF, for accepting our proposal
to fund EMNLP: this has made it possible to sponsor an unprecedented number of students and offer
a banquet free of charge to all participants (we needed to create a new level of sponsorship for them,
namely, Diamond). We are very grateful to The Qatar Computing Research Institute, which in addition to
providing the very valuable Platinum sponsorship, also provided the required man power for organizing
the event.

In particular, EMNLP could not be organized in Qatar without the work of Kareem Darwish, the local
organization chair. We are also very grateful to Kemal Oflazer, local co-chair and Francisco Guzman
Herrera, local sponsorship chair, whose work was determinant to obtain the QNRF sponsorship. We are
deeply in debt with the other local organizers, Lluís Màrquez, who also edited the conference booklet,
Preslav Nakov, Fabrizio Sebastiani and Stephan Vogel for their help with the daily big and little issues.

Special thanks go to The Carnegie Mellon University in Qatar for helping us with the proposal
preparation and management of the QNRF funds and also for supporting us with a Gold sponsorship.
Additionally, many thanks go to our silver sponsors, Facebook and Yandex and our bronze sponsor
iHorizons, who show the increasing interest of industry in the technology of our community for the
design of real-world and high-societal impact applications. In this respect, we sincerely thank Google
Inc. and IBM Watson, New York, for supporting the student participation with their scholarships.

Finally, and foremost, thanks to all the authors and conference attendees who are the main actors of
this event, bringing the real value to it and determining its success. My personal thanks also go to the
entire SIGDAT committee, for choosing me as the chair of this fantastic conference, held in a fascinating
venue.

Alessandro Moschitti

General Chair of EMNLP 2014
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Preface by the Program Committee Co-Chairs

We welcome you to the 2014 Conference on Empirical Methods in Natural Language Processing.

As in the previous EMNLP, we invited both long and short papers with a single submission deadline.
Short papers encourage the submission of smaller and more preliminary contributions.

We received 790 submissions (after initial withdrawals of unfinished submissions and removal of
duplicates), of which 28 were rejected before review for not adhering to the instructions in the call for
papers regarding paper length or anonymity. The remaining 510 long and 252 short papers were allocated
to one of the fourteen areas. The most popular areas this year were Machine Translation, Semantics, and
Syntax (Tagging, Chunking, and Parsing).

Reviewing for a conference this size involves an army of dedicated professionals volunteering to donate
their valuable and scarce time to make sure that the highest possible reviewing standards are reached.
We are very grateful to our 26 area chairs and a programme committee of more than 500 for their efforts.
We accepted 155 long and 70 short papers, representing a global acceptance rate of just under 30%. Nine
papers accepted by the ACL journal TACL were added to the program.

Based on the reviews and on nominations by the area chairs, 5 long papers were shortlisted for the best
paper award. The best paper will be presented in a plenary best paper award ceremony. We would like to
thank Mark Johnson and Claire Cardie for their willingness to serve in the best paper award committee
that was set up and for providing excellent advice and motivation for their choice.

We are grateful to the authors for selecting EMNLP as the venue for their work. Congratulations to
the authors of accepted submissions. To the authors of rejected submissions we would like to offer as
consolation the fact that because of the competitive nature of the conference and the inevitable time and
space limitations, many worthwhile papers could not be included in the program. We hope the feedback
of the reviewers will be considered worthwhile by them and lead to successful future submissions.

We are very grateful to our invited speakers Thorsten Joachims and Salim Roukos. Thorsten Joachims
is professor at the Computer Science and Information Science departments at Cornell University and
shows how integrating microeconomic models of human behavior into the learning process leads to new
interaction models and learning algorithms, in turn leading to better performing systems. Salim Roukos is
senior manager of multilingual NLP and CTO of Translation Technologies at IBM T.J. Watson research
Center and addresses IBM’s approach to cognitive computing for building systems and solutions that
enable and support richer human-machine interactions, and remaining opportunities in this area for novel
statistical models for natural language processing. We thank them for their inspiring talks and presence
at the conference.

We would also like to thank our general chair Alessandro Moschitti for his leadership, advice,
encouragement, and support, Kareem Darwish and his colleagues for impeccable cooperation from local
organization, and Yuval Marton for doing an excellent job assembling these proceedings.

It was an honour to serve as Programme Chairs of EMNLP 2014, and we hope that you will enjoy the
conference and be able to think back later and remember a scientifically stimulating conference and a
pleasant time in Doha, Qatar.

Bo Pang and Walter Daelemans

EMNLP 2014 Program Chairs
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Abstract

Electronically available multi-modal data
(primarily text and meta-data) is unprece-
dented in terms of its volume, variety, ve-
locity, (and veracity). The increased in-
terest and investment in cognitive comput-
ing for building systems and solutions that
enable and support richer human-machine
interactions presents a unique opportunity
for novel statistical models for natural lan-
guage processing.

In this talk, I will describe a journey at
IBM during the past three decades in de-
veloping novel statistical models for NLP
covering statistical parsing, machine trans-
lation, and question-answering systems.
Along with a discussion of some of the re-
cent successes, I will discuss some diffi-
cult challenges that need to be addressed to
achieve more effective cognitive systems
and applications.

About the Speaker

Salim Roukos is Senior Manager of Multi-Lingual
NLP and CTO for Translation Technologies at
IBM T. J. Watson Research Center. Dr. Roukos
received his B.E. from the American University
of Beirut, in 1976, his M.Sc. and Ph.D. from
the University of Florida, in 1978 and 1980, re-
spectively. He joined Bolt Beranek and Newman
from 1980 through 1989, where he was a Senior
Scientist in charge of projects in speech compres-
sion, time scale modification, speaker identifica-
tion, word spotting, and spoken language under-
standing. He was an Adjunct Professor at Boston
University in 1988 before joining IBM in 1989.
Dr. Roukos has served as Chair of the IEEE Digi-
tal Signal Processing Committee in 1988.

Salim Roukos currently leads a group at IBM
T.J. Watson research Center that focuses on vari-

ous problems using machine learning techniques
for natural language processing. The group pi-
oneered many of the statistical methods for NLP
from statistical parsing, to natural language under-
standing, to statistical machine translation and ma-
chine translation evaluation metrics (BLEU met-
ric). Roukos has over a 150 publications in the
speech and language areas and over two dozen
patents. Roukos was the lead of the group which
introduced the first commercial statistical lan-
guage understanding system for conversational
telephony systems (IBM ViaVoice Telephony) in
2000 and the first statistical machine translation
product for Arabic-English translation in 2003.
He has recently lead the effort to create IBM’s
offering of IBM Real-Time Translation Services
(RTTS) a platform for enabling real-time transla-
tion applications such as multilingual chat and on-
demand document translation.
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Abstract 

This paper presents a deep semantic simi-
larity model (DSSM), a special type of 
deep neural networks designed for text 
analysis, for recommending target docu-
ments to be of interest to a user based on a 
source document that she is reading. We 
observe, identify, and detect naturally oc-
curring signals of interestingness in click 
transitions on the Web between source and 
target documents, which we collect from 
commercial Web browser logs. The DSSM 
is trained on millions of Web transitions, 
and maps source-target document pairs to 
feature vectors in a latent space in such a 
way that the distance between source doc-
uments and their corresponding interesting 
targets in that space is minimized. The ef-
fectiveness of the DSSM is demonstrated 
using two interestingness tasks: automatic 
highlighting and contextual entity search. 
The results on large-scale, real-world da-
tasets show that the semantics of docu-
ments are important for modeling interest-
ingness and that the DSSM leads to signif-
icant quality improvement on both tasks, 
outperforming not only the classic docu-
ment models that do not use semantics but 
also state-of-the-art topic models. 

1 Introduction 

Tasks of predicting what interests a user based on 
the document she is reading are fundamental to 
many online recommendation systems. A recent 
survey is due to Ricci et al. (2011). In this paper, 
we exploit the use of a deep semantic model for 
two such interestingness tasks in which document 
semantics play a crucial role: automatic highlight-
ing and contextual entity search. 

Automatic Highlighting. In this task we want 
a recommendation system to automatically dis-
cover the entities (e.g., a person, location, organi-

zation etc.) that interest a user when reading a doc-
ument and to highlight the corresponding text 
spans, referred to as keywords afterwards. We 
show in this study that document semantics are 
among the most important factors that influence 
what is perceived as interesting to the user. For 
example, we observe in Web browsing logs that 
when a user reads an article about a movie, she is 
more likely to browse to an article about an actor 
or character than to another movie or the director. 

Contextual entity search. After identifying 
the keywords that represent the entities of interest 
to the user, we also want the system to recommend 
new, interesting documents by searching the Web 
for supplementary information about these enti-
ties. The task is challenging because the same key-
words often refer to different entities, and interest-
ing supplementary information to the highlighted 
entity is highly sensitive to the semantic context. 
For example, “Paul Simon” can refer to many peo-
ple, such as the singer and the senator. Consider 
an article about the music of Paul Simon and an-
other about his life. Related content about his up-
coming concert tour is much more interesting in 
the first context, while an article about his family 
is more interesting in the second. 

At the heart of these two tasks is the notion of 
interestingness. In this paper, we model and make 
use of this notion of interestingness with a deep 
semantic similarity model (DSSM). The model, 
extending from the deep neural networks shown 
recently to be highly effective for speech recogni-
tion (Hinton et al., 2012; Deng et al., 2013) and 
computer vision (Krizhevsky et al., 2012; Mar-
koff, 2014), is semantic because it maps docu-
ments to feature vectors in a latent semantic space, 
also known as semantic representations. The 
model is deep because it employs a neural net-
work with several hidden layers including a spe-
cial convolutional-pooling structure to identify 
keywords and extract hidden semantic features at 
different levels of abstractions, layer by layer. The 
semantic representation is computed through a 
deep neural network after its training by back-
propagation with respect to an objective tailored 
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to the respective interestingness tasks. We obtain 
naturally occurring “interest” signals by observ-
ing Web browser transitions, from a source docu-
ment to a target document, in Web usage logs of a 
commercial browser. Our training data is sampled 
from these transitions. 

The use of the DSSM to model interestingness 
is motivated by the recent success of applying re-
lated deep neural networks to computer vision 
(Krizhevshy et al. 2012; Markoff, 2014), speech 
recognition (Hinton et al. 2012), text processing 
(Collobert et al. 2011),  and Web search (Huang 
et al. 2013). Among them, (Huang et al. 2013) is 
most relevant to our work. They also use a deep 
neural network to map documents to feature vec-
tors in a latent semantic space. However, their 
model is designed to represent the relevance be-
tween queries and documents, which differs from 
the notion of interestingness between documents 
studied in this paper. It is often the case that a user 
is interested in a document because it provides 
supplementary information about the entities or 
concepts she encounters when reading another 
document although the overall contents of the sec-
ond documents is not highly relevant. For exam-
ple, a user may be interested in knowing more 
about the history of University of Washington af-
ter reading the news about President Obama’s 
visit to Seattle. To better model interestingness, 
we extend the model of Huang et al. (2013) in two 
significant aspects. First, while Huang et al. treat 
a document as a bag of words for semantic map-
ping, the DSSM treats a document as a sequence 
of words and tries to discover prominent key-
words. These keywords represent the entities or 
concepts that might interest users, via the convo-
lutional and max-pooling layers which are related 
to the deep models used for computer vision 
(Krizhevsky et al., 2013) and speech recognition 
(Deng  et al., 2013a) but are not used in Huang et 
al.’s model. The DSSM then forms the high-level 
semantic representation of the whole document 
based on these keywords. Second, instead of di-
rectly computing the document relevance score 
using cosine similarity in the learned semantic 
space, as in Huang et al. (2013), we feed the fea-
tures derived from the semantic representations of 
documents to a ranker which is trained in a super-
vised manner. As a result, a document that is not 
highly relevant to another document a user is read-
ing (i.e., the distance between their derived feature 

                                                            
1 We stress here that, although the click signal is available to 
form a dataset and a gold standard ranker (to be described in 

vectors is big) may still have a high score of inter-
estingness because the former provides useful in-
formation about an entity mentioned in the latter. 
Such information and entity are encoded, respec-
tively, by (some subsets of) the semantic features 
in their corresponding documents. In Sections 4 
and 5, we empirically demonstrate that the afore-
mentioned two extensions lead to significant qual-
ity improvements for the two interestingness tasks 
presented in this paper.  

Before giving a formal description of the 
DSSM in Section 3, we formally define the inter-
estingness function, and then introduce our data 
set of naturally occurring interest signals. 

2 The Notion of Interestingness 

Let  be the set of all documents. Following 
Gamon et al. (2013), we formally define the inter-
estingness modeling task as learning the mapping 
function: 

	 : → 	 		

where the function ,  is the quantified degree 
of interest that the user has  in the target document 
∈  after or while reading the source document 
∈ . 
Our notion of a document is meant in its most 

general form as a string of raw unstructured text. 
That is, the interestingness function should not 
rely on any document structure such as title tags, 
hyperlinks, etc., or Web interaction data. In our 
tasks, documents can be formed either from the 
plain text of a webpage or as a text span in that 
plain text, as will be discussed in Sections 4 and 5. 

2.1 Data 

We can observe many naturally occurring mani-
festations of interestingness on the Web. For ex-
ample, on Twitter, users follow shared links em-
bedded in tweets. Arguably the most frequent sig-
nal, however, occurs in Web browsing events 
where users click from one webpage to another 
via hyperlinks. When a user clicks on a hyperlink, 
it is reasonable to assume that she is interested in 
learning more about the anchor, modulo cases of 
erroneous clicks. Aggregate clicks can therefore 
serve as a proxy for interestingness. That is, for a 
given source document, target documents that at-
tract the most clicks are more interesting than doc-
uments that attract fewer clicks1.  

Section 4), our task is to model interestingness between un-
structured documents, i.e., without access to any document 
structure or Web interaction data. Thus, in our experiments, 
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We collect a large dataset of user browsing 
events from a commercial Web browser. Specifi-
cally, we sample 18 million occurrences of a user 
click from one Wikipedia page to another during 
a one year period. We restrict our browsing events 
to Wikipedia since its pages tend to contain many 
anchors (79 on average, where on average 42 have 
a unique target URL). Thus, they attract enough 
traffic for us to obtain robust browsing transition 
data2. We group together all transitions originat-
ing from the same page and randomly hold out 
20% of the transitions for our evaluation data 
(EVAL), 20% for training the DSSM described in 
Section 3.2 (TRAIN_1), and the remaining 60% 
for training our task specific rankers described in 
Section 3.3 (TRAIN_2). In our experiments, we 
used different settings for the two interestingness 
tasks. Thus, we postpone the detailed description 
of these datasets and other task-specific datasets 
to Sections 4 and 5. 

3 A Deep Semantic Similarity Model 
(DSSM) 

This section presents the architecture of the 
DSSM, describes the parameter estimation, and 
the way the DSSM is used in our tasks. 

                                                            
we remove all structural information (e.g., hyperlinks and 
XML tags) in our documents, except that in the highlighting 
experiments (Section 4) we use anchor texts to simulate the 
candidate keywords to be highlighted. We then convert each 

3.1 Network Architecture 

The heart of the DSSM is a deep neural network 
with convolutional structure, as shown in Figure 
1. In what follows, we use lower-case bold letters, 
such as , to denote column vectors,  to de-
note the  element of , and upper-case letters, 
such as , to denote matrices. 

Input Layer . It takes two steps to convert a doc-
ument , which is a sequence of words, into a vec-
tor representation  for the input layer of the net-
work: (1) convert each word in  to a word vector, 
and (2) build  by concatenating these word vec-
tors. To convert a word  into a word vector, we 
first represent  by a one-hot vector using a vo-
cabulary that contains  high frequent words 
( 150K in this study). Then, following Huang 
et al. (2013), we map  to a separate tri-letter vec-
tor. Consider the word “#dog#”, where # is a word 
boundary symbol. The nonzero elements in its tri-
letter vector are “#do”, “dog”, and “og#”. We then 
form the word vector of  by concatenating its 
one-hot vector and its tri-letter vector. It is worth 
noting that the tri-letter vector complements the 
one-hot vector representation in two aspects. First, 
different OOV (out of vocabulary) words can be 
represented by tri-letter vectors with few colli-
sions. Second, spelling variations of the same 
word can be mapped to the points that are close to 
each other in the tri-letter space. Although the 
number of unique English words on the Web is 
extremely large, the total number of distinct tri-
letters in English is limited (restricted to the most 
frequent 30K in this study). As a result, incorpo-
rating tri-letter vectors substantially improves the 
representation power of word vectors while keep-
ing their size small.  

To form our input layer  using word vectors, 
we first identify a text span with a high degree of 
relevance, called focus, in  using task-specific 
heuristics (see Sections 4 and 5 respectively). Sec-
ond, we form  by concatenating each word vec-
tor in the focus and a vector that is the summation 
of all other word vectors, as shown in Figure 1. 
Since the length of the focus is much smaller than 
that of its document,  is able to capture the con-
textual information (for the words in the focus) 

Web document into plain text, which is white-space to-
kenized and lowercased. Numbers are retained and no stem-
ming is performed. 
2 We utilize the May 3, 2013 English Wikipedia dump con-
sisting of roughly 4.1 million articles from http://dumps.wiki-
media.org. 

Figure 1: Illustration of the network architec-
ture and information flow of the DSSM 
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useful to the corresponding tasks, with a manage-
able vector size. 

Convolutional Layer . A convolutional layer 
extracts local features around each word 	in a 
word sequence of length  as follows. We first 
generate a contextual vector  by concatenating 
the word vectors of  and its surrounding words 
defined by a window (the window size is set to 3 
in this paper). Then, we generate for each word a 
local feature vector  using a tanh  activation 
function and a linear projection matrix , which 
is the same across all windows  in the word se-
quence, as: 

tanh ,where	 1…  (1) 

Max-pooling Layer . The size of the output  
depends on the number of words in the word se-
quence. Local feature vectors have to be com-
bined to obtain a global feature vector, with a 
fixed size independent of the document length, in 
order to apply subsequent standard affine layers. 
We design  by adopting the max operation over 
each “time”  of the sequence of vectors computed 
by (1), which forces the network to retain only the 
most useful, partially invariant local features pro-
duced by the convolutional layer: 

max
,…,

u  (2) 

where the max operation is performed for each di-
mension of  across 1,… ,  respectively.  

That convolutional and max-pooling layers are 
able to discover prominent keywords of a docu-
ment can be demonstrated using the procedure in 
Figure 2 using a toy example. First, the convolu-
tional layer of (1) generates for each word in a 5-
word document a 4-dimensional local feature vec-
tor, which represents a distribution of four topics. 
For example, the most prominent topic of  
within its three word context window is the first 
topic, denoted by 1 , and the most prominent 
topic of  is 3 . Second, we use max-pooling 
of (2) to form a global feature vector, which rep-
resents the topic distribution of the whole docu-
ment. We see that 1  and 3  are two promi-
nent topics. Then, for each prominent topic, we 
trace back to the local feature vector that survives 
max-pooling: 

1 max
,…,

1 1   

3 max
,…,

3 3 . 
 

Finally, we label the corresponding words of these 
local feature vectors,  and , as keywords of 
the document.  

Figure 3 presents a sample of document snip-
pets and their keywords detected by the DSSM ac-
cording to the procedure elaborated in Figure 2. It 
is interesting to see that many names are identified 
as keywords although the DSSM is not designed 
explicitly for named entity recognition. 

Fully-Connected Layers  and . The fixed 
sized global feature vector  of (2) is then fed to 
several standard affine network layers, which are 
stacked and interleaved with nonlinear activation 
functions, to extract highly non-linear features  
at the output layer. In our model, shown in Figure 
1, we have: 

tanh  (3) 

tanh  (4) 

where  and  are learned linear projection matri-
ces. 

3.2 Training the DSSM 

To optimize the parameters of the DSSM of Fig-
ure 1, i.e., , , , we use a pair-wise 
rank loss as objective (Yih et al. 2011). Consider 
a source document  and two candidate target 
documents 	and , where  is more interesting 
than  to a user when reading . We construct 
two pairs of documents ,  and , , where 
the former is preferred and should have a higher 

u1 u2 u3 u4 u5

w1 w2 w3 w4 w5

2

3

4

1

 

w1 w2 w3 w4 w5

v

2

3

4

1

Figure 2: Toy example of (upper) a 5-word 
document and its local feature vectors ex-
tracted using a convolutional layer, and (bot-
tom) the global feature vector of the document 
generated after max-pooling. 
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interestingness score. Let ∆ be the difference of 
their interestingness scores: ∆	 ,

, , where  is the interestingness score, 
computed as the cosine similarity: 

, ≡ sim ,
‖ ‖‖ ‖

 (5) 

where  and  are the feature vectors of  and , 
respectively, which are generated using the 
DSSM, parameterized by . Intuitively, we want 
to learn  to maximize ∆. That is, the DSSM is 
learned to represent documents as points in a hid-
den interestingness space, where the similarity be-
tween a document and its interesting documents is 
maximized.  

We use the following logistic loss over ∆ , 
which can be shown to upper bound the pairwise 
accuracy: 

∆; log 1 exp ∆  (6) 

                                                            
3 In our experiments, we observed better results by sampling 
more negative training examples (e.g., up to 100) although 
this makes the training much slower. An alternative approach 

The loss function in (6) has a shape similar to the 
hinge loss used in SVMs. Because of the use of 
the cosine similarity function, we add a scaling 
factor  that magnifies ∆ from [-2, 2] to a larger 
range. Empirically, the value of  makes no dif-
ference as long as it is large enough. In the exper-
iments, we set 10. Because the loss function 
is differentiable, optimizing the model parameters 
can be done using gradient-based methods. Due to 
space limitations, we omit the derivation of the 
gradient of the loss function, for which readers are 
referred to related derivations (e.g., Collobert et 
al. 2011; Huang et al. 2013; Shen et al. 2014). 

In our experiments we trained DSSMs using 
mini-batch Stochastic Gradient Descent. Each 
mini-batch consists of 256 source-target docu-
ment pairs. For each source document , we ran-
domly select from that batch four target docu-
ments which are not paired with  as negative 
training samples3. The DSSM trainer is imple-
mented using a GPU-accelerated linear algebra li-
brary, which is developed on CUDA 5.5. Given 
the training set (TRAIN_1 in Section 2), it takes 
approximately 30 hours to train a DSSM as shown 
in Figure 1, on a Xeon E5-2670 2.60GHz machine 
with one Tesla K20 GPU card. 

In principle, the loss function of (6) can be fur-
ther regularized (e.g. by adding a term of 2 norm) 
to deal with overfitting. However, we did not find 
a clear empirical advantage over the simpler early 
stop approach in a pilot study, hence we adopted 
the latter in the experiments in this paper. Our ap-
proach adjusts the learning rate  during the 
course of model training. Starting with 1.0, 
after each epoch (a pass over the entire training 
data), the learning rate is adjusted as 0.5  
if the loss on validation data (held-out from 
TRAIN_1) is not reduced. The training stops if 
either  is smaller than a preset threshold 
(0.0001) or the loss on training data can no longer 
be reduced significantly. In our experiments, the 
DSSM training typically converges within 20 
epochs. 

3.3 Using the DSSM 

We experiment with two ways of using the DSSM 
for the two interestingness tasks. First, we use the 
DSSM as a feature generator. The output layer of 
the DSSM can be seen as a set of semantic fea-
tures, which can be incorporated in a boosted tree 

is to approximate the partition function using Noise Contras-
tive Estimation (Gutmann and Hyvarinen 2010). We leave it 
to future work.  

… the comedy festival formerly known as 
the us comedy arts festival is a comedy 
festival held each year in las vegas 
nevada from its 1985 inception to 2008 
. it was held annually at the wheeler 
opera house and other venues in aspen 
colorado . the primary sponsor of the 
festival was hbo with co-sponsorship by 
caesars palace . the primary venue tbs 
geico insurance twix candy bars and 
smirnoff vodka hbo exited the festival 
business in 2007 and tbs became the pri-
mary sponsor the festival includes 
standup comedy performances appearances 
by the casts of television shows… 
 
… bad samaritans is an american comedy
series produced by walt becker kelly
hayes and ross putman . it premiered on 
netflix on march 31 2013 cast and char-
acters . the show focuses on a community 
service parole group and their parole 
officer brian kubach as jake gibson an 
aspiring professional starcraft player 
who gets sentenced to 2000 hours of com-
munity service for starting a forest 
fire during his breakup with drew prior 
to community service he had no real am-
bition in life other than to be a pro-
fessional gamer and become wealthy 
overnight like mark zuckerberg as in 
life his goal during … 

Figure 3: A sample of document snippets and 
the keywords (in bold) detected by the DSSM. 
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based ranker (Friedman 1999) trained discrimina-
tively on the task-specific data. Given a source-
target document pair , , the DSSM generates 
600 features (300 from the output layers  and  
for each  and , respectively). 

Second, we use the DSSM as a direct imple-
mentation of the interestingness function . Re-
call from Section 3.2 that in model training, we 
measure the interestingness score for a document 
pair using the cosine similarity between their cor-
responding feature vectors (  and ). Similarly 
at runtime, we define	 	sim ,  as (5). 

4 Experiments on Highlighting 

Recall from Section 1 that in this task, a system 
must select  most interesting keywords in a doc-
ument that a user is reading. To evaluate our mod-
els using the click transition data described in Sec-
tion 2, we simulate the task as follows. We use the 
set of anchors in a source document  to simulate 
the set of candidate keywords that may be of in-
terest to the user while reading , and treat the text 
of a document that is linked by an anchor in  as a 
target document . As shown in Figure 1, to apply 
DSSM to a specific task, we need to define the fo-
cus in source and target documents. In this task, 
the focus in s is defined as the anchor text, and the 
focus in t is defined as the first 10 tokens in t. 

We evaluate the performance of a highlighting 
system against a gold standard interestingness 
function  which scores the interestingness of an 
anchor as the number of user clicks on  from the 
anchor in  in our data. We consider the ideal se-
lection to then consist of the  most interesting 

anchors according to . A natural metric for this 
task is Normalized Discounted Cumulative Gain 
(NDCG) (Jarvelin and Kekalainen 2000). 

We evaluate our models on the EVAL dataset 
described in Section 2. We utilize the transition 
distributions in EVAL to create three other test 
sets, following the stratified sampling methodol-
ogy commonly employed in the IR community, 
for the frequently, less frequently, and rarely 
viewed source pages, referred to as HEAD, 
TORSO, and TAIL, respectively. We obtain 
these sets by first sorting the unique source docu-
ments according to their frequency of occurrence 
in EVAL. We then partition the set so that HEAD 
corresponds to all transitions from the source 
pages at the top of the list that account for 20% of 
the transitions in EVAL; TAIL corresponds to the 
transitions at the bottom also accounting for 20% 
of the transitions in EVAL; and TORSO corre-
sponds to the remaining transitions. 

4.1 Main Results 

Table 1 summarizes the results of various models 
over the three test sets using NDCG at truncation 
levels 1, 5, and 10. 

Rows 1 to 3 are simple heuristic baselines. 
RAND selects  random anchors, 1stK selects 
the first  anchors and LastK the last  anchors.  

The other models in Table 1 are boosted tree 
based rankers trained on TRAIN_2 described in 
Section 2. They vary only in their features. The 
ranker in Row 4 uses Non-Semantic Features 
(NSF) only. These features are derived from the 

 # Models HEAD TORSO TAIL 
   @1 @5 @10 @1 @5 @10 @1 @5 @10 

sr
c 

 o
nl

y 

1 RAND 0.041 0.062 0.081 0.036 0.076 0.109 0.062 0.195 0.258 
2 1stK 0.010 0.177 0.243 0.072 0.171 0.240 0.091 0.274 0.348 
3 LastK 0.170 0.022 0.027 0.022 0.044 0.062 0.058 0.166 0.219
4 NSF 0.215 0.253 0.295 0.139 0.229 0.282 0.109 0.293 0.365 
5 NSF+WCAT 0.438 0.424 0.463 0.194 0.290 0.346 0.118 0.317 0.386 
6 NSF+JTT 0.220 0.302 0.343 0.141 0.241 0.295 0.111 0.300 0.369 
7 NSF+DSSM_BOW 0.312 0.351 0.391 0.162 0.258 0.313 0.110 0.299 0.372 
8 NSF+DSSM 0.362 0.386 0.421 0.178 0.275 0.330 0.116 0.312 0.382 

sr
c+

ta
r 9 NSF+WCAT 0.505 0.475 0.501 0.224 0.304 0.356 0.129 0.324 0.391 

10 NSF+JTT 0.345 0.380 0.418 0.183 0.280 0.332 0.131 0.321 0.390 
11 NSF+DSSM_BOW 0.416 0.393 0.428 0.197 0.274 0.325 0.123 0.311 0.380 
12 NSF+DSSM 0.554 0.524 0.547 0.241 0.317 0.367 0.135 0.329 0.398 

Table 1: Highlighting task performance (NDCG @ K) of interest models over HEAD, TORSO and 
TAIL test sets. Bold indicates statistical significance over all non-shaded results using t-test (
0.05). 
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source document s and from user session infor-
mation in the browser log. The document features 
include: position of the anchor in the document, 
frequency of the anchor, and anchor density in the 
paragraph.  

The rankers in Rows 5 to 12 use the NSF and 
the semantic features computed from source and 
target documents of a browsing transition. We 
compare semantic features derived from three dif-
ferent sources. The first feature source comes 
from our DSSMs (DSSM and DSSM_BOW) us-
ing the output layers as feature generators as de-
scribed in Section 3.3. DSSM is the model de-
scribed in Section 3 and DSSM_BOW is the 
model proposed by Huang et al. (2013) where 
documents are view as bag of words (BOW) and 
the convolutional and max-pooling layers are not 
used. The two other sources of semantic features 
are used as a point of comparison to the DSSM. 
One is a generative semantic model (Joint Transi-
tion Topic model, or JTT) (Gamon et al. 2013). 
JTT is an LDA-style model (Blei et al. 2003) that 
is trained jointly on source and target documents 
linked by browsing transitions. JTT generates a 
total of 150 features from its latent variables, 50 
each for the source topic model, the target topic 
model and the transition model. The other seman-
tic model of contrast is a manually defined one, 
which we use to assess the effectiveness of auto-
matically learned models against human model-
ers. To this effect, we use the page categories that 
editors assign in Wikipedia as semantic features 
(WCAT). These features number in the multiple 
thousands. Using features such as WCAT is not a 
viable solution in general since Wikipedia catego-
ries are not available for all documents. As such, 
we use it solely as a point of comparison against 
DSSM and JTT. 

We also distinguish between two types of 
learned rankers: those which draw their features 
only from the source (src only) document and 
those that draw their features from both the source 
and target (src+tar) documents. Although our 
task setting allows access to the content of both 
source and target documents, there are practical 
scenarios where a system should predict what in-
terests the user without looking at the target doc-
ument because the extra step of identifying a suit-
able target document for each candidate concept 
or entity of interest is computationally expensive.  

4.2 Analysis of Results 

As shown in Table 1, NSF+DSSM, which incor-
porates our DSSM, is the overall best performing 

system across test sets. The task is hard as evi-
denced by the weak baseline scores. One reason is 
the large average number of candidates per page. 
On HEAD, we found an average of 170 anchors 
(of which 95 point to a unique target URL). For 
TORSO and TAIL, we found the average number 
of anchors to be 94 (52 unique targets) and 41 (19 
unique targets), respectively. 

Clearly, the semantics of the documents form 
important signals for this task: WCAT, JTT, 
DSSM_BOW, and DSSM all significantly boost 
the performance over NSF alone. There are two 
interesting comparisons to consider: (a) manual 
semantics vs. learned semantics; and (b) deep se-
mantic models vs. generative topic models. On 
(a), we observe somewhat surprisingly that the 
learned DSSM produces features that outperform 
the thousands of features coming from manually 
(editor) assigned Wikipedia category features 
(WCAT), in all but the TAIL where the two per-
form statistically the same. In contrast, features 
from the generative model (JTT) perform worse 
than WCAT across the board except on TAIL 
where JTT and WCAT are statistically tied. On 
(b), we observe that DSSM outperforms a state-
of-the-art generative model (JTT) on HEAD and 
TORSO. On TAIL, they are statistically indistin-
guishable. 

We turn now to inspecting the scenario where 
features are only drawn from the source document 
(Rows 1-8 in Table 1). Again we observe that se-
mantic features significantly boost the perfor-
mance against NSF alone, however they signifi-
cantly deteriorate when compared to using fea-
tures from both source and target documents. In 
this scenario, the manual semantics from WCAT 
outperform all other models, but with a diminish-
ing effect as we move from HEAD through 
TORSO to TAIL. DSSM is the best performing 
learned semantic model. 

Finally, we present the results to justify the two 
modifications we made to extend the model of 
Huang et al. (2013) to the DSSM, as described in 
Section 1. First, we see in Table 1 that 
DSSM_BOW, which has the same network struc-
ture of Huang et al.’s model, is much weaker than 
DSSM, demonstrating the benefits of using con-
volutional and max-pooling layers to extract se-
mantic features for the highlighting task. Second, 
we conduct several experiments by using the co-
sine scores between the output layers of DSSM 
for  and  as features (following the procedure in 
Section 3.3 for using the DSSM as a direct imple-
mentation of ). We found that adding the cosine 
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features to NSF+DSSM does not lead to any im-
provement. We also combined NSF with solely 
the cosine features from DSSM (i.e., without the 
other semantic features drawn from its output lay-
ers). But we still found no improvement over us-
ing NSF alone. Thus, we conclude that for this 
task it is much more effective to feed the features 
derived from DSSM to a supervised ranker than 
directly computing the interestingness score using 
cosine similarity in the learned semantic space, as 
in Huang et al. (2013). 

5 Experiments on Entity Search 

We construct the evaluation data set for this sec-
ond task by randomly sampling a set of documents 
from a traffic-weighted set of Web documents. In 
a second step, we identify the entity names in each 
document using an in-house named entity recog-
nizer. We issue each entity name as a query to a 
commercial search engine, and retain up to the 
top-100 retrieved documents as candidate target 
documents. We form for each entity a source doc-
ument which consists of the entity text and its sur-
rounding text defined by a 200-word window. We 
define the focus (as in Figure 1) in  as the entity 
text, and the focus in  as the first 10 tokens in . 

The final evaluation data set contains 10,000 
source documents. On average, each source docu-
ment is associated with 87 target documents. Fi-
nally, the source-target document pairs are labeled 
in terms of interestingness by paid annotators. The 
label is on a 5-level scale, 0 to 4, with 4 meaning 
the target document is the most interesting to the 

source document and 0 meaning the target is of no 
interest. 

We test our models on two scenarios. The first 
is a ranking scenario where  interesting docu-
ments are displayed to the user. Here, we select 
the top-  ranked documents according to their in-
terestingness scores. We measure the performance 
via NDCG at truncation levels 1 and 3. The sec-
ond scenario is to display to the user all interesting 
results. In this scenario, we select all target docu-
ments with an interestingness score exceeding a 
predefined threshold. We evaluate this scenario 
using ROC analysis and, specifically, the area un-
der the curve (AUC). 

5.1 Main Results 

The main results are summarized in Table 2. Rows 
1 to 6 are single model results, where each model 
is used as a direct implementation of the interest-
ingness function . Rows 7 to 9 are ranker results, 
where  is defined as a boosted tree based ranker 
that incorporates different sets of features ex-
tracted from source and target documents, includ-
ing the features derived from single models. As in 
the highlighting experiments, all the machine-
learned single models, including the DSSM, are 
trained on TRAIN_1, and all the rankers are 
trained on TRAIN_2. 

5.2 Analysis of Results 

BM25 (Rows 1 and 2 in Table 2) is the classic 
document model (Robertson and Zaragoza 2009). 
It uses the bag-of-words document representation 
and the BM25 term weighting function. In our set-
ting, we define the interestingness score of a doc-
ument pair as the dot product of their BM25-
weighted term vectors. To verify the importance 
of using contextual information, we compare two 
different ways of forming the term vector of a 
source document. The first only uses the entity 
text (Row 1). The second (Row 2) uses both the 
entity text and and its surrounding text in a 200-
word window (i.e., the entire source document). 
Results show that the model using contextual in-
formation is significantly better. Therefore, all the 
other models in this section use both the entity 
texts and their surrounding text. 

WTM (Row 3) is our implementation of the 
word translation model for IR (Berger and Laf-
ferty 1999; Gao et al. 2010). WTM defines the in-
terestingness score as: 

, ∏ ∑ | |∈∈ ,  

# Models @1 @3 AUC 
1 BM25 (entity)  0.133 0.195 0.583 
2 BM25 0.142 0.227 0.675 
3 WTM 0.191 0.287 0.678 
4 BLTM 0.214 0.306 0.704 
5 DSSM 0.259* 0.356* 0.711* 
6 DSSM_BOW 0.223 0.322 0.699 
7 Baseline ranker 0.283 0.360 0.723 
8 7 + DSSM(1) 0.301# 0.385# 0.758# 
9 7 + DSSM(600) 0.327## 0.402## 0.782##

Table 2: Contextual entity search task perfor-
mance (NDCG @ K and AUC). * indicates sta-
tistical significance over all non-shaded single 
model results (Rows 1 to 6) using t-test (
0.05). # indicates statistical significance over re-
sults in Row 7. ## indicates statistical signifi-
cance over results in Rows 7 and 8. 
 
 

 

9



where |  is the unigram probability of word 
 in , and |  is the probability of trans-

lating  into , trained on source-target docu-
ment pairs using EM (Brown et al. 1993). The 
translation-based approach allows any pair of 
non-identical but semantically related words to 
have a nonzero matching score. As a result, it sig-
nificantly outperforms BM25. 

BTLM (Row 4) follows the best performing 
bilingual topic model described in Gao et al. 
(2011), which is an extension of PLSA (Hofmann 
1999). The model is trained on source-target doc-
ument pairs using the EM algorithm with a con-
straint enforcing a source document  and its tar-
get document  to not only share the same prior 
topic distribution, but to also have similar frac-
tions of words assigned to each topic. BLTM de-
fines the interestingness score between s and t as: 

, ∏ ∑ | |∈ .  

The model assumes the following story of gener-
ating  from . First, for each topic  a word dis-
tribution  is selected from a Dirichlet prior with 
concentration parameter . Second, given , a 
topic distribution  is drawn from a Dirichlet 
prior with parameter . Finally,  is generated 
word by word. Each word  is generated by first 
selecting a topic  according to , and then 
drawing a word from . We see that BLTM 
models interestingness by taking into account the 
semantic topic distribution of the entire docu-
ments. Our results in Table 2 show that BLTM 
outperforms WTM by a significant margin in 
both NDCG and AUC. 

DSSM (Row 5) outperforms all the competing 
single models, including the state-of-the-art topic 
model BLTM. Now, we inspect the difference be-
tween DSSM and BLTM in detail. Although both 
models strive to generate the semantic representa-
tion of a document, they use different modeling 
approaches. BLTM by nature is a generative 
model. The semantic representation in BLTM is a 
distribution of hidden semantic topics. Such a dis-
tribution is learned using Maximum Likelihood 
Estimation in an unsupervised manner, i.e., max-
imizing the log-likelihood of the source-target 
document pairs in the training data. On the other 
hand, DSSM represents documents as points in a 
hidden semantic space using a supervised learning 
method, i.e., paired documents are closer in that 
latent space than unpaired ones. We believe that 
the superior performance of DSSM is largely due 
to the fact that the model parameters are discrimi-
natively trained using an objective that is tailored 
to the interestingness task.  

In addition to the difference in training meth-
ods, DSSM and BLTM also use different model 
structures. BLTM treats a document as a bag of 
words (thus losing some important contextual in-
formation such as word order and inter-word de-
pendencies), and generates semantic representa-
tions of documents using linear projection. 
DSSM, on the other hand, treats text as a sequence 
of words and better captures local and global con-
text, and generates highly non-linear semantic 
features via a deep neural network. To further ver-
ify our analysis, we inspect the results of a variant 
of DSSM, denoted as DSSM_BOW (Row 6), 
where the convolution and max-pooling layers are 
removed. This model treats a document as a bag 
of words, just like BLTM. These results demon-
strate that the effectiveness of DSSM can also be 
attributed to the convolutional architecture in the 
neural network, in addition to being deep and be-
ing discriminative. 

We turn now to discussing the ranker results in 
Rows 7 to 9. The baseline ranker (Row 7) uses 158 
features, including many counts and single model 
scores, such as BM25 and WMT. DSSM (Row 5) 
alone is quite effective, being close in perfor-
mance to the baseline ranker with non-DSSM fea-
tures. Integrating the DSSM score computed in (5) 
as one single feature into the ranker (Row 8) leads 
to a significant improvement over the baseline. 
The best performing combination (Row 9) is ob-
tained by incorporating the DSSM feature vectors 
of source and target documents (i.e., 600 features 
in total) in the ranker. 

We thus conclude that on both tasks, automatic 
highlighting and contextual entity search, features 
drawn from the output layers of our deep semantic 
model result in significant gains after being added 
to a set of non-semantic features, and in compari-
son to other types of semantic models used in the 
past. 

6 Related Work 

In addition to the notion of relevance as described 
in Section 1, related to interestingness is also the 
notion of salience (also called aboutness) (Gamon 
et al. 2013; 2014; Parajpe 2009; Yih et al. 2006). 
Salience is the centrality of a term to the content 
of a document. Although salience and interesting-
ness interact, the two are not the same. For exam-
ple, in a news article about President Obama’s 
visit to Seattle, Obama is salient, yet the average 
user would probably not be interested in learning 
more about Obama while reading that article.  
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There are many systems that identify popular 
content in the Web or recommend content (e.g., 
Bandari et al. 2012; Lerman and Hogg 2010; 
Szabo and Huberman 2010), which is closely re-
lated to the highlighting task. In contrast to these 
approaches, we strive to predict what term a user 
is likely to be interested in when reading content, 
which may or may not be the same as the most 
popular content that is related to the current docu-
ment. It has empirically been demonstrated in 
Gamon et al. (2013) that popularity is in fact a ra-
ther poor predictor for interestingness. The task of 
contextual entity search, which is formulated as an 
information retrieval problem in this paper, is also 
related to research on entity resolution (Stefanidis 
et al. 2013).  

Latent Semantic Analysis (Deerwester et al. 
1990) is arguably the earliest semantic model de-
signed for IR. Generative topic models widely 
used for IR include PLSA (Hofmann 1990) and 
LDA (Blei et al. 2003). Recently, these models 
have been extended to handle cross-lingual cases, 
where there are pairs of corresponding documents 
in different languages (e.g., Dumais et al. 1997; 
Gao et al. 2011; Platt et al. 2010; Yih et al. 2011). 

By exploiting deep architectures, deep learning 
techniques are able to automatically discover from 
training data the hidden structures and the associ-
ated features at different levels of abstraction use-
ful for a variety of tasks (e.g., Collobert et al. 
2011; Hinton et al. 2012; Socher et al. 2012; 
Krizhevsky et al., 2012; Gao et al. 2014). Hinton 
and Salakhutdinov (2010) propose the most origi-
nal approach based on an unsupervised version of 
the deep neural network to discover the hierar-
chical semantic structure embedded in queries and 
documents. Huang et al. (2013) significantly ex-
tends the approach so that the deep neural network 
can be trained on large-scale query-document 
pairs giving much better performance. The use of 
the convolutional neural network for text pro-
cessing, central to our DSSM, was also described 
in Collobert et al. (2011) and Shen et al. (2014) 
but with very different applications. The DSSM 
described in Section 3 can be viewed as a variant 
of the deep neural network models used in these 
previous studies. 

7 Conclusions 

Modeling interestingness is fundamental to many 
online recommendation systems. We obtain natu-
rally occurring interest signals by observing Web 
browsing transitions where users click from one 
webpage to another. We propose to model this 

“interestingness” with a deep semantic similarity 
model (DSSM), based on deep neural networks 
with special convolutional-pooling structure, 
mapping source-target document pairs to feature 
vectors in a latent semantic space. We train the 
DSSM using browsing transitions between docu-
ments. Finally, we demonstrate the effectiveness 
of our model on two interestingness tasks: auto-
matic highlighting and contextual entity search. 
Our results on large-scale, real-world datasets 
show that the semantics of documents computed 
by the DSSM are important for modeling interest-
ingness and that the new model leads to signifi-
cant improvements on both tasks. DSSM is shown 
to outperform not only the classic document mod-
els that do not use (latent) semantics but also state-
of-the-art topic models that do not have the deep 
and convolutional architecture characterizing the 
DSSM. 

One area of future work is to extend our 
method to model interestingness given an entire 
user session, which consists of a sequence of 
browsing events. We believe that the prior brows-
ing and interaction history recorded in the session 
provides additional signals for predicting interest-
ingness. To capture such signals, our model needs 
to be extended to adequately represent time series 
(e.g., causal relations and consequences of ac-
tions). One potentially effective model for such a 
purpose is based on the architecture of recurrent 
neural networks (e.g., Mikolov et al. 2010; Chen 
and Deng, 2014), which can be incorporated into 
the deep semantic model proposed in this paper. 
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Abstract

This work presents two different trans-
lation models using recurrent neural net-
works. The first one is a word-based ap-
proach using word alignments. Second,
we present phrase-based translation mod-
els that are more consistent with phrase-
based decoding. Moreover, we introduce
bidirectional recurrent neural models to
the problem of machine translation, allow-
ing us to use the full source sentence in our
models, which is also of theoretical inter-
est. We demonstrate that our translation
models are capable of improving strong
baselines already including recurrent neu-
ral language models on three tasks:
IWSLT 2013 German→English, BOLT
Arabic→English and Chinese→English.
We obtain gains up to 1.6% BLEU

and 1.7% TER by rescoring 1000-best
lists.

1 Introduction

Neural network models have recently experienced
unprecedented attention in research on statistical
machine translation (SMT). Several groups have
reported strong improvements over state-of-the-art
baselines using feedforward neural network-based
language models (Schwenk et al., 2006; Vaswani
et al., 2013), as well as translation models (Le et
al., 2012; Schwenk, 2012; Devlin et al., 2014).
Different from the feedforward design, recurrent
neural networks (RNNs) have the advantage of be-
ing able to take into account an unbounded his-
tory of previous observations. In theory, this en-
ables them to model long-distance dependencies
of arbitrary length. However, while previous work

on translation modeling with recurrent neural net-
works shows its effectiveness on standard base-
lines, so far no notable gains have been presented
on top of recurrent language models (Auli et al.,
2013; Kalchbrenner and Blunsom, 2013; Hu et al.,
2014).

In this work, we present two novel approaches
to recurrent neural translation modeling: word-
based and phrase-based. The word-based ap-
proach assumes one-to-one aligned source and
target sentences. We evaluate different ways of
resolving alignment ambiguities to obtain such
alignments. The phrase-based RNN approach is
more closely tied to the underlying translation
paradigm. It models actual phrasal translation
probabilities while avoiding sparsity issues by us-
ing single words as input and output units. Fur-
thermore, in addition to the unidirectional formu-
lation, we are the first to propose a bidirectional
architecture which can take the full source sen-
tence into account for all predictions. Our ex-
periments show that these models can improve
state-of-the-art baselines containing a recurrent
language model on three tasks. For our compet-
itive IWSLT 2013 German→English system, we
observe gains of up to 1.6% BLEU and 1.7% TER.
Improvements are also demonstrated on top of our
evaluation systems for BOLT Arabic→English
and Chinese→English, which also include recur-
rent neural language models.

The rest of this paper is structured as follows. In
Section 2 we review related work and in Section 3
an overview of long short-term memory (LSTM)
neural networks, a special type of recurrent neural
networks we make use of in this work, is given.
Section 4 describes our novel translation models.
Finally, experiments are presented in Section 5
and we conclude with Section 6.
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2 Related Work

In this Section we contrast previous work to ours,
where we design RNNs to model bilingual depen-
dencies, which are applied to rerank n-best lists
after decoding.

To the best of our knowledge, the earliest at-
tempts to apply neural networks in machine trans-
lation (MT) are presented in (Castaño et al.,
1997; Castaño and Casacuberta, 1997; Castaño
and Casacuberta, 1999), where they were used for
example-based MT.

Recently, Le et al. (2012) presented translation
models using an output layer with classes and
a shortlist for rescoring using feedforward net-
works. They compare between word-factored and
tuple-factored n-gram models, obtaining their best
results using the word-factored approach, which is
less amenable to data sparsity issues. Both of our
word-based and phrase-based models eventually
work on the word level. Kalchbrenner and Blun-
som (2013) use recurrent neural networks with
full source sentence representations. The continu-
ous representations are obtained by applying a se-
quence of convolutions, and the result is fed into
the hidden layer of a recurrent language model.
Rescoring results indicate no improvements over
the state of the art. Auli et al. (2013) also in-
clude source sentence representations built either
using Latent Semantic Analysis or by concatenat-
ing word embeddings. This approach produced
no notable gain over systems using a recurrent
language model. On the other hand, our pro-
posed bidirectional models include the full source
sentence relying on recurrency, yielding improve-
ments over competitive baselines already includ-
ing a recurrent language model.

RNNs were also used with minimum translation
units (Hu et al., 2014), which are phrase pairs un-
dergoing certain constraints. At the input layer,
each of the source and target phrases are mod-
eled as a bag of words, while the output phrase
is predicted word-by-word assuming conditional
independence. The approach seeks to alleviate
data sparsity problems that would arise if phrases
were to be uniquely distinguished. Our proposed
phrase-based models maintain word order within
phrases, but the phrases are processed in a word-
pair manner, while the phrase boundaries remain
implicitly encoded in the way the words are pre-
sented to the network. Schwenk (2012) proposed
a feedforward network that predicts phrases of a

fixed maximum length, such that all phrase words
are predicted at once. The prediction is condi-
tioned on the source phrase. Since our phrase-
based model predicts one word at a time, it does
not assume any phrase length. Moreover, our
model’s predictions go beyond phrase boundaries
and cover unbounded history and future contexts.

Using neural networks during decoding re-
quires tackling the costly output normalization
step. Vaswani et al. (2013) avoid this step by
training feedforward neural language models us-
ing noise contrastive estimation, while Devlin et
al. (2014) augment the training objective function
to produce approximately normalized scores di-
rectly. The latter work makes use of translation
and joint models, and pre-computes the first hid-
den layer beforehand, resulting in large speedups.
They report major improvements over strong base-
lines. The speedups achieved by both works al-
lowed to integrate feedforward neural networks
into the decoder.

3 LSTM Recurrent Neural Networks

Our work is based on recurrent neural networks.
In related fields like e. g. language modeling, this
type of neural network has been shown to perform
considerably better than standard feedforward ar-
chitectures (Mikolov et al., 2011; Arisoy et al.,
2012; Sundermeyer et al., 2013; Liu et al., 2014).

Most commonly, recurrent neural networks are
trained with stochastic gradient descent (SGD),
where the gradient of the training criterion is com-
puted with the backpropagation through time al-
gorithm (Rumelhart et al., 1986; Werbos, 1990;
Williams and Zipser, 1995). However, the combi-
nation of RNN networks with conventional back-
propagation training leads to conceptual difficul-
ties which are known as the vanishing (or explod-
ing) gradient problem, described e. g. in (Bengio
et al., 1994). To remedy this problem, in (Hochre-
iter and Schmidhuber, 1997) it was suggested to
modify the architecture of a standard RNN in such
a way that vanishing and exploding gradients are
avoided during backpropagation. In particular, no
modification of the training algorithm is necessary.
The resulting architecture is referred to as long
short-term memory (LSTM) neural network.

Bidirectional recurrent neural networks
(BRNNs) were first proposed in (Schuster and
Paliwal, 1997) and applied to speech recognition
tasks. They have been since applied to different
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Figure 1: Example sentence from the German→English IWSLT data. The one-to-one alignment is
created by introducing εaligned and εunaligned tokens.

tasks like parsing (Henderson, 2004) and spoken
language understanding (Mesnil et al., 2013).
Bidirectional long short-term memory (BLSTM)
networks are BRNNs using LSTM hidden layers
(Graves and Schmidhuber, 2005). This work
introduces BLSTMs to the problem of machine
translation, allowing powerful models that employ
unlimited history and future information to make
predictions.

While the proposed models do not make any as-
sumptions about the type of RNN used, all of our
experiments make use of recurrent LSTM neural
networks, where we include later LSTM exten-
sions proposed in (Gers et al., 2000; Gers et al.,
2003). The cross-entropy error criterion is used
for training. Further details on LSTM neural net-
works can be found in (Graves and Schmidhuber,
2005; Sundermeyer et al., 2012).

4 Translation Modeling with RNNs

In the following we describe our word- and
phrase-based translation models in detail. We also
show how bidirectional RNNs can enable such
models to include full source information.

4.1 Resolving Alignment Ambiguities
Our word-based recurrent models are only de-
fined for one-to-one-aligned source-target sen-
tence pairs. In this work, we always evaluate the
model in the order of the target sentence. How-
ever, we experiment with several different ways
to resolve ambiguities due to unaligned or mul-
tiply aligned words. To that end, we introduce
two additional tokens, εaligned and εunaligned . Un-

dev test
BLEU TER BLEU TER

baseline 33.5 45.8 30.9 48.4

w/o ε 34.2 45.3 31.8 47.7
w/o εunaligned 34.4 44.8 31.7 47.4
source identity 34.5 45.0 31.9 47.5
target identity 34.5 44.6 31.9 47.0
all ε 34.6 44.5 32.0 47.1

Table 1: Comparison of including different sets
of ε tokens into the one-to-one alignment on the
IWSLT 2013 German→English task using the uni-
directional RNN translation model.

aligned words are either removed or aligned to an
extra εunaligned token on the opposite side. If an
εunaligned is introduced on the target side, its posi-
tion is determined by the aligned source word that
is closest to the unaligned source word in question,
preferring left to right. To resolve one-to-many
alignments, we use an IBM-1 translation table to
decide for one of the alignment connections to be
kept. The remaining words are also either deleted
or aligned to additionally introduced εaligned to-
kens on the opposite side. Fig. 1 shows an ex-
ample sentence from the IWSLT data, where all ε
tokens are introduced.

In a short experiment, we evaluated 5 differ-
ent setups with our unidirectional RNN translation
model (cf. next Section): without any ε tokens,
without εunaligned , source identity, target identity
and using all ε tokens. Source identity means we
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introduce no ε tokens on source side, but all on
target side. Target identity is defined analogously.
The results can be found in Tab. 1. We use the
setup with all ε tokens in all following experi-
ments, which showed the best BLEU performance.

4.2 Word-based RNN Models
Given a pair of source sequence f I1 = f1 . . . fI
and target sequence eI1 = e1 . . . eI , where we as-
sume a direct correspondence between fi and ei,
we define the posterior translation probability by
factorizing on the target words:

p(eI1|f I1 ) =
I∏
i=1

p(ei|ei−1
1 , f I1 ) (1)

≈
I∏
i=1

p(ei|ei−1
1 , f i+d1 ) (2)

≈
I∏
i=1

p(ei|f i+d1 ). (3)

We denote the formulation (1) as the bidirectional
joint model (BJM). This model can be simplified
by several independence assumptions. First, we
drop the dependency on the future source infor-
mation, receiving what we denote as the unidirec-
tional joint model (JM) in (2). Here, d ∈ N0 is
a delay parameter, which is set to d = 0 for all
experiments, except for the comparative results re-
ported in Fig. 7. Finally, assuming conditional in-
dependence from the previous target sequence, we
receive the unidirectional translation model (TM)
in (3). Analogously, we can define a bidirectional
translation model (BTM) by keeping the depen-
dency on the full source sentence f I1 , but dropping
the previous target sequence ei−1

1 :

p(eI1|f I1 ) ≈
I∏
i=1

p(ei|f I1 ). (4)

Fig. 2 shows the dependencies of the word-
based neural translation and joint models. The
alignment points are traversed in target order and
at each time step one target word is predicted.
The pure translation model (TM) takes only source
words as input, while the joint model (JM) takes
the preceding target words as an additional input.
A delay of d > 0 is implemented by shifting the
target sequence by d time steps and filling the first
d target positions and the last d source positions
with a dedicated εpadding symbol. The RNN archi-
tecture for the unidirectional word-based models

jo
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Figure 2: Dependencies modeled within the word-
based RNN models when predicting the target
word ’know’. Directly processed information is
depicted with solid rectangles, and information
available through recurrent connections is marked
with dashed rectangles.

is illustrated in Fig. 3, which corresponds to the
following set of equations:

yi = A1f̂i +A2êi−1

zi = ξ(yi;A3, y
i−1
1 )

p
(
c(ei)|ei−1

1 , f i1
)

= ϕc(ei)(A4zi)

p
(
ei|c(ei), ei−1

1 , f i1
)

= ϕei(Ac(ei)zi)

p(ei|ei−1
1 , f i1) = p

(
ei|c(ei), ei−1

1 , f i1
) ·

p
(
c(ei)|ei−1

1 , f i1
)

Here, by f̂i and êi−1 we denote the one-hot en-
coded vector representations of the source and
target words fi and ei−1. The outgoing activa-
tion values of the projection layer and the LSTM
layer are yi and zi, respectively. The matrices Aj
contain the weights of the neural network layers.
By ξ(· ;A3, y

i−1
1 ) we denote the LSTM formalism

that we plug in at the third layer. As the LSTM
layer is recurrent, we explicitly include the de-
pendence on the previous layer activations yi−1

1 .
Finally, ϕ is the widely-used softmax function to
obtain normalized probabilities, and c denotes a
word class mapping from any target word to its
unique word class. For the bidirectional model,
the equations can be defined analogously.

Due to the use of word classes, the output
layer consists of two parts. The class probabil-
ity p

(
c(ei)|ei−1

1 , f i1
)

is computed first, and then
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Figure 3: Architecture of a recurrent unidirec-
tional translation model. By including the dashed
parts, a joint model is obtained.

the word probability p
(
ei|c(ei), ei−1

1 , f i1
)

is ob-
tained given the word class. This trick helps avoid-
ing the otherwise computationally expensive nor-
malization sum, which would be carried out over
all words in the target vocabulary. In a class-
factorized output layer where each word belongs
to a single class, the normalization is carried out
over all classes, whose number is typically much
less than the vocabulary size. The other normal-
ization sum needed to produce the word probabil-
ity is limited to the words belonging to the same
class (Goodman, 2001; Morin and Bengio, 2005).

4.3 Phrase-based RNN Models

One of the conceptual disadvantages of word-
based modeling as introduced in the previous sec-
tion is that there is a mismatch between train-
ing and testing conditions: During neural network
training, the vocabulary has to be extended by ad-
ditional ε tokens, and a one-to-one alignment is
used which does not reflect the situation in decod-
ing. In phrase-based machine translation, more
complex alignments in terms of multiple words
on both the source and the target sides are used,
which allow the decoder to make use of richer
short-distance dependencies and are crucial for the
performance of the resulting system.

From this perspective, it seems interesting to
standardize the alignments used in decoding, and
in training the neural network. However, it is dif-
ficult to use the phrases themselves as the vocab-
ulary of the RNN. Usually, the huge number of
potential phrases in comparison to the relatively
small amount of training data makes the learn-
ing of continuous phrase representations difficult

Surfer

Surfers

zum Beispiel

, for example ,

kennen

know

zur Genüge

incredibly

.

.

das

this

Figure 4: Example phrase alignment for a sen-
tence from the IWSLT training data.

due to data sparsity. This is confirmed by results
presented in (Le et al., 2012), which show that a
word-factored translation model outperforms the
phrase-factored version. Therefore, in this work
we continue relying on source and target word vo-
cabularies for building our phrase representations.
However, we no longer use a direct correspon-
dence between a source and a target word, as en-
forced in our word-based models.

Fig. 4 shows an example phrase alignment,
where a sequence of source words f̃i is directly
mapped to a sequence of target words ẽi for 1 ≤
i ≤ Ĩ . By Ĩ , we denote the number of phrases in
the alignment. We decompose the target sentence
posterior probability in the following way:

p(eI1|fJ1 ) =
Ĩ∏
i=1

p(ẽi|ẽi−1
1 , f̃ Ĩ1 ) (5)

≈
Ĩ∏
i=1

p(ẽi|ẽi−1
1 , f̃ i1) (6)

where the joint model in Eq. 5 would correspond
to a bidirectional RNN, and Eq. 6 only requires a
unidirectional RNN. By leaving out the condition-
ing on the target side, we obtain a phrase-based
translation model.

As there is no one-to-one correspondence be-
tween the words within a phrase, the basic idea of
our phrase-based approach is to let the neural net-
work learn the dependencies itself, and present the
full source side of the phrase to the network be-
fore letting it predict target side words. Then the
probability for the target side of a phrase can be
computed, in case of Eq. 6, by:

p(ẽi|ẽi−1
1 , f̃ Ĩ1 ) =

|ẽi|∏
j=1

p
(
(ẽi)j |(ẽi)j−1

1 , ẽi−1
1 , f̃ i1

)
,

and analogously for the case of Eq. 5. Here, (ẽi)j
denotes the j-th word of the i-th aligned target
phrase.

We feed the source side of a phrase into the neu-
ral network one word at a time. Only when the
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Figure 5: A recurrent phrase-based joint translation model, unfolded over time. Source words are printed
in normal face, while target words are printed in bold face. Dashed lines indicate phrases from the
example sentence. For brevity, we omit the precise handling of sentence begin and end tokens.

presentation of the source side is finished we start
estimating probabilities for the target side. There-
fore, we do not let the neural network learn a target
distribution until the very last source word is con-
sidered. In this way, we break up the conventional
RNN training scheme where an input sample is di-
rectly followed by its corresponding teacher sig-
nal. Similarly, the presentation of the source side
of the next phrase only starts after the prediction
of the current target side is completed.

To this end, we introduce a no-operation token,
denoted by ε, which is not part of the vocabulary
(which means it cannot be input to or predicted by
the RNN). When the ε token occurs as input, it in-
dicates that no input needs to be processed by the
RNN. When the ε token occurs as a teacher signal
for the RNN, the output layer distribution is ig-
nored, and does not even have to be computed. In
both cases, all the other layers are still processed
during forward and backward passes such that the
RNN state can be advanced even without addi-
tional input or output.

Fig. 5 depicts the evaluation of a phrase-based
joint model for the example alignment from Fig. 4.
For a source phrase f̃i, we include (|ẽi|−1) many ε
symbols at the end of the phrase. Conversely, for
a target phrase ẽi, we include (|f̃i| − 1) many ε
symbols at the beginning of the phrase.

E. g., in the figure, the second dashed rectan-
gle from the left depicts the training of the English
phrase “, for example ,” and its German transla-
tion “zum Beispiel”. At the input layer, we feed in
the source words one at a time, while we present
ε tokens at the target side input layer and the out-
put layer (with the exception of the very first time
step, where we still have the last target word from
the previous phrase as input instead of ε). With

the last word of the source phrase “Beispiel” being
presented to the network, the full source phrase is
stored in the hidden layer, and the neural network
is then trained to predict the target phrase words
at the output layer. Subsequently, the source input
is ε, and the target input is the most recent target
side history word.

To obtain a phrase-aligned training sequence for
the phrase-based RNN models, we force-align the
training data with the application of leave-one-out
as described in (Wuebker et al., 2010).

4.4 Bidirectional RNN Architecture

While the unidirectional RNNs include an un-
bounded sentence history, they are still limited in
the number of future source words they include.
Bidirectional models provide a flexible means to
also include an unbounded future context, which,
unlike the delayed unidirectional models, require
no tuning to determine the amount of delay.

Fig. 6 illustrates the bidirectional model archi-
tecture, which is an extension of the unidirectional
model of Fig. 3. First, an additional recurrent
hidden layer is added in parallel to the existing
one. This layer will be referred to as the back-
ward layer, since it processes information in back-
ward time direction. This hidden layer receives
source word input only, while target words in the
case of a joint model are fed to the forward layer
as in the unidirectional case. Due to the backward
recurrency, the backward layer will make the in-
formation f Ii available when predicting the target
word ei, while the forward layer takes care of the
source history f i1. Jointly, the forward and back-
ward branches include the full source sentence f I1 ,
as indicated in Fig. 2. Fig. 6 shows the “deep”
variant of the bidirectional model, where the for-
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Figure 6: Architecture of a recurrent bidirectional
translation model. By (+) and (−), we indicate
a processing in forward and backward time direc-
tions, respectively. The inclusion of the dashed
parts leads to a bidirectional joint model. One
source projection matrix is used for the forward
and backward branches.

ward and backward layers converge into a hidden
layer. A shallow variant can be obtained if the
parallel layers converge into the output layer di-
rectly1.

Due to the full dependence on the source se-
quence, evaluating bidirectional networks requires
computing the forward pass of the forward and
backward layers for the full sequence, before be-
ing able to evaluate the next layers. In the back-
ward pass of backpropagation, the forward and
backward recurrent layers are processed in de-
creasing and increasing time order, respectively.

5 Experiments

5.1 Setup

All translation experiments are performed with the
Jane toolkit (Vilar et al., 2010; Wuebker et al.,
2012). The largest part of our experiments is car-
ried out on the IWSLT 2013 German→English
shared translation task.2 The baseline system is
trained on all available bilingual data, 4.3M sen-
tence pairs in total, and uses a 4-gram LM with
modified Kneser-Ney smoothing (Kneser and Ney,
1995; Chen and Goodman, 1998), trained with
the SRILM toolkit (Stolcke, 2002). As additional

1In our implementation, the forward and backward layers
converge into an intermediate identity layer, and the aggre-
gate is weighted and fed to the next layer.

2http://www.iwslt2013.org

data sources for the LM we selected parts of the
Shuffled News and LDC English Gigaword cor-
pora based on cross-entropy difference (Moore
and Lewis, 2010), resulting in a total of 1.7 bil-
lion running words for LM training. The state-of-
the-art baseline is a standard phrase-based SMT
system (Koehn et al., 2003) tuned with MERT
(Och, 2003). It contains a hierarchical reorder-
ing model (Galley and Manning, 2008) and a 7-
gram word cluster language model (Wuebker et
al., 2013). Here, we also compare against a feed-
forward joint model as described by Devlin et al.
(2014), with a source window of 11 words and a
target history of three words, which we denote as
BBN-JM. Instead of POS tags, we predict word
classes trained with mkcls. We use a shortlist
of size 16K and 1000 classes for the remaining
words. All neural networks are trained on the TED
portion of the data (138K segments) and are ap-
plied in a rescoring step on 1000-best lists.

To confirm our results, we run additional
experiments on the Arabic→English and
Chinese→English tasks of the DARPA BOLT
project. In both cases, the neural network models
are added on top of our most competitive eval-
uation system. On Chinese→English, we use a
hierarchical phrase-based system trained on 3.7M
segments with 22 dense features, including an ad-
vanced orientation model (Huck et al., 2013). For
the neural network training, we selected a subset
of 9M running words. The Arabic→English
system is a standard phrase-based decoder trained
on 6.6M segments, using 17 dense features. The
neural network training was performed using a
selection amounting to 15.5M running words.
For both tasks we apply the neural networks by
rescoring 1000-best lists and evaluate results on
two data sets from the ’discussion forum’ domain,
test1 and test2. The sizes of the data sets
for the Arabic→English system are: 1219 (dev),
1510 (test1), and 1137 (test2) segments, and
for the Chinese→English system are: 5074 (dev),
1844 (test1), and 1124 (test2) segments. All
results are measured in case-insensitive BLEU [%]
(Papineni et al., 2002) and TER [%] (Snover et al.,
2006) on a single reference.

5.2 Results

Our results on the IWSLT German→English task
are summarized in Tab. 2. At this point, we
do not include a recurrent neural network lan-
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dev test
BLEU TER BLEU TER

baseline 33.5 45.8 30.9 48.4

TM 34.6 44.5 32.0 47.1
JM 34.7 44.7 31.8 47.4

BTM 34.7 44.9 32.3 47.0
BTM (deep) 34.8 44.3 32.5 46.7
BJM 34.7 44.5 32.1 47.0
BJM (deep) 34.9 44.1 32.2 46.6

PTM 34.3 44.9 32.1 47.5
PJM 34.3 45.0 32.0 47.5

PJM (10-best) 34.4 44.8 32.0 47.3
PJM (deep) 34.6 44.7 32.0 47.6
PBJM (deep) 34.8 44.9 31.9 47.5

BBN-JM 34.4 44.9 31.9 47.6

Table 2: Results for the IWSLT 2013
German→English task with different RNN
models. T: translation, J: joint, B: bidirectional,
P: phrase-based.

guage model yet. Here, the delay parameter d
from Equations 2 and 3 is set to zero. We ob-
serve that for all recurrent translation models, we
achieve substantial improvements over the base-
line on the test data, ranging from 0.9 BLEU

up to 1.6 BLEU. These results are also consistent
with the improvements in terms of TER, where we
achieve reductions by 0.8 TER up to 1.8 TER.

These numbers can be directly compared to the
case of feedforward neural network-based transla-
tion modeling as proposed in (Devlin et al., 2014)
which we include in the very last row of the table.
Nearly all of our recurrent models outperform the
feedforward approach, where the RNN model per-
forming best on the dev data is better on test
by 0.3 BLEU and 1.0 TER.

Interestingly, for the recurrent word-based mod-
els, on the test data it can be seen that TMs per-
form better than JMs, even though TMs do not
take advantage of the target side history words.
However, exploiting this extra information does
not always need to result in a better model, as the
target side words are only derived from the given
source side, which is available to both TMs and
JMs. On the other hand, including future source
words in a bidirectional model clearly improves
the performance further. By adding another LSTM

 31
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Figure 7: BLEU scores on the IWSLT test set
with different delays for the unidirectional RNN-
TM and the bidirectional RNN-BTM.

layer that combines forward and backward time
directions (indicated as ‘deep’ in the table), we ob-
tain our overall best model.

In Fig. 7 we compare the word-based bidirec-
tional TM with a unidirectional TM that uses dif-
ferent time delays d = 0, . . . , 4. For a delay d =
2, the same performance is obtained as with the
bidirectional model, but this comes at the price of
tuning the delay parameter.

In comparison to the unidirectional word-based
models, phrase-based models perform similarly.
In the tables, we include those phrase-based vari-
ants which perform best on the dev data, where
phrase-based JMs always are at least as good or
better than the corresponding TMs in terms of
BLEU. Therefore, we mainly report JM results
for the phrase-based networks. A phrase-based
model can also be trained on multiple variants for
the phrase alignment. For our experiments, we
tested 10-best alignments against the single best
alignment, which resulted in a small improvement
of 0.2 TER on both dev and test. We did not ob-
serve consistent gains by using an additional hid-
den layer or bidirectional models. To some ex-
tent, future information is already considered in
unidirectional phrase-based models by feeding the
complete source side before predicting the target
side.

Tab. 3 shows different model combination re-
sults for the IWSLT task, where a recurrent lan-
guage model is included in the baseline. Adding
a deep bidirectional TM or JM to the recur-
rent language model improves the RNN-LM base-
line by 1.2 BLEU or 1.1 BLEU, respectively. A
phrase-based model substantially improves over
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dev eval11 test

BLEU
[%]

TER
[%]

BLEU
[%]

TER
[%]

BLEU
[%]

TER
[%]

baseline (w/ RNN-LM) 34.3 44.8 36.4 42.9 31.5 47.8

BTM (deep) 34.9 43.7 37.6 41.5 32.7 46.1
BJM (deep) 35.0 44.4 37.4 41.9 32.6 46.5
PBJM (deep) 34.8 44.6 36.9 42.6 32.3 47.2

4 RNN models 35.2 43.4 38.0 41.2 32.7 46.0

Table 3: Results for the IWSLT 2013 German→English task with different RNN models. All results
include a recurrent language model. T: translation, J: joint, B: bidirectional, P: phrase-based.

the RNN-LM baseline, but performs not as good
as its word-based counterparts. By adding four
different translation models, including models in
reverse word order and reverse translation direc-
tion, we are able to improve these numbers even
further. However, especially on the test data, the
gains from model combination saturate quickly.

Apart from the IWSLT track, we also ana-
lyze the performance of our translation models on
the BOLT Chinese→English and Arabic→English
translation tasks. Due to the large amount of train-
ing data, we concentrate on models of high perfor-
mance in the IWSLT experiments. The results can
be found in Tab. 4 and 5. In both cases, we see
consistent improvements over the recurrent neural
network language model baseline, improving the
Arabic→English system by 0.6 BLEU and 0.5 TER

on test1. This can be compared to the rescoring
results for the same task reported by (Devlin et al.,
2014), where they achieved 0.3 BLEU, despite the
fact that they used multiple references for scoring,
whereas in our experiments we rely on a single
reference only. The models are also able to im-
prove the Chinese→English system by 0.5 BLEU

and 0.5 TER on test2.

5.3 Analysis

To investigate whether bidirectional models ben-
efit from future source information, we compare
the single-best output of a system reranked with a
unidirectional model to the output reranked with
a bidirectional model. We choose the models
to be translation models in both cases, as they
predict target words independent of previous
predictions, given the source information (cf. Eqs.
(3, 4)). This makes it easier to detect the effect
of including future source information or the lack
thereof. The examples are taken from the IWSLT

test1 test2
BLEU TER BLEU TER

baseline 25.2 57.4 26.8 57.3

BTM (deep) 25.6 56.6 26.8 56.7
BJM (deep) 25.9 56.9 27.4 56.7
RNN-LM 25.6 57.1 27.5 56.7

+ BTM (deep) 25.9 56.7 27.3 56.8
+ BJM (deep) 26.2 56.6 27.9 56.5

Table 4: Results for the BOLT Arabic→English
task with different RNN models. The “+” sign in
the last two rows indicates that either of the corre-
sponding deep models (BTM and BJM) are added
to the baseline including the recurrent language
model (i.e. they are not applied at the same time).
T: translation, J: joint, B: bidirectional.

task, where we include the one-to-one source
information, reordered according to the target
side.

source: nicht so wie ich

reference: not like me

Hypothesis 1:

1-to-1 source: so ich ε nicht wie
1-to-1 target: so I do n’t like
Hypothesis 2:

1-to-1 source: nicht so wie ich

1-to-1 target: not ε like me

In this example, the German phrase “so wie”
translates to “like” in English. The bidirectional
model prefers hypothesis 2, making use of the
future word “wie” when translating the German
word “so” to ε, because it has future insight that
this move will pay off later when translating
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BLEU TER BLEU TER

baseline 18.3 63.6 16.7 63.0

BTM (deep) 18.7 63.3 17.1 62.6
BJM (deep) 18.5 63.1 17.2 62.3
RNN-LM 18.8 63.3 17.2 62.8

+ BTM (deep) 18.9 63.1 17.7 62.3
+ BJM (deep) 18.8 63.3 17.5 62.5

Table 5: Results for the BOLT Chinese→English
task with different RNN models. The “+” sign in
the last two rows indicates that either of the corre-
sponding deep models (BTM and BJM) are added
to the baseline including the recurrent language
model (i.e. they are not applied at the same time).
T: translation, B: bidirectional.

the rest of the sentence. This information is
not available to the unidirectional model, which
prefers hypothesis 1 instead.

source: das taten wir dann auch und verschafften uns

so eine Zeit lang einen Wettbewerbs Vorteil .

reference: and we actually did that and it gave us a

competitive advantage for a while .

Hypothesis 1:

1-to-1 source: das ε ε ε wir dann auch taten und

verschafften uns so eine Zeit lang einen Wettbewerbs

Vorteil .

1-to-1 target: that ’s just what we ε ε did and gave us ε

a time , a competitive advantage .

Hypothesis 2:

1-to-1 source: das ε ε ε wir dann auch taten und

verschafften uns so einen Wettbewerbs Vorteil ε eine
Zeit lang .

1-to-1 target: that ’s just what we ε ε did and gave us ε

a competitive advantage for a ε while .

Here, the German phrase “eine Zeit lang” trans-
lates to “for a while” in English. Bidirectional
scoring favors hypothesis 2, while unidirectional
scoring favors hypothesis 1. It seems that the uni-
directional model translates “Zeit” to “time” as the
object of the verb “give” in hypothesis 1, being
blind to the remaining part “lang” of the phrase
which changes the meaning. The bidirectional
model, to its advantage, has the full source infor-
mation, allowing it to make the correct prediction.

6 Conclusion

We developed word- and phrase-based RNN trans-
lation models. The former is simple and performs
well in practice, while the latter is more consistent
with the phrase-based paradigm. The approach in-
herently evades data sparsity problems as it works
on words in its lowest level of processing. Our
experiments show the models are able to achieve
notable improvements over baselines containing a
recurrent LM.

In addition, and for the first time in statistical
machine translation, we proposed a bidirectional
neural architecture that allows modeling past and
future dependencies of any length. Besides its
good performance in practice, the bidirectional ar-
chitecture is of theoretical interest as it allows the
exact modeling of posterior probabilities.
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2013. Comparison of feedforward and recurrent
neural network language models. In IEEE Interna-
tional Conference on Acoustics, Speech, and Signal
Processing, pages 8430–8434, Vancouver, Canada,
May.

Ashish Vaswani, Yinggong Zhao, Victoria Fossum,
and David Chiang. 2013. Decoding with large-
scale neural language models improves translation.
In Proceedings of the 2013 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1387–1392, Seattle, Washington, USA, Oc-
tober. Association for Computational Linguistics.

David Vilar, Daniel Stein, Matthias Huck, and Her-
mann Ney. 2010. Jane: Open source hierarchi-
cal translation, extended with reordering and lexi-
con models. In ACL 2010 Joint Fifth Workshop on
Statistical Machine Translation and Metrics MATR,
pages 262–270, Uppsala, Sweden, July.

Paul J. Werbos. 1990. Backpropagation through time:
what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560.

Ronald J. Williams and David Zipser. 1995. Gradient-
Based Learning Algorithms for Recurrent Net-
works and Their Computational Complexity. In:
Yves Chauvain and David E. Rumelhart: “Back-
Propagation: Theory, Architectures and Applica-
tions”. Lawrence Erlbaum Publishers.

Joern Wuebker, Arne Mauser, and Hermann Ney.
2010. Training phrase translation models with
leaving-one-out. In Proceedings of the 48th Annual
Meeting of the Assoc. for Computational Linguistics,
pages 475–484, Uppsala, Sweden, July.

Joern Wuebker, Matthias Huck, Stephan Peitz, Malte
Nuhn, Markus Freitag, Jan-Thorsten Peter, Saab
Mansour, and Hermann Ney. 2012. Jane 2: Open
source phrase-based and hierarchical statistical ma-
chine translation. In International Conference on
Computational Linguistics, pages 483–491, Mum-
bai, India, December.

Joern Wuebker, Stephan Peitz, Felix Rietig, and Her-
mann Ney. 2013. Improving statistical machine
translation with word class models. In Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 1377–1381, Seattle, USA, October.

25



Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 26–35,
October 25-29, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

A Neural Network Approach to Selectional Preference Acquisition

Tim Van de Cruys
IRIT & CNRS

Toulouse, France
tim.vandecruys@irit.fr

Abstract

This paper investigates the use of neural
networks for the acquisition of selectional
preferences. Inspired by recent advances
of neural network models for NLP applica-
tions, we propose a neural network model
that learns to discriminate between felici-
tous and infelicitous arguments for a par-
ticular predicate. The model is entirely un-
supervised – preferences are learned from
unannotated corpus data. We propose two
neural network architectures: one that han-
dles standard two-way selectional prefer-
ences and one that is able to deal with
multi-way selectional preferences. The
model’s performance is evaluated on a
pseudo-disambiguation task, on which it
is shown to achieve state of the art perfor-
mance.

1 Introduction

Predicates often have a semantically motivated pref-
erence for particular arguments. Compare for ex-
ample the sentences in (1) and (2).

(1) The vocalist sings a ballad.

(2) The exception sings a tomato.

Most language users would have no problems ac-
cepting the first sentence as well-formed: a vocalist
can be expected to sing, and a ballad is something
that can be sung. The same language users, how-
ever, would likely consider the second sentence to
be ill-formed: an exception is not supposed to sing,
nor is a tomato something that is typically sung.
Within the field of natural language processing,
this inclination of predicates to select for particular
arguments is known as selectional preference.

The automatic acquisition of selectional prefer-
ences has been a popular research subject within

the field of natural language processing. An auto-
matically acquired selectional preference resource
is a versatile tool for numerous NLP applications,
such as semantic role labeling (Gildea and Jurafsky,
2002), word sense disambiguation (McCarthy and
Carroll, 2003), and metaphor processing (Shutova
et al., 2013).

Models for selectional preference need to ade-
quately deal with the consequences of Zipf’s law:
language is inherently sparse, and the majority of
language utterances occur very infrequently. As
a consequence, models that are based on corpus
data need to properly generalize beyond the mere
co-occurrence frequencies of sparse corpus data,
taking into account the semantic similarity of both
predicates and arguments. Researchers have come
up with various approaches to this generalization
step. Earlier approaches to selectional preference
acquisition mostly rely on hand-crafted resources
such as WordNet (Resnik, 1996; Li and Abe, 1998;
Clark and Weir, 2001), while later approaches tend
to take advantage of unsupervised learning machin-
ery, such as latent variable models (Rooth et al.,
1999; Ó Séaghdha, 2010) and distributional simi-
larity metrics (Erk, 2007; Padó et al., 2007).

This paper investigates the use of neural net-
works for the acquisition of selectional preferences.
Inspired by recent advances of neural network mod-
els for NLP applications (Collobert and Weston,
2008; Mikolov et al., 2013), we propose a neural
network model that learns to discriminate between
felicitous and infelicitous arguments for a particu-
lar predicate. The model is entirely unsupervised –
preferences are learned from unannotated corpus
data. Positive training instances are constructed
from attested corpus data, while negative instances
are constructed from randomly corrupted instances.
We propose two neural network architectures: one
that handles standard two-way selectional prefer-
ences and one that is able to deal with multi-way
selectional preferences, where the interaction be-
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tween multiple verb arguments is taken into ac-
count. The model’s performance is evaluated on a
pseudo-disambiguation task, on which it is shown
to achieve state of the art performance.

The contributions of this paper are twofold. First
of all, we apply and evaluate a neural network ap-
proach to the problem of standard (two-way) se-
lectional preference acquisition. Selectional pref-
erence acquisition using neural networks has not
yet been explored in the literature. Secondly, we
propose a novel network architecture and training
objective for the acquisition of multi-way selec-
tional preferences, where the interaction between
a verb and its various arguments is captured at the
same time.

The remainder of this paper is as follows. Sec-
tion 2 first discusses related work with respect to se-
lectional preference acquisition and neural network
modeling. Section 3 describes our neural network
architecture and its training procedure. Section 4
evaluates the model’s performance, comparing it
to other existing models for selectional preference
acquisition. Finally, section 5 concludes and indi-
cates a number of avenues for future work.

2 Related Work

2.1 Selectional preferences
One of the first approaches to the automatic induc-
tion of selectional preferences from corpora was
the one by Resnik (1996). Resnik (1996) relies
on WordNet synsets in order to generate gener-
alized noun clusters. The selectional preference
strength of a specific verb v in a particular relation
is calculated by computing the Kullback-Leibler
divergence between the cluster distribution of the
verb and the prior cluster distribution.

SR(v) = ∑
c

p(c|v) log
p(c|v)
p(c)

(1)

where c stands for a noun cluster, and R stands for a
given predicate-argument relation. The selectional
association of a particular noun cluster is then the
contribution of that cluster to the verb’s preference
strength.

AR(v,c) =
p(c|v) log p(c|v)

p(c)

SR(v)
(2)

The model’s generalization relies entirely on Word-
Net, and there is no generalization among the verbs.

Other researchers have equally relied on Word-
Net in order to generalize over arguments. Li and

Abe (1998) use the principle of Minimum Descrip-
tion Length in order to find a suitable generalization
level within the lexical WordNet hierarchy. A same
intuition is used by Clark and Weir (2001), but they
use hypothesis testing instead to find the appro-
priate level of generalization. A recent approach
that makes use of WordNet (in combination with
Bayesian modeling) is the one by Ó Séaghdha and
Korhonen (2012).

Most researchers, however, acknowledge the
shortcomings of hand-crafted resources, and fo-
cus on the acquisition of selectional preferences
from corpus data. Rooth et al. (1999) propose an
Expectation-Maximization (EM) clustering algo-
rithm for selectional preference acquisition based
on a probabilistic latent variable model. The idea
is that both predicate v and argument o are gen-
erated from a latent variable c, where the latent
variables represent clusters of tight verb-argument
interactions.

p(v,o) = ∑
c∈C

p(c,v,o) = ∑
c∈C

p(c)p(v|c)p(o|c) (3)

The use of latent variables allows the model to
generalize to predicate-argument tuples that have
not been seen during training. The latent variable
distribution – and the probabilities of predicates
and argument given the latent variables – are au-
tomatically induced from data using EM. We will
compare against their model for evaluation pur-
poses.

Erk (2007) and Erk et al. (2010) describe a
method that uses corpus-driven distributional simi-
larity metrics for the induction of selectional pref-
erences. The key idea is that a predicate-argument
tuple (v,o) is felicitous if the predicate v appears
in the training corpus with arguments o′ that are
similar to o, i.e.

S(v,o) = ∑
o′∈Ov

wt(v,o′)
Z(v)

· sim(o,o′) (4)

where Ov represents the set of arguments that have
been attested with predicate v, wt(·) represents an
appropriate weighting function (such as the fre-
quency of the (v,o′) tuple), and Z is a normaliza-
tion factor. We equally compare to their model for
evaluation purposes.

Bergsma et al. (2008) present a discriminative
approach to selectional preference acquisition. Pos-
itive examples are taken from observed predicate-
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argument pairs, while negative examples are con-
structed from unobserved combinations. An SVM

classifier is used to distinguish the positive from the
negative instances. The training procedure used in
their model is based on an intuition that is similar
to ours, although it is implemented using different
techniques.

A number of researchers presented models that
are based on the framework of topic modeling. Ó
Séaghdha (2010) describes three models for selec-
tional preference induction based on Latent Dirich-
let Allocation, which model the selectional pref-
erence of a predicate and a single argument. Rit-
ter et al. (2010) equally present a selectional pref-
erence model based on topic modeling, but they
tackle multi-way selectional preferences (of transi-
tive predicates, which take two arguments) instead.

Finally, in previous work (Van de Cruys, 2009)
we presented a model for multi-way selectional
preference induction based on tensor factorization.
Three-way co-occurrences of subjects, verbs, and
objects are represented as a three-way tensor (the
generalization of a matrix), and a latent factoriza-
tion model is applied in order to generalize to
unseen instances. We will compare our neural
network based-approach for multi-way selectional
preference acquisition to this tensor-based factor-
ization model.

2.2 Neural networks

In the last few years, neural networks have become
increasingly popular in NLP applications. In partic-
ular, neural language models (Bengio et al., 2003;
Mnih and Hinton, 2007; Collobert and Weston,
2008) have demonstrated impressive performance
at the task of language modeling. By incorporating
distributed representations for words that model
their similarity, neural language models are able
to overcome the problem of data sparseness that
standard n-gram models are confronted with. Also
related to our work is the approach by Tsubaki et
al. (2013), who successfully use a neural network
to model co-compositionality.

Our model for selectional preference acquisition
uses a network architecture that is similar to the
abovementioned models. Its training objective is
also similar to the ranking-loss training objective
proposed by Collobert and Weston (2008), but we
present a novel, modified version in order to deal
with multi-way selectional preferences.

3 Methodology

3.1 Neural network architecture
Our model computes the score for a predicate i
and an argument j as follows. First, the selectional
preference tuple (i, j) is represented as the concate-
nation of the vectors vi and o j, i.e.

x = [vi,o j] (5)

Vectors vi and o j are extracted from two embedding
matrices, V ∈ RN×I (the predicate matrix, where I
represents the number of elements in the predicate
vocabulary) and O ∈ RN×J (the argument matrix,
where J represents the number of elements in the
argument vocabulary). N is a parameter setting of
the model, representing the vector size of the em-
beddings. Matrices V and O will be automatically
learned during training.

Vector x then serves as input vector to our neural
network. We use a feed-forward neural network
architecture with one hidden layer:

a1 = f (W1x+b1) (6)

y = W2a1 (7)

where x ∈ R2N is our input vector, a1 ∈ RH repre-
sents the activation of the hidden layer with H hid-
den nodes, W1 ∈ RH×2N and W2 ∈ R1×H respec-
tively represent the first and second layer weights,
b1 represents the first layer’s bias, f (·) represents
the element-wise activation function tanh, and y is
our final selectional preference score. The left-hand
picture of figure 1 gives a graphical representation
of our standard neural network architecture.

3.2 Training the network
A proper estimation of a neural network’s param-
eters requires a large amount of training data. To
be able to use non-annotated corpus data for train-
ing, we use the method proposed by Collobert and
Weston (2008). The authors present a method for
training a neural network language model from un-
labeled data by corrupting actual attested n-grams
with a random word. They then define a ranking-
type cost function, which allows the network to
learn to discriminate between good and bad word
sequences. We adopt the same method for our se-
lectional preference model as follows.

Let (i, j) be our proper, attested predicate-
argument tuple. The goal of our model is to dis-
criminate the correct tuple (i, j) from other, non-
attested tuples (i, j′), in which the correct predicate
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Figure 1: Neural network architectures for selectional preference acquisition. The left-hand picture shows
the architecture for two-way selectional preferences, the right-hand picture shows the architecture for
three-way selectional preferences. In both cases, vector x is constructed from the appropriate predicate
and argument vectors from the embedding matrices, and fed forward through the network to yield a
preference score y.

j has been replaced with a random predicate j′. We
require the score for the correct tuple to be larger
than the score for the corrupt tuple by a margin
of one. For one tuple (i, j), this corresponds to
minimizing the objective function in (8)

∑
j′∈J

max(0,1−g[(i, j)]+g[(i, j′)]) (8)

where J represents the predicate vocabulary, and
g[·] represents our neural network scoring function
presented in the previous section.

In line with Collobert and Weston (2008), the
gradient of the objective function is sampled by
randomly picking one corrupt argument j′ from the
argument vocabulary for each attested predicate-
argument tuple (i, j). The derivative of the cost
with respect to the model’s parameters (weight ma-
trices W1 and W2, bias vector b1, and embedding
matrices V and O) is computed, and the appropriate
parameters are updated through backpropagation.

3.3 Multi-way selectional preferences

The model presented in the previous section is
only able to deal with two-way selectional pref-
erences. In this section, we present an extension of
the model that is able to handle multi-way selec-
tional preferences.1

1We exemplify the model using three-way selectional pref-
erences for transitive predicates, but the model can be straight-
forwardly generalized to other multi-way selectional prefer-
ences.

In order to model the selectional preference of a
transitive verb for its subject and direct object, we
start out in a similar fashion to the two-way case.
Instead of having only one embedding matrix, we
now have two embedding matrices S ∈ RN×J and
O∈RN×K , representing the two different argument
slots of a transitive predicate. Our input vector can
now be represented as

x = (vi,s j,ok) (9)

Note that x ∈ R3N and W1 ∈ RH×3N . The rest of
our neural network architecture stays exactly the
same. The right-hand picture of figure 1 presents a
graphical representation.

For the multi-way case, we present an adapted
version of the training objective. Given an attested
subject-verb-object tuple (i, j,k), the goal of our
network is now to discriminate this correct tuple
from other, corrupted tuples (i, j,k′), (i, j′,k) and
(i, j′,k′), where the correct arguments have been
replaced by random subjects j′ and random objects
k′. Note that we do not only want the network
to learn the infelicity of tuples in which both the
subject and object slot are corrupted; we also want
our network to learn the infelicity of tuples in which
either the subject or object slot is corrupt, while the
other slot contains the correct, attested argument.
This leads us to the objective function represented
in (10).
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∑
k′∈K

max(0,1−g[(i, j,k)]+g[(i, j,k′)])

+ ∑
j′∈J

max(0,1−g[(i, j,k)]+g[(i, j′,k)])

+ ∑
j′∈J

k′∈K

max(0,1−g[(i, j,k)]+g[(i, j′,k′)]) (10)

As in the two-way case, the gradient of the objec-
tive function is sampled by randomly picking one
corrupted subject j′ and one corrupted object k′ for
each tuple (i, j,k). All of the model’s parameters
are again updated through backpropagation.

4 Evaluation

4.1 Implementational details

We evaluate our neural network approach to se-
lectional preference acquisition using verb-object
tuples for the two-way model, and subject-verb-
object tuples for the multi-way model.

Our model has been applied to English, using the
UKWaC corpus (Baroni et al., 2009), which covers
about 2 billion words of web text. The corpus
has been part of speech tagged and lemmatized
with Stanford Part-Of-Speech Tagger (Toutanova
et al., 2003), and parsed with MaltParser (Nivre
et al., 2006), so that dependency tuples could be
extracted.

For the two-way model, we select all verbs and
objects that appear within a predicate-argument re-
lation with a frequency of at least 50. This gives
us a total of about 7K verbs and 30K objects. For
the multi-way model, we select the 2K most fre-
quent verbs, together with the 10K most frequent
subjects and the 10K most frequent objects (that
appear within a transitive frame).

All words are converted to lowercase. We use
the lemmatized forms, and only keep those forms
that contain alphabetic characters. Furthermore,
we require each tuple to appear at least three times
in the corpus.

We set N, the size of our embedding matrices, to
50, and H, the number of units in the hidden layer,
to 100. Following Huang et al. (2012), we use
mini-batch L-BFGS (Liu and Nocedal, 1989) with
1000 pairs of good and corrupt tuples per batch for
training, and train for 10 epochs.

4.2 Evaluation Setup

4.2.1 Task
Our models are quantitatively evaluated using a
pseudo-disambiguation task (Rooth et al., 1999),
which bears some resemblance to our training pro-
cedure. The task provides an adequate test of the
generalization capabilities of our models. For the
two-way case, the task is to judge which object (o
or o′) is more likely for a particular verb v, where
(v,o) is a tuple attested in the corpus, and o′ is a di-
rect object randomly drawn from the object vocab-
ulary. The tuple is considered correct if the model
prefers the attested tuple (v,o) over (v,o′). For the
three-way case, the task is to judge which subject
(s or s′) and direct object (o or o′) are more likely
for a particular verb v, where (v,s,o) is the attested
tuple, and s′ and o′ are a random subject and object
drawn from their respective vocabularies. The tu-
ple is considered correct if the model prefers the
attested tuple (v,s,o) over the alternatives (v,s,o′),
(v,s′,o), and (v,s′,o′). Tables 1 and 2 respectively
show a number of examples from the two-way and
three-way pseudo-disambiguation task.

v o o′

perform play geometry
buy wine renaissance
read introduction peanut

Table 1: Pseudo-disambiguation examples for two-
way verb-object tuples

v s o s′ o′

win team game diversity egg
publish government document grid priest
develop company software breakfast landlord

Table 2: Pseudo-disambiguation examples for
three-way subject-verb-object tuples

The models are evaluated using 10-fold cross
validation. All tuples from our corpus are randomly
divided into 10 equal parts. Next, for each fold, 9
parts are used for training, and the remaining part
is used for testing. In order to properly test the
generalization capability of our models, we make
sure that all instances of a particular tuple appear in
one part only. This way, we make sure that tuples
used for testing are never seen during training.

For the two-way model, our corpus consists of
about 70M tuple instances (1.9M types), so in each
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fold, about 63M tuple instances are used for train-
ing and about 7M (190K types) are used for testing.
For the three-way model, our corpus consists of
about 5,5M tuple instances (750K types), so in
each fold, about 5M tuples are used for training
and about 500K (75K types) are used for testing.
Note that our training procedure is instance-based,
while our evaluation is type-based: during training,
the neural network sees a tuple as many times as it
appears in the training set, while for testing each
individual tuple is only evaluated once.

4.2.2 Comparison models
We compare our neural network model to a number
of other models for selectional preference acquisi-
tion.

For the two-way case, we compare our model
to the EM-based clustering technique presented
by Rooth et al. (1999),2 and to Erk et al.’s (2010)
similarity-based model. For Rooth et al.’s model,
we set the number of latent factors to 50. Us-
ing a larger number of latent factors does not in-
crease performance. For Erk et al.’s model, we
create a dependency-based similarity model from
the UKWaC corpus using our 30K direct objects
as instances and 100K dependency relations as
features. The resulting matrix is weighted using
pointwise mutual information (Church and Hanks,
1990). Similarity values are computed using cosine.
Furthermore, we use a sampling procedure in the
testing phase: we sample 5000 predicate-argument
pairs for each fold, as testing Erk et al.’s model on
the complete test sets proved prohibitively expen-
sive.

For the three-way case, we compare our model
to the tensor factorization model we developed in
previous work (Van de Cruys, 2009). We set the
number of latent factors to 300.3

4.3 Results

4.3.1 Two-way model
Table 3 compares the results of our neural network
architecture for two-way selectional preferences to
the results of Rooth et al.’s (1999) model and Erk
et al.’s (2010) model.

2Our own implementation of Rooth et al.’s (1999) al-
gorithm is based on non-negative matrix factorization (Lee
and Seung, 2000). Non-negative matrix factorization with
Kullback-Leibler divergence has been shown to minimize the
same objective function as EM (Li and Ding, 2006).

3The best scoring model presented by Van de Cruys (2009)
also uses 300 latent factors; using more factors does not im-
prove the results.

model accuracy (µ±σ )

Rooth et al. (1999) .720 ± .002
Erk et al. (2010) .887 ± .004

2-way neural network .880 ± .001

Table 3: Comparison of model results for two-way
selectional preference acquisition – mean accuracy
and standard deviations of 10-fold cross-validation
results

The results indicate that our neural network ap-
proach outperforms Rooth et al.’s (1999) method
by a large margin (16%). Clearly, the neural net-
work architecture is able to model selectional pref-
erences more profoundly than Rooth et al.’s latent
variable approach. The difference between the
models is highly statistically significant (paired
t-test, p< .01), as the standard deviations already
indicate.

Erk et al.’s model reaches a slightly better score
than our model, and this result is also statistically
significant (paired t-test, p< .01). However, Erk et
al.’s model does not provide full coverage, whereas
the other two models are able to compute scores
for all pairs in the test set. In addition, Erk et al.’s
model is much more expensive to compute. Our
model computes selectional preference scores for
the test set in a matter of seconds, whereas for
Erk et al.’s model, we ended up sampling from
the test set, as computing preference values for the
complete test set proved prohibitively expensive.

4.3.2 Three-way model
Table 4 compares the results of our neural network
architecture for three-way selectional preference
acquisition to the results of the tensor-based factor-
ization method (Van de Cruys, 2009).

model accuracy (µ±σ )

Van de Cruys (2009) .874 ± .001
3-way neural network .889 ± .001

Table 4: Comparison of model results for three-way
selectional preference acquisition – mean accuracy
and standard deviations of 10-fold cross-validation
results

The results indicate that the neural network ap-
proach slightly outperforms the tensor-based factor-
ization method. Again the model difference is sta-
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tistically significant (paired t-test, p< 0.01). Using
our adapted training objective, the neural network
is clearly able to learn a rich model of three-way
selectional preferences, reaching state of the art
performance.

4.4 Examples

We conclude our results section by briefly present-
ing a number of examples that illustrate the kind
of semantics present in our models. Similar to neu-
ral language models, the predicate and argument
embedding matrices of our neural network con-
tain distributed word representations, that capture
the similarity of predicates and arguments to other
words.

Tables 5 and 6 contain a number of nearest neigh-
bour similarity examples for predicate and argu-
ments from our two-way neural network model.
The nearest neighbours were calculated using stan-
dard cosine similarity.

DRINK PROGRAM INTERVIEW FLOOD

SIP RECOMPILE RECRUIT INUNDATE
BREW UNDELETE PERSUADE RAVAGE
MINCE CODE INSTRUCT SUBMERGE

FRY IMPORT PESTER COLONIZE

Table 5: Nearest neighbours of 4 verbs, calculated
using the distributed word representations of em-
bedding matrix V from our two-way neural net-
work model

Table 5 indicates that the network is effectively
able to capture a semantics for verbs. The first
column – verbs similar to DRINK – all have to do
with food consumption. The second column con-
tains verbs related to computer programming. The
third column is related to human communication;
and the fourth column seems to illustrate the net-
work’s comprehension of FLOOD having to do with
invasion and water.

PAPER RASPBERRY SECRETARY DESIGNER

BOOK COURGETTE PRESIDENT PLANNER
JOURNAL LATTE MANAGER PAINTER
ARTICLE LEMONADE POLICE SPECIALIST

CODE OATMEAL EDITOR SPEAKER

Table 6: Nearest neighbours of 4 direct objects, cal-
culated using the distributed word representations
of embedding matrix O from our two way neural
network model

Similarly, table 6 shows the network’s ability to
capture the meaning of nouns that appear as direct
objects to the verbs. Column one contains things
that can be read. Column two contains things that
can be consumed. Column three seems to hint at
supervising professions, while column four seems
to capture creative professions.

A similar kind of semantics is present in the em-
bedding matrices of the three-way neural network
model. Tables 7, 8, and 9 again illustrate this using
word similarity calculations.

SEARCH DIMINISH CONFIGURE PROSECUTE

CLICK LESSEN AUTOMATE CRITICISE
BROWSE DISTORT SCROLL URGE
SCROLL HEIGHTEN PROGRAM DEPLORE
UPLOAD DEGRADE INSTALL CONDEMN

Table 7: Nearest neighbours of 4 verbs, calculated
using the distributed word representations of em-
bedding matrix V from our three-way neural net-
work model

Table 7 shows the network’s verb semantics for
the three-way case. The first column is related to
internet usage, the second column contains verbs
of scalar change, column three is again related to
computer usage, and column four seems to capture
‘mending’ verbs.

FLOWER COLLEGE PRESIDENT SONG

FISH UNIVERSITY BUSH FILM
BIRD INSTITUTE BLAIR ALBUM
SUN DEPARTMENT MP PLAY

TREE CENTRE CHAIRMAN MUSIC

Table 8: Nearest neighbours of 4 subjects, calcu-
lated using the distributed word representations of
embedding matrix S from our three way neural
network model

Table 8 illustrates the semantics for the subject
slot of our three-way model. The first column cap-
tures nature terms, the second column contains
university-related terms, the third column contains
politicians/government terms, and the fourth col-
umn contains art expressions.

Finally, table 9 demonstrates the semantics of
our three-way model’s object slot. Column one
generally contains housing terms, column two con-
tains various locations, column three contains din-
ing occasions, and column four contains textual
expressions.
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FLOOR STUDIO DINNER QUESTIONNAIRE
CEILING VILLAGE MEAL DISSERTATION

ROOF HALL BUFFET PERIODICAL
METRE MUSEUM BREAKFAST DISCOURSE

Table 9: Nearest neighbours of 4 direct objects, cal-
culated using the distributed word representations
of embedding matrix O from our three way neural
network model

Note that the embeddings for the subject and
the object slot is different, although they mostly
contain the same words. This allows the model to
capture specific semantic characteristics for words
given their argument position. Virus, for example,
is in subject position more similar to active words
like animal, whereas in object position, it is more
similar to passive words like cell, device. Similarly,
mouse in subject position tends to be similar to
words like animal, rat whereas in object position it
is similar to words like web, browser.

These examples, although anecdotal, illustrate
that our neural network model is able to capture a
rich semantics for predicates and arguments, which
subsequently allows the network to make accurate
predictions with regard to selectional preference.

5 Conclusion and future work

In this paper, we presented a neural network ap-
proach to the acquisition of selectional preferences.
Inspired by recent work on neural language models,
we proposed a neural network model that learns
to discriminate between felicitous and infelicitous
arguments for a particular predicate. The model is
entirely unsupervised, as preferences are learned
from unannotated corpus data. Positive training
instances are constructed from attested corpus data,
while negative instances are constructed from ran-
domly corrupted instances. Using designated net-
work architectures, we are able to handle stan-
dard two-way selectional preferences as well as
multi-way selectional preferences. A quantitative
evaluation on a pseudo-disambiguation task shows
that our models achieve state of the art perfor-
mance. The results for our two-way neural network
are on a par with Erk et al.’s (2010) similarity-
based approach, while our three-way neural net-
work slightly outperforms the tensor-based factor-
ization model (Van de Cruys, 2009) for multi-way
selectional preference induction.

We conclude with a number of issues for future
work. First of all, we would like to investigate how
our neural network approach might be improved by
incorporating information from other sources. In
particular, we think of initializing our embedding
matrices with distributed representations that come
from a large-scale neural language model (Mikolov
et al., 2013). We also want to further investigate
the advantages and disadvantages of having dif-
ferent embedding matrices for different argument
positions in our multi-way neural network. In our
results section, we demonstrated that such an ap-
proach allows for more flexibility, but it also adds
a certain level of redundancy. We want to inves-
tigate the benefit of our approach, compared to a
model that shares the distributed word representa-
tion among different argument positions. Finally,
we want to investigate more advanced neural net-
work architectures for the acquisition of selectional
preferences. In particular, neural tensor networks
(Yu et al., 2013) have recently demonstrated im-
pressive results in related fields like speech recogni-
tion, and might provide the necessary machinery to
model multi-way selectional preferences in a more
profound way.
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Léon Bottou
Microsoft Research

New York
leon@bottou.org

Abstract

We construct multi-modal concept repre-
sentations by concatenating a skip-gram
linguistic representation vector with a vi-
sual concept representation vector com-
puted using the feature extraction layers
of a deep convolutional neural network
(CNN) trained on a large labeled object
recognition dataset. This transfer learn-
ing approach brings a clear performance
gain over features based on the traditional
bag-of-visual-word approach. Experimen-
tal results are reported on the WordSim353
and MEN semantic relatedness evaluation
tasks. We use visual features computed us-
ing either ImageNet or ESP Game images.

1 Introduction

Recent works have shown that multi-modal se-
mantic representation models outperform uni-
modal linguistic models on a variety of tasks, in-
cluding modeling semantic relatedness and pre-
dicting compositionality (Feng and Lapata, 2010;
Leong and Mihalcea, 2011; Bruni et al., 2012;
Roller and Schulte im Walde, 2013; Kiela et al.,
2014). These results were obtained by combin-
ing linguistic feature representations with robust
visual features extracted from a set of images as-
sociated with the concept in question. This extrac-
tion of visual features usually follows the popular
computer vision approach consisting of comput-
ing local features, such as SIFT features (Lowe,
1999), and aggregating them as bags of visual
words (Sivic and Zisserman, 2003).

Meanwhile, deep transfer learning techniques
have gained considerable attention in the com-
puter vision community. First, a deep convolu-
tional neural network (CNN) is trained on a large

∗ This work was carried out while Douwe Kiela was an
intern at Microsoft Research, New York.

labeled dataset (Krizhevsky et al., 2012). The
convolutional layers are then used as mid-level
feature extractors on a variety of computer vi-
sion tasks (Oquab et al., 2014; Girshick et al.,
2013; Zeiler and Fergus, 2013; Donahue et al.,
2014). Although transferring convolutional net-
work features is not a new idea (Driancourt and
Bottou, 1990), the simultaneous availability of
large datasets and cheap GPU co-processors has
contributed to the achievement of considerable
performance gains on a variety computer vision
benchmarks: “SIFT and HOG descriptors pro-
duced big performance gains a decade ago, and
now deep convolutional features are providing a
similar breakthrough” (Razavian et al., 2014).

This work reports on results obtained by using
CNN-extracted features in multi-modal semantic
representation models. These results are interest-
ing in several respects. First, these superior fea-
tures provide the opportunity to increase the per-
formance gap achieved by augmenting linguistic
features with multi-modal features. Second, this
increased performance confirms that the multi-
modal performance improvement results from the
information contained in the images and not the
information used to select which images to use
to represent a concept. Third, our evaluation re-
veals an intriguing property of the CNN-extracted
features. Finally, since we use the skip-gram ap-
proach of Mikolov et al. (2013) to generate our
linguistic features, we believe that this work rep-
resents the first approach to multimodal distribu-
tional semantics that exclusively relies on deep
learning for both its linguistic and visual compo-
nents.

2 Related work

2.1 Multi-Modal Distributional Semantics

Multi-modal models are motivated by parallels
with human concept acquisition. Standard se-
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mantic space models extract meanings solely from
linguistic data, even though we know that hu-
man semantic knowledge relies heavily on percep-
tual information (Louwerse, 2011). That is, there
exists substantial evidence that many concepts
are grounded in the perceptual system (Barsalou,
2008). One way to do this grounding in the context
of distributional semantics is to obtain represen-
tations that combine information from linguistic
corpora with information from another modality,
obtained from e.g. property norming experiments
(Silberer and Lapata, 2012; Roller and Schulte im
Walde, 2013) or from processing and extracting
features from images (Feng and Lapata, 2010;
Leong and Mihalcea, 2011; Bruni et al., 2012).
This approach has met with quite some success
(Bruni et al., 2014).

2.2 Multi-modal Deep Learning
Other examples that apply multi-modal deep
learning use restricted Boltzmann machines (Sri-
vastava and Salakhutdinov, 2012; Feng et al.,
2013), auto-encoders (Wu et al., 2013) or recur-
sive neural networks (Socher et al., 2014). Multi-
modal models with deep learning components
have also successfully been employed in cross-
modal tasks (Lazaridou et al., 2014). Work that is
closely related in spirit to ours is by Silberer and
Lapata (2014). They use a stacked auto-encoder
to learn combined embeddings of textual and vi-
sual input. Their visual inputs consist of vectors
of visual attributes obtained from learning SVM
classifiers on attribute prediction tasks. In con-
trast, our work keeps the modalities separate and
follows the standard multi-modal approach of con-
catenating linguistic and visual representations in
a single semantic space model. This has the advan-
tage that it allows for separate data sources for the
individual modalities. We also learn visual repre-
sentations directly from the images (i.e., we apply
deep learning directly to the images), as opposed
to taking a higher-level representation as a start-
ing point. Frome et al. (2013) jointly learn multi-
modal representations as well, but apply them to
a visual object recognition task instead of concept
meaning.

2.3 Deep Convolutional Neural Networks
A flurry of recent results indicates that image de-
scriptors extracted from deep convolutional neu-
ral networks (CNNs) are very powerful and con-
sistently outperform highly tuned state-of-the-art

systems on a variety of visual recognition tasks
(Razavian et al., 2014). Embeddings from state-
of-the-art CNNs (such as Krizhevsky et al. (2012))
have been applied successfully to a number of
problems in computer vision (Girshick et al.,
2013; Zeiler and Fergus, 2013; Donahue et al.,
2014). This contribution follows the approach de-
scribed by Oquab et al. (2014): they train a CNN
on 1512 ImageNet synsets (Deng et al., 2009),
use the first seven layers of the trained network as
feature extractors on the Pascal VOC dataset, and
achieve state-of-the-art performance on the Pascal
VOC classification task.

3 Improving Multi-Modal
Representations

Figure 1 illustrates how our system computes
multi-modal semantic representations.

3.1 Perceptual Representations

The perceptual component of standard multi-
modal models that rely on visual data is often
an instance of the bag-of-visual-words (BOVW)
representation (Sivic and Zisserman, 2003). This
approach takes a collection of images associated
with words or tags representing the concept in
question. For each image, keypoints are laid out
as a dense grid. Each keypoint is represented by
a vector of robust local visual features such as
SIFT (Lowe, 1999), SURF (Bay et al., 2008) and
HOG (Dalal and Triggs, 2005), as well as pyra-
midal variants of these descriptors such as PHOW
(Bosch et al., 2007). These descriptors are sub-
sequently clustered into a discrete set of “visual
words” using a standard clustering algorithm like
k-means and quantized into vector representations
by comparing the local descriptors with the cluster
centroids. Visual representations are obtained by
taking the average of the BOVW vectors for the
images that correspond to a given word. We use
BOVW as a baseline.

Our approach similarly makes use of a collec-
tion of images associated with words or tags rep-
resenting a particular concept. Each image is pro-
cessed by the first seven layers of the convolu-
tional network defined by Krizhevsky et al. (2012)
and adapted by Oquab et al. (2014)1. This net-
work takes 224 × 224 pixel RGB images and ap-
plies five successive convolutional layers followed
by three fully connected layers. Its eighth and last

1http://www.di.ens.fr/willow/research/cnn/
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Figure 1: Computing word feature vectors.

layer produces a vector of 1512 scores associated
with 1000 categories of the ILSVRC-2012 chal-
lenge and the 512 additional categories selected by
Oquab et al. (2014). This network was trained us-
ing about 1.6 million ImageNet images associated
with these 1512 categories. We then freeze the
trained parameters, chop the last network layer,
and use the remaining seventh layer as a filter to
compute a 6144-dimensional feature vector on ar-
bitrary 224× 224 input images.

We consider two ways to aggregate the feature
vectors representing each image.

1. The first method (CNN-Mean) simply com-
putes the average of all feature vectors.

2. The second method (CNN-Max) computes
the component-wise maximum of all feature
vectors. This approach makes sense because
the feature vectors extracted from this par-
ticular network are quite sparse (about 22%
non-zero coefficients) and can be interpreted
as bags of visual properties.

3.2 Linguistic representations

For our linguistic representations we extract 100-
dimensional continuous vector representations us-
ing the log-linear skip-gram model of Mikolov
et al. (2013) trained on a corpus consisting of

the 400M word Text8 corpus of Wikipedia text2

together with the 100M word British National
Corpus (Leech et al., 1994). We also experi-
mented with dependency-based skip-grams (Levy
and Goldberg, 2014) but this did not improve re-
sults. The skip-gram model learns high quality se-
mantic representations based on the distributional
properties of words in text, and outperforms stan-
dard distributional models on a variety of semantic
similarity and relatedness tasks. However we note
that Bruni et al. (2014) have recently reported an
even better performance for their linguistic com-
ponent using a standard distributional model, al-
though this may have been tuned to the task.

3.3 Multi-modal Representations

Following Bruni et al. (2014), we construct multi-
modal semantic representations by concatenating
the centered and L2-normalized linguistic and per-
ceptual feature vectors ~vling and ~vvis,

~vconcept = α× ~vling || (1− α)× ~vvis , (1)

where || denotes the concatenation operator and α
is an optional tuning parameter.

2http://mattmahoney.net/dc/textdata.html
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Figure 2: Examples of dog in the ESP Game dataset.

Figure 3: Examples of golden retriever in ImageNet.

4 Experimental Setup

We carried out experiments using visual repre-
sentations computed using two canonical image
datasets. The resulting multi-modal concept rep-
resentations were evaluated using two well-known
semantic relatedness datasets.

4.1 Visual Data

We carried out experiments using two distinct
sources of images to compute the visual represen-
tations.

The ImageNet dataset (Deng et al., 2009) is
a large-scale ontology of images organized ac-
cording to the hierarchy of WordNet (Fellbaum,
1999). The dataset was constructed by manually
re-labelling candidate images collected using web
searches for each WordNet synset. The images
tend to be of high quality with the designated ob-
ject roughly centered in the image. Our copy of
ImageNet contains about 12.5 million images or-
ganized in 22K synsets. This implies that Ima-
geNet covers only a small fraction of the existing
117K WordNet synsets.

The ESP Game dataset (Von Ahn and Dabbish,
2004) was famously collected as a “game with
a purpose”, in which two players must indepen-
dently and rapidly agree on a correct word label
for randomly selected images. Once a word label
has been used sufficiently frequently for a given
image, that word is added to the image’s tags. This
dataset contains 100K images, but with every im-
age having on average 14 tags, that amounts to a
coverage of 20,515 words. Since players are en-
couraged to produce as many terms per image, the
dataset’s increased coverage is at the expense of
accuracy in the word-to-image mapping: a dog in
a field with a house in the background might be a
golden retriever in ImageNet and could have tags

dog, golden retriever, grass, field, house, door in
the ESP Dataset. In other words, images in the
ESP dataset do not make a distinction between ob-
jects in the foreground and in the background, or
between the relative size of the objects (tags for
images are provided in a random order, so the top
tag is not necessarily the best one).

Figures 2 and 3 show typical examples of im-
ages belonging to these datasets. Both datasets
have attractive properties. On the one hand, Ima-
geNet has higher quality images with better labels.
On the other hand, the ESP dataset has an interest-
ing coverage because the MEN task (see section
4.4) was specifically designed to be covered by the
ESP dataset.

4.2 Image Selection

Since ImageNet follows the WordNet hierarchy,
we would have to include almost all images in
the dataset to obtain representations for high-level
concepts such as entity, object and animal. Doing
so is both computationally expensive and unlikely
to improve the results. For this reason, we ran-
domly sample up to N distinct images from the
subtree associated with each concept. When this
returns less thanN images, we attempt to increase
coverage by sampling images from the subtree of
the concept’s hypernym instead. In order to allow
for a fair comparison, we apply the same method
of sampling up to N on the ESP Game dataset. In
all following experiments, N = 1.000. We used
the WordNet lemmatizer from NLTK (Bird et al.,
2009) to lemmatize tags and concept words so as
to further improve the dataset’s coverage.

4.3 Image Processing

The ImageNet images were preprocessed as de-
scribed by (Krizhevsky et al., 2012). The largest
centered square contained in each image is resam-
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pled to form a 256 × 256 image. The CNN input
is then formed by cropping 16 pixels off each bor-
der and subtracting 128 to the image components.
The ESP Game images were preprocessed slightly
differently because we do not expect the objects
to be centered. Each image was rescaled to fit in-
side a 224×224 rectangle. The CNN input is then
formed by centering this image into the 224× 224
input field, subtracting 128 to the image compo-
nents, and zero padding.

The BOVW features were obtained by comput-
ing DSIFT descriptors using VLFeat (Vedaldi and
Fulkerson, 2008). These descriptors were subse-
quently clustered using mini-batch k-means (Scul-
ley, 2010) with 100 clusters. Each image is then
represented by a bag of clusters (visual words)
quantized as a 100-dimensional feature vector.
These vectors were then combined into visual con-
cept representations by taking their mean.

4.4 Evaluation

We evaluate our multi-modal word representations
using two semantic relatedness datasets widely
used in distributional semantics (Agirre et al.,
2009; Feng and Lapata, 2010; Bruni et al., 2012;
Kiela and Clark, 2014; Bruni et al., 2014).

WordSim353 (Finkelstein et al., 2001) is a se-
lection of 353 concept pairs with a similarity rat-
ing provided by human annotators. Since this is
probably the most widely used evaluation dataset
for distributional semantics, we include it for com-
parison with other approaches. WordSim353 has
some known idiosyncracies: it includes named en-
tities, such as OPEC, Arafat, and Maradona, as
well as abstract words, such as antecedent and
credibility, for which it may be hard to find cor-
responding images. Multi-modal representations
are often evaluated on an unspecified subset of
WordSim353 (Feng and Lapata, 2010; Bruni et
al., 2012; Bruni et al., 2014), making it impossi-
ble to compare the reported scores. In this work,
we report scores on the full WordSim353 dataset
(W353) by setting the visual vector ~vvis to zero for
concepts without images. We also report scores
on the subset (W353-Relevant) of pairs for which
both concepts have both ImageNet and ESP Game
images using the aforementioned selection proce-
dure.

MEN (Bruni et al., 2012) was in part designed
to alleviate the WordSim353 problems. It was con-
structed in such a way that only frequent words

with at least 50 images in the ESP Game dataset
were included in the evaluation pairs. The MEN
dataset has been found to mirror the aggregate
score over a variety of tasks and similarity datasets
(Kiela and Clark, 2014). It is also much larger,
with 3000 words pairs consisting of 751 individual
words. Although MEN was constructed so as to
have at least a minimum amount of images avail-
able in the ESP Game dataset for each concept,
this is not the case for ImageNet. Hence, simi-
larly to WordSim353, we also evaluate on a subset
(MEN-Relevant) for which images are available
in both datasets.

We evaluate the models in terms of their Spear-
man ρ correlation with the human relatedness rat-
ings. The similarity between the representations
associated with a pair of words is calculated using
the cosine similarity:

cos(v1, v2) =
v1 · v2
‖v1‖ ‖v2‖ (2)

5 Results

We evaluate on the two semantic relatedness
datasets using solely linguistic, solely visual and
multi-modal representations. In the case of MEN-
Relevant and W353-Relevant, we report scores for
BOVW, CNN-Mean and CNN-Max visual repre-
sentations. For all datasets we report the scores
obtained by BOVW, CNN-Mean and CNN-Max
multi-modal representations. Since we have full
coverage with the ESP Game dataset on MEN, we
are able to report visual representation scores for
the entire dataset as well. The results can be seen
in Table 1.

There are a number of questions to ask. First
of all, do CNNs yield better visual representa-
tions? Second, do CNNs yield better multi-modal
representations? And third, is there a difference
between the high-quality low-coverage ImageNet
and the low-quality higher-coverage ESP Game
dataset representations?

5.1 Visual Representations

In all cases, CNN-generated visual representations
perform better or as good as BOVW representa-
tions (we report results for BOVW-Mean, which
performs slightly better than taking the element-
wise maximum). This confirms the motivation
outlined in the introduction: by applying state-of-
the-art approaches from computer vision to multi-
modal semantics, we obtain a signficant perfor-
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Dataset Linguistic Visual Multi-modal

BOVW CNN-Mean CNN-Max BOVW CNN-Mean CNN-Max

ImageNet visual features

MEN 0.64 - - - 0.64 0.70 0.67

MEN-Relevant 0.62 0.40 0.64 0.63 0.64 0.72 0.71

W353 0.57 - - - 0.58 0.59 0.60

W353-Relevant 0.51 0.30 0.32 0.30 0.55 0.56 0.57

ESP game visual features

MEN 0.64 0.17 0.51 0.20 0.64 0.71 0.65

MEN-Relevant 0.62 0.35 0.58 0.57 0.63 0.69 0.70

W353 0.57 - - - 0.58 0.59 0.60

W353-Relevant 0.51 0.38 0.44 0.56 0.52 0.55 0.61

Table 1: Results (see sections 4 and 5).

mance increase over standard multi-modal mod-
els.

5.2 Multi-modal Representations

Higher-quality perceptual input leads to better-
performing multi-modal representations. In all
cases multi-modal models with CNNs outperform
multi-modal models with BOVW, occasionally by
quite a margin. In all cases, multi-modal rep-
resentations outperform purely linguistic vectors
that were obtained using a state-of-the-art system.
This re-affirms the importance of multi-modal rep-
resentations for distributional semantics.

5.3 The Contribution of Images

Since the ESP Game images come with a multi-
tude of word labels, one could question whether
a performance increase of multi-modal models
based on that dataset comes from the images them-
selves, or from overlapping word labels. It might
also be possible that similar concepts are more
likely to occur in the same image, which encodes
relatedness information without necessarily tak-
ing the image data itself into account. In short,
it is a natural question to ask whether the perfor-
mance gain is due to image data or due to word
label associations? We conclusively show that the
image data matters in two ways: (a) using a dif-
ferent dataset (ImageNet) also results in a perfor-
mance boost, and (b) using higher-quality image

features on the ESP game images increases the
performance boost without changing the associa-
tion between word labels.

5.4 Image Datasets

It is important to ask whether the source im-
age dataset has a large impact on performance.
Although the scores for the visual representa-
tion in some cases differ, performance of multi-
modal representations remains close for both im-
age datasets. This implies that our method is ro-
bust over different datasets. It also suggests that it
is beneficial to train on high-quality datasets like
ImageNet and to subsequently generate embed-
dings for other sets of images like the ESP Game
dataset that are more noisy but have better cover-
age. The results show the benefit of transfering
convolutional network features, corroborating re-
cent results in computer vision.

5.5 Semantic Similarity/Relatedness Datasets

There is an interesting discrepancy between the
two types of network with respect to dataset per-
formance: CNN-Mean multi-modal models tend
to perform best on MEN and MEN-Relevant,
while CNN-Max multi-modal models perform
better on W353 and W353-Relevant. There also
appears to be some interplay between the source
corpus, the evaluation dataset and the best per-
forming CNN: the performance leap on W353-
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Figure 4: Varying the α parameter for MEN, MEN-Relevant, WordSim353 and WordSim353-Relevant,
respectively.

Relevant for CNN-Max is much larger using ESP
Game images than with ImageNet images.

We speculate that this is because CNN-Max per-
forms better than CNN-Mean on a somewhat dif-
ferent type of similarity. It has been noted (Agirre
et al., 2009) that WordSim353 captures both sim-
ilarity (as in tiger-cat, with a score of 7.35) as
well as relatedness (as in Maradona-football, with
a score of 8.62). MEN, however, is explicitly de-
signed to capture semantic relatedness only (Bruni
et al., 2012). CNN-Max using sparse feature vec-
tors means that we treat the dominant components
as definitive of the concept class, which is more
suited to similarity. CNN-Mean averages over
all the feature components, and as such might be
more suited to relatedness. We conjecture that the
performance increase on WordSim353 is due to
increased performance on the similarity subset of
that dataset.

5.6 Tuning

The concatenation scheme in Equation 1 allows
for a tuning parameter α to weight the relative
contribution of the respective modalities. Previous
work on MEN has found that the optimal param-
eter for that dataset is close to 0.5 (Bruni et al.,
2014). We have found that this is indeed the case.
On WordSim353, however, we have found the pa-
rameter for optimal performance to be shifted to

the right, meaning that optimal performance is
achieved when we include less of the visual input
compared to the linguistic input. Figure 4 shows
what happens when we vary alpha over the four
datasets. There are a number of observations to be
made here.

First of all, we can see that the performance
peak for the MEN datastes is much higher than
for the WordSim353 ones, and that its peak is rel-
atively higher as well. This indicates that MEN is
in a sense a more balanced dataset. There are two
possible explanations: as indicated earlier, Word-
Sim353 contains slightly idiosyncratic word pairs
which may have a detrimental effect on perfor-
mance; or, WordSim353 was not constructed with
multi-modal semantics in mind, and contains a
substantial amount of abstract words that would
not benefit at all from including visual informa-
tion.

Due to the nature of the datasets and the tasks
at hand, it is arguably much more important that
CNNs beat standard bag-of-visual-words repre-
sentations on MEN than on W353, and indeed we
see that there exists no α for which BOVW would
beat any of the CNN networks.

6 Error Analysis

Table 2 shows the top 5 best and top 5 worst scor-
ing word pairs for the two datasets using CNN-
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W353-Relevant
ImageNet ESP Game

word1 word2 system score gold standard word1 word2 system score gold standard
tiger tiger 1.00 1.00 tiger tiger 1.00 1.00
man governor 0.53 0.53 man governor 0.53 0.53
stock phone 0.15 0.16 stock phone 0.15 0.16
football tennis 0.68 0.66 football tennis 0.68 0.66
man woman 0.85 0.83 man woman 0.85 0.83
cell phone 0.27 0.78 law lawyer 0.33 0.84
discovery space 0.10 0.63 monk slave 0.58 0.09
closet clothes 0.22 0.80 gem jewel 0.41 0.90
king queen 0.26 0.86 stock market 0.33 0.81
wood forest 0.13 0.77 planet space 0.32 0.79

MEN-Relevant
ImageNet ESP Game

word1 word2 system score gold standard word1 word2 system score gold standard
beef potatoes 0.35 0.35 beef potatoes 0.35 0.35
art work 0.35 0.35 art work 0.35 0.35
grass stop 0.06 0.06 grass stop 0.06 0.06
shade tree 0.45 0.45 shade tree 0.45 0.45
blonde rock 0.07 0.07 blonde rock 0.07 0.07
bread potatoes 0.88 0.34 bread dessert 0.78 0.24
fruit potatoes 0.80 0.26 jacket shirt 0.89 0.34
dessert sandwich 0.76 0.23 fruit nuts 0.88 0.33
pepper tomato 0.79 0.27 dinner lunch 0.93 0.37
dessert tomato 0.66 0.14 dessert soup 0.81 0.23

Table 2: The top 5 best and top 5 worst scoring pairs with respect to the gold standard.

Mean multi-modal vectors. The most accurate
pairs are consistently the same across the two im-
age datasets. There are some clear differences
between the least accurate pairs, however. The
MEN words potatoes and tomato probably have
low quality ImageNet-derived representations, be-
cause they occur often in the bottom pairs for that
dataset. The MEN words dessert, bread and fruit
occur in the bottom 5 for both image datasets,
which implies that their linguistic representations
are probably not very good. For WordSim353, the
bottom pairs on ImageNet could be said to be sim-
ilarity mistakes; while the ESP Game dataset con-
tains more relatedness mistakes (king and queen
would evaluate similarity, while stock and market
would evaluate relatedness). It is difficult to say
anything conclusive about this discrepancy, but it
is clearly a direction for future research.

7 Image embeddings

To facilitate further research on image embed-
dings and multi-modal semantics, we publicly re-
lease embeddings for all the image labels occur-
ring in the ESP Game dataset. Please see the fol-

lowing web page: http://www.cl.cam.ac.
uk/˜dk427/imgembed.html

8 Conclusion

We presented a novel approach to improving
multi-modal representations using deep convo-
lutional neural network-extracted features. We
reported high results on two well-known and
widely-used semantic relatedness benchmarks,
with increased performance both in the separate
visual representations and in the combined multi-
modal representations. Our results indicate that
such multi-modal representations outperform both
linguistic and standard bag-of-visual-words multi-
modal representations. We have shown that our
approach is robust and that CNN-extracted fea-
tures from separate image datasets can succesfully
be applied to semantic relatedness.

In addition to improving multi-modal represen-
tations, we have shown that the source of this im-
provement is due to image data and is not simply a
result of word label associations. We have shown
this by obtaining performance improvements on
two different image datasets, and by obtaining
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higher performance with higher-quality image fea-
tures on the ESP game images, without changing
the association between word labels.

In future work, we will investigate whether our
system can be further improved by including con-
creteness information or a substitute metric such
as image dispersion, as has been suggested by
other work on multi-modal semantics (Kiela et al.,
2014). Furthermore, a logical next step to increase
performance would be to jointly learn multi-modal
representations or to learn weighting parameters.
Another interesting possibility would be to exam-
ine multi-modal distributional compositional se-
mantics, where multi-modal representations are
composed to obtain phrasal representations.
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Abstract

In this paper, we present a novel ap-
proach for identifying argumentative dis-
course structures in persuasive essays. The
structure of argumentation consists of sev-
eral components (i.e. claims and premises)
that are connected with argumentative re-
lations. We consider this task in two
consecutive steps. First, we identify the
components of arguments using multiclass
classification. Second, we classify a pair
of argument components as either support
or non-support for identifying the struc-
ture of argumentative discourse. For both
tasks, we evaluate several classifiers and
propose novel feature sets including struc-
tural, lexical, syntactic and contextual fea-
tures. In our experiments, we obtain a
macro F1-score of 0.726 for identifying
argument components and 0.722 for argu-
mentative relations.

1 Introduction

Argumentation is a crucial aspect of writing skills
acquisition. The ability of formulating persuasive
arguments is not only the foundation for convinc-
ing an audience of novel ideas but also plays a ma-
jor role in general decision making and analyzing
different stances. However, current writing sup-
port is limited to feedback about spelling, gram-
mar, or stylistic properties and there is currently no
system that provides feedback about written argu-
mentation. By integrating argumentation mining
in writing environments, students will be able to
inspect their texts for plausibility and to improve
the quality of their argumentation.

An argument consists of several components. It
includes a claim that is supported or attacked by at
least one premise. The claim is the central compo-
nent of an argument. It is a controversial statement

that should not be accepted by the reader without
additional support.1 The premise underpins the
validity of the claim. It is a reason given by an
author for persuading readers of the claim. Argu-
mentative relations model the discourse structure
of arguments. They indicate which argument com-
ponents are related and constitute the structure of
argumentative discourse. For example, the argu-
ment in the following paragraph contains four ar-
gument components: one claim (in bold face) and
three premises (underlined).

“(1) Museums and art galleries provide
a better understanding about arts than
Internet. (2) In most museums and art
galleries, detailed descriptions in terms
of the background, history and author
are provided. (3) Seeing an artwork on-
line is not the same as watching it with
our own eyes, as (4) the picture online
does not show the texture or three-di-
mensional structure of the art, which is
important to study.”

In this example, the premises (2) and (3) sup-
port the claim (1) whereas premise (4) is a support
for premise (3). Thus, this example includes three
argumentative support relations holding between
the components (2,1), (3,1) and (4,3) signaling that
the source component is a justification of the target
component. This illustrates two important proper-
ties of argumentative discourse structures. First,
argumentative relations are often implicit (not in-
dicated by discourse markers; e.g. the relation
holding between (2) and (1)). Indeed, Marcu and
Echihabi (2002) found that only 26% of the ev-
idence relations in the RST Discourse Treebank
(Carlson et al., 2001) include discourse markers.

1We use the term claim synonymously to conclusion.
In our definition the differentiation between claims and
premises does not indicate the validity of the statements but
signals which components include the gist of an argument
and which are given by the author as justification.

46



Second, in contrast to Rhetorical Structure Theory
(RST) (Mann and Thompson, 1987), argumenta-
tive relations also hold between non-adjacent sen-
tences/clauses. For instance, in the corpus com-
piled by Stab and Gurevych (2014) only 37% of
the premises appear adjacent to a claim. There-
fore, existing approaches of discourse analysis,
e.g. based on RST, do not meet the require-
ments of argumentative discourse structure iden-
tification, since they only consider discourse re-
lations between adjacent sentences/clauses (Peld-
szus and Stede, 2013). In addition, there are no
distinct argumentative relations included in com-
mon approaches like RST or the Penn Discourse
Treebank (PDTB) (Prasad et al., 2008), since they
are focused on identifying general discourse struc-
tures (cp. section 2.2).

Most of the existing argumentation mining
methods focus solely on the identification of ar-
gument components. However, identifying argu-
mentative discourse structures is an important task
(Sergeant, 2013) in particular for providing feed-
back about argumentation. First, argumentative
discourse structures are essential for evaluating the
quality of an argument, since it is not possible
to examine how well a claim is justified without
knowing which premises belong to it. Second,
methods that recognize if a statement supports a
given claim enable the collection of additional ev-
idence from other sources. Third, the structure of
argumentation is needed for recommending better
arrangements of argument components and mean-
ingful usage of discourse markers. Both foster ar-
gument comprehension and recall (Britt and Lar-
son, 2003) and thus increase the argumentation
quality. To the best of our knowledge, there is
currently only one approach that aims at identi-
fying argumentative discourse structures proposed
by Mochales-Palau and Moens (2009). However,
it relies on a manually created context-free gram-
mar (CFG) and is tailored to the legal domain,
which follows a standardized argumentation style.
Therefore, it is likely that it will not achieve ac-
ceptable accuracy when applied to more general
texts in which discourse markers are missing or
even misleadingly used (e.g. student texts).

In this work, we present a novel approach
for identifying argumentative discourse structures
which includes two consecutive steps. In the first
step, we focus on the identification of argument
components using a multiclass classification ap-

proach. In the second step, we identify argumen-
tative relations by classifying a pair of argument
components as either support or non-support. In
particular, the contributions of this work are the
following: First, we introduce a novel approach
for identifying argumentative discourse structures.
Contrary to previous approaches, our approach
is capable of identifying argumentative discourse
structures even if discourse markers are missing or
misleadingly used. Second, we present two novel
feature sets for identifying argument components
as well as argumentative relations. Third, we eval-
uate several classifiers and feature groups for iden-
tifying the best system for both tasks.

2 Related Work

2.1 Argumentation Mining

Previous research on argumentation mining spans
several subtasks, including (1) the separation of
argumentative from non-argumentative text units
(Moens et al., 2007; Florou et al., 2013), (2)
the classification of argument components or
argumentation schemes (Rooney et al., 2012;
Mochales-Palau and Moens, 2009; Teufel, 1999;
Feng and Hirst, 2011), and (3) the identification
of argumentation structures (Mochales-Palau and
Moens, 2009; Wyner et al., 2010).

The separation of argumentative from non-
argumentative text units is usually considered as
a binary classification task and constitutes one of
the first steps in an argumentation mining pipeline.
Moens et al. (2007) propose an approach for iden-
tifying argumentative sentences in the Araucaria
corpus (Reed et al., 2008). The argument an-
notations in Araucaria are based on a domain-
independent argumentation theory proposed by
Walton (1996). In their experiments, they ob-
tain the best accuracy (73.75%) using a combi-
nation of word pairs, text statistics, verbs, and a
list of keywords indicative for argumentative dis-
course. Florou et al. (2013) report a similar ap-
proach. They classify text segments crawled with
a focused crawler as either containing an argu-
ment or not. Their approach is based on several
discourse markers and features extracted from the
tense and mood of verbs. They report an F1-score
of 0.764 for their best performing system.

One of the first approaches focusing on the
identification of argument components is Argu-
mentative Zoning proposed by Teufel (1999). The
underlying assumption of this work is that argu-
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ment components extracted from a scientific arti-
cle provide a good summary of its content. Each
sentence is classified as one of seven rhetorical
roles including claim, result or purpose. The ap-
proach obtained an F1-score of 0.462 using struc-
tural, lexical and syntactic features. Rooney et
al. (2013) also focus on the identification of ar-
gument components but in contrast to the work of
Teufel (1999) their scheme is not tailored to a par-
ticular genre. In their experiments, they identify
claims, premises and non-argumentative text units
in the Araucaria corpus and report an overall ac-
curacy of 65%. Feng and Hirst (2011) also use
the Araucaria corpus for their experiments but fo-
cus on the identification of argumentation schemes
(Walton, 1996), which are templates for forms of
arguments (e.g. argument from example or argu-
ment from consequence). Since their approach is
based on features extracted from mutual informa-
tion of claims and premises, it requires that the ar-
gument components are reliably identified in ad-
vance. In their experiments, they achieve an accu-
racy between 62.9% and 97.9% depending on the
particular scheme and the classification setup.

In contrast to all approaches mentioned above,
the work presented in this paper focuses be-
sides the separation of argumentative from non-
argumentative text units and the classification of
argument components on the extraction of the ar-
gumentative discourse structure to identify which
components of the argument belong together for
achieving a more fine-grained and detailed analy-
sis of argumentation. We are only aware of one ap-
proach (Mochales-Palau and Moens, 2009; Wyner
et al., 2010) that also focuses on the identifica-
tion of argumentative discourse structures. How-
ever, this approach is based on a manually created
CFG that is tailored to documents from the legal
domain, which follow a standardized argumenta-
tion style. Therefore, it does not accommodate ill-
formatted arguments (Wyner et al., 2010), which
are likely in argumentative writing support. In ad-
dition, the approach relies on discourse markers
and is therefore not applicable for identifying im-
plicit argumentative discourse structures.

2.2 Discourse Relations

Identifying argumentative discourse structures is
closely related to discourse analysis. As illustrated

2Calculated from the precision and recall scores provided
for individual rhetorical roles in (Teufel, 1999, p. 225).

in the initial example, the identification of argu-
mentative relations postulates the identification of
implicit as well as non-adjacent discourse rela-
tions. Marcu and Echihabi (2002) present the first
approach focused on identifying implicit discourse
relations. They exploit several discourse mark-
ers (e.g. ‘because’ or ‘but’) for collecting large
amounts of training data. For their experiments
they remove the discourse markers and discover
that word pair features are indicative for implicit
discourse relations. Depending on the utilized cor-
pus, they obtain accuracies between 64% and 75%
for identifying a cause-explanation-evidence rela-
tion (the most similar relation of their work com-
pared to argumentative relations).

With the release of the PDTB, the identifica-
tion of discourse relations gained a lot of interest
in the research community. The PDTB includes
implicit as well as explicit discourse relations of
different types, and there are multiple approaches
aiming at automatically identifying implicit rela-
tions. Pitler et al. (2009) experiment with polarity
tags, verb classes, length of verb phrases, modal-
ity, context and lexical features and found that
word pairs with non-zero Information Gain yield
best results. Lin et al. (2009) show that beside
lexical features, production rules collected from
parse trees yield good results, whereas Louis et
al. (2010) found that features based on named-
entities do not perform as well as lexical features.
However, current approaches to discourse analy-
sis like the RST or the PDTB are designed to ana-
lyze general discourse structures, and thus include
a large set of generic discourse relations, whereas
only a subset of those relations is relevant for ar-
gumentative discourse analysis. For instance, the
argumentation scheme proposed by Peldszus and
Stede (2013) includes three argumentative rela-
tions (support, attack and counter-attack), whereas
Stab and Gurevych (2014) propose a scheme in-
cluding only two relations (support and attack).
The difference between argumentative relations
and those included in general tagsets like RST and
PDTB is best illustrated by the work of Biran and
Rambow (2011), which is to the best of our knowl-
edge the only work that focuses on the identifica-
tion of argumentative relations. They argue that
existing definitions of discourse relations are only
relevant as a building block for identifying argu-
mentative discourse and that existing approaches
do not contain a single relation that corresponds to
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a distinct argumentative relation. Therefore, they
consider a set of 12 discourse relations from the
RST Discourse Treebank (Carlson et al., 2001) as
a single argumentative relation in order to identify
justifications for a given claim. They first extract
a set of lexical indicators for each relation from
the RST Discourse Treebank and create a word
pair resource using the English Wikipedia. In their
experiments, they use the extracted word pairs as
features and obtain an F1-score of up to 0.51 using
two different corpora. Although the approach con-
siders non-adjacent relations, it is limited to the
identification of relations between premises and
claims and requires that claims are known in ad-
vance. In addition, the combination of several
general relations to a single argumentative relation
might lead to consistency problems and to noisy
corpora (e.g. not each instance of a contrast rela-
tion is relevant for argumentative discourse).

3 Data

For our experiments, we use a corpus of per-
suasive essays compiled by Stab and Gurevych
(2014). This corpus contains annotations of ar-
gument components at the clause-level as well
as argumentative relations. In particular, it in-
cludes annotations of major claims, claims and
premises, which are connected with argumentative
support and attack relations. Argumentative rela-
tions are directed (there is a specified source and
target component of each relation) and can hold
between a premise and another premise, a premise
and a (major-) claim, or a claim and a major claim.
Except for the last one, an argumentative relation
does not cross paragraph boundaries.

Three raters annotated the corpus with an inter-
annotator agreement of αU = 0.72 (Krippendorff,
2004) for argument components and α = 0.81 for
argumentative relations. In total, the corpus com-
prises 90 essays including 1,673 sentences. Since
it only contains a low number of attack relations,
we focus in this work solely on the identification
of argument components and argumentative sup-
port relations. However, the proposed approach
can also be applied to identify attack relations in
future work.

4 Identifying Argument Components

We consider the identification of argument com-
ponents as a multiclass classification task. Each
clause in the corpus is either classified as major

claim, claim, premise or non-argumentative. So
this task includes besides the classification of ar-
gument components also the separation of argu-
mentative and non-argumentative text units. We
label each sentence that does not contain an ar-
gument component as class ‘none’. Since many
argument components cover an entire sentence
(30%), this is not an exclusive feature of this class.
In total, the corpus contains 1,879 instances.

Table 1 shows the class distribution among the
instances. The corpus includes 90 major claims
(each essay contains exactly one), 429 claims and
1,033 premises. This proportion between claims
and premises is common in argumentation since
claims are usually supported by several premises
for establishing a stable standpoint.

MajorClaim Claim Premise None
90 (4.8%) 429 (22.8%) 1,033 (55%) 327 (17.4%)

Table 1: Class distribution among the instances.
The corpus contains 1552 argument components
and 327 non-argumentative instances.

For our experiments, we randomly split the data
into a 80% training set and a 20% test set with
the same class distribution and determine the best
performing system using 10-fold cross-validation
on the training set only. In our experiments, we
use several classifiers (see section 4.2) from the
Weka data mining software (Hall et al., 2009).
For preprocessing the corpus, we use the Stanford
POS-Tagger (Toutanova et al., 2003) and Parser
(Klein and Manning, 2003) included in the DKPro
Framework (Gurevych et al., 2007). After these
steps, we use the DKPro-TC text classification
framework (Daxenberger et al., 2014) for extract-
ing the features described in the following section.

4.1 Features

Structural features: We define structural features
based on token statistics, the location and punc-
tuations of the argument component and its cov-
ering sentence. Since Biran and Rambow (2011)
found that premises are longer on the average than
other sentences, we add the number of tokens of
the argument component and its covering sentence
to our feature set. In addition, we define the num-
ber of tokens preceding and following an argument
component in the covering sentence, the token ra-
tio between covering sentence and argument com-
ponent, and a Boolean feature that indicates if the
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argument component covers all tokens of its cov-
ering sentence as token statistics features.

For exploiting the structural properties of per-
suasive essays, we define a set of location-based
features. First, we define four Boolean features
that indicate if the argument component is present
in the introduction or conclusion of an essay and
if it is present in the first or the last sentence of
a paragraph. Second, we add the position of the
covering sentence in the essay as a numeric fea-
ture. Since major claims are always present in the
introduction or conclusion of an essay and para-
graphs frequently begin or conclude with a claim,
we expect that these features are good indicators
for classifying (major-) claims.

Further, we define structural features based on
the punctuation: the number of punctuation marks
of the covering sentence and the argument compo-
nent, the punctuation marks preceding and follow-
ing an argument component in its covering sen-
tence and a Boolean feature that indicates if the
sentence closes with a question mark.

Lexical features: We define n-grams, verbs,
adverbs and modals as lexical features. We con-
sider all n-grams of length 1-3 as a Boolean feature
and extract them from the argument component in-
cluding preceding tokens in the sentence that are
not covered by another argument component. So,
the n-gram features include discourse markers that
indicate certain argument components but which
are not included in the actual annotation of argu-
ment components.

Verbs and adverbs play an important role for
identifying argument components. For instance,
certain verbs like ‘believe’, ‘think’ or ‘agree’ of-
ten signal stance expressions which indicate the
presence of a major claim and adverbs like ‘also’,
‘often’ or ‘really’ emphasize the importance of a
premise. We model both verbs and adverbs as
Boolean features.

Modal verbs like ‘should’ and ‘could’ are fre-
quently used in argumentative discourse to signal
the degree of certainty when expressing a claim.
We use the POS tags generated during preprocess-
ing to identify modals and define a Boolean fea-
ture which indicates if an argument component
contains a modal verb.

Syntactic features: To capture syntactic prop-
erties of argument components, we define features
extracted from parse trees. We adopt two features
proposed by (Mochales-Palau and Moens, 2009):

the number of sub-clauses included in the covering
sentence and the depth of the parse tree. In addi-
tion, we extract production rules from the parse
tree as proposed by Lin et al. (2009) to capture
syntactic characteristics of an argument compo-
nent. The production rules are collected for each
function tag (e.g. VP, NN, S, etc.) in the sub-
tree of an argument component. The feature set
includes e.g. rules like V P → V BG,NP or
PP → IN,NP . We model each production rule
as a Boolean feature and set it to true if it appears
in the subtree of an argument component.

Since premises often refer to previous events
and claims are usually in present tense, we capture
the tense of the main verb of an argument compo-
nent as proposed by Mochales-Palau and Moens
(2009) and define a feature that indicates if an ar-
gument component is in the past or present tense.

Indicators: Discourse markers often indicate
the components of an argument. For example,
claims are frequently introduced with ‘therefore’,
‘thus’ or ‘consequently’, whereas premises con-
tain markers like ‘because’, ‘reason’ or ‘further-
more’. We collected a list of discourse markers
from the Penn Discourse Treebank 2.0 Annotation
Manual (Prasad et al., 2007) and removed markers
that do not indicate argumentative discourse (e.g.
markers which indicate temporal discourse). In to-
tal, we collected 55 discourse markers and model
each as a Boolean feature set to true if the particu-
lar marker precedes the argumentative component.

In addition, we define five Boolean features
which denote a reference to the first person in the
covering sentence of an argument component: ‘I’,
‘me’, ‘my’, ‘mine’, and ‘myself’. An additional
Boolean feature indicates if one of them is present
in the covering sentence. We expect that those fea-
tures are good indicators of the major claim, since
it is often introduced with expressions referring to
the personal stance of the author.

Contextual features: The context plays a ma-
jor role for identifying argument components. For
instance, a premise can only be classified as such,
if there is a corresponding claim. Therefore, we
define the following features each extracted from
the sentence preceding and following the covering
sentence of an argument component: the number
of punctuations, the number of tokens, the number
of sub-clauses and a Boolean feature indicating the
presence of modal verbs.
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4.2 Results and Analysis
For identifying the best performing system, we
conducted several experiments on the training set
using stratified 10-fold cross-validation. We de-
termine the evaluation scores by accumulating the
confusion matrices of each fold into one confusion
matrix, since it is the less biased method for evalu-
ating cross-validation studies (Forman and Scholz,
2010). In a comparison of several classifiers (Sup-
port Vector Machine, Naı̈ve Bayes, C4.5 Decision
Tree and Random Forest), we found that each of
the classifiers significantly outperforms a majority
baseline (McNemar Test (McNemar, 1947) with
p = 0.05) and that a Support Vector Machine
(SVM) achieves the best results using 100 top fea-
tures ranked by Information Gain.3 It achieves an
accuracy of 77.3% on the test set and outperforms
the majority baseline with respect to overall accu-
racy as well as F1-score (table 2).

Baseline Human SVM
Accuracy 0.55 0.877 0.773
Macro F1 0.177 0.871 0.726
Macro Precision 0.137 0.864 0.773
Macro Recall 0.25 0.879 0.684

F1 MajorClaim 0 0.916 0.625
F1 Claim 0 0.841 0.538
F1 Premise 0.709 0.911 0.826
F1 None 0 0.812 0.884

Table 2: Results of an SVM for argument com-
ponent classification on the test set compared to a
majority baseline and human performance.

The upper bound for this task constitutes the
human performance which we determine by com-
paring each annotator to the gold standard. Since
the boundaries of an argument component in the
gold standard can differ from the boundaries iden-
tified by a human annotator (the annotation task
included the identification of argument component
boundaries), we label each argument component
of the gold standard with the class of the maximum
overlapping annotation of a human annotator for
determining the human performance. We obtain a
challenging upper bound of 87.7% (accuracy) by
averaging the scores of all three annotators on the
test set (table 2). So, our system achieves 88.1%
of human performance (accuracy).

Feature influence: In subsequent experiments,
we evaluate each of the defined feature groups on
the entire data set using 10-fold cross-validation to

3Although the Naı̈ve Bayes classifier achieves lowest ac-
curacy, it exhibits a slightly higher recall compared to SVM.

find out which features perform best for identify-
ing argument components. As assumed, structural
features perform well for distinguishing claims
and premises in persuasive essays. They also yield
high results for separating argumentative from
non-argumentative text units (table 3).

Feature group MajorClaim Claim Premise None
Structural 0.477 0.419 0.781 0.897

Lexical 0.317 0.401 0.753 0.275

Syntactic 0.094 0.292 0.654 0.427

Indicators 0.286 0.265 0.730 0

Contextual 0 0 0.709 0

Table 3: F1-scores for individual feature groups
and classes (SVM with 10-fold cross-validation on
the entire data set)

Interestingly, the defined indicators are not
useful for separating argumentative from non-
argumentative text units though they are helpful
for classifying argument components. A reason
for this could be that not each occurrence of an
indicator distinctly signals argument components,
since their sense is often ambiguous (Prasad et
al., 2008). For example ‘since’ indicates temporal
properties as well as justifications, whereas ‘be-
cause’ also indicates causal links. Syntactic fea-
tures also contribute to the identification of argu-
ment components. They achieve an F1-score of
0.292 for claims and 0.654 for premises and also
contribute to the separation of argumentative from
non-argumentative text units. Contextual features
do not perform well. However, they increase the
accuracy by 0.7% in combination with other fea-
tures. Nevertheless, this difference is not signifi-
cant (p = 0.05).

Error analysis: The system performs well for
separating argumentative and non-argumentative
text units as well as for identifying premises.
However, the identification of claims and major
claims yields lower performance. The confusion
matrix (table 4) reveals that the most common er-
ror is between claims and premises. In total, 193
claims are incorrectly classified as premise. In
a manual assessment, we observed that many of
these errors occur if the claim is present in the first
paragraph sentence and exhibits preceding indica-
tors like ‘first(ly)’ or ‘second(ly)’ which are also
frequently used to enumerate premises. In these
cases, the author introduces the claim of the argu-
ment as support for the major claim and thus its
characteristic is similar to a premise. To prevent

51



this type of error, it might help to define features
representing the location of indicators or to disam-
biguate the function of indicators.

Predicted
A

ct
ua

l

MC Cl Pr No
MC 38 34 18 0
Cl 19 210 193 7
Pr 6 104 904 19
No 0 12 23 292

Table 4: Confusion matrix (SVM) for argument
component classification (MC = Major Claim; Cl
= Claim; Pr = Premise; No = None)

We also observed, that some of the misclassified
claims cover an entire sentence and don’t include
indicators. For example, it is even difficult for hu-
mans to classify the sentences ‘Competition helps
in improvement and evolution’ as a claim without
knowing the intention of the author. For prevent-
ing these errors, it might help to include more so-
phisticated contextual features.

5 Identifying Argumentative Relations

We consider the identification of argumentative re-
lations as a binary classification task of argument
component pairs and classify each pair as either
support or non-support. For identifying argumen-
tative relations, all possible combinations of argu-
ment components have to be tested. Since this re-
sults in a heavily skewed class distribution, we ex-
tract all possible combinations of argument com-
ponents from each paragraph of an essay.4 So, we
omit argumentative relations between claims and
major claims which are the only relations in the
corpus that cross paragraph boundaries, but ob-
tain a better distribution between true (support)
and false (non-support) instances. In total, we ob-
tain 6,330 pairs, of which 15.6% are support and
84.4% are non-support relations (table 5).

Support Non-support
989 (15.6%) 5341 (84.4%)

Table 5: Class distribution of argument component
pairs

Equivalent to the identification of argument
components, we randomly split the data in a 80%
training and a 20% test set and determine the best
performing system using 10-fold cross-validation

4Only 4.6% of 28,434 possible pairs are true instances
(support), if all combinations are considered.

on the training set. We use the same preprocessing
pipeline as described in section 4 and DKPro-TC
for extracting the features described below.

5.1 Features

Structural features: We define structural fea-
tures for each pair based on the source and tar-
get components, and on the mutual information of
both. Three numeric features are based on token
statistics. Two features represent the number of
tokens of the source and target components and
the third one represents the absolute difference in
the number of tokens. Three additional numeric
features count the number of punctuation marks
of the source and target components as well as
the absolute difference between both. We extract
both types of features solely from the clause an-
notated as argument component and do not con-
sider the covering sentence. In addition, we de-
fine nine structural features based on the position
of both argument components: two of them repre-
sent the position of the covering sentences in the
essay, four Boolean features indicate if the argu-
ment components are present in the first or last
sentence of a paragraph, one Boolean feature for
representing if the target component occurs before
the source component, the sentence distance be-
tween the covering sentences, and a Boolean fea-
ture which indicates if both argument components
are in the same sentence.

Lexical features: We define lexical features
based on word pairs, first words and modals. It
has been shown in previous work that word pairs
are effective for identifying implicit discourse re-
lations (Marcu and Echihabi, 2002). We define
each pair of words between the source and target
components as a Boolean feature and investigate
word pairs containing stop words as well as stop
word filtered word pairs.

In addition, we adopt the first word features
proposed by Pitler et al. (2009). We extract the
first word either from the argument component
or from non-annotated tokens preceding the ar-
gument component in the covering sentence if
present. So, the first word of an argument com-
ponent is either the first word of the sentence con-
taining the argument component, the first word
following a preceding argument component in the
same sentence or the first word of the actual ar-
gument component if it commences the sentence
or directly follows another argument component.
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So, we ensure that the first word of an argument
component includes important discourse markers
which are not included in the annotation. We de-
fine each first word of the source and target com-
ponents as a Boolean feature and also add the pairs
of first words to our feature set.

Further, we define a Boolean feature for the
source as well as for the target component that
indicates if they contain a modal verb and a nu-
merical feature that counts the number of common
terms of the two argument components.

Syntactic features: For capturing syntactic
properties, we extract production rules from the
source and target components. Equivalent to the
features extracted for the argument component
classification (section 4.1), we model each rule as
a Boolean feature which is true if the correspond-
ing argument component includes the rule.

Indicators: We use the same list of discourse
markers introduced above (section 4.1) as indi-
cator features. For each indicator we define a
Boolean feature for the source as well as for the
target component of the pair and set it to true if
it is present in the argument component or in its
preceding tokens.

Predicted type: The argumentative type (major
claim, claim or premise) of the source and target
components is a strong indicator for identifying ar-
gumentative relations. For example, there are no
argumentative relations from claims to premises.
Thus, if the type of the argument component is
reliably identified many potential pairs can be ex-
cluded. Therefore, we define two features that rep-
resent the argumentative type of the source and tar-
get components identified in the first experiment.

5.2 Results and Analysis

The comparison of several classifiers reveals that
an SVM achieves the best results. In our exper-
iments, all classifiers except the C4.5 Decision
Tree significantly outperform a majority baseline
which classifies all pairs as non-support (p =
0.05). We also conducted several experiments
using word pair features only and found in con-
trast to Pitler et al. (2009) that limiting the num-
ber of word pairs decreases the performance. In
particular, we compared the top 100, 250, 500,
1000, 2500, 5000 word pairs ranked by Informa-
tion Gain, non-zero Information Gain word pairs
and non-filtered word pairs. The results show
that non-filtered word pairs perform best (macro

F1-score of 0.68). Our experiments also reveal
that filtering stop words containing word pairs de-
creases the macro F1-score to 0.60. We obtain the
best results using an SVM without any feature se-
lection method. Due to the class imbalance, the
SVM only slightly outperforms the accuracy of a
majority baseline on the test set (table 6). How-
ever, the macro F1-score is more appropriate for
evaluating the performance if the data is imbal-
anced since it assigns equal weight to the classes
and not to the instances. The SVM achieves a
macro F1-score of 0.722 and also outperforms the
baseline with respect to the majority class.

Baseline Human SVM
Accuracy 0.843 0.954 0.863
Macro F1 0.458 0.908 0.722
Macro Precision 0.422 0.937 0.739
Macro Recall 0.5 0.881 0.705

F1 Support 0 0.838 0.519
F1 Non-Support 0.915 0.973 0.92

Table 6: Results of an SVM for classifying argu-
mentative relations on the test set compared to a
majority baseline and human performance.

We determined the upper bound constituted by
the human performance by comparing the annota-
tions of all three annotators to the gold standard.
The scores in table 6 are the average scores of all
three annotators. Our system achieves 90.5% of
human performance (accuracy).

Feature influence: A comparison of the de-
fined feature groups using 10-fold cross-validation
on the entire data set shows that lexical features
perform best. They achieve an F1-score of 0.427
for support and 0.911 for non-support pairs (ta-
ble 7). The syntactic features also perform well
followed by the indicators. It turned out that struc-
tural features are not effective for identifying argu-
mentative relations though they are the most effec-
tive features for identifying argument components
(cp. section 4.2). However, when omitted from
the entire feature set the performance significantly
decreases by 0.018 macro F1-score (p = 0.05).

Interestingly, the predicted types from our first
experiment are not effective at all. Although the
argumentative type of the target component ex-
hibits the highest Information Gain in each fold
compared to all other features, the predicted type
does not yield a significant difference when com-
bined with all other features (p = 0.05). It only
improves the macro F1-score by 0.001 when in-
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cluded in the entire feature set.

Feature group Support Non-Support
Structural 0 0.915
Lexical 0.427 0.911
Syntactic 0.305 0.911
Indicators 0.159 0.916
Predicted types 0 0.915

Table 7: F1-scores for individual feature groups
using an SVM and the entire data set

Error analysis: For identifying frequent er-
ror patterns, we manually investigated the mis-
takes of the classifier. Although our system identi-
fies 97.5% of the non-support pairs from claim to
premise correctly, there are still some false posi-
tives that could be prevented if the argument com-
ponents had been classified more accurately. For
instance, there are 18 non-support relations from
claim to another claim, 32 from claim to premise,
5 from major claim to premise and 4 from major
claim to claim among the false positives. How-
ever, the larger amount of errors is due to not iden-
tified support relations (false negatives). We found
that some errors might be related to missing con-
textual information and unresolved coreferences.
For instance, it might help to replace ‘It’ with ‘Ex-
ercising’ for classifying the pair ‘It helps relieve
tension and stress’ → ‘Exercising improves self-
esteem and confidence’ as support relation or to in-
clude contextual information for the premise ‘This
can have detrimental effects on health’ support-
ing the claim ‘There are some serious problems
springing from modern technology’.

6 Discussion

In our experiments, we have investigated the clas-
sification of argument components as well as the
identification of argumentative relations for recog-
nizing argumentative discourse structures in per-
suasive essays. Both tasks are closely related and
we assume that sharing mutual information be-
tween both tasks might be a promising direction
for future research. On the one hand, knowing the
type of argument components is a strong indica-
tor for identifying argumentative relations and on
the other hand, it is likely that information about
the argumentative structure facilitates the identi-
fication of argument components. However, our
experiments revealed that the current accuracy for
identifying argument components is not sufficient
for increasing the performance of argumentative

relation identification. Nevertheless, we obtain
almost human performance when including the
types of argument components of the gold stan-
dard (macro F1-score >0.85) in our argument re-
lation identification experiment and when includ-
ing the number of incoming and outgoing support
relations for each argument component in our first
experiment (macro F1-score >0.9). Therefore, it
can be assumed, that if the identification of argu-
ment components can be improved, the identifica-
tion of argumentative relations will achieve better
results and vice versa.

The results also show that the distinction be-
tween claims and premises is the major challenge
for identifying argument components. It turned
out that structural features are the most effective
ones for this task. However, some of those features
are unique to persuasive essays, and it is an open
question if there are general structural properties
of arguments which can be exploited for separat-
ing claims from premises.

Our experiments show that discourse markers
yield only low accuracies. Using only our defined
indicator features, we obtain an F1-score of 0.265
for identifying claims, whereas Mochales-Palau
and Moens (2009) achieve 0.673 for the same task
in legal documents using a CFG. This confirms our
initial assumption that approaches relying on dis-
course markers are not applicable for identifying
argumentative discourse structures in documents
which do not follow a standardized form. In ad-
dition, it shows that discourse markers are either
frequently missing or misleadingly used in student
texts and that there is a need for argumentative
writing support systems that assist students in em-
ploying discourse markers correctly.

7 Conclusion and Future Work

We presented a novel approach for identifying ar-
gumentative discourse structures in persuasive es-
says. Previous approaches on argument recog-
nition suffer from several limitations: Existing
approaches focus either solely on the identifica-
tion of argument components or rely on manu-
ally created rules which are not able to identify
implicit argumentative discourse structures. Our
approach is the first step towards computational
argument analysis in the educational domain and
enables the identification of implicit argumenta-
tive discourse structures. The presented approach
achieves 88.1% of human performance for identi-
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fying argument components and 90.5% for identi-
fying argumentative relations.

For future work, we plan to extend our stud-
ies to larger corpora, to integrate our classifiers in
writing environments, and to investigate their ef-
fectiveness for supporting students.
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Abstract

This paper proposes a Markov Decision
Process and reinforcement learning based
approach for domain selection in a multi-
domain Spoken Dialogue System built on
a distributed architecture. In the proposed
framework, the domain selection prob-
lem is treated as sequential planning in-
stead of classification, such that confir-
mation and clarification interaction mech-
anisms are supported. In addition, it is
shown that by using a model parameter ty-
ing trick, the extensibility of the system
can be preserved, where dialogue com-
ponents in new domains can be easily
plugged in, without re-training the domain
selection policy. The experimental results
based on human subjects suggest that the
proposed model marginally outperforms a
non-trivial baseline.

1 Introduction

Due to growing demand for natural human-
machine interaction, over the last decade Spo-
ken Dialogue Systems (SDS) have been increas-
ingly deployed in various commercial applications
ranging from traditional call centre automation
(e.g. AT&T “Lets Go!” bus information sys-
tem (Williams et al., 2010)) to mobile personal
assistants and knowledge navigators (e.g. Ap-
ple’s Siri R©, Google NowTM, Microsoft Cortana,
etc.) or voice interaction for smart household ap-
pliance control (e.g. Samsung Evolution Kit for
Smart TVs). Furthermore, latest progress in open-
vocabulary Automatic Speech Recognition (ASR)
is pushing SDS from traditional single-domain in-
formation systems towards more complex multi-
domain speech applications, of which typical ex-
amples are those voice assistant mobile applica-
tions.

Recent advances in SDS have shown that sta-
tistical approaches to dialogue management can
result in marginal improvement in both the nat-
uralness and the task success rate for domain-
specific dialogues (Lemon and Pietquin, 2012;
Young et al., 2013). State-of-the-art statistical
SDS treat the dialogue problem as a sequential
decision making process, and employ established
planning models, such as Markov Decision Pro-
cesses (MDPs) (Singh et al., 2002) or Partially Ob-
servable Markov Decision Processes (POMDPs)
(Thomson and Young, 2010; Young et al., 2010;
Williams and Young, 2007), in conjunction with
reinforcement learning techniques (Jurčı́ček et al.,
2011; Jurčı́ček et al., 2012; Gašić et al., 2013a)
to seek optimal dialogue policies that maximise
long-term expected (discounted) rewards and are
robust to ASR errors.

However, to the best of our knowledge, most of
the existing multi-domain SDS in public use are
rule-based (e.g. (Gruber et al., 2012; Mirkovic
and Cavedon, 2006)). The application of statistical
models in multi-domain dialogue systems is still
preliminary. Komatani et al. (2006) and Nakano
et al. (2011) utilised a distributed architecture (Lin
et al., 1999) to integrate expert dialogue systems in
different domains into a unified framework, where
a central controller trained as a data-driven clas-
sifier selects a domain expert at each turn to ad-
dress user’s query. Alternatively, Hakkani-Tür et
al. (2012) adopted the well-known Information
State mechanism (Traum and Larsson, 2003) to
construct a multi-domain SDS and proposed a dis-
criminative classification model for more accurate
state updates. More recently, Gašić et al. (2013b)
proposed that by a simple expansion of the kernel
function in Gaussian Process (GP) reinforcement
learning (Engel et al., 2005; Gašić et al., 2013a),
one can adapt pre-trained dialogue policies to han-
dle unseen slots for SDS in extended domains.

In this paper, we use a voice assistant applica-
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Figure 1: The distributed architecture of the voice assistant system (a simplified illustration).

tion (similar to Apple’s Siri but in Chinese lan-
guage) as an example to demonstrate a novel
MDP-based approach for central interaction man-
agement in a complex multi-domain dialogue sys-
tem. The voice assistant employs a distributed ar-
chitecture similar to (Lin et al., 1999; Komatani et
al., 2006; Nakano et al., 2011), and handles mixed
interactions of multi-turn dialogues across differ-
ent domains and single-turn queries powered by
a collection of information access services (such
as web search, Question Answering (QA), etc.).
In our system, the dialogues in each domain are
managed by an individual domain expert SDS, and
the single-turn services are used to handle those
so-called out-of-domain requests. We use fea-
turised representations to summarise the current
dialogue states in each domain (see Section 3 for
more details), and let the central controller (the
MDP model) choose one of the following system
actions at each turn: (1) addressing user’s query
based on a domain expert, (2) treating it as an
out-of-domain request, (3) asking user to confirm
whether he/she wants to continue a domain ex-
pert’s dialogue or to switch to out-of-domain ser-
vices, and (4) clarifying user’s intention between
two domains. The Gaussian Process Temporal
Difference (GPTD) algorithm (Engel et al., 2005;
Gašić et al., 2013a) is adopted here for policy op-
timisation based on human subjects, where a pa-
rameter tying trick is applied to preserve the ex-
tensibility of the system, such that new domain

experts (dialogue systems) can be flexibly plugged
in without the need of re-training the central con-
troller.

Comparing to the previous classification-based
methods (Komatani et al., 2006; Nakano et al.,
2011), the proposed approach not only has the
advantage of action selection in consideration of
long-term rewards, it can also yield more robust
policies that allow clarifications and confirmations
to mitigate ASR and Spoken Language Under-
standing (SLU) errors. Our human evaluation re-
sults show that the proposed system with a trained
MDP policy achieves significantly better natural-
ness in domain switching tasks than a non-trivial
baseline with a hand-crafted policy.

The remainder of this paper is organised as
follows. Section 2 defines the terminology used
throughout the paper. Section 3 briefly overviews
the distributed architecture of our system. The
MDP model and the policy optimisation algorithm
are introduced in Section 4 and Section 5, respec-
tively. After this, experimental settings and eval-
uation results are described in Section 6. Finally,
we discuss some possible improvements in Sec-
tion 7 and conclude ourselves in Section 8.

2 Terminology

A voice assistant application provides a unified
speech interface to a collection of individual infor-
mation access systems. It aims to collect and sat-
isfy user requests in an interactive manner, where
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different types of interactions can be involved.
Here we focus ourselves on two interaction scenar-
ios, i.e. task-oriented (multi-turn) dialogues and
single-turn queries.

According to user intentions, the dialogue inter-
actions in our voice assistant system can further be
categorised into different domains, of which each
is handled by a separate dialogue manager, namely
a domain expert. Example domains include travel
information, restaurant search, etc. In addition,
some domains in our system can be further de-
composed into sub-domains, e.g. the travel in-
formation domain consists of three sub-domains:
flight ticket booking, train ticket booking and hotel
reservation. We use an integrated domain expert to
address queries in all its sub-domains, so that rel-
evant information can be shared across those sub-
domains to allow intelligent induction in the dia-
logue flow.

For convenience of future reference, we call
those single-turn information access systems out-
of-domain services or simply services for short.
The services integrated in our system include web
search, semantic search, QA, system command ex-
ecution, weather report, chat-bot, and many more.

3 System Architecture

The voice assistant system introduced in this pa-
per is built on a distributed architecture (Lin et al.,
1999), as shown in Figure 1, where the dialogue
flow is processed as follows. Firstly, a user’s query
(either an ASR utterance or directly typed in text)
is passed to a user intention identifier, which la-
bels the raw query with a list of intention hypothe-
ses with confidence scores. Here an intention label
could be either a domain name or a service name.
After this, the central controller distributes the raw
query together with its intention labels and confi-
dence scores to all the domain experts and the ser-
vice modules, which will attempt to process the
query and return their results to the central con-
troller.

The domain experts in the current implementa-
tion of our system are all rule-based SDS follow-
ing the RavenClaw framework proposed in (Bo-
hus and Rudnicky, 2009). When receiving a query,
a domain expert will use its own SLU module to
parse the utterance or text input and try to update
its dialogue state in consideration of both the SLU
output and the intention labels. If the dialogue
state in the domain expert can be updated given

the query, it will return its output, internal ses-
sion record and a confidence score to the central
controller, where the output can be either a natu-
ral language utterance realised by its Natural Lan-
guage Generation (NLG) module or a set of data
records obtained from its database (if a database
search operation is triggered), or both. If the do-
main expert cannot update its state using the cur-
rent query, it will just return an empty result with
a low confidence score. Similar procedures ap-
ply to those out-of-domain services as well, but
there are no session records or confidence scores
returned. Finally, given all the returned informa-
tion, the central controller chooses, according to
its policy, the module (either a domain expert or a
service) whose results will be provided to the user.

When the central controller decides to pass a
domain expert’s output to the user, we regard the
domain expert as being activated. Also note here,
the updated state of a domain expert in a turn will
not be physically stored, unless the domain expert
is activated in that turn. This is a necessary mech-
anism to prevent an inactive domain expert being
misled by ambiguous queries in other domains.

In addition, we use a well-engineered priority
ranker to rank the services based on the num-
bers of results they returned as well as some prior
knowledge about the quality of their data sources.
When the central controller decides to show user
the results from an out-of-domain service, it will
choose the top one from the ranked list.

4 MDP Modelling of the Central Control
Process

The main focus of this paper is to seek a policy for
robustly switching the control flow among those
domain experts and services (the service ranker in
practice) during a dialogue, where the user may
have multiple or compound goals (e.g. booking a
flight ticket, booking a restaurant in the destina-
tion city and checking the weather report of the
departure or destination city).

In order to make the system robust to ASR er-
rors or ambiguous queries, the central controller
should also have basic dialogue abilities for confir-
mation and clarification purposes. Here we define
the confirmation as an action of asking whether a
user wants to continue the dialogue in a certain do-
main. If the system receives a negative response at
this point, it will switch to out-of-domain services.
On the other hand, the clarification action is de-
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fined between domains, in which case, the system
will explicitly ask the user to choose between two
domain candidates before continuing the dialogue.

Due to the confirmation and clarification mech-
anisms defined above, the central controller be-
comes a sequential decision maker that must take
the overall smoothness of the dialogue into ac-
count. Therefore, we propose an MDP-based ap-
proach for learning an optimal central control pol-
icy in this section.

The potential state space of our MDP is huge,
which in principle consists of the combinations of
all possible situations of the domain experts and
the out-of-domain services, therefore function ap-
proximation techniques must be employed to en-
able tractable computations. However, when de-
veloping such a complex application as the voice
assistant here, one also needs to take the extensi-
bility of the system into account, so that new do-
main experts can be easily integrated into the sys-
tem without major re-training or re-engineering of
the existing components. Essentially, it requires
the state featurisation and the central control pol-
icy learnt here to be independent of the number of
domain experts. In Section 4.3, we show that such
a property can be achieved by a parameter tying
trick in the definition of the MDP.

4.1 MDP Preliminaries

Let PX denote the set of probability distributions
over a set X . An MDP is defined as a five tuple
〈S,A, T,R, γ〉, where the components are defined
as follows. S and A are the sets of system states
and actions, respectively. T : S × A → PS is the
transition function, and T (s′|s, a) defines the con-
ditional probability of the system transiting from
state s ∈ S to state s′ ∈ S after taking action
a ∈ A. R : S × A → PR is the reward function
with R(s, a) specifying the distribution of the im-
mediate rewards for the system taking action a at
state s. In addition, 0 ≤ γ ≤ 1 is the discount
factor on the summed sequence of rewards.

A finite-horizon MDP operates as follows. The
system occupies a state s and takes an action a,
which then will make it transit to a next state s′ ∼
T (·|s, a) and receive a reward r ∼ R(s, a). This
process repeats until a terminal state is reached.

For a given policy π : S → A, the value
function V π is defined to be the expected cumula-
tive reward, as V π(s0) = E

[∑n
t=0 γ

trt|st,π(st)

]
,

where s0 is the starting state and n is the plan-

ning horizon. The aim of policy optimisation is
to seek an optimal policy π∗ that maximises the
value function. If T and R are given, in conjunc-
tion with a Q-function, the optimal value V ∗ can
be expressed by recursive equations as Q(s, a) =
R(s, a) + γ

∑
s′∈S T (s′|s, a)V ∗(s′) and V ∗(s) =

maxa∈AQ(s, a) (here we assume R(s, a) is de-
terministic), which can be solved by dynamic pro-
gramming (Bellman, 1957). For problems with
unknown T or R, such as dialogue systems, the
Q-values are usually estimated via reinforcement
learning (Sutton and Barto, 1998).

4.2 Problem Definition
Let D denote the set of the domain experts in our
voice assistant system, and sd be the current di-
alogue state of domain expert d ∈ D at a certain
timestamp. We also define so as an abstract state to
describe the current status of those out-of-domain
services. Then mathematically we can represent
the central control process as an MDP, where its
state s is a joint set of the states of all the domain
experts and the services, as s = {sd}d∈D ∪ {so}.
Four types of system actions are defined as fol-
lows.

• present(d): presenting the output of do-
main expert d to user;

• present ood(null): presenting the re-
sults of the top-ranked out-of-domain service
given by the service ranker;

• confirm(d): confirming whether user
wants to continue with domain expert d (or
to switch to out-of-domain services);

• clarify(d,d′): asking user to clarify
his/her intention between domains d and d′.

For convenience of notations, we use a(x) to
denote a system action of our MDP, where a ∈
{present,present ood,confirm,clarify},
x ∈ {d,null, (d, d′)}d,d′∈D,d6=d′ , x = null
only applies to present ood, and x = (d, d′)
only applies to clarify actions.

4.3 Function Approximation
Function approximation is a commonly used tech-
nique to estimate the Q-values when the state
space of the MDP is huge. Concretely, in our case,
we assume that:

Q(s, a(x)) = f(φ(s, a(x)); θ) (1)
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where φ : S × A → RK is a feature function
that maps a state-action pair to an K-dimensional
feature vector, and f : RK → R is a function of
φ(s, a(x)) parameterised by θ. A frequent choice
of f is the linear function, as:

Q(s, a(x)) = θ>φ(s, a(x)) (2)

After this, the policy optimisation problem be-
comes learning the parameter θ to approximate the
Q-values based on example dialogue trajectories.

However, a crucial problem with the standard
formulation in Eq. (2) is that the feature function
φ is defined over the entire state and action spaces.
In this case, when a new domain expert is inte-
grated into the system, both the state space and the
action space will be changed, therefore one will
have to re-define the feature function and conse-
quentially re-train the model. In order to achieve
an extensible system, we make some simplifica-
tion assumptions and decompose the feature func-
tion as follows. Firstly, we let:

φ(s, a(x)) = φa(sx) (3)

=


φpr(sd) if a(x) =present(d)

φood(so) if a(x) =present ood()

φcf(sd) if a(x) =confirm(d)

φcl(sd, sd′) if a(x) =clarify(d,d′)

where the feature function is reduced to only de-
pend on the state of the action’s operand, instead
of the entire system state. Then, we make those ac-
tions a(x) that have a same action type (a) but op-
erate different domain experts (x) share the same
parameter, i.e.:

Q(s, a(x)) = θ>a φa(sx) (4)

This decomposition and parameter tying trick pre-
serves the extensibility of the system, because both
θ>a and φa are independent of x, when there is a
new domain expert d̃, we can directly substitute
its state sd̃ into Eq. (3) and (4) to compute its cor-
responding Q-values.

4.4 Features
Based on the problem formulation in Eq. (3) and
(4), we shall only select high-level summary fea-
tures to sketch the dialogue state and dialogue his-
tory of each domain expert, which must be ap-
plicable to all domain experts, regardless of their
domain-specific characteristics or implementation
differences. Suppose that the dialogue states of the

# Feature Range

1
the number of unfilled
required slots of a domain
expert

{0, . . . ,M}

2
the number of filled required
slots of a domain expert

{0, . . . ,M}

3
the number of filled optional
slots of a domain expert

{0, . . . , L}

4
whether a domain expert has
executed a database search

{0, 1}

5
the confidence score
returned by a domain expert

[0, 1.2]

6
the total number of turns that
a domain expert has been
activated during a dialogue

Z+

7

e−ta where ta denotes the
relative turn of a domain
expert being last activated,
or 0 if not applicable

[0, 1]

8

e−tc where tc denotes the
relative turn of a domain
expert being last confirmed,
or 0 if not applicable

[0, 1]

9

the summed confidence
score from the user intention
identifier of a query being
for out-of-domain services

[0, 1.2N ]

Table 1: A list of all features used in our model.
M and L respectively denote the maximum num-
bers of required and optional slots for the domain
experts. N is the maximum number of hypotheses
that the intention identifier can return. Z+ stands
for the non-negative integer set.

domain experts can be represented as slot-value
pairs1, and for each domain there are required slots
and optional slots, where all required slots must
be filled before the domain expert can execute a
database search operation. The features investi-
gated in the proposed framework are listed in Ta-
ble 1.

Detailed featurisation in Eq. (3) is explained
as follows. For φpr, we choose the first 8 fea-
tures plus a bias dimension that is always set to

1This is a rather general assumption. Informally speak-
ing, for most task-oriented SDS, one can extract a slot-value
representation from their dialogue models, of which exam-
ples include the RavenClaw architecture (Bohus and Rud-
nicky, 2009), the Information State dialogue engine (Traum
and Larsson, 2003), MDP-SDS (Singh et al., 2002) or
POMDP-SDS (Thomson and Young, 2010; Young et al.,
2010; Williams and Young, 2007).
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−1. Whilst, feature #9 plus a bias is used to de-
fine φood. All the features are used in φcf, as to
do a confirmation, one needs to consider the joint
situation in and out of the domain. Finally, the
feature function for a clarification action between
two domains d and d′ is defined as φcl(sd, sd′) =
exp{−|φpr(sd) − φpr(sd′)|}, where we use | · |
to denote the element-wise absolute of a vector
operand. The intuition here is that the more dis-
tinguishable the (featurised) states of two domain
experts are, the less we tend to clarify them.

For those domain experts that have multiple
sub-domains with different numbers of required
and optional slots, the feature extraction procedure
only applies to the latest active sub-domain.

In addition, note that, the confidence scores pro-
vided by the user intention identifier are only used
as features for out-of-domain services. This is be-
cause in the current version of our system, the con-
fidence estimation of the intention identifier for
domain-dependent dialogue queries is less reliable
due to the lack of context information. In contrast,
the confidence scores returned by the domain ex-
perts will be more informative at this point.

5 Policy Learning with GPTD

In traditional statistical SDS, dialogue policies are
usually trained using reinforcement learning based
on simulated dialogue trajectories (Schatzmann
et al., 2007; Keizer et al., 2010; Thomson and
Young, 2010; Young et al., 2010). Although the
evaluation of the simulators themselves could be
an arguable issue, there are various advantages,
e.g. hundreds of thousands of data examples can
be easily generated for training and initial policy
evaluation purposes, and different reinforcement
learning models can be compared without incur-
ring notable extra costs.

However, for more complex multi-domain SDS,
particularly a voice assistant application like ours
that aims at handling very complicated (ideally
open-domain) dialogue scenarios, it would be dif-
ficult to develop a proper simulator that can rea-
sonably mimic real human behaviours. There-
fore, in this work, we learn the central control
policy directly with human subjects, for which
the following properties of the learning algorithm
are required. Firstly and most importantly, the
learner must be sample-efficient as the data collec-
tion procedure is costly. Secondly, the algorithm
should support batch reinforcement learning. This

is because when using function approximation, the
learning process may not strictly converge, and the
quality of the sequence of generated policies tends
to oscillate after a certain number of improving
steps at the beginning (Bertsekas and Tsitsiklis,
1996). If online reinforcement learning is used,
we will be unable to evaluate the generated policy
after each update, and hence will not know which
policy to keep for the final evaluation. Therefore,
we do a batch policy update and iterate the learn-
ing process for a number of batches, such that the
data collection phase in a new iteration yields an
evaluation of the policy obtained from the previ-
ous iteration at the same time.

To fulfill the above two requirements, the Gaus-
sian Process Temporal Difference (GPTD) algo-
rithm (Engel et al., 2005) is a proper choice, due to
its sample efficiency (Fard et al., 2011) and batch
learning ability (Engel et al., 2005), as well as its
previous success in dialogue policy learning with
human subjects (Gašić et al., 2013a). Note that,
GPTD can also admit recursive (online) compu-
tations, but here we focus ourselves on the batch
version.

A Gaussian Process (GP) is a generative model
of Bayesian inference that can be used for func-
tion regression, and has the superiority of obtain-
ing good posterior estimates with just a few obser-
vations (Rasmussen and Williams, 2006). GPTD
models the Q-function as a zero mean GP which
defines correlations in different parts of the fea-
turised state and action spaces through a kernel
function κ, as:

Q(s, a(x)) ∼ GP(0, κ((sx, a), (sx, a))) (5)

Given a sequence of t state-action pairs Xt =
[(s0, a0(x0)), . . . , (st, at(xt))] from a collection
of dialogues and their corresponding immedi-
ate rewards rt = [r0, . . . , rt], the posterior of
Q(s, a(x)) for an arbitrary new state-action pair
(s, a(x)) can be computed as:

Q(s, a(x))|Xt,rt

∼ N (Q̄(s, a(x)), cov (s, a(x))
)

(6)

Q̄(s, a(x)) = kt(sx, a)>H>t G−1
t rt (7)

cov (s, a(x)) = κ((sx, a), (sx, a))
− kt(sx, a)>H>t G−1

t Htkt(sx, a) (8)

Gt = HtKtH>t + σ2HtH>t (9)
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Ht =


1 −γ · · · 0 0
0 1 · · · 0 0
...

. . . . . .
...

...
0 · · · 0 1 −γ

 (10)

where Kt is the Gram matrix with elements
Kt(i, j) = κ((si

xi
, ai), (sj

xj
, aj)), kt(sx, a) =

[κ((si
xi
, ai), (sx, a))]ti=0 is a vector, and σ is a

hyperparameter specifying the diagonal covari-
ance values of the zero-mean Gaussian noise. In
addition, we use cov (s, a(x)) to denote (for short)
the self-covariance cov (s, a(x), s, a(x)).

In our case, as different feature functions φa are
defined for different action types, the kernel func-
tion is defined to be:

κ((sx, a), (s′x′ , a
′)) = [[a = a′]]κa(sx, s′x′) (11)

where [[·]] is an indicator function and κa is the ker-
nel function defined corresponding to the feature
function φa.

Given a state, a most straightforward policy is
to select the action that corresponds to the max-
imum mean Q-value estimated by the GP. How-
ever, since the objective is to learn the Q-function
associated with the optimal policy by interacting
directly with users, the policy must exhibit some
form of stochastic behaviour in order to explore
alternatives during the process of learning. In this
work, the strategy employed for the exploration-
exploitation trade-off is that, during exploration,
actions are chosen according to the variance of
the GP estimate for the Q-function, and during
exploitation, actions are chosen according to the
mean. That is:

π(s) =
{

arg maxa(x) Q̄(s, a(x)) : w.p. 1− ε
arg maxa(x) cov (s, a(x)) : w.p. ε

(12)
where 0 < ε < 1 is a pre-defined exploration rate,
and will be exponentially reduced at each batch
iteration during our learning process.

Note that, in practice, not all the actions are
valid at every possible state. For example, if a do-
main expert d has never been activated during a
dialogue and can neither process the user’s current
query, the actions with an operand d will be re-
garded as invalid at this state. When executing the
policy, we only consider those valid actions for a
given state.

Score Interpretation

5
The domain selections are totally
correct, and the entire dialogue flow
is fluent.

4
The domain selections are totally
correct, but the dialogue flow is
slightly redundant.

3
There are accidental domain
selections errors, or the dialogue
flow is perceptually redundant.

2
There are frequent domain selections
errors, or the dialogue flow is
intolerably redundant.

1
Most domain selections are
incorrect, or the dialogue is
incompletable.

Table 2: The scoring standard in our experiments.

6 Experimental Results

6.1 Training
We use the batch version of GPTD as described
in Section 5 to learn the central control policy
with human subjects. There are three domain ex-
perts available in our current system, but during
the training only two domains are used, which are
the travel information domain and the restaurant
search domain. We reserve a movie search domain
for evaluating the generalisation property of the
learnt policy (see Section 6.2). The learning pro-
cess started from a hand-crafted policy. Then 15
experienced users2 volunteered to contribute dia-
logue examples with multiple or compound goals
(see Figure 4 for an instance), from whom we
collected around 50∼70 dialogues per day for 5
days3. After each dialogue, the users were asked
to score the system from 5 to 1 according to a scor-
ing standard shown in Table 2. The scores were
taken as the (delayed) rewards to train the GPTD
model, where we set the rewards for intermediate
turns to 0. The working policy was updated daily
based on the data obtained up to that day. The
data collected on the first day was used for pre-
liminary experiments to choose the hyperparame-

2Overall user satisfactions may rely on various aspects of
the entire system, e.g. the data source quality of the services,
the performance of each domain expert, etc. It will be diffi-
cult to make non-experienced users to score the central con-
troller isolatedly.

3Not all the users participated the experiments everyday.
There were 311 valid dialogues received in total, with an av-
erage length of 9 turns.
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Figure 2: Average scores and standard deviations
during policy iteration.
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Figure 3: Domain selection accuracies during pol-
icy iteration.

ters of the model, such as the kernel function, the
kernel parameters (if applicable), and σ and γ in
the GPTD model. We initially experimented with
linear, polynomial and Gaussian kernels, with dif-
ferent configurations of σ and γ values, as well
as kernel parameter values. It was found that
the linear kernel in combination with σ = 5 and
γ = 0.99 works more appropriate than the other
settings. This configuration was then fixed for the
rest iterations.

The learning process was iterated for 4 days af-
ter the first one. On each day, we computed the
mean and standard deviation of the user scores
as an evaluation of the policy learnt on the pre-
vious day. The learning curve is illustrated in Fig-
ure 2. Note here, as we were actually executing a
stochastic policy according to Eq. (12), to calcu-
late the values in Figure 2 we ignored those dia-
logues that contain any actions selected due to the
exploration. We also manually labelled the cor-
rectness of domain selection at every turn of the
dialogues. The domain selection accuracies of the
obtained policy sequence are shown in Figure 3,
where similarly, those exploration actions as well

Policy
Scenario

Baseline GPTD
p-value

(i) 4.5±0.8 4.2±0.8 0.387
(ii) 3.4±0.9 4.2±0.8 0.018
(iii) 4.1±1.0 4.3±1.0 0.0821
(iv) 3.9±1.1 4.5±0.8 0.0440

Table 3: Paired comparison experiments between
the system with a trained GPTD policy and the
rule-based baseline.

as the clarification and confirmation actions were
excluded from the calculations. Although the do-
main selection accuracy is not the target that our
learning algorithm aims to optimise, it reflects the
quality of the learnt policies from a different angle
of view.

It can be found in Figure 2 that the best policy
was obtained in the third iteration, and after that
the policy quality oscillated. The same finding is
indicated in Figure 3 as well, when we use the do-
main selection accuracy as the evaluation metric.
Therefore, we kept the policy corresponding to the
peak point of the learning curve for the compari-
son experiments below.

6.2 Comparison Experiments

We conducted paired comparison experiments in
four scenarios to compare between the system
with the GPTD-learnt central control policy and a
non-trivial baseline. The baseline is a publicly de-
ployed version of the voice assistant application.
The central control policy of the baseline system is
handcrafted, which has a separate list of semantic
matching rules for each domain to enable domain
switching.

The first two scenarios aim to test the perfor-
mance of the two systems on (i) switching between
a domain expert and out-of-domain services, and
(ii) switching between two domain experts, where
only the two training domains (travel information
and restaurant search) were considered. Scenar-
ios (iii) and (iv) are similar to scenarios (i) and (ii)
respectively, but at this time, the users were re-
quired to carry out the tests surrounding the movie
search domain (which is addressed by a new do-
main expert not used in the training phase). There
were 13 users who participated this experiment.
In each scenario, every user was required to test
the two systems with an identical goal and similar
queries. After each test, the users were asked to

64



score the two systems separately according to the
scoring standard in Table 2.

The average scores received by the two systems
are shown in Table 3, where we also compute the
statistical significance (the p-values) of the results
based on paired t-tests. It can be found that the
learnt policy works significantly better than the
rule-based policy in scenarios (ii) and (iv), but in
scenarios (i) and (iii) the differences between two
systems are statistically insignificant. Moreover,
the learnt policy preserves the extensibility of the
entire system as expected, of which strong evi-
dences are given by the results in scenarios (iii)
and (iv).

6.3 Policy Analysis

To better understand the policy learnt by the
GPTD model, we look into the obtained weight
vectors, as shown in Table 4. It can be found that
confidence score (#5) is an informative feature for
all the system actions, while the relative turn of a
domain being last activated (#7) is an additional
strong evidence for a confirmation decision. In
addition, the similarity between the dialogue com-
pletion status (#1 & #2) of two ambiguous domain
experts and the relative turns of them being last
confirmed (#8) tend to be extra dominating fea-
tures for clarification decisions, besides the close-
ness of the confidence scores returned by the two
domain experts.

A less noticeable but important phenomenon is
observed for feature #6, i.e. the total number of
active turns of a domain expert during a dialogue.
Concretely, feature #6 has a small negative effect
on presentation actions but a small positive con-
tribution to confirmation actions. Such weights
could correspond to the discount factor’s penalty
to long dialogues in the value function. How-
ever, it implies an unexpected effect in extreme
cases, which we explain in detail as follows. Al-
though the absolute weights for feature #6 are tiny
for both presentation and confirmation actions, the
feature value will grow linearly during a dialogue.
Therefore, when a dialogue in a certain domain
last rather long, there tend to be very frequent con-
firmations. A possible solution to this problem
could be either ignoring feature #6 or twisting it to
some nonlinear function, such that its value stops
increasing at a certain threshold point. In addition,
to cover sufficient amount of those “extreme” ex-
amples in the training phase could also be an alter-

Feature Weights
# present confirm clarify
1 0.09 0.02 0.60

present
ood

2 0.20 0.29 0.53
3 0.18 0.29 0.16
4 -0.10 0.16 0.25
5 0.75 0.57 0.54
6 -0.02 0.11 0.13
7 0.25 1.19 0.36
8 -0.22 -0.19 0.69
9 – 0.20 – 0.47

Bias -1.79 – – -2.42

Table 4: Feature weights learnt by GPTD. See Ta-
ble 1 for the meanings of the features.

native solution, as our current training set contains
very few examples that exhibit extraordinary long
domain persistence.

7 Further Discussions

The proposed approach is a rather general frame-
work to learn extensible central control policies
for multi-domain SDS based on distributed archi-
tectures. It does not rely on any internal represen-
tations of those individual domain experts, as long
as a unified featurisation of their dialogue states
can be achieved.

However, from the entire system point of view,
the current implementation is still preliminary.
Particularly, the confirmation and clarification
mechanisms are isolated, for which the surface re-
alisations sometimes may sound stiff. This phe-
nomenon explains one of the reasons that make
the proposed system slightly less preferred by the
users than the baseline in scenario (i), when the
interaction flows are relative simple. A possi-
ble improvement here could be associating the
confirmation and clarification actions in the cen-
tral controller to the error handling mechanisms
within each domain expert, and letting domain ex-
perts generate their own utterances on receiving a
confirmation/clarification request from the central
controller.

Online reinforcement learning with real user
cases will be another undoubted direction of fur-
ther improvement of our system. The key chal-
lenge here is to automatically estimate user’s satis-
factions, which will be transformed to the rewards
for the reinforcement learners. Strong feedbacks
such as clicks or actual order placements can be
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collected. But to regress user’s true satisfaction,
other environment features must also be taken into
account. Practical solutions are still an open issue
at this stage, and are left to our future work.

8 Conclusion

In this paper, we introduce an MDP framework
for learning domain selection policies in a com-
plex multi-domain SDS. Standard problem for-
mulation is modified with tied model parameters,
so that the entire system is extensible and new
domain experts can be easily integrated without
re-training the policy. This expectation is con-
firmed by empirical experiments with human sub-
jects, where the proposed system marginally beats
a non-trivial baseline and demonstrates proper ex-
tensibility. Several possible improvements are dis-
cussed, which will be the central arc of our future
research.
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Milica Gašić, Catherine Breslin, Matthew Henderson,
Dongho Kim, Martin Szummer, Blaise Thomson,
Pirros Tsiakoulis, and Steve Young. 2013a. On-
line policy optimisation of Bayesian spoken dia-
logue systems via human interaction. In Proceed-
ings of the IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
8367–8371.
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Filip Jurčı́ček, Blaise Thomson, and Steve Young.
2011. Natural actor and belief critic: Reinforcement
algorithm for learning parameters of dialogue sys-
tems modelled as POMDPs. ACM Transactions on
Speech and Language Processing, 7(3):6:1–6:25.
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Abstract

Discourse parsing is a challenging task
and plays a critical role in discourse anal-
ysis. In this paper, we focus on label-
ing full argument spans of discourse con-
nectives in the Penn Discourse Treebank
(PDTB). Previous studies cast this task
as a linear tagging or subtree extraction
problem. In this paper, we propose a
novel constituent-based approach to argu-
ment labeling, which integrates the ad-
vantages of both linear tagging and sub-
tree extraction. In particular, the pro-
posed approach unifies intra- and inter-
sentence cases by treating the immediate-
ly preceding sentence as a special con-
stituent. Besides, a joint inference mech-
anism is introduced to incorporate glob-
al information across arguments into our
constituent-based approach via integer lin-
ear programming. Evaluation on PDT-
B shows significant performance improve-
ments of our constituent-based approach
over the best state-of-the-art system. It al-
so shows the effectiveness of our joint in-
ference mechanism in modeling global in-
formation across arguments.

1 Introduction

Discourse parsing determines the internal struc-
ture of a text and identifies the discourse rela-
tions between its text units. It has attracted in-
creasing attention in recent years due to its impor-
tance in text understanding, especially since the
release of the Penn Discourse Treebank (PDTB)
corpus (Prasad et al., 2008), which adds a layer of
discourse annotations on top of the Penn Treebank

∗The research reported in this paper was carried out while
Fang Kong was a research fellow at the National University
of Singapore.

(PTB) corpus (Marcus et al., 1993). As the largest
available discourse corpus, the PDTB corpus has
become the defacto benchmark in recent studies
on discourse parsing.

Compared to connective identification and dis-
course relation classification in discourse parsing,
the task of labeling full argument spans of dis-
course connectives is much harder and thus more
challenging. For connective identification, Lin et
al. (2014) achieved the performance of 95.76%
and 93.62% in F-measure using gold-standard and
automatic parse trees, respectively. For discourse
relation classification, Lin et al. (2014) achieved
the performance of 86.77% in F-measure on clas-
sifying discourse relations into 16 level 2 types.
However, for argument labeling, Lin et al. (2014)
only achieved the performance of 53.85% in F-
measure using gold-standard parse trees and con-
nectives, much lower than the inter-annotation a-
greement of 90.20% (Miltsakaki et al., 2004).

In this paper, we focus on argument labeling in
the PDTB corpus. In particular, we propose a nov-
el constituent-based approach to argument label-
ing which views constituents as candidate argu-
ments. Besides, our approach unifies intra- and
inter-sentence cases by treating the immediately
preceding sentence as a special constituent. Final-
ly, a joint inference mechanism is introduced to
incorporate global information across arguments
via integer linear programming. Evaluation on the
PDTB corpus shows the effectiveness of our ap-
proach.

The rest of this paper is organized as follows.
Section 2 briefly introduces the PDTB corpus.
Related work on argument labeling is reviewed
in Section 3. In Section 4, we describe our
constituent-based approach to argument labeling.
In Section 5, we present our joint inference mech-
anism via integer linear programming (ILP). Sec-
tion 6 gives the experimental results and analysis.
Finally, we conclude in Section 7.
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2 Penn Discourse Treebank

As the first large-scale annotated corpus that fol-
lows the lexically grounded, predicate-argument
approach in D-LTAG (Lexicalized Tree Adjoin-
ing Grammar for Discourse) (Webber, 2004), the
PDTB regards a connective as the predicate of a
discourse relation which takes exactly two text s-
pans as its arguments. In particular, the text span
that the connective is syntactically attached to is
called Arg2, and the other is called Arg1.

Although discourse relations can be either ex-
plicitly or implicitly expressed in PDTB, this pa-
per focuses only on explicit discourse relations
that are explicitly signaled by discourse connec-
tives. Example (1) shows an explicit discourse re-
lation from the article wsj 2314 with connective
so underlined, Arg1 span italicized, and Arg2 s-
pan bolded.

(1) But its competitors have much broader busi-
ness interests and so are better cushioned
against price swings .

Note that a connective and its arguments can ap-
pear in any relative order, and an argument can be
arbitrarily far away from its corresponding con-
nective. Although the position of Arg2 is fixed
once the connective is located, Arg1 can occur in
the same sentence as the connective (SS), in a sen-
tence preceding that of the connective (PS), or in
a sentence following that of the connective (FS),
with proportions of 60.9%, 39.1%, and less than
0.1% respectively for explicit relations in the PDT-
B corpus (Prasad et al., 2008). Besides, out of
all PS cases where Arg1 occurs in some preced-
ing sentence, 79.9% of them are the exact imme-
diately preceding sentence. As such, in this paper,
we only consider the current sentence containing
the connective and its immediately preceding sen-
tence as the text span where Arg1 occurs, similar
to what was done in (Lin et al., 2014).

3 Related Work

For argument labeling in discourse parsing on the
PDTB corpus, the related work can be classified
into two categories: locating parts of arguments,
and labeling full argument spans.

As a representative on locating parts of argu-
ments, Wellner and Pustejovsky (2007) proposed
several machine learning approaches to identify
the head words of the two arguments for discourse

connectives. Following this work, Elwell and
Baldridge (2008) combined general and connec-
tive specific rankers to improve the performance
of labeling the head words of the two arguments.
Prasad et al. (2010) proposed a set of heuristics to
locate the position of the Arg1 sentences for inter-
sentence cases. The limitation of locating parts of
arguments, such as the positions and head word-
s, is that it is only a partial solution to argument
labeling in discourse parsing.

In comparison, labeling full argument spans can
provide a complete solution to argument labeling
in discourse parsing and has thus attracted increas-
ing attention recently, adopting either a subtree
extraction approach (Dinesh et al. (2005), Lin et
al. (2014)) or a linear tagging approach (Ghosh et
al. (2011)).

As a representative subtree extraction approach,
Dinesh et al. (2005) proposed an automatic tree
subtraction algorithm to locate argument spans for
intra-sentential subordinating connectives. How-
ever, only dealing with intra-sentential subordinat-
ing connectives is not sufficient since they con-
stitute only 40.93% of all cases. Instead, Lin et
al. (2014) proposed a two-step approach. First, an
argument position identifier was employed to lo-
cate the position of Arg1. For the PS case, it di-
rectly selects the immediately preceding sentence
as Arg1. For other cases, an argument node iden-
tifier was employed to locate the Arg1- and Arg2-
nodes. Next, a tree subtraction algorithm was used
to extract the arguments. However, as pointed out
in Dinesh et al. (2005), it is not necessarily the
case that a connective, Arg1, or Arg2 is dominated
by a single node in the parse tree (that is, it can be
dominated by a set of nodes). Figure 1 shows the
gold-standard parse tree corresponding to Exam-
ple (1). It shows that Arg1 includes three nodes:
[CC But], [NP its competitors], [V P have much
broader business interests], and Arg2 includes t-
wo nodes: [CC and], [V P are better cushioned a-
gainst price swings]. Therefore, such an argumen-
t node identifier has inherent shortcomings in la-
beling arguments. Besides, the errors propagat-
ed from the upstream argument position classifier
may adversely affect the performance of the down-
stream argument node identifier.

As a representative linear tagging approach,
Ghosh et al. (2011) cast argument labeling as a lin-
ear tagging task using conditional random fields.
Ghosh et al. (2012) further improved the perfor-
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Figure 1: The gold-standard parse tree corresponding to Example (1)

mance with integration of the n-best results.
While the subtree extraction approach locates

argument spans based on the nodes of a parse tree
and is thus capable of using rich syntactic informa-
tion, the linear tagging approach works on the to-
kens in a sentence and is thus capable of capturing
local sequential dependency between tokens. In
this paper, we take advantage of both subtree ex-
traction and linear tagging approaches by propos-
ing a novel constituent-based approach. Further-
more, intra- and inter-sentence cases are unified
by treating the immediately preceding sentence as
a special constituent. Finally, a joint inference
mechanism is proposed to add global information
across arguments.

4 A Constituent-Based Approach to
Argument Labeling

Our constituent-based approach works by first
casting the constituents extracted from a parse tree
as argument candidates, then determining the role
of every constituent as part of Arg1, Arg2, or
NULL, and finally, merging all the constituents
for Arg1 and Arg2 to obtain the Arg1 and Arg2
text spans respectively. Obviously, the key to
the success of our constituent-based approach is
constituent-based argument classification, which
determines the role of every constituent argument
candidate.

As stated above, the PDTB views a connective
as the predicate of a discourse relation. Similar
to semantic role labeling (SRL), for a given con-
nective, the majority of the constituents in a parse
tree may not be its arguments (Xue and Palmer,
2004). This indicates that negative instances (con-

stituents marked NULL) may overwhelm positive
instances. To address this problem, we use a
simple algorithm to prune out these constituents
which are clearly not arguments to the connective
in question.

4.1 Pruning
The pruning algorithm works recursively in pre-
processing, starting from the target connective n-
ode, i.e. the lowest node dominating the connec-
tive. First, all the siblings of the connective node
are collected as candidates, then we move on to
the parent of the connective node and collect it-
s siblings, and so on until we reach the root of
the parse tree. In addition, if the target connec-
tive node does not cover the connective exactly,
the children of the target connective node are also
collected.

For the example shown in Figure 1, we can lo-
cate the target connective node [RB so] and return
five constituents — [V P have much broader busi-
ness interests], [CC and], [V P are better cushioned
against price swings], [CC But], and [NP its com-
petitors] — as argument candidates.

It is not surprising that the pruning algorithm
works better on gold parse trees than automatic
parse trees. Using gold parse trees, our pruning al-
gorithm can recall 89.56% and 92.98% (489 out of
546 Arg1s, 808 out of 869 Arg2s in the test data)
of the Arg1 and Arg2 spans respectively and prune
out 81.96% (16284 out of 19869) of the nodes in
the parse trees. In comparison, when automatic
parse trees (based on the Charniak parser (Char-
niak, 2000)) are used, our pruning algorithm can
recall 80.59% and 89.87% of the Arg1 and Arg2
spans respectively and prune out 81.70% (16190
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Feature Description Example
CON-Str The string of the given connective (case-sensitive) so
CON-LStr The lowercase string of the given connective so

CON-Cat
The syntactic category of the given connective: sub-
ordinating, coordinating, or discourse adverbial

Subordinating

CON-iLSib Number of left siblings of the connective 2
CON-iRSib Number of right siblings of the connective 1

NT-Ctx

The context of the constituent. We use POS combi-
nation of the constituent, its parent, left sibling and
right sibling to represent the context. When there is
no parent or siblings, it is marked NULL.

VP-VP-NULL-CC

CON-NT-Path
The path from the parent node of the connective to
the node of the constituent

RB ↑ V P ↓ V P

CON-NT-Position
The position of the constituent relative to the connec-
tive: left, right, or previous

left

CON-NT-Path-iLsib
The path from the parent node of the connective to
the node of the constituent and whether the number
of left siblings of the connective is greater than one

RB ↑ V P ↓ V P :>1

Table 1: Features employed in argument classification.

out of 19816) of the nodes in the parse trees.

4.2 Argument Classification
In this paper, a multi-category classifier is em-
ployed to determine the role of an argument can-
didate (i.e., Arg1, Arg2, or NULL). Table 1 lists
the features employed in argument classification,
which reflect the properties of the connective and
the candidate constituent, and the relationship be-
tween them. The third column of Table 1 shows
the features corresponding to Figure 1, consider-
ing [RB so] as the given connective and [V P have
much broader business interests] as the constituent
in question.

Similar to Lin et al. (2014), we obtained the syn-
tactic category of the connectives from the list pro-
vided in Knott (1996). However, different from
Lin et al. (2014), only the siblings of the root path
nodes (i.e., the nodes occurring in the path of the
connective to root) are collected as the candidate
constituents in the pruning stage, and the value of
the relative position can be left or right, indicat-
ing that the constituent is located on the left- or
right-hand of the root path respectively. Besides,
we view the root of the previous sentence as a spe-
cial candidate constituent. For example, the value
of the feature CON-NT-Position is previous when
the current constituent is the root of the previous
sentence. Finally, we use the part-of-speech (POS)
combination of the constituent itself, its parent n-

ode, left sibling node and right sibling node to rep-
resent the context of the candidate constituent. In-
tuitively, this information can help determine the
role of the constituent.

For the example shown in Figure 1, we first em-
ploy the pruning algorithm to get the candidate
constituents, and then employ our argument clas-
sifier to determine the role for every candidate.
For example, if the five candidates are labeled as
Arg1, Arg2, Arg2, Arg1, and Arg1, respectively,
we merge all the Arg1 constituents to obtain the
Arg1 text span (i.e., But its competitors have much
broader business interests). Similarly, we merge
the two Arg2 constituents to obtain the Arg2 text s-
pan (i.e., and are better cushioned against price
swings).

5 Joint Inference via Integer Linear
Programming

In the above approach, decisions are always made
for each candidate independently, ignoring global
information across candidates in the final output.
For example, although an argument span can be
split into multiple discontinuous segments (e.g.,
the Arg2 span of Example (1) contains two dis-
continuous segments, and, are better cushioned
against price swings), the number of discontinu-
ous segments is always limited. Statistics on the
PDTB corpus shows that the number of discontin-
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uous segments for both Arg1 and Arg2 is generally
(>= 99%) at most 2. For Example (1), from left
to right, we can obtain the list of constituent can-
didates: [CC But], [NP its competitors], [V P have
much broader business interests], [CC and], [V P
are better cushioned against price swings]. If our
argument classifier wrongly determines the roles
as Arg1, Arg2, Arg1, Arg2, and Arg1 respectively,
we can find that the achieved Arg1 span contains
three discontinuous segments. Such errors may be
corrected from a global perspective.

In this paper, a joint inference mechanism is in-
troduced to incorporate various kinds of knowl-
edge to resolve the inconsistencies in argumen-
t classification to ensure global legitimate predic-
tions. In particular, the joint inference mechanism
is formalized as a constrained optimization prob-
lem, represented as an integer linear programming
(ILP) task. It takes as input the argument classi-
fiers’ confidence scores for each constituent can-
didate along with a list of constraints, and outputs
the optimal solution that maximizes the objective
function incorporating the confidence scores, sub-
ject to the constraints that encode various kinds of
knowledge.

In this section, we meet the requirement of ILP
with focus on the definition of variables, the objec-
tive function, and the problem-specific constraints,
along with ILP-based joint inference integrating
multiple systems.

5.1 Definition of Variables

Given an input sentence, the task of argumen-
t labeling is to determine what labels should be
assigned to which constituents corresponding to
which connective. It is therefore natural that en-
coding the output space of argument labeling re-
quires various kinds of information about the con-
nectives, the argument candidates corresponding
to a connective, and their argument labels.

Given an input sentence s, we define following
variables:

(1) P : the set of connectives in a sentence.

(2) p ∈ P : a connective in P .

(3) C(p): the set of argument candidates corre-
sponding to connective p. (i.e., the parse tree
nodes obtained in the pruning stage).

(4) c ∈ C(p): an argument candidate.

(5) L: the set of argument labels {Arg1, Arg2,
NULL }.

(6) l ∈ L: an argument label in L.

In addition, we define the integer variables as
follows:

Z lc,p ∈ {0, 1} (1)

If Z lc,p = 1, the argument candidate c, which
corresponds to connective p, should be assigned
the label l. Otherwise, the argument candidate c is
not assigned this label.

5.2 The Objective Function
The objective of joint inference is to find the best
arguments for all the connectives in one sentence.
For every connective, the pruning algorithm is first
employed to determine the set of corresponding
argument candidates. Then, the argument classifi-
er is used to assign a label to every candidate. For
an individual labelingZ lc,p, we measure the quality
based on the confidence scores, fl,c,p, returned by
the argument classifier. Thus, the objective func-
tion can be defined as

max
∑
l,c,p

fl,c,pZ
l
c,p (2)

5.3 Constraints
As the key to the success of ILP-based joint infer-
ence, the following constraints are employed:

Constraint 1: The arguments corresponding
to a connective cannot overlap with the connec-
tive. Let c1, c2..., ck be the argument candidates
that correspond to the same connective and over-
lap with the connective in a sentence.1 Then this
constraint ensures that none of them will be as-
signed as Arg1 or Arg2.

k∑
i=1

ZNULLci,p = k (3)

Constraint 2: There are no overlapping or em-
bedding arguments. Let c1, c2..., ck be the argu-
ment candidates that correspond to the same con-
nective and cover the same word in a sentence.2

1Only when the target connective node does not cover the
connective exactly and our pruning algorithm collects all the
children of the target connective node as part of constituent
candidates, such overlap can be introduced.

2This constraint only works in system combination of
Section 5.4, where additional phantom candidates may intro-
duce such overlap.
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Then this constraint ensures that at most one of
the constituents can be assigned as Arg1 or Arg2.
That is, at least k − 1 constituents should be as-
signed the special label NULL.

k∑
i=1

ZNULLci,p ≥ k − 1 (4)

Constraint 3: For a connective, there is at least
one constituent candidate assigned as Arg2.∑

c

ZArg2c,p ≥ 1 (5)

Constraint 4: Since we view the previous com-
plete sentence as a special Arg1 constituent candi-
date, denoted as m, there is at least one candidate
assigned as Arg1 for every connective.∑

c

ZArg1c,p + ZArg1m,p ≥ 1 (6)

Constraint 5: The number of discontinuous
constituents assigned as Arg1 or Arg2 should be at
most 2. That is, if argument candidates c1, c2..., ck
corresponding to the same connective are discon-
tinuous, this constraint ensures that at most two
of the constituents can be assigned the same label
Arg1 or Arg2.

k∑
i=1

ZArg1ci,p ≤ 2, and
k∑
i=1

ZArg2ci,p ≤ 2 (7)

5.4 System Combination
Previous work shows that the performance of ar-
gument labeling heavily depends on the quality of
the syntactic parser. It is natural that combining
different argument labeling systems on differen-
t parse trees can potentially improve the overall
performance of argument labeling.

To explore this potential, we build two argu-
ment labeling systems — one using the Berke-
ley parser (Petrov et al., 2006) and the other the
Charniak parser (Charniak, 2000). Previous s-
tudies show that these two syntactic parsers tend
to produce different parse trees for the same sen-
tence (Zhang et al., 2009). For example, our pre-
liminary experiment shows that applying the prun-
ing algorithm on the output of the Charniak parser
produces a list of candidates with recall of 80.59%
and 89.87% for Arg1 and Arg2 respectively, while
achieving recall of 78.6% and 91.1% for Arg1 and
Arg2 respectively on the output of the Berkeley
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Figure 2: An example on unifying different candi-
dates.

parser. It also shows that combining these two can-
didate lists significantly improves recall to 85.7%
and 93.0% for Arg1 and Arg2, respectively.

In subsection 5.2, we only consider the con-
fidence scores returned by an argument classifier.
Here, we proceed to combine the probabilities pro-
duced by two argument classifiers. There are two
remaining problems to resolve:

• How do we unify the two candidate lists?
In principle, constituents spanning the same
sequence of words should be viewed as the
same candidate. That is, for different can-
didates, we can unify them by adding phan-
tom candidates. This is similar to the ap-
proach proposed by Punyakanok et al. (2008)
for the semantic role labeling task. For exam-
ple, Figure 2 shows the candidate lists gen-
erated by our pruning algorithm based on t-
wo different parse trees given the segment
“its competitors have much broader business
interests”. Dashed lines are used for phan-
tom candidates and solid lines for true can-
didates. Here, system A produces one can-
didate a1, with two phantom candidates a2
and a3 added. Analogously, phantom can-
didate b3 is added to the candidate list out-
put by System B. In this way, we can get the
unified candidate list: “its competitors have
much broader business interests”, “its com-
petitors”, “have much broader business inter-
ests”.

• How do we compute the confidence score for
every decision? For every candidate in the
unified list, we first determine whether it is
a true candidate based on the specific parse
tree. Then, for a true candidate, we extrac-
t the features from the corresponding parse
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tree. On this basis, we can determine the
confidence score using our argument classi-
fier. For a phantom candidate, we set the
same prior distribution as the confidence s-
core. In particular, the probability of the
”NULL” class is set to 0.55, following (Pun-
yakanok et al., 2008), and the probabilities of
Arg1 and Arg2 are set to their occurrence fre-
quencies in the training data. For the example
shown in Figure 2, since System A return-
s “its competitors have much broader busi-
ness interests” as a true candidate, we can ob-
tain its confidence score using our argumen-
t classifier. For the two phantom candidates
— “its competitors” and “have much broader
business interests” — we use the prior dis-
tributions directly. This applies to the candi-
dates for System B. Finally, we simply aver-
age the estimated probabilities to determine
the final probability estimate for every candi-
date in the unified list.

6 Experiments

In this section, we systematically evaluate our
constituent-based approach with a joint inference
mechanism to argument labeling on the PDTB
corpus.

6.1 Experimental settings

All our classifiers are trained using the OpenNLP
maximum entropy package3 with the default pa-
rameters (i.e. without smoothing and with 100
iterations). As the PDTB corpus is aligned with
the PTB corpus, the gold parse trees and sentence
boundaries are obtained from PTB. Under the au-
tomatic setting, the NIST sentence segmenter4 and
the Charniak parser5 are used to segment and parse
the sentences, respectively. lp solve6 is used for
our joint inference.

This paper focuses on automatically labeling
the full argument spans of discourse connec-
tives. For a fair comparison with start-of-the-
art systems, we use the NUS PDTB-style end-
to-end discourse parser7 to perform other sub-
tasks of discourse parsing except argument label-
ing, which includes connective identification, non-

3http://maxent.sourceforge.net/
4http://duc.nist.gov/duc2004/software/duc2003

.breakSent.tar.gz
5ftp://ftp.cs.brown.edu/pub/nlparser/
6http://lpsolve.sourceforge.net/
7http://wing.comp.nus.edu.sg/ linzihen/parser/

explicit discourse relation identification and clas-
sification.

Finally, we evaluate our system on two aspects:
(1) the dependence on the parse trees (GS/Auto,
using gold standard or automatic parse trees and
sentence boundaries); and (2) the impact of errors
propagated from previous components (noEP/EP,
using gold annotation or automatic results from
previous components). In combination, we have
four different settings: GS+noEP, GS+EP, Au-
to+noEP and Auto+EP. Same as Lin et al. (2014),
we report exact match results under these four set-
tings. Here, exact match means two spans match
identically, except beginning or ending punctua-
tion symbols.

6.2 Experimental results

We first evaluate the effectiveness of our
constituent-based approach by comparing our sys-
tem with the state-of-the-art systems, ignoring
the joint inference mechanism. Then, the con-
tribution of the joint inference mechanism to our
constituent-based approach, and finally the contri-
bution of our argument labeling system to the end-
to-end discourse parser are presented.
Effectiveness of our constituent-based ap-
proach

By comparing with two state-of-the-art argu-
ment labeling approaches, we determine the effec-
tiveness of our constituent-based approach.
Comparison with the linear tagging approach

As a representative linear tagging approach,
Ghosh et al. (2011; 2012; 2012) only reported the
exact match results for Arg1 and Arg2 using the
evaluation script for chunking evaluation8 under
GS+noEP setting with Section 02–22 of the PDTB
corpus for training, Section 23–24 for testing, and
Section 00–01 for development. It is also worth
mentioning that an argument span can contain
multiple discontinuous segments (i.e., chunks), so
chunking evaluation only shows the exact match
of every argument segment but not the exact match
of every argument span. In order to fairly compare
our system with theirs, we evaluate our system us-
ing both the exact metric and the chunking eval-
uation. Table 2 compares the results of our sys-
tem without joint inference and the results report-
ed by Ghosh et al. (2012) on the same data split.
We can find that our system performs much bet-

8http://www.cnts.ua.ac.be/conll2000/chunking/
conlleval.txt
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ter than Ghosh’s on both Arg1 and Arg2, even on
much stricter metrics.

Systems Arg1 Arg2
ours using exact match 65.68 84.50
ours using chunking evaluation 67.48 88.08
reported by Ghosh et al. (2012) 59.39 79.48

Table 2: Performance (F1) comparison of our ar-
gument labeling approach with the linear tagging
approach as adopted in Ghosh et al. (2012)

Comparison with the subtree extracting ap-
proach

For a fair comparison, we also conduct our
experiments on the same data split of Lin et
al. (2014) with Section 02 to 21 for training, Sec-
tion 22 for development, and Section 23 for test-
ing. Table 3 compares our labeling system without
joint inference with Lin et al. (2014), a representa-
tive subtree extracting approach. From the results,
we find that the performance of our argument la-
beling system significantly improves under all set-
tings. This is because Lin et al. (2014) considered
all the internal nodes of the parse trees, whereas
the pruning algorithm in our approach can effec-
tively filter out those unlikely constituents when
determining Arg1 and Arg2.

Setting Arg1 Arg2 Arg1&2

ours
GS+noEP 62.84 84.07 55.69
GS+EP 61.46 81.30 54.31
Auto+EP 56.04 76.53 48.89

Lin’s
GS+noEP 59.15 82.23 53.85
GS+EP 57.64 79.80 52.29
Auto+EP 47.68 70.27 40.37

Table 3: Performance (F1) comparison of our ar-
gument labeling approach with the subtree extrac-
tion approach as adopted in Lin et al. (2014)

As justified above, by integrating the advan-
tages of both linear tagging and subtree extraction,
our constituent-based approach can capture both
rich syntactic information from parse trees and
local sequential dependency between tokens. The
results show that our constituent-based approach
indeed significantly improves the performance
of argument labeling, compared to both linear
tagging and subtree extracting approaches.

Contribution of Joint Inference
Same as Lin et al. (2014), we conduct our ex-

periments using Section 02 to 21 for training, Sec-
tion 22 for development, and Section 23 for test-

ing. Table 4 lists the performance of our argumen-
t labeling system without and with ILP inference
under four different settings, while Table 5 reports
the contribution of system combination. It shows
the following:

• On the performance comparison of Arg1 and
Arg2, the performance on Arg2 is much bet-
ter than that on Arg1 with the performance
gap up to 8% under different settings. This is
due to the fact that the relationship between
Arg2 and the connective is much closer. This
result is also consistent with previous studies
on argument labeling.

• On the impact of error propagation from con-
nective identification, the errors propagated
from connective identification reduce the per-
formance of argument labeling by less than
2% in both Arg1 and Arg2 F-measure under
different settings.

• On the impact of parse trees, using automat-
ic parse trees reduces the performance of ar-
gument labeling by about 5.5% in both Arg1
and Arg2 F-measure under different settings.
In comparison with the impact of error prop-
agation, parse trees have much more impact
on argument labeling.

• On the impact of joint inference, it improves
the performance of argument labeling, espe-
cially on automatic parse trees by about 2%.9

• On the impact of system combination, the
performance is improved by about 1.5%.

Setting Arg1 Arg2 Arg1&2

without
Joint

Inference

GS+noEP 62.84 84.07 55.69
GS+EP 61.46 81.30 54.31
Auto+noEP 57.75 79.85 50.27
Auto+EP 56.04 76.53 48.89

with
Joint

Inference

GS+noEP 65.76 83.86 58.18
GS+EP 63.96 81.19 56.37
Auto+noEP 60.24 79.74 52.55
Auto+EP 58.10 76.53 50.73

Table 4: Performance (F1) of our argument label-
ing approach.

Contribution to the end-to-end discourse pars-
er

9Unless otherwise specified, all the improvements in this
paper are significant with p < 0.001.
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Systems Setting Arg1 Arg2 Arg1&2

Charniak noEP 60.24 79.74 52.55
EP 58.10 76.53 50.73

Berkeley noEP 60.78 80.07 52.98
EP 58.80 77.21 51.43

Combined noEP 61.97 80.61 54.50
EP 59.72 77.55 52.52

Table 5: Contribution of System Combination in
Joint Inference.

Lastly, we focus on the contribution of our ar-
gument labeling approach to the overall perfor-
mance of the end-to-end discourse parser. This
is done by replacing the argument labeling mod-
el of the NUS PDTB-style end-to-end discourse
parser with our argument labeling model. Table 6
shows the results using gold parse trees and auto-
matic parse trees, respectively.10 From the results,
we find that using gold parse trees, our argument
labeling approach significantly improves the per-
formance of the end-to-end system by about 1.8%
in F-measure, while using automatic parse trees,
the improvement significantly enlarges to 6.7% in
F-measure.

Setting New d-parser Lin et al.’s (2014)
GS 34.80 33.00
Auto 27.39 20.64

Table 6: Performance (F1) of the end-to-end dis-
course parser.

7 Conclusion

In this paper, we focus on the problem of auto-
matically labeling the full argument spans of dis-
course connectives. In particular, we propose a
constituent-based approach to integrate the advan-
tages of both subtree extraction and linear tagging
approaches. Moreover, our proposed approach in-
tegrates inter- and intra-sentence argument label-
ing by viewing the immediately preceding sen-
tence as a special constituent. Finally, a join-
t inference mechanism is introduced to incorpo-
rate global information across arguments into our

10Further analysis found that the error propagated from
sentence segmentation can reduce the performance of the
end-to-end discourse parser. Retraining the NIST sentence
segmenter using Section 02 to 21 of the PDTB corpus, the
original NUS PDTB-style end-to-end discourse parser can
achieve the performance of 25.25% in F-measure, while the
new version (i.e. replace the argument labeling model with
our argument labeling model) can achieve the performance
of 30.06% in F-measure.

constituent-based approach via integer linear pro-
gramming.
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Abstract

We present STIR (STrongly Incremen-
tal Repair detection), a system that de-
tects speech repairs and edit terms on
transcripts incrementally with minimal la-
tency. STIR uses information-theoretic
measures from n-gram models as its prin-
cipal decision features in a pipeline of
classifiers detecting the different stages of
repairs. Results on the Switchboard dis-
fluency tagged corpus show utterance-final
accuracy on a par with state-of-the-art in-
cremental repair detection methods, but
with better incremental accuracy, faster
time-to-detection and less computational
overhead. We evaluate its performance us-
ing incremental metrics and propose new
repair processing evaluation standards.

1 Introduction

Self-repairs in spontaneous speech are annotated
according to a well established three-phase struc-
ture from (Shriberg, 1994) onwards, and as de-
scribed in Meteer et al. (1995)’s Switchboard cor-
pus annotation handbook:

John [ likes︸ ︷︷ ︸
reparandum

+ {uh}︸ ︷︷ ︸
interregnum

loves ]︸ ︷︷ ︸
repair

Mary (1)

From a dialogue systems perspective, detecting re-
pairs and assigning them the appropriate structure
is vital for robust natural language understanding
(NLU) in interactive systems. Downgrading the
commitment ofreparandumphases and assigning
appropriateinterregnumandrepair phases permits
computation of the user’s intended meaning.

Furthermore, the recent focus onincremental
dialogue systems (see e.g. (Rieser and Schlangen,
2011)) means that repair detection should oper-
ate without unnecessary processing overhead, and

function efficiently within an incremental frame-
work. However, such left-to-right operability on
its own is not sufficient: in line with the princi-
ple of strong incremental interpretation (Milward,
1991), a repair detector should givethe best re-
sults possible as early as possible. With one ex-
ception (Zwarts et al., 2010), there has been no
focus on evaluating or improving theincremental
performanceof repair detection.

In this paper we present STIR (Strongly In-
cremental Repair detection), a system which ad-
dresses the challenges of incremental accuracy,
computational complexity and latency in self-
repair detection, by making local decisions based
on relatively simple measures of fluency and sim-
ilarity. Section 2 reviews state-of-the-art methods;
Section 3 summarizes the challenges and explains
our general approach; Section 4 explains STIR in
detail; Section 5 explains our experimental set-up
and novel evaluation metrics; Section 6 presents
and discusses our results and Section 7 concludes.

2 Previous work

Qian and Liu (2013) achieve the state of the art in
Switchboard corpus self-repair detection, with an
F-score for detecting reparandum words of 0.841
using a three-step weighted Max-Margin Markov
network approach. Similarly, Georgila (2009)
uses Integer Linear Programming post-processing
of a CRF to achieve F-scores over 0.8 for reparan-
dum start and repair start detection. However nei-
ther approach can operate incrementally.

Recently, there has been increased interest
in left-to-right repair detection: Rasooli and
Tetreault (2014) and Honnibal and Johnson (2014)
present dependency parsing systems with reparan-
dum detection which perform similarly, the latter
equalling Qian and Liu (2013)’s F-score at 0.841.
However, while operating left-to-right, these sys-
tems are not designed or evaluated for theirincre-
mentalperformance. The use of beam search over
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different repair hypotheses in (Honnibal and John-
son, 2014) is likely to lead to unstable repair label
sequences, and they report repair hypothesis ‘jit-
ter’. Both of these systems use a non-monotonic
dependency parsing approach that immediately re-
moves the reparandum from the linguistic anal-
ysis of the utterance in terms of its dependency
structure and repair-reparandum correspondence,
which from a downstream NLU module’s perspec-
tive is undesirable. Heeman and Allen (1999) and
Miller and Schuler (2008) present earlier left-to-
right operational detectors which are less accu-
rate and again give no indication of the incremen-
tal performance of their systems. While Heeman
and Allen (1999) rely on repair structure template
detection coupled with a multi-knowledge-source
language model, the rarity of the tail of repair
structures is likely to be the reason for lower per-
formance: Hough and Purver (2013) show that
only 39% of repair alignment structures appear
at least twice in Switchboard, supported by the
29% reported by Heeman and Allen (1999) on
the smaller TRAINS corpus. Miller and Schuler
(2008)’s encoding of repairs into a grammar also
causes sparsity in training: repair is a general pro-
cessing strategy not restricted to certain lexical
items or POS tag sequences.

The model we consider most suitable for in-
cremental dialogue systems so far is Zwarts et
al. (2010)’s incremental version of Johnson and
Charniak (2004)’s noisy channel repair detector,
as it incrementally applies structural repair anal-
yses (rather than just identifying reparanda) and
is evaluated for its incremental properties. Fol-
lowing (Johnson and Charniak, 2004), their sys-
tem uses an n-gram language model trained on
roughly 100K utterances of reparandum-excised
(‘cleaned’) Switchboard data. Its channel model is
a statistically-trained S-TAG parser whose gram-
mar has simple reparandum-repair alignment rule
categories for its non-terminals (copy, delete, in-
sert, substitute) and words for its terminals. The
parser hypothesises all possible repair structures
for the string consumed so far in a chart, before
pruning the unlikely ones. It performs equally
well to the non-incremental model by the end of
each utterance (F-score = 0.778), and can make
detections early via the addition of a speculative
next-word repair completion category to their S-
TAG non-terminals. In terms of incremental per-
formance, they report the novel evaluation met-

ric of time-to-detectionfor correctly identified re-
pairs, achieving an average of 7.5 words from the
start of the reparandum and 4.6 from the start of
the repair phase. They also introducedelayed ac-
curacy, a word-by-word evaluation against gold-
standard disfluency tags up to the word before the
current word being consumed (in their terms, the
prefix boundary), giving a measure of the stability
of the repair hypotheses. They report an F-score
of 0.578 at one word back from the current prefix
boundary, increasing word-by-word until 6 words
back where it reaches 0.770. These results are the
point-of-departure for our work.

3 Challenges and Approach

In this section we summarize the challenges for
incremental repair detection: computational com-
plexity, repair hypothesis stability, latency of de-
tection and repair structure identification. In 3.1
we explain how we address these.

Computational complexity Approaches to de-
tecting repair structures often use chart storage
(Zwarts et al., 2010; Johnson and Charniak, 2004;
Heeman and Allen, 1999), which poses a com-
putational overhead: if considering all possible
boundary points for a repair structure’s 3 phases
beginning on any word, for prefixes of lengthn
the number of hypotheses can grow in the order
O(n4). Exploring a subset of this space is nec-
essary for assigning entire repair structures as in
(1) above, rather than just detecting reparanda:
the (Johnson and Charniak, 2004; Zwarts et al.,
2010) noisy-channel detector is the only system
that applies such structures but the potential run-
time complexity in decoding these with their S-
TAG repair parser isO(n5). In their approach,
complexity is mitigated by imposing a maximum
repair length (12 words), and also by using beam
search with re-ranking (Lease et al., 2006; Zwarts
and Johnson, 2011). If we wish to include full
decoding of the repair’s structure (as argued by
Hough and Purver (2013) as necessary for full in-
terpretation) whilst taking a strictly incremental
and time-critical perspective, reducing this com-
plexity by minimizing the size of this search space
is crucial.

Stability of repair hypotheses and latency Us-
ing a beam search of n-best hypotheses on a word-
by-word basis can cause ‘jitter’ in the detector’s
output. While utterance-final accuracy is desired,
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for a truly incremental system good intermedi-
ate results are equally important. Zwarts et al.
(2010)’s time-to-detection results show their sys-
tem is only certain about a detection after process-
ing the entire repair. This may be due to the string
alignment-inspired S-TAG that matches repair and
reparanda: a ‘rough copy’ dependency only be-
comes likely once the entire repair has been con-
sumed. The latency of 4.6 words to detection and
a relatively slow rise to utterance-final accuracy up
to 6 words back is undesirable given repairs have
a mean reparandum length of≈1.5 words (Hough
and Purver, 2013; Shriberg and Stolcke, 1998).

Structural identification Classifying repairs
has been ignored in repair processing, despite the
presence of distinct categories (e.g. repeats, sub-
stitutions, deletes) with different pragmatic effects
(Hough and Purver, 2013).1 This is perhaps due to
lack of clarity in definition: even for human anno-
tators, verbatim repeats withstanding, agreement
is often poor (Hough and Purver, 2013; Shriberg,
1994). Assigning and evaluating repair (not just
reparandum) structures will allow repair interpre-
tation in future; however, work to date evaluates
only reparandum detection.

3.1 Our approach

To address the above, we propose an alternative
to (Johnson and Charniak, 2004; Zwarts et al.,
2010)’s noisy channel model. While the model
elegantly captures intuitions about parallelism in
repairs and modelling fluency, it relies on string-
matching, motivated in a similar way to automatic
spelling correction (Brill and Moore, 2000): it as-
sumes a speaker chooses to utter fluent utterance
X according to some prior distributionP (X), but
a noisy channel causes them instead to utter a
noisy Y according to channel modelP (Y |X).
EstimatingP (Y |X) directly from observed data
is difficult due to sparsity of repair instances, so a
transducer is trained on the rough copy alignments
between reparandum and repair. This approach
succeeds because repetition and simple substitu-
tion repairs are very common; but repair as a psy-
chological process is not driven by string align-
ment, and deletes, restarts and rarer substitution
forms are not captured. Furthermore, the noisy
channel model assumes an inherently utterance-
global process for generating (and therefore find-

1Though see (Germesin et al., 2008) for one approach,
albeit using idiosyncratic repair categories.

ing) an underlying ‘clean’ string — much as sim-
ilar spelling correction models are word-global —
we instead take a very local perspective here.

In accordance with psycholinguistic evidence
(Brennan and Schober, 2001), we assume charac-
teristics of the repair onset allow hearers to detect
it very quickly and solve thecontinuation prob-
lem (Levelt, 1983) of integrating the repair into
their linguistic context immediately, before pro-
cessing or even hearing the end of the repair phase.
While repair onsets may take the form of inter-
regna, this is not a reliable signal, occurring in
only ≈15% of repairs (Hough and Purver, 2013;
Heeman and Allen, 1999). Our repair onset de-
tection is therefore driven by departures from flu-
ency, via information-theoretic features derived
incrementally from a language model in line with
recent psycholinguistic accounts of incremental
parsing – see (Keller, 2004; Jaeger and Tily, 2011).

Considering the time-linear way a repair is pro-
cessed and the fact speakers are exponentially less
likely to trace one word further back in repair as
utterance length increases (Shriberg and Stolcke,
1998), backwards search seems to be the most ef-
ficient reparandum extent detection method.2 Fea-
tures determining the detection of the reparan-
dum extent in the backwards search can also be
information-theoretic: entropy measures of dis-
tributional parallelism can characterize not only
rough copy dependencies, but distributionally sim-
ilar or dissimilar correspondences between se-
quences. Finally, when detecting the repair end
and structure, distributional information allows
computation of the similarity between reparan-
dum and repair. We argue a local-detection-
with-backtracking approach is more cognitively
plausible than string-based left-to-right repair la-
belling, and using this insight should allow an im-
provement in incremental accuracy, stability and
time-to-detection over string-alignment driven ap-
proaches in repair detection.

4 STIR: Strongly Incremental Repair
detection

Our system, STIR (Strongly Incremental Repair
detection), therefore takes a local incremental ap-

2We acknowledge a purely position-based model for
reparandum extent detection under-estimates prepositions,
which speakers favour as the retrace start and over-estimates
verbs, which speakers tend to avoid retracing back to, prefer-
ring to begin the utterance again, as (Healey et al., 2011)’s
experiments also demonstrate.
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Figure 1: Strongly Incremental Repair Detection

proach to detecting repairs and isolated edit terms,
assigning words the structures in (2). We in-
clude interregnum recognition in the process, due
to the inclusion of interregnum vocabulary within
edit term vocabulary (Ginzburg, 2012; Hough and
Purver, 2013), a useful feature for repair detection
(Lease et al., 2006; Qian and Liu, 2013).

{

...[rmstart ...rmend + {ed}rpstart ...rpend ]...

...{ed}... (2)

Rather than detecting the repair structure in its
left-to-right string order as above, STIR functions
as in Figure 1: first detecting edit terms (possibly
interregna) at step T1; then detecting repair onsets
rpstart at T2; if one is found, backwards searching
to find rmstart at T3; then finally finding the re-
pair endrpend at T4. Step T1 relies mainly on
lexical probabilities from an edit term language
model; T2 exploits features of divergence from a
fluent language model; T3 uses fluency of hypoth-
esised repairs; and T4 the similarity between dis-
tributions after reparandum and repair. However,
each stage integrates these basic insights via mul-
tiple related features in a statistical classifier.

4.1 Enriched incremental language models

We derive the basic information-theoretic features
required using n-gram language models, as they
have a long history of information theoretic anal-
ysis (Shannon, 1948) and provide reproducible re-
sults without forcing commitment to one partic-
ular grammar formalism. Following recent work
on modelling grammaticality judgements (Clark
et al., 2013), we implement several modifications
to standard language models to develop our basic
measures of fluency and uncertainty.

For our main fluent language models we train
a trigram model with Kneser-Ney smoothing
(Kneser and Ney, 1995) on the words and POS
tags of the standard Switchboard training data
(all files with conversation numbers beginning
sw2*,sw3* in the Penn Treebank III release), con-
sisting of≈100K utterances,≈600K words. We
follow (Johnson and Charniak, 2004) by clean-
ing the data of disfluencies (i.e. edit terms and
reparanda), to approximate a ‘fluent’ language
model. We call these probabilitiesplex

kn , ppos
kn be-

low.3

3We suppress thepos andlex superscripts below where we
refer to measures from either model.
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We then derivesurprisalas our principal default
lexical uncertainty measurements (equation 3) in
both models; and, following (Clark et al., 2013),
the (unigram) Weighted Mean Log trigram prob-
ability (WML, eq. 4)– the trigram logprob of the
sequence divided by the inverse summed logprob
of the component unigrams (apart from the first
two words in the sequence, which serve as the
first trigram history). As here we use a local ap-
proach we restrict the WML measures to single
trigrams (weighted by the inverse logprob of the
final word). While use of standard n-gram prob-
ability conflates syntactic with lexical probability,
WML gives us an approximation toincremental
syntactic probabilityby factoring out lexical fre-
quency.

s(wi−2 . . . wi) = − log2 pkn(wi | wi−2, wi−1) (3)

WML(w0 . . . wn) =

∑i=n
i=2 log2 pkn(wi | wi−2, wi−1)

−∑n
j=2 log2 pkn(wj)

(4)

Distributional measures To approximate un-
certainty, we also derive the entropyH(w | c) of
the possible word continuationsw given a context
c, from p(wi | c) for all wordswi in the vocabu-
lary – see (5). Calculating distributions over the
entire lexicon incrementally is costly, so we ap-
proximate this by constraining the calculation to
words which are observed at least once in context
c in training,wc = {w|count(c, w) ≥ 1} , assum-
ing a uniform distribution over the unseen suffixes
by using the appropriate smoothing constant, and
subtracting the latter from the former – see eq. (6).

Manual inspection showed this approximation
to be very close, and the trie structure of our n-
gram models allows efficient calculation. We also
make use of the Zipfian distribution of n-grams
in corpora by storing entropy values for the 20%
most common trigram contexts observed in train-
ing, leaving entropy values of rare or unseen con-
texts to be computed at decoding time with little
search cost due to their small or emptywc sets.

H(w | c) = −
∑

w∈V ocab

pkn(w | c) log2 pkn(w | c) (5)

H(w | c) ≈
[

−
∑

w∈wc

pkn(w | c) log2 pkn(w | c)
]

− [n× λ log2 λ]

wheren = |V ocab| − |wc|

andλ =
1−∑

w∈wc
pkn(w | c)

n

(6)

Given entropy estimates, we can also sim-
ilarly approximate the Kullback-Leibler (KL)
divergence (relative entropy) between distribu-
tions in two different contextsc1 and c2, i.e.
θ(w|c1) and θ(w|c2), by pair-wise computing
p(w|c1) log2(

p(w|c1)
p(w|c2)) only for words w ∈ wc1 ∩

wc2 , then approximating unseen values by assum-
ing uniform distributions. Usingpkn smoothed es-
timates rather than raw maximum likelihood es-
timations avoids infinite KL divergence values.
Again, we found this approximation sufficiently
close to the real values for our purposes. All such
probability and distribution values are stored in
incrementally constructed directed acyclic graph
(DAG) structures (see Figure 1), exploiting the
Markov assumption of n-gram models to allow ef-
ficient calculation by avoiding re-computation.

4.2 Individual classifiers

This section details the features used by the 4 indi-
vidual classifiers. To investigate the utility of the
features used in each classifier we obtain values
on the standard Switchboard heldout data (PTB III
files sw4[5-9]*: 6.4K utterances, 49K words).

4.2.1 Edit term detection

In the first component, we utilise the well-known
observation that edit terms have a distinctive
vocabulary (Ginzburg, 2012), training a bigram
model on a corpus of all edit words annotated in
Switchboard’s training data. The classifier simply
uses the surprisalslex from this edit word model,
and the trigram surprisalslex from the standard
fluent model of Section 4.1. At the current position
wn, one, both or none of wordswn andwn−1 are
classified as edits. We found this simple approach
effective and stable, although some delayed deci-
sions occur in cases whereslex andWMLlex are
high in both models before the end of the edit, e.g.
“I like” → “I {like} want...”. Words classified as
ed are removed from the incremental processing
graph (indicated by the dotted line transition in
Figure 1) and the stack updated if repair hypothe-
ses are cancelled due to a delayed edit hypothesis
of wn−1.

4.2.2 Repair start detection

Repair onset detection is arguably the most crucial
component: the greater its accuracy, the better the
input for downstream components and the lesser
the overhead of filtering false positives required.

82



i havent had any good really very good experience with child care−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

W
M
L

Figure 2:WMLlex values for trigrams for a repaired utterance exhibiting thedrop at the repair onset

We use Section 4.1’s information-theoretic fea-
turess,WML,H for words and POS, and intro-
duce 5 additional information-theoretic features:
∆WML is the difference between the WML val-
ues atwn−1 andwn; ∆H is the difference in en-
tropy betweenwn−1 and wn; InformationGain
is the difference between expected entropy at
wn−1 and observeds at wn, a measure that
factors out the effect of naturally high entropy
contexts;BestEntropyReduce is the best reduc-
tion in entropy possible by an early rough hy-
pothesis of reparandum onsets within 3 words;
andBestWMLBoost similarly speculates on the
best improvement ofWML possible by positing
rmstart positions up to 3 words back. We also in-
clude simple alignment features: binary features
which indicate if the wordwi−x is identical to the
current wordwi for x ∈ {1, 2, 3}. With 6 align-
ment features, 16 N-gram features and a single
logical featureedit which indicates the presence
of an edit word at positionwi−1, rpstart detection
uses 23 features– see Table 1.

We hypothesised repair onsetsrpstart would
have significantly lower plex (lower lexical-
syntactic probability) andWMLlex (lower syntac-
tic probability) than other fluent trigrams. This
was the case in the Switchboard heldout data
for both measures, with the biggest difference
obtained forWMLlex (non-repair-onsets: -0.736
(sd=0.359); repair onsets: -1.457 (sd=0.359)). In
the POS model, entropy of continuationHpos was
the strongest feature (non-repair-onsets: 3.141
(sd=0.769); repair onsets: 3.444 (sd=0.899)). The
trigram WMLlex measure for the repaired utter-

ance “I haven’t had any [ good + really very good
] experience with child care” can be seen in Fig-
ure 2. The steep drop at the repair onset shows the
usefulness ofWML features for fluency measures.

To compare n-gram measures against other lo-
cal features, we ranked the features by Informa-
tion Gain using 10-fold cross validation over the
Switchboard heldout data– see Table 1. The lan-
guage model features are far more discriminative
than the alignment features, showing the potential
of a general information-theoretic approach.

4.2.3 Reparandum start detection

In detectingrmstart positions given a hypothe-
sisedrpstart (stage T3 in Figure 1), we use the
noisy channel intuition that removing the reparan-
dum (from rmstart to rpstart ) increases fluency
of the utterance, expressed here asWMLboost as
described above. When using gold standard in-
put we found this was the case on the heldout
data, with a meanWMLboost of 0.223 (sd=0.267)
for reparandum onsets and -0.058 (sd=0.224) for
other words in the 6-word history- the negative
boost for non-reparandum words captures the in-
tuition that backtracking from those points would
make the utterance less grammatical, and con-
versely the boost afforded by the correctrmstart

detection helps solve the continuation problem for
the listener (and our detector).

Parallelism in the onsets ofrpstart and
rmstart can also help solve the continuation
problem, and in fact the KL divergence be-
tweenθpos(w | rmstart, rmstart−1) and θpos(w |
rpstart, rpstart−1) is the second most useful fea-
ture with average merit 0.429 (+- 0.010) in cross-
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validation. The highest ranked feature is∆WML
(0.437 (+- 0.003)) which here encodes the drop in
theWMLboost from one backtracked position to
the next. In ranking the 32 features we use, again
information-theoretic ones are higher ranked than
the logical features.

average merit average rank attribute
0.139 (+- 0.002) 1 (+- 0.00) Hpos

0.131 (+- 0.001) 2 (+- 0.00) WMLpos

0.126 (+- 0.001) 3.4 (+- 0.66) WMLlex

0.125 (+- 0.003) 4 (+- 1.10) spos

0.122 (+- 0.001) 5.9 (+- 0.94) wi−1 = wi

0.122 (+- 0.001) 5.9 (+- 0.70) BestWMLBoostlex

0.122 (+- 0.002) 5.9 (+- 1.22) InformationGainpos

0.119 (+- 0.001) 7.9 (+- 0.30) BestWMLBoostpos

0.098 (+- 0.002) 9 (+- 0.00) H lex

0.08 (+- 0.001) 10.4 (+- 0.49) ∆WMLpos

0.08 (+- 0.003) 10.6 (+- 0.49) ∆Hpos

0.072 (+- 0.001) 12 (+- 0.00) POS i−1 = POS i

0.066 (+- 0.003) 13.1 (+- 0.30) slex

0.059 (+- 0.000) 14.2 (+- 0.40) ∆WMLlex

0.058 (+- 0.005) 14.7 (+- 0.64) BestEntropyReducepos

0.049 (+- 0.001) 16.3 (+- 0.46) InformationGainlex

0.047 (+- 0.004) 16.7 (+- 0.46) BestEntropyReducelex

0.035 (+- 0.004) 18 (+- 0.00) ∆H lex

0.024 (+- 0.000) 19 (+- 0.00) wi−2 = wi

0.013 (+- 0.000) 20 (+- 0.00) POS i−2 = POS i

0.01 (+- 0.000) 21 (+- 0.00) wi−3 = wi

0.009 (+- 0.000) 22 (+- 0.00) edit
0.006 (+- 0.000) 23 (+- 0.00) POS i−3 = POS i

Table 1: Feature ranker (Information Gain) for
rpstart detection- 10-fold x-validation on Switch-
board heldout data.

4.2.4 Repair end detection and structure
classification

For rpend detection, using the notion of paral-
lelism, we hypothesise an effect of divergence be-
tween θlex at the reparandum-final wordrmend

and the repair-final wordrpend : for repetition re-
pairs, KL divergence will trivially be 0; for substi-
tutions, it will be higher; for deletes, even higher.
Upon inspection of our feature ranking this KL
measure ranked 5th out of 23 features (merit=
0.258 (+- 0.002)).

We introduce another feature encoding paral-
lelismReparandumRepairDifference : the differ-
ence in probability between an utterance cleaned
of the reparandum and the utterance with its
repair phase substituting its reparandum. In
both the POS (merit=0.366 (+- 0.003)) and word
(merit=0.352 (+- 0.002)) LMs, this was the most
discriminative feature.

4.3 Classifier pipeline

STIR effects a pipeline of classifiers as in Fig-
ure 3, where theed classifier only permits non
ed words to be passed on torpstart classification
and for rpend classification of the active repair
hypotheses, maintained in a stack. Therpstart

classifier passes positive repair hypotheses to the
rmstart classifier, which backwards searches up
to 7 words back in the utterance. If armstart is
classified, the output is passed on forrpend clas-
sification at the end of the pipeline, and if not re-
jected this is pushed onto the repair stack. Repair
hypotheses are are popped off when the string is
7 words beyond itsrpstart position. Putting limits
on the stack’s storage space is a way of controlling
for processing overhead and complexity. Embed-
ded repairs whosermstart coincide with another’s
rpstart are easily dealt with as they are added to
the stack as separate hypotheses.4

Classifiers Classifiers are implemented using
Random Forests (Breiman, 2001) and we use dif-
ferent error functions for each stage using Meta-
Cost (Domingos, 1999). The flexibility afforded
by implementing adjustable error functions in a
pipelined incremental processor allows control of
the trade-off of immediate accuracy against run-
time and stability of the sequence classification.

Processing complexity This pipeline avoids an
exhaustive search all repair hypotheses. If we limit
the search to within the〈rmstart, rpstart〉 possibil-
ities, this number of repairs grows approximately
in the triangular number series– i.e.n(n+1)

2 , a
nested loop over previous words asn gets incre-
mented – which in terms of a complexity class is
a quadraticO(n2). If we allow more than one
〈rmstart, rpstart〉 hypothesis per word, the com-
plexity goes up toO(n3), however in the tests that
we describe below, we are able to achieve good de-
tection results without permitting this extra search
space. Under our assumption that reparandum on-
set detection is only triggered after repair onset de-
tection, and repair extent detection is dependent
on positive reparandum onset detection, a pipeline
with accurate components will allow us to limit
processing to a small subset of this search space.

4We constrain the problem not to include embedded
deletes which may share theirrpstart word with another re-
pair – these are in practice very rare.

84



Figure 3: Classifier pipeline

5 Experimental set-up

We train STIR on the Switchboard data described
above, and test it on the standard Switchboard test
data (PTB III files 4[0-1]*). In order to avoid over-
fitting of classifiers to the basic language models,
we use a cross-fold training approach: we divide
the corpus into 10 folds and use language mod-
els trained on 9 folds to obtain feature values for
the 10th fold, repeating for all 10. Classifiers are
then trained as standard on the resulting feature-
annotated corpus. This resulted in better feature
utility for n-grams and better F-score results for
detection in all components in the order of 5-6%.5

Training the classifiers Each Random Forest
classifier was limited to 20 trees of maximum
depth 4 nodes, putting a ceiling on decoding time.
In making the classifiers cost-sensitive, MetaCost
resamples the data in accordance with the cost
functions: we found using 10 iterations over a re-
sample of 25% of the training data gave the most
effective trade-off between training time and accu-
racy.6 We use 8 different cost functions inrpstart

with differing costs for false negatives and posi-
tives of the form below, whereR is a repair ele-
ment word andF is a fluent onset:

(

Rhyp F hyp

Rgold 0 2
F gold 1 0

)

We adopt a similar technique inrmstart using 5
different cost functions and inrpend using 8 dif-
ferent settings, which when combined gives a to-
tal of 320 different cost function configurations.
We hypothesise that higher recall permitted in the
pipeline’s first components would result in better
overall accuracy as these hypotheses become re-
fined, though at the cost of the stability of the hy-

5Zwarts and Johnson (2011) take a similar approach on
Switchboard data to train a re-ranker of repair analyses.

6As (Domingos, 1999) demonstrated, there are only rela-
tively small accuracy gains when using more than this, with
training time increasing in the order of the re-sample size.

potheses of the sequence and extra downstream
processing in pruning false positives.

We also experiment with the number of repair
hypotheses permitted per word, using limits of 1-
best and 2-best hypotheses. We expect that allow-
ing 2 hypotheses to be explored perrpstart should
allow greater final accuracy, but with the trade-off
of greater decoding and training complexity, and
possible incremental instability.

As we wish to explore the incrementality versus
final accuracy trade-off that STIR can achieve we
now describe the evaluation metrics we employ.

5.1 Incremental evaluation metrics

Following (Baumann et al., 2011) we divide our
evaluation metrics intosimilarity metrics (mea-
sures of equality with or similarity to a gold stan-
dard), timing metrics(measures of the timing of
relevant phenomena detected from the gold stan-
dard) anddiachronic metrics(evolution of incre-
mental hypotheses over time).

Similarity metrics For direct comparison to
previous approaches we use the standard measure
of overall accuracy, the F-score over reparandum
words, which we abbreviateFrm (see 7):

precision=
rmcorrect

rmhyp

recall=
rmcorrect

rmgold

Frm = 2× precision× recall
precision+ recall

(7)

We are also interested in repair structural clas-
sification, we also measure F-score overall repair
components (rm words, ed words as interregna
and rp words), a metric we abbreviateFs. This
is not measured in standard repair detection on
Switchboard. To investigate incremental accuracy
we evaluate thedelayed accuracy(DA) introduced
by (Zwarts et al., 2010), as described in section
2 against the utterance-final gold standard disflu-
ency annotations, and use the mean of the 6 word
F-scores.
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Input and current repair labels edits

John

John likes

rm rp
(⊕rm) (⊕rp)

John likes uh

ed
(⊖rm) (⊖rp)⊕ed

John likes uh loves

rm ed rp
⊕rm⊕rp

John likes uh loves Mary

rm ed rp

Figure 4: Edit Overhead- 4 unnecessary edits

Timing and resource metrics Again for com-
parative purposes we use Zwarts et al’stime-to-
detectionmetrics, that is the two average distances
(in numbers of words) consumed before first de-
tection of gold standard repairs, one fromrmstart ,
TDrm and one fromrpstart , TDrp. In our 1-best
detection system, before evaluation we know a pri-
ori TDrp will be 1 token, and TDrm will be 1 more
than the average length ofrmstart− rpstart repair
spans correctly detected. However when we in-
troduce a beam where multiplermstarts are pos-
sible perrpstart with the most likely hypothesis
committed as the current output, the latency may
begin to increase: the initially most probable hy-
pothesis may not be the correct one. In addition
to output timing metrics, we account for intrinsic
processing complexity with the metricprocessing
overhead(PO), which is the number of classifica-
tions made by all components per word of input.

Diachronic metrics To measure stability of re-
pair hypotheses over time we use (Baumann et al.,
2011)’sedit overhead(EO) metric. EO measures
the proportion of edits (add, revoke, substitute) ap-
plied to a processor’s output structure that are un-
necessary. STIR’s output is the repair label se-
quence shown in Figure 1, however rather than
evaluating its EO against the current gold stan-
dard labels, we use a new mark-up we term thein-
cremental repair gold standard: this does not pe-
nalise lack of detection of a reparandum wordrm
as a bad edit until the correspondingrpstart of that
rm has been consumed. While Frm, Fs and DA
evaluate against what Baumann et al. (2011) call
the current gold standard, the incremental gold
standard reflects the repair processing approach
we set out in 3. An example of a repaired utterance
with an EO of 44% (49 ) can be seen in Figure 4: of
the 9 edits (7 repair annotations and 2 correct flu-
ent words), 4 are unnecessary (bracketed). Note

Figure 6: Delayed Accuracy Curves

the final⊕rm is not counted as a bad edit for the
reasons just given.

6 Results and Discussion

We evaluate on the Switchboard test data; Ta-
ble 2 shows results of the best performing settings
for each of the metrics described above, together
with the setting achieving the highest total score
(TS)– the average % achieved of the best per-
forming system’s result in each metric.7 The set-
tings found to achieve the highest Frm (the metric
standardly used in disfluency detection), and that
found to achieve the highest TS for each stage in
the pipeline are shown in Figure 5.

Our experiments showed that different system
settings perform better in different metrics, and
no individual setting achieved the best result in
all of them. Our best utterance-final Frm reaches
0.779, marginally though not significantly exceed-
ing (Zwarts et al., 2010)’s measure and STIR
achieves 0.736 on the previously unevaluated Fs.
The setting with the best DA improves on (Zwarts
et al., 2010)’s result significantly in terms of mean
values (0.718 vs. 0.694), and also in terms of the
steepness of the curves (Figure 6). The fastest av-
erage time to detection is 1 word for TDrp and 2.6
words for TDrm (Table 3), improving dramatically
on the noisy channel model’s 4.6 and 7.5 words.

Incrementality versus accuracy trade-off We
aimed to investigate how well a system could do
in terms of achieving both good final accuracy and
incremental performance, and while the best Frm

setting had a large PO and relatively slow DA in-
crease, we find STIR can find a good trade-off set-

7We do not include time-to-detection scores in TS as it
did not vary enough between settings to be significant, how-
ever there was a difference in this measure between the 1-best
stack condition and the 2-best stack condition – see below.
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Figure 5: The cost function settings for the MetaCost classifiers for each component, for the best Frm

setting (top row) and best total score (TS) setting (bottom row)

Frm Fs DA EO PO
Best Finalrm F-score (Frm) 0.779 0.735 0.698 3.946 1.733
Best Final repair structure F-score (Fs) 0.772 0.736 0.707 4.477 1.659
Best Delayed Accuracy ofrm (DA) 0.767 0.721 0.718 1.483 1.689
Best (lowest) Edit Overhead (EO) 0.718 0.674 0.6750.864 1.230
Best (lowest) Processing Overhead (PO) 0.716 0.671 0.673 0.875 1.229
Best Total Score (mean % of best scores) (TS)0.754 0.708 0.711 0.931 1.255

Table 2: Comparison of the best performing system settings using different measures

Frm Fs DA EO PO TDrp TDrm

1-bestrmstart 0.745 0.707 0.699 3.780 1.650 1.0 2.6
2-bestrmstart 0.758 0.721 0.701 4.319 1.665 1.1 2.7

Table 3: Comparison of performance of systems with different stack capacities

ting: the highest TS scoring setting achieves an
Frm of 0.754 whilst also exhibiting a very good
DA (0.711) – over 98% of the best recorded score
– and low PO and EO rates – over 96% of the best
recorded scores. See the bottom row of Table 2.
As can be seen in Figure 5, the cost functions for
these winning settings are different in nature. The
best non-incremental Frm measure setting requires
high recall for the rest of the pipeline to work on,
using the highest cost, 64, for false negativerpstart

words and the highest stack depth of 2 (similar to a
wider beam); but the best overall TS scoring sys-
tem uses a less permissive setting to increase in-
cremental performance.

We make a preliminary investigation into the
effect of increasing the stack capacity by com-
paring stacks with 1-bestrmstart hypotheses per
rpstart and 2-best stacks. The average differences
between the two conditions is shown in Table 3.
Moving to the 2-stack condition results in gain in
overall accuracy in Frm and Fs, but at the cost of
EO and also time-to-detection scores TDrm and
TDrp. The extent to which the stack can be in-
creased without increasing jitter, latency and com-
plexity will be investigated in future work.

7 Conclusion

We have presented STIR, an incremental repair
detector that can be used to experiment with in-
cremental performance and accuracy trade-offs. In
future work we plan to include probabilistic and
distributional features from a top-down incremen-
tal parser e.g. Roark et al. (2009), and use STIR’s
distributional features to classify repair type.
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Abstract

There is rich knowledge encoded in on-
line web data. For example, punctua-
tion and entity tags in Wikipedia data
define some word boundaries in a sen-
tence. In this paper we adopt partial-label
learning with conditional random fields to
make use of this valuable knowledge for
semi-supervised Chinese word segmenta-
tion. The basic idea of partial-label learn-
ing is to optimize a cost function that
marginalizes the probability mass in the
constrained space that encodes this knowl-
edge. By integrating some domain adap-
tation techniques, such as EasyAdapt, our
result reaches an F-measure of 95.98% on
the CTB-6 corpus, a significant improve-
ment from both the supervised baseline
and a previous proposed approach, namely
constrained decode.

1 Introduction

A general approach for supervised Chinese word
segmentation is to formulate it as a character se-
quence labeling problem, to label each charac-
ter with its location in a word. For example,
Xue (2003) proposes a four-label scheme based on
some linguistic intuitions: ‘B’ for the beginning
character of a word, ‘I’ for the internal characters,
‘E’ for the ending character, and ‘S’ for single-
character word. Thus the word sequence “洽谈会
很成功” can be turned into a character sequence
with labels as洽\B谈\I会\E很\S成\B功\E.
A machine learning algorithm for sequence label-
ing, such as conditional random fields (CRF) (Laf-
ferty et al., 2001), can be applied to the labelled
training data to learn a model.

Labelled data for supervised learning of Chi-
nese word segmentation, however, is usually ex-
pensive and tends to be of a limited amount. Re-
searchers are thus interested in semi-supervised

learning, which is to make use of unlabelled data
to further improve the performance of supervised
learning. There is a large amount of unlabelled
data available, for example, the Gigaword corpus
in the LDC catalog or the Chinese Wikipedia on
the web.

Faced with the large amount of unlabelled data,
an intuitive idea is to use self-training or EM, by
first training a baseline model (from the supervised
data) and then iteratively decoding the unlabelled
data and updating the baseline model. Jiao et al.
(2006) and Mann and McCallum (2007) further
propose to minimize the entropy of the predicted
label distribution on unlabeled data and use it as
a regularization term in CRF (i.e. entropy reg-
ularization). Beyond these ideas, Liang (2005)
and Sun and Xu (2011) experiment with deriv-
ing a large set of statistical features such as mu-
tual information and accessor variety from un-
labelled data, and add them to supervised dis-
criminative training. Zeng et al. (2013b) experi-
ment with graph propagation to extract informa-
tion from unlabelled data to regularize the CRF
training. Yang and Vozila (2013), Zhang et al.
(2013), and Zeng et al. (2013a) experiment with
co-training for semi-supervised Chinese word seg-
mentation. All these approaches only leverage
the distribution of the unlabelled data, yet do not
make use of the knowledge that the unlabelled data
might have integrated in.

There could be valuable information encoded
within the unlabelled data that researchers can take
advantage of. For example, punctuation creates
natural word boundaries (Li and Sun, 2009): the
character before a comma can only be labelled
as either ‘S’ or ‘E’, while the character after a
comma can only be labelled as ‘S’ or ‘B’. Fur-
thermore, entity tags (HTML tags or Wikipedia
tags) on the web, such as emphasis and cross refer-
ence, also provide rich information for word seg-
mentation: they might define a word or at least
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Figure 1: Sausage constraint (partial labels) from natural annotations and punctuation

give word boundary information similar to punc-
tuation. Jiang et al. (2013) refer to such structural
information on the web as natural annotations, and
propose that they encode knowledge for NLP. For
Chinese word segmentation, natural annotations
and punctuation create a sausage1 constraint for
the possible labels, as illustrated in Figure 1. In
the sentence “近年来，人工智能和机器学习迅
猛发展。”, the first character 近 can only be la-
belled with ‘S’ or ‘B’; and the characters来 before
the comma and 展 before the Chinese period can
only be labelled as ‘S’ or ‘E’. “人工智能” and “机
器学习” are two Wikipedia entities, and so they
define the word boundaries before the first char-
acter and after the last character of the entities as
well. The single character 和 between these two
entities has only one label ‘S’. This sausage con-
straint thus encodes rich information for word seg-
mentation.

To make use of the knowledge encoded in the
sausage constraint, Jiang et al. (2013) adopt a con-
strained decode approach. They first train a base-
line model with labelled data, and then run con-
strained decode on the unlabelled data by binding
the search space with the sausage; and so the de-
coded labels are consistent with the sausage con-
straint. The unlabelled data, together with the
labels from constrained decode, are then selec-
tively added to the labelled data for training the
final model. This approach, using constrained de-
code as a middle step, provides an indirect way
of leaning the knowledge. However, the middle
step, constrained decode, has the risk of reinforc-
ing the errors in the baseline model: the decoded
labels added to the training data for building the
final model might contain errors introduced from
the baseline model. The knowledge encoded in

1Also referred to as confusion network.

the data carrying the information from punctuation
and natural annotations is thus polluted by the er-
rorful re-decoded labels.

A sentence where each character has exactly
one label is fully-labelled; and a sentence where
each character receives all possible labels is zero-
labelled. A sentence with sausage-constrained la-
bels can be viewed as partially-labelled. These
partial labels carry valuable information that re-
searchers would like to learn in a model, yet the
normal CRF training typically uses fully-labelled
sentences. Recently, Täckström et al. (2013) pro-
pose an approach to train a CRF model directly
from partial labels. The basic idea is to marginal-
ize the probability mass of the constrained sausage
in the cost function. The normal CRF training us-
ing fully-labelled sentences is a special case where
the sausage constraint is a linear line; while on
the other hand a zero-labelled sentence, where the
sausage constraint is the full lattice, makes no con-
tribution in the learning since the sum of proba-
bilities is deemed to be one. This new approach,
without the need of using constrained re-decoding
as a middle step, provides a direct means to learn
the knowledge in the partial labels.

In this research we explore using the partial-
label learning for semi-supervised Chinese word
segmentation. We use the CTB-6 corpus as the
labelled training, development and test data, and
use the Chinese Wikipedia as the unlabelled data.
We first train a baseline model with labelled data
only, and then selectively add Wikipedia data with
partial labels to build a second model. Because
the Wikipedia data is out of domain and has dis-
tribution bias, we also experiment with two do-
main adaptation techniques: model interpolation
and EasyAdapt (Daumé III, 2007). Our result
reaches an F-measure of 95.98%, an absolute im-
provement of 0.72% over the very strong base-
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line (corresponding to 15.19% relative error re-
duction), and 0.33% over the constrained decode
approach (corresponding to 7.59% relative error
reduction). We conduct a detailed error analy-
sis, illustrating how partial-label learning excels
constrained decode in learning the knowledge en-
coded in the Wikipedia data. As a note, our result
also out-performs (Wang et al., 2011) and (Sun
and Xu, 2011).

2 Partial-Label Learning with CRF

In this section, we review in more detail the
partial-label learning algorithm with CRF pro-
posed by (Täckström et al., 2013). CRF is an
exponential model that expresses the conditional
probability of the labels given a sequence, as
Equation 1, where y denotes the labels, x denotes
the sequence, Φ(x, y) denotes the feature func-
tions, and θ is the parameter vector. Z(x) =∑

y exp(θT Φ(x, y)) is the normalization term.

pθ(y|x) =
exp(θT Φ(x, y))

Z(x)
(1)

In full-label training, where each item in the se-
quence is labelled with exactly one tag, maximum
likelihood is typically used as the optimization tar-
get. We simply sum up the log-likelihood of the n
labelled sequences in the training set, as shown in
Equation 2.

L(θ) =
n∑

i=1

log pθ(y|x)

=
n∑

i=1

(θT Φ(xi, yi)− log Z(xi))

(2)

The gradient is calculated as Equation 3, in
which the first term 1

n

∑n
i=1 Φj is the empirical

expectation of feature function Φj , and the second
term E[Φj ] is the model expectation. Typically a
forward-backward process is adopted for calculat-
ing the latter.

∂

∂θj
L(θ) =

1
n

n∑
i=1

Φj − E[Φj ] (3)

In partial-label training, each item in the se-
quence receives multiple labels, and so for each
sequence we have a sausage constraint, denoted as
Ŷ (x, ỹ). The marginal probability of the sausage
is defined as Equation 4.

pθ(Ŷ (x, ỹ)|x) =
∑

y∈Ŷ (x,ỹ)

pθ(y|x) (4)

The optimization target thus is to maximize the
probability mass of the sausage, as shown in Equa-
tion 5.

L(θ) =
n∑

i=1

logpθ(Ŷ (xi, ỹi)|xi) (5)

A gradient-based approach such as L-BFGS
(Liu and Nocedal, 1989) can be employed to op-
timize Equation 5. The gradient is calculated as
Equation 6, where EŶ (x,ỹ)[Φj ] is the empirical ex-
pectation of feature function Φj constrained by the
sausage, and E[Φj ] is the same model expectation
as in standard CRF. EŶ (x,ỹ)[Φj ] can be calculated
via a forward-backward process in the constrained
sausage.

∂

∂θj
L(θ) = EŶ (x,ỹ)[Φj ]− E[Φj ] (6)

For fully-labelled sentences, EŶ (x,ỹ)[Φj ] =
1
n

∑n
i=1 Φj , and so the standard CRF is actually

a special case of the partial-label learning.

3 Experiment setup

In this section we describe the basic setup for
our experiments of semi-supervised Chinese word
segmentation.

3.1 Data

We use the CTB-6 corpus as the labelled data. We
follow the official CTB-6 guideline in splitting the
corpus into a training set, a development set, and a
test set. The training set has 23420 sentences; the
development set has 2079 sentences; and the test
set has 2796 sentences. These are fully-labelled
data.

For unlabelled data we use the Chinese
Wikipedia. The Wikipedia data is quite noisy
and asks for a lot of cleaning. We first filter out
references and lists etc., and sentences with ob-
viously bad segmentations, for example, where
every character is separated by a space. We
also remove sentences that contain mostly En-
glish words. We then convert all characters into
full-width. We also convert traditional Chinese
characters into simplified characters using the tool
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mediawiki-zhconverter2. We then randomly select
7737 sentences and reserve them as the test set.

To create the partial labels in the Wikipedia
data, we use the information from cross-reference,
emphasis, and punctuation. In our pilot study we
found that it’s beneficial to force a cross-reference
or emphasis entity as a word when the item has
2 or 3 characters. That is, if an entity in the
Wikipedia has three characters it receives the la-
bels of “BIE”; and if it has two characters it is la-
belled as “BE”.3

3.2 Supervised baseline model

We create the baseline supervised model by using
an order-1 linear CRF with L2 regularization, to
label a character sequence with the four candidate
labels “BIES”. We use the tool wapiti (Lavergne
et al., 2010).

Following Sun et al. (2009), Sun (2010), and
Low et al. (2005), we extract two types of fea-
tures: character-level features and word-level fea-
tures. Given a character c0 in the character se-
quence ...c−2c−1c0c1c2...:

Character-level features :

• Character unigrams: c−2, c−1, c0, c1, c2

• Character bigrams: c−2c−1, c−1c−0,
c0c1, c1c2

• Consecutive character equivalence:
?c−2 = c−1, ?c−1 = c−0 , ?c0 = c1,
?c1 = c2

• Separated character equivalence:
?c−3 = c−1, ?c−2 = c0, ?c−1 = c1,
?c0 = c2, ?c1 = c3

• Whether the current character is a punc-
tuation: ?Punct(c0)
• Character sequence pattern:

T (C−2)T (C−1)T (C0)T (C1)T (C2).
We classify all characters into four
types. Type one has three characters
‘年’ (year) ‘月’ (month) ‘日’ (date).
Type two includes number characters.
Type three includes English characters.
All others are Type four characters.
Thus “去年三月S” would generate the
character sequence pattern “41213”.

2https://github.com/tszming/mediawiki-zhconverter
3Another possibility is to label it as “SS” but we find that

it’s very rare the case.

Word-level features :

• The identity of the string c[s : i] (i−6 <
s < i), if it matches a word from the
list of word unigrams; multiple features
could be generated.
• The identity of the string c[i : e] (i <

e < i+6), if it matches a word; multiple
features could be generated.
• The identity of the bi-gram c[s : i −

1]c[i : e] (i − 6 < s, e < i + 6), if
it matches a word bigram; multiple fea-
tures could be generated.
• The identity of the bi-gram c[s : i]c[i +

1 : e] (i−6 < s, e < i+6), if it matches
a word bigram; multiple features could
be generated.
• Idiom. We use the idiom list from (Sun

and Xu, 2011). If the current character
c0 and its surrounding context compose
an idiom, we generate a feature for c0 of
its position in the idiom. For example, if
c−1c0c1c2 is an idiom, we generate fea-
ture “Idiom-2” for c0.

The above features together with label bigrams
are fed to wapiti for training. The supervised base-
line model is created with the CTB-6 corpus with-
out the use of Wikipedia data.

3.3 Partial-label learning
The overall process of applying partial-label learn-
ing to Wikipedia data is shown in Algorithm 1.
Following (Jiang et al., 2013), we first train the
supervised baseline model, and use it to estimate
the potential contribution for each sentence in the
Wikipedia training data. We label the sentence
with the baseline model, and then compare the
labels with the constrained sausage. For each
character, a consistent label is defined as an ele-
ment in the constrained labels. For example, if
the constrained labels for a character are “SB”,
the label ‘S’ or ‘B’ is consistent but ‘I’ or ‘E’ is
not. The number of inconsistent labels for each
sentence is then used as its potential contribution
to the partial-label learning: higher number indi-
cates that the partial-labels for the sentence con-
tain more knowledge that the baseline system does
not integrate, and so have higher potential contri-
bution. The Wikipedia training sentences are then
ranked by their potential contribution, and the top
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Figure 2: Encoded knowledge: inconsistency ratio
and label reduction

K sentences together with their partial labels are
then added to the CTB-6 training data to build a
new model, using partial-label learning.4 In our
experiments, we try six data points with K =
100k, 200k, 300k, 400k, 500k, 600k. Figure 2
gives a rough idea of the knowledge encoded in
Wikipedia for these data points with inconsistency
ratio and label reduction. Inconsistency ratio is the
percentage of characters that have inconsistent la-
bels; and label reduction is the percentage of the
labels reduced in the full lattice.

We modify wapiti to implement the partial-label
learning as described in Section 2. Same as base-
line, L2 regularization is adopted.

Algorithm 1 Partial-label learning
1. Train supervised baseline model M0

2. For each sentence x in Wiki-Train:
3. y← Decode(x, M0)
4. diff← Inconsistent(y, Ŷ (x, ỹ))
5. if diff > 0:
6. C← C ∪ (Ŷ (x, ỹ), diff)
7. Sort(C, diff, reverse)
8. Train model Mpl with CTB-6 and top K sen-
tences in C using partial-label learning

3.4 Constrained decode
Jiang et al. (2013) implement the constrained de-
code algorithm with perceptron. However, CRF
is generally believed to out-perform perceptron,
yet the comparison of CRF vs perceptron is out

4Knowledge is sparsely distributed in the Wikipedia data.
Using the Wikipedia data without the CTB-6 data for partial-
label learning does not necessarily guarantee convergence.
Also the CTB-6 training data helps to learn that certain la-
bel transitions, such as “B B” or “E E”, are not legal.

of the scope of this paper. Thus for fair compar-
ison, we re-implement the constrained decode al-
gorithm with CRF.

Algorithm 2 shows the constrained decode im-
plementation. We first train the baseline model
with the CTB-6 data. We then use this baseline
model to run normal decode and constrained de-
code for each sentence in the Wikipedia training
set. If the normal decode and constrained decode
have different labels, we add the constrained de-
code together with the number of different labels
to the filtered Wikipedia training corpus. The fil-
tered Wikipedia training corpus is then sorted us-
ing the number of different labels, and the top K
sentences with constrained decoded labels are then
added to the CTB-6 training data for building a
new model using normal CRF.

Algorithm 2 Constrained decode
1. Train supervised baseline model M0

2. For each sentence x in Wiki-Train:
3. y← Decode(x, M0)
4. ȳ← ConstrainedDecode(x, M0)
5. diff← Difference(y, ȳ)
6. if diff > 0:
7. C← C ∪ (ȳ, diff)
8. Sort(C, diff, reverse)
9. Train model M cd with CTB-6 and top K sen-
tences in C using normal CRF

4 Evaluation on Wikipedia test set

In order to determine how well the models learn
the encoded knowledge (i.e. partial labels) from
the Wikipedia data, we first evaluate the mod-
els against the Wikipedia test set. The Wikipedia
test set, however, is only partially-labelled. Thus
the metric we use here is consistent label accu-
racy, similar to how we rank the sentences in Sec-
tion 3.3, defined as whether a predicted label for
a character is an element in the constrained la-
bels. Because partial labels are only sparsely dis-
tributed in the test data, a lot of characters receive
all four labels in the constrained sausage. Eval-
uating against characters with all four labels do
not really represent the models’ difference as it is
deemed to be consistent. Thus beyond evaluating
against all characters in the Wikipedia test set (re-
ferred to as Full measurement), we also evaluate
against characters that are only constrained with
less than four labels (referred to as Label mea-
surement). The Label measurement focuses on en-
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coded knowledge in the test set and so can better
represent the model’s capability of learning from
the partial labels.

Results are shown in Figure 3 with the Full
measurement and in Figure 4 with the Label mea-
surement. The x axes are the size of Wikipedia
training data, as explained in Section 3.3. As
can be seen, both constrained decode and partial-
label learning perform much better than the base-
line supervised model that is trained from CTB-6
data only, indicating that both of them are learning
the encoded knowledge from the Wikipedia train-
ing data. Also we see the trend that the perfor-
mance improves with more data in training, also
suggesting the learning of encoded knowledge.
Most importantly, we see that partial-label learn-
ing consistently out-performs constrained decode
in all data points. With the Label measurement,
partial-label learning gives 1.7% or higher abso-
lute improvement over constrained decode across
all data points. At the data point of 600k, con-
strained decode gives an accuracy of 97.14%,
while partial-label learning gives 98.93% (base-
line model gives 87.08%). The relative gain (from
learning the knowledge) of partial-label learning
over constrained decode is thus 18% ((98.93 −
97.14)/(97.14 − 87.08)). These results suggest
that partial-label learning is more effective in
learning the encoded knowledge in the Wikipedia
data than constrained decode.

5 CTB evaluation

5.1 Model adaptation

Our ultimate goal, however, is to determine
whether we can leverage the encoded knowledge
in the Wikipedia data to improve the word seg-
mentation in CTB-6. We run our models against
the CTB-6 test set, with results shown in Fig-
ure 5. Because we have fully-labelled sentences
in the CTB-6 data, we adopt the F-measure as
our evaluation metric here. The baseline model
achieves 95.26% in F-measure, providing a state-
of-the-art supervised performance. Constrained
decode is able to improve on this already very
strong baseline performance, and we see the nice
trend of higher performance with more unlabeled
data for training, indicating that constrained de-
code is making use of the encoded knowledge in
the Wikipedia data to help CTB-6 segmentation.

When we look at the partial-label model, how-
ever, the results tell a totally different story.

Figure 3: Wiki label evaluation results: Full

Figure 4: Wiki label evaluation results: Label

Figure 5: CTB evaluation results
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First, it actually performs worse than the base-
line model, and the more data added to train-
ing, the worse the performance is. In the previ-
ous section we show that partial-label learning is
more effective in learning the encoded knowledge
in Wikipedia data than constrained decode. So,
what goes wrong? We hypothesize that there is
an out-of-domain distribution bias in the partial la-
bels, and so the more data we add, the worse the
in-domain performance is. Constrained decode
actually helps to smooth out the out-of-domain
distribution bias by using the re-decoded labels
with the in-domain supervised baseline model.
For example, both the baseline model and con-
strained decode correctly give the segmentation
“提供/了/运输/和/给给给排排排水水水/之/便”, while partial-
label learning gives incorrect segmentation “提
供/了/运输/和/给给给/排排排水水水/之/便”. Looking at the
Wikipedia training data, 排水 is tagged as an en-
tity 13 times; and 给排水, although occurs 13
times in the data, is never tagged as an entity.
Partial-label learning, which focuses on the tagged
entities, thus overrules the segmentation of 给排
水. Constrained decode, on the other hand, by us-
ing the correctly re-decoded labels from the base-
line model, observes enough evidence to correctly
segment给排水 as a word.

To smooth out the out-of-domain distribution
bias, we experiment with two approaches: model
interpolation and EasyAdapt (Daumé III, 2007).

5.1.1 Model interpolation

We linearly interpolate the model of partial-label
learning Mpl with the baseline model M0 to create
the final model Mpl

+ , as shown in Equation 7. The
interpolation weight is optimized via a grid search
between 0.0 and 1.0 with a step of 0.1, tuned on
the CTB-6 development set. Again we modify
wapiti so that it takes two models and an interpo-
lation weight as input. For each model it creates
a search lattice with posteriors, and then linearly
combines the two lattices using the interpolation
weight to create the final search space for decod-
ing. As shown in Figure 5, model Mpl

+ consis-
tently out-performs constrained decode in all data
points. We also see the trend of better performance
with more training data.

Mpl
+ = λ ∗M0 + (1− λ) ∗Mpl (7)

5.1.2 EasyAdapt

EasyAdapt is a straightforward technique but has
been shown effective in many domain adaptation
tasks (Daumé III, 2007). We train the model
Mpl

ea with feature augmentation. For each out-of-
domain training instance < xo, yo >, where xo

is the input features and yo is the (partial) labels,
we copy the features and file them as an additional
feature set, and so the training instance becomes <
xo, xo, yo >. The in-domain training data remains
the same. Consistent with (Daumé III, 2007),
EasyAdapt gives us the best performance, as show
in Figure 5. Furthermore, unlike in (Jiang et al.,
2013) where they find a plateau, our results show
no harm adding more training data for partial-label
learning when integrated with domain adaptation,
although the performance seems to saturate after
400k sentences.

Finally, we search for the parameter setting of
best performance on the CTB-6 development set,
which is to use EasyAdapt with K = 600k sen-
tences of Wikipedia data. With this setting, the
performance on the CTB-6 test set is 95.98%
in F-measure. This is 0.72% absolute improve-
ment over supervised baseline (corresponding to
15.19% relative error reduction), and 0.33% ab-
solute improvement over constrained decode (cor-
responding to 7.59% relative error reduction); the
differences are both statistically significant (p <
0.001).5 As a note, this result out-performs (Sun
and Xu, 2011) (95.44%) and (Wang et al., 2011)
(95.79%), and the differences are also statistically
significant (p < 0.001).

5.2 Analysis with examples

To better understand why partial-label learning is
more effective in learning the encoded knowledge,
we look at cases where M0 and M cd have the in-
correct segmentation while Mpl (and its domain
adaptation variance Mpl

+ and Mpl
ea) have the cor-

rect segmentation. We find that the majority is
due to the error in re-decoded labels outside of en-
coded knowledge. For example, M0 and M cd give
the segmentation “地震/为/里里里/氏氏氏/6.9/级”, yet the
correct segmentation given by partial-label learn-
ing is “地震/为/里里里氏氏氏/6.9/ 级”. Looking at the
Wikipedia training data, there are 38 tagged enti-
ties of里氏, but there are another 190 mentions of

5Statistical significance is evaluated with z-test using the
standard deviation of

√
F ∗ (1− F )/N , where F is the F-

measure and N is the number of words.
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里氏 that are not tagged as an entity. Thus for con-
strained decode it sees 38 cases of “里\B 氏\E”
and 190 cases of “里\S 氏\S” in the Wikipedia
training data. The former comes from the encoded
knowledge while the latter comes from re-decoded
labels by the baseline model. The much bigger
number of incorrect labels from the baseline re-
decoding badly pollute the encoded knowledge.
This example illustrates that constrained decode
reinforces the errors from the baseline. On the
other hand, the training materials for partial-label
learning are purely the encoded knowledge, which
is not impacted by the baseline model error. In this
example, partial-label learning focuses only on the
38 cases of “里\B 氏\E” and so is able to learn
that里氏 is a word.

As a final remark, we want to make a point that,
although the re-decoded labels serve to smooth out
the distribution bias, the Wikipedia data is indeed
not the ideal data set for such a purpose, because
it itself is out of domain. The performance tends
to degrade when we apply the baseline model to
re-decode the out-of-domain Wikipedia data. The
errorful re-decoded labels, when being used to
train the model M cd, could lead to further er-
rors. For example, the baseline model M0 is able
to give the correct segmentation “电脑/元元元器器器件件件”
in the CTB-6 test set. However, when it is ap-
plied to the Wikipedia data for constrained de-
code, for the seven occurrences of元器件, three of
which are correctly labelled as “元\B器\I件\E”,
but the other four have incorrect labels. The fi-
nal model M cd trained from these labels then
gives incorrect segmentation “两/市/生产/的/电
脑/元元元/器器器件件件/大量/销往/世界/各地” in the CTB-
6 test set. On the other hand, model interpolation
or EasyAdapt with partial-label learning, focusing
only on the encoded knowledge and not being im-
pacted by the errorful re-decoded labels, performs
correctly in this case. For a more fair comparison
between partial-label learning and constrained de-
code, we have also plotted the results of model in-
terpolation and EasyAdapt for constrained decode
in Figure 5. As can be seen, they improve on con-
strained decode a bit but still fall behind the cor-
respondent domain adaptation approach of partial-
label learning.

6 Conclusion and future work

There is rich information encoded in online web
data. For example, punctuation and entity tags de-

fine some word boundaries. In this paper we show
the effectiveness of partial-label learning in digest-
ing the encoded knowledge from Wikipedia data
for the task of Chinese word segmentation. Unlike
approaches such as constrained decode that use
the errorful re-decoded labels, partial-label learn-
ing provides a direct means to learn the encoded
knowledge. By integrating some domain adap-
tation techniques such as EasyAdapt, we achieve
an F-measure of 95.98% in the CTB-6 corpus, a
significant improvement from both the supervised
baseline and constrained decode. Our results also
beat (Wang et al., 2011) and (Sun and Xu, 2011).

In this research we employ a sausage constraint
to encode the knowledge for Chinese word seg-
mentation. However, a sausage constraint does
not reflect the legal label sequence. For exam-
ple, in Figure 1 the links between label ‘B’ and
label ‘S’, between ‘S’ and ‘E’, and between ‘E’
and ‘I’ are illegal, and can confuse the machine
learning. In our current work we solve this issue
by adding some fully-labelled data into training.
Instead we can easily extend our work to use a lat-
tice constraint by removing the illegal transitions
from the sausage. The partial-label learning stands
the same, by executing the forward-backward pro-
cess in the constrained lattice. In future work we
will examine partial-label learning with this more
enforced lattice constraint in depth.
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Abstract

Microblogs have recently received

widespread interest from NLP re-

searchers. However, current tools for

Japanese word segmentation and POS

tagging still perform poorly on microblog

texts. We developed an annotated corpus

and proposed a joint model for over-

coming this situation. Our annotated

corpus of microblog texts enables not

only training of accurate statistical models

but also quantitative evaluation of their

performance. Our joint model with lexical

normalization handles the orthographic

diversity of microblog texts. We con-

ducted an experiment to demonstrate

that the corpus and model substantially

contribute to boosting accuracy.

1 Introduction

Microblogs, such as Twitter1 and Weibo2, have re-

cently become an important target of NLP tech-

nology. Since microblogs offer an instant way of

posting textual messages, they have been given

increasing attention as valuable sources for such

actions as mining opinions (Jiang et al., 2011)

and detecting sudden events such as earthquake

(Sakaki et al., 2010).

However, many studies have reported that cur-

rent NLP tools do not perform well on microblog

texts (Foster et al., 2011; Gimpel et al., 2011). In

the case of Japanese text processing, the most se-

rious problem is poor accuracy of word segmen-

tation and POS tagging. Since these two tasks

are positioned as the fundamental step in the text

processing pipeline, their accuracy is vital for all

downstream applications.

1https://twitter.com
2https://www.weibo.com

1.1 Development of annotated corpus

The main obstacle that makes word segmentation

and POS tagging in the microblog domain chal-

lenging is the lack of annotated corpora. Because

current annotated corpora are from other domains,

such as news articles, it is difficult to train models

that perform well on microblog texts. Moreover,

system performance cannot be evaluated quantita-

tively.

We remedied this situation by developing an an-

notated corpus of Japanese microblogs. We col-

lected 1831 sentences from Twitter and manually

annotated these sentences with word boundaries,

POS tags, and normalized forms of words (c.f.,

Section 1.2).

We, for the first time, present a comprehen-

sive empirical study of Japanese word segmenta-

tion and POS tagging on microblog texts by us-

ing this corpus. Specifically, we investigated how

well current models trained on existing corpora

perform in the microblog domain. We also ex-

plored performance gains achieved by using our

corpus for training, and by jointly performing lex-

ical normalization (c.f., Section 1.2).

1.2 Joint modeling with lexical normalization

Orthographic diversity in microblog texts causes a

problem when training a statistical model for word

segmentation and POS tagging. Microblog texts

frequently contain informal words that are spelled

in a non-standard manner, e.g., “oredi (already)”,

“b4 (before)”, and “talkin (talking)” (Han and

Baldwin, 2011). Such words, hereafter referred

to as ill-spelled words, are so productive that they

considerably increase the vocabulary size. This

makes training of statistical models difficult.

We address this problem by jointly conducting

lexical normalization. Although a wide variety

of ill-spelled words are used in microblog texts,

many can be normalized into well-spelled equiva-

lents, which conform to standard rules of spelling.
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A joint model with lexical normalization is able

to handle orthographic diversity by exploiting in-

formation obtainable from the well-spelled equiv-

alents.

The proposed joint model was empirically eval-

uated on the microblog corpus we developed. Our

experiment demonstrated that the proposed model

can perform word segmentation and POS tag-

ging substantially better than current state-of-the-

art models.

1.3 Summary

Contributions of this paper are the following:

• We developed a microblog corpus that en-

ables not only training of accurate models but

also quantitative evaluation for word segmen-

tation and POS tagging in the microblog do-

main.3

• We propose a joint model with lexical nor-

malization for better handling of ortho-

graphic diversity in microblog texts. In par-

ticular, we present a new method of training

the joint model using a partially annotated

corpus (c.f., Section 7.4).

• We, for the first time, present a comprehen-

sive empirical study of word segmentation

and POS tagging for microblogs. The experi-

mental results demonstrated that both the mi-

croblog corpus and joint model greatly con-

tributes to training accurate models for word

segmentation and POS tagging.

The remainder of this paper is organized as fol-

lows. Section 2 reviews related work. Section 3

discusses the task of lexical normalization and in-

troduces terminology. Section 4 presents our mi-

croblog corpus and results of our corpus analysis.

Section 5 presents an overview of our joint model

with lexical normalization, and Sections 6 and 7

provide details of the model. Section 8 presents

experimental results and discussions, and Section

9 presents concluding remarks.

2 Related Work

Researchers have recently developed various mi-

croblog corpora annotated with rich linguistic in-

formation. Gimpel et al. (2011) and Foster et

al. (2011) annotated English microblog posts with

3Please contact the first author for this corpus.

POS tags. Han and Baldwin (2011) released a mi-

croblog corpus annotated with normalized forms

of words. A Chinese microblog corpus annotated

with word boundaries was developed for SIGHAN

bakeoff (Duan et al., 2012). However, there are

no microblog corpora annotated with word bound-

aries, POS tags, and normalized sentences.

There has been a surge of interest in lexical nor-

malization with the advent of microblogs (Han and

Baldwin, 2011; Liu et al., 2012; Han et al., 2012;

Wang and Ng, 2013; Zhang et al., 2013; Ling et

al., 2013; Yang and Eisenstein, 2013; Wang et al.,

2013). However, these studies did not address en-

hancing word segmentation.

Wang et al. (2013) proposed a method of joint

ill-spelled word recognition and word segmenta-

tion. With their method, informal spellings are

merely recognized and not normalized. Therefore,

they did not investigate how to exploit the infor-

mation obtainable from well-spelled equivalents

to increase word segmentation accuracy.

Some studies also explored integrating the lexi-

cal normalization process into word segmentation

and POS tagging (Ikeda et al., 2009; Sasano et al.,

2013). A strength of our joint model is that it uses

rich character-level and word-level features used

in state-of-the-art models of joint word segmenta-

tion and POS tagging (Kudo et al., 2004; Neubig

et al., 2011; Kaji and Kitsuregawa, 2013). Thanks

to these features, our model performed much bet-

ter than Sasano et al.’s system, which is the only

publicly available system that jointly conducts lex-

ical normalization, in the experiments (see Section

8). Another advantage is that our model can be

trained on a partially annotated corpus. Further-

more, we present a comprehensive evaluation in

terms of precision and recall on our microblog cor-

pus. Such an evaluation has not been conducted in

previous work due to the lack of annotated cor-

pora.4

3 Lexical Normalization Task

This section explains the task of lexical normal-

ization addressed in this paper. Since lexical nor-

malization is a relatively new research topic, there

are no precise definitions of a lexical normaliza-

tion task that are widely accepted by researchers.

4Very recently, Saito et al. (2014) conducted similar em-
pirical evaluation on microblog corpus. However, they used
biased dataset, in which every sentence includes at least one
ill-spelled words.
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Table 1: Examples of our target ill-spelled words

and their well-spelled equivalents. Phonemes are

shown between slashes. English translations are

provided in parentheses.

Ill-spelled word Well-spelled equivalent

すげえ /sugee/ すごい /sugoi/ (great)
戻ろ /modoro/ 戻ろう /modorou/ (going to return)
うまいいいい /umaiiii/ うまい /umai/ (yummy)

Therefore, it is important to clarify our task setting

before discussing our joint model.

3.1 Target ill-spelled words

Many studies on lexical normalization have

pointed out that phonological factors are deeply

involved in the process of deriving ill-spelled

words. Xia et al. (2006) investigated a Chi-

nese chat corpus and reported that 99.2% of the

ill-spelled words were derived by phonetic map-

ping from well-spelled equivalents. Wang and

Ng (2013) analyzed 200 Chinese messages from

Weibo and 200 English SMS messages from the

NUS SMS corpus (How and Kan, 2005). Their

analysis revealed that most ill-spelled words were

derived from well-spelled equivalents based on

pronunciation similarity.

On top of these investigations, we focused on

ill-spelled words that are derived by phonologi-

cal mapping from well-spelled words by assum-

ing that such ill-spelled words are dominant in

Japanese microblogs as well. We also assume

that these ill-spelled words can be normalized into

well-spelled equivalents on a word-to-word basis,

as assumed in a previous study (Han and Baldwin,

2011). The validity of these two assumptions is

empirically assessed in Section 4.

Table 1 lists examples of our target ill-spelled

words, their well-spelled equivalents, and their

phonemes. The ill-spelled word in the first row

is formed by changing the continuous two vowels

from /oi/ to /ee/. This type of change in pronun-

ciation is often observed in Japanese spoken lan-

guage. The second row presents contractions. The

last vowel character “う” /u/ of the well-spelled

word is dropped. The third row illustrates word

lengthening. The ill-spelled word is derived by re-

peating the vowel character “い” /i/.

3.2 Terminology

We now introduce the terminology that will be

used throughout the remainder of this paper. The

term word surface form (or surface form for short)

is used to refer to the word form observed in an

actual text, while word normal form (or normal

form) refers to the normalized word form. Note

that surface forms of well-spelled words are al-

ways identical to their normal forms.

It is possible that the word surface form and nor-

mal form have distinct POS tags, although they are

identical in most cases. Take the ill-spelled word “

戻ろ” /modoro/ as an example (the second row of

Table 1). According to the JUMAN POS tag set,5

POS of its surface form is CONTRACTED VERB,

while that of its normal form is VERB.6 To handle

such a case, we strictly distinguish between these

two POS tags by referring to them as surface POS

tags and normal POS tags, respectively.

Given these terms, the tasks addressed in this

paper can be stated as follows. Word segmenta-

tion is a task of segmenting a sentence into a se-

quence of word surface forms, and POS tagging

is a task of providing surface POS tags. The task

of joint lexical normalization, word segmentation,

and POS tagging is to map a sentence into a se-

quence of quadruplets: word surface form, surface

POS tag, normal form, and normal POS tag.

4 Microblog Corpus

This section introduces our microblog corpus. We

first explain the process of developing the corpus

then present the results of our agreement study and

corpus analysis.

4.1 Data collection and annotation

The corpus was developed by manually annotating

text messages posted to Twitter.

The posts to be annotated were collected as fol-

lows. 171,386 Japanese posts were collected using

the Twitter API7 on December 6, 2013. Among

these, 1000 posts were randomly selected then

manually split into sentences. As a result, we ob-

tained 1831 sentences as a source of the corpus.

Two human participants annotated the 1831

sentences with surface forms and surface POS

tags. Since much effort has already been done to

annotate corpora with this information, the anno-

tation process here follows the guidelines used to

5http://nlp.ist.i.kyoto-u.ac.jp/index.php?JUMAN
6In this paper, we use simplified POS tags for explana-

tion purposes. Remind that these tags are different from the
original ones defined in JUMAN POS tag set.

7https://stream.twitter.com/1.1/statuses/sample.json
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develop such corpora in previous studies (Kuro-

hashi and Nagao, 1998; Hashimoto et al., 2011).

The two participants also annotated ill-spelled

words with their normal forms and normal POS

tags. Although this paper targets only infor-

mal phonological variations (c.f., Section 3),

other types of ill-spelled words were also anno-

tated to investigate their frequency distribution

in microblog texts. Specifically, besides infor-

mal phonological variations, spelling errors and

Twitter-specific abbreviations were annotated. As

a result, 833 ill-spelled words were identified (Ta-

ble 2). They were all annotated with normal forms

and normal POS tags.

4.2 Agreement study

We investigated the inter-annotator agreement to

check the reliability of the annotation. During the

annotation process, the two participants collabo-

ratively annotated around 90% of the sentences

(specifically, 1647 sentences) with normal forms

and normal POS tags, and elaborated an annota-

tion guideline through discussion. They then inde-

pendently annotated the remaining 184 sentences

(1431 words), which were used for the agreement

study. Our annotation guideline is shown in the

supplementary material.

We first explored the extent to which the

two participants agreed in distinguishing between

well-spelled words and ill-spelled words. For this

task, we observed Cohen’s kappa of 0.96 (almost

perfect agreement). This results show that it is

easy for humans to distinguish between these two

types of words.

Next, we investigated whether the two partici-

pants could give ill-spelled words with the same

normal forms and normal POS tags. For this pur-

pose, we regarded the normal forms and normal

POS tags annotated by one participant as goldstan-

dards and calculated precision and recall achieved

by the other participant. We observed moder-

ate agreement between the two participants: 70%

(56/80) precision and 73% (56/76) recall. We

manually analyzed the conflicted examples and

found that there were more than one acceptable

normal form in many of these cases. Therefore,

we would like to note that the precision and recall

reported above are rather pessimistic estimations.

4.3 Analysis

We conducted corpus analysis to confirm the fea-

sibility of our approach.

Table 2: Frequency distribution over three types of

ill-spelled words in corpus.

Type Frequency

Informal phonological variation 804 (92.9%)
Spelling error 27 (3.1%)
Twitter-specific abbreviation 34 (3.9%)

Total 865 (100%)

Table 2 illustrates that phonological variations

constitute a vast majority of ill-spelled words in

Japanese microblog texts. In addition, analysis

of the 804 phonological variations showed that

793 of them can be normalized into single words.

These represent the validity of the two assump-

tions we made in Section 3.1.

We then investigated whether lexical normaliza-

tion can decrease the number of out-of-vocabulary

words. For the 793 ill-spelled words, we counted

how many of their surface forms and normal

forms were not registered in the JUMAN dictio-

nary.8 The result suggests that 411 (51.8%) and

74 (9.3%) are not registered in the dictionary. This

indicates the effectiveness of lexical normalization

for decreasing out-of-vocabulary words.

5 Overview of Joint Model

This section gives an overview of our joint model

with lexical normalization for accurate word seg-

mentation and POS tagging.

5.1 Lattice-based approach

A lattice-based approach has been commonly

adopted to perform joint word segmentation and

POS tagging (Jiang et al., 2008; Kudo et al., 2004;

Kaji and Kitsuregawa, 2013). In this approach, an

input sentence is transformed into a word lattice

in which the edges are labeled with surface POS

tags (Figure 1). Given such a lattice, word seg-

mentation and POS tagging can be performed at

the same time by traversing the lattice. A discrim-

inative model is typically used for the traversal.

An advantage of this approach is that, while the

lattice can represent an exponentially large num-

ber of candidate analyses, it can be quickly tra-

versed using dynamic programming (Kudo et al.,

2004; Kaji and Kitsuregawa, 2013) or beam search

(Jiang et al., 2008). In addition, a discriminative

model allows the use of rich word-level features

to find the correct analysis.

8http://nlp.ist.i.kyoto-u.ac.jp/index.php?JUMAN
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Figure 1: Example lattice (Kudo et al., 2004; Kaji

and Kitsuregawa, 2013). Circle and arrow repre-

sent node and edge, respectively. Bold edges rep-

resent correct analysis.

:

:

:

Figure 2: Lattice used to perform joint task. Nor-

mal forms and normal POS tags are shown in

parentheses. As indicated by dotted arrows, nor-

malized sentence can be obtained by concatenat-

ing normal forms associated with edges in correct

analysis.

We propose extending the lattice-based ap-

proach to jointly perform lexical normalization,

word segmentation, and POS tagging. We trans-

form an input sentence into a word lattice in which

the edges are labeled with not only surface POS

tags but normal forms and normal POS tags (Fig-

ure 2). By traversing such a lattice, the three

tasks can be performed at the same time. This ap-

proach can not only exploit rich information ob-

tainable from word normal forms, but also achieve

efficiency similar to the original lattice-based ap-

proach.

5.2 Issues

Issues on how to develop this lattice-based ap-

proach is detailed in Sections 6 and 7.

Section 6 describes how to generate a word lat-

tice from an input sentence. This is done us-

ing a hybrid approach that combines a statistical

model and normalization dictionary. The normal-

ization dictionary is specifically a list of quadru-

Table 3: Normalization dictionary. Columns rep-

resent entry ID, surface form, surface POS, normal

form, and normal POS, respectively.

ID Surf. Surf. POS Norm. Norm. POS

A すごい ADJECTIVE すごい ADJECTIVE

B すげえ ADJECTIVE すごい ADJECTIVE

C 戻ろう VERB 戻ろう VERB

D 戻ろ CONTR. VERB 戻ろう VERB

E うまい ADJECTIVE うまい ADJECTIVE

F うまいいいい ADJECTIVE うまい ADJECTIVE

Table 4: Tag dictionary.

ID Surf. form Surf. POS

a すごい (great) ADJECTIVE

b 戻ろう (going to return) VERB

c 戻ろ (gonna return) CONTR. VERB

d うまい (yummy) ADJECTIVE

plets: word surface form, surface POS tag, normal

form, and normal POS tag (Table 3).

Section 7 describes a discriminative model for

the lattice traversal. Our feature design as well as

two training methods are presented.

6 Word Lattice Generation

In this section, we first describe a method of con-

structing a normalization dictionary then present a

method of generating a word lattice from an input

sentence.

6.1 Construction of normalization dictionary

Although large-scale normalization dictionaries

are difficult to obtain, tag dictionaries, which list

pairs of word surface forms and their surface POS

tags (Table 4), are widely available in many lan-

guages including Japanese. Therefore, we use an

existing tag dictionary to construct the normaliza-

tion dictionary.

Due to space limitations, we give only a brief

overview of our construction method, omitting its

details. We note that our method uses hand-crafted

rules similar to those used in (Sasano et al., 2013);

hence, the proposal of this method is not an im-

portant contribution. To make our experimental

results reproducible, our normalization dictionary,

as well as a tool for constructing it, is released as

supplementary material.

Our method of constructing the normalization

dictionary takes three steps. The following ex-

plains each step using Tables 3 and 4 as running

examples.
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Step 1 A tag dictionary generally contains a

small number of ill-spelled words, although well-

spelled words constitute a vast majority. We iden-

tify such ill-spelled words by using a manually-

tailored list of surface POS tags indicative of in-

formal spelling (e.g., CONTRACTED VERB). For

example, entry (c) in Table 4 is identified as an

ill-spelled word in this step.

Step 2 The tag dictionary is augmented with

normal forms and normal POS tags to construct

a small normalization dictionary. For ill-spelled

words identified in step 1, the normal forms and

normal POS tags are determined by hand-crafted

rules. For example, the normal form is derived by

appending the vowel character “う” /u/ to the sur-

face form, if the surface POS tag is CONTRACTED

VERB. This rule derives entry (D) in Table 3 from

entry (c) in Table 4. For well-spelled words, on

the other hand, the normal forms and normal POS

tags are simply set the same as the surface forms

and surface POS tags. For example, entries (A),

(C), and (E) in Table 3 are generated from entries

(a), (b), and (d) in Table 4, respectively.

Step 3 Because the normalization dictionary

constructed in step 2 contains only a few ill-

spelled words, it is expanded in this step. For this

purpose, we use hand-crafted rules to derive ill-

spelled words from the entries already registered

in the normalization dictionary. Some rules are

taken from (Sasano et al., 2013), while the others

are newly tailored. In Table 3, for example, entry

(B) is derived from entry (A) by applying the rule

that substitutes “ごい” /goi/ with “げえ” /gee/.

A small problem that arises in step 3 is how to

handle lengthened words, such as entry (F) in Ta-

ble 3. While lengthened words can be easily de-

rived using simple rules (Brody and Diakopoulos,

2011; Sasano et al., 2013), such rules infinitely

increase the number of entries because an unlim-

ited number of lengthened words can be derived

by repeating characters. To address this problem,

no lengthened words are added to the normaliza-

tion dictionary in step 3. We instead use rules

to skip repetitive characters in an input sentence

when performing dictionary match.

6.2 A hybrid approach

A word lattice is generated using both a statisti-

cal method (Kaji and Kitsuregawa, 2013) and the

normalization dictionary.

We begin by generating a word lattice which en-

codes only word surface forms and surface POS

tags (c.f., Figure 1) using the statistical method

proposed by Kaji and Kitsuregawa (2013). Inter-

ested readers may refer to their paper for details.

Each edge in the lattice is then labeled with nor-

mal forms and normal POS tags. Note that a sin-

gle edge can have more than one candidate normal

form and normal POS tag. In such a case, new

edges are accordingly added to the lattice.

The edges are labeled with normal forms and

normal POS tags in the following manner. First,

every edge is labeled with a normal form and

normal POS tag that are identical with the sur-

face form and surface POS tag. This is based on

our observation that most words are well-spelled

ones. The edge is not provided with further nor-

mal forms and normal POS tags, if the normaliza-

tion dictionary contains a well-spelled word that

has the same surface form as the edge. Otherwise,

we allow the edge to have all pairs of normal forms

and normal POS tags that are obtained by using the

normalization dictionary.

7 Discriminative Lattice Traversal

This section explains a discriminative model for

traversing the word lattice. The lattice traversal

with a discriminative model can formally be writ-

ten as

(w, t,v, s) = arg max
(w,t,v,s)∈L(x)

f(x,w, t,v, s) · θ.

Here, x denotes an input sentence, w, t, v, and s
denote a sequence of word surface forms, surface

POS tags, normal forms, and normal POS tags, re-

spectively, L(x) represents a set of candidate anal-

yses represented by the word lattice, and f(·) and

θ are feature and weight vectors.

We now describe features, a decoding method,

and two training methods.

7.1 Features

We use character-level and word-level features

used for word segmentation and POS tagging in

(Kaji and Kitsuregawa, 2013). To take advan-

tage of joint model with lexical normalization, the

word-level features are extracted from not only

surface forms but also normal forms. See (Kaji

and Kitsuregawa, 2013) for the original features.

In addition, several new features are introduced

in this paper. We use the quadruplets (wi, ti, vi, si)
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and pairs of surface and normal POS tags (ti, si)
as binary features to capture probable mappings

between ill-spelled words and their well-spelled

equivalents. We use another binary feature indi-

cating whether a quadruplet (wi, ti, vi, si) is reg-

istered in the normalization dictionary. Also, we

use a bigram language model feature, which pre-

vents sentences from being normalized into un-

grammatical and/or incomprehensible ones. The

language model features are associated with nor-

malized bigrams, (vi−1, si−1, vi, si), and take as

the values the logarithmic frequency log10(f +1),
where f represents the bigram frequency (Kaji and

Kitsuregawa, 2011). Since it is difficult to obtain

a precise value of f , it is approximated by the fre-

quency of the surface bigram, (wi−1, ti−1, wi, ti),
calculated from a large raw corpus automatically

analyzed using a system of joint word segmenta-

tion and POS tagging. See Section 8.1 for the raw

corpus and system used in the experiments.

7.2 Decoding

It is easy to find the best analysis (w, t,v, s)
among the candidates represented by the word lat-

tice. Although we use several new features, we

can still locate the best analysis by using the same

dynamic programming algorithm as in previous

studies (Kudo et al., 2004; Kaji and Kitsuregawa,

2013).

7.3 Training on a fully annotated corpus

It is straightforward to train the joint model pro-

vided with a fully annotated corpus, which is la-

beled with word surface forms, surface POS tags,

normal forms, and normal POS tags.

We use structured perceptron (Collins, 2002)

for the training (Algorithm 1). The training be-

gins by initializing θ as a zero vector (line 1).

It then reads the annotated corpus C (line 2-9).

Given a training example, (x,w, t,v, s) ∈ C, the

algorithm locates the best analysis, (ŵ, t̂, v̂, ŝ),
based on the current weight vector (line 4). If

the best analysis differs from the oracle analy-

sis, (w, t,v, s), the weight vector is updated (line

5-7). After going through the annotated corpus

m times (m=10 in our experiment), the averaged

weight vector is returned (line 10).

7.4 Training on a partially annotated corpus

Although the training with the perceptron algo-

rithm requires a fully annotated corpus, it is labor-

intensive to fully annotate sentences. This consid-

Algorithm 1 Perceptron training

1: θ ← 0
2: for i = 1 . . . m do
3: for (x,w, t, v, s) ∈ C do

4: (ŵ, t̂, v̂, ŝ)← DECODING(x, θ)

5: if (w, t, v,s) 6= (ŵ, t̂, v̂, ŝ) then

6: θ ← θ + f (x, w, t, v, s)− f (x, ŵ, t̂, v̂, ŝ)
7: end if
8: end for
9: end for

10: return AVERAGE(θ)

Algorithm 2 Latent perceptron training

1: θ ← 0
2: for i = 1 . . . m do
3: for (x,w, t) ∈ C′ do

4: (ŵ, t̂, v̂, ŝ)← DECODING(x, θ)
5: (w, t, v̄, s̄)← CONSTRAINEDDECODING(x,θ)

6: if w 6= ŵ or t 6= t̂ then
7: θ ← θ + f (x, w, t, v̄, s̄)− f (x, ŵ, t̂, v̂, ŝ)
8: end if
9: end for

10: end for
11: return AVERAGE(θ)

eration motivates us to explore training our model

with less supervision. We specifically explore us-

ing a corpus annotated with only word boundaries

and POS tags.

We use the latent perceptron algorithm (Sun et

al., 2013) to train the joint model from such a par-

tially annotated corpus (Algorithm 2). In this sce-

nario, a training example is a sentence x paired

with a sequence of word surface forms w and sur-

face POS tags t (c.f., line 3). Similarly to the

perceptron algorithm, we locate the best analy-

sis (ŵ, t̂, v̂, ŝ) for a given training example, (line

4). We also locate the best analysis, (w, t, v̄, s̄),
among those having the same surface forms w and

surface POS tags t as the training example (line

5). If the surface forms and surface POS tags of

the former analysis differ from the annotations of

the training example, parameter is updated by re-

garding the latter analysis as an oracle (line 6-8).

8 Experiments

We conducted experiments to investigate how the

microblog corpus and joint model contribute to

improving accuracy of word segmentation and

POS tagging in the microblog domain.

8.1 Setting

We constructed the normalization dictionary from

the JUMAN dictionary 7.0.9 While JUMAN dic-

9http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN
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tionary contains 750,156 entries, the normaliza-

tion dictionary contains 112,458,326 entries.

Some features taken from the previous study

(Kaji and Kitsuregawa, 2013) are induced using a

tag dictionary. For this we used two tag dictionar-

ies. One is JUMAN dictionary 7.0 and the other

is a tag dictionary constructed by listing surface

forms and surface POS tags in the normalization

dictionary.

To compute the language model features, one

billion sentences from Twitter posts were analyzed

using MeCab 0.996.10 We used all bigrams ap-

pearing at least 10 times in the auto-analyzed sen-

tences.

8.2 Results of word segmentation and POS

tagging

We first investigated the performance of models

trained on an existing annotated corpus form news

texts. For this experiment, our joint model as

well as three state-of-the-art models (Kudo et al.,

2004)11(Neubig et al., 2011)12(Kaji and Kitsure-

gawa, 2013) were trained on Kyoto University

Text corpus 4.0 (Kurohashi and Nagao, 1998).

Since this training corpus is not annotated with

normal forms and normal POS tags, our model

was trained using the latent perceptron. Table

5 summarizes the word-level F1-scores (Kudo et

al., 2004) on our microblog corpus. The two

columns represent the results for word segmenta-

tion (Seg) and joint word segmentation and POS

tagging (Seg+Tag), respectively.

We also conducted 5-fold crossvalidation on

our microblog corpus to evaluate performance im-

provement when these models are trained on mi-

croblog texts (Table 6). In addition to the models

in Table 5, results of a rule-based system (Sasano

et al., 2013)13 and our joint model trained using

the perceptron algorithm are also presented. No-

tice that Proposed and Proposed (latent) repre-

sent our model trained using perceptron and latent

perceptron, respectively.

From Tables 5 and 6, as expected, we see that

the models trained on news texts performed poorly

on microblog texts, while their performance sig-

nificantly boosted when trained on the microblog

texts. This demonstrates the importance of corpus

annotation. An exception was Kudo04. Its perfor-

10https://code.google.com/p/mecab
11https://code.google.com/p/mecab
12http://www.phontron.com/kytea/
13http://nlp.ist.i.kyoto-u.ac.jp/index.php?JUMAN

Table 5: Performance of models trained on the

news articles.
Seg Seg+Tag

Kudo04 81.8 71.0
Neubig11 80.5 69.1
Kaji13 83.2 73.1
Proposed (latent) 83.0 73.9

mance improved only slightly, even when it was

trained on the microblog texts. We believe this is

because their model uses dictionary-based rules to

prune candidate analyses; thus, it could not per-

form well in the microblog domain, where out-of-

vocabulary words are abundant.

Table 6 also illustrates that our joint models

achieved F1-score better than the state-of-the-art

models trained on the microblog texts. This

shows that modeling the derivation process of ill-

spelled words makes training easier. We con-

ducted bootstrap resampling (with 1000 samples)

to investigate the significance of the improvements

achieved with our joint model. The results showed

that all improvements over the baselines were sta-

tistically significant (p < 0.01). The difference

between Proposed and Proposed (latent) were

also statistically significant (p < 0.01).

The results of Proposed (latent) are interest-

ing. Table 5 illustrates that our joint model per-

forms well even when it is trained on a news cor-

pus that rarely contains ill-spelled words and is

not at all annotated with normal forms and nor-

mal POS tags. This indicates the robustness of our

training method and the importance of modeling

word derivation process in the microblog domain.

In Table 6, we observed that Proposed (latent),

which uses less supervision, performed better than

Proposed. The reason for this will be examined

later.

In summary, we can conclude that both the mi-

croblog corpus and joint model significantly con-

tribute to training accurate models for word seg-

mentation and POS tagging in the microblog do-

main.

8.3 Results of lexical normalization

While the main goal with this study was to en-

hance word segmentation and POS tagging in the

microblog domain, it is interesting to explore how

well our joint model can normalize ill-spelled

words.

Table 7 illustrates precision, recall, and F1-

score for the lexical normalization task. To put
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Table 6: Results of 5-fold cross-validation on mi-

croblog corpus.
Seg Seg+Tag

Kudo04 82.7 71.7
Neubig11 88.6 75.9
Kaji13 90.9 82.1
Sasano13 82.7 73.3
Proposed 91.3 83.2
Proposed (latent) 91.4 83.7

Table 7: Results of lexical normalization task in

terms of precision, recall, and F1-score.
Precision Recall F1

Neubig11 69.2 35.9 47.3
Proposed 77.1 44.6 56.6
Proposed (latent) 53.7 24.7 33.9

the results into context, we report on the baseline

results of a tagging model proposed by Neubig et

al. (2011). This baseline conducts lexical normal-

ization by regarding it as two independent tagging

tasks (i.e., tasks of tagging normal forms and nor-

mal POS tags). The result of the baseline model is

also obtained using 5-fold crossvalidation.

Table 7 illustrates that Proposed performed sig-

nificantly better than the simple tagging model,

Neubig11. This suggests the effectiveness of our

joint model. On the other hand, Proposed (latent)

performed poorly in this task. From this result, we

can argue that Proposed (latent) can achieve su-

perior performance in word segmentation and POS

tagging (Table 6) because it gave up correctly nor-

malizing ill-spelled words, focusing on word seg-

mentation and POS tagging.

The experimental results so far suggest the fol-

lowing strategy for training our joint model. If ac-

curacy of word segmentation and POS tagging is

the main concern, we can use the latent percep-

tron. This approach has the advantage of being

able to use a partially annotated corpus. On the

other hand, if performance of lexical normaliza-

tion is crucial, we have to use the standard percep-

tron algorithm.

8.4 Error analysis

We manually analyzed erroneous outputs and ob-

served several tendencies.

We found that a word lattice sometimes missed

the correct output. Such an error was, for example,

observed in a sentence including many ill-spelled

words, e.g., ‘周囲の目が、キニナリマス！ (be

nervous about what other people think!)’, where

the part ‘キニナリマス’ is in ill-spelled words.

Improving the lattice generation algorithm is con-

sidered necessary to achieve further performance

gain.

Even if the correct analysis appears in the word

lattice, our model sometimes failed to handle

ill-spelled words, incorrectly analyzing them as

out-of-vocabulary words. For example, the pro-

posed method treated the phrase ‘おやつたーいむ

(snack time)’ as a single out-of-vocabulary word,

even though the correct analysis was found in the

word lattice. More sophisticated features would

be required to accurately distinguish between ill-

spelled and out-of-vocabulary words.

9 Conclusion and Future Work

We presented our attempts towards developing an

accurate model for word segmentation and POS

tagging in the microblog domain. To this end, we,

for the first time, developed an annotated corpus

of microblogs. We also proposed a joint model

with lexical normalization to handle orthographic

diversity in the microblog text. Intensive exper-

iments demonstrated that we could successfully

improve the performance of word segmentation

and POS tagging on microblog texts. We believe

this study will have a large practical impact on a

various research areas that target microblogs.

One limitation of our approach is that it cannot

handle certain types of ill-spelled words. For ex-

ample, the current model cannot handle the cases

in which there are no one-to-one-mappings be-

tween well-spelled and ill-spelled words. Also,

our model cannot handle spelling errors, which

are considered relatively frequent in the microblog

than news domains. The treatment of these prob-

lems would require further research.

Another future research is to speed-up our

model. Since the joint model with lexical normal-

ization significantly increases the search space,

it is much slower than the original lattice-based

model for word segmentation and POS tagging.
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Abstract

Recent work has shown success in us-
ing continuous word embeddings learned
from unlabeled data as features to improve
supervised NLP systems, which is re-
garded as a simple semi-supervised learn-
ing mechanism. However, fundamen-
tal problems on effectively incorporating
the word embedding features within the
framework of linear models remain. In
this study, we investigate and analyze three
different approaches, including a new pro-
posed distributional prototype approach,
for utilizing the embedding features. The
presented approaches can be integrated
into most of the classical linear models in
NLP. Experiments on the task of named
entity recognition show that each of the
proposed approaches can better utilize the
word embedding features, among which
the distributional prototype approach per-
forms the best. Moreover, the combination
of the approaches provides additive im-
provements, outperforming the dense and
continuous embedding features by nearly
2 points of F1 score.

1 Introduction

Learning generalized representation of words is
an effective way of handling data sparsity caused
by high-dimensional lexical features in NLP sys-
tems, such as named entity recognition (NER)
and dependency parsing. As a typical low-
dimensional and generalized word representa-
tion, Brown clustering of words has been stud-
ied for a long time. For example, Liang (2005)
and Koo et al. (2008) used the Brown cluster
features for semi-supervised learning of various
NLP tasks and achieved significant improvements.

∗Email correspondence.

Recent research has focused on a special fam-
ily of word representations, named “word embed-
dings”. Word embeddings are conventionally de-
fined as dense, continuous, and low-dimensional
vector representations of words. Word embed-
dings can be learned from large-scale unlabeled
texts through context-predicting models (e.g., neu-
ral network language models) or spectral methods
(e.g., canonical correlation analysis) in an unsu-
pervised setting.

Compared with the so-called one-hot represen-
tation where each word is represented as a sparse
vector of the same size of the vocabulary and only
one dimension is on, word embedding preserves
rich linguistic regularities of words with each di-
mension hopefully representing a latent feature.
Similar words are expected to be distributed close
to one another in the embedding space. Conse-
quently, word embeddings can be beneficial for
a variety of NLP applications in different ways,
among which the most simple and general way is
to be fed as features to enhance existing supervised
NLP systems.

Previous work has demonstrated effectiveness
of the continuous word embedding features in sev-
eral tasks such as chunking and NER using gener-
alized linear models (Turian et al., 2010).1 How-
ever, there still remain two fundamental problems
that should be addressed:

• Are the continuous embedding features fit for
the generalized linear models that are most
widely adopted in NLP?

• How can the generalized linear models better
utilize the embedding features?

According to the results provided by Turian et
1Generalized linear models refer to the models that de-

scribe the data as a combination of linear basis functions,
either directly in the input variables space or through some
transformation of the probability distributions (e.g., log-
linear models).
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al. (2010), the embedding features brought signif-
icantly less improvement than Brown clustering
features. This result is actually not reasonable be-
cause the expressing power of word embeddings
is theoretically stronger than clustering-based rep-
resentations which can be regarded as a kind of
one-hot representation but over a low-dimensional
vocabulary (Bengio et al., 2013).

Wang and Manning (2013) showed that linear
architectures perform better in high-dimensional
discrete feature space than non-linear ones,
whereas non-linear architectures are more effec-
tive in low-dimensional and continuous feature
space. Hence, the previous method that directly
uses the continuous word embeddings as features
in linear models (CRF) is inappropriate. Word
embeddings may be better utilized in the linear
modeling framework by smartly transforming the
embeddings to some relatively higher dimensional
and discrete representations.

Driven by this motivation, we present three
different approaches: binarization (Section 3.2),
clustering (Section 3.3) and a new proposed distri-
butional prototype method (Section 3.4) for better
incorporating the embeddings features. In the bi-
narization approach, we directly binarize the con-
tinuous word embeddings by dimension. In the
clustering approach, we cluster words based on
their embeddings and use the resulting word clus-
ter features instead. In the distributional prototype
approach, we derive task-specific features from
word embeddings by utilizing a set of automati-
cally extracted prototypes for each target label.

We carefully compare and analyze these ap-
proaches in the task of NER. Experimental results
are promising. With each of the three approaches,
we achieve higher performance than directly using
the continuous embedding features, among which
the distributional prototype approach performs the
best. Furthermore, by putting the most effective
two of these features together, we finally outper-
form the continuous embedding features by nearly
2 points of F1 Score (86.21% vs. 88.11%).

The major contribution of this paper is twofold.
(1) We investigate various approaches that can bet-
ter utilize word embeddings for semi-supervised
learning. (2) We propose a novel distributional
prototype approach that shows the great potential
of word embedding features. All the presented ap-
proaches can be easily integrated into most of the
classical linear NLP models.

2 Semi-supervised Learning with Word
Embeddings

Statistical modeling has achieved great success
in most NLP tasks. However, there still remain
some major unsolved problems and challenges,
among which the most widely concerned is the
data sparsity problem. Data sparsity in NLP is
mainly caused by two factors, namely, the lack
of labeled training data and the Zipf distribution
of words. On the one hand, large-scale labeled
training data are typically difficult to obtain, espe-
cially for structure prediction tasks, such as syn-
tactic parsing. Therefore, the supervised mod-
els can only see limited examples and thus make
biased estimation. On the other hand, the nat-
ural language words are Zipf distributed, which
means that most of the words appear a few times
or are completely absent in our texts. For these
low-frequency words, the corresponding parame-
ters usually cannot be fully trained.

More foundationally, the reason for the above
factors lies in the high-dimensional and sparse lex-
ical feature representation, which completely ig-
nores the similarity between features, especially
word features. To overcome this weakness, an ef-
fective way is to learn more generalized represen-
tations of words by exploiting the numerous un-
labeled data, in a semi-supervised manner. After
which, the generalized word representations can
be used as extra features to facilitate the super-
vised systems.

Liang (2005) learned Brown clusters of
words (Brown et al., 1992) from unlabeled data
and use them as features to promote the supervised
NER and Chinese word segmentation. Brown
clusters of words can be seen as a generalized
word representation distributed in a discrete and
low-dimensional vocabulary space. Contextually
similar words are grouped in the same cluster. The
Brown clustering of words was also adopted in de-
pendency parsing (Koo et al., 2008) and POS tag-
ging for online conversational text (Owoputi et al.,
2013), demonstrating significant improvements.

Recently, another kind of word representation
named “word embeddings” has been widely stud-
ied (Bengio et al., 2003; Mnih and Hinton, 2008).
Using word embeddings, we can evaluate the sim-
ilarity of two words straightforward by comput-
ing the dot-product of two numerical vectors in the
Hilbert space. Two similar words are expected to
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be distributed close to each other.2

Word embeddings can be useful as input to an
NLP model (mostly non-linear) or as additional
features to enhance existing systems. Collobert
et al. (2011) used word embeddings as input to a
deep neural network for multi-task learning. De-
spite of the effectiveness, such non-linear models
are hard to build and optimize. Besides, these ar-
chitectures are often specialized for a certain task
and not scalable to general tasks. A simple and
more general way is to feed word embeddings as
augmented features to an existing supervised sys-
tem, which is similar to the semi-supervised learn-
ing with Brown clusters.

As discussed in Section 1, Turian et al. (2010)
is the pioneering work on using word embedding
features for semi-supervised learning. However,
their approach cannot fully exploit the potential
of word embeddings. We revisit this problem
in this study and investigate three different ap-
proaches for better utilizing word embeddings in
semi-supervised learning.

3 Approaches for Utilizing Embedding
Features

3.1 Word Embedding Training
In this paper, we will consider a context-
predicting model, more specifically, the Skip-gram
model (Mikolov et al., 2013a; Mikolov et al.,
2013b) for learning word embeddings, since it is
much more efficient as well as memory-saving
than other approaches.

Let’s denote the embedding matrix to be learned
by Cd×N , where N is the vocabulary size and d is
the dimension of word embeddings. Each column
of C represents the embedding of a word. The
Skip-gram model takes the current word w as in-
put, and predicts the probability distribution of its
context words within a fixed window size. Con-
cretely, w is first mapped to its embedding vw by
selecting the corresponding column vector of C
(or multiplying C with the one-hot vector of w).
The probability of its context word c is then com-
puted using a log-linear function:

P (c|w; θ) =
exp(v>c vw)∑

c′∈V exp(vc′>vw)
(1)

where V is the vocabulary. The parameters θ are
vwi , vci for w, c ∈ V and i = 1, ..., d. Then, the

2The term similar should be viewed depending on the spe-
cific task.

log-likelihood over the entire training dataset D
can be computed as:

J(θ) =
∑

(w,c)∈D
log p(c|w; θ) (2)

The model can be trained by maximizing J(θ).
Here, we suppose that the word embeddings

have already been trained from large-scale unla-
beled texts. We will introduce various approaches
for utilizing the word embeddings as features for
semi-supervised learning. The main idea, as in-
troduced in Section 1, is to transform the continu-
ous word embeddings to some relatively higher di-
mensional and discrete representations. The direct
use of continuous embeddings as features (Turian
et al., 2010) will serve as our baseline setting.

3.2 Binarization of Embeddings

One fairly natural approach for converting the
continuous-valued word embeddings to discrete
values is binarization by dimension.

Formally, we aim to convert the continuous-
valued embedding matrixCd×N , to another matrix
Md×N which is discrete-valued. There are various
conversion functions. Here, we consider a sim-
ple one. For the ith dimension of the word em-
beddings, we divide the corresponding row vector
Ci into two halves for positive (Ci+) and nega-
tive (Ci−), respectively. The conversion function
is then defined as follows:

Mij = φ(Cij) =


U+, if Cij ≥ mean(Ci+)
B−, if Cij ≤ mean(Ci−)
0, otherwise

where mean(v) is the mean value of vector v, U+

is a string feature which turns on when the value
(Cij) falls into the upper part of the positive list.
Similarly, B− refers to the bottom part of the neg-
ative list. The insight behind φ is that we only con-
sider the features with strong opinions (i.e., posi-
tive or negative) on each dimension and omit the
values close to zero.

3.3 Clustering of Embeddings

Yu et al. (2013) introduced clustering embeddings
to overcome the disadvantage that word embed-
dings are not suitable for linear models. They sug-
gested that the high-dimensional cluster features
make samples from different classes better sepa-
rated by linear models.

112



In this study, we again investigate this ap-
proach. Concretely, each word is treated as a sin-
gle sample. The batch k-means clustering algo-
rithm (Sculley, 2010) is used,3 and each cluster
is represented as the mean of the embeddings of
words assigned to it. Similarities between words
and clusters are measured by Euclidean distance.

Moreover, different number of clusters n con-
tain information of different granularities. There-
fore, we combine the cluster features of different
ns to better utilize the embeddings.

3.4 Distributional Prototype Features

We propose a novel kind of embedding features,
named distributional prototype features for su-
pervised models. This is mainly inspired by
prototype-driven learning (Haghighi and Klein,
2006) which was originally introduced as a pri-
marily unsupervised approach for sequence mod-
eling. In prototype-driven learning, a few pro-
totypical examples are specified for each target
label, which can be treated as an injection of
prior knowledge. This sparse prototype informa-
tion is then propagated across an unlabeled corpus
through distributional similarities.

The basic motivation of the distributional pro-
totype features is that similar words are supposed
to be tagged with the same label. This hypothesis
makes great sense in tasks such as NER and POS
tagging. For example, suppose Michael is a pro-
totype of the named entity (NE) type PER. Using
the distributional similarity, we could link similar
words to the same prototypes, so the word David
can be linked to Michael because the two words
have high similarity (exceeds a threshold). Using
this link feature, the model will push David closer
to PER.

To derive the distributional prototype features,
first, we need to construct a few canonical exam-
ples (prototypes) for each target annotation label.
We use the normalized pointwise mutual informa-
tion (NPMI) (Bouma, 2009) between the label and
word, which is a smoothing version of the standard
PMI, to decide the prototypes of each label. Given
the annotated training corpus, the NPMI between
a label and word is computed as follows:

λn(label, word) =
λ(label, word)
− ln p(label, word)

(3)

3code.google.com/p/sofia-ml

NE Type Prototypes
B-PER Mark, Michael, David, Paul
I-PER Akram, Ahmed, Khan, Younis
B-ORG Reuters, U.N., Ajax, PSV
I-ORG Newsroom, Inc, Corp, Party
B-LOC U.S., Germany, Britain, Australia
I-LOC States, Republic, Africa, Lanka
B-MISC Russian, German, French, British
I-MISC Cup, Open, League, OPEN
O ., ,, the, to

Table 1: Prototypes extracted from the CoNLL-
2003 NER training data using NPMI.

where,

λ(label, word) = ln
p(label, word)
p(label)p(word)

(4)

is the standard PMI.
For each target label l (e.g., PER, ORG, LOC),

we compute the NPMI of l and all words in the
vocabulary, and the top m words are chosen as the
prototypes of l. We should note that the proto-
types are extracted fully automatically, without in-
troducing additional human prior knowledge.

Table 1 shows the top four prototypes extracted
from the NER training corpus of CoNLL-2003
shared task (Tjong Kim Sang and De Meul-
der, 2003), which contains four NE types, namely,
PER, ORG, LOC, and MISC. Non-NEs are denoted
by O. We convert the original annotation to the
standard BIO-style. Thus, the final corpus con-
tains nine labels in total.

Next, we introduce the prototypes as features to
our supervised model. We denote the set of pro-
totypes for all target labels by Sp. For each proto-
type z ∈ Sp, we add a predicate proto = z, which
becomes active at each w if the distributional sim-
ilarity between z and w (DistSim(z, w)) is above
some threshold. DistSim(z, w) can be efficiently
calculated through the cosine similarity of the em-
beddings of z and w. Figure 1 gives an illustra-
tion of the distributional prototype features. Un-
like previous embedding features or Brown clus-
ters, the distributional prototype features are task-
specific because the prototypes of each label are
extracted from the training data.

Moreover, each prototype word is also its own
prototype (since a word has maximum similarity
to itself). Thus, if the prototype is closely related
to a label, all the words that are distributionally
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Figure 1: An example of distributional prototype
features for NER.

similar to that prototype are pushed towards that
label.

4 Supervised Evaluation Task

Various tasks can be considered to compare and
analyze the effectiveness of the above three ap-
proaches. In this study, we partly follow Turian
et al. (2010) and Yu et al. (2013), and take NER as
the supervised evaluation task.

NER identifies and classifies the named entities
such as the names of persons, locations, and orga-
nizations in text. The state-of-the-art systems typ-
ically treat NER as a sequence labeling problem,
where each word is tagged either as a BIO-style
NE or a non-NE category.

Here, we use the linear chain CRF model, which
is most widely used for sequence modeling in the
field of NLP. The CoNLL-2003 shared task dataset
from the Reuters, which was used by Turian et
al. (2010) and Yu et al. (2013), was chosen as
our evaluation dataset. The training set contains
14,987 sentences, the development set contains
3,466 sentences and is used for parameter tuning,
and the test set contains 3,684 sentences.

The baseline features are shown in Table 2.

4.1 Embedding Feature Templates
In this section, we introduce the embedding fea-
tures to the baseline NER system, turning the su-
pervised approach into a semi-supervised one.

Dense embedding features. The dense con-
tinuous embedding features can be fed directly to
the CRF model. These embedding features can
be seen as heterogeneous features from the exist-
ing baseline features, which are discrete. There is
no effective way for dense embedding features to
be combined internally or with other discrete fea-
tures. So we only use the unigram embedding fea-
tures following Turian et al. (2010). Concretely,
the embedding feature template is:

Baseline NER Feature Templates
00: wi+k,−2 ≤ k ≤ 2
01: wi+k ◦ wi+k+1,−2 ≤ k ≤ 1
02: ti+k,−2 ≤ k ≤ 2
03: ti+k ◦ ti+k+1,−2 ≤ k ≤ 1
04: chki+k,−2 ≤ k ≤ 2
05: chki+k ◦ chki+k+1,−2 ≤ k ≤ 1
06: Prefix (wi+k, l),−2 ≤ k ≤ 2, 1 ≤ l ≤ 4
07: Suffix (wi+k, l),−2 ≤ k ≤ 2, 1 ≤ l ≤ 4
08: Type(wi+k),−2 ≤ k ≤ 2
Unigram Features
yi ◦ 00− 08
Bigram Features
yi−1 ◦ yi

Table 2: Features used in the NER system. t is
the POS tag. chk is the chunking tag. Prefix
and Suffix are the first and last l characters of a
word. Type indicates if the word is all-capitalized,
is-capitalized, all-digits, etc.

• dei+k[d], −2 ≤ k ≤ 2, d ranges over the
dimensions of the dense word embedding de.

Binarized embedding features. The binarized
embedding feature template is similar to the dense
one. The only difference is that the feature val-
ues are discrete and we omit dimensions with zero
value. Therefore, the feature template becomes:

• bii+k[d], −2 ≤ k ≤ 2, where bii+k[d] 6= 0,
d ranges over the dimensions of the binarized
vector bi of word embedding.

In this way, the dimension of the binarized em-
bedding feature space becomes 2 × d compared
with the originally d of the dense embeddings.

Compound cluster features. The advantage of
the cluster features is that they can be combined
internally or with other features to form compound
features, which can be more discriminative. Fur-
thermore, the number of resulting clusters n can
be tuned, and different ns indicate different granu-
larities. Concretely, the compound cluster feature
template for each specific n is:

• ci+k, −2 ≤ k ≤ 2.

• ci+k ◦ ci+k+1,−2 ≤ k ≤ 1.

• ci−1 ◦ ci+1.

Distributional prototype features. The set of
prototypes is again denoted by Sp, which is de-
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cided by selecting the topm (NPMI) words as pro-
totypes of each label, where m is tuned on the de-
velopment set. For each word wi in a sequence,
we compute the distributional similarity between
wi and each prototype in Sp and select the proto-
types zs that DistSim(z, w) ≥ δ. We set δ = 0.5
without manual tuning. The distributional proto-
type feature template is then:

• {protoi+k=z | DistSim(wi+k, z) ≥ δ & z ∈
Sp }, −2 ≤ k ≤ 2 .

We only use the unigram features, since the
number of active distributional prototype features
varies for different words (positions). Hence,
these features cannot be combined effectively.

4.2 Brown Clustering
Brown clustering has achieved great success in
various NLP applications. At most time, it
provides a strong baseline that is difficult to
beat (Turian et al., 2010). Consequently, in our
study, we conduct comparisons among the embed-
ding features and the Brown clustering features,
along with further investigations of their combina-
tion.

The Brown algorithm is a hierarchical cluster-
ing algorithm which optimizes a class-based bi-
gram language model defined on the word clus-
ters (Brown et al., 1992). The output of the Brown
algorithm is a binary tree, where each word is
uniquely identified by its path from the root. Thus
each word can be represented as a bit-string with
a specific length.

Following the setting of Owoputi et al. (2013),
we will use the prefix features of hierarchical clus-
ters to take advantage of the word similarity in dif-
ferent granularities. Concretely, the Brown cluster
feature template is:

• bci+k, −2 ≤ k ≤ 2.

• prefix (bci+k, p), p ∈ {2,4,6,...,16}, −2 ≤
k ≤ 2. prefix takes the p-length prefix of
the Brown cluster coding bci+k.

5 Experiments

5.1 Experimental Setting
We take the English Wikipedia until August 2012
as our unlabeled data to train the word embed-
dings.4 Little pre-processing is conducted for the

4download.wikimedia.org.

training of word embeddings. We remove para-
graphs that contain non-roman characters and all
MediaWiki markups. The resulting text is tok-
enized using the Stanford tokenizer,5 and every
word is converted to lowercase. The final dataset
contains about 30 million sentences and 1.52 bil-
lion words. We use a dictionary that contains
212,779 most common words (frequency ≥ 80) in
the dataset. An efficient open-source implementa-
tion of the Skip-gram model is adopted.6 We ap-
ply the negative sampling7 method for optimiza-
tion, and the asynchronous stochastic gradient de-
scent algorithm (Asynchronous SGD) for parallel
weight updating. In this study, we set the dimen-
sion of the word embeddings to 50. Higher di-
mension is supposed to bring more improvements
in semi-supervised learning, but its comparison is
beyond the scope of this paper.

For the cluster features, we tune the number
of clusters n from 500 to 3000 on the develop-
ment set, and finally use the combination of n =
500, 1000, 1500, 2000, 3000, which achieves the
best results. For the distributional prototype fea-
tures, we use a fixed number of prototype words
(m) for each target label. m is tuned on the devel-
opment set and is finally set to 40.

We induce 1,000 brown clusters of words, the
setting in prior work (Koo et al., 2008; Turian et
al., 2010). The training data of brown clustering is
the same with that of training word embeddings.

5.2 Results

Table 3 shows the performances of NER on the
test dataset. Our baseline is slightly lower than
that of Turian et al. (2010), because they use
the BILOU encoding of NE types which outper-
forms BIO encoding (Ratinov and Roth, 2009).8

Nonetheless, our conclusions hold. As we can see,
all of the three approaches we investigate in this
study achieve better performance than the direct
use of the dense continuous embedding features.

To our surprise, even the binarized embedding
features (BinarizedEmb) outperform the continu-
ous version (DenseEmb). This provides clear evi-
dence that directly using the dense continuous em-
beddings as features in CRF indeed cannot fully

5nlp.stanford.edu/software/tokenizer.
shtml.

6code.google.com/p/word2vec/.
7More details are analyzed in (Goldberg and Levy, 2014).
8We use BIO encoding here in order to compare with most

of the reported benchmarks.
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Setting F1
Baseline 83.43
+DenseEmb† 86.21
+BinarizedEmb 86.75
+ClusterEmb 86.90
+DistPrototype 87.44
+BinarizedEmb+ClusterEmb 87.56
+BinarizedEmb+DistPrototype 87.46
+ClusterEmb+DistPrototype 88.11
+Brown 87.49
+Brown+ClusterEmb 88.17
+Brown+DistPrototype 88.04
+Brown+ClusterEmb+DistPrototype 88.58
Finkel et al. (2005) 86.86
Krishnan and Manning (2006) 87.24
Ando and Zhang (2005) 89.31
Collobert et al. (2011) 88.67

Table 3: The performance of semi-supervised
NER on the CoNLL-2003 test data, using vari-
ous embedding features. † DenseEmb refers to the
method used by Turian et al. (2010), i.e., the direct
use of the dense and continuous embeddings.

exploit the potential of word embeddings. The
compound cluster features (ClusterEmb) also out-
perform the DenseEmb. The same result is also
shown in (Yu et al., 2013). Further, the distribu-
tional prototype features (DistPrototype) achieve
the best performance among the three approaches
(1.23% higher than DenseEmb).

We should note that the feature templates used
for BinarizedEmb and DistPrototype are merely
unigram features. However, for ClusterEmb, we
form more complex features by combining the
clusters of the context words. We also consider
different number of clusters n, to take advantage
of the different granularities. Consequently, the
dimension of the cluster features is much higher
than that of BinarizedEmb and DistPrototype.

We further combine the proposed features to see
if they are complementary to each other. As shown
in Table 3, the cluster and distributional prototype
features are the most complementary, whereas the
binarized embedding features seem to have large
overlap with the distributional prototype features.
By combining the cluster and distributional pro-
totype features, we further push the performance
to 88.11%, which is nearly two points higher than
the performance of the dense embedding features

(86.21%).9

We also compare the proposed features with
the Brown cluster features. As shown in Table 3,
the distributional prototype features alone achieve
comparable performance with the Brown clusters.
When the cluster and distributional prototype fea-
tures are used together, we outperform the Brown
clusters. This result is inspiring because we show
that the embedding features indeed have stronger
expressing power than the Brown clusters, as de-
sired. Finally, by combining the Brown cluster
features and the proposed embedding features, the
performance can be improved further (88.58%).
The binarized embedding features are not included
in the final compound features because they are al-
most overlapped with the distributional prototype
features in performance.

We also summarize some of the reported
benchmarks that utilize unlabeled data (with no
gazetteers used), including the Stanford NER tag-
ger (Finkel et al. (2005) and Krishnan and Man-
ning (2006)) with distributional similarity fea-
tures. Ando and Zhang (2005) use unlabeled data
for constructing auxiliary problems that are ex-
pected to capture a good feature representation of
the target problem. Collobert et al. (2011) adjust
the feature embeddings according to the specific
task in a deep neural network architecture. We
can see that both Ando and Zhang (2005) and Col-
lobert et al. (2011) learn task-specific lexical fea-
tures, which is similar to the proposed distribu-
tional prototype method in our study. We suggest
this to be the main reason for the superiority of
these methods.

Another advantage of the proposed discrete fea-
tures over the dense continuous features is tag-
ging efficiency. Table 4 shows the running time
using different kinds of embedding features. We
achieve a significant reduction of the tagging time
per sentence when using the discrete features. This
is mainly due to the dense/sparse battle. Al-
though the dense embedding features are low-
dimensional, the feature vector for each word is
much denser than in the sparse and discrete feature
space. Therefore, we actually need much more
computation during decoding. Similar results can
be observed in the comparison of the DistProto-
type and ClusterEmb features, since the density of
the DistPrototype features is higher. It is possible

9Statistical significant with p-value< 0.001 by two-tailed
t-test.
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Setting Time (ms) / sent
Baseline 1.04
+DenseEmb 4.75
+BinarizedEmb 1.25
+ClusterEmb 1.16
+DistPrototype 2.31

Table 4: Running time of different features on a
Intel(R) Xeon(R) E5620 2.40GHz machine.

to accelerate the DistPrototype, by increasing the
threshold of DistSim(z, w). However, this is in-
deed an issue of trade-off between efficiency and
accuracy.

5.3 Analysis

In this section, we conduct analyses to show the
reasons for the improvements.

5.3.1 Rare words
As discussed by Turian et al. (2010), much of the
NER F1 is derived from decisions regarding rare
words. Therefore, in order to show that the three
proposed embedding features have stronger abil-
ity for handling rare words, we first conduct anal-
ysis for the tagging errors of words with differ-
ent frequency in the unlabeled data. We assign the
word frequencies to several buckets, and evaluate
the per-token errors that occurred in each bucket.
Results are shown in Figure 2. In most cases, all
three embedding features result in fewer errors on
rare words than the direct use of dense continuous
embedding features.

Interestingly, we find that for words that are
extremely rare (0–256), the binarized embedding
features incur significantly fewer errors than other
approaches. As we know, the embeddings for the
rare words are close to their initial value, because
they received few updates during training. Hence,
these words are not fully trained. In this case,
we would like to omit these features because their
embeddings are not even trustable. However, all
embedding features that we proposed except Bi-
narizedEmb are unable to handle this.

In order to see how much we have utilized
the embedding features in BinarizedEmb, we cal-
culate the sparsity of the binarized embedding
vectors, i.e., the ratio of zero values in each
vector (Section 3.2). As demonstrated in Fig-
ure 3, the sparsity-frequency curve has good prop-
erties: higher sparsity for very rare words and

very frequent words, while lower sparsity for mid-
frequent words. It indicates that for words that are
very rare or very frequent, BinarizedEmb just omit
most of the features. This is reasonable also for
the very frequent words, since they usually have
rich and diverse context distributions and their
embeddings cannot be well learned by our mod-
els (Huang et al., 2012).
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Figure 3: Sparsity (with confidence interval) of the
binarized embedding vector w.r.t. word frequency
in the unlabeled data.

Figure 2(b) further supports our analysis. Bina-
rizedEmb also reduce much of the errors for the
highly frequent words (32k-64k).

As expected, the distributional prototype fea-
tures produce fewest errors in most cases. The
main reason is that the prototype features are task-
specific. The prototypes are extracted from the
training data and contained indicative information
of the target labels. By contrast, the other em-
bedding features are simply derived from general
word representations and are not specialized for
certain tasks, such as NER.

5.3.2 Linear Separability
Another reason for the superiority of the proposed
embedding features is that the high-dimensional
discrete features are more linear separable than
the low-dimensional continuous embeddings. To
verify the hypothesis, we further carry out experi-
ments to analyze the linear separability of the pro-
posed discrete embedding features against dense
continuous embeddings.

We formalize this problem as a binary classi-
fication task, to determine whether a word is an
NE or not (NE identification). The linear support
vector machine (SVM) is used to build the clas-
sifiers, using different embedding features respec-
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Figure 2: The number of per-token errors w.r.t. word frequency in the unlabeled data. (a) For rare words
(frequency ≤ 2k). (b) For frequent words (frequency ≥ 4k).

Setting Acc. #features
DenseEmb 95.46 250
BinarizedEmb 94.10 500
ClusterEmb 97.57 482,635
DistPrototype 96.09 1,700
DistPrototype-binary 96.82 4,530

Table 5: Performance of the NE/non-NE classi-
fication on the CoNLL-2003 development dataset
using different embedding features.

tively. We use the LIBLINEAR tool (Fan et al.,
2008) as our SVM implementation. The penalty
parameter C is tuned from 0.1 to 1.0 on the devel-
opment dataset. The results are shown in Table 5.
As we can see, NEs and non-NEs can be better
separated using ClusterEmb or DistPrototype fea-
tures. However, the BinarizedEmb features per-
form worse than the direct use of word embedding
features. The reason might be inferred from the
third column of Table 5. As demonstrated in Wang
and Manning (2013), linear models are more ef-
fective in high-dimensional and discrete feature
space. The dimension of the BinarizedEmb fea-
tures remains small (500), which is merely twice
the DenseEmb. By contrast, feature dimensions
are much higher for ClusterEmb and DistProto-
type, leading to better linear separability and thus
can be better utilized by linear models.

We notice that the DistPrototype features per-
form significantly worse than ClusterEmb in NE
identification. As described in Section 3.4, in
previous experiments, we automatically extracted
prototypes for each label, and propagated the in-

formation via distributional similarities. Intu-
itively, the prototypes we used should be more ef-
fective in determining fine-grained NE types than
identifying whether a word is an NE. To verify
this, we extract new prototypes considering only
two labels, namely, NE and non-NE, using the
same metric in Section 3.4. As shown in the last
row of Table 5, higher performance is achieved.

6 Related Studies

Semi-supervised learning with generalized word
representations is a simple and general way of im-
proving supervised NLP systems. One common
approach for inducing generalized word represen-
tations is to use clustering (e.g., Brown clustering)
(Miller et al., 2004; Liang, 2005; Koo et al., 2008;
Huang and Yates, 2009).

Aside from word clustering, word embeddings
have been widely studied. Bengio et al. (2003)
propose a feed-forward neural network based lan-
guage model (NNLM), which uses an embedding
layer to map each word to a dense continuous-
valued and low-dimensional vector (parameters),
and then use these vectors as the input to predict
the probability distribution of the next word. The
NNLM can be seen as a joint learning framework
for language modeling and word representations.

Alternative models for learning word embed-
dings are mostly inspired by the feed-forward
NNLM, including the Hierarchical Log-Bilinear
Model (Mnih and Hinton, 2008), the recurrent
neural network language model (Mikolov, 2012),
the C&W model (Collobert et al., 2011), the log-
linear models such as the CBOW and the Skip-
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gram model (Mikolov et al., 2013a; Mikolov et
al., 2013b).

Aside from the NNLMs, word embeddings can
also be induced using spectral methods, such as
latent semantic analysis and canonical correlation
analysis (Dhillon et al., 2011). The spectral meth-
ods are generally faster but much more memory-
consuming than NNLMs.

There has been a plenty of work that exploits
word embeddings as features for semi-supervised
learning, most of which take the continuous fea-
tures directly in linear models (Turian et al., 2010;
Guo et al., 2014). Yu et al. (2013) propose com-
pound k-means cluster features based on word em-
beddings. They show that the high-dimensional
discrete cluster features can be better utilized by
linear models such as CRF. Wu et al. (2013) fur-
ther apply the cluster features to transition-based
dependency parsing.

7 Conclusion and Future Work

This paper revisits the problem of semi-supervised
learning with word embeddings. We present three
different approaches for a careful comparison and
analysis. Using any of the three embedding fea-
tures, we obtain higher performance than the di-
rect use of continuous embeddings, among which
the distributional prototype features perform the
best, showing the great potential of word embed-
dings. Moreover, the combination of the proposed
embedding features provides significant additive
improvements.

We give detailed analysis about the experimen-
tal results. Analysis on rare words and linear sep-
arability provides convincing explanations for the
performance of the embedding features.

For future work, we are exploring a novel and a
theoretically more sounding approach of introduc-
ing embedding kernel into the linear models.
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Abstract

Punctuation prediction and disfluency pre-
diction can improve downstream natural
language processing tasks such as ma-
chine translation and information extrac-
tion. Combining the two tasks can poten-
tially improve the efficiency of the over-
all pipeline system and reduce error prop-
agation. In this work1, we compare var-
ious methods for combining punctuation
prediction (PU) and disfluency prediction
(DF) on the Switchboard corpus. We com-
pare an isolated prediction approach with
a cascade approach, a rescoring approach,
and three joint model approaches. For
the cascade approach, we show that the
soft cascade method is better than the hard
cascade method. We also use the cas-
cade models to generate an n-best list, use
the bi-directional cascade models to per-
form rescoring, and compare that with the
results of the cascade models. For the
joint model approach, we compare mixed-
label Linear-chain Conditional Random
Field (LCRF), cross-product LCRF and 2-
layer Factorial Conditional Random Field
(FCRF) with soft-cascade LCRF. Our re-
sults show that the various methods link-
ing the two tasks are not significantly dif-
ferent from one another, although they
perform better than the isolated predic-
tion method by 0.5–1.5% in the F1 score.
Moreover, the clique order of features also
shows a marked difference.

1 Introduction

The raw output from automatic speech recogni-
tion (ASR) systems does not have sentence bound-

1The research reported in this paper was carried out as
part of the PhD thesis research of Xuancong Wang at the NUS
Graduate School for Integrated Sciences and Engineering.

aries or punctuation symbols. Spontaneous speech
also contains a significant proportion of disflu-
ency. Researchers have shown that splitting input
sequences into sentences and adding in punctua-
tion symbols improve machine translation (Favre
et al., 2008; Lu and Ng, 2010). Moreover, dis-
fluencies in speech also introduce noise in down-
stream tasks like machine translation and informa-
tion extraction (Wang et al., 2010). Thus, punc-
tuation prediction (PU) and disfluency prediction
(DF) are two important post-processing tasks for
automatic speech recognition because they im-
prove not only the readability of ASR output, but
also the performance of downstream Natural Lan-
guage Processing (NLP) tasks.

The task of punctuation prediction is to insert
punctuation symbols into conversational speech
texts. Punctuation prediction on long, unseg-
mented texts also achieves the purpose of sentence
boundary prediction, because sentence boundaries
are identified by sentence-end punctuation sym-
bols: periods, question marks, and exclamation
marks. Consider the following example,
How do you feel about the Viet Nam War ? Yeah ,
I saw that as well .

The question mark splits the sequence into two
sentences. This paper deals with this task which is
more challenging than that on text that has already
been split into sentences.

The task of disfluency prediction is to identify
word tokens that are spoken incorrectly due to
speech disfluency. There are two main types of
disfluencies: filler words and edit words. Filler
words mainly include filled pauses (e.g., ‘uh’,
‘um’) and discourse markers (e.g., “I mean”, “you
know”). As they are insertions in spontaneous
speech to indicate pauses or mark boundaries in
discourse, they do not convey useful content in-
formation. Edit words are words that are spoken
wrongly and then corrected by the speaker. For
example, consider the following utterance:
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I want a flight

Edit︷ ︸︸ ︷
to Boston

Filler︷ ︸︸ ︷
uh I mean

Repair︷ ︸︸ ︷
to Denver

The phrase “to Boston” forms the edit region to be
replaced by “to Denver”. The words “uh I mean”
are filler words that serve to cue the listener about
the error and subsequent corrections.

The motivation of combining the two tasks can
be illustrated by the following two utterances:

I am uh I am not going with you .
I am sorry . I am not going with you .

Notice that the bi-gram “I am” is repeated in
both sentences. For the first utterance, if punctu-
ation prediction is performed first, it might break
the utterance both before and after “uh” so that the
second-stage disfluency prediction will treat the
whole utterance as three sentences, and thus may
not be able to detect any disfluency because each
one of the three sentences is legitimate on its own.
On the other hand, for the second utterance, if dis-
fluency prediction is performed first, it might mark
“I am sorry” as disfluent in the first place and re-
move it before passing into the second-stage punc-
tuation prediction. Therefore, no matter which
task is performed first, certain utterances can al-
ways cause confusion.

There are many ways to combine the two tasks.
For example, we can perform one task first fol-
lowed by another, which is called the cascade ap-
proach. We can also mix the labels, or take the
cross-product of the labels, or use joint prediction
models. In this paper, we study the mutual influ-
ence between the two tasks and compare a variety
of common state-of-the-art joint prediction tech-
niques on this joint task.

In Section 2, we briefly introduce previous work
on the two tasks. In Section 3, we describe our
baseline system which performs punctuation and
disfluency prediction separately (i.e., in isolation).
In Section 4, we compare the soft cascade ap-
proach with the hard cascade approach. We also
examine the effect of task order, i.e., performing
which task first benefits more. In Section 5, we
compare the cascade approach with bi-directional
n-best rescoring. In Section 6, we compare the 2-
layer Factorial CRF (Sutton et al., 2007) with the
cross-product LCRF (Ng and Low, 2004), mixed-
label LCRF (Stolcke et al., 1998), the cascade ap-
proach, and the baseline isolated prediction. Sec-
tion 7 gives a summary of our overall findings.
Section 8 gives the conclusion.

2 Previous Work

There were many works on punctuation prediction
or disfluency prediction as an isolated task. For
punctuation prediction, Huang and Zweig (2002)
used maximum entropy model; Christensen et al.
(2001) used finite state and multi-layer perceptron
method; Liu et al. (2005) used conditional ran-
dom fields; Lu and Ng (2010) proposed using dy-
namic conditional random fields for joint sentence
boundary type and punctuation prediction; Wang
et al. (2012) has added prosodic features for the
dynamic conditional random field approach and
Zhang et al. (2013) used transition-based parsing.

For disfluency prediction, Shriberg et al. (1997)
uses purely prosodic features to perform the task.
Johnson and Charniak (2004) proposed a TAG-
based (Tree-Adjoining Grammar) noisy channel
model. Maskey et al. (2006) proposed a phrase-
level machine translation approach for this task.
Georgila (2009) used integer linear programming
(ILP) which can incorporate local and global con-
straints. Zwarts and Johnson (2011) has inves-
tigated the effect of using extra language mod-
els as features in the reranking stage. Qian and
Liu (2013) proposed using weighted Max-margin
Markov Networks (M3N) to balance precision and
recall to further improve the F1-score. Wang et al.
(2014) proposed a beam-search decoder which in-
tegrates M3N and achieved further improvements.

There were also some works that addressed both
tasks. Liu et al. (2006) and Baron et al. (1998)
carried out sentence unit (SU) and disfluency pre-
diction as separate tasks. The difference between
SU prediction and punctuation prediction is only
in the non-sentence-end punctuation symbols such
as commas. Stolcke et al. (1998) mixed sen-
tence boundary labels with disfluency labels so
that they do not predict punctuation on disfluent
tokens. Kim (2004) performed joint SU and In-
terruption Point (IP) prediction, deriving edit and
filler word regions from predicted IPs using a rule-
based system as a separate step.

In this paper, we treat punctuation prediction
and disfluency prediction as a joint prediction task,
and compare various state-of-the-art joint predic-
tion methods on this task.
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3 The Baseline System

3.1 Experimental Setup
We use the Switchboard corpus (LDC99T42) in
our experiment with the same train/develop/test
split as (Qian and Liu, 2013) and (Johnson and
Charniak, 2004). The corpus statistics are shown
in Table 1. Since the proportion of exclamation
marks and incomplete SU boundaries is too small,
we convert all exclamation marks to periods and
remove all incomplete SU boundaries (treat as no
punctuation). In the Switchboard corpus, the ut-
terances of each speaker have already been seg-
mented into short sentences when used in (Qian
and Liu, 2013; Johnson and Charniak, 2004). In
our work, we concatenate the utterances of each
speaker to form one long sequence of words for
use as the input to punctuation prediction and dis-
fluency prediction. This form of input where,
utterances are not pre-segmented into short sen-
tences, better reflects the real-world scenarios and
provides a more realistic test setting for punctu-
ation and disfluency prediction. Punctuation pre-
diction also gives rise to sentence segmentation in
this setting.

Data set train develop test
# of tokens 1.3M 85.9K 65.5K
# of sentences 173.7K 10.1K 7.9K
# of sequences* 1854 174 134
# of edit words 63.6K 4.7K 3.7K
# of filler words 137.1K 9.6K 7.3K
# of Commas 52.7K 1.8K 2.1K
# of Periods 97.6K 6.5K 4.5K
# of Questions 6.8K 363 407
# of Exclamations 67 4 1
# of Incomplete 189 2 0

Table 1: Corpus statistics for all the experiments.
*: each conversation produces two long/sentence-
joined sequences, one from each speaker.

Our baseline system uses M3N (Taskar et al.,
2004), one M3N for punctuation prediction and
the other for disfluency prediction. We use the
same set of punctuation and disfluency labels (as
shown in Table 2) throughout this paper. To com-
pare the various isolated, cascade, and joint pre-
diction models, we use the same feature templates
for both tasks as listed in Table 3. Since some of
the feature templates require predicted filler labels
and part-of-speech (POS) tags, we have trained a

POS tagger and a filler predictor both using CRF
(i.e., using the same approach as that in Qian and
Liu (2013)). The same predicted POS tags and
fillers are used for feature extraction in all the
experiments in this paper for a fair comparison.
The degradation on disfluency prediction due to
the concatenation of utterances of each speaker
is shown in Table 4. The pause duration fea-
tures are extracted by running forced alignment
on the corresponding Switchboard speech corpus
(LDC97S62).

Task Label Meaning

Disfluency
prediction

E edit word
F filler word
O otherwise / fluent

Punctuation
prediction

Comma comma
Period full-stop
QMark question mark
None no punctuation

Table 2: Labels for punctuation prediction and dis-
fluency prediction.

3.2 Features

We use the standard NLP features such as
F (w−1w0=‘so that’), i.e., the word tokens at
the previous and current node position are
‘so’ and ‘that’ respectively. Each feature is
associated with a clique order. For example,
since the clique order of this feature template
is 2 (see Table 3), its feature functions can be
f(w−1w0=‘so that’, y0=‘F’, y−1=‘O’, t). The
example has a value of 1 only when the words
at node t − 1 and t are ‘so that’, and the labels
at node t and t − 1 are ‘F’ and ‘O’ respectively.
The maximum length of the y history is called the
clique order of the feature (in this feature func-
tion, it is 2 since only y0 and y−1 are covered).
The feature templates are listed in Table 3. wi
refers to the word at the ith position relative to
the current node; window size is the maximum
span of words centered at the current word that
the template covers, e.g., w−1w0 with a window
size of 9 means w−4w−3, w−3w−2, ..., w3w4; pi
refers to the POS tag at the ith position relative
to the current node; wi∼j refers to any word
from the ith position to the jth position relative to
the current node, this template can capture word
pairs which can potentially indicate a repair, e.g.,
“was ... is ...”, the speaker may have spoken any
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word(s) in between and it is very difficult for the
standard n-gram features to capture all possible
variations; wi, 6=F refers to the ith non-filler word
with respect to the current position, this template
can extract n-gram features skipping filler words;
the multi-pair comparison function I(a, b, c, ...)
indicates whether each pair (a and b, b and c, and
so on) is identical, for example, if a = b 6= c = d,
it will output “101” (‘1’ for being equal, ‘0’
for being unequal), this feature template can
capture consecutive word/POS repetitions which
can further improve upon the standard repetition
features; and ngram-score features are the nat-
ural logarithm of the following 8 probabilities:
P (w−3, w−2, w−1, w0), P (w0|w−3, w−2, w−1),
P (w−3, w−2, w−1), P (〈/s〉|w−3, w−2, w−1),
P (w−3), P (w−2), P (w−1) and P (w0) (where
“〈/s〉” denotes sentence-end).

Feature Template
Window

Size
Clique
Order

w0 9 1
w−1w0 9 2
w−2w−1w0 9 2
p0 9 1
p−1p0 9 2
p−2p−1p0 9 2
w0w−6∼−1, w0w1∼6 1 1
I(wi, wj) 21 2
I(wi, wj , wi+1, wj+1) 21 2
I(wi, wj)(wi if wi=wj) 21 2
I(pi, pj) 21 3
I(pi, pj , pi+1, pj+1) 21 3
I(pi, pj)(pi if pi=pj) 21 3
p−1w0 5 2
w−1p0 5 2
w−2, 6=Fw−1, 6=F 1 2
w−3, 6=Fw−2, 6=Fw−1, 6=F 1 2
p−2, 6=F p−1, 6=F 1 2
p−3, 6=F p−2, 6=F p−1, 6=F 1 2
ngram-score features 1 3
pause duration before w0 1 3
pause duration after w0 1 3
transitions 1 3

Table 3: Feature templates for disfluency predic-
tion, or punctuation prediction, or joint prediction
for all the experiments in this paper.

The performance of the system can be fur-
ther improved by adding additional prosodic fea-
tures (Savova and Bachenko, 2003; Shriberg et al.,

1998; Christensen et al., 2001) apart from pause
durations. However, since in this work we focus
on model-level comparison, we do not use other
prosodic features for simplicity.

3.3 Evaluation and Results

Experiment F1
(PU)

F1
(DF)

Short sentences, with preci-
sion/recall balancing, clique or-
der of features up to 3, and la-
bels {E,F,O}

N.A. 84.7

Short sentences, with preci-
sion/recall balancing, clique or-
der of features up to 3, and la-
bels {E,O}

N.A. 84.3

Join utterances into long sen-
tences

71.1 79.2

Join utterances into long sen-
tences + remove precision/recall
balancing

71.1 78.2

Join utterances into long sen-
tences + remove precision/recall
balancing + reduce clique order
of all features

68.5 76.4

Table 4: Baseline results showing the degradation
by joining utterances into long sentences, remov-
ing precision/recall balancing, and reducing the
clique order of features. All models are trained
using M3N.

We use the standard F1 score as our evaluation
metric and this is similar to that in Qian and Liu
(2013). For training, we set the frequency prun-
ing threshold to 5 to control the number of pa-
rameters. The regularization parameter is tuned
on the development set. Since the toolkits used
to run different experiments have slightly differ-
ent limitations, in order to make fair comparisons
across different toolkits, we do not use weighting
to balance precision and recall when training M3N
and we have reduced the clique order of transi-
tion features to two and all the other features to
one in some of our experiments. Since the per-
formance of filler word prediction on this dataset
is already very high, (>97%), we only focus on
the F1 score of edit word prediction in this pa-
per when reporting the performance of disfluency
prediction. Table 4 shows our baseline results.
Our preliminary study shows the following gen-
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eral trends: (i) for disfluency prediction: joining
utterances into long sentences will cause a 5–6%
drop in F1 score; removing precision/recall bal-
ance in M3N will cause about 1% drop in F1 score;
and reducing the clique order in Table 3 will cause
about 1–2% drop in F1 score; and (ii) for punctua-
tion prediction: removing precision/recall balance
in M3N will cause negligible drop in F1 score; and
reducing clique order will cause about 2–3% drop
in F1 score. Conventionally, the degradation from
reducing the clique orders can be mostly compen-
sated by using the BIES (Begin, Inside, End, and
Single) labeling scheme. In this work, for con-
sistency and comparability across various experi-
ments, we will stick to the same set of labels in
Table 2.

4 The Cascade Approach

Instead of decomposing the joint prediction of
punctuation and disfluency into two independent
tasks, the cascade approach considers one task to
be conditionally dependent on the other task such
that the predictions are performed in sequence,
where the results from the first step is used in the
second step. In this paper, we compare two types
of cascade: hard cascade versus soft cascade.

4.1 Hard Cascade

For the hard cascade, we use the output from the
first step to modify the input sequence before ex-
tracting features for the second step. For PU→DF
(PUnctuation prediction followed by DisFluency
prediction), we split the input sequence into sen-
tences according to the sentence-end punctuation
symbols predicted by the first step, and then per-
form the DF prediction on the short/sentence-split
sequences in the second step. For DF→PU, we
remove the edit and filler words predicted by the
first step, and then predict the punctuations using
the cleaned-up input sequence. The hard cascade
method may be helpful because the disfluency pre-
diction on short/sentence-split sequences is better
than on long/sentence-joined sequences (see the
second and third rows in Table 4). On the other
hand, the punctuation prediction on fluent text is
more accurate than that on non-fluent text based
on our preliminary study.

For this experiment, four models are trained
using M3N without balancing precision/recall.
For the first step, two models are trained on
long/sentence-joined sequences with disfluent to-

kens - one for PU prediction and the other for DF
prediction. These are simply the isolated base-
line systems. For the second step, the DF predic-
tion model is trained on the short/sentence-split se-
quences with disfluent tokens while the PU predic-
tion model is trained on the long/sentence-joined
sequences with disfluent tokens removed. Note
that in the second step of DF→PU, punctuation la-
bels are predicted only for the fluent tokens since
the disfluent tokens predicted by the first step has
already been removed. Therefore, during evalua-
tion, if the first step makes a false positive by pre-
dicting a fluent token as an edit or filler, we set its
punctuation label to the neutral label, None. All
the four models are trained using the same feature
templates as shown in Table 3. The regularization
parameter is tuned on the development set.

4.2 Soft Cascade
For the soft cascade method, we use the labels pre-
dicted from the first step as additional features for
the second step. For PU→DF, we model the joint
probability as:

P (DF,PU|x) = P (PU|x)× P (DF|PU,x) (1)

Likewise, we model the joint probability for
DF→PU as:

P (DF,PU|x) = P (DF|x)× P (PU|DF,x) (2)

For this experiment, four models are trained us-
ing M3N without balancing precision/recall. As
with the case of hard cascade, the two models
used in the first step are simply the isolated base-
line systems. For the second step, in addition to
the feature templates in Table 3, we also pass on
the labels (at the previous, current and next posi-
tion) predicted by the first step as three third-order-
clique features. We also tune the regularization pa-
rameter on the development set to obtain the best
model.

4.3 Experimental Results
Table 5 compares the performance of the hard
and soft cascade methods with the isolated base-
line systems. In addition, we have also included
the results of using the true labels in place of
the labels predicted by the first step to indicate
the upper-bound performance of the cascade ap-
proaches. The results show that both the hard and
soft cascade methods outperform the baseline sys-
tems, with the latter giving a better performance
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Experiment F1 for PU F1 for DF
isolated baseline 71.1 78.2
hard cascade 71.2 79.1
hard cascade
(using true labels)

72.6 83.5

soft cascade 71.6 79.6
soft cascade
(using true labels)

72.1 82.7

Table 5: Performance comparison between the
hard cascade method and the soft cascade method
with respect to the baseline isolated prediction.
All models are trained using M3N without balanc-
ing precision and recall.

(statistical significance at p=0.01). However, hard
cascade has a higher upper-bound than soft cas-
cade. This observation can be explained as fol-
lows.

For hard cascade, the input sequence is modi-
fied prior to feature extraction. Therefore, many
of the features generated by the feature templates
given in Table 3 will be affected by these modi-
fications. So, provided that the modifications are
based on the correct information, the resulting fea-
tures will not contain unwanted artefacts caused
by the absence of the sentence boundary informa-
tion for the presence of disfluencies. For exam-
ple, in “do you do you feel that it was worthy”,
the punctuation prediction system tends to insert a
sentence-end punctuation after the first “do you”
because the speaker restarts the sentence.

If the disfluency was correctly predicted in the
first step, then the hard cascade method would
have removed the first “do you” and eliminated
the confusion. Similarly, in “I ’m sorry . I ’m not
going with you tomorrow . ”, the first “I ’m” is
likely to be incorrectly detected as disfluent tokens
since consecutive repetitions are a strong indica-
tion of disfluency. In the case of hard cascade,
PU→DF, the input sequence would have been split
into sentences and the repetition feature would not
be activated. However, since the hard cascade
method has a greater influence on the features for
the second step, it is also more sensitive to the pre-
diction errors from the first step.

Another observation from Table 5 is that the
improvement of the soft cascade over the isolate
baseline is much larger on DF (1.4% absolute)
than that on PU (only 0.5% absolute). The same
holds true for the hard cascade, despite the fact

that there are more DF labels than PU labels in this
corpus (see Table 1) and the first step prediction is
more accurate on DF than on PU. This suggests
that their mutual influence is not symmetrical, in
the way that the output from punctuation predic-
tion provides more useful information for disflu-
ency prediction than the other way round.

5 The Rescoring Approach

In Section 4, we have described that the two tasks
can be cascaded in either order, i.e., PU→DF and
DF→PU. However, the performance of the sec-
ond step greatly depends on that of the first step.
In order to reduce sensitivity to the errors made
in the first step, one simple approach is to prop-
agate multiple hypotheses from the first step to
the second step to obtain a list of joint hypothe-
ses (with both the DF and PU labels). We then
rerank these hypotheses based on the joint proba-
bility and pick the best. We call this the rescoring
approach. From (1) and (2), the joint probabilities
can be expressed in terms of the probabilities gen-
erated by four models: P (PU|x), P (DF|PU,x),
P (DF|x), and P (PU|DF,x). We can combine the
four models to form the following joint probability
function for rescoring:

P (DF,PU|x) = P (DF|x)α1 × P (PU|DF,x)α2

× P (PU|x)β1 × P (DF|PU,x)β2

where α1, α2, β1, and β2 are used to weight
the relative importance between (1) and (2); and
between the first and second steps. In practice,
the probabilities are computed in the log domain
where the above expression becomes a weighted
sum of the log probabilities. A similar rescoring
approach using two models is described in Shi and
Wang (2007).

The experimental framework is shown in Fig-
ure 1. For PU→DF, we first use P (PU|x) to gen-
erate an n-best list. Then, for each hypothesis in
the n-best list, we use P (DF|PU,x) to obtain an-
other n-best list. So we have n2-best joint hy-
potheses. We do the same for DF→PU to ob-
tain another n2-best joint hypotheses. We rescore
the 2n2-best list using the four models. The four
weights α1, α2, β1, and β2 are tuned to opti-
mize the overall F1 score on the development set.
We used the MERT (minimum-error-rate training,
(Och, 2003)) algorithm to tune the weights. We
also vary the size of n.
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+𝛽2 ∙ log𝑃 PU|DF, x  

Figure 1: Illustration of the rescoring pipeline framework using the four M3N models used in the soft-
cascade method: P (PU|x), P (DF|PU,x), P (DF|x) and P (PU|DF,x)

The results shown in Table 6 suggest that the
rescoring method does not improve over the soft-
cascade baseline. This can be due to the fact that
we are using the same four models for the soft-
cascade and the rescoring methods. It may be
possible that the information contained in the two
models for the soft-cascade PU→DF mostly over-
laps with the information contained in the other
two models for the soft-cascade DF→PU since all
the four models are trained using the same fea-
tures. Thus, no additional information is gained
by combining the four models.

6 The Joint Approach

In this section, we compare 2-layer FCRF (Lu and
Ng, 2010) with mixed-label LCRF (Stolcke et al.,
1998) and cross-product LCRF on the joint predic-
tion task. For the 2-layer FCRF, we use punctua-
tion labels for the first layer and disfluency labels
for the second layer (see Table 2). For the mixed-
label LCRF, we split the neutral label {O} into
{Comma, Period, QMark, None} so that we have
six labels in total, {E, F, Comma, Period, QMark,
None}. In this approach, disfluent tokens do not
have punctuation labels because in real applica-
tions, if we just want to get the cleaned-up/fluent
text with punctuations, we do not need to predict
punctuations on disfluent tokens as they will be
removed during the clean-up process. Since this
approach does not predict punctuation labels on
disfluent tokens, its punctuation F1 score is only
evaluated on those fluent tokens. For the cross-
product LCRF, we compose each of the three dis-
fluency labels with the four punctuation labels to

get 12 PU-DF-joint labels (Ng and Low, 2004).
Figure 2 shows a comparison of these three models
in the joint prediction of punctuation and disflu-
ency. All the LCRF and FCRF models are trained
using the GRMM toolkit (Sutton, 2006). We use
the same feature templates (Table 3) to generate
all the features for the toolkit. However, to reduce
the training time, we have set clique order to 2 for
the transitions and 1 for all other features. We tune
the Gaussian prior variance on the development set
for all the experiments to obtain the best model for
testing.

Table 7 shows the comparison of results. On
DF alone, the improvement of the cross-product
LCRF over the mixed-label LCRF, and the im-
provement of the mixed-label LCRF over the
isolated baseline are not statistically significant.
However, if we test the statistical significance on
the overall performance of both PU and DF, both
the 2-layer FCRF and the cross-product LCRF
perform better than the mixed-label LCRF. And
we also obtain the same conclusion as Stolcke
et al. (1998) that mixed-label LCRF performs
better than isolated prediction. However, for the
comparison between the 2-layer FCRF and the
cross-product LCRF, although the 2-layer FCRF
performs better than the cross-product LCRF on
disfluency prediction, it does worse on punctua-
tion prediction. Overall, the two methods perform
about the same, their difference is not statistically
significant. In addition, both the 2-layer FCRF
and the cross-product LCRF slightly outperform
the soft cascade method (statistical significance at
p=0.04).
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Experiment F1 for PU F1 for DF
isolated baseline 71.1 78.2
soft-cascade 71.6 79.6
rescore n=1 71.5 (72.5) 79.3 (81.1)
rescore n=2 71.2 (73.0) 79.3 (81.8)
rescore n=3 71.2 (73.3) 79.9 (82.6)
rescore n=4 71.2 (73.6) 79.8 (82.8)
rescore n=5 71.2 (73.9) 79.4 (83.3)
rescore n=6 71.1 (74.0) 79.6 (83.5)
rescore n=8 71.2 (74.2) 79.8 (84.0)
rescore n=10 * 71.2 (74.4) 79.8 (84.3)
rescore n=12 71.1 (74.5) 79.7 (84.6)
rescore n=15 71.2 (74.8) 79.8 (84.9)
rescore n=18 71.1 (74.9) 79.7 (85.1)
rescore n=25 70.7 (75.2) 79.3 (85.5)

Table 6: Performance comparison between the
rescoring method and the soft-cascade method
with respect to the baseline isolated prediction.
The rescoring is done on 2n2 hypotheses. All
models are trained using M3N without balancing
precision and recall. Figures in the bracket are the
oracle F1 scores of the 2n2 hypotheses. *:on the
development set, the best overall result is obtained
at n = 10.

7 Discussion

In this section, we will summarise our observa-
tions based on the empirical studies that we have
conducted in this paper.

Firstly, punctuation prediction and disfluency
prediction do influence each other. The output
from one task does provide useful information that
can improve the other task. All the approaches
studied in this work, which link the two tasks
together, perform better than their corresponding

Experiment F1 for PU F1 for DF
isolated baseline 68.7 77.0
soft cascade 69.0 77.5
mixed-label LCRF 69.0 77.2
cross-product LCRF 69.9 77.3
2-layer FCRF 69.2 77.8

Table 7: Performance comparison among 2-
layer FCRF, mixed-label LCRF and cross-product
LCRF, with respect to the soft-cascade and the iso-
lated prediction baseline. All models are trained
using GRMM (Sutton, 2006), with reduced clique
orders.

E 

Ref: it was n’t , you know , it was never announced . 

Token: it was n’t you know it was never announced 

PU: None None Comma None Comma None None None Period 

DF: E E E F F O O O O 

(a) 
Mixed-
label 
LCRF 

(b) 
Cross-
product 
LCRF 

(c) 
2-layer 
FCRF 

E Period E F F O O O 

None 

E 

Period 

O 

None 

E 
Comma 

E 

None 

F 

Comma 

F 

None 

O 

None 

O 

None 

O 

None Period None Comma None Comma None None None 

E O E E F F O O O 

edit filler 

x1 x2 x9 x3 x4 x5 x6 x7 x8 

x1 x2 x9 x3 x4 x5 x6 x7 x8 

x1 x2 x9 x3 x4 x5 x6 x7 x8 

Figure 2: Illustration using (a) mixed-label LCRF;
(b) cross-product LCRF; and (c) 2-layer FCRF, for
joint punctuation (PU) and disfluency (DF) predic-
tion. Shaded nodes are observations and unshaded
nodes are variables to be predicted.

isolated prediction baseline.
Secondly, as compared to the soft cascade, the

hard cascade passes more information from the
first step into the second step, and thus is much
more sensitive to errors in the first step. In prac-
tice, unless the first step has very high accuracy,
soft cascade is expected to do better than hard cas-
cade.

Thirdly, if we train a model using a fine-grained
label set but test it on the same coarse-grained la-
bel set, we are very likely to get improvement. For
example:

• The edit word F1 for mixed edit and filler pre-
diction using {E, F, O} is better than that for
edit prediction using {E, O} (see the second
and third rows in Table 4). This is because the
former actually splits the O in the latter into
F and O. Thus, it has a finer label granularity.

• Disfluency prediction using mixed-label
LCRF (using label set {E, F, Comma, Pe-
riod, Question, None}) performs better than
that using isolated LCRF (using label set {E,
F, O}) (see the second and fourth rows in
Table 7). This is because the former dis-
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tinguishes between different punctuations for
fluent tokens and thus has a finer label granu-
larity.

• Both the cross-product LCRF and 2-layer
FCRF perform better than mixed-label LCRF
because the former two distinguish between
different punctuations for edit, filler and flu-
ent tokens while the latter distinguishes be-
tween different punctuations only for fluent
tokens. Thus, the former has a much finer la-
bel granularity.

From the above comparisons, we can see that
increasing the label granularity can greatly im-
prove the accuracy of a model. However, this
may also increase the model complexity dramat-
ically, especially when higher clique order is used.
Although the joint approach (2-layer FCRF and
cross-product LCRF) are better than the soft-
cascade approach, they cannot be easily scaled up
to using higher order cliques, which greatly limits
their potential. In practice, the soft cascade ap-
proach offers a simpler and more efficient way to
achieve a joint prediction of punctuations and dis-
fluencies.

8 Conclusion

In general, punctuation prediction and disfluency
prediction can improve downstream NLP tasks.
Combining the two tasks can potentially improve
the efficiency of the overall framework and mini-
mize error propagation. In this work, we have car-
ried out an empirical study on the various methods
for combining the two tasks. Our results show that
the various methods linking the two tasks perform
better than the isolated prediction. This means
that punctuation prediction and disfluency predic-
tion do influence each other, and the prediction
outcome in one task can provide useful informa-
tion that helps to improve the other task. Specifi-
cally, we compare the cascade models and the joint
prediction models. For the cascade approach, we
show that soft cascade is less sensitive to predic-
tion errors in the first step, and thus performs bet-
ter than hard cascade. For joint model approach,
we show that, when clique order of one is used, all
the three joint model approaches perform signifi-
cantly better than the isolated prediction baseline.
Moreover, the 2-layer FCRF and the cross-product
LCRF perform slightly better than the mix-label
LCRF and the soft-cascade approach, suggesting

that modelling at a finer label granularity is po-
tentially beneficial. However, the soft cascade ap-
proach is more efficient than the joint approach
when a higher clique order is used.
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Abstract

We introduce submodular optimization
to the problem of training data subset
selection for statistical machine translation
(SMT). By explicitly formulating data
selection as a submodular program, we ob-
tain fast scalable selection algorithms with
mathematical performance guarantees, re-
sulting in a unified framework that clarifies
existing approaches and also makes both
new and many previous approaches easily
accessible. We present a new class of
submodular functions designed specifically
for SMT and evaluate them on two differ-
ent translation tasks. Our results show that
our best submodular method significantly
outperforms several baseline methods,
including the widely-used cross-entropy
based data selection method. In addition,
our approach easily scales to large data sets
and is applicable to other data selection
problems in natural language processing.

1 Introduction

SMT has made significant progress over the last
decade, not least due to the availability of increas-
ingly larger data sets. Large-scale SMT systems
are now routinely trained on millions of sentences
of parallel data, and billions of words of mono-
lingual data for language modeling. Large data
sets are often beneficial, but they do create certain
other problems. First, they place higher demands
on computational resources (storage and compute).
Hence, existing software infrastructure may need
to be adapted and optimized to handle such large
data sets. Second, experimental turn-around time
is increased as well, making it more difficult to
quickly train, fine-tune, and evaluate novel model-
ing approaches. Most importantly, however, SMT
performance does not increase linearly with the
training data size but levels off after a certain point.
This is because the additional training data may be

noisy, irrelevant to the task at hand, or inherently
redundant. Thus, a linear increase in the amount of
training data typically leads to a sublinear increase
in performance, an effect known as diminishing
returns. Several recent papers (Bloodgood and
Callison-Burch, 2010; Turchi et al., 2012a; Turchi
et al., 2012b) have amply demonstrated this effect.

A way to counteract this is to perform data sub-
set selection, i.e., choose a subset of the available
training data to optimize a particular quality cri-
terion. One scheme is to select a subset that ex-
presses as much of the information in the original
data set as possible - i.e., the data set should be
“summarized” by excluding redundant information.
Another scheme, popular in the context of SMT, is
to subselect the original training set to match the
properties of a particular test set.

In this paper, we introduce submodularity for
subselecting SMT training data, a methodology
that follows both of the above schemes.1 Sub-
modular functions (Fujishige, 2005) are a class
of discrete set functions having the property of di-
minishing returns. They occur naturally in a wide
range of problems in a diverse set of fields includ-
ing economics, game theory, operations research,
circuit theory, and more recently machine learn-
ing. Submodular functions share certain properties
with convexity (e.g., naturalness and mathematical
tractability) although submodularity is still quite
distinct from convexity.

We present a novel class of submodular func-
tions particularly suited for SMT subselection and
evaluate it against state-of-the-art baseline meth-
ods on two different translation tasks, showing that
our method outperforms them significantly in most
cases. While many approaches to SMT data se-
lection have been developed previously (a detailed
overview is provided in Section 3), many of them
are heuristic and do not offer performance guaran-
tees. Certain previous approaches, however, have

1As far as we know, submodularity has not before been
explicitly utilized for SMT subset selection.
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inadvertently made use of submodular methods.
This, in addition to our own positive results, pro-
vides strong evidence that submodularity is a natu-
ral and practical framework for data subset selec-
tion in SMT and related fields.

An additional advantage of this framework is
that many submodular programs (e.g., the greedy
procedure reviewed in Section 2) are fast and
scalable to large data sets. By contrast, trying
to solve a submodular problem using, say, an
integer-linear programming (ILP) procedure,
would lead to impenetrable scalability problems.

Initial value f(X) = 2 colors in urn.
Updated value f(X∪{v}) = 3 with 
added blue ball.

Initial value f(Y) = 3 colors in urn.
Updated value f(Y∪{v}) = 3 with 
added blue ball.

X Y

v v

Figure 1: f (Y ) measures the number of distinct col-
ors in the set of balls Y , and hence is submodular.

This paper makes several contributions: First, we
present a brief overview of submodular functions
(Section 2) and their potential application to natural
language processing (NLP). Next we review pre-
vious approaches to MT data selection (Section 3)
and analyze them with respect to their submodular
properties. We find that some previous approaches
are submodular in nature although this connection
was not heretofore made explicit. Section 4 details
our new approach. We discuss desirable properties
of an SMT data selection objective and present a
new class of submodular functions tailored towards
this problem. Section 5 presents the data and
systems used for the experiments, and results are
reported in Section 6. Section 7 then concludes.

2 Submodular Functions/Optimization

Submodular functions (Edmonds, 1970; Fujishige,
2005), are widely used in mathematics, economics,
circuit theory (Narayanan, 1997), and operations
research. More recently, they have attracted much
interest in machine learning (e.g., (Narasimhan
and Bilmes, 2004; Kolmogorov and Zabih, 2004;
Krause et al., 2008; Krause and Guestrin, 2011;
Jegelka and Bilmes, 2011; Iyer and Bilmes, 2013)),
where they have been applied to a variety of prob-
lems. In natural language and speech processing,
they have been applied to document summariza-
tion (Lin and Bilmes, 2011; Lin and Bilmes, 2012)
and speech data selection (Wei et al., 2013).

We are given a finite size-n set of objects V (i.e.,
|V |= n). A valuation function f : 2V → R+ is de-

fined that returns a non-negative real value for any
subset X ⊆V . The function f is said to be submodu-
lar if it satisfies the property of diminishing returns:
namely, for all X ⊆ Y and v /∈ Y , we must have:

f (X ∪{v})− f (X)≥ f (Y ∪{v})− f (Y ). (1)

This means that the incremental value (or gain) of
element v decreases when the context in which v
is considered grows from X to Y ⊇ X . We define
the “gain” as f (v|X) , f (X ∪{v})− f (X). Hence,
f is submodular if f (v|X)≥ f (v|Y ). We note that
a function m : 2V → R+ is said to be modular
if it satisfies the above with equality, meaning
m(v|X) = m(v|Y ) for all X ⊆ Y ⊆ V \ {v}. If m
is modular and m( /0) = 0, it can be written as
m(X) = ∑x∈X m(x) and, moreover, is seen simply
as a n-dimensional vector m ∈ RV .

As an example, suppose we have a set V of balls
and f (X) counts the number of colors present
in any subset X ⊆ V . In Figure 1, |X | = 5 and
f (X) = 2, |Y | = 7 and f (Y ) = 3, and X ⊂ Y .
Adding v (a blue ball) to X has a unity gain
f (v|X) = 1 but since a blue ball exists in Y , we
have f (v|Y ) = 0< f (v|X) = 1.

Submodularity is a natural model for data subset
selection in SMT. In this case, each v ∈ V is a
distinct training data sentence and V corresponds
to a training set. An important characteristic of
any good model for this problem is that we wish
to decrease the “value” of a sentence v ∈V based
on how much that sentence has in common with
those sentences, say X , that have already been
chosen. The value f (v|X) of a given sentence
v in a context of previously chosen sentences
X ⊆ V further diminishes as the context grows
Y ⊇ X . When, for example, a sentence’s value is
represented as the value of its set of features (e.g.,
n-grams), it is natural for those features’ values to
be discounted based on how much representation
of those features already exists in a previously
chosen subset. This corresponds to submodularity,
which can easily be expressed mathematically by
functions such as Eqn. (4) below.

Not only are submodular functions natural for
SMT subset selection, they can also be optimized
efficiently and scalably such that the result has
mathematical performance guarantees. In the re-
mainder of this paper we will assume that f is not
only submodular, but also non-negative ( f (X)≥ 0
for all X), and monotone non-decreasing ( f (X)≤
f (Y ) for all X ⊆ Y ). Such functions are trivial to
uselessly maximize, since f (V ) is the largest possi-
ble valuation. Typically, however, we wish to have
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Algorithm 1: The Greedy Algorithm
1 Input: Submodular function f : 2V → R+,

cost vector m, budget b, finite set V .
2 Output: Xk where k is the number of

iterations.
3 Set X0← /0 ; i← 0 ;
4 while m(Xi)< b do
5 Choose vi as follows:

vi ∈
{

argmaxv∈V\Xi

f ({v}|Xi)
m(v)

}
;

6 Xi+1← Xi∪{vi} ; i← i+1 ;

a valuable subset of bounded and small cost, where
cost is measured based on a modular function m(X).
For example, the cost m(v) of a sentence v ∈ V
might be its length, so m(X) = ∑x∈X m(x) is a sum
of sentence lengths. This leads to the following
optimization problem:

X∗ ∈ argmax
X⊆V,m(X)≤b

f (X), (2)

where b is a known budget. Solving this problem
exactly is NP-complete (Feige, 1998), and express-
ing it as an ILP procedure renders it impractical for
large data sizes. When f is submodular the cost is
just size (m(X) = |X |), then the simple greedy algo-
rithm (detailed below) will have a worst-case guar-
antee of f (X̃∗) ≥ (1− 1/e) f (Xopt) ≈ 0.63 f (Xopt)
where Xopt is the optimal and X̃∗ is the greedy so-
lution (Nemhauser et al., 1978).

This constant factor guarantee has practical im-
portance. First, a constant factor guarantee stays
the same as n grows, so the relative worst-case qual-
ity of the solution is the same for small and for big
problem instances. Second, the worst-case result
is achieved only by very contrived and unrealistic
function instances — the typical case is almost al-
ways much better. Third, the worst-case guarantee
improves depending on the “curvature” κ ∈ [0,1]
of the submodular function (Conforti and Cornue-
jols, 1984). When the submodular function is not
fully curved (κ < 1, something true of the func-
tions used in this paper), the worst case guarantee
is better, namely 1

κ (1−e−κ) (e.g., a function f with
κ = 0.2 has a worst-case guarantee of 0.91). Lastly,
when the cost m is not just cardinality but an arbi-
trary non-negative modular function, a greedy al-
gorithm has similar guarantees (Sviridenko, 2004),
and a scalable variant has a worst-case guarantee
of 1−1/

√
e (Lin and Bilmes, 2010).

The basic greedy algorithm has a very simple
form. Starting with X ← /0, we repeat the operation

X ← X ∪ argmaxv∈V\X
f (v|X)
m(v) until the budget is

exceeded (m(X) > b) and then backoff to the
previous iteration (complete details are given in
Algorithm 1). While the algorithm has complexity
O(n2), there is an accelerated instance of this
algorithm (Minoux, 1978; Leskovec et al., 2007)
that has empirical computational complexity of
O(n logn) where n = |V |. The greedy algorithm,
therefore, scales practically to very large n.
Recently, still much faster (Wei et al., 2014) and
also parallel distributed (Mirzasoleiman et al.,
2013) greedy procedures have been advanced
offering still better scalability.

There are many submodular functions that
are appropriate for subset selection (Lin and
Bilmes, 2011; Lin and Bilmes, 2012). Some
of them are graph-based, where we are given a
non-negative weighted graph G = (V,E,w) and
w : E→R+ is a set of edge weights (i.e., w(x,y) is
a non-negative similarity score between sentences
x and y). A submodular function is obtained via
a graph cut function f (X) = ∑x∈X ,y∈V\X w(x,y)
or via a monotone truncated graph cut
function f (X) = ∑v∈V min(Cv(X),αCv(V ))
where α ∈ (0,1) is a scalar parameter and
Cv(X) = ∑x∈X w(v,x) is a v-specific modular
function. Alternatively, the class of facility loca-
tion functions f (X) = ∑v∈V maxx∈X w(x,v) have
been widely and successfully used in the field of
operations research, and are also applicable here.

In the worse case, the required graph construc-
tion has a worst-case complexity of O(n2). While
sparse graphs can be used, this can be prohibitive
when n = |V | gets large. Another class of sub-
modular functions that does not have this prob-
lem is based on a weighted bipartite graph G =
(V,U,E,w) where V are the left vertices, U are the
right vertices, E ⊆ V ×U is a set of edges, and
w : U→R+ is a set of non-negative weights on the
vertices U . For X ⊆V , the bipartite neighborhood
function is defined as:

f (X) = w({u ∈U : ∃x ∈ X with (x,u) ∈ E}) (3)

This function is interesting for NLP applications
since U can be seen as a set of “features” of the ele-
ments v∈V (i.e., if V is a set of sentences, U can be
the collective set of n-grams for multiple values of
n, and f (X) is the weight of the n-grams contained
collectively in sentences X).2 Given a set X ⊆ V ,

2To be consistent with standard notation in previous liter-
ature, we overload the use of n in “n-grams” and the size of
our set “n = |V |”, even though the two ns have no relationship
with each other.
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we get value from the features of the elements
x ∈ X , but we get credit for each feature only one
time — once a given object x ∈ X has a given fea-
ture u∈U , any additions to X by elements also hav-
ing feature u offer no further credit via that feature.

Another interesting class of submodular func-
tions, allowing additional credit from an element
even when its features already exist in X , are what
we call feature-based submodular functions. They
involve sums of non-decreasing concave functions
applied to modular functions (Stobbe and Krause,
2010) and take the following form:

f (X) = ∑
u∈U

wuφu(mu(X)) (4)

where wu > 0 is a feature weight, mu(X) =
∑x∈X mu(x) is a non-negative modular function
specific to feature u, mu(x) is a relevance score (a
non-negative scalar score indicating the relevance
of feature u in object x), and φu is a u-specific
non-negative non-decreasing concave function.
The gain is f (v|X) = ∑u∈U

(
φ(mu(X ∪ {v}))−

φ(mu(X))
)

, and thanks to φu’s concavity, the
term φ(mu(X ∪{v}))−φ(mu(X)) for each feature
u ∈U is decaying as X grows. The rate of decay,
and hence the degree of diminishing returns and
ultimately the measure of redundancy of the
information provided by the feature, is controlled
by the concave function. The rate of decay is
also related to the curvature κ of the submodular
function (c.f. §2), with more aggressive decay
having higher curvature (and a worse worst-case
guarantee). The decay is a modeling choice that
should be decided based on a given application.

Feature-based functions have the advantage that
they do not require the construction of a pairwise
graph; they have a cost of only O(n|U |), which is
linear in the data size and therefore scalable to
large data set sizes.

We utilize this class for our subset selection ex-
periments described in Section 4, where we use one
global concave function φu = φ for all u ∈U . In
this work we chose one particular set of features U .
However, given the large body of research into NLP
feature engineering (Jurafsky and Martin, 2009),
this class is extensible beyond just this set, which
makes it suitable for many other NLP applications.

Before describing our SMT-specific functions in
detail, we review previous work on subset selection
for SMT in the context of submodularity.

3 Previous Approaches

There have been many previous approaches to data
subset selection in SMT. In this section, we show
that some of them in fact correspond to submodular
methods, thus introducing a connection between
submodularity and the practical problem of SMT
data selection. The fact that submodularity is
implicitly and unintentionally used in previous
work suggests that it is natural for this problem.

A currently widely-used data selection method in
SMT (which we also use as a baseline in Section 6)
uses the cross-entropy between two language mod-
els (Moore and Lewis, 2010), one trained on the
test set of interest, and another trained on a large set
of generic or out-of-domain training data. We call
this the cross-entropy method. This method trains
a test-set specific (or in-domain) language model,
LMin, and a generic (out-of- or mixed-domain) lan-
guage model, LMout. Each sentence x ∈ V in the
training data is given a probability score with both
language models and then ranked in descending
order based on the log ratio

mce(x) =
1
`(x)

log[Pr(x|LMin)/Pr(x|LMout)] (5)

where `(x) is the length of sentence x. Finally, the
top N sentences are chosen. In (Axelrod et al.,
2011) this method is extended to take both sides
of the parallel corpus into account rather than just
the source side. The cross-entropy approach values
each sentence individually, without regard to any in-
teraction with already selected sentences. This ap-
proach, therefore, is modular (a special case of sub-
modular) and values a set X via m(X) = ∑x∈X m(x).
Moreover, the thresholding method for choosing
a subset corresponds exactly to the optimization
problem in Eqn. (2) where f ← m and the budget
b is set to the sum of the top N sentence scores.
Thanks to modularity, the problem is no longer NP-
complete, and the threshold method solves Eqn. (2)
exactly. On the other hand, a modular function
does not have the diminishing returns property, and
thus has no chance to represent interaction or re-
dundancy between sentences. The chosen subset,
therefore, might have an enormous overrepresenta-
tion of one aspect of the training data while having
minimal or no representation of another aspect, a
major vulnerability of this approach.

Other methods use information retrieval (Hilde-
brand et al., 2005; Lü et al., 2007) which can also
be described as modular function optimization
(e.g., take the top k scoring sentences). Duplicate
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sentence removal is easily represented by a feature-
based submodular function, Equation (4), where
there is one sentence-specific feature per sentence
and where φu(mu(X)) = min(|X ∩{u}|,1) — once
a sentence is chosen, its contribution is saturated
so any duplicate sentence has a gain of zero. Also,
the unseen n-gram function of (Eck et al., 2005;
Bloodgood and Callison-Burch, 2010) corresponds
to a bipartite neighborhood submodular function,
with a weight function defined based on n-gram
counts. Moreover their functions are optimized
using the greedy algorithm; hence they in fact
have a 1− 1/e guarantee. Other methods have
noted and dealt with the existence of redundancy
in phrase-based systems (Ittycheriah and Roukos,
2007) by limiting the set of phrases — submodular
optimization inherently removes redundancy. Also,
(Callison-Burch et al., 2005; Lopez, 2007) involve
modular functions but where selection is over
subsets of phrases (rather than sentences as in our
current work) and where multiple selections occur,
each specific to an individual test set sentence
rather than the entire test set.

In the feature-decay method, presented in (Biçici,
2011; Biçici and Yuret, 2011; Biçici, 2013), the
value of a sentence is based on its decomposition
into a set of feature values. As sentences are added
to a set, the feature decay approach in general di-
minishes the value of each feature depending on
how much of that feature has already been covered
by those sentences previously chosen — the pa-
pers define a set of feature decay functions for this
purpose.

Our analysis of (Biçici, 2011; Biçici and Yuret,
2011; Biçici, 2013), from the perspective of sub-
modularity, has revealed an interesting connection.
The feature decay functions used in these papers
turn out to be derivatives of non-decreasing con-
cave functions. For example, in one case φ ′(a) =
1/(1 + a) which is the derivative of the concave
function φ(a) = ln(1+a). We are given a constant
initialization wu for feature u ∈U — in the papers,
they set either wu← 1, or wu← log(m(V )/mu(V )),
or wu ← log(m(V )/(1 + mu(V ))), where m(V ) =
∑u mu(V ), and where mu(X) = ∑x∈X mu(x) is the
count of feature u within the set of sentences
X ⊆V . This yields the submodular feature function
fu(X) = wuφ(mu(X)). The value of sentence v as
measured by feature u in the context of X is the gain
fu(v|X), which is a discrete derivative correspond-
ing to wu/(1+mu(X ∪{v})). An alternative decay
function they define is given as φ ′(a) = 1/(1+ba)
for a base b (they set b← 2) which is the derivative

of the following non-decreasing concave function:

φ(a) =
[
1− 1

ln(b)
ln
(

1+ exp
(−a ln(b)

))]
(6)

We note that this function is saturating, meaning
that it quickly reaches its asymptote at its maxi-
mum possible value. We can, once again, define
a function specific for feature u ∈U as fu(X) =
wuφ(mu(X)) with a gain fu(v|X) being a discrete
derivative corresponding to wu/(1+bmu(X∪{v})).

The connection between this work and submod-
ularity is not complete, however, without consider-
ing the method used for optimization. In fact, Algo-
rithm 1 of (Biçici and Yuret, 2011) is precisely the
accelerated greedy algorithm of (Minoux, 1978)
applied to the submodular function corresponding
to f (X) = ∑u∈U fu(X), and Algorithm 1 of (Biçici,
2013) is the cost-normalized variant of this greedy
algorithm corresponding to a knapsack constraint
(Sviridenko, 2004). Thus, our analysis shows that
these methods also have a 1− 1/e performance
guarantee and also the O(n logn) empirical com-
plexity mentioned in Section 2. This is an impor-
tant connection, as it furthers the evidence that
submodularity is natural for the problem of SMT
subset selection. This also increases the accessibil-
ity of this method since we may view it as a special
case of Equation (4).

Another class of approaches focuses on active
learning. In (Haffari et al., 2009) a large corpus
of noisy parallel data is created automatically; a
smaller set of samples is then selected from this
set that receive human translations. A combination
of several “informativeness” scores is computed
on a sentence-level basis, and samples are selected
via hierarchical adaptive sampling (Dasgupta and
Hsu, 2008). In (Mandal et al., 2008) a measure
of disagreement between different MT systems, as
well as an entropy-based criterion are used to select
additional data for annotation. In (Bloodgood and
Callison-Burch, 2010) and (Ambati et al., 2010),
active learning is combined with crowd-sourced an-
notations to produce large, human-translated data
sets that are as informative as possible. In (Cao
and Khudanpur, 2012), samples are selected for
discriminative training of an MT system accord-
ing to a greedy algorithm that tries to maximize
overall quality. These methods address a differ-
ent scenario (data selection for annotation or dis-
criminative training) than the one considered here;
however, we also note that the actual selection tech-
niques employed in these papers do not appear to
be submodular.
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4 Novel Submodular Functions for SMT

In this section, we design a parameterized class
of submodular functions useful for SMT training
data subset selection. By staying within the realm
of submodularity, we retain the advantages of the
greedy algorithm, its theoretical performance as-
surances, and its scalability properties. At the same
time this opens the door to a general framework for
quickly exploring a much larger class of functions
(with the same desirable properties) than before.

It is important to note that we are using sub-
modularity as a “model” of the selection process,
and the submodular objective acts as a surrogate
for the actual SMT objective function. Thus, the
mathematical guarantee we have is in terms of the
surrogate objective rather than the true SMT ob-
jective. Evaluating one point of the actual SMT
objective would require the complete training and
testing of an SMT system, so even an algorithm as
efficient as Algorithm 1 would be infeasible, even
on small data. It is therefore important to design a
natural and scalable surrogate objective.

We do not consider the graph-based functions
discussed in Section 2 here since they require a
pairwise similarity matrix over all training sen-
tences and thus have O(n2) worst-case complexity.
For large tasks with millions or even billions of
sentences, this eventually becomes impractical.
Instead we focus on feature-based functions of the
type presented in Eqn. (4), where each sentence
is represented as a set of features rather than as a
vertex in a graph. In this function there are four
components to specify: 1) U , the linguistic feature
set; 2) mu(x), the relevance scores for each feature
u and sentence x; 3) wu, the feature weights; and
4) φ , the concave function (we use one concave
function, so φu = φ for all u ∈U).
Feature set: U is the set of n-grams from either
the source language U src, or from both the source
and target language U src ∪U tgt (see Section 6);
since we are interested in selecting a training set
that matches a given test set, we use the set of n-
grams that occur both in the training set and in
the development/test data (for target features, only
development set features are used). I.e., U src =
(U src

dev∪U src
test)∩U src

train and U tgt = U tgt
dev∩U tgt

train.
Relevance scores: A feature u within a sentence
x should be valued based on how salient that fea-
ture is within the “document” in which it occurs;
here, the “document” is the set of training sen-
tences. This is a task well suited to TFIDF. As
an alternative to raw feature counts we thus also

consider scores of the form mu(x)← tfidf(u,x) =
tf(u,x)× idftrn(u), where tf(u,x) and idftrn(u) are
defined as usual.
Feature weights: We wish to select those training
samples that contain features occurring frequently
in the test data while avoiding the over-selection
of features that are very frequent in the training
data because those are likely to be translated
correctly anyway. This is similar to the approach
in (Moore and Lewis, 2010) (see Equation (5)),
where a log-probability ratio of in-domain to
out-of-domain language model is utilized. In the
present case, we need a value that is specific to
feature u ∈U ; a natural approach is to use the ratio
of counts ctst(u)/ctrn(u) where ctst(u) is the raw
count of u in the development/test data, and ctrn(u)
is its raw count in the training data (note that
ctrn(u) is never zero due to the way U is defined).
As an additional factor we allow feature length
to have an influence. In general, longer n-grams
might be considered more valuable since they
typically lead to better translations and are more
relevant for BLEU. Thus, we include a reward
term for longer n-grams in the form of β |u| where
β ≥ 1 and |u| is the length of feature u. This gives
greater weight to longer n-grams when β > 1.
Concave function: It is imperative to find the right
form of concave function since, as described in Sec-
tion 2, the concave shape determines the degree to
which redundancy and diminishing returns are rep-
resented. Intuitively, when the shape of the concave
function for a feature becomes “flat” rapidly, that
feature quickly looses its ability to provide addi-
tional value to a candidate subset. Many different
concave functions were tested for φ , including one
of the two functions implicit in (Biçici and Yuret,
2011) and derived in Section 3, and a variety of
roots of the form φ(a) = aα for 0 < α < 1. In
Table 2, for example, we find evidence that the
simple square root φ(a) =

√
a performs slightly

better than the log function. The square root is
much less curved and decays much more gradually
than either of the two functions implicit in (Biçici
and Yuret, 2011), of which one is a log form and
the other is even more curved and quickly satu-
rates (see §3). The square root function yields a
less curved submodular function, in the sense of
(Conforti and Cornuejols, 1984), resulting in better
worst-case guarantees. Indeed, Table 1 in (Biçici
and Yuret, 2011) corroborates by showing that the
more curved saturating function does worse than
the less curved log function.
Four Components Together: Different instantia-
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tions of the four components discussed above will
result in different submodular functions of the gen-
eral class defined in Eqn. (4). Particular settings
of these general parameters produce the methods
considered in (Biçici and Yuret, 2011), thus mak-
ing that approach easily accessible once the general
submodular framework is set up. As a very special
case, this is also true of the cross-entropy method
(Moore and Lewis, 2010), where |U |= 1, mu(x)←
exp(mce(x)) of Equation (5) 3, wu← 1, and φ(a) =
a is the identity function. In Section 6, we specify
the parameter settings used in our experiments.

Task Train Dev Test LM
NIST 189M 48k 49k 2.5B
Europarl 52.8M 57.7k 58.1k 53M

Table 1: Data set sizes (number of source-side
words) for MT tasks. LM = language model data.

5 Data and Systems

We evaluate our approach on the NIST Arabic-
English translation task, using the NIST 2006 set
for development and the NIST 2009 set for eval-
uation. The training data consists of all Modern
Standard Arabic-English parallel LDC corpora per-
mitted in the NIST evaluations (minus the restricted
time periods). Together these sets form a mixed-
domain training set containing relevant in-domain
data similar to the NIST data sets but also less rele-
vant data (e.g., the UN parallel corpora); we thus
expect data selection to work well on this task. Ad-
ditional English language modeling data was drawn
from several other LDC corpora (English Giga-
word, AQUAINT, HARD, ANC/DCI and the Amer-
ican National Corpus). Preprocessing included con-
version of the Arabic data to Buckwalter format,
tokenization, spelling normalization, and morpho-
logical segmentation using MADA (Habash et al.,
2009). Numbers and URLs were replaced with
variables. The English data was tokenized and
lowercased. Postprocessing involved recasing the
translation output, replacing variable names with
their original corresponding tokens, and normal-
izing spelling and stray punctuation marks. The
recasing model is an SMT system without reorder-
ing, trained on parallel cased and lowercased ver-
sions of the training data. The recasing model re-
mains fixed for all experiments and is not retrained

3Due to modularity, any monotone increasing transforma-
tion from mce(x) to mu(x) that ensures mu(x)≥ 0 is equivalent.

for different sizes of the training data. Evalua-
tion follows the NIST guidelines and was done by
computing BLEU scores using the official NIST
evaluation tool mteval-v13a.pl with the −c flag
for case-sensitive scoring. In addition to the NIST
task we also applied our method to the Europarl
German-English translation task. The training data
comes from the Europarl-v7 collection4; the devel-
opment set is the 2006 dev set, and the test set is the
2007 test set. The number of reference translations
is 1. The German data was preprocessed by tok-
enization, lower-casing, splitting noun compounds
and lemmatization to address morphological vari-
ation in German. The English side was tokenized
and lowercased. Evaluation was done by comput-
ing BLEU on the lowercased versions of the data.
Since test and training data for this task come from
largely the same domain we expect the training
data to be less redundant or irrelevant; nevertheless
it will be interesting to see how much different data
selection methods can contribute even to in-domain
translation tasks. The sizes of the various data sets
are shown in Table 1.

All translation systems were trained using the
GIZA++/Moses infrastructure (Koehn et al., 2007).
The translation model is a standard phrase-based
model with a maximum phrase length of 7. Since a
large number of experiments had to be run for this
study, more complex hierarchical or syntax-based
translation models were deliberately excluded in
order to limit the experimental turn-around time
needed for each experiment. The reordering model
is a hierarchical model according to (Galley and
Manning, 2008). The feature weights in the log-
linear function were optimized on the development
set BLEU score using minimum error-rate training.
The language models for the NIST task (5-grams)
were trained on three different data sources (Gi-
gaword, GALE data, and all remaining corpora),
which were then interpolated into a single model.
The interpolation weights were optimized sepa-
rately for the two different genres present in the
NIST task (newswire and web text). All models
used Witten-Bell discounting and interpolation of
higher-order and lower-order models. Language
models remain fixed for all experiments, i.e., the
language model training data is not subselected
since we were interested in the effect of data subset
selection on the translation model only. The lan-
guage model for the Europarl system was a 5-gram
trained on Europarl data only.

4http://http://www.statmt.org/europarl/
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Method Data Subset Sizes
10% 20% 30% 40%

Rand 0.3991 (± 0.004) 0.4142 (± 0.003) 0.4205 (± 0.002) 0.4220 (± 0.002)
Xent 0.4235 (± 0.004) 0.4292 (± 0.002) 0.4290 (± 0.003) 0.4292 (± 0.001)
SM-1 0.4309 (± 0.000) 0.4367 (± 0.001) 0.4330 (± 0.004) 0.4351 (± 0.002)
SM-2 0.4330∗ (± 0.001) 0.4395∗ (± 0.003) 0.4333 (± 0.001) 0.4366∗ (± 0.003)
SM-3 0.4313∗ (± 0.002) 0.4338 (± 0.002) 0.4361∗ (± 0.002) 0.4351 (± 0.003)
SM-4 0.4276 (± 0.003) 0.4303 (± 0.002) 0.4324 (± 0.002) 0.4329 (± 0.000)
SM-5 0.4285 (± 0.004) 0.4356 (± 0.002) 0.4333 (± 0.003) 0.4324 (± 0.002)
SM-6 0.4302∗ (± 0.004) 0.4334 (± 0.003) 0.4371∗ (± 0.002) 0.4349 (± 0.003)
SM-7 0.4295 (± 0.002) 0.4374 (± 0.002) 0.4344 (± 0.001) 0.4314 (± 0.0004)
SM-8 0.4304∗ (± 0.002) 0.4323 (± 0.000) 0.4358 (± 0.003) 0.4337 (± 0.001)
100% 0.4257

Table 2: BLEU scores (standard deviations) on the NIST 2009 (Ara-En) test set for random (Rand),
cross-entropy (Xent), and submodular (SM) data selection methods defined in Table 4. 100% = system
using all of the training data. Boldface numbers indicate a statistically significant improvement (p≤ 0.05)
over the median Xent system. Starred scores are also significantly better than SM-5.

Method Data Subset Sizes
10% 20% 30% 40%

Rand 0.2590 (± 0.003) 0.2652 (± 0.001) 0.2677 (± 0.002) 0.2697 (± 0.001)
Xent 0.2639 (± 0.002) 0.2687 (± 0.002) 0.2704 (± 0.001) 0.2723 (± 0.001)
SM-5 0.2653 (± 0.001) 0.2727 (± 0.000) 0.2697 (± 0.002) 0.2720 (± 0.002)
SM-6 0.2697∗ (± 0.001) 0.2700 (± 0.002) 0.2740∗ (± 0.002) 0.2723 (± 0.000)
100% 0.2651

Table 3: BLEU scores (standard deviation) on the Europarl translation task for random (Rand), cross-
entropy (Xent), and submodular (SM) data selection methods. 100% = system using all of the training
data. Boldface numbers indicate a statistically significant improvement (p≤ 0.05) over the median Xent
system. Starred scores are significantly better than SM-5.

6 Experiments

Function parameters
w(u) φ(a) mu(x) U

SM-1 ctst(u)
ctrn(u) β |u|

√
a tfidf(u,x) U src

SM-2
√

ctst(u)
ctrn(u) β |u|

√
a tfidf(u,x) U src∪U tgt

SM-3 ctst(u)
ctrn(u) β |u|

√
a c(u,x) U src

SM-4 ctst(u)
√

a tfidf(u,x) U src

SM-5 1 ln(1+a) c(u,x) U src

SM-6
√

ctst(u)
ctrn(u)

√
a tfidf(u,x) U src

SM-7 ctst(u)
ctrn(u)

√
(a) tfidf(u,x) U src∪U tgt

SM-8 ctst(u)
ctrn(u) ln(1+a) tfidf(u,x) U src∪U tgt

Table 4: Different instantiations of the general sub-
modular function in Eq. 4 (β = 1.5 in all cases).

We first trained a baseline system on 100% of
the training data. Different data selection methods
were then used to select subsets of 10%, 20%, 30%

and 40% of the data. While not reported in the
tables, above 40%, the performance slowly drops
to the 100% performance.

The first baseline selection method utilizes ran-
dom data selection, for which 3 different data sets
of the specified size were drawn randomly from
the training data. Individual systems were trained
on all random subsets of the same size, and their
scores were averaged. The second baseline is
the cross-entropy method by (Moore and Lewis,
2010). In-domain language models were trained on
the combined development and test data, and out-
of-domain models were trained on an equivalent
amount of data drawn randomly from the training
set. Sentences were ranked by the function in Eq. 5,
and the top k percent were chosen. The order of the
n-gram models was optimized on the development
set and was found to be 3. Larger model orders
resulted in worse performance, possibly due to the
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limited size of the data used for their training. Since
this method also involves random data selection,
we report the average BLEU score over 5 different
trials. For the submodular selection method, Ta-
ble 4 shows the different values that were tested for
the four components listed in Section 4. The combi-
nation was optimized on the development set. The
selection algorithm (Alg. 1) runs within a few min-
utes on our complete training set of 189M words.

Results on the NIST 2009 test set are shown in
Table 2. The scores for the submodular systems
are averages over 3 different runs of MERT tuning.
Random data subset selection (Row 1) falls short
of the baseline system using 100% of the training
data. The cross-entropy method (Row 2) surpasses
the performance of the baseline system at about
20% of the data, demonstrating that data subset
selection is a suitable technique for such mixed-
domain translation tasks. The following rows show
results for the various submodular functions shown
in Table 4. Out of these, SM-5 corresponds to the
best approach in (Biçici and Yuret, 2011). SM-6
is our own best-performing function, beating the
cross-entropy method by a statistically significant
margin (p≤ 0.05) under all conditions.5 SM-6 is
also significantly better than SM-5 in two cases.
Finally, it surpasses the performance of the all-data
system at only 10% of the training data; possibly,
even smaller training data sets could be used
but this option was not investigated. While the
bilingual submodular functions SM-2 and SM-7)
yield an improvement of up to 0.015 BLEU points
on the dev set (not shown in the table), they do not
consistently outperform the monolingual functions
on the test set. Since test set target features cannot
be used in our scenario, bilingual features are
only helpful to the extent that the development set
closely matches the test set. However, target fea-
tures should be quite helpful when selecting data
from an out-of-domain set to match an in-domain
training set (as in e.g. (Axelrod et al., 2011)). We
found no gain from the length reward β |u|.

The Europarl results (Table 3) show a similar
pattern. Although the differences in BLEU scores
are smaller overall (as expected on an in-domain
translation task), data subset selection improves
over the all-data baseline system in this case as
well. The cross-entropy method again outperforms
random data selection. On this task we only tested
our submodular function that worked best on the

5Statistical significance was measured using the paired
bootstrap resampling test of (Koehn, 2004), applied to the
systems with the median BLEU scores.

NIST task; again we find that it outperforms the
cross-entropy method. In two conditions (10% and
30%) these differences are statistically significant.
10% of the training data suffices to outperform the
all-data system, and up to a full BLEU point can be
gained on this task using 20-30% of the data and a
submodular data selection method.

7 Conclusions

We have introduced submodularity to SMT data
subset selection, generalizing previous approaches
to this problem. Our method has theoretical perfor-
mance guarantees, comes with scalable algorithms,
and significantly improves over current, widely-
used data selection methods on two different trans-
lation tasks. There are many possible extensions
to this work. One strategy would be to extend the
feature set U with features representing different
types of linguistic information - e.g., when using
a syntax-based system it might be advantageous
to select training data that covers the set of syn-
tactic structures seen in the test data. Secondly,
the selected data was test data specific. In some
contexts, it is not possible to train test data spe-
cific systems dynamically; in that case, different
submodular functions could be designed to select
a representative “summary” of the training data.
Finally, the use of submodular functions for subset
selection is applicable to other data sets that can
be represented as features or as a pairwise similar-
ity graph. Submodularity thus can be applied to a
wide range of problems in NLP beyond machine
translation.
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Abstract

We investigate how to improve bilingual
embedding which has been successfully
used as a feature in phrase-based sta-
tistical machine translation (SMT). De-
spite bilingual embedding’s success, the
contextual information, which is of criti-
cal importance to translation quality, was
ignored in previous work. To employ
the contextual information, we propose
a simple and memory-efficient model for
learning bilingual embedding, taking both
the source phrase and context around the
phrase into account. Bilingual translation
scores generated from our proposed bilin-
gual embedding model are used as features
in our SMT system. Experimental results
show that the proposed method achieves
significant improvements on large-scale
Chinese-English translation task.

1 Introduction

In Statistical Machine Translation (SMT) sys-
tem, it is difficult to determine the translation of
some phrases that have ambiguous meanings.For
example, the phrase“结果 jieguo” can be trans-
lated to either “results”, “eventually” or “fruit”,
depending on the context around it. There are two
reasons for the problem: First, the length of phrase
pairs is restricted due to the limitation of model
size and training data. Another reason is that SMT
systems often fail to use contextual information
in source sentence, therefore, phrase sense disam-
biguation highly depends on the language model
which is trained only on target corpus.

To solve this problem, we present to learn
context-sensitive bilingual semantic embedding.
Our methodology is to train a supervised model

where labels are automatically generated from
phrase-pairs. For each source phrase, the aligned
target phrase is marked as the positive label
whereas other phrases in our phrase table are
treated as negative labels. Different from previ-
ous work in bilingual embedding learning(Zou et
al., 2013; Gao et al., 2014), our framework is a
supervised model that utilizes contextual informa-
tion in source sentence as features and make use
of phrase pairs as weak labels. Bilingual seman-
tic embeddings are trained automatically from our
supervised learning task.

Our learned bilingual semantic embedding
model is used to measure the similarity of phrase
pairs which is treated as a feature in decoding. We
integrate our learned model into a phrase-based
translation system and experimental results indi-
cate that our system significantly outperform the
baseline system. On the NIST08 Chinese-English
translation task, we obtained 0.68 BLEU improve-
ment. We also test our proposed method on much
larger web dataset and obtain 0.49 BLEU im-
provement against the baseline.

2 Related Work

Using vectors to represent word meanings is
the essence of vector space models (VSM). The
representations capture words’ semantic and syn-
tactic information which can be used to measure
semantic similarities by computing distance be-
tween the vectors. Although most VSMs represent
one word with only one vector, they fail to cap-
ture homonymy and polysemy of word. Huang
et al. (2012) introduced global document context
and multiple word prototypes which distinguishes
and uses both local and global context via a joint
training objective. Much of the research focus
on the task of inducing representations for sin-
gle languages. Recently, a lot of progress has
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been made at representation learning for bilin-
gual words. Bilingual word representations have
been presented by Peirsman and Padó (2010) and
Sumita (2000). Also unsupervised algorithms
such as LDA and LSA were used by Boyd-Graber
and Resnik (2010), Tam et al. (2007) and Zhao and
Xing (2006). Zou et al. (2013) learn bilingual em-
beddings utilizes word alignments and monolin-
gual embeddings result, Le et al. (2012) and Gao et
al. (2014) used continuous vector to represent the
source language or target language of each phrase,
and then computed translation probability using
vector distance. Vulić and Moens (2013) learned
bilingual vector spaces from non-parallel data in-
duced by using a seed lexicon. However, none
of these work considered the word sense disam-
biguation problem which Carpuat and Wu (2007)
proved it is useful for SMT. In this paper, we learn
bilingual semantic embeddings for source content
and target phrase, and incorporate it into a phrase-
based SMT system to improve translation quality.

3 Context-Sensitive Bilingual Semantic
Embedding Model

We propose a simple and memory-efficient
model which embeds both contextual information
of source phrases and aligned phrases in target cor-
pus into low dimension. Our assumption is that
high frequent words are likely to have multiple
word senses; therefore, top frequent words are se-
lected in source corpus. We denote our selected
words as focused phrase. Our goal is to learn a
bilingual embedding model that can capture dis-
criminative contextual information for each fo-
cused phrase. To learn an effective context sensi-
tive bilingual embedding, we extract context fea-
tures nearby a focused phrase that will discrimi-
nate focused phrase’s target translation from other
possible candidates. Our task can be viewed as
a classification problem that each target phrase is
treated as a class. Since target phrases are usu-
ally in very high dimensional space, traditional
linear classification model is not suitable for our
problem. Therefore, we treat our problem as a
ranking problem that can handle large number of
classes and optimize the objectives with scalable
optimizer stochastic gradient descent.

3.1 Bilingual Word Embedding

We apply a linear embedding model for bilin-
gual embedding learning. Cosine similarity be-

tween bilingual embedding representation is con-
sidered as score function. The score function
should be discriminative between target phrases
and other candidate phrases. Our score function
is in the form:

f(x,y; W,U) = cos(WTx,UTy) (1)

where x is contextual feature vector in source sen-
tence, and y is the representation of target phrase,
W ∈ R|X|×k,U ∈ R|Y|×k are low rank ma-
trix. In our model, we allow y to be bag-of-words
representation. Our embedding model is memory-
efficient in that dimensionality of x and y can be
very large in practical setting. We use |X| and |Y|
means dimensionality of random variable x and y,
then traditional linear model such as max-entropy
model requires memory space of O(|X||Y|). Our
embedding model only requires O(k(|X|+ |Y|))
memory space that can handle large scale vocabu-
lary setting. To score a focused phrase and target
phrase pair with f(x,y), context features are ex-
tracted from nearby window of the focused phrase.
Target words are selected from phrase pairs. Given
a source sentence, embedding of a focused phrase
is estimated from WTx and target phrase embed-
ding can be obtained through UTy.

3.2 Context Sensitive Features

Context of a focused phrase is extracted from
nearby window, and in our experiment we choose
window size of 6 as a focused phrase’s con-
text. Features are then extracted from the focused
phrase’s context. We demonstrate our feature
extraction and label generation process from the
Chinese-to-English example in figure 1. Window
size in this example is three. Position features
and Part-Of-Speech Tagging features are extracted
from the focused phrase’s context. The word fruit

Figure 1: Feature extraction and label generation
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is the aligned phrase of our focused phrase and is
treated as positive label. The phrase results is a
randomly selected phrase from phrase table results
of结果. Note that feature window is not well de-
fined near the beginning or the end of a sentence.
To conquer this problem, we add special padding
word to the beginning and the end of a sentence to
augment sentence.

3.3 Parameter Learning

To learn model parameter W and U, we ap-
ply a ranking scheme on candidates selected from
phrase table results of each focused phrase. In par-
ticular, given a focus phrase w, aligned phrase is
treated as positive label whereas phrases extracted
from other candidates in phrase table are treated
as negative label. A max-margin loss is applied in
this ranking setting.

I(Θ) =
1
m

m∑
i=1

(δ − f(xi, yi; Θ)− f(xi, y′i; Θ))+

(2)
Where f(xi,yi) is previously defined, Θ =
{W,U} and + means max-margin hinge loss. In
our implementation, a margin of δ = 0.15 is used
during training. Objectives are minimized through
stochastic gradient descent algorithm. For each
randomly selected training example, parameters
are updated through the following form:

Θ := Θ− α∂l(Θ)
∂Θ

(3)

where Θ = {W,U}. Given an instance with pos-
itive and negative label pair {x,y,y′}, gradients
of parameter W and U are as follows:

∂l(W,U)
∂W

= qsx(WTx)T − pqs3x(UTy) (4)

∂l(W,U)
∂U

= qsy(UTy)T − pqs3y(WTx) (5)

Where we set p = (WTx)T (UTy), q = 1
||WTx||2

and s = 1
||UTy||2 . To initialize our model param-

eters with strong semantic and syntactic informa-
tion, word vectors are pre-trained independently
on source and target corpus through word2vec
(Mikolov et al., 2013). And the pre-trained word
vectors are treated as initial parameters of our
model. The learned scoring function f(x,y) will
be used during decoding phase as a feature in log-
linear model which we will describe in detail later.

4 Integrating Bilingual Semantic
Embedding into Phrase-Based SMT
Architectures

To incorporate the context-sensitive bilingual
embedding model into the state-of-the-art Phrase-
Based Translation model, we modify the decoding
so that context information is available on every
source phrase. For every phrase in a source sen-
tence, the following tasks are done at every node
in our decoder:

• Get the focused phrase as well as its context in the
source sentence.

• Extract features from the focused phrase’s context.

• Get translation candidate extracted from phrase pairs of
the focused phrase.

• Compute scores for any pair of the focused phrase and
a candidate phrase.

We get the target sub-phrase using word align-
ment of phrase, and we treat NULL as a common
target word if there is no alignment for the focused
phrase. Finally we compute the matching score for
source content and target word using bilingual se-
mantic embedding model. If there are more than
one word in the focus phrase, then we add all score
together. A penalty value will be given if target is
not in translation candidate list. For each phrase in
a given SMT input sentence, the Bilingual Seman-
tic score can be used as an additional feature in
log-linear translation model, in combination with
other typical context-independent SMT bilexicon
probabilities.

5 Experiment

Our experiments are performed using an in-
house phrase-based system with a log-linear
framework. Our system includes a phrase trans-
lation model, an n-gram language model, a lexi-
calized reordering model, a word penalty model
and a phrase penalty model, which is similar to
Moses (Koehn et al., 2007). The evaluation metric
is BLEU (Papineni et al., 2002).

5.1 Data set
We test our approach on LDC corpus first. We

just use a subset of the data available for NIST
OpenMT08 task1 . The parallel training corpus

1LDC2002E18, LDC2002L27, LDC2002T01,
LDC2003E07, LDC2003E14, LDC2004T07, LDC2005E83,
LDC2005T06, LDC2005T10, LDC2005T34, LDC2006E24,
LDC2006E26, LDC2006E34, LDC2006E86, LDC2006E92,
LDC2006E93, LDC2004T08(HK News, HK Hansards )
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Method OpenMT08 WebData
BLEU BLEU

Our Baseline 26.24 29.32
LOC 26.78** 29.62*
LOC+POS 26.82** 29.81*

Table 1: Results of lowercase BLEU on NIST08
task. LOC is the location feature and POS is
the Part-of-Speech feature * or ** equals to sig-
nificantly better than our baseline(ρ < 0.05 or
ρ < 0.01, respectively)

contains 1.5M sentence pairs after we filter with
some simple heuristic rules, such as sentence be-
ing too long or containing messy codes. As mono-
lingual corpus, we use the XinHua portion of the
English GigaWord. In monolingual corpus we fil-
ter sentence if it contain more than 100 words
or contain messy codes, Finally, we get mono-
lingual corpus containing 369M words. In order
to test our approach on a more realistic scenario,
we train our models with web data. Sentence
pairs obtained from bilingual website and com-
parable webpage. Monolingual corpus is gained
from some large website such as WiKi. There are
50M sentence pairs and 10B words monolingual
corpus.

5.2 Results and Analysis

For word alignment, we align all of the train-
ing data with GIZA++ (Och and Ney, 2003), us-
ing the grow-diag-final heuristic to improve recall.
For language model, we train a 5-gram modified
Kneser-Ney language model and use Minimum
Error Rate Training (Och, 2003) to tune the SMT.
For both OpenMT08 task and WebData task, we
use NIST06 as the tuning set, and use NIST08 as
the testing set. Our baseline system is a standard
phrase-based SMT system, and a language model
is trained with the target side of bilingual corpus.
Results on Chinese-English translation task are re-
ported in Table 1. Word position features and part-
of-speech tagging features are both useful for our
bilingual semantic embedding learning. Based on
our trained bilingual embedding model, we can
easily compute a translation score between any
bilingual phrase pair. We list some cases in table
2 to show that our bilingual embedding is context
sensitive.

Contextual features extracted from source sen-
tence are strong enough to discriminate different

Source Sentence 4 Nearest Neighbor from
bilingual embedding

只有稳定的社会环境，
投资者才才才能能能踏踏实实
地做生意。(Investors
can only get down to
business in a stable so-
cial environment)

will be, can only, will, can

在比赛与交往中，中国
残疾人显示了非凡的
体育才才才能能能。(In compe-
titions, the Chinese Dis-
abled have shown ex-
traordinary athletic abil-
ities)

skills, ability, abilities, tal-
ent

在哥国的自然环境下，
葡萄是无法正常开花
结结结果果果的。(In the natu-
ral environment of Costa
Rica, grapes do not nor-
mally yield fruit.)

fruit, outcome of, the out-
come, result

结结结果果果，东区区议会
通过一项议案。(As
a result, Eastern District
Council passed a pro-
posal)

in the end, eventually, as a
result, results

Table 2: Top ranked focused phrases based on
bilingual semantic embedding

word senses. And we also observe from the word
“结果 jieguo” that Part-Of-Speech Tagging fea-
tures are effective in discriminating target phrases.

6 Conlusion

In this paper, we proposed a context-sensitive
bilingual semantic embedding model to improve
statistical machine translation. Contextual infor-
mation is used in our model for bilingual word
sense disambiguation. We integrated the bilingual
semantic model into the phrase-based SMT sys-
tem. Experimental results show that our method
achieves significant improvements over the base-
line on large scale Chinese-English translation
task. Our model is memory-efficient and practical
for industrial usage that training can be done on
large scale data set with large number of classes.
Prediction time is also negligible with regard to
SMT decoding phase. In the future, we will ex-
plore more features to refine the model and try to
utilize contextual information in target sentences.
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Abstract

We present a novel approach to im-
prove word alignment for statistical ma-
chine translation (SMT). Conventional
word alignment methods allow discontin-
uous alignment, meaning that a source
(or target) word links to several target (or
source) words whose positions are dis-
continuous. However, we cannot extrac-
t phrase pairs from this kind of align-
ments as they break the alignment con-
sistency constraint. In this paper, we use
a weighted vote method to transform dis-
continuous word alignment to continuous
alignment, which enables SMT system-
s extract more phrase pairs. We carry
out experiments on large scale Chinese-
to-English and German-to-English trans-
lation tasks. Experimental results show
statistically significant improvements of
BLEU score in both cases over the base-
line systems. Our method produces a gain
of +1.68 BLEU on NIST OpenMT04 for
the phrase-based system, and a gain of
+1.28 BLEU on NIST OpenMT06 for the
hierarchical phrase-based system.

1 Introduction

Word alignment, indicating the correspondence
between the source and target words in bilingual
sentences, plays an important role in statistical
machine translation (SMT). Almost all of the SMT
models, not only phrase-based (Koehn et al.,
2003), but also syntax-based (Chiang, 2005; Liu
et al., 2006; Huang et al., 2006), derive translation
knowledge from large amount bilingual text anno-
tated with word alignment. Therefore, the quality

of the word alignment has big impact on the qual-
ity of translation output.

Word alignments are usually automatically ob-
tained from a large amount of bilingual training
corpus. The most widely used toolkit for word
alignment in SMT community is GIZA++ (Och
and Ney, 2004), which implements the well known
IBM models (Brown et al., 1993) and the HM-
M model (Vogel and Ney, 1996). Koehn et al.
(2003) proposed some heuristic methods (e.g. the
“grow-diag-final” method) to refine word align-
ments trained by GIZA++. Another group of word
alignment methods (Liu et al., 2005; Moore et
al., 2006; Riesa and Marcu, 2010) define feature
functions to describe word alignment. They need
manually aligned bilingual texts to train the mod-
el. However, the manually annotated data is too
expensive to be available for all languages. Al-
though these models reported high accuracy, the
GIZA++ and “grow-diag-final” method are domi-
nant in practice.

However, automatic word alignments are usu-
ally very noisy. The example in Figure 1 shows
a Chinese and English sentence pair, with word
alignment automatically trained by GIZA++ and
the “grow-diag-final” method. We find many er-
rors (dashed links) are caused by discontinuous
alignment (formal definition is described in Sec-
tion 2), a source (or target) word linking to sev-
eral discontinuous target (or source) words. This
kind of errors will result in the loss of many use-
ful phrase pairs that are learned based on bilingual
word alignment. Actually, according to the defini-
tion of phrases in a standard phrase-based model,
we cannot extract phrases from the discontinuous
alignment. The reason is that this kind of align-
ment break the alignment consistency constrain-
t (Koehn et al., 2003). For example, the Chi-
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Figure 1: An example of word alignment between a Chinese and English sentence pair. The dashed links
are incorrect alignments.

nese word “shi2”1 is aligned to the English words
“was4” and “that10”. However, these two English
words are discontinuous, and we cannot extract the
phrase pair “(shi, was)”.

In this paper, we propose a simple weighed vote
method to deal with the discontinuous word align-
ment. Firstly, we split the discontinuous align-
ment into several continuous alignment group-
s, and consider each continuous alignment group
as a bucket. Secondly, we vote for each buck-
et with alignment score measured by word trans-
lation probabilities. Finally, we select the buck-
et with the highest score as the final alignment.
The strength of our method is that we refine word
alignment without using any external knowledge,
as the word translation probabilities can be esti-
mated from the bilingual corpus with the original
word alignment.

We notice that the discontinuous alignment is
helpful for hierarchical phrase-based model, as the
model allows discontinuous phrases. Thus, for
the hierarchical phrase-based model, our method
may lost some discontinuous phrases. To solve
the problem, we keep the original discontinuous
alignment in the training corpus.

We carry out experiment with the state-of-the-
art phrase-based and hierarchical phrase-based
(Chiang, 2005) SMT systems implemented in
Moses (Koehn et al., 2007). Experiments on large
scale Chinese-to-English and German-to-English
translation tasks demonstrate significant improve-
ments in both cases over the baseline systems.

2 The Weighted Vote Method

To refine the discontinuous alignment, we propose
a weighted vote method to transform discontinu-
ous alignment to continuous alignment by discard-
ing noisy links. We split discontinuous alignment

1The subscript denotes the word position.

into several continuous groups, and select the best
group with the highest score computed by word
translation probabilities as the final alignment.

For further understanding, we first describe
some definitions. Given a word-aligned sentence
pair (F I1 , E

J
1 , A), an alignment set Aset(i) is the

set of target word positions that aligned to the
source word F ii :

Aset(i) = {j|(i, j) ∈ A} (1)

For example, in Figure 1, the alignment set
for the Chinese word “shaoshu3” is Aset(3) =
{5, 7, 8, 10}. We define an alignment s-
pan Aspan(i) as [min(Aset(i)),max(Aset(i))].
Thus, the alignment span for the Chinese word
“shaoshu3” is Aspan(3) = [5, 10].

The alignment for F ii is discontinuous if there
exist some target words in Aspan(i) linking to an-
other source word, i.e. ∃(i′, j′) ∈ A, where i′ 6= i,
j′ ∈ Aspan(i). Otherwise, the alignment is contin-
uous. According to the definition, the alignment
for “shaoshu3” is discontinuous. Because the tar-
get words “the6” and “nations9” in the alignmen-
t span link to another Chinese words “de9” and
“guojia10”, respectively. For a target word Ejj , the
definition is similar.

If the alignment for F ii is discontinuous, we
can split the alignment span Aspan(i) = [j1, j2]
into m continuous spans {[jkp , jkq ]}, where k =
1, 2, ...,m, and jkp , j

k
q ∈ [j1, j2]. Our goal is to se-

lect the best continuous span for the word F ii . To
do this, we score each continuous span with word
translation probabilities:

S([jkp , j
k
q ]) =

q∑
t=p

(Pr(Ejkt |Fi) + Pr(Fi|Ejkt ))

(2)
where,

Pr(f |e) =
count(f, e)∑
f ′ count(f ′, e)

(3)
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Figure 2: An example of weighted voted method
for selecting the best continuous alignment from
the discontinuous alignment. The heavy shading
area is selected as the final alignment.

Pr(e|f) =
count(e, f)∑
e′ count(f, e′)

(4)

The word translation probabilities can be comput-
ed from the bilingual corpus with the initial word
alignment. Finally, we select the span with the
highest score as the final alignment, and discard
all other alignments.

We illustrate our method in Figure 2, which
shows the source word “shaoshu” and its align-
ment in Figure 1. We split the alignments into
three continuous alignment spans and compute s-
core for each span. Finally, the span with highest
score (heavy shading area) is selected as the final
alignment.

We conduct the procedure for each source and
target word, the improved alignment (solid links)
is shown in Figure 1.

3 Experiment

To demonstrate the effect of the proposed method,
we use the state-of-the-art phrase-based system
and hierarchical phrase-based system implement-
ed in Moses (Koehn et al., 2007). The phrase-
based system uses continuous phrase pair as the
main translation knowledge. While the hierarchi-
cal phrase-based system uses both continuous and
discontinuous phrase pairs, which has an ability to
capture long distance phrase reordering.

we carried out experiments on two translation
tasks: the Chinese-to-English task comes from the
NIST Open MT Evaluation, and the German-to-
English task comes from the Workshop on Ma-
chine Translation (WMT) shared task.

3.1 Training
The training data we used are listed in Table 1. For
the Chinese-English task, the bilingual data are s-
elected from LDC. We used NIST MT03 as the
development set and tested our system on NIST
MT evaluation sets from 2004 to 2008. For the
German-English task, the bilingual data are from

Task Src. Words Tgt. Words
Chinese-to-English 75M 78M
German-to- English 107M 113M

Table 1: Bilingual data for our experiments.

System N04 N05 N06 N08
Baseline 34.53 33.02 30.43 23.29
Refined 36.21 33.99 31.59 24.36

Table 2: Chinese-to-English translation quality of
the phrase-based system.

System W10 W11 W12 W13
Baseline 20.71 20.26 20.52 23.26
Refined 21.46 20.95 21.11 23.77

Table 3: German-to-English translation quality of
the phrase-based system.

the shared translation task 2013. We used WMT08
as the development set and tested our system on
WMT test sets from 2010 to 2013.

The baseline systems are trained on the training
corpus with initial word alignment, which was ob-
tained via GIZA++ and “grow-diag-final” method.
Based on the initial word alignment, we comput-
ed word translation probabilities and used the pro-
posed method to obtain a refined word alignment.
Then we used the refined word alignment to train
our SMT systems.

The translation results are evaluated by case-
insensitive BLEU-4 (Papineni et al., 2002).
The feature weights of the translation system
are tuned with the standard minimum-error-rate-
training (Och, 2003) to maximize the systems
BLEU score on the development set.

3.2 Results

3.2.1 Phrase-based System
Table 2 shows Chinese-to-English translation
quality of the phrase-based system. We ob-
served that our refined method significantly out-
performed the baseline word alignment on all test
sets. The improvements are ranged from 0.97 to
1.68 BLEU%.

Table 3 shows German-to-English translation
quality of the phrase-based system. The improve-
ments are ranged from 0.51 to 0.75 BLEU%.

These results demonstrate that the proposed
method improves the translation quality for
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System N04 N05 N06 N08
Baseline 37.33 34.81 32.20 25.33
Refined 37.91 35.36 32.75 25.40

Combined 38.13 35.63 33.48 25.66

Table 4: Chinese-to-English translation quality of
the hierarchical phrase-based system.

System W10 W11 W12 W13
Baseline 21.22 19.77 20.53 23.51
Refined 21.34 20.64 20.88 23.82

Combined 21.65 20.87 21.16 24.04

Table 5: German-to-English translation quality of
the hierarchical phrase-based system.

phrase-based system. The reason is that by dis-
carding noisy word alignments from the discon-
tinuous alignments, the phrase pairs constrained
by the noisy alignments can be extracted. Thus the
system utilized more phrase pairs than the baseline
did.

3.2.2 Hierarchical Phrase-based System
The hierarchical phrase-based system utilizes dis-
continuous phrase pairs for long distance phrase
reordering. Some of the discontinuous phrase
pairs are extracted from the discontinuous align-
ments. By transforming the discontinuous align-
ments to continuous alignments, on the one hand,
we may lost some discontinuous phrase pairs. On
the other hand, we may extract additional contin-
uous and discontinuous phrase pairs as the align-
ment restriction is loose.

See Figure 3 for illustration. From the initial
alignment, we can extract a hierarchical phrase
pair “(dang X1 shi, when X1)” from the discon-
tinuous alignment of the English word “when”.
However, the hierarchical phrase pair cannot be
extracted from our refined alignment, because our
method discards the link between the Chinese
word “dang” and the English word “when”. In-
stead, we can extract another hierarchical phrase
pair “(X1 shi, when X1)”.

Does our method still obtain improvements on
the hierarchical phrase-based system? Table 4 and
Table 5 shows Chinese-to-English and German-
to-English translation quality of the hierarchical
phrase-based system, respectively. For Chinese-
to-English translation, the refined alignment ob-
tained improvements ranged from 0.07 to 0.58

�
dang

¯�
shigu

u)
fasheng

�
shi

when the accident happend

Figure 3: Example of word alignment between a
Chinese and English sentence pair. The dashed
initial link is discarded by our method.

BLEU% on the test set ( the row “Refined”).
While for German-to-English translation, the im-
provements ranged from 0.12 to 0.59 BLEU% on
the test set (the row “Refined”).

We find that the improvements are less than
that of the phrase-based system. As discussed
above, our method may lost some hierarchical
phrase pairs that extracted from the discontinuous
alignments. To solve the problem, we combine 2

the initial alignments and the refined alignments
to train the SMT system. The results are shown
in the row “Combined” in Table 4 and Table 5.
For Chinese-to-English translation, we obtained
an improvements of 1.28 BLEU% on NIST06 over
the baseline. While for German-to-English trans-
lation, the greatest improvements is 1.10 BLEU%
on WMT11.

4 Analyses

In order to further study the performance of the
proposed method, we analyze the word alignment
and the phrase table for Chinese-to-English trans-
lation. We find that our method improves the qual-
ity of word alignment. And as a result, more useful
phrase pairs are extracted from the refined word
alignment.

4.1 Word Alignment

The Chinese-to-English training corpus contains
4.5M sentence pairs. By applying GIZA++ and
the “grow-diag-final” method, we obtained initial
alignments. We find that 4.0M (accounting for
89%) sentence pairs contain discontinuous align-
ments. We then used the proposed method to dis-
card noisy links. By doing this, the total links
between words in the training corpus are reduced
from 99.6M to 78.9M, indicating that 21% links
are discarded.

2We do not perform combination for phrase-based sys-
tem, because the phrase table extracted from the initial align-
ment is a subset of that extracted from the refined alignment.
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Alignment Precision Recall AER
Initial 62.94 89.55 26.07

Refined 73.43 87.82 20.01

Table 6: Precision, Recall and AER on Chinese-
to-English alignment.

Alignment StandPhr HierPhr
Initial 29M 86M

Refined 104M 436M

Table 7: The phrase number extracted from the
initial and refined alignment for the hierarchical
phrase-based system on Chinese-to-English trans-
lation. StandPhr is standard phrase, HierPhr is hi-
erarchical phrase.

We evaluated the alignment quality on 200 sen-
tence pairs. Results are shown in Table 6. It is
observed that our method improves the precision
and decreases the AER, while keeping a high re-
call. This means that our method effectively dis-
cards noisy links in the initial word alignments.

4.2 Phrase Table

According to the standard definition of phrase in
SMT, phrase pairs cannot be extracted from the
discontinuous alignments. By transforming dis-
continuous alignments into continuous alignmen-
t, we can extract more phrase pairs. Table 7
shows the number of standard phrases and hier-
archical phrases extracted from the initial and re-
fined word alignments. We find that the number of
both phrases and hierarchical phrases grows heav-
ily. This is because that the word alignment con-
straint for phrase extraction is loosed by removing
noisy links. Although the phrase table becomes
larger, fortunately, there are some methods (John-
son et al., 2007; He et al., 2009) to prune phrase
table without hurting translation quality.

For further illustration, we compare the phrase
pairs extracted from the initial alignment and re-
fined alignment in Figure 1. From the initial align-
ments, we extracted only 3 standard phrase pairs
and no hierarchical phrase pairs (Table 8). After
discarding noisy alignments (dashed links) by us-
ing the proposed method, we extracted 21 standard
phrase pairs and 36 hierarchical phrases. Table 9
and Table 10 show selected phrase pairs and hier-
archical phrase pairs, respectively.

Chinese English
meiguo The United States
guojia nations
piao note

Table 8: Phrase pairs extracted from the initial
alignment of Figure 1.

Chinese English
shi was
fandui piao a nay note
shaoshu jige the handful of

Table 9: Selected phrase pairs extracted from the
refined alignment of Figure 1.

Chinese English
X1 zhiyi among X1

X1 de guojia nations that X1

X1 fandui piao X2 X2 X1 a nay note

Table 10: Selected hierarchical phrase pairs ex-
tracted from the refined alignment of Figure 1.

5 Conclusion and Future Work

In this paper, we proposed a novel method to im-
prove word alignment for SMT. The method re-
fines initial word alignments by transforming dis-
continuous alignment to continuous alignment. As
a result, more useful phrase pairs are extracted
from the refined word alignment. Our method is
simple and efficient, since it uses only the word
translation probabilities obtained from the initial
alignments to discard noisy links. Our method
is independent of languages and can be applied
to most SMT models. Experimental results show
significantly improvements for the state-of-the-art
phrase-based and hierarchical phrase-based sys-
tems on all Chinese-to-English and German-to-
English translation tasks.

In the future, we will refine the method by con-
sidering neighbor words and alignments when dis-
carding noisy links.
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Abstract

Generative word alignment models, such
as IBM Models, are restricted to one-
to-many alignment, and cannot explicitly
represent many-to-many relationships in
a bilingual text. The problem is par-
tially solved either by introducing heuris-
tics or by agreement constraints such that
two directional word alignments agree
with each other. In this paper, we fo-
cus on the posterior regularization frame-
work (Ganchev et al., 2010) that can force
two directional word alignment models
to agree with each other during train-
ing, and propose new constraints that can
take into account the difference between
function words and content words. Ex-
perimental results on French-to-English
and Japanese-to-English alignment tasks
show statistically significant gains over the
previous posterior regularization baseline.
We also observed gains in Japanese-to-
English translation tasks, which prove the
effectiveness of our methods under gram-
matically different language pairs.

1 Introduction

Word alignment is an important component in sta-
tistical machine translation (SMT). For instance
phrase-based SMT (Koehn et al., 2003) is based
on the concept of phrase pairs that are automat-
ically extracted from bilingual data and rely on
word alignment annotation. Similarly, the model
for hierarchical phrase-based SMT is built from
exhaustively extracted phrases that are, in turn,
heavily reliant on word alignment.

The Generative word alignment models, such as
the IBM Models (Brown et al., 1993) and HMM
(Vogel et al., 1996), are popular methods for au-
tomatically aligning bilingual texts, but are re-
stricted to represent one-to-many correspondence

of each word. To resolve this weakness, vari-
ous symmetrization methods are proposed. Och
and Ney (2003) and Koehn et al. (2003) propose
various heuristic methods to combine two direc-
tional models to represent many-to-many relation-
ships. As an alternative to heuristic methods, fil-
tering methods employ a threshold to control the
trade-off between precision and recall based on
a score estimated from the posterior probabili-
ties from two directional models. Matusov et al.
(2004) proposed arithmetic means of two mod-
els as a score for the filtering, whereas Liang et
al. (2006) reported better results using geometric
means. The joint training method (Liang et al.,
2006) enforces agreement between two directional
models. Posterior regularization (Ganchev et al.,
2010) is an alternative agreement method which
directly encodes agreement during training. DeN-
ero and Macherey (2011) and Chang et al. (2014)
also enforce agreement during decoding.

However, these agreement models do not take
into account the difference in language pairs,
which is crucial for linguistically different lan-
guage pairs, such as Japanese and English: al-
though content words may be aligned with each
other by introducing some agreement constraints,
function words are difficult to align.

We focus on the posterior regularization frame-
work and improve upon the previous work by
proposing new constraint functions that take into
account the difference in languages in terms of
content words and function words. In particular,
we differentiate between content words and func-
tion words by frequency in bilingual data, follow-
ing Setiawan et al. (2007).

Experimental results show that the proposed
methods achieved better alignment qualities on the
French-English Hansard data and the Japanese-
English Kyoto free translation task (KFTT) mea-
sured by AER and F-measure. In translation eval-
uations, we achieved statistically significant gains
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in BLEU scores in the NTCIR10.

2 Statistical word alignment with
posterior regularization framework

Given a bilingual sentence x = (xs,xt) where xs

andxt denote a source and target sentence, respec-
tively, the bilingual sentence is aligned by a many-
to-many alignment of y. We represent posterior
probabilities from two directional word alignment
models as −→p θ(−→y |x) and←−p θ(←−y |x) with each ar-
row indicating a particular direction, and use θ to
denote the parameters of the models. For instance,−→y is a subset of y for the alignment from xs to
xt under the model of p(xt,−→y |xs). In the case of
IBM Model 1, the model is represented as follows:

p(xt,−→y |xs) =
∏
i

1

|xs|+ 1
pt(x

t
i|xs−→y i). (1)

where we define the index of xt, xs as i, j(1 ≤
i ≤ |xt|, 1 ≤ j ≤ |xs|) and the posterior probabil-
ity for the word pair (xti, x

s
j) is defined as follows:

−→p (i, j|x) =
pt(x

t
i|xsj)∑

j′ pt(x
t
i|xsj′)

. (2)

Herein, we assume that the posterior probabil-
ity for wrong directional alignment is zero (i.e.,−→p (←−y |x) = 0).1 Given the two directional mod-
els, Ganchev et al. defined a symmetric feature for
each target/source position pair, i, j as follows:

φi,j(x,y) =

 +1 (−→y ⊂ y) ∩ (−→y i = j),
−1 (←−y ⊂ y) ∩ (←−y j = i),

0 otherwise.
(3)

The feature assigns 1 for the subset of word align-
ment for −→y , but assigns −1 for ←−y . As a result,
if a word pair i, j is aligned with equal posterior
probabilities in two directions, the expectation of
the feature value will be zero. Ganchev et al. de-
fined a joint model that combines two directional
models using arithmetic means:

pθ(y|x) =
1

2
−→p θ(y|x) +

1

2
←−p θ(y|x). (4)

Under the posterior regularization framework, we
instead use q that is derived by maximizing the fol-
lowing posterior probability parametrized by λ for
each bilingual data x as follows (Ganchev et al.,
2010):

qλ(y|x) =
−→p θ(−→y |x) +←−p θ(←−y |x)

2
(5)

·exp{−λ · φ(x,y)}
Z

1No alignment is represented by alignment into a special
token ”null”.

=
−→q (−→y |x)

Z−→q−→p θ(x)
+←−q (←−y |x)

Z←−q←−p θ(x)

2Z
,

Z =
1
2
(
Z−→q
−→p θ

+
Z←−q
←−pθ

),

−→q (−→y |x) = 1

Z−→q
−→p θ(−→y ,x)exp{−λ · φ(x,y)},

Z−→q =
∑
−→y

−→p θ(−→y ,x)exp{−λ · φ(x,y)},

←−q (←−y |x) = 1

Z←−q
←−p θ(←−y ,x)exp{−λ · φ(x, y)},

Z←−q =
∑
←−y

←−p θ(←−y ,x)exp{−λ · φ(x,y)},

such that Eqλ [φi,j(x,y)] = 0. In the E-step of
EM-algorithm, we employ qλ instead of pθ to ac-
cumulate fractional counts for its use in the M-
step. λ is efficiently estimated by the gradient as-
cent for each bilingual sentence x. Note that pos-
terior regularization is performed during parame-
ter estimation, and not during testing.

3 Posterior Regularization with
Frequency Constraint

The symmetric constraint method represented in
Equation (3) assumes a strong one-to-one rela-
tion for any word, and does not take into account
the divergence in language pairs. For linguisti-
cally different language pairs, such as Japanese-
English, content words may be easily aligned one-
to-one, but function words are not always aligned
together. In addition, Japanese is a pro-drop lan-
guage which can easily violate the symmetric con-
straint when proper nouns in the English side have
to be aligned with a “null” word. In addition, low
frequency words may cause unreliable estimates
for adjusting the weighing parameters λ.

In order to solve the problem, we improve
Ganchev’s symmetric constraint so that it can con-
sider the difference between content words and
function words in each language. In particular, we
follow the frequency-based idea of Setiawan et al.
(2007) that discriminates content words and func-
tion words by their frequencies. We propose con-
straint features that take into account the differ-
ence between content words and function words,
determined by a frequency threshold.

3.1 Mismatching constraint

First, we propose a mismatching constraint that
penalizes word alignment between content words
and function words by decreasing the correspond-
ing posterior probabilities.
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The constraint is represented as f2c (function to
content) constraint:

φf2c
i,j (x,y) = (6)

+1 (−→y ⊂ y) ∩ (−→y i = j) ∩ ((xti ∈ Ct ∩ xsj ∈ Fs)
∪(xti ∈ F t ∩ xsj ∈ Cs)) ∩ (δi,j(x,y) > 0),

0 (←−y ⊂ y) ∩ (←−y j = i) ∩ ((xti ∈ Ct ∩ xsj ∈ Fs)
∪(xti ∈ F t ∩ xsj ∈ Cs)) ∩ (δi,j(x,y) > 0),

0 (−→y ⊂ y) ∩ (−→y i = j) ∩ ((xti ∈ Ct ∩ xsj ∈ Fs)
∪(xti ∈ F t ∩ xsj ∈ Cs)) ∩ (δi,j(x,y) < 0),

−1 (←−y ⊂ y) ∩ (←−y j = i) ∩ ((xti ∈ Ct ∩ xsj ∈ Fs)
∪(xti ∈ F t ∩ xsj ∈ Cs)) ∩ (δi,j(x,y) < 0).

where δi,j(x,y) = −→p θ(i, j|x) − ←−p θ(i, j|x) is
the difference in the posterior probabilities be-
tween the source-to-target and the target-to-source
alignment. Cs and Ct represent content words in
the source sentence and target sentence, respec-
tively. Similarly, Fs and F t are function words
in the source and target sentence, respectively. In-
tuitively, when there exists a mismatch in content
word and function word for a word pair (i, j), the
constraint function returns a non-zero value for
the model with the highest posterior probability.
When coupled with the constraint such that the ex-
pectation of the feature value is zero, the constraint
function decreases the posterior probability of the
highest direction and discourages agreement with
each other.

Note that when this constraint is not fired, we
fall back to the constraint function in Equation (3)
for each word pair.

3.2 Matching constraint

In contrast to the mismatching constraint, our
second constraint function rewards alignment for
function to function word matching, namely f2f.
The f2f constraint function is defined as follows:

φf2f
i,j (x,y) = (7)

+1 (−→y ⊂ y) ∩ (−→y i = j)∩
(xti ∈ F t ∩ xsj ∈ Fs) ∩ (δi,j(x,y) > 0),

0 (←−y ⊂ y) ∩ (←−y j = i)∩
(xti ∈ F t ∩ xsj ∈ Fs) ∩ (δi,j(x,y) > 0),

0 (−→y ⊂ y) ∩ (−→y i = j)∩
(xti ∈ F t ∩ xsj ∈ Fs) ∩ (δi,j(x,y) < 0),

−1 (←−y ⊂ y) ∩ (←−y j = i)∩
(xti ∈ F t ∩ xsj ∈ Fs) ∩ (δi,j(x,y) < 0).

This constraint function returns a non-zero value
for a word pair (i, j) when they are function
words. As a result, the pair of function words
are encouraged to agree with each other, but not
other pairs. The content to content word matching
function c2c can be defined similarly by replac-
ing F s and F t by Cs and Ct, respectively. Like-
wise, the function to content word matching func-

tion f2c is defined by considering the matching
of content words and function words in two lan-
guages. As noted in the mismatch function, when
no constraint is fired, we fall back to Eq (3) for
each word pair.

4 Experiment

4.1 Experimental Setup
The data sets used in our experiments are the
French-English Hansard Corpus, and two data sets
for Japanese-English tasks: the Kyoto free trans-
lation task (KFTT) and NTCIR10. The Hansard
Corpus consists of parallel texts drawn from of-
ficial records of the proceedings of the Canadian
Parliament. The KFTT (Neubig, 2011) is derived
from Japanese Wikipedia articles related to Ky-
oto, which is professionally translated into En-
glish. NTCIR10 comes from patent data employed
in a machine translation shared task (Goto et al.,
2013). The statistics of these data are presented in
Table 1.

Sentences of over 40 words on both source and
target sides are removed for training alignment
models. We used a word alignment toolkit ci-
cada 2 for training the IBM Model 4 with our
proposed methods. Training is bootstrapped from
IBM Model 1, followed by HMM and IBM Model
4. When generating the final bidirectional word
alignment, we use a grow-diag-final heuristic for
the Japanese-English tasks and an intersection
heuristic in the French-English task, judged by
preliminary studies.

Following Bisazza and Federico (2012), we
automatically decide the threshold for word fre-
quency to discriminate between content words and
function words. Specifically, the threshold is de-
termined by the ratio of highly frequent words.
The threshold th is the maximum frequency that
satisfies the following equation:∑

w∈(freq(w)>th) freq(w)∑
w∈all freq(w)

> r. (8)

Here, we empirically set r = 0.5 by preliminary
studies. This method is based on the intuition that
content words and function words exist in a docu-
ment at a constant rate.

4.2 Word alignment evaluation
We measure the impact of our proposed meth-
ods on the quality of word alignment measured

2https://github.com/tarowatanabe/cicada
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Table 1: The statistics of the data sets

hansard kftt NTCIR10
French English Japanese English Japanese English

train sentence 1.13M 329.88K 2.02M
word 23.3M 19.8M 6.08M 5.91M 53.4M 49.4M
vocabulary 78.1K 57.3K 114K 138K 114K 183K

dev sentence 1.17K 2K
word 26.8K 24.3K 73K 67.3K
vocabulary 4.51K 4.78K 4.38K 5.04K

test WA sentence 447 582
word 7.76K 7.02K 14.4K 12.6K
vocabulary 1,92K 1.69K 2.57K 2.65K

TR sentence 1.16K 8.6K
word 28.5K 26.7K 334K 310K
vocabulary 4.91K 4.57K 10.4K 12.7K

Figure 1: Precision Recall graph in Hansard
French-English

Figure 2: Precision Recall graph in KFTT

Figure 3: AER in Hansard French-English Figure 4: AER in KFTT
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Table 2: Results of word alignment evaluation with the heuristics-based method (GDF)

KFTT Hansard (French-English)
method precision recall AER F precision recall AER F
symmetric 0.4595 0.5942 48.18 0.5182 0.7029 0.8816 7.29 0.7822
f2f 0.4633 0.5997 47.73 0.5227 0.7042 0.8851 7.29 0.7844
c2c 0.4606 0.5964 48.02 0.5198 0.7001 0.8816 7.34 0.7804
f2c 0.4630 0.5998 47.74 0.5226 0.7037 0.8871 7.10 0.7848

by AER and F-measure (Och and Ney, 2003).
Since there exists no distinction for sure-possible
alignments in the KFTT data, we use only sure
alignment for our evaluation, both for the French-
English and the Japanese-English tasks. Table 2
summarizes our results.

The baseline method is symmetric constraint
(Ganchev et al., 2010) shown in Table 2. The num-
bers in bold and in italics indicate the best score
and the second best score, respectively. The dif-
ferences between f2f,f2c and baseline in KFTT are
statistically significant at p < 0.05 using the sign-
test, but in hansard corpus, there exist no signifi-
cant differences between the baseline and the pro-
posed methods. In terms of F-measure, it is clear
that the f2f method is the most effective method
in KFTT, and both f2f and f2c methods exceed the
original posterior regularized model of Ganchev et
al. (2010).

We also compared these methods with filtering
methods (Liang et al., 2006), in addition to heuris-
tic methods. We plot precision/recall curves and
AER by varying the threshold between 0.1 and
0.9 with 0.1 increments. From Figures, it can be
seen that our proposed methods are superior to
the baseline in terms of both precision-recall and
AER.

4.3 Translation evaluation

Next, we performed a translation evaluation, mea-
sured by BLEU (Papineni et al., 2002). We
compared the grow-diag-final and filtering method
(Liang et al., 2006) for creating phrase tables.
The threshold for the filtering factor was set to
0.1 which was the best setting in the word align-
ment experiment in section 4.2 under KFTT. From
the English side of the training data, we trained a
word using the 5-gram model with SRILM (Stol-
cke and others, 2002). “Moses” toolkit was used
as a decoder (Koehn et al., 2007) and the model
parameters were tuned by k-best MIRA (Cherry
and Foster, 2012). In order to avoid tuning insta-
bility, we evaluated the average of five runs (Hop-
kins and May, 2011). The results are summarized

Table 3: Results of translation evaluation

KFTT NTCIR10
GDF Filtered GDF Filtered

symmetric 19.06 19.28 28.3 29.71
f2f 19.15 19.17 28.36 29.74
c2c 19.26 19.02 28.36 29.92
f2c 18.91 19.20 28.36 29.67

in Table 3. Our proposed methods achieved large
gains in NTCIR10 task with the filtered method,
but observed no gain in the KFTT with the filtered
method. In NTCIR10 task with GDF, the gain in
BLEU was smaller than that of KFTT. We cal-
culate p-values and the difference between sym-
metric and c2c (the most effective proposed con-
straint) are lower than 0.05 in kftt with GDF and
NTCIR10 with filtered method. There seems to
be no clear tendency in the improved alignment
qualities and the translation qualities, as shown in
numerous previous studies (Ganchev et al., 2008).

5 Conclusion

In this paper, we proposed new constraint func-
tions under the posterior regularization frame-
work. Our constraint functions introduce a
fine-grained agreement constraint considering the
frequency of words, a assuming that the high
frequency words correspond to function words
whereas the less frequent words may be treated
as content words, based on the previous work of
Setiawan et al. (2007). Experiments on word
alignment tasks showed better alignment quali-
ties measured by F-measure and AER on both the
Hansard task and KFTT. We also observed large
gain in BLEU, 0.2 on average, when compared
with the previous posterior regularization method
under NTCIR10 task.

As our future work, we will investigate more
precise methods for deciding function words and
content words for better alignment and translation
qualities.

157



References
Arianna Bisazza and Marcello Federico. 2012. Cutting

the long tail: Hybrid language models for translation
style adaptation. In Proceedings of the 13th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, pages 439–448. Associ-
ation for Computational Linguistics.

Peter F Brown, Vincent J Della Pietra, Stephen A Della
Pietra, and Robert L Mercer. 1993. The mathemat-
ics of statistical machine translation: Parameter esti-
mation. Computational linguistics, 19(2):263–311.

Yin-Wen Chang, Alexander M. Rush, John DeNero,
and Michael Collins. 2014. A constrained viterbi
relaxation for bidirectional word alignment. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1481–1490, Baltimore, Maryland,
June. Association for Computational Linguistics.

Colin Cherry and George Foster. 2012. Batch tun-
ing strategies for statistical machine translation. In
Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 427–436. Association for Computational Lin-
guistics.

John DeNero and Klaus Macherey. 2011. Model-
based aligner combination using dual decomposi-
tion. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 420–429, Port-
land, Oregon, USA, June. Association for Computa-
tional Linguistics.

Kuzman Ganchev, João V. Graça, and Ben Taskar.
2008. Better alignments = better translations?
In Proceedings of ACL-08: HLT, pages 986–993,
Columbus, Ohio, June. Association for Computa-
tional Linguistics.

Kuzman Ganchev, Joao Graça, Jennifer Gillenwater,
and Ben Taskar. 2010. Posterior regularization for
structured latent variable models. The Journal of
Machine Learning Research, 99:2001–2049.

Isao Goto, Ka Po Chow, Bin Lu, Eiichiro Sumita, and
Benjamin K Tsou. 2013. Overview of the patent
machine translation task at the ntcir-10 workshop.
In Proceedings of the 10th NTCIR Workshop Meet-
ing on Evaluation of Information Access Technolo-
gies: Information Retrieval, Question Answering
and Cross-Lingual Information Access, NTCIR-10.

Mark Hopkins and Jonathan May. 2011. Tuning as
ranking. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1352–1362, Edinburgh, Scotland, UK.,
July. Association for Computational Linguistics.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In
Proceedings of the 2003 Conference of the North

American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-
Volume 1, pages 48–54. Association for Computa-
tional Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Sessions,
pages 177–180. Association for Computational Lin-
guistics.

Percy Liang, Ben Taskar, and Dan Klein. 2006. Align-
ment by agreement. In Proceedings of the Human
Language Technology Conference of the NAACL,
Main Conference, pages 104–111, New York City,
USA, June. Association for Computational Linguis-
tics.

E. Matusov, R. Zens, and H. Ney. 2004. Symmetric
Word Alignments for Statistical Machine Transla-
tion. In Proceedings of COLING 2004, pages 219–
225, Geneva, Switzerland, August 23–27.

Graham Neubig. 2011. The Kyoto free translation
task. http://www.phontron.com/kftt.

Franz Josef Och and Hermann Ney. 2003. A sys-
tematic comparison of various statistical alignment
models. Computational linguistics, 29(1):19–51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Hendra Setiawan, Min-Yen Kan, and Haizhou Li.
2007. Ordering phrases with function words. In
Proceedings of the 45th annual meeting on associ-
ation for computational linguistics, pages 712–719.
Association for Computational Linguistics.

Andreas Stolcke et al. 2002. Srilm-an extensible lan-
guage modeling toolkit. In INTERSPEECH.

Stephan Vogel, Hermann Ney, and Christoph Tillmann.
1996. Hmm-based word alignment in statistical
translation. In Proceedings of the 16th conference
on Computational linguistics-Volume 2, pages 836–
841. Association for Computational Linguistics.

158



Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 159–164,
October 25-29, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

Asymmetric Features of Human Generated Translation

Sauleh Eetemadi
Michigan State University, East Lansing, MI

Microsoft Research, Redmond, WA
saulehe@microsoft.com

Kristina Toutanova
Microsoft Research

Redmond, WA
kristout@microsoft.com

Abstract

Distinct properties of translated text have
been the subject of research in linguistics
for many year (Baker, 1993). In recent
years computational methods have been
developed to empirically verify the lin-
guistic theories about translated text (Ba-
roni and Bernardini, 2006). While many
characteristics of translated text are more
apparent in comparison to the original
text, most of the prior research has fo-
cused on monolingual features of trans-
lated and original text. The contribution
of this work is introducing bilingual fea-
tures that are capable of explaining dif-
ferences in translation direction using lo-
calized linguistic phenomena at the phrase
or sentence level, rather than using mono-
lingual statistics at the document level.
We show that these bilingual features out-
perform the monolingual features used in
prior work (Kurokawa et al., 2009) for the
task of classifying translation direction.

1 Introduction

It has been known for many years in linguis-
tics that translated text has distinct patterns com-
pared to original or authored text (Baker, 1993).
The term “Translationese” is often used to refer
to the characteristics of translated text. Patterns
of Translationese can be categorized as follows
(Volansky et al., 2013):

1. Simplification: The process of translation is
often coupled with a simplification process at
several levels. For example, there tends to be
less lexical variety in translated text and rare
words are often avoided.

2. Explicitation: Translators often have to be
more explicit in their translations due to lack
of the cultural context that speakers of the

source language have. Another manifesta-
tion of this pattern is making arguments more
explicit which can be observed in the heavy
use of cohesive markers like “therefore” and
“moreover” in translated text (Koppel and
Ordan, 2011).

3. Normalization: Translated text often con-
tains more formal and repeating language.

4. Interference: A translator is likely to pro-
duce a translation that is structurally and
grammatically closer to the source text or
their native language.

In Figure 1 the size of a word in the “Translated”
section is proportional to the difference between
the frequency of the word in original and in the
translated text (Fellows, 2013). For example, it is
apparent that the word “the” is over-represented
in translated English as noted by other research
(Volansky et al., 2013). In addition, cohesive
markers are clearly more common in translated
text.

In the past few years there has been work on ma-
chine learning techniques for identifying Trans-
lationese. Standard machine learning algorithms
like SVMs (Baroni and Bernardini, 2006) and
Bayesian Logistic Regression (Koppel and Ordan,
2011) have been employed to train classifiers for
one of the following tasks:

i. Given a chunk of text in a specific language,
classify it as “Original” or “Translated”.

ii. Given a chunk of translated text, predict the
source language of the translation.

iii. Given a text chunk pair and their languages,
predict the direction of translation.

There are two stated motivations for the tasks
above: first, empirical validation of linguistic the-
ories about Translationese (Volansky et al., 2013),
and second, improving statistical machine trans-
lation by leveraging the knowledge of the trans-
lation direction in training and test data (Lember-
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Figure 1: EuroParl Word Cloud Data Visualiza-
tion (Translated vs Original) 1

sky et al., 2012a; Lembersky et al., 2013; Lember-
sky et al., 2012b). Few parallel corpora includ-
ing a customized version of EuroParl (Islam and
Mehler, 2012) and a processed version of Hansard
(Kurokawa et al., 2009) are labeled for translated
versus original text. Using these limited resources,
it has been shown that taking the translation direc-
tion into account when training a statistical ma-
chine translation system can improve translation
quality (Lembersky et al., 2013). However, im-
proving statistical machine translation using trans-
lation direction information has been limited by
several factors.

1. Limited Labeled Data: The amount of la-
beled data is limited by language and domain
and therefore by itself is not enough to make
a significant improvement in statistical ma-
chine translation.

2. Cross-Domain Scalability: Current meth-
ods of Translationese detection do not scale
across different corpora. For example, a
classifier trained on EuroParl corpus (Koehn,
2005) had in-domain accuracy of 92.7% but
out-of-domain accuracy of 64.8% (Koppel
and Ordan, 2011).

3. Text Chunk Size: The reported high accu-
racy of Translationese detection is based on
relatively large (approximately 1500 tokens)
text chunks (Koppel and Ordan, 2011). When
similar tasks are performed at the sentence

1This word cloud was created using the word-
cloud and tm R packages (Fellows, 2013) from
EuroParl parallel data annotated for translation di-
rection (Islam and Mehler, 2012) obtained from
http://www.hucompute.org/ressourcen/corpora/56.

level the accuracy drops by 15 percentage
points or more (Kurokawa et al., 2009). Fig-
ure 2 shows how detection accuracy drops
with the reduction of the input text chunk
size. Since parallel data are often available
at the sentence level or small chunks of text,
existing detection methods aren’t suitable for
this type of data.

Figure 2: Effects of Chunk Size on Translationese
Detection Accuracy2

Motivated by these limitations, in this work we
focus on improving sentence-level classification
accuracy by using non-domain-specific bilingual
features at the sentence level. In addition to im-
proving accuracy, these fine-grained features may
be better able to confirm existing theories or dis-
cover new linguistic phenomena that occur in the
translation process. We use a fast linear classi-
fier trained with online learning, Vowpal Wabbit
(Langford et al., 2007). The Hansard French-
English dataset (Kurokawa et al., 2009) is used for
training and test data in all experiments.

2 Related Work

While distinct patterns of Translationese have
been studied widely in the past, the work of Ba-
roni and Bernardini (2006) is the first to intro-
duce a computational method for detecting Trans-
lationese with high accuracy. Prior work has
shown in-domain accuracy can be very high at
the chunk-level if fully lexicalized features are
used (Volansky et al., 2013), but then the phenom-
ena learned are clearly not generalizable across
domains. For example, in Figure 1, it can be
observed that content words like “commission”,
“council” or “union” can be used effectively for
classification while they do not capture any gen-
eral linguistic phenomena and are unlikely to scale

2This is a reproduction of the results of Koppel and Or-
dan (2011) using function word frequencies as features for a
logistic regression classifier. Based on the description of how
text chunks were created, the results of the paper (92.7% ac-
curacy) are based on text chunk sizes of approximately 1500
tokens.
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Figure 3: POS Tagged Aligned Sentence Pairs

to other corpora. This is also confirmed by an
average human performance of 72.7% precision
with 82.1% recall on a similar task where the test
subjects were not familiar with the domain and
were not able to use domain-specific lexical fea-
tures (Baroni and Bernardini, 2006). A more gen-
eral feature set still with high in-domain accuracy
is POS tags with lexicalization of function words
(Baroni and Bernardini, 2006; Kurokawa et al.,
2009). We build on this feature set and explore
bilingual features.

The only work to consider features of the two
parallel chunks (one original, one translated) is the
work of Kurokawa et al. (2009). They simply used
the union of the n-gram mixed-POS3 features of
the two sides; these are monolingual features of
the original and translated text and do not look at
translation phenomena directly. Their work is also
the only work to look at sentence level detection
accuracy and report 15 percentage points drop in
accuracy when going from chunk level to sentence
level classification.

3 Bilingual Features for Translation
Direction Classification

We are interested in learning common localized
linguistic phenomena that occur during the trans-
lation process when translating in one direction
but not the other.

3.1 POS Tag MTUs
Minimal translation units (MTUs) for a sentence
pair are defined as pairs of source and target word
sets that satisfy the following conditions (Quirk
and Menezes, 2006).

1. No alignment links between distinct MTUs.
2. MTUs are not decomposable into smaller

MTUs without violating the previous rule.
We use POS tags to capture linguistic struc-

tures and MTUs to map linguistic structures of
3Only replacing content words with their POS tags while

leaving function words as is.

the two languages. To obtain POS MTUs from
a parallel corpus, first, the parallel corpus is word
aligned. Next, the source and target side of the
corpus are tagged independently. Finally, words
are replaced with their corresponding POS tag
in word-aligned sentence pairs. MTUs were ex-
tracted from the POS tagged word-aligned sen-
tence pairs from left to right and listed in source
order. Unigram, bi-gram, and higher order n-
gram features were built over this sequence of
POS MTUs. For example, for the sentence pair
in Figure 3, the following POS MTUs will be ex-
tracted: VBZ⇒D, PRP⇒(N,V), RB⇒ADV,
JJ⇒N, .⇒PUNC.

3.2 Distortion

In addition to the mapping of linguistic structures,
another interesting phenomenon is the reordering
of linguistic structures during translation. One hy-
pothesis is that when translating from a fixed-order
to a free-order language, the order of the target will
be very influenced by the source (almost mono-
tone translation), but when translating into a fixed
order language, more re-ordering is required to
ensure grammaticality of the target. To capture
this pattern we add distortion to POS Tag MTU
features. We experiment with absolute distortion
(word position difference between source and tar-
get of a link) as well as HMM distortion (word
position difference between the target of a link and
the target of the previous link). We bin the distor-
tions into three bins: “= 0”, “> 0” and “< 0”, to
reduce sparsity.

4 Experimental Setup

For the translation direction detection task ex-
plained in section 1, we use a fast linear classi-
fier trained with online learning, Vowpal Wabbit
(Langford et al., 2007). Training data and classi-
fication features are explained in section 4.1 and
4.2.
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Figure 4: Sentence level translation direction detection precision using different features with n-gram
lengths of 1 through 5.

4.1 Data

For this task we require a parallel corpus with sen-
tence pairs available in both directions (sentences
authored in language A and then translated to lan-
guage B and vice versa). While the customized
version of EuroParl (Islam and Mehler, 2012) con-
tains sentence pairs for many language pairs, none
of the language pairs have sentence pairs available
in both directions (e.g., it does contain sentences
authored in English and translated into French but
not vice versa). The Canadian Hansard corpus
on the other hand fits the requirement as it has
742,408 sentence pairs translated from French to
English and 2,203,504 sentences pairs that were
translated from English to French (Kurokawa et
al., 2009). We use the Hansard data for training
classifiers. For training the HMM word alignment
model used to define features, we use a larger set
of ten billion words of parallel text from the WMT
English-French corpus.

4.2 Preprocessing and Feature Extraction

We used a language filter4, deduplication filter5

and length ratio filter to clean the data. After fil-
tering we were left with 1,890,603 English-French
sentence pairs and 640,117 French-English sen-
tence pairs. The Stanford POS tagger (Toutanova
and Manning, 2000) was used to tag the English
and the French sides of the corpus. The HMM
alignment model (Vogel et al., 1996) trained on

4A character n-gram language model is used to detect the
language of source and target side text and filter them out if
they do not match their annotated language.

5Duplicate sentences pairs are filtered out.

WMT data was used to word-align the Hansard
corpus while replacing words with their corre-
sponding POS tags. Due to differences in word
breaking between the POS tagger tool and our
word alignment tool there were some mismatches.
For simplicity we dropped the entire sentence pair
whenever a token mismatch occurred. This left us
with 401,569 POS tag aligned sentence pairs in the
French to English direction and 1,184,702 pairs in
the other direction. We chose to create a balanced
dataset and reduced the number of English-French
sentences to 401,679 with 20,000 sentence pairs
held out for testing in each direction.

5 Results

The results of our experiments on the translation
direction detection task are listed in Table 4. We
would like to point out several results from the
table. First, when using only unigram features,
the highest accuracy is achieved by the “POS-
MTU + HMM Distortion” feature, which uses
POS minimal translation units together with dis-
tortion. The highest accuracy overall if obtained
by a “POS-MTU” trigram model, showing the ad-
vantage of bilingual features over prior work us-
ing only a union of monolingual features (repro-
duced by the “English-POS + French-POS” con-
figuration). While higher order features generally
show better in-domain accuracy, the advantage of
low-order bilingual features might be even higher
in cross-domain classification.

6For description of English POS tags see (Marcus et al.,
1993) and (Abeillé et al., 2003) for French
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POS MTU (E⇒F) FE# EF# Example
1 NNPS⇒(N,C) 336 12 quebecers(NNPS)⇒ québécoises(N) et(C) des québécois
2 IN⇒(CL,V) 69 1027 a few days ago(IN)⇒ il y(CL) a(V) quelques
3 PRP⇒(N,V) 18 663 he(PRP) is⇒ le député(N) à(V)
4 (NNP,POS)⇒A 155 28 quebec(NNP) ’s(POS) history⇒ histoire québécoises(A)
5 (FW,FW)⇒ADV 7 195 pro(FW) bono(FW) work⇒ bénévolement(ADV) travailler
6 (RB,MD)⇒V 2 112 money alone(RB) could(MD) solve⇒ argent suffirait(V) à résoudre

Table 1: POS MTU features with highest weight. FE# indicates the number of times this feature ap-
peared when translating from French to English.6

6 Analysis

An interesting aspect of this work is that it is able
to extract features that can be linguistically inter-
preted. Although linguistic analysis of these fea-
tures is outside the scope of this work, we list
POS MTU features with highest positive or neg-
ative weights in Table 1. Although the top feature,
NNPS⇒(N,C)7, in this context is originating
from a common phrase used by French speaking
members of the Canadian Parliament, québécoises
et des québécois, it does highlight an underlying
linguistic phenomenon that is not specific to the
Canadian Parliament. When translating a plural
noun from English to French it is likely that only
the masculine form of the noun appears, while if
it was authored in French with both forms of the
nouns, a single plural noun would appear in En-
glish as English doesn’t have masculine and femi-
nine forms of the word. A more complete form of
this feature would have been NNPS⇒(N,C,N),
but since word alignment models, in general, dis-
courage one-to-many alignments, the extracted
MTU only covers the first noun and conjunction.

7 Conclusion and Future Work

In this work we introduce new features for transla-
tion direction detection that leverage word align-
ment, source POS and target POS in the form
of POS MTUs. POS MTUs are a powerful tool
for capturing linguistic interactions between lan-
guages during the translation process. Since POS
MTUs are not lexical features they are more likely
to scale across corpora and domains compared to
lexicalized features. Although most of the high
weight POS MTU features used in classification
(Table 1) are not corpus specific, unfortunately,
due to lack of training data in multiple domains,
experiments were not run to validate this claim.
In future work, we intend to obtain training data

7NNPS: Plural Noun, N: Noun, C:Conjunction

from multiple domains that enables us to verify
cross-domain scalability of POS-MTUs. In addi-
tion, observing linguistic phenomena that occur in
one translation direction but not the other can be
very informative in improving statistical machine
translation quality. Another future direction for
this work is leveraging sentence level translation
direction detection to improve statistical machine
translation output quality. Finally, further investi-
gation of the linguistic interpretation of individual
feature that are most discriminating between op-
posite translation directions can lead to discovery
of new linguistic phenomena that occur during the
translation process.
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Anne Abeillé, editor, Treebanks, volume 20 of Text,
Speech and Language Technology, pages 165–187.
Springer Netherlands.

Mona Baker. 1993. Corpus linguistics and transla-
tion studies: Implications and applications. Text and
technology: in honour of John Sinclair, 233:250.

Marco Baroni and Silvia Bernardini. 2006. A new
approach to the study of translationese: Machine-
learning the difference between original and trans-
lated text. Literary and Linguistic Computing,
21(3):259–274.

Ian Fellows, 2013. wordcloud: Word Clouds. R pack-
age version 2.4.

163



Zahurul Islam and Alexander Mehler. 2012. Cus-
tomization of the europarl corpus for translation
studies. In LREC, page 2505–2510.

Philipp Koehn. 2005. Europarl: A Parallel Corpus
for Statistical Machine Translation. In Conference
Proceedings: the tenth Machine Translation Sum-
mit, pages 79–86, Phuket, Thailand. AAMT, AAMT.

Moshe Koppel and Noam Ordan. 2011. Translationese
and its dialects. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume
1, page 1318–1326. Association for Computational
Linguistics.

David Kurokawa, Cyril Goutte, and Pierre Isabelle.
2009. Automatic detection of translated text and
its impact on machine translation. Proceedings. MT
Summit XII, The twelfth Machine Translation Sum-
mit International Association for Machine Transla-
tion hosted by the Association for Machine Transla-
tion in the Americas.

J Langford, L Li, and A Strehl, 2007. Vowpal wabbit
online learning project.

Gennadi Lembersky, Noam Ordan, and Shuly Wint-
ner. 2012a. Adapting translation models to trans-
lationese improves SMT. In Proceedings of the 13th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics, page 255–265.
Association for Computational Linguistics.

Gennadi Lembersky, Noam Ordan, and Shuly Wint-
ner. 2012b. Language models for machine trans-
lation: Original vs. translated texts. Computational
Linguistics, 38(4):799–825.

Gennadi Lembersky, Noam Ordan, and Shuly Wintner.
2013. Improving statistical machine translation by
adapting translation models to translationese.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large anno-
tated corpus of english: The penn treebank. Com-
put. Linguist., 19(2):313–330, June.

Chris Quirk and Arul Menezes. 2006. Do we need
phrases?: Challenging the conventional wisdom in
statistical machine translation. In Proceedings of
the Main Conference on Human Language Technol-
ogy Conference of the North American Chapter of
the Association of Computational Linguistics, HLT-
NAACL ’06, pages 9–16, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Kristina Toutanova and Christopher D. Manning.
2000. Enriching the knowledge sources used in a
maximum entropy part-of-speech tagger. In Pro-
ceedings of the 2000 Joint SIGDAT Conference on
Empirical Methods in Natural Language Process-
ing and Very Large Corpora: Held in Conjunction
with the 38th Annual Meeting of the Association
for Computational Linguistics - Volume 13, EMNLP
’00, pages 63–70, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Stephan Vogel, Hermann Ney, and Christoph Tillmann.
1996. Hmm-based word alignment in statistical
translation. In Proceedings of the 16th conference
on Computational linguistics-Volume 2, pages 836–
841. Association for Computational Linguistics.

Vered Volansky, Noam Ordan, and Shuly Wintner.
2013. On the features of translationese. Literary
and Linguistic Computing, page fqt031.

164



Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 165–171,
October 25-29, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

Syntax-Augmented Machine Translation using Syntax-Label Clustering

Hideya Mino, Taro Watanabe and Eiichiro Sumita
National Institute of Information and Communications Technology

3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto, JAPAN
{hideya.mino, taro.watanabe, eiichiro.sumita}@nict.go.jp

Abstract

Recently, syntactic information has helped
significantly to improve statistical ma-
chine translation. However, the use of syn-
tactic information may have a negative im-
pact on the speed of translation because of
the large number of rules, especially when
syntax labels are projected from a parser in
syntax-augmented machine translation. In
this paper, we propose a syntax-label clus-
tering method that uses an exchange algo-
rithm in which syntax labels are clustered
together to reduce the number of rules.
The proposed method achieves clustering
by directly maximizing the likelihood of
synchronous rules, whereas previous work
considered only the similarity of proba-
bilistic distributions of labels. We tested
the proposed method on Japanese-English
and Chinese-English translation tasks and
found order-of-magnitude higher cluster-
ing speeds for reducing labels and gains
in translation quality compared with pre-
vious clustering method.

1 Introduction

In recent years, statistical machine translation
(SMT) models that use syntactic information have
received significant research attention. These
models use syntactic information on the source
side (Liu et al., 2006; Mylonakis and Sima’an,
2011), the target side (Galley et al., 2006; Huang
and Knight, 2006) or both sides (Chiang, 2010;
Hanneman and Lavie, 2013) produce syntactically
correct translations. Zollmann and Venugopal
(2006) proposed syntax-augmented MT (SAMT),
which is a MT system that uses syntax labels of a
parser. The SAMT grammar directly encodes syn-
tactic information into the synchronous context-
free grammar (SCFG) of Hiero (Chiang, 2007),

which relies on two nonterminal labels. One prob-
lem in adding syntax labels to Hiero-style rules
is that only partial phrases are assigned labels.
It is common practice to extend labels by us-
ing the idea of combinatory categorial grammar
(CCG) (Steedman, 2000) on the problem. Al-
though this extended syntactical information may
improve the coverage of rules and syntactic cor-
rectness in translation, the increased grammar size
causes serious speed and data-sparseness prob-
lems. To address these problems, Hanneman and
Lavie (2013) coarsen syntactic labels using the
similarity of the probabilistic distributions of la-
bels in synchronous rules and showed that perfor-
mance improved.

In the present work, we follow the idea of label-
set coarsening and propose a new method to group
syntax labels. First, as an optimization criterion,
we use the logarithm of the likelihood of syn-
chronous rules instead of the similarity of prob-
abilistic distributions of syntax labels. Second,
we use exchange clustering (Uszkoreit and Brants,
2008), which is faster than the agglomerative-
clustering algorithm used in the previous work.
We tested our proposed method on Japanese-
English and Chinese-English translation tasks and
observed gains comparable to those of previous
work with similar reductions in grammar size.

2 Syntax-Augmented Machine
Translation

SAMT is an instance of SCFG G, which can be
formally defined as

G = (N , S, Tσ, Tτ ,R)

where N is a set of nonterminals, S ∈ N is a
start label, Tσ and Tτ are the source- and target-
side terminals, andR is a set of synchronous rules.
Each synchronous rule in R takes the form

X → ⟨α, β,∼⟩
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where X ∈ N is a nonterminal, α ∈ (N ∪ Tσ)∗
is a sequence of nonterminals or source-side ter-
minals, and β ∈ (N ∪ Tτ )∗ is a sequence of
nonterminals or target-side terminals. The num-
ber #NT (α) of nonterminals in α is equal to
the number #NT (β) of nonterminals in β, and
∼: {1, ..., #NT (α)} → {1, ..., #NT (β)} is a
one-to-one mapping from nonterminals in α to
nonterminals in β. For each synchronous rule, a
nonnegative real-value weight w(X → ⟨α, β,∼⟩)
is assigned and the sum of the weights of all rules
sharing the same left-hand side in a grammar is
unity.

Hierarchical phrase-based SMT (Hiero) (Chi-
ang, 2007) translates by using synchronous rules
that only have two nonterminal labels X and S but
have no linguistic information. SAMT augments
the Hiero-style rules with syntax labels from a
parser and extends these labels based on CCG.
Although the use of extended syntax labels may
increase the coverage of rules and improve the
potential for syntactically correct translations, the
growth of the nonterminal symbols significantly
affects the speed of decoding and causes a serious
data-sparseness problem.

To address these problems, Hanneman and
Lavie (2013) proposed a label-collapsing algo-
rithm, in which syntax labels are clustered by us-
ing the similarity of the probabilistic distributions
of clustered labels in synchronous rules. First,
Hanneman and Lavie defined the label-alignment
distribution as

P (s|t) =
#(s, t)
#(t)

(1)

where Nσ and Nτ are the source- and target-side
nonterminals in synchronous rules, s ∈ Nσ and
t ∈ Nτ are syntax labels from the source and tar-
get sides, #(s, t) denotes the number of left-hand-
side label pairs, and #(t) denotes the number of
target-side labels. Second, for each target-side la-
bel pair (ti, tj), we calculate the total distance d of
the absolute differences in the likelihood of labels
that are aligned to a source-side label s:

d(ti, tj) =
∑

s∈Nσ

|P (s|ti)− P (s|tj)| (2)

Next, the closest syntax-label pair of t̂ and t̂′ is
combined into a new single label. The agglomera-
tive clustering is applied iteratively until the num-
ber of the syntax labels reaches a given value.

The clustering of Hanneman and Lavie proved
successful in decreasing the grammar size and pro-
viding a statistically significant improvement in
translation quality. However, their method relies
on an agglomerative clustering with a worst-case
time complexity of O(|N |2 log |N |). Also, clus-
tering based on label distributions does not al-
ways imply higher-quality rules, because it does
not consider the interactions of the nonterminals
on the left-hand side and the right-hand side in
each synchronous rule.

3 Syntax-Label Clustering

As an alternative to using the similarity of proba-
bilistic distributions as a criterion for syntax-label
clustering, we propose a clustering method based
on the maximum likelihood of the synchronous
rules in a training data D. We uses the idea
of maximizing the Bayesian posterior probability
P (M |D) of the overall model structure M given
data D (Stolcke and Omohundro, 1994). While
their goal is to maximize the posterior

P (M |D) ∝ P (M)P (D|M) (3)

we omit the prior term P (M) and directly max-
imize the P (D|M). A model M is a clustering
structure1 . The synchronous rule in the data D
for SAMT with target-side syntax labels is repre-
sented as

X → ⟨a1Y
(1)a2Z

(2)a3, b1Y
(1)b2Z

(2)b3⟩ (4)

where a1, a2, a3 and b1, b2, b3 are the source- and
target-side terminals, respectively X , Y , Z are
nonterminal syntax labels, and the superscript
number indicates alignment between the source-
and target-side nonterminals. Using Equation (4)
we maximize the posterior probability P (D|M)
which we define as the probability of right-hand
side given the syntax label X of the left-hand side
rule in the training data as follows:∑

X→⟨α,β,∼⟩∈D
log Pr(⟨α, β,∼⟩|X) (5)

For the sake of simplicity, we assume that the
generative probability for each rule does not de-
pend on the existence of terminal symbols and that
the reordering in the target side may be ignored.
Therefore, Equation (5) simplifies to∑
X→⟨a1Y (1)a2Z(2)a3,b1Y (1)b2Z(2)b3⟩

log p(Y, Z|X) (6)

1P (M) is reflected by the number of clusters.
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3.1 Optimization Criterion
The generative probability in each rule of the form
of Equation (6) can be approximated by clustering
nonterminal symbols as follows:

p(Y, Z|X) ≈ p(Y |c(Y )) · p(Z|c(Z))
·p(c(Y ), c(Z)|c(X)) (7)

where we map a syntax label X to its equivalence
cluster c(X). This can be regarded as the cluster-
ing criterion usually used in a class-based n-gram
language model (Brown et al., 1992). If each label
on the right-hand side of a synchronous rule (4) is
independent of each other, we can factor the joint
model as follows:

p(Y, Z|X) ≈ p(Y |c(Y )) · p(Z|c(Z))
·p(c(Y )|c(X))·p(c(Z)|c(X)) (8)

We introduce the predictive idea of Uszkoreit and
Brants (2008) to Equation (8), which doesn’t con-
dition on the clustered label c(X), but directly on
the syntax label X:

p(Y, Z|X) ≈ p(Y |c(Y )) · p(Z|c(Z))
·p(c(Y )|X) · p(c(Z)|X) (9)

The objective in Equation (9) is represented using
the frequency in the training data as

N(Y )
N(c(Y ))

·N(X, c(Y ))
N(X)

· N(Z)
N(c(Z))

·N(X, c(Z))
N(X)

(10)

where N(X) and N(c(X)) denote the frequency2

of X and c(X), and N(X, K) denotes the fre-
quency of cluster K in the right-hand side of a
synchronous rule whose left-hand side syntax la-
bel is X . By replacing the rule probabilities in
Equation (9) with Equation (10) and plugging the
result into Equation (6), our objective becomes

F (C) =
∑

Y ∈N
N(Y ) · log

N(Y )
N(c(Y ))

+
∑

X∈N ,K∈C
N(X,K) · log

N(X, K)
N(X)

=
∑

Y ∈N
N(Y ) · log N(Y )

−
∑

Y ∈N
N(Y ) · log N(c(Y ))

+
∑

X∈N ,K∈C
N(X,K) · log N(X,K)

−
∑

X∈N ,K∈C
N(X,K) · log N(X)(11)

2We use a fractional count (Chiang, 2007) which adds up
to one as a frequency.

start with the initial mapping (label X → c(X))
compute objective function F (C)

for each label X do
remove label X from c(X)
for each cluster K do

move label X tentatively to cluster K
compute F (C) for this exchange

move label X to cluster with maximum F (C)
do until the cluster mapping does not change

Table 1: Outline of syntax-label clustering method

where C denotes all clusters and N denotes all
syntax labels. For Equation (11), the last summa-
tion is equivalent to the sum of the occurrences
of all syntax labels, and canceled out by the first
summation. K in the third summation consid-
ers clusters in a synchronous rule whose left-hand
side label is X , and we let ch(X) denote a set
of those clusters. The second summation equals∑

K∈C N(K) · log N(K). As a result, Equation
(11) simplifies to

F (C) =
∑

X∈N ,K∈ch(X)

N(X, K) · log N(X,K)

−
∑
K∈C

N(K) · log N(K) (12)

3.2 Exchange Clustering

We used an exchange clustering algorithm
(Uszkoreit and Brants, 2008) which was proven
to be very efficient in word clustering with a vo-
cabulary of over 1 million words. The exchange
clustering for words begins with the initial cluster-
ing of words and greedily exchanges words from
one cluster to another such that an optimization
criterion is maximized after the move. While ag-
glomerative clustering requires recalculation for
all pair-wise distances between words, exchange
clustering only demands computing the difference
of the objective for the word pair involved in a par-
ticular movement. We applied this exchange clus-
tering to syntax-label clustering. Table 1 shows
the outline. For initial clustering, we partitioned
all the syntax labels into clusters according to the
frequency of syntax labels in synchronous rules. If
remove and move are as computationally inten-
sive as computing the change in F (C) in Equation
(12), then the time complexity of remove and
move is O(K) (Martin et al., 1998), where K is
the number of clusters. Since the remove proce-
dure is called once for each label and, for a given
label, the move procedure is called K − 1 times
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Data Lang Training Development Test
sent src-tokens tgt-tokens sent tgt-tokens sent tgt-tokens

IWSLT07 J to E 40 K 483 K 369 K 500 7.4 K 489 3.7 K
FBIS C to E 302 K 2.7 M 3.4 M 1,664 47 K 919 30 K

NIST08 1 M 15 M 17 M

Table 2: Data sets: The “sent” column indicates the number of sentences. The “src-tokens” and “tgt-
tokens” columns indicate the number of words in the source- and the target-side sentences.

to find the maximum F (C), the worst-time com-
plexity for one iteration of the syntax-label clus-
tering is O(|N |K2). The exchange procedure is
continued until the cluster mapping is stable or the
number of iterations reaches a threshold value of
100.

4 Experiments

4.1 Data

We conducted experiments on Japanese-English
(ja-en) and Chinese-English (zh-en) translation
tasks. The ja-en data comes from IWSLT07
(Fordyce, 2007) in a spoken travel domain. The
tuning set has seven English references and the test
set has six English references. For zh-en data we
prepared two kind of data. The one is extracted
from FBIS3, which is a collection of news arti-
cles. The other is 1 M sentences extracted ron-
domly from NIST Open MT 2008 task (NIST08).
We use the NIST Open MT 2006 for tuning and
the MT 2003 for testing. The tuning and test sets
have four English references. Table 2 shows the
details for each corpus. Each corpus is tokenized,
put in lower-case, and sentences with over 40 to-
kens on either side are removed from the training
data. We use KyTea (Neubig et al., 2011) to to-
kenize the Japanese data and Stanford Word Seg-
menter (Tseng et al., 2005) to tokenize the Chinese
data. We parse the English data with the Berkeley
parser (Petrov and Klein, 2007).

4.2 Experiment design

We did experiments with the SAMT (Zollmann
and Venugopal, 2006) model with the Moses
(Koehn et al., 2007). For the SAMT model, we
conducted experiments with two label sets. One
is extracted from the phrase structure parses and
the other is extended with CCG4. We applied the
proposed method (+clustering) and the baseline
method (+coarsening), which uses the Hanneman

3LDC2003E14
4Using the relax-parse with option SAMT 4 for IWSLT07

and FBIS and SAMT 2 for NIST08 in the Moses

Label set Label Rule F(C) SD
parse 63 0.3 K - -
CCG 3,147 4.2 M - -
+ coarsening 80 2.4 M -3.8 e+08 249
+ clustering 80 3.8 M -7.2 e+07 73

Table 3: SAMT grammars on ja-en experiments

Label set Label Rule F(C) SD
FBIS
parse 70 2.1 M - -
CCG 5,460 60 M - -
+ coarsening 80 32 M -1.5 e+10 526
+ clustering 80 38 M -7.9 e+09 154

NIST08
parse 70 12 M - -
CCG 7,328 120 M - -
+ clustering 80 100 M -2.6 e+10 218

Table 4: SAMT grammars on zh-en experiments

label-collapsing algorithm described in Section 2,
for syntax-label clustering to the SAMT models
with CCG. The number of clusters for each clus-
tering was set to 80. The language models were
built using SRILM Toolkits (Stolcke, 2002). The
language model with the IWSLT07 is a 5-gram
model trained on the training data, and the lan-
guage model with the FBIS and NIST08 is a 5-
gram model trained on the Xinhua portion of En-
glish GigaWord. For word alignments, we used
MGIZA++ (Gao and Vogel, 2008). To tune the
weights for BLEU (Papineni et al., 2002), we used
the n-best batch MIRA (Cherry and Foster, 2012).

5 Results and analysis

Tables 3 and 4 present the details of SAMT gram-
mars with each label set learned by the exper-
iments using the IWSLT07 (ja-en), FBIS and
NIST08 (zh-en), which include the number of syn-
tax labels and synchronous rules, the values of the
objective (F (C)), and the standard deviation (SD)
of the number of labels assigned to each cluster.
For NIST08 we applied only the + clustering be-
cause the + coarsening needs a huge amount of
computation time. Table 5 shows the differences
between the BLEU score and the rule number for
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each cluster number when using the IWSLT07
dataset.

Since the +clustering maximizes the likelihood
of synchronous rules, it can introduce appropriate
rules adapted to training data given a fixed number
of clusters. For each experiment, SAMT gram-
mars with the +clustering have a greater number
of rules than with the +coarsening and, as shown
in Table 5, the number of synchronous rules with
+clustering increase with the number of clusters.
For +clustering with eight clusters and +coars-
ening with 80 clusters, which have almost 2.4M
rules, the BLEU score of +clustering with eight
clusters is higher. Also, the SD of the number
of labels, which indicates the balance of the num-
ber of labels among clusters, with +clustering is
smaller than with +coarsening. These results sug-
gest that +clustering maintain a large-scale varia-
tion of synchronous rules for high performance by
balancing the number of labels in each cluster.

The number of synchronous rules grows as you
progress from +coarsening to +clustering and fi-
nally to raw label with CCG. To confirm the ef-
fect of the number of rules, we measured the de-
coding time per sentence for translating the test
set by taking the average of ten runs with FBIS
corpus. +coarsening takes 0.14 s and +clustering
takes 0.16 s while raw label with CCG takes 0.37s.
Thus the increase in the number of synchronous
rules adversely affects the decoding speed.

Table 6 presents the results for the experiments5

using ja-en and zh-en with the BLEU metric.
SAMT with parse have the lowest BLEU scores.
It appears that the linguistic information of the
raw syntax labels of the phrase structure parses
is not enough to improve the translation perfor-
mance. Hiero has the higher BLEU score than
SAMT with CCG on zh-en. This is likely due to
the low accuracy of the parses, on which SAMT
relies while Hiero doesn’t. SAMT with + clus-
tering have the higher BLEU score than raw label
with CCG. For SAMT with CCG using IWSLT07
and FBIS, though the statistical significance tests
were not significant when p < 0.05, +clustering
have the higher BLEU scores than +coarsening.
For these results, the performance of +clustering
is comparable to that of +coarsening. For the
complexity of both clustering algorithm, though it
is difficult to evaluate directly because the speed

5As another baseline, we also used Phrase-based SMT
(Koehn et al., 2003) and Hiero (Chiang, 2007).

+clustering +coarsening
Cluster 80 40 8 4 80

BLEU 50.21 49.49 49.96 50.25 49.54
Rule 3.8 M 3.5 M 2.4 M 2.2 M 2.4 M

Table 5: BLEU score and rule number for each
cluster number using IWSLT07

ja-en zh-en
Model parse CCG parse CCG parse CCG

SAMT 42.58 48.77 23.66 26.97 24.67 27.28
+coarsening - 49.54 - 27.12 - -
+clustering - 50.21 - 27.47 - 27.29

Hiero 48.91 28.31 27.62
PB-SMT 49.14 26.88 26.71

Table 6: BLEU scores on each experiments

depends on how each algorithm is implemented,
+clustering is an order of magnitude faster than
+coarsening. For the clustering experiment that
groups 5460 raw labels with CCG into 80 clus-
ters using FBIS corpus, +coarsening takes about
1 week whereas +clustering takes about 10 min-
utes.

6 Conclusion

In this paper, we propose syntax-label clustering
for SAMT, which uses syntax-label information to
generate syntactically correct translations. One of
the problems of SAMT is the large grammar size
when a CCG-style extended label set is used in the
grammar, which make decoding slower. We clus-
ter syntax labels with a very fast exchange algo-
rithm in which the generative probabilities of syn-
chronous rules are maximized. We demonstrate
the effectiveness of the proposed method by us-
ing it to translate Japanese-English and Chinese-
English tasks and measuring the decoding speed,
the accuracy and the clustering speed. Future work
involves improving the optimization criterion. We
expect to make a new objective that includes the
terminal symbols and the reordering of nontermi-
nal symbols that were ignored in this work. An-
other interesting direction is to determine the ap-
propriate number of clusters for each corpus and
the initialization method for clustering.
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Abstract

Automatic metrics are widely used in ma-
chine translation as a substitute for hu-
man assessment. With the introduction
of any new metric comes the question of
just how well that metric mimics human
assessment of translation quality. This is
often measured by correlation with hu-
man judgment. Significance tests are gen-
erally not used to establish whether im-
provements over existing methods such as
BLEU are statistically significant or have
occurred simply by chance, however. In
this paper, we introduce a significance test
for comparing correlations of two metrics,
along with an open-source implementation
of the test. When applied to a range of
metrics across seven language pairs, tests
show that for a high proportion of metrics,
there is insufficient evidence to conclude
significant improvement over BLEU.

1 Introduction

Within machine translation (MT), efforts are on-
going to improve evaluation metrics and find bet-
ter ways to automatically assess translation qual-
ity. The process of validating a new metric in-
volves demonstration that it correlates better with
human judgment than a standard metric such as
BLEU (Papineni et al., 2001). However, although
it is standard practice in MT evaluation to mea-
sure increases in automatic metric scores with sig-
nificance tests (Germann, 2003; Och, 2003; Ku-
mar and Byrne, 2004; Koehn, 2004; Riezler and
Maxwell, 2005; Graham et al., 2014), this has
not been the case in papers proposing new met-
rics. Thus it is possible that some reported im-
provements in correlation with human judgment
are attributable to chance rather than a systematic
improvement.

In this paper, we motivate and introduce a novel
significance test to assess the statistical signifi-
cance of differences in correlation with human
judgment for pairs of automatic metrics. We ap-
ply tests to the WMT-12 shared metrics task to
compare each of the participating methods, and
find that for a high proportion of metrics, there is
not enough evidence to conclude that they signifi-
cantly outperform BLEU.

2 Correlation with Human Judgment

A common means of assessing automatic MT
evaluation metrics is Spearman’s rank correlation
with human judgments (Melamed et al., 2003),
which measures the relative degree of monotonic-
ity between the metric and human scores in the
range [−1, 1]. The standard justification for cal-
culating correlations over ranks rather than raw
scores is to: (a) reduce anomalies due to absolute
score differences; and (b) focus evaluation on what
is generally the primary area of interest, namely
the ranking of systems/translations.

An alternative means of evaluation is Pearson’s
correlation, which measures the linear correlation
between a metric and human scores (Leusch et al.,
2003). Debate on the relative merits of Spear-
man’s and Pearson’s correlation for the evaluation
of automatic metrics is ongoing, but there is an in-
creasing trend towards Pearson’s correlation, e.g.
in the recent WMT-14 shared metrics task.

Figure 1 presents the system-level results for
two evaluation metrics – AMBER (Chen et al.,
2012) and TERRORCAT (Fishel et al., 2012)
– over the WMT-12 Spanish-to-English metrics
task. These two metrics achieved the joint-highest
rank correlation (ρ = 0.965) for the task, but dif-
fer greatly in terms of Pearson’s correlation (r =
0.881 vs. 0.971, resp.). The largest contributor to
this artifact is the system with the lowest human
score, represented by the leftmost point in both
plots.
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Figure 1: Scatter plot of human and automatic scores of WMT-12 Spanish-to-English systems for two
MT evaluation metrics (AMBER and TERRORCAT)

Consistent with the WMT-14 metrics shared
task, we argue that Pearson’s correlation is more
sensitive than Spearman’s correlation. There is
still the question, however, of whether an observed
difference in Pearson’s r is statistically significant,
which we address in the next section.

3 Significance Testing

Evaluation of a new automatic metric, Mnew,
commonly takes the form of quantifying the cor-
relation between the new metric and human judg-
ment, r(Mnew, H), and contrasting it with the cor-
relation for some baseline metric, r(Mbase, H). It
is very rare in the MT literature for significance
testing to be performed in such cases, however.
We introduce a statistical test which can be used
for this purpose, and apply the test to the evalua-
tion of metrics participating in the WMT-12 metric
evaluation task.

At first gloss, it might seem reasonable to per-
form significance testing in the following man-
ner when an increase in correlation with human
assessment is observed: apply a significance test
separately to the correlation of each metric with
human judgment, with the hope that the newly
proposed metric will achieve a significant correla-
tion where the baseline metric does not. However,
besides the fact that the correlation between al-
most any document-level metric and human judg-
ment will generally be significantly greater than
zero, the logic here is flawed: the fact that
one correlation is significantly higher than zero

(r(Mnew, H)) and that of another is not, does not
necessarily mean that the difference between the
two correlations is significant. Instead, a specific
test should be applied to the difference in corre-
lations on the data. For this same reason, con-
fidence intervals for individual correlations with
human judgment are also not particularly mean-
ingful.

In psychological studies, it is often the case that
samples that data are drawn from are independent,
and differences in correlations are computed on in-
dependent data sets. In such cases, the Fisher r
to z transformation is applied to test for signifi-
cant differences in correlations. In the case of au-
tomatic metric evaluation, however, the data sets
used are almost never independent. This means
that if r(Mbase, H) and r(Mnew, H) are both> 0,
the correlation between the metric scores them-
selves, r(Mbase,Mnew), must also be > 0. The
strength of this correlation, directly between pairs
of metrics, should be taken into account using a
significance test of the difference in correlation be-
tween r(Mbase, H) and r(Mnew, H).

3.1 Correlated Correlations

Correlations computed for two separate automatic
metrics on the same data set are not independent,
and for this reason in order to test the difference in
correlation between them, the degree to which the
pair of metrics correlate with each other should be
taken into account. The Williams test (Williams,
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Figure 2: (a) Pearson’s correlation between pairs of automatic metrics; and (b) p-value of Williams
significance tests, where a colored cell in row i (named on y-axis), col j indicates that metric i (named
on x-axis) correlates significantly higher with human judgment than metric j; all results are based on the
WMT-12 Spanish-to-English data set.

1959)1 evaluates significance in a difference in de-
pendent correlations (Steiger, 1980). It is formu-
lated as follows, as a test of whether the population
correlation betweenX1 andX3 equals the popula-
tion correlation between X2 and X3:

t(n− 3) =
(r13 − r23)

√
(n− 1)(1 + r12)√

2K (n−1)
(n−3) + (r23+r13)2

4 (1− r12)3
,

where rij is the Pearson correlation between Xi

and Xj , n is the size of the population, and:

K = 1− r12
2 − r13

2 − r23
2 + 2r12r13r23

The Williams test is more powerful than the
equivalent for independent samples (Fisher r to
z), as it takes the correlations between X1 and
X2 (metric scores) into account. All else being
equal, the higher the correlation between the met-
ric scores, the greater the statistical power of the
test.

4 Evaluation and Discussion

Figure 2a is a heatmap of the degree to which au-
tomatic metrics correlate with one another when
computed on the same data set, in the form of the
Pearson’s correlation between each pair of met-
rics that participated in the WMT-12 metrics task
for Spanish-to-English evaluation. Metrics are or-
dered in all tables from highest to lowest correla-
tion with human assessment. In addition, for the

1Also sometimes referred to as the Hotelling–Williams
test.

purposes of significance testing, we take the abso-
lute value of all correlations, in order to compare
error-based metrics with non-error based ones.

In general, the correlation is high amongst all
pairs of metrics, with a high proportion of paired
metrics achieving a correlation in excess of r =
0.9. Two exceptions to this are TERRORCAT

(Fishel et al., 2012) and SAGAN (Castillo and Es-
trella, 2012), as seen in the regions of yellow and
white.

Figure 2b shows the results of Williams sig-
nificance tests for all pairs of metrics. Since we
are interested in not only identifying significant
differences in correlations, but ultimately ranking
competing metrics, we use a one-sided test. Here
again, the metrics are ordered from highest to low-
est (absolute) correlation with human judgment.

For the Spanish-to-English systems, approxi-
mately 60% of WMT-12 metric pairs show a sig-
nificant difference in correlation with human judg-
ment at p < 0.05 (for one of the two metric di-
rections).2 As expected, the higher the correlation
with human judgment, the more metrics a given
method is superior to at a level of statistical signifi-
cance. Although TERRORCAT (Fishel et al., 2012)
achieves the highest absolute correlation with hu-
man judgment, it is not significantly better (p ≥
0.05) than the four next-best metrics (METEOR

(Denkowski and Lavie, 2011), SAGAN (Castillo
and Estrella, 2012), SEMPOS (Macháček and Bo-

2Correlation matrices (red) are maximally filled, in con-
trast to one-sided significance test matrices (green), where, at
a maximum, fewer than half of the cells can be filled.
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Figure 3: Significance results for pairs of automatic metrics for each WMT-12 language pair.

jar, 2011) and POSF (Popovic, 2012)). There is
not enough evidence to conclude, therefore, that
this metric is any better at evaluating Spanish-to-
English MT system quality than the next four met-
rics.

Figure 3 shows the results of significance tests
for the six other language pairs used in the WMT-
12 metrics shared task.3 For no language pair
is there an outright winner amongst the met-
rics, with proportions of significant differences be-
tween metrics for a given language pair ranging
from 3% for Czech-to-English to 82% for English-
to-French (p < 0.05). The number of metrics that
significantly outperform BLEU for a given lan-
guage pair is only 34% (p < 0.05), and no method
significantly outperforms BLEU over all language
pairs – indeed, even the best methods achieve sta-
tistical significance over BLEU for only a small
minority of language pairs. This underlines the
dangers of assessing metrics based solely on cor-
relation numbers, and emphasizes the importance
of statistical testing.

It is important to note that the number of com-

3We omit English-to-Czech due to some metric scores be-
ing omitted from the WMT-12 data set.

peting metrics a metric significantly outperforms
should not be used as the criterion for ranking
competing metrics. This is due to the fact that
the power of the Williams test to identify signifi-
cant differences between correlations changes de-
pending on the degree to which the pair of met-
rics correlate with each other. Therefore, a metric
that happens to correlate strongly with many other
metrics would be at an unfair advantage, were
numbers of significant wins to be used to rank met-
rics. For this reason, it is best to interpret pairwise
metric tests in isolation.

As part of this research, we have made avail-
able an open-source implementation of statis-
tical tests tailored to the assessment of MT
metrics available at https://github.com/
ygraham/significance-williams.

5 Conclusions

We have provided an analysis of current method-
ologies for evaluating automatic metrics in ma-
chine translation, and identified an issue with re-
spect to the lack of significance testing. We in-
troduced the Williams test as a means of cal-
culating the statistical significance of differences
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in correlations for dependent samples. Analysis
of statistical significance in the WMT-12 metrics
shared task showed there is currently insufficient
evidence for a high proportion of metrics to con-
clude that they outperform BLEU.
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Abstract

We study a novel architecture for syntactic
SMT. In contrast to the dominant approach
in the literature, the system does not rely
on translation rules, but treat translation
as an unconstrained target sentence gen-
eration task, using soft features to cap-
ture lexical and syntactic correspondences
between the source and target languages.
Target syntax features and bilingual trans-
lation features are trained consistently in
a discriminative model. Experiments us-
ing the IWSLT 2010 dataset show that the
system achieves BLEU comparable to the
state-of-the-art syntactic SMT systems.

1 Introduction

Translation rules have been central to hierarchi-
cal phrase-based and syntactic statistical machine
translation (SMT) (Galley et al., 2004; Chiang,
2005; Liu et al., 2006; Quirk et al., 2005; Marcu et
al., 2006; Shen and Joshi, 2008; Xie et al., 2011).
They are attractive by capturing the recursiveness
of languages and syntactic correspondences be-
tween them. One important advantage of trans-
lation rules is that they allow efficient decoding
by treating MT as a statisticalparsing task, trans-
forming a source sentence to its translation via re-
cursive rule application.

The efficiency takes root in the fact that target
word orders are encoded in translation rules. This
fact, however, also leads to rule explosion, noise
and coverage problems (Auli et al., 2009), which
can hurt translation quality. Flexibility of function
word usage, rich morphology and paraphrasing all
add to the difficulty of rule extraction. In addition,
restricting target word orders by hard translation
rules can also hurt output fluency.

∗* Work done while visiting Singapore University of
Technology and Design (SUTD)

Figure 1: Overall system architecture.

A potential solution to the problems above is to
treat translation as ageneration task, represent-
ing syntactic correspondences usingsoft features.
Both adequacy and fluency can potentially be im-
proved by giving full flexibility to target synthe-
sis, and leaving all options to the statistical model.
The main challenge to this method is a signifi-
cant increase in the search space (Knight, 1999).
To this end, recent advances in tackling complex
search tasks for text generation offer some so-
lutions (White and Rajkumar, 2009; Zhang and
Clark, 2011).

In this short paper, we present a preliminary in-
vestigation on the possibility of building a syn-
tactic SMT system that does not use hard transla-
tion rules, by utilizing recent advances in statisti-
cal natural language generation (NLG). The over-
all architecture is shown in Figure 1. Translation
is performed by first parsing the source sentence,
then transferring source words and phrases to their
target equivalences, and finally synthesizing the
target output.

We choose dependency grammar for both the
source and the target syntax, and adapt the syntac-
tic text synthesis system of Zhang (2013), which
performs dependency-based linearization. The
linearization task for MT is different from the
monolingual task in that not all translation options
are used to build the output, and that bilingual cor-
respondences need to be taken into account dur-
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ing synthesis. The algorithms of Zhang (2013) are
modified to perform word selection as well as or-
dering, using two sets of features to control trans-
lation adequacy and fluency, respectively.

Preliminary experiments on the IWSLT1 2010
data show that the system gives BLEU compara-
ble to traditional tree-to-string and string-to-tree
translation systems. It demonstrates the feasibility
of leveraging statistical NLG techniques for SMT,
and the possibility of building a statistical transfer-
based MT system.

2 Approach

The main goal being proof of concept, we keep
the system simple by utilizing existing methods
for the main components, minimizing engineer-
ing efforts. Shown in Figure 1, the end-to-end
system consists of two main components:lexical
transfer andsynthesis. The former provides can-
didate translations for (overlapping) source words
and phrases. Although lexicons and rules can
be used for this step, we take a simple statisti-
cal alignment-based approach. The latter searches
for a target translation by constructing dependency
trees bottom-up. The process can be viewed as
a syntax-based generation process from a bag of
overlapping translation options.

2.1 Lexical transfer

We perform word alignment using IBM model 4
(Brown et al., 1993), and then extract phrase pairs
according to the alignment and automatically-
annotated target syntax. In particular, consistent
(Och et al., 1999) and cohesive (Fox, 2002) phrase
pairs are extracted from intersected alignments in
both directions: the target side must form a pro-
jective span, with a single root, and the source side
must be contiguous. A resulting phrase pair con-
sists of the source phrase, its target translation, as
well as the head position and head part-of-speech
(POS) of the target span, which are useful for tar-
get synthesis. We further restrict that neither the
source nor the target side of a valid phrase pair
contains overs words.

Given an input source sentence, the lexical
transfer unit finds all valid target translation op-
tions for overlapping source phrases up to sizes,
and feeds them as inputs to the target synthesis de-
coder. The translation options with a probability

1International Workshop on Spoken Language Transla-
tion, http://iwslt2010.fbk.eu

belowλ · Pmax are filtered out, wherePmax is the
probability of the most probable translation. Here
the probability of a target translation is calculated
as the count of the translation divided by the count
of all translations of the source phrase.

2.2 Synthesis

The synthesis module is based on the monolingual
text synthesis algorithm of Zhang (2013), which
constructs an ordered dependency tree given a bag
of words. In the bilingual setting, inputs to the al-
gorithm are translation options, which can be over-
lapping and mutually exclusive, and not necessar-
ily all of which are included in the output. As a
result, the decoder needs to perform word selec-
tion in addition to word ordering. Another differ-
ence between the bilingual and monolingual set-
tings is that the former requires translation ade-
quacy in addition to output fluency.

We largely rely on the monolingual system for
MT decoding. To deal with overlapping transla-
tion options, a source coverage vector is used to
impose mutual exclusiveness on input words and
phrases. Each element in the coverage vector is
a binary value that indicates whether a particular
source word has been translated in the correspond-
ing target hypothesis. For translation adequacy,
we use a set of bilingual features on top of the set
of monolingual features for text synthesis.

2.2.1 Search

The search algorithm is the best-first algorithm of
Zhang (2013). Each search hypothesis is a par-
tial or full target-language dependency tree, and
hypotheses are constructed bottom-up from leaf
nodes, which are translation options. Anagenda
is used to maintain a list of search hypothesis to
be expanded, and achart is used to record a set
of accepted hypotheses. Initially empty, the chart
is a beam of sizek · n, wheren is the number
of source words andk is a positive integer. The
agenda is a priority queue, initialized with all leaf
hypotheses (i.e. translation options). At each step,
the highest-scored hypothesise is popped off the
agenda, and expanded by combination with all hy-
potheses on the chart in all possible ways, with
the set of newly generated hypothesese1, e2, ...eN

being put onto the agenda, ande being put onto
the chart. When two hypotheses are combined,
they can be put in two different orders, and in each
case different dependencies can be constructed be-
tween their head words, leading to different new
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dependency syntax
WORD(h) · POS(h) · NORM(size) ,
WORD(h) · NORM(size), POS(h) · NORM(size)
POS(h) · POS(m) · POS(b) · dir
POS(h) · POS(hl) · POS(m) · POS(mr) · dir (h > m),
POS(h) · POS(hr) · POS(m) · POS(ml) · dir (h < m)
WORD(h) · POS(m) · POS(ml) · dir ,
WORD(h) · POS(m) · POS(mr) · dir
POS(h) · POS(m) · POS(m1) · dir ,
POS(h) · POS(m1) · dir , POS(m) · POS(m1) · dir
WORD(h) · POS(m) · POS(m1) · POS(m2) · dir ,
POS(h) · POS(m) · POS(m1) · POS(m2) · dir ,
...

dependency syntax for completed words
WORD(h) · POS(h) · WORD(hl) · POS(hl),
POS(h) · POS(hl),
WORD(h) · POS(h) · POS(hl),
POS(h) · WORD(hl) · POS(hl) ,
WORD(h) · POS(h) · WORD(hr) · POS(hr),
POS(h) · POS(hr),
...

surface string patterns (B—bordering index)
WORD(B − 1) · WORD(B), POS(B − 1) · POS(B),
WORD(B − 1) · POS(B), POS(B − 1) · WORD(B),
WORD(B − 1) · WORD(B) · WORD(B + 1),
WORD(B − 2) · WORD(B − 1) · WORD(B),
POS(B − 1) · POS(B) · POS(B + 1),
...

surface string patterns for complete sentences
WORD(0), WORD(0) · WORD(1),
WORD(size − 1),
WORD(size − 1) · WORD(size − 2),
POS(0), POS(0) · POS(1),
POS(0) · POS(1) · POS(2),
...

Table 1: Monolingual feature templates.

hypotheses. The decoder expands a fixed number
L hypotheses, and then takes the highest-scored
chart hypothesis that contains overβ · n words as
the output, whereβ is a real number near 1.0.

2.2.2 Model and training

A scaled linear model is used by the decoder to
score search hypotheses:

Score(e) =
~θ · Φ(e)

|e| ,

whereΦ(e) is the global feature vector of the hy-
pothesise, ~θ is the parameter vector of the model,
and |e| is the number of leaf nodes ine. The
scaling factor|e| is necessary because hypothe-
ses with different numbers of words are compared
with each other in the search process to capture
translation equivalence.

While the monolingual features of Zhang
(2013) are applied (example feature templates
from the system are shown in Table 1), an addi-
tional set of bilingual features is defined, shown

phrase translation features
PHRASE(m) · PHRASE(t), P (trans),

bilingual syntactic features
POS(th) · POS(tm) · dir · LEN(path),
WORD(th) · POS(tm) · dir · LEN(path),
POS(th) · WORD(tm) · dir · LEN(path),
WORD(th) · WORD(tm) · dir · LEN(path),
WORD(sh) · WORD(sm) · dir · LEN(path),
WORD(sh) · WORD(th) · dir · LEN(path),
WORD(sm) · WORD(tm) · dir · LEN(path),

bilingual syntactic features (LEN(path) ≤ 3)
POS(th) · POS(tm) · dir · LABELS(path),
WORD(th) · POS(tm) · dir · LABELS(path),
POS(th) · WORD(tm) · dir · LABELS(path),
WORD(th) · WORD(tm) · dir · LABELS(path),
WORD(sh) · WORD(sm) · dir · LABELS(path),
WORD(sh) · WORD(th) · dir · LABELS(path),
WORD(sm) · WORD(tm) · dir · LABELS(path),
POS(th) · POS(tm) · dir · LABELSPOS(path),
WORD(th) · POS(tm) · dir · LABELSPOS(path),
POS(th) · WORD(tm) · dir · LABELSPOS(path),
WORD(th) · WORD(tm) · dir · LABELSPOS(path),
WORD(sh) · WORD(sm) · dir · LABELSPOS(path),
WORD(sh) · WORD(th) · dir · LABELSPOS(path),
WORD(sm) · WORD(tm) · dir · LABELSPOS(path),

Table 2: Bilingual feature templates.

in Table 2. In the tables,s and t represent the
source and target, respectively;h and m repre-
sent the head and modifier in a dependency arc,
respectively;hl andhr represent the neighboring
words on the left and right ofh, respectively;ml

andmr represent the neighboring words on the left
and right ofm, respectively;m1 and m2 repre-
sent the closest and second closest sibling ofm on
the side ofh, respectively.dir represents the arc
direction (i.e. left or right); PHRASE represents
a lexical phrase; P(trans) represents the source-
to-target translation probability from the phrase-
table, used as a real-valued feature;path repre-
sents the shortest path in the source dependency
tree between the two nodes that correspond to the
target head and modifier, respectively; LEN(path)
represents the number of arcs onpath, normalized
to bins of [5, 10, 20, 40+]; LABELS(path) repre-
sents the array of dependency arc labels onpath;
LABELSPOS(path) represents the array of depen-
dency arc labels and source POS onpath. In addi-
tion, a real-valued four-gram language model fea-
ture is also used, with four-grams extracted from
the surface boundary when two hypothesis are
combined.

We apply the discriminative learning algorithm
of Zhang (2013) to train the parameters~θ. The al-
gorithm requires training examples that consist of
full target derivations, with leaf nodes beinginput
translation options. However, the readily available
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training examples are automatically-parsed target
derivations, with leaf nodes beingthe reference
translation. As a result, we apply a search pro-
cedure to find a derivation process, through which
the target dependency tree is constructed from a
subset of input translation options. The search
procedure can be treated as a constrained decod-
ing process, where only the oracle tree and its sub
trees can be constructed. In case the set of transla-
tion options cannot lead to the oracle tree, we ig-
nore the training instance.2 Although the ignored
training sentence pairs cannot be utilized for train-
ing the discriminative synthesizer, they are never-
theless used for building the phrase table and train-
ing the language model.

3 Experiments

We perform experiments on the IWSLT 2010
Chinese-English dataset, which consists of train-
ing sentence pairs from the dialog task (dialog)
and Basic Travel and Expression Corpus (BTEC).
The union of dialog and BTEC are taken as our
training set, which contains 30,033 sentence pairs.
For system tuning, we use the IWSLT 2004 test set
(also released as the second development test set
of IWSLT 2010), which contains 500 sentences.
For final test, we use the IWSLT 2003 test set (also
released as the first development test set of IWSLT
2010), which contains 506 sentences.

The Chinese sentences in the datasets are seg-
mented using NiuTrans3 (Xiao et al., 2012), while
POS-tagging of both English and Chinese is per-
formed using ZPar4 version 0.5 (Zhang and Clark,
2011). We train the English POS-tagger using the
WSJ sections of the Penn Treebank (Marcus et al.,
1993), turned into lower-case. For syntactic pars-
ing of both English and Chinese, we use the de-
fault models of ZPar 0.5.

We choose three baseline systems: a string-to-
tree (S2T) system, a tree-to-string (T2S) system
and a tree-to-tree (T2T) system (Koehn, 2010).
The Moses release 1.0 implementations of all
three systems are used, with default parameter set-
tings. IRSTLM5 release 5.80.03 (Federico et al.,
2008) is used to train a four-gram language models

2This led to the ignoring of over 40% of the training sen-
tence pairs. For future work, we will consider substitute or-
acles from reachable target derivations by using maximum
sentence level BLEU approximation (Nakov et al., 2012) or
METEOR (Denkowski and Lavie, 2011) as selection criteria.

3http://www.nlplab.com/NiuPlan/NiuTrans.ch.html
4http://sourceforge.net/projects/zpar/
5http://sourceforge.net/apps/mediawiki/irstlm

System T2S S2T T2T OURS

BLEU 32.65 36.07 28.46 34.24

Table 3: Final results.

SOURCE:我现在头痛的厉害。
REF: I have a terrible headache .
OURS: now , I have a headache .
SOURCE:我要带浴缸的双人房。
REF: I ’d like a twin room with a bath please .
OURS: a twin room , I ’ll find a room with a bath .
SOURCE:请把日元兑换成美元。
REF: can you change yen into dollars ?
OURS: please change yen into dollars .
SOURCE:请给我烤鸡 。
REF: roast chicken , please .
OURS: please have roast chicken .
SOURCE:请每次饭后吃两粒。
REF: take two tablets after every meal .
OURS: please eat after each meal .
SOURCE:请结帐。
REF: check , please .
OURS: I have to check - out , please .
SOURCE:对呀那是本店最拿手的菜啊。
REF: yes , well , that ’s our specialty .
OURS: ah , the food that ’s right .
SOURCE:空调坏了。
REF: my air conditioner is n’t working .
OURS: the air - conditioner does n’t work .

Table 4: Sample output sentences.

over the English training data, which is applied to
the baseline systems and our system. Kneser-Ney
smoothing is used to train the language model.

We use the tuning set to determine the optimal
number of training iterations. The translation op-
tion filter λ is set to 0.1; the phrase size limits is
set to 5 in order to verify the effectiveness of syn-
thesis; the number of expanded nodesL is set to
200; the chart factork is set to 16 for a balance be-
tween efficiency and accuracy; the goal parameter
β is set to 0.8.

The final scores of our system and the baselines
are shown in Table 3. Our system gives a BLEU
of 34.24, which is comparable to the baseline sys-
tems. Some example outputs are shown in Table 4.
Manual comparison does not show significant dif-
ferences in overall translation adequacy or fluency
between the outputs of the four systems. However,
an observation is that, while our system can pro-
duce more fluent outputs, the choice of translation
options can be more frequently incorrect. This
suggests that while the target synthesis component
is effective under the bilingual setting, a stronger
lexical selection component may be necessary for
better translation quality.
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4 Related work

As discussed in the introduction, our work is
closely related to previous studies on syntactic
MT, with the salient difference that we do not rely
on hard translation rules, but allow free target syn-
thesis. The contrast can be summarized as “trans-
lation by parsing” vs “translation by generation”.

There has been a line of research on genera-
tion for translation. Soricut and Marcu (2006) use
a form of weighted IDL-expressions (Nederhof
and Satta, 2004) for generation. Bangalore et al.
(2007) treats MT as a combination of global lex-
ical transfer and word ordering; their generation
component does not perform lexical selection, re-
lying on an n-gram language model to order target
words. Goto et al. (2012) use a monotonic phrase-
based system to perform target word selection, and
treats target ordering as a post-processing step.
More recently, Chen et al. (2014) translate source
dependencies arc-by-arc to generate pseudo target
dependencies, and generate the translation by re-
ordering of arcs. In contrast with these systems,
our system relies more heavily on a syntax-based
synthesis component, in order to study the useful-
ness of statistical NLG on SMT.

With respect to syntax-based word ordering,
Chang and Toutanova (2007) and He et al. (2009)
study a simplified word ordering problem by as-
suming that the un-ordered target dependency tree
is given. Wan et al. (2009) and Zhang and Clark
(2011) study the ordering of a bag of words, with-
out input syntax. Zhang et al. (2012), Zhang
(2013) and Song et al. (2014) further extended this
line of research by adding input syntax and allow-
ing joint inflection and ordering. de Gispert et al.
(2014) use a phrase-structure grammer for word
ordering. Our generation system is based on the
work of Zhang (2013), but further allows lexical
selection.

Our work is also in line with the work of Liang
et al. (2006), Blunsom et al. (2008), Flanigan et
al. (2013) and Yu et al. (2013) in that we build a
discriminative model for SMT.

5 Conclusion

We investigated a novel system for syntactic ma-
chine translation, treating MT as an unconstrained
generation task, solved by using a single discrim-
inative model with both monolingual syntax and
bilingual translation features. Syntactic corre-
spondence is captured by using soft features rather

than hard translation rules, which are used by most
syntax-based statistical methods in the literature.

Our results are preliminary in the sense that
the experiments were performed using a relatively
small dataset, and little engineering effort was
made on fine-tuning of parameters for the base-
line and proposed models. Our Python imple-
mentation gives the same level of BLEU scores
compared with baseline syntactic SMT systems,
but is an order of magnitude slower than Moses.
However, the results demonstrate the feasibility of
leveraging text generation techniques for machine
translation, directly connecting the two currently
rather separated research fields. The system is not
strongly dependent on the specific generation al-
gorithm, and one potential of the SMT architec-
ture is that it can directly benefit from advances in
statistical NLG technology.
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Abstract
We propose a simple and effective ap-
proach to learn translation spans for
the hierarchical phrase-based translation
model. Our model evaluates if a source
span should be covered by translation
rules during decoding, which is integrated
into the translation system as soft con-
straints. Compared to syntactic con-
straints, our model is directly acquired
from an aligned parallel corpus and does
not require parsers. Rich source side
contextual features and advanced machine
learning methods were utilized for this
learning task. The proposed approach was
evaluated on NTCIR-9 Chinese-English
and Japanese-English translation tasks and
showed significant improvement over the
baseline system.

1 Introduction

The hierarchical phrase-based (HPB) translation
model (Chiang, 2005) has been widely adopted in
statistical machine translation (SMT) tasks. The
HPB translation rules based on the synchronous
context free grammar (SCFG) are simple and pow-
erful.

One drawback of the HPB model is the appli-
cations of translation rules to the input sentence
are highly ambiguous. For example, a rule whose
English side is “X1 by X2” can be applied to any
word sequence that has “by” in them. In Figure 1,
this rule can be applied to the whole sentence as
well as to “experiment by tomorrow”.

In order to tackle rule application ambiguities,
a few previous works used syntax trees. Chi-
ang (2005) utilized a syntactic feature in the HPB

I  will  �nish  this  experiment  by  tomorrow

我  会  在  明天  之前  完成  这个  实验

Figure 1: A translation example.

model, which represents if the source span cov-
ered by a translation rule is a syntactic constituent.
However, the experimental results showed this
feature gave no significant improvement. Instead
of using the undifferentiated constituency feature,
(Marton and Resnik, 2008) defined different soft
syntactic features for different constituent types
and obtained substantial performance improve-
ment. Later, (Mylonakis and Sima’an, 2011) in-
troduced joint probability synchronous grammars
to integrate flexible linguistic information. (Liu
et al., 2011) proposed the soft syntactic constraint
model based on discriminative classifiers for each
constituent type and integrated all of them into the
translation model. (Cui et al., 2010) focused on
hierarchical rule selection using many features in-
cluding syntax constituents.

These works have demonstrated the benefits of
using syntactic features in the HPB model. How-
ever, high quality syntax parsers are not always
easily obtained for many languages. Without this
problem, word alignment constraints can also be
used to guide the application of the rules.

Suppose that we want to translate the English
sentence into the Chinese sentence in Figure 1, a
translation rule can be applied to the source span
“finish this experiment by tomorrow”. Nonethe-
less, if a rule is applied to “experiment by”, then
the Chinese translation can not be correctly ob-
tained, because the target span projected from “ex-
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periment by” contains words projected from the
source words outside “experiment by”.

In general, a translation rule projects one con-
tinuous source word sequence (source span) into
one continuous target word sequence. Meanwhile,
the word alignment links between the source and
target sentence define the source spans where
translation rules are applicable. In this paper, we
call a source span that can be covered by a trans-
lation rule without violating word alignment links
a translation span.

Translation spans that have been correctly iden-
tified can guide translation rules to function prop-
erly, thus (Xiong et al., 2010) attempted to use
extra machine learning approaches to determine
boundaries of translation spans. They used two
separate classifiers to learn the beginning and end-
ing boundaries of translation spans, respectively.
A source word is marked as beginning (ending)
boundary if it is the first (last) word of a translation
span. However, a source span whose first and last
words are both boundaries is not always a transla-
tion span. In Figure 1, “I” is a beginning boundary
since it is the first word of translation span “I will”
and “experiment” is an ending boundary since it is
the last word of translation span “finish this exper-
iment” , but “I will finish this experiment” is not a
translation span. This happens because the trans-
lation spans are nested or hierarchical. Note that
(He et al., 2010) also learned phrase boundaries to
constrain decoding, but their approach identified
boundaries only for monotone translation.

In this paper, taking fully into account that
translation spans being nested, we propose an
approach to learn hierarchical translation spans
directly from an aligned parallel corpus that
makes more accurate identification over transla-
tion spans.

The rest of the paper is structured as follows:
In Section 2, we briefly review the HPB transla-
tion model. Section 3 describes our approach. We
describe experiments in Section 4 and conclude in
Section 5.

2 Hierarchical Phrase-based Translation

Chiang’s HPB model is based on a weighted
SCFG. A translation rule is like: X → 〈γ, α,∼〉,
where X is a nonterminal, γ and α are source and
target strings of terminals and nonterminals, and∼
is a one-to-one correspondence between nontermi-

nals in γ and α. The weight of each rule is:

w (X → 〈γ, α,∼〉) =
∏
t

ht(X → 〈γ, α,∼〉)λt (1)

where ht are the features defined on the rules.
Rewriting begins with a pair of linked start sym-

bols and ends when there is no nonterminal left.
Let D be a derivation of the grammar, f (D) and
e (D) be the source and target strings generated
by D. D consists of a set of triples 〈r, i, j〉, each
of which stands for applying a rule r on a span
f (D)ji . The weight of D is calculated as:

w (D) =
∏

〈r,i,j〉∈D
w (r)× Plm(e)λlm × exp (−λwp |e|)

(2)

where w (r) is the weight of rule r, the last two
terms represent the language model and word
penalty, respectively.

3 Learning Translation Spans

We will describe how to learn translation spans in
this section.

3.1 Our Model
We make a series of binary classifiers
{C1, C2, C3, ...} to learn if a source span
f (D)ji should be covered by translation rules dur-
ing translation. Ck is trained and tested on source
spans whose lengths are k, i.e., k = j − i+ 1.1

Ck learns the probability
Pk (v|f (D) , i, j) (3)

where v ∈ {0, 1}, v = 1 represents a rule is ap-
plied on f (D)ji , otherwise v = 0.

Training instances for these classifiers are ex-
tracted from an aligned parallel corpus according
to Algorithm 1. For example, “I will” and “will
finish” are respectively extracted as positive and
negative instances in Figure 1.

Note that our model in Equation 3 only uses
the source sentence f (D) in the condition. This
means that the probabilities can be calculated be-
fore translation. Therefore, the predicted prob-
abilities can be integrated into the decoder con-
veniently as soft constraints and no extra time is
added during decoding. This enables us to use
rich source contextual features and various ma-
chine learning methods for this learning task.

1We indeed can utilize just one classifier for all source
spans. However, it will be difficult to design features for such
a classifier unless only boundary word features are adopted.
On the contrary, we can fully take advantage of rich informa-
tion about inside words as we turn to the fixed span length
approach.
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3.2 Integration into the decoder
It is straightforward to integrate our model into
Equation 2. It is extended as

w (D) =
∏

〈r,i,j〉∈D
w (r)× Plm(e)λlm × exp (−λwp |e|)

× Pk(v = 1|f (D) , i, j)λk

(4)

where λk is the weight for Ck.
During decoding, the decoder looks up the

probabilities Pk calculated and stored before de-
coding.

Algorithm 1 Extract training instances.
Input: A pair of parallel sentence fn1 and em1 with

word alignments A.
Output: Training examples for {C1, C2, C3, ...}.

1: for i = 1 to n do
2: for j = i to n do
3: if ∃eqp, 1 ≤ p ≤ q ≤ m

& ∃ (k, t) ∈ A, i ≤ k ≤ j, p ≤ t ≤ q
& ∀ (k, t) ∈ A, i ≤ k ≤ j ↔ p ≤ t ≤ q
then

4: f ji is a positive instance for Cj−i+1

5: else
6: f ji is a negative instance for Cj−i+1

7: end if
8: end for
9: end for

3.3 Classifiers
We compare two machine learning methods for
learning a series of binary classifiers.

For the first method, each Ck is individually
learned using the maximum entropy (ME) ap-
proach (Berger et al., 1996):

Pk (v|f (D) , i, j) =
exp

(∑
t µtht (v, f (D) , i, j)

)∑
v′ exp

(∑
t µtht (v

′, f (D) , i, j)
)

(5)

where ht is a feature function and µt is weight
of ht. We use rich source contextual fea-
tures: unigram, bigram and trigram of the phrase
[fi−3, ..., fj+3].

As the second method, these classification tasks
are learned in the continuous space using feed-
forward neural networks (NNs). Each Ck has
the similar structure with the NN language model
(Vaswani et al., 2013). The inputs to the NN are
indices of the words: [fi−3, ..., fj+3]. Each source
word is projected into an N dimensional vector.

The output layer has two output neurons, whose
values correspond to Pk (v = 0|f (D) , i, j) and
Pk (v = 1|f (D) , i, j).

For both ME and NN approaches, words that
occur only once or never occur in the training
corpus are treated as a special word “UNK” (un-
known) during classifier training and predicting,
which can reduce training time and make the clas-
sifier training more smooth.

4 Experiment

We evaluated the effectiveness of the proposed ap-
proach for Chinese-to-English (CE) and Japanese-
to-English (JE) translation tasks. The datasets of-
ficially provided for the patent machine translation
task at NTCIR-9 (Goto et al., 2011) were used in
our experiments. The detailed training set statis-
tics are given in Table 1. The development and test

SOURCE TARGET

CE
#Sents 954k
#Words 37.2M 40.4M
#Vocab 288k 504k

JE
#Sents 3.14M
#Words 118M 104M
#Vocab 150k 273k

Table 1: Data sets.

sets were both provided for CE task while only the
test set was provided for JE task. Therefore, we
used the sentences from the NTCIR-8 JE test set
as the development set. Word segmentation was
done by BaseSeg (Zhao et al., 2006; Zhao and Kit,
2008; Zhao et al., 2010; Zhao and Kit, 2011; Zhao
et al., 2013) for Chinese and Mecab 2 for Japanese.

To learn the classifiers for each translation task,
the training set and development set were put to-
gether to obtain symmetric word alignment us-
ing GIZA++ (Och and Ney, 2003) and the grow-
diag-final-and heuristic (Koehn et al., 2003). The
source span instances extracted from the aligned
training and development sets were used as the
training and validation data for the classifiers.

The toolkit Wapiti (Lavergne et al., 2010) was
adopted to train ME classifiers using the classi-
cal quasi-newton optimization algorithm with lim-
ited memory. The NNs are trained by the toolkit
NPLM (Vaswani et al., 2013). We chose “recti-
fier” as the activation function and the logarithmic
loss function for NNs. The number of epochs was
set to 20. Other parameters were set to default

2http://sourceforge.net/projects/mecab/files/
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Span
length

CE JE

Rate
ME NN

Rate
ME NN

P N P N P N P N
1 2.67 0.93 0.63 0.93 0.64 1.08 0.85 0.79 0.86 0.80
2 1.37 0.83 0.70 0.82 0.75 0.73 0.69 0.84 0.71 0.87
3 0.86 0.70 0.80 0.73 0.83 0.52 0.56 0.89 0.63 0.90
4 0.62 0.57 0.81 0.67 0.88 0.36 0.48 0.93 0.54 0.93
5 0.48 0.52 0.90 0.61 0.91 0.26 0.30 0.96 0.47 0.95
6 0.40 0.47 0.91 0.58 0.92 0.20 0.25 0.97 0.41 0.96
7 0.34 0.40 0.93 0.53 0.93 0.16 0.14 0.98 0.33 0.97
8 0.28 0.35 0.94 0.46 0.94 0.13 0 1 0.32 0.97
9 0.22 0.28 0.96 0.37 0.96 0.10 0 1 0.25 0.98
10 0.15 0.21 0.97 0.28 0.97 0.08 0 1 0.23 0.99

Table 2: Classification accuracies. The Rate column represents ratio of positive instances to negative
instances; the P and N columns give classification accuracies for positive and negative instances.

values. The training time of one classifier on a
12-core 3.47GHz Xeon X5690 machine was 0.5h
(2.5h) using ME (NN) approach for CE task; 1h
(4h) using ME (NN) approach for JE task .

The classification results are shown in Table 2.
Instead of the undifferentiated classification accu-
racy, we present separate classification accuracies
for positive and negative instances. The big differ-
ence between classification accuracies for positive
and negative instances was caused by the unbal-
anced rate of positive and negative instances in the
training corpus. For example, if there are more
positive training instances, then the classifier will
tend to classify new instances as positive and the
classification accuracy for positive instances will
be higher. In our classification tasks, there are less
positive instances for longer span lengths.

Since the word order difference of JE task is
much more significant than that of CE task, there
are more negative Japanese translation span in-
stances than Chinese. In JE tasks, the ME classi-
fiers C8, C9 and C10 predicted all new instances to
be negative due to the heavily unbalanced instance
distribution.

As shown in Table 2, NN outperformed ME ap-
proach for our classification tasks. As the span
length growing, the advantage of NN became
more significant. Since the classification accura-
cies deceased to be quite low for source spans with
more than 10 words, only {C1, ..., C10} were inte-
grated into the HPB translation system.

For each translation task, the recent version
of Moses HPB decoder (Koehn et al., 2007)
with the training scripts was used as the base-
line (Base). We used the default parameters for
Moses, and a 5-gram language model was trained
on the target side of the training corpus by IRST

LM Toolkit 3 with improved Kneser-Ney smooth-
ing. {C1, ..., C10} were integrated into the base-
line with different weights, which were tuned by
MERT (Och, 2003) together with other feature
weights (language model, word penalty,...) under
the log-linear framework (Och and Ney, 2002).

BLEU-n n-gram precisions
Method TER 4 1 2 3 4

CE
Base 49.39- - 33.07- - 69.9/40.7/25.8/16.9
BLM 48.60 33.93 70.0/41.4/26.6/17.6
ME 49.02- 33.63- 70.0/41.2/26.3/17.4
NN 48.09++ 34.35++ 70.1/41.9/27.0/18.0

JE
Base 57.39- - 30.13- - 67.1/38.3/23.0/14.0
BLM 56.79 30.81 67.7/38.9/23.6/14.5
ME 56.48 31.01 67.6/39.0/23.8/14.7
NN 55.96++ 31.77++ 67.8/39.7/24.6/15.4

Table 3: Translation results. The symbol ++ (- -)
represents a significant difference at the p < 0.01
level and - represents a significant difference at the
p < 0.05 level against the BLM.

We compare our method with the baseline and
the boundary learning method (BLM) (Xiong et
al., 2010) based on Maximum Entropy Markov
Models with Markov order 2. Table 3 reports
BLEU (Papineni et al., 2002) and TER (Snover
et al., 2006) scores. Significance tests are con-
ducted using bootstrap sampling (Koehn, 2004).
Our ME classifiers achieve comparable translation
improvement with the BLM and NN classifiers en-
hance translation system significantly compared to
others. Table 3 also shows that the relative gain
was higher for higher n-grams, which is reason-
able since the higher n-grams have higher ambi-
guities in the translation rule application.

It is true that because of multiple parallel sen-
tences, a source span can be applied with transla-

3http://hlt.fbk.eu/en/irstlm
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tion rules in one sentence pair but not in another
sentence pair. So we used the probability score
as a feature in the decoding. That is, we did not
use classification results directly but use the prob-
ability score for softly constraining the decoding
process.

5 Conclusion

We have proposed a simple and effective transla-
tion span learning model for HPB translation. Our
model is learned from aligned parallel corpora and
predicts translation spans for source sentence be-
fore translating, which is integrated into the trans-
lation system conveniently as soft constraints. We
compared ME and NN approaches for this learn-
ing task. The results showed that NN classifiers on
the continuous space model achieved both higher
classification accuracies and better translation per-
formance with acceptable training times.
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Abstract

Since larger n-gram Language Model
(LM) usually performs better in Statistical
Machine Translation (SMT), how to con-
struct efficient large LM is an important
topic in SMT. However, most of the ex-
isting LM growing methods need an extra
monolingual corpus, where additional LM
adaption technology is necessary. In this
paper, we propose a novel neural network
based bilingual LM growing method, only
using the bilingual parallel corpus in SMT.
The results show that our method can im-
prove both the perplexity score for LM e-
valuation and BLEU score for SMT, and
significantly outperforms the existing LM
growing methods without extra corpus.

1 Introduction

‘Language Model (LM) Growing’ refers to adding
n-grams outside the corpus together with their
probabilities into the original LM. This operation
is useful as it can make LM perform better through
letting it become larger and larger, by only using a
small training corpus.

There are various methods for adding n-grams
selected by different criteria from a monolingual
corpus (Ristad and Thomas, 1995; Niesler and
Woodland, 1996; Siu and Ostendorf, 2000; Si-
ivola et al., 2007). However, all of these approach-
es need additional corpora. Meanwhile the extra
corpora from different domains will not result in
better LMs (Clarkson and Robinson, 1997; Iyer et
al., 1997; Bellegarda, 2004; Koehn and Schroeder,

∗Part of this work was done as Rui Wang visited in NICT.

2007). In addition, it is very difficult or even im-
possible to collect an extra large corpus for some
special domains such as the TED corpus (Cettolo
et al., 2012) or for some rare languages. There-
fore, to improve the performance of LMs, without
assistance of extra corpus, is one of important re-
search topics in SMT.

Recently, Continues Space Language Model
(CSLM), especially Neural Network based Lan-
guage Model (NNLM) (Bengio et al., 2003;
Schwenk, 2007; Mikolov et al., 2010; Le et al.,
2011), is being actively used in SMT (Schwenk
et al., 2006; Son et al., 2010; Schwenk, 2010;
Schwenk et al., 2012; Son et al., 2012; Niehues
and Waibel, 2012). One of the main advantages
of CSLM is that it can more accurately predic-
t the probabilities of the n-grams, which are not in
the training corpus. However, in practice, CSLM-
s have not been widely used in the current SMT
systems, due to their too high computational cost.

Vaswani and colleagues (2013) propose a
method for reducing the training cost of CSLM
and apply it to SMT decoder. However, they do
not show their improvement for decoding speed,
and their method is still slower than the n-gram
LM. There are several other methods for attempt-
ing to implement neural network based LM or
translation model for SMT (Devlin et al., 2014;
Liu et al., 2014; Auli et al., 2013). However, the
decoding speed using n-gram LM is still state-of-
the-art one. Some approaches calculate the prob-
abilities of the n-grams n-grams before decoding,
and store them in the n-gram format (Wang et al.,
2013a; Arsoy et al., 2013; Arsoy et al., 2014). The
‘converted CSLM’ can be directly used in SMT.
Though more n-grams which are not in the train-
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ing corpus can be generated by using some of
these ‘converting’ methods, these methods only
consider the monolingual information, and do not
take the bilingual information into account.

We observe that the translation output of a
phrase-based SMT system is concatenation of
phrases from the phrase table, whose probabilities
can be calculated by CSLM. Based on this obser-
vation, a novel neural network based bilingual LM
growing method is proposed using the ‘connecting
phrases’. The remainder of this paper is organized
as follows: In Section 2, we will review the exist-
ing CSLM converting methods. The new neural
network based bilingual LM growing method will
be proposed in Section 3. In Section 4, the exper-
iments will be conducted and the results will be
analyzed. We will conclude our work in Section
5.

2 Existing CSLM Converting Methods

Traditional Backoff N -gram LMs (BNLMs) have
been widely used in many NLP tasks (Zhang and
Zhao, 2013; Jia and Zhao, 2014; Zhao et al., 2013;
Zhang et al., 2012; Xu and Zhao, 2012; Wang et
al., 2013b; Jia and Zhao, 2013; Wang et al., 2014).
Recently, CSLMs become popular because they
can obtain more accurate probability estimation.

2.1 Continues Space Language Model

A CSLM implemented in a multi-layer neural net-
work contains four layers: the input layer projects
(first layer) all words in the context hi onto the
projection layer (second layer); the hidden layer
(third layer) and the output layer (fourth layer)
achieve the non-liner probability estimation and
calculate the LM probability P (wi|hi) for the giv-
en context (Schwenk, 2007).

CSLM is able to calculate the probabilities of
all words in the vocabulary of the corpus given the
context. However, due to too high computational
complexity, CSLM is mainly used to calculate the
probabilities of a subset of the whole vocabulary
(Schwenk, 2007). This subset is called a short-
list, which consists of the most frequent words in
the vocabulary. CSLM also calculates the sum of
the probabilities of all words not included in the
short-list by assigning a neuron with the help of
BNLM. The probabilities of other words not in the
short-list are obtained from an BNLM (Schwenk,
2007; Schwenk, 2010; Wang et al., 2013a).

Let wi and hi be the current word and history,

respectively. CSLM with a BNLM calculates the
probability P (wi|hi) of wi given hi, as follows:

P (wi|hi) =


Pc(wi|hi)∑

w∈V0
Pc(w|hi)

Ps(hi) if wi ∈ V0

Pb(wi|hi) otherwise
(1)

where V0 is the short-list, Pc(·) is the probabil-
ity calculated by CSLM,

∑
w∈V0

Pc(w|hi) is the
summary of probabilities of the neuron for all the
words in the short-list, Pb(·) is the probability cal-
culated by the BNLM, and

Ps(hi) =
∑
v∈V0

Pb(v|hi). (2)

We may regard that CSLM redistributes the
probability mass of all words in the short-list,
which is calculated by using the n-gram LM.

2.2 Existing Converting Methods

As baseline systems, our approach proposed in
(Wang et al., 2013a) only re-writes the probabil-
ities from CSLM into the BNLM, so it can only
conduct a convert LM with the same size as the o-
riginal one. The main difference between our pro-
posed method in this paper and our previous ap-
proach is that n-grams outside the corpus are gen-
erated firstly and the probabilities using CSLM are
calculated by using the same method as our previ-
ous approach. That is, the proposed new method
is the same as our previous one when no grown
n-grams are generated.

The method developed by Arsoy and colleagues
(Arsoy et al., 2013; Arsoy et al., 2014) adds al-
l the words in the short-list after the tail word of
the i-grams to construct the (i+1)-grams. For ex-
ample, if the i-gram is “I want”, then the (i+1)-
grams will be “I want *”, where “*” stands for any
word in the short list. Then the probabilities of
the (i+1)-grams are calculated using (i+1)-CSLM.
So a very large intermediate (i+1)-grams will have
to be grown1, and then be pruned into smaller
suitable size using an entropy-based LM pruning
method modified from (Stolcke, 1998). The (i+2)-
grams are grown using (i+1)-grams, recursively.

1In practice, the probabilities of all the target/tail words
in the short list for the history i-grams can be calculated by
the neurons in the output layer at the same time, which will
save some time. According to our experiments, the time cost
for Arsoy’s growing method is around 4 times more than our
proposed method, if the LMs which are 10 times larger than
the original one are grown with other settings all the same.
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3 Bilingual LM Growing

The translation output of a phrase-based SMT sys-
tem can be regarded as a concatenation of phrases
in the phrase table (except unknown words). This
leads to the following procedure:

Step 1. All the n-grams included in the phrase
table should be maintained at first.

Step 2. The connecting phrases are defined in
the following way.

The wb
a is a target language phrase starting from

the a-th word ending with the b-th word, and βwb
aγ

is a phrase including wb
a as a part of it, where β and

γ represent any word sequence or none. An i-gram
phrase wk

1wi
k+1 (1 ≤ k ≤ i − 1) is a connecting

phrase2, if :
(1) wk

1 is the right (rear) part of one phrase βwk
1

in the phrase table, or
(2) wi

k+1 is the left (front) part of one phrase
wi

k+1γ in the phrase table.
After the probabilities are calculated using C-

SLM (Eqs.1 and 2), we combine the n-grams in
the phrase table from Step 1 and the connecting
phrases from Step 2.

3.1 Ranking the Connecting Phrases

Since the size of connecting phrases is too huge
(usually more than one Terabyte), it is necessary
to decide the usefulness of connecting phrases for
SMT. The more useful connecting phrases can be
selected, by ranking the appearing probabilities of
the connecting phrases in SMT decoding.

Each line of a phrase table can be simplified
(without considering other unrelated scores in the
phrase table) as

f ||| e ||| P (e|f), (3)

where the P (e|f) means the translation probabili-
ty from f(source phrase) to e(target phrase),
which can be calculated using bilingual parallel
training data. In decoding, the probability of a tar-
get phrase e appearing in SMT should be

Pt(e) =
∑

f

Ps(f)× P (e|f), (4)

2We are aware that connecting phrases can be applied to
not only two phrases, but also three or more. However the ap-
pearing probabilities (which will be discussed in Eq. 5 of next
subsection) of connecting phrases are approximately estimat-
ed. To estimate and compare probabilities of longer phrases
in different lengths will lead to serious bias, and the experi-
ments also showed using more than two connecting phrases
did not perform well (not shown for limited space), so only
two connecting phrases are applied in this paper.

where the Ps(f) means the appearing probability
of a source phrase, which can be calculated using
source language part in the bilingual training data.

Using Pt(e)3, we can select the connecting
phrases e with high appearing probabilities as
the n-grams to be added to the original n-
grams. These n-grams are called ‘grown n-
grams’. Namely, we build all the connecting
phrases at first, and then we use the appearing
probabilities of the connecting phrases to decide
which connecting phrases should be selected. For
an i-gram connecting phrase wk

1wi
k+1, where wk

1 is
part of βwk

1 and wi
k+1 is part of wi

k+1γ (the βwk
1

and wi
k+1γ are from the phrase table), the prob-

ability of the connecting phrases can be roughly
estimated as

Pcon(w
k
1wi

k+1) =

i−1∑
k=1

(
∑

β

Pt(βwk
1 )×

∑
γ

Pt(w
i
k+1γ)).

(5)

A threshold for Pcon(wk
1wi

k+1) is set, and only
the connecting phrases whose appearing probabil-
ities are higher than the threshold will be selected
as the grown n-grams.

3.2 Calculating the Probabilities of Grown
N -grams Using CSLM

To our bilingual LM growing method, a 5-gram
LM and n-gram (n=2,3,4,5) CSLMs are built by
using the target language of the parallel corpus,
and the phrase table is learned from the parallel
corpus.

The probabilities of unigram in the original n-
gram LM will be maintained as they are. The
n-grams from the bilingual phrase table will be
grown by using the ‘connecting phrases’ method.
As the whole connecting phrases are too huge, we
use the ranking method to select the more useful
connecting phrases. The distribution of different
n-grams (n=2,3,4,5) of the grown LMs are set as
the same as the original LM.

The probabilities of the grown n-grams
(n=2,3,4,5) are calculated using the 2,3,4,5-
CSLM, respectively. If the tail (target) words of
the grown n-grams are not in the short-list of C-
SLM, the Pb(·) in Eq. 1 will be applied to calcu-
late their probabilities.

3This Pt(e) hence provides more bilingual information,
in comparison with using monolingual target LMs only.
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We combine the n-grams (n=1,2,3,4,5) togeth-
er and re-normalize the probabilities and backof-
f weights of the grown LM. Finally the original
BNLM and the grown LM are interpolated. The
entire process is illustrated in Figure 1.

Corpus

Phrase Table

Grown n-grams 

with Probabilities

Grown LM

Output

Input

Interpolate

Grown n-grams

CSLM

BNLM

Connecting

Phrases

Figure 1: NN based bilingual LM growing.

4 Experiments and Results

4.1 Experiment Setting up
The same setting up of the NTCIR-9 Chinese to
English translation baseline system (Goto et al.,
2011) was followed, only with various LMs to
compare them. The Moses phrase-based SMT
system was applied (Koehn et al., 2007), togeth-
er with GIZA++ (Och and Ney, 2003) for align-
ment and MERT (Och, 2003) for tuning on the de-
velopment data. Fourteen standard SMT features
were used: five translation model scores, one word
penalty score, seven distortion scores, and one LM
score. The translation performance was measured
by the case-insensitive BLEU on the tokenized test
data.

We used the patent data for the Chinese to En-
glish patent translation subtask from the NTCIR-9
patent translation task (Goto et al., 2011). The par-
allel training, development, and test data sets con-
sist of 1 million (M), 2,000, and 2,000 sentences,
respectively.

Using SRILM (Stolcke, 2002; Stolcke et al.,
2011), we trained a 5-gram LM with the interpo-
lated Kneser-Ney smoothing method using the 1M
English training sentences containing 42M words
without cutoff. The 2,3,4,5-CSLMs were trained
on the same 1M training sentences using CSLM
toolkit (Schwenk, 2007; Schwenk, 2010). The set-
tings for CSLMs were: input layer of the same
dimension as vocabulary size (456K), projection
layer of dimension 256 for each word, hidden lay-
er of dimension 384 and output layer (short-list) of
dimension 8192, which were recommended in the
CSLM toolkit and (Wang et al., 2013a)4.

4Arsoy used around 55 M words as the corpus, including

4.2 Results

The experiment results were divided into four
groups: the original BNLMs (BN), the CSLM
Re-ranking (RE), our previous converting (WA),
the Arsoy’s growing, and our growing methods.
For our bilingual LM growing method, 5 bilingual
grown LMs (BI-1 to 5) were conducted in increas-
ing sizes. For the method of Arsoy, 5 grown LMs
(AR-1 to 5) with similar size of BI-1 to 5 were also
conducted, respectively.

For the CSLM re-ranking, we used CSLM to
re-rank the 100-best lists of SMT. Our previous
converted LM, Arsoy’s grown LMs and bilingual
grown LMs were interpolated with the original
BNLMs, using default setting of SRILM5. To re-
duce the randomness of MERT, we used two meth-
ods for tuning the weights of different SMT fea-
tures, and two BLEU scores are corresponding to
these two methods. The BLEU-s indicated that the
same weights of the BNLM (BN) features were
used for all the SMT systems. The BLEU-i indi-
cated that the MERT was run independently by
three times and the average BLEU scores were
taken.

We also performed the paired bootstrap re-
sampling test (Koehn, 2004)6. Two thousands
samples were sampled for each significance test.
The marks at the right of the BLEU score indicated
whether the LMs were significantly better/worse
than the Arsoy’s grown LMs with the same IDs
for SMT (“++/−−”: significantly better/worse at
α = 0.01, “+/−”: α = 0.05, no mark: not signif-
icantly better/worse at α = 0.05).

From the results shown in Table 1, we can get
the following observations:

(1) Nearly all the bilingual grown LMs outper-
formed both BNLM and our previous converted
LM on PPL and BLEU. As the size of grown LM-
s is increased, the PPL always decreased and the
BLEU scores trended to increase. These indicated
that our proposed method can give better probabil-
ity estimation for LM and better performance for
SMT.

(2) In comparison with the grown LMs in Ar-

84K words as vocabulary, and 20K words as short-list. In this
paper, we used the same setting as our previous work, which
covers 92.89% of the frequency of words in the training cor-
pus, for all the baselines and our method for fair comparison.

5In our previous work, we used the development data to
tune the weights of interpolation. In this paper, we used the
default 0.5 as the interpolation weights for fair comparison.

6We used the code available at http://www.ark.cs.
cmu.edu/MT
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Table 1: Performance of the Grown LMs
LMs n-grams PPL BLEU-s BLEU-i ALH
BN 73.9M 108.8 32.19 32.19 3.03
RE N/A 97.5 32.34 32.42 N/A
WA 73.9M 104.4 32.60 32.62 3.03
AR-1 217.6M 103.3 32.55 32.75 3.14
AR-2 323.8M 103.1 32.61 32.64 3.18
AR-3 458.5M 103.0 32.39 32.71 3.20
AR-4 565.6M 102.8 32.67 32.51 3.21
AR-5 712.2M 102.5 32.49 32.60 3.22
BI-1 223.5M 101.9 32.81+ 33.02+ 3.20
BI-2 343.6M 101.0 32.92+ 33.11++ 3.24
BI-3 464.5M 100.6 33.08++ 33.25++ 3.26
BI-4 571.0M 100.3 33.15++ 33.12++ 3.28
BI-5 705.5M 100.1 33.11++ 33.24++ 3.31

soy’s method, our grown LMs obtained better P-
PL and significantly better BLEU with the sim-
ilar size. Furthermore, the improvement of PPL
and BLEU of the existing methods became satu-
rated much more quickly than ours did, as the LMs
grew.

(3) The last column was the Average Length of
the n-grams Hit (ALH) in SMT decoding for dif-
ferent LMs using the following function

ALH =

5∑
i=1

Pi−gram × i, (6)

where the Pi−gram means the ratio of the i-grams
hit in SMT decoding. There were also positive
correlations between ALH, PPL and BLEUs. The
ALH of bilingual grown LM was longer than that
of the Arsoy’s grown LM of the similar size. In
another word, less back-off was used for our pro-
posed grown LMs in SMT decoding.

4.3 Experiments on TED Corpus

The TED corpus is in special domain as discussed
in the introduction, where large extra monolingual
corpora are hard to find. In this subsection, we
conducted the SMT experiments on TED corpora
using our proposed LM growing method, to eval-
uate whether our method was adaptable to some
special domains.

We mainly followed the baselines of the IWSLT
2014 evaluation campaign7, only with a few mod-
ifications such as the LM toolkits and n-gram or-
der for constructing LMs. The Chinese (CN) to
English (EN) language pair was chosen, using de-
v2010 as development data and test2010 as evalu-
ation data. The same LM growing method was ap-

7https://wit3.fbk.eu/

plied on TED corpora as on NTCIR corpora. The
results were shown in Table 2.

Table 2: CN-EN TED Experiments

LMs n-grams PPL BLEU-s
BN 7.8M 87.1 12.41
WA 7.8M 85.3 12.73
BI-1 23.1M 79.2 12.92
BI-2 49.7M 78.3 13.16
BI-3 73.4M 77.6 13.24

Table 2 indicated that our proposed LM grow-
ing method improved both PPL and BLEU in com-
parison with both BNLM and our previous CSLM
converting method, so it was suitable for domain
adaptation, which is one of focuses of the current
SMT research.

5 Conclusion

In this paper, we have proposed a neural network
based bilingual LM growing method by using the
bilingual parallel corpus only for SMT. The results
show that our proposed method can improve both
LM and SMT performance, and outperforms the
existing LM growing methods significantly with-
out extra corpus. The connecting phrase-based
method can also be applied to LM adaptation.
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Abstract

This article describes a linguistically in-
formed method for integrating phrasal
verbs into statistical machine translation
(SMT) systems. In a case study involving
English to Bulgarian SMT, we show that
our method does not only improve trans-
lation quality but also outperforms simi-
lar methods previously applied to the same
task. We attribute this to the fact that, in
contrast to previous work on the subject,
we employ detailed linguistic information.
We found out that features which describe
phrasal verbs as idiomatic or composi-
tional contribute most to the better trans-
lation quality achieved by our method.

1 Introduction

Phrasal verbs are a type of multiword expressions
(MWEs) and as such, their meaning is not deriv-
able, or is only partially derivable, from the se-
mantics of their lexemes. This, together with the
high frequency of MWEs in every day communi-
cation (see Jackendoff (1997)), calls for a special
treatment of such expressions in natural language
processing (NLP) applications. Here, we con-
centrate on statistical machine translation (SMT)
where the word-to-word translation of MWEs of-
ten results in wrong translations (Piao et al., 2005).

Previous work has shown that the application
of dedicated methods to identify MWEs and then
integrate them in some way into the SMT pro-
cess often improves translation quality. Gener-
ally, automatically extracted lexicons of MWEs
are employed in the identification step. Further,
various integration strategies have been proposed.
The so called static strategy suggests training the
SMT system on corpora in which each MWE is
treated as a single unit, e.g. call off. This im-
proves SMT indirectly by improving the align-
ment between source and target sentences in the

training data. Various versions of this strategy are
applied in Lambert and Banchs (2005), Carpuat
and Diab (2010), and Simova and Kordoni (2013).
In all cases there is some improvement in transla-
tion quality, caused mainly by the better treatment
of separable PVs, such as in turn the light on.

Another strategy, which is referred to as dy-
namic, is to modify directly the SMT system. Ren
et al. (2009), for example, treat bilingual MWEs
pairs as parallel sentences which are then added
to training data and subsequently aligned with
GIZA++ (Och and Ney, 2003). Other approaches
perform feature mining and modify directly the
automatically extracted translation table. Ren et
al. (2009) and Simova and Kordoni (2013) employ
Moses1 to build and train phrase-based SMT sys-
tems and then, in addition to the standard phrasal
translational probabilities, they add a binary fea-
ture which indicates whether an MWE is present
in a given source phrase or not. Carpuat and
Diab (2010) employ the same approach but the
additional feature indicates the number of MWEs
in each phrase. All studies report improvements
over a baseline system with no MWE knowledge
but these improvements are comparable to those
achieved by static methods.

In this article, we further improve the dynamic
strategy by adding features which, unlike all previ-
ous work, also encode some of the linguistic prop-
erties of MWEs. Since it is their peculiar linguistic
nature that makes those expressions problematic
for SMT, it is our thesis that providing more lin-
guistic information to the translation process will
improve it. In particular, we concentrate on a spe-
cific type of MWEs, namely phrasal verbs (PVs).
We add 4 binary features to the translation table
which indicate not only the presence of a PV but
also its transitivity, separability, and idiomaticity.
We found that PVs are very suitable for this study
since we can easily extract the necessary informa-

1http://www.statmt.org/moses/
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tion from various language resources.
To prove our claim, we perform a case study

with an English to Bulgarian SMT system. Bul-
garian lacks PVs in the same form they appear in
English. It is often the case that an English PV is
translated to a single Bulgarian verb. Such many-
to-one mappings cause the so called translation
asymmetries which make the translation of PVs
very problematic.

We perform automated and manual evaluations
with a number of feature combinations which
show that the addition of all 4 features proposed
above improves translation quality significantly.
Moreover, our method outperforms static and dy-
namic methods previously applied to the same test
data. A notable increase in performance is ob-
served for separable PVs where the verb and the
particle(s) were not adjacent in the input English
sentence as well as for idiomatic PVs. This clearly
demonstrates the importance of linguistic informa-
tion for the proper treatment of PVs in SMT.

We would like to point out that we view
the work presented here as a preliminary study
towards a more general linguistically informed
method for handling similar types of translation
asymmetries. The experiments with a single phe-
nomenon, namely PVs, serve as a case study the
purpose of which is to demonstrate the validity of
our approach and the crucial role of properly inte-
grated linguistic information into SMT. Our work,
however, can be immediately extended to other
phenomena, such as collocations and noun com-
pounds.

The remainder of the paper is organised as fol-
lows. Section 2 describes the asymmetries caused
by PVs in English to Bulgarian translation. Sec-
tion 3 provides details about the resources in-
volved in the experiments. Section 4 describes
our method and the experimental setup. Sec-
tion 5 presents the results and discusses the im-
provements in translation quality achieved by the
method. Sections 6 concludes the paper.

2 Translation Asymmetries

We will first illustrate the main issues which arise
when translating English PVs into Bulgarian. For
more convenience, the Bulgarian phrases are tran-
scribed with Latin letters.

An English PV is usually mapped to a single
Bulgarian verb:

(1) Toj
he

otmeni
cancelled

sreshtata.
meeting-the

‘He called off the meeting.’

In the example above the PV called off has to
be mapped to the single Bulgarian verb otmeni,
i.e. there is many-to-one mapping. Other cases
require a many-to-many type of mapping. One
such case is the mapping of an English PV to
a ‘da’-construction in Bulgarian. Such construc-
tions are very frequent in Bulgarian every day
communication since they denote complex verb
tenses, modal verb constructions, and subordinat-
ing conjunctions:

(2) Toj
he

trjabva
should

da skasa
break off

s
with

neja.
her

‘He should break off with her.’

Here, da skasa should be mapped to the PV break
off. Other such cases include Bulgarian reflexive
verb constructions.

Note that such many-to-many mappings in the
case of Bulgarian pose an additional challenge for
the SMT system because, for a good translation, it
needs to guess whether to add a ‘da’ particle or not
which further complicates the treatment of PVs.
Also, Bulgarian is a language with rich morphol-
ogy and often translations with very good seman-
tic quality lack the proper morphological inflec-
tion. This affects negatively both automated and
manual evaluation of translation quality.

3 Language Resources

We employ the data used in the studies reported in
Simova and Kordoni (2013). The authors experi-
mented with both static and dynamic methods for
handling PVs in an English to Bulgarian SMT sys-
tem. This allows us to compare the performance
of our linguistically informed approach to that of
methods which do not make use of the linguistic
properties of PVs.

The data for the experiments are derived from
the SeTimes news corpus2 which contains par-
allel news articles in English and 9 Balkan lan-
guages. The training data consist of approximately
151,000 sentences. Another 2,000 sentences are
used for the tuning. The test set consists of 800
sentences, 400 of which contain one or more in-

2http://www.setimes.com
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stances of PVs. There are 138 unique PVs with a
total of 403 instances in the test data. Further, a
language model for the target language is created
based on a 50 million words subset of the Bul-
garian National Reference Corpus.3 All English
data are POS tagged and lemmatised using the
TreeTagger (Schmid, 1994). For Bulgarian, these
tasks were performed with the BTB-LPP tagger
(Savkov et al., 2011).

Simova and Kordoni (2013) create automati-
cally a lexicon containing English PVs. It is em-
ployed for the identification of such verbs in the
data used in the experiments. The lexicon is con-
structed from a number of resources: the En-
glish Phrasal Verbs section of Wiktionary,4 the
Phrasal Verb Demon dictionary,5 the CELEX Lex-
ical Database (Baayen et al., 1995), WordNet
(Fellbaum, 1998), the COMLEX Syntax dictio-
nary (Macleod et al., 1998), and the gold standard
data used for the experiments in McCarthy et al.
(2003) and Baldwin (2008). English PVs are iden-
tified in the data using the jMWE library (Kulkarni
and Finlayson, 2011) as well as a post-processing
module implemented in the form of a constrained
grammar (Karlsson et al., 1995) which filters out
spurious PV candidates. For the identification of
PVs, Simova and Kordoni (2013) report 91% pre-
cision (375 correct instances found) and a recall
score of 93% for the 800 test sentences.

The Moses toolkit is employed to build a fac-
tored phrase-based translation model which op-
erates on lemmas and POS tags. Given the rich
Bulgarian morphology, the use of lemma informa-
tion instead of surface word forms allows for a
better mapping between source and target transla-
tion equivalents. The parallel data are aligned with
GIZA++. Further, 2 5-gram language models are
built using the SRILM toolkit6 on the monolingual
Bulgarian data to model lemma and POS n-gram
information. Note that the Bulgarian POS tags are
quite complex, so they can account for a variety
of morphological phenomena. Automated trans-
lation is performed by mapping English lemmas
and POS tags to their Bulgarian equivalents and
then generating the proper Bulgarian word form
by using lemma and POS tag information.

3http://webclark.org/
4http://en.wiktionary.org/wiki/

Category:English\_phrasal\_verbs
5http://www.phrasalverbdemon.com/
6http://www-speech.sri.com/projects/

srilm/

1 0

feature 1 PV present no PV
feature 2 transitive intransitive
feature 3 separable inseparable
feature 4 idiomatic (semi-)comp.

Table 1: Values for the 4 new features.

4 Addition of Linguistic Features

The resources from which the PV lexicon is con-
structed also contain various types of linguistic in-
formation. Wiktionary provides the most details
since the entries there contain information about
the valency of the verb (transitive vs intransitive)
and whether a particle can be separated from the
PV in particle verb constructions. Consider fell off
his bike and *fell his bike off vs turn the engine on
and turn on the engine.

Further, Wiktionary indicates whether a given
PV is compositional or idiomatic in nature. The
meaning of (semi-)compositional PVs can be (par-
tially) derived from the meaning of their lexemes,
e.g. carry in. The degree of compositionality af-
fects the productivity with which verbs and parti-
cles combine. Verbs with similar semantics often
combine with the same particle, e.g. bring/carry
in. This is not the case for fully idiomatic PVs, e.g.
get/*obtain over. Therefore, the notion of compo-
sitionality plays a very important role in the treat-
ment of PVs and MWEs in general. The dataset
described in McCarthy et al. (2003) also indicates
whether a PV is idiomatic or not.

We were able to acquire the PV lexicon and
we augmented it with the information obtained
from the various resources. Then, once the sys-
tem is trained, we add 4 binary features to each
entry in the automatically created translation table.
The values those features take are shown in Table
1. If a given property is not specified for some
PV in the lexicon, the value of the corresponding
feature is 0. Naturally, if no PV is identified in
a source phrase, the value of all 4 features is 0.
This is different from previous work where only
one feature is added, indicating the presence of a
PV. By adding those new features, we want to bias
the SMT system towards using phrases that do not
“split” PVs during decoding.
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with PVs no PVs all
bleu nist bleu nist bleu nist

baseline 0.244 5.97 0.228 5.73 0.237 6.14
static 0.246 6.02 0.230 5.76 0.239 6.18
dynamic-1 0.250 5.92 0.226 5.54 0.244 6.02
dynamic-4 0.267 6.01 0.232 5.74 0.256 6.16

Table 2: Automatic evaluation of translation qual-
ity.

5 Results and Discussion

Automatic Evaluation. Table 2 presents the re-
sults from the automatic evaluation, in terms of
BLEU (Papineni et al., 2002) and NIST (Dodding-
ton, 2002) scores, of 4 system setups. The base-
line has no MWE knowledge, while the static and
the dynamic-1 system setups are reproduced from
the experiments described in Simova and Kordoni
(2013). Dynamic-1 includes only a single binary
feature which indicates the presence of a PV while
our method, dynamic-4, includes the 4 features de-
scribed in Table 1.

Our method outperforms all other setups in
terms of BLEU score, thus proving our point that
adding features describing the linguistic properties
of PVs improves SMT even further. Also, the re-
sults for the 400 sentences without PVs show that
the 4 new features do not have a negative impact
for PV-free contexts.

In terms of NIST the static strategy consistently
performs best, followed closely by our method.
NIST is a measure which weights the translated
n-grams according to their informativeness. Due
to the nature of this measure, less frequent cor-
rectly translated n-grams are given more weight
in the evaluation process because NIST considers
them “more informative”. Such less frequent n-
grams, or in our case PVs, are likely to be cap-
tured better by the static setup. Therefore, this
setup achieves the highest NIST scores. This fact
also suggests that dynamic and static strategies in-
fluence the SMT process in different ways, with
our method tending to capture more frequent (and
thus less informative) n-grams. Interestingly, the
other dynamic method, dynamic-1, has the worst
performance of all setups in terms of NIST.

Manual evaluation. To get a better insight on
how the different setups deal with the translation
of PVs, we also performed a manual evaluation.
A native speaker of Bulgarian was asked to judge
the translations of PVs for the 375 test sentences in

good acceptable incorrect

baseline 0.21 0.41 0.38
static 0.25 0.5 0.25
dynamic-1 0.24 0.51 0.25
dynamic-4 0.3 0.5 0.2

Table 3: Manual evaluation of translation quality.

which such verbs were correctly identified during
the identification step. The human subject takes
into account the target PV and a limited context
around it and judges the translation as:

• good - correct translation of the PV, correct
verb inflection

• acceptable - correct translation of the PV but
wrong inflection, or wrongly built da- or re-
flexive construction

• incorrect - wrong translation which changes
the meaning of the sentence

Table 3 shows the results. Our method dynamic-
4 produces more good translations and less incor-
rect ones than all other setups. This illustrates fur-
ther the benefits of adding linguistic features to
the translation model. The results achieved by the
static approach are attributed to the better handling
of separable PVs in sentences where the particle
was not adjacent to the verb. The dynamic-1 ap-
proach and the baseline often interpret the particle
literally in such cases which leads to almost twice
the amount of wrong translations. Our method, on
the other hand, performs slightly lower than the
static approach in this respect but still much better
than the other 2 setups.

Compared to dynamic-1 and the baseline, the
static approach also handles better idiomatic PVs
but performs slightly worse for sentences with
compositional PVs. However, the addition of a
specific feature to encode idiomaticity in the trans-
lation model enables our method dynamic-4 to
achieve the best performance for idiomatic PVs
while still handling successfully many composi-
tional PVs. To summarise, the improved results
of our method in comparison to previous work are
attributed to the better handling of separable PVs
which occur in a split form and even more to the
improved ability to differentiate between compo-
sitional and idiomatic PVs.

Feature combinations. Our method performs
best when all 3 linguistic features described above
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are taken into account by the SMT system. How-
ever, we also experimented with different combi-
nations of those features in order to get some in-
sight of the way each feature influences the trans-
lation quality. Adding only the feature denot-
ing verb transitiveness did not lead to any sig-
nificant improvement compared to the dynamic-
1 setup. Also, the combination which leaves out
this feature and uses the remaining ones ranks
second, achieving only a slightly worse perfor-
mance than dynamic-4, the setup in which all fea-
tures are employed. It seems that the transitive-
ness feature does not contribute much to the task
at hand. Adding only the feature denoting sepa-
rable vs inseparable PVs and adding only the one
denoting idiomaticity led to results slightly higher
than those of the dynamic-1 and static setups but
still, those results were significantly lower than the
ones presented in Tables 2 and 3.

6 Conclusion and Outlook

In this article, we showed that the addition of lin-
guistically informative features to a phrase-based
SMT model improves the translation quality of a
particular type of MWEs, namely phrasal verbs.
In a case study involving SMT from English to
Bulgarian, we showed that adding features which
encode not only the presence of a PV in a given
phrase but also its transitiveness, separability, and
idiomaticity led to better translation quality com-
pared to previous work which employs both static
and dynamic strategies.

In future research, we will extend our method
to other language pairs which exhibit the same
type of translation asymmetries when it comes to
PVs. Such language pairs include, among others,
English-Spanish and English-Portuguese.

Further, we will apply our linguistically in-
formed method to other phenomena which cause
similar issues for SMT. Immediate candidate phe-
nomena include other types of MWEs, colloca-
tions, and noun compounds. When it comes to
MWEs, we will pay special attention to the com-
positionality aspect since it seems to have con-
tributed most to the good performance achieve by
our method in the study presented here.
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Abstract
Sentence level evaluation in MT has turned out
far more difficult than corpus level evaluation.
Existing sentence level metrics employ a lim-
ited set of features, most of which are rather
sparse at the sentence level, and their intricate
models are rarely trained for ranking. This pa-
per presents a simple linear model exploiting
33 relatively dense features, some of which are
novel while others are known but seldom used,
and train it under the learning-to-rank frame-
work. We evaluate our metric on the stan-
dard WMT12 data showing that it outperforms
the strong baseline METEOR. We also ana-
lyze the contribution of individual features and
the choice of training data, language-pair vs.
target-language data, providing new insights
into this task.

1 Introduction
Evaluating machine translation (MT) output at the sen-
tence/ segment level has turned out far more challeng-
ing than corpus/ system level. Yet, sentence level
evaluation can be useful because it allows fast, fine-
grained analysis of system performance on individual
sentences.

It is instructive to contrast two widely used metrics,
METEOR (Michael Denkowski and Alon Lavie, 2014)
and BLEU (Papineni et al., 2002), on sentence level
evaluation. METEOR constantly shows better corre-
lation with human ranking than BLEU (Papineni et
al., 2002). Arguably, this shows that sentence level
evaluation demands finer grained and trainable models
over less sparse features. Ngrams, the core of BLEU,
are sparse at the sentence level, and a mismatch for
longer ngrams implies that BLEU falls back on shorter
ngrams. In contrast, METEOR has a trainable model
and incorporates a small, yet wider set of features that
are less sparse than ngrams. We think that METEOR’s
features and its training approach only suggest that sen-
tence level evaluation should be treated as a modelling
challenge. This calls for questions such as what model,
what features and what training objective are better
suited for modelling sentence level evaluation.

We start out by explicitly formulating sentence level
evaluation as the problem of ranking a set of compet-

ing hypothesis. Given data consisting of human ranked
system outputs, the problem then is to formulate an
easy to train model for ranking. One particular exist-
ing approach (Ye et al., 2007) looks especially attrac-
tive because we think it meshes well with a range of
effective techniques for learning-to-rank (Li, 2011).

We deliberately select a linear modelling approach
inspired by RankSVM (Herbrich et al., 1999), which is
easily trainable for ranking and allows analysis of the
individual contributions of features. Besides presenting
a new metric and a set of known, but also a set of novel
features, we target three questions of interest to the MT
community:

• What kind of features are more helpful for sen-
tence level evaluation?

• How does a simple linear model trained for rank-
ing compare to the well-developed metric ME-
TEOR on sentence level evaluation?

• Should we train the model for each language pair
separately or for a target language?

Our new metric dubbed BEER1 outperforms ME-
TEOR on WMT12 data showing the effectiveness of
dense features in a learning-to-rank framework. The
metric and the code are available as free software2.

2 Model
Our model is a linear combination of features trained
for ranking similar to RankSVM (Herbrich et al., 1999)
or, to readers familiar with SMT system tuning, to PRO
tuning (Hopkins and May, 2011):

score(sys) = ~w · ~xsys

where ~w represents a weight vector and ~xsys a vec-
tor of feature values for system output sys. Look-
ing at evaluation as a ranking problem, we con-
trast (at least) two system translations good and
bad for the same source sentence. Assuming that
humanRank(good) > humanRank(bad) as ranked

1BEER participated on WMT14 evaluation metrics task
where it was the highest scoring sentence level evaluation
metric on average over all language pairs (Stanojević and
Sima’an, 2014)

2https://github.com/stanojevic/beer
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by human judgement, we expect metric score(·) to ful-
fill score(good) > score(bad):

~w · ~xgood > ~w · ~xbad ⇔
~w · ~xgood − ~w · ~xbad > 0 ⇔

~w · (~xgood − ~xbad) > 0 ∧
~w · (~xbad − ~xgood) < 0

The two feature vectors (~xgood − ~xbad) and (~xbad −
~xgood) can be considered as positive and negative in-
stances for training our linear classifier. For training
this model, we use Logistic Regression from the Weka
toolkit (Hall et al., 2009).

3 Features

Generally speaking we identify adequacy and fluency
features. For both types we devise far less sparse fea-
tures than word ngrams.

Adequacy features We use precision P , recallR and
F1-score F as follows:

Pfunc, Rfunc, Ffunc on matched function words

Pcont, Rcont, Fcont on matched content words

Pall, Rall, Fall on matched words of any type

Pchar, Rchar, Fchar matching of the char ngrams

By differentiating between function and non-function
words, our metric weighs each kind of words accord-
ing to importance for evaluation. Matching character
ngrams, originally proposed in (Yang et al., 2013), re-
wards certain translations even if they did not get the
morphology completely right. Existing metrics use
stemmers for this, but using character ngrams is inde-
pendent of the availability of a good quality stemmer.
Higher-order character ngrams have less risk of sparse
counts than word ngrams. In our experiments we used
char ngrams for n up to 6, which makes the total num-
ber of adequacy features 27.

Fluency features To evaluate word order we follow
(Isozaki et al., 2010; Birch and Osborne, 2010) in rep-
resenting reordering as a permutation π over [1..n] and
then measuring the distance to the ideal monotone per-
mutation 〈1, 2, · · · , n〉. We present a novel approach
based on factorization into permutation trees (PETs)
(Zhang and Gildea, 2007), and contrast it with Kendall
τ (Birch and Osborne, 2010; Isozaki et al., 2010). PETs
are factorizations of permutations, which allows for an
abstract and less sparse view of word order as exempli-
fied next. Kendall score was regularly shown to have
high correlation with human judgment on distant lan-
guage pairs (Isozaki et al., 2010; Birch and Osborne,
2010).

Features based on PETs We informally review
PETs in order to exploit them for novel ordering fea-
tures. We refer the reader to (Zhang and Gildea, 2007)
and (Maillette de Buy Wenniger and Sima’an, 2011)
for a formal treatment of PETs and efficient factoriza-
tion algorithms.

A PET of permutation π is a tree organization of π’s
unique, atomic building blocks, called operators. Ev-
ery operator on a PET node is an atomic permutation
(not factorizing any further),3 and it stands for the per-
mutation of the direct children of that node. Figure 1a
shows an example PET that has one 4-branching node
with operator 〈2, 4, 1, 3〉, two binary branching nodes
of which one decorated with the inverted operator 〈2, 1〉
and another with the monotone 〈1, 2〉.

PETs have two important properties making them at-
tractive for measuring order difference: firstly, order
difference is measured on the operators – the atomic
reordering building blocks of the permutation, and sec-
ondly, the operators on higher level nodes capture hid-
den ordering patterns that cannot be observed without
factorization. Statistics over ordering patterns in PETs
are far less sparse than word or character ngram statis-
tics.

Intuitively, among the atomic permutations, the bi-
nary monotone operator 〈1, 2〉 signifies no ordering dif-
ference at all, whereas the binary inverted 〈2, 1〉 signi-
fies the shortest unit of order difference. Operators of
length four like 〈2, 4, 1, 3〉 (Wu, 1997) are presumably
more complex than 〈2, 1〉, whereas operators longer
than four signify even more complex order difference.
Therefore, we devise possible branching feature func-
tions over the operator length for the nodes in PETs:

• factor 2 - with two features: ∆[ ] and ∆<> (there
are no nodes with factor 3 (Wu, 1997))

• factor 4 - feature ∆=4

• factor bigger than 4 - feature ∆>4

Consider permutations 〈2, 1, 4, 3〉 and 〈4, 3, 2, 1〉, none
of which has exactly matching ngrams beyond uni-
grams. Their PETs are in Figures 1b and 1c. Intuitively,
〈2, 1, 4, 3〉 is somewhat less scrambled than 〈4, 3, 2, 1〉
because it has at least some position in correct order.
These “abstract ngrams” pertaining to correct order-
ing of full phrases could be counted using ∆[ ] which
would recognize that on top of the PET in 1b there is
a binary monotone node, unlike the PET in Figure 1c
which has no monotone nodes at all.

Even though the set of operators that describe a per-
mutation is unique for the given permutation, the ways
in which operators are combined (the derivation tree)
is not unique. For example, for the fully monotone

3For example 〈2, 4, 1, 3〉 is atomic whereas 〈4, 3, 2, 1〉 is
not. The former does not contain any contiguous sub-ranges
of integers whereas the latter contains sub-range {2, 3, 4} in
reverse order 〈4, 3, 2〉, which factorizes into two binary in-
verting nodes cf. Fig. 1c.
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〈2, 4, 1, 3〉

2 〈2, 1〉
〈1, 2〉
5 6

4

1 3

(a) Complex PET

〈1, 2〉
〈2, 1〉
2 1

〈2, 1〉
4 3

(b) PET with inversions

〈2, 1〉
〈2, 1〉

〈2, 1〉
4 3

2

1

(c) Canonical fully
inverted PET

〈2, 1〉

〈2, 1〉
4 〈2, 1〉

3 2

1

(d) Alternative fully
inverted PET

〈2, 1〉
〈2, 1〉
4 3

〈2, 1〉
2 1

(e) Alternative fully
inverted PET

〈2, 1〉

4 〈2, 1〉
〈2, 1〉
3 2

1

(f) Alternative fully
inverted PET

〈2, 1〉
4 〈2, 1〉

3 〈2, 1〉
2 1

(g) Alternative fully
inverted PET

Figure 1: Examples of PETs

permutation 〈4, 3, 2, 1〉 there are 5 possible derivations
(PETs) presented in Figures 1c, 1d, 1e, 1f and 1g. The
features on PETs that we described so far look at the
operators independently (they treat a derivation as a
set of operators) so differenct derivations do not influ-
ence the score–whichever derviation we use we will
get the same feature score. However, the number of
derivations might say something about the goodness of
the permutation. Similar property of permutations was
found to be helpful earlier in (Mylonakis and Sima’an,
2008) as an ITG prior for learning translation rule prob-
abilities.

Permutations like 〈3, 2, 1, 4〉 and 〈2, 4, 3, 1〉 have the
same set of operators, but the former factorizes into
more PETs than the latter because 〈4, 3〉 must group
first before grouping it with 2 and then 1 in 〈2, 4, 3, 1〉.
The “freedom to bracket” in different ways could be a
signal of better grouping of words (even if they have
inverted word order). Hence we exploit one more fea-
ture:

∆count the ratio between the number of alternative
PETs for the given permutation, to the number of
PETs that could be built if permutation was per-
fectly grouped (fully monotone or fully inverted).

Finding the number of PETs that could be built does
not require building all PETs or encoding them in the
chart. The number can be computed directly from the
canonical left-branching PET. Since multiple different
PETs appear only in cases when there is a sequence of
more than one node that is either 〈1, 2〉 or 〈2, 1〉 (Zhang
et al., 2008), we can use these sequences to predict the
number of PETs that could be built. Let X represent a
set of sequences of the canonical derivation. The num-
ber of PETs is computed in the following way:

#PETs =
∏
x∈X

Cat(|x|) (1)

Cat(n) =
1

n+ 1

(
2n
n

)
(2)

whereCat(·) is a Catalan number. The proof for this
formula is beyond the scope of this paper. The reader
can consider the example of the PET in Figure 1c. That
derivation has one sequence of monotone operators of
length 3. So the number of PETs that could be built is
Cat(3) = 5.

4 Experiments

We use human judgments from the WMT tasks:
WMT13 is used for training whereas WMT12 for test-
ing. The baseline is METEOR’s latest version (Michael
Denkowski and Alon Lavie, 2014), one of the best met-
rics on sentence level. To avoid contaminating the re-
sults with differences with METEOR due to resources,
we use the same alignment, tokenization and lower-
casing (-norm in METEOR) algorithms, and the same
tables of function words, synonyms, paraphrases and
stemmers.

Kendall τ correlation is borrowed from WMT12
(Callison-Burch et al., 2012):

τ =
#concordant−#discordant−#ties
#concordant+ #discordant+ #ties

#concordant represents the number of pairs or-
dered in the same way by metric and by human,
#discordant the number of opposite orderings and
#ties the number of tied rankings by metric.

Beside testing our full metric BEER, we perform ex-
periments where we remove one kind of the following
features at a time:

1. char n-gram features (P, R and F-score)

2. all word features (P, R and F-score for all, function
and content words),

3. all function and content words features

4. all F-scores (all words, function words, content
words, char ngrams)
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metric en-cs en-fr en-de en-es cs-en fr-en de-en es-en avg τ
BEER without char features 0.124 0.178 0.168 0.149 0.121 0.17 0.179 0.078 0.146
BEER without all word features 0.184 0.237 0.223 0.217 0.192 0.209 0.243 0.199 0.213
BEER without all F-scores 0.197 0.243 0.219 0.22 0.177 0.227 0.254 0.211 0.219
METEOR 0.156 0.252 0.173 0.202 0.208 0.249 0.273 0.246 0.22
BEER without PET features 0.202 0.248 0.243 0.225 0.198 0.249 0.268 0.234 0.233
BEER without function words 0.2 0.245 0.231 0.227 0.189 0.268 0.267 0.253 0.235
BEER without fluency features 0.201 0.248 0.236 0.223 0.202 0.257 0.283 0.243 0.237
BEER without Kendall τ 0.205 0.246 0.244 0.227 0.202 0.257 0.282 0.248 0.239
BEER full 0.206 0.245 0.244 0.23 0.198 0.263 0.283 0.245 0.239

Table 1: Kendall τ scores on WMT12 data

5. PET features

6. Kendall τ features

7. all fluency features (PET and Kendall τ )

Table 1 shows the results sorted by their average
Kendall τ correlation with human judgment.

5 Analysis
Given these experimental results, we are coming back
to the questions we asked in the introduction.

5.1 What kind of features are more helpful for
sentence level evaluation?

Fluency vs. Adequacy The fluency features play a
smaller role than adequacy features. Apparently, many
SMT systems participating in this task have rather sim-
ilar reordering models, trained on similar data, which
makes the fluency features not that discriminative rel-
ative to adequacy features. Perhaps in a different ap-
plication, for example MT system tuning, the reorder-
ing features would be far more relevant because ignor-
ing them would basically imply disregarding the im-
portance of the reordering model in MT.

Character vs. Word features We observe that, pre-
cision, recall and F-score on character ngrams are cru-
cial. We think that this shows that less sparse features
are important for sentence level evaluation. The sec-
ond best features are word features. Without word
features, BEER scores just below METEOR, which
suggests that word boundaries play a role as well. In
contrast, differentiating between function and content
words does not seem to be important.

PETs vs. Kendall τ Despite the smaller role for
reordering features we can make a few observations.
Firstly, while PETs and Kendall seem to have simi-
lar effect on English-Foreign cases, in all four cases of
Foreign-English PETs give better scores. We hypoth-
esize that the quality of the permutations (induced be-
tween system output and reference) is better for English
than for the other target languages. Discarding PET
features has far larger impact than discarding Kendall.
Most interestingly, for de-en it makes the difference
in outperforming METEOR. In many cases discarding
Kendall τ improves the BEER score, likely because it

conflicts with the PET features that are found more ef-
fective.

5.2 Is a linear model sufficient?

A further insight, from our perspective, is that F-score
features constitute a crucial set of features, even when
the corresponding precision and recall features are in-
cluded. Because our model merely allows for linear in-
terpolation, whereas F-score is a non-linear function of
precision and recall, we think this suggests that a non-
linear interpolation of precision and recall is useful.4

By formulating the evaluation as a ranking problem it is
relatively easy to “upgrade” for using non-linear mod-
els while using the same (or larger) set of features.

5.3 Train for the language pair or only for the
target language?

All our models were trained for each language pair.
This is not the case with many other metrics which
train their models for each target language instead of
language pair. We contrast these two settings in Table
2. Training for each language pair separately does not
give significant improvement over training for the tar-
get language only. A possible reason could be that by
training for the target language we have more training
data (in this case four times more).

Train for cs-en fr-en de-en es-en avg τ
target lang 0.199 0.257 0.273 0.248 0.244
lang pair 0.198 0.263 0.283 0.245 0.247

Table 2: Kendall τ scores on WMT12 for different
training data

5.4 BEER vs. METEOR

The results across individual language pairs are mostly
consistent with the averages with a few exceptions.
BEER outperforms METEOR in five out of eight lan-
guage pairs, ties at one (the difference is only 0.001 on
es-en) and loses in two (en-fr and cs-en). In some cases
BEER is better than METEOR by a large margin (see,
e.g., en-cs, en-de).

4Interestingly, METEOR tunes β in Fβ .
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6 Conclusion
In this work we show that combining less sparse fea-
tures at the sentence level into a linear model that is
trained on ranking we can obtain state-of-the-art re-
sults. The analysis of the results shows that features on
character ngrams are crucial, besides the standard word
level features. The reordering features, while rather
important, are less effective within this WMT task, al-
beit the more abstract PET features have larger impact
than the often used Kendall. Good performance of F-
score features leads to the conclusion that linear models
might not be sufficient for modeling human sentence
level ranking and to learn the right relation between
precision and recall it could be worthwhile exploring
non-linear models.
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Abstract

We present a human judgments dataset
and an adapted metric for evaluation of
Arabic machine translation. Our medium-
scale dataset is the first of its kind for Ara-
bic with high annotation quality. We use
the dataset to adapt the BLEU score for
Arabic. Our score (AL-BLEU) provides
partial credits for stem and morphologi-
cal matchings of hypothesis and reference
words. We evaluate BLEU, METEOR and
AL-BLEU on our human judgments cor-
pus and show that AL-BLEU has the high-
est correlation with human judgments. We
are releasing the dataset and software to
the research community.

1 Introduction

Evaluation of Machine Translation (MT) contin-
ues to be a challenging research problem. There
is an ongoing effort in finding simple and scal-
able metrics with rich linguistic analysis. A wide
range of metrics have been proposed and evaluated
mostly for European target languages (Callison-
Burch et al., 2011; Macháček and Bojar, 2013).
These metrics are usually evaluated based on their
correlation with human judgments on a set of MT
output. While there has been growing interest in
building systems for translating into Arabic, the
evaluation of Arabic MT is still an under-studied
problem. Standard MT metrics such as BLEU (Pa-
pineni et al., 2002) or TER (Snover et al., 2006)
have been widely used for evaluating Arabic MT
(El Kholy and Habash, 2012). These metrics use
strict word and phrase matching between the MT
output and reference translations. For morpholog-
ically rich target languages such as Arabic, such
criteria are too simplistic and inadequate. In this
paper, we present: (a) the first human judgment
dataset for Arabic MT (b) the Arabic Language

BLEU (AL-BLEU), an extension of the BLEU
score for Arabic MT evaluation.

Our annotated dataset is composed of the output
of six MT systems with texts from a diverse set of
topics. A group of ten native Arabic speakers an-
notated this corpus with high-levels of inter- and
intra-annotator agreements. Our AL-BLEU met-
ric uses a rich set of morphological, syntactic and
lexical features to extend the evaluation beyond
the exact matching. We conduct different exper-
iments on the newly built dataset and demonstrate
that AL-BLEU shows a stronger average correla-
tion with human judgments than the BLEU and
METEOR scores. Our dataset and our AL-BLEU
metric provide useful testbeds for further research
on Arabic MT and its evaluation.1

2 Related Work

Several studies on MT evaluation have pointed out
the inadequacy of the standard n-gram based eval-
uation metrics for various languages (Callison-
Burch et al., 2006). For morphologically complex
languages and those without word delimiters, sev-
eral studies have attempted to improve upon them
and suggest more reliable metrics that correlate
better with human judgments (Denoual and Lep-
age, 2005; Homola et al., 2009).

A common approach to the problem of mor-
phologically complex words is to integrate some
linguistic knowledge in the metric. ME-
TEOR (Denkowski and Lavie, 2011), TER-
Plus (Snover et al., 2010) incorporate limited lin-
guistic resources. Popović and Ney (2009) showed
that n-gram based evaluation metrics calculated on
POS sequences correlate well with human judg-
ments, and recently designed and evaluated MPF,
a BLEU-style metric based on morphemes and
POS tags (Popović, 2011). In the same direc-

1The dataset and the software are available at:
http://nlp.qatar.cmu.edu/resources/
AL-BLEU
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tion, Chen and Kuhn (2011) proposed AMBER,
a modified version of BLEU incorporating re-
call, extra penalties, and light linguistic knowl-
edge about English morphology. Liu et al. (2010)
propose TESLA-M, a variant of a metric based
on n-gram matching that utilizes light-weight lin-
guistic analysis including lemmatization, POS tag-
ging, and WordNet synonym relations. This met-
ric was then extended to TESLA-B to model
phrase synonyms by exploiting bilingual phrase
tables (Dahlmeier et al., 2011). Tantug et al.
(2008) presented BLEU+, a tool that implements
various extension to BLEU computation to allow
for a better evaluation of the translation perfor-
mance for Turkish.

To the best of our knowledge the only human
judgment dataset for Arabic MT is the small cor-
pus which was used to tune parameters of the ME-
TEOR metric for Arabic (Denkowski and Lavie,
2011). Due to the shortage of Arabic human judg-
ment dataset, studies on the performance of eval-
uation metrics have been constrained and limited.
A relevant effort in this area is the upper-bound es-
timation of BLEU and METEOR scores for Ara-
bic MT output (El Kholy and Habash, 2011). As
part of its extensive functionality, the AMEANA
system provides the upper-bound estimate by an
exhaustive matching of morphological and lexical
features between the hypothesis and the reference
translations. Our use of morphological and lex-
ical features overlaps with the AMEANA frame-
work. However, we extend our partial matching
to a supervised tuning framework for estimating
the value of partial credits. Moreover, our human
judgment dataset allows us to validate our frame-
work with a large-scale gold-standard data.

3 Human judgment dataset

We describe here our procedure for compiling a
diverse Arabic MT dataset and annotating it with
human judgments.

3.1 Data and systems

We annotate a corpus composed of three datasets:
(1) the standard English-Arabic NIST 2005 cor-
pus, commonly used for MT evaluations and com-
posed of news stories. We use the first English
translation as the source and the single corre-
sponding Arabic sentence as the reference. (2) the
MEDAR corpus (Maegaard et al., 2010) that con-
sists of texts related to the climate change with

four Arabic reference translations. We only use
the first reference in this study. (3) a small dataset
of Wikipedia articles (WIKI) to extend our cor-
pus and metric evaluation to topics beyond the
commonly-used news topics. This sub-corpus
consists of our in-house Arabic translations of
seven English Wikipedia articles. The articles are:
Earl Francis Lloyd, Western Europe, Citizenship,
Marcus Garvey, Middle Age translation, Acadian,
NBA. The English articles which do not exist in
the Arabic Wikipedia were manually translated by
a bilingual linguist.

Table 1 gives an overview of these sub-corpora
characteristics.

NIST MEDAR WIKI
# of Documents 100 4 7
# of Sentences 1056 509 327

Table 1: Statistics on the datasets.

We use six state-of-the-art English-to-Arabic
MT systems. These include four research-oriented
phrase-based systems with various morphological
and syntactic features and different Arabic tok-
enization schemes and also two commercial off-
the-shelf systems.

3.2 Annotation of human judgments

In order conduct a manual evaluation of the six
MT systems, we formulated it as a ranking prob-
lem. We adapt the framework used in the WMT
2011 shared task for evaluating MT metrics on
European language pairs (Callison-Burch et al.,
2011) for Arabic MT. We gather human ranking
judgments by asking ten annotators (each native
speaker of Arabic with English as a second lan-
guage) to assess the quality of the English-Arabic
systems, by ranking sentences relative to each
other, from the best to the worst (ties are allowed).

We use the Appraise toolkit (Federmann, 2012)
designed for manual MT evaluation. The tool dis-
plays to the annotator, the source sentence and
translations produced by various MT systems. The
annotators received initial training on the tool and
the task with ten sentences. They were presented
with a brief guideline indicating the purpose of the
task and the main criteria of MT output evaluation.

Each annotator was assigned to 22 ranking
tasks. Each task included ten screens. Each screen
involveed ranking translations of ten sentences. In
total, we collected 22, 000 rankings for 1892 sen-
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tences (22 tasks×10 screens×10 judges). In each
annotation screen, the annotator was shown the
source-language (English) sentences, as well as
five translations to be ranked. We did not provide
annotators with the reference to avoid any bias in
the annotation process. Each source sentence was
presented with its direct context. Rather than at-
tempting to get a complete ordering over the sys-
tems, we instead relied on random selection and a
reasonably large sample size to make the compar-
isons fair (Callison-Burch et al., 2011).

An example of a source sentence and its five
translations to be ranked is given in Table 2.

3.3 Annotation quality and analysis

In order to ensure the validity of any evaluation
setup, a reasonable of inter- and intra-annotator
agreement rates in ranking should exist. To mea-
sure these agreements, we deliberately reassigned
10% of the tasks to second annotators. More-
over, we ensured that 10% of the screens are re-
displayed to the same annotator within the same
task. This procedure allowed us to collect reliable
quality control measure for our dataset.

κinter κintra
EN-AR 0.57 0.62

Average EN-EU 0.41 0.57
EN-CZ 0.40 0.54

Table 3: Inter- and intra-annotator agreement
scores for our annotation compared to the aver-
age scores for five English to five European lan-
guages and also English-Czech (Callison-Burch et
al., 2011).

We measured head-to-head pairwise agreement
among annotators using Cohen’s kappa (κ) (Co-
hen, 1968), defined as follows:

κ =
P (A)− P (E)

1− P (E)

where P(A) is the proportion of times annotators
agree and P(E) is the proportion of agreement by
chance.

Table 3 gives average values obtained for inter-
annotator and intra-annotator agreement and com-
pare our results to similar annotation efforts in
WMT-13 on different European languages. Here
we compare against the average agreement for En-
glish to five languages and also from English to

one morphologically rich language (Czech).4

Based on Landis and Koch (1977) κ interpre-
tation, the κinter value (57%) and also compar-
ing our agreement scores with WMT-13 annota-
tions, we believe that we have reached a reliable
and consistent annotation quality.

4 AL-BLEU

Despite its well-known shortcomings (Callison-
Burch et al., 2006), BLEU continues to be the
de-facto MT evaluation metric. BLEU uses an
exact n-gram matching criterion that is too strict
for a morphologically rich language like Arabic.
The system outputs in Table 2 are examples of
how BLEU heavily penalizes Arabic. Based on
BLEU, the best hypothesis is from Sys5 which has
three unigram and one bigram exact matches with
the reference. However, the sentence is the 4th

ranked by annotators. In contrast, the output of
Sys3 (ranked 1st by annotators) has only one ex-
act match, but several partial matches when mor-
phological and lexical information are taken into
consideration.

We propose the Arabic Language BLEU (AL-
BLEU) metric which extends BLEU to deal with
Arabic rich morphology. We extend the matching
to morphological, syntactic and lexical levels with
an optimized partial credit. AL-BLEU starts with
the exact matching of hypothesis tokens against
the reference tokens. Furthermore, it considers the
following: (a) morphological and syntactic feature
matching, (b) stem matching. Based on Arabic lin-
guistic intuition, we check the matching of a sub-
set of 5 morphological features: (i) POS tag, (ii)
gender (iii) number (iv) person (v) definiteness.
We use the MADA package (Habash et al., 2009)
to collect the stem and the morphological features
of the hypothesis and reference translation.

Figure 1 summarizes the function in which we
consider partial matching (m(th, tr)) of a hypoth-
esis token (th) and its associated reference token
(tr). Starting with the BLEU criterion, we first
check if the hypothesis token is same as the ref-
erence one and provide the full credit for it. If
the exact matching fails, we provide partial credit
for matching at the stem and morphological level.
The value of the partial credits are the sum of
the stem weight (ws) and the morphological fea-

4We compare against the agreement score for annotations
performed by WMT researchers which are higher than the
WMT annotations on Mechanical Turk.
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Source France plans to attend ASEAN emergency summit.
Reference . �éKPA¢Ë@ 	àAJ
�B@ �éÔ�̄ Pñ 	�k Ð 	Q��ª�K A�	�Q 	̄

frnsaA tEtzm HDwr qmp AaAlaAsyaAn AaAlTaAr}ip

Hypothesis

Systems RankAnnot BLEU RankBLEU AL-BLEU RankAL−BLEU
Sys1 2 0.0047 2 0.4816 1 �éKPA¢Ë@ 	àAJ
�

�
B@ �éÔ�̄ Pñ 	�mÌ A�	�Q 	̄ ¡¢	m��'ð

wtxTaT frnsaA lHDwr qmp AaAl—syaAn AaAlTaAr}ip
Sys2 3 0.0037 3 0.0840 3 	àAJ
�


B@ �éÔ�̄ Pñ 	�mÌ A�	�Q 	̄ ¡¢	m��'ð

wtxTaT frnsaA lHDwr qmp AaAlOasyaAn

Sys3 1 0.0043 4 0.0940 2 	àAJ
�

CË �éKPA¢Ë@ �éÒ�®Ë @ Pñ 	�mÌ ¡¢	m��' A�	�Q 	̄

frnsaA txTaT lHDwr AaAlqmp AaAlTaAr}ip lalOasyaAn
Sys4 5 0.0043 4 0.0604 5 øP@ñ¢Ë@ 	àAJ
�

�
@ �éÔ�̄ Pñ 	�mÌ A�	�Q 	̄ ¡¢ 	k

xTaT frnsaA lHDwr qmp —syaAn AaAlTwaAri}
Sys5 4 0.0178 1 0.0826 4 øP@ñ¢Ë@ ¡¢ 	k 	àAJ
�B@ �éÔ�̄ Pñ 	�mÌ A�	�Q 	̄

frnsaA lHDwr qmp AaAlaAsyaAn xTaT AaAlTwaAri}

Table 2: Example of ranked MT outputs in our gold-standard dataset. The first two rows specify the
English input and the Arabic reference, respectively. The third row of the table lists the different MT
system as ranked by annotators, using BLEU scores (column 4) and AL-BLEU (column 6). The differ-
ent translation candidates are given here along with their associated Bucklwalter transliteration.3 This
example, shows clearly that AL-BLEU correlates better with human decision.

m(th, tr) =


1, if th = tr

ws +
5∑
i=1

wfi otherwise

Figure 1: Formulation of our partial matching.

ture weights (wfi). Each weight is included in
the partial score, if such matching exist (e.g., stem
match). In order to avoid over-crediting, we limit
the range of weights with a set of constraints.
Moreover, we use a development set to optimize
the weights towards improvement of correlation
with human judgments, using a hill-climbing al-
gorithm (Russell and Norvig, 2009). Figure 2 il-
lustrates these various samples of partial matching
highlighted in different colors.

 فرنسا تعتزم حضور قمة الاسيان الطارئة

 فرنسا تخطط لحضور القمة الطارئة للأسيان

REF: 

HYP: 

SRC:    France Plans To Attend ASEAN Emergency Summit 

Figure 2: An MT example with exact matchings
(blue), stem and morphological matching (green),
stem only matching (red) and morphological-only
matching (pink).

Following the BLEU-style exact matching and
scoring of different n-grams, AL-BLEU updates
the n-gram scores with the partial credits from
non-exact matches. We use a minimum partial

credit for n-grams which have tokens with dif-
ferent matching score. The contribution of a
partially-matched n-gram is not 1 (as counted in
BLEU), but the minimum value that individual to-
kens within the bigram are credited. For exam-
ple, if a bigram is composed of a token with exact
matching and a token with stem matching, this bi-
gram receives a credit equal to a unigram with the
stem matching (a value less than 1). While par-
tial credits are added for various n-grams, the fi-
nal computation of the AL-BLEU is similar to the
original BLEU based on the geometric mean of the
different matched n-grams. We follow BLEU in
using a very small smoothing value to avoid zero
n-gram counts and zero score.

5 Experiments and results

An automatic evaluation metric is said to be suc-
cessful if it is shown to have high agreement with
human-performed evaluations (Soricut and Brill,
2004). We use Kendall’s tau τ (Kendall, 1938),
a coefficient to measure the correlation between
the system rankings and the human judgments at
the sentence level. Kendall’s tau τ is calculated as
follows:

τ =
# of concordant pairs - # of discordant pairs

total pairs

where a concordant pair indicates two translations
of the same sentence for which the ranks obtained
from the manual ranking task and from the corre-
sponding metric scores agree (they disagree in a
discordant pair). The possible values of τ range
from -1 (all pairs are discordant) to 1 (all pairs
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Dev Test
BLEU 0.3361 0.3162
METEOR 0.3331 0.3426
AL-BLEUMorph 0.3746 0.3535
AL-BLEULex 0.3732 0.3564
AL-BLEU 0.3759 0.3521

Table 4: Comparison of the average Kendall’s τ
correlation.

are concordant). Thus, an automatic evaluation
metric with a higher τ value is making predic-
tions that are more similar to the human judgments
than an automatic evaluation metric with a lower
τ . We calculate the τ score for each sentence and
average the scores to reach the corpus-level cor-
relation. We conducted a set of experiments to
compare the correlation of AL-BLEU against the
state-of-the art MT evaluation metrics. For this we
use a subset of 900 sentences extracted from the
dataset described in Section 3.1. As mentioned
above, the stem and morphological features in AL-
BLEU are parameterized each by weights which
are used to calculate the partial credits. We op-
timize the value of each weight towards correla-
tion with human judgment by hill climbing with
100 random restarts using a development set of
600 sentences. The 300 remaining sentences (100
from each corpus) are kept for testing. The de-
velopment and test sets are composed of equal
portions of sentences from the three sub-corpora
(NIST, MEDAR, WIKI).

As baselines, we measured the correlation of
BLEU and METEOR with human judgments col-
lected for each sentence. We did not observe
a strong correlation with the Arabic-tuned ME-
TEOR. We conducted our experiments on the stan-
dard METEOR which was a stronger baseline than
its Arabic version. In order to avoid the zero n-
gram counts and artificially low BLEU scores, we
use a smoothed version of BLEU. We follow Liu
and Gildea (2005) to add a small value to both the
matched n-grams and the total number of n-grams
(epsilon value of 10−3). In order to reach an op-
timal ordering of partial matches, we conducted a
set of experiments in which we compared differ-
ent orders between the morphological and lexical
matchings to settle with the final order which was
presented in Figure 1.

Table 4 shows a comparison of the average cor-
relation with human judgments for BLEU, ME-

TEOR and AL-BLEU. AL-BLEU shows a strong
improvement against BLEU and a competitive im-
provement against METEOR both on the test and
development sets. The example in Table 2 shows
a sample case of such improvement. In the ex-
ample, the sentence ranked the highest by the an-
notator has only two exact matching with the ref-
erence translation (which results in a low BLEU
score). The stem and morphological matching of
AL-BLEU, gives a score and ranking much closer
to human judgments.

6 Conclusion

We presented AL-BLEU, our adaptation of BLEU
for the evaluation of machine translation into Ara-
bic. The metric uses morphological, syntactic and
lexical matching to go beyond exact token match-
ing. We also presented our annotated corpus of
human ranking judgments for evaluation of Ara-
bic MT. The size and diversity of the topics in
the corpus, along with its relatively high annota-
tion quality (measured by IAA scores) makes it
a useful resource for future research on Arabic
MT. Moreover, the strong performance of our AL-
BLEU metric is a positive indicator for future ex-
ploration of richer linguistic information in evalu-
ation of Arabic MT.
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Abstract

We present a pairwise learning-to-rank
approach to machine translation evalua-
tion that learns to differentiate better from
worse translations in the context of a given
reference. We integrate several layers
of linguistic information encapsulated in
tree-based structures, making use of both
the reference and the system output simul-
taneously, thus bringing our ranking closer
to how humans evaluate translations. Most
importantly, instead of deciding upfront
which types of features are important, we
use the learning framework of preference
re-ranking kernels to learn the features au-
tomatically. The evaluation results show
that learning in the proposed framework
yields better correlation with humans than
computing the direct similarity over the
same type of structures. Also, we show
our structural kernel learning (SKL) can
be a general framework for MT evaluation,
in which syntactic and semantic informa-
tion can be naturally incorporated.

1 Introduction

We have seen in recent years fast improvement
in the overall quality of machine translation (MT)
systems. This was only possible because of the
use of automatic metrics for MT evaluation, such
as BLEU (Papineni et al., 2002), which is the de-
facto standard; and more recently: TER (Snover et
al., 2006) and METEOR (Lavie and Denkowski,
2009), among other emerging MT evaluation met-
rics. These automatic metrics provide fast and in-
expensive means to compare the output of differ-
ent MT systems, without the need to ask for hu-
man judgments each time the MT system has been
changed.

As a result, this has enabled rapid develop-
ment in the field of statistical machine translation
(SMT), by allowing to train and tune systems as
well as to track progress in a way that highly cor-
relates with human judgments.

Today, MT evaluation is an active field of re-
search, and modern metrics perform analysis at
various levels, e.g., lexical (Papineni et al., 2002;
Snover et al., 2006), including synonymy and
paraphrasing (Lavie and Denkowski, 2009); syn-
tactic (Giménez and Màrquez, 2007; Popović
and Ney, 2007; Liu and Gildea, 2005); semantic
(Giménez and Màrquez, 2007; Lo et al., 2012);
and discourse (Comelles et al., 2010; Wong and
Kit, 2012; Guzmán et al., 2014; Joty et al., 2014).

Automatic MT evaluation metrics compare the
output of a system to one or more human ref-
erences in order to produce a similarity score.
The quality of such a metric is typically judged
in terms of correlation of the scores it produces
with scores given by human judges. As a result,
some evaluation metrics have been trained to re-
produce the scores assigned by humans as closely
as possible (Albrecht and Hwa, 2008). Unfortu-
nately, humans have a hard time assigning an ab-
solute score to a translation. Hence, direct hu-
man evaluation scores such as adequacy and flu-
ency, which were widely used in the past, are
now discontinued in favor of ranking-based eval-
uations, where judges are asked to rank the out-
put of 2 to 5 systems instead. It has been shown
that using such ranking-based assessments yields
much higher inter-annotator agreement (Callison-
Burch et al., 2007).

While evaluation metrics still produce numeri-
cal scores, in part because MT evaluation shared
tasks at NIST and WMT ask for it, there has also
been work on a ranking formulation of the MT
evaluation task for a given set of outputs. This
was shown to yield higher correlation with human
judgments (Duh, 2008; Song and Cohn, 2011).
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Learning automatic metrics in a pairwise set-
ting, i.e., learning to distinguish between two al-
ternative translations and to decide which of the
two is better (which is arguably one of the easiest
ways to produce a ranking), emulates closely how
human judges perform evaluation assessments in
reality. Instead of learning a similarity function
between a translation and the reference, they learn
how to differentiate a better from a worse trans-
lation given a corresponding reference. While the
pairwise setting does not provide an absolute qual-
ity scoring metric, it is useful for most evaluation
and MT development scenarios.

In this paper, we propose a pairwise learning
setting similar to that of Duh (2008), but we extend
it to a new level, both in terms of feature represen-
tation and learning framework. First, we integrate
several layers of linguistic information encapsu-
lated in tree-based structures; Duh (2008) only
used lexical and POS matches as features. Second,
we use information about both the reference and
two alternative translations simultaneously, thus
bringing our ranking closer to how humans rank
translations. Finally, instead of deciding upfront
which types of features between hypotheses and
references are important, we use a our structural
kernel learning (SKL) framework to generate and
select them automatically.

The structural kernel learning (SKL) framework
we propose consists in: (i) designing a struc-
tural representation, e.g., using syntactic and dis-
course trees of translation hypotheses and a refer-
ences; and (ii) applying structural kernels (Mos-
chitti, 2006; Moschitti, 2008), to such representa-
tions in order to automatically inject structural fea-
tures in the preference re-ranking algorithm. We
use this method with translation-reference pairs
to directly learn the features themselves, instead
of learning the importance of a predetermined set
of features. A similar learning framework has
been proven to be effective for question answer-
ing (Moschitti et al., 2007), and textual entailment
recognition (Zanzotto and Moschitti, 2006).

Our goals are twofold: (i) in the short term, to
demonstrate that structural kernel learning is suit-
able for this task, and can effectively learn to rank
hypotheses at the segment-level; and (ii) in the
long term, to show that this approach provides a
unified framework that allows to integrate several
layers of linguistic analysis and information and to
improve over the state-of-the-art.

Below we report the results of some initial ex-
periments using syntactic and discourse structures.
We show that learning in the proposed framework
yields better correlation with humans than apply-
ing the traditional translation–reference similarity
metrics using the same type of structures. We
also show that the contributions of syntax and dis-
course information are cumulative. Finally, de-
spite the limited information we use, we achieve
correlation at the segment level that outperforms
BLEU and other metrics at WMT12, e.g., our met-
ric would have been ranked higher in terms of cor-
relation with human judgments compared to TER,
NIST, and BLEU in the WMT12 Metrics shared
task (Callison-Burch et al., 2012).

2 Kernel-based Learning from Linguistic
Structures

In our pairwise setting, each sentence s in
the source language is represented by a tuple
〈t1, t2, r〉, where t1 and t2 are two alternative
translations and r is a reference translation. Our
goal is to develop a classifier of such tuples that
decides whether t1 is a better translation than t2
given the reference r.

Engineering features for deciding whether t1 is
a better translation than t2 is a difficult task. Thus,
we rely on the automatic feature extraction en-
abled by the SKL framework, and our task is re-
duced to choosing: (i) a meaningful structural rep-
resentation for 〈t1, t2, r〉, and (ii) a feature func-
tion φmt that maps such structures to substruc-
tures, i.e., our feature space. Since the design
of φmt is complex, we use tree kernels applied
to two simpler structural mappings φM (t1, r) and
φM (t2, r). The latter generate the tree representa-
tions for the translation-reference pairs (t1, r) and
(t2, r). The next section shows such mappings.

2.1 Representations

To represent a translation-reference pair (t, r), we
adopt shallow syntactic trees combined with RST-
style discourse trees. Shallow trees have been
successfully used for question answering (Severyn
and Moschitti, 2012) and semantic textual sim-
ilarity (Severyn et al., 2013b); while discourse
information has proved useful in MT evaluation
(Guzmán et al., 2014; Joty et al., 2014). Com-
bined shallow syntax and discourse trees worked
well for concept segmentation and labeling (Saleh
et al., 2014a).
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Figure 1: Hypothesis and reference trees combining discourse, shallow syntax and POS.

Figure 1 shows two example trees combining
discourse, shallow syntax and POS: one for a
translation hypothesis (top) and the other one for
the reference (bottom). To build such structures,
we used the Stanford POS tagger (Toutanova et
al., 2003), the Illinois chunker (Punyakanok and
Roth, 2001), and the discourse parser1 of (Joty et
al., 2012; Joty et al., 2013).

The lexical items constitute the leaves of the
tree. The words are connected to their respec-
tive POS tags, which are in turn grouped into
chunks. Then, the chunks are grouped into el-
ementary discourse units (EDU), to which the
nuclearity status is attached (i.e., NUCLEUS or
SATELLITE). Finally, EDUs and higher-order dis-
course units are connected by discourse relations
(e.g., DIS:ELABORATION).

2.2 Kernels-based modeling

In the SKL framework, the learning objects are
pairs of translations 〈t1, t2〉. Our objective is to
automatically learn which pair features are impor-
tant, independently of the source sentence. We
achieve this by using kernel machines (KMs) over
two learning objects 〈t1, t2〉, 〈t′1, t

′
2〉, along with

an explicit and structural representation of the
pairs (see Fig. 1).

1The discourse parser can be downloaded from
http://alt.qcri.org/tools/

More specifically, KMs carry out learning using
the scalar product

Kmt(〈t1, t2〉, 〈t′1, t
′
2〉) = φmt(t1, t2) ·φmt(t′1, t

′
2),

where φmt maps pairs into the feature space.
Considering that our task is to decide whether

t1 is better than t2, we can conveniently rep-
resent the vector for the pair in terms of the
difference between the two translation vectors,
i.e., φmt(t1, t2) = φK(t1) − φK(t2). We can
approximate Kmt with a preference kernel PK to
compute this difference in the kernel space K:

PK(〈t1, t2〉, 〈t′1, t′2〉) (1)

= K(t1)− φK(t2)) · (φK(t′1)− φK(t′2))
= K(t1, t′1) +K(t2, t′2)−K(t1, t′2)−K(t2, t′1)

The advantage of this is that now K(ti, t′j) =
φK(ti) · φK(t′j) is defined between two transla-
tions only, and not between two pairs of transla-
tions. This simplification enables us to map trans-
lations into simple trees, e.g., those in Figure 1,
and then to apply them tree kernels, e.g., the Par-
tial Tree Kernel (Moschitti, 2006), which carry out
a scalar product in the subtree space.

We can further enrich the representation φK , if
we consider all the information available to the
human judges when they are ranking translations.
That is, the two alternative translations along with
their corresponding reference.
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In particular, let r and r′ be the references for
the pairs 〈t1, t2〉 and 〈t′1, t′2〉, we can redefine all
the members of Eq. 1, e.g., K(t1, t′1) becomes
K(〈t1, r〉, 〈t′1, r′〉) = PTK(φM (t1, r), φM (t′1, r′))
+ PTK(φM (r, t1), φM (r′, t′1)),
where φM maps a pair of texts to a single tree.

There are several options to produce the bitext-
to-tree mapping for φM . A simple approach is
to only use the tree corresponding to the first ar-
gument of φM . This leads to the basic model
K(〈t1, r〉, 〈t′1, r′〉) = PTK(φM (t1), φM (t′1)) +
PTK(φM (r), φM (r′)), i.e., the sum of two tree
kernels applied to the trees constructed by φM (we
previously informally mentioned it).

However, this simple mapping may be ineffec-
tive since the trees within a pair, e.g., (t1, r), are
treated independently, and no meaningful features
connecting t1 and r can be derived from their
tree fragments. Therefore, we model φM (r, t1) by
using word-matching relations between t1 and r,
such that connections between words and con-
stituents of the two trees are established using
position-independent word matching. For exam-
ple, in Figure 1, the thin dashed arrows show the
links connecting the matching words between t1
and r. The propagation of these relations works
from the bottom up. Thus, if all children in a con-
stituent have a link, their parent is also linked.

The use of such connections is essential as it en-
ables the comparison of the structural properties
and relations between two translation-reference
pairs. For example, the tree fragment [ELABORA-
TION [SATELLITE]] from the translation is con-
nected to [ELABORATION [SATELLITE]] in the
reference, indicating a link between two entire dis-
course units (drawn with a thicker arrow), and pro-
viding some reliability to the translation2.

Note that the use of connections yields a graph
representation instead of a tree. This is problem-
atic as effective models for graph kernels, which
would be a natural fit to this problem, are not cur-
rently available for exploiting linguistic informa-
tion. Thus, we simply use K, as defined above,
where the mapping φM (t1, r) only produces a tree
for t1 annotated with the marker REL represent-
ing the connections to r. This marker is placed on
all node labels of the tree generated from t1 that
match labels from the tree generated from r.

2Note that a non-pairwise model, i.e., K(t1, r), could
also be used to match the structural information above, but
it would not learn to compare it to a second pair (t2, r).

In other words, we only consider the trees en-
riched by markers separately, and ignore the edges
connecting both trees.

3 Experiments and Discussion

We experimented with datasets of segment-level
human rankings of system outputs from the
WMT11 and the WMT12 Metrics shared tasks
(Callison-Burch et al., 2011; Callison-Burch et al.,
2012): we used the WMT11 dataset for training
and the WMT12 dataset for testing. We focused
on translating into English only, for which the
datasets can be split by source language: Czech
(cs), German (de), Spanish (es), and French (fr).
There were about 10,000 non-tied human judg-
ments per language pair per dataset. We scored
our pairwise system predictions with respect to
the WMT12 human judgments using the Kendall’s
Tau (τ ), which was official at WMT12.

Table 1 presents the τ scores for all metric vari-
ants introduced in this paper: for the individual
language pairs and overall. The left-hand side of
the table shows the results when using as sim-
ilarity the direct kernel calculation between the
corresponding structures of the candidate transla-
tion and the reference3, e.g., as in (Guzmán et al.,
2014; Joty et al., 2014). The right-hand side con-
tains the results for structured kernel learning.

We can make the following observations:
(i) The overall results for all SKL-trained metrics
are higher than the ones when applying direct sim-
ilarity, showing that learning tree structures is bet-
ter than just calculating similarity.
(ii) Regarding the linguistic representation, we see
that, when learning tree structures, syntactic and
discourse-based trees yield similar improvements
with a slight advantage for the former. More in-
terestingly, when both structures are put together
in a combined tree, the improvement is cumula-
tive and yields the best results by a sizable margin.
This provides positive evidence towards our goal
of a unified tree-based representation with multi-
ple layers of linguistic information.
(iii) Comparing to the best evaluation metrics
that participated in the WMT12 Metrics shared
task, we find that our approach is competitive and
would have been ranked among the top 3 partici-
pants.

3Applying tree kernels between the members of a pair to
generate one feature (for each different kernel function) has
become a standard practice in text similarity tasks (Severyn et
al., 2013b) and in question answering (Severyn et al., 2013a).
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Similarity Structured Kernel Learning
Structure cs-en de-en es-en fr-en all cs-en de-en es-en fr-en all

1 SYN 0.169 0.188 0.203 0.222 0.195 0.190 0.244 0.198 0.158 0.198
2 DIS 0.130 0.174 0.188 0.169 0.165 0.176 0.235 0.166 0.160 0.184
3 DIS+POS 0.135 0.186 0.190 0.178 0.172 0.167 0.232 0.202 0.133 0.183
4 DIS+SYN 0.156 0.205 0.206 0.203 0.192 0.210 0.251 0.240 0.223 0.231

Table 1: Kendall’s (τ ) correlation with human judgements on WMT12 for each language pair.

Furthermore, our result (0.237) is ahead of the
correlation obtained by popular metrics such as
TER (0.217), NIST (0.214) and BLEU (0.185) at
WMT12. This is very encouraging and shows the
potential of our new proposal.

In this paper, we have presented only the first
exploratory results. Our approach can be easily
extended with richer linguistic structures and fur-
ther combined with some of the already existing
strong evaluation metrics.

Testing
Train cs-en de-en es-en fr-en all

1 cs-en 0.210 0.204 0.217 0.204 0.209
2 de-en 0.196 0.251 0.203 0.202 0.213
3 es-en 0.218 0.204 0.240 0.223 0.221
4 fr-en 0.203 0.218 0.224 0.223 0.217
5 all 0.231 0.258 0.226 0.232 0.237

Table 2: Kendall’s (τ ) on WMT12 for cross-
language training with DIS+SYN.

Note that the results in Table 1 were for train-
ing on WMT11 and testing on WMT12 for each
language pair in isolation. Next, we study the im-
pact of the choice of training language pair. Ta-
ble 2 shows cross-language evaluation results for
DIS+SYN: lines 1-4 show results when training on
WMT11 for one language pair, and then testing for
each language pair of WMT12.

We can see that the overall differences in perfor-
mance (see the last column: all) when training on
different source languages are rather small, rang-
ing from 0.209 to 0.221, which suggests that our
approach is quite independent of the source lan-
guage used for training. Still, looking at individ-
ual test languages, we can see that for de-en and
es-en, it is best to train on the same language; this
also holds for fr-en, but there it is equally good
to train on es-en. Interestingly, training on es-en
improves a bit for cs-en.

These somewhat mixed results have motivated
us to try tuning on the full WMT11 dataset; as line
5 shows, this yielded improvements for all lan-
guage pairs except for es-en. Comparing to line
4 in Table 1, we see that the overall Tau improved
from 0.231 to 0.237.

4 Conclusions and Future Work

We have presented a pairwise learning-to-rank ap-
proach to MT evaluation, which learns to differen-
tiate good from bad translations in the context of
a given reference. We have integrated several lay-
ers of linguistic information (lexical, syntactic and
discourse) in tree-based structures, and we have
used the structured kernel learning to identify rel-
evant features and learn pairwise rankers.

The evaluation results have shown that learning
in the proposed SKL framework is possible, yield-
ing better correlation (Kendall’s τ ) with human
judgments than computing the direct kernel sim-
ilarity between translation and reference, over the
same type of structures. We have also shown that
the contributions of syntax and discourse informa-
tion are cumulative, indicating that this learning
framework can be appropriate for the combination
of different sources of information. Finally, de-
spite the limited information we used, we achieved
better correlation at the segment level than BLEU
and other metrics in the WMT12 Metrics task.

In the future, we plan to work towards our long-
term goal, i.e., including more linguistic informa-
tion in the SKL framework and showing that this
can help. This would also include more semantic
information, e.g., in the form of Brown clusters or
using semantic similarity between the words com-
posing the structure calculated with latent seman-
tic analysis (Saleh et al., 2014b).

We further want to show that the proposed
framework is flexible and can include information
in the form of quality scores predicted by other
evaluation metrics, for which a vector of features
would be combined with the structured kernel.
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Montréal, Canada.

Alessandro Moschitti, Silvia Quarteroni, Roberto
Basili, and Suresh Manandhar. 2007. Exploiting
syntactic and shallow semantic kernels for ques-
tion answer classification. In Proceedings of the
45th Annual Meeting of the Association of Computa-
tional Linguistics, ACL ’07, pages 776–783, Prague,
Czech Republic.

Alessandro Moschitti. 2006. Efficient convolution ker-
nels for dependency and constituent syntactic trees.
In Proceedings of 17th European Conference on Ma-
chine Learning and the 10th European Conference
on Principles and Practice of Knowledge Discovery
in Databases, ECML/PKDD ’06, pages 318–329,
Berlin, Germany.

Alessandro Moschitti. 2008. Kernel methods, syn-
tax and semantics for relational text categorization.
In Proceedings of the 17th ACM Conference on In-
formation and Knowledge Management, CIKM ’08,
pages 253–262, Napa Valley, California, USA.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proceedings
of 40th Annual Meting of the Association for Com-
putational Linguistics, ACL ’02, pages 311–318,
Philadelphia, Pennsylvania, USA.
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Abstract

Left-to-right (LR) decoding (Watanabe et
al., 2006) is promising decoding algorithm
for hierarchical phrase-based translation
(Hiero) that visits input spans in arbitrary
order producing the output translation in
left to right order. This leads to far fewer
language model calls, but while LR decod-
ing is more efficient than CKY decoding,
it is unable to capture some hierarchical
phrase alignments reachable using CKY
decoding and suffers from lower transla-
tion quality as a result. This paper in-
troduces two improvements to LR decod-
ing that make it comparable in translation
quality to CKY-based Hiero.

1 Introduction
Hierarchical phrase-based translation (Hi-
ero) (Chiang, 2007) uses a lexicalized syn-
chronous context-free grammar (SCFG) extracted
from word and phrase alignments of a bitext. De-
coding for Hiero is typically done with CKY-style
decoding with time complexity O(n3) for source
input with n words. Computing the language
model score for each hypothesis within CKY de-
coding requires two histories, the left and the right
edge of each span, due to the fact that the target
side is built inside-out from sub-spans (Heafield
et al., 2011; Heafield et al., 2013).

LR-decoding algorithms exist for phrase-
based (Koehn, 2004; Galley and Manning, 2010)
and syntax-based (Huang and Mi, 2010; Feng et
al., 2012) models and also for hierarchical phrase-
based models (Watanabe et al., 2006; Siahbani et
al., 2013), which is our focus in this paper.

Watanabe et al. (2006) first proposed left-to-
right (LR) decoding for Hiero (LR-Hiero hence-
forth) which uses beam search and runs in O(n2b)
in practice where n is the length of source sentence
and b is the size of beam (Huang and Mi, 2010).
To simplify target generation, SCFG rules are con-

strained to be prefix-lexicalized on target side aka
Griebach Normal Form (GNF). Throughout this
paper we abuse the notation for simplicity and use
the term GNF grammars for such SCFGs. This
constraint drastically reduces the size of gram-
mar for LR-Hiero in comparison to Hiero gram-
mar (Siahbani et al., 2013). However, the orig-
inal LR-Hiero decoding algorithm does not per-
form well in comparison to current state-of-the-art
Hiero and phrase-based translation systems. Siah-
bani et al. (2013) propose an augmented version
of LR decoding to address some limitations in the
original LR-Hiero algorithm in terms of transla-
tion quality and time efficiency.

Although, LR-Hiero performs much faster than
Hiero in decoding and obtains BLEU scores com-
parable to phrase-based translation system on
some language pairs, there is still a notable gap be-
tween CKY-Hiero and LR-Hiero (Siahbani et al.,
2013). We show in this paper using instructive ex-
amples that CKY-Hiero can capture some complex
phrasal re-orderings that are observed in language
pairs such as Chinese-English that LR-Hiero can-
not (c.f. Sec.3).

We introduce two improvements to LR decod-
ing of GNF grammars: (1) We add queue diversity
to the cube pruning algorithm for LR-Hiero, and
(2) We extend the LR-Hiero decoder to capture all
the hierarchical phrasal alignments that are reach-
able in CKY-Hiero (restricted to using GNF gram-
mars). We evaluate our modifications on three
language pairs and show that LR-Hiero can reach
the translation scores comparable to CKY-Hiero in
two language pairs, and reduce the gap between
Hiero and LR-Hiero on the third one.

2 LR Decoding with Queue Diversity
LR-Hiero uses a constrained lexicalized SCFG
which we call a GNF grammar: X → 〈γ, b̄ β〉
where γ is a string of non-terminal and terminal
symbols, b̄ is a string of terminal symbols and β is
a possibly empty sequence of non-terminals. This
ensures that as each rule is used in a derivation,
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Algorithm 1: LR-Hiero Decoding

1: Input sentence: f = f0f1 . . . fn
2: F = FutureCost(f) (Precompute future cost1for spans)
3: S0 = {} (Create empty initial stack)
4: h0 = (〈s〉, [[0, n]], ∅,F[0,n]) (Initial hypothesis 4-tuple)
5: Add h0 to S0 (Push initial hyp into first Stack)
6: for i = 1, . . . , n do
7: cubeList = {} (MRL is max rule length)
8: for p = max(i− MRL, 0), . . . , i− 1 do
9: {G} = Grouped(Sp) (based on the first uncovered

span)
10: for g ∈ {G} do
11: [u, v] = gspan
12: R = GetSpanRules([u, v])
13: for Rs ∈ R do
14: cube = [ghyps, Rs]
15: Add cube to cubeList
16: Si = Merge(cubeList,F) (Create stack Si and add

new hypotheses to it, see Figure 1)
17: return arg max(Sn)

18: Merge(CubeList,F)
19: heapQ = {}
20: for each (H,R) in cubeList do
21: hypList = getBestHypotheses((H,R),F , d) (d

best hypotheses of each cube)
22: for each h′ in hypList do
23: push(heapQ, (h′c, h

′, [H,R]) (Push new hyp
in queue)

24: hypList = {}
25: while |heapQ| > 0 and |hypList| < K do
26: (h′c, h

′, [H,R]) = pop(heapQ) (pop the best
hypothesis)

27: push(heapQ,GetNeighbours([H,R]) (Push
neighbours to queue)

28: Add h′ to hypList
29: return hypList

the target string is generated from left to right.
The rules are obtained from a word and phrase
aligned bitext using the rule extraction algorithm
in (Watanabe et al., 2006).

LR-Hiero decoding uses a top-down depth-first
search, which strictly grows the hypotheses in tar-
get surface ordering. Search on the source side
follows an Earley-style search (Earley, 1970), the
dot jumps around on the source side of the rules
based on the order of nonterminals on the target
side. This search is integrated with beam search
or cube pruning to find the k-best translations.

Algorithm 1 shows the pseudocode for LR-
Hiero decoding with cube pruning (Chiang, 2007)
(CP). LR-Hiero with CP was introduced in (Siah-
bani et al., 2013). In this pseudocode, we have in-
troduced the notion of queue diversity (explained
below). However to understand our change we
need to understand the algorithm in more detail.

1The future cost is precomputed in a way similar to the
phrase-based models (Koehn et al., 2007) using only the ter-
minal rules of the grammar.
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Figure 1: Cubes (grids) are fed to a priority queue (trian-
gle) and generated hypotheses are iteratively popped from the
queue and added to stack Si. Lower scores are better. Scores
of rules and hypotheses appear on the top and left side of the
grids respectively. Shaded entries are hypotheses in the queue
and black ones are popped from the queue and added to Si.

Each source side non-terminal is instantiated with
the legal spans given the input source string, e.g.
if there is a Hiero rule 〈aX1, a

′X1〉 and if a only
occurs at position 3 in the input then this rule can
be applied to span [3, i] for all i, 4 < i ≤ n for in-
put of length n and source side X1 is instantiated
to span [4, i]. A worked out example of how the
decoder works is shown in Figure 2. Each partial
hypothesis h is a 4-tuple (ht, hs, hcov, hc): con-
sisting of a translation prefix ht, a (LIFO-ordered)
list hs of uncovered spans, source words coverage
set hcov and the hypothesis cost hc. The initial hy-
pothesis is a null string with just a sentence-initial
marker 〈s〉 and the list hs containing a span of the
whole sentence, [0, n]. The hypotheses are stored
in stacks S0, . . . , Sn, where Sp contains hypothe-
ses covering p source words just like in stack de-
coding for phrase-based SMT (Koehn et al., 2003).

To fill stack Si we consider hypotheses in each
stack Sp2, which are first partitioned into a set of
groups {G}, based on their first uncovered span
(line 9). Each group g is a 2-tuple (gspan, ghyps),
where ghyps is a list of hypotheses which share the
same first uncovered span gspan. Rules matching
the span gspan are obtained from routine GetSpan-
Rules. Each ghyps and possible Rs create a cube
which is added to cubeList.

The Merge routine gets the best hypotheses
from all cubes (see Fig.1). Hypotheses (rows) and
columns (rules) are sorted based on their scores.
GetBestHypotheses((H,R),F , d) uses current
hypothesis H and rule R to produce new hypothe-
ses. The first best hypothesis, h′ along with its
score h′c and corresponding cube (H,R) is placed
in a priority queue heapQ (triangle in Figure 1
and line 23 in Algorithm 1). Iteratively the K best

2As the length of rules are limited (at most MRL), we can
ignore stacks with index less than i− MRL
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rules hypotheses

〈s〉[0, 15]

G 1)〈Taiguo shi X1/Thailand X1〉 〈s〉 Thailand [2,15]

G 2)〈yao X1/wants X1〉
G 3)〈liyong X1/to utilize X1〉

4)〈zhe bi qian X1/this money X1〉
5)〈X1zhuru geng duo X2/to inject more X2X1〉
6)〈liudong X1/circulating X1〉

G 7)〈zijin X1/capital X1〉
8)〈./.〉
9)〈xiang jingji/to the economy〉

〈s〉Thailand wants [3,15]

〈s〉Thailand wants to utilize [4,15]

〈s〉Thailand wants to utilize this money [7,15]

〈s〉Thailand wants to utilize this money to inject more [12,15][7,9]

〈s〉Thailand wants to utilize this money to inject more circulating [13,15][7,9]

〈s〉Thailand wants to utilize this money to inject more circulating capital [14,15][7,9]

〈s〉Thailand wants to utilize this money to inject more circulating capital . [7,9]

〈s〉Thailand wants to utilize this money to inject more circulating capital . to the economy〈/s〉
Figure 2: The process of translating the Chinese sentence in Figure 3(b) in LR-Hiero. Left side shows the rules used in the
derivation (G indicates glue rules as defined in (Watanabe et al., 2006)). The hypotheses column shows the translation prefix
and the ordered list of yet-to-be-covered spans.

Tā b ch ng shu  ,ǔ ō ō liánhé zhèngfǔ , bìngqiě y u nénglìǒ guànchè .mùqián

He added that the coalition government carrying out the economic reform plancapable ofand

jīngjì g igé  jìhuàǎ

is now in stable .

X1

condition

zhuàngkuàng wěndìng
 0      1                   2            3   4               5                    6                      7                                  8                         9   10                11        12              13                     14             15             16            17      18

(a)

Tàiguó shì  yào zhè bǐ qián xiàng jīngjì zhùrù gèng duō .lìyòng

Thailand wants to circulating capital to the economyinject morethis money to

liúdòng zījīn

utilize .

X1

X 2

0               1          2              3                  4            5     6            7                 8             9               10           11         12                    13           14      15

(b)

Figure 3: Two Chinese-English sentence pairs from devset data in experiments. (a) Correct rule cannot be matched to [6,18],
our modifications match the rule to the first subspan [6,9] (b) LR-Hiero detects a wrong span for X2 [12,15], we modify the
rule matching match X2 to all subspans [12,13], [12,14] and [12,15], corresponding to 3 hypotheses.

hypotheses in the queue are popped (line 26) and
for each hypothesis its neighbours in the cube are
added to the priority queue (line 27). Decoding
finishes when stack Sn has been filled.

The language model (LM) score violates the
hypotheses generation assumption of CP and can
cause search errors. In Figure 1, the topmost
and leftmost entry of the right cube has a score
worse than many hypotheses in the left cube due
to the LM score. This means the right cube
has hypotheses that are ignored. This type of
search error hurts LR-Hiero more than CKY-
Hiero, due to the fact that hypotheses scores in
LR-Hiero rely on a future cost, while CKY-Hiero
uses the inside score for each hypothesis. To
solve this issue for LR-Hiero we introduce the no-
tion of queue diversity which is the parameter d
in GetBestHypotheses((H,R),F , d). This pa-
rameter guarantees that each cube will produce at
least d candidate hypotheses for the priority queue.
d=1 in standard cube pruning for LR-Hiero (Siah-
bani et al., 2013). We apply the idea of diver-

sity at queue level, before generating K best hy-
pothesis, such that the GetBestHypotheses rou-
tine generates d best hypotheses from each cube
and all these hypotheses are pushed to the prior-
ity queue (line 22-23). We fill each stack differ-
ently from CKY-Hiero and so queue diversity is
different from lazy cube pruning (Pust and Knight,
2009) or cube growing (Huang and Chiang, 2007;
Vilar and Ney, 2009; Xu and Koehn, 2012).

3 Capturing Missing Alignments
Figure 3(a) and Figure 3(b) show two examples of
a common problem in LR-Hiero decoding. The
decoder steps for Figure 3(b) are shown in Fig-
ure 2. The problem occurs in Step 5 of Figure 2
where rule #5 is matched to span [7, 15]. Dur-
ing decoding LR-Hiero maintains a stack (last-
in-first-out) of yet-to-be-covered spans and tries
to translate the first uncovered span (span [7, 15]
in Step 5). LR-Hiero should match rule #5 to
span [7, 15], therefore X2 is forced to match span
[12, 15] which leads to the translation of span [7, 9]
(corresponding to X1) being reordered around it
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Corpus Train/Dev/Test
Cs-En Europarl(v7) + CzEng(v0.9); News

commentary(nc) 2008&2009; nc 2011
7.95M/3000/3003

De-En Europarl(v7); WMT2006; WMT2006 1.5M/2000/2000
Zh-En HK + GALE phase-1; MTC part 1&3;

MTC part 4
2.3M/1928/919

Table 1: Corpus statistics in number of sentences. Tuning and test sets for Chinese-English has 4 references.

Model Cs-En De-En Zh-En
Hiero 20.77 25.72 27.65
LR-Hiero (Watanabe et al., 2006) 20.72 25.10 25.99
LR-Hiero+CP (Siahbani et al., 2013) 20.15 24.83 -
LR-Hiero+CP (QD=1) 20.68 25.14 24.44
LR-Hiero+CP (QD=15) - - 26.10
LR-Hiero+CP+(ab) 20.88 25.22 26.55
LR-Hiero+CP+(abc) 20.89 25.22 26.52

(a) BLEU scores for different baselines and modifications of this paper.
QD=15 for Zh-En in last three rows. (b) Average number of language model queries.

Table 2: (a) BLEU (b) LM calls

causing the incorrect translation in Step 9. If we
use the same set of rules for translation in Hi-
ero (CKY-based decoder), the decoder is able to
generate the correct translation for span [7, 14] (it
works bottom-up and generate best translation for
each source span). Then it combines translation of
[7, 14] with translation of spans [0, 7] and [14, 15]
using glue rules (monotonic combination).

In Figure 3(a) monotonic translations after span
[6, 9] are out of reach of the LR-Hiero decoder
which has to use the non-terminals to support
the reordering within span [6, 9]. In this exam-
ple the first few phrases are translated monoton-
ically, then for span [6, 18] we have to apply rule
〈muqian X1 wending, is now in stable X1〉 to ob-
tain the correct translation. But this rule cannot
be matched to span [6, 18] and the decoder fails
to generate the correct translation. While CKY-
Hiero can apply this rule to span [6, 9], generate
correct translation for this span and monotonically
combine it with translation of other spans ([0, 6],
[9, 18]).

In both these cases, CKY-Hiero has no diffi-
culty in reaching the target sentence with the same
GNF rules. The fact that we have to process spans
as they appear in the stack in LR-Hiero means
that we cannot combine arbitrary adjacent spans
to deal with such cases. So purely bottom-up de-
coders such as CKY-Hiero can capture the align-
ments in Figure 3 but LR-Hiero cannot.

We extend the LR-Hiero decoder to handle such
cases by making the GNF grammar more expres-
sive. Rules are partitioned to three types based on

the right boundary in the source and target side.
The rhs after the⇒ shows the new rules we create
within the decoder using a new non-terminal Xr

to match the right boundary.

(a) 〈γā, b̄β〉 ⇒ 〈γāXr, b̄βXr〉
(b) 〈γXn, b̄βXn〉 ⇒ 〈γXnXr, b̄βXnXr〉
(c) 〈γXn, b̄βXm〉 ⇒ 〈γXnXr, b̄βXmXr〉

(1)

where γ is a string of terminals and non-terminals,
ā and b̄ are terminal sequences of source and tar-
get respectively, β is a possibly empty sequence
of non-terminals and Xn and Xm are different
non-terminals distinct from Xr

3. The extra non-
terminal Xr lets us add a new yet-to-be-covered
span to the bottom of the stack at each rule appli-
cation which lets us match any two adjacent spans
just as in CKY-Hiero. This captures the missing
alignments that could not be previously captured
in the LR-Hiero decoder4.

In Table 4 we translated devset sentences using
forced decoding to show that our modifications to
LR-Hiero in this section improves the alignment
coverage when compared to CKY-Hiero.

4 Experiments
We evaluate our modifications to LR-Hiero de-
coder on three language pairs (Table 1): German-
English (De-En), Czech-English (Cs-En) and
Chinese-English (Zh-En).

3In rule type (c) Xn will be in β and Xm will be in γ.
4For the sake of simplicity, in rule type (b) we can merge

Xn and Xr as they are in the same order on both source and
target side.
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We use a 5-gram LM trained on the Gigaword
corpus and use KenLM (Heafield, 2011). We
tune weights by minimizing BLEU loss on the dev
set through MERT (Och, 2003) and report BLEU
scores on the test set. Pop limit for Hiero and LR-
Hiero+CP is 500 and beam size LR-Hiero is 500.
Other extraction and decoder settings such as max-
imum phrase length, etc. were identical across set-
tings. To make the results comparable we use the
same feature set for all baselines, Hiero as well
(including new features proposed by (Siahbani et
al., 2013)).

We use 3 baselines: (i) our implementation of
(Watanabe et al., 2006): LR-Hiero with beam
search (LR-Hiero) and (ii) LR-Hiero with cube
pruning (Siahbani et al., 2013): (LR-Hiero+CP);
and (iii) Kriya, an open-source implementation of
Hiero in Python, which performs comparably to
other open-source Hiero systems (Sankaran et al.,
2012).

Table 3 shows model sizes for LR-Hiero (GNF)
and Hiero (SCFG). Typical Hiero rule extraction
excludes phrase-pairs with unaligned words on
boundaries (loose phrases). We use similar rule
extraction as Hiero, except that exclude non-GNF
rules and include loose phrase-pairs as terminal
rules.

Table 2a shows the translation quality of dif-
ferent systems in terms of BLEU score. Row
3 is from (Siahbani et al., 2013)5. As we dis-
cussed in Section 2, LR-Hiero+CP suffers from
severe search errors on Zh-En (1.5 BLEU) but us-
ing queue diversity (QD=15) we fill this gap. We
use the same QD(=15) in next rows for Zh-en.
For Cs-En and De-En we use regular cube prun-
ing (QD=1), as it works as well as beam search
(compare rows 4 and 2).

We measure the benefit of the new modified
rules from Section 3: (ab): adding modifications
for rules type (a) and (b); (abc): modification
of all rules. We can see that for all language
pairs (ab) constantly improves performance of LR-
Hiero, significantly better than LR-Hiero+CP and
LR-Hiero (p-value<0.05) on Cs-En and Zh-En,
evaluated by MultEval (Clark et al., 2011). But
modifying rule type (c) does not show any im-
provement due to spurious ambiguity created by

5We report results on Cs-En and De-En in (Siahbani et
al., 2013). Row 4 is the same translation system as row 3
(LR-Hiero+CP). We achieve better results than our previous
work (Siahbani et al., 2013) (row 4 vs. row 3) due to bug
corrections and adding loose phrases as terminal rules.

Model Cs-En De-En Zh-En
Hiero 1,961.6 858.5 471.9
LR-Hiero 266.5 116.0 100.9

Table 3: Model sizes (millions of rules).

Model Cs-En De-En Zh-En
Hiero 318 351 187
LR-Hiero 278 300 132
LR-Hiero+(abc) 338 361 174

Table 4: No. of sentence covered in forced decoding of a sam-
ple of sentences from the devset. We improve the coverage
by 31% for Chinese-English and more than 20% for the other
two language pairs.

type (c) rules.
Figure 2b shows the results in terms of average

number of language model queries on a sample set
of 50 sentences from test sets. All of the base-
lines use the same wrapper to KenLM (Heafield,
2011) to query the language model, and we have
instrumented the wrapper to count the statistics.
In (Siahbani et al., 2013) we discuss that LR-Hiero
with beam search (Watanabe et al., 2006) does not
perform at the same level of state-of-the-art Hi-
ero (more LM calls and less translation quality).
As we can see in this figure, adding new mod-
ified rules slightly increases the number of lan-
guage model queries on Cs-En and De-En so that
LR-Hiero+CP still works 2 to 3 times faster than
Hiero. On Zh-En, LR-Hiero+CP applies queue
diversity (QD=15) which reduces search errors
and improves translation quality but increases the
number of hypothesis generation as well. LR-
Hiero+CP with our modifications works substan-
tially faster than LR-Hiero while obtain signifi-
cantly better translation quality on Zh-En.

Comparing Table 2a with Figure 2b we can see
that overall our modifications to LR-Hiero decoder
significantly improves the BLEU scores compared
to previous LR decoders for Hiero. We obtain
comparable results to CKY-Hiero for Cs-En and
De-En and remarkably improve results on Zh-En,
while at the same time making 2 to 3 times less
LM calls on Cs-En and De-En compared to CKY-
Hiero.
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Abstract

In this paper, we present a novel exten-
sion of a forest-to-string machine transla-
tion system with a reordering model. We
predict reordering probabilities for every
pair of source words with a model using
features observed from the input parse for-
est. Our approach naturally deals with the
ambiguity present in the input parse forest,
but, at the same time, takes into account
only the parts of the input forest used
by the current translation hypothesis. The
method provides improvement from 0.6 up
to 1.0 point measured by (Ter − Bleu)/2
metric.

1 Introduction

Various commonly adopted statistical machine
translation (SMT) approaches differ in the amount
of linguistic knowledge present in the rules they
employ.

Phrase-based (Koehn et al., 2003) models are
strong in lexical coverage in local contexts, and
use external models to score reordering op-
tions (Tillman, 2004; Koehn et al., 2005).

Hierarchical models (Chiang, 2005) use lexi-
calized synchronous context-free grammar rules
to produce local reorderings. The grammatical-
ity of their output can be improved by addi-
tional reordering models scoring permutations of
the source words. Reordering model can be either
used for source pre-ordering (Tromble and Eisner,
), integrated into decoding via translation rules ex-
tension (Hayashi et al., 2010), additional lexical
features (He et al., ), or using external sources of
information, such as source syntactic features ob-
served from a parse tree (Huang et al., 2013).

Tree-to-string (T2S) models (Liu et al., 2006;
Galley et al., 2006) use rules with syntactic struc-
tures, aiming at even more grammatically appro-
priate reorderings.

Forest-to-string (F2S) systems (Mi et al., 2008;
Mi and Huang, 2008) use source syntactic forest
as the input to overcome parsing errors, and to al-
leviate sparseness of translation rules.

The parse forest may often represent several
meanings for an ambiguous input that may need
to be transtated differently using different word or-
derings. The following example of an ambiguous
Chinese sentence with ambiguous part-of-speech
labeling motivates our interest in the reordering
model for the F2S translation.

S. tǎolùn (0) SSS. hùi (1) SSS zěnmeyàng (2)

discussion/NN SS meeting/NN how/VV
discuss/VV SSSSSwill/VV

There are several possible meanings based on
the different POS tagging sequences. We present
translations for two of them, together with the in-
dices to their original source words:

(a) NN NN VV:
How2 was2 the0 discussion0 meeting1?

(b) VV VV VV:
Discuss0 what2 will1 happen1.

A T2S system starts from a single parse corre-
sponding to one of the possible POS sequences,
the same tree can be used to predict word reorder-
ings. On the other hand, a F2S system deals with
the ambiguity through exploring translation hy-
potheses for all competing parses representing the
different meanings. As our example suggests, dif-
ferent meanings also tend to reorder differently
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id rule
r1 NP(tǎolùn/NN)→ discussion
r2 NP(hùi/NN)→ meeting
r3 NP(x1:NP x2:NP)→ the x1 x2
r4 IP(x1:NP zěnmeyàng/VV)→ how was x1
r5 IP(hùi/VV zěnmeyàng/VV)→ what will happen
r6 IP(tǎolùn/VV x1:IP)→ discuss x1

Table 1: Tree-to-string translation rules (without
internal structures).

during translation. First, the reordering model suit-
able for F2S translation should allow for trans-
lation of all meanings present in the input. Sec-
ond, as the process of deriving a partial transla-
tion hypothesis rules out some of the meanings,
the reordering model should restrict itself to fea-
tures originating in the relevant parts of the input
forest. Our work presents a novel technique satis-
fying both these requirements, while leaving the
disambuiguation decision up to the model using
global features.

The paper is organized as follows: We briefly
overview the F2S and Hiero translation models in
Section 2, present the proposed forest reordering
model in Section 3, describe our experiment and
present results in Section 4.

2 Translation Models

Forest-to-string translation (Mi et al., 2008) is an
extension of the tree-to-string model (Liu et al.,
2006; Huang et al., 2006) allowing it to use a
packed parse forest as the input instead of a sin-
gle parse tree.

Figure 1 shows a tree-to-string translation
rule (Huang et al., 2006), which is a tuple
〈lhs(r), rhs(r), ψ(r)〉, where lhs(r) is the source-
side tree fragment, whose internal nodes are la-
beled by nonterminal symbols (like NP), and
whose frontier nodes are labeled by source-
language words (like “zěnmeyàng”) or variables
from a finite set X = {x1, x2, . . .}; rhs(r) is
the target-side string expressed in target-language
words (like “how was”) and variables; and ψ(r) is
a mapping from X to nonterminals. Each variable
xi ∈ X occurs exactly once in lhs(r) and exactly
once in rhs(r).

The Table 1 lists all rules necessary to derive
translations (a) and (b), with their internal struc-
ture removed for simplicity.

Typically, an F2S system translates in two steps
(shown in Figure 2): parsing and decoding. In the

IP

x1:NP VP

VV

zěnmeyàng

→ how was x1

Figure 1: Tree-to-string rule r4.

parsing step, the source language input is con-
verted into a parse forest (A). In the decoding step,
we first convert the parse forest into a translation
forest Ft in (B) by using the fast pattern-matching
technique (Zhang et al., 2009). Then the decoder
uses dynamic programing with beam search and
cube pruning to find the approximation to the best
scoring derivation in the translation forest, and
outputs the target string.

3 Forest Reordering Model

In this section, we describe the process of ap-
plying the reordering model scores. We score
pairwise translation reorderings for every pair of
source words similarly as described by Huang et
al. (2013). In their approach, an external model of
ordering distributions of sibling constituent pairs
predicts the reordering of word pairs. Our ap-
proach deals with parse forests rather than with
single trees, thus we have to model the scores dif-
ferently. We model ordering distributions for ev-
ery pair of close relatives–nodes in the parse forest
that may occur together as frontier nodes of a sin-
gle matching rule. We further condition the distri-
bution on a third node–a common ancestor of the
node pair that corresponds to the root node of the
matching rule. This way our external model takes
into acount the syntactic context of the hypothe-
sis. For example, nodes NP0, 1 and NP1, 2 are close
relatives, NP0, 2 and IP0, 3 are their common ances-
tors; NP0, 1 and VV2, 3 are close relatives, IP0, 3 is
their common ancestor; NP0, 1 and VV1, 2 are not
close relatives.

More formally, let us have an input sentence
(w0, ...,wn) and its translation hypothesis h. For
every i and j such that 0 ≤ i < j ≤ n we as-
sume that the translations of wi and w j are in the
hypothesis h either in the same or inverted order-
ing oi j ∈ {Inorder,Reorder}, with a probability
Porder(oi j|h). Conditioning on h signifies that the
probabilistic model takes the current hypothesis as
a parameter. The reordering score of the entire hy-
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(A)

IP0, 3

NP0, 2

NP0, 1

tǎolùn

VV0, 1 NP1, 2

hùi

VV1, 2

IP1, 3

zěnmeyàng

VV2, 3

Rt

⇒ (B)

e4 e6

e3

e1

tǎolùn

e2

hùi

e5

zěnmeyàng

Figure 2: Parse and translation hypergraphs. (A) The parse forest of the example sentence. Solid hy-
peredges denote the best parse, dashed hyperedges denote the second best parse. Unary edges were col-
lapsed. (B) The corresponding translation forest Ft after applying the tree-to-string translation rule set Rt.
Each translation hyperedge (e.g. e4) has the same index as the corresponding rule (r4). The forest-to-
string system can produce the example translation (a) (solid derivation: r1, r2, r3, and r4) and (b) (dashed
derivation: r5, r6).

pothesis forder(h) is then computed as

forder =
∑

0≤i< j≤n

− log Porder(oi j = oh
i j | h), (1)

where oh
i j denotes the actual ordering used in h.

The score forder can be computed recursively by
dynamic programing during the decoding. As an
example, we show in Table 2 reordering probabil-
ities retrieved in decoding of our sample sentence.

(a) If h is a hypothesis formed by a single trans-
lation rule r with no frontier nonterminals, we
evaluate all word pairs wi and w j covered by h
such that i < j. For each such pair we find the
frontier nodes x and y matched by r such that
x spans exactly wi and y spans exactly w j. (In
this case, x and y match preterminal nodes, each
spanning one position). We also find the node z
matching the root of r. Then we directly use the
Equation 1 to compute the score using an exter-
nal model Porder(oi j|xyz) to estimate the probabil-
ity of reordering the relative nodes. For example,
when applying rule r5, we use the ordering dis-
tribution Porder(o1,2|VV1, 2,VV2, 3, IP1, 3) to score
reorderings of hùi and zěnmeyàng.

(b) If h is a hypothesis formed by a T2S rule
with one or more frontier nonterminals, we eval-
uate all word pairs as follows: If both wi and w j

are spanned by the same frontier nonterminal (e.g.,
tǎolùn and hùi when applying the rule r4), the
score forder had been already computed for the un-
derlying subhypothesis, and therefore was already
included in the total score. Otherwise, we compute

the word pair ordering cost. We find the close rel-
atives x and y representing each wi and w j. If wi

is matched by a terminal in r, we select x as the
node matching r and spanning exactly wi. If wi is
spanned by a frontier nonterminal in r (meaning
that it was translated in a subhypothesis), we select
x as the node matching that nonterminal. We pro-
ceed identically for w j and y. For example, when
applying the rule r4, the word zěnmeyàng will be
represented by the node VV2, 3, while tǎolùn and
hùi will be represented by the node NP0, 2.

Note that the ordering oh
i j cannot be determined

in some cases, sometimes a source word does not
produce any translation, or the translation of one
word is entirely surrounded by the translations of
another word. A weight corresponding to the bi-
nary discount feature founknown is added to the score
for each such case.

The external model Porder(oi j|xyz) is imple-
mented as a maximum entropy model. Features
of the model are observed from paths connecting
node z with nodes x and y as follows: First, we
pick paths z→ x and z→ y. Let z′ be the last node
shared by both paths (the closest common ances-
tor of x and y). Then we distinguish three types of
path: (1) The common prefix z → z′ (it may have
zero length), the left path z→ x, and the right path
z → y. We observe the following features on each
path: the syntactic labels of the nodes, the produc-
tion rules, the spans of nodes, a list of stop words
immediately preceding and following the span of
the node. We merge the features observed from
different paths z → x and z → y. This approach
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rule word pair order probability
a) how2 was2 the discussion0 meeting1

r3 (tǎolùn,hùi) Inorder Porder
(
o0,1|NP0, 1,NP1, 2,NP0, 2

)
r4 (tǎolùn,zěnmeyàng) Reorder Porder

(
o0,2|NP0, 2,VV2, 3, IP0, 3

)
(hùi,zěnmeyàng) Reorder Porder

(
o1,2|NP0, 2,VV2, 3, IP0, 3

)
b) discuss0 what2 will1 happen1

r5 (hùi, zěnmeyàng) Reorder Porder
(
o1,2|VV1, 2,VV2, 3, IP1, 3

)
r6 (tǎolùn, hùi) Inorder Porder

(
o0,1|VV0, 1, IP1, 3, IP0, 3

)
(tǎolùn, zěnmeyàng Inorder Porder

(
o0,2|VV0, 1, IP1, 3, IP0, 3

)
Table 2: Example of reordering scores computed for derivations (a) and (b).

ignores the internal structure of each rule1, relying
on frontier node annotation. On the other hand it
is still feasible to precompute the reordering prob-
abilities for all combinations of xyz.

4 Experiment

In this section we describe the setup of the exper-
iment, and present results. Finally, we propose fu-
ture directions of research.

4.1 Setup

Our baseline is a strong F2S system (Čmejrek
et al., 2013) built on large data with the full set
of model features including rule translation prob-
abilities, general lexical and provenance transla-
tion probabilities, language model, and a vari-
ety of sparse features. We build it as follows.
The training corpus consists of 16 million sen-
tence pairs available within the DARPA BOLT
Chinese-English task. The corpus includes a mix
of newswire, broadcast news, webblog data com-
ing from various sources such as LDC, HK Law,
HK Hansard and UN data. The Chinese text is seg-
mented with a segmenter trained on CTB data us-
ing conditional random fields (CRF).

Bilingual word alignments are trained and com-
bined from two sources: GIZA (Och, 2003) and
maximum entropy word aligner (Ittycheriah and
Roukos, 2005).

Language models are trained on the English
side of the parallel corpus, and on monolingual
corpora, such as Gigaword (LDC2011T07) and
Google News, altogether comprising around 10
billion words.

We parse the Chinese part of the training data
with a modified version of the Berkeley parser

1Only to some extent, the rule still has to match the input
forest, but the reordering model decides based on the sum of
paths observed between the root and frontier nodes.

(Petrov and Klein, 2007), then prune the ob-
tained parse forests for each training sentence with
the marginal probability-based inside-outside al-
gorithm to contain only 3n CFG nodes, where n is
the sentence length.

We extract tree-to-string translation rules from
forest-string sentence pairs using the forest-based
GHKM algorithm (Mi and Huang, 2008; Galley et
al., 2004).

In the decoding step, we use larger input
parse forests than in training, we prune them to
contain 10n nodes. Then we use fast pattern-
matching (Zhang et al., 2009) to convert the parse
forest into the translation forest.

The proposed reordering model is trained on
100, 000 automatically aligned forest-string sen-
tence pairs from the parallel training data. These
sentences provide 110M reordering events that are
used by megam (Daumé III, 2004) to train the max-
imum entropy model.

The current implementation of the reordering
model requires offline preprocessing of the input
hypergraphs to precompute reordering probabili-
ties for applicable triples of nodes (x, y, z). Since
the number of levels in the syntactic trees in T2S
rules is limited to 4, we only need to consider such
triples, where z is up to 4 levels above x or y.

We tune on 1275 sentences, each with 4 refer-
ences, from the LDC2010E30 corpus, initially re-
leased under the DARPA GALE program.

We combine two evaluation metrics for tun-
ing and testing: Bleu (Papineni et al., 2002) and
Ter (Snover et al., 2006). Both the baseline and
the reordering experiments are optimized with
MIRA (Crammer et al., 2006) to maximize (Ter-
Bleu)/2.

We test on three different test sets: GALE
Web test set from LDC2010E30 corpus (1239
sentences, 4 references), NIST MT08 Newswire
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System GALE Web MT08 Newswire MT08 Web

Ter−Bleu
2 Bleu Ter Ter−Bleu

2 Bleu Ter Ter−Bleu
2 Bleu Ter

F2S 8.8 36.1 53.7 5.6 40.6 51.8 12.0 31.3 55.3
+Reordering 8.2 36.4 52.7 4.8 41.7 50.5 11.0 31.7 53.7

∆ -0.6 +0.3 -1.0 -0.8 +1.1 -1.3 -1.0 +0.4 -1.6

Table 3: Results.

portion (691 sentences, 4 references), and NIST
MT08 Web portion (666 sentences, 4 references).

4.2 Results

Table 3 shows all results of the baseline and the
system extended with the forest reordering model.
The (Ter − Bleu)/2 score of the baseline system
is 12.0 on MT08 Newswire, showing that it is a
strong baseline. The system with the proposed re-
ordering model significantly improves the base-
line by 0.6, 0.8, and 1.0 (Ter − Bleu)/2 points on
GALE Web, MT08 Newswire, and MT08 Web.

The current approach relies on frontier node
annotations, ignoring to some extent the internal
structure of the T2S rules. As part of future re-
search, we would like to compare this approach
with the one that takes into accout the internal
structure as well.

5 Conclusion

We have presented a novel reordering model for
the forest-to-string MT system. The model deals
with the ambiguity of the input forests, but also
predicts specifically to the current parse followed
by the translation hypothesis. The reordering prob-
abilities can be precomputed by an offline pro-
cess, allowing for efficient scoring in runtime. The
method provides improvement from 0.6 up to 1.0
point measured by (Ter − Bleu)/2 metrics.
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Abstract

Many statistical models for natural language pro-
cessing exist, including context-based neural net-
works that (1) model the previously seen context
as a latent feature vector, (2) integrate successive
words into the context using some learned represen-
tation (embedding), and (3) compute output proba-
bilities for incoming words given the context. On
the other hand, brain imaging studies have sug-
gested that during reading, the brain (a) continu-
ously builds a context from the successive words
and every time it encounters a word it (b) fetches its
properties from memory and (c) integrates it with
the previous context with a degree of effort that is
inversely proportional to how probable the word is.
This hints to a parallelism between the neural net-
works and the brain in modeling context (1 and a),
representing the incoming words (2 and b) and in-
tegrating it (3 and c). We explore this parallelism to
better understand the brain processes and the neu-
ral networks representations. We study the align-
ment between the latent vectors used by neural net-
works and brain activity observed via Magnetoen-
cephalography (MEG) when subjects read a story.
For that purpose we apply the neural network to the
same text the subjects are reading, and explore the
ability of these three vector representations to pre-
dict the observed word-by-word brain activity.

Our novel results show that: before a new word i
is read, brain activity is well predicted by the neural
network latent representation of context and the pre-
dictability decreases as the brain integrates the word
and changes its own representation of context. Sec-
ondly, the neural network embedding of word i can
predict the MEG activity when word i is presented
to the subject, revealing that it is correlated with the
brain’s own representation of word i. Moreover, we
obtain that the activity is predicted in different re-
gions of the brain with varying delay. The delay is
consistent with the placement of each region on the
processing pathway that starts in the visual cortex
and moves to higher level regions. Finally, we show
that the output probability computed by the neural
networks agrees with the brain’s own assessment of
the probability of word i, as it can be used to predict
the brain activity after the word i’s properties have
been fetched from memory and the brain is in the
process of integrating it into the context.

1 Introduction

Natural language processing has recently seen a
surge in increasingly complex models that achieve

impressive goals. Models like deep neural net-
works and vector space models have become pop-
ular to solve diverse tasks like sentiment analy-
sis and machine translation. Because of the com-
plexity of these models, it is not always clear how
to assess and compare their performances as they
might be useful for one task and not the other.
It is also not easy to interpret their very high-
dimensional and mostly unsupervised representa-
tions. The brain is another computational system
that processes language. Since we can record brain
activity using neuroimaging, we propose a new di-
rection that promises to improve our understand-
ing of both how the brain is processing language
and of what the neural networks are modeling by
aligning the brain data with the neural networks
representations.

In this paper we study the representations of two
kinds of neural networks that are built to predict
the incoming word: recurrent and finite context
models. The first model is the Recurrent Neural
Network Language Model (Mikolov et al., 2011)
which uses the entire history of words to model
context. The second is the Neural Probabilistic
Language Model (NPLM) which uses limited con-
text constrained to the recent words (3 grams or 5
grams). We trained these models on a large Harry
Potter fan fiction corpus and we then used them to
predict the words of chapter 9 of Harry Potter and
the Sorcerer’s Stone (Rowling, 2012). In paral-
lel, we ran an MEG experiment in which 3 subject
read the words of chapter 9 one by one while their
brain activity was recorded. We then looked for
the alignment between the word-by-word vectors
produced by the neural networks and the word-by-
word neural activity recorded by MEG.

Our neural networks have 3 key constituents:
a hidden layer that summarizes the history of the
previous words ; an embeddings vector that sum-
marizes the (constant) properties of a given word
and finally the output probability of a word given
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Reading comprehension is reflected in the subsequent acti-
vation of the left superior temporal cortex at 200–600 ms
(Halgren et al., 2002; Helenius et al., 1998; Pylkkänen
et al., 2002, 2006; Pylkkänen and Marantz, 2003; Simos
et al., 1997). This sustained activation differentiates
between words and nonwords (Salmelin et al., 1996; Wil-
son et al., 2005; Wydell et al., 2003). Apart from lexical-se-
mantic aspects it also seems to be sensitive to phonological
manipulation (Wydell et al., 2003).

As discussed above, in speech perception activation is
concentrated to a rather small area in the brain and we
have to rely on time information to dissociate between dif-
ferent processes. Here, the different processes are separable
both in timing and location. Because of that, one might
think that it is easier to characterize language-related pro-
cesses in the visual than auditory modality. However, here
the difficulties appear at another level. In reading, activa-
tion is detected bilaterally in the occipital cortex, along
the temporal lobes, in the parietal cortex and, in vocalized
reading, also in the frontal lobes, at various times with
respect to stimulus onset. Interindividual variability further
complicates the picture, resulting in practically excessive
amounts of temporal and spatial information. The areas
and time windows depicted in Fig. 5, with specific roles
in reading, form a limited subset of all active areas
observed during reading. In order to perform proper func-
tional localization one needs to vary the stimuli and tasks
systematically, in a parametric fashion. Let us now consid-
er how one may extract activation reflecting pre-lexical let-
ter-string analysis and lexical-semantic processing.

3.2. Pre-lexical analysis

In order to tease apart early pre-lexical processes in
reading, Tarkiainen and colleagues (Tarkiainen et al.,
1999) used words, syllables, and single letters, imbedded

in a noisy background, at four different noise levels
(Fig. 6). For control, the sequences also contained symbol
strings. One sequence was composed of plain noise stimuli.
The stimuli were thus varied along two major dimensions:
the amount of features to process increased with noise and
with the number of items, letters or symbols. On the other
hand, word-likeness was highest for clearly visible complete
words and lowest for symbols and noise.

At the level of the brain, as illustrated in Fig. 7, the data
showed a clear dissociation between two processes within
the first 200 ms: visual feature analysis occurred at about
100 ms after stimulus presentation, with the active areas
around the occipital midline, along the ventral stream. In
these areas, the signal increased with increasing noise and
with the number of items in the string, similarly for letters
and symbols. Only 50 ms later, at about 150 ms, the left
inferior occipitotemporal cortex showed letter-string spe-
cific activation. This signal increased with the visibility of
the letter strings. It was strongest for words, weaker for syl-
lables, and still weaker for single letters. Crucially, the acti-
vation was significantly stronger for letter than symbol
strings of equal length.

Bilateral occipitotemporal activation at about 200 ms
post-stimulus is consistently reported in MEG studies of
reading (Cornelissen et al., 2003b; Pammer et al., 2004; Sal-
melin et al., 1996, 2000b) but, interestingly, functional
specificity for letter-strings is found most systematically
in the left hemisphere. The MEG data on letter-string spe-
cific activation are in good agreement with intracranial
recordings, both with respect to timing and location and
the pre-lexical nature of the activation (Nobre et al., 1994).

3.3. Lexical-semantic analysis

To identify cortical dynamics of reading comprehension,
Helenius and colleagues (Helenius et al., 1998) employed a

Visual feature
analysis

Non-specific Words =
Nonwords Nonwords

Letter-string
analysis

Time (ms)

0 400 800 0 400 800 0 400 800

Lexical-semantic
analysis

Fig. 5. Cortical dynamics of silent reading. Dots represent centres of active cortical patches collected from individual subjects. The curves display the
mean time course of activation in the depicted source areas. Visual feature analysis in the occipital cortex (!100 ms) is stimulus non-specific. The stimulus
content starts to matter by !150 ms when activation reflecting letter-string analysis is observed in the left occipitotemporal cortex. Subsequent activation
of the left superior temporal cortex at !200–600 ms reflects lexical-semantic analysis and, probably, also phonological analysis. Modified from Salmelin
et al. (2000a).
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Figure 1: Cortical dynamics of silent reading. This figure
is adapted from (Salmelin, 2007). Dots represent projected
sources of activity in the visual cortex (left brain sketch) and
the temporal cortex (right brain sketch). The curves display
the mean time course of activation in the depicted source ar-
eas for different conditions. The initial visual feature anal-
ysis in the visual cortex at ∼100 ms is non-specific to lan-
guage. Comparing responses to letter strings and other vi-
sual stimuli reveals that letter string analysis occurs around
150 ms. Finally comparing the responses to words and non-
words (made-up words) reveals lexical-semantic analysis in
the temporal cortex at ∼200-500ms.

the context. We set out to find the brain analogs
of these model constituents using an MEG decod-
ing task. We compare the different models and
their representations in terms of how well they
can be used to decode the word being read from
MEG data. We obtain correspondences between
the models and the brain data that are consistent
with a model of language processing in which
brain activity encodes story context, and where
each new word generates additional brain activity,
flowing generally from visual processing areas to
more high level areas, culminating in an updated
story context, and reflecting an overall magnitude
of neural effort influenced by the probability of
that new word given the previous context.

1.1 Neural processes involved in reading
Humans read with an average speed of 3 words
per second. Reading requires us to perceive in-
coming words and gradually integrate them into
a representation of the meaning. As words are
read, it takes 100ms for the visual input to reach
the visual cortex. 50ms later, the visual input is
processed as letter strings in a specialized region
of the left visual cortex (Salmelin, 2007). Be-
tween 200-500ms, the word’s semantic properties
are processed (see Fig. 1). Less is understood
about the cortical dynamics of word integration, as
multiple theories exist (Friederici, 2002; Hagoort,
2003).

Magnetoencephalography (MEG) is a brain-
imaging tool that is well suited for studying lan-

guage. MEG records the change in the magnetic
field on the surface of the head that is caused by
a large set of aligned neurons that are changing
their firing patterns in synchrony in response to
a stimulus. Because of the nature of the signal,
MEG recordings are directly related to neural ac-
tivity and have no latency. They are sampled at
a high frequency (typically 1kHz) that is ideal for
tracking the fast dynamics of language processing.

In this work, we are interested in the mecha-
nism of human text understanding as the meaning
of incoming words is fetched from memory and
integrated with the context. Interestingly, this is
analogous to neural network models of language
that are used to predict the incoming word. The
mental representation of the previous context is
analogous to the latent layer of the neural network
which summarizes the relevant context before see-
ing the word. The representation of the meaning
of a word is analogous to the embedding that the
neural network learns in training and then uses.
Finally, one common hypotheses is that the brain
integrates the word with inversely proportional ef-
fort to how predictable the word is (Frank et al.,
2013). There is a well studied response known as
the N400 that is an increase of the activity in the
temporal cortex that has been recently shown to be
graded by the amount of surprisal of the incoming
word given the context (Frank et al., 2013). This is
analogous to the output probability of the incom-
ing word from the neural network.

Fig. 2 shows a hypothetical activity in an MEG
sensor as a subject reads a story in our experi-
ment, in which words are presented one at a time
for 500ms each. We conjecture that the activity in
time window a, i.e. before word i is understood, is
mostly related to the previous context before see-
ing word i. We also conjecture that the activity in
time window b is related to understanding word i
and integrating it into the context, leading to a new
representation of context in window c.

Using three types of features from neural net-
works (hidden layer context representation, output
probabilities and word embeddings) from three
different models of language (one recurrent model
and two finite context models), we therefore set to
predict the activity in the brain in different time
windows. We want to align the brain data with the
various model constituents to understand where
and when different types of processes are com-
puted in the brain, and simultaneously, we want to
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Figure 2: [Top] Sketch of the updates of a neural network
reading chapter 9 after it has been trained. Every word cor-
responds to a fixed embedding vector (magenta). A context
vector (blue) is computed before the word is seen given the
previous words. Given the context vector, the probability of
every word can be computed (symbolized by the histogram
in green). We only use the output probability of the actual
word (red circle). [Bottom] Hypothetical activity in an MEG
sensor when the subject reads the corresponding words. The
time periods approximated as a, b and c can be tested for in-
formation content relating to: the context of the story before
seeing word i (modeled by the context vector at i), the repre-
sentation of the properties of word i (the embedding of word
i) and the integration of word i into the context (the output
probability of word i). The periods drawn here are only a
conjecture on the timings of such cognitive events.

use the brain data to shed light on what the neural
network vectors are representing.

Related work
Decoding cognitive states from brain data is a
recent field that has been growing in popularity.
Most decoding studies that study language use
functional Magnetic Resonance Imaging (fMRI),
while some studies use MEG. MEG’s high tempo-
ral resolution makes it invaluable for looking at the
dynamics of language understanding. (Sudre et
al., 2012) decode from MEG the word a subject is
reading. The authors estimate from the MEG data
the semantic features of the word and use these as
an intermediate step to decode what the word is.
This is in principle similar to the classification ap-

proach we follow, as we will also use the feature
vectors as an intermediate step for word classifica-
tion. However the experimental paradigm in (Su-
dre et al., 2012) is to present to the subjects sin-
gle isolated words and to find how the brain rep-
resents their semantic features; whereas we have a
much more complex and “naturalistic” experiment
in which the subjects read a non-artificial passage
of text, and we look at processes that exceed in-
dividual word processing: the construction of the
meanings of the successive words and the predic-
tion/integration of incoming words.

In (Frank et al., 2013), the amount of surprisal
that a word has given its context is used to pre-
dict the intensity of the N400 response described
previously. This is the closest study we could find
to our approach. This study was concerned with
analyzing the brain processes related only to sur-
prisal while we propose a more integral account
of the processes in the brain. The study also didn’t
address the major contribution we propose here,
which is to shed light on the inner constituents of
language models using brain imaging.

1.2 Recurrent and finite context neural
networks

Similar to standard language models, neural lan-
guage models also learn probability distributions
over words given their previous context. However,
unlike standard language models, words are rep-
resented as real-valued vectors in a high dimen-
sional space. These word vectors, referred to as
word embeddings, can be different for input and
output words, and are learned from training data.
Thus, although at training and test time, the in-
put and output to the neural language models are
one-hot representation of words, it is their em-
beddings that are used to compute word proba-
bility distributions. After training the embedding
vectors are fixed and it is these vectors that we
will use later on to predict MEG data. To predict
MEG data, we will also use the latent vector rep-
resentations of context that these neural networks
produce, as well as the probability of the current
word given the context. In this section, we will
describe how recurrent neural network language
models and feedforward neural probabilistic lan-
guage models compute word probabilities. In the
interest of space, we keep this description brief,
and for details, the reader is requested to refer to
the original papers describing these models.
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Figure 3: Recurrent neural network language model.

Recurrent Neural Network Language Model
Unlike standard feedforward neural language
models that only look at a fixed number of past
words, recurrent neural network language models
use all the previous history from position 1 to t−1
to predict the next word. This is typically achieved
by feedback connections, where the hidden layer
activations used for predicting the word in posi-
tion t − 1 are fed back into the network to com-
pute the hidden layer activations for predicting the
next word. The hidden layer thus stores the history
of all previous words. We use the RNNLM archi-
tecture as described in Mikolov (2012), shown in
Figure 3. The input to the RNNLM at position t
are the one-hot representation of the current word,
w(t), and the activations from the hidden layer at
position t − 1, s(t − 1). The output of the hidden
layer at position t− 1 is

s(t) = φ (Dw(t) + Ws(t− 1)) ,

where D is the matrix of input word embeddings,
W is a matrix that transforms the activations from
the hidden layer in position t − 1, and φ is a
sigmoid function, defined as φ(x) = 1

1+exp(−x) ,
that is applied elementwise. We need to compute
the probability of the next word w(t + 1) given
the hidden state s(t). For fast estimation of out-
put word probabilities, Mikolov (2012) divides the
computation into two stages: First, the probability
distribution over word classes is computed, after
which the probability distribution over the subset
of words belonging to the class are computed. The
class probability of a particular class with indexm
at position t is computed as:

P (cm(t) | s(t)) =
exp (s(t)Xvm)∑C
c=1 (exp (s(t)Xvc))

,

where X is a matrix of class embeddings and vm

is a one-hot vector representing the class with in-
dex m. The normalization constant is computed

u1 u2

input
words

input
embeddings

hidden
h1

hidden
h2

output
P (w | u)

D′

M
C1 C2

D

Figure 4: Neural probabilistic language model

over all classes C. Each class specifies a subset
V ′ of words, potentially smaller than the entire vo-
cabulary V . The probability of an output word l at
position t + 1 given that its class is m is defined
as:

P (yl(t+ 1) | cm(t), s(t)) =
exp (s(t)D′vl)∑V ′

k=1 (exp (s(t)D′vk))
,

where D′ is a matrix of output word embeddings
and vl is a one hot vector representing the word
with index l. The probability of the word w(t+1)
given its class ci can now be computed as:

P (w(t+ 1) | s(t)) =P (w(t+ 1) | ci, s(t))
P (ci | s(t)).

Neural Probabilistic Language Model
We use the feedforward neural probabilistic lan-
guage model architecture of Vaswani et al. (2013),
as shown in Figure 4. Each context u comprises
a sequence of words uj (1 ≤ j ≤ n − 1) repre-
sented as one-hot vectors, which are fed as input
to the neural network. At the output layer, the neu-
ral network computes the probability P (w | u) for
each word w, as follows.

The output of the first hidden layer h1 is

h1 = φ

n−1∑
j=1

CjDuj + b1

 ,

where D is a matrix of input word embeddings
which is shared across all positions, the Cj are the
context matrices for each word in u, b1 is a vec-
tor of biases with the same dimension as h1, and φ
is applied elementwise. Vaswani et al. (2013) use
rectified linear units (Nair and Hinton, 2010) for
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the hidden layers h1 and h2, which use the activa-
tion function φ(x) = max(0, x).

The output of the second layer h2 is

h2 = φ (Mh1 + b2) ,

where M is a weight matrix between h1 and h2

and b2 is a vector of biases for h2. The probabil-
ity of the output word is computed at the output
softmax layer as:

P (w | u) =
exp

(
vwD′h2 + bTvw

)∑V
w′=1 exp (vw′D′h2 + bTvw′)

,

where D′ is the matrix of output word embed-
dings, b is a vector of biases for every output word
and vw its the one hot representation of the word
w in the vocabulary.

2 Methods

We describe in this section our approach. In sum-
mary, we trained the neural network models on
a Harry Potter fan fiction database. We then ran
these models on chapter 9 of Harry Potter and the
Sorcerer’s Stone (Rowling, 2012) and computed
the context and embedding vectors and the output
probability for each word. In parallel, 3 subjects
read the same chapter in an MEG scanner. We
build models that predict the MEG data for each
word as a function of the different neural network
constituents. We then test these models with a
classification task that we explain below. We de-
tect correspondences between the neural network
components and the brain processes that under-
lie reading in the following fashion. If using a
neural network vector (e.g. the RNNLM embed-
ding vector) allows us to classify significantly bet-
ter than chance in a given region of the brain at
a given time (e.g. the visual cortex at time 100-
200ms), then we can hypothesize a relationship
between that neural network constituent and the
time/location of the analogous brain process.

2.1 Training the Neural Networks

We used the freely available training tools pro-
vided by Mikolov (2012)1 and Vaswani et al.
(2013)2 to train our RNNLM and NPLM models
used in our brain data classification experiments.
Our training data comprised around 67.5 million

1http://rnnlm.org/
2http://nlg.isi.edu/software/nplm

words for training and 100 thousand words for val-
idation from the Harry Potter fan fiction database
(http://harrypotterfanfiction.com). We restricted
the vocabulary to the top 100 thousand words
which covered all but 4 words from Chapter 9 of
Harry Potter and the Sorcerer’s Stone.

For the RNNLM, we trained models with differ-
ent hidden layers and learning rates and found the
RNNLM with 250 hidden units to perform best on
the validation set. We extracted our word embed-
dings from the input matrix D (Figure 3). We used
the default settings for all other hyper parameters.

We trained 3-gram and 5-gram NPLMs with
150 dimensional word embeddings and experi-
mented with different number of units for the first
hidden layer (h1 in Figure 4), and different learn-
ing rates. For both the 3-gram and 5-gram mod-
els, we found 750 hidden units to perform the best
on the validation set and chose those models for
our final experiments. We used the output word
embeddings D′ in our experiments. We visually
inspected the nearest neighbors in the 150 dimen-
sional word embedding space for some words and
didn’t find the neighbors from D′ or D to be dis-
tinctly better than each other. We leave the com-
parison of input and output embeddings on brain
activity prediction for future work.

2.2 MEG paradigm

We recorded MEG data for three subjects (2 fe-
males and one male) while they read chapter 9
of Harry Potter and the Sorcerer’s Stone (Rowl-
ing, 2012). The participants were native English
speakers and right handed. They were chosen to
be familiar with the material: we made sure they
had read the Harry Potter books or seen the movies
series and were familiar with the characters and
the story. All the participants signed the consent
form, which was approved by the University of
Pittsburgh Institutional Review Board, and were
compensated for their participation.

The words of the story were presented in rapid
serial visual format (Buchweitz et al., 2009):
words were presented one by one at the center
of the screen for 0.5 seconds each. The text was
shown in 4 experimental blocks of ∼11 minutes.
In total, 5176 words were presented. Chapter 9
was presented in its entirety without modifications
and each subject read the chapter only once.

One can think of an MEG machine as a large
helmet, with sensors located on the helmet that
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record the magnetic activity. Our MEG recordings
were acquired on an Elekta Neuromag device at
the University of Pittsburgh Medical Center Pres-
byterian Hospital. This machine has 306 sensors
distributed into 102 locations on the surface of the
subject’s head. Each location groups 3 sensors or
two types: one magnometer that records the in-
tensity of the magnetic field and two planar gra-
diometers that record the change in the magnetic
field along two orthogonal planes3.

Our sampling frequency was 1kHz. For prepro-
cessing, we used Signal Space Separation method
(SSS, (Taulu et al., 2004)), followed by its tempo-
ral extension (tSSS, (Taulu and Simola, 2006)).

For each subject, the experiment data consists
therefore of a 306 dimensional time series of
length∼45 minutes. We averaged the signal in ev-
ery sensor into 100ms non-overlapping time bins.
Since words were presented for 500ms each, we
therefore obtain for every word p = 306 × 5 val-
ues corresponding to 306 vectors of 5 points.

2.3 Decoding experiment
To find which parts of brain activity are related to
the neural network constituents (e.g. the RNNLM
context vector), we run a prediction and classifica-
tion experiment in a 10-fold cross validated fash-
ion. At every fold, we train a linear model to pre-
dict MEG data as a function of one of the feature
sets, using 90% of the data. On the remaining 10%
of the data, we run a classification experiment.

MEG data is very noisy. Therefore, classify-
ing single word waveforms yields a low accuracy,
peaking at 60%, which might lead to false nega-
tives when looking for correspondences between
neural network features and brain data. To reveal
informative features, one can boost signal by ei-
ther having several repetitions of the stimuli in the
experiment and then averaging (Sudre et al., 2012)
or by combining the words into larger chunks (We-
hbe et al., 2014). We chose the latter because the
former sacrifices word and feature diversity.

At testing, we therefore repeat the following
300 times. Two sets of words are chosen ran-
domly from the test fold. To form the first set, 20
words are sampled without replacement from the
test sample (unseen by the classifier). To form the
second set, the kth word is chosen randomly from
all words in the test fold having the same length as

3In this paper, we treat these three different sensors as
three different dimensions without further exploiting their
physical properties.

the kth word of the first set. Since every fold of
the data was used 9 times in the training phase and
once in the testing phase, and since we use a high
number of randomized comparisons, this averages
out biases in the accuracy estimation. Classifying
sets of 20 words improves the classification accu-
racy greatly while lowering its variance and makes
it dissociable from chance performance. We com-
pare only between words of equal length, to mini-
mize the effect of the low level visual features on
the classification accuracy.

After averaging out the results of multiple folds,
we end up with average accuracies that reveal how
related one of the models’ constituents (e.g. the
RNNLM context vector) is to brain data.

2.3.1 Annotation of the stimulus text
We have 9 sets of annotations for the words of the
experiment. Each set j can be described as a ma-
trix Fj in which each row i corresponds to the vec-
tor of annotations of word i. Our annotations cor-
respond to the 3 model constituents for each of the
3 models: the hidden layer representation before
word i, the output probability of word i and the
learned embeddings for word i.

2.3.2 Classification
In order to align the brain processes and the differ-
ent constituents of the different models, we use a
classification task. The task is to classify the word
a subject is reading out of two possible choices
from its MEG recording. The classifier uses one
type of feature in an intermediate classification
step. For example, the classifier learns to predict
the MEG activity for any setting of the RNNLM
hidden layer. Given an unseen MEG recording for
an unknown word i and two possible story words
i′ and i′′ (one of which being the true word i), the
classifier predicts the MEG activity when reading
i′ and i′′ from their hidden layer vectors. It then
assigns the label i′ or i′′ to the word recording i
depending on which prediction is the closest to the
recording. The following are the detailed steps of
this complex classification task. However, for the
rest of the paper the most useful point to keep in
mind is that the main purpose of the classification
is to find a correspondence between the brain data
and a given feature set j.

1. Normalize the columns of M (zero mean,
standard deviation = 1). Pick feature set Fj

and normalize its columns to a minimum of 0
and a maximum of 1.
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2. Divide the data into 10 folds, for each fold b:

(a) Isolate Mb and Fb
j as test data. The re-

mainder M−b and F−bj will be used for
training4.

(b) Subtract the mean of the columns of
M−b from Mb and M−b and the mean
of the columns of F−bj from Fb

j and F−bj
(c) Use ridge regression to solve

M−b = F−bj × βtj
by tuning the λ parameter to every one
of the p output dimensions indepen-
dently. λ is chosen via generalized cross
validation (Golub et al., 1979).

(d) Perform a binary classification. Sample
from the set of words in b a set c of 20
words. Then sample from b another set
of 20 words such that the kth word in c
and d have the same number of letters.
For every sample (c,d):

i. predict the MEG data for c and d as:
Pc = Fc

j × Γbj and Pd = Fd
j × Γbj

ii. assign to Mc the label c or d depend-
ing on which of Pc or Pd is closest
(Euclidean distance).

iii. assign to Md the label c or d de-
pending on which of Pc or Pd is
closest (Euclidean distance).

3. Compute the average accuracy.

2.3.3 Restricting the analysis spatially: a
searchlight equivalent

We adapt the searchlight method (Kriegeskorte et
al., 2006) to MEG. The searchlight is a discovery
procedure used in fMRI in which a cube is slid
over the brain and an analysis is performed in each
location separately. It allows to find regions in the
brain where a specific phenomenon is occurring.
In the MEG sensor space, for every one of the 102
sensor locations `, we assign a group of sensors g`.
For every location `, we identify the locations that
immediately surround it in any direction (Anterior,
Right Anterior, Right etc...) when looking at the
2D flat representation of the location of the sensors
in the MEG helmet (see Fig. 9 for an illustration of
the 2D helmet). g` therefore contains the 3 sensors
at location ` and at the neighboring locations. The
maximum number of sensors in a group is 3 × 9.

4The rows from M−b and F−bj that correspond to the five
words before or after the test set are ignored in order to make
the test set independent.

The locations at the edge of the helmet have fewer
sensors because of the missing neighbor locations.

2.3.4 Restricting the analysis temporally
Instead of using the entire time course of the word,
we can use only one of the corresponding 100ms
time windows. Obtaining a high classification ac-
curacy using one of the time windows and feature
set j means that the analogous type of information
is encoded at that time.

2.3.5 Classification accuracy by time and
region

The above steps compute whole brain accuracy us-
ing all the time series. In order to perform a more
precise spatio-temporal analysis, one can use only
one time windowm and one location ` for the clas-
sification. This can answer the question of when
and where different information is represented by
brain activity. For every location, we will use only
the columns corresponding to the time pointm for
the sensors belonging to the group g`. Step (d) of
the classification procedure is changed as such:

(d) Perform a binary classification. Sample from
the set of words in b a set c of 20 words. Then
sample from b another set of 20 words such
that the kth word in c and d have the same
number of letters. For every sample (c,d), and
for every setting of {m, `}:

i. predict the MEG data for c and d as:
Pc
{m,`} = Fc

j × Γbj,{m,`} and

Pd
{m,`} = Fd

j × Γbj,{m,`}
ii. assign to Mc

{m,`} the label c or d depend-
ing on which of Pc

{m,`} or Pd
{m,`} is clos-

est (Euclidean distance).
iii. assign to Md

{m,`} the label c or d depend-
ing on which of Pc

{m,`} or Pd
{m,`} is clos-

est (Euclidean distance).

2.3.6 Statistical significance testing
We determine the distribution for chance perfor-
mance empirically. Because the successive word
samples in our MEG and feature matrices are not
independent and identically distributed, we break
the relationship between the MEG and feature ma-
trices by shifting the feature matrices by large de-
lays (e.g. 2000 to 2500 words) and we repeat
the classification using the delayed matrices. This
simulates chance performance more fairly than a
permutation test because it keeps the time struc-
ture of the matrices. It was used in (Wehbe et al.,
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2014) and inspired by (Chwialkowski and Gret-
ton, 2014). For every {m, `} setting we can there-
fore compute a standardized z-value by subtract-
ing the mean of the shifted classifications and di-
viding by the standard deviation. We then com-
pute the p-value for the true classification accu-
racy being due to chance. Since the three p-values
for the three subjects for a given {m, `} are inde-
pendent, we combine them using Fisher’s method
for independent test statistics (Fisher, 1925). The
statistics we obtain for every {m, `} are depen-
dent because they comprise nearby time and space
windows. We control the false discovery rate us-
ing (Benjamini and Yekutieli, 2001) to adjust for
the testing at multiple locations and time windows.
This method doesn’t assume any kind of indepen-
dence or positive dependence.

3 Results

We present in Fig. 5 the accuracy using all the time
windows and sensors. In Fig. 6 we present the
classification accuracy when running the classifi-
cation at every time window exclusively. In Fig. 9
we present the accuracy when running the classifi-
cation using different time windows and groups of
sensors centered at every one of the 102 locations.

It is important to lay down some conventions
to understand the complex results in these plots.
To recap, we are trying to find parallels between
model constituents and brain processes. We use:

• a subset of the data (for example the time
window 0-100ms and all the sensors)

• one type of feature (for example the hidden
context layer from the NPLM 3g model)

and we obtain a classification accuracy A. If A
is low, there is probably no relationship between
the feature set and the subset of data. If A is high,
it hints to an association between the subset of data
and the mental process that is analogous to the fea-
ture set. For example, when using all the sensors
and time window 0-100ms, along with the NPLM
3g hidden layer, we obtain an accuracy of 0.70
(higher than chance with p < 10−14, see Fig. 6).
Since the NPLM 3g hidden layer summarizes the
context of the story before seeing word i, this sug-
gests that the brain is still processing the context
of the story before word i between 0-100ms.

Fig. 6 shows the accuracy for different types
of features when using all of the time points and
all the sensors to classify a word. We can see
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Figure 5: Average accuracy using all time windows and
sensors, grouped by model (top) and type of feature (bot-
tom). All accuracies are significantly higher than chance
(p < 10−8).
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Figure 6: Average accuracy in different time windows
when using different types of features as input to the clas-
sifier, for different models. Accuracy is plotted in the center
of the respective time window. Points marked with a circle
are significantly higher than chance accuracy for the given
feature set and time window after correction.

similar classification accuracies for the three types
of models, with RNNLM ahead for the hidden
layer and embeddings and behind for the output
probability features. The hidden layer features
are the most powerful for classification. Between
the three types of features, the hidden layer fea-
tures are the best at capturing the information con-
tained in the brain data, suggesting that most of
the brain activity is encoding the previous context.
The embedding features are the second best. Fi-
nally the output probability have the smallest ac-
curacies. This makes sense considering that they
capture much less information than the other two
high dimensional descriptive vectors, as they do
not represent the complex properties of the words,
only a numerical assessment of their likelihood.

Fig. 6 shows the accuracy when using different
windows of time exclusively, for the 100ms time
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windows starting at 0, 100 . . . 400ms after word
presentation. We can see that using the embed-
ding vector becomes increasingly more useful for
classification until 300-400ms, and then its perfor-
mance starts decreasing. This results aligns with
the following hypothesis: the word is being per-
ceived and understood by the brain gradually after
its presentation, and therefore the brain represen-
tation of the word becomes gradually similar to the
neural network representation of the word (i.e. the
embedding vector). The output probability feature
accuracy peaks at a later time than the embeddings
accuracy. Obtaining a higher than chance accu-
racy at time window m using the output probabil-
ity as input to the classifier suggests strongly that
the brain is integrating the word at time window
m, because it is responding differently for pre-
dictable and unpredictable words5. The integra-
tion step happens after the perception step, which
is probably why the output probability curves peak
later than the embeddings curves.
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Figure 7: Average accuracy in time for the different hidden
layers. The analysis is extended to the time windows before
and after the word is presented, the input feature is restricted
to be the hidden layer before the central word is seen. The
first vertical bar indicates the onset of the word, the second
one indicates the end of its presentation.
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Figure 8: Accuracy in time when using the RNNLM fea-
tures for each of the three subjects.

To understand the time dynamics of the hidden
layer accuracy we need to see a larger time scale
than the word itself. The hidden layer captures the

5the fact that we can classify accurately during windows
300-400ms indicates that the classifier is taking advantage of
the N400 response discussed in the introduction

context before word i is seen. Therefore it seems
reasonable that the hidden layer is not only related
to the activity when the word is on the screen, but
also related to the activity before the word is pre-
sented, which is the time when the brain is inte-
grating the previous words to build that context.
On the other hand, as the word i and subsequent
words are integrated, the context starts diverging
from the context of word i (computed before see-
ing word i). We therefore ran the same analysis
as before, but this time we also included the time
windows before and after word i in the analysis,
while maintaining the hidden layer vector to be the
context before word i is seen. We see the behav-
ior we predicted in the results: the context before
seeing word i becomes gradually more useful for
classification until word i is seen, and then it grad-
ually decreases until it is no longer useful since
the context has changed. We observe the RNNLM
hidden layer has a higher classification accuracy
than the finite context NPLMs. This might be due
to the fact that the RNNLM has a more complete
representation of context that captures more of the
properties of the previous words.

To show the consistency of the results, we plot
as illustration the three curves we obtain for each
subject for the RNNLM (Fig. 8). The patterns
seem very consistent indicating the phenomena we
described can be detected at the subject level.

We now move on to the spatial decomposition
of the analysis. When the visual input enters the
brain, it first reaches the visual cortex at the back
of the head, and then moves anteriorly towards the
left and right temporal cortices and eventually the
frontal cortex. As it flows through these areas, it
is processed to higher levels of interpretations. In
Fig. 9, we plot the accuracy for different regions
of the brain and different time windows for the
RNNLM features. To make the plots simpler we
multiplied by zero the accuracies which were not
significantly higher than chance. We expand a few
characteristic plots. We see that in the back of the
head the embedding features have an accuracy that
seems to peak very early on. As we move forward
in the brain towards the left and right temporal cor-
tices, we see the embeddings accuracy peaking at
a later time, reflecting the delay it takes for the in-
formation to reach this part of the brain. The out-
put probability start being useful for classification
after the embeddings, and specifically in the left
temporal cortex which is the cite where the N400
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Figure 9: Average accuracy in time and space on the MEG helmet when using the RNNLM features. For each of the 102
locations the average accuracy for the group of sensors centered at that location is plotted versus time. The axes are defined
in the rightmost, empty plot. Three plots have been magnified to show the increasing delay in high accuracy when using the
embeddings feature, reflecting the delay in processing the incoming word as information travels through the brain. A sensor
map is provided in the lower right corner: visual cortex = cyan, temporal = red, frontal = dark green.

is reported in the literature. Finally, as we reach
the frontal cortex, we see that the embeddings fea-
tures have an even later accuracy peak.

4 Conclusion and contributions

Novel brain data exploration We present here
a novel and revealing approach to shed light on
the brain processes involved in reading. This is a
departure from the classical approach of control-
ling for a few variables in the text (e.g. showing
a sentence with an expected target word versus an
unexpected one). While we cannot make clear cut
causal claims because we did not control for our
variables, we are able to explore the data much
more and offer a much richer interpretation than
is possible with artificially constrained stimuli.

Comparing two models of language Adding
brain data into the equation allowed us to com-
pare the performance of the models and to identify
a slight advantage for the RNNLM in capturing
the text contents. Numerical comparison is how-
ever a secondary contribution of our approach. We
showed that it might be possible to use brain data
to understand, interpret and illustrate what exactly
is being encoded by the obscure vectors that neural
networks compute, by drawing parallels between
the models constituents and brain processes.

Anecdotally, in the process of running the ex-
periments, we noticed that the accuracy for the
hidden layer of the RNNLM was peaking in the
time window corresponding to word i−2, and that
it was decreasing during word i − 1. Since this
was against our expectations, we went back and
looked at the code and found that it was indeed
returning a delayed value and corrected the fea-
tures. We therefore used the brain data in order to
correct a mis-specification in our neural network
model. This hints if not proves the potential of our
approach for assessing language models.

Future Work The work described here is our
first attempt along the promising endeavor of
matching complex computational models of lan-
guage with brain processes using brain recordings.
We plan to extend our efforts by (1) collecting data
from more subjects and using various types of text
and (2) make the brain data help us with training
better statistical language models by using it to de-
termine whether the models are expressive enough
or have reached a sufficient degree of convergence.
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Abstract

Child semantic development includes
learning the meaning of words as well as
the semantic relations among words. A
presumed outcome of semantic develop-
ment is the formation of a semantic net-
work that reflects this knowledge. We
present an algorithm for simultaneously
learning word meanings and gradually
growing a semantic network, which ad-
heres to the cognitive plausibility require-
ments of incrementality and limited com-
putations. We demonstrate that the seman-
tic connections among words in addition
to their context is necessary in forming a
semantic network that resembles an adult’s
semantic knowledge.

1 Introduction

Child semantic development includes the acquisi-
tion of word-to-concept mappings (part of word
learning), and the formation of semantic connec-
tions among words/concepts. There is consid-
erable evidence that understanding the semantic
properties of words improves child vocabulary ac-
quisition. In particular, children are sensitive to
commonalities of semantic categories, and this
abstract knowledge facilitates subsequent word
learning (Jones et al., 1991; Colunga and Smith,
2005). Furthermore, representation of semantic
knowledge is significant as it impacts how word
meanings are stored in, searched for, and retrieved
from memory (Steyvers and Tenenbaum, 2005;
Griffiths et al., 2007).

Semantic knowledge is often represented as a
graph (a semantic network) in which nodes cor-
respond to words/concepts1, and edges specify

1Here we assume that the nodes of a semantic network
are word forms and its edges are determined by the semantic
features of those words.

the semantic relations (Collins and Loftus, 1975;
Steyvers and Tenenbaum, 2005). Steyvers and
Tenenbaum (2005) demonstrated that a seman-
tic network that encodes adult-level knowledge of
words exhibits a small-world and scale-free struc-
ture. That is, it is an overall sparse network with
highly-connected local sub-networks, where these
sub-networks are connected through high-degree
hubs (nodes with many neighbours).

Much experimental research has investigated
the underlying mechanisms of vocabulary learn-
ing and characteristics of semantic knowledge
(Quine, 1960; Bloom, 1973; Carey and Bartlett,
1978; Gleitman, 1990; Samuelson and Smith,
1999; Jones et al., 1991; Jones and Smith,
2005). However, existing computational models
focus on certain aspects of semantic acquisition:
Some researchers develop computational models
of word learning without considering the acqui-
sition of semantic connections that hold among
words, or how this semantic knowledge is struc-
tured (Siskind, 1996; Regier, 2005; Yu and Bal-
lard, 2007; Frank et al., 2009; Fazly et al., 2010).
Another line of work is to model formation of
semantic categories but this work does not take
into account how word meanings/concepts are ac-
quired (Anderson and Matessa, 1992; Griffiths et
al., 2007; Fountain and Lapata, 2011).

Our goal in this work is to provide a cognitively-
plausible and unified account for both acquiring
and representing semantic knowledge. The re-
quirements for cognitive plausibility enforce some
constraints on a model to ensure that it is compa-
rable with the cognitive process it is formulating
(Poibeau et al., 2013). As we model semantic ac-
quisition, the first requirement is incrementality,
which means that the model learns gradually as
it processes the input. Also, there is a limit on
the number of computations the model performs
at each step.

In this paper, we present an algorithm for si-
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multaneously learning word meanings and grow-
ing a semantic network, which adheres to the cog-
nitive plausibility requirements of incrementality
and limited computations. We examine networks
created by our model under various conditions,
and explore what is required to obtain a structure
that has appropriate semantic connections and has
a small-world and scale-free structure.

2 Related Work

Models of Word Learning. Given a word learn-
ing scenario, there are potentially many possible
mappings between words in a sentence and their
meanings (real-world referents), from which only
some mappings are correct (the mapping prob-
lem). One of the most dominant mechanisms
proposed for vocabulary acquisition is cross-
situational learning: people learn word mean-
ings by recognizing and tracking statistical reg-
ularities among the contexts of a word’s usage
across various situations, enabling them to nar-
row in on the meaning of a word that holds across
its usages (Siskind, 1996; Yu and Smith, 2007;
Smith and Yu, 2008). A number of computa-
tional models attempt to solve the mapping prob-
lem by implementing this mechanism, and have
successfully replicated different patterns observed
in child word learning (Siskind, 1996; Yu and Bal-
lard, 2007; Fazly et al., 2010). These models have
provided insight about underlying mechanisms of
word learning, but none of them consider the se-
mantic relations that hold among words, or how
the semantic knowledge is structured. Recently,
we have investigated properties of the semantic
structure of the resulting (final) acquired knowl-
edge of such a learner (Nematzadeh et al., 2014).
However, that work did not address how such
structural knowledge might develop and evolve in-
crementally within the learning model.

Models of Categorization. Computational mod-
els of categorization focus on the problem of form-
ing semantic clusters given a defined set of fea-
tures for words (Anderson and Matessa, 1992;
Griffiths et al., 2007; Sanborn et al., 2010). An-
derson and Matessa (1992) note that a cognitively
plausible categorization algorithm needs to be in-
cremental and only keep track of one potential
partitioning; they propose a Bayesian framework
(the Rational Model of Categorization or RMC)
that specifies the joint distribution on features and

category labels, and allows an unbounded number
of clusters. Sanborn et al. (2010) examine differ-
ent categorization models based on RMC. In par-
ticular, they compare the performance of the ap-
proximation algorithm of Anderson and Matessa
(1992) (local MAP) with two other approximation
algorithms (Gibbs Sampling and Particle Filters)
in various human categorization paradigms. San-
born et al. (2010) find that in most of the simula-
tions the local MAP algorithm performs as well as
the two other algorithms in matching human be-
havior.

The Representation of Semantic Knowledge.
There is limited work on computational models
of semantic acquisition that examine the represen-
tation of the semantic knowledge. Steyvers and
Tenenbaum (2005) propose an algorithm for build-
ing a network with small-world and scale-free
structure. The algorithm starts with a small com-
plete graph, incrementally adds new nodes to the
graph, and for each new node uses a probabilistic
mechanism for selecting a subset of current nodes
to connect to. However, their approach does not
address the problem of learning word meanings or
the semantic connections among them. Fountain
and Lapata (2011) propose an algorithm for learn-
ing categories that also creates a semantic network
by comparing all the possible word pairs. How-
ever, they too do not address the word learning
problem, and do not investigate the structure of the
learned semantic network to see whether it has the
properties observed in adult knowledge.

3 The Incremental Network Model

We propose here a model that unifies the incre-
mental acquisition of word meanings and forma-
tion of a semantic network structure that reflects
the similarities among those meanings. We use
an existing model to learn the meanings of words
(Section 3.1), and use those incrementally devel-
oping meanings as the input to the algorithm pro-
posed here for gradually growing a semantic net-
work (Section 3.2).

3.1 The Word Learner
We use the model of Fazly et al. (2010); this learn-
ing algorithm is incremental and involves limited
calculations, thus satisfying basic cognitive plausi-
bility requirements. A naturalistic language learn-
ing scenario consists of linguistic data in the con-
text of non-linguistic data, such as the objects,
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Utterance: {let, find, a, picture, to, color }
Scene: {LET, PRONOUN, HAS POSSESSION, CAUSE,

ARTIFACT, WHOLE, CHANGE, . . .}

Table 1: A sample utterance-scene pair.

events, and social interactions that a child per-
ceives. This kind of input is modeled here as
a pair of an utterance (the words a child hears)
and a scene (the semantic features representing the
meaning of those words), as shown in Table 1 (and
described in more detail in Section 5.1). The word
learner is an instance of cross-situational learn-
ing applied to a sequence of such input pairs: for
each pair of a word w and a semantic feature f ,
the model incrementally learns P (f |w) from co-
occurrences of w and f across all the utterance-
scene pairs.

For each word, the probability distribution
over all semantic features, P (.|w), represents the
word’s meaning. The estimation of P (.|w) is
made possible by introducing a set of latent vari-
ables, alignments, that correspond to the possible
mappings between words and features in a given
utterance–scene pair. The learning problem is then
to find the mappings that best explain the data,
which is solved by using an incremental version
of the expectation–maximization (EM) algorithm
(Neal and Hinton, 1998). We skip the details of
the derivations and only report the resulting for-
mulas.

The model processes one utterance-scene pair at
a time. For the input pair processed at time t, first
the probability of each possible alignment (align-
ment probability) is calculated as:2

P (aij |u, fi) =
Pt−1(fi|wj)∑
w′∈u Pt−1(fi|w′) (1)

where u is the utterance, and aij is the alignment
variable specifying the word wj that is mapped
to the feature fi. Pt−1(fi|wj) is taken from the
model’s current learned meaning of word wj . Ini-
tially, P0(fi|wj) is uniformly distributed. After
calculating the alignment probabilities, the learned
meanings are updated as:

Pt(fi|wj) =

∑
u∈Ut P (aij |u, fi)∑

f ′∈M
∑

u∈Ut P (aij |u, f ′) (2)

where Ut is the set of utterances processed so far,
andM is the set of features that the model has ob-
served. Note that for each w–f pair, the value of
the summations in this formula can be incremen-
tally updated after processing any utterance that

2This corresponds to the expectation step of EM.

containsw; the summation does not have to be cal-
culated at every step.

3.2 Growing a Semantic Network

In our extended model, as we learn words incre-
mentally (as above), we also structure those words
into a semantic network based on the (partially)
learned meanings. At any given point in time, the
network will include as its nodes all the word types
the word learner has been exposed to. Weighted
edges (capturing semantic distance) will connect
those pairs of word types whose learned meanings
at that point are sufficiently semantically similar
(according to a threshold). Since the probabilis-
tic meaning of a word is adjusted each time it is
observed, a word may either lose or gain connec-
tions in the network after each input is processed.
Thus, to incrementally develop the network, at
each time step, our algorithm must both examine
existing connections (to see which edges should be
removed) and consider potential new connections
(to see which edges should be added).

A simple approach to achieve this is to examine
the current semantic similarity between a word w
in the input and all the current words in the net-
work, and include edges between only those word
pairs that are sufficiently similar. However, com-
paring w to all the words in the network each time
it is observed is computationally intensive (and not
cognitively plausible).

We present an approach for incrementally grow-
ing a semantic network that limits the computa-
tions when processing each input word w; see Al-
gorithm 1. After the meaning of w is updated, we
first check all the words that w is currently (di-
rectly) connected to, to see if any of those edges
need to be removed, or have their weight adjusted.
Next, to look for new connections forw, the idea is
to select only a small subset of words, S , to which
w will be compared. The challenge then is to se-
lect S in a way that will yield a network whose se-
mantic structure reasonably approximates the net-
work that would result from full knowledge of
comparing w to all the words.

Previous work has suggested picking “impor-
tant” words (e.g., high-degree words) indepen-
dently of the target word w — assuming these
might be words for which a learner might need
to understand their relationship to w in the future
(Steyvers and Tenenbaum, 2005). Our proposal
is instead to consider for S those words that are
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Algorithm 1 Growing a network after each in-
put u.

for all w in u do
update P (.|w) using Eqn. (2)
update current connections of w
select S(w), a subset of words in the network
for all w′ in S(w) do

if w and w′ are sufficiently similar then
connect w and w′ with an edge

end if
end for

end for

likely to be similar to w. That is, since the net-
work only needs to connect similar words to w, if
we can guess what (some of) those words are, then
we will do best at approximating the situation of
comparing w to all words.

The question now is how to find semantically
similar words to w that are not already connected
to w in the network. To do so, we incrementally
track semantic similarity among words usages as
their meanings are developing. Specifically we
cluster word tokens (not types) according to their
current word meanings. Since the probabilistic
meanings of words are continually evolving, in-
cremental clusters of word tokens can capture de-
veloping similarities among the various usages of
a word type, and be a clue to which words (types)
w might be similar to. In the next section, we de-
scribe the Bayesian clustering process we use to
identify potentially similar words.

3.3 Semantic Clustering of Word Tokens
We use the Bayesian framework of Anderson and
Matessa (1992) to form semantic clusters.3 Recall
that for each word w, the model learns its mean-
ings as a probability distribution over all seman-
tic features, P (.|w). We represent this probability
distribution as a vector F whose length is the num-
ber of possible semantic features. Each element of
the vector holds the value P (f |w) (which is con-
tinuous). Given a word w and its vector F , we
need to calculate the probability that w belongs to
each existing cluster, and also allow for the pos-
sibility of it forming a new cluster. Using Bayes
rule we have:

P (k|F ) =
P (k)P (F |k)∑
k′ P (k′)P (F |k′) (3)

3The distribution specified by this model is equivalent to
that of a Dirichlet Process Mixture Model (Neal, 2000).

where k is a given cluster. We thus need to calcu-
late the prior probability, P (k), and the likelihood
of each cluster, P (F |k).
Calculation of Prior. The prior probability that
word n + 1 is assigned to cluster k is calculated
as:

P (k) =
{ nk

n+α nk > 0
α

n+α nk = 0 (new cluster)

(4)

where nk is the number of words in cluster k, n
is the number of words observed so far, and α is a
parameter that determines how likely the creation
of a new cluster is. The prior favors larger clusters,
and also discourages the creation of new clusters
in later stages of learning.
Calculation of Likelihood. To calculate the like-
lihood P (F |k) in Eqn. (3), we assume that the fea-
tures are independent:

P (F |k) =
∏
fi∈F

P (fi = v|k) (5)

where P (fi = v|k) is the probability that the value
of the feature in dimension i is equal to v given
the cluster k. To derive P (fi|k), following An-
derson and Matessa (1992), we assume that each
feature given a cluster follows a Gaussian distri-
bution with an unknown variance σ2 and mean µ.
(In the absence of any prior information about a
variable, it is often assumed to have a Gaussian
distribution.) The mean and variance of this dis-
tribution are inferred using Bayesian analysis: We
assume the variance has an inverse χ2 prior, where
σ2

0 is the prior variance and a0 is the confidence in
the prior variance:

σ2 ∼ Inv-χ2(a0, σ
2
0) (6)

The mean given the variance has a Gaussian dis-
tribution with µ0 as the prior mean and λ0 as the
confidence in the prior mean.

µ|σ ∼ N(µ0,
σ2

λ0
) (7)

Given the above conjugate priors, P (fi|k) can
be calculated analytically and is a Student’s t dis-
tribution with the following parameters:

P (fi|k) ∼ tai(µi, σ2
i (1 +

1
λi

)) (8)

λi = λ0 + nk (9)

ai = a0 + nk (10)
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µi =
λ0µ0 + nkf̄

λ0 + nk
(11)

σ2
i =

a0σ
2
0 + (nk − 1)s2 + λ0nk

λ0+nk
(µ0 + f̄)2

a0 + nk
(12)

where f̄ and s2 are the sample mean and variance
of the values of fi in k.

Note that in the above equations, the mean and
variance of the distribution are simply derived by
combining the sample mean and variance with
the prior mean and variance while considering the
confidence in the prior mean (λ0) and variance
(a0). This means that the number of computations
to calculate P (F |K) is limited as w is only com-
pared to the “prototype” of each cluster, which is
represented by µi and σi of different features.
Adding a word w to a cluster. We add w to
the cluster k with highest posterior probability,
P (k|F ), as calculated in Eqn. (3).4 The parame-
ters of the selected cluster (k, µi, λi, σi, and ai for
each feature fi) are then updated incrementally.
Using the Clusters to Select the Words in S(w).
We can now form S(w) in Algorithm 1 by select-
ing a given number of words ns whose tokens are
probabilistically chosen from the clusters accord-
ing to how likely each cluster k is given w: the
number of word tokens picked from each k is pro-
portional to P (k|F ) and is equal to P (k|F )×ns.

4 Evaluation

We evaluate a semantic network in two regards:
The semantic connectivity of the network – to
what extent the semantically-related words are
connected in the network; and the structure of the
network – whether it exhibits a small-world and
scale-free structure or not.

4.1 Evaluating Semantic Connectivity
The distance between the words in the network in-
dicates their semantic similarity: the more similar
a word pair, the smaller their distance. For word
pairs that are connected via a path in the network,
this distance is the weighted shortest path length
between the two words. If there is no path be-
tween a word pair, their distance is considered to
be∞ (which is represented with a large number).
We refer to this distance as the “learned” semantic
similarity.

4This approach is referred to as local MAP (Sanborn et al.,
2010); because of the incremental nature of the algorithm, it
maximizes the current posterior distribution as opposed to the
“global” posterior.

To evaluate the semantic connectivity of the
learned network, we compare these learned sim-
ilarity scores to “gold-standard” similarity scores
that are calculated using the WordNet similarity
measure of Wu and Palmer (1994) (also known as
the WUP measure). We choose this measure since
it captures the same type of similarity as in our
model: words are considered similar if they belong
to the same semantic category. Moreover, this
measure does not incorporate information about
other types of similarities, for example, words are
not considered similar if they occur in similar con-
texts. Thus, the scores calculated with this mea-
sure are comparable with those of our learned net-
work.

Given the gold-standard similarity scores for
each word pair, we evaluate the semantic con-
nectivity of the network based on two perfor-
mance measures: coefficient of correlation and
the median rank of the first five gold-standard as-
sociates. Correlation is a standard way to com-
pare two lists of similarity scores (Budanitsky
and Hirst, 2006). We create two lists, one con-
taining the gold-standard similarity scores for all
word pairs, and the other containing their corre-
sponding learned similarity scores. We calculate
the Spearman’s rank correlation coefficient, ρ, be-
tween these two lists of similarity scores. Note
that the learned similarity scores reflect the seman-
tic distance among words whereas the WordNet
scores reflect semantic closeness. Thus, a nega-
tive correlation is best in our evaluation, where the
value of -1 corresponds to the maximum correla-
tion.

Following Griffiths et al. (2007), we also cal-
culate the median learned rank of the first five
gold-standard associates for all words: For each
word w, we first create a “gold-standard” asso-
ciates list: we sort all other words based on their
gold-standard similarity to w, and pick the five
most similar words (associates) to w. Similarly,
we create a “learned associate list” for w by sort-
ing all words based on their learned semantic simi-
larity tow. For all words, we find the ranks of their
first five gold-standard associates in their learned
associate list. For each associate, we calculate the
median of these ranks for all words. We only re-
port the results for the first three gold-standard as-
sociates since the pattern of results is similar for
the fourth and fifth associates; we refer to the me-
dian rank of first three gold-standard associates as
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1st, 2nd, and 3rd.

4.2 Evaluating the Structure of the Network

A network exhibits a small-world structure when
it is characterized by short path length between
most nodes and highly-connected neighborhoods
(Watts and Strogatz, 1998). We first explain how
these properties are measured for a graph with N
nodes and E edges. Then we discuss how these
properties are used in assessing the small-world
structure of a graph.5.

Short path lengths. Most of the nodes of
a small-world network are reachable from other
nodes via relatively short paths. For a connected
network (i.e., all the node pairs are reachable from
each other), this can be measured as the average
distance between all node pairs (Watts and Stro-
gatz, 1998). Since our networks are not connected,
we instead measure this property using the median
of the distances (dmedian) between all node pairs
(Robins et al., 2005), which is well-defined even
when some node pairs have a distance of∞.

Highly-connected neighborhoods. The neigh-
borhood of a node n in a graph consists of n and
all of the nodes that are connected to it. A neigh-
borhood is maximally connected if it forms a com-
plete graph —i.e., there is an edge between all
node pairs. Thus, the maximum number of edges
in the neighborhood of n is kn(kn − 1)/2, where
kn is the number of neighbors. A standard metric
for measuring the connectedness of neighbors of
a node n is called the local clustering coefficient
(C) (Watts and Strogatz, 1998), which calculates
the ratio of edges in the neighborhood of n (En)
to the maximum number of edges possible for that
neighborhood:

C =
En

kn(kn − 1)/2
(13)

The local clustering coefficient C ranges between
0 and 1. To estimate the connectedness of all
neighborhoods in a network, we take the average
of C over all nodes, i.e., Cavg.

Small-world structure. A graph exhibits a
small-world structure if dmedian is relatively small
and Cavg is relatively high. To assess this for
a graph g, these values are typically compared
to those of a random graph with the same num-
ber of nodes and edges as g (Watts and Strogatz,

5We take the description of these measures from Ne-
matzadeh et al. (2014)

1998; Humphries and Gurney, 2008). The ran-
dom graph is generated by randomly rearranging
the edges of the network under consideration (Er-
dos and Rényi, 1960). Because any pair of nodes
is equally likely to be connected as any other, the
median of distances between nodes is expected to
be low for a random graph. In a small-world net-
work, this value dmedian is expected to be as small
as that of a random graph: even though the random
graph has edges more uniformly distributed, the
small-world network has many locally-connected
components which are connected via hubs. On the
other hand, Cavg is expected to be much higher
in a small-world network compared to its corre-
sponding random graph, because the edges of a
random graph typically do not fall into clusters
forming highly connected neighborhoods.

Given these two properties, the “small-
worldness” of a graph g is measured as follows
(Humphries and Gurney, 2008):

σg =

Cavg(g)
Cavg(random)
dmedian(g)

dmedian(random)

(14)

where random is the random graph correspond-
ing to g. In a small-world network, it is ex-
pected that Cavg(g) � Cavg(random) and
dmedian(g) ≥ dmedian(random), and thus σg >
1.

Note that Steyvers and Tenenbaum (2005) made
the empirical observation that small-world net-
works of semantic knowledge had a single con-
nected component that contained the majority of
nodes in the network. Thus, in addition to σg,
we also measure the relative size of a network’s
largest connected component having size Nlcc:

sizelcc =
Nlcc

N
(15)

Scale-free structure. A scale-free network has
a relatively small number of high-degree nodes
that have a large number of connections to other
nodes, while most of its nodes have a small de-
gree, as they are only connected to a few nodes.
Thus, if a network has a scale-free structure, its de-
gree distribution (i.e., the probability distribution
of degrees over the whole network) will follow a
power-law distribution (which is said to be “scale-
free”). We evaluate this property of a network by
plotting its degree distribution in the logarithmic
scale, which (if a power-law distribution) should
appear as a straight line. None of our networks ex-
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hibit a scale-free structure; thus, we do not report
the results of this evaluation, and leave it to future
work for further investigation.

5 Experimental Set-up

5.1 Input Representation

Recall that the input to the model consists of a
sequence of utterance–scene pairs intended to re-
flect the linguistic data a child is exposed to, along
with the associated meaning a child might grasp.
As in much previous work (Yu and Ballard, 2007;
Fazly et al., 2010), we take child-directed utter-
ances from the CHILDES database (MacWhinney,
2000) in order to have naturalistic data. In partic-
ular, we use the Manchester corpus (Theakston et
al., 2001), which consists of transcripts of conver-
sations with 12 British children between the ages
of 1; 8 and 3; 0. We represent each utterance as
a bag of lemmatized words (see Utterance in Ta-
ble 1).

For the scene representation, we have no large
corpus to draw on that encodes the semantic por-
tion of language acquisition data.6 We thus auto-
matically generate the semantics associated with
an utterance, using a scheme first introduced in
Fazly et al. (2010). The idea is to first create an
input generation lexicon that provides a mapping
between all the words in the input data and their
associated meanings. A scene is then represented
as a set that contains the meanings of all the words
in the utterance. We use the input generation lexi-
con of Nematzadeh et al. (2012) because the word
meanings reflect information about their semantic
categories, which is crucial to forming the seman-
tic clusters as in Section 3.3.

In this lexicon, the “true” meaning for each
word w is a vector over a set of possible seman-
tic features for each part of speech; in the vec-
tor, each feature is associated with a score for that
word (see Figure 1). Depending on the word’s part
of speech, the features are extracted from various

6Yu and Ballard (2007) created a corpus by hand-coding
the objects and cues that were present in the environment,
but that corpus is very small. Frank et al. (2013) provide a
larger manually annotated corpus (5000 utterances), but it is
still very small for longitudinal simulations of word learn-
ing. (Our corpus contains more than 100,000 utterances.)
Moreover, the corpus of Frank et al. (2013) is limited be-
cause a considerable number of words are not semantically
coded. (Only a subset of concrete objects in the environment
are coded.)

apple: { FOOD:1, SOLID:.72, · · · , PLANT-PART:.22,
PHYSICAL-ENTITY:.17, WHOLE:.06, · · · }

Figure 1: Sample true meaning features & their scores for
apple from Nematzadeh et al. (2012).

lexical resources such as WordNet7, VerbNet8, and
Harm (2002). The score for each feature is calcu-
lated using a measure similar to tf-idf that reflects
the association of the feature with the word and
with its semantic category: term frequency indi-
cates the strength of association of the feature with
the word, and inverse document frequency (where
the documents are the categories) indicates how
informative a feature is for that category. The se-
mantic categories of nouns (which we focus on in
our networks) are given by WordNet lex-names9,
a set of 25 general categories of entities. (We use
only nouns in our semantic networks because the
semantic similarity of words with different parts
of speech cannot be compared, since their seman-
tic features are drawn from different resources.)

The input generation lexicon is used to generate
a scene representation for an utterance as follows:
For each word w in the utterance, we probabilisti-
cally sample features, in proportion to their score,
from the full set of features in its true meaning.
The probabilistic sampling allows us to simulate
the noise and uncertainty in the input a child per-
ceives by omitting some meaning features from
the scene. The scene representation is the union
of all the features sampled for all the words in the
utterance (see Scene in Table 1).

5.2 Methods

We experiment with our network-growth method
that draws on the incremental clustering, and cre-
ate “upper-bound” and baseline networks for com-
parison. Note that all the networks are created
using our Algorithm 1 (page 4) to grow networks
incrementally, drawing on the learned meanings of
words and updating their connections on the basis
of this evolving knowledge. The only difference
in creating the networks resides in how the com-
parison set S(w) is chosen for each target word w
that is being added to the growing network at each
time step. We provide more details in the para-
graphs below.

7http://wordnet.princeton.edu
8http://verbs.colorado.edu/˜mpalmer/

projects/verbnet.html
9http://wordnet.princeton.edu/wordnet/

man/lexnames.5WN.html
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Upper-bound. Recall that one of our main goals
is to substantially reduce the number of similar-
ity comparisons needed to grow a semantic net-
work, in contrast to the straightforward method of
comparing each w to all current words. At the
same time, we need to understand the impact of
the increased efficiency on the quality of the re-
sulting networks. We thus need to compare the
target properties of our networks that are learned
using a small comparison set S , to those of an
“upper-bound” network that takes into account all
the pair-wise comparisons among words. We cre-
ate this upper-bound network by setting S(w) to
contain all words currently in the network.

Baselines. On the other hand, we need to evalu-
ate the (potential) benefit of our cluster-driven se-
lection process over a more simplistic approach to
selecting S(w). To do so, we consider three base-
lines, each using a different criteria for choosing
the comparison set S(w): The Random baseline
chooses the members of this set randomly from
the set of all observed words. The Context base-
line can be seen as an “informed” baseline that at-
tempts to incorporate some semantic knowledge:
Here, we select words that are in the recent context
prior to w in the input, assuming that such words
are likely to be semantically related to w. We also
include a third baseline, Random+Context, that
picks half of the members of S randomly and half
of them from the prior context.

Cluster-based Methods. We report results for
three cluster-based networks that differ in their
choice of S(w) as follows: The Clusters-only net-
work chooses words in S(w) from the set of clus-
ters, proportional to the probability of each clus-
ter k given word w (as explained in Section 3.3).
In order to incorporate different types of semantic
information in selecting S, we also create a Clus-
ters+Context network that picks half of the mem-
bers of S from clusters (as above), and half from
the prior context. For completeness, we include a
Clusters+Random network that similarly chooses
half of words in S from clusters and half randomly
from all observed words.

We have experimented with several other meth-
ods, but they all performed substantially worse
than the baselines, and hence we do not report
them here. E.g., we tried picking words in S from
the best cluster. We also tried a few methods in-
spired by (Steyvers and Tenenbaum, 2005): E.g.,

we examined a method where if a member of S(w)
was sufficiently similar to w, we added the direct
neighbors of that word to S. We also tried to grow
networks by choosing the members of S according
to the degree or frequency of nodes in the network.

5.3 Experimental Parameters

We use 20, 000 utterance–scene pairs as our train-
ing data. Recall that we use clustering to help
guide our semantic network growth algorithm.
Given the clustering algorithm in Section 3.3, we
are interested to find the set of clusters that best
explain the data. (Other clustering algorithms can
be used instead of this algorithm.) We perform
a search on the parameter space, and select the
parameter values that result in the best clustering,
based on the number of clusters and their average
F-score. The value of the clustering parameters
are as follows: α = 49, λ0 = 1.0, a0 = 2.0,
µ0 = 0.0, and σ0 = 0.05. Two nouns with fea-
ture vectors F1 and F2 are connected in the net-
work if cosine(F1, F2) is greater than or equal to
0.6. (This threshold was selected following em-
pirical examination of the similarity values we ob-
serve among the “true” meaning in our input gen-
eration lexicon.) The weight on the edge that con-
nects these nouns specifies their semantic distance,
which is calculated as 1− cosine(F1, F2).

Because we aim for a network creation method
that is cognitively plausible in performing a lim-
ited number of word-to-word comparisons, we
need to ensure that all the different methods of
selecting the comparison set S(w) yield roughly
similar numbers of such comparisons. Keeping
the size of S constant does not guarantee this,
because each method can yield differing num-
bers of connections of the target word w to other
words. We thus parameterize the size of S for
each method to keep the number of computations
similar, based on experiments on the development
data. In development work we also found that hav-
ing an increasing size of S over time improved
the results, as more words were compared as the
knowledge of learned meanings improved. To
achieve this, we use a percentage of the words
in the network as the size of S. In practice, the
setting of this parameter yields a number of com-
parisons across all methods that is about 8% of
the maximum possible word-to-word comparisons
that would be performed in the naive (computa-
tionally intensive) approach.
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Note that all the Cluster-based, Random and
Random+Context methods include a random se-
lection mechanism; thus, we run each of these
methods 50 times and report the average ρ, me-
dian ranks and sizelcc (see Section 4). For the net-
works (out of 50 runs) that exhibit a small-world
structure (small-worldness greater than one), we
report the average small-worldness. We also re-
port the percentage of runs whose resulting net-
work exhibit a small-world structure.

6 Experimental Results and Discussion

Table 2 presents our results, including the eval-
uation measures explained above, for the Upper-
bound, Baseline, and Cluster-based networks cre-
ated by the various methods described in Sec-
tion 5.2.10

Recall that the Upper-bound network is formed
from examining a word’s similarity to all other
(observed) words when it is added to the network.
We can see that this network is highly connected
(0.85) and has a small-world structure (5.5). There
is a statistically significant correlation of the net-
work’s similarity measures with the gold standard
ones (−0.38). For this Upper-bound structure, the
median ranks of the first three associates are be-
tween 31 and 42. These latter two measures on
the Upper-bound network give an indication of the
difficulty of learning a semantic network whose
knowledge matches gold-standard similarities.

Considering the baseline networks, we note that
the Random network is actually somewhat bet-
ter (in connectivity and median ranks) than the
Context network that we thought would provide
a more informed baseline. Interestingly, the cor-
relation value for both networks is no worse than
for the Upper-bound. The combination of Ran-
dom+Context yields a slightly lower correlation,
and no better ranks or connectivity than Random.
Note that none of the baseline networks exhibit a
small world structure (σg � 1 for all three, except
for one out of 50 runs for the Random method).

Recall that the Random network is not a net-
work resulting from randomly connecting word
pairs, but one that incrementally compares each
target word with a set of randomly chosen words
when considering possible new connections. We
suspect that this approach performs reasonably
well because it enables the model to find a broad

10All the reported co-efficients of correlation (ρ) are statis-
tically significant at p < 0.01.

range of similar words to the target; this might be
effective especially because the learned meanings
of words are changing over time.

Turning to the Cluster-based methods, we see
that indeed some diversity in the comparison set
for a target word might be necessary to good
performance. We find that the measures on the
Clusters-only network are roughly the same as on
the Random one, but when we combine the two in
Clusters+Random we see an improvement in the
ranks achieved. It is possible that the selection
from clusters does not have sufficient diversity to
find some of the valid new connections for a word.

We note that the best results overall occur with
the Clusters+Context network, which combines
two approaches to selecting words that have good
potential to be similar to the target word. The
correlation coefficient for this network is at a re-
spectable 0.36, and the median ranks are the sec-
ond best of all the network-growth methods. Im-
portantly, this network shows the desired small-
world structure in most of the runs (77%), with
the highest connectivity and a small-world mea-
sure well over 1.

The fact that the Clusters+Context network is
better overall than the networks of the Clusters-
only and Context methods indicates that both clus-
ters and context are important in making “in-
formed guesses” about which words are likely
to be similar to a target word. Given the small
number of similarity comparisons used in our ex-
periments (only around 8% of all possible word-
to-word comparisons), these observations suggest
that both the linguistic context and the evolving
relations among word usages (captured by the in-
cremental clustering of learned meanings) contain
information crucial to the process of growing a se-
mantic network in a cognitively plausible way.

7 Conclusions

We propose a unified model of word learning and
semantic network formation, which creates a net-
work of words in which connections reflect struc-
tured knowledge of semantic similarity between
words. The model adheres to the cognitive plau-
sibility requirements of incrementality and use of
limited computations. That is, when incremen-
tally adding or updating a word’s connections in
the network, the model only looks at a subset of
words rather than comparing the target word to all
the nodes in the network. We demonstrate that
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Comparing all Pairs
Semantic Connectivity Small World

Method ρ 1st 2nd 3rd sizelcc σg (%)
Upper-bound −0.38 31 41 42 0.85 5.5

Baselines
Random −0.38 56 76.9 68.9 0.6 5.2 (2)
Context −0.39 97 115 89 0.5 0
Random+Context −0.36 63.3 87.2 79.1 0.6 0 (0)

Cluster-based Methods
Clusters-only −0.32 58.6 72.0 71.6 0.7 5.5 (43)
Clusters+Context −0.36 53.9 67.6 64.8 0.7 7.2 (77)
Clusters+Random −0.35 48.1 61.2 58.1 0.7 6.9 (48)

Table 2: Connectivity and small-worldness measures for the Upper-bound, Baseline, and Cluster-based
network-growth methods; best performances across the Baseline and Cluster-based methods are shown
in bold. ρ: co-efficient of correlation between similarities of word pairs in network and in gold-standard;
1st, 2nd, 3rd: median ranks of corresponding gold-standard associates given network similarities; sizelcc:
proportion of network in the largest connected component; σg: overall “small-worldness”, should be
greater than 1; %: the percentage of runs whose resulting networks exhibit a small-world structure. Note
there are 1074 nouns in each network.

using the evolving knowledge of semantic con-
nections among words as well as their context of
usage enables the model to create a network that
shows the properties of adult semantic knowledge.
This suggests that the information in the semantic
relations among words and their context can effi-
ciently guide semantic network growth.
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Abstract

Models that acquire semantic represen-
tations from both linguistic and percep-
tual input are of interest to researchers
in NLP because of the obvious parallels
with human language learning. Perfor-
mance advantages of the multi-modal ap-
proach over language-only models have
been clearly established when models are
required to learn concrete noun concepts.
However, such concepts are comparatively
rare in everyday language. In this work,
we present a new means of extending
the scope of multi-modal models to more
commonly-occurring abstract lexical con-
cepts via an approach that learns multi-
modal embeddings. Our architecture out-
performs previous approaches in combin-
ing input from distinct modalities, and
propagates perceptual information on con-
crete concepts to abstract concepts more
effectively than alternatives. We discuss
the implications of our results both for op-
timizing the performance of multi-modal
models and for theories of abstract con-
ceptual representation.

1 Introduction

Multi-modal models that learn semantic represen-
tations from both language and information about
the perceptible properties of concepts were orig-
inally motivated by parallels with human word
learning (Andrews et al., 2009) and evidence that
many concepts are grounded in perception (Barsa-
lou and Wiemer-Hastings, 2005). The perceptual
information in such models is generally mined di-
rectly from images (Feng and Lapata, 2010; Bruni
et al., 2012) or from data collected in psychologi-
cal studies (Silberer and Lapata, 2012; Roller and
Schulte im Walde, 2013).

By exploiting the additional information en-
coded in perceptual input, multi-modal models
can outperform language-only models on a range
of semantic NLP tasks, including modelling sim-
ilarity (Bruni et al., 2014; Kiela et al., 2014) and
free association (Silberer and Lapata, 2012), pre-
dicting compositionality (Roller and Schulte im
Walde, 2013) and concept categorization (Silberer
and Lapata, 2014). However, to date, these pre-
vious approaches to multi-modal concept learning
focus on concrete words such as cat or dog, rather
than abstract concepts, such as curiosity or loyalty.
However, differences between abstract and con-
crete processing and representation (Paivio, 1991;
Hill et al., 2013; Kiela et al., 2014) suggest that
conclusions about concrete concept learning may
not necessarily hold in the general case. In this pa-
per, we therefore focus on multi-modal models for
learning both abstract and concrete concepts.

Although concrete concepts might seem more
basic or fundamental, the vast majority of open-
class, meaning-bearing words in everyday lan-
guage are in fact abstract. 72% of the noun or
verb tokens in the British National Corpus (Leech
et al., 1994) are rated by human judges1 as more
abstract than the noun war, for instance, a con-
cept many would already consider to be quite
abstract. Moreover, abstract concepts by defi-
nition encode higher-level (more general) princi-
ples than concrete concepts, which typically re-
side naturally in a single semantic category or do-
main (Crutch and Warrington, 2005). It is there-
fore likely that abstract representations may prove
highly applicable for multi-task, multi-domain or
transfer learning models, which aim to acquire
‘general-purpose’ conceptual knowledge without
reference to a specific objective or task (Collobert
and Weston, 2008; Mesnil et al., 2012).

In a recent paper, Hill et al. (2014) investigate
whether the multi-modal models cited above are

1Contributors to the USF dataset (Nelson et al., 2004).
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effective for learning concepts other than concrete
nouns. They observe that representations of cer-
tain abstract concepts can indeed be enhanced in
multi-modal models by combining perceptual and
linguistic input with an information propagation
step. Hill et al. (2014) propose ridge regression as
an alternative to the nearest-neighbour averaging
proposed by Johns and Jones (2012) for such prop-
agation, and show that it is more robust to changes
in the type of concept to be learned. However, both
methods are somewhat inelegant, in that they learn
separate linguistic and ‘pseudo-perceptual’ repre-
sentations, which must be combined via a separate
information combination step. Moreover, for the
majority of abstract concepts, the best performing
multi-modal model employing these techniques
remains less effective than conventional text-only
representation learning model.

Motivated by these observations, we introduce
an architecture for learning both abstract and con-
crete representations that generalizes the skipgram
model of Mikolov et al. (2013) from text-based to
multi-modal learning. Aspects of the model de-
sign are influenced by considering the process of
human language learning. The model moderates
the training input to include more perceptual infor-
mation about commonly-occurring concrete con-
cepts and less information about rarer concepts.
Moreover, it integrates the processes of combin-
ing perceptual and linguistic input and propagat-
ing information from concrete to abstract concepts
into a single representation update process based
on back-propagation.

We train our model on running-text language
and two sources of perceptual descriptors for con-
crete nouns: the ESPGame dataset of annotated
images (Von Ahn and Dabbish, 2004) and the
CSLB set of concept property norms (Devereux
et al., 2013). We find that our model combines in-
formation from the different modalities more ef-
fectively than previous methods, resulting in an
improved ability to model the USF free associa-
tion gold standard (Nelson et al., 2004) for con-
crete nouns. In addition, the architecture propa-
gates the extra-linguistic input for concrete nouns
to improve representations of abstract concepts
more effectively than alternative methods. While
this propagation can effectively extend the advan-
tage of the multi-modal approach to many more
concepts than simple concrete nouns, we observe
that the benefit of adding perceptual input appears

to decrease as target concepts become more ab-
stract. Indeed, for the most abstract concepts of
all, language-only models still provide the most
effective learning mechanism.

Finally, we investigate the optimum quantity
and type of perceptual input for such models. Be-
tween the most concrete concepts, which can be
effectively represented directly in the perceptual
modality, and the most abstract concepts, which
cannot, we identify a set of concepts that cannot
be represented effectively directly in the percep-
tual modality, but still benefit from perceptual in-
put propagated in the model via concrete concepts.

The motivation in designing our model and ex-
periments is both practical and theoretical. Taken
together, the empirical observations we present are
potentially important for optimizing the learning
of representations of concrete and abstract con-
cepts in multi-modal models. In addition, they of-
fer a degree of insight into the poorly understood
issue of how abstract concepts may be encoded in
human memory.

2 Model Design

Before describing how our multi-modal architec-
ture encodes and integrates perceptual informa-
tion, we first describe the underlying corpus-based
representation learning model.

Language-only Model Our multi-modal archi-
tecture builds on the continuous log-linear skip-
gram language model proposed by Mikolov et
al. (2013). This model learns lexical representa-
tions in a similar way to neural-probabilistic lan-
guage models (NPLM) but without a non-linear
hidden layer, a simplification that facilitates the
efficient learning of large vocabularies of dense
representations, generally referred to as embed-
dings (Turian et al., 2010). Embeddings learned
by the model achieve state-of-the-art performance
on several evaluations including sentence comple-
tion and analogy modelling (Mikolov et al., 2013).

For each word type w in the vocabulary V , the
model learns both a ‘target-embedding’ rw ∈ Rd

and a ‘context-embedding’ r̂w ∈ Rd such that,
given a target word, its ability to predict nearby
context words is maximized. The probability of
seeing context word c given target w is defined as:

p(c|w) =
er̂c·rw∑
v∈V er̂v ·rw
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Figure 1: Our multi-modal model architecture. Light boxes are elements of the original Mikolov et
al. (2013) model. For target words wn in the domain of P (concrete concepts), the model updates its
representations based on corpus context wordswn±i, then on words pwn±i in perceptual pseudo-sentences.
For wn not in the domain of P (abstract concepts), updates are based solely on the wn±i.

The model learns from a set of target-word,
context-word pairs, extracted from a corpus of
sentences as follows. In a given sentence S (of
length N ), for each position n ≤ N , each word
wn is treated in turn as a target word. An inte-
ger t(n) is then sampled from a uniform distribu-
tion on {1, . . . k}, where k > 0 is a predefined
maximum context-window parameter. The pair to-
kens {(wn, wn+j) : −t(n) ≤ j ≤ t(n), wi ∈ S}
are then appended to the training data. Thus, tar-
get/context training pairs are such that (i) only
words within a k-window of the target are selected
as context words for that target, and (ii) words
closer to the target are more likely to be selected
than those further away.

The training objective is then to maximize the
sum of the log probabilities T across of all such
examples from S and across all sentences in the
corpus, where T is defined as follows:

T =
1
N

N∑
n=1

∑
−t(n)≤j≤t(n),j 6=0

log(p(wn+j |wn))

The model free parameters (target-embeddings
and context-embeddings of dimension d for each
word in the corpus with frequency above a certain
threshold f ) are updated according to stochastic
gradient descent and backpropation, with learning
rate controlled by Adagrad (Duchi et al., 2011).
For efficiency, the output layer is encoded as a
hierarchical softmax function based on a binary
Huffman tree (Morin and Bengio, 2005).

As with other distributional architectures, the
model captures conceptual semantics by exploit-
ing the fact that words appearing in similar lin-
guistic contexts are likely to have similar mean-
ings. Informally, the model adjusts its embeddings

to increase the ‘probability’ of seeing the language
in the training corpus. Since this probability in-
creases with the p(c|w), and the p(c|w) increase
with the dot product r̂c · rw, the updates have the
effect of moving each target-embedding incremen-
tally ‘closer’ to the context-embeddings of its col-
locates. In the target-embedding space, this results
in embeddings of concept words that regularly oc-
cur in similar contexts moving closer together.

Multi-modal Extension We extend the Mikolov
et al. (2013) architecture via a simple means of in-
troducing perceptual information that aligns with
human language learning. Based on the assump-
tion that frequency in domain-general linguistic
corpora correlates with the likelihood of ‘experi-
encing’ a concept in the world (Bybee and Hop-
per, 2001; Chater and Manning, 2006), perceptual
information is introduced to the model whenever
designated concrete concepts are encountered in
the running-text linguistic input. This has the ef-
fect of introducing more perceptual input for com-
monly experienced concrete concepts and less in-
put for rarer concrete concepts.

To implement this process, perceptual informa-
tion is extracted from external sources and en-
coded in an associative array P, which maps (typ-
ically concrete) words w to bags of perceptual fea-
tures b(w). The construction of this array depends
on the perceptual information source; the process
for our chosen sources is detailed in Section 2.1.

Training our model begins as before on running-
text. When a sentence Sm containing a word w in
the domain of P is encountered, the model finishes
training on Sm and begins learning from a per-
ceptual pseudo-sentence Ŝm(w). Ŝm(w) is con-
structed by alternating the token w with a fea-
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Ŝ(crocodile) = Crocodile legs crocodile teeth crocodile
teeth crocodile scales crocodile green crocodile.

Ŝ(screwdriver) = Screwdriver handle screwdriver flat
screwdriver long screwdriver handle screwdriver head.

Figure 2: Example pseudo-sentences generated by
our model.

ture sampled at random from b(w) until Ŝm(w)
is the same length as Sm (see Figure 2). Because
we want the ensuing perceptual learning process
to focus on how w relates to its perceptual prop-
erties (rather than how those properties relate to
each other), we insert multiple instances of w into
Ŝm(w). This ensures that the majority of train-
ing cases derived from Ŝm(w) are instances of (w,
feature) rather than (feature, feature) pairs. Once
training on Ŝm(w) is complete, the model reverts
to the next ‘genuine’ (linguistic) sentence Sm+1,
and the process continues. Thus, when a concrete
concept is encountered in the corpus, its embed-
ding is first updated based on language (moved in-
crementally closer to concepts appearing in sim-
ilar linguistic contexts), and then on perception
(moved incrementally closer to concepts with the
same or similar perceptual features).

For greater flexibility, we introduce a parameter
α reflecting the raw quantity of perceptual infor-
mation relative to linguistic input. When α = 2,
two pseudo-sentences are generated and inserted
for every corpus occurrence of a token from the
domain of P. For non-integral α, the number of
sentences inserted is bαc, and a further sentence is
added with probability α− bαc.

In all experiments reported in the following sec-
tions we set the window size parameter k = 5 and
the minimum frequency parameter f = 3, which
guarantees that the model learns embeddings for
all concepts in our evaluation sets. While the
model learns both target and context-embeddings
for each word in the vocabulary, we conduct our
experiments with the target embeddings only. We
set the dimension parameter d = 300 as this pro-
duces high quality embeddings in the language-
only case (Mikolov et al., 2013).

2.1 Information Sources

We construct the associative array of perceptual
information P from two sources typical of those
used for multi-modal semantic models.

ESPGame Dataset The ESP-Game dataset
(ESP) (Von Ahn and Dabbish, 2004) consists of
100,000 images, each annotated with a list of lex-
ical concepts that appear in that image.

For any concept w identified in an ESP im-
age, we construct a corresponding bag of features
b(w). For each ESP image I that contains w, we
append the other concept tokens identified in I to
b(w). Thus, the more frequently a concept co-
occurs with w in images, the more its correspond-
ing lexical token occurs in b(w). The array PESP

in this case then consists of the (w,b(w)) pairs.

CSLB Property Norms The Centre for Speech,
Language and the Brain norms (CSLB) (Devereux
et al., 2013) is a recently-released dataset contain-
ing semantic properties for 638 concrete concepts
produced by human annotators. The CSLB dataset
was compiled in the same way as the McRae et
al. (2005) property norms used widely in multi-
modal models (Silberer and Lapata, 2012; Roller
and Schulte im Walde, 2013); we use CSLB be-
cause it contains more concepts. For each concept,
the proportion of the 30 annotators that produced
a given feature can also be employed as a measure
of the strength of that feature.

When encoding the CSLB data in P, we first
map properties to lexical forms (e.g. is green
becomes green). By directly identifying percep-
tual features and linguistic forms in this way,
we treat features observed in the perceptual data
as (sub)concepts to be acquired via the same
multi-modal input streams and stored in the same
domain-general memory as the evaluation con-
cepts. This design decision in fact corresponds
to a view of cognition that is sometimes disputed
(Fodor, 1983). In future studies we hope to com-
pare the present approach to architectures with
domain-specific conceptual memories.

For each concept w in CSLB, we then con-
struct a feature bag b(w) by appending lexical
forms to b(w) such that the count of each fea-
ture word is equal to the strength of that feature
for w. Thus, when features are sampled from
b(w) to create pseudo-sentences (as detailed pre-
viously) the probability of a feature word occur-
ring in a sentence reflects feature strength. The
array PCSLB then consists of all (w,b(w)) pairs.

Linguistic Input The linguistic input to all
models is the 400m word Text8 Corpus2 of

2From http://mattmahoney.net/dc/textdata.html
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ESPGame CSLB
Image 1 Image 2 Crocodile Screwdriver

red wreck has 4 legs (7) has handle (28)

chihuaua cyan has tail (18) has head (5)

eyes man has jaw (7) is long (9)

little crash has scales (8) is plastic (18)

ear accident has teeth (20) is metal (28)

nose street is green (10)

small is large (10)

Table 1: Concepts identified in images in the ESP
Game (left) and features produced for concepts by
human annotators in the CSLB dataset (with fea-
ture strength, max=30).

Concept 1 Concept 2 Assoc.
abdomen (6.83) stomach (6.04) 0.566
throw (4.05) ball (6.08) 0.234
hope (1.18) glory (3.53) 0.192
egg (5.79) milk (6.66) 0.012

Table 2: Example concept pairs (with mean con-
creteness rating) and free-association scores from
the USF dataset.

Wikipedia text, split into sentences and with punc-
tuation removed.

2.2 Evaluation

We evaluate the quality of representations by how
well they reflect free association scores, an em-
pirical measure of cognitive conceptual proxim-
ity. The University of South Florida Norms
(USF) (Nelson et al., 2004) contain free associa-
tion scores for over 40,000 concept pairs, and have
been widely used in NLP to evaluate semantic rep-
resentations (Andrews et al., 2009; Feng and La-
pata, 2010; Silberer and Lapata, 2012; Roller and
Schulte im Walde, 2013). Each concept that we
extract from the USF database has also been rated
for conceptual concreteness on a Likert scale of
1-7 by at least 10 human annotators. Following
previous studies (Huang et al., 2012; Silberer and
Lapata, 2012), we measure the (Spearman ρ) cor-
relation between association scores and the cosine
similarity of vector representations.

We create separate abstract and concrete con-
cept lists by ranking the USF concepts accord-
ing to concreteness and sampling at random from
the first and fourth quartiles respectively. We also
introduce a complementary noun/verb dichotomy,

Concept Type List Pairs Examples
concrete nouns 541 1418 yacht, cup
abstract nouns 100 295 fear, respect
all nouns 666 1815 fear, cup
concrete verbs 50 66 kiss, launch
abstract verbs 50 127 differ, obey
all verbs 100 221 kiss, obey

Table 3: Details the subsets of USF data used in
our evaluations, downloadable from our website.

on the intuition that information propagation may
occur differently from noun to noun or from noun
to verb (because of their distinct structural rela-
tionships in sentences). POS-tags are not assigned
as part of the USF data, so we draw the noun/verb
distinction based on the majority POS-tag of USF
concepts in the lemmatized British National Cor-
pus (Leech et al., 1994). The abstract/concrete
and noun/verb dichotomies yield four distinct con-
cept lists. For consistency, the concrete noun list
is filtered so that each concrete noun concept w
has a perceptual representation b(w) in both PESP

and PCSLB. For the four resulting concept lists
C (concrete/abstract, noun/verb), a correspond-
ing set of evaluation pairs {(w1, w2) ∈ USF :
w1, w2 ∈ C} is extracted (see Table 3 for details).

3 Results and Discussion

Our experiments were designed to answer four
questions, outlined in the following subsec-
tions: (1) Which model architectures perform best
at combining information pertinent to multiple
modalities when such information exists explicitly
(as common for concrete concepts)? (2) Which
model architectures best propagate perceptual in-
formation to concepts for which it does not exist
explicitly (as is common for abstract concepts)?
(3) Is it preferable to include all of the perceptual
input that can be obtained from a given source, or
to filter this input stream in some way? (4) How
much perceptual vs. linguistic input is optimal for
learning various concept types?

3.1 Combining information sources

To evaluate our approach as a method of in-
formation combination we compared its perfor-
mance on the concrete noun evaluation set against
three alternative methods. The first alternative
is simple concatenation of these perceptual vec-
tors with linguistic vectors embeddings learned
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by the Mikolov et al. (2013) model on the Text8
Corpus. In the second alternative (proposed
for multi-modal models by Silberer and Lapata
(2012)), canonical correlation analysis (CCA)
(Hardoon et al., 2004) was applied to the vec-
tors of both modalities. CCA yields reduced-
dimensionality representations that preserve un-
derlying inter-modal correlations, which are then
concatenated. The final alternative, proposed by
Bruni et al. (2014) involves applying Singular
Value Decomposition (SVD) to the matrix of con-
catenated multi-modal representations, yielding
smoothed representations.3

When implementing the concatenation, CCA
and SVD methods, we first encoded the percep-
tual input directly into sparse feature vectors, with
coordinates for each of the 2726 features in CSLB
and for each of the 100,000 images in ESP. This
sparse encoding matches the approach taken by
Silberer and Lapata (2012), for CCA and concate-
nation, and by Hill et al. (2014) for the ridge re-
gression method of propagation (see below).

We compare these alternatives to our proposed
model with α = 1. In The CSLB and ESP models,
all training pseudo-sentences are generated from
the arrays PCSLB and PESP respectively. In the
models classed as CSLB&ESP, a random choice
between PCSLB and PESP is made every time
perceptual input is included (so that the overall
quantity of perceptual information is the same).

As shown in Figure 2 (left side), the embed-
dings learned by our model achieve a higher cor-
relation with the USF data than simple concatena-
tion, CCA and SVD regardless of perceptual input
source. With the optimal perceptual source (ESP
only), for instance, the correlation is 11% higher
that the next best alternative method, CCA.

One possible factor behind this improvement
is that, in our model, the learned representations
fully integrate the two modalities, whereas for
both CCA and the concatenation method each rep-
resentation feature (whether of reduced dimension
or not) corresponds to a particular modality. This
deeper integration may help our architecture to
overcome the challenges inherent in information
combination such as inter-modality differences in
information content and representation sparsity. It
is also important to note that Bruni et al. (2014) ap-

3CCA was implemented using the CCA package in
R. SVD was implemented using SVDLIBC (http://
tedlab.mit.edu/˜dr/SVDLIBC/), with truncation
factor k = 1024 as per (Bruni et al., 2014).

plied their SVD method with comparatively dense
perceptual representations extracted from images,
whereas our dataset-based perceptual vectors were
sparsely-encoded.

3.2 Propagating input to abstract concepts

To test the process of information propagation in
our model, we evaluated the learned embeddings
of more abstract concepts. We compared our
approach with two recently-proposed alternative
methods for inferring perceptual features when ex-
plicit perceptual information is unavailable.

Johns and Jones In the method of Johns and
Jones (2012), pseudo-perceptual representations
for target concepts without a perceptual repre-
sentations (uni-modal concepts) are inferred as a
weighted average of the perceptual representations
of concepts that do have such a representation (bi-
modal concepts).

In the first step of their two-step method, for
each uni-modal concept k, a quasi-perceptual rep-
resentation is computed as an average of the
perceptual representations of bi-modal concepts,
weighted by the proximity between each of these
concepts and k

kp =
∑
c∈C̄

S(kl, cl)λ · cp

where C̄ is the set of bi-modal concepts, cp and kp

are the perceptual representations for c and k re-
spectively, and cl and kl the linguistic representa-
tions. The exponent parameter λ reflects the learn-
ing rate.

In step two, the initial quasi-perceptual repre-
sentations are inferred for a second time, but with
the weighted average calculated over the percep-
tual or initial quasi-perceptual representations of
all other words, not just those that were originally
bi-modal. As with Johns and Jones (2012), we set
the learning rate parameter λ to be 3 in the first
step and 13 in the second.

Ridge Regression An alternative, proposed for
the present purpose by Hill et al. (2014), uses ridge
regression (Myers, 1990). Ridge regression is a
variant of least squares regression in which a reg-
ularization term is added to the training objective
to favor solutions with certain properties.

For bi-modal concepts of dimension np, we ap-
ply ridge regression to learn np linear functions
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fi : Rnl → R that map the linguistic represen-
tations (of dimension nl) to a particular percep-
tual feature i. These functions are then applied
together to map the linguistic representations of
uni-modal concepts to full quasi-perceptual repre-
sentations.

Following Hill et al. (2014), we take the Euclid-
ian l2 norm of the inferred parameter vector as the
regularization term. This ensures that the regres-
sion favors lower coefficients and a smoother so-
lution function, which should provide better gen-
eralization performance than simple linear regres-
sion. The objective for learning the fi is then to
minimize

‖aX − Yi‖22 + ‖a‖22
where a is the vector of regression coefficients, X
is a matrix of linguistic representations and Yi a
vector of the perceptual feature i for the set of bi-
modal concepts.

Comparisons We applied the Johns and Jones
method and ridge regression starting from linguis-
tic embeddings acquired by the Mikolov et al.
(2013) model on the Text8 Corpus, and concate-
nated the resulting pseudo-perceptual and linguis-
tic representations. As with the implementation
of our model, the perceptual input for these alter-
native models was limited to concrete nouns (i.e.
concrete nouns were the only bi-modal concepts
in the models).

Figure 3 (right side) shows the propagation per-
formance of the three models. While the corre-
lations overall may seem somewhat low, this is
a consequence of the difficulty of modelling the
USF data. In fact, the performance of both the
language-only model and our multi-modal exten-
sion across the concept types (from 0.18 to 0.36) is
equal to or higher than previous models evaluated
on the same data (Feng and Lapata, 2010; Silberer
and Lapata, 2012; Silberer et al., 2013).

For learning representations of concrete verbs,
our approach achieves a 69% increase in perfor-
mance over the next best alternative. The perfor-
mance of the model on abstract verbs is marginally
inferior to Johns and Jones’ method. Neverthe-
less, the clear advantage for concrete verbs makes
our model the best choice for learning represen-
tations of verbs in general, as shown by perfor-
mance on the set all verbs, which also includes
mixed abstract-concrete pairs.

Our model is also marginally inferior to alterna-
tive approaches in learning representations of ab-

stract nouns. However, in this case, no method
improves on the linguistic-only baseline. It is
possible that perceptual information is simply so
removed from the core semantics of these con-
cepts that they are best acquired via the linguis-
tic medium alone, regardless of learning mecha-
nism. The moderately inferior performance of our
method in such cases is likely caused by its greater
inherent inter-modal dependence compared with
methods that simply concatenate uni-modal rep-
resentations. When the perceptual signal is of
low quality, this greater inter-modal dependence
allows the linguistic signal to be obscured.

The trade-off, however, is generally higher-
quality representations when the perceptual signal
is stronger, exemplified by the fact that our pro-
posed approach outperforms alternatives on pairs
generated from both abstract and concrete nouns
(all nouns). Indeed, the low performance of the
Johns and Jones method on all nouns is strik-
ing given that: (a) It performs best on abstract
nouns (ρ = .282), and (b) For concrete nouns it
reverts to simple concatenation, which also per-
forms comparatively well (ρ = .249). The poor
performance of the Jobns and Jones method on
all nouns must therefore derive its comparisons
of mixed abstract-concrete or concrete-abstract
pairs. This suggests that the pseudo-perceptual
representations inferred by this method for ab-
stract concepts method may not be compatible
with the directly-encoded perceptual representa-
tions of concrete concepts, rendering the compar-
ison computation between items of differing con-
creteness inaccurate.

3.3 Direct representation vs. propagation

Although property norm datasets such as the
CSLB data typically consist of perceptual fea-
ture information for concrete nouns only, image-
based datasets such as ESP do contain informa-
tion on more abstract concepts, which was omit-
ted from the previous experiments. Indeed, im-
age banks such as Google Images contain millions
of photographs portraying quite abstract concepts,
such as love or war. On the other hand, encod-
ings or descriptions of abstract concepts are gen-
erally more subjective and less reliable than those
of concrete concepts (Wiemer-Hastings and Xu,
2005). We therefore investigated whether or not
it is preferable to include this additional informa-
tion as model input or to restrict perceptual input
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Figure 3: The proposed approach compared with other methods of information combination (left) and
propagation. Dashed lines indicate language-only model baseline. For brevity we include both perceptual
input sources ESP and CSLB when comparing means of propagation; results with individual information
sources were similar.

to concrete nouns as previously.

Of our evaluation sets, it was possible to con-
struct from ESP (and add to PESP) representa-
tions for all of the concrete verbs, and for ap-
proximately half of the abstract verbs and abstract
nouns. Figure 4 (top), shows the performance of
a our model trained on all available perceptual in-
put versus the model in which the perceptual input
was restricted to concrete nouns.

The results reflect a clear manifestation of the
abstract/concrete distinction. Concrete verbs be-
have similarly to concrete nouns, in that they can
be effectively represented directly from perceptual
information sources. The information encoded in
these representations is beneficial to the model and
increases performance. In contrast, constructing
‘perceptual’ representations of abstract verbs and
abstract nouns directly from perceptual informa-
tion sources is clearly counter-productive (to the
extent that performance also degrades on the com-
bined sets all nouns and all verbs). It appears in
these cases that the perceptual input acts to ob-
scure or contradict the otherwise useful signal in-
ferred from the corpus.

As shown in the previous section, the inclusion
of any form of perceptual input inhibits the learn-
ing of abstract nouns. However, this is not the case
for abstract verbs. Our model learns higher qual-
ity representations of abstract verbs if perceptual
input is restricted to concrete nouns than if no per-
ceptual input is included at all and when percep-
tual input is included for both concrete nouns and
abstract verbs. This supports the idea of a grad-
ual scale of concreteness: The most concrete con-
cepts can be effectively represented directly in the

perceptual modality; somewhat more abstract con-
cepts cannot be represented directly in the percep-
tual modality, but have representations that are im-
proved by propagating perceptual input from con-
crete concepts via language; and the most abstract
concepts are best acquired via language alone.

3.4 Source and quantity of perceptual input

For different concept types, we tested the effect of
varying the proportion of perceptual to linguistic
input (the parameter α). Perceptual input was re-
stricted to concrete nouns as in Sections 3.1-3.2.

As shown in Figure 4, performance on concrete
nouns improves (albeit to a decreasing degree) as
α increases. When learning concrete noun rep-
resentations, linguistic input is apparently redun-
dant if perceptual input is of sufficient quality and
quantity. For the other concept types, in each case
there is an optimal value for α in the range .5–2,
above which perceptual input obscures the linguis-
tic signal and performance degrades. The prox-
imity of these optima to 1 suggests that for op-
timal learning, when a concrete concept is experi-
enced approximately equal weight should be given
to available perceptual and linguistic information.

4 Conclusions

Motivated by the notable prevalence of abstract
concepts in everyday language, and their likely
importance to flexible, general-purpose represen-
tation learning, we have investigated how abstract
and concrete representations can be acquired by
multi-modal models. In doing so, we presented a
simple and easy-to-implement architecture for ac-
quiring semantic representations of both types of
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concept from linguistic and perceptual input.
While neuro-probabilistic language models

have been applied to the problem of multi-modal
representation learning previously (Srivastava and
Salakhutdinov, 2012; Wu et al., 2013; Silberer and
Lapata, 2014) our model and experiments develop
this work in several important ways. First, we ad-
dress the problem of learning abstract concepts.
By isolating concepts of different concreteness
and part-of-speech in our evaluation sets, and sep-
arating the processes of information combination
and propagation, we demonstrate that the multi-
modal approach is indeed effective for some, but
perhaps not all, abstract concepts. In addition, our
model introduces a clear parallel with human lan-
guage learning. Perceptual input is introduced pre-
cisely when concrete concepts are ‘experienced’
by the model in the corpus text, much like a lan-
guage learner experiencing concrete entities via
sensory perception.

Taken together, our findings indicate the utility
of distinguishing three concept types when learn-
ing representations in the multi-modal setting.

Type I Concepts that can be effectively repre-
sented directly in the perceptual modality. For

such concepts, generally concrete nouns or con-
crete verbs, our proposed approach provides a sim-
ple means of combining perceptual and linguistic
input. The resulting multi-modal representations
are of higher quality than those learned via other
approaches, resulting in a performance improve-
ment of over 10% in modelling free association.

Type II Concepts, including abstract verbs, that
cannot be effectively represented directly in the
perceptual modality, but whose representations
can be improved by joint learning from linguis-
tic input and perceptual information about related
concepts. Our model can effectively propagate
perceptual input (exploiting the relations inferred
from the linguistic input) from Type I concepts to
enhance the representations of Type II concepts
above the language-only baseline. Because of the
frequency of abstract concepts, such propagation
extends the benefit of the multi-modal approach to
a far wider range of language than models based
solely in the concrete domain.

Type III Concepts that are more effectively
learned via language-only models than multi-
modal models, such as abstract nouns. Neither
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our proposed approach nor alternative propagation
methods achieve an improvement in representa-
tion quality for these concepts over the language-
only baseline. Of course, it is an empirical ques-
tion whether a multi-modal approach could ever
enhance the representation learning of these con-
cepts, one with potential implications for cognitive
theories of grounding (a topic of much debate in
psychology (Grafton, 2009; Barsalou, 2010)).

Additionally, we investigated the optimum type
and quantity of perceptual input for learning con-
cepts of different types. We showed that too much
perceptual input can result in degraded represen-
tations. For concepts of type I and II, the op-
timal quantity resulted from setting α = 1; i.e.
whenever a concrete concept was encountered, the
model learned from an equal number of language-
based and perception-based examples. While we
make no formal claims here, such observations
may ultimately provide insight into human lan-
guage learning and semantic memory.

In future we will address the question of
whether Type III concepts can ever be enhanced
via multi-modal learning, and investigate multi-
modal models that optimally learn concepts of
each type. This may involve filtering the percep-
tual input stream for concepts according to con-
creteness, and possibly more elaborate model ar-
chitectures that facilitate distinct representational
frameworks for abstract and concrete concepts.
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Abstract

State-of-art systems for grammar error
correction often correct errors based on
word sequences or phrases. In this paper,
we describe a grammar error correction
system which corrects grammatical errors
at tree level directly. We cluster all error
into two groups and divide our system into
two modules correspondingly: the general
module and the special module. In the
general module, we propose a TreeNode
Language Model to correct errors related
to verbs and nouns. The TreeNode Lan-
guage Model is easy to train and the de-
coding is efficient. In the special module,
two extra classification models are trained
to correct errors related to determiners and
prepositions. Experiments show that our
system outperforms the state-of-art sys-
tems and improves the F1 score.

1 Introduction

The task of grammar error correction is difficult
yet important. An automatic grammar error cor-
rection system can help second language (L2)
learners improve the quality of their writing. In re-
cent years, there are various competitions devoted
to grammar error correction, such as the HOO-
2011(Dale and Kilgarriff, 2011), HOO-2012(Dale
et al., 2012) and the CoNLL-2013 shared task (Ng
et al., 2013). There has been a lot of work ad-
dressing errors made by L2 learners. A significant
proportion of the systems for grammar error cor-
rection train individual statistical models to cor-
rect each special kind of error word by word and
ignore error interactions. These methods assume
no interactions between different kinds of gram-
matical errors. In real problem settings errors are
correlated, which makes grammar error correction
much more difficult.

Recent research begins to focus on the error
interaction problem. For example, Wu and Ng
(2013) decodes a global optimized result based
on the individual correction confidence of each
kind of errors. The individual correction confi-
dence is still based on the noisy context. Ro-
zovskaya and Roth (2013) uses a joint modeling
approach, which considers corrections in phrase
structures instead of words. For dependencies that
are not covered by the joint learning model, Ro-
zovskaya and Roth (2013) uses the results of Illi-
nois system in the joint inference. These results
are still at word level and are based on the noisy
context. These systems can consider error inter-
actions, however, the systems are complex and
inefficient. In both Wu and Ng (2013) and Ro-
zovskaya and Roth (2013), Integer Linear Pro-
gramming (ILP) is used for decoding a global op-
timized result. In the worst case, the time com-
plexity of ILP can be exponent.

In contrast, we think a better grammar error cor-
rection system should correct grammatical errors
at sentence level directly and efficiently. The sys-
tem should correct as many kinds of errors as pos-
sible in a generalized framework, while allowing
special models for some kinds of errors that we
need to take special care. We cluster all error into
two groups and correspondingly divide our sys-
tem into two modules: the general module and the
special module. In the general module, our sys-
tem views each parsed sentence as a dependency
tree. The system generates correction candidates
for each node on the dependency tree. The cor-
rection can be made on the dependency tree glob-
ally. In this module, nearly all replacement errors
related to verb form, noun form and subject-verb
agreement errors can be considered. In the spe-
cial module, two extra classification models are
used to correct the determiner errors and preposi-
tion errors . The classifiers are also trained at tree
node level. We take special care of these two kinds
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of errors because these errors not only include re-
placement errors, but also include insertion and
deletion errors. A classification model is more
suitable for handling insertion and deletion errors.
Besides, they are the most common errors made
by English as a Second Language (ESL) learners
and are much easier to be incorporated into a clas-
sification framework.

We propose a TreeNode Language Model
(TNLM) to efficiently measure the correctness of
selecting a correction candidate of a node in the
general module. Similar to the existing statistical
language models which assign a probability to a
linear chain of words, our TNLM assigns correct-
ness scores directly on each node on the depen-
dency tree. We select candidates for each node
to maximize the global correctness score and use
these candidates to form the corrected sentence.
The global optimized inference can be tackled ef-
ficiently using dynamic programming. Because
the decoding is based on the whole sentence, error
interactions can be considered. Our TNLM only
needs to use context words related to each node
on the dependency tree. Training a TreeNode lan-
guage model costs no more than training ordinary
language models on the same corpus. Experiments
show that our system can outperform the state-of-
art systems.

The paper is structured as follows. Section 1
gives the introduction. In section 2 we describe the
task and give an overview of the system. In section
3 we describe the general module and in section 4
we describe the special module. Experiments are
described in section 5. In section 6 related works
are introduced, and the paper is concluded in the
last section.

2 Task and System Overview

2.1 Task Description

The task of grammar error correction aims to cor-
rect grammatical errors in sentences. There are
various competitions devoted to the grammar er-
ror correction task for L2 learners. The CoNLL-
2013 shared task is one of the most famous, which
focuses on correcting five types of errors that
are commonly made by non-native speakers of
English, including determiner, preposition, noun
number, subject-verb agreement and verb form er-
rors. The training data released by the task orga-
nizers come from the NUCLE corpus(Dahlmeier
et al., 2013). This corpus contains essays writ-

ten by ESL learners, which are then corrected by
English teachers. The test data are 50 student es-
says. Details of the corpus are described in Ng
et al. (2013).

2.2 System Architecture

In our system, lists of correction candidates are
first generated for each word. We generate can-
didates for nouns based on their plurality. We gen-
erate candidates for verbs based on their tenses.
Then we select the correction candidates that max-
imize the overall correctness score. An example
process of correcting figure 1(a) is shown in table
1.

Correcting grammatical errors using local sta-
tistical models on word sequence is insufficient.
The local models can only consider the contexts
in a fixed window. In the example of figure 1(a),
the context of the verb “is” is “that boy is on the”,
which sounds reasonable at first glance but is in-
correct when considering the whole sentence. The
limitation of local classifiers is that long distance
syntax information cannot be incorporated within
the local context. In order to effectively use the
syntax information to get a more accurate correct-
ing result, we think a better way is to tackle the
problem directly at tree level to view the sentence
as a whole. From figure 1(a) we can see that the
node “is” has two children on the dependency tree:
“books” and “on”. When we consider the node
“is”, its context is “books is on”, which sounds in-
correct. Therefore, we can make better corrections
using such context information on nodes.

Therefore, our system corrects grammatical er-
rors on dependency trees directly. Because the
correlated of words are more linked on trees than
in a word sequence, the errors are more easier to
be corrected on the trees and the agreement of dif-
ferent error types is guaranteed by the edges. We
follow the strategy of treating different kinds of
errors differently, which is used by lots of gram-
mar error correction systems. We cluster the five
types of errors considered in CoNLL-2013 into
two groups and divide our system into two mod-
ules correspondingly.

• The general module, which is responsible
for the verb form errors, noun number errors
and subject-verb agreement errors. These er-
rors are all replacement errors, which can
be corrected by replacing the wrongly used
word with a reasonable candidate word.
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Figure 1: Dependency parsing results of (a) the original sentence “The books of that boy is on the desk
.” (b) the corrected sentence.

Position Original Correction Candidates Corrected
1 The The The
2 books books, book books
3 of of of
4 that that that
5 boy boy, boys boy
6 is is,are,am,was,were,be,being,been are
7 on on on
8 the the the
9 desk desk, desks desk
10 . . .

Table 1: An example of the “correction candidate generation and candidate selection” framework.

• The special module, where two classifica-
tion models are used to correct the determiner
errors and preposition errors at tree level. We
take special care of these two kinds of errors
because these errors include both replace-
ment errors and insertion/deletion errors. Be-
sides, they are the most common errors made
by ESL learners and is much easier to be in-
corporated into a classification framework.

We should make it clear that we are not the first
to use tree level correction models on ungrammat-
ical sentences. Yoshimoto et al. (2013) uses a
Treelet Language model (Pauls and Klein, 2012)
to correct agreement errors. However, the perfor-
mance of Treelet language model is not that good
compared with the top-ranked system in CoNLL-
2013. The reason is that the production rules in the
Treelet language model are based on complex con-
texts, which will exacerbate the data sparseness
problem. The “context” in Treelet language model
also include words ahead of treelets, which are
sometimes unrelated to the current node. In con-
trast, our TreeNode Language model only needs to
consider useful context words related to each node

on the dependency tree. To train a TreeNode lan-
guage model costs no more than training ordinary
language models on the same corpus.

2.3 Data Preparation
Our system corrects grammatical errors on de-
pendency trees directly, therefore the sentences
in training and testing data should have been
parsed before being corrected. In our system, we
use the Stanford parser1 to parse the New York
Times source of the Gigaword corpus2, and use the
parsed sentences as our training data. We use the
original training data provided by CoNLL-2013 as
the develop set to tune all parameters.

Some sentences in the news texts use a differ-
ent writing style against the sentences written by
ESL learners. For example, sentences written by
ESL learners seldom include dialogues between
people, while very often news texts include para-
graphs such as “‘I am frightened!’ cried Tom”. We
use heuristic rules to eliminate the sentences in the
Gigaword corpus that are less likely to appear in
the ESL writing. The heuristic rules include delet-

1http://nlp.stanford.edu/software/lex-parser.shtml
2https://catalog.ldc.upenn.edu/LDC2003T05
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ing sentences that are too short or too long3, delet-
ing sentences that contains certain punctuations
such as quotation marks, or deleting sentences that
are not ended with a period.

In total we select and parse 5 million sen-
tences of the New York Times source of English
newswire in the Gigaword corpus. We build the
system and experiment based on these sentences.

3 The General Module

3.1 Overview
The general module aims to correct verb form er-
rors, noun number errors and subject-verb agree-
ment errors. Other replacement errors such as
spelling errors can also be incorporated into the
general module. Here we focus on verb form er-
rors, noun number errors and subject-verb agree-
ment errors only. Our general module views each
sentence as a dependency tree. All words in the
sentence form the nodes of the tree. Nodes are
linked through directed edges, annotated with the
dependency relations.

Before correcting the grammatical errors, the
general module should generate correction candi-
dates for each node first. For each node we use
the word itself as its first candidate. Because the
general module considers errors related to verbs
and nouns, we generate extra correction candi-
dates only for verbs and nouns. For verbs we use
all its verb forms as its extra candidates. For ex-
ample when considering the word “speaks”, we
use itself and {speak, spoke, spoken, speaking}
as its correction candidates. For nouns we use
its singular form and plural form as its extra cor-
rection candidates. For example when consider-
ing the word “dog”, we use itself and “dogs” as
its correction candidate. If the system selects the
original word as the final correction, the sentence
remains unchanged. But for convenience we still
call the newly generated sentence “the corrected
sentence”.

In a dependency tree, the whole sentence
s can be formulized as a list of production
rules r1, ..., rL of the form: [r = head →
modifier1,modifier2...]. An example of all
production rules of figure 1(a) is shown in table
2. Because the production rules are made up of
words, selecting a different correction candidate
for only one node will result in a list of different

3In our experiment, no less than 5 words and no more than
30 words.

production rules. For example, figure 1(b) selects
the correction candidate “is” to replace the origi-
nal “are”. Therefore the production rules of figure
1(b) include [are → books, on], instead of [is →
books, on] in figure 1(a).

books→ The, of
of→ boy
boy→ that
is→ books, on
on→ desk
desk→ the

Table 2: All the production rules in the example of
figure 1(a)

The overall correctness score of s, which
is score(s), can be further decomposed into∏L
i=0 score(ri). A reasonable score function

should score the correct candidate higher than the
incorrect one. Consider the node “is” in Figure
1(a), the production rule with head “is” is [is →
books, on]. Because the correction of “is” is “are”,
a reasonable scorer should have score([is →
books, on]) < score([are→ books, on]).

Given the formulation of sentence s =
[r1, ..., rL] and the candidates for each node, we
are faced with two problems:

1. Score Function. Given a fixed selection of
candidate for each node, how to compute
the overall score of the dependency tree, i.e.,
score(s). Because score(s) is decomposed
into

∏L
i=0 score(ri), the problem becomes

finding a score function to measure the cor-
rectness of each r given a fixed selection of
candidates.

2. Decoding. Given each node a list of correc-
tion candidates and a reasonable score func-
tion score(r) for the production rules, how to
find the selection of candidates that maximize
the overall score of the dependency tree.

For the first problem, we propose a TreeNode
Language Model as the correctness measure of a
fixed candidate selection. For the decoding prob-
lem, we use a dynamic programming method to
efficiently find the correction candidates that max-
imize the overall score. We will describe the de-
tails in the following sections.

One concern is whether the automatically
parsed trees are reliable for grammar error cor-
rection. We define “reliable” as follows. If we
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change some words in original sentence into their
reasonable correction candidates (e.g. change “is”
to “are”) but the structure of the dependency tree
does not change (except the replaced word and
its corresponding POS tag, which are definitely
changed), then we say the dependency tree is reli-
able for this sentence. To verify this we randomly
selected 1000 sentences parsed by the Stanford
Parser. We randomly select the verbs and nouns
and replace them with a wrong form. We parsed
the modified sentences again and asked 2 annota-
tors to examine whether the dependency trees are
reliable for grammar error correction. We find that
99% of the dependency trees are reliable. There-
fore we can see that the dependency tree can be
used as the structure for grammar error correction
directly.

3.2 TreeNode Language Model

In our system we use the score of TreeNode Lan-
guage Model (TNLM) as the scoring function.
Consider a node n on a dependency tree and as-
sume n has K modifiers C1, ..., CK as its child
nodes. We define Seq(n) = [C1, ..., n, ..., CK ]
as an ordered sub-sequence of nodes that includes
the node n itself and all its child nodes. The or-
der of the sub-sequence in Seq(n) is sorted based
on their position in the sentence. In this formula-
tion, we can score the correctness of a production
rule r by scoring the correctness of Seq(n). Be-
cause Seq(n) is a word sequence, we can use a
language model to measure its correctness. The
sub-sequences are not identical to the original
text. Therefore instead of using ordinary language
models, we should train special language models
using the sub-sequences to measure the correct-
ness of a production rule.

Take the sentence in figure 2 as an example.
When considering the node “is” in the word se-
quence, it is likely to be corrected into “are” be-
cause it appear directly after the plural noun “par-
ents”. However, by the definition above, the sub-
sequence corresponding to the node “damaged” is
“car is damaged by ”. In such context, the word
“is” is less likely to be changed to “are”. From
the example we can see that the sub-sequence is
suitable to be used to measure the correctness of
a production rule. From this example we can also
find that the sub-sequences are different with or-
dinary sentences, because ordinary sentences are
less likely to end with “by”.

Table 3 shows all the sub-sequences in the ex-
ample of figure 2. If we collect all the sub-
sequences in the corpus to form a new sub-
sequence corpus, we can train a language model
based on the new sub-sequence corpus. This is
our TreeNode Language Model. One advantage
of TLM is that once we have generated the sub-
sequences, we can train the TLM in the same
way as we train ordinary language models. Be-
sides, the TLM is not limited to a fixed smoothing
method. Any smoothing methods for ordinary lan-
guage models are applicable for TLM.

Node Sub-sentence
The The
car The car of
of of parents
my my
parents my parents
is is
damaged car is damaged by
by by storm
the the
storm the storm

Table 3: All the sub-sentences in the example of
figure 2

In our system we train the TLM using the same
way as training tri-gram language model. For a
sub-sequence S = w0...wL, we calculate P (S) =∏L
i=0 P (wi|wi−1wi−2). The smoothing method

we use is interpolation, which assumes the final
P ′(wi|wi−1wi−2) of the tri-gram language model
follows the following decomposition:

P ′(wi|wi−1wi−2) =λ1P (wi|wi−1wi−2)
+λ2P (wi|wi−1)
+λ3P (wi)

(1)

where λ1, λ2 and λ3 are parameters sum to
1. The parameters λ1, λ2 and λ3 are estimated
through EM algorithm(Baum et al., 1970; Demp-
ster et al., 1977; Jelinek, 1980).

3.3 Decoding
The decoding problem is to select one correction
candidate for each node that maximizes the over-
all score of the corrected sentence. When the sen-
tence is long and contains many verbs and nouns,
enumerating all possible candidate selections is
time-consuming. We use a bottom-up dynamic
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Figure 2: A illustrative sentence for TreeNode Language Model.

programming approach to find the maximized cor-
rections within polynomial time complexity.

For a node n with L correction candidates
n1, ...nL and K child nodes C1, ..., CK , we define
n.scores[i] as the maximum score if we choose
the ith candidate ni for n. Because we decode
from leaves to the root, C1.scores, ..., CK .scores
have already been calculated before we calculate
n.scores.

We assume the sub-sequence Seq(ni) =
[C1, ..., CM , ni, CM+1, ..., CK ] without loss of
generality, where C1, .., CM are the nodes before
ni and CM+1, ..., CK are the nodes after ni.

We define ci,j as the jth correction can-
didate of child node Ci. Given a se-
lection of candidates for each child node
seq = [c1,j1 , ..., cM,jM , ni, cM+1,jM+1

, ..., cK,jK ],
we can calculate score(seq) as:

score(seq) = TNLM(seq)
K∏
i=1

Ci.scores[ji]

(2)
where TNLM(seq) is the TreeNode Language

Model score of seq. Then, n.scores[i] is calcu-
lated as:

n.scores[i] = max
∀seq

score(seq) (3)

Because seq is a word sequence, the maxi-
mization can be efficiently calculated using Viterbi
algorithm (Forney Jr, 1973). To be specific,
the Viterbi algorithm uses the transition scores
and emission scores as its input. The transition
scores in our model are the tri-gram probabilities
from our tri-gram TNLM. The emission scores
in our model are the candidate scores of each
child: C1.scores, ..., CK .scores, which have al-
ready been calculated.

After the bottom-up calculation, we only need
to look into the “ROOT” node to find the maxi-
mum score of the whole tree. Similar to the Viterbi
algorithm, back pointers should be kept to find
which candidate is selected for the final corrected

sentence. Detailed decoding algorithm is shown in
table 4.

Function decode(Node n)
if n is leaf

set n.scores uniformly
return

for each child c of n
decode(c)

calculating n.scores using Viterbi
End Function
BEGIN

decode(ROOT )
find the maximum score for the tree and back-

track all candidates
END

Table 4: The Decoding algorithm

In the real world implementations, we add a
controlling parameter for the confidence of the
correctness of the inputs. We multiply λ on
P (w0|w−2w−1) of the tri-gram TNLM if the cor-
recting candidate w0 is the same word in the orig-
inal input. λ is larger than 1 to “emphasis” the
confidence of the original word because the most
of the words in the inputs are correct. The value of
λ can be set using the development data.

3.4 The Special Module
The special module is designed for determiner er-
rors and preposition errors. We take special care
of these two kinds of errors because these errors
include insertion and deletion errors, which can-
not be corrected in the general module. Because
there is a fixed number of prepositions and deter-
miners, these two kinds of errors are much easier
to be incorporated into a classification framework.
Besides, they are the most common errors made by
ESL learners and there are lots of previous works
that leave valuable guidance for us to follow.

Similar to many previous state-of-art systems,
we treat the correction of determiner errors and
preposition errors as a classification problem. Al-
though some previous works (e.g. Rozovskaya
et al. (2013)) use NPs and the head of NPs as
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features, they are basically local classifiers mak-
ing predictions on word sequences. Difference to
the local classifier approaches, we make predic-
tions on the nodes of the dependency tree directly.
In our system we correct determiner errors and
preposition errors separately.

For the determiner errors, we consider the in-
sertion, deletion and replacement of articles (i.e.
‘a’, ‘an’ and ‘the’). Because the articles are used
to modify nouns in the dependency trees, we can
classify based on noun nodes. We give each noun
node (node whose POS tag is noun) a label to in-
dicate which article it should take. We use left po-
sition (LP) and right position (RP) to specify the
position of the article. The article therefore lo-
cates between LP and RP. If a noun node already
has an article as its modifier, then LP will be the
position directly ahead of the article. In this case,
RP = LP + 2. If an insertion is needed, the RP
is the position of the first child node of the noun
node. In this case LP = RP − 1. With this no-
tation, detailed feature templates we use to correct
determiner errors are listed in table 5. In our model
we use 3 labels: ‘a’, ‘the’ and ‘∅’. We use ‘a’, ‘the’
to represent a noun node should be modified with
‘a’ or ‘’the’ correspondingly. We use ‘’∅’ to in-
dicate that no article is needed for the noun node.
We use rule-based method to distinguish between
“a” and “an” as a post-process.

For the preposition errors, we only consider
deletion and replacement of an existing preposi-
tion. The classification framework is similar to
determiner errors. We consider classification on
preposition nodes (nodes whose POS tag is prepo-
sition). We use prepositions as labels to indicate
which preposition should be used. and use “∅”
to denote that the preposition should be deleted.
We use the same definition of LP and RP as the
correction of determiner errors. Detailed feature
templates we use to correct preposition errors are
listed in table 6. Similar to the previous work(Xing
et al., 2013), we find that adding more preposi-
tions will not improve the performance in our ex-
periments. Thus we only consider a fixed set of
prepositions: {in, for, to, of, on}.

Previous works such as Rozovskaya et al.
(2013) show that Naive Bayes model and averaged
perceptron model show better results than other
classification models. These classifiers can give a
reasonably good performance when there are lim-
ited amount of training data. In our system, we use

large amount of automatically generated training
data based on the parsed Gigaword corpus instead
of the limited training data provided by CoNLL-
2013.

Take generating training data for determiner er-
rors as an example. We generate training data
based on the parsed Gigaword corpus C described
in section 2. Each sentence S in C is a depen-
dency tree T . We use each noun node N on T as
one training instance. If N is modified by “the”,
its label will be “THE”. If N is modified by “a”
or “an”, its label will be “A”. Otherwise its label
will be “NULL”. Then we just omit the determiner
modifier and generate features based on table 5.
Generating training data for preposition errors is
the same, except we use preposition nodes instead
of noun nodes.

By generating training instances in this way, we
can get large amount of training data. Therefore
we think it is a good time to try different classifi-
cation models with enough training data. We ex-
periment on Naive Bayes, Averaged Perceptron,
SVM and Maximum Entropy models (ME) in a 5-
fold cross validation on the training data. We find
ME achieves the highest accuracy. Therefore we
use ME as the classification model in our system.

4 Experiment

4.1 Experiment Settings

In the experiments, we use our parsed Gigaword
corpus as the training data, use the training data
provided by CoNLL-2013 as the develop data, and
use the test data of CoNLL-2013 as test data di-
rectly. In the general module, the training data
is used for the training of TreeNode Language
Model. In the special module, the training data is
used for training individual classification models.

We use the M2 scorer (Dahlmeier and Ng,
2012b) provided by the organizer of CoNLL-2013
for the evaluation of our system. The M2 scorer
is widely used as a standard scorer in previous
systems. Because we make comparison with the
state-of-art systems on the CoNLL-2013 corpus,
we use the same evaluation metric F1 score of M2
scorer as the evaluation metric.

In reality, some sentences may have more than
one kind of possible correction. As the example in
“The books of that boy is on the desk.”, the cor-
responding correction can be either “The books of
that boy are on the desk.” or “The book of that boy
is on the desk.”. The gold test data can only con-
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Word Features wLP , wLP−1, wLP−2, wRP , wRP+1, wRP+2, wLP−2wLP−1, wLP−1wLP ,
wLPwRP , wRPwRP+1, wRP+1wRP+2, wLP−2wLP−1wLP , wLP−1wLPwRP ,
wLPwRPwRP+1, wRPwRP+1wRP+2

Noun Node
Features

NN , wLPNN , wLP−1wLPNN , wLP−2wLP−1wLPNN

Father/Child
Node Features

Fa, wRPFa, wRPwRP+1Fa, wRPwRP+1wRP+2Fa, Fa&Ch

Table 5: Feature templates for the determiner errors. wi is the word at the ith position. NN is the current
noun node. Fa is the father node of the current noun node. Ch is a child node of the current noun node.

Word Features wLP , wLP−1, wLP−2, wRP , wRP+1, wRP+2, wLP−2wLP−1, wLP−1wLP ,
wLPwRP , wRPwRP+1, wRP+1wRP+2, wLP−2wLP−1wLP , wLP−1wLPwRP ,
wLPwRPwRP+1, wRPwRP+1wRP+2

Father/Child
Node Features

Fa, wRPFa, wRPwRP+1Fa, wRPwRP+1wRP+2Fa, Fa&Ch

Table 6: Feature templates for preposition errors. wi is the word at the ith position. Fa is the father node
of the current preposition node. Ch is a child node of the current preposition node.

sider a small portion of possible answers. To re-
lieve this, the CoNLL-2013 shared task allows all
participating teams to provide alterative answers
if they believe their system outputs are also cor-
rect. These alterative answers form the “Revised
Data” in the shared task, which indeed help evalu-
ate the outputs of the participating systems. How-
ever, the revised data only include alterative cor-
rections from the participating teams. Therefore
the evaluation is not that fair for future systems. In
our experiment we only use the original test data
as the evaluation dataset.

4.2 Experiment Results
We first show the performance of each stage of our
system. In our system, the general module and
the special module correct grammar errors conse-
quently. Therefore in table 7 we show the perfor-
mance when each component is added to the sys-
tem.

Method P R F1 score
TNLM 33.96% 17.71% 23.28%
+Det 32.83% 38.28% 35.35%
+Prep 32.64% 39.20% 35.62%

Table 7: Results of each stage in our system.
TNLM is the general module. “+Det” is the sys-
tem containing the general module and determiner
part of special module.“+Prep” is the final system

We evaluate the effect of using TreeNode lan-
guage model for the general module. We compare

the TNLM with ordinary tri-gram language model.
We use the same amount of training data and the
same smoothing strategy (i.e. interpolation) for
both of them. Table 8 shows the comparison. The
TNLM can improve the F1 by +2.1%.

Method P R F1 score
Ordinary LM 29.27% 16.68% 21.27%
Our TNLM 33.96% 17.71% 23.28%

Table 8: Comparison for the general module
between TNLM and ordinary tri-gram language
model on the test data.

Based on the result of the general module using
TNLM, we compare our tree level special mod-
ule against the local classification approach. The
special module of our system makes predictions
on the dependency tree directly, while local clas-
sification approaches make predictions on linear
chain of words and decide the article of a noun
Phrase or the preposition of a preposition phrase.
We use the same word level features for the two
approaches except for the local classifiers we do
not add tree level features. Table 9 shows the com-
parison.

When using the parsed Gigaword texts as train-
ing data, the quality of the sentences we select
will influence the result. For comparison, we ran-
domly select the same amount of sentences from
the same source of Gigaword and parse them as
a alterative training set. Table 10 shows the com-
parison between random chosen training data and
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Method P R F1 score
Local Classifier 26.38% 39.14% 31.51%
Our Tree-based 32.64% 39.20% 35.62%

Table 9: Comparison for the special module on the
test data. The input of the special module is the
sentences corrected by the TNLM in the general
module.

the selected training data of our system. We can
see that the data selection (cleaning) procedure is
important for the improvement of system F1.

Method P R F1 score
Random 31.89% 35.85% 33.75%
Selected 32.64% 39.20% 35.62%

Table 10: Comparison of training using random
chosen sentences and selected sentences.

Method F1 score
Rozovskaya et al. (2013) 31.20%
Kao et al. (2013) 25.01%
Yoshimoto et al. (2013) 22.17%
Rozovskaya and Roth (2013) 35.20%
Our method 35.62%

Table 11: Comparison of F1 of different systems
on the test data .

4.3 Comparison With Other Systems

We also compare our system with the state-of-
art systems. The first two are the top-2 systems
at CoNLL-2013 shared task : Rozovskaya et al.
(2013) and Kao et al. (2013). The third one is
the Treelet Language Model in Yoshimoto et al.
(2013). The fourth one is Rozovskaya and Roth
(2013), which until now shows the best perfor-
mance. The comparison on the test data is shown
in table 11.

In CoNLL-2013 only 5 kinds of errors are con-
sidered. Our system can be slightly modified to
handle the case where other errors such as spelling
errors should be considered. In that case, we can
modify the candidate generation of the general
module. We only need to let the generate cor-
rection candidates be any possible words that are
similar to the original word, and run the same de-
coding algorithm to get the corrected sentence. As
a comparison, the ILP systems should add extra
scoring system to score extra kind of errors.

5 Related Works

Early grammatical error correction systems use
the knowledge engineering approach (Murata and
Nagao, 1994; Bond et al., 1996; Bond and Ikehara,
1996; Heine, 1998). However, manually designed
rules usually have exceptions. Therefore, the ma-
chine learning approach has become the dominant
approach recently. Previous machine learning ap-
proaches typically formulates the task as a clas-
sification problem. Of all the errors, determiner
and preposition errors are the two main research
topics (Knight and Chander, 1994; AEHAN et al.,
2006; Tetreault and Chodorow, 2008; Dahlmeier
and Ng, 2011). Features used in the classifica-
tion models include the context words, POS tags,
language model scores (Gamon, 2010), and tree
level features (Tetreault et al., 2010). Models used
include maximum entropy (AEHAN et al., 2006;
Tetreault and Chodorow, 2008), averaged percep-
tron, Naive Bayes (Rozovskaya and Roth, 2011),
etc. Other errors such as verb form and noun num-
ber errors also attract some attention recently (Liu
et al., 2010; Tajiri et al., 2012).

Recent research efforts have started to deal with
correcting different errors jointly (Gamon, 2011;
Park and Levy, 2011; Dahlmeier and Ng, 2012a;
Wu and Ng, 2013; Rozovskaya and Roth, 2013).
Gamon (2011) uses a high-order sequential label-
ing model to detect various errors. Park and Levy
(2011) models grammatical error correction using
a noisy channel model. Dahlmeier and Ng (2012a)
uses a beam search decoder, which iteratively cor-
rects to produce the best corrected output. Wu and
Ng (2013) and Rozovskaya and Roth (2013) use
ILP to decode a global optimized result. The joint
learning and joint inference are still at word/phrase
level and are based on the noisy context. In the
worst case, the time complexity of ILP can reach
exponent. In contrast, our system corrects gram-
mar errors at tree level directly, and the decoding
is finished with polynomial time complexity.

6 Conclusion and Future work

In this paper we describe our grammar error cor-
rection system which corrects errors at tree level
directly. We propose a TreeNode Language Model
and use it in the general module to correct errors
related to verbs and nouns. The TNLM is easy to
train and the decoding of corrected sentence is ef-
ficient. In the special module, two extra classifica-
tion models are trained to correct errors related to
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determiners and prepositions at tree level directly.
Because our current method depends on an auto-
matically parsed corpus, future work may include
applying some additional filtering (e.g. Mejer and
Crammer (2012)) of the extended training set ac-
cording to some confidence measure of parsing ac-
curacy.
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Abstract

Most existing systems for subcategoriza-
tion frame (SCF) acquisition rely on su-
pervised parsing and infer SCF distribu-
tions at type, rather than instance level.
These systems suffer from poor portability
across domains and their benefit for NLP
tasks that involve sentence-level process-
ing is limited. We propose a new unsuper-
vised, Markov Random Field-based model
for SCF acquisition which is designed
to address these problems. The system
relies on supervised POS tagging rather
than parsing, and is capable of learning
SCFs at instance level. We perform eval-
uation against gold standard data which
shows that our system outperforms several
supervised and type-level SCF baselines.
We also conduct task-based evaluation in
the context of verb similarity prediction,
demonstrating that a vector space model
based on our SCFs substantially outper-
forms a lexical model and a model based
on a supervised parser 1.

1 Introduction

Subcategorization frame (SCF) acquisition in-
volves identifying the arguments of a predicate
and generalizing about its syntactic frames,
where each frame specifies the syntactic type and
number of arguments permitted by the predicate.
For example, in sentences (1)-(3) the verb distin-
guish takes three different frames, the difference
between which is not evident when considering
the phrase structure categorization:
(1) Direct Transitive: [They]NP [distin-
guished]VP [the mast]NP [of [ships on the
horizon ]NP ]PP .

1The verb similarity dataset used for the evaluation of our
model is publicly available at ie.technion.ac.il/∼roiri/.

(2) Indirect Transitive: [They]NP [distin-
guished]VP [between [me and you]ADVP ]PP .
(3) Ditransitive: [They]NP [distinguished]VP
[him]NP [from [the other boys]NP ]PP.

As SCFs describe the syntactic realization of
the verbal predicate-argument structure, they are
highly valuable for a variety of NLP tasks. For
example, verb subcategorization information has
proven useful for tasks such as parsing (Carroll
and Fang, 2004; Arun and Keller, 2005; Cholakov
and van Noord, 2010), semantic role labeling
(Bharati et al., 2005; Moschitti and Basili, 2005),
verb clustering, (Schulte im Walde, 2006; Sun
and Korhonen, 2011) and machine translation (hye
Han et al., 2000; Hajič et al., 2002; Weller et al.,
2013).

SCF induction is challenging. The argument-
adjunct distinction is difficult even for humans,
and is further complicated by the fact that both ar-
guments and adjuncts can appear frequently in po-
tential argument head positions (Korhonen et al.,
2000). SCFs are also highly sensitive to domain
variation so that both the frames themselves and
their probabilities vary depending on the meaning
and behavior of predicates in the domain in ques-
tion (e.g. (Roland and Jurafsky, 1998; Lippincott
et al., 2010; Rimell et al., 2013), Section 4).

Because of the strong impact of domain vari-
ation, SCF information is best acquired automat-
ically. Existing data-driven SCF induction sys-
tems, however, do not port well between do-
mains. Most existing systems rely on hand-
written rules (Briscoe and Carroll, 1997; Korho-
nen, 2002; Preiss et al., 2007) or simple co-
occurrence statistics (O’Donovan et al., 2005;
Chesley and Salmon-Alt, 2006; Ienco et al., 2008;
Messiant et al., 2008; Lenci et al., 2008; Al-
tamirano and Alonso i Alemany, 2010; Kawa-
hara and Kurohashi, 2010) applied to the gram-
matical dependency output of supervised statisti-
cal parsers. Even the handful of recent systems
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that use modern machine learning techniques (De-
bowski, 2009; Lippincott et al., 2012; Van de
Cruys et al., 2012; Reichart and Korhonen, 2013)
use supervised parsers to pre-process the data2.

Supervised parsers are notoriously sensitive to
domain variation (Lease and Charniak, 2005). As
annotation of data for each new domain is un-
realistic, current SCF systems suffer from poor
portability. This problem is compounded for
the many systems that employ manually devel-
oped SCF rules because rules are inherently ig-
norant to domain-specific preferences. The few
SCF studies that focused on specific domains (e.g.
biomedicine) have reported poor performance due
to these reasons (Rimell et al., 2013).

Another limitation of most current SCF systems
is that they produce a type-level SCF lexicon (i.e.
a lexicon which lists, for a given predicate, dif-
ferent SCF types with their relative frequencies).
Such a lexicon provides a useful high-level pro-
file of the syntactic behavior of the predicate in
question, but is less useful for downstream NLP
tasks (e.g. information extraction, parsing, ma-
chine translation) that involve sentence processing
and can therefore benefit from SCF information
at instance level. Sentences (1)-(3) demonstrate
this limitation - a prior distribution over the pos-
sible syntactic frames of distinguish provides only
a weak signal to a sentence level NLP application
that needs to infer the verbal argument structure of
its input sentences.

We propose a new unsupervised model for SCF
induction which addresses these problems with
existing systems. Our model does not use a parser
or hand-written rules, only a part-of-speech (POS)
tagger is utilizes in order to produce features for
machine learning. While POS taggers are also
sensitive to domain variation, they can be adapted
to domains more easily than parsers because they
require much smaller amounts of annotated data
(Lease and Charniak, 2005; Ringger et al., 2007).
However, as we demonstrate in our experiments,
domain adaptation of POS tagging may not even
be necessary to obtain good results on the SCF ac-
quisition task.

Our model, based on the Markov Random Field
(MRF) framework, performs instance-based SCF
learning. It encodes syntactic similarities among
verb instances across different verb types (derived

2(Lippincott et al., 2012) does not use a parser, but the
syntactic frames induced by the system do not capture sets of
arguments for verbs, so are not SCFs in a traditional sense.

from a lexical and POS-based feature representa-
tion of verb instances) as well as prior beliefs on
the tendencies of specific instances of the same
verb type to take the same SCF.

We evaluate our model against corpora anno-
tated with verb instance SCFs (Quochi et al.,
2012). In addition, following the Levin verb
clustering tradition (Levin, 1993) which ties verb
meanings with their syntactic properties, we eval-
uate the semantic predictive power of our clusters.
In the former evaluation, our model outperforms a
number of strong baselines, including supervised
and type-level ones, achieving an accuracy of up
to 69.2%. In the latter evaluation a vector space
model that utilized our induced SCFs substantially
outperforms the output of a type-level SCF system
that uses the fully trained Stanford parser.

2 Previous Work

Several SCF acquisition systems are available for
English (O’Donovan et al., 2005; Preiss et al.,
2007; Lippincott et al., 2012; Van de Cruys et
al., 2012; Reichart and Korhonen, 2013) and other
languages, including French (Messiant, 2008),
Italian (Lenci et al., 2008), Turkish (Uzun et al.,
2008), Japanese (Kawahara and Kurohashi, 2010)
and Chinese (Han et al., 2008). The promi-
nent input to these systems are grammatical re-
lations (GRs) which express binary dependen-
cies between words (e.g. direct and indirect ob-
jects, various types of complements and conjunc-
tions). These are generated by some parsers (e.g.
(Briscoe et al., 2006)) and can be extracted from
the output of others (De-Marneffe et al., 2006).

Two representative systems for English are the
Cambridge system (Preiss et al., 2007) and the
BioLexicon system which was used to acquire a
substantial lexicon for biomedicine (Venturi et al.,
2009). These systems extract GRs at the verb in-
stance level from the output of a parser: the RASP
general-language unlexicalized parser3 (Briscoe et
al., 2006) and the lexicalized Enju parser tuned to
the biomedical domain (Miyao and Tsujii, 2005),
respectively. They generate potential SCFs by
mapping GRs to a predefined SCF inventory us-
ing a set of manually developed rules (the Cam-
bridge system) or by simply considering the sets
of GRs including verbs in question as potential
SCFs (BioLexicon). Finally, a type level lexicon

3A so-called unlexicalized parser is a parser trained with-
out explicit SCF annotations.
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is built through noisy frame filtering (based on
frequencies or on external resources and annota-
tions), which aims to remove errors from parsing
and argument-adjunct distinction. Clearly, these
systems require extensive manual work: a-priori
definition of an SCF inventory and rules, manu-
ally annotated sentences for training a supervised
parser, SCF annotations for parser lexicalization,
and manually developed resources for optimal fil-
tering.

A number of recent works have applied mod-
ern machine learning techniques to SCF induc-
tion, including point-wise co-occurrence of ar-
guments (Debowski, 2009), a Bayesian network
model (Lippincott et al., 2012), multi-way tensor
factorization (Van de Cruys et al., 2012) and De-
terminantal Point Processes (DPPs) -based clus-
tering (Reichart and Korhonen, 2013). However,
all of these systems induce type-level SCF lexi-
cons and, except from the system of (Lippincott et
al., 2012) that is not capable of learning traditional
SCFs, they all rely on supervised parsers.

Our new system differs from previous ones in
a number of respects. First, in contrast to most
previous systems, our system provides SCF anal-
ysis for each verb instance in its sentential con-
text, yielding more precise SCF information for
systems benefiting from instance-based analysis.
Secondly, it addresses SCF induction as an unsu-
pervised clustering problem, avoiding the use of
supervised parsing or any of the sources of man-
ual supervision used in previous works. Our sys-
tem relies on POS tags - however, we show that it
is not necessary to train a tagger with in-domain
data to obtain good performance on this task, and
therefore our approach provides a more domain-
independent solution to SCF acquisition.

We employ POS-tagging instead of unsuper-
vised parsing for two main reasons. First, while
a major progress has been made on unsupervised
parsing (e.g. (Cohen and Smith, 2009; Berg-
Kirkpatrick et al., 2010)), the performance is still
considerably behind that of supervised parsing.
For example, the state-of-the-art discriminative
model of (Berg-Kirkpatrick et al., 2010) achieves
only 63% directed arc accuracy for WSJ sentences
of up to 10 words, compared to more than 95%
obtained with supervised parsers. Second, current
unsupervised parsers produce unlabeled structures
which are substantially less useful for SCF acqui-
sition than labeled structures produced by super-

vised parsers (e.g. grammatical relations).
Finally, a number of recent works addressed re-

lated tasks such as argument role clustering for
SRL (Lang and Lapata, 2011a; Lang and Lapata,
2011b; Titvo and Klementiev, 2012) in an unsu-
pervised manner. While these works differ from
ours in the task (clustering arguments rather than
verbs) and the level of supervision (applying a su-
pervised parser), like us they analyze the verb ar-
gument structure at the instance level.

3 Model

We address SCF induction as an unsupervised
verb instance clustering problem. Given a set of
plain sentences, our algorithm aims to cluster the
verb instances in its input into syntactic clusters
that strongly correlate with SCFs. In this sec-
tion we introduce a Markov Random Field (MRF)
model for this task: Section 3.1 describes our
model’s structure, components and objective; Sec-
tion 3.2 describes the model potentials and the
knowledge they encode; and Section 3.3 describes
how clusters are induced from the model.

3.1 Model Structure

We implement our model in the MRF framework
(Koller and Friedman, 2009). This enables us to
encode the two main sources of information that
govern SCF selection in verb instances: (1) At
the sentential context, the verbal syntactic frame
is encoded through syntactic features. Verb in-
stances with similar feature representations should
therefore take the same syntactic frame; and (2)
At the global context, per verb type SCF distribu-
tions tend to be Zipfian (Korhonen et al., 2000).
Instances of the same verb type should therefore
be biased to take the same syntactic frame.

Given a collection of plain input sentences, we
denote the number of verb instances in the col-
lection with n, and the number of data-dependent
equivalence classes (ECs) with K (see below for
their definition), and define an undirected graphi-
cal model (MRF), G = (V,E, L). We define the
vertex set as V = X ∪C, with X = {x1, . . . , xn}
consisting of one vertex for every verb instance in
the input collection, and C = {c1 . . . cK} consist-
ing of one vertex for each data-dependent EC. The
set of labels used by the model, L, corresponds to
the syntactic frames taken by the verbs in the in-
put data. The edge set E is defined through the
model’s potentials that are described below.
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We encode information in the model through
three main sets of potentials: one set of single-
ton potentials - defined over individual model ver-
texes, and two sets of pairwise potentials - defined
between pairs of vertexes. The first set consists of
a singleton potential for each vertex in the model.
Reflecting the Zipfian distribution of SCFs across
the instances of the same verb type, these poten-
tials encourage the model to assign such verb in-
stances to the same frame (cluster). The infor-
mation encoded in these potentials is induced via
a pre-processing clustering step. The second set
consists of a pairwise potential for each pair of ver-
texes xi, xj ∈ X - that is, for each verb instance
pair in the input, across verb types. These poten-
tials encode the belief, computed as feature-based
similarity (see below), that their verb instance ar-
guments implement the same SCF.

Finally, potentials from the last set bias the
model to assign the same SCF to high cardinal-
ity sets of cross-type verb instances based on their
syntactic context. While these are pairwise poten-
tials defined between verb instance vertexes (X)
and EC vertexes (C), they are designed so that
they bias the assignment of all verb instance ver-
texes that are connected to the same EC vertex to-
wards the same frame assignment (l ∈ L). The
two types of pairwise potentials complement each
other by modeling syntactic similarities among
verb instance pairs, as well as among higher cardi-
nality verb instance sets.

The resulted maximum aposteriori problem
(MAP) takes the following form:

MAP (V ) = arg max
x,c∈V

n∑
i=1

θi(xi) +

n∑
i=1

n∑
j=1

θi,j(xi, xj)+

n∑
i=1

K∑
j=1

φi,j(xi, cj) · I(xi ∈ ECj) +

K∑
i=1

K∑
j=1

ξi,j(ci, cj)

where the predicate I(xi ∈ ECj) returns 1 if
the i-th verb instance belongs the j-th equivalence
class and 0 otherwise. The ξ pairwise potentials
defined between EC vertexes are very simple po-
tentials designed to promise different assignments
for each pair of EC vertexes. They do so by assign-
ing a −∞ score to assignments where their argu-
ment vertexes take the same frame and a 0 other-
wise. In the rest of this section we do not get back
to this simple set of potentials.

A graphical illustration of the model is given
in Figure 1. Note that we could have selected a
richer model structure, for example, by defining

a similarity potential over all verb instance ver-
texes that share an equivalence class. However, as
the figure demonstrates, even the structure of the
pruned version of our model (see Section 3.3) usu-
ally contains cycles, which makes inference NP-
hard (Shimony, 1994). Our design choices aim to
balance between the expressivity of the model and
the complexity of inference. In Section 3.3 we de-
scribe the LP relaxation algorithm we use for in-
ference.

C1 C2

Figure 1: A graphical illustration of our model
(after pruning, see Sec. 3.3) for twenty verb in-
stances (|X| = 20), each represented with a black
vertex, and two equivalence classes (ECs), each
represented with a gray vertex (|C| = 2). Solid
lines represent edges (and θi,j pairwise potentials)
between verb instance vertexes. Dashed lines rep-
resent edges between verb instance vertexes and
EC vertexes (φi,j pairwise potentials) or between
EC vertexes (ξi,j pairwise potentials) .

3.2 Potentials and Encoded Knowledge
Pairwise Syntactic Similarity Potentials. The
pairwise syntactic similarity potentials are defined
for each pair of verb instance vertexes, xi, xj ∈ X .
They are designed to encourage the model to as-
sign verb instances with similar fine-grained fea-
ture representations to the same frame (l ∈ L)
and verb instances with dissimilar representations
to different frames. For this aim, for every verb
pair i, j with feature representation vectors vi, vj
and verb instance vertexes xi, xj ∈ X , we define
the following potential function:

θi,j(xi = l1, xj = l2) =

{
λ(vi, vj) if l1 = l2
0 otherwise

}
Where l1, l2 ∈ L are label pairs and λ is a verb

instance similarity function. Below we describe
the feature representation and the λ function.

The verb instance feature representation is de-
fined through the following process. For each
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word instance in the input sentences we first build
a basic feature representation (see below). Then,
for each verb instance we construct a final fea-
ture representation defined to be the concatena-
tion of that verb’s basic feature representation with
the basic representations of the words in a size
2 window around the represented verb. The fi-
nal feature representation for the i-th verb in-
stance in our dataset is therefore defined to be
vi = [w−2, w−1, vbi, w+1, w+2], where w−k and
w+k are the basic feature representations of the
words in distance −k or +k from the i-th verb in-
stance in its sentence, and vbi is the basic feature
representation of that verb instance.

Our basic feature representation is inspired
from the feature representation of the MST parser
(McDonald et al., 2005) except that in the parser
the features represent a directed edge in the com-
plete directed graph defined over the words in a
sentence that is to be parsed, while our features are
generated for word n-grams. Particularly, our fea-
ture set is a concatenation of two sets derived from
the MST set described in Table 1 of (McDonald et
al., 2005) in the following way: (1) In both sets the
parent word in the parser’s set is replaced with the
represented word; (2) In one set every child word
in the parser’s set is replaced by the word to the
left of the represented word and in the other set it
is replaced by the word to its right. This choice of
features allows us to take advantage of a provably
useful syntactic feature representation without the
application of any parse tree annotation or parser.

We compute the similarity between the syntac-
tic environments of two verb instances, i, j, using
the following equation:

λ(vi, vj) = W · cos(vi, vj)− S
Where W is a hyperparameter designed to bias
verb instances of the same verb type towards the
same frame. Practically, W was tuned to be 3 for
instances of the same type, and 1 otherwise 4.

While the cosine function is the standard mea-
sure of similarity between two vectors, its val-
ues are in the [0, 1] range. In the MRF modeling
framework, however, we must encode a negative
pairwise potential value between two vertexes in
order to encourage the model to assign different
labels (frames) to them. We therefore added the
positive hyperparameter S which was tuned, with-

4All hyperparameters that require gold-standard annota-
tion for tuning, were tuned using held-out data (Section 4).

out access to gold standard manual annotations, so
that there is an even number of negative and pos-
itive pairwise syntactic similarity potentials after
the model is pruned (see Section 3.3) 5.

Type Level Singleton Potentials. The goal of
these potentials is to bias verb instances of the
same type to be assigned to the same syntactic
frame while still keeping the instance based nature
of our algorithm. For this aim, we applied Algo-
rithm 1 for pre-clustering of the verb instances and
encoded the induced clusters into the local poten-
tials of the corresponding x ∈ X vertexes. For
every x ∈ X the singleton potential is therefore
defined to be:

θi(xi = l) =

{
F ·maxλ if l is induced by Algorithm 1
0 otherwise

}

where maxλ is the maximum λ score across all
verb instance pairs in the model and F = 0.2 is a
hyperparamter.

Algorithm 1 has two hyperparameters: T and
M , the first is a similarity cut-off value used to de-
termine the initial set of clusters, while the second
is used to determine whether two clusters are simi-
lar enough to be merged. We tuned these hyperpa-
rameters, without manually annotated data, so that
the number of clusters induced by this algorithm
will be equal to the number of gold standard SCFs.
T was tuned so that the first part of the algorithm
generates an excessive number of clusters, and M
was then tuned so that these clusters are merged to
the desired number of clusters.

The λ function, used to measure the similar-
ity between two verbs, is designed to bias the in-
stances of the same verb type to have a higher sim-
ilarity score. Algorithm 1 therefore tends to assign
such instances to the same cluster. In our experi-
ments that was always the case for this algorithm.

High Cardinality Verb Sets Potentials. This
set of potentials aims to bias larger sets of verb
instances to share the same SCF. It is inspired by
(Rush et al., 2012) who demonstrated, that syn-
tactic structures that appear at the same syntac-
tic context, in terms of the surrounding POS tags,
tend to manifest similar syntactic behavior. While
they demonstrated the usefulness of their method
for dependency parsing and POS tagging, we im-
plement it for higher level SCFs.

We identified syntactic contexts that imply simi-
lar SCFs for verb instances appearing inside them.

5The values in practice are S = 0.43 for labour legislation
and S = 0.38 for environment.
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Algorithm 1 Verb instance pre-clustering algo-
rithm. λ̂ is the average λ score between the mem-
bers of its cluster arguments. T and M are hyper-
parametes tuned without access to gold standard
data.
Require: K = ∅

for all x ∈ X do
for all k ∈ K do

for all u ∈ k do
if λ(vx, vu) > T then
k = k ∪ {x}
Go to next x

end if
end for

end for
k1 = {x}
K = K ∪ k1

end for
for all k1, k2 ∈ K: k1 6= k2 do

if λ̂(k1, k2) > M then
Merge (k1, k2)

end if
end for

Contexts are characterized by the coarse POS tag
to the left and to the right of the verb instance.
While the number of context sets is bounded only
by the number of frames our model is designed
to induce, in practice we found that defining two
equivalence sets led to the best performance gain,
and the sets we used are presented in Table 1.

In order to encode this information into our
MRF, each set of syntactic contexts is associated
with an equivalence class (EC) vertex c ∈ C and
the verb instance vertexes of all verbs that appear
in a context from that set are connected with an
edge to c. The pairwise potential between a vertex
x ∈ X and its equivalence class is defined to be:

φi,j(xi = l1, cj = l2) =
{
U if l1 = l2
0 otherwise

}
U = 10 is a hyperparameter that strongly biases x
vertexes to get the same SCF as their EC vertex.

3.3 Verb Cluster Induction

In this section we describe how we induce verb
instance clusters from our model. This process
is based on the following three steps: (1) Graph
pruning; (2) Induction of an Ensemble of approx-
imate MAP inference solutions in the resulted
graphical model; and, (3) Induction of a final clus-
tering solution based on the ensemble created at
step 2. Below we explain the necessity of each of
these steps and provide the algorithmic details.

EC-1 EC-2
Left Right Left Right
, D V T
N D R T
V . N D
R D R N

Table 1: POS contexts indicative for the syntactic
frame of the verb instance they surround. D: de-
terminer, N: noun, V: verb, T: the preposition ’to’
(which has its own POS tag in the WSJ POS tag set
which we use), R: adverb. EC-1 and EC-2 stand
for the first and second equivalence class respec-
tively. In addition, the following contexts where
associated with both ECs: (T,D), (T,N), (N,N)
and (V, I) where I stands for a preposition.

Graph Pruning. The edge set of our model
consists of an edge for every pair of verb in-
stance vertexes and of the edges that connect verb
instance vertexes and equivalence class vertexes.
This results in a large tree-width graph which sub-
stantially complicates MRF inference. To alleviate
this we prune all edges with a positive score lower
than p+ and all edges with a negative score higher
than p−, where p+ and p− are manually tuned hy-
perparametes 6.

MAP Inference. For most reasonable values of
p+ and p− our graph still contains cycles even af-
ter it is pruned, which makes inference NP-hard
(Shimony, 1994). Yet, thanks to our choice of an
edge-factorized model, there are various approxi-
mate inference algorithms suitable for our case.

We applied the message passing algorithm for
linear-programming (LP) relaxation of the MAP
assignment (MPLP, (Sontag et al., 2008)). LP re-
laxation algorithms for the MAP problem define
an upper bound on the original objective which
takes the form of a linear program. Consequently,
a minimum of this upper bound can be found us-
ing standard LP solvers or, more efficiently, using
specialized message passing algorithms (Yanover
et al., 2006). The MPLP algorithm described in
(Sontag et al., 2008) is appealing in that it itera-
tively computes tighter upper bounds on the MAP
objective (for details see their paper).

Cluster Ensemble Generation and a Final
Solution. As our MAP objective is non-convex,

6The values used in practice are p+ = 0.28, p− = −0.17
for the labour legislation dataset, and p+ = 0.25, p− =
−0.20 for the environment set.
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the convergent point of an optimization algorithm
applied to it is highly sensitive to its initializa-
tion. To avoid convergence to arbitrary local max-
ima which may be of poor quality, we turn to a
perturbation protocol where we repeatedly intro-
duce random noise to the MRF’s potential func-
tions and then compute the approximate MAP so-
lution of the resulted model using the MPLP algo-
rithm. Noising was done by adding an ε term to
the lambda values described in section 3.2 7. This
protocol results in a set of cluster (label) assign-
ments for the involved verb instances, which we
treat as an ensemble of experts from which a final,
high quality, solution is to be induced.

The basic idea in ensemble learning is that if
several experts independently cluster together two
verb instances, our belief that these verbs belong
in the same cluster should increase. (Reichart et
al., 2012) implemented this idea through the k-
way normalized cut clustering algorithm (Yu and
Shi, 2003). Its input is an undirected graph Ĝ =
(V̂ , Ê, Ŵ ) where V̂ is the set of vertexes, Ê is
the set of edges and Ŵ is a non-negative and sym-
metric edge weight matrix. To apply this model
to our task, we construct the input graph Ĝ from
the labelings (frame assignments) contained in the
ensemble. The graph vertexes V̂ correspond to the
verb instances and the (i, j)-th entry of the matrix
Ŵ is the number of ensemble members that assign
the same label to the i-th and j-th verb instances.

For A,B ⊆ V̂ define:

links(A,B) =
∑

i∈A,j∈B
Ŵ (i, j)

Using this definition, the normalized link ratio
of A and B is defined to be:

NormLinkRatio(A,B) =
links(A,B)
links(A, V̂ )

The k-way normalized cut problem is to mini-
mize the links that leave a cluster relative to the
total weight of the cluster. Denote the set of clus-
terings of V̂ that consist of k clusters by Ĉ =
{ĉ1, . . . ĉt} and the j-th cluster of the i-th cluster-

7ε was accepted by first sampling a number in the [0, 1]
range using the Java psuodorandom generator and then scal-
ing it to 1% of cos(vi, vj). This value was tuned, without
access to gold standard manual annotations, so that there is
an even number of negative and positive pairwise syntactic
similarity potentials after the model is pruned (Section 3.3).

ing by ĉij . Then

c∗ = argmin
ĉi∈Ĉ

k∑
j=1

NormLinkRatio(ĉij , V̂ − ĉij)

The algorithm of (Yu and Shi, 2003) solves this
problem very efficiently as it avoids the heavy
eigenvalues and eigenvectors computations re-
quired by traditional approaches.

4 Experiments and Results

Our model is unique compared to existing systems
in two respects. First, it does not utilize supervi-
sion in the form of either a supervised syntactic
parser and/or manually crafted SCF rules. Conse-
quently, it induces unnamed frames (clusters) that
are not directly comparable to the named frames
induced by previous systems. Second, it induces
syntactic frames at the verb instance, rather than
type, level. Evaluation, and especially comparison
to previous work, is therefore challenging.

We therefore evaluate our system in two ways.
First, we compare its output, as well as the output
of a number of clustering baselines, to the gold
standard annotation of corpora from two differ-
ent domains (the only publicly available ones with
instance level SCF annotation, to the best of our
knowledge). Second, in order to compare the out-
put of our system to a rule-based SCF system that
utilizes a supervised syntactic parser, we turn to
a task-based evaluation. We aim to predict the
degree of similarity between verb pairs and, fol-
lowing (Pado and Lapata, 2007) , we do so using
a syntactic-based vector space model (VSM). We
construct three VSMs - (a) one that derives fea-
tures from our clusters; (b) one whose features
come from the output of a state-of-the-art verb
type level, rule based, SCF system (Reichart and
Korhonen, 2013) that uses a modern parser (Klein
and Manning, 2003); and (c) a standard lexical
VSM. Below we show that our system compares
favorably in both evaluations.

Data. We experimented with two datasets taken
from different domains: labor legislation and en-
vironment (Quochi et al., 2012). These datasets
were created through web crawling followed by
domain filtering. Each sentence in both datasets
may contain multiple verbs but only one target
verb has been manually annotated with a SCF.
The labour legislation domain dataset contains
4415 annotated verb instances (and hence also
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sentences) of 117 types, and the environmental
domain dataset contains 4503 annotated verb in-
stances of 116 types. In both datasets no verb type
accounts for more than 4% of the instances and
only up to 35 verb types account for 1% of the
instances or more. The lexical difference between
the corpora is substantial: they share only 42 anno-
tated verb types in total, of which only 2 verb types
(responsible for 4.1% and 5.2% of the instances in
the environment and labor legislation domains re-
spectively) belong to the 20 most frequent types
(responsible for 37.9% and 46.85% of the verb in-
stances in the respective domains) of each corpus.

The 29 members of the SCF inventory are de-
tailed in (Quochi et al., 2012). Table 2, presenting
the distribution of the 5 highest frequency frames
in each corpus, demonstrates that, in addition to
the significant lexical difference, the corpora differ
to some extent in their syntactic properties. This is
reflected by the substantially different frequencies
of the ”dobj:iobj-prep:su” and ”dobj:su” frames.

As a pre-processing step we first POS tagged
the datasets with the Stanford tagger (Toutanova
et al., 2003) trained on the standard POS training
sections of the WSJ PennTreebank corpus.

4.1 Evaluation Against SCF Gold Standard

Experimental Protocol The computational com-
plexity of our algorithm does not allow us to run it
on thousands of verb instances in a feasible time.
We therefore repeatedly sampled 5% of the sen-
tences from each dataset, ran our algorithm as well
as the baselines (see below) and report the average
performance of each method. The number of rep-
etitions was 40 and samples were drawn from a
uniform distribution while still promising that the
distribution of gold standard SCFs in each sam-
ple is identical to their distribution in the entire
dataset. Before running this protocol, 5% of each
corpus was kept as held-out data on which hyper-
parameter tuning was performed.

Evaluation Measures and Baselines. We com-
pare our system’s output to instance-level gold
standard annotation. We use standard measures
for clustering evaluation, one measure from each
of the two leading measure types: the V measure
(Rosenberg and Hirschberg, 2007), which is an in-
formation theoretic measure, and greedy many-to-
one accuracy, which is a mapping-based measure.
For the latter, each induced cluster is first mapped
to the gold SCF frame that annotates the highest

number of verb instances this induced cluster also
annotates and then a standard instance-level accu-
racy score is computed (see, e.g., (Reichart and
Rappoport, 2009)). Both measures scale from 100
(perfect match with gold standard) to 0 (no match).

As mentioned above, comparing the perfor-
mance of our system with respect to a gold stan-
dard to the performance of previous type-level
systems that used hand-crafted rules and/or su-
pervised syntactic parsers would be challenging.
We therefore compare our model to the follow-
ing baselines: (a) The most frequent class (MFC)
baseline which assigns all verb instances with the
SCF that is the most frequent one in the gold stan-
dard annotation of the data; (b) The Random base-
line which simply assigns every verb instance with
a randomly selected SCF; (c) Algorithm 1 of sec-
tion 3.2 which generates unsupervised verb in-
stance clustering such that verb instances of the
same type are assigned to the same cluster; and
(d) Finally, we also compare our model against
versions where everything is kept fixed, except a
subset of potentials which is omitted. This enables
us to study the intricacies of our model and the rel-
ative importance of its components. For all mod-
els, the number of induced clusters is equal to the
number of SCFs in the gold standard.

Results Table 3 presents the results, demon-
strating that our full model substantially outper-
forms all baselines. For the first two simple heuris-
tic baselines (MFC and Random) the margin is
higher than 20% for both the greedy M-1 mapping
measure and the V measure. Note tat the V score
of the MFC baseline is 0 by definition, as it as-
signs all items to the same cluster. The poor per-
formance of these simple baselines is an indication
of the difficulty of our task.

Recall that the type level clustering induced by
Algorithm 1 is the main source of type level in-
formation our model utilizes (through its single-
ton potentials). The comparison to the output of
this algorithm (the Type Pre-clustering baseline)
therefore shows the quality of the instance level
refinement our model provides. As seen in table 3,
our model outperforms this baseline by 6.9% for
the M-1 measure and 5.2% for the V measure.

In order to compare our model to its compo-
nents we exclude either the EC potentials (φ and
ξ) only (Model - EC), or the EC and the singleton
potentials (θi, Model - EC - Type pre-clustering).
The results show that our model gains much more
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Environment Labour Legislation
SCF Frequency SCF Frequency
dobj:su 46% dobj:su 39%
su 9% dobj:iobj-prep:su 15%
iobj-prep:su 8% su 10%
dobj:iobj-prep:su 6% su:xcompto-vbare 8%
su:xcompto-vbare 6% iobj-prep:su 7%

Table 2: Top 5 most frequent SCFs for the Environment and Labour Legislation datasets used in our
experiments.

Environment Labour Legislation
M-1 V M-1 V

Full Model 66.4 57.3 69.2 55.6
Baselines
MFC 46.2 0 39.4 0
Random 34.6 28.1 36.5 27.8
Type Pre-clustering 60.1 52.1 62.3 51.4
Model Components
Model - EC 64.9 56.2 67.4 54.6
Model - EC - Type pre-clustering 48.3 48.9 45.7 44.7

Table 3: Results for our full model, the baselines (Type Pre-clustering: the pre-clustering algorithm
(Algorithm 1 of section 3.2), MFC: the most frequent class (SCF) in the gold standard annotation and
Random: random SCF assignment) and the model components. The full model outperforms all other
models across measures and datasets.

from the type level information encoded through
the singleton potentials than from the EC poten-
tials. Yet, EC potentials do lead to an improvement
of up to 1.5% in M-1 and up to 1.1% in V and are
therefore responsible for up to 26.1% and 21.2%
of the improvement over the type pre-clustering
baseline in terms of M-1 and V, respectively.

4.2 Task Based Evaluation
We next evaluate our model in the context of vec-
tor space modeling for verb similarity prediction
(Turney and Pantel, 2010). Since most previous
word similarity works used noun datasets, we con-
structed a new verb pair dataset, following the pro-
tocol used in the collection of the wordSimilarity-
353 dataset (Finkelstein et al., 2002).

Our dataset consists of 143 verb pairs, con-
structed from 122 unique verb lemma types. The
participating verbs appear ≥ 10 times in the con-
catenation of the labour legislation and the envi-
ronment datasets. Only pairs of verbs that were
considered at least remotely similar by human
judges (independent of those that provided the
similarity scores) were included. A similarity
score between 1 and 10 was assigned to each pair

by 10 native English speaking annotators and were
then averaged in order to get a unique pair score.

Our first baseline is a standard VSM based on
lexical collocations. In this model features corre-
spond to the number of collocations inside a size
2 window of the represented verb with each of the
5000 most frequent nouns in the Google n-gram
corpus (Goldberg and Orwant, 2013). Since our
corpora are limited in size, we use the collocation
counts from the Google corpus.

We used our model to generate a vector repre-
sentation of each verb in the following way. We
run the model 5000 times, each time over a set of
verbs consisting of one instance of each of the 122
verb types participating in the verb similarity set.
The output of each such run is transformed to a
binary vector for each participating verb, where
all coordinates are assigned the value of 0, ex-
cept from the one that corresponds to the cluster to
which the verb was assigned which has the value
of 1. The final vector representation is a concate-
nation of the 5000 binary vectors. Note that for
this task we did not use the graph cut algorithm to
generate a final clustering from the multiple MRF
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runs. Instead we concatenated the output of all
these runs into one feature representation that fa-
cilitates similarity prediction. For our model we
estimated the verb pair similarity using the Tani-
mato similarity score for binary vectors:

T (X,Y ) =
∑

iXi ∧ Yi∑
i xi ∨ Yi

For the baseline model, where the features are
collocation counts, we used the standard cosine
similarity.

Our second baseline is identical to our model,
except that: (a) the data is parsed with the Stan-
ford parser (version 3.3.0, (Klein and Manning,
2003)) which was trained with sections 2-21 of the
WSJ corpus; (b) the phrase structure output of the
parser is transformed to the CoNLL dependency
format using the official CoNLL 2007 conversion
script (Johansson and Nugues, 2007); and then (c)
the SCF of each verb instance is inferred using the
rule-based system used by (Reichart and Korho-
nen, 2013). The vector space representation for
each verb is then created using the process we de-
scribed for our model and the same holds for vec-
tor comparison. This baseline allows direct com-
parison of frames induced by our SCF model with
those derived from a supervised parser’s output.

We computed the Pearson correlation between
the scores of each of the models and the human
scores. The results demonstrate the superiority
of our model in predicting verb similarity: the
correlation of our model with the human scores
is 0.642 while the correlation of the lexical col-
location baseline is 0.522 and that of the super-
vised parser baseline is only 0.266. The results
indicate that in addition to their good alignment
with SCFs, our clusters are also highly useful for
verb meaning representation. This is in line with
the verb clustering theory of the Levin tradition
(Levin, 1993) which ties verb meaning with their
syntactic properties. We consider this an intrigu-
ing direction of future work.

5 Conclusions

We presented an MRF-based unsupervised model
for SCF acquisition which produces verb instance
level SCFs as output. As opposed to previous sys-
tems for the task, our model uses only a POS tag-
ger, avoiding the need for a statistical parser or
manually crafted rules. The model is particularly
valuable for NLP tasks benefiting from SCFs that

are applied across text domains, and for the many
tasks that involve sentence-level processing.

Our results show that the accuracy of the model
is promising, both when compared against gold
standard annotations and when evaluated in the
context of a task. In the future we intend to im-
prove our model by encoding additional informa-
tion in it. We will also adapt it to a multilingual
setup, aiming to model a wide range of languages.
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Abstract
PCFGs with latent annotations have been
shown to be a very effective model for phrase
structure parsing. We present a Bayesian
model and algorithms based on a Gibbs sam-
pler for parsing with a grammar with latent an-
notations. For PCFG-LA, we present an ad-
ditional Gibbs sampler algorithm to learn an-
notations from training data, which are parse
trees with coarse (unannotated) symbols. We
show that a Gibbs sampling technique is ca-
pable of parsing sentences in a wide variety
of languages and producing results that are
on-par with or surpass previous approaches.
Our results for Kinyarwanda and Malagasy in
particular demonstrate that low-resource lan-
guage parsing can benefit substantially from a
Bayesian approach.

1 Introduction
Despite great progress over the past two decades on
parsing, relatively little work has considered the prob-
lem of creating accurate parsers for low-resource lan-
guages. Existing work in this area focuses primarily on
approaches that use some form of cross-lingual boot-
strapping to improve performance. For instance, Hwa
et al. (2005) use a parallel Chinese/English corpus and
an English dependency grammar to induce an anno-
tated Chinese corpus in order to train a Chinese de-
pendency grammar. Kuhn (2004b) also considers the
benefits of using multiple languages to induce a mono-
lingual grammar, making use of a measure for data re-
liability in order to weight training data based on confi-
dence of annotation. Bootstrapping approaches such as
these achieve markedly improved results, but they are
dependent on the existence of a parallel bilingual cor-
pus. Very few such corpora are readily available, par-
ticularly for low-resource languages, and creating such
corpora obviously presents a challenge for many practi-
cal applications. Kuhn (2004a) shows some of the diffi-
culty in handling low-resource languages by examining
various tasks using Q’anjob’al as an example. Another
approach is that of Bender et al. (2002), who take a
more linguistically-motivated approach by making use
of linguistic universals to seed newly developed gram-
mars. This substantially reduces the effort by making

it unnecessary to learn the basic parameters of a lan-
guage, but it lacks the robustness of grammars learned
from data.

Recent work on Probabilistic Context-Free Gram-
mars with latent annotations (PCFG-LA) (Matsuzaki et
al., 2005; Petrov et al., 2006) have shown them to be
effective models for syntactic parsing, especially when
less training material is available (Liang et al., 2009;
Shindo et al., 2012). The coarse nonterminal symbols
found in vanilla PCFGs are refined by latent variables;
these latent annotations can model subtypes of gram-
mar symbols that result in better grammars and enable
better estimates of grammar productions. In this pa-
per, we provide a Gibbs sampler for learning PCFG-
LA models and show its effectiveness for parsing low-
resource languages such as Malagasy and Kinyawanda.

Previous PCFG-LA work focuses on the prob-
lem of parameter estimation, including expectation-
maximization (EM) (Matsuzaki et al., 2005; Petrov et
al., 2006), spectral learning (Cohen et al., 2012; Co-
hen et al., 2013), and variational inference (Liang et
al., 2009; Wang and Blunsom, 2013). Regardless of
inference method, previous work has used the same
method to parse new sentences: a Viterbi parse un-
der a new sentence-specific PCFG obtained from an
approximation of the original grammar (Matsuzaki et
al., 2005). Here, we provide an alternative approach to
parsing new sentences: an extension of the Gibbs sam-
pling algorithm of Johnson et al. (2007), which learns
rule probabilities in an unsupervised PCFG.

We use a Gibbs sampler to collect sampled trees
theoretically distributed from the true posterior distri-
bution in order to parse. Priors in a Bayesian model
can control the sparsity of grammars (which the inside-
outside algorithm fails to do), while naturally incorpo-
rating smoothing into the model (Johnson et al., 2007;
Liang et al., 2009). We also build a Bayesian model
for parsing with a treebank, and incorporate informa-
tion from training data as a prior. Moreover, we ex-
tend the Gibbs sampler to learn and parse PCFGs with
latent annotations. Learning the latent annotations is
a compute-intensive process. We show how a small
amount of training data can be used to bootstrap: af-
ter running a large number of sampling iterations on a
small set, the resulting parameters are used to seed a
smaller number of iterations on the full training data.
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This allows us to employ more latent annotations while
maintaining reasonable training times and still making
full use of the available training data.

To determine the cross-linguistic applicability of
these methods, we evaluate on a wide variety of lan-
guages with varying amounts of available training data.
We use English and Chinese as examples of languages
with high data availability, while Italian, Malagasy, and
Kinyarwanda provide examples of languages with little
available data.

We find that our technique comes near state of the
art results on large datasets, such as those for Chinese
and English, and it provides excellent results on limited
datasets – both artificially limited in the case of En-
glish, and naturally limited in the case of Italian, Mala-
gasy, and Kinyarwanda. This, combined with its abil-
ity to run off-the-shelf on new languages without any
supporting materials such as parallel corpora, make it a
valuable technique for the parsing of low-resource lan-
guages.

2 Gibbs sampling for PCFGs

Our starting point is a Gibbs Sampling algorithm for
vanilla PCFGs introduced by Johnson et al. (2007) for
estimating rule probabilities in an unsupervised PCFG.
We focus instead on using this algorithm for parsing
new sentences and then extending it to learn PCFGs
with latent annotations. We begin by summarizing the
Bayesian PCFG and Gibbs sampler defined by Johnson
et al. (2007).

Bayesian PCFG For a grammarG, each rule r in the
set of rules R has an associated probability θr. The
probabilities for all the rules that expand the same non-
terminal A must sum to one:

∑
A→β∈R θA→β = 1.

Given an input corpusw=(w(1), · · · ,w(n)), we in-
troduce a latent variable t=(t(1), · · · , t(n)) for trees
generated by G for each sentence. The joint posterior
distribution of t and θ conditioned on w is:

p(t, θ | w) ∝ p(θ)p(w | t)p(t | θ)
= p(θ)(

∏n

i=1
p(w(i) | t(i))p(t(i) | θ))

= p(θ)(
∏n

i=1
p(w(i) | t(i))

∏
r∈R θ

fr(t(i)

r )) (1)

Here fr(t) is the number of occurrences of rule r in the
derivation of t; p(w(i) | t(i)) = 1 if the yield of t(i) is
the sequence w(i), and 0 otherwise.

We use a Dirichlet distribution parametrized by αA:
Dir(αA) as the prior of the probability distribution for
all rules expanding non-terminal A (p(θA)). The prior
for all θ, p(θ), is the product of all Dirichlet distri-
butions over all non-terminals A ∈ N : p(θ | α) =∏
A∈N p(θA | αA).
Since the Dirichlet distribution is conjugate to the

Multinomial distribution, which we use to model the
likelihood of trees, the conditional posterior of θA can

be updated as follows:

pG(θ | t, α) ∝ pG(t | θ)p(θ | α)

∝ (
∏

r∈R θ
fr(t)
r )(

∏
r∈R θ

αr−1
r )

=
∏

r∈R θ
fr(t)+αr−1
r (2)

which is still a Dirichlet distribution with updated pa-
rameter fr(t) + αr for each rule r ∈ R.

Gibbs sampler The parameters of the PCFG model
can be learned from an annotated corpus by simply
counting rules. However, parsing cannot be done di-
rectly with standard CKY as with standard PCFGs,
so we use the Gibbs sampling algorithm presented in
Johnson et al. (2007). An additional motivation for us-
ing this algorithm is that Johnson et al. use it for learn-
ing without annotated structures, and in future work we
seek to learn from fewer, and at times partial, annota-
tions.

An advantage of using Gibbs sampling for Bayesian
inference, as opposed to other approximation algo-
rithms such as Variational Bayesian inference (VB) and
Collapsed Variational Bayesian inference (CVB), is
that Markov Chain Monte Carlo (MCMC) algorithms
are guaranteed to converge to a sample from the true
posterior under appropriate conditions (Taddy, 2011).
Both VB and CVB converge to inaccurate and locally
optimal solutions, like EM. In some models, CVB can
achieve more accurate results due to weaker assump-
tions (Wang and Blunsom, 2013). Another advantage
of Gibbs sampling is that the sampler allows for parallel
computation by allowing each sentence to be sampled
entirely independently of the others. After each paral-
lel sampling stage, all model parameters are updated in
a single step, and the process then repeats (see §2).

To sample the joint posterior p(t, θ | w), we sample
production probabilities θ and then trees t from these
conditional distributions:

p(t | θ,w, α) =
∏n

i=1
p(ti | wi, θ) (3)

p(θ | t,w, α) =
∏

A∈N Dir(θA | fA(t) + αA) (4)

Step 1: Sample Rule Probabilities. Given trees t and
prior α, the production probabilities θA for each non-
terminal A∈N are sampled from a Dirichlet distribu-
tion with parameters fA(t) + αA. fA(t) is a vector,
and each component of fA(t), is the number of occur-
rences of one rule expanding nonterminal A.
Step 2: Sample Tree Structures. To sample trees from
p(ti | wi, θ), we use the efficient sampling scheme
used in previous work (Goodman, 1998; Finkel et al.,
2006; Johnson et al., 2007). There are two parts to this
algorithm. The first constructs an inside table as in the
Inside-Outside algorithm for PCFGs (Lary and Young,
1990). The second selects the tree by recursively sam-
pling productions from top to bottom.
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Require: A is parent node of binary rule; wi,k is a
span of words: i+ 1 < k
function TREESAMPLER(A, i, k)

for i < j < k and pair of child nodes of
A:B,C do

P (j, B,C) = θA→BC ·pB,i,j ·pC,j,k

· pA,i,k
end for

Sample j∗, B∗, C∗ from multinomial distribution
for (j, B,C) with probabilities calculated above

return j∗, B∗, C∗
end function

Algorithm 1: Sampling split position and rule to ex-
pand parent node

Consider a sentence w, with sub-spans wi,k =
(wi+1, · · · , wk). Given θ, we construct the inside ta-
ble with entries pA,i,k for each nonterminal and each
word span wi,k : 0 ≤ i < k ≤ l, where pA,i,k =
PGA

(wi,k|θ) is the probability that words i through k
were produced by the non-terminal A. The table is
computed recursively by

pA,k−1,k = θA→wk
(5)

pA,i,k =
∑

A→BC∈R

∑
i<j<k

θA→BC · pB,i,j · pC,j,k (6)

for all A,B,C ∈ N and 0 ≤ i < j < k ≤ l.
The resulting inside probabilities are then used to

generate trees from the distribution of all valid trees of
the sentence. The tree is generated from top to bottom
recursively with the function TreeSampler defined in
Algorithm 1.

In unsupervised PCFG learning, the rule probabil-
ities can be resampled using the sampled trees, then
used to reparse the corpus, and so on. We use this
property to refine latent annotations for the PCFG-LA
model described in the next section.

3 PCFG with latent annotations
When labeled trees are available, rule frequencies can
be directly extracted and used as priors for a PCFG.
However, when learning PCFG-LAs, we must learn the
fine-grained rules from the coarse trees, so we extend
the Gibbs sampler to assign latent annotations to unan-
notated trees. The resulting learned PCFG-LA parser
outputs samples of annotated trees so that we can ob-
tain unannotated trees after marginalizing.

3.1 Model
With the PCFG-LA model (Matsuzaki et al., 2005;
Petrov et al., 2006) fine-grained CFG rules are auto-
matically induced from training, effectively providing
a form of feature engineering without human interven-
tion. GivenH = {1, · · · ,K}, a set of latent annotation
symbols, and x ∈ H:

• θA[x]→U is the probability of rule A[x] → U ,
where U ∈ N ×N ∪ T . The probabilities for all

rules that expand the same annotated non-terminal
must sum to one.

• βA[x],B,C→y,z is the probability of assigning la-
tent annotation y, z to child nodes B,C of A[x].∑
y,z∈H×H βA[x],B,C→y,z = 1.

The inputs to the PCFG-LA are a CFG G with finite
number of latent annotations for each non-terminal, an
initial guess of probabilities of grammar rule θ0, and a
prior αθ is learned from training.

The joint posterior distribution of t and θ, β condi-
tioned on w is:

p(t, θ, β | w) ∝ p(θ, β)p(w | t)p(t | θ, β)

= p(θ)p(β)(
∏n

i=1
p(wi | ti)p(ti | θ, β)) (7)

We assume that θ and β are independent to get
P (θ, β) = P (θ)P (β).

To learn parameters θ, β, we use a Dirichlet distribu-
tion as a prior for both θ and β. The distribution for all
rules expanding A[x] is:

P (θ | αθ) =
∏

A∈N,x∈H
P (θA[x] | αθA[x]) (8)

The distribution for latent annotations associated
with child nodes of A[x]→ BC is:

P (β | αβ) =
∏

y,z∈H×H
P (βA[x],B,C | αβA[x],B,C).

(9)

With this setting, the conditional posterior of θA[x]

and βA[x],B,C can be updated, as in §2. For all unary
and binary rules r expanding A[x]:

θA[x] | t, αθ ∼ Dir(fr(t) + αθr) (10)

Here, fr(t) is the number of occurrence of annotated
rule r in t. Also, for combination of latent annotations
y, z ∈ H ×H assigned to B,C in rule A[x]→ B,C:

βA[x],B,C | t, αβ ∼ Dir(fd(t) + αβd ) (11)

Here, fd(t) is the number of occurrences of combina-
tion d in t.

3.2 Learning PCFG-LAs from raw text
To learn from raw text, we extend the sampler in §2
to PCFG-LA. Given priors αθ, αβ and raw text, the al-
gorithm alternates between two steps. The first sam-
ples trees for the entire corpus; the second samples θ
and β from Dirichlet distributions with updated param-
eters, combining priors and counts from sampled trees.
The algorithm then alternates between these steps un-
til convergence. The outputs are samples of θ, β and
annotated trees.

The parsing process is specified in Algorithm 2. The
first step assigns a tree to a sentence, say w0,l. We first
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Require: w1, · · · , wn are raw sentences; θ0, β0 are
initial values; αθ, αβ are priors; M is the number
of iterations
function PARSE(w1, .., wn, θ0, β0, α

θ, αβ ,M )
for iteration i = 1 to M do

for sentence s = 1 to n do
Calculate Inside Table
Sample tree nodes and associated latent

annotations, get tree structure t(i)s
end for
Sample θ(i), β(i)

end for
for sentence s = 1 to n do

Marginalize the latent annotations to get
unannotated trees T (1)

s , · · · , T (M)
s

Find the mode of T (1)
s , · · · , T (M)

s : Ts
end for
return T1, · · · , Tn

end function

Algorithm 2: Parsing new sentences

construct an inside table (see §2). Each entry in the ta-
ble stores the probability that a word span is produced
by a given annotated nonterminal. For root node S,
with θ, β and inside table pA[x],i,k, we sample one an-
notation based on all pS[x],0,l, x ∈ H . Assume that
we sampled x for S, we further sample a rule to ex-
pand S[x] and possible splits of the span w0,l jointly.
Assume that we sampled nonterminals B,C to expand
S[x], where B is responsible for w0,j and C is respon-
sible for wj,l. We further sample annotations for B,C
together, say y, z. Then we sample rules and split po-
sitions to expand B[y] and C[z], and continue until
reaching the terminals.

This algorithm alone could be used for unsupervised
learning of PCFG-LA if we input a non-informed or
weakly-informed prior αθ and αβ . With access to
unannotated trees for training, we only need to assign
latent annotations to them and then use the frequen-
cies of these annotated rules as the prior when parsing.
The details of training when trees are available are il-
lustrated in §3.3.

Once we have trees (with latent annotations), the
step of sampling θ and β from a Dirichlet distribution
is direct. We need to count the number of occurrences
fr(t) for each rule r like A[x] → U,U ∈ N ×N ∪ T
in updated annotated trees t, and draw θA[x] from the
updated Dirichlet distribution Dir(fA[x](t) + αθA[x]).
We also need to count the number of occurrences of
fd(t) for each combination of yz ∈ H×H assigned to
B,C givenA[x]→ B,C in t, and draw βA[x],B,C from
the updated Dirichlet distribution Dir(fA[x],B,C(t) +
αβA[x],B,C) similarly.

To parse a sentence, we first calculate the inside table
and then sample the tree.

Calculate the inside table. Given θ,β and a string

w=w0,l, we construct a table with entries pA[x],i,k for
each A∈N , x ∈ H and 0 ≤ i < k ≤ l, where
pA[x],i,k = PGA[x](wi,k|θ, β) is the probability that
words i through k were produced by the annotated non-
terminal A[x]. The table can be computed recursively,
for all A ∈ N , x ∈ H , by

pA[x],k−1,k = θA[x]→wk
(12)

pA[x],i,k =
∑

A[x]→BC:BC∈N×N

∑
j:i<j<k

∑
yz∈H×H

θA[x]→BCβA[x]BC→yzpB[y],i,jpC[z],j,k (13)

Sample the tree, top to bottom. First, from start sym-
bol S, sample latent annotation from multinomial with
probability πS[x]pS[x],0,l for each x ∈ H . Next, given
annotated non-terminal A[x] and i, k, sample possible
child nodes and split positions from multinomial with
probability:

p(B,C, j) =
1

pA[x],i,k
·∑

y,z∈H
θA[x]→BCβA[x]BC→yzpB[y],i,jpC[z],j,k (14)

Here the probability is calculated by marginaliz-
ing all possible latent annotations for B,C, and
θA[x]→BCβA[x]BC→yz is the probability of choosing
B[y], C[z] to expandA[x], and pB[y],i,jpC[z],j,k are the
probabilities for B[y] and C[z] to be responsible for
word span wi,j and wj,k respectively. And pA[x],i,k is
the normalizing term.

Third, given A[x], B,C, i, j, k, sample annotations
for B,C from multinomial with probability:

p(y, z) =
βA[x]BC→yzpB[y],i,jpC[z],j,k∑
y,z βA[x]BC→yzpB[y],i,jpC[z],j,k

(15)

A crucial aspect of this procedure is that all trees can
be sampled independently. This parallel process pro-
duces a substantial speed gain that is important partic-
ularly when using more latent annotations. After all
trees have been sampled (independently), the counts
from each individual tree are combined prior to the next
sampling iteration.

3.3 Learning from coarse training trees
In training, we need to learn the probabilities of fine-
grained rules given coarsely-labeled trees. We perform
Gibbs sampling on the training data by first iteratively
sampling probabilities and then assigning annotations
to tree nodes. We use the average counts of anno-
tated production rules from sampled trees to produce
the prior αθ and αβ incorporated into parsing raw sen-
tences.

We first index the non-terminal nodes of each tree T
by 1, 2, · · · from top to bottom, and left to right. Then
the sampler iterates between two steps. The first sam-
ples θ, β given annotated trees (as in §3.2). The sec-
ond samples latent annotations for nonterminal nodes
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Require: T1, · · · , Tn are fully parsed trees; θ0, β0

are initial values; αθ0 , αβ0 are priors; M is the
number of iterations
function ANNO(T1, · · · , Tn, θ0, β0, α

θ0 , αβ0 ,M )
for iteration i = 1 to M do

for sentence s = 1 to n do
Calculate inside probability
Sample latent annotations for each node

in the tree, get tree with latent annotations t(i)s
end for
Sample θ(i), β(i)

end for
return Mean of number of occurrences of

production rules and associated latent annotations
from all sampled annotated trees
end function

Algorithm 3: Learning prior from training

in parsed trees, which also takes two steps. The first
step is to, for each node in the tree, calculate and store
the probability that the node is annotated by x. The
second step is to jointly sample latent annotations for
child nodes of root nodes, and then continue this pro-
cess from top to bottom until reaching the pre-terminal
nodes.

Step one: inside probabilities. Given tree T , com-
pute biT [x] for each non-terminal i recursively:

1. If node Ni is a pre-terminal node above terminal
symbol w, then for x∈H

biT [x] = θNi[x]→w (16)

2. Otherwise, let j, k be two child nodes of i, then
for x ∈ H
biT [x] =

∑
y,z∈H

θNi[x]→NjNk
βNi[x]NjNk→y,zb

j
T [y]bkT [z] (17)

Step two: outside sampling. Given inside probabil-
ity biT [x] for every non-terminal i and all latent annota-
tions x∈H , we sample the latent annotations from top
to bottom:

1. If node i is the root node (i = 1), then sample x ∈
H from a multinomial distribution with f iT [x] =
π(Ni[x]).

2. For a parent node with sampled latent annotation
Ni[x] with childrenNj , Nk, sample latent annota-
tions for these two nodes from a multinomial dis-
tribution with

f iT [y, z] =
1

biT [x]
·

θNi[x]→NjNk
βNi[x]NjNk→y,zb

j
T [y]bkT [z] (18)

After training, we take the average counts of sampled
annotated rules and combinations of latent annotations
as priors to parse raw sentences.

4 Experiments1

Our goal is to understand parsing efficacy using sam-
pling and latent annotations for low-resource lan-
guages, so we perform experiments on five languages
with varying amount of training data. We compare
our results to a number of previously established base-
lines. First, for all languages, we use both a stan-
dard unsmoothed PCFG and the Bikel parser, trained
on the training corpus. Additionally, we compare to
state-of-the-art results for both English and Chinese,
which have an existing body of work in PCFGs using
a Bayesian framework. For Chinese, we compare to
Huang & Harper (2009), using their results that only
use the Chinese Treebank (CTB). For English, we com-
pare to Liang et al. (2009). Prior results for parsing
the constituency version of the Italian data are avail-
able from Alicante et al. (2012), but as they make use
of a different version of the treebank including extra
sentences, and additionally use the extensive functional
tags present in the corpus, we do not directly compare
our results to theirs.2

4.1 Data
English (ENG) and Chinese (CHI) are the two main
languages used for this work; they are commonly used
in parser evaluation and have previous examples of sta-
tistical parsers using a Bayesian framework. And since
we primarily are interested in parsing low-resource lan-
guages, we include results for Kinyarwanda (KIN) and
Malagasy (MLG) as examples of languages without
substantial existing treebanks. Finally, as a middle-
ground language, we use Italian (ITL).

For English, we use the Wall-Street Journal section
of the Penn Treebank (WSJ) (Marcus et al., 1993). The
data split is sections 02-21 for training, section 22 for
development, and section 23 for testing. For Chinese,
the Chinese Treebank (CTB5) (Xue et al., 2005) was
used. The data split is files 81-899 for training, files 41-
80 for development, and files 1-40/900-931 for testing.

The ITL data is from the Turin University Treebank
(TUT) (Bosco et al., 2000) and consists of 2,860 Italian
sentences from a variety of domains. It was split into
training, development, and test sets with a 70/15/15
percentage split.

The KIN texts are transcripts of testimonies by sur-
vivors of the Rwandan genocide provided by the Ki-
gali Genocide Memorial Center, along with a few BBC
news articles. The MLG texts are articles from the
websites Lakroa and La Gazette and Malagasy Global
Voices. Both datasets are described in Garrette and
Baldridge (2013). The KIN and MLG data is very
small compared to ENG and CHI: the KIN dataset con-

1Code available at github.com/jmielens/gibbs-pcfg-2014,
along with instructions for replicating experiments when pos-
sible

2As part of a standardized pre-processing step, we strip
functional tags, which makes a direct comparison to their re-
sults inappropriate.

294



tains 677 sentences, while the MLG dataset has only
113. Also, we simulated a small training set for ENG
data by using only section 02 of the WSJ for training.

4.2 Experimental Setup

As a preprocessing step, all trees are converted into
Chomsky Normal-Form such that all non-terminal pro-
ductions are binary and all unary chains are removed.

Additional standard normalization is performed.
Functional tags (e.g. the SBJ part of NP-SBJ), empty
nodes (traces), and indices are removed. Our binariza-
tion is simple: given a parent, select the rightmost child
as the head and add a stand-in node that contains the
remainder of the original children; the process then re-
curses. This simple technique uses no explicit head-
finding rules, which eases cross-linguistic applicability.

From this normalized data, we train latent PCFGs
with K=1,2,4,8,16,32 (where K=1 is equivalent to the
plain PCFG described in section 2).

4.3 Practical refinements

Unknown word handling. We use a similar unknown
word handling procedure to Liang et al. (2009). From
our raw corpus we extract features associated with ev-
ery word, these features include surrounding context
words as well as substring suffix/prefix features. Using
these features we produce fifty clusters using k-means.
Then, as a pre-parsing step, we replace all words oc-
curring less than five times with their cluster label -
this simulates unknown words for training. Finally,
during evaluation, any word not seen in training was
also replaced with its corresponding cluster label. This
final step is simple because there are no ‘unknown un-
knowns’ in our corpus, as the clustering has been per-
formed over the entire corpus prior to training. This
approach is similar to methods for unsupervised POS-
tag induction that also utilize clusters in this manner
(Dasgupta & Ng, 2007).

We compare this unknown word handling method to
one in which the clustering and a classifier is trained
not on the corpus under consideration, but rather on a
separate corpus of unrelated data. This comparison was
made to understand the effects of including the eval-
uation set in the training data (without labels) versus
training on out-of-domain texts. This is a more real-
istic measurement of out-of-the-box performance of a
trained model.

Jump-starting sampling. In the basic setup, train-
ing high K-value models takes a prohibitively long
time, so we also consider a jump-start technique that
allows larger annotation values (such as K=16) to be
run in less time. We train these high-K value models
first on a highly reduced training set (5% of the full
training set) for a large number of iterations, and then
use the found θ values as the starting point for training
on the full training set for a small number of iterations.
Although many of the estimated parameters on the re-
duced set will be zero, the prior allows us to eventually

System K=1 K=2 K=4 K=8 K=16
Unsmoothed PCFG 40.2 — — — —
Bikel Parser 57.9 — — — —
Liang et al. 07 60.5 71.1 77.2 79.2 78.2
Berkeley Parser 60.8 74.4 78.4 79.1 78.7
Gibbs PCFG 61.0 71.3 76.6 78.7 78.0

Table 1: F1 scores for small English training data ex-
periments. ‘K’ is the number of latent annotations –
K=1 represents a vanilla, unannotated PCFG.

recover this information in the full set. This allows us
to train on the full training set, which is desirable rela-
tive to training on a reduced set, while still allowing the
model sufficient iterations to burn in. The fact that we
are likely starting in a fairly good position within the
search space (due to estimating θ from the corpus) also
likely helps enable these lower iteration counts.

5 Results
We start with Tables 1 and 2, which show performance
when training on section 02 of the WSJ (pretending En-
glish is a “low-resource” language). The results show
that the basic Gibbs PCFG (where K=1), with an F-
score of 61.0, substantially outperforms not only an
unsmoothed PCFG (the simplest baseline), but also the
Bikel parser (Bikel, 2004b) trained on the same amount
of data. Table 1 also shows further large gains are
obtained from using latent annotations—from 60.5 for
K=1 to 78.7 for K=8.

The Gibbs PCFG also compares quite favorably to
the PCFG-LA of Liang et al. (2009)—slightly better
for K=1 and K=2 and slightly worse for K=4 and K=8.
Table 2 shows that the Gibbs PCFG is able to produce
results with a smaller amount of variance relative to
the Berkeley Parser, even at low training sizes. This
trend is repeated in Table 3, which shows that the Gibbs
PCFG also produces less variance when training on dif-
ferent single sections of the WSJ relative to the Berke-
ley Parser, although it again produces slightly lower F1
scores.

We also use the small English corpus to determine
the effects of weighting the prior when sampling anno-
tations, varying α between 0.1 and 10.0. Though per-
formance is not sensitive to varying α for larger cor-
pora, Figure 1 shows it can make a substantial differ-
ence for smaller corpora (with an optimal value was
obtained with an α value of 5 for this small training
set). This seems to indicate that the lower counts asso-
ciated with the smaller training sets should be compen-
sated for by weighting those counts more heavily when
processing the evaluation set, as we had anticipated.

System WSJ Sec. 02 KIN MLG
Berkeley Parser 78.3 ± 0.93 60.6 ± 1.1 52.2 ± 2.0
Gibbs PCFG 76.7 ± 0.63 67.2 ± 0.92 57.5 ± 1.1

Table 2: F1 scores with standard deviation over ten runs
of small training data, K=4.
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System F1 / StDev
Berkeley Parser 77.5 ± 2.1
Gibbs PCFG 77.0 ± 1.4

Table 3: F1 scores with standard deviations over twenty
runs, training on individual WSJ sections (02-21).

Figure 1: Accuracy by varying α levels for small En-
glish data.

To evaluate the effectiveness of the jump-start tech-
nique, we ran the full ENG data set with K=4 to com-
pare the results from the full training setup to jump-
starting. For this, we performed 100 training iterations
on the reduced training set (WSJ section 02) and then
used the resulting θ values to seed training on the full
training set. Those training runs varied between three
and nine iterations, and the results are shown in Figure
2. The full ENG K=4 F-score is 86.2, so these results
represent a slight step back. Nonetheless, the technique
is still valuable in that it allows for inferring latent an-
notations for higher K-values than would typically be
available to us in a reasonable timeframe.

Table 4 shows the results for the main experiments.
Sampling a vanilla PCFG (K=1) produces results that
are not state-of-the-art, but still good overall and al-
ways better than an unsmoothed PCFG. The benefits of
the latent annotations are further shown in the increase

Condition ENG CHI ITA KIN MLG
Unsmoothed PCFG 69.9 66.8 62.1 45.9 49.2
Liang et al. 07 87.1 — — — —
Huang & Harper09 — 84.1 — — —
Bikel Parser 86.9 81.1 74.5 55.7 49.5
Berkeley Parser 90.1 83.4 71.6 61.4 51.8
Gibbs PCFG,K=1 79.3 75.4 66.3 58.5 55.1
Gibbs PCFG,K=2 82.6 79.8 69.3 65.0 57.0
Gibbs PCFG,K=4 86.0 82.3 71.9 67.2 57.8
Gibbs PCFG,K=16 87.2 83.2 72.4 68.1 58.2
Gibbs PCFG,K=32 87.4 83.4 71.0 66.8 55.3

Table 4: F1 scores for experiments on sampled PCFGs.
Note that Wang and Blunsom (2013) obtain an ENG F-
score of 77.9% using collapsed VB for K=2. Though
they do not give exact numbers, their Fig. 7 indicates
an F-score of about 87% for K=16.

Figure 2: F-Score for K=4, varying full-set training it-
erations (with and without 100x jump start).

of F1 score in all languages, as compared to the vanilla
PCFG. Experiments were run up to K=32 primarily due
to time constraint. Although previous literature results
report increases up to the equivalent of K=64, it may
be the case that higher K values with no merge step
more easily lead to overfitting in our model – reduc-
ing the effectiveness of those high values, as shown by
the overall poorer performance on several languages at
K=32 when compared to K=16 as well as the general
levelling-off seen at the high K values.

For English and Chinese, the previous Bayesian
framework parsers outperform our own, but only by
around two points. Additionally, our parsing of Chi-
nese improves on the Bikel parser (trained on our train-
ing data) despite the fact that the Bikel parser makes
use of language specific optimizations. Our parser
needs no changes to switch languages.

The Gibbs PCFG with K=16 is superior to the strong
Bikel and Berkeley Parser benchmarks for both KIN
and MLG, a promising result for future work on pars-
ing low-resource languages in general. Note also that
our parser exhibits less variance than Berkeley Parser
especially for KIN and MLG, which supports the fact
that the variance of Berkeley Parser is higher for mod-
els with few subcategories (Petrov et al., 2006).

Examples of the improvement across latent annota-
tions for a given tree are shown in Figure 3. The details
of the noun phrase ‘no major bond offerings’ were the
same for each tree, and are thus abstracted here. The
low K-value tree (K=2) is shown in 3a, and primarily
suffers from issues related to the prepositional phrase,
‘in Europe friday’. In particular, the low K-value tree
incorrectly groups ‘Europe friday’ as a noun phrase ob-
ject of ‘in’.

The higher K-value tree (K=8) is shown in 3b.
This tree manages to correctly analyze the preposi-
tional phrase, accurately separately the temporal loca-
tive ‘Friday’ from the actual prepositional phrase of
‘in Europe’. However, the high K-value tree makes a
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Figure 3: Examples of tree progression in the Gibbs PCFG with a) K=2, b) K=8, and c) gold tree.

different mistake that the low K-value tree did not; it
groups ‘no major bond offerings in Europe Friday’ as a
noun phrase, when it should be three separate phrases
(two noun phrases and a prepositional phrase). This er-
ror may be related to the additional latent annotations.
With more available noun phrase subtypes, it may be
the case that a more unusual noun phrase could be per-
mitted that would have been too low probability with
only a few subtypes.

To determine whether the substantial range in F1
scores across languages are primarily the result of the
much larger training corpora available for certain lan-
guages, two extreme training set reduction experiments
were conducted. The training sets for all languages
were reduced to a total of either 100 or 500 sen-
tences. This process was repeated 10 times in a cross-
validation setup, where 10 separate sets of sentences
were selected for each language. The results of these
experiments are shown in Table 5.

We conclude that while data availability is a major
factor in the higher performance of English and Chi-
nese in our original experiments, it is not the only is-
sue. Clearly, either the linguistic facts of particular
languages or perhaps choices of formalism and annota-
tion conventions in the corpora make some of the lan-
guages more difficult to parse than others. The primary
questions is why Gibbs-PCFG is able to achieve higher
relative performance on the KIN/MLG datasets when
compared to the other parsers, and why this advantage
does not necessarily transfer to the extreme small-scale
versions of the ENG/CHI/ITL data. Preliminary inves-
tigation into the properties of the corpora have revealed
a number of potential answers. For instance, the POS
tagsets for KIN/MLG are substantially reduced com-
pared to the other corpora, and there are differences
in the branching factor of the native versions of the
corpora as well: a typical maximum branching fac-
tor for a tree in ENG/CHI/ITL is around 4-5, while
for KIN/MLG it is almost always 2 (natively binary).
Branching factors above 5 essentially never occur in
KIN/MLG, while they are not rare in ENG/CHI/ITL.
The question of exactly why the Gibbs-PCFG seems to
perform well on these corpora remains an open ques-
tion, but these differences could provide a starting point

Condition In-Domain Out-of-Domain
Full English (K=4) 86.0 83.3
Small English (K=4) 76.6 75.7
Kinyarwanda (K=4) 67.2 65.1
Malagasy (K=4) 57.8 55.4

Table 6: Effect of differing regimes for handling un-
known words.

for future analysis.
In addition to the actual F1 scores, the relative uni-

formity of the standard deviation results indicates that
the individual parsers are not that much different in
terms of their ability to provide consistent results at
these small data extremes, as opposed to the slightly
higher training levels where the Gibbs-PCFG generated
smaller variances.

Considering the effects of unknown word handling,
Table 6 shows that using the evaluation set when creat-
ing the unknown word classifier does improve overall
parsing accuracy when compared to an unknown word
handler that is trained on out-of-domain texts. This
shows that results reported in previous work somewhat
overstate the accuracy of these parsers when used in the
wild—which matters greatly in the low-resource set-
ting.

6 Conclusion

Our experiments demonstrate that sampling vanilla
PCFGs, as well as PCFGs with latent annotations, is
feasible with the use of a Gibbs sampler technique
and produces results that are in line with previous
parsers on controlled test sets. Our results also show
that our methods are effective on a wide variety of
languages—including two low-resource languages—
with no language-specific model modifications needed.

Additionally, although not a uniform winner, the
Gibbs-PCFG shows a propensity for performing well
on naturally small corpora (here, KIN/MLG). The ex-
act reason for this remains slightly unclear, but the
fact that a similar advantage is not found for extremely
small versions of large corpora indicates that our ap-
proach may be particularly well-suited for application
in real low-resource environments as opposed to a sim-
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Parser Size ENG CHI ITL KIN MLG
Bikel 100 54.7 ± 2.2 51.4 ± 3.0 51 ± 2.4 47.1 ± 2.3 44.4 ± 2.0
Berkeley 100 55.2 ± 2.6 53.9 ± 2.9 50 ± 2.8 47.8 ± 2.1 44.5 ± 2.3
Gibbs-PCFG 100 54.5 ± 2.0 51.7 ± 2.4 49.5 ± 3.6 50.3 ± 2.3 45.8 ± 1.8
Bikel 500 56.2 ± 2.0 54.1 ± 2.7 54.2 ± 2.4 — —
Berkeley 500 58.9 ± 2.2 56.4 ± 2.7 52.5 ± 2.7 — —
Gibbs-PCFG 500 58.1 ± 2.0 55.7 ± 2.3 51.1 ± 3.2 — —

Table 5: 100/500 sentence training set results, including st.dev over 10 runs. KIN/MLG did not have enough data
to run the 500 sentence version.

ulated environment.
Having established this procedure and its relative tol-

erance for low amounts of data, we would like to extend
the model to make use of partial bracketing information
instead of complete trees, perhaps in the form of Frag-
mentary Unlabeled Dependency Grammar annotations
(Schneider et al., 2013). This would allow the sam-
pling procedure to potentially operate using corpora
with lighter annotations than full trees, making initial
annotation effort not quite as heavy and potentially in-
creasing the amount of available data for low-resource
languages. Additionally, using the expert partial anno-
tations to help restrict the sample space could provide
good gains in terms of training time.
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Abstract

We introduce the task of incremental se-
mantic role labeling (iSRL), in which se-
mantic roles are assigned to incomplete
input (sentence prefixes). iSRL is the
semantic equivalent of incremental pars-
ing, and is useful for language model-
ing, sentence completion, machine trans-
lation, and psycholinguistic modeling. We
propose an iSRL system that combines
an incremental TAG parser with a seman-
tically enriched lexicon, a role propaga-
tion algorithm, and a cascade of classi-
fiers. Our approach achieves an SRL F-
score of 78.38% on the standard CoNLL
2009 dataset. It substantially outper-
forms a strong baseline that combines
gold-standard syntactic dependencies with
heuristic role assignment, as well as a
baseline based on Nivre’s incremental de-
pendency parser.

1 Introduction

Humans are able to assign semantic roles such as
agent, patient, and theme to an incoming sentence
before it is complete, i.e., they incrementally build
up a partial semantic representation of a sentence
prefix. As an example, consider:

(1) The athlete realized [her
goals]PATIENT/THEME were out of reach.

When reaching the noun phrase her goals, the hu-
man language processor is faced with a semantic
role ambiguity: her goals can either be the PA-
TIENT of the verb realize, or it can be the THEME
of a subsequent verb that has not been encoun-
tered yet. Experimental evidence shows that the
human language processor initially prefers the PA-
TIENT role, but switches its preference to the
theme role when it reaches the subordinate verb
were. Such semantic garden paths occur because

human language processing occurs word-by-word,
and are well attested in the psycholinguistic litera-
ture (e.g., Pickering et al., 2000).

Computational systems for performing seman-
tic role labeling (SRL), on the other hand, proceed
non-incrementally. They require the whole sen-
tence (typically together with its complete syntac-
tic structure) as input and assign all semantic roles
at once. The reason for this is that most features
used by current SRL systems are defined globally,
and cannot be computed on sentence prefixes.

In this paper, we propose incremental SRL
(iSRL) as a new computational task that mimics
human semantic role assignment. The aim of an
iSRL system is to determine semantic roles while
the input unfolds: given a sentence prefix and its
partial syntactic structure (typically generated by
an incremental parser), we need to (a) identify
which words in the input participate in the seman-
tic roles as arguments and predicates (the task of
role identification), and (b) assign correct seman-
tic labels to these predicate/argument pairs (the
task of role labeling). Performing these two tasks
incrementally is substantially harder than doing it
non-incrementally, as the processor needs to com-
mit to a role assignment on the basis of incom-
plete syntactic and semantic information. As an
example, take (1): on reaching athlete, the proces-
sor should assign this word the AGENT role, even
though it has not seen the corresponding predicate
yet. Similarly, upon reaching realized, the pro-
cessor can complete the AGENT role, but it should
also predict that this verb also has a PATIENT role,
even though it has not yet encountered the argu-
ment that fills this role. A system that performs
SRL in a fully incremental fashion therefore needs
to be able to assign incomplete semantic roles,
unlike existing full-sentence SRL models.

The uses of incremental SRL mirror the applica-
tions of incremental parsing: iSRL models can be
used in language modeling to assign better string
probabilities, in sentence completion systems to
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provide semantically informed completions, in
any real time application systems, such as dia-
log processing, and to incrementalize applications
such as machine translation (e.g., in speech-to-
speech MT). Crucially, any comprehensive model
of human language understanding needs to com-
bine an incremental parser with an incremental se-
mantic processor (Padó et al., 2009; Keller, 2010).

The present work takes inspiration from the
psycholinguistic modeling literature by proposing
an iSRL system that is built on top of a cogni-
tively motivated incremental parser, viz., the Psy-
cholinguistically Motivated Tree Adjoining Gram-
mar parser of Demberg et al. (2013). This parser
includes a predictive component, i.e., it predicts
syntactic structure for upcoming input during in-
cremental processing. This makes PLTAG par-
ticularly suitable for iSRL, allowing it to predict
incomplete semantic roles as the input string un-
folds. Competing approaches, such as iSRL based
on an incremental dependency parser, do not share
this advantage, as we will discuss in Section 4.3.

2 Related Work

Most SRL systems to date conceptualize seman-
tic role labeling as a supervised learning prob-
lem and rely on role-annotated data for model
training. Existing models often implement a
two-stage architecture in which role identification
and role labeling are performed in sequence. Su-
pervised methods deliver reasonably good perfor-
mance with F-scores in the low eighties on stan-
dard test collections for English (Màrquez et al.,
2008; Björkelund et al., 2009).

Current approaches rely primarily on syntactic
features (such as path features) in order to iden-
tify and label roles. This has been a mixed bless-
ing as the path from an argument to the predi-
cate can be very informative but is often quite
complicated, and depends on the syntactic formal-
ism used. Many paths through the parse tree are
likely to occur infrequently (or not at all), result-
ing in very sparse information for the classifier to
learn from. Moreover, as we will discuss in Sec-
tion 4.4, such path information is not always avail-
able when the input is processed incrementally.
There is previous SRL work employing Tree Ad-
joining Grammar, albeit in a non-incremental set-
ting, as a means to reduce the sparsity of syntax-
based features. Liu and Sarkar (2007) extract a
rich feature set from TAG derivations and demon-
strate that this improves SRL performance.

In contrast to incremental parsing, incremental

semantic role labeling is a novel task. Our model
builds on an incremental Tree Adjoining Gram-
mar parser (Demberg et al., 2013) which predicts
the syntactic structure of upcoming input. This al-
lows us to perform incremental parsing and incre-
mental SRL in tandem, exploiting the predictive
component of the parser to assign (potentially in-
complete) semantic roles on a word-by-word ba-
sis. Similar to work on incremental parsing that
evaluates incomplete trees (Sangati and Keller,
2013), we evaluate the incomplete semantic struc-
tures produced by our model.

3 Psycholinguistically Motivated TAG

Demberg et al. (2013) introduce Psycholin-
guistically Motivated Tree Adjoining Grammar
(PLTAG), a grammar formalism that extends stan-
dard TAG (Joshi and Schabes, 1992) in order to
enable incremental parsing. Standard TAG as-
sumes a lexicon of elementary trees, each of
which contains at least one lexical item as an an-
chor and at most one leaf node as a foot node,
marked with A∗. All other leaves are marked with
A↓ and are called substitution nodes. Elementary
trees that contain a foot node are called auxiliary
trees; those that do not are called initial trees. Ex-
amples for TAG elementary trees are given in Fig-
ure 1a–c.

To derive a TAG parse for a sentence, we start
with the elementary tree of the head of the sen-
tence and integrate the elementary trees of the
other lexical items of the sentence using two oper-
ations: adjunction at an internal node and substi-
tution at a substitution node (the node at which the
operation applies is the integration point). Stan-
dard TAG derivations are not guaranteed to be in-
cremental, as adjunction can happen anywhere in
a sentence, possibly violating left-to-right process-
ing order. PLTAG addresses this limitation by in-
troducing prediction trees, elementary trees with-
out a lexical anchor. These can be used to predict
syntactic structure anchored by words that appear
later in an incremental derivation. The use of pre-
diction trees ensures that fully connected prefix
trees can be built for every prefix of the input sen-
tence.

Each node in a prediction tree carries mark-
ers to indicate that this node was predicted, rather
than being anchored by the current sentence pre-
fix. An example is Figure 1d, which contains a
prediction tree with marker “1”. In PLTAG, mark-
ers are eliminated through a new operation called
verification, which matches them with the nodes
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(a) NP

NNS

Banks

(b) S

VP

VB

open

NP↓

(c) VP

VP*AP

RB

rarely

(d) S1

VP1
1NP1↓

Figure 1: PLTAG lexicon entries: (a) and (b) ini-
tial trees, (c) auxiliary tree, (d) prediction tree.

a

S

 B↓  C↓ a

S

B  C↓ 

b

a

S

 B↓ C

c

(a) valid (b) invalid

Figure 3: The current fringe (dashed line) indi-
cates where valid substitutions can occur. Other
substitutions result in an invalid prefix tree.

of non-predictive elementary trees. An example
of a PLTAG derivation is given in Figure 2. In
step 1, a prediction tree is introduced through sub-
stitution, which then allows the adjunction of an
adverb in step 2. Step 3 involves the verification
of the marker introduced by the prediction tree
against the elementary tree for open.

In order to efficiently parse PLTAG, Demberg
et al. (2013) introduce the concept of fringes.
Fringes capture the fact that in an incremental
derivation, a prefix tree can only be combined with
an elementary tree at a limited set of nodes. For
instance, the prefix tree in Figure 3 has two substi-
tution nodes, for B and C. However, only substi-
tution into B leads to a valid new prefix tree; if we
substitute into C, we obtain the tree in Figure 3b,
which is not a valid prefix tree (i.e., it represents a
non-incremental derivation).

The parsing algorithm proposed by Demberg
et al. (2013) exploits fringes to tabulate interme-
diate results. It manipulates a chart in which each
cell (i, f ) contains all the prefix trees whose first
i leaves are the first i words and whose current
fringe is f . To extend the prefix trees for i to
the prefix trees for i + 1, the algorithm retrieves
all current fringes f such that the chart has entries
in the cell (i, f ). For each such fringe, it needs
to determine the elementary trees in the lexicon
that can be combined with f using substitution or
adjunction. In spite of the large size of a typi-
cal TAG lexicon, this can be done efficiently, as
it only requires matching the current fringes. For
each match, the parser then computes the new pre-

Banks refused to open today

A0

A1A1

A1 AM-TMP

nsbj aux

xcomp

tmod

〈A0,Banks,refused〉
〈A1,to,refused〉
〈A1,Banks,open〉
〈AM-TMP,today,open〉

Figure 4: Syntactic dependency graph with se-
mantic role annotation and the accompanying se-
mantic triples, for Banks refused to open today.

fix trees and its new current fringe f ′ and enters it
into cell (i+1, f ′).

Demberg et al. (2013) convert the Penn Tree-
bank (Marcus et al., 1993) into TAG for-
mat by enriching it with head information and
argument/modifier information from Propbank
(Palmer et al., 2005). This makes it possible
to decompose the Treebank trees into elementary
trees as proposed by Xia et al. (2000). Predic-
tion trees can be learned from the converted Tree-
bank by calculating the connection path (Mazzei
et al., 2007) at each word in a tree. Intuitively,
a prediction tree for word wn contains the struc-
ture that is necessary to connect wn to the prefix
tree w1 . . .wn−1, but is not part of any of the ele-
mentary trees of w1 . . .wn−1. Using this lexicon, a
probabilistic model over PLTAG operations can be
estimated following Chiang (2000).

4 Model

4.1 Problem Formulation
In a typical semantic role labeling scenario, the
goal is to first identify words that are predicates
in the sentence and then identify and label all the
arguments for each predicate. This translates into
spotting specific words in a sentence that repre-
sent the predicate’s arguments, and assigning pre-
defined semantic role labels to them. Note that in
this work we focus on verb predicates only. The
output of a semantic role labeler is a set of seman-
tic dependency triples 〈l,a, p〉, with l ∈ R , and
a, p ∈ w, where R is a set of semantic role labels
denoting a specific relationship between a predi-
cate and an argument (e.g., ARG0, ARG1, ARGM
in Propbank), w is the list of words in the sentence,
l denotes a specific role label, a the argument, and
p the predicate. An example is shown in Figure 4.

As discussed in the introduction, standard se-
mantic role labelers make their decisions based on
evidence from the whole sentence. In contrast, our
aim is to assign semantic roles incrementally, i.e.,
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NP

NNS

Banks

S1

VP1
1NP

NNS

Banks

S1

VP1

VP1AP

RB

rarely

NP

NNS

Banks

S

VP

VP

VB

open

AP

RB

rarely

NP

NNS

Banks

1. subst 2. adj 3. verif

Figure 2: Incremental parse for Banks rarely open using the operations substitution (with a prediction
tree), adjunction, and verification.

we want to produce a set of (potentially incom-
plete) semantic dependency triples for each prefix
of the input sentence. Note that not every word
is an argument to a predicate, therefore the set of
triples will not necessarily change at every input
word. Furthermore, the triples themselves may
be incomplete, as either the predicate or the argu-
ment may not have been observed yet (predicate-
incomplete or argument-incomplete triples).

Our iSRL system relies on PLTAG, using a se-
mantically augmented lexicon. We parse an in-
put sentence incrementally, applying a novel in-
cremental role propagation algorithm (IRPA) that
creates or updates existing semantic triple candi-
dates whenever an elementary (or prediction) tree
containing role information is attached to the ex-
isting prefix tree. As soon as a triple is completed
we apply a two-stage classification process, that
first identifies whether the predicate/argument pair
is a good candidate, and then disambiguates role
labels in case there is more than one candidate.

4.2 Semantic Role Lexicon
Recall that Propbank is used to construct the
PLTAG treebank, in order to distinguish between
arguments and modifiers, which result in elemen-
tary trees with substitution nodes, and auxiliary
trees, i.e., trees with a foot node, respectively (see
Figure 1). Conveniently, we can use the same in-
formation to also enrich the extracted lexicon with
the semantic role annotations, following the pro-
cess described by Sayeed and Demberg (2013).1

For arguments, annotations are retained on the
substitution node in the parental tree, while for
modifiers, the role annotation is displayed on the
foot node of the auxiliary tree. Note that we dis-
play role annotation on traces that are leaf nodes,

1Contrary to Sayeed and Demberg (2013) we put role la-
bel annotations for PPs on the preposition rather than their
NP child, following of the CoNLL 2005 shared task (Carreras
and Màrquez, 2005).

which enables us to recover long-range dependen-
cies (third and fifth tree in Figure 5a). Likewise,
we annotate prediction trees with semantic roles,
which enables our system to predict upcoming in-
complete triples.

Our annotation procedure unavoidably intro-
duces some role ambiguity, especially for fre-
quently occurring trees. This can give rise to two
problems when we generate semantic triples incre-
mentally: IRPA tends to create many spurious can-
didate semantic triples for elementary trees that
correspond to high frequency words (e.g., preposi-
tions or modals). Secondly, a semantic triple may
be identified correctly but is assigned several role
labels. (See the elementary tree for refuse in Fig-
ure 5a.) We address these issues by applying clas-
sifiers for role label disambiguation at every pars-
ing operation (substitution, adjunction, or verifica-
tion), as detailed in Section 4.4.

4.3 Incremental Role Propagation Algorithm
The main idea behind IRPA is to create or up-
date existing semantic triples as soon as there is
available role information during parsing. Our al-
gorithm (lines 1–6 in Algorithm 1) is applied af-
ter every PLTAG parsing operation, i.e., when an
elementary or prediction tree T is adjoined to a
particular integration point node πip of the prefix
tree of the sentence, via substitution or adjunction
(lines 3–4).2 In case an elementary tree Tv verifies
a prediction tree Tpr (lines 5–6), the same method-
ology applies, the only difference being that we
have to tackle multiple integration point nodes
Tpr,ip, one for each prediction marker of Tpr that
matches the corresponding nodes in Tv.

For simplicity of presentation, we will use a
concrete example, see Figure 5. Figure 5a shows
the lexicon entries for the words of the sentence

2Prediction tree Tpr in our algorithm is only used during
verification, so it set to nil for substitution and adjunction op-
erations.
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Banks refused to open. Naturally, some nodes in
the lexicon trees might have multiple candidate
role labels. For example, the substitution NP node
of the second tree takes two labels, namely A0
and A1. These stem from different role signatures
when the same elementary tree occurs in differ-
ent contexts during training (A1 only on the NP;
A0 on the NP and A1 on S). For simplicity’s sake,
we collapse different signatures, and let a classi-
fier labeller to disambiguate such cases (see Sec-
tion 4.4).

Algorithm 1 Incremental Role Propagation Alg.
1: procedure IRPA(πip, T , Tpr)
2: Σ←∅ . Σ is a dictionary of (πip, 〈l,a, p〉) pairs
3: if parser operation is substitution or adjunction then
4: CREATE-TRIPLES(πip, T )
5: else if parser operation is verification then
6: CREATE-TRIPLES-VERIF(πip, T , Tpr)

return set of triples 〈l,a, p〉 for prefix tree π
7: procedure CREATE-TRIPLES(πip, T )
8: if HAS-ROLES(πip) then
9: UPDATE-TRIPLE(πip, T )

10: else if HAS-ROLES(T ) then
11: Tip← substitution or foot node of T
12: ADD-TRIPLE(πip, Tip, T )
13: for all remaining nodes n ∈ T with roles do
14: ADD-TRIPLE(πip, n, T ) . incomplete triples
15: procedure CREATE-TRIPLES-VERIF(πip, Tv, Tpr)
16: if HAS-ROLES(Tv) then
17: anchor← lexeme of Tv
18: for all Tip ← node in Tv with role do
19: Tpr,ip← matching node of Tip in Tpr
20: CREATE-TRIPLES(Tpr,ip, Tv)

. Process the rest of covered nodes in Tpr with roles
21: for all remaining Tpr,ip← node in Tpr with role do
22: UPDATE-TRIPLE(Tpr,ip, Tpr)
23: function UPDATE-TRIPLE(πip, T )
24: dep← FIND-INCOMPLETE(Σ, Tip)
25: anchor← lexeme of T
26: if anchor of T is predicate then
27: SET-PREDICATE(dep, anchor)
28: else if anchor of T is argument then
29: SET-ARGUMENT(dep, anchor)

return dep
30: procedure ADD-TRIPLE(πip, Tip, T )
31: dep← 〈[roles of Tip], nil, nil〉
32: anchor← lexeme of T
33: if anchor of T is predicate then
34: SET-PREDICATE(dep, anchor)
35: SET-ARGUMENT(dep, head of πip)
36: else if anchor of T is argument then
37: if T is auxiliary then . adjunction
38: SET-ARGUMENT(dep, anchor)
39: else . substitution: arg is head of prefix tree
40: SET-ARGUMENT(dep, head of Tip)
41: pred← find dep ∈ Σ with matching πip
42: SET-PREDICATE(dep, pred)
43: Σ← (πip, dep)

Once we process Banks, the prefix tree becomes
the lexical entry for this word, see the first col-
umn of Figure 5b. Next, we process refused:

the parser substitutes the prefix tree into the ele-
mentary tree T of refused;3 the integration point
πip on the prefix tree is the topmost NP. Since
the operation is a substitution (line 3), we create
triples between T and πip via CREATE-TRIPLES
(lines 7–12). πip does not have any role infor-
mation (line 8), so we proceed to add a new se-
mantic triple between the role-labeled integration
point Tip, i.e., substitution NP node of T , and πip,
via ADD-TRIPLE (lines 30–43). First, we create
an incomplete semantic triple with all roles from
Tip (line 31). Then we set the predicate to the an-
chor of T to be the word refused, and the argu-
ment to be the head word of the prefix tree, Banks
(lines 34–35). Note that predicate identification is
a trivial task based on part-of-speech information
in the elementary tree.4

Then, we add the pair (NP→ 〈{A0,A1},Banks,
refused〉) to a dictionary (line 43). Storing the in-
tegration point along with the semantic triple is
essential, to be able to recover incomplete triples
in later stages of the algorithm. Finally, we re-
peat this process for all remaining nodes on T that
have roles, in our example the substitution node S
(lines 13–14). This outputs an incomplete triple,
〈{A1},nil,refused〉.

Next, the parser decides to substitute a predic-
tion tree (third tree in Figure 5a) into the substitu-
tion node S of the prefix tree. Since the integration
point is on the prefix tree and has role information
(line 8), the corresponding triple should already be
present in our dictionary. Upon retrieving it, we
set the nil argument to the anchor of the incoming
tree. Since it is a prediction tree, we set it to the
root of the tree, namely S2 (phrase labels in triples
are denoted by italics), but mark the triple as yet
incomplete. This distinction allows us to fill in the
correct lexical information once it becomes avail-
able, i.e, when the tree gets verified. We also add
an incomplete triple for the trace t in the subject
position of the prediction tree, as described above.
Note that this triple contains multiple roles; this is
expected given that prediction trees are unlexical-
ized and occur in a wide variety of contexts.

When the next verb arrives, the parser success-
fully verifies it against the embedded prediction

3PLTAG parsing operations can occur in two ways: An
elementary tree can be substituted into the substitution node
of the prefix tree, or the prefix tree can be substituted into a
node of an elementary tree. The same holds for adjunction.

4Most predicates can be identified as anchors of non-
modifier auxiliary trees. However, there are exceptions to
this rule, i.e., modifier auxiliary trees and non-modifier non-
auxiliary trees being also verbs in our lexicon, hence the use
of the more reliable POS tags.
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IRPA MaltParser
Banks – –
refused 〈{A0,A1},Banks,refused〉,

〈A1,S2,refused〉,
〈{A0,A1,A2},t,nil〉

〈A0,Banks,refused〉

to – –
open 〈A1,to,refused〉,

〈A1,Banks,open〉
〈A1,to,refused〉,
〈A0,Banks,open〉

today 〈AM-TMP,today,open〉 〈AM-TMP,today,open〉

Table 1: Complete and incomplete semantic triple
generation, comparing IRPA and a system that
maps gold-standard role labels onto MaltParser in-
cremental dependencies for Figure 4.

tree within the prefix tree (last step of Figure 5b).
Our algorithm first cycles through all nodes that
match between the verification tree Tv and the pre-
diction tree Tpr and will complete or create new
triples via CREATE-TRIPLES (lines 18–20). In
our example, the second semantic triple gets com-
pleted by replacing S2 with the head of the sub-
tree rooted in S. Normally, this would be the verb
open, but in this case the verb is followed by the
infinitive marker to, hence we heuristically set it
to be the argument of the triple instead, following
Carreras and Màrquez (2005). For the last triple,
we set the predicate to the anchor of Tv open, and
now are able to remove the excess role labels A0
and A2. This illustrated how the lexicalized veri-
fication tree disambiguates the semantic informa-
tion stored in the prediction tree. Finally, trace t is
set to the closest NP head that is below the same
phrase subtree, in this case Banks. Note that Banks
is part of two triples as shown in the last tree of
Figure 5b: it is either an A0 or an A1 for refused
and an A1 for open.

We are able to create incomplete semantic
triples after the prediction of the upcoming verb at
step 2, as shown in Figure 5b. This is not possible
using an incremental dependency parser such as
MaltParser (Nivre et al., 2007) that lacks a predic-
tive component. Table 1 illustrates this by compar-
ing the output of IRPA for Figure 5b with the out-
put of a baseline system that maps role labels onto
the syntactic dependencies in Figure 4, generated
incrementally by MaltParser (see Section 5.3 for
a description of the MaltParser baseline). Malt-
Parser has to wait for the verb open before out-
putting the relevant semantic triples. In contrast,
IRPA outputs incomplete triples as soon as the in-
formation is available, and later on updates its de-
cision. (MaltParser also incorrectly assigns A0 for
the Banks–open pair.)

4.4 Argument Identification and Role Label
Disambiguation

IRPA produces semantic triples for every role an-
notation present in the lexicon entries, which will
often overgenerate role information. Furthermore,
some triples have more than one role label at-
tached to them. During verification, we are able to
filter out the majority of labels in the correspond-
ing prediction trees; However, most triples are cre-
ated via substitution and adjunction.

In order to address these problems we adhere to
the following classification and ranking strategy:
after each semantic triple gets completed, we per-
form a binary classification that evaluates its suit-
ability as a whole, given bilexical and syntactic in-
formation. If the triple is identified as a good can-
didate, then we perform multi-class classification
over role labels: we feed the same bilexical and
syntactic information to a logistic classifier, and
get a ranked list of labels. We then use this list to
re-rank the existing ambiguous role labels in the
semantic triple, and output the top scoring ones.

The identifier is a binary L2-loss support vec-
tor classifier, and the role disambiguator an L2-
regularized logistic regression classifier, both im-
plemented using the efficient LIBLINEAR frame-
work of Fan et al. (2008). The features used are
based on Björkelund et al. (2009) and Liu and
Sarkar (2007), and are listed in Table 2.

The bilexical features are: predicate POS tag,
predicate lemma, argument word form, argument
POS tag, and position. The latter indicates the po-
sition of the argument relative to the predicate, i.e.,
before, on, or after. The syntactic features are:
the predicate and argument elementary trees with-
out the anchors (to avoid sparsity), the category of
the integration point node on the prefix tree where
the elementary tree of the argument attaches to,
an alphabetically ordered set of the categories of
the fringe nodes of the prefix tree after attaching
the argument tree, and the path of PLTAG opera-
tions applied between the argument and the pred-
icate. Note that most of the original features used
by Björkelund et al. (2009) and others are not ap-
plicable in our context, as they exploit information
that is not accessible incrementally. For example,
sibling information to the right of the word is not
available. Furthermore, our PLTAG parser does
not compute syntactic dependencies, hence these
cannot serve as features (and in any case not all
dependencies are available incrementally, see Fig-
ure 4). To counterbalance this, we use local syn-
tactic information stored in the fringe of the pre-
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1. NP → 〈{A0,A1},Banks,refused〉
S → 〈A1,nil,refused〉

2. NP → 〈{A0,A1},Banks,refused〉
S → 〈A1,S2,refused〉

NP → 〈{A0,A1,A2},t,nil〉

3. —

4. NP → 〈{A0,A1},Banks,refused〉
S → 〈A1,to,refused〉

NP → 〈A1,Banks,open〉

(b) Incremental parsing using PLTAG and incremental propagation of roles

Figure 5: Incremental Role Propagation Algorithm application for the sentence Banks refused to open.

Bilexical Syntactic
PredPOS PredElemTree
PredLemma ArgElemTree
ArgWord IntegrationPoint
ArgPOS PrefixFringe
Position OperationPath

Table 2: Features for argument identification and
role label disambiguation.

fix tree. We also store the series of operations ap-
plied by our parser between argument and predi-
cate, in an effort to emulate the effect of recover-
ing longer-range patterns.

5 Experimental Design

5.1 PLTAG and Classifier Training

We extracted the semantically-enriched lexicon
and trained the PLTAG parser by converting the
Wall Street Journal part of Penn Treebank to
PLTAG format. We used Propbank to retrieve
semantic role annotation, as described in Sec-
tion 4.2. We trained the PLTAG parser according
to Demberg et al. (2013) and evaluated the parser
on section 23, on sentences with 40 words or less,
given gold POS tags for each word, and achieved
a labeled bracket F1 score of 79.41.

In order to train the argument identification and
role label disambiguation classifiers, we used the
English portion of the CoNLL 2009 Shared Task
(Hajič et al., 2009; Surdeanu et al., 2008). It
consists of the Penn Treebank, automatically con-
verted to dependencies following Johansson and
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Nugues (2007), accompanied by semantic role la-
bel annotation for every argument pair. The latter
is converted from Propbank based on Carreras and
Màrquez (2005). We extracted the bilexical fea-
tures for the classifiers directly from the gold stan-
dard annotation of the training set. The syntactic
features were obtained as follows: for every sen-
tence in the training set we applied IRPA using the
trained PLTAG parser, with gold standard lexicon
entries for each word of the input sentence. This
ensures near perfect parsing accuracy. Then for
each semantic triple predicted incrementally, we
extracted the relevant syntactic information in or-
der to construct training vectors. If the identified
predicate-argument pair was in the gold standard
then we assigned a positive label for the identifi-
cation classifier, otherwise we flagged it as nega-
tive. For those pairs that are not identified by IRPA
but exist in the gold standard (false negatives), we
extracted syntactic information from already iden-
tified similar triples, as follows: We first look for
correctly identified arguments, wrongly attached
to a different predicate and re-create the triple with
correct predicate/argument information. If no ar-
gument is found, we then pick the argument in the
list of identified arguments for a correct predicate
with the same POS-tag as the gold-standard argu-
ment. In the case of the role label disambigua-
tion classifier we just assign the gold label for ev-
ery correctly identified pair, and ignore the (possi-
bly ambiguous) predicted one. After tuning on the
development set, the argument identifier achieved
an accuracy of 92.18%, and the role label disam-
biguation classifier, 82.37%.

5.2 Evaluation

The focus of this paper is to build a system that is
able to output semantic role labels for predicate-
argument pairs incrementally, as soon as they be-
come available. In order to properly evaluate such
a system, we need to measure its performance in-
crementally. We propose two different cumulative
scores for assessing the (possibly incomplete) se-
mantic triples that have been created so far, as the
input is processed from left to right, per word. The
first metric is called Unlabeled Prediction Score
(UPS) and gets updated for every identified argu-
ment or predicate, even if the corresponding se-
mantic triple is incomplete. Note that UPS does
not take into account the role label, it only mea-
sures predicate and argument identification. In this
respect it is analogous to unlabeled dependency
accuracy reported in the parsing literature. We ex-

pect a model that is able to predict semantic roles
to achieve an improved UPS result compared to a
system that does not do prediction, as illustrated in
Table 1. Our second score, Combined Incremental
SRL Score (CISS), measures the identification of
complete semantic role triples (i.e., correct predi-
cate, predicate sense, argument, and role label) per
word; by the end of the sentence, CISS coincides
with standard combined SRL accuracy, as reported
in CoNLL 2009 SRL-only task. This score is anal-
ogous to labeled dependency accuracy in parsing.

Note that conventional SRL systems such as
Björkelund et al. (2009) typically assume gold
standard syntactic information. In order to emu-
late this, we give our parser gold standard lexicon
entries for each word in the test set; these contain
all possible roles observed in the training set for
a given elementary tree (and all possible senses
for each predicate). This way the parser achieves
a syntactic parsing F1 score of 94.24, thus ensur-
ing the errors of our system can be attributed to
IRPA and the classifiers. Also note that we evalu-
ate on verb predicates only, therefore trivially re-
ducing the task of predicate identification to the
simple heuristic of looking for words in the sen-
tence with a verb-related POS tag and excluding
auxiliaries and modals. Likewise, predicate sense
disambiguation on verbs presumably is trivial, as
we observed almost no ambiguity of senses among
lexicon entries of the same verb (we adhered to a
simple majority baseline, by picking the most fre-
quent sense, given the lexeme of the verb, in the
few ambiguous cases). It seems that the syntactic
information held in the elementary trees discrimi-
nates well among different senses.

5.3 System Comparison

We evaluated three configurations of our system.
The first configuration (iSRL) uses all seman-
tic roles for each PLTAG lexicon entry, applies
the PLTAG parser, IRPA, and both classifiers to
perform identification and disambiguation, as de-
scribed in Section 4. The second one (Majority-
Baseline), solves the problem of argument identifi-
cation and role disambiguation without the classi-
fiers. For the former we employ a set of heuristics
according to Lang and Lapata (2014), that rely on
gold syntactic dependency information, sourced
from CoNLL input. For the latter, we choose the
most frequent role given the gold standard depen-
dency relation label for the particular argument.
Note that dependencies have been produced in
view of the whole sentence and not incrementally.
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System Prec Rec F1
iSRL-Oracle 91.00 80.26 85.29
iSRL 81.48 75.51 78.38
Majority-Baseline 71.05 58.10 63.92
Malt-Baseline 60.90 46.14 52.50

Table 3: Full-sentence combined SRL score

This gives the baseline a considerable advantage
especially in case of longer range dependencies.
The third configuration (iSRL-Oracle), is identical
to iSRL, but uses the gold standard roles for each
PLTAG lexicon entry, and thus provides an upper-
bound for our methodology. Finally, we evalu-
ated against Malt-Baseline, a variant of Majority-
Baseline that uses the MaltParser of Nivre et al.
(2007) to provide labeled syntactic dependencies
MaltParser is a state-of-the-art shift-reduce depen-
dency parser which uses an incremental algorithm.
Following Beuck et al. (2011), we modified the
parser to provide intermediate output at each word
by emitting the current state of the dependency
graph before each shift step. We trained Malt-
Parser using the arc-eager algorithm (which out-
performed the other parsing algorithms available
with MaltParser) on the CoNLL dataset, achiev-
ing a labeled dependency accuracy of 89.66% on
section 23.

6 Results

Figures 6 and 7 show the results on the incremen-
tal SRL task. We plot the F1 for Unlabeled Predic-
tion Score (UPS) and Combined Incremental SRL
Score (CISS) per word, separately for sentences
of lengths 10, 20, 30, and 40 words. The task gets
harder with increasing sentence length, hence we
can only meaningfully compare the average scores
for sentence of the same length. (This approach
was proposed by Sangati and Keller 2013 for eval-
uating the performance of incremental parsers.)

The UPS results in Figure 6 clearly show that
our system (iSRL) outperforms both baselines
on unlabeled argument and predicate prediction,
across all four sentence lengths. Furthermore,
we note that the iSRL system achieves a near-
constant performance for all sentence prefixes.
Our PLTAG-based prediction/verification archi-
tecture allows us to correctly predict incomplete
semantic role triples, even at the beginning of the
sentence. Both baselines perform worse than the
iSRL system in general. Moreover, the Malt-
Baseline performs badly on the initial sentence

prefixes (up to word 10), presumably as it does
not benefit from syntactic prediction, and thus can-
not generate incomplete triples early in the sen-
tence, as illustrated in Table 1. The Majority-
Baseline also does not do prediction, but it has ac-
cess to gold-standard syntactic dependencies, and
thus outperforms the Malt-Baseline on initial sen-
tence prefixes. Note that due to prediction, our
system tends to over-generate incomplete triples
in the beginning of sentences, compared to non-
incremental output, which may inflate UPS for
the first words. However, this cancels out later
in the sentence if triples are correctly completed;
failure to do so would decrease UPS. The near-
constant performance of our output illustrates this
phenomenon. Finally, the iSRL-Oracle outper-
forms all other systems, as it benefits from correct
role labels and correct PLTAG syntax, thus provid-
ing an upper limit on performance.

The CISS results in Figure 7 present a simi-
lar picture. Again, the iSRL system outperforms
both baselines at all sentence lengths. In addition,
it shows particularly strong performance (almost
at the level of the iSRL-Oracle) at the beginning
of the sentence. This presumably is due to the
fact that our system uses prediction and is able to
identify correct semantic role triples earlier in the
sentence. The baselines also show higher perfor-
mance early in the sentence, but to a lesser degree.

Table 3 reports traditional combined SRL scores
for full sentences over all sentence lengths, as
defined for the CoNLL task. Our iSRL system
outperforms the Majority-Baseline by almost 15
points, and the Malt-Baseline by 25 points. It re-
mains seven points below the iSRL-Oracle upper
limit.

Finally, in order to test the effect of syntactic
parsing on our system, we also experimented with
a variant of our iSRL system that utilizes all lex-
icon entries for each word in the test set. This is
similar to performing the CoNLL 2009 joint task,
which is designed for systems that carry out both
syntactic parsing and semantic role labeling. This
variant achieved a full sentence F-score of 68.0%,
i.e., around 10 points lower than our iSRL system.
This drop in score correlates with the difference
in syntactic parsing F-score between the two ver-
sions of PLTAG parser (94.24 versus 79.41), and
is expected given the high ambiguity of the lex-
icon entries for each word. Note, however, that
the full-parsing version of our system still outper-
forms Malt-Baseline by 15 points.

309



2 4 6 8 10
0.2

0.4

0.6

0.8

1

words

F 1

(a) 10 words

5 10 15 20
0.2

0.4

0.6

0.8

1

words
F 1

iSRL-Oracle iSRL
Majority-Baseline Malt-Baseline

(b) 20 words

5 10 15 20 25 30
0.2

0.4

0.6

0.8

1

words

F 1

(c) 30 words

10 20 30 40
0.2

0.4

0.6

0.8

1

words

F 1

(d) 40 words

Figure 6: Unlabeled Prediction Score (UPS)
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Figure 7: Combined iSRL Score (CISS)

7 Conclusions

In this paper, we introduced the new task of incre-
mental semantic role labeling and proposed a sys-
tem that solves this task by combining an incre-
mental TAG parser with a semantically enriched
lexicon, a role propagation algorithm, and a cas-
cade of classifiers. This system achieved a full-
sentence SRL F-score of 78.38% on the standard
CoNLL dataset. Not only is the full-sentence
score considerably higher than the Majority-
Baseline (which is a strong baseline, as it uses
gold-standard syntactic dependencies), but we
also observe that our iSRL system performs well
incrementally, i.e., it predicts both complete and
incomplete semantic role triples correctly early on
in the sentence. We attributed this to the fact that
our TAG-based architecture makes it possible to
predict upcoming syntactic structure together with
the corresponding semantic roles.
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Hajič, Jan, Massimiliano Ciaramita, Richard Jo-
hansson, Daisuke Kawahara, Maria Antònia
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Abstract
The informal nature of social media text
renders it very difficult to be automati-
cally processed by natural language pro-
cessing tools. Text normalization, which
corresponds to restoring the non-standard
words to their canonical forms, provides a
solution to this challenge. We introduce an
unsupervised text normalization approach
that utilizes not only lexical, but also con-
textual and grammatical features of social
text. The contextual and grammatical fea-
tures are extracted from a word association
graph built by using a large unlabeled so-
cial media text corpus. The graph encodes
the relative positions of the words with re-
spect to each other, as well as their part-of-
speech tags. The lexical features are ob-
tained by using the longest common sub-
sequence ratio and edit distance measures
to encode the surface similarity among
words, and the double metaphone algo-
rithm to represent the phonetic similarity.
Unlike most of the recent approaches that
are based on generating normalization dic-
tionaries, the proposed approach performs
normalization by considering the context
of the non-standard words in the input text.
Our results show that it achieves state-of-
the-art F-score performance on standard
datasets. In addition, the system can be
tuned to achieve very high precision with-
out sacrificing much from recall.

1 Introduction

Social text, which has been growing and evolving
steadily, has its own lexical and grammatical fea-
tures (Choudhury et al., 2007; Eisenstein, 2013).

lol meaning laughing out loud, xoxo meaning kiss-
ing, 4u meaning for you are among the most com-
monly used examples of this jargon. In addition,
these informal expressions in social text usually
take many different lexical forms when generated
by different individuals (Eisenstein, 2013). The
limited accuracies of the Speech-to-Text (STT)
tools in mobile devices, which are increasingly be-
ing used to post messages on social media plat-
forms, along with the scarcity of attention of
the users result in additional divergence of so-
cial text from more standard text such as from
the newswire domain. Tools such as spellchecker
and slang dictionaries have been shown to be in-
sufficient to cope with this challenge long time
ago (Sproat et al., 2001). In addition, most Nat-
ural Language Processing (NLP) tools including
named entity recognizers and dependency parsers
generally perform poorly on social text (Ritter et
al., 2010).

Text normalization is a preprocessing step to
restore non-standard words in text to their origi-
nal (canonical) forms to make use in NLP applica-
tions or more broadly to understand the digitized
text better (Han and Baldwin, 2011). For exam-
ple, talk 2 u later can be normalized as talk to you
later or similarly enormoooos, enrmss and enour-
mos can be normalized as enormous. Other exam-
ples of text messages from Twitter and their corre-
sponding normalized forms are shown in Table 1.

The non-standard words in text are referred to
as Out of Vocabulary (OOV) words. The nor-
malization task restores the OOV words to their
In Vocabulary (IV) forms. Social text is contin-
uously evolving with new words and named en-
tities that are not in the vocabularies of the sys-
tems (Hassan and Menezes, 2013). Therefore, not
every OOV word (e.g. iPhone, WikiLeaks or tok-
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Hav guts to say wat u desire.. Dnt beat behind da bush!!
And 1 mre thng no mre say y r people’s man!!

Have guts to say what you desire.. Don’t beat behind the bush!!
And one more thing no more say you are people’s man!!

There r sm songs u don’t want 2 listen 2 yl walking cos
when u start dancing ppl won’t knw y.

There are some songs you don’t want to listen to while walking
because when you start dancing people won’t know why.

Table 1: Sample tweets and their normalized forms.

enizing) should be considered for normalization.
The OOV tokens that should be considered for
normalization are referred to as ill-formed words.
Ill-formed words can be normalized to different
canonical words depending on the context of the
text. For example, let’s consider the two examples
in Table 1. “y” is normalized as “you” in the first
one and as “why” in the second one.

In this paper, we propose a graph-based text
normalization method that utilizes both contex-
tual and grammatical features of social text. The
contextual information of words is modeled by
a word association graph that is created from a
large social media text corpus. The graph repre-
sents the relative positions of the words in the so-
cial media text messages and their Part-of-Speech
(POS) tags. The lexical similarity features among
the words are modeled using the longest common
subsequence ratio and edit distance that encode
the surface similarity and the double metaphone
algorithm that encodes the phonetic similarity.
The proposed approach is unsupervised, which is
an important advantage over supervised systems,
given the continuously evolving language in the
social media domain. The same OOV word may
have different appropriate normalizations depend-
ing on the context of the input text message. Re-
cently proposed dictionary-based text normaliza-
tion systems perform dictionary look-up and al-
ways normalize the same OOV word to the same
IV word regardless of the context of the input text
(Han et al., 2012; Hassan and Menezes, 2013). On
the other hand, the proposed approach does not
only make use of the general context information
in a large corpus of social media text, but it also
makes use of the context of the OOV word in the
input text message. Thus, an OOV word can be
normalized to different IV words depending on the
context of the input text.

2 Related Work

Early work on text normalization mostly made
use of the noisy channel model. The first work
that had a significant performance improvement
over the previous research was by Brill and Moore

(2000). They proposed a novel noisy channel
model for spell checking based on string to string
edits. Their model depended on probabilistic mod-
eling of sub-string transformations.

Toutanova and Moore (2002) improved this ap-
proach by extending the error model with phonetic
similarities over words. Their approach is based
on learning rules to predict the pronunciation of a
single letter in the word depending on the neigh-
bouring letters in the word.

Choudhury et al. (2007) developed a super-
vised Hidden Markov Model based approach for
normalizing Short Message Service (SMS) texts.
They proposed a word for word decoding ap-
proach and used a dictionary based method to
normalize commonly used abbreviations and non-
standard usage (e.g. “howz” to “how are” or
“aint” to “are not”). Cook and Stevenson (2009)
extended this model by introducing an unsuper-
vised noisy channel model. Rather than using
one generic model for all word formations as
in (Choudhury et al., 2007), they used a mix-
ture model in which each different word formation
type is modeled explicitly.

The limitations of these methods were that they
did not consider contextual features and assumed
that tokens have unique normalizations. In the text
normalization task several OOV tokens are am-
biguous and without contextual information it is
not possible to build models that can disambiguate
transformations correctly.

Aw et al. (2006) proposed a phrase-based statis-
tical machine translation (MT) model for the text
normalization task. They defined the problem as
translating the SMS language to the English lan-
guage and based their model on two submodels:
a word based language model and a phrase based
lexical mapping model (channel model). Their
system also benefits from the input context and
they argue that the strength of their model is in
its ability to disambiguate mapping as in “2” →
“two” or “to”, and “w”→ “with” or “who”. Mak-
ing use of the whole conversation, this is the clos-
est approach to ours in the sense of utilizing con-
textual sensitivity and coverage.
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Pennell and Liu (2011) on the other hand, pro-
posed a character level MT system, that is robust
to new abbreviations. In their two phased system,
a character level trained MT model is used to pro-
duce word hypotheses and a trigram LM is used to
choose a hypothesis that fits into the input context.

The MT based models are supervised models,
a drawback of which is that they require anno-
tated data. Annotated training data is not readily
available and is difficult to create especially for
the rapidly evolving social media text (Yang and
Eisenstein, 2013).

More recent approaches handled the text nor-
malization task by building normalization lexi-
cons. Han and Baldwin (2011) developed a two
phased model, where they only consider the ill-
formed OOV words for normalization. First, a
confusion set is generated using the lexical and
phonetic distance features. Later, the candidates
in the confusion set are ranked using a mixture
of dictionary look up, word similarity based on
lexical edit distance, phonemic edit distance, pre-
fix sub-string, suffix sub-string and longest com-
mon subsequence (LCS), as well as context sup-
port metrics. Chrupala (2014) on the other hand
achieved lower word error rates without using any
lexical resources.

Gouws et al. (2011) investigated the distinct
contributions of features that are highly depended
on user-centric information such as the geologi-
cal location of the users and the twitter client that
the tweet is received from. Using such user-based
contextual metrics they modelled the transforma-
tion distributions across populations.

Liu et al. (2012) proposed a broad coverage nor-
malization system, which integrates an extended
noisy channel model, that is based on enhanced
letter transformations, visual priming, string and
phonetic similarity. They try to improve the per-
formance of the top n normalization candidates by
integrating human perspective modeling.

Yang and Eisenstein (2013) introduced an unsu-
pervised log linear model for text normalization.
Their joint statistical approach uses local context
based on language modeling and surface similar-
ity. Along with dictionary based models, Yang and
Eisenstein’s model have obtained a significant im-
provement on the performance of text normaliza-
tion systems.

Another relevant study is conducted by Hassan
and Menezes (2013), who generated a normaliza-

tion lexicon using Markov random walks on a con-
textual similarity lattice that they created using 5-
gram sequences of words. The best normaliza-
tion candidates are chosen using the average hit-
ting time and lexical similarity features. Context
of a word in the center of a 5-gram sequence is de-
fined by the other words in the 5-gram. Even if one
word is not the same, the context is considered to
be different. This is a relatively conservative way
for modeling the prior contexts of words. In our
model, we filtered candidate words based on their
grammatical properties and let each neighbouring
token to contribute to the prior context of a word,
which leads to both a higher recall and a higher
precision.

3 Methodology

In this paper, we propose a graph-based approach
that models both contextual and lexical similar-
ity features among an ill-formed OOV word and
candidate IV words. An input text is first prepro-
cessed by tokenizing and Part-Of-Speech (POS)
tagging. If the text contains an OOV word, the
normalization candidates are chosen by making
use of the contextual features, which are extracted
from a pre-generated directed word association
graph, as well as lexical similarity features. Lexi-
cal similarity features are based on edit distance,
longest common subsequence ratio, and double
metaphone distance. In addition, a slang dictio-
nary1 is used as an external resource to enrich
the normalization candidate set. The details of
the approach are explained in the following sub-
sections.

3.1 Preprocessing

After tokenization, the next step in the pipeline
is POS tagging each token using a POS tagger
specifically designed for social media text. Unlike
the regular POS taggers designed for well-written
newswire-like text, social media POS taggers pro-
vide a broader set of tags specific to the peculiari-
ties of social text (Owoputi et al., 2013; Gimpel et
al., 2011). Using this extended set of tags we can
identify tokens such as discourse markers (e.g. rt
for retweets, cont. for a tweet whose content fol-
lows up in the coming tweet) or URLs. This en-
ables us to model better the context of the words in
social media text. A sample preprocessed sentence
is shown in Table 3.

1http://www.noslang.com
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As shown in Table 2, after preprocessing, each
token is assigned a POS tag with a confidence
score between 0 and 12. Later, we use these confi-
dence scores in calculating the edge weights in our
context graph. Note that even though the words w
and beatiful are misspelled, they are tagged cor-
rectly by the tagger, with lower confidence scores
though.

Token POS tag Tag confidence
with Preposition 0.9963
a Determiner 0.9980
beautiful Adjective 0.9971
smile Noun 0.9712
w Preposition 0.7486
a Determiner 0.9920
beatiful Adjective 0.9733
smile Noun 0.9806

Table 2: Sample POS tagger output

3.2 Graph construction

Contextual information of words is modeled
through a word association graph created by us-
ing a large corpus of social media text. The graph
encodes the relative positions of the POS tagged
words in the text with respect to each other. Af-
ter preprocessing, each text message in the corpus
is traversed in order to extract the nodes and the
edges of the graph. A node is defined with four
properties: id, oov, freq and tag. The token itself is
the id field. The freq property indicates the node’s
frequency count in the dataset. The oov field is set
to True if the token is an OOV word. Following the
prior work by Han and Baldwin, (2011) we used
the GNU Aspell dictionary (v0.60.6) to determine
whether a word is OOV or not. We also edited the
output of Aspell dictionary to accept letters other
than “a” and “i” as OOV words. A portion of the
graph that covers parts of the sample sentence in
Table 3 is shown in Figure 1.

In the created word association graph, each
node is a unique set of a token and its POS tag.
This helps us to identify the candidate IV words
for a given OOV word by considering not only
lexical and contextual similarity, but also gram-
matical similarity in terms of POS tags. For ex-
ample, if the token smile has been frequently seen
as a Noun or a Verb, and not in other forms in the
dataset (e.g. Table 4), this provides evidence that it
is not a good normalization candidate for an OOV
token that has been tagged as a Pronoun. On the

2CMU Ark Tagger (v0.3.2)

Figure 1: Portion of the word association graph
for part of the sample sentence in Table 3. (d: dis-
tance, w: edge weight).

other hand, smile can be a good candidate for a
Noun or a Verb OOV token, if it is lexically and
contextually similar to it.

node id freq oov tag
smile 3 False A
smile 3403 False N
smile 2796 False V

Table 4: The different nodes in the word associ-
ation graph representing the token smile tagged
with different POS tags.

An edge is created between two nodes in the
graph, if the corresponding word pair (i.e. to-
ken/POS pair) are contextually associated. Two
words are considered to be contextually associated
if they satisfy the following criteria:

• The two words co-occur within a maximum
word distance of tdistance in a text message
in the corpus.

• Each word has a minimum frequency of
tfrequency in the corpus.

The directionality of the edges is based on the
sequence of words in the text messages in the cor-
pus. In other words, an edge between two nodes
is directed from the earlier seen token towards
the later seen token in a message. For example,
Figure 2 shows the edges that would be derived
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Let’sL startV thisD morningN wP aD beatifulA smileN .C

Table 3: Sample tokenized, POS tagged sentence (L: nominal+verbal, V: verb, D: determiner, N: noun,
P: Preposition, A: adjective, C: punctuation).

from a text including the phrase “with a beautiful
smile”. The direction (from,to) and the distance
together represent a unique triplet. For each pair
of nodes with a specific distance there is an edge
with a positive weight, if the two nodes are con-
textually associated. Each co-occurrence of two
contextually associated nodes increases the weight
of the edge between them with an average of the
nodes’ POS tag confidence scores in the text mes-
sage considered. If we are to expand the graph
with the example phrase “with a beautiful smile”,
the weight of the edge with distance 2 from the
node with|P to the node smile|N would increase by
(0.9963 + 0.9712)/2, since the confidence score
of the POS tag for the token with is 0.9963 and the
confidence score of the POS tag of the token smile
is 0.9712 as shown in Table 2.

20

with!
P

a!
D

smile!
N

distance: 0 
weight: 25011

beautiful!
A

distance: 0 
weight: 2918 distance:0 

weight: 305

distance:1 
weight: 322distance:1 

weight: 198

distance:2 
weight: 89

Figure 2: Sample nodes and edges from the word
association graph.

3.3 Graph-based Contextual Similarity
Our graph-based contextual similarity method is
based on the assumption that an IV word that is
the canonical form of an OOV word appears in the
same context with the corresponding OOV word.
In other words, the two nodes in the graph share
several neighbors that co-occur within the same
distances to the corresponding two words in social
media text. We also assume that an OOV word and
its canonical form should have the same POS tag.

Given an input text for normalization, the next
step after preprocessing is finding the normaliza-
tion candidates for each OOV token in the input
text. For each ill-formed OOV token oi in the in-
put text, first the list of tokens that co-occur with

oi in the input text and their positional distances to
oi are extracted. This list is called the neighbor list
of token oi, i.e., NL(oi).

For each neighbor node nj in NL(oi), the word
association graph is traversed, and the edges from
or to the node nj are extracted. The resulting edge
list EL(oi) has edges in the form of (nj , ck) or (ck,
nj), where ck is a candidate canonical form of the
OOV word oi. Here the neighbor node nj can be
an OOV node, but the candidate node ck is chosen
among the IV nodes. The edges in EL(oi) are fil-
tered by the relative distance of nj to oi as given in
the NL(oi). Any edge between nj and ck, whose
distance is not the same as the distance between
nj and oi is removed.

In addition to distance based filtering, POS tag
based filtering is also performed on the edges in
EL(oi). Each candidate node should have the
same POS tag with the corresponding OOV token.
For the OOV token oi that has the POS tag Ti, all
the edges that include candidates with a tag other
than Ti are removed from the edge list EL(oi).

Figure 3 represents a portion from the graph
where the neighbors and candidates of the OOV
node “beatiful” are shown. In the sample sentence
in Table 3 there are two OOV tokens to be normal-
ized, o1 = w and o2 = beatiful. The neighbor
list of o2, NL(o2) includes n1 = w, n2 = a and
n3 = smile. For each neighbor in NL(o2), the can-
didate nodes (c1 = broken, c2 = nice, c3 = new,
c4 = beautiful, c5 = big, c6 = best, c7 = great)
are extracted. As shown in Figure 3, there are 11
lines representing the edges between the neighbors
of the OOV token and the candidate nodes. These
are representative edges in EL(o2). Each member
of the edge list has the same tag (A for Adjective)
as the OOV node “beatiful” and the same distance
to the corresponding neighbor node of the OOV
node.

Each edge in EL(oi) consists of a neighbor
node nj , a candidate node ck and an edge weight
edgeWeight(nj , ck). The edge weight represents
the likelihood or the strength of association be-
tween the neighbor node nj and the candidate
node ck. As described in the previous section the
edge weights are computed based on the frequency
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Figure 3: A portion of the graph that includes
the OOV token “beatiful”, its neighbors and the
candidate nodes that each neighbor is connected
to. Thick lines show the edge list with relative
weights.

of co-occurrence of two tokens, as well as the con-
fidence scores of their POS tags.

The edge weights of the edges in EL(o2) are
shown in Figure 3. The edges that are connected to
the OOV neighbor “w” have smaller edge weights
such as 3, 5, and 26. On the other hand, the edges
that are connected to common words have higher
weights. For example, the weight of the edge be-
tween the nodes “a” and “new” is 24388. This
indicates that they are more common words, and
frequently co-occur in the same form (“a new”).
Although this edge weight metric is reasonable
for identifying the most likely canonical form for
the OOV word oi, it has the drawback of favoring
words with high frequencies like common words
or stop words. Therefore, to avoid overrated words
and get contextually related candidates, we nor-
malize the edge weight edgeWeight(nj , ck) with
the frequency of the candidate node ck as shown
in Equation 1.

Equation 1 provides a metric that captures con-
textual similarity based on binary associations. In
order to achieve a more comprehensive contex-
tual coverage, a contextual similarity feature is
built based on the sum of the binary association
scores of several neighbors. As shown in Equa-
tion 2, for a candidate node ck the total edge
weight score is the sum of the normalized edge
weight scores EWNorm(nj , ck), which are the

edge weights coming from the different neighbors
of the OOV token oi. We expect this contextual
similarity feature to favor and identify the candi-
dates which are (i) related to many neighbors, and
(ii) have a high association score with each neigh-
bor.

EWNorm(nj , ck) = edgeWeight(nj , ck)/freq(ck)

(1)

EW Score(oi, ck) =
∑

EL(oi)

EWNorm(nj , ck)

(2)

Our word association graph includes both OOV
and IV tokens, and our OOV detection depends
on the spellchecker which fails to identify some
OOV tokens that have the same spelling with an IV
word. In order to propose better canonical forms,
the frequencies of the normalization candidates in
the social media corpus have also been incorpo-
rated to the contextual similarity feature. Nodes
with higher frequencies lead to tokens that are in
their most likely grammatical forms.

The final contextual similarity of the token oi
and the candidate ck is the weighted sum of the
total edge weight score and the frequency score
of the candidate (see Equation 3). The frequency
score of the candidate is a real number between 0
and 1. It is proportional to the frequency of the
candidate with respect to the frequencies of the
other candidates in the corpus. Since the total edge
weight score is our primary contextual resource,
we may want to favor edge weight scores. We give
the frequency score a weight 0 ≤ β ≤ 1 to be able
to limit its effect on the total contextual similarity
score.

contSimScore(oi, ck) = EW Score(oi, ck)

+ β ∗ freqScore(ck) (3)

Hereby, we have the candidate list CL(oi) for the
OOV token oi that includes all the unique can-
didates in EL(oi) and their contextual similarity
scores calculated.

3.4 Lexical Similarity

Following the prior work in (Han and Baldwin,
2011; Hassan and Menezes, 2013), our lexical
similarity features are based on edit distance (Lev-
enshtein, 1966), double metaphone (phonetic edit
distance) (Philips, 2000), and a similarity function
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(simCost) (Contractor et al., 2010) which is de-
fined as the ratio of the Longest Common Sub-
sequence Ratio (LCSR) (Melamed, 1999) of two
words and the Edit Distance (ED) between their
skeletons (Equations 4 and 5), where the skeleton
of a word is obtained by removing its vowels.

LCSR(oj , ck) = LCS(oj , ck)/maxLength(oj , ck) (4)
simCost(oj , ck) = LCSR(oj , ck)/ED(oj , ck) (5)

Following the tradition that is inspired
from (Kaufmann and Kalita, 2010), before
lexical similarity calculations, any repetitions of
characters three or more times in OOV tokens are
reduced to two (e.g. goooood is reduced to good).
Then, the edit distance, phonetic edit distance, and
simCost between each candidate in CL(oi) and
the OOV token oi are calculated. Edit distance
and phonetic edit distance are used to filter the
candidates. Any candidate in CL(oi) with an
edit distance greater than tedit and phonetic edit
distance greater than tphonetic to oi is removed
from the candidate list CL(oi).

lexSimScore(oi, ck) = simCost(oi, ck)

+ λ ∗ editScore(oi, ck) (6)

For the remaining candidates, the total lexical
similarity score (Equation 6) is calculated using
simCost and edit distance score3. Similar to con-
textual similarity score, here we have one main
lexical similarity feature and one minor lexical
similarity feature. The major lexical similarity
feature is simCost, whereas the edit distance score
is the minor feature. We assigned a weight 0 ≤
λ ≤ 1 to the edit distance score to be able to lower
its contribution while calculating the total lexical
similarity score.

3.5 External Score
Since some social media text messages are ex-
tremely short and contain several OOV words,
they do not provide sufficient context, i.e., IV
neighbors, to enable the extraction of good candi-
dates from the word association graph. Therefore,
we extended the candidate list obtained through
contextual similarity as described in the previous
section, by including all the tokens in the word as-
sociation graph that satisfy the edit distance and

3an approximate string comparison measure
(between 0.0 and 1.0) using the edit distance
https://sourceforge.net/projects/febrl/

phonetic edit distance criteria. We also incorpo-
rated candidates from external resources, in other
words from a slang dictionary and a transliteration
table of numbers and pronouns. If a candidate oc-
curs in the slang dictionary or in the transliteration
table as a correspondence to its OOV word, it is
assigned an external score of 1, otherwise it is as-
signed an external score of 0.

The transliterations were first used by (Gouws
et al., 2011). Besides the token and its transliter-
ation we also use its POS tag information, which
was not available in their system.

The external score favors the well known inter-
pretations of common OOV words. However, un-
like the dictionary based methodologies, our sys-
tem does not return the corresponding unabbrevi-
ated word in the slang dictionary or in the translit-
eration table directly. Only an external score gets
assigned and the candidate still needs to com-
pete with other candidates which may have higher
contextual similarities and one of those contextu-
ally more similar candidates may be returned as
the correct normalization instead of the candidate
found equivalent to the OOV word in the slang dic-
tionary (or in the transliteration table).

3.6 Overall Scoring
As shown in Equation 7, the final score of a can-
didate IV token ck for an OOV token oi is the sum
of its lexical similarity score, contextual similarity
score and external score with respect to oi.

candScore(oi, ck) = lexSimScore(oi, ck)
+ contSimScore(oi, ck)
+ externalScore(oi, ck)

(7)

4 Experiments

4.1 Datasets
We used the LexNorm1.1 (LN) dataset (Han and
Baldwin, 2011) and Pennell and Liu (2014)’s tri-
gram dataset to evaluate our proposed approach.
LexNorm1.1 contains 549 tweets with 1184 manu-
ally annotated ill-formed OOV tokens. It has been
used by recent text normalization studies for eval-
uation, which enables us to directly compare our
performance results with results obtained by the
recent previous work (Han and Baldwin, 2011;
Pennell and Liu, 2011; Han et al., 2012; Liu et
al., 2012; Hassan and Menezes, 2013; Yang and
Eisenstein, 2013; Chrupala, 2014). The trigram
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dataset is an SMS-like corpus collected from twit-
ter status updates sent via SMS. The dataset does
not include the complete tweet text but trigrams
from tweets and one OOV word in each trigram
is annotated. In total 4661 twitter status messages
and 7769 tokens are annotated.

4.2 Graph Generation

We used a large corpus of social media text to con-
struct our word association graph. We extracted
1.5 GB of English tweets from Stanford’s 476 mil-
lion Twitter Dataset (Yang and Leskovec, 2011).
The language identification of tweets was per-
formed by using the langid.py Python library (Lui
and Baldwin, 2012; Baldwin and Lui, 2010).

CMU Ark Tagger (v0.3.2), which is a social me-
dia specific POS tagger achieving an accuracy of
95% over social media text (Owoputi et al., 2013;
Gimpel et al., 2011), is used for tokenizing and
POS tagging the tweets. We used the twitter tagset
which includes some extra POS tags specific to so-
cial media including URLs and emoticons, Twit-
ter hashtags (#), and twitter at-mentions (@). We
made use of these social media specific tags to dis-
ambiguate some OOV tokens.

After tokenization, we removed the tokens that
were POS tagged as mention (e.g. @brendon),
discourse marker (e.g. RT), URL, email address,
emoticon, numeral, and punctuation. The remain-
ing tokens are used to build the word association
graph. After constructing the graph we only kept
the nodes with a frequency greater than 8. For
the performance related reasons, the relatedness
thresholds tdistance and tfrequency were chosen as
3 and 8, respectively. The resulting graph contains
105428 nodes and 46609603 edges.

4.3 Candidate Set Generation

While extending the candidate set with lexical fea-
tures we use tedit ≤ 2 ∨ tphonetic ≤ 1 to keep
up with the settings in (Han and Baldwin, 2011).
In other words, IV words that are within 2 char-
acter edit distance or 1 character edit distance of
a given OOV word under phonemic transcription
were chosen as lexical similarity candidates. The
values for the λ and β parameters in Equations 3
and 6 are set to 0.5. We did not tune these pa-
rameters for optimized performance. We selected
the value of 0.5 in order to give less weight (half
weight) to our minor contextual and lexical simi-
larity features compared to the major ones.

4.4 Normalization Candidates

Most of the prior work assume perfect detection
of ill-formed words during test set decoding (Liu
et al., 2012; Han and Baldwin, 2011; Pennell and
Liu, 2011; Yang and Eisenstein, 2013). To be
able to compare our results with studies that do
not assume that ill-formed words have been pre-
identified (Chrupala, 2014; Hassan and Menezes,
2013; Han et al., 2012) we used our graph and
built a dictionary to identify the ill-formed words.

Following Han and Baldwin (2011) and Yang
and Eisenstein (2013), we created a dictionary by
choosing the nodes in our graph that have a fre-
quency property higher than 20. Filtering this dic-
tionary of 49657 words using GNU Aspell dictio-
nary (v0.60.6) we produced a set of 26773 “in-
vocabulary” (IV) words. In our second setup our
system does not attemp to normalize the words in
this set.

4.5 Results and Analysis

In this paper we introduced a new contextual ap-
proach for text normalization. The lexical similar-
ity score described in Section 3.4 and the external
score described in Section 3.5 depend on the work
of Han and Baldwin (2011). With small changes
made to the previously proposed method we took
it as a baseline in our study.

As contextual layer we proposed two metrics
extracted from the word association graph. The
first one depends on the total edge weights be-
tween candidates and OOV neighbours, the sec-
ond one is based on the frequencies of the candi-
dates in the corpus.

As the evaluation metrics we used precision,
recall, and F-Measure. Precision calculates the
proportion of correctly normalized words among
the words for which we produced a normaliza-
tion. Recall shows the amount of correct nor-
malizations over the words that require normal-
ization (ill-formed OOV words). The main metric
that we consider while evaluating the performance
of our system is F-Measure which is the harmonic
mean of precision and recall.

We investigated the impact of lexSimScore and
externalScore seperately on both datasets (Ta-
ble 5). Using only lexSimScore the sys-
tem achieved an F-measure of 28.24% on the
LexNorm1.1 dataset and 38.70% on the Trigram
dataset, which shows that lexical similarity alone
is not enough for a good normalization system.
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However, the externalScore which is the layer that
is more aware of the Internet jargon, along with
some social text specific rule based transliterations
performs better than expected on both datasets.
Mixing these two layers we reach our baseline that
is adopted from (Han and Baldwin, 2011). This
baseline setup obtained an F-measure of 77.12%
on LexNorm1.1, which is slightly better than the
result (75.30%) reported by the original system
of Han and Baldwin (2011).

The results obtained by our proposed Contex-
tual Word Association Graph (CWA-Graph) sys-
tem on the LexNorm1.1 and trigram datasets, as
well as the results of recent studies that used the
same datasets for evaluation are presented in Ta-
ble 5. The ill-formed words are assumed to have
been pre-identified in advance.

Method Dataset Precision Recall F-measure

lexSimScore LN 28.28 28.20 28.24
externalScore LN 64.69 64.52 64.60
lexSimScore+externalScore LN 77.22 77.02 77.12

Han and Baldwin (2011) LN 75.30 75.30 75.30
Liu et al. (2012) LN 84.13 78.38 81.15
Yang and Eisenstein (2013) LN 82.09 82.09 82.09
CWA-Graph LN 85.50 79.22 82.24

lexSimScore Trigram 39.10 38.40 38.70
externalScore Trigram 44.20 43.30 43.80
lexSimScore+externalScore Trigram 65.50 64.20 64.80

Pennell and Liu (2011) Trigram 69.7 69.7 69.7
CWA-Graph Trigram 77.2 68.8 72.8

Table 5: Results obtained when ill-formed words
are assumed to have been pre-identified in ad-
vance.

Our CWA-Graph approach achieves the best F-
measure (82.24%) and precision (85.50%) among
the recent previous studies. The high precision
value is obtained without compromising much
from recall (79.22%). Our recall is the second best
among others. The F-score (82.09%) obtained
by Yang and Eisenstein (2013)’s system is close
to ours and the second best F-score, which on the
other hand, has a lower precision.

Without any modification to our system or to
the parameters, we were able to improve the re-
sults obtained by Pennell and Liu (2011) on the
trigram SMS-like dataset. The trigram nature of
the dataset resulted in input texts which are (short
thus) very limited with regard to contextual infor-
mation. Nevertheless, our system achieved 72.8%
F-Measure using this contextual information even
though it is limited.

Along the systems (presented in Table 5) that
assume ill-formed tokens have been pre-identified

perfectly by an oracle, there are also systems that
are not based on this assumption but contain ill-
formed word identification components (Han et
al., 2012; Hassan and Menezes, 2013; Chrupala,
2014). We used the method described in Section
4.4 to identify the candidate tokens for normaliza-
tion. Table 6 shows our results compared with the
results of other systems that perform ill-formed
word detection prior to normalization. We could
label 1141 tokens correctly as ill-formed among
1184 ill-formed tokens. We achieved a word error
rate (WER) of 2.6%, where Chrupala (2014) re-
ported 4.8% and Han et al. (2012) reported 6.6%
WER on the Lexnorm1.1 dataset.

Method Dataset Precision Recall F-measure

Han et al. (2012) LN 70.00 17.90 28.50
Hassan and Menezes (2013) LN 85.37 56.40 69.93
CWA-Graph LN 85.87 76.52 80.92

Table 6: Results obtained without assuming that
ill-formed words have been pre-identified.

As shown in Table 5 some systems have equal
precision and recall values (Yang and Eisenstein,
2013; Han and Baldwin, 2011; Pennell and Liu,
2011). Those systems normalize all ill-formed
words. On the other hand, our system does not
return a normalization, if there are no candidates
that are lexically similar, grammatically correct,
and contextually close enough. For this reason,
we managed to achieve a higher precision com-
pared to the other systems. Our system returns a
normalization candidate for an OOV word only if
it achieves a similarity score (contextual, lexical,
external, or some degree of each feature) above a
threshold value. The default threshold used in the
system is set equal to the maximum score that can
be obtained by lexical features. Thus, we only re-
trieve candidates that obtain a non-zero contextual
similarity score (conSimScore). The results shown
at Table 7 and Table 8 demonstrate that CWA-
Graph can obtain even higher values of precision
by increasing the percentage of contextual context
of candidates. It achieved 94.1% precision on the
LexNorm1.1 dataset, where the highest precision
reported at the same recall level is 85.37% (Hassan
and Menezes, 2013). The precision of the normal-
ization system can be set (e.g. as high, medium,
low) depending on the application where it will be
used.

Our motivation behind introducing the λ and
β parameters was to investigate the importance
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conSimScore > Precision Recall F-measure
0 85.5 79.2 82.2
0.1 88.8 75.1 81.4
0.2 91.1 72.8 80.9
0.3 92.3 67.6 78.0
0.5 94.1 56.4 70.5

Table 7: Comparison of results for different
threshold values on LexNorm1.1, the setup we
have used for our other experiments is shown in
bold.

conSimScore > Precision Recall F-measure
0 77.2 68.8 72.8
0.1 80.9 65.8 72.6
0.2 84.2 60.8 70.6
0.3 87.6 54.6 67.3
0.4 89.5 47.1 61.7
0.5 90.8 42.1 57.6

Table 8: Comparison of results for different
threshold values on trigram dataset, the setup we
have used for our other experiments is shown in
bold.

of the minor features compared to our major fea-
tures (described in Sections 3.3 and 3.4). For the
experiments reported in Tables 5, 6, 7 and 8 we set
the λ and β values to 0.5. We did not tune these pa-
rameters for optimized performance. Rather, our
aim was to give less weight (half weight) to the
minor features compared to the major ones. To
analyze the effects of the lambda and beta param-
eters, we plotted the performance of the system on
the LexNorm1.1 data set by varying their values
(see Figure 4). It is shown that for λ and β values
greater than 0.3 the performance of the system is
quite robust. The F-score varies between 80.4%
and 82.9%.

Figure 4: The effect of λ and β on the system per-
formance.

5 Conclusion

In this paper, we present an unsupervised graph-
based approach for contextual text normalization.
The task of normalization is highly dependent on
understanding and capturing the dynamics of the
informal nature of social text. Our word associ-
ation graph is built using a large unlabeled social
media corpus. It helps to derive contextual analy-
sis on both clean and noisy data.

It is important to emphasize the difference be-
tween corpus based contextual information and
contextual information of the input text (input con-
text). Most recent unsupervised systems for text
normalization only make use of corpus based con-
text information. However, this approach is led
by statistical information. In other words, it finds
which IV word the OOV word is commonly nor-
malized to, regardless of the context of the OOV
word in the input text message. A major strength
of our approach is that it utilizes both corpus based
contextual information and input based contextual
information. We use corpus based statistical infor-
mation to connect/associate the words in the con-
textual word association graph. On the other hand,
the neighbors of an OOV word in the input text
provide us input based context information. Using
input context to find normalizations helps us iden-
tify the correct normalization, even if it is not the
statistically dominant one.

We compared our approach with the recent
social media text normalization systems and
achieved state-of-the-art precision and F-measure
scores. We reported our results on two datasets.
The first one is the standard text normalization
dataset (Lexnorm1.1) derived from Twitter. Our
results on this dataset showed that our system can
serve as a high precision text normalization sys-
tem which is highly preferable as an NLP pre-
processing step. The second dataset we tested
our approach is a SMS-like trigram dataset. The
tests showed that the proposed system can perform
good on SMS data as well.

The system does not require a clean corpus or
an annotated corpus. The contextual word asso-
ciation graph can be built by using the publicly
available social media text.
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Abstract

Search engines are increasingly relying on
large knowledge bases of facts to provide
direct answers to users’ queries. How-
ever, the construction of these knowledge
bases is largely manual and does not scale
to the long and heavy tail of facts. Open
information extraction tries to address this
challenge, but typically assumes that facts
are expressed with verb phrases, and there-
fore has had difficulty extracting facts for
noun-based relations.

We describe ReNoun, an open information
extraction system that complements pre-
vious efforts by focusing on nominal at-
tributes and on the long tail. ReNoun’s ap-
proach is based on leveraging a large on-
tology of noun attributes mined from a text
corpus and from user queries. ReNoun
creates a seed set of training data by us-
ing specialized patterns and requiring that
the facts mention an attribute in the ontol-
ogy. ReNoun then generalizes from this
seed set to produce a much larger set of ex-
tractions that are then scored. We describe
experiments that show that we extract facts
with high precision and for attributes that
cannot be extracted with verb-based tech-
niques.

1 Introduction

One of the major themes driving the current evo-
lution of search engines is to make the search
experience more efficient and mobile friendly
for users by providing them concrete answers to
queries. These answers, that apply to queries
about entities that the search engine knows about
(e.g., famous individuals, organizations or loca-
tions) complement the links that the search en-

∗Work done during an internship at Google Research.

gine typically returns (Sawant and Chakrabati,
2013; Singhal, 2012; Yahya et al., 2012). To
support such answers, the search engine main-
tains a knowledge base that describes various at-
tributes of an entity (e.g., (Nicolas Sarkozy,

wife, Carla Bruni)). Upon receiving a query,
the search engine tries to recognize whether the
answer is in its knowledge base.

For the most part, the aforementioned knowl-
edge bases are constructed using manual tech-
niques and carefully supervised information ex-
traction algorithms. As a result, they obtain high
coverage on head attributes, but low coverage on
tail ones, such as those shown in Table 1. For ex-
ample, they may have the answer for the query
“Sarkozy’s wife”, but not for “Hollande’s ex-
girlfriend” or “Google’s philanthropic arm”. In
addition to broadening the scope of query answer-
ing, extending the coverage of the knowledge base
to long tail attributes can also facilitate providing
Web answers to the user. Specifically, the search
engine can use lower-confidence facts to corrob-
orate an answer that appears in text in one of the
top Web results and highlight them to the user.

This paper describes ReNoun, an open-
information extraction system that focuses on ex-
tracting facts for long tail attributes. The obser-
vation underlying our approach is that attributes
from the long tail are typically expressed as nouns,
whereas most previous work on open-information
extraction (e.g., Mausam et al. (2012)) extend
techniques for extracting attributes expressed in
verb form. Hence, the main contribution of our
work is to develop an extraction system that com-
plements previous efforts, focuses on nominal at-
tributes and is effective for the long tail. To that
end, ReNoun begins with a large but imperfect on-
tology of nominal attributes that is extracted from
text and the query stream (Gupta et al., 2014).
ReNoun proceeds by using a small set of high-
precision extractors that exploit the nominal na-
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Attribute Fact Phrase Verb form seen
legal affairs (NPR, legal affairs NPR welcomed Nina Totenberg as 7

correspondent correspondent, Nina Totenberg) its new legal affairs correspondent.

economist (Princeton, economist, Princeton economist Paul Krugman 7

Paul Krugman) was awarded the Nobel prize in 2008.

ex-boyfriend (Trierweiler, ex-boyfriend, Trierweiler did not have any children 3

Hollande with her ex-boyfriend Hollande.

staff writer (The New Yorker, staff writer, Adam Gopnik is one of The New 3

Adam Gopnik) Yorker’s best staff writers.
Table 1: Examples of noun phrases as attributes, none which are part of a verb phrase. Additionally, the first two attributes do
not occur within a verb phrase in a large corpus (see § 2 for details) in a setting where they can be associated with a triple.

ture of the attributes to obtain a training set, and
then generalizes from the training set via distant
supervision to find a much larger set of extraction
patterns. Finally, ReNoun scores extracted facts
by considering how frequently their patterns ex-
tract triples and the coherence of these patterns,
i.e., whether they extract triples for semantically
similar attributes. Our experiments demonstrate
that ReNoun extracts a large body of high preci-
sion facts, and that these facts are not extracted
with techniques based on verb phrases.

2 Preliminaries

The goal of ReNoun is to extract triples of the form
(S,A,O), where S is subject, A is the attribute, and
O is the object. In our setting, the attribute is al-
ways a noun phrase. We refer to the subject and
object as the arguments of the attribute.

ReNoun takes as input a set of attributes, which
can be collected using the methods described in
Gupta el al. (2014), Lee et al. (2012), and Pasca
and van Durme (2007). In this work, we use Biper-
pedia (Gupta et al., 2014), which is an ontology
of nominal attributes automatically extracted from
Web text and user queries. For every attribute,
Biperpedia supplies the Freebase (Bollacker et al.,
2008) domain type (e.g., whether the attribute ap-
plies to people, organizations or hotels). Since the
attributes themselves are the result of an extraction
algorithm, they may include false positives (i.e.,
attributes that do not make sense).

The focus of ReNoun is on attributes whose val-
ues are concrete objects (e.g., wife, protege,

chief-economist). Other classes of attributes
that we do not consider in this work are (1) nu-
meric (e.g., population, GDP) that are better ex-
tracted from Web tables (Cafarella et al., 2008),
and (2) vague (e.g., culture, economy) whose
value is a narrative that would not fit the current

mode of query answering on search engines.
We make the distinction between the fat head

and long tail of attributes. To define these two sets,
we ordered the attributes in decreasing order of the
number of occurrences in the corpus 1. We defined
the fat head to be the attributes until the point N
in the ordering such that the sum of the total num-
ber of occurrences of attributes before N equaled
the number of total occurrences of the attributes
after N . In our news corpus, the fat head included
218 attributes (i.e., N = 218) and the long tail
included 60K attributes. Table 2 shows examples
from both.

Fat head daughter, headquarters
president, spokesperson,

Long tail chief economist, defender,
philanthropic arm, protege

Table 2: Examples of fat head and long tail attributes.

The output of ReNoun is a set of facts, where
each fact could be generated by multiple extrac-
tions. We store the provenance of each extraction
and the number of times each fact was extracted.

Noun versus verb attributes
ReNoun’s goal is to extract facts for attributes ex-
pressed as noun phrases. A natural question is
whether we can exploit prior work on open in-
formation extraction, which focused on extracting
relations expressed as verbs. For example, if we
can extract facts for the attribute advised or is

advisor of, we can populate the noun attribute
advisor with the same facts. In Section 7.2 we
demonstrate that this approach is limited for sev-
eral reasons.

First, attributes in knowledge bases are typically
expressed as noun phrases. Table 3 shows that

1The occurrences were weighted by the number of se-
mantic classes they occur with in the ontology because many
classes overlap.
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Knowledge Base %Nouns %Verbs
Freebase 97 3
DBpedia 96 4

Table 3: Percentage of attributes expressed as nouns phrases
among the 100 attributes with the most facts.

the vast majority of the attributes in both Freebase
and DBpedia (Auer et al., 2007) are expressed as
nouns even for the fat head (and even more so for
the long tail). Hence, if we extract the verb form
of attributes we would need to translate them into
noun form, which would require us to solve the
paraphrasing problem and introduce more sources
of error (Madnani and Dorr, 2010). Second, as we
dig deeper into the long tail, attributes tend to be
expressed in text more in noun form rather than
verb form. One of the reasons is that the attribute
names tend to get longer and therefore unnatural
to express as verbs (e.g. chief privacy officer, au-
tomotive division). Finally, there is often a sub-
tle difference in meaning between verb forms and
noun forms of attributes. For example, it is com-
mon to see the phrase “Obama advised Merkel on
saving the Euro,” but that would not necessarily
mean we want to say that Obama is an advisor of
Angela Merkel, in the common sense of advisor.

Processed document corpus

ReNoun extracts facts from a large corpus of
400M news articles. We exploit rich synactic
and linguistic cues, by processing these docu-
ments with a natural language processing pipeline
comprising of – dependency parsing, noun phrase
chunking, named entity recognition, coreference
resolution, and entity resolution to Freebase. The
chunker identifies nominal mentions in the text
that include our attributes of interest. As discussed
later in the paper, we exploit the dependency
parse, coreference and entity resolution heavily
during various stages of our pipeline.

3 Overview of ReNoun

Since ReNoun aims at extracting triples for at-
tributes not present in head-heavy knowledge
bases, one key challenge is that we do not have any
labeled data (i.e. known facts) for such attributes,
especially in the long tail. Therefore ReNoun has
an initial seed fact extraction step that automati-
cally generates a small corpus of relatively precise
seed facts for all attributes, so that distant supervi-
sion can be employed. The second big challenge
is to filter the noise from the resulting extractions.

ReNoun’s extraction pipeline, shown in Fig-
ure 1, is composed of four stages.
Seed fact extraction: We begin by extracting a
small number of high-precision facts for our at-
tributes. For this step, we rely on manually spec-
ified lexical patterns that are specifically tailored
for noun phrases, but are general enough to be in-
dependent of any specific attributes. When apply-
ing such patterns, we exploit coreference to make
the generated seed facts more precise by requiring
the attribute and object noun phrases of a seed fact
to refer to the same real-world entity. This is elab-
orated further in Section 4.
Extraction pattern generation: Utilizing the
seed facts, we use distant supervision (Mintz et al.,
2009) to learn a set of dependency parse patterns
that are used to extract a lot more facts from the
text corpus.
Candidate generation: We apply the learned de-
pendency parse patterns from the previous stage
to generate a much larger set of extractions. We
aggregate all the extractions that give rise to the
same fact and store with them the provenance of
the extraction. The extractions generated here are
called candidates because they are assigned scores
that determine how they are used. The applica-
tion consuming an extraction can decide whether
to discard an extraction or use it, and in this case
the manner in which it is used, based on the scores
we attach to it and the application’s precision re-
quirements.
Scoring: In the final stage, we score the facts, re-
flecting our confidence in their correctness. In-
tuitively, we give a pattern a high score if it ex-
tracts many facts that have semantically similar at-
tributes, and then propagate this score to the facts
extracted by the pattern (Section 6).

4 Seed fact extraction

Since we do not have facts, but only attributes, the
first phase of ReNoun’s pipeline is to extract a set
of high-precision seed facts that are used to train
more general extraction patterns. ReNoun extracts
seed facts using a manually crafted set of extrac-
tion rules (see Table 4). However, the extraction
rules and the application of these rules are tailored
to our task of extracting noun-based attributes.

Specifically, when we apply an extraction rule
to generate a triple (S,A,O), we require that (1) A
is an attribute in our ontology, and (2) the value of
A and the object O corefer to the same real-world
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Figure 1: Extraction Pipeline: we begin with a set of high-precision extractors and use distant supervision to train other
extractors. We then apply the new extractors and score the resulting triples based on the frequency and coherence of the
patterns that produce them.

1. the A of S, O – the CEO of Google, Larry Page
2. the A of S is O – the CEO of Google is Larry Page
3. O, S A – Larry Page, Google CEO
4. O, S’s A – Larry Page, Google’s CEO
5. O, [the] A of S – Larry Page, [the] CEO of Google
6. SAO – Google CEO Larry Page
7. S A, O – Google CEO, Larry Page
8. S’s A, O – Google’s CEO, Larry Page

Table 4: High precision patterns used for seed fact extraction
along with an example of each. Here, the object (O) and the
attribute (A) corefer and the subject (S) is in close proxim-
ity. In all examples, the resulting fact is (Google, CEO,
Larry Page). Patterns are not attribute specific.

entity. For example, in Figure 2, CEO is in our on-
tology and we can use a coreference resolver to in-
fer that CEO and Larry Page refer to the same en-
tity. The use of coreference follows from the sim-
ple observation that objects will often be referred
to by nominals, many of which are our attributes of
interest. Since the sentence matches our sixth ex-
traction rule, ReNoun extracts the triple (Google,

CEO, Larry Page).

Document:
“[Google]1 [CEO]2 [Larry Page]2 started his term in 2011,
when [he]2 succeeded [Eric Schmidt]3. [Schmidt]3 has
since assumed the role of executive chairman of [the
company]1.”

(a)

Coreference clusters:
# Phrases Freebase ID
1 Google, the company /m/045c7b
2 Larry Page, CEO, he /m/0gjpq
3 Eric Schmidt, Schmidt /m/01gqf4

(b)
Figure 2: Coreference clusters: (a) a document annotated
with coreference clusters; (b) a table showing each cluster
with the representative phrases in bold and the Freebase ID
to which each cluster maps.

We rely on a coreference resolver in the spirit of
Haghighi and Klein (2009). The resolver clusters
the mentions of entities in a document so the ref-
erences in each cluster are assumed to refer to the
same real-world entity. The resolver also chooses
for each cluster a representative phrase, which is a
proper noun or proper adjective (e.g., Canadian).
Other phrases in the same cluster can be other

proper nouns or adjectives, common nouns like
CEO or pronouns like he in the example. Each
cluster is possibly linked by an entity resolver to
a Freebase entity using a unique Freebase ID. Fig-
ure 2(b) shows the coreference clusters from the
sample document, with representative phrases in
bold, along with the Freebase ID of each clus-
ter. Note that in our example the phrase execu-
tive chairman, which is also in our ontology of
attributes, is not part of any coreference cluster.
Therefore, the fact centered around this attribute
in the example will not be part of the seed extrac-
tions, but could be extracted in the next phase. The
resulting facts use Freebase IDs for the subject and
object (for readability, we will use entity names
in the rest of this work). In summary, our seed
extraction proceeds in two steps. First, we find
sentences with candidate attribute-object pairs that
corefer and in which the attribute is in our ontol-
ogy. Second, we match these sentences against our
hand-crafted rules to generate the extractions. In
Section 7 we show that the precision of our seed
facts is 65% for fat head attributes and 80% for
long tail ones.

5 Pattern and candidate fact generation

In this section we describe how ReNoun uses the
seed facts to learn a much broader set of extrac-
tion patterns. ReNoun uses the learned patterns
to extract many more candidate facts that are then
assigned scores reflecting their quality.

5.1 Dependency patterns

We use the seed facts to learn patterns over de-
pendency parses of text sentences. A dependency
parse of a sentence is a directed graph whose ver-
tices correspond to tokens labeled with the word
and the POS tag, and the edges are syntactic rela-
tions between the corresponding tokens (de Marn-
effe et al., 2006). A dependency pattern is a sub-
graph of a dependency parse where some words
have been replaced by variables, but the POS tags
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have been retained (called delexicalization). A de-
pendency pattern enables us to extract sentences
with the same dependency parse as the sentence
that generated the pattern, modulo the delexical-
ized words. We note that one big benefit of using
dependency patterns is that they generalize well,
as they ignore extra tokens in the sentence that do
not belong to the dependency subgraph of interest.

5.2 Generating dependency patterns

The procedure for dependency pattern generation
is shown in Algorithm 1, and Figure 3 shows an
example of its application. The input to the algo-
rithm is the ontology of attributes, the seed facts
(Section 4), and our processed text corpus (Sec-
tion 2).

Algorithm 1: Dependency pattern generation
input : Set of attributes A, Seed facts I , Corpus D.
P := An empty set of dependency pattern-attribute pairs.
foreach sentence s ∈ D do

foreach triple t = (S,A,O) found in s do
if t ∈ I then

G(s) = dependency parse of s
P ′ = minimal subgraph of G(s)
containing the head tokens of S, A and O
P = Delexicalize(P ′, S, A, O)
P = P ∪ {〈P,A〉}

return P

Attributes: A ={executive chairman}

Seed fact: I = {(Google, executive chairman, Eric Schmidt)}

Sentence: s =“An executive chairman, like Eric Schmidt of Google, wields influence

over company operations.”

An/DET

executive/NNchairman/NN

det
nn

like/IN

prep

Schmidt/NNPpobj Eric/NNPnn

of/IN
prep

Google/NNPpobj

(a)
chairman/NN like/INprep Schmidt/NNPpobj of/INprep Google/NNPpobj

(b)
{A/N} like/INprep {O/N}pobj of/INprep {S/N}pobj

(c)
Figure 3: Dependency pattern generation using seed facts,
corresponding to Algorithm 1: (a) shows the input to the pro-
cedure (dependency parse partially shown); (b) P ′; (c) P .

The procedure iterates over the sentences in the
corpus, looking for matches between a sentence
s and a seed fact f . A sentence s matches f if
s contains (i) the attribute in f , and (ii) phrases in
coreference clusters that map to the same Freebase
IDs as the subject and object of f . When a match
is found, we generate a pattern as follows.

We denote by P ′ the minimal subgraph of the
dependency parse of s containing the head tokens
of the subject, attribute and object (Figure 3 (b)).
We delexicalize the three vertices corresponding
to the head tokens of the subject, attribute and ob-
ject by variables indicating their roles. The POS
tag associated with the attribute token is always a
noun. The subject and object are additionally al-
lowed to have pronouns and adjectives associated
with their tokens. All POS tags corresponding to
nouns are lifted to N, in order to match the vari-
ous types of nouns. We denote the resulting de-
pendency pattern by P and add it to our output,
associated with the matched attribute. We note
that in principle, the vertex corresponding to the
head of the attribute does not need to be delexi-
calized. However, we do this to improve the ef-
ficiency of pattern-matching, since we will often
have patterns for different attributes differing only
at the attribute vertex.

It is important to note that because of the man-
ner in which the roles of subject and object were
assigned during seed fact extraction, the patterns
ReNoun generates clearly show which argument
will take the role of the subject, and which will
take the role of the object. This is in contrast
to previous work such as Ollie (Mausam at al.,
2012), where the assignment depends on the order
in which the arguments are expressed in the sen-
tence from which the fact is being extracted. For
example, from the sentence “Opel was described
as GM’s most successful subsidiary.” and the seed
fact (GM, subsidiary, Opel), the pattern that
ReNoun generates will consistently extract facts
like (BMW, subsidiary, Rolls-Royce), and not
the incorrect inverse, regardless of the relative or-
dering of the two entities in the sentence.

At this point we have dependency patterns ca-
pable of generating more extractions for their seed
fact attributes. For efficient matching, we use the
output of Algorithm 1 to generate a map from de-
pendency patterns to their attributes with entries
like that shown in Figure 4(a). This way, a pat-
tern match can be propagated to all its mapped at-
tributes in one shot, as we explain in Section 5.3.
Finally, we discard patterns that do not pass a sup-
port threshold, where support is the number of dis-
tinct seed facts from which a pattern could be gen-
erated.
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{A/N} like/INprep {O/N}pobj of/INprep {S/N}pobj

attributes: {executive chairman, creative director, ...}
(a)

“An executive chairman, like Steve Chase of AOL, is

responsible for representing the company.”

↓
(AOL, executive chairman, Steve Chase)

(b)

“A creative director, like will.i.am of 3D Systems, may also

be referred to as chief creative officer.”

↓
(3D Systems, creative director, will.i.am)

(c)
Figure 4: A dependency pattern and its use in extraction: (a)
the pattern in our running example and the set of attributes to
which it applies; (b) and (c) sentences matching the pattern
and the resulting extractions.

5.3 Applying the dependency patterns

Given the learned patterns, we can now generate
new extractions. Each match of a pattern against
the corpus will indicate the heads of the poten-
tial subject, attribute and object. The noun phrase
headed by the token matching the {A/N} vertex is
checked against the set of attributes to which the
pattern is mapped. If the noun phrase is found
among these attributes, then a triple (S, A, O) is
constructed from the attribute and the Freebase en-
tities to which the tokens corresponding to the S

and O nodes in the pattern are resolved. This triple
is then emitted as an extraction along with the pat-
tern that generated it. Figure 4(b) and (c) show two
sentences that match the dependency pattern in our
running example and the resulting extractions.

Finally, we aggregate our extractions by their
generated facts. For each fact f , we save the dis-
tinct dependency patterns that yielded f and the
total number of times it was found in the corpus.

6 Scoring extracted facts

In this section we describe how we score the can-
didate facts extracted by applying the dependency
patterns in Section 5. Recall that a fact may be
obtained from multiple extractions, and assigning
scores to each fact (rather than each extraction) en-
ables us to consider all extractions of a fact in ag-
gregate.

We score facts based on the patterns which ex-
tract them. Our scheme balances two character-
istics of a pattern: its frequency and coherence.
Pattern frequency is defined as the number of ex-

has/VBZ
{S/N}nsubj

children/NNS
dobj

with/INprep {A/N}pobj {O/N}appos

attributes: {ex-wife, boyfriend, ex-partner}
frequency(P ) = 574, coherence(P ) = 0.429

Example: “Putin has two children with his ex-wife,

Lyudmila.”

(a)

{A/N} {S/N}nn{O/N} nn

attributes: {ex-wife, general manager, subsidiary,... }
frequency(P ) = 52349038, coherence(P ) = 0.093

Example: “Chelsea F.C. general manager José Mourinho...”

(b)
Figure 5: (a) a coherent pattern extracting facts for semanti-
cally similar attributes and (b) an incoherent pattern.

tractions produced by the pattern. Our first ob-
servation is that patterns with a large number of
extractions are always able to produce correct ex-
tractions (in addition to incorrect ones). We also
observe that generic patterns produce more er-
roneous facts compared to more targeted ones.
To capture this, we introduce pattern coherence,
which reflects how targeted a pattern is based on
the attributes to which it applies. For example,
we observed that if an extraction pattern yields
facts for the coherent set of attributes ex-wife,
boyfriend, and ex-partner, then its output is
consistently good. On the other hand, a pattern
that yields facts for a less coherent set of attributes
ex-wife, general manager, and subsidiary is
more likely to produce noisy extractions. Generic,
more incoherent patterns are more sensitive to
noise in the linguistic annotation of a document.
Figure 5 shows an example pattern for each case,
along with its frequency and coherence.

We capture coherence of attributes using word-
vector representations of attributes that are cre-
ated over large text corpora (Mikolov et al., 2013).
The word-vector representation v(w) for a word
w (multi-word attributes can be preprocessed into
single words) is computed in two steps. First, the
algorithm counts the number of occurrences of a
word w1 that occurs within the text window cen-
tered at w (typically a window of size 10), pro-
ducing an intermediate vector that potentially has
a non-zero value for every word in the corpus.
The intermediate vector is then mapped to a much
smaller dimension (typically less than 1000) to
produce v(w). As shown in (Mikolov et al., 2013),
two words w1 and w2 for which the cosine dis-
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tance between v(w1) and v(w2) is small tend to
be semantically similar. Therefore, a pattern is co-
herent if it applies to attributes deemed similar as
per their word vectors.

Given an extraction pattern P that extracts facts
for a set of attributes A, we define the coherence
of P to be the average pairwise coherence of all at-
tributes inA, where the pairwise coherence of two
attributes a1 and a2 is the cosine distance between
v(a1) and v(a2).

Finally, we compute the score of a fact f by
summing the product of frequency and coherence
for each pattern of f as shown in Equation 1.

S(f) =
∑

P∈Pat(f)
frequency(P )× coherence(P ) (1)

7 Experimental Evaluation

We describe a set of experiments that validate the
contributions of ReNoun. In Sections 7.2 and 7.3
we validate our noun-centric approach: we show
that extractions based on verb phrases cannot yield
the results of ReNoun and that NomBank, the re-
source used by state of the art in semantic role-
labeling for nouns, will not suffice either. In Sec-
tions 7.4-7.6 we evaluate the different components
of ReNoun and its overall quality, and in Sec-
tion 7.7 we discuss the cases in which ReNoun was
unable to extract any facts.

7.1 Setting
We used the fat head (FH) and long tail (LT) at-
tributes and annotated news corpus described in
Section 2. When evaluating facts, we used major-
ity voting among three human judges, unless oth-
erwise noted. The judges were instructed to con-
sider facts with inverted subjects and objects as in-
correct. For example, while (GM, subsidiary,

Opel) is correct, its inverse is incorrect.

7.2 Verb phrases are not enough
State-of-art open information extraction systems
like Ollie (Mausam at al., 2012) assume that a re-
lation worth extracting is expressed somewhere in
verb form. We show this is not the case and jus-
tify our noun-centric approach. In this experiment
we compare ReNoun to a custom implementation
of Ollie that uses the same corpus as ReNoun and
supports multi-word attributes. While Ollie does
try to find relations expressed as nouns, its seed
facts are relations expressed as verbs.

We randomly sampled each of FH and LT for
100 attributes for which ReNoun extracts facts and

ReNoun Ollie
flagship company -
railway minister -
legal affairs correspondent -
spokesperson be spokesperson of
president-elect be president elect of
co-founder be co-founder of

Table 5: ReNoun attributes with and without a corresponding
Ollie relation.

asked a judge to find potentially equivalent Ol-
lie relations. Note that we did not require the
judge to find exactly the same triple (thereby bias-
ing the experiment towards finding more attribute
matches). Furthermore, the judge was instructed
that a verb phrase like advised by should be con-
sidered a match to the ReNoun attribute advisor.
However, looking at the data, most facts involving
the relation advised are not synonymous with the
advisor relation as we think of it (e.g., “Obama
advised Merkel on saving the Euro”). This obser-
vation suggests that there is an even more subtle
difference between the meaning of verb expres-
sions and noun-based expressions in text. This ex-
periment, therefore, gives an upper bound on the
number of ReNoun attributes that Ollie can cover.

For FH, not surprisingly, we could find matches
for 99 of the 100 attributes. However, for LT, only
31 of the 100 attributes could be found, even under
our permissive setting. Most attributes that could
not be matched were multi-word noun phrases.
While in principle, one could use the Ollie patterns
that apply to the head of a multi-word attribute, we
found that we generate more interesting patterns
for specific multi-word attributes. Table 5 shows
examples of attributes with and without verb map-
pings in Ollie.

We also compare in the other direction and esti-
mate the portion of Ollie relations centered around
nouns for which ReNoun fails to extract facts. For
this experiment, we randomly sampled 100 Ollie
relations that contained common nouns whose ob-
jects are concrete values, and looked for equivalent
attributes in ReNoun extractions. ReNoun extracts
facts for 48 of the Ollie relations. Among the 52
relations with no facts, 25 are not in Biperpedia
(which means that ReNoun cannot extract facts for
them no matter what). For the other 27 relations,
ReNoun did not extract facts for the following
reasons. First, some relations expressed actions,
which cannot be expressed using nouns only, and
are not considered attributes describing the subject
entity (e.g., citation of in “Obama’s citation
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of the Bible”). Second, some relations have the
object (a common noun) embedded within them
(e.g., have microphone in) and do not have cor-
responding attributes that can be expressed us-
ing nouns only. The remaining relations either
have meaningless extractions or use common noun
phrases as arguments. ReNoun only uses proper
nouns (i.e., entities) for arguments because facts
with common noun arguments are rarely interest-
ing without more context. We note that the major-
ity of the 25 Ollie relations without corresponding
Biperpedia attributes also fall into one of the three
categories above.

7.3 Comparison against NomBank

In principle, the task of extracting noun-mediated
relations can be compared to that of semantic role
labeling (SRL) for nouns. The task in SRL is to
identify a relation, expressed either through a verb
or a noun, map it to a semantic frame, and map
the arguments of the relation to the various roles
within the frame. State of the art SRL systems,
such as that of Johansson and Nugues (2008), are
trained on NomBank (Meyers et al., 2004) for
handling nominal relations, which also means that
they are limited by the knowledge it has. We asked
a judge to manually search NomBank for 100 at-
tributes randomly drawn from each of FH and LT
for which ReNoun extracts facts. For multi-word
attributes, we declare a match if its head word was
found. We were able to find 80 matches for the
FH attributes and 42 for LT ones. For example,
we could not find entries for the noun attributes
coach or linebacker (of a football team). This
result is easy to explain by the fact that NomBank
only has 4700 attributes.

In addition, for some nouns, the associated
frames do not allow for the extraction of triples.
For example, all frames for the noun member spec-
ify one argument only, so in the sentence “John
became a member of ACM”, the output relation is
(ACM, member) instead of the desired triple (ACM,
member, John).

As we did with Ollie, we also looked at nouns
from NomBank for which ReNoun does not ex-
tract facts. Out of a random sample of 100 Nom-
Bank nouns, ReNoun did not extract facts for
29 nouns (four of which are not in Biperpedia).
The majority of the missed nouns cannot be used
by ReNoun because they either take single ar-
guments (instead of two) or take either preposi-

tional phrases or common nouns (instead of proper
nouns correponding to entities) as one their argu-
ments.

7.4 Quality of seed facts
In Section 4, we described our method for ex-
tracting seed facts for our attributes. Applying
the method to our corpus resulted in 139M extrac-
tions, which boiled down to about 680K unique
facts covering 11319 attributes. We sampled 100
random facts from each of FH and LT, and ob-
tained 65% precision for FH seed facts and 80%
precision for LT ones. This leads us to two obser-
vations.

First, the precision of seed facts for LT attributes
is high, which makes them suitable for use as
a building block in a distant supervision scheme
to learn dependency parse patterns. We are pri-
marily interested in LT attributes, which earlier
approaches cannot deal with satisfactorily as we
demonstrated above.

Second, LT attributes have higher precision than
FH attributes. One reason is that multi-word at-
tributes (which tend to be in LT) are sometimes
incorrectly chunked, and only their head words are
recognized as attributes (which are more likely to
be in FH). For example, in the phrase “America’s
German coach, Klinsmann”, the correct attribute
is German coach (LT), but bad chunking may pro-
duce the attribute coach (FH) with Germany as the
subject. Another reason is that FH attributes are
likely to occur in speculative contexts where the
presence of the attribute is not always an asser-
tion of a fact. (While both FH and LT attributes
can be subject to speculative contexts, we observe
this more for FH than LT in our data.) For ex-
ample, before a person is a railway minister

of a country, there is little mention of her along
with the attribute. However, before a person is
elected president, there is more media about her
candidacy. Speculative contexts, combined with
incorrect linguistic analysis of sentences, can re-
sult in incorrect seed facts (e.g., from “Republi-
can favorite for US president, Mitt Romney, vis-
ited Ohio”, we extract the incorrect seed fact (US,
president, Mitt Romney)).

7.5 Candidate generation
Using the seed facts, we ran our candidate gen-
eration algorithm (Section 5). In the first step of
the algorithm we produced a total of about 2 mil-
lion unique dependency patterns. A third of these
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patterns could extract values for exactly one at-
tribute. Manual inspection of these long tail pat-
terns showed that they were either noise, or do not
generalize. We kept patterns supported by at least
10 seed facts, yielding more than 30K patterns.

We then applied the patterns to the corpus. The
result was over 460M extractions, aggregated into
about 40M unique facts. Of these, about 22M facts
were for LT attributes, and 18M for FH. We now
evaluate the quality of these facts.

7.6 Scoring extracted facts
In Section 6, we presented a scheme for scoring
facts using pattern frequency and coherence. To
show its effectiveness we (i) compare it against
other scoring schemes, and (ii) show the quality
of the top-k facts produced using this scheme, for
various k. To compute coherence, we generated
attribute word vectors using the word2vec2 tool
trained on a dump of Wikipedia.

First, we compare the quality of our scoring
scheme (FREQ COH) with three other schemes as
shown in Table 6. The scheme FREQ is identical
to FREQ COH except that all coherences are set
to 1. PATTERN counts the number of distinct pat-
terns that extract the fact while PATTERN COH
sums the pattern coherences. We generated a ran-
dom sample of 252 FH and LT nouns with no en-
tity disambiguation errors by the underlying nat-
ural language processing pipeline. The justifi-
cation is that none of the schemes we consider
here capture such errors. Accounting for such
errors requires elaborate signals from the entity
linking system, which we leave for future work.
For each scoring scheme, we computed the Spear-
man’s rank correlation coefficient ρ between the
scores and manual judgments (by three judges). A
larger ρ indicates more correlation, and comput-
ing ρ was statistically significant (p-value<0.01)
for all schemes.

Scheme Spearman’s ρ
FREQ 0.486
FREQ COH 0.495
PATTERN 0.265
PATTERN COH 0.257

Table 6: Scoring schemes

FREQ and FREQ COH dominate, which shows
that considering the frequency with which patterns
perform extraction helps. The two schemes, how-
ever, are very close to each other. We observed

2https://code.google.com/p/word2vec/

FH LT
k Precision #Attr Precision #Attr

102 1.00 8 1.00 50
103 0.98 36 1.00 294
104 0.96 78 0.98 1548
105 0.82 106 0.96 5093
106 0.74 124 0.70 7821
All 0.18 141 0.26 11178

Table 7: Precision of random samples of the top-k scoring
facts, along with the attribute yield.

that adding coherence helps when two facts have
similar frequencies, but this effect is tempered
when considering a large number of facts.

Second, we evaluate the scoring of facts gener-
ated by ReNoun by the precision of top-k results
for several values of k. In this evaluation, facts
with disambiguation errors are counted as wrong.
The particular context in which ReNoun is applied
will determine where in the ordering to set the
threshold of facts to consider. We compute pre-
cision based on a sample of 50 randomly chosen
facts for each k. Table 7 shows the precision re-
sults, along with the number of distinct attributes
(#Attr) for which values are extracted at each k.

As we can see, ReNoun is capable of generat-
ing a large number of high quality facts (≥70%
precise at 1M), which our scoring method man-
ages to successfully surface to the top. The ma-
jor sources of error were (i) incorrect dependency
parsing mainly due to errors in boilerplate text re-
moval from news documents, (ii) incorrect coref-
erence resolution of pronouns, (iii) incorrect entity
resolution against Freebase, and (iv) cases where
a triple is not sufficient (e.g., ambassador where
both arguments are countries.)

7.7 Missed extractions

We analyze why ReNoun does not extract facts for
certain attributes. For FH, we investigate all the 77
attributes for which ReNoun is missing facts. For
LT, there are about 50K attributes without corre-
sponding facts, and we use a random sample of
100 of those attributes.

Cause FH LT Example
Vague 23 37 culture
Numeric 4 26 rainfall
Object not KB entity 11 6 email

Plural 30 15 member firms
Bad attribute / misspell 3 4 newsies

Value expected 6 12 nationality

Total 77 100
Table 8: Analysis of attributes with no extractions.
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Table 8 shows the categorization of the missed
attributes. The first three categories are cases that
are currently outside the scope of ReNoun: vague
attributes whose values are long narratives, nu-
meric attributes, and typed attributes (e.g., email)
whose values are not modeled as Freebase enti-
ties. The next two categories are due to limitations
of the ontology, e.g., plural forms of attributes are
not always synonymized with singular forms and
some attributes are bad. Finally, the “Value ex-
pected” category contains the attributes for which
ReNoun should have extracted values. One reason
for missing values is that the corpus itself does not
contain values of all attributes. Another reason is
that some attributes are not verbalized in text. For
example, attributes like nationality are usually
not explicitly stated when expressed in text.

8 Related Work

Open information extraction (OIE) was introduced
by Banko et al. (2007). For a pair of noun phrases,
their system, TEXTRUNNER, looks for the at-
tribute (or more generally the relation) in the text
between them and uses a classifier to judge the
trustworthiness of an extraction. WOEparse (Wu
and Weld, 2010) extends this by using dependency
parsing to connect the subject and object. Both
systems assume that the attribute is between its
two arguments, an assumption that ReNoun drops
since it is not suitable for nominal attributes.

Closest to our work are ReVerb (Fader et al.,
2011) and Ollie (Mausam at al., 2012). ReVerb
uses POS tag patterns to locate verb relations and
then looks at noun phrases to the left and right for
arguments. Ollie uses the ReVerb extractions as
its seeds to train patterns that can further extract
triples. While Ollie’s patterns themselves are not
limited to verb relations (they also support noun
relations), the ReVerb seeds are limited to verbs,
which makes Ollie’s coverage on noun relations
also limited. In comparison, ReNoun take a noun-
centric approach and extracts many facts that do
not exist in Ollie.clo

ClausIE (Del Corro and Gemulla, 2013) is an
OIE framework that exploits knowledge about the
grammar of the English language to find clauses
in a sentence using its dependency parse. The
clauses are subsequently used to generate extrac-
tions at multiple granularities, possibly with more
than triples. While ClausIE comes with a prede-
fined set of rules on how to extract facts from a

dependency parse, ReNoun learns such rules from
its seed facts.

Finally, Nakashole et al. (2014) and Mintz et al.
(2009) find additional facts for attributes that al-
ready have facts in a knowledge base. In contrast,
ReNoun is an OIE framework whose goal is to find
facts for attributes without existing facts.

9 Conclusions

We described ReNoun, an open information ex-
traction system for nominal attributes that focuses
on the long tail. The key to our approach is to start
from a large ontology of nominal attributes and ap-
ply noun-specific manual patterns on a large pre-
processed corpus (via standard NLP components)
to extract precise seed facts. We then learn a set of
dependency patterns, which are used to generate a
much larger set of candidate facts. We proposed a
scoring function for filtering candidate facts based
on pattern frequency and coherence. We demon-
strated that the majority of long tail attributes in
ReNoun do not have corresponding verbs in Ol-
lie. Finally, our experiments show that our scor-
ing function is effective in filtering candidate facts
(top-1M facts are ≥70% precise).

In the future, we plan to extend ReNoun to ex-
tract triples whose components are not limited to
Freebase IDs. As an example, extending ReNoun
to handle numerical or typed attributes would in-
volve extending our extraction pattern learning
to accommodate units (e.g., kilograms) and other
special data formats (e.g., addresses).
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Abstract

Text-based document geolocation is com-
monly rooted in language-based infor-
mation retrieval techniques over geodesic
grids. These methods ignore the natural
hierarchy of cells in such grids and fall
afoul of independence assumptions. We
demonstrate the effectiveness of using lo-
gistic regression models on a hierarchy of
nodes in the grid, which improves upon
the state of the art accuracy by several
percent and reduces mean error distances
by hundreds of kilometers on data from
Twitter, Wikipedia, and Flickr. We also
show that logistic regression performs fea-
ture selection effectively, assigning high
weights to geocentric terms.

1 Introduction

Document geolocation is the identification of the
location—a specific latitude and longitude—that
forms the primary focus of a given document. This
assumes that a document can be adequately associ-
ated with a single location, which is only valid for
certain documents, generally of fairly small size.
Nonetheless, there are many natural situations in
which such collections arise. For example, a great
number of articles in Wikipedia have been man-
ually geotagged; this allows those articles to ap-
pear in their geographic locations in geobrowsers
like Google Earth. Images in social networks such
as Flickr may be geotagged by a camera and their
textual tags can be treated as documents. Like-
wise, tweets in Twitter are often geotagged; in this
case, it is possible to view either an individual
tweet or the collection of tweets for a given user
as a document, respectively identifying the loca-
tion as the place from which the tweet was sent or
the home location of the user.

Early work on document geolocation used
heuristic algorithms, predicting locations based on

toponyms in the text (named locations, determined
with the aid of a gazetteer) (Ding et al., 2000;
Smith and Crane, 2001). More recently, vari-
ous researchers have used topic models for doc-
ument geolocation (Ahmed et al., 2013; Hong et
al., 2012; Eisenstein et al., 2011; Eisenstein et
al., 2010) or other types of geographic document
summarization (Mehrotra et al., 2013; Adams and
Janowicz, 2012; Hao et al., 2010). A number of
researchers have used metadata of various sorts
for document or user geolocation, including doc-
ument links and social network connections. This
research has sometimes been applied to Wikipedia
(Overell, 2009) or Facebook (Backstrom et al.,
2010) but more commonly to Twitter, focusing
variously on friends and followers (McGee et al.,
2013; Sadilek et al., 2012), time zone (Mahmud et
al., 2012), declared location (Hecht et al., 2011),
or a combination of these (Schulz et al., 2013).

We tackle document geolocation using super-
vised methods based on the textual content of
documents, ignoring their metadata. Metadata-
based approaches can achieve great accuracy (e.g.
Schulz et al. (2013) obtain 79% accuracy within
100 miles for a US-based Twitter corpus, com-
pared with 49% using our methods on a compa-
rable corpus), but are very specific to the partic-
ular corpus and the types of metadata it makes
available. For Twitter, the metadata includes the
user’s declared location and time zone, infor-
mation which greatly simplifies geolocation and
which is unavailable for other types of corpora,
such as Wikipedia. In many cases essentially no
metadata is available at all, as in historical corpora
in the digital humanities (Lunenfeld et al., 2012),
such as those in the Perseus project (Crane, 2012).
Text-based approaches can be applied to all types
of corpora; metadata can be additionally incorpo-
rated when available (Han and Cook, 2013).

We introduce a hierarchical discriminative clas-
sification method for text-based geotagging. We
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apply this to corpora in three languages (English,
German and Portuguese). This method scales
well to large training sets and greatly improves
results across a wide variety of corpora, beat-
ing current state-of-the-art results by wide mar-
gins, including Twitter users (Han et al., 2014,
henceforth Han14; Roller et al., 2012, henceforth
Roller12); Wikipedia articles (Roller12; Wing and
Baldridge, 2011, henceforth WB11); and Flickr
images (O’Hare and Murdock, 2013, henceforth
OM13). Importantly, this is the first method that
improves upon straight uniform-grid Naive Bayes
on all of these corpora, in contrast with k-d trees
(Roller12) and the current state-of-the-art tech-
nique for Twitter users of geographically-salient
feature selection (Han14).

We also show, contrary to Han14, that logistic
regression when properly optimized is more ac-
curate than state-of-the-art techniques, including
feature selection, and fast enough to run on large
corpora. Logistic regression itself very effectively
picks out words with high geographic significance.
In addition, because logistic regression does not
assume feature independence, complex and over-
lapping features of various sorts can be employed.

2 Data

We work with six large datasets: two of geotagged
tweets, three of Wikipedia articles, and one of
Flickr photos. One of the two Twitter datasets is
primarily localized to the United States, while the
remaining datasets cover the whole world.

TWUS is a dataset of tweets compiled by
Roller12. A document in this dataset is the con-
catenation of all tweets by a single user, as long
as at least one of the user’s tweets is geotagged
with specific, GPS-assigned latitude/longitude co-
ordinates. The earliest such tweet determines the
user’s location. Tweets outside of a bounding box
covering the contiguous United States (including
parts of Canada and Mexico) were discarded, as
well as users that may be spammers or robots
(based on the number of followers, followees and
tweets). The resulting dataset contains 38M tweets
from 450K users, of which 10,000 each are re-
served for the development and test sets.

TWWORLD is a dataset of tweets compiled by
Han et al. (2012). It was collected in a simi-
lar fashion to TWUS but differs in that it covers
the entire Earth instead of primarily the United
States, and consists only of geotagged tweets.

Non-English tweets and those not near a city were
removed, and non-alphabetic, overly short and
overly infrequent words were filtered. The result-
ing dataset consists of 1.4M users, with 10,000
each reserved for the development and test sets.

ENWIKI13 is a dataset consisting of the 864K
geotagged articles (out of 14M articles in all) in
the November 4, 2013 English Wikipedia dump.
It is comparable to the dataset used in WB11 and
was processed using an analogous fashion. The
articles were randomly split 80/10/10 into training,
development and test sets.

DEWIKI14 is a similar dataset consisting of the
324K geotagged articles (out of 1.71M articles in
all) in the July 5, 2014 German Wikipedia dump.

PTWIKI14 is a similar dataset consisting of the
131K geotagged articles (out of 817K articles in
all) in the June 24, 2014 Portuguese Wikipedia
dump.

COPHIR (Bolettieri et al., 2009) is a large
dataset of images from the photo-sharing social
network Flickr. It consists of 106M images, of
which 8.7M are geotagged. Most images contain
user-provided tags describing them. We follow al-
gorithms described in OM13 in order to make di-
rect comparison possible. This involves removing
photos with empty tag sets and performing bulk
upload filtering, retaining only one of a set of pho-
tos from a given user with identical tag sets. The
resulting reduced set of 2.8M images is then di-
vided 80/10/10 into training, development and test
sets. The tag set of each photo is concatenated into
a single piece of text (in the process losing user-
supplied tag boundary information in the case of
multi-word tags).

Our code and processed corpora are available
for download.1

3 Supervised models for document
geolocation

The dominant approach for text-based geolocation
comes from language modeling approaches in in-
formation retrieval (Ponte and Croft, 1998; Man-
ning et al., 2008). For this general strategy, the
Earth is sub-divided into a grid, and then each
training set document is associated with the cell
that contains it. Some model (typically Naive
Bayes) is then used to characterize each cell and

1https://github.com/utcompling/
textgrounder/wiki/WingBaldridge_
EMNLP2014
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enable new documents to be assigned a latitude
and longitude based on those characterizations.
There are several options for constructing the grid
and for modeling, which we review next.

3.1 Geodesic grids

The simplest grid is a uniform rectangular one
with cells of equal-sized degrees, which was used
by Serdyukov et al. (2009) for Flickr images and
WB11 for Twitter and Wikipedia. This has two
problems. Compared to a grid that takes document
density into account, it over-represents rural areas
at the expense of urban areas. Furthermore, the
rectangles are not equal-area, but shrink in width
away from the equator (although the shrinkage is
mild until near the poles). Roller12 tackle the for-
mer issue by using an adaptive grid based on k-d
trees, while Dias et al. (2012) handle the latter is-
sue with an equal-area quaternary triangular mesh.

An additional issue with geodesic grids is that
a single metro area may be divided between two
or more cells. This can introduce a statistical
bias known as the modifiable areal unit problem
(Gehlke and Biehl, 1934; Openshaw, 1983). One
way to mitigate this, implemented in Roller12’s
code but not investigated in their paper, is to di-
vide a cell in a k-d tree in such a way as to pro-
duce the maximum margin between the dividing
line and the nearest document on each side.

A more direct method is to use a city-based rep-
resentation, either with a full set of sufficiently-
sized cities covering the Earth and taken from
a comprehensive gazetteer (Han14) or a limited,
pre-specified set of cities (Kinsella et al., 2011;
Sadilek et al., 2012). Han14 amalgamate cities
into nearby larger cities within the same state (or
equivalent); an even more direct method would
use census-tract boundaries when available. Dis-
advantages of these methods are the dependency
on time-specific population data, making them un-
suitable for some corpora (e.g. 19th-century doc-
uments); the difficulty in adjusting grid resolution
in a principled fashion; and the fact that not all
documents are near a city (Han14 find that 8% of
tweets are “rural” and cannot predicted by their
model).

We construct rectangular grids, since they are
very easy to implement and Dias et al. (2012)’s
triangular mesh did not yield consistently better
results over Wikipedia. We use both uniform grids
and k-d tree grids with midpoint splitting.

3.2 Naive Bayes

A geodesic grid of sufficient granularity creates a
large decision space, when each cell is viewed as
a label to be predicted by some classifier. This
situation naturally lends itself to simple, scalable
language-modeling approaches. For this general
strategy, each cell is characterized by a pseudo-
document constructed from the training docu-
ments that it contains. A test document’s location
is then chosen based on the cell with the most sim-
ilar language model according to standard mea-
sures such as Kullback-Leibler (KL) divergence
(Zhai and Lafferty, 2001), which seeks the cell
whose language model is closest to the test doc-
ument’s, or Naive Bayes (Lewis, 1998), which
chooses the cell that assigns the highest probabil-
ity to the test document.

Han14, Roller12 and WB11 follow this strat-
egy, using KL divergence in preference to Naive
Bayes. However, we find that Naive Bayes in con-
junction with Dirichlet smoothing (Smucker and
Allan, 2006) works at least as well when appropri-
ately tuned. Dirichlet smoothing is a type of dis-
counting model that interpolates between the un-
smoothed (maximum-likelihood) document distri-
bution θ̃di of a document di and the unsmoothed
distribution θ̃D over all documents. A general
interpolation model for the smoothed distribution
θdi has the following form:

P (w|θdi) = (1− λdi)P (w|θ̃di) + λdiP (w|θ̃D) (1)

where the discount factor λdi indicates how much
probability mass to reserve for unseen words. For
Dirichlet smoothing, λdi is set as:

λdi = 1− |di|
|di|+m

(2)

where |di| is the size of the document and m is
a tunable parameter. This has the effect of re-
lying more on di’s distribution and less on the
global distribution for larger documents that pro-
vide more evidence than shorter ones. Naive
Bayes models are estimated easily, which allows
them to handle fine-scale grid resolutions with po-
tentially thousands or even hundreds of thousands
of non-empty cells to choose among.

Figure 1 shows a choropleth map of the behav-
ior of Naive Bayes, plotting the rank of cells for
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Figure 1: Relative Naive Bayes rank of cells for
ENWIKI13 test document Pennsylvania Avenue
(Washington, DC), surrounding the true location.

the test document Pennsylvania Avenue (Washing-
ton, DC) in ENWIKI13, for a uniform 0.1◦ grid.
The top-ranked cell is the correct one.

3.3 Logistic regression

The use of discrete cells over the Earth’s sur-
face allows any classification strategy to be em-
ployed, including discriminative classifiers such as
logistic regression. Logistic regression often pro-
duces produces better results than generative clas-
sifiers at the cost of more time-consuming train-
ing, which limits the size of the problems it may
be applied to. Training is generally unable to scale
to encompass several thousand or more distinct la-
bels, as is the case with fine-scale grids of the sort
we may employ. Nonetheless we find flat logis-
tic regression to be effective on most of our large-
scale corpora, and the hierarchical classification
strategy discussed in §4 allows us to take advan-
tage of logistic regression without incurring such
a high training cost.

3.4 Feature selection

Naive Bayes assumes that features are indepen-
dent, which penalizes models that must accom-
modate many features that are poor indicators and
which can gang up on the good features. Large
improvements have been obtained by reducing
the set of words used as features to those that
are geographically salient. Cheng et al. (2010;
2013) model word locality using a unimodal dis-
tribution taken from Backstrom et al. (2008) and
train a classifier to identify geographically lo-
cal words based on this distribution. This un-
fortunately requires a large hand-annotated cor-

pus for training. Han14 systematically investi-
gate various feature selection methods for find-
ing geo-indicative words, such as information gain
ratio (IGR) (Quinlan, 1993), Ripley’s K statis-
tic (O’Sullivan and Unwin, 2010) and geographic
density (Chang et al., 2012), showing significant
improvements on TWUS and TWWORLD (§2).

For comparison with Han14, we test against
an additional baseline: Naive Bayes combined
with feature selection done using IGR. Following
Han14, we first eliminate words which occur less
than 10 times, have non-alphabetic characters in
them or are shorter than 3 characters. We then
compute the IGR for the remaining words across
all cells at a given cell size or bucket size, select
the top N% for some cutoff percentage N (which
we vary in increments of 2%), and then run Naive
Bayes at the same cell size or bucket size.

4 Hierarchical classification

To overcome the limitations of discriminative clas-
sifiers in terms of the maximum number of cells
they can handle, we introduce hierarchical classifi-
cation (Silla Jr. and Freitas, 2011) for geolocation.
Dias et al. (2012) use a simple two-level genera-
tive hierarchical approach using Naive Bayes, but
to our knowledge no previous work implements a
multi-level discriminative hierarchical model with
beam search for geolocation.

To construct the hierarchy, we start with a root
cell croot that spans the entire Earth and from there
build a tree of cells at different scales, from coarse
to fine. A cell at a given level is subdivided to
create smaller cells at the next level of resolution
that altogether cover the same area as their parent.

We use the local classifier per parent approach
to hierarchical classification (Silla Jr. and Fre-
itas, 2011) in which an independent classifier is
learned for every node of the hierarchy above the
leaf nodes. The probability of any node in the hi-
erarchy is the product of the probabilities of that
node and all of its ancestors, up to the root. This
is defined recursively as:

P (croot) = 1.0
P (cj) = P (cj |↑cj)P (↑cj) (3)

where ↑cj indicates cj’s parent in the hierarchy.
In addition to allowing one to use many classi-

fiers that each have a manageable number of out-
comes, the hierarchical approach naturally lends
itself to beam search. Rather than computing the
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probability of every leaf cell using equation 3, we
use a stratified beam search: starting at the root
cell, keep the b highest-probability cells at each
level until reaching the leaf node level. With a
tight beam—which we show to be very effective—
this dramatically reduces the number of model
evaluations that must be performed at test time.

Grid size parameters Two factors determine
the size of the grids at each level. The first-level
grid is constructed the same as for Naive Bayes
or flat logistic regression and is controlled by its
own parameter. In addition, the subdivision factor
N determines how we subdivide each cell to get
from one level to the next. Both factors must be
optimized appropriately.

For the uniform grid, we subdivide each cell
intoNxN subcells. In practice, there may actually
be fewer subcells, because some of the potential
subcells may be empty (contain no documents).

For the k-d grid, if level 1 is created using a
bucket size B (i.e. we recursively divide cells as
long as their size exceeds B), then level 2 is cre-
ated by continuing to recursively divide cells that
exceed a smaller bucket size B/N . At this point,
the subcells of a given level-1 cell are the leaf cells
contained with the cell’s geographic area. The
construction of level 3 proceeds similarly using
bucket size B/N2, etc.

Note that the subdivision factor has a different
meaning for uniform and k-d tree grids. Further-
more, because creating the subdividing cells for a
given cell involves dividing by N2 for the uniform
grid but N for the k-d tree grid, greater subdivi-
sion factors are generally required for the k-d tree
grid to achieve similar-scale resolution.

Figure 2 shows the behavior of hierarchical LR
using k-d trees for the test document Pennsylva-
nia Avenue (Washington, DC) in ENWIKI13. Af-
ter ranking the first level, the beam zooms in on
the top-ranked cells and constructs a finer k-d tree
under each one (one such subtree is shown in the
top-right map callout).

5 Experimental Setup

Configurations. We experiment with several
methods for configuring the grid and selecting the
best cell. For grids, we use either a uniform or
k-d tree grid. For uniform grids, the main tunable
parameter is grid size (in degrees), while for k-d
trees it is bucket size (BK), i.e. the number of doc-
uments above which a node is divided in two.

Figure 2: Relative hierarchical LR rank of cells
for ENWIKI13 test document Pennsylvania Av-
enue (Washington, DC), surrounding the true lo-
cation. The first callout simply expands a portion
of level 1, while the second callout shows a level
1 cell subdivided down to level 2.

For cell choice, the options are:
• NB: Naive Bayes baseline
• IGR: Naive Bayes using features selected by

information gain ratio
• FlatLR: logistic regression model over all

leaf nodes
• HierLR: product of logistic regression mod-

els at each node in a hierarchical grid (eq. 3)
For Dirichlet smoothing in conjunction with Naive
Bayes, we set the Dirichlet parameter m =
1, 000, 000, which we found worked well in pre-
liminary experiments. For hierarchical classifica-
tion, there are additional parameters: subdivision
factor (SF) and beam size (BM) (§4), and hierar-
chy depth (D) (§6.4). All of our test-set results use
a depth of three levels.

Due to its speed and flexibility, we use Vowpal
Wabbit (Agarwal et al., 2014) for logistic regres-
sion, estimating parameters with limited-memory
BFGS (Nocedal, 1980; Byrd et al., 1995). Unless
otherwise mentioned, we use 26-bit feature hash-
ing (Weinberger et al., 2009) and 40 passes over
the data (optimized based on early experiments on
development data) and turn off the hold-out mech-
anism. For the subcell classifiers in hierarchical
classification, which have fewer classes and much
less data, we use 24-bit features and 12 passes.

Evaluation. To measure geolocation perfor-
mance, we use three standard metrics based on er-
ror distance, i.e. the distance between the correct
location and the predicted location. These metrics
are mean and median error distance (Eisenstein et
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al., 2010) and accuracy at 161 km (acc@161), i.e.
within a 161-km radius, which was introduced by
Cheng et al. (2010) as a proxy for accuracy within
a metro area. All of these metrics are indepen-
dent of cell size, unlike the measure of cell accu-
racy (fraction of cells correctly predicted) used in
Serdyukov et al. (2009). Following Han14, we use
acc@161 on development sets when choosing al-
gorithmic parameter values such as cell and bucket
sizes.

6 Results

6.1 Twitter

We show the effect of varying cell size in Table 1
and k-d tree bucket size in Figure 3. The number
of non-empty cells is shown for each cell size and
bucket size. For NB, this is the number of cells
against which a comparison must be made for each
test document; for FlatLR, this is the number of
classes that must be distinguished. For HierLR, no
figure is given because it varies from level to level
and from classifier to classifier. For example, with
a uniform grid and subdivision factor of 3, each
level-2 subclassifier will have between 1 and 9 la-
bels to choose among, depending on which cells
are empty.

Method
Cell Size #Class Acc. Mean Med.

(Deg) (km) @161 (km) (km)

NB
0.17◦ 11,671 36.6 929.5 496.4
0.50◦ 2,838 35.4 889.3 466.6

IGR, CU90% 1.5◦ 501 45.9 787.5 255.6

FlatLR

5◦ 556 59 35.4 727.8 248.7
4◦ 445 99 44.4 718.8 227.9
3◦ 334 159 47.3 721.3 186.2

2.5◦ 278 208 47.5 743.9 198.9
2◦ 223 316 46.9 737.7 209.9

1.5◦ 167 501 46.6 762.6 226.9
1◦ 111 975 43.0 810.0 303.7

HierLR, D2, SF2, BM5 4◦ – – 48.6 695.2 182.2
HierLR, D2, SF2, BM2 3◦ – – 49.0 725.1 174.6
HierLR, D3, SF2, BM2 3◦ – – 49.0 718.9 173.8
HierLR, D2, SF2, BM5 2.5◦ – – 48.2 740.9 187.7

Table 1: Dev set performance for TWUS, with
uniform grids. HierLR and IGR parameters op-
timized using acc@161. Best metric numbers for
a given method are underlined, except that overall
best numbers are in bold.

FlatLR does much better than NB and IGR, and
HierLR is still better. This is despite logistic re-
gression needing to operate at a much lower res-
olution.2 Interestingly, uniform-grid 2-level Hi-
erLR does better at 4◦ with a subdivision factor

2The limiting factor for resolution for us was the 24-hour
per job limit on our computing cluster.
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Figure 3: Dev set performance for TWUS, with
k-d tree grids.

of 2 than the equivalent FlatLR run at 2◦.
Table 2 shows the test set results for the vari-

ous methods and metrics described in §5, on both
TWUS and TWWORLD.3 HierLR is the best
across all metrics; the best acc@161km and me-
dian error is obtained with a uniform grid, while
HierLR with k-d trees obtains the best mean error.

Compared with vanilla NB, our implementa-
tion of NB using IGR feature selection obtains
large gains for TWUS and moderate gains for
TWWORLD, showing that IGR can be an effec-
tive geolocation method for Twitter. This agrees
in general with Han14’s findings. We can only
compare our figures directly with Han14 for k-d
trees—in this case they use a version of the same
software we use and report figures within 1% of
ours for TWUS. Their remaining results are com-
puted using a city-based grid and an NB imple-
mentation with add-one smoothing, and are signif-
icantly worse than our uniform-grid NB and IGR
figures using Dirichlet smoothing, which is known
to significantly outperform add-one smoothing
(Smucker and Allan, 2006). For example, for NB
they report 30.8% acc@161 for TWUS and 20.0%
for TWWORLD, compared with our 36.2% and
30.2% respectively. We suspect an additional rea-
son for the discrepancy is due to the limitations of
their city-based grid, which has no tunable param-
eter to optimize the grid size and requires that test
instances not near a city be reported as incorrect.

Our NB figures also beat the KL divergence fig-
ures reported in Roller12 for TWUS (which they
term UTGEO2011), perhaps again due to the dif-

3Note that for TWWORLD, it was necessary to modify
the parameters normally passed to Vowpal Wabbit, moving
up to 27-bit features and 96 passes, and 24-bit features with
24 passes in sublevels of HierLR.
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Corpus TWUS TWWORLD

Method Parameters A@161 Mean Med. Parameters A@161 Mean Med.
NB Uniform 0.17◦ 36.2 913.8 476.3 1◦ 30.2 1690.0 537.2
NB k-d BK1500 36.2 861.4 444.2 BK500 28.7 1735.0 566.2
IGR Uniform 1.5◦, CU90% 46.1 770.3 233.9 1◦, CU90% 31.0 2204.8 574.7
IGR k-d BK2500, CU90% 44.6 792.0 268.6 BK250, CU92% 29.4 2369.6 655.0
FlatLR Uniform 2.5◦ 47.2 727.3 195.4 3.7◦ 32.1 1736.3 500.0
FlatLR k-d BK4000 47.4 692.2 197.0 BK12000 27.8 1939.5 651.6
HierLR Uniform 3◦, SF2, BM2 49.2 703.6 170.5 5◦, SF2, BM1 32.7 1714.6 490.0
HierLR k-d BK4000, SF3, BM1 48.0 686.6 191.4 BK60000, SF5, BM1 31.3 1669.6 509.1

Table 2: Performance on the test sets of TWUS and TWWORLD for different methods and metrics.

ference in smoothing methods.

6.2 Wikipedia

Table 3 shows results on the test set of ENWIKI13
for various methods. Table 5 shows the corre-
sponding results for DEWIKI14 and PTWIKI14.
In all cases, the best parameters for each method
were determined using acc@161 on the develop-
ment set, as above.
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Figure 4: Plot of subdivision factor vs. acc@161
for the ENWIKI13 dev set with 2-level k-d tree
HierLR, bucket size 1500. Beam sizes above 2
yield little improvement.

HierLR is clearly the stand-out winner among
all methods and metrics, and particularly so for the
k-d tree grid. This is achieved through a high sub-
division factor, especially in a 2-level hierarchy,
where a factor of 36 is best, as shown in Figure 4
for ENWIKI13. (For a 3-level hierarchy, the best
subdivision factor is 12.)

Unlike for TWUS, FlatLR simply cannot com-

Method Param #Class A@161 Med. Runtime

FlatLR
Uniform

10◦ 648 19.2 314.1 11h
8.5◦ 784 26.5 248.5 16h
7.5◦ 933 30.1 232.0 19h

FlatLR
k-d

BK5000 257 57.1 133.5 5h
BK2500 501 67.5 94.9 9h
BK1500 825 74.7 69.9 16h

HierLR
Uniform

7.5◦,SF2,BM1 — 85.2 67.8 23h
7.5◦,SF3,BM5 — 86.1 34.2 27h

HierLR
k-d

BK1500,SF5,BM1 — 88.2 19.6 23h
BK5000,SF10,BM5 — 88.4 18.3 14h
BK1500,SF12,BM2 — 88.8 15.3 33h

Table 4: Performance/runtime for FlatLR and 3-
level HierLR on the ENWIKI13 dev set, with vary-
ing parameters.

pete with NB in the larger Wikipedias (ENWIKI13
and DEWIKI14). ENWIKI13 especially has dense
coverage across the entire world, whereas TWUS
only covers the United States and parts of Canada
and Mexico. Thus, there are a much larger num-
ber of non-empty cells at a given resolution and
much coarser resolution required, especially with
the uniform grid. For example, at 7.5◦ there are
933 non-empty cells, comparable to 1◦ for TWUS.
Table 4 shows the number of classes and runtime
for FlatLR and HierLR at different parameter val-
ues. The hierarchical classification approach is
clearly essential for allowing us to scale the dis-
criminative approach for a large, dense dataset
across the whole world.

Moving from larger to smaller Wikipedias,
FlatLR becomes more competitive. In particular,
FlatLR outperforms NB and is close to HierLR for
PTWIKI14, the smallest of the three (and signifi-
cantly smaller than TWUS). In this case, the rel-
atively small size of the dataset and its greater ge-
ographic specificity (many articles are located in
Brazil or Portugal) allows for a fine enough reso-
lution to make FlatLR perform well—comparable
to or even finer than NB.

In all of the Wikipedias, NB k-d outperforms
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Corpus ENWIKI13 COPHIR
Method Parameters A@161 Mean Med. Parameters A@161 Mean Med.
NB Uniform 1.5◦ 84.0 326.8 56.3 1.5◦ 65.0 1553.5 47.9
NB k-d BK100 84.5 362.3 21.1 BK3500 58.5 1726.9 70.0
IGR Uniform 1.5◦, CU96% 81.4 401.9 58.2 1.5◦, CU92% 60.8 1683.4 56.7
IGR k-d BK250, CU98% 80.6 423.9 34.3 BK1500, CU62% 54.7 2908.8 83.5
FlatLR Uniform 7.5◦ 25.5 1347.8 259.4 2.0◦ 60.6 1942.3 73.7
FlatLR k-d BK1500 74.8 253.2 70.0 BK3000 57.7 1961.4 72.5
HierLR Uniform 7.5◦, SF3, BM5 86.2 228.3 34.0 7◦, SF4, BM5 65.3 1590.2 16.7
HierLR k-d BK1500, SF12, BM2 88.9 168.7 15.3 BK100000, SF15, BM5 66.0 1453.3 17.9

Table 3: Performance on the test sets of ENWIKI13 and COPHIR for different methods and metrics.

NB uniform, and HierLR outperforms both, but
by greatly varying amounts, with only a 1% differ-
ence for DEWIKI14 but 12% for PTWIKI14. It’s
unclear what causes these variations, although it’s
worth noting that Roller12’s NB k-d figures on an
older English Wikipedia corpus were are notice-
ably higher than our figures: They report 90.3%
acc@161, compared with our 84.5%. We verified
that this is due to corpus differences: we obtain
their performance when we run on their Wikipedia
corpus. This suggests that the various differences
may be due to vagaries of the individual corpora,
e.g. the presence of differing numbers of geo-
tagged stub articles, which are very short and thus
hard to geolocate.

As for IGR, though it is competitive for Twitter,
it performs badly here—in fact, it is even worse
than plain Naive Bayes for all three Wikipedias
(likewise for COPHIR, in the next section).

6.3 CoPhIR

Table 3 shows results on the test set of COPHIR
for various methods, similarly to the ENWIKI13
results. HierLR is again the clear winner. Unlike
for ENWIKI13, FlatLR is able to do fairly well.
IGR performs poorly, especially when combined
with k-d.

In general, as can be seen, for COPHIR the
median figures are very low but the mean figures
very high, meaning there are many images that can
be very accurately placed while the remainder are
very difficult to place. (The former images likely
have the location mentioned in the tags, while the
latter do not.)

For COPHIR, and also TWWORLD, HierLR
performs best when the root level is significantly
coarser than the cell or bucket size that is best for
FlatLR. The best setting for the root level appears
to be correlated with cell accuracy, which in gen-
eral increases with larger cell sizes. The intuition

here is that HierLR works by drilling down from
a single top-level child of the root cell. Thus, the
higher the cell accuracy, the greater the fraction
of test instances that can be improved in this fash-
ion, and in general the better the ultimate values
of the main metrics. (The above discussion isn’t
strictly true for beam sizes above 1, but these tend
to produce marginal improvements, with little if
any gain from going above a beam size of 5.) The
large size of a coarse root-child cell, and corre-
spondingly poor results for acc@161, can be off-
set by a high subdivision factor, which does not
materially slow down the training process.

Our NB results are not directly comparable with
OM13’s results on COPHIR because they use var-
ious cell-based accuracy metrics while we use
cell-size-independent metrics. The closest to our
acc@161 metric is their Ac1 metric, which at a
cell size of 100 km corresponds to a 300km-per-
side square at the equator, roughly comparable to
our 161-km-radius circle. They report Ac1 figures
of 57.7% for term frequency and 65.3% for user
frequency, which counts the number of distinct
users in a cell using a given term and is intended to
offset bias resulting from users who upload a large
batch of similar photos at a given location. Our
term frequency figure of 65.0% significantly beats
theirs, but we found that user frequency actually
degraded our dev set results by 5%. The reason
for this discrepancy is unclear.

6.4 Parameterization variations

Optimizing for median. Note that better values
for the other metrics, especially median, can be
achieved by specifically optimizing for these met-
rics. In general, the best parameters for median
are finer-scale than those for acc@161: smaller
grid sizes and bucket sizes, and greater subdivision
factors. This is especially revealing in ENWIKI13
and COPHIR. For example, on the ENWIKI13
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Corpus DEWIKI14 PTWIKI14
Method Parameters A@161 Mean Med. Parameters A@161 Mean Med.
NB Uniform 1◦ 88.4 257.9 35.0 1◦ 76.6 470.0 48.3
NB k-d BK25 89.3 192.0 7.6 BK100 77.1 325.0 45.9
IGR Uniform 2◦, CU82% 87.1 312.9 68.2 2◦, CU54% 71.3 594.6 89.4
IGR k-d BK50, CU100% 86.0 226.8 10.9 BK100, CU100% 71.3 491.9 57.7
FlatLR Uniform 5◦ 55.1 340.4 150.1 2◦ 88.9 320.0 70.8
FlatLR k-d BK350 82.0 193.2 24.5 BK25 86.8 320.8 30.0
HierLR Uniform 7◦, SF3, BM5 88.5 184.8 30.0 7◦, SF2, BM5 88.6 223.5 64.7
HierLR k-d BK3500, SF25, BM5 90.2 122.5 8.6 BK250, SF12, BM2 89.5 186.6 27.2

Table 5: Performance on the test sets of DEWIKI14 and PTWIKI14 for different methods and metrics.

dev set, the “best” uniform NB parameter of 1.5◦,
as optimized on acc@161, yields a median error
of 56.1 km, but an error of just 16.7 km can be
achieved with the parameter setting 0.25◦ (which,
however, drops acc@161 from 83.8% to 78.3%
in the process). Similarly, for the COPHIR dev
set, the optimized uniform 2-level HierLR median
error of 46.6 km can be reduced to just 8.1 km
by dropping from 7◦ to 3.5◦ and bumping up the
subdivision factor from 4 to 35—again, causing a
drop in acc@161 from 68.6% to 65.5%.

Hierarchy depth. We use a 3-level hierarchy
throughout for the test set results. Evaluation on
development data showed that 2-level hierarchies
perform comparably for several data sets, but are
less effective overall. We did not find improve-
ments from using more than three levels. When
using a simple local classifier per parent approach
as we do, which chains together spines of related
but independently trained classifiers when assign-
ing a probability to a leaf cell, most of the ben-
efit presumably comes from simply enabling lo-
gistic regression to be used with fine-grained leaf
cells, overcoming the limitations of FlatLR. Fur-
ther benefits of the hierarchical approach might be
achieved with the data-biasing and bottom-up er-
ror propagation techniques of Bennett and Nguyen
(2009) or the hierarchical Bayesian approach of
Gopal et al. (2012), which is able to handle large-
scale corpora and thousands of classes.

6.5 Feature Selection

The main focus of Han14 is identifying geograph-
ically salient words through feature selection. Lo-
gistic regression performs feature selection natu-
rally by assigning higher weights to features that
better discriminate among the target classes.

Table 6 shows the top 20 features ranked by fea-
ture weight for a number of different cells, labeled

by the largest city in the cell. The features were
produced using a uniform 5◦ grid, trained using
27-bit features and 40 passes over TWUS. The
high number of bits per feature were chosen to en-
sure as few collisions as possible of different fea-
tures (as it would be impossible to distinguish two
words that were hashed together).

Most words are clearly region specific, con-
sisting of cities, states and abbreviations, sports
teams (broncos, texans, niners, saints), well-
known streets (bourbon, folsom), characteristic
features (desert, bayou, earthquake, temple), local
brands (whataburger, soopers, heb), local foods
(gumbo, poutine), and dialect terms (hella, buku).

Top-IGR words Bottom-IGR words
lockerby presswiches plan times
killdeer haubrich party end
fordville yabbo men twitter
azilda presswich happy full
ahauah pozuelo show part
hutmacher akeley top forget
cere chewelah extra close
miramichi computacionales late dead
alamosa bevilacqua facebook cool
multiservicios presswiche friday enjoy
ghibran curtisinn black true
briaroaks guymon dream found
joekins dakotamart hey drink
numerica missoula face pay
bemidji mimbres finally meet
amn shingobee easy lost
roug gottsch time find
pbtisd uprr live touch
marcenado hesperus wow birthday
banerjee racingmason yesterday ago

Table 7: Top and bottom 40 features selected using
IGR for TWUS with a uniform 1.5◦ grid.

As a comparison, Table 7 shows the top and bot-
tom 40 features selected using IGR on the same
corpus. Unlike for logistic regression, the top IGR
features are mostly obscure words, only some of
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Salt Lake San Francisco New Orleans Phoenix Denver Houston Montreal Seattle Tulsa Los Angeles
utah sacramento orleans tucson denver houston montreal seattle tulsa knotts
slc hella jtfo az colorado antonio mtl portland okc sd
salt sac prelaw phoenix broncos texans quebec tacoma oklahoma pasadena
byu niners saints arizona aurora sa magrib wa wichita diego
provo berkeley louisiana asu amarillo corpus rue vancouver ou ucla
ut safeway bourbon tempe soopers whataburger habs bellevue kansas disneyland
utes oakland kmsl scottsdale colfax heb canadian oregon ku irvine
idaho earthquake uptown phx springs otc ouest seahawks lawrence socal
orem sf joked chandler centennial utsa mcgill pdx shaki tijuana
sandy modesto wya fry pueblo mcallen coin uw ks riverside
rio exploit canal glendale larimer westheimer gmusic puyallup edmond pomona
ogden stockton metairie desert meadows pearland laval safeway osu turnt
lds hayward westbank harkins parker jammin poutine huskies stillwater angeles
temple cal bayou camelback blake mayne boul everett topeka usc
murray jose houma mesa cherry katy est seatac sooners chargers
menudito swaaaaggg lawd gilbert siiiiim jamming je ducks straighht oc
mormon folsom gtf pima coors tsu sherbrooke victoria kc compton
gateway roseville magazine dbacks englewood marcos pas beaverton manhattan meadowview
megaplex juiced gumbo mcdowell pikes laredo fkn hella boomer rancho
lake vallejo buku devils rockies texas centre sounders sooner ventura

Table 6: Top 20 features selected for various regions using logistic regression on TWUS with a uniform
5◦ grid.

which have geographic significance, while the bot-
tom words are quite common. To some extent this
is a feature of IGR, since it divides by the binary
entropy of each word, which is directly related
to its frequency. However, it shows why cutoffs
around 90% of the original feature set are neces-
sary to achieve good performance on the Twitter
corpora. (IGR does not perform well on Wikipedia
or COPHIR, as shown above.)

7 Conclusion

This paper demonstrates that major performance
improvements to geolocation based only on text
can be obtained by using a hierarchy of logistic
regression classifiers. Logistic regression also al-
lows for the use of complex, interdependent fea-
tures, beyond the simple unigram models com-
monly employed. Our preliminary experiments
did not show noticeable improvements from bi-
gram or character-based features, but it is pos-
sible that higher-level features such as morpho-
logical, part-of-speech or syntactic features could
yield further performance gains. And, of course,
these improved text-based models may help de-
crease error even further when metadata (e.g. time
zone and declared location) are available.

An interesting extension of this work is to rely
upon the natural clustering of related documents.
Joint modeling of geographic topics and loca-
tions has been attempted (see §1), but has gener-
ally been applied to much smaller corpora than
those considered here. Skiles (2012) found sig-

nificant improvements by clustering the training
documents of large-scale corpora using K-means,
training separate models from each cluster, and es-
timating a test document’s location with the clus-
ter model returning the best overall similarity (e.g.
through KL divergence). Bergsma et al. (2013)
likewise cluster tweets using K-means but predict
location only at the country level. Such methods
could be combined with hierarchical classification
to yield further gains.
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Abstract

We propose the first probabilistic approach
to modeling cross-lingual semantic sim-
ilarity (CLSS) in context which requires
only comparable data. The approach re-
lies on an idea of projecting words and
sets of words into a shared latent semantic
space spanned by language-pair indepen-
dent latent semantic concepts (e.g., cross-
lingual topics obtained by a multilingual
topic model). These latent cross-lingual
concepts are induced from a comparable
corpus without any additional lexical re-
sources. Word meaning is represented as
a probability distribution over the latent
concepts, and a change in meaning is rep-
resented as a change in the distribution
over these latent concepts. We present new
models that modulate the isolated out-of-
context word representations with contex-
tual knowledge. Results on the task of
suggesting word translations in context for
3 language pairs reveal the utility of the
proposed contextualized models of cross-
lingual semantic similarity.

1 Introduction

Cross-lingual semantic similarity (CLSS) is a met-
ric that measures to which extent words (or more
generally, text units) describe similar semantic
concepts and convey similar meanings across lan-
guages. Models of cross-lingual similarity are typ-
ically used to automatically induce bilingual lexi-
cons and have found numerous applications in in-
formation retrieval (IR), statistical machine trans-
lation (SMT) and other natural language process-
ing (NLP) tasks. Within the IR framework, the

output of the CLSS models is a key resource in
the models of dictionary-based cross-lingual in-
formation retrieval (Ballesteros and Croft, 1997;
Lavrenko et al., 2002; Levow et al., 2005; Wang
and Oard, 2006) or may be utilized in query ex-
pansion in cross-lingual IR models (Adriani and
van Rijsbergen, 1999; Vulić et al., 2013). These
CLSS models may also be utilized as an addi-
tional source of knowledge in SMT systems (Och
and Ney, 2003; Wu et al., 2008). Additionally,
the models are a crucial component in the cross-
lingual tasks involving a sort of cross-lingual
knowledge transfer, where the knowledge about
utterances in one language may be transferred to
another. The utility of the transfer or annotation
projection by means of bilingual lexicons obtained
from the CLSS models has already been proven
in various tasks such as semantic role labeling
(Padó and Lapata, 2009; van der Plas et al., 2011),
parsing (Zhao et al., 2009; Durrett et al., 2012;
Täckström et al., 2013b), POS tagging (Yarowsky
and Ngai, 2001; Das and Petrov, 2011; Täckström
et al., 2013a; Ganchev and Das, 2013), verb clas-
sification (Merlo et al., 2002), inducing selectional
preferences (Peirsman and Padó, 2010), named
entity recognition (Kim et al., 2012), named en-
tity segmentation (Ganchev and Das, 2013), etc.

The models of cross-lingual semantic similar-
ity from parallel corpora rely on word alignment
models (Brown et al., 1993; Och and Ney, 2003),
but due to a relative scarceness of parallel texts for
many language pairs and domains, the models of
cross-lingual similarity from comparable corpora
have gained much attention recently.

All these models from parallel and compara-
ble corpora provide ranked lists of semantically
similar words in the target language in isolation
or invariably, that is, they do not explicitly iden-
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tify and encode different senses of words. In
practice, it means that, given the sentence “The
coach of his team was not satisfied with the game
yesterday.”, these context-insensitive models of
similarity are not able to detect that the Spanish
word entrenador is more similar to the polyse-
mous word coach in the context of this sentence
than the Spanish word autocar, although auto-
car is listed as the most semantically similar word
to coach globally/invariably without any observed
context. In another example, while Spanish words
partido, encuentro, cerilla or correspondencia are
all highly similar to the ambiguous English word
match when observed in isolation, given the Span-
ish sentence ”She was unable to find a match in
her pocket to light up a cigarette.”, it is clear that
the strength of semantic similarity should change
in context as only cerilla exhibits a strong seman-
tic similarity to match within this particular sen-
tential context.

Following this intuition, in this paper we inves-
tigate models of cross-lingual semantic similarity
in context. The context-sensitive models of sim-
ilarity target to re-rank the lists of semantically
similar words based on the co-occurring contexts
of words. Unlike prior work (e.g., (Ng et al., 2003;
Prior et al., 2011; Apidianaki, 2011)), we explore
these models in a particularly difficult and min-
imalist setting that builds only on co-occurrence
counts and latent cross-lingual semantic concepts
induced directly from comparable corpora, and
which does not rely on any other resource (e.g.,
machine-readable dictionaries, parallel corpora,
explicit ontology and category knowledge). In
that respect, the work reported in this paper ex-
tends the current research on purely statistical
data-driven distributional models of cross-lingual
semantic similarity that are built upon the idea
of latent cross-lingual concepts (Haghighi et al.,
2008; Daumé III and Jagarlamudi, 2011; Vulić et
al., 2011; Vulić and Moens, 2013) induced from
non-parallel data. While all the previous mod-
els in this framework are context-insensitive mod-
els of semantic similarity, we demonstrate how to
build context-aware models of semantic similarity
within the same probabilistic framework which re-
lies on the same shared set of latent concepts.

The main contributions of this paper are:

• We present a new probabilistic approach to
modeling cross-lingual semantic similarity in
context based on latent cross-lingual seman-

tic concepts induced from non-parallel data.
• We show how to use the models of cross-

lingual semantic similarity in the task of sug-
gesting word translations in context.
• We provide results for three language

pairs which demonstrate that contextualized
models of similarity significantly outscore
context-insensitive models.

2 Towards Cross-Lingual Semantic
Similarity in Context

Latent Cross-Lingual Concepts. Latent cross-
lingual concepts/senses may be interpreted as
language-independent semantic concepts present
in a multilingual corpus (e.g., document-aligned
Wikipedia articles in English, Spanish and Dutch)
that have their language-specific representations in
different languages. For instance, having a multi-
lingual collection in English, Spanish and Dutch,
and then discovering a latent semantic concept
on Soccer, that concept would be represented by
words (actually probabilities over words P (w|zk),
where w denotes a word, and zk denotes k-th
latent concept): {player, goal, coach, . . .} in
English, balón (ball), futbolista (soccer player),
equipo (team), . . . } in Spanish, and {wedstrijd
(match), elftal (soccer team), doelpunt (goal), . . .}
in Dutch. Given a multilingual corpus C, the goal
is to learn and extract a set Z of K latent cross-
lingual concepts {z1, . . . , zK} that optimally de-
scribe the observed data, that is, the multilingual
corpus C. Extracting cross-lingual concepts ac-
tually implies learning per-document concept dis-
tributions for each document in the corpus, and
discovering language-specific representations of
these concepts given by per-concept word distri-
butions in each language.
Z = {z1, . . . , zK} represents the set of K la-

tent cross-lingual concepts present in the multilin-
gual corpus. These K semantic concepts actually
span a latent cross-lingual semantic space. Each
word w, irrespective of its actual language, may
be represented in that latent semantic space as a
K-dimensional vector, where each vector compo-
nent is a conditional concept score P (zk|w).

A number of models may be employed to in-
duce the latent concepts. For instance, one could
use cross-lingual Latent Semantic Indexing (Du-
mais et al., 1996), probabilistic Principal Compo-
nent Analysis (Tipping and Bishop, 1999), or a
probabilistic interpretation of non-negative matrix
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factorization (Lee and Seung, 1999; Gaussier and
Goutte, 2005; Ding et al., 2008) on concatenated
documents in aligned document pairs. Other more
recent models include matching canonical correla-
tion analysis (Haghighi et al., 2008; Daumé III and
Jagarlamudi, 2011) and multilingual probabilistic
topic models (Ni et al., 2009; De Smet and Moens,
2009; Mimno et al., 2009; Boyd-Graber and Blei,
2009; Zhang et al., 2010; Fukumasu et al., 2012).

Due to its inherent language pair indepen-
dent nature and state-of-the-art performance in the
tasks such as bilingual lexicon extraction (Vulić et
al., 2011) and cross-lingual information retrieval
(Vulić et al., 2013), the description in this pa-
per relies on the multilingual probabilistic topic
modeling (MuPTM) framework. We draw a di-
rect parallel between latent cross-lingual concepts
and latent cross-lingual topics, and we present
the framework from the MuPTM perspective, but
the proposed framework is generic and allows the
usage of all other models that are able to com-
pute probability scores P (zk|w). These scores in
MuPTM are induced from their output language-
specific per-topic word distributions. The mul-
tilingual probabilistic topic models output prob-
ability scores P (wSi |zk) and P (wTj |zk) for each
wSi ∈ V S and wTj ∈ V T and each zk ∈
Z , and it holds

∑
wSi ∈V S P (wSi |zk) = 1 and∑

wTj ∈V T P (wTj |zk) = 1. The scores are then

used to compute scores P (zk|wSi ) and P (zk|wTj )
in order to represent words from the two different
languages in the same latent semantic space in a
uniform way.
Context-Insensitive Models of Similarity. With-
out observing any context, the standard models of
semantic word similarity that rely on the seman-
tic space spanned by latent cross-lingual concepts
in both monolingual (Dinu and Lapata, 2010a;
Dinu and Lapata, 2010b) and multilingual set-
tings (Vulić et al., 2011) typically proceed in the
following manner. Latent language-independent
concepts (e.g., cross-lingual topics or latent word
senses) are estimated on a large corpus. The
K-dimensional vector representation of the word
wS1 ∈ V S is:

vec(wS1 ) = [P (z1|wS1 ), . . . , P (zK |wS1 )] (1)

Similarly, we are able to represent any target lan-
guage word wT2 in the same latent semantic space
by aK-dimensional vector with scores P (zk|wT2 ).

Each word regardless of its language is repre-
sented as a distribution over K latent concepts.
The similarity between wS1 and some word wT2 ∈
V T is then computed as the similarity between
their K-dimensional vector representations using
some of the standard similarity measures (e.g.,
the Kullback-Leibler or the Jensen-Shannon diver-
gence, the cosine measure). These methods use
only global co-occurrence statistics from the train-
ing set and do not take into account any contex-
tual information. They provide only out-of-context
word representations and are therefore able to de-
liver only context-insensitive models of similarity.

Defining Context. Given an occurrence of a
word wS1 , we build its context set Con(wS1 ) =
{cwS1 , . . . , cwSr } that comprises r words from V S

that co-occur with wS1 in a defined contextual
scope or granularity. In this work we do not in-
vestigate the influence of the context scope (e.g.,
document-based, paragraph-based, window-based
contexts). Following the recent work from Huang
et al. (2012) in the monolingual setting, we
limit the contextual scope to the sentential context.
However, we emphasize that the proposed models
are designed to be fully functional regardless of
the actual chosen context granularity. e.g., when
operating in the sentential context, Con(wS1 ) con-
sists of words occurring in the same sentence with
the particular instance of wS1 . Following Mitchell
and Lapata (2008), for the sake of simplicity, we
impose the bag-of-words assumption, and do not
take into account the order of words in the context
set as well as context words’ dependency relations
to wS1 . Investigating different context types (e.g.,
dependency-based) is a subject of future work.

By using all words occurring with wS1 in a con-
text set (e.g., a sentence) to build the setCon(wS1 ),
we do not make any distinction between “infor-
mative and “uninformative” context words. How-
ever, some context words bear more contextual in-
formation about the observed word wS1 and are
stronger indicators of the correct word meaning in
that particular context. For instance, in the sen-
tence “The coach of his team was not satisfied
with the game yesterday”, words game and team
are strong clues that coach should be translated
as entrenador while the context word yesterday
does not bring any extra contextual information
that could resolve the ambiguity.

Therefore, in the final context set Con(wS1 ) it
is useful to retain only the context words that re-
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ally bring extra semantic information. We achieve
that by exploiting the same latent semantic space
to provide the similarity score between the ob-
served word wS1 and each word cwSi , i = 1, . . . , r
from its context set Con(wS1 ). Each word cwSi
may be represented by its vector vec(cwSi ) (see eq.
(1)) in the same latent semantic space, and there
we can compute the similarity between its vec-
tor and vec(wS1 ). We can then sort the similarity
scores for each cwSi and retain only the top scoring
M context words in the final set Con(wS1 ). The
procedure of context sorting and pruning should
improve the semantic cohesion between wS1 and
its context since only informative context features
are now present in Con(wS1 ), and we reduce the
noise coming from uninformative contextual fea-
tures that are not semantically related towS1 . Other
options for the context sorting and pruning are
possible, but the main goal in this paper is to il-
lustrate the core utility of the procedure.

3 Cross-Lingual Semantic Similarity in
Context via Latent Concepts

Representing Context. The probabilistic frame-
work that is supported by latent cross-lingual con-
cepts allows for having the K-dimensional vector
representations in the same latent semantic space
spanned by cross-lingual topics for: (1) Single
words regardless of their actual language, and (2)
Sets that comprise multiple words. Therefore, we
are able to project the observed source word, all
target words, and the context set of the observed
source word to the same latent semantic space
spanned by latent cross-lingual concepts.

Eq. (1) shows how to represent single words in
the latent semantic space. Now, we present a way
to address compositionality, that is, we show how
to build the same representations in the same latent
semantic space beyond the word level. We need to
compute a conditional concept distribution for the
context set Con(wS1 ), that is, we have to compute
the probability scores P (zk|Con(wS1 )) for each
zk ∈ Z . Remember that the context Con(wS1 )
is actually a set of r (or M after pruning) words
Con(wS1 ) = {cwS1 , . . . , cwSr }. Under the single-
topic assumption (Griffiths et al., 2007) and fol-
lowing Bayes’ rule, it holds:

P (zk|Con(wS1 )) =
P (Con(wS1 )|zk)P (zk)

P (Con(wS1 ))

=
P (cwS1 , . . . , cw

S
r |zk)P (zk)∑K

l=1 P (cwS1 , . . . , cw
S
r |zl)P (zl)

(2)

=

∏r
j=1 P (cwSj |zk)P (zk)∑K

l=1

∏r
j=1 P (cwSj |zl)P (zl)

(3)

Note that here we use a simplification where we
assume that all cwSj ∈ Con(wS1 ) are condition-
ally independent given zk. The assumption of the
conditional independence of unigrams is a stan-
dard heuristic applied in bag-of-words model in
NLP and IR (e.g., one may observe a direct anal-
ogy to probabilistic language models for IR where
the assumption of independence of query words
is imposed (Ponte and Croft, 1998; Hiemstra,
1998; Lavrenko and Croft, 2001)), but we have
to forewarn the reader that in general the equa-
tion P (cwS1 , . . . , cw

S
r |zk) =

∏r
j=1 P (cwSj |zk) is

not exact. However, by adopting the conditional
independence assumption, in case of the uniform
topic prior P (zk) (i.e., we assume that we do not
posses any prior knowledge about the importance
of latent cross-lingual concepts in a multilingual
corpus), eq. (3) may be further simplified:

P (zk|Con(wS1 )) ≈
∏r
j=1 P (cwSj |zk)∑K

l=1

∏r
j=1 P (cwSj |zl)

(4)

The representation of the context set in the latent
semantic space is then:

vec(Con(wS1 )) = [P (z1|Con(wS1 )), . . . , P (zK |Con(wS1 ))]

We can then compute the similarity between
words and sets of words given in the same latent
semantic space in a uniform way, irrespective of
their actual language. We use all these properties
when building our context-sensitive CLSS mod-
els.

One remark: As a by-product of our modeling
approach, by this procedure for computing repre-
sentations for sets of words, we have in fact paved
the way towards compositional cross-lingual mod-
els of similarity which rely on latent cross-lingual
concepts. Similar to compositional models in
monolingual settings (Mitchell and Lapata, 2010;
Rudolph and Giesbrecht, 2010; Baroni and Zam-
parelli, 2010; Socher et al., 2011; Grefenstette
and Sadrzadeh, 2011; Blacoe and Lapata, 2012;
Clarke, 2012; Socher et al., 2012) and multilingual
settings (Hermann and Blunsom, 2014; Kočiský
et al., 2014), the representation of a set of words
(e.g., a phrase or a sentence) is exactly the same
as the representation of a single word; it is simply
a K-dimensional real-valued vector. Our work on
inducing structured representations of words and
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text units beyond words is similar to (Klemen-
tiev et al., 2012; Hermann and Blunsom, 2014;
Kočiský et al., 2014), but unlike them, we do not
need high-quality sentence-aligned parallel data to
induce bilingual text representations. Moreover,
this work on compositionality in multilingual set-
tings is only preliminary (e.g., we treat phrases and
sentences as bags-of-words), and in future work
we will aim to include syntactic information in the
composition models as already done in monolin-
gual settings (Socher et al., 2012; Hermann and
Blunsom, 2013).
Intuition behind the Approach. Going back to
our novel CLSS models in context, these models
rely on the representations of words and their con-
texts in the same latent semantic space spanned by
latent cross-lingual concepts/topics. The models
differ in the way the contextual knowledge is fused
with the out-of-context word representations.

The key idea behind these models is to repre-
sent a word wS1 in the latent semantic space as a
distribution over the latent cross-lingual concepts,
but now with an additional modulation of the rep-
resentation after taking its local context into ac-
count. The modulated word representation in the
semantic space spanned by K latent cross-lingual
concepts is then:

vec(wS1 , Con(wS1 )) = [P ′(z1|wS1 ), . . . , P ′(zK |wS1 )] (5)

where P ′(zK |wS1 ) denotes the recalculated (or
modulated) probability score for the conditional
concept/topic distribution ofwS1 after observing its
context Con(wS1 ). For an illustration of the key
idea, see fig. 1. The intuition is that the context
helps to disambiguate the true meaning of the oc-
currence of the word wS1 . In other words, after
observing the context of the word wS1 , fewer latent
cross-lingual concepts will share most of the prob-
ability mass in the modulated context-aware word
representation.
Model I: Direct-Fusion. The first approach
makes the conditional distribution over latent se-
mantic concepts directly dependent on both word
wS1 and its context Con(wS1 ). The probability
score P ′(zk|wS1 ) from eq. (5) for each zk ∈ Z is
then given as P ′(zk|wS1 ) = P (zk|wS1 , Con(wS1 )).

We have to estimate the probability
P (zk|wS1 , Con(wS1 )), that is, the probability that
word wS1 is assigned to the latent concept/topic zk
given its context Con(wS1 ):

P (zk|wS
1 , Con(w

S
1 )) =

P (zk, w
S
1 )P (Con(wS

1 )|zk)∑K
l=1 P (zl, wS

1 )P (Con(wS
1 )|zl)

(6)

Since P (zk, wS1 ) = P (wS1 |zk)P (zk), if we closely
follow the derivation from eq. (3) which shows
how to project context into the latent semantic
space (and again assume the uniform topic prior
P (zk)), we finally obtain the following formula:

P ′(zk|wS1 ) ≈ P (wS1 |zk)
∏r
j=1 P (cwSj |zk)∑K

l=1 P (wS1 |zl)
∏r
j=1 P (cwSj |zl)

(7)

The ranking of all words wT2 ∈ V T according to
their similarity to wS1 may be computed by detect-
ing the similarity score between their representa-
tion in the K-dimensional latent semantic space
and the modulated source word representation as
given by eq. (5) and eq. (7) using any of the ex-
isting similarity functions (Lee, 1999; Cha, 2007).
The similarity score Sim(wS1 , w

T
2 , Con(wS1 )) be-

tween some wT2 ∈ V T represented by its vector
vec(wT2 ) and the observed word wS1 given its con-
text Con(wS1 ) is computed as:

sim(wS1 , w
T
2 , Con(wS1 ))

= SF
(
vec
(
wS1 , Con(wS1 )

)
, vec

(
wT2
))

(8)

where SF denotes a similarity function. Words
are then ranked according to their respective sim-
ilarity scores and the best scoring candidate may
be selected as the best translation of an oc-
currence of the word wS1 given its local con-
text. Since the contextual knowledge is inte-
grated directly into the estimation of probability
P (zk|wS1 , Con(wS1 )), we name this context-aware
CLSS model the Direct-Fusion model.
Model II: Smoothed-Fusion. The next model
follows the modeling paradigm established within
the framework of language modeling (LM), where
the idea is to “back off” to a lower order N-
gram in case we do not possess any evidence
about a higher-order N-gram (Jurafsky and Mar-
tin, 2000). The idea now is to smooth the repre-
sentation of a word in the latent semantic space
induced only by the words in its local context
with the out-of-context type-based representation
of that word induced directly from a large training
corpus. In other words, the modulated probability
score P ′(zk|wS1 ) from eq. (5) is calculated as:

P
′
(zk|wS

1 ) = λ1P (zk|Con(w
S
1 )) + (1− λ1)P (zk|wS

1 ) (9)

where λ1 is the interpolation parameter, P (zk|wS1 )
is the out-of-context conditional concept probabil-
ity score as in eq. (1), and P (zk|Con(wS1 )) is
given by eq. (3). This model compromises be-
tween the pure contextual word representation and
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z1

coach

(in isolation)

entrenador

autocar

z3

z2

z1coach

(contextualized)

entrenador

autocar
The coach of his team was not

satisfied with the game yesterday.

K

coach

K

coach

CONTEXT-INSENSITIVE CONTEXT-SENSITIVE

Figure 1: An illustrative toy example of the main intuitions in our probabilistic framework for building
context sensitive models with only three latent cross-lingual concepts (axes z1, z2 and z3): A change
in meaning is reflected as a change in a probability distribution over latent cross-lingual concepts that
span a shared latent semantic space. A change in the probability distribution may then actually steer an
English word coach towards its correct (Spanish) meaning in context.

the out-of-context word representation. In cases
when the local context of word wS1 is informa-
tive enough, the factor P (zk|Con(wS1 )) is suffi-
cient to provide the ranking of terms in V T , that
is, to detect words that are semantically similar to
wS1 based on its context. However, if the context is
not reliable, we have to smooth the pure context-
based representation with the out-of-context word
representation (the factor P (zk|wS1 )). We call this
model the Smoothed-Fusion model.

The ranking of words wT2 ∈ V T then finally
proceeds in the same manner as in Direct-Fusion
following eq. (8), but now using eq. (9) for the
modulated probability scores P ′(zk|wS1 ).
Model III: Late-Fusion. The last model is con-
ceptually similar to Smoothed-Fusion, but it per-
forms smoothing at a later stage. It proceeds in
two steps: (1) Given a target word wT2 ∈ V T , the
model computes similarity scores separately be-
tween (i) the context set Con(wS1 ) and wT2 , and
(ii) the word wS1 in isolation and wT2 (again, on the
type level); (2) It linearly combines the obtained
similarity scores. More formally, we may write:

Sim(wS1 , w
T
2 , Con(wS1 ))

= λ2SF
(
vec
(
Con(wS1 )

)
, vec

(
wT2
))

+ (1− λ2)SF
(
vec
(
wS1
)
, vec

(
wT2
))

(10)

where λ2 is the interpolation parameter. Since
this model computes the similarity with each tar-
get word separately for the source word in isola-
tion and its local context, and combines the ob-

tained similarity scores after the computations,
this model is called Late-Fusion.

4 Experimental Setup
Evaluation Task: Suggesting Word Transla-
tions in Context. Given an occurrence of a pol-
ysemous word wS1 ∈ V S in the source language
LS with vocabulary V S , the task is to choose the
correct translation in the target language LT of
that particular occurrence of wS1 from the given
set T = {tT1 , . . . , tTq }, T ⊆ V T , of its q possible
translations/meanings (i.e., its translation or sense
inventory). The task of suggesting a word trans-
lation in context may be interpreted as ranking the
q translations with respect to the observed local
context Con(wS1 ) of the occurrence of the word
wS1 . The best scoring translation candidate in the
ranked list is then the suggested correct translation
for that particular occurrence of wS1 after observ-
ing its local context Con(wS1 ).
Training Data. We use the following corpora for
inducing latent cross-lingual concepts/topics, i.e.,
for training our multilingual topic model: (i) a col-
lection of 13, 696 Spanish-English Wikipedia arti-
cle pairs (Wiki-ES-EN), (ii) a collection of 18, 898
Italian-English Wikipedia article pairs, (iii) a col-
lection of 7, 612 Dutch-English Wikipedia arti-
cle pairs (Wiki-NL-EN), and (iv) the Wiki-NL-
EN corpus augmented with 6,206 Dutch-English
document pairs from Europarl (Koehn, 2005)
(Wiki+EP-NL-EN). The corpora were previously
used in (Vulić and Moens, 2013). No explicit use
is made of sentence-level alignments in Europarl.
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Sentence in Italian Correct Translation (EN)
1. I primi calci furono prodotti in legno ma recentemente... stock
2. In caso di osteoporosi si verifica un eccesso di rilascio di calcio dallo scheletro... calcium
3. La crescita del calcio femminile professionistico ha visto il lancio di competizioni... football
4. Il calcio di questa pistola (Beretta Modello 21a, calibro .25) ha le guancette in materiale... stock

Table 1: Example sentences from our IT evaluation dataset with corresponding correct translations.

Spanish Italian Dutch

Ambiguous word Ambiguous word Ambiguous word
(Possible senses/translations) (Possible senses/translations) (Possible senses/translations)

1. estación 1. raggio 1. toren
(station; season) (ray; radius; spoke) (rook; tower)
2. ensayo 2. accordo 2. beeld
(essay; rehearsal; trial) (chord; agreement) (image; statue)
3. núcleo 3. moto 3. blade
(core; kernel; nucleus) (motion; motorcycle) (blade; leaf; magazine)
4. vela 4. calcio 4.fusie
(sail; candle) (calcium; football; stock) (fusion; merger)
5. escudo 5. terra 5. stam
(escudo; escutcheon; shield) (earth; land) (stem; trunk; tribe)
6. papa 6. tavola 6. koper
(Pope; potato) (board; panel; table) (copper; buyer)
7. cola 7. campione 7. bloem
(glue; coke; tail; queue) (champion; sample) (flower; flour)
8. cometa 8. carta 8. spanning
(comet; kite) (card; paper; map) (voltage; tension; stress)
9. disco 9. piano 9. noot
(disco; discus; disk) (floor; plane; plan; piano) (note; nut)
10. banda 10. disco 10. akkoord
(band; gang; strip) (disco; discus; disk) (chord; agreement)
11. cinta 11. istruzione 11. munt
(ribbon; tape) (education; instruction) (coin; currency; mint)
12. banco 12. gabinetto 12. pool
(bank; bench; shoal) (cabinet; office; toilet) (pole; pool)
13. frente 13. torre 13. band
(forehead; front) (rook; tower) (band; tyre; tape)
14. fuga 14. campo 14. kern
(escape; fugue; leak) (camp; field) (core; kernel; nucleus)
15. gota 15. gomma 15. kop
(gout; drop) (rubber; gum; tyre) (cup; head)

Table 2: Sets of 15 ambiguous words in Spanish, Italian and Dutch from our test set accompanied by the
sets of their respective possible senses/translations in English.

All corpora are theme-aligned comparable cor-
pora, i.e, the aligned document pairs discuss sim-
ilar themes, but are in general not direct trans-
lations (except for Europarl). By training on
Wiki+EP-NL-EN we want to test how the training
corpus of higher quality affects the estimation of
latent cross-lingual concepts that span the shared
latent semantic space and, consequently, the over-
all results in the task of suggesting word transla-
tions in context. Following prior work (Koehn and
Knight, 2002; Haghighi et al., 2008; Prochasson
and Fung, 2011; Vulić and Moens, 2013), we re-
tain only nouns that occur at least 5 times in the
corpus. We record lemmatized word forms when
available, and original forms otherwise. We use
TreeTagger (Schmid, 1994) for POS tagging and
lemmatization.

Test Data. We have constructed test datasets in
Spanish (ES), Italian (IT) and Dutch (NL), where
the aim is to find their correct translation in En-
glish (EN) given the sentential context. We have
selected 15 polysemous nouns (see tab. 2 for
the list of nouns along with their possible transla-
tions) in each of the 3 languages, and have man-
ually extracted 24 sentences (not present in the
training data) for each noun that capture different
meanings of the noun from Wikipedia. In order
to construct datasets that are balanced across dif-
ferent possible translations of a noun, in case of
q different translation candidates in T for some
word wS1 , the dataset contains exactly 24/q sen-
tences for each translation from T . In total, we
have designed 360 sentences for each language
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pair (ES/IT/NL-EN), 1080 sentences in total.1. We
have used 5 extra nouns with 20 sentences each as
a development set to tune the parameters of our
models. As a by-product, we have built an initial
repository of ES/IT/NL ambiguous words. Tab.
1 presents a small sample from the IT evaluation
dataset, and illustrates the task of suggesting word
translations in context.
Evaluation Procedure. Our task is to present
the system a list of possible translations and let
the system decide a single most likely translation
given the word and its sentential context. Ground
truth thus contains one word, that is, one correct
translation for each sentence from the evaluation
dataset. We have manually annotated the correct
translation for the ground truth1 by inspecting the
discourse in Wikipedia articles and the interlingual
Wikipedia links. We measure the performance of
all models as Top 1 accuracy (Acc1) (Gaussier et
al., 2004; Tamura et al., 2012). It denotes the num-
ber of word instances from the evaluation dataset
whose top proposed candidate in the ranked list of
translation candidates from T is exactly the cor-
rect translation for that word instance as given by
ground truth over the total number of test word in-
stances (360 in each test dataset).
Parameters. We have tuned λ1 and λ2 on the de-
velopment sets. We set λ1 = λ2 = 0.9 for all
language pairs. We use sorted context sets (see
sect. 2) and perform a cut-off at M = 3 most de-
scriptive context words in the sorted context sets
for all models. In the following section we discuss
the utility of this context sorting and pruning, as
well as its influence on the overall results.
Inducing Latent Cross-Lingual Concepts. Our
context-aware models are generic and allow ex-
perimentations with different models that induce
latent cross-lingual semantic concepts. However,
in this particular work we present results obtained
by a multilingual probabilistic topic model called
bilingual LDA (Mimno et al., 2009; Ni et al.,
2009; De Smet and Moens, 2009). The BiLDA
model is a straightforward multilingual extension
of the standard LDA model (Blei et al., 2003).
For the details regarding the modeling, generative
story and training of the bilingual LDA model, we
refer the interested reader to the aforementioned
relevant literature.

We have used the Gibbs sampling procedure

1Available at http://people.cs.kuleuven.be/
∼ivan.vulic/software/

(Geman and Geman, 1984) tailored for BiLDA
in particular for training and have experimented
with different number of topics K in the interval
300− 2500. Here, we present only the results ob-
tained withK = 2000 for all language pairs which
also yielded the best or near-optimal performance
in (Dinu and Lapata, 2010b; Vulić et al., 2011).
Other parameters of the model are set to the typical
values according to Steyvers and Griffiths (2007):
α = 50/K and β = 0.01. 2

Models in Comparison. We test the performance
of our Direct-Fusion, Smoothed-Fusion and Late-
Fusion models, and compare their results with
the context-insensitive CLSS models described in
sect. 2 (No-Context). We provide results with
two different similarity functions: (1) We have
tested different SF-s (e.g., the Kullback-Leibler
and the Jensen-Shannon divergence, the cosine
measure) on the K-dimensional vector represen-
tations, and have detected that in general the best
scores are obtained with the Bhattacharyya coef-
ficient (BC) (Cha, 2007; Kazama et al., 2010),
(2) Another similarity method we use is the so-
called Cue method (Griffiths et al., 2007; Vulić
et al., 2011), which models the probability that
a target word tTi will be generated as an as-
sociation response given some cue source word
wS1 . In short, the method computes the score
P (tTi |wS1 ) = P (tTi |zk)P (zk|wS1 ). We can use
the scores P (tTi |wS1 ) obtained by inputting out-of-
context probability scores P (zk|wS1 ) or modulated
probability scores P ′(zk|wS1 ) to produce the rank-
ing of translation candidates.

5 Results and Discussion
The performance of all the models in comparison
is displayed in tab. 3. These results lead us to
several conclusions:
(i) All proposed context-sensitive CLSS models
suggesting word translations in context signifi-
cantly outperform context-insensitive CLSS mod-
els, which are able to produce only word trans-
lations in isolation. The improvements in re-
sults when taking context into account are ob-

2We are well aware that different hyper-parameter set-
tings (Asuncion et al., 2009; Lu et al., 2011), might have
influence on the quality of learned latent cross-lingual con-
cepts/topics and, consequently, the quality of latent semantic
space, but that analysis is not the focus of this work. Addi-
tionally, we perform semantic space pruning (Reisinger and
Mooney, 2010; Vulić and Moens, 2013). All computations
are performed over the best scoring 100 cross-lingual topics
according to their respective scores P (zk|wSi ) similarly to
(Vulić and Moens, 2013).
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Direction: ES→EN IT→EN NL→EN (Wiki) NL→EN (Wiki+EP)

Model Acc1 Acc1 Acc1 Acc1 Acc1 Acc1 Acc1 Acc1
(SF=BC) (SF=Cue) (SF=BC) (SF=Cue) (SF=BC) (SF=Cue) (SF=BC) (SF=Cue)

No-Context .406 .406 .408 .408 .433 .433 .433 .433

Direct-Fusion .617 .575 .714 .697 .603 .592 .606 .636
Smoothed-Fusion .664 .703* .731 .789* .669 .712* .692 .761*
Late-Fusion .675 .667 .742 .728 .667 .644 .683 .722

Table 3: Results on the 3 evaluation datasets. Translation direction is ES/IT/NL→EN. The improvements
of all contextualized models over non-contextualized models are statistically significant according to a
chi-square statistical significance test (p<0.05). The asterisk (*) denotes significant improvements of
Smoothed-Fusion over Late-Fusion using the same significance test.

served for all 3 language pairs. The large im-
provements in the results (i.e., we observe an aver-
age relative increase of 51.6% for the BC+Direct-
Fusion combination, 64.3% for BC+Smoothed-
Fusion, 64.9% for BC+Late-Fusion, 49.1% for
Cue+Direct-Fusion, 76.7% for Cue+Smoothed-
Fusion, and 64.5% for Cue+Late-Fusion) confirm
that the local context of a word is essential in ac-
quiring correct word translations for polysemous
words, as isolated non-contextualized word repre-
sentations are not sufficient.
(ii) The choice of a similarity function influences
the results. On average, the Cue method as SF out-
performs other standard similarity functions (e.g.,
Kullback-Leibler, Jensen-Shannon, cosine, BC) in
this evaluation task. However, it is again impor-
tant to state that regardless of the actual choice
of SF, context-aware models that modulate out-of-
context word representations using the knowledge
of local context outscore context-insensitive mod-
els that utilize non-modulated out-of-context rep-
resentations (with all other parameters equal).
(iii) The Direct-Fusion model, conceptually sim-
ilar to a model of word similarity in context in
monolingual settings (Dinu and Lapata, 2010a),
is outperformed by the other two context-sensitive
models. In Direct-Fusion, the observed word and
its context are modeled in the same fashion, that is,
the model does not distinguish between the word
and its surrounding context when it computes the
modulated probability scores P ′(zk|wS1 ) (see eq.
(7)). Unlike Direct-Fusion, the modeling assump-
tions of Smoothed-Fusion and Late-Fusion pro-
vide a clear distinction between the observed word
wS1 and its context Con(wS1 ) and combine the out-
of-context representation of wS1 and its contextual
knowledge into a smoothed LM-inspired proba-
bilistic model. As the results reveal, that strategy
leads to better overall scores. The best scores in
general are obtained by Smoothed-Fusion, but it

is also outperformed by Late-Fusion in several ex-
perimental runs where BC was used as SF. How-
ever, the difference in results between Smoothed-
Fusion and Late-Fusion in these experimental runs
is not statistically significant according to a chi-
squared significance test (p < 0.05).
(iv) The results for Dutch-English are influenced
by the quality of training data. The performance
of our models of similarity is higher for models
that rely on latent-cross lingual topics estimated
from the data of higher quality (i.e., compare the
results when trained on Wiki and Wiki+EP in tab.
3). The overall quality of our models of similarity
is of course dependent on the quality of the latent
cross-lingual topics estimated from training data,
and the quality of these latent cross-lingual con-
cepts is further dependent on the quality of multi-
lingual training data. This finding is in line with
a similar finding reported for the task of bilingual
lexicon extraction (Vulić and Moens, 2013).
(v) Although Dutch is regarded as more similar
to English than Italian or Spanish, we do not ob-
serve any major increase in the results on both
test datasets for the English-Dutch language pair
compared to English-Spanish/Italian. That phe-
nomenon may be attributed to the difference in
size and quality of our training Wikipedia datasets.
Moreover, while the probabilistic framework pro-
posed in this chapter is completely language pair
agnostic as it does not make any language pair
dependent modeling assumptions, we acknowl-
edge the fact that all three language pairs com-
prise languages coming from the same phylum,
that is, the Indo-European language family. Future
extensions of our probabilistic modeling frame-
work also include porting the framework to other
more distant language pairs that do not share the
same roots nor the same alphabet (e.g., English-
Chinese/Hindi).
Analysis of Context Sorting and Pruning. We

357



0.55

0.6

0.65

0.7

0.75

0.8

A
cc

1

1 2 3 4 5 6 7 8 9 10 11 All

Size of the ranked context

ES-EN

IT-EN

NL-EN (Wiki)

NL-EN (Wiki+EP)

Figure 2: The influence of the size of sorted con-
text on the accuracy of word translation in context.
The model is Cue+Smoothed-Fusion.

also investigate the utility of context sorting and
pruning, and its influence on the overall results
in our evaluation task. Therefore, we have con-
ducted experiments with sorted context sets that
were pruned at different positions, ranging from 1
(only the most similar word to wS1 in a sentence is
included in the context set Con(wS1 )) to All (all
words occurring in a same sentence with wS1 are
included in Con(wS1 )). The monolingual similar-
ity between wS1 and each potential context word in
a sentence has been computed using BC on their
out-of-context representations in the latent seman-
tic space spanned by cross-lingual topics. Fig. 2
shows how the size of the sorted context influences
the overall results. The presented results have been
obtained by the Cue+Smoothed-Fusion combina-
tion, but a similar behavior is observed when em-
ploying other combinations.

Fig. 2 clearly indicates the importance of con-
text sorting and pruning. The procedure ensures
that only the most semantically similar words in a
given scope (e.g., a sentence) influence the choice
of a correct meaning. In other words, closely
semantically similar words in the same sentence
are more reliable indicators for the most probable
word meaning. They are more informative in mod-
ulating the out-of-context word representations in
context-sensitive similarity models. We observe
large improvements in scores when we retain only
the top M semantically similar words in the con-
text set (e.g., when M=5, the scores are 0.694,
0.758, 0.717, and 0.767 for ES-EN, IT-EN, NL-
EN (Wiki) and NL-EN (Wiki+EP), respectively;
while the same scores are 0.572, 0.703, 0.639 and
0.672 when M=All).
6 Conclusions and Future Work
We have proposed a new probabilistic approach to
modeling cross-lingual semantic similarity in con-

text, which relies only on co-occurrence counts
and latent cross-lingual concepts which can be es-
timated using only comparable data. The approach
is purely statistical and it does not make any ad-
ditional language-pair dependent assumptions; it
does not rely on a bilingual lexicon, orthographic
clues or predefined ontology/category knowledge,
and it does not require parallel data.

The key idea in the approach is to represent
words, regardless of their actual language, as dis-
tributions over the latent concepts, and both out-
of-context and contextualized word representa-
tions are then presented in the same latent space
spanned by the latent semantic concepts. A
change in word meaning after observing its con-
text is reflected in a change of its distribution
over the latent concepts. Results for three lan-
guage pairs have clearly shown the importance
of the newly developed modulated or “contextual-
ized” word representations in the task of suggest-
ing word translations in context.

We believe that the proposed framework is only
a start, as it ignites a series of new research ques-
tions and perspectives. One may further exam-
ine the influence of context scope (e.g., document-
based vs. sentence-based vs. window-based con-
texts), as well as context selection and aggregation
(see sect. 2) on the contextualized models. For
instance, similar to the model from Ó Séaghdha
and Korhonen (2011) in the monolingual setting,
one may try to introduce dependency-based con-
texts (Padó and Lapata, 2007) and incorporate
the syntax-based knowledge in the context-aware
CLSS modeling. It is also worth studying other
models that induce latent semantic concepts from
multilingual data (see sect. 2) within this frame-
work of context-sensitive CLSS modeling. One
may also investigate a similar approach to context-
sensitive CLSS modeling that could operate with
explicitly defined concept categories (Gabrilovich
and Markovitch, 2007; Cimiano et al., 2009; Has-
san and Mihalcea, 2009; Hassan and Mihalcea,
2011; McCrae et al., 2013).
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ric view on bilingual lexicon extraction from com-
parable corpora. In Proceedings of the 42nd Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 526–533.

Stuart Geman and Donald Geman. 1984. Stochas-
tic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 6(6):721–741.

Edward Grefenstette and Mehrnoosh Sadrzadeh. 2011.
Experimental support for a categorical composi-
tional distributional model of meaning. In Proceed-
ings of the 2011 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
1394–1404.

Thomas L. Griffiths, Mark Steyvers, and Joshua B.
Tenenbaum. 2007. Topics in semantic representa-
tion. Psychological Review, 114(2):211–244.

Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick,
and Dan Klein. 2008. Learning bilingual lexicons
from monolingual corpora. In Proceedings of the
46th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (ACL-HLT), pages 771–779.

Samer Hassan and Rada Mihalcea. 2009. Cross-
lingual semantic relatedness using encyclopedic
knowledge. In Proceedings of the 2009 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1192–1201.

Samer Hassan and Rada Mihalcea. 2011. Semantic
relatedness using salient semantic analysis. In Pro-
ceedings of the 25th AAAI Conference on Artificial
Intelligence (AAAI), pages 884–889.

Karl Moritz Hermann and Phil Blunsom. 2013. The
role of syntax in vector space models of composi-
tional semantics. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 894–904.

Karl Moritz Hermann and Phil Blunsom. 2014. Mul-
tilingual models for compositional distributed se-
mantics. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 58–68.

Djoerd Hiemstra. 1998. A linguistically motivated
probabilistic model of information retrieval. In Pro-
ceedings of the 2nd European Conference on Re-
search and Advanced Technology for Digital Li-
braries (ECDL), pages 569–584.

Eric H. Huang, Richard Socher, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 873–882.

Daniel Jurafsky and James H. Martin. 2000. Speech
and Language Processing: An Introduction to Nat-
ural Language Processing, Computational Linguis-
tics, and Speech Recognition. Prentice Hall PTR.

Jun’ichi Kazama, Stijn De Saeger, Kow Kuroda,
Masaki Murata, and Kentaro Torisawa. 2010. A
Bayesian method for robust estimation of distribu-
tional similarities. In Proceedings of the 48th An-
nual Meeting of the Association for Computational
Linguistics (ACL), pages 247–256.

Sungchul Kim, Kristina Toutanova, and Hwanjo Yu.
2012. Multilingual named entity recognition using
parallel data and metadata from Wikipedia. In Pro-
ceedings of the 50th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
694–702.

Alexandre Klementiev, Ivan Titov, and Binod Bhat-
tarai. 2012. Inducing crosslingual distributed repre-
sentations of words. In Proceedings of the 24th In-
ternational Conference on Computational Linguis-
tics (COLING), pages 1459–1474.

Philipp Koehn and Kevin Knight. 2002. Learning a
translation lexicon from monolingual corpora. In
Proceedings of the ACL Workshop on Unsupervised
Lexical Acquisition (ULA), pages 9–16.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proceedings of the
10th Machine Translation Summit (MT SUMMIT),
pages 79–86.
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Sebastian Padó and Mirella Lapata. 2009. Cross-
lingual annotation projection for semantic roles.
Journal of Artificial Intelligence Research, 36:307–
340.

Yves Peirsman and Sebastian Padó. 2010. Cross-
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Abstract

The current approaches to Semantic Role
Labeling (SRL) usually perform role clas-
sification for each predicate separately and
the interaction among individual predi-
cate’s role labeling is ignored if there is
more than one predicate in a sentence. In
this paper, we prove that different predi-
cates in a sentence could help each other
during SRL. In multi-predicate role label-
ing, there are mainly two key points: argu-
ment identification and role labeling of the
arguments shared by multiple predicates.
To address these issues, in the stage of
argument identification, we propose nov-
el predicate-related features which help re-
move many argument identification errors;
in the stage of argument classification, we
adopt a discriminative reranking approach
to perform role classification of the shared
arguments, in which a large set of glob-
al features are proposed. We conducted
experiments on two standard benchmarks:
Chinese PropBank and English PropBank.
The experimental results show that our
approach can significantly improve SRL
performance, especially in Chinese Prop-
Bank.

1 Introduction

Semantic Role Labeling (SRL) is a kind of shal-
low semantic parsing task and its goal is to rec-
ognize some related phrases and assign a joint
structure (WHO did WHAT to WHOM, WHEN,
WHERE, WHY, HOW) to each predicate of a sen-
tence (Gildea and Jurafsky, 2002). Because of
the ability of encoding semantic information, SR-
L has been applied in many tasks of NLP, such as
question and answering (Narayanan and Haraba-
gir, 2004), information extraction (Surdeanu et

The justices will be forced to reconsider  the questions.

[      A1      ] [  Pred  ]

[      A0      ] [    Pred    ] [      A1      ]

Figure 1: A sentence from English PropBank,
with an argument shared by multiple predicates

al., 2003; Christensen et al., 2005), and machine
translation (Wu and Fung, 2009; Liu and Gildea,
2010; Xiong et al., 2012; Zhai et al., 2012).

Currently, an SRL system works as follows:
first identify argument candidates and then per-
form classification for each argument candidate.
However, this process only focuses on one inde-
pendent predicate without considering the internal
relations of multiple predicates in a sentence. Ac-
cording to our statistics, more than 80% sentences
in Propbank carry multiple predicates. One exam-
ple is shown in Figure 1, in which there are two
predicates ‘Force’ and ‘Reconsider’. Moreover,
the constituent ‘the justices’ is shared by the two
predicates and is labeled as A1 for ‘Force’ but as
A0 for ‘Reconsider’. We call this phenomenon of
the shared arguments Role Transition . Intuitive-
ly, all predicates in a sentence are closely related to
each other and the internal relations between them
would be helpful for SRL.

This paper has made deep investigation on
multi-predicate semantic role labeling. We think
there are mainly two key points: argument identi-
fication and role labeling of the arguments shared
by multiple predicates. We adopt different strate-
gies to address these two issues.

During argument identification, there are a large
number of identification errors caused by the poor
performance of auto syntax trees. However, many
of these errors can be removed, if we take other
predicates into consideration. To achieve this pur-
pose, we propose novel predicates-related features
which have been proved to be effective to recog-
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nize many identification errors. After these fea-
tures added, the precision of argument identifica-
tion improves significantly by 1.6 points and 0.9
points in experiments on Chinese PropBank and
English PropBank respectively, with a slight loss
in recall.

Role labeling of the shared arguments is anoth-
er key point. The predicates and their shared argu-
ment could be considered as a joint structure, with
strong dependencies between the shared argumen-
t’s roles. If we consider linguistic basis for joint
modeling of the shared argument’s roles, there are
at least two types of information to be captured.
The first type of information is the compatibility
of Role Transition among the shared argument’s
roles. A noun phrase may be labeled as A0 for a
predicate and at the same time, it can be labeled
as A1 for another predicate. However, there are
few cases that a noun phrase is labeled as A0 for a
predicate and as AM-ADV for another predicate
at the same time. Secondly, joint modeling the
shared arguments could explore global informa-
tion. For example, in ‘The columbia mall is ex-
pected to open’, there are two predicates ‘expect’
and ‘open’ and a shared argument ‘the columbi-
a mall’. Because this shared argument is before
‘open’ and the predicate ‘open’ is in active voice,
a base classifier often incorrectly label this argu-
ment A0 for ‘open’. But if we observe that the ar-
gument is also an argument of ‘expect’, it should
be labeled as A1 for ‘expect’ and ‘open’.

Motivated by the above observations, we at-
tempt to jointly model the shared arguments’ roles.
Specifically, we utilize the discriminative rerank-
ing approach that has been successfully employed
in many NLP tasks. Typically, this method first
creates a list of n-best candidates from a base sys-
tem, and then reranks them with arbitrary features
(both local and global), which are either not com-
putable or are computationally intractable within
the base model.

We conducted experiments on Chinese Prop-
Bank and English PropBank. Results show that
compared with a state-of-the-art base model, the
accuracy of our joint model improves significant-
ly by 2.4 points and 1.5 points on Chinese Prop-
Bank and English PropBank respectively, which
suggests that there are substantial gains to be made
by jointly modeling the shared arguments of mul-
tiple predicates.

Our contributions can be summarized as fol-

lows:

• To the best of our knowledge, this is the first
work to investigate the mutual effect of mul-
tiple predicates’ semantic role labeling.

• We present a rich set of features for argument
identification and shared arguments’ classifi-
cation that yield promising performance.

• We evaluate our method on two standard
benchmarks: Chinese PropBank and English
PropBank. Our approach performs well in
both, which suggests its good universality.

The remainder of this paper is organized as fol-
lows. Section 2 gives an overview of our approach.
We discuss the mutual effect of multi-predicate’
argument identification and argument classifica-
tion in Section 3 and Section 4 respectively. The
experiments and results are presented in Section
5. Some discussion and analysis can be found in
Section 6. Section 7 discusses the related work-
s. Finally, the conclusion and future work are in
Section 8.

2 Approach Overview

As illustrated in Figure 2, our approach follows the
standard separation of the task of semantic role la-
beling into two phases: Argument Identification
and Argument Classification . We investigate the
effect of multiple predicates in Argument Identi-
fication and Argument Classification respectively.
Specifically, in the stage of Argument Identifica-
tion, we introduce new features related to predi-
cates which are effective to recognize many argu-
ment identification errors. In the stage of Argu-
ment Classification, we concentrate on the classi-
fication of the arguments shared by multiple pred-
icates. We first use a base model to generate n-
best candidates for the shared arguments and then
construct a joint model to rerank the n-best list, in
which a rich set of global features are proposed.

3 Argument Identification

In this section, we investigate multi-predicate’ mu-
tual effects in Argument Identification. Argument
Identification is to recognize the arguments from
all candidates of each predicate. Here, we use
the Maximum Entropy (ME) classifier to perform
binary classification. As a discriminative model,
ME can easily incorporate arbitrary features and
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Figure 2: The overview of our approach

achieve good performance. The model is formu-
lated as follows:

p(y|x) =
1

Z(x)
exp(

∑
i

θifi(x, y)) (1)

in which x is the input sample, y(0 or 1) is the out-
put label, f(x, y) are feature functions and Z(x)
is a normalization term as follows:

Z(x) =
∑
y

exp(
∑
i

θifi(x, y))

3.1 Base Features

Xue (2008) took a critical look at the features used
in SRL and achieved good performance. So, we
use the same features in Xue (2008) as the base
features:

• Predicate lemma

• Path from node to predicate

• Head word

• Head word’s part-of-speech

• Verb class (Xue, 2008)

• Predicate and Head word combination

• Predicate and Phrase type combination

• Verb class and Head word combination

• Verb class and Phrase type combination

3.2 Additional Features

In the SRL community, it is widely recognized
that the overall performance of a system is large-
ly determined by the quality of syntactic parsers
(Gildea and Palmer, 2002), which is particularly
notable in the identification stage. Unfortunate-
ly, the state-of-the-art auto parsers fall short of the
demands of applications. Moreover, when there
are multiple predicates, or even multiple clauses
in a sentence, the problem of syntactic ambiguity
increases drastically (Kim et al., 2000). For ex-
ample, in Figure 3, there is a sentence with two
consecutive predicates ‘/’ (is) and ‘�Ñ’ (devel-
op). Compared with the gold tree, the auto tree is
less preferable, which makes the classifier easily
mistake ‘úQ’ (building) as an argument of ‘�
Ñ’ (develop) with base features. But this identifi-
cation error can be removed if we note that there
is another predicate ‘/’ (is) before ‘�Ñ’ (devel-

IP

NP VP

VV NP

DNP NP

VC VP

NN DEG

IP

NP VP

VC NP

CP NP

IP DEC

VV NP

建筑

是

开发 浦东

的

经济活动
开发

建筑

是

浦东 的

经济活动

(a) (b)

建筑 是 开发 浦东 的 经济活动

Building is an economic activity of developing Pudong.

Figure 3: An example from Chinese PropBank.
Tree (a) is the gold syntax tree and (b) is parsed by
a state of-the-art parser Berkeley parser. On tree
(b), ‘úQ’ (building) is mistaken as an argument
of ‘�Ñ’ (develop) with base features.
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op). Similar examples with the pattern ‘NP +/ +
VV’ can be found in PropBank, in which the sub-
ject NP of the sentence is usually not an argument
of the latter predicate. Thus, ‘/’ (is) is an effec-
tive clue to detect this kind of identification error.

It is challenging to obtain a fully correct syntax
tree for a complex sentence with multiple predi-
cates. Therefore, base features that heavily rely
on syntax trees often fail in discriminating argu-
ments from candidates as demonstrated in Figure
3. However, by considering the elements of neigh-
boring predicates, we could capture useful clues
like in the above example and remove many iden-
tification errors. Below, we define novel predi-
caterelated features to encode these ‘clues’ to re-
fine candidates.

There are mainly five kinds of features as fol-
lows.

• Is the given predicate the nearest one?

This is a binary feature that indicates whether
the predicate is the nearest one to the candi-
date.

• Local adjunct

This is a binary feature designed for adjective
and adverbial phrases. Some adjunct phras-
es, such as ‘Å’ (only), have a limited sphere
of influence. If the candidate is ‘local’ but
the given predicate is not the nearest one, the
candidate is often not an argument for the
given predicate. To collect local adjuncts, we
traverse the whole training set to get the ini-
tial lexicon of adjuncts and refine it manually.

• Cut-Clause

This type of feature is a binary feature de-
signed to distinguish identification errors of
noun phrase candidates. If a noun phrase can-
didate is separated from the given predicate
by a clause consisting of a NP and VP, the
candidate is usually not the argument of the
given predicate.

• Different Relative Positions with Conjunc-
tions

This is a binary feature that describes whether
the candidate and the predicate are located in
different positions as separated by conjunc-
tions such as ‘F/’ (but). Conjunctions are
often used to concatenate two clauses, but the

first clause commonly describes one proposi-
tion and the second clause describes anoth-
er one. Thus, if the candidate and the given
predicate have different positions relative to
the conjunctions, the candidate is usually not
the argument of the given predicate.

• Consecutive Predicates Sequence

When multiple predicates appear in a sen-
tence consecutively, parse errors frequently
occurs due to the problems of syntactic am-
biguity as demonstrated in Figure 2. To in-
dicate such errors, sequence features of the
candidates and consecutive predicates are de-
fined specifically. For instance, for the candi-
date ‘úQ’ (building) of ‘�Ñ’ (develop),
the features are ‘cand-/-�Ñ’ and ‘cand-
/-VV’, in which we use ‘cand’ to represent
the position of the candidate.

4 Argument Classification

In this section, we investigate multi-predicate’ mu-
tual effects in Argument Classification. Argument
Classification is to assign a label to each argumen-
t candidate recognized by the phase of Argument
Identification.

4.1 Base Model

A conventional method in Argument Classifica-
tion is to assign a label to each argument candidate
by a classifier independently. We call this kind of
method Base Model. In the base model, we still
adopt ME (1) as our classifier; all base features of
Argument Identification are contained (shown in
subsection 3.1). In addition, there are some other
features:

• Position: the relative position of the candi-
date argument compared to the predicate

• Subcat frame: the syntactic rule that expands
the parent of the verb

• The first and the last word of the candidate

• Phrase type: the syntactic tag of the candidate
argument

• Subcat frame+: the frame that consists of the
NPs (Xue, 2008).
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4.2 Joint Model

As discussed briefly in Section 1, there are many
dependencies between the shared arguments’ la-
beling for different predicates, but the base model
completely ignores such useful information. To
incorporate these dependencies, we employ the
discriminative reranking method. Here, we first
establish a unified framework for reranking. For
an input x, the generic reranker selects the best
output y∗ among the set of candidates GEN(x)
according to the scoring function:

y∗ = argmax
y∈GEN(x)

score(y) (2)

In our task, GEN(x) is a set of the n-best can-
didates generated from the base model. As usual,
we calculate the score of a candidate by the dot
product between a high dimensional feature and a
weight W:

score(y) = W · f(y) (3)

We estimate the weight W using the aver-
aged perceptron algorithm (Collins, 2002a) which
is well known for its fast speed and good per-
formance in similar large-parameter NLP tasks
(Huang, 2008). The training algorithm of the
generic averaged perceptron is shown in Table 1.
In line 5, the algorithm updates W with the differ-
ence (if any) between the feature representations
of the best scoring candidate and the gold candi-
date. We also use a refinement called “averaged
parameters” that the final weight vector W is the
average of weight vectors over T iterations and N
samples. This averaging effect has been shown to
reduce overfitting and produces more stable results
(Collins, 2002a).

Pseudocode: Averaged Structured Perceptron
1: Input: training data(xt, y∗t ) for t = 1, ..., T ;
2: w̄(0) ← 0; v ← 0; i← 0
3: for n in 1,...,N do
4: for t in 1, ..., T do
5: w̄(i+1) ← update w̄(i) according to (xt, y∗t )
6: v ← v + w̄i+1

7: i← i+ 1
8: w̄ ← v//(N ∗ T )
9: return w̄

Table 1: The perceptron training algorithm

4.3 Features for Joint Model

Here, we introduce features used in the joint mod-
el. For clear illustration, we describe these fea-
tures in the context of the example in Figure 1.

Role Transition (RT): a binary feature to in-
dicate whether the transitions among roles of the
candidate are reasonable. Because all roles are as-
signed to the same candidate, all role transitions
should be compatible. For instance, if an argu-
ment is labeled as AM-TMP for one predicate, it
cannot be labeled as AM-LOC for another pred-
icate. This feature is constructed by traversing
the training data to ascertain whether transitions
between all roles are reasonable. In Table 2, we
list some role transitions which are obtained from
the training data of experiments on Chinese Prop-
Bank.

Roles and Predicates’ Sequence (RPS): a
joint feature template that concatenates roles and
the given predicates. For the gold candidate
‘Arg1, Arg0’, the feature is ‘Arg1-force, Arg0-
reconsider’.

Roles and Predicates’ Sequence with Rela-
tive Orders (RPSWR): the template is similar to
the above one except that relative orders between
roles and predicates are added. If the shared argu-
ment is before the given predicate, the feature is
described as ‘Role-Predicate’; otherwise, the fea-
ture is ‘Predicate-Role’. And, if the predicate’s
voice is passive, the order is reversed. Thus, for
the gold candidate ‘Arg1, Arg0’, this feature is
‘force-Arg1, Arg0-reconsider’.

Roles and Phrase Type Sequence (RPTS)
Roles and Head Word Sequence (RHWS)
Roles and Head Word’s POS Sequence

(RHWPS)
These three features are utilized to explore the

shared argument’s relations with roles.
Time and Location Class (TLC): We find

there are much confusions between AM-TMP and
AM-LOC in the base model. To fix these errors,
we add two features: Time and Location Class.
For these features, we just collect phrases labeled
as AM-TMP and AM-LOC from the training da-
ta. When the argument belongs to Time or Loca-
tion Class, we add a sequence template consisting
of ‘Role-Time’ for Time Class or ‘Role-Location’
for Location Class. For the gold candidate ‘Arg1,
Arg0’, the feature is ‘Arg1-none, Arg0-none’ be-
cause ‘the justices’ belongs neither to Time Class
nor to Location Class.
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Role Arg0 Arg1 Arg2 AM-LOC AM-TMP AM-ADV AM-MNR AM-TPC
Arg0 + + + + + + + +
Arg1 + + + + - + + +
Arg2 + + + + - - - +

AM-LOC + + + + - + - +
AM-TMP + - - - + + - -
AM-ADV + - + - + + - -
AM-MNR + + - - - - + -
AM-TPC + + + + + + - +

Table 2: Some role transitons from Chinese PropBank. “+” means reasonable role transition and “-”
means illegal.

5 Experiments

5.1 Experimental Setting

To evaluate the performance of our approach, we
have conducted on two standard benchmarks: Chi-
nese PropBank and English PropBank. The exper-
imental setting is as follows:

Chinese:
We use Chinese Proposition Bank 1.0. All data

are divided into three parts. 648 files (from cht-
b 081.fid to chtb 899.fid) are used as the training
set. 40 files (from chtb 041.fid to chtb 080.fid)
constitutes the development set. The test set con-
sists of 72 files (chtb 001.fid to chtb 040.fid and
chtb 900.fid to chtb 931.fid). This data setting is
the same as in (Xue, 2008; Sun et al., 2009). We
adopt Berkeley Parser1 to carry out auto parsing
for SRL and the parser is retrained on the training
set. We used n =10 joint assignments for training
the joint model and testing.

English:
We choose English Propbank as the evaluation

corpus. According to the traditional partition, the
training set consists of the annotations in Sections
2 to 21, the development set is Section 24, and
the test set is Section 23. This data setting is the
same as in (Xue and Palmer, 2004; Toutanova et
al., 2005). We adopt Charniak Parser2 to carry out
auto parsing for SRL and the parser is retrained on
the training set. We used n =10 joint assignments
for training the joint model and testing.

5.2 Experiment on Argument Identification

We first investigate the performance of our ap-
proach in Argument Identification.

For the task of Argument Identification (AI), we

1http://code.google.com/p/berkeleyparser/
2https://github.com/BLLIP/bllip-parser

adopt auto parser to produce auto parsing trees for
SRL. The results are shown in Table 3. We can
see that in the experiment of Chinese, the F1 score
reaches to 78.79% with base features. While after
additional predicates-related features are added,
the precision has improved by 1.6 points with s-
light loss in recall, which leads to the improve-
ment of 0.6 points in F1. The similar effect oc-
curred in the experiment of English. After addi-
tional features added in the identification module,
the precision is improved by about 0.9 points with
a slight loss in recall, leading to an improvement
of 0.3 points in F1. However, the improvemen-
t in English is slight smaller than in Chinese. We
think the main reason is that there are less parse er-
rors in English than in Chinese. All results demon-
strate that the novel predicted-related features are
effective in recognizing many identification errors
which are difficult to discriminate with base fea-
tures.

P(%) R(%) F1(%)

Ch
Base 84.36 73.90 78.79

+Additional 85.97 73.72 79.38*

En
Base 82.86 76.83 79.73

+Additional 83.75 76.69 80.06

Table 3: Comparison with Base Features in Ar-
gument Identification. Scores marked by “*” are
significantly better (p < 0.05) than base features.

5.3 Experiment on Argument Classification

5.3.1 Results

Errors produced in AI will influenced the evalu-
ation of Argument Classification (AC). So, to e-
valuate fairly we assume that the argument con-
stituents of a predicate are already known, and the
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Num Acc(%)

Ch
Shared 2060 91.36

All 8462 92.77

En
Shared 2015 93.85

All 14061 92.30

Table 4: Performance of the Base Model in Argu-
ment Classification

Methods Acc(%)

Ch
Base 91.36
Joint 93.74*

En
Base 93.85
Joint 95.33*

Table 5: Comparison with Base Model on shared
arguments. Scores marked by “*” are significantly
better (p < 0.05) than base model.

task is only to assign the correct labels to the con-
stituents. The evaluation criterion is Accuracy.

The results of the base model are shown in Ta-
ble 4. We first note that in testing set, there are a
large number of shared arguments, which weigh-
s about one quarter of all arguments in Chinese
and 14% in English. Therefore, the fine process-
ing of these arguments is essential for argumen-
t classification. However, the base model cannot
handle these shared arguments so well in Chinese
that the accuracy of the shared arguments is lower
by about 1.4 points than the average value of all
arguments. Nevertheless, from Table 5 we can see
that our joint model’s accuracy on the shared argu-
ments reaches 93.74%, 2.4 points higher than the
base model in Chinese. Although the base mod-
el obtain good performance on shared arguments
of English, our joint model’s performance reach-
es 95.33%, 1.5 points higher than the base mod-
el. This indicates that even though the base model
is optimized to utilize a large set of features and
achieves the state-of-the-art performance, it is still
advantageous to model the joint information of the
shared arguments.

Another point to note is that our joint model in
resolving English SRL task is not so good as in
Chinese SRL. There are mainly two reasons. The
first reason is that the shared arguments occur less
in English than in Chinese so that training sam-
ples are insufficient for our discriminative model.
The second reason is the annotation of some in-
transitive verbs. In English PropBank, there is a
class of intransitive verbs such as “land” (known

as verbs of variable behavior), for which the ar-
gument can be tagged as either ARG0 or ARG1.
Here, we take examples from the guideline3 of En-
glish PropBank to explain.

“A bullet (ARG1) landed at his feet”
“He (ARG0) landed”
In the above examples, the two arguments and

the predicate ‘land’ have the same relative order
and voice but the arguments have different label-
s for their respective predicates. In fact, accord-
ing to the intention of the annotator, ARG0 and
ARG1 are both correct. Unfortunately, in English
PropBank, there is only one gold label for each ar-
gument, which leads to much noise for our joint
model. Moreover, such situations are not rare in
the corpus.

5.3.2 Feature Performance
We investigate effects of the features of joint mod-
el to the performance and results are shown in Ta-
ble 6. Each row shows the improvement over the
baseline when that feature is used in the joint mod-
el. We can see that features proposed are beneficial
to the performance of the joint model. But some
features like ‘RPS’ and ‘RPSRO’ play a more im-
portant role.

Features Chinese English

base 91.36 93.85

RT 91.70 94.10
RPS 92.30 94.70

RPSRO 92.24 94.50
RPTS 91.80 94.18
RHWS 91.63 93.95

RHWPS 91.43 94.23
TCL 91.93 94.23

All 93.74 95.33

Table 6: Features performance in the Joint Model.
We use first letter of words to represent features.

5.4 SRL Results
We also conducted the complete experiment on the
auto parse trees. The results are shown in Table
7. In experiments on Chinese PropBank, we can
see that after novel predicate-related features are
added in the stage of Argument Identification, our
model outperforms the base model by 0.5 points

3http://verbs.colorado.edu/propbank/EPB-
AnnotationGuidelines.pdf
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F1(%)

Chinese
Base 74.04

Base + AI 74.50
Base + AI + AC 75.31

English
Base 76.44

Base + AI 76.70
Base + AI + AC 77.00

Table 7: Results on auto parse trees. Base mean-
s the baseline system, +AI meaning predcates-
related features added in AI, + AC meaning joint
module added.

Methods F1(%)

Chinese
Xue(2008) 71.90

Sun et al.(2009) 74.12
Ours 75.31

English
Surdeanu and Turmo(2005) 76.46

Ours 77.00

Table 8: Comparison with Other Methods

in F1. Furthermore, after incorporating the joint
module, the performance goes up to 75.31%, 1.3
points higher than the base model. We obtain sim-
ilar observations in experiments on English Prop-
Bank, but due to reasons illustrated in Subsection
5.3, the performance of our method is slight better
than the base model.

We compare our method with others and the re-
sults are shown in Table 8. In Chinese, Xue (2008)
and Sun et al. (2009) are pioneer works in Chinese
SRL. Our approach outperforms these approaches
by about 3.4 and 1.9 F1 points respectively. In
English SRL, we compare out method with Sur-
deanu and Turmo (2005) which is best result ob-
tained with single parse tree as the input in CON-
LL 2005 SRL evaluation. Our approach is better
than their approach which ignores the relation of
multiple predicates’ SRL.

6 Discussion and Analysis

In this section, we discuss some case studies that
illustrate the advantages of our model. Some ex-
amples from our experiments are shown in Table
9. In example (1), the argument is a preposition-
al phrase ‘( nÊ ] t I¡ Y² � �ö’
(at the same time of compulsory education) and
shared by two predicates ‘�0’ (witness) and ‘i
'’ (expand). In the corpus, a prepositional phrase
is commonly labeled as ARGM-LOC and ARGM-
TMP. Thus, the base model labeled the argument

into these classes but one as ARGM-LOC, another
as ARGM-TMP. Unfortunately, ARGM-LOC for
‘�0’ (witness) is wrong while our joint model
outputs both correct answers, which benefits from
the role transition feature. From Table 1, we can
see that the role transition between ARGM-TMP
and ARGM-LOC is impossible, which lowers the
score of candidates containing both ARGM-LOC
and ARGM-TMP in the joint model. Thus, the
joint model is more likely to output the gold can-
didate.

In example (2), the argument is ‘wÉ� Þ:
:’ (Hailar Airport) and shared by two predicates
‘iú’ (expand) and ‘�:’ (become). Because of
the high similarity of the features in the base mod-
el, the argument for both predicates is classified
into the same class ARG0, but the label for ‘iú’
(expand) is wrong. Nevertheless, our joint mod-
el obtains both correct labels, which benefits from
the global features. After searching the training
data, we find some similar examples to this one,
such as ‘0Á ÐL Ì� ò iú ó ��� l
Ì’ (The railway operation mileage is expanded to
120 kilometers), in which ‘0Á ÐL Ì�’ (the
railway operation mileage) is labeled as ARG1 for
‘iú’ (expand) but ARG0 for ‘ó’ (to). We think
these samples provide evidence for our joint mod-
el while these information has not been captured
by the base model.

In example (3), the argument is ‘ý�� å
¦� Ø � ' Æâ’ (a large group with high
reputation) and shared by predicates ‘ÑU’ (de-
velop) and ‘:’ (become). Different from the
above cases in which only one label is wrong in
the base model, both labels for ‘ÑU’ (develop)
and ‘:’ (become) are misclassified by the base
model. However, our method still gets correct an-
swers for both predicates, which also benefits from
the global features.

7 Related work

Our work is related to semantic role labeling
and discriminative reranking. In this section, we
briefly review these two types of work.

On Semantic Role Labeling
Gildea and Jurafsky (2002) first presented a sys-

tem based on a statistical classifier which is trained
on a hand-annotated corpora FrameNet. In their
pioneering work, they used a gold or autoparsed
syntax tree as the input and then extracted vari-
ous lexical and syntactic features to identify the
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Examples Base Ours
1. (((nnnÊÊÊ]]]tttIII¡¡¡YYY²²²������ööö�-I
L�Y²_���000

1
ÑUÄ!�iii'''

2

(At the same time of compulsory education,
secondary vocational education have achieved1

significant development and constant expanding2)

ARGM-LOC |�0
ARGM-TMP |i'

ARGM-TMP |�0
ARGM-TMP |i'

2. wwwÉÉÉ���ÞÞÞ::::::iiiúúú1
���:::

2
ýE*z/

(Hailar Airport had been expanded1 and became2

an international airport)

ARG0 |iú
ARG0 |�:

ARG1 |iú
ARG0 |�:

3. w�Æâ��. 6eò�4mA¿C,
ÑÑÑUUU

1
:::

2
ýýý������ååå¦¦¦���ØØØ���'''ÆÆÆâââ

(Haier Group’s sales revenue has exceeded six
billion yuan and it has developed1 to be2 a
large group with high reputation)

ARG1 |ÑU
ARG0 |:

ARG3 |ÑU
ARG1 |:

Table 9: Some examples in our experiments

semantic roles for a given predicate. After Gildea
and Jurafsky (2002), there have been a large num-
ber of works on automatic semantic role label-
ing. Based on a basic discriminative model, Pun-
yakanok et al. (2004) constructed an integer linear
programming architecture, in which the dependen-
cy relations among arguments are implied in the
constraint conditions. Toutanova et al. (2008) pro-
posed a joint model to explore relations of all ar-
guments of the same predicate. Unlike them, this
paper focus on mining relations of different pred-
icates’ semantic roles in one sentence. And, there
have been many extensions in machine learning
models (Moschitti et al., 2008), feature engineer-
ing (Xue and Palmer, 2004), and inference pro-
cedures (Toutanova et al., 2005; Punyakanok et
al., 2008; Zhuang and Zong, 2010a; Zhuang and
Zong, 2010b).

Sun and Jurafsky (2004) did the preliminary
work on Chinese SRL without employing any
large semantically annotated corpus of Chinese.
They just labeled the predicate-argument struc-
tures of ten specified verbs to a small collection
of Chinese sentences, and utilized Support Vec-
tor Machine to identify and classify the arguments.
They made the first attempt on Chinese SRL and
produced promising results. After the PropBank
(Xue and Palmer, 2003) was built, Xue and Palmer
(2004) and Xue (2008) took a critical look at fea-
tures of argument detection and argument classi-
fication. Unlike others’ using syntax trees as the
input of SRL, Sun et al. (2009) performed Chi-
nese semantic role labeling with shallow parsing.
Li et al. (2010) explored joint syntactic and se-

mantic parsing of Chinese to further improve the
performance of both syntactic parsing and SRL.

However, to the best of our knowledge, in
the literatures, there is no work related to multi-
predicate semantic role labeling.

On Discriminative Reranking
Discriminative reranking is a common approach

in the NLP community. Its general procedure is
that a base system first generates n-best candidates
and with the help of global features, we obtain
better performance through reranking the n-best
candidates. It has been shown to be effective for
various natural language processing tasks,such as
syntactic parsing (Collins, 2000; Collins, 2002b;
Collins and Koo, 2005; Charniak and Johnson,
2005; Huang, 2008), semantic parsing (Lu et al.,
2008; Ge and Mooney, 2006), part-of-speech tag-
ging (Collins, 2002a), named entity recognition
(Collins, 2002c), machine translation (Shen et al.,
2004) and surface realization in generation (Kon-
stas and Lapata, 2012).

8 Conclusion and Feature Work

This paper investigates the interaction effect a-
mong multi-predicate’s SRL. Our investigation
has shown that there is much interaction effec-
t of multi-predicate’s SRL both in Argument Iden-
tification and in Argument Classification. In the
stage of argument identification, we proposed nov-
el features related to predicates and successfully
removed many argument identification errors. In
the stage of argument classification, we concen-
trate on the classification of the arguments shared
by multiple predicates. Experiments have shown
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that the base model often fails in classifying the
shared arguments. To perform the classification of
the shared arguments, we propose a joint model
and with the help of the global features, our join-
t model yields better performance than the base
model. To the best of our knowledge, this is the
first work of investigating the interaction effect of
multi-predicate’s SRL.

In the future, we will explore more effective fea-
tures for multi-predicate’s identification and clas-
sification. Since we adopt reranking approach in
the shared arguments’ classification, the perfor-
mance is limited by n-best list. Also, we would
like to explore whether there is another method to
resolve the problem.
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Abstract

Word-sense recognition and disambigua-
tion (WERD) is the task of identifying
word phrases and their senses in natural
language text. Though it is well under-
stood how to disambiguate noun phrases,
this task is much less studied for verbs
and verbal phrases. We present Werdy,
a framework for WERD with particular
focus on verbs and verbal phrases. Our
framework first identifies multi-word ex-
pressions based on the syntactic structure
of the sentence; this allows us to recog-
nize both contiguous and non-contiguous
phrases. We then generate a list of can-
didate senses for each word or phrase, us-
ing novel syntactic and semantic pruning
techniques. We also construct and lever-
age a new resource of pairs of senses for
verbs and their object arguments. Finally,
we feed the so-obtained candidate senses
into standard word-sense disambiguation
(WSD) methods, and boost their precision
and recall. Our experiments indicate that
Werdy significantly increases the perfor-
mance of existing WSD methods.

1 Introduction

Understanding the semantics of words and multi-
word expressions in natural language text is an
important task for automatic knowledge acquisi-
tion. It serves as a fundamental building block
in a wide area of applications, including semantic
parsing, question answering, paraphrasing, knowl-
edge base construction, etc. In this paper, we
study the task of word-sense recognition and dis-
ambiguation (WERD) with a focus on verbs and

verbal phrases. Verbs are the central element in a
sentence, and the key to understand the relations
between sets of entities expressed in a sentence.

We propose Werdy, a method to (i) automati-
cally recognize in natural language text both sin-
gle words and multi-word phrases that match en-
tries in a lexical knowledge base (KB) like Word-
Net (Fellbaum, 1998), and (ii) disambiguate these
words or phrases by identifying their senses in the
KB. WordNet is a comprehensive lexical resource
for word-sense disambiguation (WSD), covering
nouns, verbs, adjectives, adverbs, and many multi-
word expressions. In the following, the notion of
an entry refers to a word or phrase in the KB,
whereas a sense denotes the lexical synset of the
entry’s meaning in the given sentence.

A key challenge for recognizing KB entries in
natural language text is that entries often consist of
multiple words. In WordNet-3.0 more than 40%
of the entries are multi-word. Such entries are
challenging to recognize accurately for two main
reasons: First, the components of multi-word en-
tries in the KB (such as fiscal year) often consist
of components that are themselves KB entries (fis-
cal and year). Second, multi-word entries (such
as take a breath) may not appear consecutively in
a sentence (“He takes a deep breath.”). Werdy
addresses the latter problem by (conceptually)
matching the syntactic structure of the KB entries
to the syntactic structure of the input sentence.
To address the former problem, Werdy identifies
all possible entries in a sentence and passes them
to the disambiguation phase (take, breath, take a
breath, . . . ); the disambiguation phase provides
more information about which multi-word entries
to keep. Thus, our method solves the recognition
and the disambiguation tasks jointly.

Once KB entries have been identified, Werdy
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disambiguates each entry against its possible
senses. State-of-the-art methods for WSD (Nav-
igli, 2009) work fairly well for nouns and noun
phrases. However, the disambiguation of verbs
and verbal phrases has received much less atten-
tion in the literature.

WSD methods can be roughly categorized into
(i) methods that are based on supervised training
over sense-annotated corpora (e.g., Zhong and Ng
(2010)), and (ii) methods that harness KB’s to as-
sess the semantic relatedness among word senses
for mapping entries to senses (e.g., Ponzetto and
Navigli (2010)). For these methods, mapping
verbs to senses is a difficult task since verbs tend
to have more senses than nouns. In WordNet, in-
cluding monosemous words, there are on average
1.24 senses per noun and 2.17 per verb.

To disambiguate verbs and verbal phrases,
Werdy proceeds in multiple steps. First, Werdy
obtains the set of candidate senses for each recog-
nized entry from the KB. Second, it reduces the
set of candidate entries using novel syntactic and
semantic pruning techniques. The key insight be-
hind our syntactic pruning is that each verb sense
tends to occur in a only limited number of syn-
tactic patterns. For example, the sentence “Al-
bert Einstein remained in Princeton” has a sub-
ject (“Albert Einstein”), a verb (“remained”) and
an adverbial (“in Princeton”), it follows an SVA
clause pattern. We can thus safely prune verb
senses that do not match the syntactic structure of
the sentence. Moreover, each verb sense is com-
patible with only a limited number of semantic
argument types (such as location, river, person,
musician, etc); this phenomena is called selec-
tional preference or selectional restriction. Senses
that are compatible only with argument types not
present in the sentence can be pruned. Our prun-
ing steps are based on the idea that a verb selects
the categories of its arguments both syntactically
(c-selection) and semantically (s-selection). In the
final step, Werdy employs a state-of-the-art gen-
eral WSD method to select the most suitable sense
from the remaining candidates. Since incorrect
senses have already been greatly pruned, this step
significantly gains accuracy and efficiency over
standard WSD.

Our semantic pruning technique builds on a
newly created resource of pairs of senses for verbs
and their object arguments. For example, the
WordNet verb sense 〈play-1〉 (i.e., the 1st sense of

the verb entry “play”) selects as direct object the
noun sense 〈sport-1〉. We refer to this novel re-
source as the VO Sense Repository, or VOS repos-
itory for short.1 It is constructed from the Word-
Net gloss-tags corpus, the SemCor dataset, and a
small set of manually created VO sense pairs.

We evaluated Werdy on the SemEval-2007
coarse-grained WSD task (Navigli et al., 2007),
both with and without automatic recognition of en-
tries. We found that our techniques boost state-of-
the-art WSD methods and obtain high-quality re-
sults. Werdy significantly increases the precision
and recall of the best performing baselines.

The rest of the paper is organized as follows.
Section 2 gives an overview of Werdy compo-
nents. Section 3 presents the entry recognition,
and Sections 4 and 5 discuss our novel syntac-
tic and semantic pruning techniques. Section 6
presents the Semantic VO Repository and how we
constructed it. Section 7 gives the results of our
evaluation. Section 8 discusses related work.

2 Overview of Werdy

Werdy consists of four steps: (i) entry recognition,
(ii) syntactic pruning, (iii) semantic pruning, and
(iv) word-sense disambiguation. The novel con-
tribution of this paper is in the first three steps,
and in the construction of the VO sense repository.
Each of these steps operates on the clause level,
i.e., we first determine the set of clauses present
in the input sentence and then process clauses sep-
arately. A clause is a part of a sentence that ex-
presses some statement or coherent piece of infor-
mation. Clauses are thus suitable minimal units
for automatic text understanding tasks (Del Corro
and Gemulla, 2013); see Sec.3 for details.

In the entry-recognition step (Sec. 3), Werdy
obtains for the input sentence a set of potential
KB entries along with their part-of-speech tags.
The candidate senses of each entry are obtained
from WordNet. For instance, in the sentence “He
takes a deep and long breath”, the set of potential
entries includes take (verb, 44 candidate senses),
take a breath (verb, 1 candidate sense), and breath
(noun, 5 candidate senses). Note that in contrast to
Werdy, most existing word-sense disambiguation
methods assume that entries have already been
(correctly) identified.

1The VOS repository, Werdy’s source code, and results of
our experimental study are available at http://people.
mpi-inf.mpg.de/˜corrogg/.
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In the syntactic-pruning step (Sec. 4), we elim-
inate candidate senses that do not agree with
the syntactic structure of the clause. It is well-
established that the syntactic realization of a
clause is intrinsically related with the sense of
its verb (Quirk et al., 1985; Levin, 1993; Hanks,
1996; Baker et al., 1998; Palmer et al., 2005).
Quirk et al. (1985) identified seven possible clause
types in the English language (such as “subject
verb adverbial”, SVA). We make use of techniques
inspired by Del Corro and Gemulla (2013) to iden-
tify the clause type of each clause in the sen-
tence. We then match the clause type with the set
of WordNet frames (e.g., “somebody verb some-
thing”) that WordNet provides for each verb sense,
and prune verb senses for which there is no match.

In the semantic-pruning step (Sec. 5), we fur-
ther prune the set of candidate senses by taking the
semantic types of direct objects into account. Sim-
ilarly to the syntactic relation mentioned above,
a verb sense also imposes a (selectional) restric-
tion on the semantic type of its arguments (Quirk
et al., 1985; Levin, 1993; Hanks, 1996; Baker et
al., 1998; Palmer et al., 2005). For instance, the
verb play with sense participate in games or sports
requires an object argument of type 〈game-1〉2,
〈game-3〉, or 〈sport-1〉. Senses that do not match
the arguments found in the clause are pruned.
This step is based on the newly constructed VOS
Repository (Sec. 6). Note that when there is no di-
rect object, only the syntactic pruning step applies.

3 Entry Recognition

The key challenge in recognizing lexical KB en-
tries in text is that entries are not restricted to sin-
gle words. In addition to named entities (such as
people, places, etc.), KB’s contain multi-word ex-
pressions. For example, WordNet-3.0 contains en-
tries such as take place (verb), let down (verb),
take into account (verb), be born (verb), high
school (noun), fiscal year (noun), and Prime Min-
ister (noun). Note that each individual word in a
multi-word entry is usually also an entry by itself,
and can even be part of several multi-word en-
tries. To ensure correct disambiguation, all poten-
tial multi-word entries need to be recognized (Fin-
layson and Kulkarni, 2011), even when they do not
appear as consecutive words in a sentence.

Werdy addresses these challenges by explor-
ing the syntactic structure of both the input sen-

2We use the notation 〈WordNet entry-sense number〉.

He takes my hand and a deep breath .

nsubj poss

dobj

cc

det

amod

conj
root

Figure 1: An example dependency parse

tence and the lexical KB entries. The structure
of the sentence is captured in a dependency parse
(DP). Given a word in a sentence, Werdy con-
ceptually generates all subtrees of the DP starting
at that word, and matches them against the KB.
This process can be performed efficiently as Word-
Net entries are short and can be indexed appro-
priately. To match the individual words of a sen-
tence against the words of a KB entry, we follow
the standard approach and perform lemmatization
and stemming (Finlayson, 2014). To further han-
dle personal pronouns and possessives, we follow
Arranz et al. (2005) and normalize personal pro-
nouns (I, you, my, your, . . . ) to one’s, and reflex-
ive pronouns (myself, yourself, . . . ) to oneself.

Consider the example sentence “He takes my
hand and a deep breath”. We first identify the
clauses and their DP’s (Fig. 1) using the method
of Del Corro and Gemulla (2013), which also
processes coordinating conjunctions. We obtain
clauses “He takes my hand” and “He takes a deep
breath”, which we process separately. To obtain
possible entries for the first clause, we start with
its head word (take) and incrementally consider
its descendants (take hand, take one’s hand, . . . ).
The exploration is terminated as early as possible;
for example, we do not consider take one’s hand
because there is no WordNet entry that contains
both take and hand. For the second clause, we
start with take (found in WordNet), then expand
to take breath (not found but can occur together),
then take a breath (found), then take a deep breath
(not found, cannot occur together) and so on.

Note that the word “take” in the sentence re-
fer to two different entries and senses: “take” for
the first clause and “take a breath” for the sec-
ond clause. In this stage no decisions are made
about selecting entries and disambiguating them;
these decisions are made in the final WSD stage
of Werdy.

We tested Werdy’s entry-recognizer on the
SemEval-2007 corpus. We detected the correct en-
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Pattern Clause type Example WN frame example [frame number]

SVi SV AE died. Somebody verb [2]
SVeA SVA AE remained in Princeton. Somebody verb PP [22]
SVcC SVC AE is smart. Somebody verb adjective [6]
SVmtO SVO AE has won the Nobel Prize. Somebody verb something [8]
SVdtOiO SVOO RSAS gave AE the Nobel Prize. Somebody verb somebody something [14]
SVctOA SVOA The doorman showed AE to his office. Somebody verb somebody PP [20]
SVctOC SVOC AE declared the meeting open. Something verb something adjective/noun [5]
S: Subject, V: Verb, C: Complement, O: Direct object, Oi: Indirect object, A: Adverbial, Vi: Intransitive verb, Vc: Copular verb,

Vc: Extended-copular verb, Vmt: Monotransitive verb, Vdt: Ditransitive verb, Vct: Complex-transitive verb

Table 1: Clause types and examples of matching WordNet frames

tries for all but two verbs (out of more than 400).
The two missed entries (take up and get rolling)
resulted from incorrect dependency parses.

4 Syntactic Pruning

Once the KB entries have been recognized, Werdy
prunes the set of possible senses of each verb entry
by considering the syntactic structure of the clause
in which the entry occurs. This pruning is based
on the observation that each verb sense may occur
only in a limited number of “clause types”, each
having specific semantic functions (Quirk et al.,
1985). When the clause type of the sentence is
incompatible with a candidate sense of an entry,
this sense is eliminated.

Werdy first detects in the input sentence the set
of clauses and their constituents. A clause con-
sists of one subject (S), one verb (V), and option-
ally an indirect object (O), a direct object (O), a
complement (C) and one or more adverbials (A).
Not all combinations of clause constituents ap-
pear in the English language. When we classify
clauses according to the grammatical function of
their constituents, we obtain only seven different
clause types (Quirk et al., 1985); see Table 1. For
example, the sentence “He takes my hand” is of
type SVO; here “He” is the subject, “takes” the
verb, and “my hand” the object. The clause type
can (in principle) be determined by observing the
verb type and its complementation (Del Corro and
Gemulla, 2013).

For instance, consider the SVA clause “The stu-
dent remained in Princeton”. The verb remain has
four senses in WN: (1) stay the same; remain in
a certain state (e.g., “The dress remained wet”),
(2) continue in a place, position, or situation (“He
remained dean for another year”), (3) be left; of
persons, questions, problems (“There remains the

question of who pulled the trigger”) or (4) stay be-
hind (“The hostility remained long after they made
up”). The first sense of remain requires an SVC
pattern; the other cases require either SV or SVA.
Our example clause is of type SVA so that we can
safely prune the first sense.

WordNet provides an important resource for ob-
taining the set of clause types that are compatible
with each sense of a verb. In particular, each verb
sense in WordNet is annotated with a set of frames
(e.g., “somebody verb something”) in which they
may occur, capturing both syntactic and semantic
constraints. There are 35 different frames in to-
tal.3 We manually assigned a set of clause types to
each frame (e.g., SVO to frame “somebody verb
something”). Table 1 shows an example frame for
each of the seven clause types. On average, each
WordNet-3.0 verb sense is associated with 1.57
frames; the maximum number of frames per sense
is 9. The distribution of frames is highly skewed:
More than 61% of the 21,649 frame annotations
belong to one of four simple SVO frames (num-
bers 8, 9, 10 and 11), and 22 out of the 35 frames
have less than 100 instances. This skew makes
the syntactic pruning step effective for non-SVO
clauses, but less effective for SVO clauses.

Werdy directly determines a set of possible
frame types for each clause of the input sentence.
Our approach is based on the clause-type detection
method of Del Corro and Gemulla (2013), but we
also consider additional information that is cap-
tured in frames but not in clause types. For ex-
ample, we distinguish different realizations of ob-
jects (such as clausal objects from non-clausal ob-
jects), which are not captured in the clause type.
Given the DP of a clause, Werdy identifies the

3See http://wordnet.princeton.edu/
wordnet/man/wninput.5WN.html.
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Figure 2: Flow chart for frame detection

set of WN frames that can potentially match the
clause as outlined in the flowchart of Fig. 2. Werdy
walks through the flowchart; for each question,
we check for the presence or absence of a specific
constituent of a clause (e.g., a direct object forQ1)
and proceed appropriately until we obtain a set of
possible frames. This set is further reduced by
considering additional information in the frames
(not shown; e.g., that the verb must end on “-ing”).
For our example clause “The student remained
in Princeton”, we first identify possible frames
{ 1, 2, 12, 13, 22, 27 } using the flowchart (Q1 no,
Q2 no, Q3 yes); using the additional information
in the frames, Werdy then further prunes this set
to { 1, 2, 22 }. The corresponding set of remaining
candidate sense for remain is as given above, i.e.,
{ 〈remain-2〉, 〈remain-3〉, 〈remain-4〉 }.

Our mapping of clause types to WordNet frames
is judiciously designed for the way WordNet is or-
ganized. For instance, frames containing adver-
bials generally do not specify whether or not the
adverbial is obligatory; here we are conservative
in that we do not prune such frames if the input
clause does not contain an adverbial. As another
example, some frames overlap or subsume each
other; e.g, frame “somebody verb something” (8)
subsumes “somebody verb that clause” (26). In
some word senses annotated with the more general
frame, the more specific one can also apply (e.g.,
〈point out-1〉 is annotated with 8 but not 26; 26
can apply), in others it does not (e.g., 〈play-1〉 is
also annotated with 8 but not 26; but here 26 can-
not apply). To ensure the effectiveness of syntactic
pruning, we only consider the frames that are di-
rectly specified in WordNet. This procedure often
produces the desired results; in a few cases, how-
ever, we do prune the correct sense (e.g., frame 26

for clause “He points out that . . . ”).

5 Semantic Pruning

A verb sense imposes a restriction on the semantic
type of the arguments it may take and vice versa
(Quirk et al., 1985; Levin, 1993; Hanks, 1996;
Baker et al., 1998; Palmer et al., 2005; Kipper et
al., 2008). This allows us to further prune the verb
candidate set by discarding verb senses whose se-
mantic argument is not present in the clause.

WordNet frames potentially allow a shallow
type pruning based on the semantics provided for
the clause constituents. However we could solely
distinguish people (“somebody”) from things
(“something”), which is too crude to obtain sub-
stantial pruning effects. Moreover, this distinction
is sometimes ambiguous.

Instead, we have developed a more powerful
approach to semantic pruning based on our VOS
repository. We remove from the verb candidate set
those senses whose semantic argument cannot be
present in the sentence. For instance, consider the
clause “The man plays football.” Suppose that we
know that the verb entry play with sense 〈play-
1〉 (“participate in sports”) takes an object of type
〈sport-1〉; i.e., we have a tuple 〈play-1, sport-1〉
in our repository. Then, we check whether any
of the possible senses of football—(i) sport or (ii)
ball—is of type 〈sport-1〉. Here the first sense has
the correct type (the second sense does not); thus
we retain 〈play-1〉 as a possible sense for the verb
entry play. Next, suppose that we consider sense
〈play-3〉 (“play on an instrument”), which accord-
ing to our corpus takes 〈instrument-6〉 as argument
(i.e., there is a tuple 〈play-3, instrument-6〉 in our
VOS repository). Since none of the senses of foot-
ball is of type 〈instrument-6〉, we can safely drop
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〈play-3〉 from our candidate set. We perform this
procedure for every verb sense in the candidate set.

Semantic pruning makes use of both VOS
repository and the hypernym structure of the noun
senses in WordNet. For each sentence, we obtain
the possible senses of the direct-object argument
of the verb. We then consider each candidate sense
of the verb (e.g., 〈play-1〉), and check whether any
of its compatible object-argument senses (from
our repository) is a hypernym of any of the possi-
ble senses of its actual object argument (in the sen-
tence); e.g., 〈sport-1〉 is a hypernym of 〈football-
1〉. If so, we retain the verb’s candidate sense. If
not, either the candidate sense of the verb is in-
deed incompatible with the object argument in the
sentence, or our repository is incomplete. To han-
dle incompleteness to some extent, we also con-
sider hyponyms of the object-argument senses in
our repository; e.g., if we observe object sport in a
sentence and have verb-sense argument 〈football-
1〉 in our corpus, we consider this a match. If the
hyponyms lead to a match, we retain the verb’s
candidate sense; otherwise, we discard it.

6 Verb-Object Sense Repository

We use three different methods to construct the
repository. In particular, we harness the sense-
annotated WordNet glosses4 as well as the sense-
annotated SemCor corpus (Landes et al., 1998).5

The major part of the VOS repository was ac-
quired from WordNet’s gloss tags. According
to Atkins and Rundell (2008), noun definitions
should be expressed in terms of the class to which
they belong, and verb definitions should refer to
the types of the subjects or objects related to the
action. Based on this rationale, we extracted all
noun senses that appear in the gloss of each verb
sense; each of these noun senses is treated as a
possible sense of the object argument of the cor-
responding verb sense. For example, the gloss of
〈play-1〉 is “participate in games or sports;” each
noun is annotated with its senses (2 and 3 for
“games”, 1 for “sports”). We extract tuples 〈play-
1, game-2〉, 〈play-1, game-3〉, and 〈play-1, sport-
1〉 from this gloss. Note that we only extract
direct-object arguments, i.e., we do not consider
the type of the subject argument of a verb sense.
Since the constituents of the predicate are much

4http://wordnet.princeton.edu/
glosstag.shtml

5http://web.eecs.umich.edu/˜mihalcea/
downloads.html

more important than the subject to determine or
describe a verb sense, lexical resources rarely con-
tain information on the subject (Atkins and Run-
dell, 2008). Similarly, WordNet glosses typically
do not provide any information about adverbials.
Overall, we collected arguments for 8,657 verb
senses (out of WordNet’s 13,767 verb senses) and
a total of 13,050 〈verb-#, object-#〉-pairs.

We leveraged the sense-annotated SemCor cor-
pus to further extend our VOS repository. We
parsed each sentence in the corpus to obtain
the respective pairs of verb sense and object
sense. Since sentences are often more specific
than glosses, and thus less helpful for construct-
ing our repository, we generalized the so-found
object senses using a heuristic method. In particu-
lar, we first obtained all the object senses of each
verb sense, and then repeatedly generalized sets of
at least two senses that share a direct hypernym
to this hypernym. The rationale is that we only
want to generalize if we have some evidence that
a more general sense may apply; we thus require
at least two hyponyms before we generalize. Us-
ing this method, we collected arguments for 1,516
verb senses and a total of 4,131 sense pairs.

Finally, we noticed that the most frequent
senses used in the English language are usually
so general that their glosses do not contain any
relevant semantic argument. For instance, one of
the most frequent verbs is 〈see-1〉, which has gloss
“perceive by 〈sight-3〉”. The correct semantic ar-
gument 〈entity-1〉 is so general that it is omitted
from the gloss. In fact, our gloss-tag extractor
generates tuple 〈see-1, sight-3〉, which is incorrect.
We thus manually annotated the 30 most frequent
verb senses with their object argument types.

Our final repository contains arguments for
9,335 verb senses and a total of 17,181 pairs. Pairs
from SemCor tend to be more specific because
they refer to text occurrences. The assumption of
taking the nouns of the glosses as arguments seems
to be mostly correct, although some errors may
be introduced. Consider the pair 〈play-28, stream-
2〉 extracted from the gloss “discharge or direct
or be discharged or directed as if in a continu-
ous 〈stream-2〉”. Also, in some cases, the glosses
may refer to adverbials as in 〈play-14, location-1〉,
taken from gloss “perform on a certain 〈location-
1〉”. Note that if an argument is missing from our
repository, we may prune the correct sense of the
verb. If, however, there is an additional, incorrect
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argument in the repository, the correct verb sense
is retained but pruning may be less effective.

7 Evaluation

Dataset. We tested Werdy on the SemEval-2007
coarse-grained dataset.6 It consists of five sense-
annotated documents; the sense annotations refer
to a coarse-grained version of WordNet. In addi-
tion to sense annotations, the corpus also provides
the corresponding KB entries (henceforth termed
“gold entries”) as well as a POS tag. We restrict
our evaluation to verbs that act as clause heads. In
total, 461 such verbs were recognized by ClausIE
(Del Corro and Gemulla, 2013) and the Stanford
Parser (Klein and Manning, 2003).7

WSD Algorithms. For the final step of Werdy,
we used the KB-based WSD algorithms of
Ponzetto and Navigli (2010) and It-Makes-
Sense (Zhong and Ng, 2010), a state-of-the-art
supervised system that was the best performer in
SemEval-2007. Each method only labels entries
for which it is sufficiently confident.

Simplified Extended Lesk (SimpleExtLesk). A
version of Lesk (1986). Each entry is assigned the
sense with highest term overlap between the en-
try’s context (words in the sentence) and both the
sense’s gloss (Kilgarriff and Rosenzweig, 2000)
as well as the glosses of its neighbors (Baner-
jee and Pedersen, 2003). A sense is output only
if the overlap exceeds some threshold; we used
thresholds in the range of 1–20 in our experi-
ments. There are many subtleties and details
in the implementation of SimpleExtLesk so we
used two different libraries: a Java implementation
of WordNet::Similarity (Pedersen et al., 2004),8

which we modified to accept a context string, and
DKPro-WSD (Miller et al., 2013) version 1.1.0,
with lemmatization, removal of stop words, paired
overlap enabled and normalization disabled.

Degree Centrality. Proposed by Navigli and La-
pata (2010). The method collects all paths con-
necting each candidate sense of an entry to the set
of candidate senses of the words the entry’s con-
text. The candidate sense with the highest degree
in the resulting subgraph is selected. We imple-
mented this algorithm using the Neo4j library.9

6The data is annotated with WordNet 2.1 senses; we
converted the annotations to WordNet-3.0 using DKPro-
WSD (Miller et al., 2013).

7Version 3.3.1, model englishRNN.ser.gz
8http://www.sussex.ac.uk/Users/drh21/
9http://www.neo4j.org/

We used a fixed threshold of 1 and vary the search
depth in range 1–20. We used the candidate senses
of all nouns and verbs in a sentence as context.

It-Makes-Sense (IMS). A state-of-the-art, pub-
licly available supervised system (Zhong and Ng,
2010) and a refined version of Chan et al. (2007),
which ranked first in the SemEval-2007 coarse
grained task. We modified the code to accept KB
entries and their candidate senses. We tested both
in WordNet-2.1 and 3.0; for the later we mapped
Werdy’s set of candidates to WordNet-2.1.

Most Frequent Sense (MFS). Selects the most
frequent sense (according to WordNet frequen-
cies) among the set of candidate senses of an en-
try. If there is a tie, we do not label. Note that
this procedure differs slightly from the standard of
picking the entry with the smallest sense id. We
do not follow this approach since it cannot handle
well overlapping entries.

MFS back-off. When one of the above meth-
ods fails to provide a sense label (or provides more
than one), we used the MFS method above with a
threshold of 1. This procedure increased the per-
formance in all cases.

Methodology. The disambiguation was per-
formed with respect to coarse-grained sense clus-
ters. The score of a cluster is the sum of the indi-
vidual scores of its senses (except for IMS which
provides only one answer per word); the cluster
with the highest score was selected. Our source
code and the results of our evaluation are publicly
available10.

The SemEval-2007 task was not designed for
automatic entry recognition, for each word or
multi-word expression it provides the WordNet
entry and the POS tag. We proceeded as follows
to handle multi-word entries. In the WSD step, we
considered the candidate senses of all recognized
entries that overlap with the gold entry. For exam-
ple, we considered the candidate senses of entries
take, breath, and take a breath for gold entry take
a breath.

The SemEval-2007 task uses WordNet-2.1 but
Werdy uses WordNet-3.0. We mapped both the
sense keys and clusters from WordNet-2.1 to
WordNet-3.0. All senses in WordNet-3.0 that
could not be mapped to any cluster were consider
to belong each of them to a single sense cluster.
Note that this procedure is fair: for such senses

10http://people.mpi-inf.mpg.de/
˜corrogg/
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Algorithm Gold Pruning MFS threshold Verbs (clause heads) F1
Entry back-off /depth P R F1 points

Degree + - + 5 73.54 73.54 73.54
Centrality + + + 11 79.61 79.61 79.61 + 6.07

+ - - 5 73.99 71.58 72.77
+ + - 8 79.91 78.52 79.21 + 6.44

- - + 5 70.41 70.41 70.41
- + + 10 76.46 76.46 76.46 + 6.05

- - - 4 71.05 68.90 69.96
- + - 10 76.81 75.81 76.30 + 6.34

SimpleExtLesk + - + 6 77.28 75.27 76.26
(DKPro) + + + 5 81.90 80.48 81.18 + 4.92

+ - - 1 73.70 52.28 61.17
+ + - 1 81.99 64.21 72.02 + 10.85

- - + 5 74.33 72.57 73.44
- + + 5 79.30 77.75 78.52 + 5.08

- - - 1 69.85 50.54 58.65
- + - 1 78.69 62.20 69.48 + 10.83

SimpleExtLesk + - + 5 77.11 75.27 76.18
(WordNet::Sim) + + + 5 80.57 79.18 79.87 + 3.69

+ - - 1 74.82 68.98 71.78
+ + - 1 79.04 75.27 77.11 + 5.33

- - + 6 74.12 72.35 73.22
- + + 7 77.97 76.46 77.21 + 3.99

- - - 1 71.36 65.66 68.39
- + - 1 76.20 71.92 74.00 + 5.61

MFS + - - 1 76.61 74.62 75.60
+ + - 1 80.35 78.96 79.65 + 4.05

- - - 1 73.67 71.92 72.79
- + - 1 77.75 76.24 76.99 + 4.20

IMS + - + n.a. 79.60 79.60 79.60
(WordNet-2.1) + + + n.a. 80.04 80.04 80.04 + 0.44

- - + n.a. 76.21 75.05 75.63
- + + n.a. 77.53 76.36 76.94 + 1.31

IMS + - + n.a. 78.96 78.96 78.96
(WordNet-3.0) + + + n.a. 79.83 79.83 79.83 + 0.87

- - + n.a. 75.77 74.62 75.19
- + + n.a. 77.53 76.36 76.94 + 1.75

Table 2: Results on SemEval-2007 coarse-grained (verbs as clause heads)

the disambiguation is equivalent to a fine-grained
disambiguation, which is harder.

Results. Our results are displayed in Table 2.
We ran each algorithm with the gold KB entries
provided by in the dataset (+ in column “gold en-
try) as well as the entries obtained by our method
of Sec. 3 (-). We also enabled (+) and disabled
(-) the pruning steps as well as the MFS back-off
strategy. The highest F1 score was achieved by
SimpleExtLesk (DKPro) with pruning and MFS
back-off: 81.18 with gold entries and 78.52 with
automatic entry recognition. In all cases, our syn-
tactic and semantic pruning strategy increased per-
formance (up to +10.85 F1 points). We next dis-
cuss the impact of the various steps of Werdy in

detail.

Detailed Analysis. Table 3 displays step-by-
step results for DKPro’s SimpleExtLesk, for MFS,
as well as SimpleExtLesk with MFS back-off, the
best performing strategy. The table shows results
when only some Werdy’s steps are used. We start
from a direct use of the respective algorithm with
the gold entries of SemEval-2007 after each hor-
izontal line, and then successively add the Werdy
steps indicated in the table.

When no gold entries were provided, perfor-
mance dropped due to the increase of sense can-
didates for multi-word expressions, which include
the possible senses of the expression itself as well
as the senses of the entry’s parts that are them-
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Steps Performed threshold P R F1 F1 points

SimpleExtLesk (DKPro)

Plain with gold entries 1 73.70 52.28 61.17

+ Entry Recognition 1 69.85 50.54 58.65 - 2.52
+ Syntactic Pruning 1 76.47 58.84 66.50 + 7.85
+ Semantic Pruning 1 78.69 62.20 69.48 + 2.98

+ Entry Recognition 1 69.85 50.54 58.65 - 2.52
+ Semantic Pruning 1 73.85 55.39 63.30 + 4.65

+ Syntactic Pruning 1 79.33 61.21 69.10 + 7.93
+ Semantic Pruning 1 81.99 64.21 72.02 + 2.92

+ Semantic Pruning 1 78.11 56.90 65.84 + 4.67

MFS

Plain with gold entries 1 76.61 74.62 75.60

+ Entry Recognition 1 73.67 71.92 72.79 - 2.81
+ Syntactic Pruning 1 75.77 74.14 74.95 + 2.16
+ Semantic Pruning 1 77.75 76.24 76.99 + 2.04

+ Entry Recognition 1 73.67 71.92 72.79 - 2.81
+ Semantic Pruning 1 77.09 75.43 76.25 + 3.46

+ Syntactic Pruning 1 78.46 76.94 77.69 + 2.09
+ Semantic Pruning 1 80.35 78.96 79.65 + 1.96

+ Semantic Pruning 1 79.91 78.02 78.95 + 3.35

SimpleExtLesk (DKPro) with MFS back-off

Plain with gold entries 6 77.28 75.27 76.26

+ Entry Recognition 6 74.33 72.57 73.44 - 2.82
+ Syntactic Pruning 5 76.65 75.00 75.82 + 2.38
+ Semantic Pruning 5 79.30 77.75 78.52 + 2.70

+ Entry Recognition 5 74.33 72.57 73.44 - 2.82
+ Semantic Pruning 5 78.19 76.51 77.34 +3.90

+ Syntactic Pruning 5 79.34 77.80 78.56 + 2.30
+ Semantic Pruning 5 81.90 80.48 81.18 + 2.62

+ Semantic Pruning 5 81.02 79.09 80.04 + 3.78

Table 3: Step-by-step results

selves WordNet entries. Our entry recognizer
tends to do a good job since it managed to cor-
rectly identify all the relevant entries except in two
cases (i.e. “take up” and “get rolling”), in which
the dependency parse was incorrect. The drop in
F1 for our automatic entry recognition was mainly
due to incorrect selection of the correct entry of a
set of alternative, overlapping entries.

Syntactic pruning did not prune the correct
sense in most cases. In 16 cases (with gold en-
tries), however, the correct sense was pruned. Five
of these senses were pruned due to incorrect de-
pendency parses, which led to incorrect frame
identification. In two cases, the sense was not
annotated with the recognized frame in WordNet,
although it seemed adequate. In the remaining
cases, a general frame from WordNet was incor-
rectly omitted. Improvements to WordNet’s frame
annotations may thus make syntactic pruning even

more effective.
Semantic pruning also improves performance.

Here the correct sense was pruned for 11 verbs,
mainly due to the noisiness and incompleteness
of our VOS repository. Without using gold en-
tries, we found in total 237 semantic matches be-
tween possible verbs senses and possible object
senses (200 with gold entries). We also found that
our manual annotations in the VOS repository (see
Sec. 6) did not affect our experiments.

The results show that syntactic and semantic
pruning are beneficial for verb sense disambigua-
tion, but also stress the necessity to improve ex-
isting resources. Ideally, each verb sense would
be annotated with both the possible clause types
or syntactic patterns in which it can occur as well
as the possible senses of its objects. Annotations
for subjects and adverbial arguments may also be
beneficial.
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8 Related Work

WSD is a classification task where for every word
there is a set of possible senses given by some ex-
ternal resource (as a KB). Two types of methods
can be distinguished in WSD. Supervised systems
(Dang and Palmer, 2005; Dligach and Palmer,
2008; Chen and Palmer, 2009; Zhong and Ng,
2010) use a classifier to assign senses to words,
mostly relying on manually annotated data for
training. In principle, these systems suffer from
low coverage since the training data is usually
sparse. Some authors have tried to overcome this
limitation by exploiting linked resources as train-
ing data (Shen et al., 2013; Cholakov et al., 2014).

The second WSD approach corresponds to the
so-called KB methods (Agirre and Soroa, 2009;
Ponzetto and Navigli, 2010; Miller et al., 2012;
Agirre et al., 2014). They rely on a back-
ground KB (typically WordNet or extended ver-
sions (Navigli and Ponzetto, 2012)), where related
senses appear close to each other. KB-based al-
gorithms often differ in the way the KB is ex-
plored. It has been shown that a key point to en-
hance performance is the amount of semantic in-
formation in the KB (Ponzetto and Navigli, 2010;
Miller et al., 2012). Our framework fits this line of
work since it is also unsupervised and enriches the
background knowledge in order to enhance perfor-
mance of standard WSD algorithms. A compre-
hensive overview of WSD systems can be found
in Navigli (2009) and Navigli (2012).

To bring WSD to real-world applications, the
mapping between text and KB entries is a funda-
mental first step. It has been pointed that the ex-
istence of multi-word expressions imposes multi-
ple challenges to text understanding tasks (Sag et
al., 2002). The problem has been addressed by
Arranz et al. (2005) and Finlayson and Kulkarni
(2011). They find multi-word entries by match-
ing word sequences allowing some morphological
and POS variations according to predefined pat-
terns. Our method differs in that we can recognize
KB entries that appear discontinuously and in that
we do not select the correct entry but generate a
set of potential entries.

Linguists have noted the link between verb
senses and the syntactic structure and argument
types (Quirk et al., 1985; Levin, 1993; Hanks,
1996), and supervised WSD systems were devel-
oped to capture this relation (Dang and Palmer,
2005; Chen and Palmer, 2009; Dligach and

Palmer, 2008; Cholakov et al., 2014). In Dang
and Palmer (2005) and Chen and Palmer (2009),
it is shown that WSD tasks can be improved with
features that capture the syntactic structure and in-
formation about verb arguments and their types.
They use features as shallow named entity recog-
nition and the hypernyms of the possible senses
of the noun arguments. Dang and Palmer (2005)
also included features extracted from PropBank
(Palmer et al., 2005) from role labels and frames.
Dligach and Palmer (2008) generated a corpus of
verb and their arguments (both surface forms),
which was used to incorporate a semantic feature
to the supervised system.

In our work, we also incorporate syntactic and
semantic information. Instead of learning the re-
lation between the verb senses and the syntactic
structure, however we incorporate it explicitly us-
ing the WordNet frames, which provide informa-
tion about which verb sense should be consider
for a given syntactic pattern. We also incorporate
explicitly the semantic relation between each verb
sense and its arguments using our VOS repository.

Different resources of semantic arguments for
automatic text understanding tasks have been con-
structed (Baker et al., 1998; Palmer et al., 2005;
Kipper et al., 2008; Gurevych et al., 2012; Nakas-
hole et al., 2012; Flati and Navigli, 2013). In
(Baker et al., 1998; Palmer et al., 2005; Kipper
et al., 2008; Gurevych et al., 2012), the classifica-
tion of verbs and arguments is focused toward se-
mantic or thematic roles. Nakashole et al. (2012)
uses semantic types to construct a taxonomy of bi-
nary relations and Flati and Navigli (2013) col-
lected semantic arguments for given textual ex-
pressions. For instance, given the verb “break”,
they extract a pattern “break 〈body part-1〉”. In
contrast to existing resources, our VOS repository
disambiguates both the verb sense and the senses
of its arguments.

9 Conclusion

We presented Werdy, a framework for word-sense
recognition and disambiguation with a particular
focus on verbs and verbal phrases. Our results
indicate that incorporating syntactic and seman-
tic constraints improves the performance of verb
sense disambiguation methods. This stresses the
necessity of extending and improving the available
syntactic and semantic resources, such as Word-
Net or our VOS repository.

383



References
Eneko Agirre and Aitor Soroa. 2009. Personalizing

pagerank for word sense disambiguation. In Pro-
ceedings of EACL, pages 33–41.

Eneko Agirre, Oier Lopez de Lacalle, and Aitor Soroa.
2014. Random walks for knowledge-based word
sense disambiguation. Computational Linguistics,
40(1):57–84.

Victoria Arranz, Jordi Atserias, and Mauro Castillo.
2005. Multiwords and word sense disambiguation.
In Computational Linguistics and Intelligent Text
Processing, volume 3406 of Lecture Notes in Com-
puter Science, pages 250–262.

B. T. Sue Atkins and Michael Rundell. 2008. The Ox-
ford Guide to Practical Lexicography. Oxford Uni-
versity Press.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The berkeley framenet project. In Proceed-
ings of ACL, pages 86–90.

Satanjeev Banerjee and Ted Pedersen. 2003. Extended
gloss overlaps as a measure of semantic relatedness.
In Proceedings of IJCAI, pages 805–810.

Yee Seng Chan, Hwee Tou Ng, and Zhi Zhong. 2007.
Nus-pt: Exploiting parallel texts for word sense dis-
ambiguation in the english all-words tasks. In Pro-
ceedings of SemEval, pages 253–256.

Jinying Chen and Martha Palmer. 2009. Improving
english verb sense disambiguation performance with
linguistically motivated features and clear sense dis-
tinction boundaries. Language Resources and Eval-
uation, 43(2):181–208.

Kostadin Cholakov, Judith Eckle-Kohler, and Iryna
Gurevych. 2014. Automated verb sense labelling
based on linked lexical resources. In Proceedings of
EACL, pages 68–77.

Hoa Trang Dang and Martha Palmer. 2005. The role
of semantic roles in disambiguating verb senses. In
Proceedings of ACL, pages 42–49.

Luciano Del Corro and Rainer Gemulla. 2013.
Clausie: clause-based open information extraction.
In Proceedings of WWW, pages 355–366.

Dmitriy Dligach and Martha Palmer. 2008. Improv-
ing verb sense disambiguation with automatically
retrieved semantic knowledge. In Proceedings of
ICSC, pages 182–189.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Bradford Books.

Mark Alan Finlayson and Nidhi Kulkarni. 2011. De-
tecting multi-word expressions improves word sense
disambiguation. In Proceedings of MWE, pages 20–
24.

Mark Alan Finlayson. 2014. Java libraries for access-
ing the princeton wordnet: Comparison and evalua-
tion. In Proceedings of GWC.

Tiziano Flati and Roberto Navigli. 2013. Spred:
Large-scale harvesting of semantic predicates. In
Proceedings of ACL, pages 1222–1232.

Iryna Gurevych, Judith Eckle-Kohler, Silvana Hart-
mann, Michael Matuschek, Christian M. Meyer, and
Christian Wirth. 2012. Uby - a large-scale unified
lexical-semantic resource based on lmf. In Proceed-
ings of EACL, pages 580–590.

Patrick Hanks. 1996. Contextual dependency and lex-
ical sets. International Journal of Corpus Linguis-
tics, 1(1):75–98.

Adam Kilgarriff and Joseph Rosenzweig. 2000.
Framework and results for english senseval. Com-
puters and the Humanities, 34(1-2):15–48.

Karin Kipper, Anna Korhonen, Neville Ryant, and
Martha Palmer. 2008. A large-scale classification
of English verbs. Language Resources and Evalua-
tion, 42(1):21–40.

Dan Klein and Christopher D. Manning. 2003. Accu-
rate unlexicalized parsing. In Proceedings of ACL,
pages 423–430.

Shari Landes, Claudia Leacock, and Randee I. Tengi,
1998. Building Semantic Concordances. MIT
Press.

Michael Lesk. 1986. Automatic sense disambiguation
using machine readable dictionaries: how to tell a
pine cone from an ice cream cone. In Proceedings
of SIGDOC, pages 24–26.

Beth Levin. 1993. English Verb Classes and Alter-
nations: A Preliminary Investigation. University of
Chicago Press.

Tristan Miller, Chris Biemann, Torsten Zesch, and
Iryna Gurevych. 2012. Using distributional similar-
ity for lexical expansion in knowledge-based word
sense disambiguation. In Proceedings of COLING,
pages 1781–1796.

Tristan Miller, Nicolai Erbs, Hans-Peter Zorn, Torsten
Zesch, and Iryna Gurevych. 2013. Dkpro wsd: A
generalized uima-based framework for word sense
disambiguation. In Proceedings of ACL: System
Demonstrations, pages 37–42.

Ndapandula Nakashole, Gerhard Weikum, and Fabian
Suchanek. 2012. Patty: A taxonomy of relational
patterns with semantic types. In Proceedings of
EMNLP, pages 1135–1145.

Roberto Navigli and Mirella Lapata. 2010. An ex-
perimental study of graph connectivity for unsuper-
vised word sense disambiguation. EEE Transac-
tions on Pattern Analysis and Machine Intelligence,
32(4):678–692.

384



Roberto Navigli and Simone Paolo Ponzetto. 2012.
Babelnet: The automatic construction, evaluation
and application of a wide-coverage multilingual se-
mantic network. Artificial Intelligence, 193(0):217–
250.

Roberto Navigli, Kenneth C. Litkowski, and Orin Har-
graves. 2007. Semeval-2007 task 07: Coarse-
grained english all-words task. In Proceedings of
SemEval, pages 30–35.

Roberto Navigli. 2009. Word sense disambiguation:
A survey. ACM Computing Surveys, 41(2):10:1–
10:69.

Roberto Navigli. 2012. A quick tour of word sense dis-
ambiguation, induction and related approaches. In
Proceedings of SOFSEM, pages 115–129.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated cor-
pus of semantic roles. Computational Linguistics,
31(1):71–106.

Ted Pedersen, Siddharth Patwardhan, and Jason Miche-
lizzi. 2004. Wordnet::similarity: Measuring the

relatedness of concepts. In Proceedings of HLT-
NAACL: Demonstration Papers, pages 38–41.

Simone Paolo Ponzetto and Roberto Navigli. 2010.
Knowledge-rich word sense disambiguation rivaling
supervised systems. In Proceedings of ACL, pages
1522–1531.

Randolph Quirk, Sidney Greenbaum, Geoffrey Leech,
and Jan Svartvik. 1985. A Comprehensive Gram-
mar of the English Language. Longman.

Ivan A. Sag, Timothy Baldwin, Francis Bond, Ann A.
Copestake, and Dan Flickinger. 2002. Multiword
expressions: A pain in the neck for nlp. In Proceed-
ings of CICLing, pages 1–15.

Hui Shen, Razvan Bunescu, and Rada Mihalcea. 2013.
Coarse to fine grained sense disambiguation in
wikipedia. In Proceedings of *SEM, pages 22–31.

Zhi Zhong and Hwee Tou Ng. 2010. It makes sense:
A wide-coverage word sense disambiguation sys-
tem for free text. In Proceedings of ACL: System
Demonstrations, pages 78–83.

385



Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 386–396,
October 25-29, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

Multi-Resolution Language Grounding with Weak Supervision

R. Koncel-Kedziorski, Hannaneh Hajishirzi, and Ali Farhadi
University of Washington

{kedzior,hannaneh,farhadi}@washington.edu

Abstract

Language is given meaning through its
correspondence with a world representa-
tion. This correspondence can be at mul-
tiple levels of granularity or resolutions.
In this paper, we introduce an approach
to multi-resolution language grounding in
the extremely challenging domain of pro-
fessional soccer commentaries. We define
and optimize a factored objective function
that allows us to leverage discourse struc-
ture and the compositional nature of both
language and game events. We show that
finer resolution grounding helps coarser
resolution grounding, and vice versa. Our
method results in an F1 improvement of
more than 48% versus the previous state
of the art for fine-resolution grounding1.

1 Introduction

Language is inextricable from its context. A hu-
man language user interprets an utterance in the
context of, among other things, their perception of
the world. Grounded language acquisition algo-
rithms imitate this setup: language is given mean-
ing through its correspondence with a rich world
representation. A solution to the acquisition prob-
lem must resolve several ambiguities: the seg-
mentation of the text into meaningful units (spans
of words that refer to events); determining which
events are being referenced; and finding the proper
alignment of events to these units.

Historically, language grounding was only pos-
sible over simple controlled domains and rigidly
structured language. Current research in grounded

1Source code and data are available at http://ssli.
ee.washington.edu/tial/projects/multires/

Figure 1: An example of the multiple resolutions at which
soccer commentaries refer to events: The utterance level
alignments are shown in the black dashed boxes. The first
utterance can be further broken into the fragment-level align-
ments shown; the second cannot be decomposed further.

language acquisition is moving into real-world en-
vironments (Yu and Siskind, 2013). Grounding
sports commentaries in game events is a specific
instance of this problem that has attracted attention
(Liang et al., 2009; Snyder and Barzilay, 2007;
Hajishirzi et al., 2012), in part because of the com-
plexity of both the language and the world repre-
sentation involved.

The language employed in soccer commentaries
is difficult to ground due to its dense informa-
tion structure, novel vocabulary and word senses,
and colorful, non-traditional syntax. These chal-
lenges conspire to foil most language processing
techniques including automated parsers and word-
sense disambiguation systems.

In addition to the structural problems presented
by the language of soccer commentaries, the prob-
lem of reference is further complicated by the fact
that for game events (and other real-world phe-
nomena) there is no standardized meaningful lin-
guistic unit. Utterances ranging from a single
word to multiple sentences can be used to refer to a
single event. For example, in Figure 1 the first four
words of commentary (I) refer to a single event, as
does the entirety of (II).
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Figure 2: An example of the different levels of granularity present in the soccer data. The dashed boxes on the left denote ut-
terances made by the commentators. Solid boxes denote fragments that cannot be decomposed into finer resolution alignments.
The table on the right is a portion of the detailed listing of game events.

Turning our attention to Figure 2, sometimes a
fragment refers to a combination of events and no
further decomposition is available, such as the first
fragment of commentary (I). Moreover, it is some-
times desirable to construct a complex of events
by determining all the events corresponding to a
particular collection of words. For instance, we
would want to be able to align the whole of (I)
with all the events in the corresponding dashed
box. This suggests studying language grounding
at multiple levels of granularity (resolutions).

We use resolution to describe the continuum of
meaningful units which exist in human language2.
These resolutions interact in a complicated way,
with clues from different resolutions sometimes
combining to produce an effect and sometimes
negating one another. With enough training data,
one could hope to learn the details of the interac-
tions of various resolutions. However, the expense
of producing or obtaining supervised training data
at multiple resolutions is prohibitive.

To address all these complications, we in-
troduce weakly-supervised multi-resolution lan-
guage grounding. Our method makes use of a
factorized objective function which allows us to
model the complex interplay of resolutions. Our
language model takes advantage of the discourse
structure of the commentaries, making it robust
enough to handle the unique language of the soc-
cer domain. Finally, our method relies only on

2Though it is tempting to discritize meaning in text, Chafe
(1988) shows that readers imbue text with meaningful intona-
tional patterns drawn from the potentially continuous space of
auditory signals.

loose temporal co-occurrence of events and utter-
ances as supervision and does not require expen-
sive annotated training data.

To test our method we augment the Profes-
sional Soccer Commentary Dataset (Hajishirzi et
al., 2012) with fragment-level event alignment an-
notations. This dataset is composed of commen-
taries for soccer matches paired with event logs
produced by Opta Sportsdata and includes human
annotated gold alignments3. We achieve an F1 im-
provement of over 48% on fragment-level align-
ment versus a previous state-of-the-art. We are
also able to leverage the interplay of fragment- and
utterance- level alignments to improve the previ-
ous state-of-the-art utterance-alignment system.

2 Challenges

Syntactic Limitations: Syntax is used to struc-
ture the information provided by an utterance, and
so it seems intuitive that syntactic relations could
be leveraged in this task. For example, consider
utterance (III) in Figure 2. The multi-resolution
grounding of (III) would provide a segmentation
of the utterance – or a division of the utterance into
the fragments which refer to separate events. In
(III), there is an obvious syntactic correlate to the
correct segmentation: each verb phrase within the
conjunction headed by “and” identifies a separate
event. Parsing (III) to an event-based semantics
like that of Davidson (1967), one could associate
each verb in an utterance with a game event and
achieve the desired segmentation.

3Our updated dataset is available at http://ssli.
ee.washington.edu/tial/projects/multires/
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Unfortunately, there is a preponderance of ex-
amples such as (II) in Figure 2, where 4 verbs
are used to describe a single “miss” event. (II) il-
lustrates just one of the many difficulties of using
syntactic information – elsewhere, events are ref-
erenced without an explicit verb whatsoever (such
as the use of the phrase “into the books” to refer to
a foul event). What is needed instead is a language
model that is powerful enough to proscribe some
structure yet robust enough to allow the world rep-
resentation to determine which pieces of language
are referring to which referent or set of referents.

Complex Interplay between Resolutions:
Language refers at a variety of resolutions, and
the relationship between nested reference scopes
is complex. A single or few words can indicate
entities or properties; full phrases are often needed
to denote an action; complex events like a missed
shot may take up to several phrases of narration
to properly describe. A soccer commentator
does not encode every detail necessary for proper
alignment and segmentation into their utterances,
but rather only enough to make clear to another
with similar world knowledge what is meant.
A language grounding method is at a severe
disadvantage when faced with such implicit
information.

Instead, a successful method can make heavy
use of the limited lexical, phrasal, and discourse
structural cues provided in an utterance, as the dif-
ferent resolutions rely on these different contex-
tual clues to meaning. At finer resolutions one can
rely more on the lexical meanings of the words;
at medium resolutions, compositionality can be
leveraged; at coarser resolutions, discourse fea-
tures come into play. These cues interact in a com-
plicated way, providing additional challenge.

Consider again Figure 2. In (III), the tempo-
ral discourse marker “and” marks the division be-
tween the fragments referring to each event. In
(I) the same word (used again as a temporal dis-
course marker) is used to elaborate on the single
“foul” event being described in the second frag-
ment. A human (with sufficient understanding of
soccer) knows that, despite being separated by the
discourse marker, the phrases “bring him down”
and “set piece” both refer to the foul. A language
grounding algorithm that can model the interac-
tion between such word-level and utterance-level
cues can successfully segment both (I) and (III).

Supervision: For language grounding generally,
and multi-resolution grounding specifically, su-
pervised training data is expensive to produce.
Also, the various grounding domains of interest
are highly independent of one another (Liang et
al., 2009). In the face of these issues, the ideal
correspondence between language and world rep-
resentation would be learned with as little supervi-
sion as possible.

3 Problem Definition

We define the problem of multi-resolution lan-
guage grounding as follows: Given a temporal
evolution of a world state (a sequence of events)
and an overlapping natural language text (a se-
quence of utterances), we want to learn the best
correspondences between the language and the
world at different levels of granularity (Figure 2).

To set up notations, for each utterance repre-
sented as a set of words W = {w1, w2, . . . , wn},
we want a segmentation which expresses the re-
lationship of the words to the events which they
describe.

Let S denote a set of all possible segmentations
of W . Then S = {S|S is a segmentation of W}.
A segmentation S is in turn a set of non-
overlapping fragments (S = {si}), where each
fragment is a consecutive sequence of words from
the utterance W . For example, for utterance (III)
from Figure 2, one possible (incorrect) segmenta-
tion is S = {s1, s2, s3} for s1 ={Chamakh rises
highest}, s2 ={and aims a header}, and s3 = {to-
wards goal which is narrowly wide}.

An alignment consists of a segmentation S and
a mapping E from fragments of S to the set of all
events E. For example, the segmentation S could
be mapped as E = {〈s1, e2〉, 〈s2, e3〉, 〈s3, e1〉},
with e1 being an Aerial Challenge, e2 being a
missed attempt on goal, and e3 being an out of
bounds penalty. Let E = S × E denote the set
of all possible alignments.

As we show in Figure 2, events are composed
of the various attributes Time, Type, Pass Events,
Outcome, and Player. For example, the aerial
event in Figure 2 has the attributes and values
type:aerial, outcome:successful, pass events:head
pass, and player:Chamakh.

Finally, we denote the values for the attributes
of each ej as eaj , where a ranges over the different
attributes of events as represented in the data.

We define the multi-resolution grounding of W
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into E as the best segmentation S and alignment
E that maximize the joint probability distribution:

arg max
S∈S,E∈E

P (S,E|W ) (1)

This optimization4 can be accomplished
through the use of supervised learning. However,
training data is expensive and tedious to produce
for the grounding problem, especially at multiple
resolutions. Additionally, the complexity of the
language in this domain would result in very
sparse associations.

Yet if we knew some of the correct fine-
resolution alignments, we could use that informa-
tion to produce good coarse resolution alignments,
and vice versa. Therefore, we formulate a fac-
torized form of the above objective which allows
us to learn features specific to aligning at the ut-
terance, fragment, and attribute resolutions. Our
method can be optimized with only weak super-
vision (loose temporal alignments between utter-
ances and a set of events occurring within a win-
dow of the utterance time).

We can evaluate such a correspondence in sev-
eral ways. For each utterance, can we predict the
correct events to which this utterance refers? This
is the problem of utterance-level alignment.

We can also evaluate based on events: for each
event, can we identify the minimal text span(s)
which refers to this event? We want a tight corre-
spondence because loose, overlapping alignments
are not semantically satisfying. However, we do
not want to under associate: human language
makes reference at a variety of levels (the word
level, the phrase level, the utterance level, and be-
yond). It is important to correctly identify all and
only the words which correspond to a given event.
This is the fragment-level alignment problem. We
show that good fragment-level alignments will im-
prove utterance-level alignment, and vice versa.

Since events are composed of their attributes,
we can imagine a very fine resolution grounding of
individual words to individual attributes. In fact,
our solution involves producing such a grounding
and composing the fragment- and utterance-level
alignments therefrom.

W

S	  

E	  

w1	   w2	   w3	   w4	   w5	  
Chamakh	   raises	   highest	   and	   aims	  …	  

S1	   S2	   Sn	  

E1	   E2	   E3	   E4	  

{w3,w4,w5}	  
{w2}	  
{w1}	  

{w3,w4,w5}	  
{w1,w2}	  

	  	  {w4,w5}	  
{w1,w2,w3}	  

pass	   aerial	   miss	   out	  

Figure 3: Factor graph for P (S,E|W ). Here the wi are the
words of utterance W , Sj are the possible segmentations of
W , and Ek are different events.

4 Our Method

We have formulated the grounding problem as an
optimization of the joint probability distribution
P (S,E|W ), which returns the best segmentation
and accompanying event alignments given an ut-
terance W . Optimizing this function in the do-
main of real world language, however, is a diffi-
cult problem. Utterances are long here, and there
are many events which could be grounded to each.
Furthermore, the cardinality of the set of possible
segmentations is combinatorially large.

Therefore we decompose Equation 1 using the
factor graph depicted in Figure 3. We write the
joint probability distribution as a product of the
following two potential functions:

P (S,E|W ) def=
1
Z

∏
s∈S

Ψalign(E, s) ∗ Φseg(s,W )

(2)
where Ψalign is a function for scoring the align-
ment E for fragment s and Φseg scores how good
a fragment s is for the utterance W , and Z is for
normalization.

To optimize Equation 2 it is not practical to
search the space of possible S,E combinations
(this space is combinatorially large). However, we
can optimize the factored form using dynamic pro-
gramming. We first describe how to find values
for each of the potentials in sections 4.1 and 4.2.
In section 4.3 we describe the dynamic program-
ming approach to optimization.

4.1 Event Alignments Given Segmentation
The potential function Ψalign(E, s) takes as inputs
a fragment s from segmentation S and a candidate
alignment E for S and returns a score for E with

4As this and future equations are conditioned on the set
of all events E, we omit this variable from the equations for
notational simplicity.
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regards to s. It is here that we produce the multi-
resolution alignments; s can vary in size from a
single word to a whole utterance. ψalign decom-
poses as the following:

Ψalign(E, s) = Ψprior(E) ∗Ψaffinity(s, E) (3)

where the priors (Ψprior) are confidence scores for
an alignment E with the whole utterance as given
by Hajishirzi et al. (2012), which fits an exemplar
SVM to each utterance/event pair. An exemplar
SVM is an SVM fit with one positive and many
negative instances, allowing us to define an ex-
ample by what it is not (Malisiewicz et al., 2011;
Shrivastava et al., 2011).

Ψaffinity scores the affinity between a fragment
s and the event ej to which it is aligned. We use
the term affinity as a measure of the goodness of
an alignment. Intuitively, a fragment s will have
a higher affinity for an event ej if s describes that
event well. Formally, the affinity between s and ej
amounts to a product of the affinity between each
word wi ∈ s and ej . Since ej is defined by a col-
lection of attributes, we can compose a score for
wi with ej from the affinity between wi and each
attribute a of ej .

Ψaffinity(s, E) =
∏

wi∈s,ej∈E
ψatr.(wi, ej)

=
∏

wi∈s,ej∈E
max
a

ψ(wi, eaj ) (4)

where ej is the event to which s is aligned in align-
mentE, ψatr.(wi, ej) is the affinity betweenwi and
event ej , and ψ(wi, eaj ) is the affinity between wi
and attribute a of ej .

In order to determine the affinity of a word and
an event attribute, we create attribute:value clas-
sifiers – one for each attribute:value pair that oc-
curs in any event. For example, for goals we create
a type:goal classifier, and for unsuccessful events
we create an outcome:unsuccessful classifier.

For the categorical attributes Type, Outcome,
and Pass Events, we fit a linear SVM (Fan et al.,
2008) using the utterance-level alignments pro-
vided by Ψprior (the exemplar SVMs) to deter-
mine the positive and negative examples. For in-
stance, we use all the utterances which are aligned
with an event whose type value is “pass” as posi-
tive examples for our type:pass classifier, and all
other utterances as negative examples.

The weight assigned to each dimension in a
linear SVM describes the relative importance of
that dimension in the classification process. The
dimensions of our attribute:value SVMs are the
words of the corpus, normalized for case and mi-
nus punctuation and stop words. Therefore, the
affinity of a word wi and the attribute:value eaj is
the weight of the dimension corresponding to wi
in the eaj attribute:value classifier. Following oth-
ers (Liang et al., 2009; Kate and Mooney, 2007),
we use string matches to determine the affinity be-
tween a word and the Player attribute.

In order to make comparisons between the im-
portance of a word in the decision process for dif-
ferent classifiers, we normalize the weight vectors
for each. These attribute:value classifiers produce
our finest resolution alignments, allowing us to de-
fine a correspondence between a single word and
a single attribute of any event.

By considering ej in terms of its attributes, we
are able to compose a score for ej with fragment
s. This is a kind of double-sided compositional
semantics, where both the meaningful signs (s)
and their extensions (ej) are composed of finer-
resolution atomic parts (wi and eaj , respectively).

4.2 Segmentations Given Utterances

The potential function Φseg(s,W ) from Equation
2 returns a score for a fragment within an utter-
ance. A segmentation can be thought of as the
collection of bigrams 〈wi, wi+1〉 where wi is the
last word of a fragment which is being used to de-
scribe one event and wi+1 is the first word of a
fragment being used to describe a different event.
We will refer to such bigrams as splitpoints.

The function Φseg should favor fragments that
begin and end at good splitpoint and whose inter-
mediate bigrams are bad splitpoints. We formalize
this as follows:

Φseg(s,W ) ∝ φ(wk−1, wk) ∗ φ(wk+m, wk+m+1)∏m−1
j=0 φ(wk+j , wk+j+1)

where fragment s is a span ofm consecutive words
{wk, ..., wk+m} from W , and φ is a score for how
good of a splitpoint 〈wi, wi+1〉 would make (ex-
plained below).

Ideally, φ will be a classifier which can tell
us if a given bigram is a good splitpoint for the
utterance W . However, ours being an attempt
at weakly-supervised learning, we have no la-
beled examples of correct splitpoints from which
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to work. Instead, we employ linguistic knowledge
to create a proxy of labels. We will use this proxy
to train a classifier to discover the features of good
splitpoints which can be generalized and produce
a more robust system.

The proxy labeling scheme we developed is
based on conservative components common to a
variety of theories of discourse. Discourse theo-
ries aim to model the relationships which exist be-
tween adjacent utterances in a coherent discourse.
Since we consider a sports commentary to be a co-
herent discourse, we can leverage results from dis-
course theory in producing our proxy labels.

Temporal Discourse: Events in a soccer match
occur in a temporal sequence, and so it is reason-
able to assume that the language used to describe
them will employ temporal discourse relations to
distinguish fragments describing separate events.
Pitler et al. (2008) have constructed a list of dis-
course relations which can be easily automatically
identified, including temporal discourse relations.
These are indicated by the presence of discourse
markers — alternately known as cue phrases. We
hypothesize that cue phrases can be used to iden-
tify splitpoints and use them in our proxy labeling
scheme. This method is not restricted to tempo-
rally related discourse: some contingency, expan-
sion, and comparison relations are also analyzed
as “easily identifiable”. As such, our segmentation
process can also be used to ground language into
a world state where these relations would hold.

Prosodic Discourse: We also make use of
prosodic discourse cues. Pierrehumbert and
Hirschberg (1990) claim that intonational phrases
play an important role in discourse segmentation.
Therefore, we hypothesize that the edges of in-
tonational phrases are very likely to correspond
with correct splitpoints. Viewing the commen-
tary transcriptions as a noisy channel of the ac-
tual speech signal, we can identify the intona-
tional phrase boundaries with the punctuation in-
serted in the transcription process. Chafe (1988)
confirms that punctuation in written language has
a strong correspondence with intonational phrase
boundaries, and an assumption like ours has been
successfully implemented in speech synthesis sys-
tems (Black and Lenzo, 2000). Thus, we include
bigrams containing punctuation as splitpoints in
our proxy labels.

Feature Description for splitpoint classifier
Is wi/wi+1 a discourse marker?
Is wi/wi+1 punctuation?
Is wi/wi+1 a player name?
Part of speech of wi/wi+1

Is one of wi/wi+1 a dependent of the other?
Are wi and wi+1 dependents of the same governor?
Dependency relations that hold across splitpoint
Height of wi/wi+1 in the dependency tree
Difference in height of wi/wi+1 in dependency tree
ψ(wi, ej) of all words left versus right of splitpoint
Symmetric difference of best affinity scores for wi/wi+1

Are best affinity scores from the same event?

Table 1: Feature description for splitpoint classifier

w1	   w2	   w3	  

Chamakh	   rises	   highest	  …	  

ψ(w1,e1) ψ(w2,e1) ψ(w3,e1)

φ(w1,w2 )

E1:	  
Unsuccessful	  Cross	  
Pass	  

E2:	  
Successful	  	  
Aerial	  Head	  Pass	  

E3:	  
Missed	  	  
Head	  Pass	  
	  

1/φ(w1,w2 )

ψ(w3,e2 )

ψ(w3,e3)

ψ(w2,e2 )

ψ(w2,e3)

ψ(w1,e2 )

ψ(w1,e3)

φ(w1,w2 )

Figure 4: We use a trellis to allow for dynamic programming
optimization of the objective function

Splitpoint Classifier: All other bigrams besides
those above are labeled as negative examples, and
a linear SVM is fit to the data. The features for the
classifier include structural, discourse, and statis-
tical features. We make use of dependency parse
information from the Stanford dependency parser
(De Marneffe and Manning, 2008). The full fea-
tures list is explained in Table 1.

4.3 Optimization

We want to maximize the function in Equation 1,
and we have explained that we can approximate
this by maximizing the factored form in Equation
2. By the above methods, we can produce values
for the functions Ψalign and Φseg. What remains is
to optimize Equation 2.

We take advantage of the factorization by using
a dynamic programming approach to optimiza-
tion. Figure 4 illustrates the setup. For each word
wi of the utterance, we create a column of nodes
in our trellis, with one row for each event ej ∈ E.
The nodes represent the affinity of a given wordwi
with event ej . The weights on these nodes come
from ψatr.(wi, ej) described in section 4.2.

The nodes in column wi are connected to the
nodes in column wi+1 by edges whose weights
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Method Precision Recall F1
Liang et al. (2009) 0.513 0.393 0.445
Our approach 0.603 0.481 0.535

Table 2: Fragment-level alignments starting from gold
utterance-level alignments

Method Precision Recall F1
Liang et al. (2009) 0.211 0.135 0.165
Our approach 0.235 0.255 0.245

Table 3: Fragment-level alignments starting from raw data

are drawn from the splitpoint classifier response
φ(wi, wi+1). We label the edges between adja-
cent nodes corresponding to different events with
the responses from the splitpoint classifier, and the
inverse of these responses for edges connecting
nodes corresponding to the same event.

We then use the Viterbi algorithm (Viterbi,
1967) to find the maximum scoring path through
this trellis. The maximum scoring path optimizes
Equation 2, and serves as our approximation of the
optimization of Equation 1. We choose the top k
diverse paths through the trellis and use the associ-
ations therein as our alignments. See Figure 5 for
a detailed example of how our Viterbi path coin-
cides with the responses from the attribute:value
classifiers.

5 Experiments

One justification for multi-resolution language
grounding would be if finer-resolution grounding
improves coarser-resolution grounding and vice
versa. If so, we expect that better utterance-level
alignments will improve fragment-level align-
ments, and that in turn those fragment-level align-
ments will improve utterance-level alignments.
We evaluate both of these hypotheses.

5.1 Experimental Setup

Dataset: We use the publicly available Profes-
sional Soccer Commentary (PSC) dataset intro-
duced in Hajishirzi et al. (2012). This dataset is
composed of professional commentaries from the
2010-2011 season of the English Premier League,
along with a human-annotated data feed produced
for each game by Opta Sportsdata (Opta, 2012)
which describes all events occurring around the
ball. Events include passes, shots, misses, cards,

Method Precision Recall F1
Liang et al. (2009) 0.327 0.418 0.367
Hajishirzi et al. (2012) 0.355 0.576 0.439
Our approach 0.407 0.520 0.457

Table 4: Utterance-level alignment results

tackles, and other relevant game details. Each
event category is defined precisely and the feed
is annotated by professionals according to strict
event description guidelines.

The PSC also provides ground truth alignment
of full utterances to events in the data feed, and for
this work we have augmented it with ground truth
fragment-level annotations5.

We use data from 7 games of the PSC. These
games consist of 778 utterances totaling 13,692
words. There are 12,275 events. This data is la-
beled with ground truth utterance- and fragment-
alignments.

Metric: There are 1,295 correct utterance-to-
event alignments. For evaluation we use precision,
recall, and F1 of our utterance-level alignments.

The evaluation of fragment-level alignments is
less straight forward. This is due to the two fea-
tures of a correct fragment alignment: picking
the correct fragment boundaries and associating
the fragment with the correct event. We evaluate
fragment-level alignment on a per word basis. We
consider precision in this task to be the number of
correct word to event alignments versus the total
number of alignments produced by a system. Re-
call is the number of correct word to event align-
ments versus the total gold word to event align-
ments, of which there are 18,147.

Comparisons: We compare to two previous
works: Liang et al. (2009), which produces
both segmentation and alignment results; and Ha-
jishirzi et al. (2012), which produces state-of-the-
art alignments. When evaluating segmentation,
we compare how well the systems perform start-
ing from the raw dataset, and starting from gold
utterance-level alignments. This allows us to iso-
late the segmentation process from the overall sys-
tem architectures. It also gives us some insight
into the effect of event priors on the segmentation
and alignment processes.

5The full dataset is available at http://ssli.
ee.washington.edu/tial/projects/multires/
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Chamakh	   rises	   highest	   and	   aims	   a	   header	   towards	  goal	   which	   is	   narrowly	  wide	  

pass:head	  pass	  

outcome:unsuccessful	  

type:out	  

pass:head	  pass	  

outcome:successful	  

type:miss	  

pass:head	  pass	  

outcome:successful	  

type:aerial	  

.01	   .02	  0	   .05	   0	  .23	   0	   .02	   .1	  .33	   .02	  .04	   0	  

0	   .03	  0	   .01	   0	  .04	   0	   .01	   .04	  .33	   .01	  .02	   0	  

.01	   .07	  0	   0	   0	  0	   0	   .03	   .28	  .33	   .01	  .01
	  

0	  

.01	   .02	  0	   .05	   0	  .23	   0	   .02	   .1	  .33	   .02	  .04	   0	  

0	   .06	  0	   0	   0	  .03	   0	   .01	   .03	  .33	   .01	  .01	   0	  

.02	   .15	  0	   .01	   0	  .11	   0	   .06	   .50	  .33	   .02	  .07	   0	  

.01	   .02	  0	   .05	   0	  .23	   0	   .02	   .1	  .33	   .02	  .04	   0	  

0	   .06	  0	   0	   0	  .03	   0	   .01	   .03	  .33	   .01	  .02	   0	  

.04	   .02	  0	   .05	   0	  .1	   0	   .03	   .13	  .33	   .03	  .06	   0	  

Figure 5: A successful grounding at multiple resolutions. Thin blue lines separate
the attribute:value pairs corresponding to the three events. Values of ψ(wi, ej)
are shown on each node. The shaded bands indicate the gold fragment-level align-
ments. Thick line connecting the green nodes indicates the classifier responses
used in the Viterbi best path through our trellis. The red dashed edge indicates a
high response from the splitpoint classifier. This figure is best viewed in color.

Method Precision Recall F1
Ours 0.235 0.255 0.245
- Ψaffinity 0.213 0.133 0.164
- Φseg 0.205 0.232 0.218

Table 5: Ablation studies for fragment-level
alignments by removing Ψaffinity and Φseg

from our model by replacing them with uni-
form function.

Method Precision Recall F1
Ours 0.407 0.520 0.457
- Ψaffinity 0.446 0.189 0.265
- Φseg 0.376 0.563 0.451

Table 6: Ablation studies for utterance-level
alignments by removing Ψaffinity and Φseg

from our model by replacing them with uni-
form function.

5.2 Results

We evaluate our method on its alignments at the
fragment-level and at the utterance-level. The re-
sults are as follows:

Fragment-level: Our results for segmentation can
be seen in Tables 2 and 3. Table 2 shows the results
achieved on the fragment-level alignment task us-
ing human-labeled utterance to event alignments.
In this setting, all and only the correct events for
each utterance are present. Still, there are sev-
eral ambiguities in the data. Some fragments are
aligned in the gold data with multiple events, and
some are aligned to no event. Our method out-
performs the previous by a large margin in terms
of both precision and recall. We show below how
this is due to our system’s accommodation of dis-
course structure when making segmentation deci-
sions and the factored form of our optimization.

Table 3 shows the results for fragment-level
alignment by applying each system starting from
the raw data. Here, in addition to the ambiguities
mentioned above, the problem is further compli-
cated by the fact that some correct events are miss-
ing from the alignments produced by each system
and some incorrect events are included in these
alignments (see Error Analysis below for details).
Still our method achieves a significant improve-
ment, with a 48% increase in F1 versus prior work.

Table 5 shows ablation results for the effect of
the factors used in our optimization for fragment-
level alignments. These results demonstrate the
value of each factor in the fragment-level align-
ment process. We cannot ascribe the benefit of this
method to one factor or another alone – it is their

concert that improves performance.

Utterance-level: We have posited that good finer-
resolution alignments will improve the coarser-
resolution utterance to event alignments. Our re-
sults confirm this hypothesis. Table 4 shows our
results on these alignments. We are able to im-
prove F1 versus a state-of-the-art system which
is tuned to maximize its F1 score. The major-
ity of our improvement comes from the increased
precision of our system, due to the influence of
the finer-resolution fragment-level alignments on
these coarser, utterance-level alignments. We pro-
vide a detailed example of this below. Ablation
results are shown in Table 6.

5.3 Qualitative Analysis

A qualitative analysis of our system reveals the
power of our factored objective, double-sided
compositional approach, and leveraging of dis-
course structure. Figure 5 shows the best path
through the trellis of the example sentence used
in the introduction. For explanatory purposes,
we have split every event into its three compo-
nent attributes. This allows us to see how the
attribute:value classifiers combine to produce an
alignment.

Discourse Structure: The fragment-level align-
ment we have produced for this utterance is per-
fect: it correctly identifies the single splitpoint and
correctly identifies each fragment with the associ-
ated event.

The identification of the splitpoint “and” comes
from the fact that this word has, among other uses,
a discourse connective meaning. Thus, the edges
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in our trellis between different events are weighted
higher than edges between the same event in the
edges between the nodes for “highest” and “and”,
encouraging the Viterbi path to change events at
this point.

Compositionality: We can see effect of the com-
positional approach we have taken – composing
ψaffinity(s, ej) from the attribute:value classifier
scores of each ψ(wi, eaj ) – by looking at how the
best path makes use of different attributes of the
same event. For the “miss” event aligned with
the second part of the sentence, we can see that
the best path makes use of both values from the
type:miss and pass event:head pass classifiers.

Affinities: A few interesting associations are
worth pointing out. First, we note that the word
“header” has a stronger affinity for the type:miss
attribute than it does for the pass events:head pass
attribute. On first blush, this seems like a mistake
in our classifier. However, we can see that even
in this single trellis all three events have the pass
events:head pass attribute. The utterance-level
alignment uses this association already, align-
ing utterances containing the word “header” with
events that have a pass events:head pass attribute.
At a finer-resolution, it is necessary to make a
different distinction between events. Our method
finds that the presence of the word “header” is a
stronger indicator of an event with a type:miss at-
tribute, and thus this association is made.

Words that are better for the coarser-resolution
association with the pass events:head pass at-
tribute are “towards” and “goal”. Out of the 10
utterances containing the word “towards” in the
dataset, 3 of these are aligned with at least 1 pass
events:head pass event, making this strong asso-
ciation a correct one. The word “goal” also has
an affinity for the pass events:head pass attribute
due to the fact that many events with this attribute
are attempts on goal. This correlates with domain
knowledge about soccer, because, although there
may be other uses of their head by a player in the
game, shots on goal are events which will nearly
always be commented upon by an announcer.

Factorization: We have shown that finer-
resolution fragment-level alignments can improve
utterance-level alignments. From the exemplar
SVMs, we are given an utterance-level alignment
of the three events shown in the trellis with the
utterance. This alignment is incorrect: the gold

utterance alignment only includes the bottom two
events. But by building an utterance-level align-
ment from the results of our fragment level align-
ment, we are left with only the two correct events.
We prune the topmost event due to its failure to
participate in a finer-resolution alignment.

5.4 Error Analysis

The majority of the errors made on our fragment-
level alignments come in one of two flavors:
Firstly, we sometimes erroneously identify a frag-
ment as referring to an event when in truth it refers
to no event. Commentators often describe facts
about players or the weather or previous games
which have no extension in the current game.
However, our system cannot distinguish such lan-
guage from the language referring to this game.
This is a good avenue for future exploration.

The second set of errors we make in fragmen-
tation are caused by bad event priors. Our current
setup cannot increase recall: we can only improve
the precision of the utterance-level alignments we
are given. Therefore, if an event is overlooked
in the first-pass of utterance-level alignments, we
cannot reintroduce it through a fragment align-
ment. This is a direction for future work as well.

6 Related Work

Early semantic parsing work made use of fully su-
pervised training (Zettlemoyer and Collins, 2005;
Ge and Mooney, 2006; Snyder and Barzilay,
2007), but more recent work has focused on re-
ducing the amount of supervision required (Artzi
and Zettlemoyer, 2013). A few unsupervised ap-
proaches exist (Poon and Domingos, 2009; Poon,
2013), but these are specific to translating lan-
guage into queries in highly structured database
and cannot be applied to our more flexible domain.

There are few datasets as detailed as the Profes-
sional Soccer Commentary Dataset. Early work
in understanding soccer commentaries focused on
RoboCup soccer (Chen and Mooney, 2008; Chen
et al., 2010; Bordes et al., 2010; Hajishirzi et
al., 2011) where simple language describes each
event, and events are in a one-to-one correspon-
dence with utterances. Another dataset used for
language grounding is the Weather Report Dataset
(Liang et al., 2009). Here, again, however, we
have mostly single utterances paired with single
events, and many alignments are made via nu-
merical string matching rather than learning lex-
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ical cues. The NFL Recap dataset (Snyder and
Barzilay, 2007) is also laden with numerical fact
matching, and does not include the fragment-level
segmentation annotation that the PSC dataset pro-
vides.

Impressive advances have been made grounding
language in instructions. Branavan et al. (2009)
and Vogel and Jurafsky (2010) work in the do-
main of computer technical support instructions,
mapping language to actions using reinforcement
learning. Matuszek et al. (2012b) parses sim-
ple language to robot control instructions. Our
work focuses on dealing with a richer space, both
in terms of the language used and the world-
representation into which it is grounded, and lever-
aging the multiple resolutions of reference.

An exciting direction of research, closer to our
own, aims to ground natural language in visual
perception systems. Matuszek et al. (2012a) at-
tempts to learn a joint model of language and ob-
ject characteristics of a workplace environment.
Yu and Siskind (2013) grounds moderately rich
language in automatically annotated video clips.
Again, the contribution of our work versus the
above is in the complexity of the language with
which we deal and our multi-resolution model.

7 Conclusion

The problem of grounding complex natural hu-
man language such as soccer commentaries is
extremely difficult at all resolutions, and it is
most challenging at finer resolutions where data is
sparsest and small errors cannot be as easily nor-
malized. Our work will help open new avenues of
research into this difficult and exciting problem.

This paper presents a new method for the multi-
resolution grounding of complex natural language
in a detailed world representation. Our factor
graph allows us to decompose the grounding prob-
lem into the more tractable subproblems of seg-
menting the language into fragments and aligning
the fragments with the world representation. In
the segmentation phase, we make use of linguis-
tic theories of discourse to create a proxy of labels
from which we learn statistical and structural fea-
tures of good splitpoints. In the alignment phase,
we bootstrap the learning of finer-grained corre-
spondences between the language and the world
representation with rough alignments from a state-
of-the-art system. We combine these phases in a
dynamic programming setup which allows us to

efficiently optimize our objective.
We have shown that factoring the acquisition

problem into separate alignment and segmentation
phases improves performance on several evalua-
tion metrics. We achieve considerable improve-
ments over the previous state of the art on finer-
resolution alignments in the domain of profes-
sional soccer commentaries, and we show that we
can leverage groundings at one resolution to im-
prove alignments in another.

Several extensions of this work are possible. We
would like to annotate more games to improve
our dataset. We could improve our model by en-
coding the dynamics of the environment. We did
not attempt to learn this information in our pro-
cess, but it is likely that modeling the event tran-
sition probabilities could provide better results. A
larger future work would extend the method out-
lined herein to produce templates for automated
commentary generation.
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Abstract

Much work in recent years has gone into
the construction of large knowledge bases
(KBs), such as Freebase, DBPedia, NELL,
and YAGO. While these KBs are very
large, they are still very incomplete, ne-
cessitating the use of inference to fill in
gaps. Prior work has shown how to make
use of a large text corpus to augment ran-
dom walk inference over KBs. We present
two improvements to the use of such large
corpora to augment KB inference. First,
we present a new technique for combin-
ing KB relations and surface text into a
single graph representation that is much
more compact than graphs used in prior
work. Second, we describe how to incor-
porate vector space similarity into random
walk inference over KBs, reducing the fea-
ture sparsity inherent in using surface text.
This allows us to combine distributional
similarity with symbolic logical inference
in novel and effective ways. With exper-
iments on many relations from two sepa-
rate KBs, we show that our methods sig-
nificantly outperform prior work on KB
inference, both in the size of problem our
methods can handle and in the quality of
predictions made.

1 Introduction

Much work in recent years has gone into the
construction of large knowledge bases, either
by collecting contributions from many users,
as with Freebase (Bollacker et al., 2008) and

∗ Research carried out while at the Machine Learning
Department, Carnegie Mellon University.

DBPedia (Mendes et al., 2012), or automat-
ically from web text or other resources, as
done by NELL (Carlson et al., 2010) and
YAGO (Suchanek et al., 2007). These knowl-
edge bases contain millions of real-world enti-
ties and relationships between them. However,
even though they are very large, they are still
very incomplete, missing large fractions of possi-
ble relationships between common entities (West
et al., 2014). Thus the task of inference over
these knowledge bases, predicting new relation-
ships simply by examining the knowledge base it-
self, has become increasingly important.

A promising technique for inferring new re-
lation instances in a knowledge base is random
walk inference, first proposed by Lao and Cohen
(2010). In this method, called the Path Ranking
Algorithm (PRA), the knowledge base is encoded
as a graph, and random walks are used to find
paths that connect the source and target nodes of
relation instances. These paths are used as features
in a logistic regression classifier that predicts new
instances of the given relation. Each path can be
viewed as a horn clause using knowledge base re-
lations as predicates, and so PRA can be thought
of as a kind of discriminatively trained logical in-
ference.

One major deficiency of random walk inference
is the connectivity of the knowledge base graph—
if there is no path connecting two nodes in the
graph, PRA cannot predict any relation instance
between them. Thus prior work has introduced the
use of a text corpus to increase the connectivity of
the graph used as input to PRA (Lao et al., 2012;
Gardner et al., 2013). This approach is not without
its own problems, however. Whereas knowledge
base relations are semantically coherent and dif-
ferent relations have distinct meanings, this is not
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true of surface text. For example, “The Nile flows
through Cairo” and “The Nile runs through Cairo”
have very similar if not identical meaning. Adding
a text corpus to the inference graph increases con-
nectivity, but it also dramatically increases feature
sparsity.

We introduce two new techniques for making
better use of a text corpus for knowledge base in-
ference. First, we describe a new way of incor-
porating the text corpus into the knowledge base
graph that enables much more efficient process-
ing than prior techniques, allowing us to approach
problems that prior work could not feasibly solve.
Second, we introduce the use of vector space sim-
ilarity in random walk inference in order to reduce
the sparsity of surface forms. That is, when fol-
lowing a sequence of edge types in a random walk
on a graph, we allow the walk to follow edges that
are semantically similar to the given edge types,
as defined by some vector space embedding of the
edge types. If a path calls for an edge of type
“flows through”, for example, we accept other
edge types (such as “runs through”) with probabil-
ity proportional to the vector space similarity be-
tween the two edge types. This lets us combine
notions of distributional similarity with symbolic
logical inference, with the result of decreasing the
sparsity of the feature space considered by PRA.
We show with experiments using both the NELL
and Freebase knowledge bases that this method
gives significantly better performance than prior
approaches to incorporating text data into random
walk inference.

2 Graph Construction

Our method for knowledge base inference, de-
scribed in Section 3, performs random walks over
a graph to obtain features for a logistic regression
classifier. Prior to detailing that technique, we first
describe how we produce a graph G = (N , E ,R)
from a set of knowledge base (KB) relation in-
stances and a set of surface relation instances ex-
tracted from a corpus. Producing a graph from
a knowledge base is straightforward: the set of
nodes N is made up of the entities in the KB; the
set of edge types R is the set of relation types in
the KB, and the typed edges E correspond to re-
lation instances from the KB, with one edge of
type r connecting entity nodes for each (n1, r, n2)
triple in the KB. Less straightforward is how to
construct a graph from a corpus, and how to con-

nect that graph to the KB graph. We describe our
methods for each of those below.

To create a graph from a corpus, we first prepro-
cess the corpus to obtain a collection of surface
relations, such as those extracted by open infor-
mation extraction systems like OLLIE (Mausam et
al., 2012). These surface relations consist of a pair
of noun phrases in the corpus, and the verb-like
connection between them (either an actual verb,
as done by Talukdar et al. (2012), a dependency
path, as done by Riedel et al. (2013), or OpenIE
relations (Mausam et al., 2012)). The verb-like
connections are naturally represented as edges in
the graph, as they have a similar semantics to the
knowledge base relations that are already repre-
sented as edges. We thus create a graph from these
triples exactly as we do from a KB, with nodes cor-
responding to noun phrase types and edges corre-
sponding to surface relation triples.

So far these two subgraphs we have created
are entirely disconnected, with the KB graph con-
taining nodes representing entities, and the sur-
face relation graph containing nodes representing
noun phrases, with no edges between these noun
phrases and entities. We connect these two graphs
by making use of the ALIAS relation in the KB,
which links entities to potential noun phrase ref-
erents. Each noun phrase in the surface relation
graph is connected to those entity nodes which the
noun phrase can possibly refer to according to the
KB. These edges are not the output of an entity
linking system, as done by Lao et al. (2012), but
express instead the notion that the noun phrase can
refer to the KB entity. The use of an entity linking
system would certainly allow a stronger connec-
tion between noun phrase nodes and entity nodes,
but it would require much more preprocessing and
a much larger graph representation, as each men-
tion of each noun phrase would need its own node,
as opposed to letting every mention of the same
noun phrase share the same node. This graph rep-
resentation allows us to add tens of millions of sur-
face relations to a graph of tens of millions of KB
relations, and perform all of the processing on a
single machine.

As will be discussed in more detail in Section 4,
we also allow edge types to optionally have an as-
sociated vector that ideally captures something of
the semantics of the edge type.

Figure 1 shows the graph constructions used in
our experiments on a subset of KB and surface re-
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KB Relations:
(Monongahela, RIVERFLOWSTHROUGHCITY, Pittsburgh)
(Pittsburgh, ALIAS, “Pittsburgh”)
(Pittsburgh, ALIAS, “Steel City”)
(Monongahela, ALIAS, “Monongahela River”)
(Monongahela, ALIAS, “The Mon”)

Surface Relations:
(“The Mon”, “flows through”, “Steel City”)
(“Monongahela River”, “runs through”, “Pittsburgh”)

Embeddings:
“flows through”: [.2, -.1, .9]
“runs through”: [.1, -.3, .8]

(a) An example data set.

(c) An example graph that replaces surface relations with a
cluster label, as done by Gardner et al. (2013). Note, how-
ever, that the graph structure differs from that prior work;
see Section 5.

(b) An example graph that combines a KB and surface rela-
tions.

(d) An example graph that uses vector space representations
of surface edges, as introduced in this paper.

Figure 1: Example graph construction as used in the experiments in this paper. A graph using only KB
edges is simply a subset of these graphs containing only the RIVERFLOWSTHROUGHCITY edge, and is
not shown.

lations. Note that Figures 1b and 1c are shown as
rough analogues of graphs used in prior work (de-
scribed in more detail in Section 5), and we use
them for comparison in our experiments.

3 The Path Ranking Algorithm

We perform knowledge base inference using the
Path Ranking Algorithm (PRA) (Lao and Cohen,
2010). We begin this section with a brief overview
of PRA, then we present our modification to the
PRA algorithm that allows us to incorporate vector
space similarity into random walk inference.

PRA can be thought of as a method for exploit-
ing local graph structure to generate non-linear
feature combinations for a prediction model. PRA
generates a feature matrix over pairs of nodes in
a graph, then uses logistic regression to classify
those node pairs as belonging to a particular rela-
tion.

More formally, given a graph G with nodes N ,
edges E , and edge labelsR, and a set of node pairs
(si, ti) ∈ D, one can create a connectivity matrix
where rows correspond to node pairs and columns
correspond to edge lables. PRA augments this
matrix with additional columns corresponding to
sequences of edge labels, called path types, and

changes the cell values from representing the pres-
ence of an edge to representing the specificity of
the connection that the path type makes between
the node pair.

Because the feature space considered by PRA
is so large (the set of all possible edge label se-
quences, with cardinality

∑l
i=1 |R|i, assuming a

bound l on the maximum path length), the first
step PRA must perform is feature selection, which
is done using random walks over the graph. The
second step of PRA is feature computation, where
each cell in the feature matrix is computed using
a constrained random walk that follows the path
type corresponding to the feature. We now explain
each of these steps in more detail.

Feature selection finds path types π that are
likely to be useful in predicting new instances of
the relation represented by the input node pairs .
These path types are found by performing random
walks on the graph G starting at the source and
target nodes in D, recording which paths connect
some source node with its target. The edge se-
quences are ranked by frequency of connecting a
source node to a corresponding target node, and
the top k are kept.

Feature computation. Once a set of path types
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is selected as features, the next step of the PRA
algorithm is to compute a value for each cell in the
feature matrix, corresponding to a node pair and a
path type. The value computed is the probability
of arriving at the target node of a node pair, given
that a random walk began at the source node and
was constrained to follow the path type: p(t|s, π).

Once these steps have been completed, the re-
sulting feature matrix can be used with whatever
model or learning algorithm is desired; in this and
prior work, simple logistic regression has been
used as the prediction algorithm.

4 Vector space random walks

Our modifications to PRA are confined entirely to
the feature computation step described above; fea-
ture selection (finding potentially useful sequences
of edge types) proceeds as normal, using the sym-
bolic edge types. When computing feature val-
ues, however, we allow a walk to follow an edge
that is semantically similar to the edge type in the
path, as defined by Euclidean distance in the vec-
tor space.

More formally, consider a path type π. Re-
call that π is a sequence of edge types <
e1, e2, . . . , el >, where l is the length of the path;
we will use πi to denote the ith edge type in the
sequence. To compute feature values, PRA begins
at some node and follows edges of type πi until
the sequence is finished and a target node has been
reached. Specifically, if a random walk is at a node
n with m outgoing edge types {e1, e2, . . . , em},
PRA selects the edge type from that set which
matches πi, then selects uniformally at random
from all outgoing edges of that type. If there is
no match in the set, the random walk restarts from
the original start node.

We modify the selection of which edge type to
follow. When a random walk is at a node n with
m outgoing edge types {e1, e2, . . . , em}, instead
of selecting only the edge type that matches πi,
we allow the walk to select instead an edge that
is close to πi in vector space. For each edge type
at node n, we select the edge with the following
probability:

p(ej |πi) ∝ exp(β×v(ej) ·v(πi)), ∀j, 1 ≤ j ≤ m

where v(·) is a function that returns the vector
representation of an edge type, and β is a spiki-
ness parameter that determines how much weight

to give to the vector space similarity. As β ap-
proaches infinity, the normalized exponential ap-
proximates a delta function on the closest edge
type to πi, in {e1, e2, . . . , em}. If πi is in the set
of outgoing edges, this algorithm converges to the
original PRA.

However, if πi is not in the set of outgoing edge
types at a node and all of the edge types are very
dissimilar to πi, this algorithm (with β not close to
infinity) will lead to a largely uniform distribution
over edge types at that node, and no way for the
random walk to restart. To recover the restart be-
havior of the original PRA, we introduce an addi-
tional restart parameterα, and add another value to
the categorical distribution before normalization:

p(restart|πi) ∝ exp(β ∗ α)

When this restart type is selected, the random
walk begins again, following π1 starting at the
source node. With α set to a value greater than the
maximum similarity between (non-identical) edge
type vectors, and β set to infinity, this algorithm
exactly replicates the original PRA.

Not all edge types have vector space representa-
tions: the ALIAS relation cannot have a meaning-
ful vector representation, and we do not use vec-
tors to represent KB relations, finding that doing
so was not useful in practice (which makes intu-
itive sense: KB relations are already latent repre-
sentations themselves). While performing random
walks, if πi has no vector representation, we fall
back to the original PRA algorithm for selecting
the next edge.

We note here that when working with vector
spaces it is natural to try clustering the vectors to
reduce the parameter space. Each path type π is
a feature in our model, and if two path types dif-
fer only in one edge type, and the differing edge
types have very similar vectors, the resultant fea-
ture values will be essentially identical for both
path types. It seems reasonable that running a
simple clustering algorithm over these path types,
to reduce the number of near-duplicate features,
would improve performance. We did not find this
to be the case, however; all attempts we made to
use clustering over these vectors gave performance
indistinguishable from not using clustering. From
this we conclude that the main issue hindering per-
formance when using PRA over these kinds of
graphs is one of limited connectivity, not one of
too many parameters in the model. Though the
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feature space considered by PRA is very large, the
number of attested features in a real graph is much
smaller, and it is this sparsity which our vector
space methods address.

5 Related Work

Knowledge base inference. Random walk infer-
ence over knowledge bases was first introduced by
Lao and Cohen (2010). This work was improved
upon shortly afterward to also make use of a large
corpus, by representing the corpus as a graph and
connecting it to the knowledge base (Lao et al.,
2012). Gardner et al. (2013) further showed that
replacing surface relation labels with a represen-
tation of a latent embedding of the relation led
to improved prediction performance. This result
is intuitive: the feature space considered by PRA
is exponentially large, and surface relations are
sparse. The relations “[river] flows through [city]”
and “[river] runs through [city]” have near iden-
tical meaning, and both should be very predic-
tive for the knowledge base relation RIVERFLOW-
STHROUGHCITY. However, if one of these rela-
tions only appears in the training data and the other
only appears in the test data, neither will be useful
for prediction. Gardner et al. (2013) attempted to
solve this issue by finding a latent symbolic repre-
sentation of the surface relations (such as a cluster-
ing) and replacing the edge labels in the graph with
these latent representations. This makes it more
likely for surface relations seen in training data to
also be seen at test time, and naturally improved
performance.

This representation, however, is still brittle, as
it is still a symbolic representation that is prone to
mismatches between training and test data. If the
clustering algorithm used is too coarse, the fea-
tures will not be useful, and if it is too fine, there
will be more mismatches. Also, verbs that are on
the boundaries of several clusters are problematic
to represent in this manner. We solve these prob-
lems by modifying the PRA algorithm to directly
use vector representations of edge types during the
random walk inference.

These two prior techniques are the most directly
related work to what we present in this paper, and
we compare our work to theirs.

Graph construction. In addition to the incor-
poration of vector space similarity into the PRA
algorithm, the major difference between our work
and the prior approaches mentioned above is in the

construction of the graph used by PRA. We con-
trast our method of graph construction with these
prior approaches in more detail below.

Lao et al. (2012) represent every word of ev-
ery sentence in the corpus as a node in the graph,
with edges between the nodes representing depen-
dency relationships between the words. They then
connect this graph to the KB graph using a simple
entity linking system (combined with coreference
resolution). The resultant graph is enormous, such
that they needed to do complex indexing on the
graph and use a cluster of 500 machines to per-
form the PRA computations. Also, as the edges
represent dependency labels, not words, with this
graph representation the PRA algorithm does not
have access to the verbs or other predicative words
that appear in the corpus, which frequently express
relations. PRA only uses edge types as feature
components, not node types, and so the rich infor-
mation contained in the words is lost. This graph
construction also would not allow the incorpora-
tion of vector space similarity that we introduced,
as dependency labels do not lend themselves well
to vector space representations.

Gardner et al. (2013) take an approach very sim-
ilar to the one presented in Section 2, preprocess-
ing the corpus to obtain surface relations. How-
ever, instead of creating a graph with nodes rep-
resenting noun phrases, they added edges from
the surface relations directly to the entity nodes
in the graph. Using the ALIAS relation, as we do,
they added an edge between every possible con-
cept pair that could be represented by the noun
phrases in a surface relation instance. This leads
to some nonsensical edges added to the graph,
and if the ALIAS relation has high degree (as it
does for many common noun phrases in Freebase),
it quickly becomes unscalable—this method of
graph construction runs out of disk space when
attempting to run on the Freebase experiments in
Section 6. Also, in conflating entity nodes in the
graph with noun phrases, they lose an important
distinction that turns out to be useful for predic-
tion, as we discuss in Section 6.4.1

1Recent notions of “universal schema” (Riedel et al.,
2013) also put KB entities and noun phrases into the same
conceptual space, though they opt for using noun phrases in-
stead of the KB entities used by Gardner et al. In general
this is problematic, as it relies on some kind of entity linking
system as preprocessing, and cannot handle common noun
references of proper entities without losing information. Our
method, and that of Lao et al., skirts this issue entirely by not
trying to merge KB entities with noun phrases.
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Other related work. Also related to the present
work is recent research on programming lan-
guages for probabilistic logic (Wang et al., 2013).
This work, called ProPPR, uses random walks to
locally ground a query in a small graph before per-
forming propositional inference over the grounded
representation. In some sense this technique is
like a recursive version of PRA, allowing for more
complex inferences than a single iteration of PRA
can make. However, this technique has not yet
been extended to work with large text corpora, and
it does not yet appear to be scalable enough to han-
dle the large graphs that we use in this work. How
best to incorporate the work presented in this pa-
per with ProPPR is an open, and very interesting,
question.

Examples of other systems aimed at reason-
ing over common-sense knowledge are the CYC
project (Lenat, 1995) and ConceptNet (Liu and
Singh, 2004). These common-sense resources
could easily be incorporated into the graphs we
use for performing random walk inference.

Lines of research that seek to incorporate dis-
tributional semantics into traditional natural lan-
guage processing tasks, such as parsing (Socher
et al., 2013a), named entity recognition (Passos et
al., 2014), and sentiment analysis (Socher et al.,
2013b), are also related to what we present in this
paper. While our task is quite different from these
prior works, we also aim to combine distributional
semantics with more traditional methods (in our
case, symbolic logical inference), and we take in-
spiration from these methods.

6 Experiments

We perform both the feature selection step and the
feature computation step of PRA using GraphChi,
an efficient single-machine graph processing li-
brary (Kyrola et al., 2012). We use MAL-
LET’s implementation of logistic regression, with
both L1 and L2 regularization (McCallum, 2002).
To obtain negative evidence, we used a closed
world assumption, treating any (source, target)
pair found during the feature computation step as
a negative example if it was not given as a positive
example. We tuned the parameters to our methods
using a coarse, manual grid search with cross vali-
dation on the training data described below. The
parameters we tuned were the L1 and L2 regu-
larization parameters, how many random walks to
perform in the feature selection and computation

NELL Freebase
Entities 1.2M 20M
Relation instances 3.4M 67M
Total relation types 520 4215
Relation types tested 10 24
Avg. instances/relation 810 200
SVO triples used 404k 28M

Table 1: Statistics of the data used in our experi-
ments.

steps of PRA, and spikiness and restart parameters
for vector space walks. The results presented were
not very sensitive to changes in these parameters.

6.1 Data

We ran experiments on both the NELL and Free-
base knowledge bases. The characteristics of these
knowledge bases are shown in Table 1. The Free-
base KB is very large; to make it slightly more
manageable we filtered out relations that did not
seem applicable to relation extraction, as well as a
few of the largest relations.2 This still left a very
large, mostly intact KB, as can be seen in the ta-
ble. For our text corpus, we make use of a set of
subject-verb-object triples extracted from depen-
dency parses of ClueWeb documents (Talukdar et
al., 2012). There are 670M such triples in the
data set, most of which are completely irrelevant to
the knowledge base relations we are trying to pre-
dict. For each KB, we filter the SVO triples, keep-
ing only those which can possibly connect training
and test instances of the relations we used in our
experiments. The number of SVO triples kept for
each KB is also shown in Table 1. We obtained
vector space representations of these surface rela-
tions by running PCA on the SVO matrix.

We selected 10 NELL relations and 24 Free-
base relations for testing our methods. The NELL
relations were hand-selected as the relations with
the largest number of known instances that had a
reasonable precision (the NELL KB is automati-
cally created, and some relations have low preci-
sion). We split the known instances of these rela-
tions into 75% training and 25% testing, giving on
average about 650 training instances and 160 test

2We removed anything under /user, /common, /type (ex-
cept for the relation /type/object/type), /base, and /freebase,
as not applicable to our task. We also removed relations deal-
ing with individual music tracks, book editions, and TV epid-
sodes, as they are very large, very specific, and unlikely to be
useful for predicting the relations in our test set.
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instances for each relation.
The 24 Freebase relations were semi-randomly

selected. We first filtered the 4215 relations based
on two criteria: the number of relation instances
must be between 1000 and 10000, and there must
be no mediator in the relation.3 Once we selected
the relations, we kept all instances of each rela-
tion that had some possible connection in the SVO
data.4 This left on average 200 instances per rela-
tion, which we again split 75%-25% into training
and test sets.

6.2 Methods
The methods we compare correspond to the graphs
shown in Figure 1. The KB method uses the orig-
inal PRA algorithm on just the KB relations, as
presented by Lao and Cohen (2010). KB + SVO
adds surface relations to the graph (Figure 1b). We
present this as roughly analogous to the methods
introduced by Lao et al. (2012), though with some
significant differences in graph representation, as
described in Section 5. KB + Clustered SVO fol-
lows the methods of Gardner et al. (2013), but us-
ing the graph construction introduced in this pa-
per (Figure 1c; their graph construction techniques
would have made graphs too large to be feasible
for the Freebase experiments). KB + Vector SVO
is our method (Figure 1d).

6.3 Evaluation
As evaluation metrics, we use mean average pre-
cision (MAP) and mean reciprocal rank (MRR),
following recent work evaluating relation extrac-
tion performance (West et al., 2014). We test sig-
nificance using a paired permutation test.

The results of these experiments are shown in
Table 2 and Table 3. In Table 4 we show average
precision for every relation tested on the NELL
KB, and we show the same for Freebase in Table 5.

6.4 Discussion
We can see from the tables that KB + Vector SVO
(the method presented in this paper) significantly
outperforms prior approaches in both MAP and

3A mediator in Freebase is a reified relation in-
stance meant to handle n-ary relations, for instance
/film/performance. PRA in general, and our implementation
of it in particular, needs some modification to be well-suited
to predicting relations with mediators.

4We first tried randomly selecting instances from these re-
lations, but found that the probability of selecting an instance
that benefited from an SVO connection was negligible. In or-
der to make use of the methods we present, we thus restricted
ourselves to only those that had a possible SVO connection.

Method MAP MRR
KB 0.193 0.635
KB + SVO 0.218 0.763
KB + Clustered SVO 0.276 0.900
KB + Vector SVO 0.301 0.900

Table 2: Results on the NELL knowledge base.
The bolded line is significantly better than all other
results with p < 0.025.

Method MAP MRR
KB 0.278 0.614
KB + SVO 0.294 0.639
KB + Clustered SVO 0.326 0.651
KB + Vector SVO 0.350 0.670

Table 3: Results on the Freebase knowledge base.
The bolded line is significantly better than all other
results with p < 0.0002.

MRR. We believe that this is due to the reduction
in feature sparsity enabled by using vector space
instead of symbolic representations (as that is the
only real difference between KB + Clustered SVO
and KB + Vector SVO), allowing PRA to make
better use of path types found in the training data.
When looking at the results for individual relations
in Table 4 and Table 5, we see that KB + Vector
SVO outperforms other methods on the majority
of relations, and it is a close second when it does
not.

We can also see from the results that mean av-
erage precision seems a little low for all meth-
ods tested. This is because MAP is computed as
the precision of all possible correct predictions in
a ranked list, where precision is counted as 0 if
the correct prediction is not included in the list.
In other words, there are many relation instances
in our randomly selected test set that are not in-
ferrable from the knowledge base, and the low re-
call hurts the MAP metric. MRR, which judges the
precision of the top prediction for each relation,
gives us some confidence that the main issue here
is one of recall, as MRR is reasonably high, es-
pecially on the NELL KB. As further evidence, if
we compute average precision for each query node
(instead of for each relation), excluding queries for
which the system did not return any predictions,
MAP ranges from .29 (KB) to .45 (KB + Vector
SVO) on NELL (with around 30% of queries hav-
ing no prediction), and from .40 (KB) to .49 (KB +
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Relation KB KB + SVO KB + Clustered SVO KB + Vector SVO
ActorStarredInMovie 0.000 0.032 0.032 0.037
AthletePlaysForTeam 0.200 0.239 0.531 0.589
CityLocatedInCountry 0.126 0.169 0.255 0.347
JournalistWritesForPublication 0.218 0.254 0.291 0.319
RiverFlowsThroughCity 0.000 0.001 0.052 0.076
SportsTeamPositionForSport 0.217 0.217 0.178 0.180
StadiumLocatedInCity 0.090 0.156 0.275 0.321
StateHasLake 0.000 0.000 0.000 0.000
TeamPlaysInLeague 0.934 0.936 0.947 0.939
WriterWroteBook 0.144 0.179 0.195 0.202

Table 4: Average precision for each relation tested on the NELL KB. The best performing method on
each relation is bolded.

Relation KB KB + SVO KB + C-SVO KB + V-SVO
/amusement parks/park/rides 0.000 0.009 0.004 0.013
/architecture/architect/structures designed 0.072 0.199 0.257 0.376
/astronomy/constellation/contains 0.004 0.017 0.000 0.008
/automotive/automotive class/examples 0.003 0.001 0.002 0.006
/automotive/model/automotive class 0.737 0.727 0.742 0.768
/aviation/airline/hubs 0.322 0.286 0.298 0.336
/book/literary series/author s 0.798 0.812 0.818 0.830
/computer/software genre/software in genre 0.000 0.001 0.001 0.001
/education/field of study/journals in this discipline 0.001 0.003 0.003 0.001
/film/film/rating 0.914 0.905 0.914 0.905
/geography/island/body of water 0.569 0.556 0.580 0.602
/geography/lake/basin countries 0.420 0.361 0.409 0.437
/geography/lake/cities 0.111 0.134 0.177 0.175
/geography/river/cities 0.030 0.038 0.045 0.066
/ice hockey/hockey player/hockey position 0.307 0.243 0.222 0.364
/location/administrative division/country 0.989 0.988 0.991 0.989
/medicine/disease/symptoms 0.061 0.078 0.068 0.067
/medicine/drug/drug class 0.169 0.164 0.135 0.157
/people/ethnicity/languages spoken 0.134 0.226 0.188 0.223
/spaceflight/astronaut/missions 0.010 0.186 0.796 0.848
/transportation/bridge/body of water spanned 0.534 0.615 0.681 0.727
/tv/tv program creator/programs created 0.164 0.179 0.163 0.181
/visual art/art period movement/associated artists 0.044 0.040 0.046 0.037
/visual art/visual artist/associated periods or movements 0.276 0.295 0.282 0.290

Table 5: Average precision for each relation tested on the Freebase KB. The best performing method on
each relation is bolded. For space considerations, “Clustered SVO” is shortened to “C-SVO” and “Vector
SVO” is shortened to “V-SVO” in the table header.
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Vector SVO) on Freebase, (where 21% of queries
gave no prediction). Our methods thus also im-
prove MAP when calculated in this manner, but it
is not an entirely fair metric,5 so we use standard
MAP to present our main results.

One interesting phenomenon to note is
a novel use of the ALIAS relation in some
of the relation models. The best exam-
ple of this was found with the relation
/people/ethnicity/languages spoken. A
high-weighted feature when adding surface
relations was the edge sequence <ALIAS, ALIAS

INVERSE>. This edge sequence reflects the
fact that languages frequently share a name
with the group of people that speaks them (e.g.,
Maori, French). And because PRA can gen-
erate compositional features, we also find the
following edge sequence for the same relation:
</people/ethnicity/included in group,
ALIAS, ALIAS INVERSE>. This feature captures
the same notion that languages get their names
from groups of people, but applies it to subgroups
within an ethnicity. These features would be
very difficult, perhaps impossible, to include in
systems that do not distinguish between noun
phrases and knowledge base entities, such as
the graphs constructed by Gardner et al. (2013),
or typical relation extraction systems, which
generally only work with noun phrases after
performing a heuristic entity linking.

7 Conclusion

We have offered two main contributions to the task
of knowledge base inference. First, we have pre-
sented a new technique for combining knowledge
base relations and surface text into a single graph
representation that is much more compact than
graphs used in prior work. This allowed us to ap-
ply methods introduced previously to much larger
problems, running inference on a single machine
over the entire Freebase KB combined with tens of
millions of surface relations. Second, we have de-
scribed how to incorporate vector space similarity
into random walk inference over knowledge bases,
reducing the feature sparsity inherent in using sur-
face text. This allows us to combine distributional
similarity with symbolic logical inference in novel
and effective ways. With experiments on many

5MAP is intended to include some sense of recall, but ex-
cluding queries with no predictions removes that and opens
the metric to opportunistic behavior.

relations from two separate knowledge bases, we
have shown that our methods significantly outper-
form prior work on knowledge base inference.

The code and data used in the ex-
periments in this paper are available at
http://rtw.ml.cmu.edu/emnlp2014 vector space pra/.
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Abstract

State-of-the-art semantic role labelling
systems require large annotated corpora to
achieve full performance. Unfortunately,
such corpora are expensive to produce and
often do not generalize well across do-
mains. Even in domain, errors are often
made where syntactic information does
not provide sufficient cues. In this pa-
per, we mitigate both of these problems
by employing distributional word repre-
sentations gathered from unlabelled data.
While straight-forward word representa-
tions of predicates and arguments improve
performance, we show that further gains
are achieved by composing representa-
tions that model the interaction between
predicate and argument, and capture full
argument spans.

1 Introduction

The goal of semantic role labelling (SRL) is to
discover the relations that hold between a pred-
icate and its arguments in a given input sen-
tence (e.g., “who” did “what” to “whom”, “when”,
“where”, and “how”). This semantic knowl-
edge at the predicate-argument level is required
by inference-based NLP tasks in order to iden-
tify meaning-preserving transformations, such as
active/passive, verb alternations and nominaliza-
tions. Several manually-build semantic resources,
including FrameNet (Ruppenhofer et al., 2010)
and PropBank (Palmer et al., 2005), have been
developed with the goal of documenting and pro-
viding examples of such transformations and how
they preserve semantic role information. Given
that labelled corpora are inevitably restricted in
size and coverage, and that syntactic cues are not
by themselves unambiguous or sufficient, the suc-
cess of systems that automatically provide corre-
sponding analyses has been limited in practice.

Recent work on SRL has explored approaches
that can leverage unlabelled data, following a
semi-supervised (Fürstenau and Lapata, 2012;
Titov and Klementiev, 2012) or unsupervised
learning paradigm (Abend et al., 2009; Titov and
Klementiev, 2011). Unlabelled data provides ad-
ditional statistical strength and can lead to more
consistent models. For instance, latent representa-
tions of words can be computed, based on distri-
butional similarity or language modelling, which
can be used as additional features during tradi-
tional supervised learning. Although we would
expect that extra features would improve classifier
performance, this seems in part counter-intuitive.
Just because one word has a specific representa-
tion does not mean that it should be assigned a
specific argument label. Instead, one would ex-
pect a more complex interplay between predicate,
argument and the context they appear in.

In this paper, we investigate the impact of dis-
tributional word representations for SRL. Initially,
we augment the feature space with word repre-
sentations for a predicate and its argument head.
Furthermore, we use a compositional approach to
model a representation of the full argument, by
composing a joint representation of all words in
the argument span, and we also investigate the in-
teraction between predicate and argument, using
a compositional representation of the dependency
path. We demonstrate the benefits of these com-
positional features using a state-of-the-art seman-
tic role labeller, which we evaluate on the English
part of the CoNLL-2009 data set.

2 Related Work

Research into using distributional information
in SRL dates back to Gildea and Jurafsky
(2002), who used distributions over verb-object
co-occurrence clusters to improve coverage in ar-
gument classification. The distribution of a word
over these soft clusters assignments was added as
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features to their classifier. The SRL system by
Croce et al. (2010) combines argument clustering
based on co-occurrence frequencies with a lan-
guage model. Collobert et al. (2011) used dis-
tributional word representations in a neural net-
work model that can update representations dur-
ing training. Zapirain et al. (2013) suggested dis-
tributional information as a basis for a selectional
preference model that can be used as a single addi-
tional feature for classifying potential arguments.
Most recently, Hermann et al. (2014) used distri-
butional word representations within pre-defined
syntactic contexts as input to a classifier which
learns to distinguish different predicate senses.

A complementary line of research explores the
representation of sequence information. Promi-
nent examples are the works by Deschacht and
Moens (2009) and Huang and Yates (2010) who
learned and applied Hidden Markov Models to
assign state variables to words and word spans,
which serve as supplementary features for classifi-
cation. One drawback of this approach is that state
variables are discrete and the number of states
(i.e., their granularity) has to be chosen in advance.

The popularity of distributional methods for
word representation has been a motivation for de-
veloping representations of larger constructions
such as phrases and sentences, and there have
been several proposals for computing the meaning
of word combinations in vector spaces. Mitchell
and Lapata (2010) introduced a general frame-
work where composition is formulated as a func-
tion f of two vectors u and v. Depending on
how f is chosen, different composition models
arise, the simplest being an additive model where
f(u, v) = u + v. To capture relational functions,
Baroni and Zamparelli (2010) expanded on this
approach by representing verbs, adjectives and ad-
verbs by matrices which can modify the properties
of nouns (represented by vectors). Socher et al.
(2012) combined word representations with syn-
tactic structure information, through a recursive
neural network that learns vector space represen-
tations for multi-word phrases and sentences. An
empirical comparison of these composition meth-
ods was provided in (Blacoe and Lapata, 2012).

In this work, we use type-based continuous rep-
resentations of words to compose representations
of multiple word sequences and spans, which can
then be incorporated directly as features into SRL
systems.

Distributional Feature Computation

Argument a ~a
Predicate p ~p

Predicate-argument Interaction ~a+ ~p
Argument Span w1 . . . wn Σi ~wi

Dependency Path from a to p Σw∈path(a,p) ~w

Table 1: Features based on distributional word
representations and additive composition. Vector
~w denotes the representation of word w.

3 Method

Following the set-up of the CoNLL shared task
in 2009, we consider predicate-argument struc-
tures that consist of a verbal or nominal pred-
icate p and PropBank-labelled arguments ai ∈
{a1 . . . an}, where each ai corresponds to the head
word of the phrase that constitutes the respective
argument. Traditional semantic role labelling ap-
proaches compute a set of applicable features on
each pair 〈p, ai〉, such as the observed lemma type
of a word and the grammatical relation to its head,
that serve as indicators for a particular role label.

The disadvantage of this approach lies in the
fact that indicator features such as word and
lemma type are often sparse in training data and
hence do not generalize well across domains. In
contrast, features based on distributional represen-
tations (e.g., raw co-occurrence frequencies) can
be computed for every word, given that it occurs
in some unlabelled corpus. In addition to this ob-
vious advantage for out-of-domain settings, dis-
tributional representations can provide a more ro-
bust input signal to the classifier, for instance by
projecting a matrix of co-occurrence frequencies
to a lower-dimensional space. We hence hypoth-
esize that such features enable the model to be-
come more robust out-of-domain, while providing
higher precision in-domain.

Although simply including the components of
a word representation as features to a classifier
can lead to immediate improvements in SRL per-
formance, this observation seems in part counter-
intuitive. Just because one word has a specific
representation does not mean that it should be as-
signed a specific argument label. In fact, one
would expect a more complex interplay between
the representation of an argument ai and the con-
text it appears in. To model aspects of this inter-
play, we define an extended set of features that
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further includes representations for the combina-
tion of p and ai, the set of words in the depen-
dency path between p and ai, and the set of words
in the full span of ai. We compute additive com-
positional representations of multiple words, us-
ing the simplest method of Mitchell and Lapata
(2010) where the composed representation is the
uniformly weighted sum of each single represen-
tation. Our full set of feature types based on distri-
butional word representations is listed in Table 1.

4 Experimental Setup

We evaluate the impact of different types of fea-
tures by performing experiments on a benchmark
dataset for semantic role labelling. To assess the
gains of distributional representations realistically,
we incorporate the features described in Section 3
into a state-of-the-art SRL system. The follow-
ing paragraphs summarize the details of our ex-
perimental setup.

Semantic Role Labeller. In all our experi-
ments, we use the publicly available system by
Björkelund et al. (2010).1 This system com-
bines the first-ranked SRL system and the first-
ranked syntactic parser in the CoNLL 2009 shared
task for English (Björkelund et al., 2009; Bohnet,
2010). To the best of our knowledge, this
combination represents the current state-of-the-art
for semantic role labelling following the Prop-
Bank/NomBank paradigm (Palmer et al., 2005;
Meyers et al., 2004). To re-train and evaluate mod-
els with different feature sets, we use the same
training, development and test sets as provided
in the CoNLL shared task (Hajič et al., 2009).
Although the employed system features a full
syntactic-semantic parsing pipeline, we only mod-
ify the feature sets of the two components directly
related to the actual role labelling task, namely ar-
gument identification and argument classification.

Word Representations. As a baseline, we sim-
ply added as features the word representations of
the predicate and argument head involved in a
classification decision (first two lines in Table 1).
We experimented with a range of publicly avail-
able sets of word representations, including em-
beddings from various neural language models

1
http://code.google.com/p/mate-tools/

2
http://metaoptimize.com/projects/wordreprs/

3
http://ai.stanford.edu/%7eehhuang/

4
http://lebret.ch/words/

5
http://www.cis.upenn.edu/%7eungar/eigenwords/

Development dims P R F1

None – 86.1 81.0 83.5

Brown clusters2 320 86.2 81.3 83.7
Neural LM2 50 86.2 81.4 83.7
Neural LM+Global3 50 86.2 81.4 83.7
HLBL2 50 86.3 81.3 83.7
H-PCA4 50 86.2 81.3 83.7
Eigenwords5 50 86.2 81.3 83.6

Table 2: Results on the CoNLL-2009 develop-
ment set, using off-the-shelf word representations
for predicates and argument as additional features.
Performance numbers in percent.

(Mnih and Hinton, 2009; Collobert et al., 2011;
Huang et al., 2012), eigenvectors (Dhillon et al.,
2011), Brown clusters (Brown et al., 1992), and
post-processed co-occurrence counts (Lebret and
Collobert, 2014). Results on the development set
for various off-the-shelf representations are shown
in Table 2. The numbers reveal that any kind of
word representation can be employed to improve
results. We choose to perform all follow-up exper-
iments using the 50-dimensional embeddings in-
duced by Turian et al. (2010), using the method by
Collobert et al., as they led to slightly better results
in F1-score than other representations. No signif-
icant differences were observed, however, using
other types of representations or vector sizes.

5 Results

We evaluate our proposed set of additional fea-
tures on the CoNLL-2009 in-domain and out-of-
domain test sets, using the aforementioned SRL
system and word representations. All results are
computed using the system’s built-in preprocess-
ing pipeline and re-trained models for argument
identification and classification. We report la-
belled precision, recall and semantic F1-score as
computed by the official scorer.

The upper part of Table 3 shows SRL perfor-
mance on the in-domain CoNLL-2009 test set,
with and without (Original) additional features
based on distributional representations. The re-
sults reveal that any type of additional feature
helps to improve precision and recall in this setting
(from 85.2% F1-score up to 85.5%), with signifi-
cant gains for 4 of the 5 additional features (com-
puted using a randomization test; cf. Yeh, 2000).
Interestingly, we find that the features do not seem
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In-domain P R F1

Original 87.4 83.1 85.2

Original + Argument 87.6 83.3 85.4**
Original + Predicate 87.4 83.2 85.2
Original + Interaction 87.5 83.3 85.3**
Original + Span 87.6 83.5 85.5**
Original + Path 87.5 83.4 85.4**

Original + All 87.6 83.4 85.5**

Out-of-domain P R F1

Original 76.9 71.7 74.2

Original + Argument 77.4 71.9 74.5
Original + Predicate 77.3 72.2 74.7*
Original + Interaction 77.2 72.0 74.5
Original + Span 77.3 72.3 74.7*
Original + Path 77.2 72.3 74.7*

Original + All 77.5 73.0 75.2**

Table 3: Results on both CoNLL-2009 test sets.
All numbers in percent. Significant differences
from Original in terms of F1-score are marked by
asterisks (* p<0.05, ** p<0.01).

to have a cumulative effect here, as indicated by
the results with all features (+All, 85.5% F1). We
conjecture that this is due to the high volume of
existing in-domain training data, which renders
our full feature set redundant. To test this conjec-
ture, we further assess performance on the out-of-
domain test set of the CoNLL-2009 shared task.

The results for the out-of-domain experiment
are summarized in the lower part of Table 3.
We again observe that each single feature type
improves classification, with absolute gains be-
ing slightly higher than in the in-domain setting.
More interestingly though, we find that the com-
plete feature set boosts performance even further,
achieving an overall gain in precision and recall
of 0.6 and 1.3 percentage points, respectively. The
resulting F1-score of 75.2 lies even higher than the
top score for this particular data set reported in the
CoNLL shared task (Zhao et al., 2009; 74.6 F1).

We next investigate the benefits of compo-
sitional representations over features for single
words by assessing their impact on the overall re-
sult in an ablation study. Table 4 shows results
of ablation tests performed for the three composi-
tional feature types Interaction, Span and Path
on the out-of-domain test set. The results reveal

Out-of-domain P R F1

Original 76.9 71.7 74.2

Full (Original+All) 77.5 73.0 75.2

Full −Interaction 77.2 72.5 74.8
Full −Span 77.2 72.3 74.7
Full −Path 77.6 72.3 74.8

Table 4: Results of an ablation study over features
based on compositional representations. All num-
bers in percent.

a considerable loss in recall, indicating the impor-
tance of including compositional word represen-
tations and confirming our intuition that they can
provide additional gains over simple type-level
representations. In the next section, we discuss
this result in more detail and provide examples of
improved classification decisions.

6 Discussion

As a more detailed qualitative analysis, we exam-
ined the impact of word representations on SRL
performance with respect to different argument la-
bels and predicate types. Results on the in-domain
data set, shown in the upper part of Table 5, sug-
gest that most improvements in terms of preci-
sion are gained for verbal predicates, while nom-
inal predicates primarily benefit from higher re-
call. One reason for the latter observation might
be that arguments of nominal predicates are gen-
erally much harder to identify for the Original
model, as the cues provided by indicator features
on words and syntax are often inconclusive. For
verbal predicates, the word representations mainly
provide reinforcing signals to the classifier, im-
proving its precision at a slight cost of recall.

The results on the out-of-domain data set pro-
vide more insights regarding the suitability of
word representations for generalization. As shown
in the lower half of Table 5, the additional features
on average have a positive impact on precision and
recall. For verbal predicates, we observe only one
case, namely A0, in which improvements in recall
came with a decline in precision. Regarding nomi-
nal predicates, the trend is similar to what we have
seen in the in-domain setting, with most gains be-
ing achieved in terms of recall.

Apart from assessing quantitative effects, we
further examined cases that directly show the qual-
itative gains of the compositional features defined
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Sentence with predicate and [gold argumentlabel] Original Features required for correction

(1) He did not resent [theirA0] supervision A1 Interaction
(2) [HeA1] is getting plenty of rest no label Interaction, Path
(3) [HeA0] rose late and went down to have breakfast. no label Path
(4) He was able to sit [for hoursAM-TMP]. A2 Span
(5) Because he had spoken [too softlyAM-MNR]. AM-TMP Span

Table 6: Example sentences in which distributional features compensated for errors made by Original.

In-domain verbal nominal

Label P R P R

A0 +0.4 +0.4 −0.1 +2.4
A1 +0.2 −0.4 +0.6 +1.5
A2 +1.7 −1.5 – +2.5
AM-ADV +0.8 +0.2 −9.9 −3.1
AM-DIS +0.3 −3.2 – –
AM-LOC +0.8 +1.1 +0.6 +3.0
AM-MNR −0.5 −1.2 +2.7 +0.3
AM-TMP −1.2 −0.7 −1.9 +3.3

Out-of-domain verbal nominal

Label P R P R

A0 −0.9 +2.5 −2.5 −0.4
A1 +1.7 +0.8 +1.0 +3.7
A2 +1.4 +0.7 −2.5 +3.2
AM-ADV +5.6 +0.7 – –
AM-DIS +7.3 – – –
AM-LOC +0.7 +2.4 – +15.0
AM-MNR +6.4 +10.5 +9.7 +10.7
AM-TMP +1.6 +1.8 −6.7 +1.1

Table 5: Differences in precision and recall per
argument label and predicate word category. All
numbers represent absolute percentage points.

in Section 3. Table 6 lists examples from the
out-of-domain data set that were misclassified by
the Original model but could be correctly pre-
dicted using our enhanced feature set. As illus-
trated by Examples (1) and (2), the Interaction
feature seems to help recall by guiding classifica-
tion decisions towards more meaningful and com-
plete structures.

Improvements using the Path feature can be ob-
served in cases where nested syntactic structures
need to be processed, as required in Example (2).
In another instance, Example (3), the following
path is predicted between argument and predicate:
He SBJ−→ rose COORD←−−−and CONJ←−−went OPRD←−− to IM←−have.

Such cases are particularly problematic for the
Original model because long and potentially er-
roneous paths are sparse in the training data.

Further gains in performance are achieved using
the Span feature, which enables the model to bet-
ter handle infrequent and out-of-vocabulary words
occurring in an argument span, including “hours”
and “softly” in Example (4) and (5), respectively.

7 Conclusions

In this paper, we proposed to enhance the feature
space of a state-of-the-art semantic role labeller by
applying and composing distributional word rep-
resentations. Our results indicate that combining
such features with standard syntactic cues leads to
more precise and more robust models, with sig-
nificant improvements both in-domain and out-of-
domain. Ablation tests on an out-of-domain data
set have shown that gains in recall are mostly due
to features based on composed representations.
Given the novelty of these features for SRL, we
believe that this insight is remarkable and deserves
further investigation. In future work, we plan to
apply more sophisticated models of composition-
ality to better represent predicate-argument struc-
tures and to guide classification decisions towards
outcomes that are semantically more plausible.
We anticipate that this line of research will also be
of interest for a range of related tasks beyond tra-
ditional SRL, including predicate-argument struc-
ture alignment (Roth and Frank, 2012) and im-
plicit argument linking (Gerber and Chai, 2012).
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Abstract
This paper reports on the development of a hy-
brid and simple method based on a machine
learning classifier (Naive Bayes), Word Sense
Disambiguation and rules, for the automatic
assignment of WordNet Domains to nominal
entries of a lexicographic dictionary, the Senso
Comune De Mauro Lexicon. The system ob-
tained an F1 score of 0.58, with a Precision
of 0.70. We further used the automatically as-
signed domains to filter out word sense align-
ments between MultiWordNet and Senso Co-
mune. This has led to an improvement in the
quality of the sense alignments showing the
validity of the approach for domain assign-
ment and the importance of domain informa-
tion for achieving good sense alignments.

1 Introduction and Problem Statement
Lexical knowledge, i.e. how words are used and ex-
press meaning, plays a key role in Natural Language
Processing. Lexical knowledge is available in many
different forms, ranging from unstructured terminolo-
gies (i.e. word list), to full fledged computational lexica
and ontologies (e.g. WordNet (Fellbaum, 1998)). The
process of creation of lexical resources is costly both
in terms of money and time. To overcome these lim-
its, semi-automatic approaches have been developed
(e.g. MultiWordNet (Pianta et al., 2002)) with differ-
ent levels of success. Furthermore, important informa-
tion is scattered in different resources and difficult to
use. Semantic interoperability between resources could
represent a viable solution to allow reusability and de-
velop more robust and powerful resources. Word sense
alignment (WSA) qualifies as the preliminary require-
ment for achieving this goal (Matuschek and Gurevych,
2013).
WSA aims at creating lists of pairs of senses from
two, or more, (lexical-semantic) resources which de-
note the same meaning. Different approaches to WSA
have been proposed and they all share some common
elements, namely: i.) the extensive use of sense de-
scriptions of the words (e.g. WordNet glosses); and ii.)
the extension of the basic sense descriptions with addi-
tional information such as hypernyms, synonyms and
domain or category labels.

The purpose of this work is two folded: first, we exper-
iment on the automatic assignment of domain labels to
sense descriptions, and then, evaluate the impact of this
information for improving an existing sense aligned
dataset for nouns. Previous works has demonstrated
that domain labels are a good feature for obtaining high
quality alignments of entries (Navigli, 2006; Toral et
al., 2009; Navigli and Ponzetto, 2012). The Word-
Net (WN) Domains (Magnini and Cavaglia, 2000; Ben-
tivogli et al., 2004) have been selected as reference do-
main labels. We will use as candidate lexico-semantic
resources to be aligned two Italian lexica, namely, Mul-
tiWordNet (MWN) and the Senso Comune De Mauro
Lexicon (SCDM) (Vetere et al., 2011).
The two resources differ in terms of modelization: the
former, MWN, is an Italian version of WN obtained
through the “expand model” (Vossen, 1996) and per-
fectly aligned to Princeton WN 1.6, while the latter,
SCDM, is a machine readable dictionary obtained from
a paper-based reference lexicographic dictionary, De
Mauro GRADIT. Major issues for WSA of the lexica
concern the following aspects:

• SCMD has no structure of word senses (i.e. no
taxonomy, no synonymy relations, no distinction
between core senses and subsenses for polyse-
mous entries) unlike MWN;

• SCDM has no domain or category labels associ-
ated to senses (with the exception of specific ter-
minological entries) unlike MWN;

• the Italian section of MWN has only 2,481 glosses
in Italian over 28,517 synsets for nouns (i.e.
8.7%).

The remainder of this paper is organized as follows:
Section 2 will report on the methodology and exper-
iments implemented for the automatic assignment of
the WN Domains to the SCDM entries. Section 3 will
describe the dataset used for the evaluation of the WSA
experiments and the use of the WN Domains for filter-
ing the sense alignments. Finally, Section 4 illustrates
conclusion and future work.

2 Methodology and Experiments
The WN Domains consist of a set of 166 hierarchically
organized labels which have been associated to each
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Classifiers P R F1 10-Fold F1
NaiveBayeslemma 0.77 0.58 0.66 0.66
MaxEntlemma 0.70 0.49 0.58 0.63
NaiveBayeswsd 0.77 0.58 0.66 0.69
MaxEntwsd 0.74 0.54 0.62 0.67

Table 2: Results for the Naive Bayes and Maximum Entropy binary classifiers.

synset1 and express a subject field label (e.g. SPORT,
MEDICINE). A special label, FACTOTUM, has been
used for those synsets which can appear in almost all
subject fields.
The identification of a domain label to the nominal en-
tries in the SCDM Lexicon is based the “One Domain
per Discourse” (ODD) hypothesis applied to the sense
descriptions. We have used a reduced set of domains
labels (45 normalized domains) following (Magnini et
al., 2001).
To assign the WN domain label to the SCDM entries,
we have developed a hybrid method: first a binary clas-
sifier is applied to the SCDM sense descriptions to dis-
criminate between two domain values, FACTOTUM
and OTHER, where the OTHER value includes all re-
maining 44 normalized domains. After this, all entries
classified with the OTHER value are analyzed by a rule
based system and associated with a specific domain la-
bel (i.e. SPORT, MEDICINE, FOOD . . . ).

2.1 Classifier and feature selection
We have developed a training set by manually align-
ing noun senses between the two lexica. The sense
alignment allows us to associate all the information of a
synset to a corresponding entry in the SCDM lexicon,
including the WN Domain label. Concerning the test
set, we have used an existing dataset of aligned noun
pairs as in (Caselli et al., 2014). We report in Table 1
the figures for the training and test sets. Multiple align-
ments with the same domain label have been excluded
from the training set.

Characteristics Training Set Test Set
# lemmas 131 46
# of aligned pairs 369 166
# of SCDM senses 747 216
# of MWN synsets 675 229
# SCDM with
WN Domain label 350 118

Table 1: Training and test sets for the classifier.

In order for the classifier to predict the binary do-
main labels (FACTOTUM and OTHER), each sense
description of the SCDM Lexicon has been repre-
sented by means of a two-dimensional feature vector
(e.g. for training data: BINARY DOMAIN LABEL

1The full set of labels and hierarchy is available at
http://wndomains.fbk.eu/hierarchy.html

GENERIC:val SPECIFIC:val). Feature values have
been obtained through two strategies:

• lemma label: we extract all normalized domain
labels associated to each sense of each lemma in
the sense description from MWN. The value of
the feature GENERIC corresponds to the sum of
the FACTOTUM labels. The value of the fea-
ture SPECIFIC corresponds to the sum of all other
specific domain labels (e.g. MEDICINE, SPORT
etc.) after they have been collapsed into a single
value (i.e. NOT-FACTOTUM).

• word sense label: for each sense description, we
have first performed Word Sense Disambiguation
by means of an adapted version to Italian of the
UKB package2 (Agirre et al., 2010; Agirre et al.,
2014)3. Only the highest ranked synset, and as-
sociated WN Domain(s), was retained as good.
Similarly to the lemma label strategy, the sum of
the domain label FACTOTUM is assigned to the
feature GENERIC, while the sum of all other do-
main labels collapsed into the single value NOT-
FACTOTUM is assigned to the feature SPECIFIC.

We experimented with two classifiers: Naive Bayes
and Maximum Entropy as implemented in the MAL-
LET package (McCallum, 2002). We illustrate the re-
sults in Table 2. The classifiers have been evaluated
with respect to standard Precision (P), Recall (R) and
F1 against the test set. Ten-fold cross validation has
been performed on the training set as well. Classifiers
trained with the first strategy will be associated with the
label lemma, while those trained with the second strat-
egy with the label wsd.
Both classifiers obtains good results with respect to
the test data in terms of Precision and Recall. The
Naive Bayes classifier outperforms the Maximum En-
tropy one in both training approaches, suggesting better
generalization capabilities even in presence of a small
training set and basic features. The role of WSD has
a positive impact, namely for the Maximum Entropy
classifier (Precision +4 points, Recall +5 points with
respect to the lemma label). Although such a positive
effect of the WSD does not emerge for the Naive Bayes
classifier with respect to the test set, we can still ob-
serve an improvement over the ten-fold cross valida-
tion (F1= 0.69 vs. F1=0.66). We finally selected the

2Available at http://ixa2.si.ehu.es/ukb/
3We used the WN Multilingual Central Repository as

knowledge base and the MWN entries as dictionary
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predictions of Naive Bayeswsd classifier as input to the
rule-based system as it provides the highest scores.

2.2 Rules for WN Domain assignment

The rule based classifier for final WN Domain assign-
ment works as follows:

• lemmatized and word sense disambiguated lem-
mas in the sense descriptions are associated with
the corresponding WN Domains from MWN;

• frequency counts on the WN Domain labels is ap-
plied; the most frequent WN Domain is assigned
as the correct WN Domain of the nominal entry;

• in case two or more WN Domains have same fre-
quency, the following assignment strategy is ap-
plied: if the frequency scores of the WN Do-
mains is equal to 1, the value FACTOTUM is se-
lected; on the contrary, if the frequency score is
higher than 1, all WN Domain labels are retained
as good.

We report the results on final domain assignment
in Table 3. The final system, NaiveBayes+Rules, has
been compared to two baselines. Both baselines ap-
ply frequency counts over the WN Domains labels
of the lemmas of the sense descriptions for the en-
tire set of the 45 normalized domain values, including
the FACTOTUM label, as explained in Section2. The
Baselinelemma assigns the domain by taking into ac-
count every WN Domain associated to each lemma. On
the other hand, the Baselinewsd selects only the WN
Domain of sense disambiguated lemmas. WSD for the
second baseline has been performed by applying the
same method described in Section 2.1. The results of
both baselines have high values for Precision (0.58 for
Baselinelemma, 0.70 for Baselinewsd). We consider
this as a further support to the validity of the ODD hy-
pothesis which seems to hold even for text descriptions
like dictionary glosses which normally use generic lex-
ical items to illustrate word senses. It is also interesting
to notice that WSD on its own has a positive impact in
Baselinewsd system for the assignment of specific do-
main labels (F1=0.53).
The hybrid system performs better than both base-
lines in terms of F1 scores (F1=0.58 vs. F1=0.45 for
Baselinelemma vs. F1=0.53 for Baselinewsd). How-
ever, both the hybrid system and the Baselinewsd ob-
tain the same Precision. To better evaluate the per-
formance of our hybrid approach, we computed the
paired t-test. The results of the hybrid system are sta-
tistically significant with respect to the Baselinelemma

(p < 0.05) and for Recall only when compared to the
Baselinewsd.
To further analyze the difference between the hybrid
system and the Baselinewsd, we performed an error
analysis on their outputs. We have identified that the
hybrid system is more accurate in the prediction of the

System P R F1
NaiveBayeswsd+Rules 0.70† 0.50†∗ 0.58†
Baselinelemma 0.58 0.36 0.45
Baselinewsd 0.70 0.43 0.53

Table 3: Results of WN Domain Assignment over the
SDCM entries. Statistical significance of the Naive-
Bayes+Rules system has been marked with a † for the
Baselinelemma and with a ∗ for the Baselinewsd

FACTOTUM class with respect to the baseline. In par-
ticular, the accuracy of the hybrid system on this class
is 79% while that of the baseline is only 65%. In addi-
tion to this, the hybrid system provides better results in
terms of Recall (R=0.50 vs. R=0.43). Although compa-
rable, the hybrid system provides more accurate results
with respect to the baseline.

3 Domain Filtering for WSA

This section reports on the experiments for improving
existing WSA for nouns between SDCM and MWN. In
this work we have used the same dataset and alignment
methods as in (Caselli et al., 2014), shortly described
here:

• Lexical Match: for each word w and for each
sense s in the given resources R ∈ {MWN,
SCDM}, we constructed a sense descriptions
dR(s) as a bag of words in Italian. The alignment
is based on counting the number of overlapping
tokens between the two strings, normalized by the
length of the strings;

• Cosine Similarity: we used the Personalized Page
Rank (PPR) algorithm (Agirre et al., 2010) with
WN 3.0 as knowledge base extended with the
“Princeton Annotated Gloss Corpus”. Once the
PPR vector pairs are obtained, the alignment is
obtained on the basis of the cosine score for each
pair4.

The dataset consists of 166 pairs of aligned senses
from MWN and SCDM for 46 nominal lemmas
(see also column “Test set” in Table 1). Overall,
SCDM covers 53.71The main difference with respect
to (Caselli et al., 2014) is that the proposed alignments
have been additionally filtered on the basis of the output
of the WN domain system (NaiveBayeswsd+Rules). In
particular, for each aligned pair which was considered
as good in (Caselli et al., 2014), we have applied a fur-
ther filtering based on the WN domain system results
as follows: if two senses are aligned but do not have
the same domain, they are excluded from the WSA re-
sults, otherwise they are retained. Table 4 illustrates

4The vectors for the SCDM entries were obtained by, first,
applying Google Translate API to get the English translations
and, then, PPR over WN 3.0.
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System P R F1
LexicalMatch 0.76 (0.69) 0.27 (0.44) 0.40 (0.55)
Cosine noThreshold 0.27 (0.12) 0.47 (0.94) 0.35 (0.21)
Cosine > 0.1 0.77 (0.52) 0.21 (0.32) 0.33 (0.40)
Cosine > 0.2 0.87 (0.77) 0.14 (0.21) 0.24 (0.33)
LexicalMatch+Cosine > 0.1 0.73 (na) 0.40 (na) 0.51 (na)
LexicalMatch+Cosine > 0.2 0.77 (0.67) 0.37 (0.61) 0.50 (0.64)

Table 4: Results for WSA of nouns with domain filtering.

the results of the WSA approaches with domain fil-
ters. We report in brackets the results from (Caselli et
al., 2014). The filtering based on WN Domains has a
big impact on Precision and contributes to increase the
quality of the aligned senses. Although, in general, we
have a downgrading of the performance with respect to
Recall, the increase in Precision will reduce the man-
ual post-processing effort to fully aligned the two re-
sources5. Furthermore, it is interesting to notice that,
when merging together the results of the pre-filtered
alignments from the two alignment approaches (Lex-
icalMatch+Cosine > 0.1 and LexicalMatch+Cosine >
0.2), we still have a very high Precision (> 0.70) and an
increase in Recall (> 0.40) with respect to the results of
each approach. Finally, we want to point out that what
was reported as the best alignment results in (Caselli
et al., 2014), namely LexicalMatch+Cosine > 0.2, can
be obtained, at least for Precision, with a lower filtering
cut-off threshold on the Cosine Similarity approach (i.e
cut-off threshold at or higher than 0.1)

4 Conclusions and Future Work
This work describes a hybrid approach based on a
Naive Bayes classifier, Word Sense Disambiguation
and rules for assigning WN Domains to nominal sense
descriptions of a lexicographic dictionary, the Senso
Comune De Mauro Lexicon. The assignment of do-
main labels has been used to improve WSA results on
nouns between the Senso Comune Lexicon and Mul-
tiWordNet. The results support some observations,
namely: i.) domain filtering plays an important role
in WSA, namely as a strategy to exclude wrong align-
ments (false positives) and improve the quality of the
aligned pairs; ii.) the method we have proposed is a vi-
able approach for automatically enriching existing lex-
ical resources in a reliable way; and iii.) the ODD hy-
pothesis also apply to sense descriptions.
An advantage of our approach is its simplicity. We have
used features based on frequency counts and obtained
good results, with a Precision of 0.70 for automatic WN
Domain assignment. Nevertheless, an important role
is played by Word Sense Disambiguation. The use of
domain labels obtained from sense disambiguated lem-
mas improves both the results of the classifier and those

5The F1 of 0.64 in (Caselli et al., 2014) is obtained with a
Precision of 0.67, suggesting that some alignments are false
positives

of the rules. The absence of statistical significance with
respect to the Baselinewsd is not to be considered as a
negative result. As the error analysis has showed, the
classifier mostly contributes to the identification of the
FACTOTUM value, which tends to be overestimated
even with sense disambiguated lemmas, and to Recall.
We are planning to extend this work to include do-
main clusters to improve the domain assignment re-
sults, namely in terms of Recall.
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Abstract

Much attention has been given to the
impact of informativeness and similar-
ity measures on distributional thesauri.
We investigate the effects of context fil-
ters on thesaurus quality and propose the
use of cooccurrence frequency as a sim-
ple and inexpensive criterion. For eval-
uation, we measure thesaurus agreement
with WordNet and performance in answer-
ing TOEFL-like questions. Results illus-
trate the sensitivity of distributional the-
sauri to filters.

1 Introduction

Large-scale distributional thesauri created auto-
matically from corpora (Grefenstette, 1994; Lin,
1998; Weeds et al., 2004; Ferret, 2012) are an
inexpensive and fast alternative for representing
semantic relatedness between words, when man-
ually constructed resources like WordNet (Fell-
baum, 1998) are unavailable or lack coverage. To
construct a distributional thesaurus, the (colloca-
tional or syntactic) contexts in which a target word
occurs are used as the basis for calculating its sim-
ilarity with other words. That is, two words are
similar if they share a large proportion of contexts.

Much attention has been devoted to refin-
ing thesaurus quality, improving informativeness
and similarity measures (Lin, 1998; Curran and
Moens, 2002; Ferret, 2010), identifying and de-
moting bad neighbors (Ferret, 2013), or using
more relevant contexts (Broda et al., 2009; Bie-
mann and Riedl, 2013). For the latter in particular,
as words vary in their collocational tendencies, it
is difficult to determine how informative a given
context is. To remove uninformative and noisy
contexts, filters have often been applied like point-
wise mutual information (PMI), lexicographer’s
mutual information (LMI) (Biemann and Riedl,

2013), t-score (Piasecki et al., 2007) and z-score
(Broda et al., 2009). However, the selection of a
measure and of a threshold value for these filters
is generally empirically determined. We argue that
these filtering parameters have a great influence on
the quality of the generated thesauri.

The goal of this paper is to quantify the im-
pact of context filters on distributional thesauri.
We experiment with different filter methods and
measures to assess context significance. We pro-
pose the use of simple cooccurrence frequency as
a filter and show that it leads to better results than
more expensive measures such as LMI or PMI.
Thus we propose a cheap and effective way of fil-
tering contexts while maintaining quality.

This paper is organized as follows: in §2 we
discuss evaluation of distributional thesauri. The
methodology adopted in the work and the results
are discussed in §3 and §4. We finish with some
conclusions and discussion of future work.

2 Related Work

In a nutshell, the standard approach to build a dis-
tributional thesaurus consists of: (i) the extraction
of contexts for the target words from corpora, (ii)
the application of an informativeness measure to
represent these contexts and (iii) the application of
a similarity measure to compare sets of contexts.
The contexts in which a target word appears can
be extracted in terms of a window of cooccurring
(content) words surrounding the target (Freitag et
al., 2005; Ferret, 2012; Erk and Pado, 2010) or in
terms of the syntactic dependencies in which the
target appears (Lin, 1998; McCarthy et al., 2003;
Weeds et al., 2004). The informativeness of each
context is calculated using measures like PMI, and
t-test while the similarity between contexts is cal-
culated using measures like Lin’s (1998), cosine,
Jensen-Shannon divergence, Dice or Jaccard.

Evaluation of the quality of distributional the-
sauri is a well know problem in the area (Lin,
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1998; Curran and Moens, 2002). For instance, for
intrinsic evaluation, the agreement between the-
sauri has been examined, looking at the average
similarity of a word in the thesauri (Lin, 1998),
and at the overlap and rank agreement between the
thesauri for target words like nouns (Weeds et al.,
2004). Although much attention has been given to
the evaluation of various informativeness and sim-
ilarity measures, a careful assessment of the ef-
fects of filtering on the resulting thesauri is also
needed. For instance, Biemann and Riedl (2013)
found that filtering a subset of contexts based on
LMI increased the similarity of a thesaurus with
WordNet. In this work, we compare the impact of
using different types of filters in terms of thesaurus
agreement with WordNet, focusing on a distribu-
tional thesaurus of English verbs. We also propose
a frequency-based saliency measure to rank and
filter contexts and compare it with PMI and LMI.

Extrinsic evaluation of distributional thesauri
has been carried out for tasks such as En-
glish lexical substitution (McCarthy and Navigli,
2009), phrasal verb compositionality detection
(McCarthy et al., 2003) and the WordNet-based
synonymy test (WBST) (Freitag et al., 2005). For
comparative purposes in this work we adopt the
latter.

3 Methodology

We focus on thesauri of English verbs constructed
from the BNC (Burnard, 2007)1. Contexts are ex-
tracted from syntactic dependencies generated by
RASP (Briscoe et al., 2006), using nouns (heads
of NPs) which have subject and direct object rela-
tions with the target verb. Thus, each target verb
is represented by a set of triples containing (i) the
verb itself, (ii) a context noun and (iii) a syntac-
tic relation (object, subject). The thesauri were
constructed using Lin’s (1998) method. Lin’s ver-
sion of the distributional hypothesis states that two
words (verbs v1 and v2 in our case) are similar if
they share a large proportion of contexts weighted
by their information content, assessed with PMI
(Bansal et al., 2012; Turney, 2013).

In the literature, little attention is paid to context
filters. To investigate their impact, we compare
two kinds of filters, and before calculating similar-
ity using Lin’s measure, we apply them to remove

1Even though larger corpora are available, we use a tradi-
tional carefully constructed corpus with representative sam-
ples of written English to control the quality of the thesaurus.

potentially noisy triples:
• Threshold (th): we remove triples that oc-

cur less than a threshold th. Threshold values
vary from 1 to 50 counts per triple.
• Relevance (p): we keep only the top p most

relevant contexts for each verb, were rele-
vance is defined according to the following
measures: (a) frequency, (b) PMI, and (c)
LMI (Biemann and Riedl, 2013). Values of
p vary between 10 and 1000.

In this work, we want to answer two ques-
tions: (a) Do more selective filters improve intrin-
sic evaluation of thesaurus? and (b) Do they also
help in extrinsic evaluation?

For intrinsic evaluation, we determine agree-
ment between a distributional thesaurus and Word-
Net as the path similarities for the first k distri-
butional neighbors of a verb. A single score is
obtained by averaging the similarities of all verbs
with their k first neighbors. The higher this score
is, the closer the neighbors are to the target in
WordNet, and the better the thesaurus. Several
values of k were tested and the results showed ex-
actly the same curve shapes for all values, with
WordNet similarity decreasing linearly with k. For
the remainder of the paper we adopt k = 10, as it
is widely used in the literature.

For extrinsic evaluation, we use the WBST set
for verbs (Freitag et al., 2005) with 7,398 ques-
tions and an average polysemy of 10.4. The task
consists of choosing the most suitable synonym
for a word among a set of four options. The the-
saurus is used to rank the candidate answers by
similarity scores, and select the first one as the
correct synonym. As discussed by Freitag et al.
(2005), the upper bound reached by English na-
tive speakers is 88.4% accuracy, and simple lower
bounds are 25% (random choice) and 34.5% (al-
ways choosing the most frequent option).

4 Results

Figure 1 shows average WordNet similarities for
thesauri built filtering by frequency threshold th
and by p most frequent contexts. Table 1 sum-
marizes the parametrization leading to the best
WordNet similarity for each kind of filter. In all
cases we show the results obtained for different
frequency ranges2 as well as the results when av-
eraging over all verbs.

2In order to study the influence of verb frequency on the
results, we divide the verbs in three groups: high-frequency
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Figure 1: WordNet scores for verb frequency ranges, filtering by frequency threshold th (left) and pmost
frequent contexts (right).

Filter All verbs Frequency range
Low Mid High

No filter - 0.148 - 0.101 - 0.144 - 0.198
Filter low freq. contexts th = 50 0.164 th = 50 0.202 th = 50 0.154 th = 1 0.200
Keep p contexts (freq.) p = 200 0.158 p = 500 0.138 p = 200 0.149 p = 200 0.206
Keep p contexts (PMI) p = 1000 0.139 p = 1000 0.101 p = 1000 0.136 p = 1000 0.181
Keep p contexts (LMI) p = 200 0.155 p = 100 0.112 p = 200 0.147 p = 200 0.208

Table 1: Best scores obtained for each filter for all verbs and frequency ranges. Scores are given in terms
of WordNet path. Confidence interval is arround ± 0.002 in all cases.

When using a threshold filter (Figure 1 left),
high values lead to better performance for mid-
and low-frequency verbs. This is because, for high
th values, there are few low and mid-frequency
verbs left, since a verb that occurs less has less
chances to be seen often in the same context. The
similarity for verbs with no contexts over the fre-
quency threshold cannot be assessed and as a con-
sequence those verbs are not included in the fi-
nal thesaurus. As Figure 2 shows, the number
of verbs decreases much faster for low and mid
frequency verbs when th increases.3 For exam-
ple, for th = 50, there are only 7 remaining low-
frequency verbs in the thesaurus and these tend
to be idiosyncratic multiword expressions. One
example is wreak, and the only triple contain-
ing this verb that appeared more than 50 times is
wreak havoc (71 occurrences). The neighbors of
this verb are cause and play, which yield a good
similarity score in WordNet. Therefore, although
higher thresholds result in higher similarities for
low and mid-frequency verbs, this comes at a cost,
as the number of verbs included in the thesaurus
decreases considerably.

(||v|| ≥ 500), mid-frequency (150 ≤ ||v|| < 500) and low-
frequency (||v|| < 150).

3For pmost salient contexts, the number of verbs does not
vary and is the same shown in Figure 2 for th = 1 (no filter).
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Figure 2: Number of verbs per frequency ranges
when filtering by context frequency threshold th

As expected, the best performance is obtained
for high-frequency verbs and no filter, since it re-
sults in more context information per verb. In-
creasing th decreases similarity due to the removal
of some of these contexts. In average, higher th
values lead to better overall similarity among the
frequency ranges (from 0.148 with th = 1 to
0.164 with th = 50). The higher the threshold,
the more high-frequency verbs will prevail in the
thesauri, for which the WordNet path similarities
are higher.

On the other hand, when adopting a relevance
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filter of keeping the p most relevant contexts for
each verb (Figure 1 right), we obtain similar re-
sults, but more stable thesauri. The number of
verbs remains constant, since we keep a fixed
number of contexts for each verb and verbs are not
removed when the threshold is modified. Word-
Net similarity increases as more contexts are taken
into account, for all frequency ranges. There is a
maximum around p = 200, though larger values
do not lead to a drastic drop in quality. This sug-
gests that the noise introduced by low-frequency
contexts is compensated by the increase of infor-
mativeness for other contexts. An ideal balance
is reached by the lowest possible p that maintains
high WordNet similarity, since the lower the p the
faster the thesaurus construction.

In terms of saliency measure, when keeping
only the p most relevant contexts, sorting them
with PMI leads to much worse results than LMI
or frequency, as PMI gives too much weight to
infrequent combinations. This is consistent with
results of Biemann and Riedl (2013). Regarding
LMI versus frequency, the results using the latter
are slightly better (or with no significant differ-
ence, depending on the frequency range). The ad-
vantage of using frequency instead of LMI is that
it makes the process simpler and faster while lead-
ing to equal or better performance in all frequency
ranges. Therefore for the extrinsic evaluation us-
ing WBST task, we use frequency to select the
p most relevant contexts and then compute Lin’s
similarity using only those contexts.

Figure 3 shows the performance of the thesauri
in the WBST task in terms of precision, recall and
F1.4 For precision, the best filter is to remove con-

4Filters based on LMI and PMI were also tested with the

texts occurring less than th times, but, this also
leads to poor recall, since many verbs are left out
of the thesauri and their WSBT questions cannot
be answered. On the other hand, keeping the most
relevant p contexts leads to more stable results and
when p is high (right plot), they are similar to those
shown in the left plot of Figure 3.

4.1 Discussion

The answer to our questions in Section 3 is yes,
more selective filters improve intrinsic and extrin-
sic thesaurus quality. The use of both filtering
methods results in thesauri in which the neighbors
of target verbs are closer in WordNet and get better
scores in TOEFL-like tests. However, the fact that
filtering contexts with frequency under th removes
verbs in the final thesaurus is a drawback, as high-
lighted in the extrinsic evaluation on the WBST
task.

Furthermore, we demonstrated that competitive
results can be obtained keeping only the p most
relevant contexts per verb. On the one hand, this
method leads to much more stable thesauri, with
the same verbs for all values of p. On the other
hand, it is important to highlight that the best re-
sults to assess the relevance of the contexts are ob-
tained using frequency while more sophisticated
filters such as LMI do not improve thesaurus qual-
ity. Although an LMI filter is relatively fast com-
pared to dimensionality reduction techniques such
as singular value decomposition (Landauer and
Dumais, 1997), it is still considerably more expen-
sive than a simple frequency filter.

In short, our experiments indicate that a reason-

same results as intrinsic evaluation: sorting contexts by fre-
quency leads to better results.
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able trade-off between noise, coverage and com-
putational efficiency is obtained for p = 200 most
frequent contexts, as confirmed by intrinsic and
extrinsic evaluation. Frequency threshold th is
not recommended: it degrades recall because the
contexts for many verbs are not frequent enough.
This result is useful for extracting distributional
thesauri from very large corpora like the UKWaC
(Ferraresi et al., 2008) by proposing an alterna-
tive that minimizes the required computational re-
sources while efficiently removing a significant
amount of noise.

5 Conclusions and Future Work

In this paper we addressed the impact of filters
on the quality of distributional thesauri, evaluat-
ing a set of standard thesauri and different filtering
methods. The results suggest that the use of fil-
ters and their parameters greatly affect the thesauri
generated. We show that it is better to use a filter
that selects the most relevant contexts for a verb
than to simply remove rare contexts. Furthermore,
the best performance was obtained with the sim-
plest method: frequency was found to be a simple
and inexpensive measure of context salience. This
is especially important when dealing with large
amounts of data, since computing LMI for all con-
texts would be computationally costly. With our
proposal to keep just the p most frequent contexts
per verb, a great deal of contexts are cheaply re-
moved and thus the computational power required
for assessing similarity is drastically reduced.

As future work, we plan to use these filters to
build thesauri from larger corpora. We would like
to generalize our findings to other syntactic con-
figurations (e.g. noun-adjective) as well as to other
similarity and informativeness measures. For in-
stance, ongoing experiments indicate that the same
parameters apply when Lin’s similarity is replaced
by cosine. Finally, we would like to compare the
proposed heuristics with more sophisticated filter-
ing strategies like singular value decomposition
(Landauer and Dumais, 1997) and non-negative
matrix factorization (Van de Cruys, 2009).
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Abstract

We align pairs of English sentences and
corresponding Abstract Meaning Repre-
sentations (AMR), at the token level. Such
alignments will be useful for downstream
extraction of semantic interpretation and
generation rules. Our method involves
linearizing AMR structures and perform-
ing symmetrized EM training. We obtain
86.5% and 83.1% alignment F score on de-
velopment and test sets.

1 Introduction

Banarescu et al. (2013) describe a semantics bank
of English sentences paired with their logical
meanings, written in Abstract Meaning Represen-
tation (AMR). The designers of AMR leave open
the question of how meanings are derived from
English sentences (and vice-versa), so there are
no manually-annotated alignment links between
English words and AMR concepts. This paper
studies how to build such links automatically, us-
ing co-occurrence and other information. Auto-
matic alignments may be useful for downstream
extraction of semantic interpretation and genera-
tion rules.

AMRs are directed, acyclic graphs with labeled
edges, e.g., the sentence The boy wants to go is
represented as:

(w / want-01
:arg0 (b / boy)
:arg1 (g / go-01

:arg0 b))

We have hand-aligned a subset of the 13,050
available AMR/English pairs. We evaluate our
automatic alignments against this gold standard.
A sample hand-aligned AMR is here (“˜n” speci-
fies a link to the nth English word):

the boy wants to go
(w / want-01˜3

:arg0 (b / boy˜2)
:arg1 (g / go-01˜5

:arg0 b))

This alignment problem resembles that of statisti-
cal machine translation (SMT). It is easier in some
ways, because AMR and English are highly cog-
nate. It is harder in other ways, as AMR is graph-
structured, and children of an AMR node are un-
ordered. There are also fewer available training
pairs than in SMT.

One approach is to define a generative model
from AMR graphs to strings. We can then use
EM to uncover hidden derivations, which align-
ments weakly reflect. This approach is used in
string/string SMT (Brown et al., 1993). How-
ever, we do not yet have such a generative graph-
to-string model, and even if we did, there might
not be an efficient EM solution. For exam-
ple, in syntax-based SMT systems (Galley et al.,
2004), the generative tree/string transduction story
is clear, but in the absence of alignment con-
straints, there are too many derivations and rules
for EM to efficiently consider.

We therefore follow syntax-based SMT custom
and use string/string alignment models in align-
ing our graph/string pairs. However, while it is
straightforward to convert syntax trees into strings
data (by taking yields), it is not obvious how to do
this for unordered AMR graph elements. The ex-
ample above also shows that gold alignment links
reach into the internal nodes of AMR.

Prior SMT work (Jones et al., 2012) describes
alignment of semantic graphs and strings, though
their experiments are limited to the GeoQuery do-
main, and their methods are not described in de-
tail. Flanigan et al (2014) describe a heuristic
AMR/English aligner. While heuristic aligners
can achieve good accuracy, they will not automat-
ically improve as more AMR/English data comes
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online.
The contributions of this paper are:

• A set of gold, manually-aligned
AMR/English pairs.

• An algorithm for automatically aligning
AMR/English pairs.

• An empirical study establishing alignment
accuracy of 86.5% and 83.1% F score for de-
velopment and test sets respectively.

2 Method

We divide the description of our method into three
parts: preprocessing, training, and postprocessing.
In the preprocessing phase, we linearize the AMR
graphs to change them into strings, clean both the
AMR and English sides by removing stop words
and simple stemming, and add a set of correspond-
ing AMR/English token pairs to the corpus to help
the training phase. The training phase is based
on IBM models, but we modify the learning algo-
rithm to learn the parameters symmetrically. Fi-
nally, in the postprocessing stage we rebuild the
aligned AMR graph. These components are de-
scribed in more detail below.

2.1 Preprocessing
The first step of the preprocessing component is to
linearize the AMR structure into a string. In this
step we record the original structure of nodes in
the graph for later reconstruction of AMR. AMR
has a rooted graph structure. To linearize this
graph we run a depth first search from the root and
print each node as soon as it it visited. We print
but not expand the nodes that are seen previously.
For example the AMR:

(w / want-01
:arg0 (b / boy)
:arg1 (g / go-01

:arg0 b))

is linearized into this order: w / want-01 :arg0 b /
boy :arg1 g / go-01 :arg0 b.

Note that semantically related nodes often stay
close together after linearization.

After linearizing the AMR graph into a string,
we perform a series of preprocessing steps includ-
ing lowercasing the letters, removing stop words,
and stemming.

The AMR and English stop word lists are gen-
erated based on our knowledge of AMR design.

We know that tokens like an, the or to be verbs
will very rarely align to any AMR token; similarly,
AMR role tokens like :arg0, :quant, :opt1 etc. as
well as the instance-of token /, and tokens like
temporal-quantity or date-entity rarely align to any
English token. We remove these tokens from the
parallel corpus, but remember their position to be
able to convert the resulting string/string align-
ment back into a full AMR graph/English string
alignment. Although some stopwords participate
in gold alignments, by removing them we will buy
a large precision gain for some recall cost.

We remove the word sense indicator and quo-
tation marks for AMR concepts. For instance we
will change want-01 to want and “ohio” to ohio.
Then we stem AMR and English tokens into their
first four letters, except for role tokens in AMR.
The purpose of stemming is to normalize English
morphological variants so that they are easier to
match to AMR tokens. For example English to-
kens wants, wanting, wanted, and want as well as
the AMR token want-01 will all convert to want
after removing the AMR word sense indicator and
stemming.

In the last step of preprocessing, we benefit
from the fact that AMR concepts and their cor-
responding English ones are frequently cognates.
Hence, after stemming, an AMR token often can
be translated to a token spelled similarly in En-
glish. This is the case for English token want and
AMR token want in the previous paragraph. To
help the training model learn from this fact, we
extend our sentence pair corpus with the set of
AMR/English token pairs that are spelled identi-
cally after preprocessing. Also, for English tokens
that can be translated into multiple AMR tokens,
like higher and high :degree more we add the cor-
responding string/string pairs to the corpus. This
set is extracted from existing lexical resources, in-
cluding lists of comparative/superlative adjectives,
negative words, etc.

After preprocessing, the AMR at the start of
this section will change into: want boy go and
the sentence The boy wants to go changes into boy
want to go, and we will also add the identity pairs
want/want, boy/boy, and go/go to the corpus.

2.2 Training

Our training method is based on IBM word align-
ment models (Brown et al., 1993). We modify
the objective functions of the IBM models to en-
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courage agreement between learning parameters
in English-to-AMR and AMR-to-English direc-
tions of EM. The solution of this objective func-
tion can be approximated in an extremely simple
way that requires almost no extra coding effort.

Assume that we have a set of sentence pairs
{(E,A)}, where each E is an English sentence
and each A is a linearized AMR. According to
IBM models, A is generated from E through a
generative story based on some parameters.

For example, in IBM Model 2, given E we
first decide the length of A based on some prob-
ability l = p(len(A)|len(E)), then we decide
the distortions based on a distortion table: d =
p(i|j, len(A), len(E)). Finally, we translate En-
glish tokens into AMR ones based on a translation
table t = p(a|e) where a and e are AMR and En-
glish tokens respectively.

IBM models estimate these parameters to max-
imize the conditional likelihood of the data:
θA|E = argmaxLθA|E (A|E) or θE|A =
argmaxLθE|A(E|A) where θ denotes the set of
parameters. The conditional likelihood is intrinsic
to the generative story of IBM models. However,
word alignment is a symmetric problem. Hence it
is more reasonable to estimate the parameters in a
more symmetric manner.

Our objective function in the training phase is:

θA|E , θE|A = argmaxLθA|E (A|E)+LθE|A(E|A)

subject to θA|EθE = θE|AθA = θA,E

We approximate the solution of this objective
function with almost no change to the existing
implementation of the IBM models. We relax
the constraint to θA|E = θE|A, then apply the
following iterative process:

1. Optimize the first part of the objective func-
tion: θA|E = argmaxLθA|E (A|E) using EM

2. Satisfy the constraint: set θE|A ∝ θA|E
3. Optimize the second part of the objective

function: θE|A = argmaxLθE|A(E|A)
using EM

4. Satisfy the constraint: set θA|E ∝ θE|A
5. Iterate
Note that steps 1 and 3 are nothing more than

running the IBM models, and steps 2 and 4 are
just initialization of the EM parameters, using ta-
bles from the previous iteration. The initialization

steps only make sense for the parameters that in-
volve both sides of the alignment (i.e., the transla-
tion table and the distortion table). For the trans-
lation table we set tE|A(e|a) = tA|E(a|e) for En-
glish and AMR tokens e and a and then normalize
the t table. The distortion table can also be initial-
ized in a similar manner. We initialize the fertility
table with its value in the previous iteration.

Previously Liang et al. (2006) also presented a
symmetric method for training alignment parame-
ters. Similar to our work, their objective function
involves summation of conditional likelihoods in
both directions; however, their constraint is on
agreement between predicted alignments while we
directly focus on agreement between the parame-
ters themselves. Moreover their method involves a
modification of the E step of EM algorithm which
is very hard to implement for IBM Model 3 and
above.

After learning the parameters, alignments are
computed using the Viterbi algorithm in both di-
rections of the IBM models. We tried merging
the alignments of the two directions using meth-
ods like grow-diag-final heuristic or taking inter-
section of the alignments and adding some high
probability links in their union. But these methods
did not help the alignment accuracy.

2.3 Postprocessing

The main goal of the postprocessing component is
to rebuild the aligned AMR graph. We first insert
words removed as stop words into their positions,
then rebuild the graph using the recorded original
structure of the nodes in the AMR graph.

We also apply a last modification to the align-
ments in the postprocessing. Observing that pairs
like worker and person :arg0-of work-01 appear
frequently, and in all such cases, all the AMR to-
kens align to the English one, whenever we see
any of AMR tokens person, product, thing or com-
pany is followed by arg0-of, arg1-of or arg2-of
followed by an AMR concept, we align the two
former tokens to what the concept is aligned to.

3 Experiments

3.1 Data Description

Our data consists of 13,050 publicly available
AMR/English sentence pairs1. We have hand

1LDC AMR release 1.0, Release date: June 16, 2014
https://catalog.ldc.upenn.edu/LDC2014T12
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aligned 200 of these pairs to be used as develop-
ment and test sets2. We train the parameters on
the whole data. Table 1 presents a description of
the data. We do not count parenthesis, slash and
AMR variables as AMR tokens. Role tokens are
those AMR tokens that start with a colon. They
do not represent any concept, but provide a link
between concepts. For example in:
(w / want-01

:arg0 (b / boy)
:arg1 (g / go-01

:arg0 b))

the first :arg0 states that the first argument of the
concept wanting is the boy and the second argu-
ment is going.

train dev test
Sent. pairs 13050 100 100

AMR tokens 465 K 3.8 K (52%) 2.3 K (%55)
AMR role tokens 226 K 1.9 K (23%) 1.1 K (%22)
ENG tokens 248 K 2.3 K (76%) 1.7 K (%74)

Table 1: AMR/English corpus. The number in
parentheses is the percent of the tokens aligned in
gold annotation. Almost half of AMR tokens are
role tokens, and less than a quarter of role tokens
are aligned.

3.2 Experiment Results
We use MGIZA++ (Gao and Vogel, 2008) as
the implementation of the IBM models. We run
Model 1 and HMM for 5 iterations each, then run
our training algorithm on Model 4 for 4 iterations,
at which point the alignments become stable. As
alignments are usually many to one from AMR to
English, we compute the alignments from AMR to
English in the final step.

Table 2 shows the alignment accuracy for
Model 1, HMM, Model 4, and Model 4 plus the
modification described in section 2.2 (Model 4+).

The alignment accuracy on the test set is lower
than the development set mainly because it is in-
trinsically a harder set, as we only made small
modifications to the system based on the develop-
ment set. Recall error due to stop words is one
difference.

2The development and test AMR/English pairs can be
found in /data/split/dev/amr-release-1.0-dev-consensus.txt
and /data/split/test/amr-release-1.0-test-consensus.txt, re-
spectively. The gold alignments are not included in these
files but are available separately.

model precision recall F score

Dev
Model 1 70.9 71.1 71.0
HMM 87.6 80.1 83.7
Model 4 89.7 80.4 84.8
Model 4+ 94.1 80.0 86.5

Test
Model 1 74.8 71.8 73.2
HMM 83.8 73.8 78.5
Model 4 85.8 74.9 80.0
Model 4+ 92.4 75.6 83.1

Table 2: Results on different models. Our training
method (Model 4+) increases the F score by 1.7
and 3.1 points on dev and test sets respectively.

Table 3 breaks down precision, recall, and
F score for role and non-role AMR tokens, and
also shows in parentheses the amount of recall er-
ror that was caused by removing either side of the
alignment as a stop word.

token type precision recall F score

Dev
role 77.1 48.7 59.7
non-role 97.2 88.2 92.5
all 94.1 80.0 (34%) 86.5

Test
role 71.0 37.8 49.3
non-role 95.5 84.7 89.8
all 92.4 75.6 (36%) 83.1

Table 3: Results breakdown into role and non-
role AMR tokens. The numbers in the parentheses
show the percent of recall errors caused by remov-
ing aligned tokens as stop words.

While the alignment method works very well on
non-role tokens, it works poorly on the role tokens.
Role tokens are sometimes matched with a word
or part of a word in the English sentence. For ex-
ample :polarity is matched with the un part of the
word unpopular, :manner is matched with most
adverbs, or even in the pair:

thanks
(t / thank-01

:arg0 (i / i)
:arg1 (y / you))

all AMR tokens including :arg0 and :arg1 are
matched to the only English word thanks. Incon-
sistency in aligning role tokens has made this a
hard problem even for human experts.
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4 Conclusions and Future Work

In this paper we present the first set of manually
aligned English/AMR pairs, as well as the first
published system for learning the alignments be-
tween English sentences and AMR graphs that
provides a strong baseline for future research in
this area. As the proposed system learns the
alignments automatically using very little domain
knowledge, it can be applied in any domain and
for any language with minor adaptations.

Computing the alignments between English
sentences and AMR graphs is a first step for ex-
traction of semantic interpretation and generation
rules. Hence, a natural extension to this work
will be automatically parsing English sentences
into AMR and generating English sentences from
AMR.
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Abstract

We introduce a Semantic Role Labeling
(SRL) parser that finds semantic roles for a
predicate together with the syntactic paths
linking predicates and arguments. Our
main contribution is to formulate SRL in
terms of shortest-path inference, on the as-
sumption that the SRL model is restricted
to arc-factored features of the syntactic
paths behind semantic roles. Overall, our
method for SRL is a novel way to ex-
ploit larger variability in the syntactic re-
alizations of predicate-argument relations,
moving away from pipeline architectures.
Experiments show that our approach im-
proves the robustness of the predictions,
producing arc-factored models that per-
form closely to methods using unrestricted
features from the syntax.

1 Introduction

Semantic role labeling (SRL) consists of finding
the arguments of a predicate and labeling them
with semantic roles (Gildea and Jurafsky, 2002;
Màrquez et al., 2008). The arguments fill roles that
answer questions of the type “who” did “what” to
“whom”, “how”, and “why” for a given sentence
predicate. Most approaches to SRL are based on
a pipeline strategy, first parsing the sentence to
obtain a syntactic tree and then identifying and
classifying arguments (Gildea and Jurafsky, 2002;
Carreras and Màrquez, 2005).

SRL methods critically depend on features of
the syntactic structure, and consequently parsing
mistakes can harm the quality of semantic role
predictions (Gildea and Palmer, 2002). To allevi-
ate this dependence, previous work has explored
k-best parsers (Johansson and Nugues, 2008),
combination systems (Surdeanu et al., 2007) or
joint syntactic-semantic models (Johansson, 2009;
Henderson et al., 2008; Lluı́s et al., 2013).

In this paper we take a different approach. In
our scenario SRL is the end goal, and we as-
sume that syntactic parsing is only an intermedi-
ate step to extract features to support SRL predic-
tions. In this setting we define a model that, given
a predicate, identifies each of the semantic roles
together with the syntactic path that links the pred-
icate with the argument. Thus, following previous
work (Moschitti, 2004; Johansson, 2009), we take
the syntactic path as the main source of syntac-
tic features, but instead of just conditioning on it,
we predict it together with the semantic role. The
main contribution of this paper is a formulation of
SRL parsing in terms of efficient shortest-path in-
ference, under the assumption that the SRL model
is restricted to arc-factored features of the syntac-
tic path linking the argument with the predicate.

Our assumption —that features of an SRL
model should factor over dependency arcs— is
supported by some empirical frequencies. Table 1
shows the most frequent path patterns on CoNLL-
2009 (Hajič et al., 2009) data for several lan-
guages, where a path pattern is a sequence of as-
cending arcs from the predicate to some ancestor,
followed by descending arcs to the argument. For
English the distribution of path patterns is rather
simple: the majority of paths consists of a num-
ber of ascending arcs followed by zero or one de-
scending arc. Thus a common strategy in SRL sys-
tems, formulated by Xue and Palmer (2004), is to
look for arguments in the ancestors of the pred-
icate and their direct descendants. However, in
Czech and Japanese data we observe a large por-
tion of paths with two or more descending arcs,
which makes it difficult to characterize the syn-
tactic scope in which arguments are found. Also,
in the datasets for German, Czech and Chinese the
three most frequent patterns cover over the 90% of
all arguments. In contrast, Japanese exhibits much
more variability and a long tail of infrequent types
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English German Czech Chinese Japanese∑
% % path

∑
% % path

∑
% % path

∑
% % path

∑
% % path

63.63 63.6298 ↓ 77.22 77.2202 ↓ 63.90 63.8956 ↓ 78.09 78.0949 ↓ 37.20 37.1977 ↓↓
73.97 10.3429 ↑↓ 93.51 16.2854 ↑↓ 86.26 22.3613 ↓↓ 85.36 7.26962 ↑↓ 51.52 14.3230 ↓
80.63 6.65915 ◦ 97.43 3.92111 ↑↑↓ 90.24 3.98078 ↑↓ 91.27 5.90333 ↑↑↓ 60.79 9.27270 ↓↓↓
85.97 5.33352 ↑ 98.19 0.76147 ↓↓ 93.95 3.71713 ↓↓↓ 95.93 4.66039 ↑↑ 70.03 9.23857 ↑
90.78 4.81104 ↑↑↓ 98.70 0.51640 ↑↑↑↓ 95.48 1.52168 ↑↓↓ 97.53 1.60392 ↑ 74.17 4.13359 ↓↓↓↓
93.10 2.31928 ↑↑↑↓ 99.17 0.46096 ↑ 96.92 1.44091 ↑ 98.28 0.75086 ↑↑↑↓ 76.76 2.59117 ↑↑
95.19 2.09043 ↑↑ 99.43 0.26841 ↑↓↓ 97.68 0.76714 ↑↑↓ 98.77 0.48734 ↓↓ 78.82 2.06111 ↑↑↓↓
96.26 1.07468 ↑↑↑↑↓ 99.56 0.12837 ↑↑↓↓ 98.28 0.59684 ↓↓↓↓ 99.13 0.36270 ↑↑↑ 80.85 2.03381 ↓↓↓↓↓
97.19 0.92482 ↓↓ 99.67 0.10503 ↑↑↑↑↓ 98.60 0.31759 ↑↓↓↓ 99.45 0.31699 ↑↑↑↑↓ 82.66 1.80631 ↑↓↓
97.93 0.74041 ↑↑↑ 99.77 0.10503 ↑↑ 98.88 0.28227 ↑↑↓↓ 99.72 0.27041 ↑↑↑↑ 83.71 1.05558 ↑↑↑
98.41 0.48565 ↑↑↑↑↑↓ 99.82 0.04960 ↓↓↓ 99.15 0.26721 ↑↑↑↓ 99.82 0.10049 ↓↓↓ 84.74 1.02828 ↑↑↑↓↓
98.71 0.29769 ↑↑↑↑ 99.87 0.04960 ↑↑↑ 99.27 0.12430 ↓↓↓↓↓ 99.86 0.03623 ↑↓↓ 85.68 0.93500 ↑↑↓↓↓
98.94 0.22733 ↑↑↑↑↑↑↓ 99.90 0.02626 ◦ 99.37 0.10103 ↑↑↑↑↓ 99.89 0.02890 ↑↑↓↓ 86.61 0.93273 ↓↓↓↓↓↓
99.11 0.17805 ↑↓↓ 99.92 0.02042 ↑↑↑↓↓ 99.47 0.09747 ↑↑ 99.92 0.02890 ↑↑↑↑↑↓ 87.29 0.68249 ↑↑↑↑↓↓
99.27 0.15316 ↓↓↓ 99.94 0.02042 ↑↑↑↑↑↓ 99.56 0.08515 ↑↑↓↓↓ 99.94 0.02846 ◦ 87.90 0.60969 ↑↓↓↓
99.39 0.12065 ↑↑↑↑↑ 99.95 0.01459 ↑↑↓↓↓ 99.63 0.07419 ↑↑↑↓↓ 99.96 0.02070 ↑↑↑↑↑ 88.47 0.56646 ↑↑↓↓↓↓
99.50 0.11024 ↑↑↓↓ 99.96 0.01167 ↓↓↓↓ 99.69 0.05667 ↑↓↓↓↓ 99.97 0.00992 ↑↑↓↓↓ 89.01 0.53689 ↓↓↓↓↓↓↓
99.60 0.09931 ↑↑↑↑↑↑↑↓ 99.97 0.00875 ↑↓↓↓ 99.73 0.04216 ↑↑↑↑↑↓ 99.98 0.00733 ↑↑↑↑↑↑↓ 89.49 0.48684 ↑↑↑↓↓↓
99.65 0.05283 ↑↓↓↓ 99.98 0.00875 ↑↑↑↑↑↑↓ 99.76 0.02875 ↑↑↑↓↓↓ 99.99 0.00431 ↑↑↑↑↓↓ 89.94 0.45044 ↑↑↑↑

Table 1: Summary of the most frequent paths on the CoNLL-2009 Shared Task datasets. ↑ indicates that we traverse a syntactic
dependency upwards from a modifier to a head. ↓ is for dependencies following a descending head to modifier edge. The
symbol ◦ represents that the argument is the predicate itself. We exclude from this table Catalan and Spanish as predicates and
arguments are always trivially related by a single syntactic dependency that descends.

of patterns. In general it is not feasible to capture
path patterns manually, and it is not desirable that
a statistical system depends on rather sparse non-
factored path features. For this reason in this paper
we explore arc-factored models for SRL.

Our method might be specially useful in appli-
cations were we are interested in some target se-
mantic role, i.e. retrieving agent relations for some
verb, since it processes semantic roles indepen-
dently of each other. Our method might also be
generalizable to other kinds of semantic relations
which strongly depend on syntactic patterns such
as relation extraction in information extraction or
discourse parsing.

2 Arc-factored SRL

We define an SRL parsing model that re-
trieves predicate-argument relations based on arc-
factored syntactic representations of paths con-
necting predicates with their arguments. Through-
out the paper we assume a fixed sentence x =
x1, . . . , xn and a fixed predicate index p. The
SRL output is an indicator vector z, where
zr,a = 1 indicates that token a is filling role
r for predicate p. Our SRL parser performs
argmaxz∈Z(x,p) s(x, p, z), where Z(x, p) defines
the set of valid argument structures for p, and
s(x, p, z) computes a plausibility score for z given
x and p. Our first assumption is that the score
function factors over role-argument pairs:

s(x, p, z) =
∑
zr,a=1

s(x, p, r, a) . (1)

Then we assume two components in the model,
one that scores the role-argument pair alone, and
another that considers the best (max) syntactic de-
pendency path π that connects the predicate pwith
the argument a:

s(x, p, r, a) = s0(x, p, r, a) +
max
π

ssyn(x, p, r, a,π) . (2)

The model does not assume access to the syntac-
tic structure of x, hence in Eq. (2) we locally re-
trieve the maximum-scoring path for an argument-
role pair. A path π is a sequence of dependencies
〈h,m, l〉 where h is the head, m the modifier and l
the syntactic label. We further assume that the syn-
tactic component factors over the dependencies in
the path:

ssyn(x, p, r, a,π)=
∑

〈h,m,l〉∈π
ssyn(x, p, r, a, 〈h,m, l〉) .

(3)
This will allow to employ efficient shortest-path
inference, which is the main contribution of this
paper and is described in the next section. Note
that since paths are locally retrieved per role-
argument pair, there is no guarantee that the set
of paths across roles forms a (sub)tree.

As a final note, in this paper we follow Lluı́s
et al. (2013) and consider a constrained space of
valid argument structures Z(x, p): (a) each role is
realized at most once, and (b) each token fills at
most one role. As shown by Lluı́s et al. (2013),
this can be efficiently solved as a linear assign-
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Figure 1: Graph representing all possible syntactic paths
from a single predicate to their arguments. We find in this
graph the best SRL using a shortest-path algorithm. Note that
many edges are omitted for clarity reasons. We labeled the
nodes and arcs as follows: p is the predicate and source ver-
tex; u1, . . . , un are tokens reachable by an ascending path;
v1, . . . , vn are tokens reachable by a ascending path (possi-
bly empty) followed by a descending path (possibly empty);
ai←j is an edge related to an ascending dependency from
node ui to node uj ; di→j is a descending dependency from
node vi to node vj ; 0i→i is a 0-weighted arc that connects the
ascending portion of the path ending at ui with the descend-
ing portion of the path starting at vi.

ment problem as long as the SRL model factors
over role-argument pairs, as in Eq. (1).

3 SRL as a Shortest-path Problem

We now focus on solving the maximization over
syntactic paths in Eq. (2). We will turn it into a
minimization problem which can be solved with a
polynomial-cost algorithm, in our case a shortest-
path method. Assume a fixed argument and role,
and define θ〈h,m,l〉 to be a non-negative penalty for
the syntactic dependency 〈h,m, l〉 to appear in the
predicate-argument path. We describe a shortest-
path method that finds the path of arcs with the
smaller penalty:

min
π

∑
〈h,m,l〉∈π

θ〈h,m,l〉 . (4)

We find these paths by appropriately constructing
a weighted graph G = (V,E) that represents the
problem. Later we show how to adapt the arc-
factored model scores to be non-negative penal-
ties, such that the solution to Eq. (4) will be the
negative of the maximizer of Eq. (2).

It remains only to define the graph construc-
tion where paths correspond to arc-factored edges
weighted by θ penalties. We start by noting that
any path from a predicate p to an argument vi is
formed by a number of ascending syntactic arcs
followed by a number of descending arcs. The as-
cending segment connects p to some ancestor q (q

might be p itself, which implies an empty ascend-
ing segment); the descending segment connects q
with vi (which again might be empty). To com-
pactly represent all these possible paths we define
the graph as follows (see Figure 1):

1. Add node p as the source node of the graph.
2. Add nodes u1, . . . , un for every token of the

sentence except p.
3. Link every pair of these nodes ui, uj with a

directed edge ai←j weighted by the corre-
sponding ascending arc, namely minl θ〈j,i,l〉.
Also add ascending edges from p to any ui
weighted by minl θ〈i,p,l〉. So far we have
a connected component representing all as-
cending path segments.

4. Add nodes v1, . . . , vn for every token of the
sentence except p, and add edges di→j be-
tween them weighted by descending arcs,
namely minl θ〈i,j,l〉. This adds a second
strongly-connected component representing
descending path segments.

5. For each i, add an edge from ui to vi with
weight 0. This ensures that ascending and
descending path segments are connected con-
sistently.

6. Add direct descending edges from p to all the
vi nodes to allow for only-descending paths,
weighted by minl θ〈p,i,l〉.

Dijkstra’s algorithm (Dijkstra, 1959) will find
the optimal path from predicate p to all tokens in
time O(V 2) (see Cormen et al. (2009) for an in-
depth description). Thus, our method runs this
algorithm for each possible role of the predicate,
obtaining the best paths to all arguments at each
run.

4 Adapting and Training Model Scores

The shortest-path problem is undefined if a nega-
tive cycle is found in the graph as we may indefi-
nitely decrease the cost of a path by looping over
this cycle. Furthermore, Dijkstra’s algorithm re-
quires all arc scores to be non-negative penalties.
However, the model in Eq. (3) computes plausibil-
ity scores for dependencies, not penalties. And, if
we set this model to be a standard feature-based
linear predictor, it will predict unrestricted real-
valued scores.

One approach to map plausibility scores to
penalties is to assume a log-linear form for our
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model. Let us denote by x̄ the tuple 〈x, p, r, a〉,
which we assume fixed in this section. The log-
linear model predicts:

Pr(〈h,m, l〉 | x̄) =
exp{w · f(x̄, 〈h,m, l〉)}

Z(x̄)
,

(5)
where f(x̄, 〈h,m, l〉) is a feature vector for an
arc in the path, w are the parameters, and Z(x̄)
is the normalizer. We can turn predictions into
non-negative penalties by setting θ〈h,m,l〉 to be
the negative log-probability of 〈h,m, l〉; namely
θ〈h,m,l〉 = −w · f(x̄, 〈h,m, l〉) + logZ(x̄). Note
that logZ(x̄) shifts all values to the non-negative
side.

However, log-linear estimation of w is typically
expensive since it requires to repeatedly com-
pute feature expectations. Furthermore, our model
as defined in Eq. (2) combines arc-factored path
scores with path-independent scores, and it is de-
sirable to train these two components jointly. We
opt for a mistake-driven training strategy based
on the Structured Averaged Perceptron (Collins,
2002), which directly employs shortest-path infer-
ence as part of the training process.

To do so we predict plausibility scores for a de-
pendency directly as w · f(x̄, 〈h,m, l〉). To map
scores to penalties, we define

θ0 = max
〈h,m,l〉

w · f(x̄, 〈h,m, l〉)

and we set

θ〈h,m,l〉 = −w · f(x̄, 〈h,m, l〉) + θ0 .

Thus, θ0 has a similar purpose as the log-
normalizer Z(x̄) in a log-linear model, i.e., it
shifts the negated scores to the positive side; but
in our version the normalizer is based on the max
value, not the sum of exponentiated predictions as
in log-linear models. If we set our model function
to be

ssyn(x̄, 〈h,m, l〉) = w · f(x̄, 〈h,m, l〉)− θ0

then the shortest-path method is exact.

5 Experiments

We present experiments using the CoNLL-2009
Shared Task datasets (Hajič et al., 2009), for the
verbal predicates of English. Evaluation is based

on precision, recall and F1 over correct predicate-
argument relations1. Our system uses the fea-
ture set of the state-of-the-art system by Johansson
(2009), but ignoring the features that do not factor
over single arcs in the path.

The focus of these experiments is to see the per-
formance of the shortest-path method with respect
to the syntactic variability. Rather than running
the method with the full set of possible depen-
dency arcs in a sentence, i.e. O(n2), we only con-
sider a fraction of the most likely dependencies.
To do so employ a probabilistic dependency-based
model, following Koo et al. (2007), that computes
the distribution over head-label pairs for a given
modifier, Pr(h, l | x,m). Specifically, for each
modifier token we only consider the dependencies
or heads whose probability is above a factor γ of
the most likely dependency for the given modi-
fier. Thus, γ = 1 selects only the most likely de-
pendency (similar to a pipeline system, but with-
out enforcing tree constraints), and as γ decreases
more dependencies are considered, to the point
where γ = 0 would select all possible dependen-
cies. Table 2 shows the ratio of dependencies in-
cluded with respect to a pipeline system for the de-
velopment set. As an example, if we set γ = 0.5,
for a given modifier we consider the most likely
dependency and also the dependencies with proba-
bility larger than 1/2 of the probability of the most
likely one. In this case the total number of depen-
dencies is 10.3% larger than only considering the
most likely one.

Table 3 shows results of the method on develop-
ment data, when training and testing with different
γ values. The general trend is that testing with the
most restricted syntactic graph results in the best
performance. However, we observe that as we al-
low for more syntactic variability during training,
the results largely improve. Setting γ = 1 for both
training and testing gives a semantic F1 of 75.9.
This configuration is similar to a pipeline approach
but considering only factored features. If we allow
to train with γ = 0.1 and we test with γ = 1 the
results improve by 1.96 points to a semantic F1

of 77.8 points. When syntactic variability is too
large, e.g., γ = 0.01, no improvements are ob-
served.

Finally, table 4 shows results on the verbal En-
glish WSJ test set using our best configuration

1Unlike in the official CoNLL-2009 evaluation, in this
work we exclude the predicate sense from the features and
the evaluation.
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Threshold γ 1 0.9 0.5 0.1 0.01
Ratio 1 1.014 1.103 1.500 2.843

Table 2: Ratio of additional dependencies in the graphs with
respect to a single-tree pipeline model (γ = 1) on develop-
ment data.

Threshold prec (%) rec (%) F1

training γ = 1

1 77.91 73.97 75.89
0.9 77.23 74.17 75.67
0.5 73.30 75.03 74.16
0.1 58.22 68.75 63.05
0.01 32.83 53.69 40.74
training γ = 0.5

1 81.17 73.57 77.18
0.9 80.74 73.78 77.10
0.5 78.40 74.79 76.55
0.1 65.76 71.61 68.56
0.01 42.95 57.68 49.24
training γ = 0.1

1 84.03 72.52 77.85
0.9 83.76 72.66 77.82
0.5 82.75 73.33 77.75
0.1 77.25 72.20 74.64
0.01 63.90 65.98 64.92
training γ = 0.01

1 81.62 69.06 74.82
0.9 81.45 69.19 74.82
0.5 80.80 69.80 74.90
0.1 77.92 68.94 73.16
0.01 74.12 65.92 69.78

Table 3: Results of our shortest-path system for different
number of allowed dependencies showing precision, recall
and F1 on development set for the verbal predicates of the
English language.

from the development set. We compare to the
state-of-the art system by Zhao et al. (2009) that
was the top-performing system for the English lan-
guage in SRL at the CoNLL-2009 Shared Task.
We also show the results for a shortest-path system
trained and tested with γ = 1. In addition we in-
clude an equivalent pipeline system using all fea-
tures, both factored and non-factored, as defined
in Johansson (2009). We observe that by not be-
ing able to capture non-factored features the final
performance drops by 1.6 F1 points.

6 Conclusions

We have formulated SRL in terms of shortest-
path inference. Our model predicts semantic roles
together with associated syntactic paths, and as-
sumes an arc-factored representation of the path.
This property allows for efficient shortest-path al-

System prec(%) rec(%) F1

Zhao et al. 2009 86.91 81.22 83.97
Non-factored 86.96 75.92 81.06
Factored γ = 1 79.88 76.12 77.96
Factored best 85.26 74.41 79.46

Table 4: Test set results for verbal predicates of the in-domain
English dataset. The configurations are labeled as follows.
Factored γ = 1: our shortest-path system trained and tested
with γ = 1, similar to a pipeline system but without en-
forcing tree constraints and restricted to arc-factored features.
Factored best: our shortest-path system with the best results
from table 3. Non-factored: an equivalent pipeline system
that includes both factored and non-factored features.

gorithms that, given a predicate and a role, retrieve
the most likely argument and its path.

In the experimental section we prove the fea-
sibility of the approach. We observe that arc-
factored models are in fact more restricted, with a
drop in accuracy with respect to unrestricted mod-
els. However, we also observe that our method
largely improves the robustness of the arc-factored
method when training with a degree of syntac-
tic variability. Overall, ours is a simple strategy
to bring arc-factored models close to the perfor-
mance of unrestricted models. Future work should
explore further approaches to parse partial syntac-
tic structure specific to some target semantic rela-
tions.
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Abstract
We present an empirical study on the use
of semantic information for Concept Seg-
mentation and Labeling (CSL), which is
an important step for semantic parsing.
We represent the alternative analyses out-
put by a state-of-the-art CSL parser with
tree structures, which we rerank with a
classifier trained on two types of seman-
tic tree kernels: one processing structures
built with words, concepts and Brown
clusters, and another one using semantic
similarity among the words composing the
structure. The results on a corpus from the
restaurant domain show that our semantic
kernels exploiting similarity measures out-
perform state-of-the-art rerankers.

1 Introduction
Spoken Language Understanding aims to inter-
pret user utterances and to convert them to logical
forms or, equivalently, to database queries, which
can then be used to satisfy the user’s information
needs. This process is known as Concept Segmen-
tation and Labeling (CSL), also called semantic
parsing in the speech community: it maps utter-
ances into meaning representations based on se-
mantic constituents. The latter are basically word
sequences, often referred to as concepts, attributes
or semantic tags. CSL makes it easy to convert
spoken questions such as “cheap lebanese restau-
rants in doha with take out” into database queries.

First, a language-specific semantic parser tok-
enizes, segments and labels the question:
[Price cheap] [Cuisine lebanese] [Other restaurants in]

[City doha] [Other with] [Amenity take out]
Then, label-specific normalizers are applied to

the segments, with the option to possibly relabel
mislabeled segments:
[Price low] [Cuisine lebanese] [City doha] [Amenity

carry out]

Finally, a database query is formed from the list
of labels and values, and is then executed against
the database, e.g., MongoDB; a backoff mecha-
nism may be used if the query has not succeeded.

{$and [{cuisine:"lebanese"},{city:"doha"},
{price:"low"},{amenity:"carry out"}]}

The state-of-the-art of CSL is represented by
conditional models for sequence labeling such as
Conditional Random Fields (CRFs) (Lafferty et
al., 2001) trained with simple morphological and
lexical features. The basic CRF model was im-
proved by means of reranking (Moschitti et al.,
2006; Dinarelli et al., 2012) using structural ker-
nels (Moschitti, 2006). Although these meth-
ods exploited sentence structure, they did not use
syntax at all. More recently, we applied shal-
low syntactic structures and discourse parsing with
slightly better results (Saleh et al., 2014). How-
ever, the most obvious models for semantic pars-
ing, i.e., rerankers based on semantic structural
kernels (Bloehdorn and Moschitti, 2007b), had not
been applied to semantic structures yet.

In this paper, we study the impact of semantic
information conveyed by Brown Clusters (BCs)
(Brown et al., 1992) and semantic similarity, while
also combining them with innovative features. We
use reranking, similarly to (Saleh et al., 2014),
to select the best hypothesis annotated with con-
cepts predicted by a local model. The competing
hypotheses are represented as innovative trees en-
riched with the semantic concepts and BC labels.
The trees can capture dependencies between sen-
tence constituents, concepts and BCs. However,
extracting explicit features from them is rather
difficult as their number is exponentially large.
Thus, we rely on (i) Support Vector Machines
(Joachims, 1999) to train the reranking functions
and on (ii) structural kernels (Moschitti, 2010;
Moschitti, 2012; Moschitti, 2013) to automatically
encode tree fragments that represent syntactic and
semantic dependencies from words and concepts.
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(a) Semantic Kernel Structure (SKS)

(b) SKS with Brown Clusters

Figure 1: CSL structures: standard and with Brown Clusters.

We further apply a semantic kernel (SK),
namely the Smoothed Partial Tree Kernel (Croce
et al., 2011), which uses the lexical similarity be-
tween the tree nodes, while computing the sub-
structure space. This is the first time that SKs are
applied to reranking hypotheses. This (i) makes
the global sentence structure along with concepts
available to the learning algorithm, and (ii) enables
computing the similarity between lexicals in syn-
tactic patterns that are enriched by concepts.

We tested our models on the Restaurant do-
main. Our results show that: (i) The basic CRF
parser, which uses semi-Markov CRF, or semi-
CRF (Sarawagi and Cohen, 2004), is already very
accurate; it achieves F1 scores over 83%, mak-
ing any further improvement very hard. (ii) The
upper-bound performance of the reranker is very
high as well, i.e., the correct annotation is gen-
erated in the list of the first 100 hypotheses in
98.72% of the cases. (iii) SKs significantly im-
prove over the semi-CRF baseline and our pre-
vious state-of-the-art reranker exploiting shallow
syntactic patterns (Saleh et al., 2014), as shown
by extensive comparisons using several systems.
(iv) Making BCs effective requires a deeper study.

2 Related Work
One of the early approaches to CSL was that
of Pieraccini et al. (1991), where the word se-
quences and concepts were modeled using Hid-
den Markov Models (HMMs) as observations and
hidden states, respectively. Generative models
were exploited by Seneff (1989) and Miller et
al. (1994), who used stochastic grammars for
CSL. Other discriminative models followed such
preliminary work, e.g., (Rubinstein and Hastie,
1997; Santafé et al., 2007; Raymond and Riccardi,
2007). CRF-based models are considered to be the
state of the art in CSL (De Mori et al., 2008).

Another relevant line of research are the seman-
tic kernels, i.e., kernels that use lexical similarity
between features. One of the first that applyed
LSA was (Cristianini et al., 2002), whereas (Bloe-
hdorn et al., 2006; Basili et al., 2006) used Word-
Net. Semantic structural kernels of the type we
use in this paper were first introduced in (Bloe-
hdorn and Moschitti, 2007a; Bloehdorn and Mos-
chitti, 2007b). The most advanced model based on
tree kernels, which we also use in this paper, is the
Smoothed PTK (Croce et al., 2011).

3 Reranking for CSL
Reranking is applied to a list of N annotation hy-
potheses, which are generated and sorted by the
probability to be globally correct as estimated us-
ing local classifiers or global classifiers that only
use local features. Then, a reranker, typically a
meta-classifier, tries to select the best hypothe-
sis from the list. The reranker can exploit global
information, and specifically, the dependencies
between the different concepts, which are made
available by the local model. We use semi-CRFs
for the local model as they yield the highest ac-
curacy in CSL (when using a single model) and
preference reranking for the global reranker.

3.1 Preference Reranking (PR)
PR uses a classifier C, which takes a pair of hy-
potheses 〈Hi, Hj〉 and decides whether Hi is bet-
ter than Hj . Given a training question Q, posi-
tive and negative examples are built for training
the classifier. Let H1 be the hypothesis with the
lowest error rate with respect to the gold standard
among all hypotheses generated for question Q.
We adopt the following approach for example gen-
eration: the pairs 〈H1, Hi〉 (i = 2, 3, . . . , N ) are
positive examples, while 〈Hi, H1〉 are considered
negative.
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At testing time, given a new question Q′, C clas-
sifies all pairs 〈Hi, Hj〉 generated from the anno-
tation hypotheses of Q′: a positive classification is
a vote for Hi, otherwise the vote is for Hj , where
the classifier score can be used as a weighted vote.
Hk are then ranked according to the number (sum)
of the votes (weighted by score) they receive.

We build our reranker with SVMs using the
following kernel: K(〈H1, H2〉, 〈H ′1, H ′2〉) =
φ(〈H1, H2〉) · φ(〈H ′1, H ′2〉) ,

(
φ(H1) −

φ(H2)
) · (φ(H ′1) − φ(H ′2)

)
= φ(H1)φ(H ′1) +

φ(H2)φ(H ′2) − φ(H1)φ(H ′2) − φ(H2)φ(H ′1) =
S(H1, H

′
1) + S(H2, H

′
2) − S(H1, H

′
2) −

S(H2, H
′
1). We consider H as a tuple 〈T,~v〉 com-

posed of a tree T and a feature vector ~v. Then, we
define S(H,H ′) = STK(T, T ′)+Sv(~v,~v′), where
STK computes one of the tree kernel functions
defined in 3.2 and 3.3; and Sv is a kernel (see 3.4),
e.g., linear, polynomial, Gaussian, etc.

3.2 Tree kernels (TKs)
TKs measure the similarity between two structures
in terms of the number of substructures they share.
We use two types of tree kernels: (i) Partial Tree
Kernel (PTK), which can be effectively applied
to both constituency and dependency parse trees
(Moschitti, 2006). It generates all possible con-
nected tree fragments, e.g., sibling nodes can be
also separated and can be part of different tree
fragments: a fragment is any possible tree path,
and other tree paths are allowed to depart from its
nodes. Thus, it can generate a very rich feature
space. (ii) The smoothed PTK or semantic kernel
(SK) (Croce et al., 2011), which extends PTK by
allowing soft matching (i.e., via similarity compu-
tation) between nodes associated with different but
related lexical items. The node similarity can be
derived from manually annotated resources, e.g.,
WordNet or Wikipedia, as well as using corpus-
based clustering approaches, e.g., latent semantic
analysis (LSA), as we do in this paper.

3.3 Semantic structures
Tree kernels allow us to compute structural simi-
larities between two trees; thus, we engineered a
special structure for the CSL task. In order to cap-
ture the structural dependencies between the se-
mantic tags,1 we use a basic tree (see for exam-
ple Figure 1a), where the words of a sentence are
tagged with their semantic tags.

1They are associated with the following IDs: 0-Other,
1-Rating, 2-Restaurant, 3-Amenity, 4-Cuisine, 5-Dish, 6-
Hours, 7-Location, and 8-Price.

More specifically, the words in the sentence
constitute the leaves of the tree, which are in
turn connected to the pre-terminals containing
the semantic tags in BIO notation (‘B’=begin,
‘I’=inside, ‘O’=outside). The BIO tags are then
generalized in the upper level, and joined to the
Root node. Additionally, part-of-speech (POS)
tags2 are added to each word by concatenating
it with the string “::L”, where L is the first let-
ter of the POS-tags of the words, e.g., along, my
and route, receive i, p and n, which are the first
letters of the POS-tags IN, PRN and NN, respec-
tively. SK applied to the above structure can gen-
erate powerful semantic patterns such as [Root
[4-Cuisine [similar to(stake house)]][7-Loc [simi-
lar to(within a mile)]]], e.g., for correctly labeling
new clauses like Pizza Parlor in three kilometers.
The BC labels, represented as cluster IDs, are sim-
ply added as siblings of words as shown in Fig. 1b.

3.4 Feature Vectors
For the sake of comparison, we also devoted
some effort towards engineering a set of features
to be used in a flat feature-vector representation.
These features can be used in isolation to learn
the reranking function, or in combination with the
kernel-based approach (as a composite kernel us-
ing a linear combination). They belong to the fol-
lowing four categories: (i) CRF-based: these in-
clude the basic features used to train the initial
semi-CRF model; (ii) n-gram based: we collected
3- and 4-grams of the output label sequence at
the level of concepts, with artificial tags inserted
to identify the start (‘S’) and end (‘E’) of the se-
quence.3 (iii) Probability-based, computing the
probability of the label sequence as an average of
the probabilities at the word level in the N -best
list; and (iv) DB-based: a single feature encoding
the number of results returned from the database
when constructing a query using the conjunction
of all semantic segments in the hypothesis.

4 Experiments
The experiments aim at investigating the role of
feature vectors, PTK, SK and BCs in reranking.
We first describe the experimental setting and then
we move into the analysis of the results.

2We use the Stanford tagger (Toutanova et al., 2003).
3For instance, if the output sequence is Other-Rating-

Other-Amenity the 3-gram patterns would be: S-Other-
Rating, Other-Rating-Other, Rating-Other-Amenity, and
Other-Amenity-E.
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Train Devel. Test Total
semi-CRF 6,922 739 1,521 9,182
Reranker 7,000 3,695 7,605 39,782

Table 1: Number of instances and pairs used to
train the semi-CRF and rerankers, respectively.

4.1 Experimental setup

Dataset. In our experiments, we used questions
annotated with semantic tags, which were col-
lected through crowdsourcing on Amazon Me-
chanical Turk and made available4 by McGraw et
al. (2012). We split the dataset into training, de-
velopment and test sets. Table 1 shows the num-
ber of examples and example pairs we used for
the semi-CRF and the reranker, respectively. We
subsequently split the training data randomly into
10 folds. We used cross-validation, i.e., iteratively
training with 9 folds and annotating the remaining
fold, in order to generate the N -best lists of hy-
potheses for the entire training dataset. We com-
puted the 100-best hypotheses for each example.
We then used the development dataset to test and
tune the hyper-parameters of our reranking model.
The results on the development set, which we will
present in Section 4.2 below, were obtained us-
ing semi-CRF and reranking models trained on the
training set.
Data representation. Each hypothesis is repre-
sented by a semantic tree, a feature vector (ex-
plained in Section 3), and two extra features:
(i) the semi-CRF probability of the hypothesis,
and (ii) its reciprocal rank in the N -best list.
Learning algorithm. We used the SVM-Light-
TK5 to train the reranker with a combination of
tree kernels and feature vectors (Moschitti, 2006;
Joachims, 1999). We used the default parameters
and a linear kernel for the feature vectors. As a
baseline, we picked the best-scoring hypothesis in
the list, i.e., the output by the regular semi-CRF
parser. The setting is exactly the same as that de-
scribed in (Saleh et al., 2014).
Evaluation measure. In all experiments, we used
the harmonic mean of precision and recall (F1)
(van Rijsbergen, 1979), computed at the token
level and micro-averaged across the different se-
mantic types.6

4http://groups.csail.mit.edu/sls/downloads/restaurant/
5http://disi.unitn.it/moschitti/Tree-Kernel.htm
6We do not consider ‘Other’ to be a semantic type; thus,

we did not include it in the F1 calculation.

N 1 2 5 10 100
F1 83.03 87.76 92.63 95.23 98.72

Table 2: Oracle F1 score for N -best lists.

Brown Clusters. Clustering groups of similar
words together provides a way of generalizing
them. In this work, we explore the use of Brown
clusters (Brown et al., 1992) in both feature vec-
tors and tree kernels. The Brown clustering al-
gorithm uses an n-gram class model. It first as-
signs each word to a distinct cluster, and then it
merges different clusters in a bottom-up fashion.
The merge step is done in a way that minimizes the
loss in average mutual information between clus-
ters. The outcome is hierarchical clustering, which
we use in our reranking algorithm. To create the
Brown clusters, we used the Yelp dataset of re-
views.7 It contains 335,022 reviews about 15,585
businesses; 5,575 of the businesses and 233,839 of
the reviews are restaurant-related. This dataset is
very similar to the dataset of queries about restau-
rants we use in our experiments.

Similarity matrix for SK. We compute the lexi-
cal similarity for SK by applying LSA (Furnas et
al., 1988) to Tripadvisor data. The dataset and the
exact procedure for creating the LSA matrix are
described in (Castellucci et al., 2013; Croce and
Previtali, 2010).

4.2 Results
Oracle accuracy. Table 2 shows the oracle F1

score for N -best lists of different lengths, i.e., the
F1 that is achieved by picking the best candidate
in the N -best list for various values of N . Con-
sidering 5-best lists yields an increase in oracle F1

of almost ten absolute points. Going up to 10-best
lists only adds 2.5 extra F1 points. The complete
100-best lists add 3.5 extra F1 points, for a total
of 98.72. This very high value is explained by the
fact that often the total number of different anno-
tations for a given question is smaller than 100. In
our experiments, we will focus on 5-best lists.
Baseline accuracy. We computed F1 for the semi-
CRF model on both the development and the test
sets, obtaining 83.86 and 83.03, respectively.
Learning Curves. The semantic information in
terms of BCs or semantic similarity derived by
LSA can have a major impact in case of data
scarcity. Therefore, we trained our reranking mod-
els with increasing sizes of training data.

7http://www.yelp.com/dataset challenge/
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Figure 2: Learning curves for different reranking models on the development and on the testing sets.

The first two graphs in Fig. 2 show the plots
on the development set whereas the last two are
computed on the test set. The reranking models
reported are Baseline, PTK, PTK+BC, PTK+all
(features), PTK+BC+all, SK, SK+BC, SK+all and
SK+BC+all.8 We can see that: (i) PTK alone, i.e.,
without semantic information, has the lowest ac-
curacy; (ii) BCs do not improve significantly any
model; (iii) SK almost always achieves the high-
est accuracy; (iv) PTK+all (i.e., the model also us-
ing features) improves on PTK, but its accuracy
is lower than for any model using SK, i.e., us-
ing semantic similarity; and (v) all features pro-
vide an initial boost to SK, but as soon as the data
increases, their impact decreases.

5 Conclusion and Future Work

In summary, the learning curves clearly show the
good generalization ability of SK, which improve
the CRF baseline using little data (∼3,000). The
semantic kernel significantly improves over the
semi-CRF baseline and our previous state-of-the-
art reranker exploiting shallow syntactic patterns
(Saleh et al., 2014), which corresponds to PTK+all
in the above comparison.

8Models are split between 2 plots in order to ease reading.

The improvement falls between 1-2 absolute
percent points. This is remarkable as (i) it corre-
sponds to ∼10% relative error reduction, and (ii)
the state-of-the-art baseline system is very difficult
to beat, as confirmed by the low impact of tradi-
tional features and BCs. Although the latter can
generalize over concepts and words, their use is
not straightforward, resulting in no improvement.

In the future, we plan to investigate the use of
semantic similarity from distributional and other
sources (Mihalcea et al., 2006; Padó and Lapata,
2007), e.g., Wikipedia (Strube and Ponzetto, 2006;
Mihalcea and Csomai, 2007), Wiktionary (Zesch
et al., 2008), WordNet (Pedersen et al., 2004;
Agirre et al., 2009), FrameNet, VerbNet (Shi and
Mihalcea, 2005), BabelNet (Navigli and Ponzetto,
2010), and LSA, and for different domains.
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Abstract

Various studies highlighted that topic-
based approaches give a powerful spo-
ken content representation of documents.
Nonetheless, these documents may con-
tain more than one main theme, and their
automatic transcription inevitably contains
errors. In this study, we propose an orig-
inal and promising framework based on a
compact representation of a textual docu-
ment, to solve issues related to topic space
granularity. Firstly, various topic spaces
are estimated with different numbers of
classes from a Latent Dirichlet Allocation.
Then, this multiple topic space representa-
tion is compacted into an elementary seg-
ment, called c-vector, originally developed
in the context of speaker recognition. Ex-
periments are conducted on the DECODA
corpus of conversations. Results show the
effectiveness of the proposed multi-view
compact representation paradigm. Our
identification system reaches an accuracy
of 85%, with a significant gain of 9 points
compared to the baseline (best single topic
space configuration).

1 Introduction

Automatic Speech Recognition (ASR) systems
frequently fail on noisy conditions and high Word
Error Rates (WER) make the analysis of the au-
tomatic transcriptions difficult. Speech analyt-
ics suffer from these transcription issues that may
be overcome by improving the ASR robustness
and/or the tolerance of speech analytic systems to
ASR errors. This paper proposes a new method
to improve the robustness of speech analytics by
combining a semantic multi-model approach and
a noise reduction technique based on the i-vector
paradigm.

This method is evaluated in the application
framework of the RATP call centre (Paris Public
Transportation Authority), focusing on the theme
identification task (Bechet et al., 2012).

Telephone conversations are a particular case
of human-human interaction whose automatic
processing raises problems, especially due to the
speech recognition step required to obtain the
transcription of the speech contents. First, the
speaker’s behavior may be unexpected and the
training/test mismatch may be very large. Second,
the speech signal may be strongly impacted by
various sources of variability: environment and
channel noises, acquisition devices, etc.

Telephone conversation issues
Topics are related to the reason why the customer
called. Various classes corresponding to the
main customer’s requests are considered (lost and
founds, traffic state, timelines, etc). In addition
to classical issues in such adverse conditions,
the topic-identification system should deal with
problems related to class proximity. For example,
a lost & found request is related to itinerary
(where was the object lost?) or timeline (when?),
that could appear in most of the classes. In fact,
these conversations involve a relatively small
set of basic concepts related to transportation
issues. Figure 1 shows an example of a dialogue
which is manually labeled by the agent as an
issue related to an infraction. However, words
in bold suggest that this conversation could be
related to a transportation card. Thus, we assume
that a dialogue representation should be seen as
a multi-view problem to substantiate the claims
regarding the multi-theme representation of a
given dialogue.

On the other hand, multi-view approaches in-
troduce additional variability due to the diversity
of the views. This variability is also due to the
vocabulary used by both agent and customer
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Agent: Hello
Customer: Hello
Agent: Speaking ...
Customer: I call you because 
I was fined today, but I still 
have an imagine card 
suitable for zone 1 [...] I forgot 
to use my navigo card for 
zone 2
Agent: You did not use 
your navigo card, that is 
why they give you a fine not 
for a zone issue [...]
Customer: Thanks, bye
Agent: bye

Agent

Customer

Transportation
cards

Figure 1: Example of a dialogue from the DE-
CODA corpus labeled by the agent as an infraction
issue which contains more than one theme (infrac-
tion + transportation cards).

during a telephone conversation. Indeed, an
agent have to follow an predefined scenario of
conversation. Thus, the agent can find the main
reason for the call which corresponds to the theme.

Proposed solutions
An efficient way to tackle both ASR robustness
and class ambiguity could be to map dialogues
into a topic space abstracting the ASR outputs.
Then, dialogue categorization is achieved in this
topic space. Numerous unsupervised methods for
topic-space estimation were proposed in the past.
Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) has been largely used for speech analytics;
one of its main drawbacks is the tuning of the
model, that involves various meta-parameters
such as the number of classes (that determines
the model granularity), word distribution meth-
ods, temporal spans. . . If the decision process is
highly dependent on these features, the system’s
performance could be quite unstable.

Classically, this abstract representation involves
selecting the right number of classes composing
the topic space. This decision is crucial since
topic model perplexity, which expresses its qual-
ity, is highly dependent on this feature. Further-
more, the multi-theme context of the study (see
Figure 1) involves a more complex dialogue rep-
resentation. In this paper, we propose to deal with
these two drawbacks by using a compact represen-
tation from multiple topic spaces. This model is
based on a robust multi-view representation of the
textual documents.

A multi-view representation of a dialogue intro-
duces both a relevant variability needed to repre-
sent different contexts of the dialogue, and a noisy
variability related to topic space processing. Thus,
a topic-based representation of a dialogue is built
from the dialogue content itself. For this reason,
the mapping process of a dialogue into several
topic spaces generates a noisy variability related to
the difference between the dialogue and the con-
tent of each class. In the same way, the relevant
variability comes from the common content be-
tween the dialogue and the classes composing the
topic space.

We propose to reduce the noisy variability by
using a factor analysis technique, which was ini-
tially developed in the domain of speaker identifi-
cation. In this field, the factor analysis paradigm
is used as a decomposition model that enables to
separate the representation space into two sub-
spaces containing respectively useful and useless
information. The general Joint Factor Analysis
(JFA) paradigm (Kenny et al., 2008) considers
multiple variabilities that may be cross-dependent.
Therefore, JFA representation allows us to com-
pensate the variability within sessions of a same
speaker. This representation is an extension of the
GMM-UBM (Gaussian Mixture Model-Universal
Background Model) models (Reynolds and Rose,
1995). (Dehak et al., 2011) extract a compact
super-vector (called an i-vector) from the GMM
super-vector. The aim of the compression pro-
cess (i-vector extraction) is to represent the super-
vector variability in a low dimensional space. Al-
though this compact representation is widely used
in speaker recognition systems, this method has
not been used yet in the field of text classification.

In this paper, we propose to apply factor anal-
ysis to compensate noisy variabilities due to the
multiplication of LDA models. Furthermore, a
normalization approach to condition dialogue rep-
resentations (multi-model and i-vector) is pre-
sented. The two methods showed improvements
for speaker verification: within Class Covariance
Normalization (WCCN) (Dehak et al., 2011) and
Eigen Factor Radial (EFR) (Bousquet et al., 2011).
The latter includes length normalization (Garcia-
Romero and Espy-Wilson, 2011). Both methods
dilate the total variability space as a means of re-
ducing the within-class variability. In our multi-
model representation, the within class variability
is redefined according to both dialogue content
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(vocabulary) and topic space characteristics (word
distributions among the topics). Thus, the speaker
is represented by a theme, and the speaker session
is a set of topic-based representations (frames) of
a dialogue (session).

The paper is organized as follows. Section 2
presents previous related works. The dialogue rep-
resentation is described in Section 3. Section 4 in-
troduces the i-vector compact representation and
presents its application to text documents. Sec-
tions 5 and 6 report experiments and results. The
last section concludes and proposes some perspec-
tives.

2 Related work

In the past, several approaches considered a
text document as a mixture of latent topics.
These methods, such as Latent Semantic Analysis
(LSA) (Deerwester et al., 1990; Bellegarda, 1997),
Probabilistic LSA (PLSA) (Hofmann, 1999) or
Latent Dirichlet Allocation (LDA) (Blei et al.,
2003), build a higher-level representation of the
document in a topic space. ¿ Document is
then considered as a bag-of-words (Salton, 1989)
where the word order is not taken into account.
These methods have demonstrated their perfor-
mance on various tasks, such as sentence (Belle-
garda, 2000) or keyword (Suzuki et al., 1998) ex-
traction.

In opposition to a multinomial mixture model,
LDA considers that a theme is associated to each
occurrence of a word composing the document,
rather than associate a topic to the complete doc-
ument. Therefore, a document can change topics
from a word to another one. However, word oc-
currences are connected by a latent variable which
controls the global match of the distribution of
the topics in the document. These latent topics
are characterized by a distribution of associated
word probabilities. PLSA and LDA models have
been shown to generally outperform LSA on IR
tasks (Hofmann, 2001). Moreover, LDA provides
a direct estimate of the relevance of a topic given
a word set. In this paper, probabilities of hidden
topic features, estimated with LDA, are considered
for possibly capturing word dependencies express-
ing the semantic contents of a given conversation.

Topic-based approaches involve defining a
number of topics composing the topic space. The
choice of the “right” number of topics is a crucial
step, especially when the documents may contain

multiple themes. Many studies have tried to find
a relevant method to deal with this issue. (Arun et
al., 2010) proposed to use a Singular Value De-
composition (SVD) to represent the separability
between the words contained in the vocabulary.
Then, if the singular values of the topic-word ma-
trix M equal the norm of the rows of M, this means
that the vocabulary is well separated among the
topics. This method has to be evaluated with the
Kullback-Liebler divergence metric for each topic
space. However, this process would be time con-
suming for thousands of representations of a dia-
logue.

(Teh et al., 2004) proposed the Hierarchical
Dirichlet Process (HDP) method to find the “right”
number of topics by assuming that the data has
a hierarchical structure. The HDP models were
then compared to the LDA ones on the same
dataset. (Zavitsanos et al., 2008) presented a
method to learn the right depth of an ontology de-
pending of the number of topics of LDA models.
The study presented by (Cao et al., 2009) is quite
similar to (Teh et al., 2004). The authors consider
the average correlation between pairs of topics at
each stage as the right number of topics.

All these methods assume that a document can
have only one representation since they consider
that finding the optimal topic model is the best so-
lution. Another solution would be to consider a set
of topic models to represent a document. Nonethe-
less, a multi-topic-based representation of a dia-
logue can involve a noisy variability due to the
mapping of a dialogue in each topic space. Indeed,
a dialogue does not share its content (i.e. words)
with each class composing the topic space. Thus,
a variability is added during the mapping pro-
cess. Another weakness of the multi-view repre-
sentation is the relation between classes in a topic
space. (Blei and Lafferty, 2006) show that classes
into a LDA topic space are correlated. More-
over, (Li and McCallum, 2006) consider a class
as a node of an acyclic graph and as a distribu-
tion over other classes contained in the same topic
space.

3 Multi-view representation of automatic
dialogue transcriptions in a
homogeneous space

The purpose of the considered application is the
identification of the major theme of a human-
human telephone conversation in the customer
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care service (CCS) of the RATP Paris transporta-
tion system. The approach considered in this pa-
per focuses on modeling the variability between
different dialogues expressing the same theme t.
For this purpose, it is important to select relevant
features that represent semantic contents for the
theme of a dialogue. An attractive set of features
for capturing possible semantically relevant word
dependencies is obtained with Latent Dirichlet Al-
location (LDA) (Blei et al., 2003), as described in
section 2.

Given a training set of conversations D, a hid-
den topic space is derived and a conversation d
is represented by its probability in each topic of
the hidden space. Estimation of these probabili-
ties is affected by a variability inherent to the es-
timation of the model parameters. If many hidden
spaces are considered and features are computed
for each hidden space, it is possible to model the
estimation variability together with the variability
of the linguistic expression of a theme by different
speakers in different real-life situations. Even if
the purpose of the application is theme identifica-
tion and a training corpus annotated with themes is
available, supervised LDA (Griffiths and Steyvers,
2004) is not suitable for the proposed approach.
LDA is used only for producing different feature
sets used involved in statistical variability models.

In order to estimate the parameters of differ-
ent hidden spaces, a set of discriminative words
V is constructed as described in (Morchid et al.,
2014a). Each theme t contains a set of specific
words. Note that the same word may appear in
several discriminative word sets. All the selected
words are then merged without repetition to form
V .

Several techniques, such as Variational Meth-
ods (Blei et al., 2003), Expectation-propagation
(Minka and Lafferty, 2002) or Gibbs Sam-
pling (Griffiths and Steyvers, 2004), have been
proposed for estimating the parameters describ-
ing a LDA hidden space. Gibbs Sampling is
a special case of Markov-chain Monte Carlo
(MCMC) (Geman and Geman, 1984) and gives
a simple algorithm for approximate inference in
high-dimensional models such as LDA (Heinrich,
2005). This overcomes the difficulty to directly
and exactly estimate parameters that maximize the
likelihood of the whole data collection defined as:
p(W |−→α ,−→β ) =

∏
w∈W p(−→w |−→α ,−→β ) for the whole

data collection W knowing the Dirichlet parame-

ters −→α and
−→
β .

Gibbs Sampling allows us both to estimate the
LDA parameters in order to represent a new dia-
logue d with the rth topic space of size n, and to
obtain a feature vector V zr

d of the topic representa-

tion of d. The jth feature V
zrj
d = P (zrj |d) (where

1 ≤ j ≤ n) is the probability of topic zrj to be
generated by the unseen dialogue d in the rth topic
space of size n (see Figure 2) and V w

zrj
= P (w|zrj )

is the vector representation of a word into r.

Agent: Hello
Customer: Hello
Agent: Speaking ...
Customer: I call you because I 
was fined today, but I still have an 
imagine card suitable for zone 1 

[...] I forgot to use my navigo card 
for zone 2
Agent: You did not use your 
navigo card, that is why they give 
you a fine not for a zone issue [...]
Customer: Thanks, bye
Agent: bye

Agent

Customer

Conversations agent/customer 

customer care service of the 

Paris transportation system

TOPIC 1

P(w|z)           w
0.03682338236708009   card
0.026680126910873955 month
0.026007114700509565 navigo
0.01615229304874531   old
0.015527353139121238 agency
0.014229401019132776 euros
0.013123738102105566 imagine

TOPIC n

P(w|z)           w
0.06946564885496183   card
0.04045801526717557  fine
0.016793893129770993 transport
0.01603053435114504   woman
0.01450381679389313  fined
0.013740458015267175 aïe
0.012977099236641221 infraction

...

P(z |d) P(z |d)...
1 n

Agent: Hello
Customer: Hello
Agent: Speaking ...
Customer: I call you because I 
was fined today, but I still have an 
imagine card suitable for zone 1 

[...] I forgot to use my navigo card 
for zone 2
Agent: You did not use your 
navigo card, that is why they give 
you a fine not for a zone issue [...]
Customer: Thanks, bye
Agent: bye

Agent

Customer

Conversations agent/customer 

customer care service of the 

Paris transportation system

TOPIC 1

P(w|z)           w
0.03682338236708009   card
0.026680126910873955 month
0.026007114700509565 navigo
0.01615229304874531   old
0.015527353139121238 agency
0.014229401019132776 euros
0.013123738102105566 imagine

TOPIC n

P(w|z)           w
0.06946564885496183   card
0.04045801526717557  fine
0.016793893129770993 transport
0.01603053435114504   woman
0.01450381679389313  fined
0.013740458015267175 aïe
0.012977099236641221 infraction

...

P(z |d) P(z |d)...
1 n

Figure 2: Example of a dialogue d mapped into a
topic space of size n.

In the LDA technique, topic zj , j is drawn
from a multinomial over θ which is drawn from
a Dirichlet distribution over −→α . Thus, a set of
p topic spaces are learned using LDA by varying
the number of topics n to obtain p topic spaces of
size n. The number of topics n varies from 10 to
3, 010. Thus, a set of 3, 000 topic spaces is esti-
mated. This is high enough to generate, for each
dialogue, many feature sets for estimating the pa-
rameters of a variability model.

The next process allows us to obtain a homo-
geneous representation of transcription d for the
rth topic space r. The feature vector V zm

d of
d is mapped to the common vocabulary space
V composed with a set of |V | discriminative
words (Morchid et al., 2014a) of size 166, to ob-
tain a new feature vector V w

d,r = {P (w|d)r}w∈V
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of size |V | for the rth topic space r of size nwhere
the ith (0 ≤ i ≤ |V |) feature is:

V wi
d,r = P (wi|d)

=
n∑
j=1

P (wi|zrj )P (zrj |d)

=
n∑
j=1

V wi
zrj
× V zrj

d

=
〈−−→
V wi
zr ,
−−→
V zr

d

〉
where 〈·, ·〉 is the inner product, δ being the fre-

quency of the term wi in d, V wi
zrj

= P (wi|zj) and

V
zrj
d = P (zj |d) evaluated using Gibbs Sampling

in the topic space r.

4 Compact multi-view representation

In this section, an i-vector-based method to
represent automatic transcriptions is presented.
Initially introduced for speaker recognition, i-
vectors (Kenny et al., 2008) have become very
popular in the field of speech processing and re-
cent publications show that they are also reli-
able for language recognition (Martınez et al.,
2011) and speaker diarization (Franco-Pedroso et
al., 2010). I-vectors are an elegant way of re-
ducing the imput space dimensionality while re-
taining most of the relevant information. The
technique was originally inspired by the Joint
Factor Analysis framework (Kenny et al., 2007).
Hence, i-vectors convey the speaker characteris-
tics among other information such as transmission
channel, acoustic environment or phonetic content
of speech segments. The next sections describe
the i-vector extraction process, the application of
this compact representation to textual documents
(called c-vector), and the vector transformation
with the EFR method and the Mahalanobis met-
ric.

4.1 Total variability space definition
I-vector extraction could be seen as a probabilistic
compression process that reduces the dimension-
ality of speech super-vectors according to a linear-
Gaussian model. The speech (of a given speech
recording) super-vector ms of concatenated GMM
means is projected in a low dimensionality space,
named Total Variability space, with:

m(h,s) = m+ Tx(h,s) , (1)

where m is the mean super-vector of the UBM1.
T is a low rank matrix (MD × R), where M is
the number of Gaussians in the UBM and D is the
cepstral feature size, which represents a basis of
the reduced total variability space. T is named To-
tal Variability matrix; the components of x(h,s) are
the total factors which represent the coordinates of
the speech recording in the reduced total variabil-
ity space called i-vector (i for identification).

4.2 From i-vector speaker identification to
c-vector textual document classification

The proposed approach uses i-vectors to model
transcription representation through each topic
space in a homogeneous vocabulary space. These
short segments are considered as basic semantic-
based representation units. Indeed, vector V w

d rep-
resents a segment or a session of a transcription d.
In the following, (d, r) will indicate the dialogue
representation d in the topic space r. In our model,
the segment super-vector m(d,r) of a transcription
d knowing a topic space r is modeled:

m(d,r) = m+ Tx(d,r) (2)

where x(d,r) contains the coordinates of the topic-
based representation of the dialogue in the re-
duced total variability space called c-vector (c for
classification).

Let N(d,r) and X(d,r) be two vectors containing
the zero order and first order dialogue statistics re-
spectively. The statistics are estimated against the
UBM:

Nr[g] =
∑
t∈r

γg(t); {X(d,r)}[g] =
∑
t∈(d,r)

γg(t) · t

(3)
where γg(t) is the a posteriori probability of Gaus-
sian g for the observation t. In the equation,∑

t∈(d,r) represents the sum over all the frames be-
longing to the dialogue d.

Let X(d,r) be the state dependent statistics de-
fined as follows:

{X(d,r)}[g] ={X(d,r)}[g] −m[g] ·
∑
(d,r)

N(d,r)[g]

(4)

Let L(d,r) be a R × R matrix, and B(d,r) a vector

1The UBM is a GMM that represents all the possible ob-
servations.
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Algorithm 1: Estimation algorithm of T and
latent variable x.
For each dialogue d mapped into the topic
space r: x(d,r) ← 0, T← random ;
Estimate statistics: N(d,r), X(d,r) (eq.3);
for i = 1 to nb iterations do

for all d and r do
Center statistics: X(d,r) (eq.4);
Estimate L(d,r) and B(d,r) (eq.5);
Estimate x(d,r) (eq.6);

end
Estimate matrix T (eq. 7 and 8) ;

end

of dimension R, both defined as:

L(d,r) = I +
∑

g∈UBM

N(d,r)[g] · {T}t[g] ·Σ−1
[g] · {T}[g]

B(d,r) =
∑

g∈UBM

{T}t[g] ·Σ−1
g · {X(d,r)}[g],

(5)

By using L(d,r) and B(d,r), x(d,r) can be obtained
using the following equation:

x(d,r) = L−1
(d,r) · B(d,r) (6)

The matrix T can be estimated line by line, with
{T}i[g] being the ith line of {T}[g] then:

Ti[g] = LU−1
g · RUi

g, (7)

where RUi
g and LUg are given by:

LUg =
∑
(d,r)

L−1
(d,r) + x(d,r)xt(d,r) · N(d,r)[g]

RUi
g =

∑
(d,r)

{X(d,r)}[i][g] · x(d,r)

(8)

Algorithm 1 presents the method adopted to es-
timate the multi-view variability dialogue matrix
with the above developments where the standard
likelihood function can be used to assess the con-
vergence. One can refer to (Matrouf et al., 2007)
to find out more about the implementation of the
factor analysis.
C-vector representation suffers from 3 raised c-

vector issues: (i) the c-vectors x of equation 2
have to be theoretically distributed among the nor-
mal distribution N (0, I), (ii) the “radial” effect
should be removed, and (iii) the full rank total
factor space should be used to apply discriminant
transformations. The next section presents a solu-
tion to these 3 problems.

4.3 C-vector standardization
A solution to standardize c-vectors has been de-
veloped in (Bousquet et al., 2011). The authors
proposed to apply transformations for training and
test transcription representations. The first step is
to evaluate the empirical mean x and covariance
matrix V of the training c-vector. Covariance ma-
trix V is decomposed by diagonalization into:

PDPT (9)

where P is the eigenvector matrix of V and D is the
diagonal version of V. A training i-vector x(d,r) is
transformed in x′(d,r) as follows:

x′(d,r) =
D−

1
2 PT (x(d,r) − x)√

(x(d,r) − x)TV−1(x(d,r) − x)
(10)

The numerator is equivalent by rotation to
V−

1
2 (x(d,r) − x) and the Euclidean norm of x′(d,r)

is equal to 1. The same transformation is applied
to the test c-vectors, using the training set parame-
ters x and mean covariance Vas estimations of the
test set of parameters.

Figure 3 shows the transformation steps: Fig-
ure 3-(a) is the original training set; Figure 3-
(b) shows the rotation applied to the initial train-
ing set around the principal axes of the total vari-
ability when PT is applied; Figure 3-(c) shows
the standardization of c-vectors when D−

1
2 is

applied; and finally, Figure 3-(d) shows the c-
vector x′(d,r) on the surface area of the unit hyper-
sphere after a length normalization by a division

of
√

(x(d,r) − x)TV−1(x(d,r) − x).

5 Experimental Protocol

The proposed c-vector representation of automatic
transcriptions is evaluated in the context of the
theme identification of a human-human telephone
conversation in the customer care service (CCS)
of the RATP Paris transportation system. The met-
ric used to identify of the best theme is the Maha-
lanobis metric.

5.1 Theme identification task
The DECODA project corpus (Bechet et al., 2012)
was designed to perform experiments on the iden-
tification of conversation themes. It is composed
of 1,514 telephone conversations, corresponding
to about 74 hours of signal, split into a training
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Figure 3: Effect of the standardization with the EFR algorithm.

set (740 dialogues), a development set (175 dia-
logues) and a test set (327 dialogues), and manu-
ally annotated with 8 conversation themes: prob-
lems of itinerary, lost and found, time schedules,
transportation cards, state of the traffic, fares, in-
fractions and special offers.

An LDA model allowed us to elaborate 3,000
topics spaces by varying the number of topics from
10 to 3,010. A topic space having less than 10
topics is not suitable for a corpus of more than 700
dialogues (training set). For each theme {Ci}8i=1,
a set of 50 specific words is identified. All the
selected words are then merged without repetition
to compose V , which is made of 166 words. The
topic spaces are made with the LDA Mallet Java
implementation2.

The LIA-Speeral ASR system (Linarès et al.,
2007) is used for the experiments. Acoustic model
parameters were estimated from 150 hours of
speech in telephone conditions. The vocabulary
contains 5,782 words. A 3-gram language model
(LM) was obtained by adapting a basic LM with
the training set transcriptions. A “stop list” of 126
words3 was used to remove unnecessary words
(mainly function words), which results in a Word
Error Rate (WER) of 33.8% on the training, 45.2%
on the development, and 49.5% on the test. These

2http://mallet.cs.umass.edu/
3http://code.google.com/p/stop-words/

high WER are mainly due to speech disfluencies
and to adverse acoustic environments (for exam-
ple, calls from noisy streets with mobile phones).

5.2 Mahalanobis metric

Given a new observation x, the goal of the task is
to identify the theme belonging to x. Probabilistic
approaches ignore the process by which c-vectors
were extracted and they pretend instead they were
generated by a prescribed generative model. Once
a c-vector is obtained from a dialogue, its repre-
sentation mechanism is ignored and it is regarded
as an observation from a probabilistic generative
model. The Mahalanobis scoring metric assigns a
dialogue d with the most likely theme C. Given
a training dataset of dialogues, let W denote the
within dialogue covariance matrix defined by:

W =
K∑
k=1

nt
n

Wk

=
1
n

K∑
k=1

nt∑
i=0

(
xki − xk

)(
xki − xk

)t
(11)

where Wk is the covariance matrix of the kth

theme Ck, nt is the number of utterances for the
theme Ck, n is the total number of dialogues, and
xk is the centroid (mean) of all dialogues xki ofCk.
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Each dialogue does not contribute to the co-
variance in an equivalent way. For this reason,
the term nt

n is introduced in equation 11. If ho-
moscedasticity (equality of the class covariances)
and Gaussian conditional density models are as-
sumed, a new observation x from the test dataset
can be assigned to the most likely themeCkBayes us-
ing the classifier based on the Bayes decision rule:

CkBayes = arg max
k
{N (x | xk,W)}

= arg max
k

{
−1

2
(x− xk)t W−1 (x− xk) + ak

}
where W is the within theme covariance ma-

trix defined in eq. 11; N denotes the normal dis-
tribution and ak = log (P (Ck)). It is noted that,
with these assumptions, the Bayesian approach is
similar to Fisher’s geometric approach: x is as-
signed to the class of the nearest centroid, accord-
ing to the Mahalanobis metric (Xing et al., 2002)
of W−1:

CkBayes = arg max
k

{
−1

2
||x− xk||2W−1 + ak

}
6 Experiments and results

The proposed c-vector approach is applied to
the same classification task and corpus proposed
in (Morchid et al., 2014a; Morchid et al., 2014b;
Morchid et al., 2013) (state-of-the-art in text clas-
sification in (Morchid et al., 2014a)). Experiments
are conducted using the multiple topic spaces esti-
mated with an LDA approach. From these mul-
tiple topic spaces, a classical way is to find the
one that reaches the best performance. Figure 4
presents the theme classification performance ob-
tained on the development and test sets using vari-
ous topic-based representation configurations with
the EFR normalization algorithm (baseline).

For sake of comparison, experiments are con-
ducted using the automatic transcriptions only
(ASR) only. The conditions indicated by the ab-
breviations between parentheses are considered
for the development (Dev) and the test (Test) sets.

Only homogenous conditions (ASR for both
training and validations sets) are considered in this
study. Authors in (Morchid et al., 2014a) notice
that results collapse dramatically when heteroge-
nous conditions are employed (TRS or TRS+ASR
for training set and ASR for validation set).

First of all, we can see that this baseline ap-
proach reached a classification accuracy of 83%
and 76%, respectively on the development and the
test sets. However, we note that the classifica-
tion performance is rather unstable, and may com-
pletely change from a topic space configuration to
another. The gap between the lower and the higher
classification results is also important, with a dif-
ference of 25 points on the development set (the
same trend is observed on the test set). As a result,
finding the best topic space size seems crucial for
this classification task, particularly in the context
of highly imperfect automatic dialogue transcrip-
tions containing more than one theme.

The topic space that yields the best accuracy
with the baseline method (n = 15 topics) is pre-
sented in Figure 5. This figure presents each of the
15 topics and their 10 most representative words
(highest P (w|z)). Several topics contain more or
less the same representative words, such as topics
3, 6 and 9. This figure points out some interesting
topics that allow us to distinguish a theme from the
others. For example:

• topics 2, 10 and 15 represent some words re-
lated to itinerary problems,

• the transportation cards theme is mostly rep-
resented in topic 4 and 15 (Imagine and Nav-
igo are names of transportation cards),

• the words which represent the time schedules
theme are contained in topic 5,6,7 and less in
topic 9,

• state of the traffic could be discussed with
words such as: departure, line, service, day.
These words and others are contained in topic
13,

• topics 4 and 12 are related to the infractions
theme with to words fine, pass, zone or ticket,

• but topic 12 could be related to theme fares
or special offers as well .

Table 1 presents results obtained with the pro-
posed c-vector approach coupled with the EFR al-
gorithm. We can firstly note that this compact rep-
resentation allows it to outperform the best topic
space configuration (baseline), with a gain of 9.4
points on the development data and of 9 points on
the test data. Moreover, if we consider the differ-
ent c-vector configurations with the development
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Figure 4: Theme classification accuracies using various topic-based representations with EFR normal-
ization (baseline) on the development and test sets (X-coordinates start at 10 indeed, but to show the best
configuration point (15), the origine (10) has been removed).

Table 1: Theme classification accuracy (%) with different c-vectors and GMM-UBM sizes.

DEV TEST
c-vector Number of Gaussians in GMM-UBM

size 32 64 128 256 32 64 128 256
60 88.8 86.5 91.2 90.6 85.0 82.6 83.5 84.7

100 91.2 92.4 92.4 87.7 86.0 85.0 83.5 84.7
120 89.5 92.2 89.5 87.7 85.0 83.5 85.4 84.1

Table 2: Maximum (Max), minimum (Min) and Difference (Max −Min) theme classification accu-
racies (%) using the baseline and the proposed c-vector approaches.

Max Min Difference
Method DEV TEST DEV TEST DEV TEST
baseline 83.3 76.0 58.6 56.8 14.7 20.8
c-vector 92.4 85.0 86.5 82.6 5.9 2.4

and test sets, the gap between accuracies is much
smaller: classification accuracy does not go be-
low 82.6%, while it reached 56% for the worst
topic-based configuration. Indeed, as shown in Ta-
ble 2, the difference between the maximum and

the minimum theme classification accuracies is of
20% using the baseline approach while it is only
of 2.4% using the c-vector method.

We can conclude that this original c-vector ap-
proach allows one to better handle the variabilities
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Figure 5: Topic space (15 topics) that obtains the best accuracy with the baseline system (see Fig. 4).

contained in dialogue conversations: in a classi-
fication context, better accuracy can be obtained
and the results can be more consistent when vary-
ing the c-vector size and the number of Gaussians.

7 Conclusions

This paper presents an original multi-view repre-
sentation of automatic speech dialogue transcrip-
tions, and a fusion process with the use of a factor
analysis method called i-vector. The first step of
the proposed method is to represent a dialogue in
multiple topic spaces of different sizes (i.e. num-
ber of topics). Then, a compact representation
of the dialogue from the multiple views is pro-
cessed to compensate the vocabulary and the vari-
ability of the topic-based representations. The ef-
fectiveness of the proposed approach is evaluated
in a classification task of theme dialogue identifi-
cation. Thus, the architecture of the system iden-
tifies conversation themes using the i-vector ap-
proach. This compact representation was initially
developed for speaker recognition and we showed
that it can be successfully applied to a text clas-
sification task. Indeed, this solution allowed the
system to obtain better classification accuracy than
with the use of the classical best topic space con-

figuration. In fact, we highlighted that this original
compact version of all topic-based representations
of dialogues, called c-vector in this work, coupled
with the EFR normalization algorithm, is a better
solution to deal with dialogue variabilities (high
word error rates, bad acoustic conditions, unusual
word vocabulary, etc). This promising compact
representation allows us to effectively solve both
the difficult choice of the right number of topics
and the multi-theme representation issue of partic-
ular textual documents. Finally, the classification
accuracy reached 85% with a gain of 9 points com-
pared to usual baseline (best topic space configu-
ration). In a future work, we plan to evaluate this
new representation of textual documents in other
information retrieval tasks, such as keyword ex-
traction or automatic summarization systems.
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Abstract

This paper introduces a model of multiple-
instance learning applied to the predic-
tion of aspect ratings or judgments of
specific properties of an item from user-
contributed texts such as product reviews.
Each variable-length text is represented by
several independent feature vectors; one
word vector per sentence or paragraph.
For learning from texts with known as-
pect ratings, the model performs multiple-
instance regression (MIR) and assigns im-
portance weights to each of the sentences
or paragraphs of a text, uncovering their
contribution to the aspect ratings. Next,
the model is used to predict aspect ratings
in previously unseen texts, demonstrating
interpretability and explanatory power for
its predictions. We evaluate the model on
seven multi-aspect sentiment analysis data
sets, improving over four MIR baselines
and two strong bag-of-words linear mod-
els, namely SVR and Lasso, by more than
10% relative in terms of MSE.

1 Introduction

Sentiment analysis of texts provides a coarse-
grained view of their overall attitude towards an
item, either positive or negative. The recent abun-
dance of user texts accompanied by real-valued la-
bels e.g. on a 5-star scale has contributed to the de-
velopment of automatic sentiment analysis of re-
views of items such as movies, books, music or
other products, with applications in social com-
puting, user modeling, and recommender systems.
The overall sentiment of a text towards an item
often results from the ratings of several specific
aspects of the item. For instance, the author of
a review might have a rather positive sentiment
about a movie, having particularly liked the plot

and the music, but not too much the actors. De-
termining the ratings of each aspect automatically
is a challenging task, which may seem to require
the engineering of a large number of features de-
signed to capture each aspect. Our goal is to put
forward a new feature-agnostic solution for ana-
lyzing aspect-related ratings expressed in a text,
thus aiming for a finer-grained, deeper analysis of
text meaning than overall sentiment analysis.

Current state-of-the-art approaches to sentiment
analysis and aspect-based sentiment analysis, at-
tempt to go beyond word-level features either by
using higher-level linguistic features such as POS
tagging, parsing, and knowledge infusion, or by
learning features that capture syntactic and seman-
tic dependencies between words. Once an appro-
priate feature space is found, the ratings are typi-
cally modeled using a linear model, such as Sup-
port Vector Regression (SVR) with `2 norm for
regularization or Lasso Regression with `1 norm.
By treating a text globally, these models ignore the
fact that the sentences of a text have diverse con-
tributions to the overall sentiment or to the attitude
towards a specific aspect of an item.

In this paper, we propose a new learning model
which answers the following question: “To what
extent does each part of a text contribute to the
prediction of its overall sentiment or the rating of
a particular aspect?” The model uses multiple-
instance regression (MIR), based on the assump-
tion that not all the parts of a text have the same
contribution to the prediction of the rating. Specif-
ically, a text is seen as a bag of sentences (in-
stances), each of them modeled as a word vector.
The overall challenge is to learn which sentences
refer to a given aspect, and how they contribute to
the text’s attitude towards it, but the model applies
to overall sentiment analysis as well. For instance,
Figure 1 displays a positive global comment on a
TED talk and the weights assigned to two of its
sentences by MIR.
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Figure 1: Analysis of a comment (bag of sentences
{s1, ..., sj}) annotated by humans with the maxi-
mal positive sentiment score (5 stars). The weights
assigned by MIR reveal that s1 has the greatest rel-
evance to the overall sentiment.

Using regularized least squares, we formulate
an optimization objective to jointly assign instance
weights and regression hyperplane weights. Then,
an instance relevance estimation method is used
to predict aspect ratings, or global ones, in previ-
ously unseen texts. The parameters of the model
are learned using an alternating optimization pro-
cedure inspired by Wagstaff and Lane (2007). Our
model requires only text with ratings for training,
with no particular assumption on the word fea-
tures to be extracted, and provides interpretable
explanations of the predicted ratings through the
relevance weights assigned to sentences. We also
show that the model has reasonable computational
demands. The model is evaluated on aspect and
sentiment rating prediction over seven datasets:
five of them contain reviews with aspect labels
about beers, audiobooks and toys (McAuley et al.,
2012), and two contain TED talks with emotion la-
bels, and comments on them with sentiment labels
(Pappas and Popescu-Belis, 2013). Our model
outperforms previous MIR models and two strong
linear models for rating prediction, namely SVR
and Lasso by more than 10% relative in terms of
MSE. The improvement is observed even when the
sophistication of the feature space increases.

The paper is organized as follows. Section 2
shows how our model innovates with respect to
previous work on MIR and rating prediction. Sec-
tion 3 formulates the problem while Section 4 de-
scribes previous MIR models. Section 5 presents
our MIR model and learning procedure. Section 6
presents the datasets and evaluation methods. Sec-
tion 7 reports our results on rating prediction tasks,
and provides examples of rating explanation.

2 Related Work

2.1 Multiple-Instance Regression
Multiple-instance regression (MIR) belongs to the
class of multiple-instance learning (MIL) prob-
lems for real-valued output, and it is a variant
of multiple regression where each data point may
be described by more than one vectors of values.
Many MIL studies focused on classification (An-
drews et al., 2003; Bunescu and Mooney, 2007;
Settles et al., 2008; Foulds and Frank, 2010; Wang
et al., 2011) while fewer focused on regression
(Ray and Page, 2001; Davis and others, 2007;
Wagstaff et al., 2008; Wagstaff and Lane, 2007).
Related to document analysis, several MIR stud-
ies have focused on news categorization (Zhang
and Zhou, 2008; Zhou et al., 2009) or web-index
recommendation (Zhou et al., 2005) but, to our
knowledge, no study has attempted to use MIR for
aspect rating prediction or sentiment analysis with
real-valued labels.

MIR was firstly introduced by Ray et al. (2001),
proposing an EM algorithm which assumes that
one primary instance per bag is responsible for
its label. Wagstaff and Lane (2007) proposed to
simultaneously learn a regression model and es-
timate instance weights per bag for crop yield
modeling (not applicable to prediction). A simi-
lar method which learns the internal structure of
bags using clustering was proposed by Wagstaff et
al. (2008) for crop yield prediction, and we will
use it for comparison in the present study. Later,
the method was adapted to map bags into a single-
instance feature space by Zhang et al. (2009).
Wang et al. (2008) assumed that each bag is gener-
ated by random noise around a primary instance,
while Wang et al. (2012) represented bag labels
with a probabilistic mixture model. Foulds et
al. (2010) concluded that various assumptions are
differently suited to different tasks, and should be
stated clearly when describing an MIR model.

2.2 Rating Prediction from Text
Sentiment analysis aims at analyzing the polar-
ity of a given text, either with classification (for
discrete labels) or regression (for real-valued la-
bels). Early studies introduced machine learning
techniques for sentiment classification, e.g. Pang
et al. (2002), including unsupervised techniques
based on the notion of semantic orientation of
phrases, e.g. Turney et al. (2002). Other studies
focused on subjectivity detection, i.e. whether a
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text span expresses opinions or not (Wiebe et al.,
2004). Rating inference was defined by Pang et
al. (2005) as multi-class classification or regres-
sion with respect to rating scales. Pang and Lee
(2008) discusses the large range of features engi-
neered for this task, though several recent stud-
ies focus on feature learning (Maas et al., 2011;
Socher et al., 2011), including the use of a deep
neural network (Socher et al., 2013). In contrast,
we do not make any assumption about the nature
or dimensionality of the feature space.

The fine-grained analysis of opinions regarding
specific aspects or features of items is known as
multi-aspect sentiment analysis. This task usu-
ally requires aspect-related text segmentation, fol-
lowed by prediction or summarization (Hu and
Liu, 2004; Zhuang et al., 2006). Most attempts to
perform this task have engineered various feature
sets, augmenting words with topic or content mod-
els (Mei et al., 2007; Titov and McDonald, 2008;
Sauper et al., 2010; Lu et al., 2011), or with lin-
guistic features (Pang and Lee, 2005; Baccianella
et al., 2009; Qu et al., 2010; Zhu et al., 2012).
Other studies have advocated joint modeling of
multiple aspects (Snyder and Barzilay, 2007) or
multiple reviews for the same product (Li et al.,
2011). McAuley et al. (2012) introduced new cor-
pora of multi-aspect reviews, which we also partly
use here, and proposed models for aspect detec-
tion, sentiment summarization and rating predic-
tion. Lastly, joint aspect identification and senti-
ment classification have been used for aggregating
product review snippets by Sauper at al. (2013).
None of the above studies considers the multiple-
instance property of text in their modeling.

3 MIR Definition

Let us consider a set B of m bags with
numerical labels Y as input data D =
{({b1j}dn1

, y1), ..., ({bmj}dnm , ym)}, where bij ∈
Rd (for 1 ≤ j ≤ ni) and yi ∈ R. Each bag
Bi consists of ni data points (called ‘instances’),
hence it is a matrix of ni d-dimensional vectors,
e.g. word vectors. The challenge is to infer the
label of the bag given a variable number of in-
stances ni. This requires finding a set of bag rep-
resentations X = {x1, . . . , xm} of size m where
xi ∈ Rd, from which the class labels can be com-
puted. The goal is then to find a mapping from
this representation, noted Φ : Rd → R, which is
able to predict the label of a given bag. Ideally,

assuming that X is the best bag representation for
our task, we look for the optimal regression hyper-
plane Φ which minimizes a loss function L plus a
regularization term Ω as follows:

Φ = arg min
Φ

(
L(Y,X,Φ)︸ ︷︷ ︸

loss

+ Ω(Φ)︸ ︷︷ ︸
reg.

)
(1)

Since the best set of representationsX for a task is
generally unknown, one has to make assumptions
to define it or compute it jointly with the regres-
sion hyperplane Φ. Thus, the main difficulty lies
in finding a good assumption for X , as we will
now discuss.

4 Previous MIR Assumptions

We describe here three assumptions frequently
made in past MIR studies, to which we will later
compare our model: aggregating all instances,
keeping them as separate examples, or choosing
the most representative one (Wang et al., 2012).
For each assumption, we will experiment with
two state-of-the-art regression models (noted ab-
stractly as f ), namely SVR (Drucker et al., 1996)
and Lasso (Tibshirani, 1996) with respectively the
`2 and `1 norms for regularization.

The Aggregated algorithm assumes that each
bag is represented as a single d-dimensional vec-
tor, which is the average of its instances (hence
xi ∈ Rd). Then, a regression model f is trained
on pairs of vectors and class labels, Dagg =
{(xi, yi) | i = 1, . . . ,m}, and the predicted class
of an unlabeled bag Bi = {bij | j = 1, . . . , ni} is
computed as follows:

ŷ(Bi) = f(mean({bij | j = 1, . . . , ni})) (2)

In fact, a simple sum can also be used instead of
the mean, and we observed in practice that with an
appropriate regularization there is no difference on
the prediction performance between these options.
This baseline corresponds to the typical approach
for text regression tasks, where each text sample is
represented by a single vector in the feature space
(e.g. BOW with counts or TF-IDF weights).

The Instance algorithm considers each of the in-
stances in a bag as separate examples, by labeling
each of them with the bag’s label. A regression
model f is learned over the training set made of
all vectors of all bags, Dins = {(bij , yi) | j =
1, . . . , ni; i = 1, . . . ,m}, assuming that there are
m labeled bags. To label a new bag Bi, given that

457



there is no representation xi, the method simply
averages the predicted labels of its instances:

ŷ(Bi) = mean({f(bij) | j = 1, . . . , ni}) (3)

Instead of the average, the median value can also
be used, which is more appropriate when the bags
contain outlying instances.

The Prime algorithm assumes that a single in-
stance in each bag is responsible for its label (Ray
and Page, 2001). This instance is called the pri-
mary or prime one. The method is similar to the
previous one, except that only one instance per bag
is used as training data: Dpri = {(bpi , yi) | i =
1, . . . ,m}, where bpi is the prime instance of the
ith bag Bi and m is the number of bags. The
prime instances are discovered through an itera-
tive algorithm which refines the regression model
f . Given an initial model f , in each iteration the
algorithm selects from each bag a prime candidate
which is the instance with the lowest prediction er-
ror. Then, a new model is trained over the selected
prime candidates, until convergence. For a new
bag, the target class is computed as in Eq. 3.

5 Proposed MIR Model

We propose a new MIR model which assigns in-
dividual relevance values (weights) to each in-
stance of a bag, thus making fewer simplifying
assumptions than previous models. We extend
instance-relevance algorithms such as (Wagstaff
and Lane, 2007) by supporting high-dimensional
feature spaces, as required for text regression, and
by predicting both the class label and the con-
tent structure of previously unseen (hence unla-
beled) bags. The former is achieved by minimiz-
ing a regularized least squares loss (RLS) instead
of solving normal equations, which is prohibitive
in large spaces. The latter represents a significant
improvement over Aggregated and Instance algo-
rithms, which are unable to pinpoint the most rel-
evant instances with respect to the label of each
bag, being thus applicable only to bag label pre-
diction. Similarly, Prime only identifies the prime
instance when the bag is already labeled. Instead,
our model learns an optimal method to aggregate
instances, rather than a pre-defined one, and al-
lows more degrees of freedom in the regression
model than previous ones. Moreover, the weight
of an instance is interpreted as its relevance both
in training and prediction.

5.1 Instance Relevance Assumption

Each bag defines a bounded region of a hyper-
plane orthogonal to the y-axis (the envelope of all
its points). The goal is to find a regression hy-
perplane that passes through each bag Bi and to
predict its label by using at least one data point
xi within that bounded region. Thus, the point xi
is a convex combination of the points in the bag,
in other words Bi is represented by the weighted
average of its instances bij :

xi =
ni∑
j=1

ψijbij , ψij ≥ 0 and
ni∑
j=1

ψij = 1 (4)

where ψij is the weight of the jth instance of the
ith bag. Each weight ψij indicates the relevance
of an instance j to the prediction of the class yi of
the ith bag. The constraint forces xi to fall within
the bounded region of the points in bag i and guar-
antees that the ith bag will influence the regressor.

5.2 Modeling Bag Structure and Labels

Let us consider a set ofm bags, where each bagBi
is represented by its ni d-dimensional instances,
i.e. Bi = {bij}dni along with the set of target class
labels for each bag, Y = {yi}N , yi ∈ R. The
representation set of all Bi in the feature space,
X = {x1, . . . , xm}, xi ∈ Rd, is obtained using
the ni instance weights associated to each bag Bi,
ψi = {ψij}ni , ψij ∈ [0, 1] which are initially
unknown. Thus, we look for a linear regression
model f that is able to model the target values us-
ing the regression coefficients Φ ∈ Rd, where X
and Y are respectively the sets of training bags and
their labels: Y = f(X) = ΦTX . We define a loss
function according to the least squares objective
dependent on X , Y , Φ and the set of weight vec-
tors Ψ = {ψ1, . . . , ψm} using Eq. 4 as follows:

L(Y,X,Ψ,Φ) = ||Y − ΦTX||22
(4)
=

N∑
i=1

(
yi − ΦT

( ni∑
j=1

ψijbij
))2

=
N∑
i=1

(
yi − ΦT (Biψi)

)2
(5)

Using the above loss function, accounting for the
constraints of our assumption in Eq. 4 and assum-
ing `2-norm for regularization with ε1 and ε2 terms
for each ψi ∈ Ψ and Φ respectively, we obtain the
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following least squares objective from Eq. 1:

arg min
ψ1,...,ψm,Φ

m∑
i=1

(
∆2
i︸︷︷︸

f1 loss

+ ε1||ψi||︸ ︷︷ ︸
f1 reg.

)
︸ ︷︷ ︸

f2 loss

+ ε2||Φ||2︸ ︷︷ ︸
f2 reg.

where ∆2
i =

(
yi − ΦT (Biψi)

)2
, (6)

subject to ψij ≥ 0 ∀i, j and
∑ni

j=1 ψij = 1 ∀i.
The selection of the `2-norm was based on prelim-
inary results showing that it outperforms `1-norm.
Other combinations of p-norm regularization can
be explored for f1 and f2, e.g. to learn sparser in-
stance weights and denser regression coefficients
or vice versa.

The above objective is non-convex and difficult
to optimize because the minimization is with re-
spect to all ψ1, . . . , ψm and Φ at the same time. As
indicated in Eq. 6 above, we will note f1 a model
that is learned from the minimization only with re-
spect to ψ1, . . . , ψm and f2 a model obtained from
the minimization with respect to Φ only. In Eq. 6,
we can observe that if one of the two is known or
held fixed, then the other one is convex and can be
learned with the well-known least squares solving
techniques. In Section 5.3, we will describe an al-
gorithm that is able to exploit this observation.

Having computed ψ1, . . . , ψm and Φ, we could
predict a label for an unlabeled bag using Eq. 3,
but would not be able to compute the weights
of the instances. Moreover, information that has
been learned about the instances during the train-
ing phase would not be used during prediction.
For these reasons, we introduce a third regression
model f3 with regression coefficients O ∈ Rd as-
suming a `2-norm for the regularization with ε3
term, which is trained on the relevance weights
obtained from the Eq. 6, Dw = {(bij , ψij) | i =
1, ...,m; j = 1, ..., ni}. The optimization objec-
tive for the f3 model is the following:

arg min
O

N∑
i=1

ni∑
j=1

(
ψij −OT bij

)2
︸ ︷︷ ︸

f3 loss function

+ ε3||O||2︸ ︷︷ ︸
f3 reg.

(7)

This minimization can be easily performed with
the well-known least squares solving techniques.
The learned model is able to estimate the weights
of the instances of an unlabeled bag during pre-
diction time as: ψ̂i = f3(Bi) = ΩTBi. The ψ̂i
weights are estimations which are influenced by

the relevance weights learned in our minimization
objective of Eq. 6 but they are not constrained at
prediction time. To obtain interpretable weights,
we can convert the estimated scores to the [0, 1]
interval as follows: ψ̂i = ψ̂i/sum(ψ̂i). Finally,
the prediction of the label for the ith bag using the
estimated instance weights ψ̂i is done as follows:

ŷ = f2(Bi) = ΦTBiψ̂i (8)

5.3 Learning with Alternating Projections
Algorithm 1 solves the non-convex optimization
problem of Eq. 6 by using a powerful class of
methods for finding the intersection of convex sets,
namely alternating projections (AP). The prob-
lem is firstly divided into two convex problems,
namely f1 loss function and f2 loss function,
which are then solved in an alternating fashion.
Like EM algorithms, AP algorithms do not have
general guarantees on their convergence rate, al-
though, in practice, we found it acceptable at gen-
erally fewer than 20 iterations.

Algorithm 1 APWeights(B, Y , ε1, ε2, ε3)
1: Initialize(ψ1, . . . , ψN ,Φ, X)
2: while not converged do
3: for Bi in B do
4: ψi = cRLS(ΦTBi, Yi, ε1) # f1 model
5: xi = Biψ

T
i

6: end for
7: Φ = RLS(X,Y, ε2) # f2 model
8: end while
9: Ω = RLS({bij∀i, j}, {ψij∀i, j}, ε3) # f3 model

Figure 2: Visual representation for the training and
testing procedure of Algorithm 1.

The algorithm takes as input the bags Bi, their
target class labels Y and the regularization terms
ε1, ε2, ε3 and proceeds as follows. First, under a
fixed regression model (f2), it proceeds with f1

to the optimal assignment of weights to the in-
stances of each bag (projection of Φ vectors on
the ψi space which is a ni-simplex) and com-
putes its new representation set X . Second, given
the fixed instance weights, it trains a new regres-
sion model (f2) using X (projection back to the Φ
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Bags Instances Dimension Aspect ratings
Dataset Type Count Type Count Count Classes
BeerAdvocate

review

1,200

sentence

12,189 19,418 feel, look, smell, taste, overall
RateBeer (ES) 1,200 3,269 2,120 appearance, aroma, overall, palate, taste
RateBeer (FR) 1,200 4,472 903 appearance, aroma, overall, palate, taste
Audiobooks 1,200 4,886 3,971 performance, story, overall
Toys & Games 1,200 6,463 31,984 educational, durability, fun, overall
TED comments comment 1,200 sentence 3,814 957 sentiment (polarity)
TED talks comments

per talk
1,200 comment 11,993 5,000 unconvincing, fascinating, persuasive,

ingenious, longwinded, funny, inspir-
ing, jaw-dropping, courageous, beauti-
ful, confusing, obnoxious

Table 1: Description of the seven datasets used for aspect, sentiment and emotion rating prediction.

space). This procedure repeats until convergence,
i.e. when there is no more decrease on the training
error, or until a maximum number of iterations has
been reached. The regression model f3 is trained
on the weights learned from the previous steps.

5.4 Complexity Analysis

The overall time complexity T of Algorithm 1 in
terms of the input variables, noted h = {m, n̂, d},
with m being the number of bags, n̂ the average
size of the bags, and d the dimensionality of the
feature space (here, the size of word vectors), is
derived as follows:

T (h) = Tap(h) + Tf3(h)

= O
(
m(n̂2 + d2)

)
+ O

(
mn̂d2

)
= O

(
m(n̂2 + d2 + n̂d2)

)
, (9)

where Tap and Tf3 are respectively the time com-
plexity of the AP procedure and of training the f3

model. Eq. 9 shows that when n̂ � m, the model
complexity is linear with the input bags m and al-
ways quadratic with the number of features d.

Previous works on relevance assignment for
MIR have prohibitive complexity for high-
dimensional feature spaces or numerous bags and
hence they are not most appropriate for text regres-
sion tasks. Wagstaff and Lane (2007) have cubic
time complexity with the average bag size n̂ and
number of features d; Zhou et al. (2009) use ker-
nels, thus their complexity is quadratic with the
number of bags m; and Wang et al. (2011) have
cubic time wrt. d. Our formulation is thus com-
petitive in terms of complexity.

6 Data, Protocol and Metrics

6.1 Aspect Rating Datasets

We use seven datasets summarized in Table 1.
Five publicly available datasets were built for as-

pect prediction by McAuley et al. (2012) – Beer-
Advocate, Ratebeer (ES), RateBeer (FR), Audio-
books and Toys & Games – and have aspect rat-
ings assigned by their creators on the respective
websites. On the set of comments on TED talks
from Pappas and Popescu-Belis (2013), we aim
to predict two things: talk-level emotion dimen-
sions assigned by viewers through voting, and
comment polarity scores assigned by crowdsourc-
ing. The distributions of aspect ratings per dataset
are shown in Figure 3. Five datasets are in En-
glish, one in Spanish (Ratebeer) and one in French
(RateBeer), so our results will also demonstrate
the language-independence of our method.

From every dataset we kept 1,200 texts as bags
of sentences, but we also used three full-size
datasets, namely Ratebeer ES (1,259 labeled re-
views), Ratebeer FR (17,998) and Audiobooks
(10,989). The features for each of them are word
vectors with binary attributes signaling word pres-
ence or absence, in a traditional bag-of-words
model (BOW). The word vectors are provided
with the first five datasets and we generated them
for the latter two, after lowercasing and stopword
removal. Moreover, for TED comments, we com-
puted TF-IDF scores using the same dimension-
ality as with BOW to experiment with a different
feature space. The target class labels were nor-
malized by the maximum rating in their scale, ex-
cept for TED talks where the votes were normal-
ized by the maximum number of votes over all the
emotion classes for each talk, and two emotions,
‘informative’ and ‘ok’, were excluded as they are
neutral ones.

6.2 Evaluation Protocol

We compare the proposed model, noted AP-
Weights, with four baseline ones – Aggre-
gated, Instance, Prime (Section 4) and Clus-
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Figure 3: Distributions of rating values per aspect rating class for the seven datasets.

tering (from github.com/garydoranjr/
mcr), which is an instance relevance method pro-
posed by Wagstaff et al. (2008) for aspect rating
prediction. First, for each aspect class, we opti-
mize all methods on a development set of 25%
of the data (300 randomly selected bags). Then,
we perform 5-fold cross-validation for every as-
pect on each entire data set and report the average
error scores using the optimal hyper-parameters
per method. In addition, we report for compar-
ison the scores of AverageRating, which always
predicts the average rating over the training set.

We report standard error metrics for regression,
namely the Mean Absolute Error (MAE) and the
Mean Squared Error (MSE). The former measures
the average magnitude of errors in a set of predic-
tions while the latter measures the average of their
squares, which are defined over the test set of bags
Bi respectively as MAE = (

∑k
i=1 |f(Bi)−yi|)/k

and MSE = (
∑k

i=1(f(Bi) − yi)2)/k. The cross-
validation scores are obtained by averaging the
MAE and MSE scores on each fold.

To find the optimal hyper-parameters for each
model, we perform 3-fold cross-validation on the
development set using exhaustive grid-search over
a fine-grained range of possible values and se-
lect the ones that perform best in terms of MAE.
The hyper-parameters to be optimized for the
baselines (except AverageRating) are the regular-
ization terms λ2, λ1 of their possible regression
model f , namely SVR which uses the `2 norm
and Lasso which uses the `1 norm. As for AP-
Weights, it relies on three regularization terms,
namely ε1, ε2, ε3 of the `2-norm for f1, f2 and
f3 regression models. Lastly, for the Clustering
baseline, we use the f2 regression model, which
relies on ε2 and the number of clusters k, opti-

mized over {5, ..., 50} with step 5, for its cluster-
ing algorithm, here k-Means. All the regulariza-
tion terms are optimized over the same range of
possible values, noted a · 10b with a ∈ {1, . . . , 9}
and b ∈ {−4, . . . ,+4}, hence 81 values per term.
For the regression models and evaluation proto-
col, we use the scikit-learn machine learning li-
brary (Pedregosa et al., 2012). Our code and data
are available in the first author’s website.

7 Experimental Results

7.1 Aspect Rating Prediction

The results for aspect rating prediction are given
in Table 2. The proposed APWeights method
outperforms Aggregated (`2) and Aggregated (`1)
i.e. SVR and Lasso along with all other baselines
on each case. The SVR baseline has on average
11% lower performance than APWeights in terms
of MSE and about 6% in terms of MAE. Simi-
larly, the Lasso baseline has on average 13% lower
MSE and 8% MAE than APWeights. As shown
in Figure 4, APWeights also outperforms them for
each aspect in the five review datasets. The In-
stance method with `1 performed well on BeerAd-
vocate and Toys & Games (for MSE), and with `2
performed well on Ratebeer (ES), RateBeer (FR)
and Toys & Games (for MAE). Therefore, the
instance-as-example assumption is quite appropri-
ate for this task, however both options score be-
low APWeights – by about 5% MAE, and 8%/9%
MSE, respectively. The Prime method with `1 per-
formed well only on the BeerAdvocate dataset and
Prime with `2 only on the Toys & Games dataset,
always with lower scores than APWeights, namely
about 9% MAE for both and 15%/18% MSE re-
spectively. This suggests that the primary-instance
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REVIEW LABELS
BeerAdvocate RateBeer (ES) RateBeer (FR) Audiobooks Toys & Games

Model \\\ Error MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
AverageRating 14.20 3.32 16.59 4.31 12.67 2.69 21.07 6.75 20.96 6.75
Aggregated (`1) 13.62 3.13 15.94 4.02 12.21 2.58 20.10 6.14 20.15 6.33
Aggregated (`2) 14.58 3.68 14.47 3.41 12.32 2.70 19.08 5.99 18.99 5.93
Instance (`1) 12.67 2.89 14.91 3.54 11.89 2.48 20.13 6.17 20.33 6.34
Instance (`2) 13.74 3.28 14.40 3.39 11.82 2.40 19.26 6.04 19.70 6.59
Prime (`1) 12.90 2.97 15.78 3.97 12.70 2.76 20.65 6.46 21.09 6.79
Prime (`2) 14.60 3.64 15.05 3.68 12.92 2.98 20.12 6.59 20.11 6.92
Clustering (`2) 13.95 3.26 15.06 3.64 12.23 2.60 20.50 6.48 20.59 6.52
APWeights (`2) 12.24 2.66 14.18 3.28 11.37 2.27 18.89 5.71 18.50 5.57
APW vs. SVR (%) +16.0 +27.7 +2.0 +3.8 +7.6 +15.6 +1.0 +4.5 +2.6 +6.0
APW vs. Lasso (%) +10.1 +15.1 +11.0 +18.4 +6.8 +11.8 +6.0 +6.9 +8.1 +11.9
APW vs. 2nd best (%) +3.3 +7.8 +1.5 +3.3 +3.7 +4.9 +1.0 +4.5 +2.6 +6.0

Table 2: Performance of aspect rating prediction (the lower the better) in terms of MAE and MSE (× 100)
with 5-fold cross-validation. All scores are averaged over all aspects in each dataset. The scores of the
best method are in bold and the second best ones are underlined. Significant improvements (paired t-test,
p < 0.05) are in italics. Fig. 4 shows MSE scores per aspect for three methods on five datasets.

assumption is not the most appropriate for this
task. Lastly, even though Clustering is an instance
relevance method, it has similar scores to Prime,
presumably because the relevances are assigned
according to the computed clusters and they are
not directly influenced by the task’s objective.

To compare with the state-of-the-art results ob-
tained by McAuley et al. (2012), we experimented
with three of their full-size datasets. Splitting each
dataset in half for training vs. testing, and using
the optimal settings from our experiments above,
we measured the average MSE over all aspects.
APWeights improved over Lasso by 10%, 26%
and 17% MSE respectively on each dataset – the
absolute MSE scores are .038 for Lasso vs. .034
for APWeights on Ratebeer SP; .023 vs. .017 on
Ratebeer FR; .063 vs. .052 on Audiobooks. Sim-
ilarly, when compared to the best SVM baseline
provided by the McAuley et al., our method im-
proved by 32%, 43% and 35% respectively on
each dataset, though it did not use their rating
model. Moreover, the best model proposed by
McAuley et al., which uses a joint rating model
and an aspect-specific text segmenter trained on
hand-labeled data, reaches MSE scores of .03,
.02 and .03, which is comparable to our model
that does not use these features (.034, .017, .052),
though it could benefit from them in the future.
Lastly, as mentioned by the same authors, predic-
tors which use segmented text, for example with
topic models as in (Lu et al., 2011), do not neces-
sarly outperform SVR baselines; instead they have
marginal or even no improvements, therefore, we
did not further experiment with them. Interes-

SENT. LABELS EMO. LABELS
TED comm. TED talks

Model \\\ Error MAE MSE MAE MSE
AverageRating 19.47 5.05 17.86 6.06
Aggregated (`1) 17.08 4.17 15.98 5.03
Aggregated (`2) 16.88 4.47 15.24 4.97
Instance (`1) 17.69 4.37 16.48 5.30
Instance (`2) 16.93 4.24 16.10 5.57
Prime (`1) 17.39 4.37 15.98 5.78
Prime (`2) 18.03 4.91 16.74 5.94
Clustering (`2) 17.64 4.34 17.71 6.02
APWeights (`2) 15.91 3.95 15.02 4.89
APW vs SVR (%) +5.7 +11.5 +1.5 +1.6
APW vs Lasso (%) +6.8 +5.3 +6.0 +2.9
APW vs 2nd (%) +5.7 +5.3 +1.5 +1.6

Table 3: MAE and MSE (× 100) on sentiment
and emotion prediction with 5-fold c.-v. Scores
on TED talks are averaged over the 12 emotions.
The scores of the best method are in bold and the
second best ones are underlined. Significant im-
provements (paired t-test, p < 0.05) are in italics.

tignly, multiple-instance learning algorithms un-
der several assumptions go beyond SVR baselines
with BOW and even more sophisticated features
such as TF-IDF (see below).

7.2 Sentiment and Emotion Prediction

Our method is also competitive for sentiment pre-
diction over comments on TED talks, as well as
for talk-level emotion prediction with 12 dimen-
sions from subsets of 10 comments on each talk
(see Table 3). APWeights outperforms SVR and
Lasso, as well as all other methods for each task.
For sentiment prediction, SVR is outperformed by
11% MSE and Lasso by 5%. For emotion pre-
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Figure 4: MSE scores of SVR, Lasso and APWeights for each aspect over the five review datasets.

diction (averaged over all 12 aspects), differences
are smaller, at 1.6% and 2.9% respectively. These
smaller differences could be explained by the fact
that among the 10 most recent comments for each
talk, many are not related to the emotion that the
system tries to predict.

As mentioned earlier, the proposed model does
not make any assumption about the feature space.
Thus, we examined whether the improvements it
brings remain present even with a different fea-
ture space, for instance based on TF-IDF instead
of BOW with counts. For sentiment prediction on
TED comments, we found that by changing the
feature space to TF-IDF, strong baselines such as
Aggregated (`1) and (`2), i.e. SVR and Lasso, im-
prove their performance (16.25 and 16.59 MAE;
4.16 and 3.97 MSE respectively). However, AP-
Weights still outperforms them on both MAE and
MSE scores (15.35 and 3.63), improving over
SVR by 5.5% on MAE and 12.5% on MSE, and
over Lasso by 7.4% on MAE and 8.5% on MSE.
These promising results suggest that improve-
ments with APWeights could be observed also on
more sophisticated feature spaces.

7.3 Interpreting the Relevance Weights
Apart from predicting ratings, the MIR scores as-
signed by our model reflect the contribution of
each sentence to these predictions.

To illustrate the explanatory power of our model
(until a dataset for quantitative analysis becomes
available), we provide examples of predictions
on test data taken from the cross-validation folds
above. Table 5 displays the most relevant com-

Sentences per comment ψ̂i ŷi yi
“Very brilliant and witty, as well as
great improvisation.”

0.64
5.0 5.0

“I enjoyed this one a lot.” 0.36
“That’s great idea, I really like it!” 0.56

4.2 4.0“I can’t wait to try it, but first thing,
I need a house with big windows,
next year, maybe I can do that.”

0.44

“Unfortunately countries are not led
by gifted children.”

0.48

2.4 2.0
“They are either dictated by the
most extreme personalities who
crave nothing but power or man-
aged by politicians who are voted in
by a far from gifted population.”

0.52

“I am very disappointed by this,
smug, cliched and missing so much
information as to be almost (...)”’

0.43

1.8 1.0
“No mention of ship transport lets
say 50% of all material transport,
no mention of rail transport, (...)”

0.29

“I am sorry to be so negative, this
just sounds like a sales pitch that he
has given too many times (...).”

0.28

Table 4: Predicted sentiment for TED comments:
yi is the actual sentiment, ŷi the predicted one, and
ψ̂i the estimated relevance of each sentence.

ment for two correctly predicted emotions on two
TED talks, based on the ψ̂i relevance scores, along
with the ψ̂i scores of the other comments, for
two emotion classes: ‘beautiful’ and ‘courageous’.
These comments appear to reflect correctly the
fact that the respective emotion is the majority one
in each of the comments. As noted earlier, this
task is quite challenging since we use only the ten
most recent comments for each talk.

Table 4 displays four TED comments selected
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Class Top comment per talk (according to weights ψi) ψ̂i distribution

inspiring

“It seems to me that the idea worth spreading of this TED Talk is inspiring and key for
a full life. ‘No-one else is the authority on your potential. You’re the only person that
decides how far you go and what you’re capable of.’ It seems to me that teens actually
think that. As a child one is all knowing and all capable. How did we get to the (...)”

beautiful

“The beauty of the nature. It would be more interesting just integrates his thought and
idea into a mobile device, like a mobile, so we can just turn on the nature gallery in any
time. The paintings don’t look incidental but genuinely thought out, random perhaps, but
with a clear grand design behind the randomness. Drawing is an art where it doesn’t (...)”

funny

“Funny story, but not as funny as a good ’knock, knock’ joke. My favorite knock-knock
joke of all time is Cheech & Chong’s ‘Dave’s Not Here’ gag from the early 1970s. I’m
still waiting for someone to top it after all these years. [Knock, knock] ‘Who is it?’ the
voice of an obviously stoned male answers from the other side of a door, (...)”

courageous

“I was a soldier in Iraq and part of the unit represented in this documentary. I would ques-
tion anyone that told you we went over there to kill Iraqi people. I spent the better part
of my time in Iraq protecting the Iraqi people from insurgents who came from countries
outside of Iraq to kill Iraqi people. We protected families men, women, and (...)”

Table 5: Two examples of top comments (according to weights ψi) for correctly predicted emotions in
four TED talks (score 1.0) and the distribution of weights over the 10 most recent comments in each talk.

Figure 5: Top words based on Φ for predicting four emotions from comments on TED talks.

from the test set of a given fold, for the comment-
level sentiment prediction task. The table also
shows the ψ̂i relevance scores assigned to each
of the composing sentences, the predicted polar-
ity scores ŷi and the actual ones yi. We observe
that the sentences that convey the most sentiment
are assigned higher scores than sentences with less
sentiment, always with respect to the global polar-
ity level. These examples suggest that, given that
APWeights has more degrees of freedom for inter-
pretation, it is able to assign relevance to parts of
a text (here, sentences) and even to words, while
other models can only consider words. Hence, the
assigned weights might be useful for other NLP
tasks mentioned below.

8 Conclusion and Future Work

This paper introduced a novel MIR model for as-
pect rating prediction from text, which learns in-
stance relevance together with target labels. To the
best of our knowledge, this has not been consid-
ered before. Compared to previous work on MIR,
the proposed model is competitive and more effi-
cient in terms of complexity. Moreover, it is not
only able to assign instance relevances on labeled
bags, but also to predict them on unseen bags.

Compared to previous work on aspect rating

prediction, our model performs significantly bet-
ter than BOW regression baselines (SVR, Lasso)
without using additional knowledge or features.
The improvements persist even when the sophis-
tication of the features increases, suggesting that
our contribution may be orthogonal to feature en-
gineering or learning. Lastly, the qualitative eval-
uation on test examples demonstrates that the pa-
rameters learned by the model are not only useful
for prediction, but they are also interpretable.

In the future, we intend to test our model on sen-
timent classification at the sentence-level, based
only on document-level supervision (Täckström
and McDonald, 2011). Moreover, we will experi-
ment with other model settings, such as regulariza-
tion norms other than `2 and feature spaces other
than BOW or TF-IDF. In the longer term, we plan
to investigate new methods to estimate instance
weights at prediction time, and to evaluate the im-
pact of assigned weights on sentence ranking, seg-
mentation or summarization.
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Abstract

We propose a semi-supervised bootstrap-
ping algorithm for analyzing China’s for-
eign relations from the People’s Daily.
Our approach addresses sentiment tar-
get clustering, subjective lexicons extrac-
tion and sentiment prediction in a unified
framework. Different from existing algo-
rithms in the literature, time information
is considered in our algorithm through a
hierarchical bayesian model to guide the
bootstrapping approach. We are hopeful
that our approach can facilitate quantita-
tive political analysis conducted by social
scientists and politicians.

1 Introduction

“We have no permanent allies, no permanent friends, but only

permanent interests.”

-Lord Palmerston

Newspapers, especially those owned by official
governments, e.g., Pravda from Soviet Union,
or People’s Daily from P.R. China, usually pro-
vide direct information about policies and view-
points of government. As national policies change
over time, the tone that newspapers adopt, es-
pecially sentiment, changes along with the poli-
cies. For example, there is a stark contrast be-
tween the American newspapers’ attitudes towards
Afghanistan before and after 911. Similarly, con-
sider the following examples extracted from the
People’s Daily1:

• People’ Daily, Aug 29th, 1963
All those who are being oppressed and exploited, Unite
!! Beat US Imperialism and its lackeys.

• People’s Daily, Oct, 20th, 2002
A healthy, steady and developmental relationship be-
tween China and US, conforms to the fundamental in-
terests of people in both countries, and the trend of his-
torical development.

1Due to the space constraints, we only show the translated
version in most of this paper.

Automatic opinion extraction from newspapers
such as people’s daily can facilitate sociologists
’or political scientists’ research or help political
pundits in their decision making process. While
our approach applies to any newspaper in princi-
ple, we focus here on the People’s Daily2 (Renmin
Ribao), a daily official newspaper in the People’s
Republic of China.

While massive number of works have been in-
troduced in sentiment analysis or opinion target
extraction literature (for details, see Section 2), a
few challenges limit previous efforts in this spe-
cific task: First, the heavy use of linguistic phe-
nomenon in the People’s Daily including rhetoric,
metaphor, proverb, or even nicknames, makes ex-
isting approaches less effective for sentiment in-
ference as identifying these expressions is a hard
NLP problem in nature.

Second, as we are more interested in the degree
of sentiment rather than binary classification (i.e.,
positive versus negative) towards an entity (e.g.
country or individual) in the news article, straight-
forward algorithms to apply would be document-
level sentiment analysis approaches such as vector
machine/regression (Pang et al., 2002) or super-
vised LDA (Blei and McAuliffe, 2010). A single
news article, usually contains different attitudes
towards multiple countries or individuals simul-
taneously (say praising “friends” and criticizing
“enemies”), as shown in the following example
from the People’s Daily of Mar. 17th, 1966:

US imperialism set up a puppet regime in Vietnam and

sent expeditionary force. . . People of Vietnam prevailed over

the modern-equipped US troops with a vengeance. . . The re-

sult of Johnson Government’s intensifying invasion is that. . . .

There will be the day, when people from all over the world ex-

ecute the heinous US imperialism by hanging on a gibbet. . . .

The heroic people of Vietnam, obtained great victory in the

struggle against the USA imperialism. . .

The switching of praising of Vietnam and
criticizing of the USA would make aforemen-

2paper.people.com.cn/rmrb/
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tioned document-level machine learning algo-
rithms based on bags of words significantly less
effective if not separating attitudes towards Viet-
nam from toward the USA in the first place. Mean-
while, the separating task is by no means trivial in
news articles. While US imperialism, US troops,
Johnson Government, invaders, Ngo Dinh Diem3

all point to the USA or its allies, People of Viet-
nam, the Workers’ party4, Ho Chi Minh5, Viet-
nam People’s Army point to North Vietnam side.
Clustering entities according to sentiment, espe-
cially in Chinese, is fundamentally a difficult task.
And our goal, trying to identify entities towards
whom an article holds the same attitudes, is dif-
ferent from standard coreference resolution, since
for us the co-referent group may include several
distinct entities.

To address the aforementioned problems, in this
paper, we propose a sentiment analysis approach
based on the following assumptions:

1. In a single news article, sentiment towards an
entity is consistent.

2. Over a certain period of time, sentiments to-
wards an entity are inter-related.

The assumptions will facilitate opinion analy-
sis: (1) if we can identify the attitude towards an
entity (e.g., Vietnam) in a news article as posi-
tive, then negative attitudes expressed in the arti-
cle are about other entities. (2) The assumption
enables sentiment inference for unseen words in a
bootstrapping way without having to employ so-
phisticated NLP algorithms. For example, from
1950s to 1960s, USA is usually referred to as “a
tiger made of paper” in translated version. It is
a metaphor indicating things that appear powerful
(tiger) but weak in nature (made of paper). If it is
first identified that during the designated time pe-
riod, China held a pretty negative attitude towards
the USA based on clues such as common nega-
tive expressions (e.g., “evil” or “reactionary”), we
can easily induce that “a tiger made of paper”, is a
negative word.

Based on aforementioned two assumptions,
we formulate our approach as a semi-supervised
model, which simultaneously bootstrap sentiment
target lists, extracts subjective vocabularies and

3Leader of South Vietnam
4Ruling political party of Vietnam.
5One of Founders of Democratic Republic of Vietnam

(North Vietnam) and Vietnam Workers’ party.

performs sentiment analysis. Time information is
considered through a hierarchical bayesian model
to guide time-, document-, sentence- and term-
level sentiment inference. A small seed set of sub-
jective words constitutes our only source of super-
vision.

The main contributions of this paper can be
summarized as follows:

1. We propose a semi-supervised bootstrapping algorithm
tailored for sentiment analysis in the People’s daily
where time information is incorporated. We are hope-
ful that sentiment cues can shed insights on other NLP
tasks such as coreference or metaphor recognition.

2. In Analytical Political Science, the quantitative evalu-
ation of diplomatic relations is usually a manual task
(Robinson and Shambaugh, 1995). We are hopeful that
our algorithm can enable automated political analysis
and facilitate political scientists’ and historians’ work.

2 Related Works

Significant research efforts have been invested into
sentiment analysis and opinion extraction. In one
direction, researchers look into predicting over-
all sentiment polarity at document-level (Pang and
Lee, 2008), aspect-level (Wang et al., 2010; Jo
and Oh, 2011), sentence-level (Yang and Cardie,
2014) or tweet-level (Agarwal et al., 2011; Go
et al., 2009), which can be treated as a clas-
sification/regression problem by employing stan-
dard machine-learning techniques, such as Naive
Bayesian, SVM (Pang et al., 2002) or supervised-
LDA (Blei and McAuliffe, 2010) with different
types of features (i.e., unigram, bigram, POS).

Other efforts are focused on targeted sentiment
extraction (Choi et al., 2006; Kim and Hovy, 2006;
Jin et al., 2009; Kim and Hovy, 2006). Usu-
ally, sequence labeling models such as CRF (Laf-
ferty et al., 2001) or HMM (LIU et al., 2004) are
employed for identifying opinion holders (Choi
et al., 2005), topics of opinions (Stoyanov and
Cardie, 2008) or opinion expressions (e.g. (Breck
et al., 2007; Johansson and Moschitti, 2010; Yang
and Cardie, 2012)). Kim and Hovy (2004; 2006)
identified opinion holders and targets by exploring
their semantics rules related to the opinion words.
Choi et al. (2006) jointly extracted opinion expres-
sions, holders and their is-from relations using an
ILP approach. Yang and Cardie (2013) introduced
a sequence tagging model based on CRF to jointly
identify opinion holders, opinion targets, and ex-
pressions.

Methods that relate to our approach include
semi-supervised approaches such as pipeline or
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propagation algorithms (Qiu et al., 2011; Qiu et
al., 2009; Zhang et al., 2010; Duyu et al., 2013).
Concretely, Qiu et al. (2011) proposed a rule-
based semi-supervised framework called double
propagation for jointly extracting opinion words
and targets. Compared to existing bootstrapping
approaches, our framework is more general one
with less restrictions6. In addition, our approach
harness global information (e.g. document-level,
time-level) to guide the bootstrapping algorithm.
Another related work is the approach introduced
by O’Connor et al. (O’Connor et al., 2013) that
extracts international relations from political con-
texts.

3 the People’s Daily

The People’s Daily7 (Renmin Ribao), established
on 15 June 1946, is a daily official newspaper in
the People’s Republic of China, with a approxi-
mate circulation of 2.5 million worldwide. It is
widely recognized as the mouthpiece of the Cen-
tral Committee of the Communist Party of China
(CPC) (Wu, 1994). Editorials and commentaries
are usually regarded both by foreign observers and
Chinese readers as authoritative statements of gov-
ernment policy8. According to incomplete statis-
tics, there have benn at least 13 major redesigns
(face-liftings) for the People’s Daily in history, the
most recent in 2013.

4 Model

In this section, we present our model in detail.

4.1 Target and Expression extraction
We first extract expressions (attitude or sentiment
related terms or phrases) and target (entities to-
ward whom the opinion holder (e.g., the People’s
Daily) holds an attitude). See the following exam-
ples:

1. [Albania Workers’ party][T] is the [glorious][E]
[party][T] of [Marxism and Leninism][E].

2. The [heroic][E] [people of Vietnam][T] obtained
[great][E] [victory][E] against [the U.S. imperial-
ism][T,E].

3. We strongly [warn][E] Soviet Revisionism][E,T].

6Qiu et al.’s rule base approach makes strong assumptions
that consider opinion word to adjectives and targets to be
nouns/noun, thus only capable of capturing sentences with
simple patterns.

7paper.people.com.cn/rmrb/
8http://en.wikipedia.org/wiki/People’

s_Daily

While the majority of subjective sentences omit
the opinion holder, as in Examples 1 and 2, there
are still a few circumstances where opinion hold-
ers (e.g., “we”, “Chinese people”, “Chinese gov-
ernment”) are retained (Example 3). Some words
(i.e. U.S. imperialism) can be both target and ex-
pression, and there can be multiple targets (Exam-
ple 2) within one sentence.

We use a semi-Markov Conditional Random
Fields (semi-CRFs) (Sarawagi and Cohen, 2004;
Okanohara et al., 2006) algorithm for target and
expression extraction. Semi-CRF are CRFs that
relax the Markovian assumptions and allow for se-
quence labeling at the segment level. It has been
demonstrated more powerful that CRFs in multi-
ple sequence labeling applications including NER
(Okanohara et al., 2006), Chinese word segmenta-
tion (Andrew, 2006) and opinion expression iden-
tification (Yang and Cardie, 2012). Our approach
is an extension of Yang and Cardie (2012)’s sys-
tem9. Features we adopted included:
• word, part of speech tag, word length.
• left and right context words within a window

of 2 and the correspondent POS tags.
• NER feature.
• subjectivity lexicon features from dictio-

nary10. The lexicon consists of a set of Chi-
nese words that can act as strong or weak
cues to subjectivity.
• segment-level syntactic features defined in

(Yang and Cardie, 2012).
Most existing NER systems can barely recog-

nize entities such as [ Vietnamese People’s Army ]
as a unified name entity in that Chinese parser usu-
ally divides them into a series of separate words,
namely [ Vietnamese/People’s Army ]. To han-
dle this problem, we first employ the Stanford
NER engine11 and then iteratively ‘chunk’ con-
secutive words, at least one of which is labeled as
a name entity by the NER engine, before check-
ing whether the chunked entity matches a bag of
words contained in Chinese encyclopedia, e.g.,
Baidu Encyclopedia12 and Chinese Wikipedia13.

9Yang and Cardie’s system focuses on expression extrac-
tion (not target) and identifies direct subjective expression
(DSE) and expressive subjective expression (ESE).

10http://ir.dlut.edu.cn/NewsShow.aspx?
ID=215

11http://nlp.stanford.edu/downloads/
CRF-NER.shtml

12http://baike.baidu.com/
13http://zh.wikipedia.org/wiki/

Wikipedia
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4.2 Notation

Here we describe the key variables in our model.
Let Ci denote the name entity of country i, Gi
denote its corresponding collection of news ar-
ticles. Gi is divided into 60*4=240 time spans
(one for each quarter of the year, 60 years in to-
tal), Gi = {Gi,t}. Gi,t is composed of a series
of documents {d}, and d is composed of a series
of sentences {S}, which is represented as a tuple
S = {ES , TS}, where ES is the expression and
TS is the target of current sentence.
Sentiment Score m: As we are interested in the
degree of positiveness or negativeness, we divided
international relations into 7 categories: Antag-
onism (score 1), Tension (score 2), Disharmony
(score 3), Neutrality (score 4), Goodness (score
5), Friendliness (score 6), Brotherhood (Comrade-
ship) (score 7) based on researches in political sci-
ence literature14. Each of Gi,t, document d, sen-
tence S and expression term w is associated with
a sentiment score mi,t, md, mS and mw, respec-
tively. M denotes the list of subjective terms,
M = {w,mw}
Document Target List T di : We use T di to denote
the collection of entity targets in document d ∈ Gi
which the People’s daily holds similar attribute to-
wards. For example, suppose document d belongs
to Vietnam article collection (Ci = V ietnam), T di
can be {Vietnam, Workers’ party, People’s Army,
Ho Chi Minh}. While U.S., U.S. troops and Lyn-
don Johnson are also entity targets found in d, they
are not supposed to be included in T di since the au-
thor holds opposite attributes.
Sentence List di: We further use di denotes the
subset of sentences in d talking about entities from
target list T di . Similarly, in a Vietnam related arti-
cle, sentences talking about the U.S. are not sup-
posed to be included in di.

4.3 Hierarchical Bayesian Markov Model

In our approach, time information is incorporated
through a hierarchical Bayesian Markov frame-
work where mi,t is modeled as a first-order Pois-
son Process given the coherence assumption in
time-dependent political news streams.

mi,t ∼ Poisson(mi,t,mi,t−1) (1)

14http://www.imir.tsinghua.edu.cn/
publish/iis/7522/20120522140122561915769

Figure 1: Hierarchical Bayesian Model for Infer-
ence

For each document d ∈ Gi,t, md is sampled from
a Poisson distribution with mean value of mi,t.

md ∼ Poisson(md,mi,t) (2)

For sentence S ∈ di,mS is sampled frommd from
a Poisson distribution based on md.

mS ∼ Poisson(mS ,md) (3)

4.4 Intialization
Given a labeled subjective list M , for article d ∈
Gi, we initialize T di with the name of entity Ci, di
with sentences satisfying TS = Ci and ES ∈ M .
mS for S ∈ di, is initialized as the average score
of its containing expression Es based on M . Then
the MCMC algorithm is applied by iteratively up-
dating md and mi,t according to the posterior dis-
tribution. Let P (m|·) denotes the probability of
parameter m given all other parameters and the
posterior distributions are given by:

P (md = λ|·) ∝ Poisson(λ,mi,t)
∏
S∈di

Poisson(λ,mS)

P (mi,t = λ|·) ∝ Poisson(λ,mi,t−1)

× Poisson(mi,t+1, λ) · ×
∏

d∈Gi,t

Poisson(md, λ)

(4)

4.5 Semi-supervised Bootstrapping
Our semi-supervised learning algorithm updates
M , T di , di, Sd and Sdi iteratively. A brief inter-
pretation is shown in Figure 2 and the details are
shown in Figure 4. Concretely, for each sentence
S ∈ d − di , step 1 means, if its expression ES
exists in subjective list M , we added its target TS
to T di and S to di. step 2 means if the target TS ex-
ists in T di , its expression,Es, is added to subjective
list M with score md. As M and T di change in the
iteration, in step 3, we again go over all unconsid-
ered sentences with new M and T di . md and mi,t

are then updated based on new mS using MCMC
in Equ. 4. Note that sentences with pronoun target
are not involved in the bootstrapping procedure.
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Figure 2: A brief demonstration of the adopted semi-supervised algorithm. (a)→(b): Sentence (2) is
added to di due to the presence of already known subjective term “great” . Target B is added to target list
T di . (b)→(c): term “heroic” is added to subjective word list M with score 7 since it modifies target B.

Input: Entity Ci, Gi, subjective term list M
• for each entity i, each document d
T di = {Ci}, di = {S|S ∈ d,Ci = TS , Es ∈M}
for each sentence S ∈ di:
. ms = 1

|ES∈M|
∑
mEs

• Iteratively update mi,t, md using MCMC based on
posterior probability shown in Equ.4.

Output: {di}, {T di }, {mi,t} and {md}

Figure 3: Initialization Algorithm.

4.6 Error Prevention in Bootstrapping

Error propagation is highly influential and damag-
ing in bootstrapping algorithms, especially when
extending very limited data to huge corpora. To
avoid the collapse of the algorithm, we select can-
didates for opinion analysis in a extremely strict
manner, at the sacrifice of many subjective sen-
tences15. Concretely, we only consider sentences
with exactly one target and at least one expression.
Sentences with multiple targets (e.g., Example 2
in Section 4.1) or no expressions, or no targets are
discarded.

In addition to the strict sentence selection ap-
proach, we adopt the following methods for self-
correction in the boot-strapping procedure:

1. For T1, T2 ∈ T di , (E1, T1) ∈ S1, (E2, T2) ∈
S2, E1, E2 ∈M , if |mE1−mE2 | > 1: Expel
E1 andE2 fromM , expel T1 and T2 from T di ,
with the exception of original labeled data.
Explanation: If sentiment scores for two ex-
pressions, whose correspondent targets both

15Negative effect of strict sentence selection can be partly
compensated by the consideration of time-level information

Input: Entity {Ci}, Articles Collections {Gi}, subjective
term list M, sentiment score {md}, {mi,t}, target list for
each document {T di }
Algorithm:
while not convergence:
• for each entity Ci, document d:

for each sentence S ∈ d− di
1. if ES ∈M , Ts 6∈ T di

T di = T di
⋃
Ts, di = di

⋃
S, mS = md

2. if Ts ∈ T ti , Es 6∈M
M = M

⋃
(Es, Sd), di = di

⋃
S, ms = md

3. if ES ∈M,TS ∈ T di
di = di

⋃
S, mS = mEs

•Iteratively update mi,t, md using MCMC based on
posterior probability shown in Equ.4 .
end while:
Output: subjective term list M, score {mi,t}

Figure 4: Semi-supervised learning algorithm.

belong to the target list T di , diverge enough,
we discard both expressions and targets based
according to Assumption 1: sentiments to-
wards one entity (or its allies) in an article
should be consistent.

2. ∃S ∈ d, TS ∈ T di , |mES − md| > 1, TS is
expelled from T di .
Explanation: If target TS for sentence S be-
longs to T di , but its corresponding expression
Es is not consistent with article-level senti-
ment md, TS is expelled from T di .

5 Experiment

5.1 Data and Preprocessing

Our data set is composed of the People’s daily
from 1950 to 2010, across a 60-year time span.
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antagonism (m=1) 残暴(extremely cruel),敌人(enemy)
tension (m=2) 愤慨(indignation),侵犯(offend)

disharmony (m=3) 失望(disappointed),遗憾(regret)
neutrality (m=4) 关切,关注(concern)
goodness (m=5) 发展的(developmental),尊重(respect)
friendship (m=6) 友谊(friendship),朋友(friend)

brotherhood (m=7) 伟大(firmly),兄弟(brother)

Table 1: Illustration of subjective list M

News articles are first segmented using ICTCLAS
Chinese segmentation word system16 (Zhang et
al., 2003). Articles with fewer than 200 Chi-
nese words are discarded. News articles are clus-
tered by the presence of a country’s name more
than 2 times based on a country name list from
Wikipedia17. Articles mentioning more than 5 dif-
ferent countries are discarded since they usually
talk about international conferences. Note that one
article can appear in different collections (example
in Section 1 will appear in both Vietnam and the
U.S. collection).

Compound sentences are segmented into
clauses based on dependency parse tree. Then
those containing more than 50 characters or
less than 4 characters are discarded. To avoid
complicated inference, sentences with negation
indicators are discarded.

5.2 Obtaining Subjectivity Word List

Since there are few Chinese subjectivity lexicons
(with degrees) available and those exist may not
serve our specific purpose, we manually label a
small number of Chinese subjective terms as seed
corpus. We divided the labeling process into 2
steps rather than directly labeling vocabularies18.
We first selected 100 news articles and assigned
each of them (as well as the appropriate coun-
try entity Ci) to 2 students majoring in Interna-
tional Studies, asking them to give a label sen-
timent score (1 to 7) according to the rules de-
scribed in Section 4.2. 20 students participated
in the procedure. Since annotators have plenty of
background knowledge, they agreed on 98 out of
100. Second, we selected out subjectivity lexicons
by matching to a comprehensive subjectivity lex-
icons list19. and ask 2 students select the candi-
dates that signal the document-level label from the

16http://ictclas.org/
17http://zh.wikipedia.org/wiki/国家列表-(按洲排列)
18We tried direct vocabulary labeling in the first place, but

got low score for inter agreement, where value of Cohen′s κ
is only 0.43.

19http://ir.dlut.edu.cn/NewsShow.aspx?
ID=215

P R F
Total

semi-CRF 0.74 0.78 0.76
CRF 0.73 0.66 0.68

Single
semi-CRF 0.87 0.92 0.90

CRF 0.80 0.87 0.83

Table 2: Results for Expressions/Targets extrac-
tion.

first step. According to whether a word a selected
or not, the value of Cohen′s κ is 0.78, showing
substantial agreement. For the small amount of la-
bels on which the judges disagree, we recruited an
extra judge and to serve as a tie breaker. Table 1
shows some labeled examples.

5.3 Targets and Expressions Extraction
As the good performance of semi-CRF in opinion
extraction has been demonstrated in previous work
(Yang and Cardie, 2012), we briefly go over model
evaluation in this subsection for brevity. We man-
ually labeled 600 sentences and performed 5-fold
cross validation for evaluation. We compare semi-
CRF to Standard CRF. We report performances on
two settings in Table 2. The first setting, Total,
corresponds to performance on the whole dataset,
while second one Single, denotes the performance
on the set of sentences with only one target, which
we are more interested in because multiple-target
sentences are discarded in our algorithm. It turned
out that semi-CRF significantly outputs standard
CRF, approaching 0.90 F-1 score on Single setting.

5.4 Foreign Relation Evaluation
Gold-standard foreign relations are taken from Po-
litical Science research at the Institute of Modern
International Relations, Tsinghua University, ex-
tracted from monthly quantitative China foreign
relations reports with 7 countries (U.S., Japan,
Russia/Soviet, England, France, India, and Ger-
many) from 1950 to 201220.

We consider several baselines. For fair compar-
ison, we use identical processing techniques for
each approach. Some baselines make article-level
predictions, for which we obtain time-period level
relation prediction by averaging the documents.

Coreference+Bootstrap (CB): We first imple-
mented Ngai and Wang’s Chinese coreference sys-

20Details found here http://www.imir.tsinghua.
edu.cn/publish/iisen/7523/index.html.
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Model Ours CB No-time
Pearson 0.895 0.753 0.808
Model SVR-d SLDA SVR-S

Pearson 0.482 0.427 0.688

Table 3: Pearson Correlation with Gold Standard.

tem (2007). We then bootstrap sentiment terms
and score based on entity coreference.

No-time: A simplified version of our approach
where each article is considered as an independent
unit and no time-level information is considered.
md is obtained by averaging its containing sen-
tences and used for later bootstrapping.

SVR-d: Uses SVMlight(Joachims, 1999) to
train a linear SVR (Pang and Lee, 2008) for
document-level sentiment prediction using the un-
igram feature. The 100 labeled documents are
used as training data.

SLDA: supervised-LDA (Blei and McAuliffe,
2010) for document-level label prediction. Topic
number is set to 10, 20, 50, 100 respectively and
we report the best result.

SVR-S: Sentence-level SVR to sentences with
presence of entityCi21. We obtain document-level
prediction by averaging its containing sentences
and then time-period level prediction by averaging
its containing documents.

We report the Pearson Correlation with gold
standards in table 3. As we can observe, simple
document-level regression models, i.e., SVR and
SLDA do not fit this task. The reason is sim-
ple: one article d can appear in different collec-
tions. Recall the Vietnam example in Section 1,
it appears in both GV ietnam and Gthe U.S.. Sen-
timent prediction for d should be totally opposite
in the two document collections: very positive in
GV ietnam and very negative in GUSA. But doc-
ument level prediction would treat them equally.
Our approach outperforms No-Time, illustrating
the meaningfulness of exploiting time-level infor-
mation in our task. Our system approaches around
0.9 correlation with the gold standards. The reason
why No-Time is better than CB is also simple: CB
includes only coreferent entities in the target list
(e.g., America for the USA article collection), and
therefore overlooks rich information provided by
non-coreferent entities (e.g., President Nixon or

21Features we explore include word entities in current sen-
tence, POS, a window of k ∈ {1, 2} words from the target
and the expression and corresponding POS, and the depen-
dency path between target and expression.

Nixon Government). No-Time instead groups en-
tities according to attitude, thereby enabling more
information to be harnessed. For SVR-S, as the
regression model trained from limited labeled data
can hardly cover unseen terms during testing, the
performance is just OK. SVR-S also suffers from
overlooking rich sources of information since it
only considers sentences with exact mention of the
name entity of the corresponding country.

Figure 5: Examples of China’s Foreign Relations.

6 Diplomatic Relations

“The enemy of my enemy is my friend”

—Arabic proverb

A central characteristic of post-World War Second
international system with which China had to deal
would be overwhelming preeminence of the USA
and USSR as each of the superpowers stood at
the center of a broad alliance system who was en-
gaged in an intense and protracted global conflict
with the other. We choose 6 countries and report
results in Figure 5. One of interesting things we
can observe from Figure 5 is that foreign attitudes
are usually divergent towards two opposing forces:
Sino-American relation (see Figure 5(a)) began to
improve when the Sino-Soviet relation (see Figure
5(b)) reached its bottom at the beginning of 1970s.
Similar patterns appear for Sino-Pakistan (see Fig-
ure 5(c)), Sino-India relations (see Figure 5(d))
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Figure 6: Top coreference terms Towards USA and Soviet Union/Russia versus time. Blue denotes words
that are both Target and positive words in M . Red denotes words that are both Target and negative words
in M

in early 1960s22, and Sino-Vietnam 5(f)), Sino-
American relations in late 1970s. On the con-
trast, attitudes are usually consistent toward allied
forces: Sino-Japan relations with Sino-USA re-
lations before 1990s, and Sino-Vietnam relations
with Sino-Soviet relations in late 1970s and 1980s.

Figure 6 presents top clustering target (T di ) in
the USA and Soviet Union/Russia article collec-
tion. As some of vocabulary terms can be both
target and expression, we use blue to label terms
with positive sentiment, red to label negative ones.
As we can see from Figure 6, targets(T ) extracted
by our model show a very clear pattern where al-
lies and co-referent entities are grouped. Another
interesting thing is, the subjectivity of target words
from different times is generally in accord with the
relation curves shown in Figure 5.

7 Conclusion and Discussion

In this paper, we propose a sentiment analy-
sis algorithm to track China’s foreign relations
from the People’s Daily. Our semi-supervised al-
gorithm harnesses higher level information (i.e.,
document-level, time-level) by incorporating a hi-
erarchical Bayesian approach into the framework,
to resolve sentiment target clustering, create sub-
jective lexicons, and perform sentiment prediction
simultaneously. While we focus here on the Peo-
ple’s Daily for diplomatic relation extraction, the
idea of our approach is general and can be ex-
tended broadly. Another contribution of this work
is the creation a comprehensive Chinese subjec-

22A fan of history can trace the crucial influence of the
USSR in Sino-India relation in 1960s

tive lexicon list. We are hopeful that our approach
can not only facilitate quantitative research by po-
litical scientists, but also shed light on NLP appli-
cations such as coreference and metaphor, where
sentiment clues can be helpful.

It is worth noting that, while harnessing time-
level information can indeed facilitate opinion
analysis, especially when labeled data is limited in
our specific task, it is not a permanent-perfect as-
sumption, especially considering the diversity and
treacherous currents at the international political
stage.

At algorithm-level, to avoid error propagation
due to limitations of current sentiment analysis
tools (even though semi-CRF produces state-of-art
performance in target and expression extraction
task, a performance of 0.8 F-value, when applied
to the whole corpus, can by no means satisfy
our requirements), we discard a great number of
sentences, among which is contained much useful
information. How to resolve these problems
and improve opinion extraction performance is
our long-term goal in sentiment analysis/opinion
extraction literature.

Acknowledgements
The authors want to thank Bishan Yang and Claire
Cardie for useful comments and discussions. The
authors are thankful for suggestions offered by
EMNLP reviewers.

References
Apoorv Agarwal, Boyi Xie, Ilia Vovsha, Owen Ram-

bow, and Rebecca Passonneau. 2011. Sentiment

474



analysis of twitter data. In Proceedings of the Work-
shop on Languages in Social Media.

Galen Andrew. 2006. A hybrid markov/semi-markov
conditional random field for sequence segmentation.
In EMNLP.

David M Blei and Jon D McAuliffe. 2010. Supervised
topic models. arXiv preprint arXiv:1003.0783.

Eric Breck, Yejin Choi, and Claire Cardie. 2007. Iden-
tifying expressions of opinion in context. In IJCAI.

Yejin Choi, Claire Cardie, Ellen Riloff, and Siddharth
Patwardhan. 2005. Identifying sources of opinions
with conditional random fields and extraction pat-
terns. In EMNLP.

Yejin Choi, Eric Breck, and Claire Cardie. 2006. Joint
extraction of entities and relations for opinion recog-
nition. In EMNLP.

Tang Duyu, Qin Bing, Zhou LanJun, Wong KamFai,
Zhao Yanyan, and Liu Ting. 2013. Domain-specific
sentiment word extraction by seed expansion and
pattern generation. arXiv preprint arXiv:1309.6722.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford.

Wei Jin, Hung Hay Ho, and Rohini K Srihari. 2009.
A novel lexicalized hmm-based learning framework
for web opinion mining. In ICML.

Yohan Jo and Alice H Oh. 2011. Aspect and senti-
ment unification model for online review analysis.
In ICWSM.

Thorsten Joachims. 1999. Making large scale svm
learning practical.

Richard Johansson and Alessandro Moschitti. 2010.
Syntactic and semantic structure for opinion ex-
pression detection. In Proceedings of the Four-
teenth Conference on Computational Natural Lan-
guage Learning.

Soo-Min Kim and Eduard Hovy. 2004. Determin-
ing the sentiment of opinions. In Proceedings of
the 20th international conference on Computational
Linguistics, page 1367. Association for Computa-
tional Linguistics.

Soo-Min Kim and Eduard Hovy. 2006. Extracting
opinions, opinion holders, and topics expressed in
online news media text. In Proceedings of the Work-
shop on Sentiment and Subjectivity in Text.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data.

Yun-zhong LIU, Ya-ping LIN, and Zhi-ping CHEN.
2004. Text information extraction based on hid-
den markov model [j]. Acta Simulata Systematica
Sinica.

Tie-Yan Liu. 2009. Learning to rank for information
retrieval. Foundations and Trends in Information
Retrieval.

Grace Ngai and Chi-Shing Wang. 2007. A knowledge-
based approach for unsupervised chinese corefer-
ence resolution. Computational Linguistics and
Chinese Language Processing, 12(4):459–484.

Daisuke Okanohara, Yusuke Miyao, Yoshimasa Tsu-
ruoka, and Jun’ichi Tsujii. 2006. Improving
the scalability of semi-markov conditional random
fields for named entity recognition. In ACL.

Brendan O’Connor, Brandon M Stewart, and Noah A
Smith. 2013. Learning to extract international rela-
tions from political context. In ACL.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and trends in infor-
mation retrieval.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification using
machine learning techniques. In EMNLP.

Guang Qiu, Bing Liu, Jiajun Bu, and Chun Chen.
2009. Expanding domain sentiment lexicon through
double propagation. In IJCAI.

Guang Qiu, Bing Liu, Jiajun Bu, and Chun Chen.
2011. Opinion word expansion and target extrac-
tion through double propagation. Computational
linguistics.

Thomas W Robinson and David L Shambaugh. 1995.
Chinese foreign policy: theory and practice. Oxford
University Press.

Sunita Sarawagi and William W Cohen. 2004. Semi-
markov conditional random fields for information
extraction. In NIPS.

Veselin Stoyanov and Claire Cardie. 2008. Topic iden-
tification for fine-grained opinion analysis. In Pro-
ceedings of the 22nd International Conference on
Computational Linguistics.

Hongning Wang, Yue Lu, and Chengxiang Zhai. 2010.
Latent aspect rating analysis on review text data: a
rating regression approach. In SIGKDD.

Guoguang Wu. 1994. Command communication: The
politics of editorial formulation in the people’s daily.
China Quarterly, 137:194–211.

Bishan Yang and Claire Cardie. 2012. Extracting opin-
ion expressions with semi-markov conditional ran-
dom fields. In EMNLP.

Bishan Yang and Claire Cardie. 2014. Context-aware
learning for sentence-level sentiment analysis with
posterior regularization. ACL.

Hua-Ping Zhang, Hong-Kui Yu, De-Yi Xiong, and Qun
Liu. 2003. Hhmm-based chinese lexical analyzer
ictclas. In Proceedings of the second SIGHAN work-
shop on Chinese language processing-Volume 17.

475



Lei Zhang, Bing Liu, Suk Hwan Lim, and Eamonn
O’Brien-Strain. 2010. Extracting and ranking prod-
uct features in opinion documents. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics: Posters.

476



Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 477–487,
October 25-29, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

A Joint Segmentation and Classification Framework
for Sentiment Analysis

Duyu Tang\∗, Furu Wei‡, Bing Qin\, Li Dong]∗, Ting Liu\, Ming Zhou‡
\Research Center for Social Computing and Information Retrieval,

Harbin Institute of Technology, China
‡Microsoft Research, Beijing, China
]Beihang University, Beijing, China

\{dytang, qinb, tliu}@ir.hit.edu.cn
‡{fuwei, mingzhou}@microsoft.com ]donglixp@gmail.com

Abstract

In this paper, we propose a joint segmenta-
tion and classification framework for sen-
timent analysis. Existing sentiment clas-
sification algorithms typically split a sen-
tence as a word sequence, which does not
effectively handle the inconsistent senti-
ment polarity between a phrase and the
words it contains, such as “not bad” and
“a great deal of ”. We address this issue
by developing a joint segmentation and
classification framework (JSC), which si-
multaneously conducts sentence segmen-
tation and sentence-level sentiment classi-
fication. Specifically, we use a log-linear
model to score each segmentation candi-
date, and exploit the phrasal information
of top-ranked segmentations as features to
build the sentiment classifier. A marginal
log-likelihood objective function is de-
vised for the segmentation model, which
is optimized for enhancing the sentiment
classification performance. The joint mod-
el is trained only based on the annotat-
ed sentiment polarity of sentences, with-
out any segmentation annotations. Experi-
ments on a benchmark Twitter sentimen-
t classification dataset in SemEval 2013
show that, our joint model performs com-
parably with the state-of-the-art methods.

1 Introduction

Sentiment classification, which classifies the senti-
ment polarity of a sentence (or document) as posi-
tive or negative, is a major research direction in the
field of sentiment analysis (Pang and Lee, 2008;
Liu, 2012; Feldman, 2013). Majority of existing
approaches follow Pang et al. (2002) and treat sen-

∗ This work was partly done when the first and fourth
authors were visiting Microsoft Research.

timent classification as a special case of text cate-
gorization task. Under this perspective, previous
studies typically use pipelined methods with two
steps. They first produce sentence segmentation-
s with separate text analyzers (Choi and Cardie,
2008; Nakagawa et al., 2010; Socher et al., 2013b)
or bag-of-words (Paltoglou and Thelwall, 2010;
Maas et al., 2011). Then, feature learning and sen-
timent classification algorithms take the segmenta-
tion results as inputs to build the sentiment classi-
fier (Socher et al., 2011; Kalchbrenner et al., 2014;
Dong et al., 2014).

The major disadvantage of a pipelined method
is the problem of error propagation, since sen-
tence segmentation errors cannot be corrected by
the sentiment classification model. A typical kind
of error is caused by the polarity inconsistency be-
tween a phrase and the words it contains, such
as 〈not bad, bad〉 and 〈a great deal of, great〉.
The segmentations based on bag-of-words or syn-
tactic chunkers are not effective enough to han-
dle the polarity inconsistency phenomenons. The
reason lies in that bag-of-words segmentations re-
gard each word as a separate unit, which losses
the word order and does not capture the phrasal
information. The segmentations based on syntac-
tic chunkers typically aim to identify noun group-
s, verb groups or named entities from a sentence.
However, many sentiment indicators are phrases
constituted of adjectives, negations, adverbs or id-
ioms (Liu, 2012; Mohammad et al., 2013a), which
are splitted by syntactic chunkers. Besides, a bet-
ter approach would be to utilize the sentiment in-
formation to improve the segmentor. Accordingly,
the sentiment-specific segmentor will enhance the
performance of sentiment classification in turn.

In this paper, we propose a joint segmentation
and classification framework (JSC) for sentimen-
t analysis, which simultaneous conducts sentence
segmentation and sentence-level sentiment clas-
sification. The framework is illustrated in Fig-

477



Segmentations Input 

that is not bad 

that  is  not  bad 

that  is  not  bad 

that  is  not  bad 

that  is  not  bad 

Polarity: +1 

-1 

-1 

+1 

+1 

<+1,-1>   NO 

Polarity Update 

<+1,-1>   NO 

<+1,+1>  YES 

<+1,+1>  YES 

SC SEG CG 

Update 

SC 

2.3  

1.6 

0.6 

0.4 

0.6 

0.4 

2.3 

1.6 

SEG 

Rank 

Top K  

Figure 1: The joint segmentation and classification framework (JSC) for sentiment classification. CG
represents the candidate generation model, SC means the sentiment classification model and SEG stands
for the segmentation ranking model. Down Arrow means the use of a specified model, and Up Arrow
indicates the update of a model.

ure 1. We develop (1) a candidate generation mod-
el to generate the segmentation candidates of a
sentence, (2) a segmentation ranking model to s-
core each segmentation candidate of a given sen-
tence, and (3) a classification model to predic-
t the sentiment polarity of each segmentation. The
phrasal information of top-ranked candidates from
the segmentation model are utilized as features to
build the sentiment classifier. In turn, the predict-
ed sentiment polarity of segmentation candidates
from classification model are leveraged to update
the segmentor. We score each segmentation can-
didate with a log-linear model, and optimize the
segmentor with a marginal log-likelihood objec-
tive. We train the joint model from sentences an-
notated only with sentiment polarity, without any
segmentation annotations.

We evaluate the effectiveness of our joint mod-
el on a benchmark Twitter sentiment classifica-
tion dataset in SemEval 2013. Results show that
the joint model performs comparably with state-
of-the-art methods, and consistently outperforms
pipeline methods in various experiment settings.
The main contributions of the work presented in
this paper are as follows.

• To our knowledge, this is the first work that
automatically produces sentence segmenta-
tion for sentiment classification within a joint
framework.

• We show that the joint model yields com-
parable performance with the state-of-the-art
methods on the benchmark Twitter sentiment
classification datasets in SemEval 2013.

2 Related Work

Existing approaches for sentiment classification
are dominated by two mainstream directions.
Lexicon-based approaches (Turney, 2002; Ding
et al., 2008; Taboada et al., 2011; Thelwall et
al., 2012) typically utilize a lexicon of sentiment
words, each of which is annotated with the sen-
timent polarity or sentiment strength. Linguis-
tic rules such as intensifications and negations are
usually incorporated to aggregate the sentimen-
t polarity of sentences (or documents). Corpus-
based methods treat sentiment classification as a
special case of text categorization task (Pang et al.,
2002). They mostly build the sentiment classifier
from sentences (or documents) with manually an-
notated sentiment polarity or distantly-supervised
corpora collected by sentiment signals like emoti-
cons (Go et al., 2009; Pak and Paroubek, 2010;
Kouloumpis et al., 2011; Zhao et al., 2012).

Majority of existing approaches follow Pang et
al. (2002) and employ corpus-based method for
sentiment classification. Pang et al. (2002) pi-
oneer to treat the sentiment classification of re-
views as a special case of text categorization prob-
lem and first investigate machine learning meth-
ods. They employ Naive Bayes, Maximum En-
tropy and Support Vector Machines (SVM) with a
diverse set of features. In their experiments, the
best performance is achieved by SVM with bag-
of-words feature. Under this perspective, many s-
tudies focus on designing or learning effective fea-
tures to obtain better classification performance.
On movie or product reviews, Wang and Man-
ning (2012) present NBSVM, which trades-off

478



between Naive Bayes and NB-feature enhanced
SVM. Kim and Zhai (2009) and Paltoglou and
Thelwall (2010) learn the feature weights by in-
vestigating variants weighting functions from In-
formation Retrieval. Nakagawa et al. (2010) uti-
lize dependency trees, polarity-shifting rules and
conditional random fields (Lafferty et al., 2001)
with hidden variables to compute the documen-
t feature. On Twitter, Mohammad et al. (2013b)
develop a state-of-the-art Twitter sentiment classi-
fier in SemEval 2013, using a variety of sentiment
lexicons and hand-crafted features.

With the revival of deep learning (representa-
tion learning (Hinton and Salakhutdinov, 2006;
Bengio et al., 2013; Jones, 2014)), more recen-
t studies focus on learning the low-dimensional,
dense and real-valued vector as text features for
sentiment classification. Glorot et al. (2011) inves-
tigate Stacked Denoising Autoencoders to learn
document vector for domain adaptation in sen-
timent classification. Yessenalina and Cardie
(2011) represent each word as a matrix and
compose words using iterated matrix multipli-
cation. Socher et al. propose Recursive Au-
toencoder (RAE) (2011), Matrix-Vector Recursive
Neural Network (MV-RNN) (2012) and Recur-
sive Neural Tensor Network (RNTN) (2013b) to
learn the composition of variable-length phrases
based on the representation of its children. To
learn the sentence representation, Kalchbrenner et
al. (2014) exploit Dynamic Convolutional Neu-
ral Network and Le and Mikolov (2014) inves-
tigate Paragraph Vector. To learn word vectors
for sentiment analysis, Maas et al. (2011) propose
a probabilistic document model following Blei et
al. (2003), Labutov and Lipson (2013) re-embed
words from existing word embeddings and Tang
et al. (2014b) develop three neural networks to
learn word vectors from tweets containing posi-
tive/negative emoticons.

Unlike most previous corpus-based algorithms
that build sentiment classifier based on splitting a
sentence as a word sequence, we produce sentence
segmentations automatically within a joint frame-
work, and conduct sentiment classification based
on the segmentation results.

3 The Proposed Approach

In this section, we first give the task definition
of two tasks, namely sentiment classification and
sentence segmentation. Then, we present the

overview of the proposed joint segmentation and
classification model (JSC) for sentiment analysis.
The segmentation candidate generation model and
the segmentation ranking model are described in
Section 4. The details of the sentiment classifica-
tion model are presented in Section 5.

3.1 Task Definition

The task of sentiment classification has been well
formalized in previous studies (Pang and Lee,
2008; Liu, 2012). The objective is to identify the
sentiment polarity of a sentence (or document) as
positive or negative 1.

The task of sentence segmentation aims to s-
plit a sentence into a sequence of exclusive part-
s, each of which is a basic computational unit of
the sentence. An example is illustrated in Table 1.
The original text “that is not bad” is segmented
as “[that] [is] [not bad]”. The segmentation re-
sult is composed of three basic computational u-
nits, namely [that], [is] and [not bad].

Type Sample
Sentence that is not bad
Segmentation [that] [is] [not bad]
Basic units [that], [is], [not bad]

Table 1: Example for sentence segmentation.

3.2 Joint Model (JSC)

The overview of the proposed joint segmentation
and classification model (JSC) for sentiment anal-
ysis is illustrated in Figure 1. The intuitions of the
joint model are two-folds:

• The segmentation results have a strong influ-
ence on the sentiment classification perfor-
mance, since they are the inputs of the sen-
timent classification model.

• The usefulness of a segmentation can be
judged by whether the sentiment classifier
can use it to predict the correct sentence po-
larity.

Based on the mutual influence observation, we
formalize the joint model in Algorithm 1. The in-
puts contain two parts, training data and feature
extractors. Each sentence si in the training data

1In this paper, the sentiment polarity of a sentence is not
relevant to the target (or aspect) it contains (Hu and Liu, 2004;
Jiang et al., 2011; Mitchell et al., 2013).
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Algorithm 1 The joint segmentation and classifi-
cation framework (JSC) for sentiment analysis
Input:

training data: T = [si, pol
g
i ], 1 ≤ i ≤ |T |

segmentation feature extractor: sfe(·)
classification feature extractor: cfe(·)

Output:
sentiment classifier: SC
segmentation ranking model: SEG

1: Generate segmentation candidates Ωi for each
sentence si in T , 1 ≤ i ≤ |T |

2: Initialize sentiment classifier SC(0) based on
cfe(Ωij), randomize j ∈ [1, |Ωi|], 1 ≤ i ≤
|T |

3: Randomly initialize the segmentation ranking
model SEG(0)

4: for r ← 1 ... R do
5: Predict the sentiment polarity poli for Ωi

based on SC(r−1) and cfe(Ωi·)
6: Update the segmentation model SEG(r)

with SEG(r−1) and [Ωi, sfe(Ωi·),
poli·, pol

g
i ], 1 ≤ i ≤ |T |

7: for i← 1 ... |T | do
8: Calculate the segmentation score for Ωi·

based on SEG(r) and sfe(Ωi·)
9: Select the top-ranked K segmentation

candidates Ωi∗ from Ωi

10: end for
11: Train the sentiment classifier SC(r) with

cfe(Ωi∗), 1 ≤ i ≤ |T |
12: end for
13: SC← SC(R)

14: SEG← SEG(R)

T is annotated only with its gold sentiment po-
larity polgi , without any segmentation annotation-
s. There are two feature extractors for the task
of sentence segmentation (sfe(·)) and sentiment
classification (cfe(·)), respectively. The output-
s of the joint model are the segmentation ranking
model SEG and the sentiment classifier SC.

In Algorithm 1, we first generate segmentation
candidates Ωi for each sentence si in the training
set (line 1). Each Ωi contains no less than one
segmentation candidates. We randomly select one
segmentation result from each Ωi and utilize their
classification features to initialize the sentimen-
t classifier SC(0) (line 2). We randomly initialize
the segmentation model SEG(0) (line 3). Subse-
quently, we iteratively train the segmentation mod-

el SEG(r) and sentiment classifier SC(r) in a join-
t manner (line 4-12). At each iteration, we pre-
dict the sentiment polarity of each segmentation
candidate Ωi· with the current sentiment classifi-
er SC(r−1) (line 5), and then leverage them to up-
date the segmentation model SEG(r) (line 6). Af-
terwards, we utilize the recently updated segmen-
tation ranking model SEG(r) to update the senti-
ment classifier SC(r) (line 7-11). We extract the
segmentation features for each segmentation can-
didate Ωi·, and employ them to calculate the seg-
mentation score (line 8). The top-ranked K seg-
mentation results Ωi∗ of each sentence si is select-
ed (line 9), and further used to train the sentimen-
t classifier SC(r) (line 11). Finally, after training
R iterations, we dump the segmentation ranking
model SEG(R) and sentiment classifier SC(R) in
the last iteration as outputs (line 13-14).

At training time, we train the segmentation
model and classification model from sentences
with manually annotated sentiment polarity. At
prediction time, given a test sentence, we gener-
ate its segmentation candidates, and then calculate
segmentation score for each candidate. Afterward-
s, we select the top-ranked K candidates and vote
their predicted sentiment polarity from sentiment
classifier as the final result.

4 Segmentation Model

In this section, we present details of the segmenta-
tion candidate generation model (Section 4.1), the
segmentation ranking model (Section 4.2) and the
feature description for segmentation ranking mod-
el (Section 4.3).

4.1 Segmentation Candidate Generation
In this subsection, we describe the strategy to gen-
erate segmentation candidates for each sentence.
Since the segmentation results have an exponen-
tial search space in the number of words in a
sentence, we approximate the computation using
beam search with constrains on a phrase table,
which is induced from massive corpora.

Many studies have been previously proposed to
recognize phrases in the text. However, it is out
of scope of this work to compare them. We ex-
ploit a data-driven approach given by Mikolov et
al. (2013), which identifies phrases based on the
occurrence frequency of unigrams and bigrams,

freq(wi, wj) =
freq(wi, wj)− δ

freq(wi)× freq(wj) (1)
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where δ is a discounting coefficient that prevents
too many phrases consisting of very infrequen-
t words. We run 2-4 times over the corpora to get
longer phrases containing more words. We em-
pirically set δ as 10 in our experiment. We use
the default frequency threshold (value=5) in the
word2vec toolkit 2 to select bi-terms.

Given a sentence, we initialize the beam of each
index with the current word, and sequentially add
phrases into the beam if the new phrase is con-
tained in the phrase table. At each index of a sen-
tence, we rank the segmentation candidates by the
inverted number of items within a segmentation,
and save the top-ranked N segmentation candi-
dates into the beam. An example of the generated
segmentation candidates is given in Table 2.

Type Sample
Sentence that is not bad
Phrase Table [is not], [not bad], [is not bad]

Segmentations

[that] [is not bad]
[that] [is not] [bad]
[that] [is] [not bad]
[that] [is] [not] [bad]

Table 2: Example for segmentation candidate gen-
eration.

4.2 Segmentation Ranking Model
The objective of the segmentation ranking model
is to assign a scalar to each segmentation candi-
date, which indicates the usefulness of the seg-
mentation result for sentiment classification. In
this subsection, we describe a log-linear model to
calculate the segmentation score. To effectively
train the segmentation ranking model, we devise a
marginal log-likelihood as the optimization objec-
tive.

Given a segmentation candidate Ωij of the sen-
tence si, we calculate the segmentation score
for Ωij with a log-linear model, as given in Equa-
tion 2.

φij = exp(b+
∑
k

sfeijk · wk) (2)

where φij is the segmentation score of Ωij ; sfeijk
is the k-th segmentation feature of Ωij ; w and b are
the parameters of the segmentation ranking model.

During training, given a sentence si and its gold
sentiment polarity polgi , the optimization objec-

2Available at https://code.google.com/p/word2vec/

tive of the segmentation ranking model is to max-
imize the segmentation scores of the hit candi-
dates, whose predicted sentiment polarity equal-
s to the gold polarity of sentence polpi . The loss
function of the segmentation model is given in E-
quation 3.

loss = −
|T |∑
i=1

log(
∑
j∈Hi φij∑
j′∈Ai φij′

) + λ||w||22 (3)

where T is the training data; Ai represents all the
segmentation candidates of sentence si; Hi mean-
s the hit candidates of si; λ is the weight of the
L2-norm regularization factor. We train the seg-
mentation model with L-BFGS (Liu and Nocedal,
1989), running over the complete training data.

4.3 Feature
We design two kinds of features for sentence seg-
mentation, namely the phrase-embedding feature
and the segmentation-specific feature. The final
feature representation of each segmentation is the
concatenation of these two features. It is worth
noting that, the phrase-embedding feature is used
in both sentence segmentation and sentiment clas-
sification.

Segmentation-Specific Feature We empirically
design four segmentation-specific features to re-
flect the information of each segmentation, as list-
ed in Table 3.

Phrase-Embedding Feature We leverage
phrase embedding to generate the features of
segmentation candidates for both sentence seg-
mentation and sentiment classification. The
reason is that, in both tasks, the basic compu-
tational units of each segmentation candidate
might be words or phrases of variable length.
Under this scenario, phrase embedding is highly
suitable as it is capable to represent phrases with
different length into a consistent distributed vector
space (Mikolov et al., 2013). For each phrase,
phrase embedding is a dense, real-valued and
continuous vector. After the phrase embedding is
trained, the nearest neighbors in the embedding
space are favored to have similar grammatical us-
ages and semantic meanings. The effectiveness of
phrase embedding has been verified for building
large-scale sentiment lexicon (Tang et al., 2014a)
and machine translation (Zhang et al., 2014).

We learn phrase embedding with Skip-Gram
model (Mikolov et al., 2013), which is the state-of-
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Feature Feature Description
#unit the number of basic computation units in the segmentation candidate
#unit / #word the ratio of units’ number in a candidate to the length of original sentence
#word − #unit the difference between sentence length and the number of basic computational units
#unit > 2 the number of basic component units composed of more than two words

Table 3: Segmentation-specific features for segmentation ranking.

Feature Feature Description
All-Caps the number of words with all characters in upper case
Emoticon the presence of positive (or negative) emoticons, whether the last unit is emoticon
Hashtag the number of hashtag
Elongated units the number of basic computational containing elongated words (with one character

repeated more than two times), such as gooood
Sentiment lexicon the number of sentiment words, the score of last sentiment words, the total sentiment

score and the maximal sentiment score for each lexicon
Negation the number of negations as individual units in a segmentation
Bag-of-Units an extension of bag-of-word for a segmentation
Punctuation the number of contiguous sequences of dot, question mark and exclamation mark.
Cluster the presence of units from each of the 1,000 clusters from Twitter NLP tool (Gimpel

et al., 2011)

Table 4: Classification-specific features for sentiment classification.

the-art phrase embedding learning algorithm. We
compose the representation (or feature) of a seg-
mentation candidate from the embedding of the
basic computational units (words or phrases) it
contains. In this paper, we explore min, max and
average convolution functions, which have been
used as simple and effective methods for composi-
tion learning in vector-based semantics (Mitchell
and Lapata, 2010; Collobert et al., 2011; Socher et
al., 2013a; Shen et al., 2014; Tang et al., 2014b),
to calculate the representation of a segmentation
candidate. The final phrase-embedding feature is
the concatenation of vectors derived from different
convolutional functions, as given in Equation 4,

pf(seg) = [pfmax(seg), pfmin(seg), pfavg(seg)]
(4)

where pf(seg) is the representation of the given
segmentation; pfx(seg) is the result of the con-
volutional function x ∈ {min,max, avg}. Each
convolutional function pfx(·) conducts the matrix-
vector operation of x on the sequence represented
by columns in the lookup table of phrase embed-
ding. The output of pfx(·) is calculated as

pfx(seg) = θx〈Lph〉seg (5)

where θx is the convolutional function of pfx;
〈Lph〉seg is the concatenated column vectors of

the basic computational units in the segmentation;
Lph is the lookup table of phrase embedding.

5 Classification Model

For sentiment classification, we follow the su-
pervised learning framework (Pang et al., 2002)
and build the classifier from sentences with man-
ually labelled sentiment polarity. We extend the
state-of-the-art hand-crafted features in SemEval
2013 (Mohammad et al., 2013b), and design the
classification-specific features for each segmenta-
tion. The detailed feature description is given in
Table 4.

6 Experiment

In this section, we conduct experiments to evaluate
the effectiveness of the joint model. We describe
the experiment settings and the result analysis.

6.1 Dataset and Experiment Settings

We conduct sentiment classification of tweets on a
benchmark Twitter sentiment classification dataset
in SemEval 2013. We run 2-class (positive vs neg-
ative) classification as sentence segmentation has a
great influence on the positive/negative polarity of
tweets due to the polarity inconsistency between a
phrase and its constitutes, such as 〈not bad, bad〉.
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We leave 3-class classification (positive, negative,
neutral) and fine-grained classification (very neg-
ative, negative, neutral, positive, very positive) in
the future work.

Positive Negative Total
Train 2,642 994 3,636
Dev 408 219 627
Test 1,570 601 2,171

Table 5: Statistics of the SemEval 2013 Twitter
sentiment classification dataset (positive vs nega-
tive).

The statistics of our dataset crawled from Se-
mEval 2013 are given in Table 5. The evalua-
tion metric is the macro-F1 of sentiment classifi-
cation. We train the joint model on the training
set, tune parameters on the dev set and evaluate
on the test set. We train the sentiment classifier
with LibLinear (Fan et al., 2008) and utilize exist-
ing sentiment lexicons 3 to extract classification-
specific features. We randomly crawl 100M tweets
from February 1st, 2013 to April 30th, 2013 with
Twitter API, and use them to learn the phrase em-
bedding with Skip-Gram 4. The vocabulary size
of the phrase embedding is 926K, from unigram
to 5-gram. The parameter -c in SVM is tuned on
the dev-set in both baseline and our method. We
run the L-BFGS for 50 iterations, and set the reg-
ularization factor λ as 0.003. The beam size N of
the candidate generation model and the top-ranked
segmentation number K are tuned on the dev-set.

6.2 Baseline Methods
We compare the proposed joint model with the fol-
lowing sentiment classification algorithms:
• DistSuper: We collect 10M balanced tweets

selected by positive and negative emoticons 5 as
training data, and build classifier using the Lib-
Linear and ngram features (Go et al., 2009; Zhao
et al., 2012).
• SVM: The n-gram features and Support Vec-

tor Machine are widely-used baseline methods to
build sentiment classifiers (Pang et al., 2002). We
use LibLinear to train the SVM classifier.

3In this work, we use HL (Hu and Liu, 2004), M-
PQA (Wilson et al., 2005), NRC Emotion Lexicon (Moham-
mad and Turney, 2012), NRC Hashtag Lexicon and Senti-
ment140Lexicon (Mohammad et al., 2013b).

4https://code.google.com/p/word2vec/
5We use the emoticons selected by Hu et al. (2013). The

positive emoticons are :) : ) :-) :D =), and the negative emoti-
cons are :( : ( :-( .

• NBSVM: NBSVM (Wang and Manning,
2012) trades-off between Naive Bayes and NB-
features enhanced SVM. We use NBSVM-bi be-
cause it performs best on sentiment classification
of reviews.
• RAE: Recursive Autoencoder (Socher et al.,

2011) has been proven effective for sentiment clas-
sification by learning sentence representation. We
train the RAE using the pre-trained phrase embed-
ding learned from 100M tweets.
• SentiStrength: Thelwall et al. (2012) build a

lexicon-based classifier which uses linguistic rules
to detect the sentiment strength of tweets.
• SSWEu: Tang et al. (2014b) propose to learn

sentiment-specific word embedding (SSWE) from
10M tweets collected by emoticons. They apply
SSWE as features for Twitter sentiment classifica-
tion.
• NRC: NRC builds the state-of-the-art system

in SemEval 2013 Twitter Sentiment Classifica-
tion Track, incorporating diverse sentiment lexi-
cons and hand-crafted features (Mohammad et al.,
2013b). We re-implement this system because the
codes are not publicly available. We do not di-
rectly report their results in the evaluation task,
as our training and development sets are smaller
than their dataset. In NRC + PF, We concatenate
the NRC features and the phrase embeddings fea-
ture (PF), and build the sentiment classifier with
LibLinear.

Except for DistSuper, other baseline method-
s are conducted in a supervised manner. We do
not compare with RNTN (Socher et al., 2013b) be-
cause the tweets in our dataset do not have accu-
rately parsed results. Another reason is that, due to
the differences between domains, the performance
of RNTN trained on movie reviews might be de-
creased if directly applied on the tweets (Xiao et
al., 2013).

6.3 Results and Analysis

Table 6 shows the macro-F1 of the baseline sys-
tems as well as our joint model (JSC) on senti-
ment classification of tweets (positive vs negative).

As is shown in Table 6, distant supervision is
relatively weak because the noisy-labeled tweets
are treated as the gold standard, which decreases
the performance of sentiment classifier. The result
of bag-of-unigram feature (74.50%) is not satisfied
as it losses the word order and does not well cap-
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Method Macro-F1
DistSuper + unigram 61.74
DistSuper + 5-gram 63.92
SVM + unigram 74.50
SVM + 5-gram 74.97
Recursive Autoencoder 75.42
NBSVM 75.28
SentiStrength 73.23
SSWEu 84.98
NRC (Top System in SemEval 2013) 84.73
NRC + PF 84.75
JSC 85.51

Table 6: Macro-F1 for positive vs negative classi-
fication of tweets.

ture the semantic meaning of phrases. The integra-
tion of high-order n-ngram (up to 5-gram) does not
achieve significant improvement (+0.47%). The
reason is that, if a sentence contains a bigram “not
bad”, they will use “bad” and “not bad” as par-
allel features, which confuses the sentiment clas-
sification model. NBSVM and Recursive Autoen-
coder perform comparatively and have a big gap
in comparison with JSC. In RAE, the representa-
tion of a sentence is composed from the represen-
tation of words it contains. Accordingly, “great”
in “a great deal of ” also contributes to the final
sentence representation via composition function.
JSC automatically conducts sentence segmenta-
tion by considering the sentiment polarity of sen-
tence, and utilize the phrasal information from the
segmentations. Ideally, JSC regards phrases like
“not bad” and “a great deal of ” as basic compu-
tational units, and yields better classification per-
formance. JSC (85.51%) performs slightly better
than the state-of-the-art systems (SSWEu, 84.98%;
NRC+PF, 84.75%), which verifies its effective-
ness.

6.4 Comparing Joint and Pipelined Models
We compare the proposed joint model with
pipelined methods on Twitter sentiment classifi-
cation with different feature sets. Figure 2 gives
the experiment results. The tick [A, B] on x-
axis means the use of A as segmentation feature
and the use of B as classification feature. PF
represents the phrase-embedding feature; SF and
CF stand for the segmentation-specific feature and
classification-specific feature, respectively. We
use the bag-of-word segmentation result to build
sentiment classier in Pipeline 1, and use the seg-

mentation candidate with maximum phrase num-
ber in Pipeline 2.
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Figure 2: Macro-F1 for positive vs negative classi-
fication of tweets with joint and pipelined models.

From Figure 2, we find that the joint model
consistently outperforms pipelined baseline meth-
ods in all feature settings. The reason is that
the pipelined methods suffer from error propaga-
tion, since the errors from linguistic-driven and
bag-of-word segmentations cannot be corrected by
the sentiment classification model. Besides, tra-
ditional segmentors do not update the segmenta-
tion model with the sentiment information of tex-
t. Unlike pipelined methods, the joint model is
capable to address these problems by optimizing
the segmentation model with the classification re-
sults in a joint framework, which yields better
performance on sentiment classification. We also
find that Pipeline 2 always outperforms Pipeline
1, which indicates the usefulness of phrase-based
segmentation for sentiment classification.

6.5 Effect of the beam size N

We investigate the influence of beam size N ,
which is the maximum number of segmentation
candidates of a sentence. In this part, we clamp the
feature set as [PF+SF, PF+CF], and vary the beam
size N in [1,2,4,8,16,32,64]. The experiment re-
sults of macro-F1 on the development set are il-
lustrated in Figure 3 (a). The time cost of each
training iteration is given in Figure 3 (b).

From Figure 3 (a), we can see that when larg-
er beam size is considered, the classification per-
formance is improved. When beam size is 1, the
model stands for the greedy search with the bag-
of-words segmentation. When the beam size is s-
mall, such as 2, beam search losses many phrasal
information of sentences and thus the improve-
ment is not significant. The performance remains
steady when beam size is larger than 16. From
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(a) Macro-F1 score for senti-
ment classification.
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each training iteration.

Figure 3: Sentiment classification of tweets with
different beam size N .

Figure 3 (b), we can find that the runtime of each
training iteration increases with larger beam size.
It is intuitive as the joint model with larger beam
considers more segmentation results, which in-
creases the training time of the segmentation mod-
el. We set beam size as 16 after parameter learn-
ing.

6.6 Effect of the top-ranked segmentation
number K

We investigate how the top-ranked segmentation
number K affects the performance of sentimen-
t classification. In this part, we set the feature as
[PF+SF, PF+CF], and the beam size as 16. The
results of macro-F1 on the development set are il-
lustrated in Figure 4.
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Figure 4: Sentiment classification of tweets with
different top-ranked segmentation number K.

From Figure 4, we find that the classification
performance increases with K being larger. The
reason is that when a larger K is used, (1) at train-
ing time, the sentiment classifier is built by using
more phrasal information from multiple segmen-
tations, which benefits from the ensembles; (2) at
test time, the joint model considers several top-
ranked segmentations and get the final sentiment
polarity through voting. The performance remain-
s stable when K is larger than 7, as the phrasal
information has been mostly covered.

7 Conclusion

In this paper, we develop a joint segmentation
and classification framework (JSC) for sentiment
analysis. Unlike existing sentiment classification
algorithms that build sentiment classifier based
on the segmentation results from bag-of-words or
separate segmentors, the proposed joint model si-
multaneously conducts sentence segmentation and
sentiment classification. We introduce a marginal
log-likelihood function to optimize the segmenta-
tion model, and effectively train the joint mod-
el from sentences annotated only with sentiment
polarity, without segmentation annotations of sen-
tences. The effectiveness of the joint model has
been verified by applying it on the benchmark
dataset of Twitter sentiment classification in Se-
mEval 2013. Results show that, the joint model
performs comparably with state-of-the-art meth-
ods, and outperforms pipelined methods in various
settings. In the future, we plan to apply the join-
t model on other domains, such as movie/product
reviews.
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Abstract

Deceptive reviews detection has attract-
ed significant attention from both business
and research communities. However, due
to the difficulty of human labeling need-
ed for supervised learning, the problem re-
mains to be highly challenging. This pa-
per proposed a novel angle to the prob-
lem by modeling PU (positive unlabeled)
learning. A semi-supervised model, called
mixing population and individual proper-
ty PU learning (MPIPUL), is proposed.
Firstly, some reliable negative examples
are identified from the unlabeled dataset.
Secondly, some representative positive ex-
amples and negative examples are gener-
ated based on LDA (Latent Dirichlet Al-
location). Thirdly, for the remaining un-
labeled examples (we call them spy ex-
amples), which can not be explicitly iden-
tified as positive and negative, two simi-
larity weights are assigned, by which the
probability of a spy example belonging to
the positive class and the negative class
are displayed. Finally, spy examples and
their similarity weights are incorporated
into SVM (Support Vector Machine) to
build an accurate classifier. Experiments
on gold-standard dataset demonstrate the
effectiveness of MPIPUL which outper-
forms the state-of-the-art baselines.

1 Introduction

The Web has dramatically changed the way peo-
ple express themselves and interact with others,
people frequently write reviews on e-commerce
sites, forums and blogs to achieve these purpos-
es. For NLP (Natural Language Processing), these
user-generated contents are of great value in that
they contain abundant information related to peo-

ple’s opinions on certain topics. Currently, on-
line reviews on products and services are used
extensively by consumers and businesses to con-
duct decisive purchase, product design and mar-
keting strategies. Hence, sentiment analysis and
opinion mining based on product reviews have
become a popular topic of NLP (Pang and Lee,
2008; Liu, 2012). However, since reviews infor-
mation can guide people’s purchase behavior, pos-
itive reviews can result in huge economic benefit-
s and fame for organizations or individuals. This
leaves room for promoting the generation of re-
view spams. Through observations and studies of
the predecessors (Jindal and Liu, 2008; Ott et al.,
2011), review spams are divided into the following
two classes:

• Deceptive Reviews: Those deliberately mis-
lead readers by giving undeserving positive
reviews to some target objects in order to pro-
mote the objects, or by giving unjust nega-
tive reviews to some target objects in order to
damage their reputation.

• Disruptive Reviews: Those are non-reviews,
which mainly include advertisements and
other irrelevant reviews containing no opin-
ion.

Disruptive reviews pose little threat to peo-
ple, because human can easily identify and ignore
them. In this paper, we focus on the more chal-
lenging ones: deceptive reviews. Generally, de-
ceptive reviews detection is deemed to be a classi-
fication problem (Ott et al., 2011; Li et al., 2011;
Feng et al., 2012). Based on the positive and neg-
ative examples annotated by people, supervised
learning is utilized to build a classifier, and then an
unlabeled review can be predicted as deceptive re-
view or truthful one. But the work from Ott et al.
(2011) shows that human cannot identify decep-
tive reviews from their prior knowledge, which in-
dicates that human-annotated review datasets must
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include some mislabeled examples. These exam-
ples will disturb the generation ability of the clas-
sifiers. So simple supervised learning is regarded
as unsuitable for this task.

It is difficult to come by human labeling need-
ed for supervised learning and evaluation, we can-
not obtain the datasets containing deceptive re-
views. However, we can get some truthful reviews
with high confidence by heuristic rules and prior
knowledge. Meanwhile, a lot of unlabeled reviews
are available. The problem thus is this: based on
some truthful reviews and a lot of unlabeled re-
views, can we build an accurate classifier to iden-
tify deceptive reviews.

PU (positive unlabeled) learning can be utilized
to deal with the above situation (Liu et al., 2002;
Liu et al., 2003). Different from traditional super-
vised learning, PU learning can still build an ac-
curate classifier even without the negative training
examples. Several PU learning techniques have
been applied successfully in document classifica-
tion with promising results (Zhang, 2005; Elkan
and Noto, 2008; Li et al., 2009; Xiao et al., 2011),
while they have yet to be applied in detecting de-
ceptive reviews. Here, we will study how to design
PU learning to detect deceptive reviews.

An important challenge is how to deal with
spy examples (easily mislabeled) of unlabeled re-
views, which is not easily handled by the previous
PU learning techniques. In this paper, we propose
a novel approach, mixing population and individ-
ual property PU learning (MPIPUL), by assigning
similarity weights and incorporating weights into
SVM learning phase. This paper makes the fol-
lowing contributions:

• For the first time, PU learning is defined in
the environment of identifying deceptive re-
views.

• A novel PU learning is proposed based on L-
DA and SVM.

• Experimental results demonstrate that our
proposed method outperforms the curren-
t baselines.

2 Related Work

2.1 Deceptive Reviews Detection

Spam has historically been investigated in the con-
texts of e-mail (Drucker et al., 1999; Gyongyi et
al., 2004) and the Web (Ntoulas et al., 2006). In

recent years, researchers have started to look at de-
ceptive reviews.

Jindal and Liu (2008) found that opinion s-
pam was widespread and different from e-mail
and Web spam in essence (Jindal and Liu, 2008).
They trained models using product review data,
by defining features to distinguish duplicate opin-
ion and non-duplicate based on the review tex-
t, reviewers and product information. Wu et al.
(2010) proposed an alternative strategy of popu-
larity rankings (Wu et al., 2010).

Ott et al. (2011) developed the first dataset con-
taining gold-standard deceptive reviews by crowd-
sourcing (Ott et al., 2011), and presented three su-
pervised learning methods to detect deceptive re-
views by integrating knowledge from psycholin-
guistics and computational linguistics. This gold-
standard dataset will be used in the paper. Li et al.
(2011) manually built a review dataset from their
crawled reviews (Li et al., 2011), and exploited
semi-supervised co-training algorithm to identify
deceptive reviews.

Feng et al. (2012) verified the connection be-
tween the deceptive reviews and the abnormal dis-
tributions (Feng et al., 2012a). Later, they (Feng et
al., 2012b) demonstrated that features driven from
CFG (Context Free Grammar) parsing trees con-
sistently improve the detection performance.

Mukherjee et al. (2012) proposed detect-
ing group spammers (a group of reviewers who
work collaboratively to write deceptive reviews) in
product reviews (Mukherjee et al., 2012). The pro-
posed method first used frequent itemset mining
to find a set of candidate groups. Then GSRank
was presented which can consider relationships a-
mong groups, individual reviewers and products
they reviewed to detect spammer groups. Later,
they also proposed exploiting observed reviewing
behaviors to detect opinion spammers in an unsu-
pervised Bayesian inference framework (Mukher-
jee et al., 2013).

Ren et al. (2014) assumed that there must be
some difference on language structure and sen-
timent polarity between deceptive reviews and
truthful ones (Ren et al., 2014a), then they de-
fined the features related to the review text and
used genetic algorithm for feature selection, fi-
nally they combined two unsupervised clustering
algorithm to identify deceptive reviews. Later,
they (Ren et al., 2014b) present a new approach,
from the viewpoint of correcting the mislabeled
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examples, to find deceptive reviews. Firstly, they
partition a dataset into several subsets.Then they
construct a classifier set for each subset and s-
elect the best one to evaluate the whole dataset.
Meanwhile, error variables are defined to compute
the probability that the examples have been mis-
labeled. Finally, the mislabeled examples are cor-
rected based on two threshold schemes, majority
and non-objection.

Unlike previous studies, PU learning is imple-
mented to identify deceptive reviews.

2.2 Positive Unlabeled Learning

According to the use of the unlabeled data, PU
learning can be divided into two classes.

One family of methods built the final classifier
by using positive examples dataset and some ex-
amples of the unlabeled dataset (Liu et al., 2002;
Liu et al., 2003). The basic idea is to find a set
of reliable negative examples from the unlabeled
data firstly, and then to learn a classifier using EM
(Expectation Maximization) or SVM. The perfor-
mance is limited for neglecting the rest examples
of unlabeled dataset.

Another family of methods learned the final
classifier by using positive examples dataset and
all examples of the unlabeled dataset. Li et al.
(Li et al., 2009) studied PU learning in the data
stream environment, they proposed a PU learn-
ing LELC (PU Learning by Extracting Likely
positive and negative micro-Clusters) for docu-
ment classification, they assume that the exam-
ples close together shared the same labels. Xi-
ao et al. (Xiao et al., 2011) proposed a method,
called SPUL (similarity-based PU learning), the
local similarity-based and global similarity-based
mechanisms are proposed to generate the similar-
ity weights for the easily mislabeled examples,
respectively. Experimental results show global
SPUL generally performs better than local SPUL.

In this paper, a novel PU learning (MPIPUL) is
proposed to identify deceptive reviews.

3 Preliminary

Before we introduce the proposed method, we
briefly review SVM, which has proven to be an
effective classification algorithm (Vapnik, 1998).

Let T = {(x(1), y(1)), (x(2), y(2)), . . . , (x(|T |), y(|T |)

)} be a training set, where x(i) ∈ Rd and
y(i) ∈ {+1,−1}. SVM aims to seek an optimal
separating hyperplane wT x(i) + b = 0, the hyper-

plane can be obtained by solving the following
optimization problem:

min F (w, b, ϵi) =
1
2
||w||2 + C

|T |∑
i=1

ϵi

s.t. y(i)(wT x(i) + b) ≥ 1− ϵi, i = 1, . . . , |T |
ϵi ≥ 0, i = 1, . . . , |T |

(1)

where wT represents the transpose of w, C is a
parameter to balance the classification errors and
ϵi are variables to relax the margin constraints.
The optimal classifier can be achieved by using
the Lagrange function. For a test example x, if
wT x+b < 0, it is classified into the negative class;
otherwise, it is positive.

In the following, SVM is extended to incorpo-
rate the spy examples and their weights, such that
the spy examples can contribute differently to the
classifier construction.

4 The Proposed Method

In this section, we will introduce the proposed ap-
proach in details. In our PU learning (MPIPUL),
truthful reviews are named positive examples, and
deceptive reviews are called negative examples. P
is defined as a set which contains all positive ex-
amples. U is a set for all unlabeled examples. PU
learning aims at building a classifier using P and
U . MPIPUL adopts the following four steps:

• Step 1: Extract the reliable negative exam-
ples;

• Step 2: Compute the representative positive
and negative examples;

• Step 3: Generate the similarity weights for
the spy examples;

• Step 4: Build the final SVM classifier;

4.1 Extracting Reliable Negative Examples
Considering only positive and unlabeled examples
are available in PU learning, some negative ex-
amples need to be extracted firstly. These exam-
ples will influence the performance of the follow-
ing three steps. So high-quality negative examples
must be guaranteed. Previous works solved the
problem with the Spy technique (Liu et al., 2002)
or the Rocchio technique (Liu et al., 2003), we in-
tegrate them in order to get reliable negative ex-
amples. Let subsets NS1 and NS2 contain the
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corresponding reliable negative examples extract-
ed by the two techniques, respectively. Examples
are considered to be a reliable negative only if both
techniques agree that they are negative. That is,
NS = NS1 ∩ NS2, where NS contains the reli-
able negative examples.

After reliable negative examples are extracted,
there are still some unlabeled examples (we call
spy examples) in set U , let subset US = U −NS,
which stores all the spy examples. It is crucial to
determine how to deal with these spy examples.

4.2 Computing Representative Positive and
Negative Examples

Generally, a classifier can be constructed to pre-
dict deceptive reviews based on the positive ex-
amples set P and the reliable negative examples
set NS. But the classifier is not accurate enough
for lacking of making full use of unlabeled dataset
U . In order to utilize spy examples in subset US,
some representative positive and negative exam-
ples are calculated firstly. Since the examples have
different styles in sentiment polarity and topic dis-
tribution, for every class, computing one repre-
sentative example is not suitable. For the posi-
tive class or the negative class, to ensure there is
a big difference between the different representa-
tive examples. This paper proposes clustering re-
liable negative examples into several groups based
on LDA (Latent Dirichlet Allocation) topic mod-
el and K-means, and then multiple representative
examples can be obtained.

LDA topic model is known as a parametric
Bayesian clustering model (Blei et al., 2003), and
assumes that each document can be represented
as the distribution of several topics, each docu-
ment is associated with common topics. LDA can
well capture the relationship between internal doc-
uments.

In our experiments based on LDA model, we
can get the topic distribution for the reliable neg-
ative examples, then some reliable negative exam-
ples which are similar in topic distribution will be
clustered into a group by K-means. Finally, these
reliable negative examples can be clustered into n
micro-clusters (NS1, NS2, . . . , NSn). Here,

n = 30 ∗ |NS|/(|US|+ |NS|) (2)

Here, according to the suggestion of previous
work (Xiao et al., 2011), we examine the impact
of the different parameter (from 10 to 60) on over-
all performance, and select the best value 30.

Based on the modified Rocchio formula (Buck-
ley et al., 1999), n representative positive exam-
ples (pk) and n negative ones (nk) can be obtained
using the following formula:

pk = α
1
|P |

|P |∑
i=1

x(i)

∥ x(i) ∥ − β
1

|NSk|
|NSk|∑
i=1

x(i)

∥ x(i) ∥

nk = α
1

|NSk|
|NSk|∑
i=1

x(i)

∥ x(i) ∥ − β
1
|P |

|P |∑
i=1

x(i)

∥ x(i) ∥
k = 1, . . . , n

(3)

According to previous works (Buckley et al.,
1994), where the value of α and β are set to 16
and 4 respectively. The research from Buckley et
al. demonstrate that this combination emphasizes
occurrences in the relevant documents as opposed
to non-relevant documents.

4.3 Generating Similarity Weights
For a spy example x, since we do not know which
class it should belong to, enforcing x to the posi-
tive class or the negative class will lead to some
mislabeled examples, which disturbs the perfor-
mance of final classifier. We represent a spy ex-
ample x using the following probability model:

{x, (p+(x), p−(x))}, p+(x) + p−(x) = 1 (4)

Where p+(x) and p−(x) are similarity weight-
s which represent the probability of x belonging
to the positive class and the negative class, re-
spectively. For example, {x, (1, 0)} means that x
is positive, while {x, (0, 1)} indicates that x is i-
dentified to be negative. For {x, (p+(x), p−(x))},
where 0 < p+(x) < 1 and 0 < p−(x) < 1, it
implies that the probability of x belonging to the
positive class and the negative class are both con-
sidered.

In this section, similarity weights are decided by
mixing global information (population property)
and local information (individual property). Then
all spy examples and their similarity weights are
incorporated into a SVM-based learning model.

4.3.1 Population Property
Population property means that the examples in
each micro-cluster share the similarity in sen-
timent polarity and topic distribution, and they
belong to the same category with a high pos-
sibility. In our framework, in order to com-
pare with the representative examples, all spy ex-
amples are firstly clustered into n micro-clusters
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(US1, US2, . . . , USn) based on LDA and K-
means. Then, for every spy example x in one
micro-cluster USi, we tags with temporary label
by finding its most similar representative example.
Finally, we can get the similarity weights for a spy
example x in micro-cluster USi, their probability
pertaining to the positive class and negative class
can be represented by the following formula:

p pop(x) =
|positive|
|USi|

n pop(x) =
|negative|
|USi|

(5)

where |USi| represents the number of all examples
in micro-cluster USi, |positive| means the num-
ber of the examples which is called temporary pos-
itive in USi, and |negative| means the number of
the examples which is called temporary negative
in USi.

For example, Figure 1 shows the part (C1, C2,
C3, C4) of the clustering results for the spy exam-
ples based on LDA and K-means, the examples
x in C4 are assigned with weights p pop(x) =
4
9 , n pop(x) = 5

9 , the examples x in C1 are as-
signed with weights p pop(x) = 1, n pop(x) = 0.

Figure 1: Illustration of population property

The advantage of population property lies in the
fact that it considers the similar relationship be-
tween the examples, from which the same micro-
cluster are assigned the same similarity weight.
However, it cannot distinguish the difference of
examples in one micro-cluster. In fact, the simi-
larity weights of examples from the same micro-
cluster can be different, since they are located
physically different. For example, for the spy ex-
ample y and z in micro-cluster C4, it is apparent-
ly unreasonable that we assign the same similarity
weights to them. So we should join the local in-

formation (individual property) when we are com-
puting the similarity weights for a spy example.

4.3.2 Individual Property
Individual property is taken into account to mea-
sure the relationship between every spy example
and all representative ones. Specifically, for ex-
ample x, we firstly compute its similarity to each
of the representative examples, and then the prob-
ability of the example x belonging to the positive
class and negative class can be calculated using the
following formula:

p ind(x) =
∑n

k=1 sim(x, pk)∑n
k=1(sim(x, pk) + sim(x, nk))

n ind(x) =
∑n

k=1 sim(x, nk)∑n
k=1(sim(x, pk) + sim(x, nk))

(6)

In the above formula,

sim(x, y) =
x · y

||x|| · ||y||
4.3.3 Similarity Weights
A scheme mixing population and individual prop-
erty is designed to generate the similarity weights
of spy examples. Specifically, for spy example x,
their similarity weights can be obtained by the fol-
lowing formula:

p+(x) = λ · p pop(x) + (1− λ) · p ind(x)
p−(x) = λ · n pop(x) + (1− λ) · n ind(x)

(7)

Where λ is a parameter to balance the informa-
tion from population property and individual prop-
erty. In the remaining section, we will examine
the impact of the parameter λ on overall perfor-
mance. Meanwhile, it can be easily proved that
p+(x) + p−(x) = 1.

4.4 Constructing SVM Classifier
After performing the third step, each spy example
x is assigned two similarity weights: p+(x) and
p−(x). In this section, we will extend the formu-
lation of SVM by incorporating the examples in
positive set P , reliable negative set NS, spy ex-
amples set US and their similarity weights into a
SVM-based learning model.

4.4.1 Primal Problem
Since the similarity weights p+(x) and p−(x) in-
dicate the probability for a spy example x belong-
ing to the positive class and the negative class, re-
spectively. The optimization formula (1) can be
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rewritten as the following optimization problem:

min F (w, b, ϵ) =
1
2
||w||2 + C1

|P |∑
i=1

ϵi + C2·

|US|∑
j=1

p+(x(j))ϵj + C3

|US|∑
m=1

p−(x(m))ϵm

+C4

|NS|∑
n=1

ϵn

s.t. y(i)(wT x(i) + b) ≥ 1− ϵi, x(i) ∈ P

y(j)(wT x(j) + b) ≥ 1− ϵj , x(j) ∈ US

y(m)(wT x(m) + b) ≥ 1− ϵm, x(m) ∈ US

y(n)(wT x(n) + b) ≥ 1− ϵn, x(n) ∈ NS

ϵi ≥ 0, ϵj ≥ 0, ϵm ≥ 0, ϵn ≥ 0
(8)

Where C1, C2, C3 and C4 are penalty factors con-
trolling the tradeoff between the hyperplane mar-
gin and the errors, ϵi, ϵj , ϵm and ϵn are the error
terms. p+(x(j))ϵj and p−(x(m))ϵm can be consid-
ered as errors with different weights. Note that,
a bigger value of p+(x(j)) can increase the effect
of parameter ϵj , so that the corresponding example
x(j) becomes more significant towards the positive
class. In the following, we will find the dual form
to address the above optimization problem.

4.4.2 Dual Problem

Assume αi and αj are Lagrange multipliers. To
simplify the presentation, we redefine some nota-
tions as follows:

C+
i =

{
C1, x(i) ∈ P

C2p
+(x(j)), x(j) ∈ US

C−
j =

{
C3p

−(x(m)), x(m) ∈ US

C4, x(n) ∈ NS

Based on the above definitions, we let T+ =
P ∪ US, T− = US ∪ NS and T ∗ = T+ ∪ T−.
The Wolfe dual of primal formulation can be ob-
tained as follows (Appendix A for the calculation

process):

max W (α) =
|T ∗|∑
i=1

αi − 1
2

|T ∗|∑
i=1,j=1

αiαjy
(i)·

y(j) < x(i), x(j) >

s.t. C+
i ≥ αi ≥ 0, x(i) ∈ T+

C−
j ≥ αj ≥ 0, x(j) ∈ T−

|T+|∑
i=1

αi −
|T−|∑
j=1

αj = 0

(9)

where < x(i), x(j) > is the inner product of x(i)

and x(j). In order to get the better performance, we
can replace them by using kernel function ϕ(x(i))
and ϕ(x(j)), respectively. The kernel track can
convert the input space into a high-dimension fea-
ture space. It can solve the uneven distribution of
dataset and complex problem from heterogeneous
data sources, which allows data to get a better ex-
pression in the new space (Lanckriet et al., 2004;
Lee et al., 2007).

After solving the above problem, w can be ob-
tained, then b can also be obtained by using KKT
(Karush-Kuhn-Tucker) conditions. For a test ex-
ample x, if wT x+ b > 0, it belongs to the positive
class. Otherwise, it is negative.

5 Experiments

We aim to evaluate whether our proposed PU
learning can identify deceptive reviews properly.
We firstly describe the gold-standard dataset, and
then introduce the way to generate the positive
examples P and unlabeled examples U . Finally
we present human performance in gold-standard
dataset.

5.1 Datasets
There is very little progress in detection of de-
ceptive reviews, one reason is the lack of stan-
dard dataset for algorithm evaluation. The gold-
standard dataset is created based on crowdsourc-
ing platform (Ott et al., 2011), which is also adopt-
ed as the experimental dataset in this paper.

5.1.1 Deceptive Reviews
Crowdsourcing services can carry out massive da-
ta collection and annotation; it defines the task in
the network platform, and paid for online anony-
mous workers to complete the task.
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Humans cannot be precisely distinguish decep-
tive ones from existing reviews, but they can create
deceptive reviews as one part of the dataset. Ott et
al. (2011) accomplish this work by AMT (Ama-
zon Mechanical Turk). They set 400 tasks for 20
hotels, in which each hotel gets 20 tasks. Specif-
ic task is: If you are a hotel market department
employee, for each positive review you wrote for
the benefit for hotel development, you may get one
dollar. They collect 400 deceptive reviews.

5.1.2 Truthful Reviews
For the collection of truthful reviews, they get
6977 reviews from TripAdvisor1 based on the
same 20 Chicago hotels, and remove some reviews
on the basis of the following constraints:

• Delete all non-five star reviews;

• Delete all non-English reviews;

• Delete all reviews which are less than 75
characters;

• Delete all reviews written by first-time au-
thors;

2124 reviews are gathered after filtering. 400 of
them are chosen as truthful ones for balancing the
number of deceptive reviews, as well as maintain-
ing consistent with the distribution of the length of
deceptive reviews. 800 reviews constitute whole
gold-standard dataset at last.

5.2 Experiment Setup
We conduct 10-fold cross-validation: the dataset
is randomly split into ten folds, where nine fold-
s are selected for training and the tenth fold for
test. In training dataset, it contains 360 truthful
reviews and 360 deceptive ones. This paper is in-
tended to apply PU learning to identify deceptive
reviews. We specially make the following setting:
take 20% of the truthful reviews in training set as
positive examples dataset P , all remaining truthful
and deceptive reviews in training set as the unla-
beled dataset U . Therefore, during one round of
the algorithm, the training set contains 720 exam-
ples including 72 positive examples (set P ) and
648 unlabeled examples (set U ), and the test set
contains 80 examples including 40 positive and 40
negative ones. In order to verify the stability of
the proposed method, we also experiment anoth-
er two different settings, which account for 30%

1http://www.tripadvisor.com

and 40% of the truthful reviews in training set as
positive examples dataset P respectively.

5.3 Human Performance

Human performance reflects the degree of difficul-
ty to address this task. The rationality of PU learn-
ing is closely related to human performance.

We solicit the help of three volunteer students,
who were asked to make judgments on test sub-
set (corresponding to the tenth fold of our cross-
validation experiments, contains 40 deceptive re-
views and 40 truthful reviews). Additionally, to
test the extent to which the individual human
judges are biased, we evaluate the performance of
two virtual meta-judges: one is the MAJORITY
meta-judge when at last two out of three human
judge believe the review to be deceptive, and the
other is the SKEPTIC when any human judge be-
lieves the review to be deceptive. It is apparent
from the results that human judges are not par-
ticularly effective at this task (Table 1). Inter-
annotator agreement among the three judges, com-
puted using Fleiss’ kappa, is 0.09. Landis and
Koch (Landis and Koch, 1977) suggest that s-
cores in the range (0.00, 0.20) correspond to “s-
light agreemen” between annotators. The largest
pairwise Cohen’s kappa is 0.11 between JUDGE-
1 and JUDGE-3, far below generally accepted
pairwise agreement levels. We can infer that the
dataset which are annotated by people will include
a lot of mislabeled examples. Identifying decep-
tive reviews by simply using supervised learning
methods is not appropriate. So we propose ad-
dressing this issue by using PU learning.

Table 1: Human performance
Methods Accuracy (%)

Human
JUDGE-1 57.9
JUDGE-2 55.4
JUDGE-3 61.7

META
MAJORITY 58.3
SKEPTIC 62.4

6 Results and Analysis

In order to verify the effectiveness of our proposed
method, we perform two PU learning (LELC and
SPUL) in the gold-standard dataset.
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6.1 Experimental Results

Table 2 shows that the experimental results com-
pared with different PU learning techniques. In
Table 2, P (20%) means that we randomly select
20 percentages of truthful reviews to form the pos-
itive examples subset P . In our MPIPUL frame-
work, we set λ = 0.3. We can see that our pro-
posed method can obtain 83.91%, 85.43% and
86.69% in accuracy from different experimental
settings, respectively. Compared to the curren-
t best method (SPUL-global), the accuracy can be
improved 2.06% on average. MPUPUL can im-
prove 3.21% on average than LELC. The above
discussion shows our proposed methods consis-
tently outperform the other PU baselines.

Table 2: Accuracy on the different PU learning
Baselines P(20%) P(30%) P(40%)
LELC 81.12 82.08 83.21
SPUL-local 81.43 82.71 84.09
SPUL-global 81.89 83.24 84.73
MPIPUL (0.3) 83.91 85.43 86.69

PU learning framework in this paper can obtain
the better performance. Two factors contribute to
the improved performance. Firstly, LDA can cap-
ture the deeper information of the reviews in topic
distribution. Secondly, strategies of mixing pop-
ulation and individual property can generate the
similarity weights for spy examples, and these ex-
amples and their similarity weights are extended
into SVM, which can build a more accurate clas-
sifier.

6.2 Parameter Sensitivity

For the spy examples, the similarity weights are
generated by population property and individual
property. Should we select the more population
information or individual information? In MPIP-
UL, parameter λ is utilized to adjust this process.
So we experiment with the different value of the
parameter λ on MPUPUL performance (Figure 2).

As showed in Figure 2, for P (20%), if λ < 0.3,
the performance increases linearly, if λ > 0.3,
the performance will decrease linearly. Mean-
while, we can get the same trends for P (30%) and
P (40%). Based on the above discussion, MPIP-
UL can get the best performance when λ ≈ 0.3.

Figure 2: Algorithm performance on different pa-
rameter

7 Conclusions and Future Work

This paper proposes a novel PU learning (MPIP-
UL) technique to identify deceptive reviews based
on LDA and SVM. Firstly, the spy examples are
assigned similarity weights by integrating the in-
formation from the population property and in-
dividual property. Then the spy examples and
their similarity weights are incorporated into SVM
learning phase to build an accurate classifier. Ex-
perimental results on gold-standard dataset show
the effectiveness of our method.

In future work, we will discuss the application
of our proposed method in the massive dataset.
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Appendix A

The optimization problem is as follows:

min F (w, b, ϵ) =
1
2
||w||2 + C1

|P |∑
i=1

ϵi + C2·

|US|∑
j=1

p+(x(j))ϵj + C3

|US|∑
m=1

p−(x(m))ϵm+

C4

|NS|∑
n=1

ϵn

s.t. y(i)(wT x(i) + b) ≥ 1− ϵi, x(i) ∈ P

y(j)(wT x(j) + b) ≥ 1− ϵj , x(j) ∈ US

y(m)(wT x(m) + b) ≥ 1− ϵm, x(m) ∈ US

y(n)(wT x(n) + b) ≥ 1− ϵn, x(n) ∈ NS

ϵi ≥ 0, ϵj ≥ 0, ϵm ≥ 0, ϵn ≥ 0
(10)

We construct the Lagrangian function for the
above optimization problem, we have:

L(w, b, ϵ, α, γ) = F (w, b, ϵ) +
|P |∑
i=1

αi[−y(i)·

(wT x(i) + b) + 1− ϵi] +
|US|∑
j=1

αj [−y(j)(wT x(j)+

b) + 1− ϵj ] +
|US|∑
m=1

αm[−y(m)(wT x(m) + b) + 1

−ϵm] +
|NS|∑
n=1

αn[−y(n)(wT x(n) + b) + 1− ϵn]−

|P |∑
i=1

γiϵi −
|US|∑
j=1

γjϵj −
|US|∑
m=1

γmϵm −
|NS|∑
n=1

γnϵn

(11)

Here, the α and γ are Lagrange multipliers. To
find the dual form of the problem, we need to first

minimize L(w, b, ϵ, α, γ) with respect to w and b,
we will do by setting the derivatives of L with re-
spect to w and b to zero, we have:

∂L(w, b, ϵ, α, γ)
∂w

= w −
|P |∑
i=1

αiy
(i)x(i) −

|US|∑
j=1

αjy
(j)x(j) −

|US|∑
m=1

αmy(m)x(m) −
|NS|∑
n=1

αny(n)·

x(n) = 0
(12)

This implies that

w =
|P |∑
i=1

αiy
(i)x(i) +

|US|∑
j=1

αjy
(j)x(j) +

|US|∑
m=1

αm·

y(m)x(m) +
|NS|∑
n=1

αny(n)x(n)

(13)

Here, to simplify the presentation, we redefine
some notations in the following:

T+ = P ∪ US, T− = US ∪NS, T ∗ = T+ ∪ T−

C+
i =

{
C1, x(i) ∈ P

C2p
+x(j), x(j) ∈ US

C−
j =

{
C3p

−x(m), x(m) ∈ US

C4, x(n) ∈ NS

so we obtain

w =
|T ∗|∑
i=1

αiy
(i)x(i) (14)

As for the derivative with respect to b, we obtain

∂L(w, b, ϵ, α, γ)
∂b

= −
|P |∑
i=1

αiy
(i) −

|US|∑
j=1

αjy
(j)

−
|US|∑
m=1

αmy(m) −
|NS|∑
n=1

αny(n) = 0

(15)

We get:
|T ∗|∑
i=1

αiy
(i) = 0 (16)
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If we take Equation (14) and (16) back into the
Lagrangian function (Equation 11), and simplify,
we get

L(w, b, ϵ, α, γ) =
|T ∗|∑
i=1

αi − 1
2

|T ∗|∑
i,j=1

y(i)y(j)αi·

αj < x(i), x(j) >

(17)

To the primal optimization formula (10), we can
obtain the following dual optimization problem:

max W (α) =
|T ∗|∑
i=1

αi − 1
2

|T ∗|∑
i=1,j=1

αiαjy
(i)·

y(j) < x(i), x(j) >

s.t. C+
i ≥ αi ≥ 0, x(i) ∈ T+

C−
j ≥ αj ≥ 0, x(j) ∈ T−

|T+|∑
i=1

αi −
|T−|∑
j=1

αj = 0

(18)

where < x(i), x(j) > is the inner product of x(i)

and x(j), we can replace them by using kernel
function ϕ(x(i)) and ϕ(x(j)), respectively.
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Abstract

Shell nouns, such as fact and problem, oc-
cur frequently in all kinds of texts. These
nouns themselves are unspecific, and can
only be interpreted together with the shell
content. We propose a general approach
to automatically identify shell content of
shell nouns. Our approach exploits lexico-
syntactic knowledge derived from the lin-
guistics literature. We evaluate the ap-
proach on a variety of shell nouns with a
variety of syntactic expectations, achiev-
ing accuracies in the range of 62% (base-
line = 33%) to 83% (baseline = 74%) on
crowd-annotated data.

1 Introduction

Shell nouns are abstract nouns, such as fact, issue,
idea, and problem, which facilitate efficiency by
avoiding repetition of long stretches of text. The
shell metaphor comes from Schmid (2000), and it
captures the various functions of these nouns in a
discourse: containment, signalling, pointing, and
encapsulating. Shell nouns themselves are unspe-
cific, and can only be interpreted together with
their shell content, i.e., the propositional content
they encapsulate in the given context. The process
of identifying this content in the given context is
referred to as shell noun resolution or interpreta-
tion. Examples (1), (2), and (3) show usages of the
shell nouns fact and issue. The shell noun phrases
are resolved to the postnominal that clause, the
complement wh clause, and the immediately pre-

ceding clause, respectively.1,2

(1) The fact that a major label hadn’t been
at liberty to exploit and repackage the
material on CD meant that prices on the
vintage LP market were soaring.

(2) The issue that this country and Congress
must address is how to provide optimal
care for all without limiting access for
the many.

(3) Living expenses are much lower in rural
India than in New York, but this fact is
not fully captured if prices are converted
with currency exchange rates.

Observe that the relation between shell noun
phrases and their shell content is similar to
the relation of abstract anaphora (or cataphora)
(Asher, 1993) with backward- or forward-looking
abstract-object antecedents. For anaphoric shell
noun examples, the shell content precedes the
shell noun phrase, and for cataphoric shell noun
examples the shell content follows the shell noun
phrase.3

Shell nouns as a group occur frequently in argu-
mentative texts (Schmid, 2000; Flowerdew, 2003;
Botley, 2006). They play an important role in or-
ganizing a discourse and maintaining its coher-
ence (Schmid, 2000; Flowerdew, 2003), and re-
solving them is an important component of var-
ious computational linguistics tasks that rely on

1Note that the postnominal that-clause in (1) is not a rela-
tive clause: the fact in question is not an argument of exploit
and repackage.

2All examples in this paper are from the New
York Times corpus (https://catalog.ldc.upenn.edu/
LDC2008T19)

3We use the terms cataphoric shell noun and anaphoric
shell noun for lack of better alternatives.
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discourse structure. Accordingly, identifying shell
content can be helpful in summarization, informa-
tion retrieval, and ESL learning (Flowerdew, 2003;
Hinkel, 2004).

Despite their importance in discourse, under-
standing of shell nouns from a computational lin-
guistics perspective is only in the preliminary
stage. Recently, we proposed an approach to anno-
tate and resolve anaphoric cases of six typical shell
nouns: fact, reason, issue, decision, question, and
possibility (Kolhatkar et al., 2013b). This work
drew on the observation that shell nouns following
cataphoric constructions are easy to resolve. We
manually developed rules to identify shell content
for such cases. Later, we used these cataphoric ex-
amples and their shell content as training data to
resolve harder anaphoric examples.

In this paper, we propose a general algorithm to
resolve cataphoric shell noun examples. Our long-
term goal is to build an end-to-end shell-noun res-
olution system. If we want to go beyond the six
shell nouns from our previous work, and general-
ize our approach to other shell nouns, first we need
to develop an approach to resolve cataphoric shell
noun examples. A number of challenges are asso-
ciated with this seemingly easy task. The primary
challenges is that this resolution is in many cru-
cial respects a semantic phenomenon. To obtain
the required semantic knowledge, we exploit the
properties of shell nouns and their categorization
described in the linguistics literature. We evalu-
ate our method using crowdsourcing, and demon-
strate how far one can get with simple, determin-
istic shell content extraction.

2 Related work

Shell-nounhood is a well-established concept in
linguistics (Vendler, 1968; Ivanic, 1991; Asher,
1993; Francis, 1994; Schmid, 2000, inter alia).
However, understanding of shell nouns from a
computational linguistics perspective is only in the
preliminary stage.

Shell nouns take a number of semantic argu-
ments. In this respect, they are similar to the gen-
eral class of argument-taking nominals as given
in the NomBank (Meyers et al., 2004). Simi-
larly, there is a small body of literature that ad-
dresses nominal semantic role labelling (Gerber et
al., 2009) and nominal subcategorization frames
(Preiss et al., 2007). That said, the distinguishing
property of shell nouns is that one of their seman-

tic arguments is the shell content, but the literature
in computational linguistics does not provide any
method that is able to identify the shell content.
The focus of our work is to rectify this.

Shell content represents complex and abstract
objects. So traditional linguistic and psycholin-
guistic principles used in pronominal anaphora
resolution (see the survey by Poesio et al. (2011)),
such as gender and number agreement, are not ap-
plicable in resolving shell nouns. That said, there
is a line of literature on annotating and resolving
personal and demonstrative pronouns, which typi-
cally refer to similar kinds of non-nominal abstract
entities (Passonneau, 1989; Eckert and Strube,
2000; Byron, 2003; Müller, 2008; Hedberg et
al., 2007; Poesio and Artstein, 2008; Navarretta,
2011, inter alia). Also, there have been attempts
at annotating the shell content of anaphoric occur-
rences of shell nouns (e.g., Botley (2006), Kol-
hatkar et al. (2013a)). However, none of these
approaches attempt to annotate and resolve cat-
aphoric examples such (1) and (2).

3 Challenges

A number of challenges are associated with the
task of resolving cataphoric shell noun examples,
especially when it comes to developing a holistic
approach for a variety of shell nouns.

First, each shell noun has idiosyncrasies. Dif-
ferent shell nouns have different semantic and syn-
tactic expectations, and hence they take different
types of one or more semantic arguments: one in-
troducing the shell content, and others expressing
circumstantial information about the shell noun.
For instance, fact typically takes a single factual
clause as an argument, which is its shell content,
as we saw in example (1), whereas reason expects
two arguments: the cause and the effect, with the
content introduced in the cause, as shown in exam-
ple (4).4 Similarly, decision takes an agent making
the decision and the shell content is represented as
an action or a proposition, as shown in (5).5

(4) One reason [that 60 percent of New York
City public-school children read below
grade level]effect is [that many elementary
schools don’t have libraries]cause.

4Observe that the postnominal that clause in (4) is not a
relative clause, and still it is not the shell content because it is
not the cause argument of the shell noun reason.

5Observe that this aspect of shell nouns of taking different
numbers and kinds of complement clauses is similar to verbs
having different subcategorization frames.
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(5) I applaud loudly the decision of
[Greenburgh]agent to ban animal per-
formances.

Second, the relation between a shell noun and
its content is in many crucial respects a seman-
tic phenomenon. For instance, resolving the shell
noun reason to its shell content involves identify-
ing a) that reason generally expects two semantic
arguments: cause and effect, b) that the cause ar-
gument (and not the effect argument) represents
the shell content, and c) that a particular con-
stituent in the given context represents the cause
argument.

Third, at the conceptual level, once we know
which semantic argument represents shell content,
resolving examples such as (4) seems straightfor-
ward using syntactic structure, i.e., by extracting
the complement clause. But at the implementa-
tion level, this is a non-trivial problem for two rea-
sons. The first reason is that examples contain-
ing shell nouns often follow syntactically complex
constructions, including embedded clauses, coor-
dination, and sentential complements. An auto-
matic parser is not always accurate for such ex-
amples. So the challenge is whether the avail-
able tools in computational linguistics such as syn-
tactic parsers and discourse parsers are able to
provide us with the information that is necessary
to resolve these difficult cases. The second rea-
son is that the shell content can occur in many
different constructions, such as apposition (e.g.,
parental ownership of children, a concept that
allows . . . ), postnominal and complement clause
constructions, as we saw in examples (1) and (2),
and modifier constructions (e.g., the liberal trade
policy that . . . ). Moreover, in some constructions,
the content is indefinite (e.g., A bad idea does not
harm until someone acts upon it.) or None be-
cause the example is a non-shell noun usage (e.g.,
this week’s issue of Sports Illustrated), and the
challenge is to identify such cases.

Finally, whether the postnominal clause intro-
duces the shell content or not is dependent on
the context of the shell noun phrase. The reso-
lution can be complicated by complex syntactic
constructions. For instance, when the shell noun
follows verbs such as expect, it becomes difficult
for an automatic system to identify whether the
postnominal or the complement clause is of the
verb or of the shell noun (e.g., they did not expect
the decision to reignite tension in Crown Heights

vs. no one expected the decision to call an elec-
tion). Similarly, shell noun phrases can be ob-
jects of prepositions, and whether the postnomi-
nal clause introduces the shell content or not is de-
pendent on this preposition. For instance, for the
pattern reason that, the postnominal that clause
does not generally introduce the shell content, as
we saw in (4); however, this does not hold when
the shell noun phrase containing reason follows
the preposition for, as shown in (6).

(6) Low tax rates give people an incentive to
work, for the simple reason that they get
to keep more of what they earn.

4 Linguistic framework

Linguists have studied a variety of shell nouns,
their classification, different patterns they follow,
and their semantic and syntactic properties in de-
tail (Vendler, 1968; Ivanic, 1991; Asher, 1993;
Francis, 1994; Schmid, 2000, inter alia). Schmid
points out that being a shell noun is a property of
a specific usage of the noun rather than an inher-
ent property of the word. He provides a list of 670
English nouns that tend to occur as shell nouns. A
few frequently occurring ones are: problem, no-
tion, concept, issue, fact, belief, decision, point,
idea, event, possibility, reason, trouble, question,
plan, theory, aim, and principle.

4.1 Lexico-syntactic patterns
Precisely defining the notion of shell-nounhood
is tricky. A necessary property of shell nouns is
that they are capable of taking clausal arguments,
primarily with two lexico-syntactic constructions:
Noun + postnominal clause and Noun + be + com-
plement clause (Vendler, 1968; Biber et al., 1999;
Schmid, 2000; Huddleston and Pullum, 2002).
Schmid exploits these lexico-syntactic construc-
tions to identify shell noun usages. In particular,
he provides a number of typical lexico-syntactic
patterns that are indicative of either anaphoric or
cataphoric shell noun occurrences. Table 1 shows
these patterns with examples.

Cataphoric These patterns primarily follow two
constructions.

N-be-clause In this construction, the shell
noun phrase occurs as the subject in a subject-
verb-clause construction, with the linking verb be,
and the shell content embedded as a wh clause,
that clause, or to-infinitive clause. The linking
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Cataphoric

1 N-be-to Our plan is to hire and retain the best managers we can.

2 N-be-that The major reason is that doctors are uncomfortable with uncertainty.

3 N-be-wh Of course, the central, and probably insoluble, issue is whether animal testing is cruel.

4 N-to The decision to disconnect the ventilator came after doctors found no brain activity.

5 N-that Mr. Shoval left open the possibility that Israel would move into other West Bank cities.

6 N-wh If there ever is any doubt whether a plant is a poppy or not, break off a stem and squeeze it.

7 N-of The concept of having an outsider as Prime Minister is outdated.

Anaphoric

8 th-N Living expenses are much lower in rural India than in New York, but this fact is not fully
captured if prices are converted with currency exchange rates.

9 th-be-N People change. This is a fact.
10 Sub-be-N If the money is available, however, cutting the sales tax is a good idea.

Table 1: Lexico-grammatical patterns of shell nouns (Schmid, 2000). Shell noun phrases are underlined,
the pattern is marked in boldface, and the shell content is marked in italics.

Proportion
Noun N-be-to N-be-that N-be-wh N-to N-that N-wh N-of total

idea 7 2 - 5 23 10 53 91,277
issue - 1 5 7 14 2 71 55,088
concept 1 - - 6 12 - 79 14,301
decision - - - 80 12 1 5 55,088
plan 5 - - 72 17 - 4 67,344
policy 4 1 - 16 25 2 51 24,025

Table 2: Distribution of cataphoric patterns for six shell nouns in the New York Times corpus. Each
column shows the percentage of instances following that pattern. The last column shows the total number
of cataphoric instances of each noun in the corpus.

verb be indicates the semantic identity between the
shell noun and its content in the given context. The
construction follows the patterns in rows 1, 2, and
3 of Table 1.

N-clause This construction includes the cat-
aphoric patterns 4–7 in Table 1. For these patterns
the link between the shell noun and the content
is much less straightforward: whether the post-
nominal clause expresses the shell content or not
is dependent on the shell noun and the syntac-
tic structure under consideration. For instance,
for the shell noun fact, the shell content is em-
bedded in the postnominal that clause, as shown
in (1), but this does not hold for the shell noun
reason in example (4). The N-of pattern is dif-
ferent from other patterns: it follows the con-
struction N-prepositional phrase rather than N-
clause, and since a prepositional phrase can take
different kinds of embedded constituents such as a

noun phrase, a sentential complement, and a verb
phrase, the pattern offers flexibility in the syntactic
type of the shell content.

Anaphoric For these patterns, the link between
the shell noun and the content is created using
linguistic elements such as the, this, that, other,
same, and such. For the patterns 8 and 9 the shell
content does not typically occur in the sentence
containing the shell noun phrase. For the pattern
10, the shell content is the subject in a subject-
verb-N construction.

Pattern preferences Different shell nouns have
different pattern preferences. Table 2 shows the
distribution of cataphoric patterns for six shell
nouns in the New York Times corpus. The shell
nouns idea, issue, and concept prefer N-of pattern,
whereas plan and decision prefer the pattern N-to.
Among all instances of the shell noun decision fol-

502



Idea family
Semantic features: [mental], [conceptual]
Frame: mental; focus on propositional content of IDEA
Nouns: idea, issue, concept, point, notion, theory, . . .
Patterns: N-be-that/of, N-that/of

Plan family
Semantic features: [mental], [volitional], [manner]
Frame: mental; focus on IDEA
Nouns: decision, plan, policy, idea, . . .
Patterns: N-be-to/that, N-to/that

Trouble family
Semantic features: [eventive], [attitudinal], [manner],
[deontic]
Frame: general eventive
Nouns: problem, trouble, difficulty, dilemma, snag
Patterns: N-be-to

Problem family
Semantic features: [factual], [attitudinal], [impeding]
Frame: general factual
Nouns: problem, trouble, difficulty, point, thing, snag,
dilemma , . . .
Patterns: N-be-that/of

Thing family
Semantic features: [factual]
Frame: general factual
Nouns: fact, phenomenon, point, case, thing, business
Patterns: N-that, N-be-that

Reason family
Semantic features: [factual], [causal]
Frame: causal; attentional focus on CAUSE
Nouns: reason, cause, ground, thing
Patterns: N-be-that/why, N-that/why

Table 3: Example families from Schmid (2000). The nouns in boldface are used to evaluate this work.

lowing Schmid’s cataphoric patterns, 80% of the
instances follow the pattern N-to.6

4.2 Categorization of shell nouns
Schmid classifies shell nouns at three levels. At
the most abstract level, he classifies shell nouns
into six semantic classes: factual, linguistic, men-
tal, modal, eventive, and circumstantial. Each se-
mantic class indicates the type of experience the
shell noun is intended to describe. For instance,
the mental class describes ideas and cognitive
states, whereas the linguistic class describes utter-
ances, linguistic acts, and products thereof.

The next level of classification includes more-
detailed semantic features. Each broad semantic
class is sub-categorized into a number of groups.
A group of an abstract class tries to capture
the semantic features associated with the fine-
grained differences between different usages of
shell nouns in that class. For instance, groups
associated with the mental class are: conceptual,
creditive, dubiative, volitional, and emotive.

The third level of classification consists of fam-
ilies. A family groups together shell nouns with
similar semantic features. Schmid provides 79 dis-
tinct families of 670 shell nouns. Each family is
named after the primary noun in that family. Table
3 shows six families: Idea, Plan, Trouble, Prob-
lem, Thing, and Reason. A shell noun can be

6Table 2 does not include anaphoric patterns, as this pa-
per is focused on cataphoric shell noun examples. Anaphoric
patterns are common for all shell nouns: among all instances
of a shell noun, approximately 50 to 80% are anaphoric.

a member of multiple families. The nouns sub-
sumed in a family share semantic features. For
instance, all nouns in the Idea family are mental
and conceptual. They are mental because ideas
are only accessible through thoughts, and concep-
tual because they represent reflection or an appli-
cation of a concept. Each family activates a se-
mantic frame. The idea of these semantic frames is
similar to that of frames in Frame semantics (Fill-
more, 1985) and in semantics of grammar (Talmy,
2000). In particular, Schmid follows Talmy’s con-
ception of frames. A semantic frame describes
conceptual structures, its elements, and their in-
terrelationships. For instance, the Reason family
invokes the causal frame, which has cause and ef-
fect as its elements with the attentional focus on
the cause. According to Schmid, the nouns in a
family also share a number of lexico-syntactic fea-
tures. The patterns attribute in Table 3 shows pro-
totypical lexico-syntactic patterns, which attract
the members of the family. Schmid defines attrac-
tion as the degree to which a lexico-grammatical
pattern attracts a certain noun. For instance, the
patterns N-to and N-that attract the shell nouns in
the Plan family, whereas the N-that pattern attracts
the nouns in the Thing family. The pattern N-of is
restricted to a smaller group of nouns such as con-
cept, problem, and issue.7,8

7Schmid used the British section of COBUILD’S Bank of
English for his classification.

8Schmid’s families could help enrich resources such as
FrameNet (Baker et al., 1998) with the shell content informa-
tion.
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5 Resolution algorithm

With this exposition, the problem of shell noun
resolution is identifying the appropriate seman-
tic argument of the shell noun representing its
shell content. This section describes our algorithm
to resolve shell nouns following cataphoric pat-
terns. The algorithm addresses the primary chal-
lenge of idiosyncrasies of shell nouns by exploit-
ing Schmid’s semantic families (see Section 4.2).
The input of the algorithm is a shell noun instance
following a cataphoric pattern, and the output is
its shell content or None if the shell content is not
present in the given sentence. The algorithm fol-
lows three steps. First, we parse the given sentence
using the Stanford parser.9 Second, we look for
the noun phrase (NP), where the head of the NP is
the shell noun to be resolved.10 Finally, we extract
the appropriate shell content, if it is present in the
given sentence.

5.1 Identifying potentially anaphoric
shell-noun constructions

Before starting the actual resolution, first we iden-
tify whether the shell content occurs in the given
sentence or not. According to Schmid, the lexico-
syntactic patterns signal the position of the shell
content. For instance, if the pattern is of the form
N-be-clause, the shell content is more likely to
occur in the complement clause in the same sen-
tence. That said, although on the surface level, the
shell noun seems to follow a cataphoric pattern, it
is possible that the shell content is not given in a
postnominal or a complement clause, as shown in
(7).

(7) Just as weekend hackers flock to the golf
ball most used by PGA Tour players,
recreational skiers, and a legion of youth
league racers, gravitate to the skis worn
by Olympic champions. It is the reason
that top racers are so quick flash their skis
for the cameras in the finish area.

Here, the shell noun and its content are linked via
the pronoun it. For such constructions, the shell
noun phrase and shell content do not occur in the
same sentence. Shell content occurs in the preced-
ing discourse, typically in the preceding sentence.

9http://nlp.stanford.edu/software/
lex-parser.shtml

10We extract the head of an NP following the heuristics
proposed by Collins (1999, p. 238).

We identify such cases, and other cases where the
shell content is not likely to occur in the postnom-
inal or complements clauses, by looking for the
patterns below in the given order, returning the
shell content when it occurs in the given sentence.

Sub-be-N This pattern corresponds to the
lexico-grammatical pattern in Figure 1(a). If this
pattern is found, there are three main possibilities
for the subject. First, if an existential there occurs
at the subject position, we move to the next pat-
tern. Second, if the subject is it (example (7)), this
or that, we return None, assuming that the con-
tent is not present in the given sentence. Finally,
if the first two conditions are not satisfied, i.e., if
the subject is neither a pronoun not an existential
there, we assume that subject contains a valid shell
content, and return it. An example is shown in (8).
Note that in such cases, unlike other patterns, the
shell content is expressed as a noun phrase.

(8) Strict liability is the biggest issue when
considering what athletes put in their bod-
ies.

Apposition Another case where shell content
does not typically occur in the postnominal or
complement clause is the case of apposition. In-
definite shell noun phrases often occur in apposi-
tion constructions, as shown in (9).

(9) The LH lineup, according to Gale, will
feature “cab-forward” design, a concept
that particularly pleases him.

In this step, we check for this construction and re-
turn the sentential, verbal, or nominal left sibling
of the shell noun phrase.

Modifier For shell nouns such as issue, phe-
nomenon, and policy, often the shell content is
given in the modifier of the shell noun, as shown
in (10).

(10) But in the 18th century, Leipzig’s central
location in German-speaking Europe and
the liberal trade policy of the Saxon court
fostered publishing.

We deal with such cases as follows. First, we
extract the modifier phrases by concatenating the
modifier words having noun, verb, or adjective
part-of-speech tags. To exclude unlikely modi-
fier phrases as shell content (e.g., good idea, big
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Figure 1: Lexico-syntactic patterns for shell nouns

issue), we extract a list of modifiers for a num-
ber of shell nouns and create a stoplist of modi-
fiers. If any of the words in the modifier phrases
is a pronoun or occurs in the stoplist, we move to
the next pattern. If the modifier phrase passes the
stoplist test, to distinguish between non-shell con-
tent and shell content modifiers, we examine the
hypernym paths of the words in the modifier
phrase in WordNet (Fellbaum, 1998). If the synset
abstraction.n.06 occurs in the path, we consider
the modifier phrase to be valid shell content, as-
suming that the shell content of shell nouns most
typically represents an abstract entity.

5.2 Resolving remaining instances
At this stage we are assuming that the shell con-
tent occurs either in the postnominal clause or the
complement clause. So we look for the patterns
below, returning the shell content when found.

N-be-clause The lexico-grammatical pattern
corresponding to the pattern N-be-clause is shown
in Figure 1(b). This is one of the more reliable
patterns for shell content extraction, as the be verb
suggests the semantic identity between the shell
noun and the complement clause. The be-verb
does not necessarily have to immediately follow
the shell noun. For instance, in example (2), the
head of the NP The issue that this country and
Congress must address is the shell noun issue, and
hence it satisfies the construction in Figure 1(b).

N-clause Finally, we look for this pattern. An
example of this pattern is shown in Figure 1(c).
This is the most common (see Table 2) and tricki-
est pattern in terms of resolution, and whether the
shell content is given in the postnominal clause or
not is dependent on the properties of the shell noun
under consideration and the syntactic construction
of the example. For instance, for the shell noun
decision, the postnominal to-infinitive clause typi-

cally represents shell content. But this did not hold
for the shell noun reason, as shown in (11).

(11) The reason to resist becoming a partici-
pant is obvious.

Here, Schmid’s semantic families come in the
picture. We wanted to examine a) the extent to
which the previous steps help in resolution, and b)
whether knowledge extracted from Schmid’s fam-
ilies add value to the resolution. So we employ
two versions of this step.

Include Schmid’s cues (+SC) This version
exploits the knowledge encoded in Schmid’s se-
mantic families (Section 4.2), and extracts post-
nominal clauses only if Schmid’s pattern cues are
satisfied. In particular, given a shell noun, we de-
termine the families in which it occurs and list all
possible patterns of these families as shell content
cues. The postnominal clause is a valid shell con-
tent only if it satisfies these cues. For instance,
the shell noun reason occurs in only one family:
Reason, with the allowed shell content patterns N-
that and N-why. Schmid’s patterns suggest that the
postnominal to-infinitive clauses are not allowed
as shell content for this shell noun, and thus this
step will return None. This version helps correctly
resolving examples such as (11) to None.

Exclude Schmid’s cues (–SC) This version
does not enforce Schmid’s cues in extracting the
postnominal clauses. For instance, the Problem
family does not include N-that/wh/to/of patterns,
but in this condition, we nonetheless allow these
patterns in extracting the shell content of the nouns
from this family.

6 Evaluation data

We claim that our algorithm is able to resolve a
variety of shell nouns. That said, creating eval-
uation data for all of Schmid’s 670 English shell
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nouns is extremely time-consuming, and is there-
fore not pursued further in the current study. In-
stead we create a sample of representative evalua-
tion data to examine how well the algorithm works
a) on a variety of shell nouns, b) for shell nouns
within a family, c) for shell nouns across families
with completely different semantic and syntactic
expectations, and d) for a variety of shell patterns
from Table 1.

6.1 Selection of nouns
Recall that each shell noun has its idiosyncrasies.
So in order to evaluate whether our algorithm is
able to address these idiosyncrasies, the evalua-
tion data must contain a variety of shell nouns with
different semantic and syntactic expectations. To
examine a), we consider the six families shown in
Table 3. These families span three abstract cat-
egories: mental, eventive, and factual, and five
distinct groups: conceptual, volitional, factual,
causal, and attitudinal. Also, the families have
considerably different syntactic expectations. For
instance, the nouns in the Idea family can have
their content in that or of clauses occurring in N-
clause or N-be-clause constructions, whereas the
Trouble and Problem families do not allow N-
clause pattern. The shell content of the nouns in
the Plan family is generally represented with to-
infinitive clauses. To examine b) and c), we choose
three nouns from each of the first four families
from Table 3. To add diversity, we also include
two shell nouns from the Thing family and a shell
noun from the Reason family. So we selected a
total of 12 shell nouns for evaluation: idea, issue,
concept, decision, plan, policy, problem, trouble,
difficulty, reason, fact, and phenomenon.

6.2 Selection of instances
Recall that the shell content varies based on the
shell noun and the pattern it follows. Moreover,
shell nouns have pattern preferences, as shown in
Table 2. To examine d), we need shell noun exam-
ples following different patterns from Table 1. We
consider the New York Times corpus as our base
corpus, and from this corpus extract all sentences
following the lexico-grammatical patterns in Ta-
ble 1 for the twelve selected shell nouns. Then we
arbitrarily pick 100 examples for each shell noun,
making sure that the selection contains examples
of each cataphoric pattern from Table 1. These
examples consist of 70% examples of each of the
seven cataphoric patterns, and the remaining 30%

of the examples are picked randomly from the dis-
tribution of patterns for that shell noun.

6.3 Crowdsourcing annotation
We designed a crowdsourcing experiment to ob-
tain the annotated data for evaluation. We parse
each sentence using the Stanford parser, and ex-
tract all possible candidates, i.e., arguments of the
shell noun from the parser’s output. Since our ex-
amples include embedding clauses and sentential
complements, the parser is often inaccurate. For
instance, in example (12), the parser attaches only
the first clause of the coordination (that people
were misled) to the shell noun fact.

(12) The fact that people were misled and in-
formation was denied, that’s the reason
that you’d wind up suing.

To deal with such parsing errors, we consider the
30-best parses given by the parser. From these
parses, we extract a list of eligible candidates. This
list includes the arguments of the shell noun given
in the appositional clauses, modifier phrases, post-
nominal that, wh, or to-infinitive clauses, comple-
ment clauses, objects of postnominal prepositions
of the shell noun, and subject if the shell noun fol-
lows subject-be-N construction. On average, there
were three candidates per instance.

After extracting the candidates, we present the
annotators with the sentence, with the shell noun
highlighted, and the extracted candidates. We ask
the annotators to choose the option that provides
the correct interpretation of the highlighted shell
noun. We also provide them the option None of
the above, and ask them to select it if the shell con-
tent is not present in the given sentence or the shell
content is not listed in the list of candidates.

CrowdFlower We used CrowdFlower11 as our
crowdsourcing platform, which in turn uses vari-
ous worker channels such as Amazon Mechanical
Turk12. CrowdFlower offers a number of features.
First, it provides a quiz mode which facilitates
filtering out spammers by requiring an annotator
to pass a certain number of test questions before
starting the real annotation. Second, during an-
notation, it randomly presents test questions with
known answers to the annotators to keep them on
their toes. Based on annotators’ responses to the
test questions, each annotator is assigned a trust

11http://crowdflower.com/
12https://www.mturk.com/mturk/welcome
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≥ 5 ≥ 4 ≥ 3 < 3

idea 53 67 95 5
issue 44 65 95 5
concept 40 56 96 4
decision 50 72 98 2
plan 41 55 95 5
policy 42 61 94 6
problem 52 70 100 0
trouble 44 69 99 1
difficulty 45 61 96 4
reason 48 60 93 7
fact 52 68 98 2
phenomenon 39 56 95 5

all 46 63 96 4

Table 4: Annotator agreement on shell content.
Each column shows the percentage of instances on
which at least n or fewer than n annotators agree
on a single answer.

score: an annotator performing well on the test
questions gets a high trust score. Finally, Crowd-
Flower allows the user to select the permitted de-
mographic areas and skills required.

Settings We asked for at least 5 annotations per
instance by annotators from the English-speaking
countries. The evaluation task contained a total
of 1200 instances, 100 instances per shell noun.
To maintain the annotation quality, we included
105 test questions, distributed among different an-
swers. We paid 2.5 cents per instance and the an-
notation task was completed in less than 24 hours.

Results Table 4 shows the agreement of the
crowd. In most cases, at least 3 out of 5 anno-
tators agreed on a single answer. We took this an-
swer as the gold standard in our evaluation, and
discard the instances where fewer than three anno-
tators agreed. The option None of the above was
annotated for about 30% of the cases. We include
these cases in the evaluation. In total we had 1,257
instances (1,152 instances where at least 3 annota-
tors agreed + 105 test questions).

7 Evaluation results

Baseline We evaluate our algorithm against
crowd-annotated data using a lexico-syntactic
clause (LSC) baseline. Given a sentence con-
taining a shell instance and its parse tree, this
baseline extracts the postnominal or complement
clause from the parse tree depending only upon
the lexico-syntactic pattern of the shell noun. For
instance, for the N-that and N-be-to patterns, it ex-

Nouns LSC A–SC A+SC

1 idea 74 82 83
2 issue 60 75 77
3 concept 51 67 68
4 decision 70 71 73
5 plan 51 63 62
6 policy 58 70 52
7 problem 66 69 59
8 trouble 63 68 50
9 difficulty 68 75 49
10 reason 43 53 77
11 fact 43 55 68
12 phenomenon 33 62 50

13 all 57 69 64

Table 5: Shell noun resolution results. Each col-
umn shows the percent accuracy of resolution with
the respective method. Boldface is best in row.

tracts the postnominal that clause and the comple-
ment to-infinitive clause, respectively.13

Results Table 5 shows the evaluation results for
the LSC baseline, the algorithm without Schmid’s
cues (A–SC), and the algorithm with Schmid’s
cues (A+SC). The A–SC condition in all cases and
the A+SC condition in some cases outperform the
LSC baseline, which proves to be rather low, espe-
cially for the shell nouns with strict syntactic ex-
pectations (e.g., fact and reason). Thus we see that
our algorithm is adding value.

That said, we observe a wide range of per-
formance for different shell nouns. On the up
side, adding Schmid’s cues helps resolving the
shell nouns with strict syntactic expectations. The
A+SC results for the shell nouns idea, issue, con-
cept, decision, reason, and fact outperform the
baseline and the A–SC results. In particular, the
A+SC results for the shell nouns fact and rea-
son are markedly better than the baseline results.
These nouns have strict syntactic expectations for
the shell content clauses they take: the families
Thing and Certainty of the shell noun fact allow
only a that clause, and the Reason family of the
shell noun reason allows only that and because
clauses for the shell content. These cues help
in correctly resolving examples such as (11) to
None, where the postnominal to-infinitive clause

13Note that we only extract subordinating clauses (e.g.,
(SBAR (IN that) (clause))) and to-infinitive clauses, and not
relative clauses.
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describes the purpose or the goal for the reason,
but not the shell content itself.

On the down side, adding Schmid’s cues hurts
the performance of more versatile nouns, which
can take a variety of clauses. Although the A–SC
results for the shell nouns plan, policy, problem,
trouble, difficulty, and phenomenon are well above
the baseline, the A+SC results are markedly be-
low it. That is, Schmid’s cues were deleterious.
Our error analysis revealed that these nouns are
versatile in terms of the clauses they take as shell
content, and Schmid’s cues restrict these clauses
to be selected as shell content. For instance, the
shell noun problem occurs in two semantic fami-
lies with N-be-that/of and N-be-to as pattern cues
(Table 3), and postnominal clauses are not allowed
for this noun. Although these cues help in filtering
some unwanted cases, we observed a large number
of cases where the shell content is given in post-
nominal clauses, as shown in (13).

(13) I was trying to address the problem of un-
reliable testimony by experts in capital
cases.

Similarly, the Plan family does not allow the N-
of pattern. This cue works well for the shell noun
decision from the same family because often the
postnominal of clause is the agent for this shell
noun and not the shell content. However, it hurts
the performance of the shell noun policy, as N-
of is a common pattern for this shell noun (e.g.,
. . . officials in Rwanda have established a policy of
refusing to protect refugees. . . ). Other failures of
the algorithm are due to parsing errors and lack of
inclusion of context information.

8 Discussion and conclusion

In this paper, we proposed a general method to re-
solve shell nouns following cataphoric construc-
tions. This is a first step towards end-to-end shell
noun resolution. In particular, this method can
be used to create training data for any given shell
noun, which can later be used to resolve harder
anaphoric cases of that noun using the method that
we proposed earlier (Kolhatkar et al., 2013b).

The first goal of this work was to point out the
difficulties associated with the resolution of cat-
aphoric cases of shell nouns. The low resolution
results of the LSC baseline demonstrate the diffi-
culties of resolving such cases using syntax alone,

suggesting the need for incorporating more lin-
guistic knowledge in the resolution.

The second goal of this work was to examine to
what extent knowledge derived from the linguis-
tics literature helps in resolving shell nouns. We
conclude that Schmid’s pattern and clausal cues
are useful for resolving nouns with strict syntac-
tic expectations (e.g., fact, reason); however, these
cues are defeasible: they miss a number of cases in
our corpus. It is possible to improve on Schmid’s
cues using crowdsourcing annotation and by ex-
ploiting lexico-syntactic patterns associated with
different shell nouns from a variety of corpora.

One limitation of our approach is that in our res-
olution framework, we do not consider the prob-
lem of ambiguity of nouns that might not be used
as shell nouns. The occurrence of nouns with the
lexical patterns in Table 1 does not always guaran-
tee shell noun usage. For instance, in our data, we
observed a number of instances of the noun issue
with the publication sense (e.g., this week’s issue
of Sports Illustrated).

Our algorithm is able to deal with only a re-
stricted number of shell noun usage constructions,
but the shell content can be expressed in a variety
of other constructions. A robust machine learning
approach that incorporates context and deeper se-
mantics of the sentence, along with Schmid’s cues,
could mitigate this limitation.

This work opens a number of new research di-
rections. Our next planned task is clustering dif-
ferent shell nouns based on the kind of comple-
ments they take in different usages similar to verb
clustering (Merlo and Stevenson, 2000; Schulte im
Walde and Brew, 2002).
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Abstract

We present a comparison of different selec-
tional preference models and evaluate them
on an automatic verb classification task in
German. We find that all the models we
compare are effective for verb clustering;
the best-performing model uses syntactic
information to induce nouns classes from
unlabelled data in an unsupervised man-
ner. A very simple model based on lexical
preferences is also found to perform well.

1 Introduction

Selectional preferences (Katz and Fodor, 1963;
Wilks, 1975; Resnik, 1993) are the tendency for
a word to semantically select or constrain which
other words may appear in a direct syntactic re-
lation with it. Selectional preferences (SPs) have
been a perennial knowledge source for NLP tasks
such as word sense disambiguation (Resnik, 1997;
Stevenson and Wilks, 2001; McCarthy and Car-
roll, 2003) and semantic role labelling (Erk, 2007);
and recognising selectional violations is thought
to play a role in identifying and interpreting meta-
phor (Wilks, 1978; Shutova et al., 2013). We focus
on the SPs of verbs, since determining which argu-
ments are typical of a given verb sheds light on the
semantics of that verb.

In this study, we present the first empirical com-
parison of different SP models from the perspective
of automatic verb classification (Schulte im Walde,
2009; Sun, 2012), the task of grouping verbs to-
gether based on shared syntactic and semantic prop-
erties.

We cluster German verbs using features captur-
ing their valency or subcategorisation, following
prior work (Schulte im Walde, 2000; Esteve Ferrer,
2004; Schulte im Walde, 2006; Sun et al., 2008;
Korhonen et al., 2008; Li and Brew, 2008), and
investigate the effect of adding information about

verb argument preferences. SPs are represented
by features capturing lexical information about the
heads of arguments to the verbs; we restrict our
focus here to nouns.

We operationalise a selectional preference model
as a function which maps such an argument head
to a concept label. We submit that the primary
characteristic of such a model is its granularity. In
our baseline condition, all nouns are mapped to the
same label; this effectively captures no information
about a verb’s SPs (i.e., we cluster verbs using sub-
categorisation information only). On the other ex-
treme, each noun is its own concept label; we term
this condition lexical preferences (LP). Between
the baseline and LP lie a spectrum of models, in
which multiple concepts are distinguished, and
each concept label can represent multiple nouns.
Our main hypothesis is that verb clustering will
work best using a model of such intermediate gran-
ularity. This follows the intuition that verbs would
seem to select for classes of nouns; for instance,
we suppose that essen ‘eat’ would tend to prefer as
a direct object a noun from the abstract concept Es-
sen (‘food’). We assume that these concepts can be
expressed independently of particular predicates;
that is, there exist selectional preference models
that will work for all verbs (and all grammatical
relations). Further benefits of grouping nouns into
classes include combating data sparsity, as well
as deriving models which can generalise to nouns
unseen in training data.

Another parameter of a selectional preference
model is the methodology used to induce the con-
ceptual classes; put another way, the success of
an SP model hinges on how it represents concepts.
In this paper, we investigate the choice of noun
categorisation method through an empirical com-
parison of selectional preference models previously
used in the literature.

We set out to investigate the following questions:

1. What classes of nouns are effective descriptors
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of selectional preference concepts? For ex-
ample, do they correspond to features such as
ANIMATE?

2. What is the appropriate granularity of selec-
tional preference concepts?

3. Which methods of classifying nouns into con-
cepts are most effective at capturing selec-
tional preferences for verb clustering?

This paper is structured as follows: In Section 2,
we introduce our baseline method of clustering
verbs using subcategorisation information and de-
scribe evaluation; Section 3 lists the models of se-
lectional preferences that we compare in this work;
Section 4 presents results and discussion; Section 5
summarises related work; and Section 6 concludes
with directions for future research.

2 Automatic verb classification

Verb classifications such as VerbNet (Kipper-
Schuler, 2005) allow generalisations about the syn-
tax and semantics of verbs and have proven useful
for a range of NLP tasks; however, creation of these
resources is expensive and time-consuming. Auto-
matic verb classification seeks to learn verb classes
automatically from corpus data in a cheaper and
faster way. This endeavour is possible due to the
link between a verb’s semantics and its syntactic be-
haviour (Levin, 1993). Recent research has found
that even automatically-acquired classifications can
be useful for NLP applications (Shutova et al., 2010;
Guo et al., 2011). In this section, we introduce the
verb classification method used by our baseline
model, which clusters verbs based on subcategor-
isation information. Following this, Section 2.2 ex-
plains the gold standard verb clustering and cluster
purity metric which we use for evaluation.

2.1 Baseline model
In this work, we take subcategorisation to mean
the requirement of a verb for particular types of
argument or concomitant. For example, the English
verb put subcategorises for subject, direct object,
and a prepositional phrase (PP) like on the shelf :

(1) [NP Al] put [NP the book] [PP on the shelf].

A subcategorisation frame (SCF) describes a
combination of arguments required by a specific
verb; a description of the set of SCFs which a verb
may take is called its subcategorisation preference.

We acquire descriptions of verbal SCF preferences
on the basis of unannotated corpus data.

Our experiments use the SdeWaC corpus (Faaß
and Eckart, 2013), containing 880 million words
in 45 million sentences; this is a subset of deWaC
(Baroni et al., 2009), a corpus of 109 words extrac-
ted from Web search results. SdeWaC is filtered
to include only those sentences which are max-
imally parsable1. We parsed SdeWaC with the
mate-tools dependency parser (Bohnet et al.,
2013)2, which performs joint POS and morpholo-
gical tagging, as well as lemmatisation. Our sub-
categorisation analyses are delivered by the rule-
based SCF tagger described by Roberts et al. (2014),
which operates using the dependency parses and as-
signs each finite verb an SCF type. The SCF tags are
taken from the SCF inventory proposed by Schulte
im Walde (2002), which indicates combinations
of nominal and verbal complement types, such as
nap:für.Acc (transitive verb, with a PP headed
by für ‘for’). Examples of complements are n for
nominative subject, and a for accusative direct ob-
ject; in SCFs which include PPs (p), the SCF tag
specifies the head of the PP and the case of the pre-
positional argument (Acc in our example indicates
the accusative case of the prepositional argument).
The SCF tagger undoes passivisation and analyses
verbs embedded in modal and tense constructions.
We record 673 SCF types in SdeWaC.

From SdeWaC, we extracted the first 3,000,000
verb instances assigned an SCF tag by the SCF tag-
ger, where the verb lemma is one of the 168 listed
in our gold standard clustering (this requires ap-
proximately 270 million words of parsed text, or
25% of SdeWaC). We refer to this as our test set.
In this set, each verb is seen on average 17,857
times; the most common is geben (‘give’, 328,952
instances), and the least is grinsen (‘grin’, 50).

We represent verbs as vectors, where each di-
mension represents a different SCF type. Vector
entries are initialised with SCF code counts over
the test set, and each vector is then normalised to
sum to 1, so that a vector represents a discrete prob-
ability distribution over the SCF inventory. We use
the Jensen-Shannon divergence as a dissimilarity
measure between pairs of verb vectors. The Jensen-
Shannon divergence (Lin, 1991) is an information-
theoretic, symmetric measure (Equation (2)) re-

1The filtering used a rule-based dependency parser to es-
timate a per-token parse error rate for each sentence, and
removed those sentences with very high error rates.

2https://code.google.com/p/mate-tools/
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lated to the Kullback-Leibler divergence (Equa-
tion (3)).

JS(p, q) = D(p||p+ q

2
) +D(q||p+ q

2
) (2)

D(p||q) =
∑
i

pi log
pi
qi

(3)

With this dissimilarity measure, we use hier-
archical clustering with Ward’s criterion (Ward,
Jr, 1963) to partition the verbs into K disjoint sets
(i.e., hard clustering), where we match K to the
number of classes in our gold standard (described
below).

2.2 Evaluation paradigm

We evaluate the automatically induced verb cluster-
ings against a manually-constructed gold standard,
published by Schulte im Walde (2006, page 162ff.).
This Levin-style classification groups 168 high-
and low-frequency verbs into 43 semantic classes;
examples include Aspect (e.g., anfangen ‘begin’),
Propositional Attitude (e.g., denken ‘think’), and
Weather (e.g., regnen ‘rain’). Some of the classes
are further sub-classified; for the purposes of our
evaluation, we ignore the hierarchical structure of
the classification and consider each class or sub-
class to be a separate entity. In this way, we obtain
classes of fairly comparable size and sufficient se-
mantic consistency.3

We evaluate a given verb clustering against
the gold standard using the pairwise F -score
(Hatzivassiloglou and McKeown, 1993). To calcu-
late this statistic, we construct a contingency table
over the

(
n
2

)
pairs of verbs, the idea being that the

gold standard provides binary judgements about
whether two verbs should be clustered together or
not. If a clustering agrees with the gold standard as
to whether a pair of verbs belong together or not,
this is a “correct” answer. Using the contingency
table, the standard information retrieval measures
of precision (P ) and recall (R) can be computed;
the F -score is then the harmonic mean of these:
F = 2PR/(P +R). The random baseline is 2.08
(calculated as the average score of 50 random parti-
tions), and the optimal score is 95.81, calculated by
evaluating the gold standard against itself. As the
gold standard includes polysemous verbs, which

3In contrast, a top-level class like ‘Transfer of Possession
(Obtaining)’, not only covers 25% of the gold standard, it also
comprises the semantically very diverse subclasses ‘Transfer
of Possession (Giving)’, ‘Manner of Motion’, and ‘Emotion’.

belong to more than one cluster, the optimal score is
calculated by randomly picking one of their senses;
the average is then taken over 50 such trials.

The pairwise F -score is known to be somewhat
nonlinear (Schulte im Walde, 2006), penalising
early clustering “mistakes” more than later ones,
but it has the advantage that we can easily determ-
ine statistical significance using the contingency
table and McNemar’s test.

We use only one clustering algorithm and one
purity metric, because our prior work shows that
the most important choices for verb clustering are
the distance measure used, and how verbs are rep-
resented. These factors set, we expect similar per-
formance trends from different algorithms, with
predictable variation (e.g., spectral tends to outper-
form hierarchical clustering, which in turn outper-
forms k-means). Combining Ward’s criterion and
F -score is a trade-off at this point; the criterion is
deterministic, giving reproducible results without
computational complexity, but disallows estimates
of density over our evaluation metric and is greedy
(see discussion in Section 4.3).

3 Selectional preference models

In this section, we introduce the various SP models
that we compare in this paper. In all cases, we
hold the verb clustering procedure described in the
previous section unchanged, with the exception
that SCF tags for verbs are parameterised for
selectional preferences. As an example, a verb
instance observed in a simple transitive frame with
a nominal subject and accusative object would
receive the SCF tag na. Assuming that a given SP

model places the subject noun in the SP concept
animate and the object noun in the concept
concrete, the parameterised SCF tag would be
na*subj-{animate}*obj-{concrete}.
This process captures argument co-occurrence
information about verb instances, and has the effect
of multiplying the SCF inventory size, making the
verb vectors described in Section 2.1 both longer
and sparser.

We evaluate various types of SP models: the
simple lexical preferences model; three models
which perform automatic unsupervised induction
of noun concepts from unlabelled data; and one
which uses a manually-built lexical resource. As
far as we are aware, two of these, the word space
and LDA models, have never been applied to verb
classification before.
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N Coverage of test set

100 12.08%
200 17.18%
500 26.11%

1,000 32.70%
5,000 45.31%

10,000 49.09%
50,000 55.69%

100,000 57.67%

Table 1: Fraction of verb instances in the test set
parameterised by LP as a function of the number of
nouns N included in the LP model.

3.1 Lexical preferences

The LP model is the simplest in our study after the
baseline condition; it simply maps a noun to its own
lemma. We include as a parameter of the LP model
a maximum number of nouns N to admit as LP

tags. In this way, the LP model parameterises SCFs
using only the N most frequent nouns in SdeWaC;
nouns beyond rank N are treated as if they were
unseen. Table 1 indicates what fraction of the 3
million verb instances receive SCF tags specifying
one or more LPs as a function of this parameter.
Note that the coverage approaches an asymptote
of around 60%. This is due to the fact that noun
arguments are not observed for every verb instance;
many verbs’ arguments are pronominal or verbal
and are not treated by our SP models. Setting N
allows a simple way of tuning the LP model: With
increasing N , the LP model should capture more
data about verb instances, but after a point this
benefit should be cancelled out by the increasing
sparsity in the verb vectors.

3.2 Sun and Korhonen model

The SP model described in this section (SUN) was
first used by Sun and Korhonen (2009) to de-
liver state-of-the-art verb classification perform-
ance for English; more recently, the technique was
applied to successfully identify metaphor in free
text (Shutova et al., 2010; Shutova et al., 2013).
It uses co-occurrence counts that describe which
nouns are found with which verbs in which gram-
matical relations; this information is used to sort the
nouns into classes in a procedure almost identical
to our verb clustering method described in Sec-
tion 2.1.

We extract all verb instances in SdeWaC which

are analysed by the SCF tagger, and count all
(verb, grammatical relation, nominal argument
head) triples, where the grammatical relation is
subject, direct (accusative) object, indirect (dative)
object, or prepositional object4, and is listed in the
verb instance’s SCF tag; we undo passivisation, re-
move instances of auxiliary and modal verbs, and
filter out those triples seen less than 10 times in the
corpus.

These observations cover 60,870 noun types and
33,748,390 tokens, co-occurring with 6,705 verb
types (11,426 verb-grammatical-relation types); an
example is (sprechen, obj, Wort) (‘speak’ with dir-
ect object ‘word’, occurring 1,585 times)5. We rep-
resent each noun by a vector whose 11,426 dimen-
sions are the different verb-grammatical-relation
pairs; coordinates in the vector indicate the ob-
served corpus counts. The vectors are then norm-
alised to sum to 1, such that each represents some
particular noun’s discrete probability distribution
over the set of verb-grammatical-relation pairs. The
distance between two noun vectors is defined to
be the Jensen-Shannon divergence between their
probability distributions, and we partition the set
of nouns into M groups using hierarchical Ward’s
clustering.

The SP model then maps a noun to an arbitrary
label indicating which of the M disjoint sets that
noun is to be found in (i.e., all nouns in the first
noun class map to the concept label concept1);
we employ the parameter M to model SP concept
granularity. As with the LP model, we use the
parameter N to indicate how many nouns are in-
cluded in the SUN model; we search the parameter
values N = {300, 500, 1000, 5000, 10000} and
N
M = {5, 10, 15, 20, 30, 50}.

3.3 Word space model

Word space models (WSMs, (Sahlgren, 2006;
Turney and Pantel, 2010)) use word co-occurrence
counts to represent the distributional semantics of a
word. This strategy makes possible a clustering of
nouns that does not depend on verbal dependencies
in the first place.

4We have also experimented with adding features for each
noun showing nominal modification features (e.g., (schwarz,
nmod, Haar), ‘hair’ modified by ‘black’), but these seem to
hurt performance.

5Triples representing prepositional object relations are dis-
tinguished by preposition (e.g., the triple (geben, prep-in,
Auftrag), ‘give’ with PP headed by ‘in’ with argument head
‘contract’, an idiomatic expression meaning ‘to commission’
something).
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Dagan et al. (1999) address the problem of data
sparseness for the automatic determination of word
co-occurrence probabilities, which includes selec-
tional preferences. They introduce the idea of es-
timating the probability of hitherto unseen word
combinations using available information on words
that are closest w.r.t. distributional word similar-
ity. Following this idea, Erk (2007) and Padó et al.
(2007) describe a memory-based SP model, using a
WSM similarity measure to generalise the model to
unseen data.

We build a WSM of German nouns and use it to
partition nouns into disjoint sets, which we then
employ as with the SUN model. We compute word
co-occurrence counts across the whole SdeWaC
corpus, using as features the 50,000 most common
words in SdeWaC, skipping the first 50 most com-
mon words (i.e., we use words 50 through 50,050),
with sentences as windows. We lemmatise the cor-
pus and remove all punctuation; no other normalisa-
tion is performed. Co-occurrence counts between
a word wi and a feature cj are weighted using the
t-test scheme:

ttest(wi, cj) =
p(wi, cj)− p(wi)p(cj)√

p(wi)p(cj)

We use a recent technique called context selec-
tion (Polajnar and Clark, 2014) to improve the word
space model, whereby only the C most highly
weighted features are kept for each word vector.
We set C by optimising the correlation between the
word space model’s cosine similarity and a data
set of human semantic relatedness judgements for
65 word pairs (Gurevych and Niederlich, 2005); at
C = 380, we obtain Spearman ρ = 0.813 and Pear-
son r = 0.707 (human inter-annotator agreement
for this data set is given as r = 0.810).

After this, we build a similarity matrix between
all pairs of nouns using the cosine similarity, and
then partition the set of N nouns into M disjoint
classes using spectral clustering with the MNCut
algorithm (Meilă and Shi, 2001). As with the SUN

model, this SP model assigns labels to nouns indic-
ating which noun class they belong to. We search
the same parameter space for N and M as for the
SUN model.

3.4 GermaNet
Statistical models of SPs have often used WordNet
as a convenient and well-motivated inventory of
concepts (e.g., Resnik (1997), Li and Abe (1998),

Clark and Weir (2002)). Typically, such models
make use of probabilistic treatments to determine
an appropriate concept granularity separately for
each predicate; we opt here for a simple model that
allows more direct control over concept granularity.
We take the set of concepts relevant to describing
selectional preferences to be a target set of synsets
in GermaNet (Hamp and Feldweg, 1997), and rep-
resent the target set as the set of synsets which are
at some depth d or less in the GermaNet noun hier-
archy: {s | depth(s) ≤ d} where depth(s) counts
the number of hypernym links separating s from
the root of the hierarchy. We model concept gran-
ularity by varying d = 1 . . . 6; at d = 1, the target
set is of size 5, and at d = 6, it is of size 17,125.
Nouns are attributed to concepts as follows: Given
a noun belonging to a synset s, either s is in the
target set, or we take s’s lowest hypernym in the
target set. For polysemous nouns, each synset list-
ing a sense of the noun votes for a member of the
target set; the noun observation is then spread over
the target set using the votes as weights.

This procedure makes our GermaNet SP model a
soft clustering over nouns (i.e., a noun can belong
to more than one SP concept); a consequence of
this is that a single verb occurrence in the corpus
can contribute fractional counts to multiple SCF

types.

3.5 LDA

Latent Dirichlet allocation (Blei et al., 2003) is a
generative model that discovers similarities in data
using latent variables; it is frequently used for topic
modelling. LDA models of SPs have been proposed
by Ó Séaghdha (2010) and Ritter et al. (2010);
previous to this, Rooth et al. (1999) also described
a latent variable model of SPs.

We implement the LDA model of selectional pref-
erences described by Ó Séaghdha (2010). Gener-
atively, the model produces nominal arguments to
verbs as follows: For a given (verb, grammatical re-
lation) pair (v, r), (1) Sample a noun class z from a
from a multinomial distribution Φv,r with a Dirich-
let prior parameterised by α; (2) Sample a noun n
from a multinomial distribution Θz with a Dirichlet
prior parameterised by β. Like Ó Séaghdha, we use
an asymmetric Dirichlet prior for Φv,r (i.e., α can
differ for each noun class) and a symmetric prior
for Θz (β is the same for each Θz). We estimate
the LDA model using the MALLET software (Mc-
Callum, 2002) using the same (verb, grammatical
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relation, argument head) co-occurrence statistics
used for the SUN model. We train for 1,000 it-
erations using the software’s default parameters,
allowing the LDA hyperparameters α and β to be
re-estimated every 10 iterations. We build mod-
els with 50 or 100 topics as a proxy to concept
granularity; models include number of nouns N of
{500, 1000, 5000, 10000, 50000, 100000}.

As with the GermaNet-based model, the LDA

model creates a soft clustering of nouns; the abil-
ity of a noun to have degrees of membership in
multiple concepts might be a good way to model
polysemy. We also experiment with a hard cluster-
ing version of the LDA model; to do this, we assign
each noun n its most likely class label z using the
model’s estimate for P (z|n).

4 Results

We experimented with applying the SP models to
different combinations of grammatical relations
(e.g., only subject, only object, subject+object,
etc.), but generally obtained better results by para-
meterising SCF tags for all grammatical relations.
Table 2 summarises the evaluation scores and para-
meter settings for the best-performing SP models,
applied to verb arguments in all four grammatical
relations (subject, direct, indirect and prepositional
object)6. The table also indicates the number of
SCF types constructed by each SP model (i.e., the
number of dimensions of the vectors representing
verbs).

All the SP models we compare help with auto-
matic verb clustering. Using McNemar’s test on
the contingency tables underlying the F -scores, all
models score better than the baseline at at least the
p < 0.01 level. LDA-hard is better than the Ger-
maNet, LDA-soft, WSM and LP models at at least
the p < 0.05 level; SUN is better (p ≤ 0.05) than
all models except LDA-hard. All other performance
differences are not statistically significant7.

We can also demonstrate the effectiveness of the
SP models with a regression analysis on the models’
coverage of the test set. By varying the number of
nouns N included in the SP models which use this
parameter (LP, SUN, WSM, LDA), or by paramet-
erising SCF tags with SP information only for par-

6 Due to space constraints, we do not present here a de-
tailed per-model study of performance as a function of para-
meter settings; we feel a summary to be adequate, since the
relative performances of the models reflect trends across a
range of parameter settings.

7Using a significance criterion of p < 0.05.

ticular combinations of grammatical relations, dif-
ferent numbers of the verb instances in the test data
will end up with SP information in their SCF tags
(this is the “coverage” statistic in Table 1); with
the exception of the GermaNet model, all of the SP

models we examine here show positive correlation
between the number of verb instances tagged for
SP information and verb clustering performance.
This effect is independent of parameter settings,
indicating the performance benefit conferred by the
SP models is robust.

4.1 Comparison of SP models

The GermaNet model is the least successful in our
study. It achieves its best performance with a depth
of 5; after this, verb clustering performance drops
off again. Verb clustering using the GermaNet
SP model is only slightly better than the baseline
condition.

Against our expectations, the hard clustering
LDA models perform better than the soft cluster-
ing ones, achieving the second highest score in our
evaluation; also, in contrast to the other SP mod-
els studied in this paper, LDA performs best with
fewer, coarser-grained topics. We observe that the
soft clustering models produce verb vectors more
than an order of magnitude longer than the hard
clustering models, and suggest that simple soft clus-
tering may be causing problems with data sparsity
that interfere with verb clustering. We have also
observed that the topics found by LDA do not rep-
resent polysemy as we had hoped. While some
of the topics discovered by the LDA models can
be easily assigned labels (e.g., body parts, people,
quantities, emotions, places, buildings, tools, etc.),
others are less cohesive. We found that frequent
words (e.g., time, person) are generated with high
probability by multiple topics in ways that do not
appear to reflect multiple word senses, and that the
100-topic models exhibit this property to a greater
extent. For instance, Zeit ‘time’ is highly predict-
ive of three topics in the 50-topic models, of which
only the highest-weighted topic groups time ex-
pressions together; in the 100-topic models, Zeit
is found in six topics. Again, of these six, only
the topic with the highest α consists of time expres-
sions. In the 50-topic models, we find 11 topics that
we cannot assign a coherent label; in the 100-topic
models, there are 38 of these mismatched topics.
In our work to date, we have not found that LDA

models with greater numbers of topics find more
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SP model Parameters Granularity F -score Number of SCF types

SUN 10,000 nouns 1,000 noun classes 39.76 248,665
LDA (hard) 10,000 nouns 50 topics 39.10 78,409
LP 5,000 nouns 38.02 388,691
WSM 10,000 nouns 500 noun classes 36.95 149,797
LDA (soft) 10,000 nouns 50 topics 35.91 1,524,338
GermaNet depth = 5 8,196 synsets 34.41 851,265
Baseline 33.47 673

Table 2: Evaluation of the best SP models.
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Figure 1: Verb clustering performance (black) and
test set coverage (grey) of the LP model as a func-
tion of the number of nouns N included in the
model.

specific concepts; it is possible that this problem
might be alleviated by careful filtering of the (verb,
grammatical relation, noun) triples, but we leave
this question to future research.

The LP model is very effective, which is surpris-
ing given its simplicity. As expected, with increas-
ing N , we do observe sparsity effects which hurt
verb clustering performance (see Figure 1).

Our best performing model is SUN. Our best res-
ult is obtained with 10,000 nouns (the maximum
value of N that we tried) in 1,000 classes, giving
relatively fine-grained classes (on average 10 nouns
per class). Table 3 shows some example noun
classes learned by the SUN model. These include:
groups with synonyms or near synonyms, often in-
cluding alternate spellings of the same word (such
as in the truck grouping); and groups of closely-
related co-hyponyms, such as the body part group-
ing and the clothing grouping. In the latter, bill,
joint responsibility, complicity and inscription are
also included as things which can be borne, this
is due to the fact that the SUN noun clustering is
based on triples of verbs, grammatical relations,
and nouns.

LKW (truck), Lkw (truck), Lastwagen (truck),
Castor (container for highly radioactive mater-
ial), Laster (truck), Krankenwagen (ambulance),
Transporter (van), Traktor (tractor)

Hand (hand), Kopf (head), Fuß (foot), Haar
(hair), Bein (leg), Arm (arm), Zahn (tooth), Fell
(fur)

Leiche (corpse), Leichnam (body), Schädel
(skull), Skelett (skeleton), Wrack (wreck), Mu-
mie (mummy), Trümmer (debris)

Sauna (sauna), Badezimmer (bathroom),
Schwimmbad (swimming pool), Nachbildung
(replica), Kamin (fireplace), Aufenthaltsraum
(common room), Mensa (cafeteria)

Rechnung (bill), Kopftuch (headscarf), Uniform
(uniform), Anzug (suit), Helm (helmet), Gewand
(garment), Handschuh (glove), Mitverantwor-
tung (joint responsibility), Bart (beard), Rüs-
tung (armour), Mitschuld (complicity), Socke
(sock), Jeans (jeans), Sonnenbrille (sunglasses),
Aufschrift (inscription), Pullover (sweater),
Weste (vest), Handschellen (handcuffs), Hörner
(horns), Kennzeichen (marking), Tracht (tradi-
tional costume), Korsett (corset), Schuhwerk
(footwear), Kopfbedeckung (headgear), Pelz
(fur), Maulkorb (muzzle)

Missionar (missionary), Weihnachtsmann
(Santa Claus), Selbstmordattentäter (sui-
cide bomber), Bote (messenger), Nikolaus
(Nicholas), Killer (killer), Bomber (bomber),
Osterhase (Easter bunny)

Table 3: Example noun clusters in the SUN SP

model.
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Furthermore, there are thematically related
groups (corpse, body, etc., and sauna, bathroom,
etc.). All months are placed together in one 12-
word group.

Some classes can be easily subdivided into sep-
arate groups, and sometimes the source for this can
be guessed: For example, sports (football, golf, ten-
nis) are lumped together with musical instruments
(guitar, piano, violin) and film roles (starring role,
supporting role), these all being things that can
be played. Many groups of personal roles (such
as various kinds of government ministers) are dis-
tinguished, as are diseases and medications; other
groupings contain proper names or geographical
locations, sometimes of surprising specificity (e.g.,
authors, Biblical names, philosophers, NGOs, East-
ern European countries, foreign currencies, Ger-
man male first names, newspapers, television chan-
nels). The last group in Table 3 shows a grouping
which appears to combine two of these semantic-
ally narrow categories, in which Santa Claus and
the Easter bunny are united with killers and suicide
bombers.

4.2 Noun classes as SP concepts

The WSM SP model is not as successful as SUN, but,
due to the methodological similarity between these
two (SP concepts modelled as hard partitions of
nouns), it affords us an opportunity to investigate
the question of what properties might make for an
effective noun partition.

The WSM model partitions nouns based on
paradigmatic information (which sentence con-
texts a noun appears in), rather than SUN’s use
of syntagmatic information (which grammatical
contexts a noun appears in). Therefore, it is per-
haps not surprising that the noun classes derived
by the WSM are organised thematically, and the
synonym/co-hyponym structure observed in the
SUN noun classes is in many cases absent (e.g.,
{Pferd (horse), Reiter (rider), Stall (stable), Sattel
(saddle), Stute (mare)}; these classes can easily
conflate semantic roles (e.g., Agent for rider and
Location for stable), which is presumably unhelp-
ful for representing selectional preferences.

The distribution of noun classes also differs
between SUN and WSM. The largest noun class
in the WSM model contains 1,076 high-frequency
nouns which are semantically unrelated (day, ques-
tion, case, part, reason, kind, form, week, person,
month, . . . ). We suppose that these nouns are them-
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Figure 2: Verb clustering performance of SP mod-
els as a function of number of verb instances.

atically “neutral” and are classed together by virtue
of their usage in a wide variety of sentences. This
one noun class by itself subsumes 13.6% of all
noun tokens in SdeWaC. WSM also includes 56
singleton noun classes; the variance in noun class
size is 2800. For comparison, in SUN, the largest
noun class has 73 words, and the smallest, 2 (there
are 12 of these two-word classes); noun class size
variance is 37. The 73-word class in SUN does in-
deed appear to be a grab bag (including gas, taboo,
pioneer, mustard, spy, mafia, and skinhead), but
these are uncommon words and account for only
0.1% of noun tokens in SdeWaC. The next two
most common classes (with some 40 nouns each)
are lists of names (politicians’ surnames, and male
first names). The noun class in the SUN model con-
taining the largest number of high-frequency nouns
(28 nouns: human, child, woman, man, people, Mr.,
mother, father, . . . ) only covers 3.6% of noun us-
ages in SdeWaC and is both semantically cohesive
and intuitively useful as a SP concept.

These issues raise the question of why the WSM

model is effective at all for verb classification.
We think that the larger less-related noun classes
neither help nor hurt verb clustering, and we find
that some of the thematic classes represent abstrac-
tions that should be useful for describing SPs. Ex-
amples include lists of body parts, countries (separ-
ate classes for Europe, Africa, Asia, etc.), diseases,
human names, articles of clothing, and the group
{fruit, apple, banana, pear, strawberry}.
4.3 Effects of test set size

We were curious if the success of the LP model
might be due to the size of the test set preventing
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sparsity from becoming a problem. To pursue this
question, we take the four best performing SP mod-
els and run the verb clustering evaluation with the
number of verb instances in the test set varying
between 10,000 and the full SdeWaC corpus (11
million). The results are displayed in Figure 2. This
graph indicates that below 3× 105 verb instances,
sparsity seems to become a problem for all mod-
els on this task, and the baseline delivers the best
performance. Above this threshold, it seems that
sparsity is not a major issue: LP performs fairly con-
sistently, and is competitive with the SUN model.
We attribute this to our use of the Jensen-Shannon
divergence as a verb dissimilarity measure, which
seems relatively robust to data sparsity. The LDA-
hard model with its fewer topics seems to do quite
well with fewer data; as the test set size increases, it
drops off in the rankings. At the maximum number
of verb instances, the best-performing models are
SUN, WSM and the lexical preferences. The figure
also shows that our evaluation metric is not smooth
(note, e.g., the fluctuations in the baseline score).
We believe that this reflects a degree of instability
in the Ward’s hierarchical clustering algorithm; this
clustering method is greedy, and clustering errors
can be expected to propagate, which might explain
the jaggedness of the plot.

4.4 Conclusions

To conclude, we summarise the results of our ana-
lysis, using the questions formulated in the Intro-
duction as guidelines.

First, we wanted to compare the efficiency of
different classes of nouns as descriptors of selec-
tional preference concepts. Our findings suggest
that noun classes are most effective when they are
semantically highly consistent, representing groups
of strongly related nouns. It seems reasonable that
SP concepts representing collections of synonyms
would be useful for generalising observations, and
should represent arguments better than simple LP.
A classification of proper names (e.g., as human,
corporation, country, medication) is also useful.
This implies that we can expect features such as
ANIMATE to be shared by all members of a noun
cluster.

Second, we were interested in the appropriate
granularity of selectional preference concepts. In
our evaluation, we have observed a tendency for
smaller, more specific noun classes to be superior;
this holds because data sparsity is not a problem

in our experiment. Beyond this finding, we would
have liked to present a direct juxtaposition of differ-
ent models on “granularity” but this is difficult: We
have not yet identified a strong abstraction of gran-
ularity from the proxies we use (e.g., GermaNet
depth, or SUN’s N/M ).

Finally, which methods of classifying nouns into
concepts are most effective at capturing selectional
preferences for verb clustering? In our experiments,
the SUN and LDA-hard models proved to be more
effective than lexical preferences, supporting our
primary hypothesis that some level of SP concept
granularity above the lexical level is desirable for
verb clustering. On the other hand, the LP model is
only slightly worse than SUN and LDA-hard, mak-
ing it attractive because it is so simple. As we have
shown, the potential data sparsity issues with LP

can be alleviated by judiciously choosing the value
of the N parameter that controls the number of
nouns included in the model. In addition, compar-
ing the SUN and WSM models, and observing the
performance of the LDA-hard method, we conclude
that inducing noun classes using syntagmatic in-
formation is more effective than using paradigmatic
relations.

5 Related work

In this study, we have looked at the utility of selec-
tional preferences for automatic verb classification.
Some previous research has followed this line of
inquiry, though prior studies have not compared
alternative methods of modelling SPs. Schulte im
Walde (2006) presented a detailed examination of
parameters for k-means-based verb clustering in
German, using the same gold standard that we em-
ploy here. She reports on the effects of adding SP

information to a SCF-based verb clustering using
15 high-level GermaNet synsets as SP concepts; SP

information for some combinations of grammatical
relations improves clustering performance slightly,
but neither are the effects consistent, nor is the
improvement delivered by the SP model over the
SCF-based baseline statistically significant. Schulte
im Walde et al. (2008) used expectation maximisa-
tion to induce latent verb clusters from the British
National Corpus while simultaneously building a
tree cut model of SPs on the WordNet hierarchy
using a minimum description length method; their
evaluation focuses on the induced soft verb clusters,
reporting the model’s estimated perplexity of (verb,
grammatical relation, argument head) triples. The
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SPs are described qualitatively by presenting two
example cases. Sun and Korhonen (2009) study
the effect of adding selectional preferences to a
subcategorisation-based verb clustering in Eng-
lish using the SUN model (see Section 3.2). They
demonstrate that adding SPs to the SCF preference
data leads to the best results on their two clustering
evaluations; overall, their best results come from
using SP information only for the subject gram-
matical relation. They employ coarse SP concepts
(20 or 30 noun clusters) which capture general se-
mantic categories (Human, Building, Idea, etc.).

Selectional preferences are usually evaluated
either from a word sense disambiguation stand-
point using pseudo-words (Chambers and Juraf-
sky, 2010), or in terms of how acceptable an ar-
gument is with a verb, via regression against hu-
man plausibility judgements. Several studies have
compared SP methodologies from the latter per-
spective. These include Brockmann and Lapata
(2003), who compared three GermaNet-based mod-
els of SP, showing that different models were most
effective for describing different grammatical re-
lations; Ó Séaghdha (2010), who compared dif-
ferent LDA-based models of SP, showing these to
be effective for a variety of grammatical relations;
and Ó Séaghdha and Korhonen (2012), who show
that WordNet tree cut models, LDA, and a hybrid
LDA-WordNet model are effective for describing
verb-object relations.

6 Future work

Our GermaNet model delivered disappointing per-
formance in this study; we would be interested in
seeing whether a more sophisticated implementa-
tion such as the tree cut model of Li and Abe (1998)
would be more competitive. We also would like to
explore alternative noun clustering methods such
as CBC (Pantel and Lin, 2002) and Brown clusters
(Brown et al., 1992), which were not covered in
this work; these would fit easily into our SP eval-
uation paradigm. More challenging would be a
verb classification-based evaluation of the SP mod-
els of (Rooth et al., 1999) and (Schulte im Walde
et al., 2008), which use expectation maximisation
to simultaneously cluster verbs into verb classes
and nominal arguments into noun classes; these ap-
proaches are not compatible with the evaluation
framework we have used here. Finally, the SP

model of Bergsma et al. (2008) has also achieved
impressive results on a number of tasks, but has not

been investigated for use in verb classification.
Our verb clustering evaluation in this work

has matched K, the number of clusters found by
Ward’s method, to the number of classes in the
gold standard. Since the number of clusters has an
influence on the quality of the ensuing semantic
classification (Schulte im Walde, 2006, page 180f.),
we will also be running our experiments with dif-
ferent settings of K to explore whether this also
influences the overall results of our evaluation.
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Abstract

This paper presents a novel approach to
learning to solve simple arithmetic word
problems. Our system, ARIS, analyzes
each of the sentences in the problem state-
ment to identify the relevant variables and
their values. ARIS then maps this infor-
mation into an equation that represents
the problem, and enables its (trivial) so-
lution as shown in Figure 1. The pa-
per analyzes the arithmetic-word problems
“genre”, identifying seven categories of
verbs used in such problems. ARIS learns
to categorize verbs with 81.2% accuracy,
and is able to solve 77.7% of the problems
in a corpus of standard primary school test
questions. We report the first learning re-
sults on this task without reliance on pre-
defined templates and make our data pub-
licly available.1

1 Introduction

Designing algorithms to automatically solve math
and science problems is a long-standing AI chal-
lenge (Feigenbaum and Feldman, 1963). For NLP,
mathematical word problems are particularly at-
tractive because the text is concise and relatively
straightforward, while the semantics reduces to
simple equations.

Arithmetic word problems begin by describing
a partial world state, followed by simple updates
or elaborations and end with a quantitative ques-
tion. For a child, the language understanding part
is trivial, but the reasoning may be challenging;
for our system, the opposite is true. ARIS needs to

1Our data is available at https://www.cs.
washington.edu/nlp/arithmetic.

Arithmetic word Problem
Liz had 9 black kittens. She gave some of her kittens to

Joan. Joan now has 11 kittens. Liz has 5 kittens left and 3

have spots. How many kittens did Joan get?

State Transition
s1	
Liz	


N: 9	

E: Kitten	

A: Black	


Liz gave some of her kittens to Joan.	


s2	
Liz	

N: 9-L1	

E: Kitten	

A: Black	


Joan	

N:  J0+L1	

E: Kitten	

A: Black	


give	


Equation: 9− x = 5

Solution: x = 4 kittens

Figure 1: Example problem and solution.

make sense of multiple sentences, as shown in Fig-
ure 2, without a priori restrictions on the syntax or
vocabulary used to describe the problem. Figure
1 shows an example where ARIS is asked to infer
how many kittens Joan received based on facts and
constraints expressed in the text, and represented
by the state diagram and corresponding equation.
While the equation is trivial, the text could have
involved assembling toy aircraft, collecting coins,
eating cookies, or just about any activity involving
changes in the quantities of discrete objects.

This paper investigates the task of learning to
solve such problems by mapping the verbs in the
problem text into categories that describe their im-
pact on the world state. While the verbs category
is crucial (e.g., what happens if “give” is replaced
by “receive” in Figure 1?), some elements of the
problem are irrelevant. For instance, the fact that
three kittens have spots is immaterial to the solu-
tion. Thus, ARIS has to determine what informa-
tion is relevant to solving the problem.

To abstract from the problem text, ARIS maps
the text to a state representation which consists of
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a set of entities, their containers, attributes, quan-
tities, and relations. A problem text is split into
fragments where each fragment corresponds to an
observation or an update of the quantity of an en-
tity in one or two containers. For example in Fig-
ure 1, the sentence “Liz has 5 kittens left and 3
have spots” has two fragments of “Liz has 5 kit-
tens left” and “3 have spots”.

The verb in each sentence is associated with one
or two containers, and ARIS has to classify each
verb in a sentence into one of seven categories
that describe the impact of the verb on the con-
tainers (Table 1). ARIS learns this classifier based
on training data as described in section 4.2.

To evaluate ARIS, we compiled a corpus of
about 400 arithmetic (addition and subtraction)
word problems and utilized cross validation to
both train ARIS and evaluate its performance
over this corpus. We compare its performance
to the template-based learning method developed
independently and concurrently by Kushman et
al. (2014). We find that our approach is much
more robust to domain diversity between the train-
ing and test sets.

Our contributions are three-fold: (a) We present
ARIS, a novel, fully automated method that learns
to solve arithmetic word problems; (b) We intro-
duce a method to automatically categorize verbs
for sentences from simple, easy-to-obtain train-
ing data; our results refine verb senses in Word-
Net (Miller, 1995) for arithmetic word problems;
(c) We introduce a corpus of arithmetic word prob-
lems, and report on a series of experiments show-
ing high efficacy in solving addition and subtrac-
tion problems based on verb categorization.

2 Related Work

Understanding semantics of a natural language
text has been the focus of many researchers in nat-
ural language processing (NLP). Recent work fo-
cus on learning to align text with meaning repre-
sentations in specific, controlled domains. A few
methods (Zettlemoyer and Collins, 2005; Ge and
Mooney, 2006) use an expensive supervision in
the form of manually annotated formal representa-
tions for every sentence in the training data. More
recent work (Eisenstein et al., 2009; Kate and
Mooney, 2007; Goldwasser and Roth, 2011; Poon
and Domingos, 2009; Goldwasser et al., 2011;
Kushman and Barzilay, 2013) reduce the amount
of required supervision in mapping sentences to

meaning representations while taking advantage
of special properties of the domains. Our method,
on the other hand, requires small, easy-to-obtain
training data in the form of verb categories that
are shared among many different problem types.

Our work is also closely related to the grounded
language acquisition research (Snyder and Barzi-
lay, 2007; Branavan et al., 2009; Branavan et al.,
2012; Vogel and Jurafsky, 2010; Chen et al., 2010;
Hajishirzi et al., 2011; Chambers and Jurafsky,
2009; Liang et al., 2009; Bordes et al., 2010)
where the goal is to align a text into underlying en-
tities and events of an environment. These meth-
ods interact with an environment to obtain super-
vision from the real events and entities in the envi-
ronment. Our method, on the other hand, grounds
the problem into world state transitions by learn-
ing to predict verb categories in sentences. In addi-
tion, our method combines the representations of
individual sentences into a coherent whole to form
the equations. This is in contrast with the previous
work that study each sentence in isolation from the
other sentences.

Previous work on studying math word and logic
problems uses manually aligned meaning repre-
sentations or domain knowledge where the seman-
tics for all the words is provided (Lev, 2007; Lev
et al., 2004). Most recently, Kushman et al. (2014)
introduced an algorithm that learns to align al-
gebra problems to equations through the use of
templates. This method applies to broad range of
math problems, including multiplication, division,
and simultaneous equations, while ARIS only han-
dles arithmetic problems (addition and subtrac-
tion). However, our empirical results show that
for the problems it handles, ARIS is much more
robust to diversity in the problem types between
the training and test data.

3 Arithmetic Problem Representation

We address solving arithmetic word problems that
include addition and subtraction. A problem text
is split into fragments where each fragment is rep-
resented as a transition between two world states
in which the quantities of entities are updated or
observed (Figure 2). We refer to these fragments
as sentences. We represent the world state as a tu-
ple 〈E,C,R〉 consisting of entities E, containers
C, and relations R among entities, containers, at-
tributes, and quantities.

Entities: An entity is a mention in the text corre-
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N: W0-13 	

E: tree	

A: walnut	


Liz had 9 black kittens. She gave some of her kittens to Joan. Joan has now 11 kittens. Liz has 5 kitten 
left and 3 has spots. How many kittens did Joan get?	


Liz had 9 	

black kittens	


s0	

s1	
Liz	


N: 9	

E: Kitten	

A: Black	


She gave some 
of her kittens to 
Joan	


s2	
 Liz	

N: 9-L1	

E: Kitten	

A: Black	


Joan	

N:  J0+L1	

E: Kitten	

A: Black	

	


Joan has now 
11 kittens	


 Liz has 5 
kitten left	


And 3 has 
spots	


Liz	

N: 9-L1	

E: Kitten	

A: Black	


Joan	

N: 11	

E: Kitten	

A: Black	


s3	
 Liz	

N: 5	

E: Kitten	

A: Black	


Joan	

N: 11	

E: Kitten	

A: Black	


s4	


Liz	

N: 5	

E: Kitten	

A: Black	


Joan	

N: 11	

E: Kitten	

A: Black	

unknown	

N:3	

E: Kitten	


s5	


There are 42 walnut trees and 12 orange trees currently in the park. Park workers cut down 13 walnut trees that were 
damaged. How many walnut trees will be in the park when the workers are finished?	


There are 42 walnut trees and 12 
orange trees currently in the park. 	


s0	

s1	
Park	


N: 42	

E: tree	

A: walnut	


Park workers cut down 13 walnut trees 
that were damaged	


N: 12	

E: tree	

A: orange	


s2	

Park	


N: 42-13 	

E: tree	

A: walnut	


N: 12	

E: tree	

A: orange	


Workers	


Figure 2: A figure sketching different steps of our method — a sequence of states.

sponding to an object whose quantity is observed
or is changing throughout the problem. For in-
stance, kitten and tree are entities in Fig-
ure 2. In addition, every entity has attributes that
modify the entity. For instance, black is an at-
tribute of kittens, and walnut is an attribute
of tree (more details on attributes in section 4.1).
Relations describing attributes are invariant to the
state changes. For instance kittens stay black
throughout the problem of Figure 1.

Containers: A container is a mention in the
text representing a set of entities. For instance,
Liz, Joan, park, and workers are containers
in Figure 2. Containers usually correspond to the
person possessing entities or a location contain-
ing entities. For example, in the sentence “There
are 43 blue marbles in the basket. John found 32
marbles.”, basket and John are containers of
marbles.

Quantities: Containers include entities with their
corresponding quantities in a particular world
state. Quantities can be known numbers (e.g. 9),
unknown variables (e.g. L1), or numerical expres-
sions over unknown quantities and numbers (e.g.
9−L1). For instance, in state 2 of Figure 2, the nu-
merical expression corresponding to Liz is 9−L1

and corresponding to Joan is J0 + L1, where J0

is a variable representing the number of kittens
that Joan has started with.

Hereinafter, we will refer to a generic entity as
e, container as c, number as num, attribute as a.
We represent the relation between a container, an
entity, and a number in the form of a quantity ex-

Category Example
Observation There were 28 bales of hay in the barn.
Positive Joan went to 4 football games this year.
Negative John lost 3 of the violet balloons.
Positive
Transfer

Mike’s dad borrowed 7 nickels from
Mike.

Negative
Transfer

Jason placed 131 erasers in the drawer.

Construct Karen added 1/4 of a cup of walnuts to a
batch of trail mix.

Destroy The rabbits ate 4 of Dan’s potatoes.

Table 1: Examples for different verb categories in sen-
tences. Entities are underlined; containers are italic, and
verbs are bolded.

pression N(c,e). Figure 2 shows the quantity
relations in different world states.

State transitions: Sentences depict progression
of the world state (Figure 2) in the form of ob-
servations of updates of quantities. We assume
that every sentence w consists of a verb v, an en-
tity e, a quantity num (might be unknown), one
or two containers c1, c2, and attributes a. The
presence of the second container, c2, will be dic-
tated by the category of the verb, as we discuss
below. Sentences abstract transitions (st → st+1)
between states in the form of an algebraic opera-
tion of addition or subtraction. For every sentence,
we model the state transition according to the verb
category and containers in the sentence. There are
three verb categories for sentences with one con-
tainer: Observation: the quantity is initialized in
the container, Positive: the quantity is increased
in the container, and Negative: the quantity is de-
creased in the container. Moreover, there are four
categories for sentences with two containers: Pos-
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itive transfer: the quantity is transferred from the
second container to the first one, Negative trans-
fer: the quantity is transferred from the first con-
tainer to the second one, Construct: the quantity
is increased for both containers, and Destroy: the
quantity is decreased for both containers.

Figure 2 shows how the state transitions are
determined by the verb categories. The sen-
tence “Liz has 9 black kittens” initializes the
quantity of kittens in the container Liz
to 9. In addition, the sentence “She gave
some of her kittens to Joan.” shows the
negative transfer of L1 kittens from Liz to
Joan represented as N(Liz,kitten)=9-L1

and N(Joan,kitten)=J0 + L1.
Given a math word problem, ARIS grounds the

world state into entities (e.g., kitten), contain-
ers (e.g., Liz), attributes (e.g., black), and quan-
tities (e.g., 9) (Section 4.1). In addition, ARIS

learns state transitions by classifying verb cate-
gories in sentences (Section 4.2). Finally, from the
world state and transitions, it generates an arith-
metic equation which can be solved to generate the
numeric answer to the word problem.

4 Our Method

In this section we describe how ARIS maps an
arithmetic word problem into an equation (Fig-
ure 2). ARIS consists of three main steps (Fig-
ure 3): (1) grounding the problem into entities and
containers, (2) training a model to classify verb
categories in sentences, and (3) solving the prob-
lem by updating the world states with the learned
verb categories and forming equations.

4.1 Grounding into Entities and Containers

ARIS automatically identifies entities, attributes,
containers, and quantities corresponding to every
sentence fragment (details in Figure 3 step 1). For
every problem, this module returns a sequence of
sentence fragments 〈w1, . . . , wT , wx〉where every
wt consists of a verb vt, an entity et, its quantity
numt, its attributes at, and up to two containers
ct1 , ct2 . wx corresponds to the question sentence
inquiring about an unknown entity. ARIS applies
the Stanford dependency parser, named entity rec-
ognizer and coreference resolution system to the
problem text (de Marneffe et al., 2006; Finkel et
al., 2005; Raghunathan et al., 2010). It uses the
predicted coreference relationships to replace pro-
nouns (including possessive pronouns) with their

coreferenent links. The named entity recognition
output is used to identify numbers and people.

Entities: Entities are references to some object
whose quantity is observed or changing through-
out the problem. So to determine the set of
entities, we define h as the set of noun types
which have a dependent number (in the depen-
dency parse) somewhere in the problem text. The
set of entities is then defined as all noun phrases
which are headed by a noun type in h. For in-
stance kitten in the first sentence of Figure 1
is an entity because it is modified by the number
9, while kitten in the second sentence of Fig-
ure 1 is an entity because kitten was modified
by a number in the first sentence. Every number
in the text is associated with one entity. Num-
bers which are dependents of a noun are associ-
ated with its entity. Bare numbers (not dependent
on a noun) are associated with the previous entity
in the text. The entity in the last sentence is identi-
fied as the question entity ex . Finally, ARIS splits
the problem text into T + 1 sentence fragments
〈w1, . . . wT , wx〉 such that each fragment contains
a single entity and it’s containers. For simplicity
we refer to these fragments as a sentences.

Containers: Each entity is associated with one
or two container noun phrases using the algorithm
described in in Figure 3 step 1c. As we saw earlier
with numbers, arithmetic problems often include
sentences with missing information. For example
in Figure 2, the second container in the the sen-
tence “Park workers had to cut down 13 walnut
trees that were damaged.” is not explicitly men-
tioned. To handle this missing information, we
use the circumscription assumption (McCarthy,
1980). The circumscription assumption formal-
izes the commonsense assumption that things are
as expected unless otherwise specified. In this set-
ting, we assume that the set of containers are fixed
in a problem. Thus if the container(s) for a given
entity cannot be identified they are set to the con-
tainer(s) for the previous entity with the same head
word. For example in Figure 2 we know from the
previous sentence that trees were in the park.
Therefore, we assume that the unmentioned con-
tainer is the park.

Attributes: ARIS selects attributesA as modifiers
for every entity from the dependency parser (de-
tails in Figure 3 step 1a). For example black is
an attribute of the entity kitten and is an ad-
jective modifier in the parser. These attributes are
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1. Grounding into entities and containers: for every problem p in dataset (Section 4.1)
(a) 〈e1, . . . , eT , ex〉p ← extract all entities and the question entity

i. Extract all numbers and noun phrases (NP).
ii. h ← all noun types which appear with a number as a dependant (in the dependency parse tree) somewhere

in the problem text.
iii. et ← all NPs which are headed by a noun type in h.
iv. numt ← the dependant number of et if one exists. Bare numbers (not directly dependant on any noun

phrase) are associated with the previous entity in the text. All other numt are set to unknown.
v. ex ← the last identified entity.

vi. at ← adjective and noun modifiers of et. Update implicit attributes using the previously observed attributes.
vii. vt ← the verb with the shortest path to et in the dependency parse tree.

(b) 〈w1, . . . , wT , wx〉p ← split the problem text into fragments based on the entities and verbs
(c) 〈ct1 , ct2 , . . . , cT1 , cT2 , cx〉p ← the list of containers for each entity

i. ct1 ← the subject of wt.
If wt contains There is/are, ct1 is the first adverb of place to the verb.

ii. ct2 ← An NP that is direct object of the verb. If not found, ct2 is the object of the first adverbial phrase of
the verb.

iii. Circumscription assumption: When ct1 or ct2 are not found, they are set to the previous containers.

2. Training for sentence categorization (Section 4.2)
(a) instances1, instances2← ∅
(b) for every sentence wt ∈ 〈w1, . . . , wT , wx〉p in the training set:

i. featurest ← extract features (similarity based, WordNet based, structural) (Section 4.2.1)
ii. lt1 , lt2 ← determine labels for containers ct1 and ct2 based on the verb category of wt.

iii. append 〈featurest, lt,1〉, 〈featurest, lt,2〉 to instances1, instances2.
(c) M1,M2 ← train two SVMs for instances1, instances2

3. Solving: for every problem p in the test set (Section 4.3)
(a) Identifying verb categories in sentences

i. for every sentence wt ∈ 〈w1, . . . , wT , wx〉p:
A. featurest ← extract features (similarity based, WordNet based, structural).
B. lt1 , lt2 ← classify wt for both containers ct1 and ct2 using models M1,M2.

(b) State progression: Form 〈s0, . . . , sT 〉 (Section 4.3.1)
i. s0 ← null.

ii. for t ∈ 〈1, . . . , T 〉: st ← progress(st−1, wt).
A. if et = ex and at = ax:

if wt is an observation: Nt(ct1 , et) = numt.
else: update Nt(ct1 , et) and Nt(ct2 , et) given verb categories lt1 , lt2 .

B. copy Nt−1(c, e) to Nt(c, e) for all other (c, e) pairs.
(c) Forming equations and solution (Section 4.3.2)

i. Mark each wt that matches with wx if:
a) ct1 matches with cx and verb categories are equal or verbs are similar.
b) ct2 matches with cx and the verbs are in opposite categories.

ii. x← the unknown quantity if wx matches with a sentence introducing an unknown number
iii. If the question asks about an unknown variable x or a start variable (wx contains “begin” or “start”):

For some container c, find two states st (quantity expression contains x) and st+1 (quantity is a known
number). Then, form an equation for x: Nt(c, ex) = Nt+1(c, ex).

iv. else: form equation as x = Nt(cx, ex).
v. Solve the equation and return the absolute value of x.

Figure 3: ARIS: a method for solving arithmetic word problems.

used to prune the irrelevant information in pro-
gressing world states.

Arithmetic problems usually include sentences
with no attributes for the entities. For example,
the attribute black has not been explicitly men-
tioned for the kitten in the second sentence. In
particular, ARIS updates an implicit attribute using
the previously observed attribute. For example, in
“Joan went to 4 football games this year. She went
to 9 games last year.”, ARIS assigns football as
an attribute of the game in both sentences.

4.2 Training for Verb Categories

This step involves training a model to identify verb
categories for sentences. This entails predicting
one label (increasing, decreasing) for each (verb,
container) pair in the sentence. Each possible set-
ting of these binary labels corresponds to one of
the seven verb categories discussed earlier. For ex-
ample, if c1 is increasing and c2 is decreasing this
is a positive transfer verb.

Our dataset includes word problems from dif-
ferent domains (more details in Section 5.2). Each
verb in our dataset is labeled with one of the 7 cat-
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egories from Table 1.
For training, we compile a list of sentences from

all the problems in the dataset and split sentences
into training and test sets in two settings. In the
first setting no instance from the same domain
appears in the training and test sets in order to
study the robustness of our method to new prob-
lem types. In the second setting no verb is re-
peated in the training and test sets in order to study
how well our method predicts categories of unseen
verbs.

For every sentence wt in the problems, we build
two data instances, (wt, c1) and (wt, c2), where c1
and c2 are containers extracted from the sentence.
For every instance in the training data, we assign
training labels using the verb categories of the sen-
tences instead of labeling every sentence individu-
ally. The verb can be increasing or decreasing cor-
responding to every container in the sentence. For
positive (negative) and construction (destruction)
verbs, both instances are labeled positive (nega-
tive). For transfer positive (negative) verbs, the
first instance is labeled positive (negative) and the
second instance is labeled negative (positive). For
observation verbs, both instances are labeled pos-
itive. We assume that the observation verbs are
known (total of 5 verbs). Finally, we train Support
Vector Machines given the extracted features and
training labels explained above (Figure 3 step 2).
In the following, we describe the features used for
training.

4.2.1 Features

There are three sets of features: similarity based,
Wordnet-based, and structural features. The first
two sets of features focus on the verb and the third
set focuses on the dependency structure of the sen-
tence. All of our features are unlexicalized. This
allows ARIS to handle verbs in the test questions
which are completely different from those seen in
the training data.

Similarity-based Features: For every instance
(w, c), the feature vector includes similarity be-
tween the verb of the sentence w and a list of seed
verbs. The list of seed verbs is automatically se-
lected from a set V containing the 2000 most com-
mon English verbs using `1 regularized feature se-
lection technique. We select a small set of seed
verbs to avoid dominating the other feature types
(structural and WordNet-based features).

The goal is to automatically select verbs from

V that are most discriminative for each of the 7
verb categories in Table 1. We define 7 classifi-
cation tasks: “Is a verb a member of each cate-
gory?” Then, we select the three most represen-
tative verbs for each category. To do so, we ran-
domly select a set of 65 verbs Vl, from all the verbs
in our dataset (118 in total) and manually anno-
tate the verb categories. For every classification
task, the feature vector X includes the similarity
scores (Equation 1) between the verb v and all the
verbs in the V . We train an `1 regularized regres-
sion model (Park and Hastie, 2007) over the fea-
ture vector X to learn each category individually.
The number of original (similarity based) features
in X is relatively large, but `1 regularization pro-
vides a sparse weight vector. ARIS then selects the
three most common verbs (without replacement)
among the features (verbs) with non-zero weights.
This accounts for 21 total seed verbs to be used for
the main classification task. We find that in prac-
tice using this selection technique leads to better
performance than using either all the verbs in V or
using just the 65 randomly selected verbs.

Our method computes the similarity between
two verbs v1 and v2 from the similarity between all
the senses (from WordNet) of these verbs (Equa-
tion 1). We compute the similarity between two
senses using linear similarity (Lin, 1998). The
similarity between two synsets sv1 and sv2 are pe-
nalized according to the order of each sense for the
corresponding verb. Intuitively, if a synset appears
earlier in the set of synsets of a verb, it is more
likely to be considered as the correct meaning.
Therefore, later occurrences of a synset should re-
sult in reduced similarity scores. The similarity
between two verbs v1 and v2 is the maximum sim-
ilarity between two synsets of the verbs:

sim(v1, v2) = max
sv:synsets(v)

lin-sim(sv1, sv2)
log(p1 + p2)

(1)

where sv1, sv2 are two synsets, p1, p2 are the posi-
tion of each synset match, and lin-sim is the linear
similarity. Our experiments show better perfor-
mance using linear similarity compared to other
common similarity metrics (e.g., WordNet path
similarity and Resnik similarity (Resnik, 1995)).

WordNet-based Features: We use WordNet
verb categories in the feature vector. For each
part of speech in WordNet, the synsets are or-
ganized into different categories. There are
15 categories for verbs. Some examples in-
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clude “verb.communication”, “verb.possession”,
and “verb.creation”. In addition, WordNet in-
cludes the frequency measure fcsv indicating how
often the sense sv has appeared in a reference cor-
pus. For each category i, we define the feature fi
as the ratio of the frequency of the sense svi over
the total frequency of the verb i.e., fi = fcsvi/fcv .

Structural Features: For structural features, we
use the dependency relations between the verb and
the sentence elements since they can be a good
proxy of the sentence structure. ARIS uses a bi-
nary vector including 35 dependency relations be-
tween the verb and other elements. For example,
in the sentence “Joan picked 2 apples from the ap-
ple tree”, the dependency between (‘picked’ and
‘tree’) and (‘picked’ and ‘apples’) are depicted as
‘prep-from’ and ‘dobj’ relations in the dependency
parser, respectively. In addition, we include the
length of the path in the dependency parse from
the entity to the verb.

4.3 Solving the Problem

So far, ARIS grounds every problem into entities,
containers, and attributes, and learns verb cate-
gories in sentences. Solving the problem consists
of two main steps: (1) progressing states based on
verb categories in sentences and (2) forming the
equation.

4.3.1 State Progression with Verb Categories
This step (Figure 3 step 3b) involves forming
states 〈s1, . . . , sT 〉 by updating quantities in every
container using learned verb categories (Figure 3
step 3a). ARIS initializes s0 to an empty state. It
then iteratively updates the state st by progressing
the state st−1 given the sentence wt with the verb
v, entity e, number num, and containers c1 and c2.

For a given sentence t, ARIS attempts to match
et and ct to entities and categories in st−1. An
entity/category is matched if has the same head
word and same set of attributes as an existing en-
tity/category. If an entity or category cannot be
matching to one in st−1, then a new one is created
in st.

The progress subroutine prunes the irrelevant
sentences by checking if the entity e and its at-
tributes a agree with the question entity ex and its
attributes ax in the question. For example both
game entities agree with the question entity in the
problem “Joan went to 4 football games this year.
She went to 9 games last year. How many football

games did Joan go?”. The first entity has an ex-
plicit football attribute, and the second entity
has been assigned the same attribute (Section 4.1).
Even if the question asks about games without
mentioning football, the two sentences will
match the question. Note that the second sentence
would have not been matched if there was an ex-
plicit mention of the ‘basketball game’ in the sec-
ond sentence.

For the matched entities, ARIS initializes or up-
dates the values of the containers c1, c2 in the state
st. ARIS uses the learned verb categories in sen-
tences (Section 4.2) to update the values of con-
tainers. For an observation sentence wt, the value
of c1 in the state st is assigned to the observed
quantity num. For other sentence types, if the
container c does not match to a container the pre-
vious state, its value is initialized with a start vari-
able C0. For example, the container Joan is ini-
tialized with J0 at the state s1 (Figure 2). Other-
wise, the values of c1 and c2 are updated according
to the verb category in the sentence. For instance,
if the verb category in the sentence is a positive
transfer then Nt(c1, e) = Nt−1(c1, e)− num and
Nt(c2, e) = Nt−1(c2, e) + num where Nt(c, e)
represents the quantity of e in the container c at
state st (Figure 2).

4.3.2 Forming Equations and Solution
The question entity ex can match either to an en-
tity in the final state, or to some unknown gener-
ated during the state progression. Concretely, the
question sentence wx asks about the quantity x of
the entity ex in a container cx at a particular state
su or a transition after the sentence wu (Figure 3
step 3c).

To determine if ex matches to an unknown vari-
able, we define a matching subroutine between
the question sentence wx and every sentence wt
to check entities, containers, and verbs (Figure 3
step 3(c)i). We consider two cases. 1) When
wx contains the words “begin”, or “start”, the un-
known variable is about the initial value of an en-
tity, and it is set to the start variable of the con-
tainer cx (Figure 3 step 3(c)iii). For example, in
“Bob had balloons. He gave 9 to his friends. He
now has 4 balloons. How many balloons did he
have to start with?”, the unknown variable is set to
the start variable B0. 2) When the question verb
is not one of the defined set of observation verbs,
ARIS attempts to match ex with an unknown in-
troduced by one of the state transitions (Figure 3
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step 3(c)iii). For example, the second sentence
in Figure 1 introduces an unknown variable over
kittens. The matching subroutine matches this
entity with the question entity since the question
container, i.e. Joan, matches with the second
container and verb categories are complementary.

In order to solve for the unknown variable x,
ARIS searches through consecutive states st and
st+1, where in st, the quantity of ex for a container
c is an expression over x, and in st+1, the quan-
tity is a known number for a container matched
to c. It then forms an equation by comparing the
quantities for containers matched between the two
states. In the previous example, the equation will
be B0 − 9 = 4 by comparing states s2 and s3,
where the numerical expression over balloons
isB0−9 in the state s2, and the quantity is a known
number in the state s3.

When neither of the two above cases apply,
ARIS matches ex to an entity in the final state,
sT and returns its quantity, (Figure 3 step 3(c)iv).
In the football example of the previous sec-
tion, the equation will be x = Nt(cx, ex), where
Nt(cx, ex) is the quantity in the final state.

Finally, the equation will be solved for the un-
known variable x and the absolute value of the un-
known variable is returned.

5 Experiments

To experimentally evaluate our method we build
a dataset of arithmetic word problems along with
their correct solutions. We test our method on the
accuracy of solving arithmetic word problems and
identifying verb categories in sentences.

5.1 Experimental Setup
Datasets: We compiled three diverse datasets
MA1, MA2, IXL (Table 2) of Arithmetic word
problems on addition and subtraction for third,
fourth, and fifth graders. These datasets have sim-
ilar problem types, but have different characteris-
tics. Problem types include combinations of ad-
ditions, subtractions, one unknown equations, and
U.S. money word problems. Problems in MA2 in-
clude more irrelevant information compared to the
other two datasets, and IXL includes more infor-
mation gaps. In total, they include 395 problems,
13,632 words, 118 verbs, and 1,483 sentences.

Tasks and Baselines: We evaluate ARIS on two
tasks: 1) solving arithmetic word problems in the
three datasets and 2) classifying verb categories in

Source #Tests Avg.# Sentences

MA1 math-aids.com 134 3.5

IXL ixl.com 140 3.36

MA2 math-aids.com 121 4.48

Table 2: Properties of the datasets.

MA1 IXL MA2 Total
3-fold Cross validation

ARIS 83.6 75.0 74.4 77.7
ARIS2 83.9 75.4+ 69.8+ 76.5+

KAZB 89.6 51.1 51.2 64.0
Majority 45.5 71.4 23.7 48.9

Gold sentence categorization
Gold ARIS 94.0 77.1 81.0 84.0

Table 3: Accuracy of solving arithmetic word problems in
three datasets MA1, IXL, and MA2. This table compares
our method, ARIS, ARIS2 with the state-of-the-art KAZB. All
methods are trained on two (out of three) datasets and tested
on the other one. ARIS2 is trained when no verb is repeated
in the training and test sets. Gold ARIS uses gold verb cat-
egories. The improvement of ARIS (boldfaced) and ARIS2

(denoted by +) are significant over KAZB and the majority
baseline with p < 0.05.

sentences. We use the percentage of correct an-
swers to the problems as the evaluation metric for
the first task and accuracy as the evaluation metric
for the second task. We use Weka’s SVM (Wit-
ten et al., 1999) with default parameters for clas-
sification which is trained with verb categories in
sentences (as described in Section 4.2).

For the first task, we compare ARIS with
KAZB (Kushman et al., 2014), majority baseline,
ARIS2, and Gold ARIS. KAZB requires training
data in the form of equation systems and numeri-
cal answers to the problems. The majority base-
line classifies every instance as increasing. In
ARIS2 (a variant of ARIS) the system is trained in
a way that no verb is repeated in the training and
test sets. Gold ARIS uses the ground-truth sen-
tence categories instead of predicted ones. For the
second task, we compare ARIS with a baseline that
uses WordNet verb senses.

5.2 Results

We evaluate ARIS in solving arithmetic word
problems in the three datasets and then evaluate its
ability in classifying verb categories in sentences.

5.2.1 Solving Arithmetic Problems
Table 3 shows the accuracy of ARIS in solv-
ing problems in each dataset (when trained on
the other two datasets).Table 3 shows that ARIS
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significantly outperforms KAZB and the major-
ity baseline. As expected, ARIS shows a larger
gain on the two more complex datasets MA2 and
IXL; our method shows promising results in deal-
ing with irrelevant information (dataset MA2) and
information gaps (dataset IXL). This is because
ARIS learns to classify verb categories in sen-
tences and does not require observing similar pat-
terns/templates in the training data. Therefore,
ARIS is more robust to differences between the
training and test datasets and can generalize across
different dataset types. As discussed in the ex-
perimental setup, the datasets have mathematically
similar problems, but differ in the natural language
properties such as in the sentence length and irrel-
evant information (Table 2).

Table 3 also shows that the sentence categoriza-
tion is performed with high accuracy even if the
problem types and also the verbs are different. In
particular, there are a total of 118 verbs among
which 64 verbs belong to MA datasets and 54 are
new to IXL. To further study this, we train our
method ARIS2 in which no verb can be repeated
in the training and test sets. ARIS2 still signifi-
cantly outperforms KAZB. In addition, we observe
only a slight change in accuracy between ARIS

and ARIS2.
To further understand our method, we study the

effect of verb categorization in sentences in solv-
ing problems. Table 3 shows the results of Gold
ARIS in solving arithmetic word problems with
gold sentence categorizations. In addition, com-
paring ARIS with Gold ARIS suggests that our
method is able to reliably identify verb categories
in sentences.

We also perform an experiment where we pool
all of the problems in the three datasets and
randomly choose 3 folds for the data (instead
of putting each original dataset into it’s own
fold). We compare our method with KAZBin
this scenario. In this setting, our method’s accu-
racy is 79.5% while KAZB’s accuracy is 81.8%.
As expected, our method’s performance has not
changed significantly from the previous setting,
while KAZB’s performance significantly improves
because of the reduced diversity between the train-
ing and test sets in this scenario.

5.2.2 Sentence Categorization
Table 4 compares accuracy scores of sentence
categorization for our method with different fea-
tures, a baseline that uses WordNet verb senses,

and the majority baseline that assigns every (verb,
container) pair as increasing. Similar to ARIS2,
we randomly split verbs into three equal folds
and assign the corresponding sentences to each
fold. No verb is shared between training and test
sets. We then directly evaluate the accuracy of
the SVM’s verb categorization (explained in Sec-
tion 4.2). This table shows that ARIS performs
well in classifying sentence categories even with
new verbs in the test set. This suggests that our
method can generalize well to predict verb cate-
gories for unseen verbs.

Table 4 also details the performance of four
variants of our method that ablate various features
of ARIS. The table shows that similarity, contex-
tual, and WordNet features are all important to
the performance of ARIS in verb categorization,
whereas the WordNet features are less important
for solving the problems. In addition, it shows that
similarity features play more important roles. We
also performed another experiment to study the ef-
fect of the proposed feature selection method for
similarity-based features. The accuracy of ARIS

in classifying sentence categories is 69.7% when
we use all the verbs in V in the similarity feature
vector. This shows that our feature selection algo-
rithm for selecting seed verbs is important towards
categorizing verbs.

Finally, Table 4 shows that our method signif-
icantly outperforms the baseline that only uses
WordNet verb sense. An interesting observation
is that the majority baseline in fact outperforms
WordNet verb senses in verb categorization, but
is significantly worse in solving arithmetic word
problems. In addition, we evaluate the accuracy
of predicting only verb categories by assigning the
verb label according to the majority of its labels
in the sentence categories. The accuracy of verb
categories is 78.2% confirming that ARIS is able
to successfully categorize verbs.

5.2.3 Error Analysis
We analyzed all 63 errors of Gold ARIS and
present our findings in Table 5. There are five ma-
jor classes of errors. In the first category, some in-
formation is not mentioned explicitly and should
be entailed. For example, ‘washing cars’ is the
source of ‘making money’. Despite the improve-
ments that come from ARIS, a large portion of the
errors can still be attributed to irrelevant informa-
tion. For example, ‘short’ is not a ‘toy’. The third
category refers to errors that require knowledge
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Categorization Solution

ARIS 81.2+ 76.5+

No similarity features 68.8 65.4
No WordNet features 75.3 78.0+

No structural features 75.5 72.4+

Baseline (WordNet) 67.8 68.4
Majority Baseline 73.4 48.9

Table 4: Ablation study and baseline comparisons: this ta-
ble reports the accuracy of verb categorization in sentences
and solutions for ARIS with ablating features. It also pro-
vides comparisons to WordNet and majority baselines. The
improvement of ARIS (boldfaced) and ablations denoted by +

are statistically significant over the baselines (with p < 0.05)
for both tasks.

Error type Example
Entailment,
Implicit
Action (26%)

Last week Tom had $74. He washed cars
over the weekend and now has $86. How
much money did he make washing cars?

Irrelevant
Information
(19%)

Tom bought a skateboard for $9.46, and
spent $9.56 on marbles. Tom also spent
$14.50 on shorts. In total, how much did
Tom spend on toys?

Set Comple-
tion (13%)

Sara’s school played 12 games this year.
They won 4 games. How many games did
they lose?

Parsing
Issues (21%)

Sally had 27 Pokemon cards. Dan gave
her 41 new Pokemon cards. How many
Pokemon cards does Sally have now?

Others (21%) In March it rained 0.81 inches. It rained
0.35 inches less in April than in March.
How much did it rain in April?

Table 5: Examples of different error categories and relative
frequencies. The cause of error is bolded.

about set completions. For example, the ‘played’
games can be split into ‘win’ and ‘lost’ games.
Finally, parsing and coreference mistakes are an-
other source of errors for ARIS.

6 Discussions and Conclusion

In this paper we introduce ARIS, a method for
solving arithmetic word problems. ARIS learns
to predict verb categories in sentences using syn-
tactic and (shallow) semantic features from small,
easy-to-obtain training data. ARIS grounds the
world state into entities, sets, quantities, attributes,
and their relations and takes advantage of the cir-
cumscription assumption and successfully fills in
the information gaps. Finally, ARIS makes use
of attributes and discards irrelevant information in
the problems. Together these provide a new rep-
resentation and a learning algorithm for solving
arithmetic word problems.

This paper is one step toward building a sys-
tem that can solve any math and logic word

problem. Our empirical evaluations show that
our method outperforms a template-based learn-
ing method (developed recently by Kushman et al.
(2014)) on solving addition and subtraction prob-
lems with diversity between the training and test
sets. In particular, our method generalizes bet-
ter to data from different domains because ARIS

only relies on learning verb categories which al-
leviates the need for equation templates for arith-
metic problems. In this paper, we have focused
on addition and subtraction problems. However,
KAZB can deal with more general types of prob-
lems such as multiplication, division, and simulta-
neous equations.

We have observed a complementary behavior
between our method and that of Kushman et al.
This suggests a hybrid approach that can bene-
fit from the strengths of both methods while be-
ing applicable to more general problems while ro-
bust to the errors specific to each. In addition, we
plan to focus on incrementally collecting domain
knowledge to deal with missing information gaps.
Another possible direction is to improve parsing
and coreference resolution.
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Abstract

Common-sense reasoning is important for
AI applications, both in NLP and many
vision and robotics tasks. We propose
NaturalLI: a Natural Logic inference sys-
tem for inferring common sense facts – for
instance, that cats have tails or tomatoes
are round – from a very large database
of known facts. In addition to being able
to provide strictly valid derivations, the
system is also able to produce derivations
which are only likely valid, accompanied
by an associated confidence. We both
show that our system is able to capture
strict Natural Logic inferences on the Fra-
CaS test suite, and demonstrate its ability
to predict common sense facts with 49%
recall and 91% precision.

1 Introduction

We approach the task of database completion:
given a database of true facts, we would like to
predict whether an unseen fact is true and should
belong in the database. This is intuitively cast as
an inference problem from a collection of candi-
date premises to the truth of the query. For exam-
ple, we would like to infer that no carnivores eat
animals is false given a database containing the cat
ate a mouse (see Figure 1).

These inferences are difficult to capture in
a principled way while maintaining high recall,
particularly for large scale open-domain tasks.
Learned inference rules are difficult to general-
ize to arbitrary relations, and standard IR methods
easily miss small but semantically important lex-
ical differences. Furthermore, many methods re-
quire explicitly modeling either the database, the
query, or both in a formal meaning representation
(e.g., Freebase tuples).

Although projects like the Abstract Meaning
Representation (Banarescu et al., 2013) have made

No carnivores
eat animals?

The carnivores
eat animals

The cat
eats animals

The cat
ate an animal

The cat
ate a mouse

w

≡

w

f

No cats
eat animals

No cats
eat mice

w
. . .

w
. . .

Figure 1: Natural Logic inference cast as search.
The path to the boxed premise the cat ate a mouse
disproves the query no carnivores eat animals, as
it passes through the negation relation (f). This
path is one of many candidates taken; the premise
is one of many known facts in the database. The
edge labels denote Natural Logic inference steps.

headway in providing broad-coverage meaning
representations, it remains appealing to use hu-
man language as the vessel for inference. Fur-
thermore, OpenIE and similar projects have been
very successful at collecting databases of natural
language snippets from an ever-increasing corpus
of unstructured text. These factors motivate our
use of Natural Logic – a proof system built on the
syntax of human language – for broad coverage
database completion.

Prior work on Natural Logic has focused on in-
ferences from a single relevant premise, making
use of only formally valid inferences. We improve
upon computational Natural Logic in three ways:
(i) our approach operates over a very large set of
candidate premises simultaneously; (ii) we do not
require explicit alignment between a premise and
the query; and (iii) we allow imprecise inferences
at an associated cost learned from data.

Our approach casts inference as a single uni-
fied search problem from a query to any valid
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supporting premise. Each transition along the
search denotes a (reverse) inference step in Natu-
ral Logic, and incurs a cost reflecting the system’s
confidence in the validity of that step. This ap-
proach offers two contributions over prior work in
database completion: (i) it allows for unstructured
text as the input database without any assump-
tions about the schema or domain of the text, and
(ii) it proposes Natural Logic for inference, rather
than translating to a formal logic syntax. More-
over, the entire pipeline is implemented in a single
elegant search framework, which scales easily to
large databases.

2 MacCartney’s Natural Logic

Natural Logic aims to capture common logical in-
ferences by appealing directly to the structure of
language, as opposed to running deduction on an
abstract logical form. The logic builds upon tra-
ditional rather than first-order logic: to a first ap-
proximation, Natural Logic can be seen as an en-
hanced version of Aristotle’s syllogistic system
(van Benthem, 2008). A working understanding
of the logic as syllogistic reasoning is sufficient for
understanding the later contributions of the paper.
While some inferences of first-order logic are not
captured by Natural Logic, it nonetheless allows
for a wide range of intuitive inferences in a com-
putationally efficient and conceptually clean way.

We build upon the variant of the logic intro-
duced by the NatLog system (MacCartney and
Manning, 2007; 2008; 2009), based on earlier the-
oretical work on Natural Logic and Monotonicity
Calculus (van Benthem, 1986; Valencia, 1991).
Later work formalizes many aspects of the logic
(Icard, 2012; Djalali, 2013); we adopt the formal
semantics of Icard and Moss (2014), along with
much of their notation.

At a high level, Natural Logic proofs operate by
mutating spans of text to ensure that the mutated
sentence follows from the original – each step is
much like a syllogistic inference. We construct a
complete proof system in three parts: we define
MacCartney’s atomic relations between lexical en-
tries (Section 2.1), the effect these lexical muta-
tions have on the validity of the sentence (Sec-
tion 2.2), and a practical approach for executing
these proofs. We review MacCartney’s alignment-
based approach in Section 2.3, and show that we
can generalize and simplify this system in Sec-
tion 3.

D

ϕ ≡ ψ
(equivalence)

D

ϕ v ψ
(forward entail.)

D

ϕ w ψ
(reverse entail.)

D

ϕf ψ
(negation)

D

ϕ �� ψ
(alternation)

D

ϕ ` ψ
(cover)

Figure 2: The model-theoretic interpretation of the
MacCartney relations. The figure shows the re-
lation between the denotation of ϕ (dark) and ψ
(light). The universe is denoted by D.

2.1 Lexical Relations

MacCartney and Manning (2007) introduce seven
set-theoretic relations between the denotations of
any two lexical items. The denotation of a lexical
item is the set of objects in the domain of discourse
D to which that lexical item refers. For instance,
the denotation of cat would be the set of all cats.
Two denotations can then be compared in terms of
set algebra: if we define the set of cats to be ϕ and
the set of animals to be ψ, we can state that ϕ ⊆ ψ.

The six informative relations are summarized in
Figure 2; a seventh relation (#) corresponds to
to the completely uninformative relation. For in-
stance, the example search path in Figure 1 makes
use of the following relations:

No x y f The x y
cat v carnivore

animal ≡ a animal
animal w mouse

Denotations are not required to be in the
space of predicates (e.g., cat, animal). In
the first example, the denotations of No and
The are in the space of operators p→ (p→ t):
functions from predicates p to truth values
t. The f relation becomes the conjunction
of two claims: ∀x∀y ¬ (no x y ∧ the x y) and
∀x∀y (no x y ∨ the x y). This is analogous to the
construction of the set-theoretic definition of f in
Figure 2: ϕ ∩ ψ = ∅ and ϕ ∪ ψ = D (see Icard
and Moss (2014)).
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Examples of the last two relations (�� and`) and
the complete independence relation (#) include:

cat �� dog
animal ` nonhuman

cat # friendly

2.2 Monotonicity and Polarity

The previous section details the relation between
lexical items; however, we still need a theory for
how to “project” the relation induced by a lexical
mutation as a relation between the two containing
sentences. For example, cat v animal, and some
cat meowsv some animal meows, but no cat barks
6v no animal barks. Despite differing by the same
lexical relation, the first example describes a valid
entailment, while the second does not.

We appeal to two important concepts: mono-
tonicity as a property of arguments to natural lan-
guage operators, and polarity as a property of lexi-
cal items in a sentence. Much like monotone func-
tions in calculus, an [upwards] monotone operator
has an output truth value which is non-decreasing
(i.e., material implication) as the input “increases”
(i.e., the subset relation). From the example above,
some is upwards monotone in its first argument,
and no is downwards monotone in its first argu-
ment.

Polarity is a property of lexical items in a sen-
tence determined by the operators acting on it. All
lexical items have upward polarity by default; up-
wards monotone operators preserve polarity, and
downwards monotone operators reverse polarity.
For example, mice in no cats eat mice has down-
ward polarity, whereas mice in no cats don’t eat
mice has upward polarity (it is in the scope of two
downward monotone operators). The relation be-
tween two sentences differing by a single lexical
relation is then given by the projection function ρ
in Table 1.1

2.3 Proof By Alignment

MacCartney and Manning (2007) approach the in-
ference task in the context of inferring whether a
single relevant premise entails a query. Their ap-
proach first generates an alignment between the
premise and the query, and then classifies each
aligned segment into one of the lexical relations
in Figure 2. Inference reduces to projecting each

1Note that this table optimistically assumes every operator
is additive and multiplicative, as defined in Icard (2012).

r ≡ v w �� ` f #
ρ(r) ≡ w v ` �� f #

Table 1: The projection function ρ, shown for
downward polarity contexts only. The input r is
the lexical relation between two words in a sen-
tence; the projected relation ρ(r) is the relation
between the two sentences differing only by that
word. Note that ρ is the identity function in up-
ward polarity contexts.

./ ≡ v w f �� ` #
≡ ≡ v w f �� ` #
v v v # �� �� # #
w w # w ` # ` #
f f ` �� ≡ w v #
�� �� # �� v # v #
` ` ` # w w # #
# # # # # # # #

Table 2: The join table as shown in Icard (2012).
Entries in the table are the result of joining a row
with a column.

of these relations according to the projection func-
tion ρ (Table 1) and iteratively joining two pro-
jected relations together to get the final entailment
relation. This join relation, denoted as ./, is given
in Table 2.

To illustrate, we can consider MacCartney’s
example inference from Stimpy is a cat to
Stimpy is not a poodle. An alignment of
the two statements would provide three lexical
mutations: r1 := cat→ dog, r2 := · → not, and
r3 := dog→ poodle. Each of these are then pro-
jected with the projection function ρ, and are
joined using the join relation:

r0 ./ ρ(r1) ./ ρ(r2) ./ ρ(r3),

where the initial relation r0 is axiomatically ≡. In
MacCartney’s work this style of proof is presented
as a table. The last column (si) is the relation be-
tween the premise and the ith step in the proof, and
is constructed inductively as si := si−1 ./ ρ(ri):

Mutation ri ρ(ri) si
r1 cat→dog �� �� ��
r2 · →not f f v
r3 dog→poodle w v v

In our example, we would conclude that Stimpy
is a cat v Stimpy is not a poodle since s3 is v;
therefore the inference is valid.
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ϕ ; ψ

ϕ⇒ ¬ψ

f��

w`

≡v

f`

��v

≡w

any

(a) (b)

Figure 3: (a) Natural logic inference expressed as a finite state automaton. Omitted edges go to the
unknown state (#), with the exception of omitted edges from ≡, which go to the state of the edge type.
Green states (≡, v) denote valid inferences; red states (��, f) denote invalid inferences; blue states (w,
`) denote inferences of unknown validity. (b) The join table collapsed into the three meaningful states
over truth values.

3 Inference as a Finite State Machine

We show that the tabular proof formulation from
Section 2.3 can be viewed as a finite state machine,
and present a novel observation that we can loss-
lessly collapse this finite state machine into only
three intuitive inference states. These observations
allow us to formulate our search problem such that
a search path corresponds to an input to (i.e., path
through) this collapsed state machine.

Taking notation from Section 2.3, we construct
a finite state machine over states s ∈ {v,w, . . . }.
A machine in state si corresponds to relation si
holding between the initial premise and the de-
rived fact so far. States therefore correspond to
states of logical validity. The start state is ≡. Out-
going transitions correspond to inference steps.
Each transition is labeled with a projected relation
ρ(r) ∈ {v,w, . . . }, and spans from a source state
s to a target s′ according to the join table. That is,

the transition s
ρ(r)−−→ s′ exists iff s′ = s ./ ρ(r).

For example, the path in Figure 1 yields the tran-
sitions ≡ f−→f w−→�� ≡−→�� w−→��. Figure 3a shows the
automaton, with trivial edges omitted for clarity.

Our second contribution is collapsing this au-
tomaton into the three meaningful states we use as
output: valid (ϕ ⇒ ψ), invalid (ϕ ⇒ ¬ψ), and
unknown validity (ϕ ; ψ). We can cluster states
in Figure 3a into these three categories. The rela-
tions ≡ and v correspond to valid inferences; f
and �� correspond to invalid inferences; w, ` and
# correspond to unknown validity. This cluster-
ing mirrors that used by MacCartney for his tex-

tual entailment experiments.

Collapsing the FSA into the form in Figure 3b
becomes straightforward from observing the reg-
ularities in Figure 3a. Nodes in the valid cluster
transition to invalid nodes always and only on the
relations f and ��. Symmetrically, invalid nodes
transition to valid nodes always and only onf and
`. A similar pattern holds for the other transitions.

Formally, for every relation r and nodes a1

and a2 in the same cluster, if we have transitions
a1

r−→ b1 and a2
r−→ b2 then b1 and b2 are neces-

sarily in the same cluster. As a concrete example,
we can take r = f and the two states in the in-
valid cluster: a1 = f, a2 =��. Although f f−→≡
and �� f−→v, both ≡ and v are in the same cluster
(valid). It is not trivial a priori that the join table
should have this regularity, and it certainly simpli-
fies the logic for inference tasks.

A few observations deserve passing remark.
First, even though the states w and ` appear
meaningful, in fact there is no “escaping” these
states to either a valid or invalid inference. Sec-
ond, the hierarchy over relations presented in Icard
(2012) becomes apparent – in particular,f always
behaves as negation, whereas its two “weaker”
versions (�� and `) only behave as negation in cer-
tain contexts. Lastly, with probabilistic inference,
transitioning to the unknown state can be replaced
with staying in the current state at a (potentially
arbitrarily large) cost to the confidence of valid-
ity. This allows us to make use of only two states:
valid and invalid.
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4 Inference As Search

Natural Logic allows us to formalize our approach
elegantly as a single search problem. Given a
query, we search over the space of possible facts
for a valid premise in our database. The nodes in
our search problem correspond to candidate facts
(Section 4.1); the edges are mutations of these
facts (Section 4.2); the costs over these edges en-
code the confidence that this edge maintains an
informative inference (Section 4.5). This mirrors
the automaton defined in Section 3, except impor-
tantly we are constructing a reversed derivation,
and are therefore “traversing” the FSA backwards.

This approach is efficient over a large database
of 270 million entries without making use of ex-
plicit queries over the database; nor does the
approach make use of any sort of approximate
matching against the database, beyond lemmatiz-
ing individual lexical items. The motivation in
prior work for approximate matches – to improve
the recall of candidate premises – is captured ele-
gantly by relaxing Natural Logic itself. We show
that allowing invalid transitions with appropriate
costs generalizes JC distance (Jiang and Conrath,
1997) – a common thesaurus-based similarity met-
ric (Section 4.3). Importantly, however, the entire
inference pipeline is done within the framework of
weighted lexical transitions in Natural Logic.

4.1 Nodes

The space of possible nodes in our search is the
set of possible partial derivations. To a first ap-
proximation, this is a pair (w, s) of a surface form
w tagged with word sense and polarity, and an in-
ference state s ∈ {valid, invalid} in our collapsed
FSA (Figure 3b). For example, the search path in
Figure 1 traverses the nodes:

(No carnivores eat animals, valid)
(The carnivores eat animals, invalid)
(The cat eats animals, invalid)
(The cat eats an animal, invalid)
(The cat ate a mouse, invalid)

During search, we assume that the validity
states s are reversible – if we know that the cat ate
a mouse is true, we can infer that no carnivores
eat animals is false. In addition, our search keeps
track of some additional information:

Mutation Index Edges between sentences are
most naturally defined to correspond to mutations
of individual lexical items. We therefore maintain

an index of the next item to mutate at each search
state. Importantly, this enforces that each deriva-
tion orders mutations left-to-right; this is compu-
tationally efficient, at the expense of rare search
errors. A similar observation is noted in MacCart-
ney (2009), where prematurely collapsing to # oc-
casionally misses inferences.

Polarity Mutating operators can change the po-
larity on a span in the fact. Since we do not have
the full parse tree at our disposal at search time,
we track a small amount of metadata to guess the
scope of the mutated operator.

4.2 Transitions
We begin by introducing some terminology. A
transition template is a broad class of transitions;
for instance WordNet hypernymy. A transition
(or transition instance) is a particular instantiation
of a transition template. For example, the tran-
sition from cat to feline. Lastly, an edge in the
search space connects two nodes, which are sep-
arated by a single transition instance. For exam-
ple, an edge exists between some felines have tails
and some cats have tails. Transition [instances]
are stored statically in memory, whereas edges are
constructed on demand.

Transition templates provide a means of defin-
ing transitions and subsequently edges in our
search space using existing lexical resources (e.g.,
WordNet, distributional similarity, etc.). We can
then define a mapping from these templates to
Natural Logic lexical relations. This allows us
to map every edge in our search graph back to
the Natural Logic relation it instantiates. The
full table of transition templates is given in Ta-
ble 3, along with the Natural Logic relation that
instances of the template introduce. We include
most relations in WordNet as transitions, and
parametrize insertions and deletions by the part of
speech of the token being inserted/deleted.

Once we have an edge defining a lexical mu-
tation with an associated Natural Logic relation
r, we can construct the corresponding end node
(w′, s′) such that w′ is the sentence with the lex-
ical mutation applied, and s′ is the validity state
obtained from the FSA in Section 3. For instance,
if our edge begins at (w, s), and there exists a tran-
sition in the FSA from s′ r−→ s, then we define the
end point of the edge to be (w′, s′). To illustrate
concretely, suppose our search state is:

(some felines have tails, valid)
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Transition Template Relation
WordNet hypernym v
WordNet hyponym w
WordNet antonym† ��
WordNet synonym/pertainym† ≡
Distributional nearest neighbor ≡
Delete word† v
Add word† w
Operator weaken v
Operator strengthen w
Operator negate f
Operator synonym ≡
Change word sense ≡

Table 3: The edges allowed during inference.
Entries with a dagger (†) are parametrized by
their part-of-speech tag, from the restricted list of
{noun,adjective,verb,other}. The first column de-
scribes the type of the transition. The set-theoretic
relation introduced by each relation is given in the
second column.

The transition template for WordNet hyper-
nymy gives us a transition instance from feline
to cat, corresponding to the Natural Logic infer-
ence cat

v−→ feline. Recall, we are constructing
the inference in reverse, starting from the conse-
quent (query). We then notice that the transition
valid

v−→ valid in the FSA ends in our current
inference state (valid), and set our new inference
state to be the start state of the FSA transition – in
this case, we maintain validity.

Note that negation is somewhat subtle, as the
transitions are not symmetric from valid to in-
valid and visa versa, and we do not know our true
inference state with respect to the premise yet.
In practice, the search procedure treats all three
of {f, ��,`} as negation, and re-scores complete
derivations once their inference states are known.

It should be noted that the mapping from transi-
tion templates to relation types is intentionally im-
precise. For instance, clearly nearest neighbors do
not preserve equivalence (≡); more subtly, while
all cats like milk �� all cats hate milk, it is not
the case that some cats like milk �� some cats hate
milk.2 We mitigate this imprecision by introducing
a cost for each transition, and learning the appro-
priate value for this cost (see Section 5). The cost
of an edge from fact (w, v) with surface form w

2The latter example is actually a consequence of the pro-
jection function in Table 1 being overly optimistic.

and validity v to a new fact (w′, v′), using a transi-
tion instance ti of template t and mutating a word
with polarity p, is given by fti · θt,v,p. We define
this as:

fti : A value associated with every transition
instance ti, intuitively corresponding to how
“far” the endpoints of the transition are.
θt,v,p: A learned cost for taking a transition of
template t, if the source of the edge is in a in-
ference state of v and the word being mutated
has polarity p.

The notation for fti is chosen to evoke an anal-
ogy to features. We set fti to be 1 in most cases;
the exceptions are the edges over the WordNet hy-
pernym tree and the nearest neighbors edges. In
the first case, taking the hypernymy relation from
w to w′ to be ↑w→w′ , we set:

f↑w→w′ = log
p(w′)
p(w)

= log p(w′)− log p(w).

The value f↓w→w′ is set analogously. We define
p(w) to be the “probability” of a concept – that
is, the normalized frequency of a word w or any
of its hyponyms in the Google N-Grams corpus
(Brants and Franz, 2006). Intuitively, this ensures
that relatively long paths through fine-grained sec-
tions of WordNet are not unduly penalized. For
instance, the path from cat to animal traverses six
intermediate nodes, naı̈vely yielding a prohibitive
search depth of 6. However, many of these tran-
sitions have low weight: for instance f↑cat→feline is
only 0.37.

For nearest neighbors edges, we take Neu-
ral Network embeddings learned in Huang et al.
(2012) corresponding to each vocabulary entry.
We then define fNNw→w′ to be the arc cosine of
the cosine similarity (i.e., the angle) between word
vectors associated with lexical items w and w′:

fNNw→w′ = arccos
(

w · w′
‖w‖‖w′‖

)
.

For instance, fNNcat→dog = 0.43. In practice, we
explore the 100 nearest neighbors of each word.

We can express fti as a feature vector by rep-
resenting it as a vector with value fti at the index
corresponding to (t, v, p) – the transition template,
the validity of the inference, and the polarity of
the mutated word. Note that the size of this vector
mirrors the number of cost parameters θt,v,p, and
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is in general smaller than the number of transition
instances.

A search path can then be parametrized by a
sequence of feature vectors f1, f2, . . . , fn, which
in turn can be collapsed into a single vector f =∑

i fi. The cost of a path is defined as θ · f , where
θ is the vector of θt,v,p values. Both f and θ are
constrained to be non-negative, or else the search
problem is misspecified.

4.3 Generalizing Similarities
An elegant property of our definitions of fti is its
ability to generalize JC distance. Let us assume we
have lexical itemsw1 andw2, with a least common
subsumer lcs. The JC distance distjc(w1, w2) is:

distjc(w1, w2) = log
p(lcs)2

p(w1) · p(w2)
. (1)

For simplicity, we simplify θ↑,v,p and θ↓,v,p as
simply θ↑ and θ↓. Without loss of generality, we
also assume that a path in our search is only modi-
fying a single lexical item w1, eventually reaching
a mutated form w2.

We can factorize the cost of a path, θ · f , along
the path fromw1 tow2 through its lowest common
subsumer (lcs), [w1, w

(1)
1 , . . . , lcs, . . . , w(1)

2 , w2],
as follows:

θ · φ = θ↑
([

log p(w(1)
1 )− log p(w1)

]
+ . . .

)
+

θ↓
([

log p(lcs)− log p(w(n)
1 )
]

+ . . .
)

= θ↑
(

log
p(lcs)
p(w1)

)
+ θ↓

(
log

p(lcs)
p(w2)

)
= log

p(lcs)θ↑+θ↓

p(w1)θ↑ · p(w2)θ↓
.

Note that setting both θ↑ and θ↓ to 1 exactly
yields Formula (1) for JC distance. This, in addi-
tion to the inclusion of nearest neighbors as tran-
sitions, allows the search to capture the intuition
that similar objects have similar properties (e.g.,
as used in Angeli and Manning (2013)).

4.4 Deletions in Inference
Although inserting lexical items in a derivation
(deleting words from the reversed derivation) is
trivial, the other direction is not. For brevity, we
refer to a deletion in the derivation as an insertion,
since from the perspective of search we are insert-
ing lexical items.

Naı̈vely, at every node in our search we must
consider every item in the vocabulary as a possi-
ble insertion. We can limit the number of items we
consider by storing the database as a trie. Since
the search mutates the fact left-to-right (as per
Section 4.1), we can consider children of a trie
node as candidate insertions. To illustrate, given
a search state with fact w0w1 . . . wn and mutation
index i, we would look up completions wi+1 for
w0w1 . . . wi in our trie of known facts.

Although this approach works well when i is
relatively large, there are too many candidate in-
sertions for small i. We special case the most ex-
treme example for this, where i = 0 – that is,
when we are inserting into the beginning of the
fact. In this case, rather than taking all possible
lexical items that start any fact, we take all items
which are followed by the first word of our current
fact. To illustrate, given a search state with fact
w0w1 . . . wn, we would propose candidate inser-
tions w−1 such that w−1w0w

′
1 . . . w

′
k is a known

fact for some w′1 . . . w′k. More concretely, if we
know that fluffy cats have tails, and are at a node
corresponding to cats like boxes, we propose fluffy
as a possible insertion: fluffy cats like boxes.

4.5 Confidence Estimation
The last component in inference is translating a
search path into a probability of truth. We notice
from Section 4.2 that the cost of a path can be rep-
resented as θ · f . We can normalize this value by
negating every element of the cost vector θ and
passing it through a sigmoid:

confidence =
1

1 + e−(−θ·f) .

Importantly, note that the cost vector must be
non-negative for the search to be well-defined, and
therefore the confidence value will be constrained
to be between 0 and 1

2 .
At this point, we have a confidence that the

given path has not violated strict Natural Logic.
However, to translate this value into a probability
we need to incorporate whether the inference path
is confidently valid, or confidently invalid. To il-
lustrate, a fact with a low confidence should trans-
late to a probability of 1

2 , rather than a probability
of 0. We therefore define the probability of valid-
ity as follows: We take v to be 1 if the query is in
the valid state with respect to the premise, and −1
if the query is in the invalid state. For complete-
ness, if no path is given we can set v = 0. The
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probability of validity becomes:

p(valid) =
v

2
+

1
1 + evθ·f

. (2)

Note that in the case where v = −1, the above
expression reduces to 1

2 − confidence; in the case
where v = 0 it reduces to simply 1

2 . Furthermore,
note that the probability of truth makes use of the
same parameters as the cost in the search.

5 Learning Transition Costs

We describe our procedure for learning the transi-
tion costs θ. Our training data D consists of query
facts q and their associated gold truth values y.
Equation (2) gives us a probability that a partic-
ular inference is valid; we axiomatically consider
a valid inference from a known premise to be justi-
fication for the truth of the query. This is at the ex-
pense of the (often incorrect) assumption that our
database is clean and only contains true facts.

We optimize the likelihood of our gold annota-
tions according to this probability, subject to the
constraint that all elements in our cost vector θ
be non-negative. We run the search algorithm de-
scribed in Section 4 on every query qi ∈ D. This
produces the highest confidence path x1, along
with its inference state vi. We now have annotated
tuples: ((xi, vi), yi) for every element in our train-
ing set. Analogous to logistic regression, the log
likelihood of our training data D, subject to costs
θ, is:

lθ(D) =
∑

0≤i<|D|

[
yi log

(
vi
2

+
1

1 + eviθ·f(xi)

)

+ (1− yi) log
(−vi

2
+

1
1 + e−viθ·f(xi)

)]
,

where yi is 1 if the example is annotated true and
0 otherwise, and f(xi) are the features extracted
for path xi. The objective function is the negative
log likelihood with an L2 regularization term and
a log barrier function to prohibit negative costs:

O(D) = −lθ(D) +
1

2σ2
‖θ‖22 − ε log(θ).

We optimize this objective using conjugate gra-
dient descent. Although the objective is non-
convex, in practice we can find a good initializa-
tion of weights to reduce the risk of arriving at lo-
cal optima.

An elegant property of this formulation is that
the weights we are optimizing correspond directly

§ Category Count Precision Recall Accuracy
N M08 N M08 N M07 M08

1 Quantifiers 44 91 95 100 100 95 84 97
2 Plurals 24 80 90 29 64 38 42 75
3 Anaphora 6 100 100 20 60 33 50 50
4 Ellipses 25 100 100 5 5 28 28 24
5 Adjectives 15 80 71 66 83 73 60 80
6 Comparatives 16 90 88 100 89 87 69 81
7 Temporal 36 75 86 53 71 52 61 58
8 Verbs 8 − 80 0 66 25 63 62
9 Attitudes 9 − 100 0 83 22 55 89
Applicable (1,5,6) 75 89 89 94 94 89 76 90

Table 4: Results on the FraCaS textual entailment
suite. N is this work; M07 refers to MacCartney
and Manning (2007); M08 refers to MacCartney
and Manning (2008). The relevant sections of the
corpus intended to be handled by this system are
sections 1, 5, and 6 (although not 2 and 9, which
are also included in M08).

to the costs used during search. This creates a pos-
itive feedback loop – as better weights are learned,
the search algorithm is more likely to find con-
fident paths, and more data is available to train
from. We therefore run this learning step for mul-
tiple epochs, re-running search after each epoch.
The weights for the first epoch are initialized to
an approximation of valid Natural Logic weights.
Subsequent epochs initialize their weights to the
output of the previous epoch.

6 Experiments

We evaluate our system on two tasks: the Fra-
CaS test suite, used by MacCartney and Manning
(2007; 2008), evaluates the system’s ability to cap-
ture Natural Logic inferences even without the ex-
plicit alignments of these previous systems. In
addition, we evaluate the system’s ability to pre-
dict common-sense facts from a large corpus of
OpenIE extractions.

6.1 FraCaS Entailment Corpus

The FraCaS corpus (Cooper et al., 1996) is a small
corpus of entailment problems, aimed at provid-
ing a comprehensive test of a system’s handling of
various entailment patterns. We process the cor-
pus following MacCartney and Manning (2007).
It should be noted that many of the sections of
the corpus are not directly applicable to Natu-
ral Logic inferences; MacCartney and Manning
(2007) identify three sections which are in the
scope of their system, and consequently our sys-
tem as well.

Results on the dataset are given in Table 4.
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System P R F1 Accuracy
Lookup 100.0 12.1 21.6 56.0
NaturalLI Only 88.8 40.1 55.2 67.5
NaturalLI + Lookup 90.6 49.1 63.7 72.0

Table 5: Accuracy inferring common-sense facts
on a balanced test set. Lookup queries the lem-
matized lower-case fact directly in the 270M fact
database. NaturalLI Only disallows such lookups,
and infers every query from only distinct premises
in the database. NaturalLI + Lookup takes the
union of the two systems.

Since the corpus is not a blind test set, the re-
sults are presented less as a comparison of perfor-
mance, but rather to validate the expressive power
of our search-based approach against MacCart-
ney’s align-and-classify approach. For the exper-
iments, costs were set to express valid Natural
Logic inference as a hard constraint.

The results show that the system is able to cap-
ture Natural Logic inferences with similar accu-
racy to the state-of-the-art system of MacCartney
and Manning (2008). Note that our system is com-
paratively crippled in this framework along at least
two dimensions: It cannot appeal to the premise
when constructing the search, leading to the intro-
duction of a class of search errors which are en-
tirely absent from prior work. Second, the deriva-
tion process itself does not have access to the full
parse tree of the candidate fact.

Although precision is fairly high even on the
non-applicable sections of FraCaS, recall is sig-
nificantly lower than prior work. This is a direct
consequence of not having alignments to appeal
to. For instance, we can consider two inferences:

Jack saw Jill is playing ?=⇒ Jill is playing
Jill saw Jack is playing ?=⇒ Jill is playing

It is clear from the parse of the sentence that
the first is valid and the second is not; however,
from the perspective of the search algorithm both
make the same two edits: inserting Jack and saw.
In order to err on the side of safety, we disallow
deleting the verb saw.

6.2 Common Sense Reasoning
We validate our system’s ability to infer unseen
common sense facts from a large database of
such facts. Whereas evaluation on FraCaS shows
that our search formulation captures applicable in-
ferences as well as prior work, this evaluation

presents a novel use-case for Natural Logic infer-
ence.

For our database of facts, we run the Ol-
lie OpenIE system (Mausam et al., 2012) over
Wikipedia,3 Simple Wikipedia,4 and a random 5%
of CommonCrawl. Extractions with confidence
below 0.25 or which contained pronouns were
discarded. This yielded a total of 305 million
unique extractions composed entirely of lexical
items which mapped into our vocabulary (186 707
items). Each of these extracted triples (e1, r, e2)
was then flattened into a plain-text fact e1 r e2 and
lemmatized. This yields 270 million unique lem-
matized premises in our database. In general, each
fact in the database could be arbitrary unstructured
text; our use of Ollie extractions is motivated only
by a desire to extract short, concise facts.

For our evaluation, we infer the top 689 most
confident facts from the ConceptNet project (Tan-
don et al., 2011). To avoid redundancy with Word-
Net, we take facts from eight ConceptNet rela-
tions: MemberOf, HasA, UsedFor, CapableOf,
Causes, HasProperty, Desires, and CreatedBy. We
then treat the surface text field of these facts as
our candidate query. This yields queries like the
following:

not all birds can fly
noses are used to smell
nobody wants to die
music is used for pleasure

For negative examples, we take the 689 ReVerb
extractions (Fader et al., 2011) judged as false
by Mechanical Turk workers (Angeli and Man-
ning, 2013). This provides a set of plausible but
nonetheless incorrect examples, and ensures that
our recall is not due to over-zealous search. Search
costs are tuned from an additional set of 540 true
ConceptNet and 540 false ReVerb extractions.

Results are shown in Table 5. We compare
against the baseline of looking up each fact verba-
tim in the fact database. Note that both the query
and the facts in the database are short snippets, al-
ready lemmatized and lower-cased; therefore, it is
not in principle unreasonable to expect a database
of 270 million extractions to contain these facts.
Nonetheless, only 12% of facts were found via a
direct lookup. We show that NaturalLI (allowing
lookups) improves this recall four-fold, at only an
9.4% drop in precision.

3http://wikipedia.org/ (2013-07-03)
4http://simple.wikipedia.org/ (2014-03-25)

542



7 Related Work

A large body of work is devoted to compiling
open-domain knowledge bases. For instance,
OpenIE systems (Yates et al., 2007; Fader et al.,
2011) extract concise facts via surface or depen-
dency patterns. In a similar vein, NELL (Carlson
et al., 2010; Gardner et al., 2013) continuously
learns new high-precision facts from the internet.

Many NLP applications query large knowl-
edge bases. Prominent examples include ques-
tion answering (Voorhees, 2001), semantic pars-
ing (Zelle and Mooney, 1996; Zettlemoyer and
Collins, 2007; Kwiatkowski et al., 2013; Berant
and Liang, 2014), and information extraction sys-
tems (Hoffmann et al., 2011; Surdeanu et al.,
2012). A goal of this work is to improve accuracy
on these downstream tasks by providing a proba-
bilistic knowledge base for likely true facts.

A natural alternative to the approach taken in
this paper is to extend knowledge bases by in-
ferring and adding new facts directly. For in-
stance, Snow et al. (2006) present an approach to
enriching the WordNet taxonomy; Tandon et al.
(2011) extend ConceptNet with new facts; Soder-
land et al. (2010) use ReVerb extractions to enrich
a domain-specific ontology. Chen et al. (2013) and
Socher et al. (2013) use Neural Tensor Networks
to predict unseen relation triples in WordNet and
Freebase, following a line of work by Bordes et
al. (2011) and Jenatton et al. (2012). Yao et al.
(2012) and Riedel et al. (2013) present a related
line of work, inferring new relations between Free-
base entities via inference over both Freebase and
OpenIE relations. In contrast, this work runs infer-
ence over arbitrary text, without restricting itself to
a particular set of relations, or even entities.

The goal of tackling common-sense reasoning
is by no means novel in itself. Work by Reiter
and McCarthy (Reiter, 1980; McCarthy, 1980) at-
tempts to reason about the truth of a consequent in
the absence of strict logical entailment. Similarly,
Pearl (1989) presents a framework for assigning
confidences to inferences which can be reason-
ably assumed. Our approach differs from these at-
tempts in part in its use of Natural Logic as the un-
derlying inference engine, and more substantially
in its attempt at creating a broad-coverage sys-
tem. More recently, work by Schubert (2002) and
Van Durme et al. (2009) approach common sense
reasoning with episodic logic; we differ in our fo-
cus on inferring truth from an arbitrary query, and

in making use of longer inferences.
This work is similar in many ways to work

on recognizing textual entailment – e.g., Schoen-
mackers et al. (2010), Berant et al. (2011). Work
by Lewis and Steedman (2013) is particularly rele-
vant, as they likewise evaluate on the FraCaS suite
(Section 1; 89% accuracy with gold trees). They
approach entailment by constructing a CCG parse
of the query, while mapping questions which are
paraphrases of each other to the same logical form
using distributional relation clustering. However,
their system is unlikely to scale to either our large
database of premises, or our breadth of relations.

Fader et al. (2014) propose a system for ques-
tion answering based on a sequence of paraphrase
rewrites followed by a fuzzy query to a structured
knowledge base. This work can be thought of as
an elegant framework for unifying this two-stage
process, while explicitly tracking the “risk” taken
with each paraphrase step. Furthermore, our sys-
tem is able to explore mutations which are only
valid in one direction, rather than the bidirectional
entailment of paraphrases, and does not require a
corpus of such paraphrases for training.

8 Conclusion

We have presented NaturalLI, an inference system
over unstructured text intended to infer common
sense facts. We have shown that we can run infer-
ence over a large set of premises while maintain-
ing Natural Logic semantics, and that we can learn
how to infer unseen common sense facts.

Future work will focus on enriching the class
of inferences we can make with Natural Logic.
For example, extending the approach to handle
meronymy and relation entailments. Furthermore,
we hope to learn richer lexicalized parameters, and
use the syntactic structure of a fact during search.
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Abstract

Term translation is of great importance for
statistical machine translation (SMT), es-
pecially document-informed SMT. In this
paper, we investigate three issues of term
translation in the context of document-
informed SMT and propose three cor-
responding models: (a) a term trans-
lation disambiguation model which se-
lects desirable translations for terms in the
source language with domain information,
(b) a term translation consistency model
that encourages consistent translations for
terms with a high strength of translation
consistency throughout a document, and
(c) a term bracketing model that rewards
translation hypotheses where bracketable
source terms are translated as a whole
unit. We integrate the three models into
hierarchical phrase-based SMT and eval-
uate their effectiveness on NIST Chinese-
English translation tasks with large-scale
training data. Experiment results show
that all three models can achieve sig-
nificant improvements over the baseline.
Additionally, we can obtain a further
improvement when combining the three
models.

1 Introduction

A term is a linguistic expression that is used as
the designation of a defined concept in a language
(ISO 1087). As terms convey concepts of a text,
term translation becomes crucial when the text is
translated from its original language to another
language. The translations of terms are often af-
fected by the domain in which terms are used and
the context that surrounds terms (Vasconcellos et
al., 2001). In this paper, we study domain-specific
and context-sensitive term translation for SMT.

In order to achieve this goal, we focus on three
issues of term translation: 1) translation ambigu-
ity, 2) translation consistency and 3) bracketing.
First, term translation ambiguity is related to trans-
lations of the same term in different domains. A
source language term may have different transla-
tions when it occurs in different domains. Second,
translation consistency is about consistent trans-
lations for terms that occur in the same document.
Usually, it is undesirable to translate the same term
in different ways as it occurs in different parts of
a document. Finally, bracketing concerns whether
a multi-word term is bracketable during transla-
tion. Normally, a multi-word term is translated as
a whole unit into a contiguous target string.

We study these three issues in the context
of document-informed SMT. We use document-
informed information to disambiguate term trans-
lations in different documents and maintain con-
sistent translations for terms that occur in the same
document. We propose three different models for
term translation that attempt to address the three
issues mentioned above. In particular,

• Term Translation Disambiguation Model: In
this model, we condition the translations of
terms in different documents on correspond-
ing per-document topic distributions. In do-
ing so, we enable the decoder to favor trans-
lation hypotheses with domain-specific term
translations.

• Term Translation Consistency Model: This
model encourages the same terms with a high
strength of translation consistency that occur
in different parts of a document to be trans-
lated in a consistent fashion. We calculate
the translation consistency strength of a term
based on the topic distribution of the docu-
ments where the term occurs in this model.

• Term Bracketing Model: We use the brack-
eting model to reward translation hypothe-
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ses where bracketable multi-word terms are
translated as a whole unit.

We integrate the three models into hierarchical
phrase-based SMT (Chiang, 2007). Large-scale
experiment results show that they are all able to
achieve significant improvements of up to 0.89
BLEU points over the baseline. When simulta-
neously integrating the three models into SMT,
we can gain a further improvement, which outper-
forms the baseline by up to 1.16 BLEU points.

In the remainder of this paper, we begin with
a brief overview of related work in Section 2,
and bilingual term extraction in Section 3. We
then elaborate the proposed three models for term
translation in Section 4. Next, we conduct experi-
ments to validate the effectiveness of the proposed
models in Section 5. Finally, we conclude and pro-
vide directions for future work in Section 6.

2 Related Work

In this section, we briefly introduce related work
and highlight the differences between our work
and previous studies.

As we approach term translation disambigua-
tion and consistency via topic modeling, our mod-
els are related to previous work that explores the
topic model (Blei et al., 2003) for machine trans-
lation (Zhao and Xing, 2006; Su et al., 2012;
Xiao et al., 2012; Eidelman et al., 2012). Zhao
and Xing (2006) employ three models that enable
word alignment process to leverage topical con-
tents of document-pairs with topic model. Su et al.
(2012) establish the relationship between out-of-
domain bilingual corpus and in-domain monolin-
gual corpora via topic mapping and phrase-topic
distribution probability estimation for translation
model adaptation. Xiao et al. (2012) propose a
topic similarity model for rule selection. Eidel-
man et al. (2012) use topic models to adapt lexical
weighting probabilities dynamically during trans-
lation. In these studies, the topic model is not used
to address the issues of term translation mentioned
in Section 1.

Our work is also related to document-level
SMT in that we use document-informed informa-
tion for term translation. Tiedemann (2010) pro-
pose cache-based language and translation mod-
els, which are built on recently translated sen-
tences. Gong et al. (2011) extend this by further
introducing two additional caches. They employ
a static cache to store bilingual phrases extracted

from documents in training data that are similar to
the document being translated and a topic cache
with target language topic words. Recently we
have also witnessed efforts that model lexical co-
hesion (Hardmeier et al., 2012; Wong and Kit,
2012; Xiong et al., 2013a; Xiong et al., 2013b)
as well as coherence (Xiong and Zhang, 2013)
for document-level SMT. Hasler et al. (2014a)
use topic models to learn document-level transla-
tion probabilities. Hasler et al. (2014b) use topic-
adapted model to improve lexical selection. The
significant difference between our work and these
studies is that term translation has not been inves-
tigated in these document-level SMT models.

Itagaki and Aikawa (2008) employ bilingual
term bank as a dictionary for machine-aided trans-
lation. Ren et al. (2009) propose a binary feature
to indicate whether a bilingual phrase contains a
term pair. Pinis and Skadins (2012) investigate that
bilingual terms are important for domain adapta-
tion of machine translation. These studies do not
focus on the three issues of term translation as
discussed in Section 1. Furthermore, domain and
document-informed information is not used to as-
sist term translation.

Itagaki et al. (2007) propose a statistical method
to calculate translation consistency for terms with
explicit domain information. Partially inspired
by their study, we introduce a term translation
consistency metric with document-informed infor-
mation. Furthermore, we integrate the proposed
term translation consistency model into an actual
SMT system, which has not been done by Itagaki
et al. (2007). Ture et al. (2012) use IR-inspired
tf-idf scores to encourage consistent translation
choice. Guillou (2013) investigates what kind of
words should be translated consistently. Term
translation consistency has not been investigated
in these studies.

Our term bracketing model is also related
to Xiong et al. (2009)’s syntax-driven bracket-
ing model for phrase-based translation, which pre-
dicts whether a phrase is bracketable or not using
rich syntactic constraints. The difference is that
we construct the model with automatically created
bilingual term bank and do not depend on any syn-
tactic knowledge.

3 Bilingual Term Extraction

Bilingual term extraction is to extract terms from
two languages with the purpose of creating or ex-
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tending a bilingual term bank, which in turn can
be used to improve other tasks such as information
retrieval and machine translation. In this paper, we
want to automatically build a bilingual term bank
so that we can model term translation to improve
translation quality of SMT. Our interest is to ex-
tract multi-word terms.

Currently, there are mainly two strategies to
conduct bilingual term extraction from parallel
corpora. One of them is to extract term candi-
dates separately for each language according to
monolingual term metrics, such as C-value/NC-
value (Frantzi et al., 1998; Vu et al., 2008), or
other common cooccurrence measures such as
Log-Likelihood Ratio, Dice coefficient and Point-
wise Mutual Information (Daille, 1996; Piao et
al., 2006). The extracted monolingual terms are
then paired together (Hjelm, 2007; Fan et al.,
2009; Ren et al., 2009). The other strategy is to
align words and word sequences that are transla-
tion equivalents in parallel corpora and then clas-
sify them into terms and non-terms (Merkel and
Foo, 2007; Lefever et al., 2009; Bouamor et al.,
2012). In this paper, we adopt the first strategy.
In particular, for each sentence pair, we collect all
source phrases which are terms and find aligned
target phrases for them via word alignments. If
the target side is also a term, we store the source
and target term as a term pair.

We conduct monolingual term extraction using
the C-value/NC-value metric and Log-Likelihood
Ratio (LLR) measure respectively. We then com-
bine terms extracted according to the two metrics
mentioned above. For the C-value/NC-value met-
ric based term extraction, we implement it in the
same way as described in Frantzi et al. (1998).
This extraction method recognizes linguistic pat-
terns (mainly noun phrases) listed as follows.

((Adj|Noun)+|((Adj|Noun)∗

(NounPrep)?)(Adj|Noun)∗)Noun

It captures the linguistic structures of terms. For
the LLR metric based term extraction, we imple-
ment it according to Daille (1996), who estimate
the propensity of two words to appear together as a
multi-word expression. We then adopt LLR-based
hierarchical reducing algorithm proposed by Ren
et al. (2009) to extract terms with arbitrary lengths.
Since the C-value/NC-value metric based extrac-
tion method can obtain terms in strict linguistic
patterns while the LLR measure based method ex-

tracts more flexible terms, these two methods are
complementary to each other. Therefore, we use
these two methods to extract monolingual multi-
word terms and then combine the extracted terms.

4 Models

This section presents the three models of term
translation. They are the term translation dis-
ambiguation model, term translation consistency
model and term bracketing model respectively.

4.1 Term Translation Disambiguation Model

The most straightforward way to disambiguate
term translations in different domains is to cal-
culate the conditional translation probability of
a term given domain information. We use the
topic distribution of a document obtained by a
topic model to represent the domain information
of the document. Since Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003) is the most widely-
used topic model, we exploit it for inferring topic
distributions of documents. Xiao et al. (2012)
proposed a topic similarity model for rule selec-
tion. Different from their work, we take an eas-
ier strategy that estimates topic-conditioned term
translation probabilities rather than rule-topic dis-
tributions. This makes our model easily scalable
on large training data.

With the bilingual term bank created from the
training data, we calculate the source-to-target
term translation probability for each term pair con-
ditioned on the topic distribution of the source
document where the source term occurs. We main-
tain a K-dimension (K is the number of topics)
vector for each term pair. The k-th component
p(te|tf , z = k) measures the conditional transla-
tion probability from source term tf to target term
te given the topic k.

We calculate p(te|tf , z = k) via maximum
likelihood estimation with counts from training
data. When the source part of a bilingual term
pair occurs in a document D with topic distribu-
tion p(z|D) estimated via LDA tool, we collect
an instance (tf , te, p(z|D), c), where c is the frac-
tion count of the instance as described in Chiang
(2007). After collection, we get a set of instances
I = {(tf , te, p(z|D), c)}with different document-
topic distributions for each bilingual term pair. Us-
ing these instances, we calculate the probability
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p(te|tf , z = k) as follows:

p(te|tf , z = k)

=

∑
i∈I,i.tf=tf ,i.te=te

i.c ∗ p(z = k|D)∑
i∈I,i.tf=tf

i.c ∗ p(z = k|D)
(1)

We associate each extracted term pair in our
bilingual term bank with its corresponding topic-
conditioned translation probabilities estimated in
the Eq. (1). When translating sentences of docu-
ment D

′
, we first get the topic distribution of D

′

using LDA tool. Given a sentence which contains
T terms {tfi}T1 in D

′
, our term translation disam-

biguation model TermDis can be denoted as

TermDis =
T∏
i=1

Pd(tei |tfi , D
′
) (2)

where the conditional source-to-target term trans-
lation probability Pd(tei |tfi , D

′
) given the docu-

ment D
′

is formulated as follows:

Pd(tei |tfi , D
′
)

=
K∑
k=1

p(tei |tfi , z = k) ∗ p(z = k|D′) (3)

Whenever a source term tfi is translated into tei ,
we check whether the pair of tfi and its translation
tei can be found in our bilingual term bank. If it
can be found, we calculate the conditional transla-
tion probability from tfi to tei given the document
D
′

according to Eq. (3).
The term translation disambiguation model is

integrated into the log-linear model of SMT as a
feature. Its weight is tuned via minimum error rate
training (MERT) (Och, 2003). Through the fea-
ture, we can enable the decoder to favor translation
hypotheses that contain target term translations ap-
propriate for the domain represented by the topic
distribution of the corresponding document.

4.2 Term Translation Consistency Model

The term translation disambiguation model helps
the decoder select appropriate translations for
terms that are in accord with their domains. Yet
another translation issue related to the domain-
specific term translation is to what extent a term
should be translated consistently given the domain
where it occurs. Term translation consistency in-
dicates the translation stability that a source term
is translated into the same target term (Itagaki et
al., 2007). When translating a source term, if the
translation consistency strength of the source term

is high, we should take the corresponding target
term as the translation for it. Otherwise, we may
need to create a new translation for it according to
its context. In particular, we want to enable the
decoder to choose between: 1) translating a given
source term into the extracted corresponding tar-
get term or 2) translating it in another way accord-
ing to the strength of its translation consistency.
In doing so, we can encourage consistent transla-
tions for terms with a high translation consistency
strength throughout a document.

Our term translation consistency model can ex-
actly measure the strength of term translation con-
sistency in a document. Since the essential com-
ponent of our term translation consistency model
is the translation consistency strength of the source
term estimated under the topic distribution, we de-
scribe how to calculate it before introducing the
whole model.

With the bilingual term bank created from
training data, we first group each source term
and all its corresponding target terms into a 2-
tuple G〈tf , Set(te)〉, where tf is the source term
and Set(te) is the set of tf ’s corresponding tar-
get terms. We maintain a K-dimension (K is
the number of topics) vector for each 2-tuple
G〈tf , Set(te)〉. The k-th component measures the
translation consistency strength cons(tf , k) of the
source term tf given the topic k.

We calculate cons(tf , k) for each
G〈tf , Set(te)〉 with counts from training data as
follows:

cons(tf , k) =
M∑
m=1

Nm∑
n=1

(
qmn ∗ p(k|m)

Qk
)2 (4)

Qk =
M∑
m=1

Nm∑
n=1

qmn ∗ p(k|m) (5)

where M is the number of documents in which
the source term tf occurs, Nm is the number of
unique corresponding term translations of tf in the
mth document, qmn is the frequency of the nth
translation of tf in the mth document, p(k|m) is
the conditional probability of the mth document
over topic k, and Qk is the normalization factor.
All translations of tf are from Set(te). We adapt
Itagaki et al. (2007)’s translation consistency met-
ric for terms to our topic-based translation consis-
tency measure in the Eq. (4). This equation cal-
culates the translation consistency strength of the
source term tf given the topic k according to the
distribution of tf ’s translations in each document
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where they occur. According to Eq. (4), the trans-
lation consistency strength is a score between 0
and 1. If a source term only occurs in a document
and all its translations are the same, the translation
consistency strength of this term is 1.

We reorganize our bilingual term bank into a
list of 2-tuples G〈tf , Set(te)〉s, each of which is
associated with a K-dimension vector storing the
topic-conditioned translation consistency strength
calculated in the Eq. (4). When translating sen-
tences of document D, we first get the topic dis-
tribution of D via LDA tool. Given a sentence
which contains T terms {tfi}T1 in D, our term
translation consistency model TermCons can be
denoted as

TermCons =
T∏
i=1

exp(Sc(tfi |D)) (6)

where the strength of translation consistency for
tfi given the document D is formulated as fol-
lows:

Sc(tfi |D) = log(
K∑
k=1

cons(tfi , k) ∗ p(k|D)) (7)

During decoding, whenever a hypothesis just
translates a source term tfi into te, we check
whether the translation te can be found in Set(te)
of tfi from the reorganized bilingual term bank. If
it can be found, we calculate the strength of trans-
lation consistency for tfi given the document D
according to Eq. (7) and take it as a soft con-
straint. If the Sc(tfi |D) of tfi is high, the decoder
should translate tfi into the extracted correspond-
ing target terms. Otherwise, the decoder will se-
lect translations from outside of Set(te) for tfi . In
doing so, we encourage terms to be translated in
a topic-dependent consistency pattern in the test
data similar to that in the training data so that we
can control the translation consistency of terms in
the test data.

The term translation consistency model is also
integrated into the log-linear model of SMT as a
feature. Through the feature, we can enable the
decoder to translate terms with a high translation
consistency in a document into corresponding tar-
get terms from our bilingual term bank rather than
other translations in a consistent fashion.

4.3 Term Bracketing Model
The term translation disambiguation model and
consistency model concern the term translation ac-
curacy with domain information. We further pro-

pose a term bracketing model to guarantee the in-
tegrality of term translation. Xiong et al. (2009)
proposed a syntax-driven bracketing model for
phrase-based translation, which predicts whether
a phrase is bracketable or not using rich syntac-
tic constraints. If a source phrase remains con-
tiguous after translation, they refer to this type of
phrase as bracketable phrase, otherwise unbrack-
etable phrase. For multi-word terms, it is also
desirable to be bracketable since a source term
should be translated as a whole unit and its trans-
lation should be contiguous.

In this paper, we adapt Xiong et al. (2009)’s
bracketing approach to term translation and build
a classifier to measure the probability that a source
term should be translated in a bracketable man-
ner. For all source parts of the extracted bilingual
term bank, we find their target counterparts in the
word-aligned training data. If the corresponding
target counterpart remains contiguous, we take the
source term as a bracketable instance, otherwise
an unbracketable instance. With these bracketable
and unbracketable instances, we train a maximum
entropy binary classifier to predict bracketable (b)
probability of a given source term tf within par-
ticular contexts c(tf ). The binary classifier is for-
mulated as follows:

Pb(b|c(tf )) =
exp(

∑
j θjhj(b, c(tf )))∑

b′ exp(
∑

j θjhj(b
′ , c(tf )))

(8)

where hj ∈ {0, 1} is a binary feature function and
θj is the weight of hj . We use the following fea-
tures: 1) the word sequence of the source term, 2)
the first word of the source term, 3) the last word
of the source term, 4) the preceding word of the
first word of the source term, 5) the succeeding
word of the last word of the source term, and 6)
the number of words in the source term.

Given a source sentence which contains T terms
{tfi}T1 , our term bracketing model TermBrack
can be denoted as

TermBrack =
T∏
i=1

Pb(b|c(tfi)) (9)

Whenever a hypothesis just covers a source term
tfi , we calculate the bracketable probability of tfi
according to Eq. (8).

The term bracketing model is integrated into the
log-linear model of SMT as a feature. Through the
feature, we want the decoder to translate source
terms with a high bracketable probability as a
whole unit.
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Source Target D M
Fángyù Xı̀tǒng defence mechanisms
Fángyù Xı̀tǒng defence systems
Fángyù Xı̀tǒng defense programmes 470 56
Fángyù Xı̀tǒng prevention systems
... ...
Zhànluè Dǎodàn Fángyù Xı̀tǒng strategic missile defense system 7 0

Table 1: Examples of bilingual terms extracted from the training data. “D” means the total number of
documents in which the corresponding source term occurs and “M” denotes the number of documents in
which the corresponding source term is translated into different target terms. The source side is Chinese
Pinyin. To save space, we do not list all the 23 different translations of the source term “Fángyù Xı̀tǒng”.

5 Experiments

In this section, we conducted experiments to an-
swer the following three questions.

1. Are our term translation disambiguation,
consistency and bracketing models able to
improve translation quality in BLEU?

2. Does the combination of the three models
provide further improvements?

3. To what extent do the proposed models affect
the translations of test sets?

5.1 Setup

Our training data consist of 4.28M sentence pairs
extracted from LDC1 data with document bound-
aries explicitly provided. The bilingual training
data contain 67,752 documents, 124.8M Chinese
words and 140.3M English words. We chose
NIST MT05 as the MERT (Och, 2003) tuning set,
NIST MT06 as the development test set, and NIST
MT08 as the final test set. The numbers of docu-
ments/sentences in NIST MT05, MT06 and MT08
are 100/1082, 79/1664 and 109/1357 respectively.

The word alignments were obtained by running
GIZA++ (Och and Ney, 2003) on the corpora in
both directions and using the “grow-diag-final-
and” balance strategy (Koehn et al., 2003). We
adopted SRI Language Modeling Toolkit (Stol-
cke and others, 2002) to train a 4-gram language
model with modified Kneser-Ney smoothing on
the Xinhua portion of the English Gigaword cor-
pus. For the topic model, we used the open source

1The corpora include LDC2003E07, LDC2003E14,
LDC2004T07, LDC2004E12, LDC2005E83, LDC2005T06,
LDC2005T10, LDC2006E24, LDC2006E34, LDC2006E85,
LDC2006E92, LDC2007E87, LDC2007E101,
LDC2008E40, LDC2008E56, LDC2009E16 and
LDC2009E95.

LDA tool GibbsLDA++2 with the default setting
for training and inference. We performed 100 it-
erations of the L-BFGS algorithm implemented in
the MaxEnt toolkit3 with both Gaussian prior and
event cutoff set to 1 to train the term bracketing
prediction model (Section 4.3).

We performed part-of-speech tagging for mono-
lingual term extraction (C-value/NC-vaule method
in Section 3) of the source and target languages
with the Stanford NLP toolkit4. The bilingual term
bank was extracted based on the following param-
eter settings of term extraction methods. Empiri-
cally, we set the maximum length of a term to 6
words5. For both the C-value/NC-value and LLR-
based extraction methods, we set the context win-
dow size to 5 words, which is a widely-used set-
ting in previous work. And we set C-value/NC-
value score threshold to 0 and LLR score threshold
to 10 according to the training corpora.

We used the case-insensitive 4-gram BLEU6 as
our evaluation metric. In order to alleviate the im-
pact of the instability of MERT (Och, 2003), we
ran it three times for all our experiments and pre-
sented the average BLEU scores on the three runs
following the suggestion by Clark et al. (2011).

We used an in-house hierarchical phrase-based
decoder to verify our proposed models. Although
the decoder translates a document in a sentence-
by-sentence fashion, it incorporates document-
informed information for sentence translation via
the proposed term translation models trained on
documents.

2http://sourceforge.net/projects/gibbslda/
3http://homepages.inf.ed.ac.uk/lzhang10/maxent toolkit.html
4http://nlp.stanford.edu/software/tagger.shtml
5We determine the maximum length of a term by testing

{5, 6, 7, 8} in our preliminary experiments. We find that
length 6 produces a slightly better performance than other
values.

6ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v11b.pl
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Zhǐyǒu Wěiyuánhuì Chéngyuán Cái  Kě Cānjiā Wěiyuánhuì Shěnyì

Only members of the commission shall take part  in the commission deliberations .

He these proposals

Tā Jiāng Zhèxiē Jiànyì Jiāo Yóu Yī Gè Bùzhǎngjí Wěiyuánhuì Shěnyì

submit for approval to a committee of ministers .

(a)

(b)

Figure 1: An example of unbracketable source term in the training data. In (a), “Wěiyuánhuı̀ Shěnyı̀” is
bracketable while in (b) it is unbracketable. The solid lines connect bilingual phrases. The source side is
Chinese Pinyin.

5.2 Bilingual Term Bank

Before reporting the results of the proposed mod-
els, we provide some statistics of the bilingual
term bank extracted from the training data.

According to our statistics, about 1.29M bilin-
gual terms are extracted from the training data.
65.07% of the sentence pairs contain bilingual
terms in the training data. And on average, a
source term has about 1.70 different translations.
These statistics indicate that terms are frequently
used in real-world data and that a source term can
be translated into different target terms.

We also present some examples of bilingual
terms extracted from the training data in Table 1.
Accordingly, we show the total number of doc-
uments in which the corresponding source term
occurs and the number of documents in which
the corresponding source term is translated into
different target terms. The source term “Fángyù
Xı̀tǒng” has 23 different translations in total. They
are distributed in 470 documents in the training
data. In 414 documents, “Fángyù Xı̀tǒng” has
only one single translation. However, in the other
56 documents it has different translations. This
indicates that “Fángyù Xı̀tǒng” is not consistently
translated in these 56 documents. Different from
this, the source term “Zhànluè Dǎodàn Fángyù
Xı̀tǒng” only has one translation. And it is trans-
lated consistently in all 7 documents where it oc-
curs. In fact, according to our statistics, there are
about 5.19% source terms whose translations are
not consistent even in the same document.

These examples and statistics suggest 1) that
source terms have domain-specific translations
and 2) that source terms are not necessarily trans-
lated in a consistent manner even in the same doc-
ument. These are exactly the reasons why we pro-

pose the term translation disambiguation and con-
sistency model based on domain information rep-
resented by topic distributions.

Actually, 36.13% of the source terms are not
necessarily translated into target strings as a whole
unit. We show an example of such terms in Fig-
ure 1. In Figure 1-(a), “Wěiyuánhuı̀ Shěnyı̀” is a
term, and is translated into “commission deliber-
ations” as a whole unit. Therefore “Wěiyuánhuı̀
Shěnyı̀” is bracketable in this sentence. How-
ever, in Figure 1-(b), “Wěiyuánhuı̀” and “Shěnyı̀”
are translated separately. Therefore “Wěiyuánhuı̀
Shěnyı̀” is an unbracketable term in this sentence.
This is the reason why we propose a bracketing
model to predict whether a source term is brack-
etable or not.

5.3 Effect of the Proposed Models
In this section, we validate the effectiveness of the
proposed term translation disambiguation model,
consistency model and bracketing model respec-
tively. In addition to the traditional hiero (Chi-
ang, 2007) system, we also compare against the
“CountFeat” method in Ren et al. (2009) who use
a binary feature to indicate whether a bilingual
phrase contains a term pair. Although Ren et al.
(2009)’s experiments are conducted in a phrase-
based system, the idea can be easily applied to a
hierarchical phrase-based system.

We carried out experiments to investigate the ef-
fect of the term translation disambiguation model
(Dis-Model) and report the results in Table 2. In
order to find the topic number setting with which
our model has the best performance, we ran exper-
iments using the MT06 as the development test set.
From Table 2, we observe that the Dis-Model ob-
tains steady improvements over the baseline and
“CountFeat” method with the topic number K
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Models MT06 MT08 Avg
Baseline 32.43 24.14 28.29
CountFeat 32.77 24.29 28.53

Dis-Model

K = 50 32.94* 24.53 28.74
K = 100 33.10* 24.57 28.84
K = 150 33.16* 24.67* 28.92
K = 200 33.08* 24.55 28.81

Cons-Model

K = 50 33.09* 24.59 28.84
K = 100 33.13* 24.74* 28.94
K = 150 33.32*+ 24.84*+ 29.08
K = 200 33.02* 24.73* 28.88

Brack-Model 33.09* 24.66* 28.88
Combined-Model 33.59*+ 24.99*+ 29.29

Table 2: BLEU-4 scores (%) of the term translation disambiguation model (Dis-Model), the term transla-
tion consistency model (Cons-Model), the term bracketing model (Brack-Model), and the combination of
the three models, on the development test set MT06 and the final test set MT08. K ∈ {50, 100, 150, 200}
which is the number of topics for the Dis-Model and the Cons-Model. “Combined-Model” is the combi-
nation of the three single modes with topic number 150 for the Dis-Model and the Cons-Model. “Base-
line” is the traditional hierarchical phrase-based system. “CountFeat” is the method that adds a counting
feature to reward translation hypotheses containing bilingual term pairs. The “*” and “+” denote that the
results are significantly (Clark et al., 2011) better than those of the baseline system and the CountFeat
method respectively (p<0.01).

ranging from 50 to 150. However, when we set K
to 200, the performance drops. The highest BLEU
scores 33.16 and 24.67 are obtained at the topic
setting K = 150. In fact, our Dis-Model gains
higher performance in BLEU than both the tradi-
tional hiero baseline and the “CountFeat” method
with all topic settings. The “CountFeat” method
rewards translation hypotheses containing bilin-
gual term pairs. However it does not explore any
domain information. Our Dis-Model incorporates
domain information to conduct translation disam-
biguation and achieves higher performance. When
the topic number is set to 150, we gain the high-
est BLEU score, which is higher than that of the
baseline by 0.73 and 0.53 BLEU points on MT06
and MT08, respectively. The final gain over the
baseline is on average 0.63 BLEU points.

We conducted the second group of experiments
to study whether the term translation consistency
model (Cons-Model) is able to improve the per-
formance in BLEU, as well as to investigate the
impact of different topic numbers on the Cons-
Model. Results are shown in Table 2, from which
we observe the similar phenomena to what we
have found in the Dis-Model. Our Cons-Model
gains higher BLEU scores than the baseline sys-
tem and the “CountFeat” method with all topic

settings. Setting topic number to 150 achieves the
highest BLEU score, which is higher than base-
line by 0.89 BLEU points and 0.70 BLEU points
on MT06 and MT08 respectively, and on average
0.79 BLEU points.

We also conducted experiments to verify the ef-
fectiveness of the term bracketing model (Brack-
Model), which conducts bracketing prediction for
source terms. Results in Table 2 show that
our Brack-Model gains higher BLEU scores than
those of the baseline system and the “CountFeat”
method. The final gain of Brack-Model over the
baseline is 0.66 BLEU points and 0.52 points on
MT06 and MT08 respectively, and on average
0.59 BLEU points.

5.4 Combination of the Three Models
As shown in the previous subsection, the term
translation disambiguation model, consistency
model and bracketing model substantially outper-
form the baseline. Now, we investigate whether
using these three models simultaneously can lead
to further improvements. The last row in Table 2
shows that the combination of the three models
(Combined-Model) achieves higher BLEU score
than all single models, when we set the topic num-
ber to 150 for the term translation disambigua-
tion model and consistency model. The final gain
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Models MT06 MT08
Best-Dis-Model 30.89 30.14
Best-Cons-Model 38.04 36.70
Brack-Model 60.46 55.78
Combined-Model 54.39 50.85

Table 3: Percentage (%) of 1-best translations
which are generated by the Combined-Model and
the three single models with best settings on the
development test set MT06 and the final test set
MT08. The topic number is 150 for Best-Dis-
Model and Best-Cons-Model.

of the Combined-Model over the baseline is 1.16
BLEU points and 0.85 points on MT06 and MT08
respectively, and on average 1.00 BLEU points.

5.5 Analysis

In this section, we investigate to what extent the
proposed models affect the translations of test sets.
In Table 3, we show the percentage of 1-best trans-
lations affected by the Combined-Model and the
three single models with best settings on test sets
MT06 and MT08. For single models, if the corre-
sponding feature (disambiguation, consistency or
bracketing) is activated in the 1-best derivation,
the corresponding model has impact on the 1-best
translation. For the Combined-Model, if any of
the corresponding features is activated in the 1-
best derivation, the Combined-Model affects the
1-best translation.

From Table 3, we can see that 1-best transla-
tions of source sentences affected by any of the
proposed models account for a high proportion
(30%∼60%) on both MT06 and MT08. This in-
dicates that all proposed models play an important
role in the translation of both test sets. Among
the three proposed models, the Brack-Model is the
one that affects the largest number of 1-best trans-
lations in both test sets. And the percentage is
60.46% and 55.78% on MT06 and MT08 respec-
tively. The Brack-Model only considers source
terms during decoding, while the Dis-Model and
Cons-Model need to match both source and target
terms. The Brack-Model is more likely to be acti-
vated. Hence the percentage of 1-best translations
affected by this model is higher than those of the
other two models. Since we only investigate the
1-best translations generated by the Combined-
Model and single models, the translations gener-
ated by some single models (e.g., Brack-Model)

may not be generated by the Combined-Model.
Therefore it is hard to say that the numbers of 1-
best translations affected by the Combined-Model
must be greater than those of single models.

6 Conclusion and Future Work

We have studied the three issues of term trans-
lation and proposed three different term trans-
lation models for document-informed SMT. The
term translation disambiguation model enables
the decoder to favor the most suitable domain-
specific translations with domain information for
source terms. The term translation consistency
model encourages the decoder to translate source
terms with a high domain translation consistency
strength into target terms rather than other new
strings. Finally, the term bracketing model re-
wards hypotheses that translate bracketable terms
into continuous target strings as a whole unit.
We integrate the three models into a hierarchical
phrase-based SMT system7 and evaluate their ef-
fectiveness on the NIST Chinese-English transla-
tion task with large-scale training data. Experi-
ment results show that all three models achieve
significant improvements over the baseline. Ad-
ditionally, combining the three models achieves a
further improvement. For future work, we would
like to evaluate our models on term translation
across a range of different domains.
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Abstract
Inspired by previous work, where decipher-
ment is used to improve machine translation,
we propose a new idea to combine word align-
ment and decipherment into a single learning
process. We use EM to estimate the model pa-
rameters, not only to maximize the probabil-
ity of parallel corpus, but also the monolingual
corpus. We apply our approach to improve
Malagasy-English machine translation, where
only a small amount of parallel data is avail-
able. In our experiments, we observe gains of
0.9 to 2.1 Bleu over a strong baseline.

1 Introduction
State-of-the-art machine translation (MT) systems ap-
ply statistical techniques to learn translation rules au-
tomatically from parallel data. However, this reliance
on parallel data seriously limits the scope of MT ap-
plication in the real world, as for many languages and
domains, there is not enough parallel data to train a de-
cent quality MT system.

However, compared with parallel data, there are
much larger amounts of non parallel data. The abil-
ity to learn a translation lexicon or even build a ma-
chine translation system using monolingual data helps
address the problems of insufficient parallel data. Ravi
and Knight (2011) are among the first to learn a full
MT system using only non parallel data through deci-
pherment. However, the performance of such systems
is much lower compared with those trained with par-
allel data. In another work, Klementiev et al. (2012)
show that, given a phrase table, it is possible to esti-
mate parameters for a phrase-based MT system from
non parallel data.

Given that we often have some parallel data, it is
more practical to improve a translation system trained
on parallel data by using additional non parallel data.
Rapp (1995) shows that with a seed lexicon, it is possi-
ble to induce new word level translations from non par-
allel data. Motivated by the idea that a translation lexi-
con induced from non parallel data can be used to trans-
late out of vocabulary words (OOV), a variety of prior
research has tried to build a translation lexicon from
non parallel or comparable data (Fung and Yee, 1998;
Koehn and Knight, 2002; Haghighi et al., 2008; Garera

Figure 1: Combine word alignment and decipherment
into a single learning process.

et al., 2009; Bergsma and Van Durme, 2011; Daumé
and Jagarlamudi, 2011; Irvine and Callison-Burch,
2013b; Irvine and Callison-Burch, 2013a; Irvine et al.,
2013).

Lately, there has been increasing interest in learn-
ing translation lexicons from non parallel data with de-
cipherment techniques (Ravi and Knight, 2011; Dou
and Knight, 2012; Nuhn et al., 2012; Dou and Knight,
2013). Decipherment views one language as a cipher
for another and learns a translation lexicon that pro-
duces fluent text in the target (plaintext) language. Pre-
vious work has shown that decipherment not only helps
find translations for OOVs (Dou and Knight, 2012), but
also improves translations of observed words (Dou and
Knight, 2013).

We find that previous work using monolingual or
comparable data to improve quality of machine transla-
tion separates two learning tasks: first, translation rules
are learned from parallel data, and then the information
learned from parallel data is used to bootstrap learning
with non parallel data. Inspired by approaches where
joint inference reduces the problems of error propaga-
tion and improves system performance, we combine
the two separate learning processes into a single one,
as shown in Figure 1. The contributions of this work
are:
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• We propose a new objective function for word
alignment that combines the process of word
alignment and decipherment into a single learning
task.

• In experiments, we find that the joint process out-
performs the previous pipeline approach, and ob-
serve Bleu gains of 0.9 and 2.1 on two different
test sets.

• We release 15.3 million tokens of monolingual
Malagasy data from the web, as well as a small
Malagasy dependency tree bank containing 20k
tokens.

2 Joint Word Alignment and
Decipherment

2.1 A New Objective Function

In previous work that uses monolingual data to im-
prove machine translation, a seed translation lexicon
learned from parallel data is used to find new transla-
tions through either word vector based approaches or
decipherment. In return, selection of a seed lexicon
needs to be careful as using a poor quality seed lexi-
con could hurt the downstream process. Evidence from
a number of previous work shows that a joint inference
process leads to better performance in both tasks (Jiang
et al., 2008; Zhang and Clark, 2008).

In the presence of parallel and monolingual data, we
would like the alignment and decipherment models to
benefit from each other. Since the decipherment and
word alignment models contain word-to-word transla-
tion probabilities t( f | e), having them share these pa-
rameters during learning will allow us to pool infor-
mation from both data types. This leads us to de-
velop a new objective function that takes both learn-
ing processes into account. Given our parallel data,
(E1,F1), . . . , (Em,Fm), . . . , (EM ,FM), and monolingual
data F1

mono, . . . ,Fn
mono, . . . ,FN

mono, we seek to maximize
the likelihood of both. Our new objective function is
defined as:

F joint =

M∑
m=1

log P(Fm | Em) + α

N∑
n=1

log P(Fn
mono) (1)

The goal of training is to learn the parameters that
maximize this objective, that is

θ∗ = arg max
θ

F joint (2)

In the next two sections, we describe the word align-
ment and decipherment models, and present how they
are combined to perform joint optimization.

2.2 Word Alignment
Given a source sentence F = f1, . . . , fj, . . . , fJ and a
target sentence E = e1, . . . , ei, . . . , eI, word alignment
models describe the generative process employed to
produce the French sentence from the English sentence
through alignments a = a1, . . . , aj, . . . , aJ.

The IBM models 1-2 (Brown et al., 1993) and the
HMM word alignment model (Vogel et al., 1996) use
two sets of parameters, distortion probabilities and
translation probabilities, to define the joint probabil-
ity of a target sentence and alignment given a source
sentence.

P(F, a | E) =

J∏
j=1

d(a j | a j−1, j)t( f j | ea j ). (3)

These alignment models share the same translation
probabilities t( f j | ea j ), but differ in their treatment of
the distortion probabilities d(a j | a j−1, j). Brown et
al. (1993) introduce more advanced models for word
alignment, such as Model 3 and Model 4, which use
more parameters to describe the generative process. We
do not go into details of those models here and the
reader is referred to the paper describing them.

Under the Model 1-2 and HMM alignment models,
the probability of target sentence given source sentence
is:

P(F | E) =
∑

a

J∏
j=1

d(a j | a j−1, j)t( f j | ea j ).

Let θ denote all the parameters of the word align-
ment model. Given a corpus of sentence pairs
(E1,F1), . . . , (Em,Fm), . . . , (EM ,FM), the standard ap-
proach for training is to learn the maximum likelihood
estimate of the parameters, that is,

θ∗ = arg max
θ

M∑
m=1

log P(Fm | Em)

= arg max
θ

log

∑
a

P(Fm, a | Em)

 .
We typically use the EM algorithm (Dempster et al.,

1977), to carry out this optimization.

2.3 Decipherment
Given a corpus of N foreign text sequences (cipher-
text), F1

mono, . . . ,Fn
mono, . . . ,FN

mono, decipherment finds
word-to-word translations that best describe the cipher-
text.

Knight et al. (2006) are the first to study several natu-
ral language decipherment problems with unsupervised
learning. Since then, there has been increasing interest
in improving decipherment techniques and its applica-
tion to machine translation (Ravi and Knight, 2011;
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Dou and Knight, 2012; Nuhn et al., 2012; Dou and
Knight, 2013; Nuhn et al., 2013).

In order to speed up decipherment, Dou and Knight
(2012) suggest that a frequency list of bigrams might
contain enough information for decipherment. Accord-
ing to them, a monolingual ciphertext bigram Fmono is
generated through the following generative story:

• Generate a sequence of two plaintext tokens e1e2
with probability P(e1e2) given by a language
model built from large numbers of plaintext bi-
grams.

• Substitute e1 with f1 and e2 with f2 with probabil-
ity t( f1|e1) · t( f2|e2).

The probability of any cipher bigram F is:

P(Fmono) =
∑
e1e2

P(e1e2) · t( f1|e1) · t( f2|e2) (4)

And the probability of the corpus is:

P(corpus) =

N∏
n=1

P(Fn
mono) (5)

Given a plaintext bigram language model, the goal is
to manipulate t( f |e) to maximize P(corpus). Theoret-
ically, one can directly apply EM to solve the problem
(Knight et al., 2006). However, EM has time complex-
ity O(N ·V2

e ) and space complexity O(V f ·Ve), where V f ,
Ve are the sizes of ciphertext and plaintext vocabularies
respectively, and N is the number of cipher bigrams.

There have been previous attempts to make decipher-
ment faster. Ravi and Knight (2011) apply Bayesian
learning to reduce the space complexity. However,
Bayesian decipherment is still very slow with Gibbs
sampling (Geman and Geman, 1987). Dou and Knight
(2012) make sampling faster by introducing slice sam-
pling (Neal, 2000) to Bayesian decipherment. Besides
Bayesian decipherment, Nuhn et al. (2013) show that
beam search can be used to solve a very large 1:1 word
substitution cipher. In subsection 2.4.1, we describe
our approach that uses slice sampling to compute ex-
pected counts for decipherment in the EM algorithm.

2.4 Joint Optimization
We now describe our EM approach to learn the param-
eters that maximize F joint (equation 2), where the dis-
tortion probabilities, d(a j | a j−1, j) in the word align-
ment model are only learned from parallel data, and
the translation probabilities, t( f | e) are learned using
both parallel and non parallel data. The E step and M
step are illustrated in Figure 2.

Our algorithm starts with EM learning only on par-
allel data for a few iterations. When the joint inference
starts, we first compute expected counts from parallel
data and non parallel data using parameter values from
the last M step separately. Then, we add the expected
counts from both parallel data and non parallel data to-
gether with different weights for the two. Finally we

Figure 2: Joint Word Alignment and Decipherment
with EM

renormalize the translation table and distortion table to
update parameters in the new M step.

The E step for parallel part can be computed effi-
ciently using the forward-backward algorithm (Vogel et
al., 1996). However, as we pointed out in Section 2.3,
the E step for the non parallel part has a time com-
plexity of O(V2) with the forward-backward algorithm,
where V is the size of English vocabulary, and is usu-
ally very large. Previous work has tried to make de-
cipherment scalable (Ravi and Knight, 2011; Dou and
Knight, 2012; Nuhn et al., 2013; Ravi, 2013). How-
ever, all of them are designed for decipherment with ei-
ther Bayesian inference or beam search. In contrast, we
need an algorithm to make EM decipherment scalable.
To overcome this problem, we modify the slice sam-
pling (Neal, 2000) approach used by Dou and Knight
(2012) to compute expected counts from non parallel
data needed for the EM algorithm.

2.4.1 Draw Samples with Slice Sampling
To start the sampling process, we initialize the first
sample by performing approximate Viterbi decoding
using results from the last EM iteration. For each for-
eign dependency bigram f1, f2, we find the top 50 can-
didates for f1 and f2 ranked by t(e| f ), and find the En-
glish sequence e1, e2 that maximizes t(e1| f1) · t(e2| f2) ·
P(e1, e2).

Suppose the derivation probability for current sam-
ple e current is P(e current), we use slice sampling to
draw a new sample in two steps:

• Select a threshold T uniformly between 0 and
P(e current).

• Draw a new sample e new uniformly from a pool
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of candidates: {e new|P(e new) > T }.
The first step is straightforward to implement. How-
ever, it is not trivial to implement the second step. We
adapt the idea from Dou and Knight (2012) for EM
learning.

Suppose our current sample e current contains En-
glish tokens ei−1, ei, and ei+1 at position i − 1, i, and
i+1 respectively, and fi be the foreign token at position
i. Using point-wise sampling, we draw a new sample
by changing token ei to a new token e′. Since the rest
of the sample remains the same, only the probability of
the trigram P(ei−1e′ei+1) (The probability is given by a
bigram language model.), and the channel model prob-
ability t( fi|e′) change. Therefore, the probability of a
sample is simplified as shown Equation 6.

P(ei−1e′ei+1) · t( fi|e′) (6)

Remember that in slice sampling, a new sample is
drawn in two steps. For the first step, we choose a
threshold T uniformly between 0 and P(ei−1eiei+1) ·
t( fi|ei). We divide the second step into two cases based
on the observation that two types of samples are more
likely to have a probability higher than T (Dou and
Knight, 2012): (1) those whose trigram probability is
high, and (2) those whose channel model probability is
high. To find candidates that have high trigram proba-
bility, Dou and Knight (2012) build a top k sorted lists
ranked by P(ei−1e′ei+1), which can be pre-computed
off-line. Then, they test if the last item ek in the list
satisfies the following inequality:

P(ei−1ekei+1) · c < T (7)

where c is a small constant and is set to prior in their
work. In contrast, we choose c empirically as we do
not have a prior in our model. When the inequality in
Equation 7 is satisfied, a sample is drawn in the fol-
lowing way: Let set A = {e′|ei−1e′ei+1 · c > T } and
set B = {e′|t( fi|e′) > c}. Then we only need to sample
e′ uniformly from A ∪ B until P(ei−1e′ei+1) · t( fi|e′) is
greater than T . It is easy to prove that all other candi-
dates that are not in the sorted list and with t( fi|e′) ≤ c
have a upper bound probability: P(ei−1ekei+1)·c. There-
fore, they do not need to be considered.

Second, when the last item ek in the list does not
meet the condition in Equation 7, we keep drawing
samples e′ randomly until its probability is greater than
the threshold T .

As we mentioned before, the choice of the small con-
stant c is empirical. A large c reduces the number of
items in set B, but makes the condition P(ei−1ekei+1) ·
c < T less likely to satisfy, which slows down the sam-
pling. On the contrary, a small c increases the number
of items in set B significantly as EM does not encour-
age a sparse distribution, which also slows down the
sampling. In our experiments, we set c to 0.001 based
on the speed of decipherment. Furthermore, to reduce
the size of set B, we rank all the candidate translations

Spanish English
Parallel 10.3k 9.9k

Non Parallel 80 million 400 million

Table 1: Size of parallel and non parallel data for word
alignment experiments (Measured in number of tokens)

of fi by t(e′| fi), then we add maximum the first 1000
candidates whose t( fi|e′) >= c into set B. For the rest
of the candidates, we set t( fi|e′) to a value smaller than
c (0.00001 in experiments).

2.4.2 Compute Expected Counts from Samples
With the ability to draw samples efficiently for deci-
pherment using EM, we now describe how to compute
expected counts from those samples. Let f1, f2 be a
specific ciphertext bigram, N be the number of sam-
ples we want to use to compute expected counts, and
e1, e2 be one of the N samples. The expected counts
for pairs ( f1, e1) and ( f2, e2) are computed as:

α · count( f1, f2)
N

where count( f1, f2) is count of the bigram, and α is the
weight for non parallel data as shown in Equation 1.
Expected counts collected for f1, f2 are accumulated
from each of its N samples. Finally, we collect ex-
pected counts using the same approach from each for-
eign bigram.

3 Word Alignment Experiments
In this section, we show that joint word alignment and
decipherment improves the quality of word alignment.
We choose to evaluate word alignment performance
for Spanish and English as manual gold alignments
are available. In experiments, our approach improves
alignment F score by as much as 8 points.

3.1 Experiment Setup
As shown in Table 1, we work with a small amount of
parallel, manually aligned Spanish-English data (Lam-
bert et al., 2005), and a much larger amount of mono-
lingual data.

The parallel data is extracted from Europarl, which
consists of articles from European parliament plenary
sessions. The monolingual data comes from English
and Spanish versions of Gigaword corpra containing
news articles from different news agencies.

We view Spanish as a cipher of English, and follow
the approach proposed by Dou and Knight (2013) to
extract dependency bigrams from parsed Spanish and
English monolingual data for decipherment. We only
keep bigrams where both tokens appear in the paral-
lel data. Then, we perform Spanish to English (En-
glish generating Spanish) word alignment and Span-
ish to English decipherment simultaneously with the
method discussed in section 2.
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3.1.1 Results
We align all 500 sentences in the parallel corpus, and
tune the decipherment weight (α) for Model 1 and
HMM using the last 100 sentences. The best weights
are 0.1 for Model 1, and 0.005 for HMM. We start with
Model 1 with only parallel data for 5 iterations, and
switch to the joint process for another 5 iterations with
Model 1 and 5 more iterations of HMM. In the end, we
use the first 100 sentence pairs of the corpus for evalu-
ation.

Figure 3 compares the learning curve of alignment
F-score between EM without decipherment (baseline)
and our joint word alignment and decipherment. From
the learning curve, we find that at the 6th iteration, 2
iterations after we start the joint process, alignment F-
score is improved from 34 to 43, and this improvement
is held through the rest of the Model 1 iterations. The
alignment model switches to HMM from the 11th iter-
ation, and at the 12th iteration, we see a sudden jump
in F-score for both the baseline and the joint approach.
We see consistent improvement of F-score till the end
of HMM iterations.

4 Improving Low Density Languages
Machine Translation with Joint Word
Alignment and Decipherment

In the previous section, we show that the joint word
alignment and decipherment process improves quality
of word alignment significantly for Spanish and En-
glish. In this section, we test our approach in a more
challenging setting: improving the quality of machine
translation in a real low density language setting.

In this task, our goal is to build a system to trans-
late Malagasy news into English. We have a small
amount of parallel data, and larger amounts of mono-
lingual data collected from online websites. We build a
dependency parser for Malagasy to parse the monolin-
gual data to perform dependency based decipherment
(Dou and Knight, 2013). In the end, we perform joint
word alignment and decipherment, and show that the
joint learning process improves Bleu scores by up to
2.1 points over a phrase-based MT baseline.

4.1 The Malagasy Language

Malagasy is the official language of Madagascar. It has
around 18 million native speakers. Although Mada-
gascar is an African country, Malagasy belongs to the
Malayo-Polynesian branch of the Austronesian lan-
guage family. Malagasy and English have very dif-
ferent word orders. First of all, in contrast to En-
glish, which has a subject-verb-object (SVO) word or-
der, Malagasy has a verb-object-subject (VOS) word
order. Besides that, Malagasy is a typical head ini-
tial language: Determiners precede nouns, while other
modifiers and relative clauses follow nouns (e.g. ny
“the” boky “book” mena “red”). The significant dif-
ferences in word order pose great challenges for both

Source Malagasy English
Parallel

Global Voices 2.0 million 1.8 million
Web News 2.2k 2.1k

Non Parallel
Gigaword N/A 2.4 billion
allAfrica N/A 396 million

Local News 15.3 million N/A

Table 2: Size of Malagasy and English data used in our
experiments (Measured in number of tokens)

machine translation and decipherment.

4.2 Data
Table 2 shows the data available to us in our experi-
ments. The majority of parallel text comes from Global
Voices1 (GV). The website contains international news
translated into different foreign languages. Besides
that, we also have a very small amount of parallel text
containing local web news, with English translations
provided by native speakers at the University of Texas,
Austin. The Malagasy side of this small parallel corpus
also has syntactical annotation, which is used to train a
very basic Malagasy part of speech tagger and depen-
dency parser.

We also have much larger amounts of non paral-
lel data for both languages. For Malagasy, we spent
two months manually collecting 15.3 million tokens of
news text from local news websites in Madagascar.2

We have released this data for future research use. For
English, we have 2.4 billion tokens from the Gigaword
corpus. Since the Malagasy monolingual data is col-
lected from local websites, it is reasonable to argue that
those data contain significant amount of information re-
lated to Africa. Therefore, we also collect 396 million
tokens of African news in English from allAfrica.com.

4.3 Building A Dependency Parser for Malagasy
Since Malagasy and English have very different word
orders, we decide to apply dependency based decipher-
ment for the two languages as suggested by Dou and
Knight (2013). To extract dependency relations, we
need to parse monolingual data in Malagasy and En-
glish. For English, there are already many good parsers
available. In our experiments, we use Turbo parser
(Martins et al., 2013) trained on the English Penn Tree-
bank (Marcus et al., 1993) to parse all our English
monolingual data. However, there is no existing good
parser for Malagasy.

The quality of a dependency parser depends on the
amount of training data available. State-of-the-art En-
glish parsers are built from Penn Treebank, which con-
tains over 1 million tokens of annotated syntactical

1globalvoicesonline.org
2aoraha.com, gazetiko.com, inovaovao.com,

expressmada.com, lakroa.com
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Figure 3: Learning curve showing our joint word alignment and decipherment approach improves word alignment
quality over the traditional EM without decipherment (Model 1: Iteration 1 to 10, HMM: Iteration 11 to 15)

trees. In contrast, the available data for training a Mala-
gasy parser is rather limited, with only 168 sentences,
and 2.8k tokens, as shown in Table 2. At the very be-
ginning, we use the last 120 sentences as training data
to train a part of speech (POS) tagger using a toolkit
provided by Garrette et al. (2013) and a dependency
parser with the Turbo parser. We test the performance
of the parser on the first 48 sentences and obtain 72.4%
accuracy.

One obvious way to improve tagging and parsing ac-
curacy is to get more annotated data. We find more data
with only part of speech tags containing 465 sentences
and 10k tokens released by (Garrette et al., 2013), and
add this data as extra training data for POS tagger.
Also, we download an online dictionary that contains
POS tags for over 60k Malagasy word types from mala-
gasyword.org. The dictionary is very helpful for tag-
ging words never seen in the training data.

It is natural to think that creation of annotated data
for training a POS tagger and a parser requires large
amounts of efforts from annotators who understand the
language well. However, we find that through the help
of parallel data and dictionaries, we are able to create
more annotated data by ourselves to improve tagging
and parsing accuracy. This idea is inspired by previ-
ous work that tries to learn a semi-supervised parser
by projecting dependency relations from one language
(with good dependency parsers) to another (Yarowsky
and Ngai, 2001; Ganchev et al., 2009). However, we
find those automatic approaches do not work well for
Malagasy.

To further expand our Malagasy training data, we

first use a POS tagger and parser with poor perfor-
mance to parse 788 sentences (20k tokens) on the
Malagasy side of the parallel corpus from Global
Voices. Then, we correct both the dependency links
and POS tags based on information from dictionaries3

and the English translation of the parsed sentence. We
spent 3 months to manually project English dependen-
cies to Malagasy and eventually improve test set pars-
ing accuracy from 72.4% to 80.0%. We also make this
data available for future research use.

4.4 Machine Translation Experiments
In this section, we present the data used for our MT
experiments, and compare three different systems to
justify our joint word alignment and decipherment ap-
proach.

4.4.1 Baseline Machine Translation System
We build a state-of-the-art phrase-based MT system,
PBMT, using Moses (Koehn et al., 2007). PBMT has 3
models: a translation model, a distortion model, and
a language model. We train the other models using
half of the Global Voices parallel data (the rest is re-
served for development and testing), and build a 5-
gram language model using 834 million tokens from
AFP section of English Gigaword, 396 million tokens
from allAfrica, and the English part of the parallel cor-
pus for training. For alignment, we run 10 iterations
of Model 1, and 5 iterations of HMM. We did not run
Model 3 and Model 4 as we see no improvements in
Bleu scores from running those models. We do word

3an online dictionary from malagasyword.org, as well as
a lexicon learned from the parallel data
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alignment in two directions and use grow-diag-final-
and heuristic to obtain final alignment. During decod-
ing, we use 8 standard features in Moses to score a can-
didate translation: direct and inverse translation proba-
bilities, direct and inverse lexical weighting, a language
model score, a distortion score, phrase penalty, and
word penalty. The weights for the features are learned
on the tuning data using minimum error rate training
(MERT) (Och, 2003).

To compare with previous decipherment approach to
improve machine translation, we build a second base-
line system. We follow the work by Dou and Knight
(2013) to decipher Malagasy into English, and build a
translation lexicon Tdecipher from decipherment. To im-
prove machine translation, we simply use Tdecipher as
an additional parallel corpus. First, we filter Tdecipher

by keeping only translation pairs ( f , e), where f is ob-
served in the Spanish part and e is observed in the En-
glish part of the parallel corpus. Then we append all
the Spanish and English words in the filtered Tdecipher

to the end of Spanish part and English part of the paral-
lel corpus respectively. The training and tuning process
is the same as the baseline machine translation system
PBMT. We call this system Decipher-Pipeline.

4.4.2 Joint Word Alignment and Decipherment
for Machine Translation

When deciphering Malagasy to English, we extract
Malagasy dependency bigrams using all available
Malagasy monolingual data plus the Malagasy part of
the Global Voices parallel data, and extract English
dependency bigrams using 834 million tokens from
English Gigaword, and 396 million tokens from al-
lAfrica news to build an English dependency language
model. In the other direction, we extract English de-
pendency bigrams from English part of the entire paral-
lel corpus plus 9.7 million tokens from allAfrica news
4, and use 17.3 million tokens Malagasy monolingual
data (15.3 million from the web and 2.0 million from
Global Voices) to build a Malagasy dependency lan-
guage model. We require that all dependency bigrams
only contain words observed in the parallel data used
to train the baseline MT system.

During learning, we run Model 1 without decipher-
ment for 5 iterations. Then we perform joint word
alignment and decipherment for another 5 iterations
with Model 1 and 5 iterations with HMM. We tune
decipherment weights (α) for Model 1 and HMM us-
ing grid search against Bleu score on a development
set. In the end, we only extract rules from one di-
rection P(English|Malagasy), where the decipherment
weights for Model 1 and HMM are 0.5 and 0.005 re-
spectively. We chose this because we did not find any
benefits to tune the weights on each direction, and then
use grow-diag-final-end heuristic to form final align-
ments. We call this system Decipher-Joint.

4We do not find further Bleu gains by using more English
monolingual data.

Parallel
Malagasy English

Train (GV) 0.9 million 0.8 million
Tune (GV) 22.2k 20.2k
Test (GV) 23k 21k
Test (Web) 2.2k 2.1k

Non Parallel
Malagasy English

Gigaword N/A 834 million
Web 15.3 million 396 million

Table 3: Size of training, tuning, and testing data in
number of tokens (GV: Global Voices)

4.5 Results
We tune each system three times with MERT and
choose the best weights based on Bleu scores on tuning
set.

Table 4 shows that while using a translation lexicon
learnt from decipherment does not improve the quality
of machine translation significantly, the joint approach
improves Bleu score by 0.9 and 2.1 on Global Voices
test set and web news test set respectively. The results
show that the parsing quality correlates with gains in
Bleu scores. Scores in the brackets in the last row of
the table are achieved using a dependency parser with
72.4% attachment accuracy, while scores outside the
brackets are obtained using a dependency parser with
80.0% attachment accuracy.

We analyze the results and find the gain mainly
comes from two parts. First, adding expected counts
from non parallel data makes the distribution of trans-
lation probabilities sparser in word alignment models.
The probabilities of translation pairs favored by both
parallel data and decipherment becomes higher. This
gain is consistent with previous observation where a
sparse prior is applied to EM to help improve word
alignment and machine translation (Vaswani et al.,
2012). Second, expected counts from decipherment
also help discover new translation pairs in the paral-
lel data for low frequency words, where those words
are either aligned to NULL or wrong translations in the
baseline.

5 Conclusion and Future Work
We propose a new objective function for word align-
ment to combine the process of word alignment and
decipherment into a single task. In, experiments, we
find that the joint process performs better than previous
pipeline approach, and observe Bleu gains of 0.9 and
2.1 point on Global Voices and local web news test sets,
respectively. Finally, our research leads to the release
of 15.3 million tokens of monolingual Malagasy data
from the web as well as a small Malagasy dependency
tree bank containing 20k tokens.

Given the positive results we obtain by using the
joint approach to improve word alignment, we are in-
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Decipherment System Tune (GV) Test (GV) Test (Web)
None PBMT (Baseline) 18.5 17.1 7.7

Separate Decipher-Pipeline 18.5 17.4 7.7
Joint Decipher-Joint 18.9 (18.7) 18.0 (17.7) 9.8 (8.5)

Table 4: Decipher-Pipeline does not show significant improvement over the baseline system. In contrast, Decipher-
Joint using joint word alignment and decipherment approach achieves a Bleu gain of 0.9 and 2.1 on the Global
Voices test set and the web news test set, respectively. The results in brackets are obtained using a parser trained
with only 120 sentences. (GV: Global Voices)

spired to apply this approach to help find translations
for out of vocabulary words, and to explore other pos-
sible ways to improve machine translation with deci-
pherment.
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Abstract

Phrase-based models directly trained
on mix-of-domain corpora can be
sub-optimal. In this paper we equip
phrase-based models with a latent domain
variable and present a novel method for
adapting them to an in-domain task rep-
resented by a seed corpus. We derive an
EM algorithm which alternates between
inducing domain-focused phrase pair
estimates, and weights for mix-domain
sentence pairs reflecting their relevance
for the in-domain task. By embedding
our latent domain phrase model in a
sentence-level model and training the
two in tandem, we are able to adapt all
core translation components together
– phrase, lexical and reordering. We
show experiments on weighing sentence
pairs for relevance as well as adapting
phrase-based models, showing significant
performance improvement in both tasks.

1 Mix vs. Latent Domain Models

Domain adaptation is usually perceived as utiliz-
ing a small seed in-domain corpus to adapt an ex-
isting system trained on an out-of-domain corpus.
Here we are interested in adapting an SMT sys-
tem trained on a large mix-domain corpus Cmix
to an in-domain task represented by a seed paral-
lel corpus Cin. The mix-domain scenario is in-
teresting because often a large corpus consists of
sentence pairs representing diverse domains, e.g.,
news, politics, finance, sports, etc.

At the core of a standard state-of-the-art phrase-
based system (Och and Ney, 2004) is a phrase
table {〈ẽ, f̃〉} extracted from the word-aligned
training data together with estimates for Pt(ẽ | f̃)
and Pt(f̃ | ẽ). Because the translations of
words often vary across domains, it is likely
that in a mix-domain corpus Cmix the translation
ambiguity will increase with the domain diver-
sity. Furthermore, the statistics in Cmix will re-
flect translation preferences averaged over the di-
verse domains. In this sense, phrase-based mod-
els trained on Cmix can be considered domain-
confused. This often leads to suboptimal perfor-
mance (Gascó et al., 2012; Irvine et al., 2013).

Recent adaptation techniques can be seen as
mixture models, where two or more phrase ta-
bles, estimated from in- and mix-domain corpora,
are combined together by interpolation, fill-up, or
multiple-decoding paths (Koehn and Schroeder,
2007; Bisazza et al., 2011; Sennrich, 2012; Raz-
mara et al., 2012; Sennrich et al., 2013). Here
we are interested in the specific question how to
induce a phrase-based model from Cmix for in-
domain translation? We view this as in-domain
focused training on Cmix, a complementary adap-
tation step which might precede any further com-
bination with other models, e.g., in-, mix- or
general-domain.

The main challenge is how to induce from Cmix
a phrase-based model for the in-domain task,
given only Cin as evidence? We present an ap-
proach whereby the contrast between in-domain
prior distributions and “out-domain” distributions
is exploited for softly inviting (or recruiting)Cmix
phrase pairs to either camp. To this end we in-
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troduce a latent domain variable D to signify in-
(D1) and out-domain (D0) respectively.1

With the introduction of the latent variables, we
extend the translation tables in phrase-based mod-
els from generic Pt(ẽ | f̃) to domain-focused by
conditioning them on D, i.e., Pt(ẽ | f̃ , D) and de-
composing them as follows:

Pt(ẽ | f̃ , D) =
Pt(ẽ | f̃)P(D | ẽ, f̃)∑
ẽ Pt(ẽ | f̃)P(D | ẽ, f̃)

. (1)

Where P(D | ẽ, f̃) is viewed as the latent phrase-
relevance models, i.e., the probability that a
phrase pair is in- (D1) or out-domain (D0). In the
end, our goal is to replace the domain-confused
tables, Pt(ẽ | f̃) and Pt(f̃ | ẽ), with the in-domain
focused ones, Pt(ẽ | f̃ , D1) and Pt(f̃ | ẽ, D1).2

Note how Pt(ẽ | f̃ , D1) and Pt(f̃ | ẽ, D1) contains
Pt(ẽ | f̃) and Pt(f̃ | ẽ) as special case.

Eq. 1 shows that the key to training the latent
phrase-based translation models is to train the la-
tent phrase-relevance models, P (D | ẽ, f̃). Our
approach is to embed P (D | ẽ, f̃) in asymmetric
sentence-level models P (D | e, f) and train them
on Cmix. We devise an EM algorithm where at
every iteration, in- or out-domain estimates pro-
vide full sentence pairs 〈e, f〉 with expectations
{P (D | e, f) | D ∈ {0, 1}}. Once these ex-
pectation are in Cmix, we induce re-estimates for
the latent phrase-relevance models, P (D | ẽ, f̃).
Metaphorically, during each EM iteration the cur-
rent in- or out-domain phrase pairs compete on
inviting Cmix sentence pairs to be in- or out-
domain, which bring in new (weights for) in- and
out-domain phrases. Using the same algorithm we
also show how to adapt all core translation com-
ponents in tandem, including also lexical weights
and lexicalized reordering models.

Next we detail our model, the EM-based invita-
tion training algorithm and provide technical so-
lutions to a range of difficulties. We report exper-

1Crucially, the lack of explicit out-domain data inCmix is
a major technical difficulty. We follow (Cuong and Sima’an,
2014) and in the sequel present a relatively efficient solution
based on a kind of “burn-in” procedure.

2It is common to use these domain-focused models as
additional features besides the domain-confused features.
However, here we are more interested in replacing the
domain-confused features rather than complementing them.
This distinguishes this work from other domain adaptation
literature for MT.

iments showing good instance weighting perfor-
mance as well as significantly improved phrase-
based translation performance.

2 Model and training by invitation

Eq. 1 shows that the key to training the latent
phrase-based translation models is to train the la-
tent phrase-relevance models, P (D | ẽ, f̃). As
mentioned, for training P (D | ẽ, f̃) on parallel
sentences in Cmix we embed them in two asym-
metric sentence-level models {P (D | e, f) | D ∈
{0, 1}}.
2.1 Domain relevance sentence models
Intuitively, sentence models for domain relevance
P (D | e, f) are somewhat related to data selec-
tion approaches (Moore and Lewis, 2010; Axel-
rod et al., 2011). The dominant approach to data
selection uses the contrast between perplexities
of in- and mix-domain language models.3 In the
translation context, however, often a source phrase
has different senses/translations in different do-
mains, which cannot be distinguished with mono-
lingual language models (Cuong and Sima’an,
2014). Therefore, our proposed latent sentence-
relevance model includes two major latent com-
ponents - monolingual domain-focused relevance
models and domain-focused translation models
derives as follows:

P (D | e, f) =
P (e, f, D)∑

D∈{D1,D0} P (e, f, D)
, (2)

where P (e, f, D) can be decomposed as:

P (f, e, D) =
1
2

(
P (D)Plm(e | D)Pt(f | e, D)

+ P (D)Plm(f | D)Pt(e | f, D)
)
.

(3)

Here

• Pt(e|f, D) and similarly Pt(f|e, D): the latent
domain-focused translation models aim at cap-
turing the faithfulness of translation with re-
spect to different domains. We simplify this as
3Note that earlier work on data selection exploits the con-

trast between in- and mix-domain. In (Cuong and Sima’an,
2014), we present the idea of using the language and transla-
tion models derived separately from in- and out-domain data,
and show how it helps for data selection.
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“bag-of-possible-phrases” translation models:4

Pt(e|f, D) :=
∏
〈ẽ,f̃〉∈A(e,f)

Pt(ẽ|f̃ , D)c(ẽ,f̃),

(4)
where A(e, f) is the multiset of phrases in
〈e, f〉 and c(·) denotes their count. Sub-model
Pt(ẽ|f̃ , D) is given by Eq. 1.

• Plm(e|D), Plm(f|D): the latent monolingual
domain-focused relevance models aim at cap-
turing the relevance of e and f for identifying
domain D but here we consider them language
models (LMs).5 As mentioned, the out-domain
LMs differ from previous works, e.g., (Axel-
rod et al., 2011), which employ mix-domain
LMs. Here, we stress the difficulty in finding
data to train out-domain LMs and present a so-
lution based on identifying pseudo out-domain
data.

• P (D): the domain priors aim at modeling
the percentage of relevant data that the learn-
ing framework induces. It can be estimated
via phrase-level parameters but here we prefer
sentence-level parameters:6

P (D) :=

∑
〈e,f〉∈Cmix P (D | e, f)∑

D

∑
〈e,f〉∈Cmix P (D | e, f) (5)

2.2 Training by invitation
Generally, our model can be viewed to have latent
parameters Θ = {ΘD0 ,ΘD1}. The training pro-
cedure seeks Θ that maximize the log-likelihood
of the observed sentence pairs 〈e, f〉 ∈ Cmix:

L =
∑
〈e,f〉∈Cmix

log
∑

D
PΘD(D, e, f). (6)

It is obvious that there does not exist a closed-form
solution for Equation 6 because of the existence of

4We design our latent domain translation models with ef-
ficiency as our main concern. Future extensions could in-
clude the lexical and reordering sub-models (as suggested by
an anonymous reviewer.)

5Relevance for identification or retrieval could be differ-
ent from frequency or fluency. We leave this extension for
future work.

6It should be noted that in most phrase-based SMT sys-
tems bilingual phrase probabilities are estimated heuristically
from word alignmened data which often leads to overfitting.
Estimating P (D) from sentence-level parameters rather than
from phrase-level parameters helps us avoid the overfitting
which often accompanies phrase extraction.

the log-term log
∑

. The EM algorithm (Dempster
et al., 1977) comes as an alternative solution to fit
the model. It can be seen to maximizeL via block-
coordinate ascent on a lower bound F(q,Θ) using
an auxiliary distribution q(D | e, f)

F(q,Θ) =
∑
〈e,f〉

∑
D q(D | e, f) log

PΘD
(D, e, f)

q(D | e, f)
(7)

where the inequality results, i.e., L ≥ F(q,Θ),
derived from log being concave and Jensen’s in-
equality. We rewrite the Free Energy F(q,Θ)
(Neal and Hinton, 1999) as follows:

F =
∑
〈e,f〉

∑
D
q(D | e, f) log

PΘD(D | e, f)
q(D | e, f)

+
∑
〈e,f〉

∑
D
q(D | e, f) logPΘ(e, f)

=
∑
〈e,f〉 logPΘ(e, f) (8)

−KL[q(D | e, f) || PΘD(D | e, f)],
where KL[· || ·] is the KL-divergence.

With the introduction of the KL-divergence, the
alternating E and M steps for our EM algorithm
are easily derived as

E-step : qt+1 (9)

argmaxq(D | e,f)F(q,Θt) =

argminq(D | e,f)KL[q(D|e, f) || PΘtD
(D|e, f)]

= PΘtD
(D | e, f)

M-step : Θt+1 (10)

argmaxΘF(qt+1,Θ) =

argmaxΘ

∑
〈e,f〉

∑
D

q(D | e, f) logPΘD(D, e, f)

The iterative procedure is illustrated in Fig-
ure 1.7 At the E-step, a guess for P (D | ẽ, f̃) can
be used to update Pt(f̃ | ẽ, D) and Pt(ẽ | f̃ , D)
(i.e., using Eq. 1) and consequently Pt(f | e, D)
and Pt(e | f, D) (i.e., using Eq. 4). These resulting
table estimates, together with the domain-focused
LMs and the domain priors are served as expected
counts to update P (D | e, f).8 At the M-step,

7For simplicity, we ignore the LMs and prior models in
the illustration in Fig. 1.

8Since we only use the in-domain corpus as priors to ini-
tilize the EM parameters, in technical perspective we do not
want P (D | e, f) parameters to go too far off from the initial-
ization. We therefore prefer the averaged style in practice,
i.e., at the iteration n we update the P (D |e, f) parameters,
P (n)(D|e, f) as 1

n
(P (n)(D | e, f) +

∑n−1
i=1 P

(i)(D | e, f)).
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P (ẽ|f̃ , D)

P (f̃ |ẽ, D)

P (e|f, D)

P (f|e, D)

P (f, e, D)

P (D|ẽ, f̃) P (D|e, f)

Phrase-level Sentence-level

Re-update phrase-level parameters

Update sentence-level parameters

Figure 1: Our probabilistic invitation framework.

the new estimates for P (D | e, f) can be used to
(softly) fill in the values of hidden variable D and
estimate parameters P (D | ẽ, f̃) and P (D). The
EM is guaranteed to converge to a local maximum
of the likelihood under mild conditions (Neal and
Hinton, 1999).

Before EM training starts we must provide a
“reasonable” initial guess for P (D | ẽ, f̃). We
must also train the out-domain LMs, which needs
the construction of pseudo out-domain data.9

One simple way to do that is inspired by burn-
in in sampling, under the guidance of an in-
domain data set, Cin as prior. At the begin-
ning, we train Pt(ẽ | f̃ , D1) and Pt(f̃ | ẽ, D1)
for all phrases learned from Cin. We also train
Pt(ẽ | f̃) and Pt(f̃ | ẽ) for all phrases learned
from Cmix. During burn-in we assume that the
out-domain phrase-based models are the domain-
confused phrase-based models, i.e., Pt(ẽ | f̃ , D0)
≈ Pt(ẽ | f̃) and Pt(f̃ | ẽ, D0) ≈ Pt(f̃ | ẽ). We
isolate all the LMs and the prior models from our
model, and apply a single EM iteration to update
P (D | e, f) based on those domain-focused mod-
els Pt(ẽ | f̃ , D) and Pt(f̃ | ẽ, D).

In the end, we use P (D | e, f) to fill in the val-
ues of hidden variable D in Cmix, so it provides
us with an initialization for P (D | ẽ, f̃). Subse-
quently, we also rank sentence pairs in Cmix with
P (D1 | e, f) and select a subset of smallest scor-
ing pairs as a pseudo out-domain subset to train
Plm(e | D0) and Plm(f | D0). Once the latent
domain-focused LMs have been trained, the LM
probabilities stay fixed during EM. Crucially, it

9The in-domain LMs Plm(e | D1) and Plm(f | D1) can
be simply trained on the source and target sides of Cin re-
spectively.

is important to scale the probabilities of the four
LMs to make them comparable: we normalize the
probability that a LM assigns to a sentence by the
total probability this LM assigns to all sentences
in Cmix.

3 Intrinsic evaluation

We evaluate the ability of our model to retrieve
“hidden” in-domain data in a large mix-domain
corpus, i.e., we hide some in-domain data in a
large mix-domain corpus. We weigh sentence
pairs under our model with P (D1 | ẽ, f̃) and
P (D1 | e, f) respectively. We report pseudo-
precision/recall at the sentence-level using a
range of cut-off criteria for selecting the top
scoring instances in the mix-domain corpus. A
good relevance model expects to score higher for
the hidden in-domain data.

Baselines Two standard perplexity-based se-
lection models in the literature have been
implemented as the baselines: cross-entropy
difference (Moore and Lewis, 2010) and bilingual
cross-entropy difference (Axelrod et al., 2011),
investigating their ability to retrieve the hiding
data as well. Training them over the data to learn
the sentences with their relevance, we then rank
the sentences to select top of pairs to evaluate the
pseudo-precision/recall at the sentence-level.

Results We use a mix-domain corpus Cg of 770K
sentence pairs of different genres.10 There is also
a Legal corpus of 183K pairs that serves as the
in-domain data. We create Cmix by selecting an
arbitrary 83K pairs of in-domain pairs and adding
them to Cg (the hidden in-domain data); we use
the remaining 100k in-domain pairs as Cin.

To train the baselines, we construct interpo-
lated 4-gram Kneser-Ney LMs using BerkeleyLM
(Pauls and Klein, 2011). Training our model on
the data takes six EM-iterations to converge.11

10Count of sentence pairs: European Parliament (Koehn,
2005): 183, 793; Pharmaceuticals: 190, 443, Software:
196, 168, Hardware: 196, 501.

11After the fifth EM iteration we do not observe any sig-
nificant increase in the likelihood of the data. Note that we
use the same setting as for the baselines to train the latent
domain-focused LMs for use in our model – interpolated 4-
gram Kneser-Ney LMs using BerkeleyLM. This training set-
ting is used for all experiments in this work.
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Figure 2: Intrinsic evaluation.

Fig. 2 helps us examine how the pseudo sen-
tence invitation are done during each EM iter-
ation. For later iterations we observe a better
pseudo-precision and pseudo-recall at sentence-
level (Fig. 2(a), Fig. 2(b)). Fig. 2 also reveals
a good learning capacity of our learning frame-
work. Nevertheless, we observe that the baselines
do not work well for this task. This is not new,
as pointed out in our previous work (Cuong and
Sima’an, 2014).

Which component type contributes more to the
performance, the latent domain language models
or the latent domain translation models? Further
experiments have been carried on to neutralize
each component type in turn and build a selection
system with the rest of our model parameters. It
turns out that the latent domain translation mod-
els are crucial for performance for the learning
framework, while the latent domain LMs make a
far smaller yet substantial contribution. We refer
readers to our previous work (Cuong and Sima’an,
2014), which provides detail analysis of the data
selection problem.

4 Translation experiments: Setting

Data We use a mix-domain corpus consisting of
4M sentence pairs, collected from multiple re-
sources including EuroParl (Koehn, 2005), Com-
mon Crawl Corpus, UN Corpus, News Commen-
tary. As in-domain corpus we use “Consumer
and Industrial Electronics” manually collected
by Translation Automation Society (TAUS.com).
The corpus statistics are summarized in Table 1.
System We train a standard state-of-the-art

English Spanish

Cmix
Sents 4M
Words 113.7M 127.1M

Domain:
Electronics

Cin

Sents 109K
Words 1, 485, 558 1, 685, 716

Dev Sents 984
Words 13130 14, 955

Test Sents 982
Words 13, 493 15, 392

Table 1: The data preparation.

phrase-based system, using it as the baseline.12

There are three main kinds of features for the
translation model in the baseline - phrase-based
translation features, lexical weights (Koehn et al.,
2003) and lexicalized reordering features (Koehn
et al., 2005).13 Other features include the penal-
ties for word, phrase and distance-based reorder-
ing.

The mix-domain corpus is word-aligned using
GIZA++ (Och and Ney, 2003) and symmetrized
with grow(-diag)-final-and (Koehn et al., 2003).
We limit phrase length to a maximum of seven
words. The LMs are interpolated 4-grams with
Kneser-Ney, trained on 2.2M English sentences
from Europarl augmented with 248.8K sentences
from News Commentary Corpus (WMT 2013).
We tune the system using k-best batch MIRA
(Cherry and Foster, 2012). Finally, we use Moses

12We use Stanford Phrasal - a standard state-of-the-art
phrase-based translation system developed by Cer et al.
(2010).

13The lexical weights and the lexical reordering features
will be described in more detail in Section 6.
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Figure 3: BLEU averaged over multiple runs.

(Koehn et al., 2007) as decoder.14

We report BLEU (Papineni et al., 2002), ME-
TEOR 1.4 (Denkowski and Lavie, 2011) and TER
(Snover et al., 2006), with statistical significance
at 95% confidence interval under paired bootstrap
re-sampling (Press et al., 1992). For every system
reported, we run the optimizer at least three times,
before running MultEval (Clark et al., 2011) for
resampling and significance testing.
Outlook In Section 5 we examine the effect of
training only the latent domain-focused phrase ta-
ble using our model. In Section 6 we proceed fur-
ther to estimate also latent domain-focused lexical
weights and lexicalized reordering models, exam-
ining how they incrementally improve the transla-
tion as well.

5 Adapting phrase table only

Here we investigate the effect of adapting the
phrase table only; we will delay adapting the
lexical weights and lexicalized reordering fea-
tures to Section 6. We build a phrase-based sys-
tem with the usual features as the baseline, in-
cluding two bi-directional phrase-based models,
plus the penalties for word, phrase and distortion.
We also build a latent domain-focused phrase-
based system with the two bi-directional latent
phrase-based models, and the standard penalties
described above.

We explore training data sizes 1M , 2M
and 4M sentence pairs. Three baselines are
trained yielding 95.77M , 176.29M and 323.88M
phrases respectively. We run 5 EM iterations to

14While we implement the latent domain phrase-based
models using Phrasal for some advantages, we prefer to use
Moses for decoding.

train our learning framework. We use the pa-
rameter estimates for P (D | ẽ, f̃) derived at each
EM iteration to train our latent domain-focused
phrase-based systems. Fig. 3 presents the results
(in BLEU) at each iteration in detail for the case of
1M sentence pairs. Similar improvements are ob-
served for METEOR and TER. Here, we consis-
tently observe improvements at p-value = 0.0001
for all cases.

It should be noted that when doubling the train-
ing data to 2M and 4M , we observe the similar
results.

Finally, for all cases we report their best result
in Table 2. Here, note how the improvement could
be gained when doubling the training data.

Data System Avg ∆ p-value

1M
Baseline 19.91 − −
Our System 20.64 +0.73 0.0001

2M
Baseline 20.54 − −
Our System 21.41 +0.87 0.0001

4M
Baseline 21.44 − −
Our System 22.62 +1.18 0.0001

Table 2: BLEU averaged over multiple runs.

It is also interesting to consider the average
entropy of phrase table entries in the domain-
confused systems, i.e.,

−∑〈ẽ,f̃〉 pt(ẽ|f̃) log pt(ẽ|f̃)

number of phrases〈ẽ, f̃〉
against that in the domain-focused systems

−∑〈ẽ,f̃〉 pt(ẽ|f̃ , D1) log pt(ẽ|f̃ , D1)

number of phrases〈ẽ, f̃〉 .

Following (Hasler et al., 2014) in Table 3 we also
show that the entropy decreases significantly in
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the adapted tables in all cases, which indicates that
the distributions over translations of phrases have
become sharper.

Baseline Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5
0.210 0.187 0.186 0.185 0.185 0.184

Table 3: Average entropy of distributions.

In practice, the third iteration systems usually
produce best translations. This is somewhat ex-
pected because as EM invites more pseudo in-
domain pairs in later iterations, it sharpens the
estimates of P (D1 | ẽ, f̃), making pseudo out-
domain pairs tend to 0.0. Table 4 shows the per-
centage of entries with P (D1 | ẽ, f̃) < 0.01 at
every iteration, e.g., 34.52% at the fifth iteration.
This induced schism in Cmix diminishes the dif-
ference between the relevance scores for certain
sentence pairs, limiting the ability of the latent
phrase-based models to further discriminate in the
gray zone.

Entries P (D1|f̃ , ẽ) < 0.01
Iter. 1 22.82%
Iter. 2 27.06%
Iter. 3 30.07%
Iter. 4 32.47%
Iter. 5 34.52%

Table 4: Phrase analyses.

Finally, to give a sense of the improvement
in translation, we (randomly) select cases where
the systems produce different translations and
present some of them in Table 5. These ex-
amples are indeed illuminating, e.g., “can repro-
duce signs of audio”/“can play signals audio”,
“password teacher”/“password master”, reveal-
ing thoroughly the benefit derived from adapting
the phrase models from being domain-confused to
being domain-focused. Table 6 presents phrase ta-
ble entries, i.e., pt(e | f) and pt(e | f,D1), for the
“can reproduce signs of audio”/“can play signals
audio” example.

6 Fully adapted translation model

The preceding experiments reveal that adapting
the phrase tables significantly improves transla-
tion performance. Now we also adapt the lexical

señales reproducir
Entries signals signs play reproduce
Baseline 0.29 0.36 0.15 0.20
Iter. 1 0.36 0.23 0.29 0.16
Iter. 2 0.37 0.19 0.32 0.17
Iter. 3 0.37 0.17 0.34 0.16
Iter. 4 0.37 0.16 0.36 0.16
Iter. 5 0.37 0.15 0.37 0.16

Table 6: Phrase entry examples.

and reordering components. The result is a fully
adapted, domain-focused, phrase-based system.

Briefly, the lexical weights provide smooth es-
timates for the phrase pair based on word trans-
lation scores P (e | f) between pairs of words
〈e, f〉, i.e., P (e | f) = c(e,f)∑

e c(e,f) (Koehn et
al., 2003). Our latent domain-focused lexical
weights, on the other hand, are estimated ac-
cording to P (e | f, D1), i.e., P (e | f, D1) =
P (e | f)P (D1 | e, f)∑
f P (e | f)P (D1 | e, f) .

The lexicalized reordering models with orien-
tation variable O, P (O | ẽ, f̃), model how likely
a phrase 〈ẽ, f̃〉 directly follows a previous phrase
(monotone), swaps positions with it (swap), or
is not adjacent to it (discontinous) (Koehn et al.,
2005). We make these domain-focused:

P (O | ẽ, f̃ , D1) = P (O | ẽ, f̃)P (D1 | O, ẽ, f̃)∑
O P (O | ẽ, f̃)P (D1 | O, ẽ, f̃)

(11)
Estimating P (D1 | O, ẽ, f̃) and P (D1 | e, f) is
similar to estimating P (D1 | ẽ, f̃) and hinges on
the estimates of P (D1 | e, f) during EM.

The baseline for the following experiments is a
standard state-of-the-art phrase-based system, in-
cluding two bi-directional phrase-based transla-
tion features, two bi-directional lexical weights,
six lexicalized reordering features, as well as the
penalties for word, phrase and distortion. We de-
velop three kinds of domain-adapted systems that
are different at their adaptation level to fit the task.
The first (Sys. 1) adapts only the phrase-based
models, using the same lexical weights, lexical-
ized reordering models and other penalties as the
baseline. The second (Sys. 2) adapts also the lex-
ical weights, fixing all other features as the base-
line. The third (Sys. 3) adapts both the phrase-
based models, lexical weights and lexicalized re-
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Translation Examples
Input El reproductor puede reproducir señales de audio grabadas en mix-mode cd, cd-g, cd-extra y cd text.

Reference The player can play back audio signals recorded in mix-mode cd, cd-g, cd-extra and cd text.

Baseline The player can reproduce signs of audio recorded in mix-mode cd, cd-g, cd-extra and cd text.

Our System The player can play signals audio recorded in mix-mode cd, cd-g, cd-extra and cd text.

Input Se puede crear un archivo autodescodificable cuando el archivo codificado se abre con la contraseña maestra.

Reference A self-decrypting file can be created when the encrypted file is opened with the master password.

Baseline To create an file autodescodificable when the file codified commenced with the password teacher.

Our System You can create an archive autodescodificable when the file codified opens with the password master.

Input Repite todas las pistas (únicamente cds de vı́deo sin pbc)

Reference Repeat all tracks (non-pbc video cds only)

Baseline Repeated all avenues (only cds video without pbc)

Our System Repeated all the tracks (only cds video without pbc)

Table 5: Translation examples yielded by a domain-confused phrase-based system (the baseline) and a
domain-focused phrase-based system (our system).

ordering models15, fixing other penalties as the
baseline.

Metric System Avg ∆ p-value
Consumer and Industrial Electronics
(In-domain: 109K pairs; Dev: 982 pairs; Test: 984 pairs)

BLEU

Baseline 22.9 − −
Sys. 1 23.4 +0.5 0.008
Sys. 2 23.9 +1.0 0.0001
Sys. 3 24.0 +1.1 0.0001

METEOR

Baseline 30.0 − −
Sys. 1 30.4 +0.4 0.0001
Sys. 2 30.8 +0.8 0.0001
Sys. 3 30.9 +0.9 0.0001

TER

Baseline 59.5 − −
Sys. 1 58.8 -0.7 0.0001
Sys. 2 58.0 -1.5 0.0001
Sys. 3 57.9 -1.6 0.0001

Table 7: Metric scores for the systems, which are
averages over multiple runs.

Table 7 presents results for training data size
of 4M parallel sentences. It shows that the fully
domain-focused system (Sys. 3) significantly im-
proves over the baseline. The table also shows
that the latent domain-focused phrase-based mod-
els and lexical weights are crucial for the im-
proved performance, whereas adapting the re-
ordering models makes a far smaller contribution.

Finally we also apply our approach to other
15We run three EM iterations to train our invitation frame-

work, and then use the parameter estimates for P (D1 | ẽ, f̃),
P (D1 | e, f) and P (D1 | O, ẽ, f̃) to train these domain-
focused features. We adopt this training setting for all other
different tasks in the sequel.

tasks where the relation between their in-domain
data and the mix-domain data varies substantially.
Table 8 presents their in-domain, tuning and test
data in detail, as well as the translation results
over them. It shows that the fully domain-focused
systems consistently and significantly improve the
translation accuracy for all the tasks.

7 Combining multiple models

Finally, we proceed further to test our latent
domain-focused phrase-based translation model
on standard domain adaptation. We conduct ex-
periments on the task “Professional & Business
Services” as an example.16 For standard adap-
tation we follow (Koehn and Schroeder, 2007)
where we pass multiple phrase tables directly to
the Moses decoder and tune them together. For
baseline we combine the standard phrase-based
system trained on Cmix with the one trained on
the in-domain data Cin. We also combine our la-
tent domain-focused phrase-based system with the
one trained on Cin. Table 9 presents the results
showing that combining our domain-focused sys-
tem adapted from Cmix with the in-domain model
outperforms the baseline.

16We choose this task for additional experiments because
it has very small in-domain data (23K). This is supposed
to make adaptation difficult because of the robust large-scale
systems trained on Cmix.
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Metric System Avg ∆ p-value
Professional & Business Services
(In-domain: 23K pairs; Dev: 1, 000 pairs; Test: 998 pairs)

BLEU Baseline 22.0 − −
Our System 23.1 +1.1 0.0001

METEOR Baseline 30.8 − −
Our System 31.4 +0.6 0.0001

TER Baseline 58.0 − −
Our System 56.6 -1.4 0.0001

Financials
(In-domain: 31K pairs; Dev: 1, 000 pairs; Test: 1, 000 pairs)

BLEU Baseline 31.1 − −
Our System 31.8 +0.7 0.0001

METEOR Baseline 36.3 − −
Our System 36.6 +0.3 0.0001

TER Baseline 48.8 − −
Our System 48.3 -0.5 0.0001

Computer Hardware
(In-domain: 52K pairs; Dev: 1, 021 pairs; Test: 1, 054 pairs)

BLEU Baseline 24.6 − −
Our System 25.3 +0.7 0.0001

METEOR Baseline 32.4 − −
Our System 33.1 +0.7 0.0001

TER Baseline 56.4 − −
Our System 55.0 -1.4 0.0001

Computer Software
(In-domain: 65K pairs; Dev: 1, 100 pairs; Test: 1, 000 pairs)

BLEU Baseline 27.4 − −
Our System 28.3 +0.9 0.0001

METEOR Baseline 34.0 − −
Our System 34.7 +0.7 0.0001

TER Baseline 51.7 − −
Our System 50.6 -1.1 0.0001

Pharmaceuticals & Biotechnology
(In-domain: 85K pairs; Dev: 920 pairs; Test: 1, 000 pairs)

BLEU Baseline 31.6 − −
Our System 32.4 +0.8 0.0001

METEOR Baseline 34.0 − −
Our System 34.4 +0.4 0.0001

TER Baseline 51.4 − −
Our System 50.6 -0.8 0.0001

Table 8: Metric scores for the systems, which are
averages over multiple runs.

8 Related work

A distantly related, but clearly complementary,
line of research focuses on the role of docu-
ment topics (Eidelman et al., 2012; Zhang et al.,
2014; Hasler et al., 2014). An off-the-shelf Latent
Dirichlet Allocation tool is usually used to infer
document-topic distributions. On one hand, this
setting may not require in-domain data as prior.
On the other hand, it requires meta-information
(e.g., document information).

Part of this work (the latent sentence-relevance
models) relates to data selection (Moore and
Lewis, 2010; Axelrod et al., 2011), where
sentence-relevance weights are used for hard-

Metric System Avg ∆ p-value
Professional & Business Services
(In-domain: 23K pairs; Dev: 1, 000 pairs; Test: 998 pairs)

BLEU In-domain 46.5 − −
+ Mix-domain 46.6 − −
+ Our system 47.9 +1.3 0.0001

METEOR In-domain 39.8 − −
+ Mix-domain 40.1 − −
+ Our System 41.1 +1.0 0.0001

TER In-domain 38.2 − −
+ Mix-domain 38.0 − −
+ Our System 36.9 -1.1 0.0001

Table 9: Domain adaptation experiments. Metric
scores for the systems, which are averages over
multiple runs.

filtering rather than weighting. The idea of using
sentence-relevance estimates for phrase-relevance
estimates relates to Matsoukas et al. (2009) who
estimate the former using meta-information over
documents as main features. In contrast, our work
overcomes the mutual dependence of sentence and
phrase estimates on one another by training both
models in tandem.

Adaptation using small in-domain data has
a different but complementary goal to another
line of research aiming at combining a domain-
adapted system with the another trained on the in-
domain data (Koehn and Schroeder, 2007; Bisazza
et al., 2011; Sennrich, 2012; Razmara et al., 2012;
Sennrich et al., 2013). Our work is somewhat re-
lated to, but markedly different from, phrase pair
weighting (Foster et al., 2010). Finally, our latent
domain-focused phrase-based models and invita-
tion training paradigm can be seen to shift atten-
tion from adaptation to making explicit the role of
domain-focused models in SMT.

9 Conclusion

We present a novel approach for in-domain fo-
cused training of a phrase-based system on a
mix-of-domain corpus by using prior distributions
from a small in-domain corpus. We derive an EM
training algorithm for learning latent domain rel-
evance models for the phrase- and sentence-levels
in tandem. We also show how to overcome the
difficulty of lack of explicit out-domain data by
bootstrapping pseudo out-domain data.

In future work, we plan to explore generative
Bayesian models as well as discriminative learn-
ing approaches with different ways for estimat-
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ing the latent domain relevance models. We hy-
pothesize that bilingual, but also monolingual, rel-
evance models can be key to improved perfor-
mance.
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Abstract
In Corpus-Based Machine Translation,
the search space of the translation
candidates for a given input sentence
is often defined by a set of (cycle-
free) context-free grammar rules. This
happens naturally in Syntax-Based
Machine Translation and Hierarchi-
cal Phrase-Based Machine Translation
(where the representation will be the
set of the target-side half of the syn-
chronous rules used to parse the input
sentence). But it is also possible to
describe Phrase-Based Machine Trans-
lation in this framework. We propose
a natural extension to this representa-
tion by using lattice-rules that allow
to easily encode an exponential num-
ber of variations of each rules. We also
demonstrate how the representation of
the search space has an impact on de-
coding efficiency, and how it is possible
to optimize this representation.

1 Introduction
A popular approach to modern Machine
Translation is to decompose the translation
problem into a modeling step and a search
step. The modeling step will consist in defin-
ing implicitly a set of possible translations T
for each input sentence. Each translation in
T being associated with a real-valued model
score. The search step will then consist in find-
ing the translation in T with the highest model
score. The search is non-trivial because it is
usually impossible to enumerate all members
of T (its cardinality being typically exponen-
tially dependent on the size of the sentence to
be translated).

Since at least (Chiang, 2007), a common
way of representing T has been through a

cycle-free context-free grammar. In such
a grammar, T is represented as a set of
context-free rules such as can be seen on fig-
ure 1. These rules themselves can be gener-
ated by the modeling step through the use
of phrase tables, synchronous parsing, tree-to-
string rules, etc. If the model score of each
translation is taken to be the sum of rule scores
independently given to each rule, the search
for the optimal translation is easy with some
classic dynamic programming techniques.
However, if the model score is going to take

into account informations such as the lan-
guage model score of each sentence, it cannot
be expressed in such a way. Since the lan-
guage model score has proven empirically to
be a very good source of information, (Chiang,
2007) proposed an approximate search algo-
rithm called cube pruning.
We propose here to represent T using

context-free lattice-rules such as shown in fig-
ure 2. This allows us to compactly encode a
large number of rules. One benefit is that it
adds flexibility to the modeling step, making
it easier: many choices such as whether or not
a function word should be included, the rela-
tive position of words and non-terminal in the
translation, as well as morphological variations
can be delegated to the search step by encod-
ing them in the lattice rules. While it is true
that the same could be achieved by an explicit
enumeration, lattice rules make this easier and
more efficient.
In particular, we show that a decoding al-

gorithm working with such lattice rules can
be more efficient than one working directly on
the enumeration of the rules encoded in the
lattice.
A distinct but related idea of this paper is

to consider how transforming the structure of
the rules defining T can lead to improvements
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Figure 1: A simple cycle-free context grammar
describing a set of possible translations.

in the speed/memory performances of the de-
coding. In particular, we propose a method to
merge and reduce the size of the lattice rules
and show that it translates into better perfor-
mances at decoding time.

In this paper, we will first define more pre-
cisely our concept of lattice-rules, then try to
give some motivation for them in the context
of a tree-to-tree MT system (section 3). In sec-
tion 4, we then propose an algorithm for pre-
processing a representation given in a lattice-
rule form that allows for more efficient search.
In section 5, we describe a decoding algorithm
specially designed for handling lattice-rules.
In section 6, we perform some experiments
demonstrating the merit of our approach.

2 Notations and Terminology

Here, we define semi-formally the terms we
will use in this paper. We assume knowledge
of the classic terminology of graph theory and
context-free grammar.

2.1 Expansion rules
A flat expansion rule is the association of a
non-terminal and a “flat” right hand side that
we note RHS. A flat RHS is a sequence of
words and non-terminal. See figure 1 for an
example of a set of flat expansion rules.

A set of expansion rules is often produced
in Hierarchical or Syntax-Based MT, by pars-
ing with synchronous grammars or otherwise.
In such a case, the set of rules define a rep-
resentation of the (weighted) set of possible
translations T of an input sentence.

2.2 Lattice
In the general sense, a lattice can be described
as a labeled directed acyclic graph. More pre-

cisely, the type of lattice that we consider in
this work is such that:

• Edges are labeled by either a word, a
non-terminal or an epsilon (ie. an empty
string).

• Vertices are only labeled by a unique id
by which they can be designated.

Additionally, edges can also be labeled by a
real-valued edge score and some real-valued
edge features. Alternatively, a lattice could
also be seen as an acyclic Finite State Automa-
ton, with vertices and edges corresponding to
states and transitions in the FSA terminology.
For simplicity, we also set the constraint

that each lattice has a unique “start” ver-
tex labeled vS from which each vertex can be
reached and a unique “end” vertex vE that can
be reached from each vertex. Each path from
vS to vE define thus a flat RHS, with score
and features obtained by summing the score
and features of each edge of the path.
A lattice expansion rule is similar to a flat

expansion rule, but with the RHS being a lat-
tice. Thus a set of lattice expansion rules can
also define a set of possible translations T of
an input sentence.
For a given lattice L, we will often note v ∈
L a vertex of L and e : v1 → v2 ∈ L an edge
of L going from vertex v1 to vertex v2.
Figures 2 and 3 show examples of such lat-

tices.

2.3 Translation set and
Representations

We note T a set of weighted sentences. T is in-
tended as representing the set of scored trans-
lation candidates generated by a MT system
for a given input sentence. As is customary in
Corpus-Based MT literature, we will call de-
coding the process of searching for the trans-
lation with highest score in T .
A representation of T , noted RT is a set of

rules in a given formalism that implicitly de-
fine T . As we mentioned earlier, in MT, RT is
often a set of cycle-free context-free grammar
rules.
In this paper, we consider representations
RT consisting in a set of lattice expansion
rules. With normal context-free grammar, it
is usually necessary that a non-terminal is the
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Figure 2: A simple example of lattice rule for
non-terminal X0. The lower part list the set
of “flat” rules that would be equivalent to the
ones expressed by the lattice.

left-hand side of several rules. Using lattice
expansion rules, however, it is not necessary,
as one lattice RHS can encode an arbitrary
number of flat rules (see for example the RHS
of X0 in figure 3). Therefore, we set the con-
straint that there is only one lattice expansion
rule for each left-hand non-terminal. And we
will note unambiguously RHS(X) the lattice
that is the right hand side of this rule.

3 Motivation

3.1 Setting
This work was developed mainly in the context
of a syntactic-dependency-based tree-to-tree
translation system described in (Richardson et
al., 2014). Although it is a tree-to-tree sys-
tem, we simplify the decoding step by “flatten-
ing” the target-side tree translation rules into
string expansion rules (keeping track of the de-
pendency structure in state features). Thus
our setting is actually quite similar to that
of many tree-to-string and string-to-string sys-
tems. Aiming at simplicity and generality, we
will set aside the question of target-side syn-
tactic information and only describe our algo-
rithms in a “tree-to-string” setting. We will
also consider a n-gram language model score
as our only stateful non-local feature.

However, this tree-to-tree original setting

should be kept in mind, in particular when
we describe the issue of the relative position
of heads and dependents in section 3.2.2, as
such issues do not appear as commonly in “X-
to-string” settings.

3.2 Rule ambiguities
Expansion rules are typically created by
matching part of the input sentence with
some aligned example bilingual sentence. The
alignment (and the linguistic structure of
the phrase in the case of Syntax-Based Ma-
chine Translation) is then used to produce the
target-side rule. However, it is often the case
that it is difficult to fully specify a rule from
an example. Such cases often come from two
main reasons:

• Imperfect knowledge (eg. it is unclear
whether a given unaligned word should
belong to the translation)

• Context dependency (eg. the question of
whether “to be” should be in plural form
or not, depending on its subject in the
constructed translation).

In both situation, it seems like it would be
better to delay the full specification of the
rule until decoding time, when the decoder
can have access to the surrounding context of
the rule and make a more informed choice. In
particular, we can expect features such as lan-
guage model or governor-dependent features
(in the case of tree-to-tree Machine transla-
tion) to help remove the ambiguities.
We detail some cases for which we encode

variations as lattice-rule.

3.2.1 Non-aligned words
When rules are extracted from aligned exam-
ples, we often find some target words which
are not aligned to any source-side word and
for which it is difficult to decide whether or
not they should be included in the rule. Such
words are often function words that do not
have an equivalent in the source language.
In Japanese-English translations, for example,
articles such as “a” and “the” do not typically
have equivalent in the Japanese side, and their
necessity in the final sentence will often be a
matter of context. We can make these edges
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optionals by doubling them with an epsilon-
edge. Different weights and features can be
given to the epsilon edges to balance the ten-
dency of the decoder to skip edges. In figure 2,
this is illustrated by the epsilon edges allowing
to skip “for” and “the”

3.2.2 Non-terminal positions
In the context of our tree-to-tree translation
system, we often find that we know which tar-
get word should be the governor of a given
non-terminal, but that we are unsure of the
order of the words and non-terminals sharing
a common governor. It can be convenient to
represent such ambiguities in a lattice format
as shown in figure 2. In this figure, one can see
that the RHS of X0 encode two possible order-
ing for the word “bus” and the non-terminal
X2.

3.2.3 Word variations
Linguistics phenomenons such as morpholog-
ical variations can naturally create many mi-
nor problems in the setting of Corpus-Based
Translation. Especially if the variations in
the target language have no equivalence in
the source language. An example of this in
Japanese-English translation is the fact that
verbs in Japanese are “plural-independent”,
while the verb “to be” in English is not. There-
fore, a RHS that is a candidate for translating
a large part of a Japanese input sentence can
easily use one of the variant of “to be” that is
not consistent with the full sentence. To solve
this, for each edge corresponding to the words
“is” or “are”, we add an alternative edge with
the same start and end vertices as the other
word. The decoder will then be able to choose
the edge that gives the best language model
score. The same can be done, for example, for
the article “a/an”. Figure 2 provides an exam-
ple of this, with two edges “is” and “are” in
the RHS of X0.

Alternative edges can be labeled with differ-
ent weights and features to tune the tendency
of the decoder to choose a morphological vari-
ation.

While such variations could be fixed in a
post-processing step, we feel it is a better op-
tion to let the decoder be aware of the possible
options, lest it would discard rules due to lan-
guage model considerations when these rules

Figure 3: The lattice RHS(X0) optimized with
the algorithm described in section 4

could actually have been useful with a simple
change.

4 Representation optimisation

4.1 Goal
Given a description as a set of rule and scores
R1

T of T , it is often possible to find another de-
scription R2

T of T having the same formalism
but a different set of rules. Although the T
that is described remains the same, the same
search algorithm applied to R1

T or R2
T might

make approximations in a different way, be
faster or use less memory.
It is an interesting question to try to trans-

form an initial representation R1
T into a rep-

resentation R2
T that will make the search step

faster. This is especially interesting if one is
going to search the same T several times, as is
often done when one is fine-tuning the param-
eters of a model, as this representation opti-
misation needs only be done once.
The optimisation we propose is a natural fit

to our framework of lattice rules. As lattice are
a special case of Finite-State Automata (FSA),
it is easy to adapt existing algorithms for FSA
minimization. We describe a procedure in al-
gorithm 1, which is essentially a simplification
and adaptation to our case of the more gen-
eral algorithm of (Hopcroft, 1971) for FSA.
The central parts of the algorithm are the two
sub-procedures backward vertex merging and
forward vertex merging. An example of the
result of an optimisation is given on figure 3.
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Data: Representation RT

Result: Optimized Representation
1 for non-terminal X ∈ RT do
2 Apply backward vertex merging to

RHS(X);
3 Apply forward vertex merging to

RHS(X);
4 end
Algorithm 1: Representation optimisation

4.2 Forward and backward merging
We describe the forward vertex merging in
algorithm 2. This merging will merge ver-
tices and suppress redundant edges, proceed-
ing from left to right. The end result is a
lattice with a reduced number of vertices and
edges, but encoding the same paths as the ini-
tial one.

The basic idea here is to check the vertices
from left to right and merge the ones that have
identical incoming edges. After having been
processed by the algorithm, a vertex is put in
the set P (line 9). At each iteration, the can-
didate set C contains the set of vertices that
can potentially be merged together. It is up-
dated at each iteration to contain the set of
not-yet-processed vertices for which all incom-
ing edges come from processed vertices (done
by marking edges at line 6 and then updating
C at line 10). At each iteration, the merging
process consists in:

1. Eliminating duplicate edges from the pro-
cessed vertices to the candidate vertices
(line 5). These duplicate edges could have
been introduced by the merging of previ-
ously processed vertices.

2. Merging vertices whose set of incom-
ing edges is identical. Here, merg-
ing two vertices v1 and v2 means
that we create a third vertex v3

such that incoming(v3) = incoming(v1)
= incoming(v2), and outgoing(v3) =
outgoing(v31)

∪
outgoing(v2), then re-

move v1 and v2.

The backward vertex merging is defined
similarly to the forward merging, but with go-
ing right to left and inverting the role of the
incoming and outgoing edges.

Data: Lattice RHS L
Result: Optimized Lattice RHS

1 P ← ∅ //processed vertices;
2 C ← {vS} //candidate set ;
3 while |C| > 0 do
4 for v ∈ C do
5 Eliminate duplicate edges in

incoming(v);
6 Mark edges in outgoing(v);
7 end
8 Merge all vertices v1, v2 ∈ C such that

incoming(v1) = incoming(v2);
9 P ← P∪ C;

10 C ← {v ∈ L∖ P s.t. all edges in
incoming(v) are marked};

11 end
Algorithm 2: Forward Vertex Merging

4.3 Optimizing the whole
representation

Algorithm 1 describe the global optimisation
procedure. For each lattice RHS, we just per-
form first a backward merge and then a for-
ward merge.
We have set the constraint in section 2.3

that each non-terminal should have only one
lattice RHS. Note here that if there are sev-
eral RHS for a given non-terminal, we can first
merge them by merging their start vertex and
end vertex, then apply this optimisation al-
gorithm to obtain a representation with one
optimised RHS per non-terminal.
This optimisation could be seen as doing

some form of hypothesis recombination, but of-
fline.
In term of rule optimisations, we only con-

sider here transformations that do not mod-
ify the number of non-terminals. But it is
worthwhile to note that there are some se-
quence appearing in the middle of some rules
that cannot be merged through a lattice rep-
resentation, but could be factored as sub-rules
appearing in different non-terminals. Indeed,
a lattice rule could actually be encoded as a
set of “flat” rules by introducing a sufficient
number of non-terminals, but this could pos-
sibly be less efficient from the search algorithm
point of view. We plan to investigate the ef-
fects of this type of rule optimisations in con-
junction with the described lattice-type opti-
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misations in the future.

4.4 Handling of Edge Features
In the context of parameter tuning, we usually
want the decoder to output not only the trans-
lations, but also a list of features characteriz-
ing the way the translation was constructed.
Such features are, for example, the number of
rules used, the language model of the transla-
tion, etc. In out context, some features will be
dependent on the specific edges used in a rule.
For example, the epsilon edge used to option-
ally skip non-aligned words (see section 3.2.1)
is labeled with a feature “nb-words-skipped”
set to 1, so that we can obtain the number
of words skipped in a given translation and
tune a score penalty for skipping such words.
Similar features also exist for picking a word
variation (section 3.2.3).

In the description of the merging process
of section 4.2, one should thus be aware that
two edges are to be considered identical only
if both their associated word and their set of
feature values are identical. This can some-
times prevent useful merging of states to take
place. A solution to this could be to follow
(de Gispert et al., 2010) and to discard all
these features information during the decod-
ing. The features values are then re-estimated
afterward by aligning the translation and the
input with a constrained version of the de-
coder.

We prefer to actually keep track of the fea-
tures values, even if it can reduce the efficiency
of vertex merging. In that setting, we can also
adapt the so-called Weight Pushing algorithm
(Mohri, 2004) to a multivalues case in order
to improve the “mergeability” of vertices. The
results of section 6.1 shows that it is still pos-
sible to strongly reduce the size of the lattices
even when keeping track of the features values.

5 Decoding algorithm

In order to make an optimal use of these
lattice-rule representations, we developed a
decoding algorithm for translation candidate
sets represented as a set of lattice-rules. For
the most part, this algorithm re-use many of
the techniques previously developed for decod-
ing translation search spaces, but adapt them
to our setting.

5.1 Overview
The outline of the decoding algorithm is de-
scribed by algorithm 3. For simplicity, the
description only compute the optimal model
score over the translations in the candidate set.
It is however trivial to adapt the description
to keep track of which sentence correspond to
this optimal score and output it instead of the
score. Likewise, using the technique described
in (Huang and Chiang, 2005), one can easily
output k-best lists of translations. For sim-
plicity again, we consider that a n-gram lan-
guage model score is the only stateful non-
local feature used for computing the model
score, although in a tree-to-tree setting, other
features (local in a tree representation but not
in a string representation) could be used. The
model score of a translation t has therefore the
shape:

score(t) = λ · lm(t) +
∑

e

score(e)

where λ is the weight of the language model,
lm(t) is the language model log-probability of
t and the sum is over all edges e crossed to
obtain t.

5.2 Scored language model states
Conceptually, in a lattice L, at each vertex
v, we can consider the partial translations ob-
tained by starting at vS and concatenating the
words labeling each edge not labeled by a non-
terminal until v. If an edge is labeled by a non-
terminal X, we first traverse the correspond-
ing lattice RHS(X) following the same pro-
cess. Such a partial translation can be reduced
compactly to a scored language model state
(l, r, s), where l represent the first n words1 of
the partial translation, r its last n words and s
its partial score. It is clear that if two partial
translations have the same l and r parts but
different score, we can discard the one with
the lowest score, as it cannot be a part of the
optimal translation.
Further, using the state reduction tech-

niques described in (Li and Khudanpur, 2008)
and (Heafield et al., 2011), we can often reduce
the size of l and r to less than n, allowing fur-
ther opportunities for discarding sub-optimal

1n being the order of the language mode
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partial translations. For better behavior dur-
ing the cube-pruning step of the algorithm (see
later), the partial score s of a partial transla-
tion includes rest-costs estimates (Heafield et
al., 2012).

We define the concatenation operation
on scored language model states to be:
(l1, r1, s1) ⊕ (l2, r2, s2) = (l3, r3, s3), where
s3 = s1 + s2 + λlm(r1, l2), with lm(r1, l2) be-
ing the language model probability of l2 given
r1 with rest-costs adjustments. r3 and l3 are
the resulting minimized states. Similarly, if
an edge e is labeled by a word, we define
the concatenation of a scored state with an
edge to be (l1, r1, s1) ⊕ e = (l2, r2, s2) where
s2 = s1 + score(e) + λlm(word(e)|r1).

Conveniently for us, the KenLM2 open-
source library (Heafield, 2011) provides func-
tionalities for easily computing such concate-
nation operations.

5.3 Algorithm
Having defined these operations, we can now
more easily describe algorithm 3. Each vertex
v has a list best[v] of the scored states of the
best partial translations found to be ending
at v. On line 1, we initialize best[vS ] with
(., ., 0), where “.” represent an empty language
model state. We then traverse the vertices of
the lattice in topological order.

For each edge e : v1 → v2, we compute new
scored states for best[v2] as follow:

• if e is labeled by a word or an epsilon, we
create a state st2 = st1⊕ e for each st1 in
best[v1] (line 10).

• if e is labeled by a non-terminal X, we re-
cursively call the decoding algorithm on
the lattice RHS(X). The value returned
by the line 15 will be a set of states corre-
sponding to optimal partial translations
traversing RHS(X). We can concate-
nate these states with the ones in best[v1]
to obtain states corresponding to partial
translations ending at v2 (line 6).

Results of the calls decode(X) are memo-
ized, as the same non-terminal is likely to ap-
pear in several edges of a RHS and in several
RHS.

2http://kheafield.com/code/kenlm/

Lines 5 and 6 are the “cube-pruning-like”
part of the algorithm. The function pruneK

returns the K best combinations of states
in best[v] and decode(RHS(X)), where best
means “whose sum of partial score is highest”.
It can be implemented efficiently through the
algorithms proposed in (Huang and Chiang,
2005) or (Chiang, 2007).
The L ←max st operation on lines 6 and

10 has the following meaning: L is a list of
scored language model state and st is a scored
language model state. L←max st means that,
if L already contains a state st2 with same left
and right state as st, L is updated to contain
only the scored state with the maximum score.
If L do not contain a state similar to st, st in
simply inserted into L. This is the “hypothe-
sis recombination” part of the algorithm. The
function truncK′ truncate the list best[v] to its
K ′ highest-scored elements.
The final result is obtained by calling

decode(X0), where X0 is the “top-level” non-
terminal. The result of decode(X0) will
contain only one scored state of the form
(BOS, EOS, s), with s being the optimal
score.
The search procedure of algorithm 3 could

be described as “breadth-first”, since we sys-
tematically visit each edge of the lattice. An
alternative would be to use a “best-first”
search with an A*-like procedure. We have
tried this, but either because of optimisation
issues or heuristics of insufficient qualities, we
did not obtain better results than with the al-
gorithm we describe here.

6 Evaluation

We now describe a set of experiments aimed
at evaluating our approach.
We use the Japanese-English data from the

NTCIR-10 Patent MT task3 (Goto et al.,
2013). The training data contains 3 millions
parallel sentences for Japanese-English.

6.1 Effect of Lattice Representation
and Optimisation

We first evaluate the impact of the lattice rep-
resentation on the performances of our decod-
ing algorithm. This will allow us to measure

3http://ntcir.nii.ac.jp/PatentMT-2/
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Data: Lattice RHS L
Result: Sorted list of best states

1 best[vE ] = {(.,.,0.0)};
2 for vertex v ∈ L in topological order do
3 for edge e : v → v2 ∈ outgoing(v) do
4 if label(e) = X then
5 for st1, st2 ∈ pruneK(best[v],

decode(RHS(X)) do
6 best[v2]←max st1 ⊕ st2;
7 end
8 else
9 for st ∈ truncK′(best[v]) do

10 best[v2]←max st⊕ e;
11 end
12 end
13 end
14 end
15 return best[vE ];

Algorithm 3: Lattice-rule decoding. See
body for detailed explanations.

the benefits of our compact lattice represen-
tation of rules, as well as the benefits of the
representation optimisation algorithm of sec-
tion 4.

We use our Syntactic-dependency system to
generate a lattice-rule representation of the
possible translations of the 1800 sentences of
the development set of the NTCIR-10 Patent
MT task. We then produce two additional rep-
resentations:

1. An optimized lattice-rule representation
using the method described in section 4.

2. An expanded representation, that un-
fold the original lattice-rule representa-
tion into “flat rules” enumerating each
path in the original lattice-rule represen-
tation (like the list X0′ enumerate the lat-
tice X0 in figure 2).

Table 1 shows 3 columns. One for each of
these 3 representations. We can see that, as
expected, the performances in term of average
search time or peak memory used are directly
related to the number of vertices and edges
in the representation. We can also see that
our representation optimisation step is quite
efficient, since it is able to divide by two the
number of vertices in the representation, on

average. This leads to a 2-fold speed improve-
ment in the decoding step, as well as a large
reduction of memory usage.

6.2 Decoding performances
In order to further evaluate the merit of our
approach, we now compare the results ob-
tained by using our decoder with lattice-rules
with using a state-of-the-art decoder on the
set of flat expanded rules equivalent to these
lattice rules.
We use the decoder described in (Heafield

et al., 2013), which is available under an open-
source license4 (henceforth called K-decoder).
In this experience, we expanded the lattice
rules generated by our MT system for 1800
sentences into files having the required format
for the K-decoder. This basically mean we
computed an equivalent of the expanded rep-
resentation of section 6.1. This process gener-
ated files ranging in size from 20MB to 17GB
depending on the sentence. We then ran the
K-decoder on these files and compared the re-
sults with our own. We used a beam-width
of 10000 for the K-decoder. Experiments were
run in single thread mode. Partly to obtain
more consistent results, and partly because the
K-decoder was risking using too much memory
for our system.
The results on table 3 show that, as the K-

decoder do not have access to a more compact
representation of the rules, it end up needing
a much larger amount of memory for decoding
the same sentences.
In term of model score obtained, the perfor-

mances are quite similar, with the lattice-rule
decoder providing slightly better model score.
It is interesting to note that, on “fair-

ground” comparison, that is if our decoder do
not have the benefit of a more compact lattice-
rule representation, it actually perform quite
worse as we can see by comparing with the
third column of table 1 (at least in term of de-
coding time and memory usage, while it would
still have a very slight edge in term of model
score with the selected settings). On the other
hand, the K-decoder is a rather strong base-
line, shown to perform several times faster
than a previous state-of-the-art implementa-
tion in (Heafield et al., 2013). It is well opti-

4http://kheafield.com/code/search/
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Representation: Original Optimized Expanded
Peak memory used 39 GB 16GB 85GB
Average search time 6.13s 3.31s 9.95s
#vertices (avg/max) 65K (1300K) 32K (446K) 263K (5421K)
#edges (avg/max) 92K (1512K) 83K (541K) 263K (5421K)

Table 1: Impact of the lattice representation on performances.

System JA–EN
Lattice 29.43

No-variations 28.91
Moses (for scale) 28.86

Table 2: Impact on BLEU of using flexible
lattice rules.

mized and makes use of advanced techniques
with the language model (as the one described
in (Heafield et al., 2013)) for which we do not
have implemented an equivalent yet. There-
fore, we are hopeful we can further improve
our decoder in the future.

Also, note that, for practical reason, while
we only measured the decoding time for our
decoder 5, the K-decoder time include the time
taken for loading the rule files.

6.3 Translation quality

Finally, we evaluate the advantages of ex-
tracting lattice rules such as proposed in sec-
tion 3. That is, we consider rules for which
null-aligned words are bypassable by epsilon-
edges, for which Non-terminal are allowed to
take several alternative positions around the
word that is thought to be their governor, and
for which we consider alternative morphologies
of a few words (“is/are”, “a/an”). We compare
this approach with heuristically selecting only
one possibility for each variation present in the
lattice rule extracted from a single example.

Results shown on figure 2 show that we
do obtain a significant improvement in trans-
lation quality. Note that the Moses score
(Koehn et al., 2007), taken from the official re-
sults of NTCIR-10 is only here “for scale”, as
our MT system uses a quite different pipeline.

5in particular, we factored out the representation
optimisation time, which is reasonable if we are in the
setting of a parameter tuning step in which the same
sentences are translated repeatedly

7 Related work

Searching for the most optimal translation in
an implicitly defined set has been the focus of
a lot of research in Machine Translation and
it would be difficult to cover all of it. Among
the most influential approaches, (Koehn et al.,
2003) was using a form of stack based de-
coding for Phrase-Based Machine Translation.
(Chiang, 2007) introduced the cube-pruning
approach, which has been further improved
in the previously mentioned (Heafield et al.,
2013). (Rush and Collins, 2011) recently pro-
posed an algorithm promising to find the op-
timal solution, but that is rather slow in prac-
tice.
Weighted Finite State Machines have seen

a variety of use in NLP (Mohri, 1997). More
specifically, some other previous work on Ma-
chine Translation have used lattices (or more
generally Weighted Finite State Machines). In
the context of Corpus-Based Machine Trans-
lation, (Knight and Al-Onaizan, 1998) was al-
ready proposing to use Weighted Transducers
to decode the “IBM” models of translation
(Brown et al., 1993). (Casacuberta and Vi-
dal, 2004) and (Kumar et al., 2006) also pro-
pose to directly model the translation process
with Finite State Transducers. (Graehl and
Knight, 2004) propose to use Tree Transducers
for modeling Syntactic Machine Translation.
These approaches are however based on differ-
ent paradigm, typically trying to directly learn
a transducer rather than extracting SCFG-like
rules.
Closer to our context, (de Gispert et al.,

2010) propose to use Finite-State Transducers
in the context of Hierarchical Phrase Based
Translation. Their method is to iteratively
construct and minimize the full “top-level lat-
tice” representing the whole set of translations
bottom-up. It is an approach more focused
on the Finite State Machine aspect than our,
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System K-decoder Lattice-rule decoder
Peak memory used 52G 16G
Average search time 3.47s 3.31s
Average model score -107.55 -107.39

Nb wins 401 579

Table 3: Evaluation of the performances of our lattice-rule decoder compared with a state-of-
the-art decoder using an expanded flat representation of the lattice rules. “Nb wins” is the
number of times one of the decoder found a strictly better model score than the other one, out
of 1800 search.

which is more of an hybrid approach that stays
closer to the paradigm of cube-pruning. The
merit of their approach is that they can apply
minimization globally, allowing for more possi-
bilities for vertex merging. On the other hand,
for large grammars, the “top-level lattice” will
be huge, creating the need to prune vertices
during the construction. Furthermore, the
composition of the “top-level lattice” with a
language model will imply redundant compu-
tations (as lower-level lattices will potentially
be expanded several times in the top-level lat-
tice). As we do not construct the global lattice
explicitly, we do not need to prune vertices (we
only prune language model states). And each
edge of each lattice rule is crossed only once
during our decoding.

Very recently, (Heafield et al., 2014) also
considered using the redundancy of translation
hypotheses to optimize phrase-based stack de-
coding. To do so, they group the partial hy-
potheses in a trie structure.

We are not aware of other work proposing
“lattice rules” as a native format for express-
ing translational equivalences. Work like (de
Gispert et al., 2010) rely on SCFG rules cre-
ated along the (Chiang, 2007) approach, while
work like (Casacuberta and Vidal, 2004) adopt
a pure Finite State Transducer paradigm (thus
without explicit SCFG-like rules).

8 Conclusion
This work proposes to use a lattice-rule repre-
sentation of the translation search space with
two main goals:

• Easily represent the translation ambigui-
ties that arise either due to lack of context
or imperfect knowledge.

• Have a method for optimizing the repre-

sentation of a search space to make this
search more efficient.

We demonstrate that many types of am-
biguities arising when extracting translation
rules can easily be expressed in this frame-
work, and that making these ambiguities ex-
plicit and solvable at compile time through
lattice-rules leads to improvement in transla-
tion quality.
We also demonstrate that making a direct

use of the lattice-rules representation allows a
decoder to perform better than if working on
the expanded set of corresponding “flat rules”.
And we propose an algorithm for computing
more efficient representations of a translation
candidate set.
We believe that the the link between the

representation of a candidate set and the de-
coding efficiency is an interesting issue and
we intend to explore further the possibilities
of optimizing representations both in the con-
texts we considered in this paper and in others
such as Phrase-Based Machine Translation.
The code of the decoder we implemented for

this paper is to be released under a GPL li-
cense6.
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Abstract

When documents and queries are pre-
sented in different languages, the com-
mon approach is to translate the query into
the document language. While there are
a variety of query translation approaches,
recent research suggests that combining
multiple methods into a single ”structured
query” is the most effective. In this pa-
per, we introduce a novel approach for
producing a unique combination recipe for
each query, as it has also been shown
that the optimal combination weights dif-
fer substantially across queries and other
task specifics. Our query-specific combi-
nation method generates statistically sig-
nificant improvements over other combi-
nation strategies presented in the litera-
ture, such as uniform and task-specific
weighting. An in-depth empirical anal-
ysis presents insights about the effect of
data size, domain differences, labeling and
tuning on the end performance of our ap-
proach.

1 Introduction

Cross-lingual information retrieval (CLIR) is a
special case of information retrieval (IR) in which
documents and queries are presented in different
languages. In order to overcome the language
barrier, the most commonly adopted method is
to translate queries into the document language.
Many methods have been introduced for translat-
ing queries for CLIR, ranging from word-by-word
dictionary lookups (Xu and Weischedel, 2005;
Darwish and Oard, 2003) to sophisticated use of
machine translation (MT) systems (Magdy and
Jones, 2011; Ma et al., 2012). Previous research
has shown that combining evidence from differ-
ent translation approaches is superior to any sin-
gle query translation method (Braschler, 2004;

Herbert et al., 2011). While there are numer-
ous combination-of-evidence techniques for both
mono-lingual and cross-lingual IR, recent work
suggests that there is no one-size-fits-all solution.
In fact, the optimal combination weights (i.e.,
weights assigned to each piece of evidence in a
linear combination) differ greatly across queries,
tasks, languages, and other variants (Ture et al.,
2012; Berger and Savoy, 2007).

In this paper, we introduce a novel method for
learning optimal combination weights when build-
ing a linear combination of existing query transla-
tion approaches. From standard query-document
relevance judgments we train a set of classifiers,
which produce a unique combination recipe for
each query, based on a large set of features ex-
tracted from the query and collection. Experi-
mental results show that the effectiveness of our
method is significantly higher than state-of-the-art
query translation methods and other combination
strategies.

2 Related Work

The earliest approaches to query translation for
CLIR used machine-readable bilingual dictio-
naries (Hull and Grefenstette, 1996; Balles-
teros and Croft, 1996), achieving around up to
60% of monolingual IR effectiveness. Xu and
Weischedel (2005) showed that effectiveness can
be increased to around 80% by weighting each
translation proportional to its rank in the dictio-
nary. The practice of weighting translation candi-
dates was later formulated as a “structured query”,
in which each query term is represented by a prob-
ability distribution over its translations in the doc-
ument language (Pirkola, 1998; Kwok, 1999; Dar-
wish and Oard, 2003). Our approach is based on
the structured query formulation.

Some of the earliest studies in IR discovered
that with different underlying models, the re-
trieved document set would vary substantially, al-
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though the effectiveness was similar (McGill et
al., 1979). Later studies showed that combining
different representations of the query and/or doc-
ument often produced superior output (Rajashekar
and Croft, 1995; Turtle and Croft, 1990; Fox,
1983). This intuitive idea was supported theoret-
ically by Pearl (1988), concluding that multiple
pieces of evidence estimates relevance more accu-
rately, but that the benefit strongly depends on the
quality and independence of each piece. Experi-
ments by Belkin et al. (1995) indicated the need to
properly weight each representation with respect
to its effectiveness. These so-called “combination-
of-evidence” techniques became more powerful
with the introduction of Indri, a probabilistic re-
trieval framework specifically designed for com-
bining multiple query and document representa-
tions (Metzler and Croft, 2005). Croft (2000) pro-
vides a detailed summary of earlier query combi-
nation approaches in IR, while Peters et al. (2012)
cites more recent related work.

The benefits of combination-of-evidence trans-
fer to the cross-lingual case especially well, since
the inherent ambiguity of translation readily pro-
vides a diverse set of representations. Most CLIR
approaches implement a post-retrieval merging
of ranked lists, each generated from different
query (Hiemstra et al., 2001; Savoy, 2001; Gey
et al., 2001; Chen and Gey, 2004) or docu-
ment (Lopez and Romary, 2009) representations,
also called “data fusion”. In contrast, we focus on
a pre-retrieval combination at the modeling stage,
so that a single complex query is used in retrieval,
instead of multiple simpler ones. Two advantages
of the former are easier implementation (since
the approach requires no changes to the modeling
side) and the possibly greater diversity that can be
achieved by having separate retrieval runs. How-
ever, each ranked list needs to be limited in size,
which might cause some potentially useful docu-
ments not to be considered in the combination at
all. Since the focus of this paper is on the model-
ing end of retrieval, pre-retrieval combination was
a more suitable choice, though we think that the
two approaches have complementary benefits.

The idea of combining query translations
before retrieval has been explored previously.
Braschler (2004) combines three translation ap-
proaches: output of an MT system, a novel trans-
lation approach based on a similarity thesaurus
built automatically from a comparable corpus,

and a dictionary-based translation. The main
reason that this combination does not provide
much benefit is due to the lower coverage of
the thesaurus-based and dictionary-based trans-
lation methods. A similar approach by Herbert
et al. (2011) uses Wikipedia to provide transla-
tions of certain phrases and entities, and combin-
ing that with the Google Translate MT sys-
tem yields statistically significant improvements
in English-to-German retrieval. More recently,
Ture et al. (2012) presented a more sophisti-
cated translation approach using the internal rep-
resentation of an MT system, and reported sta-
tistically significant improvements when a pre-
retrieval combination was performed.

All of the previously cited approaches either
use uniform weights for combination, or select
weights based on collection-level information.
However, as stated previously, numerous stud-
ies suggest that certain methods work better on
certain queries, collections, languages. In fact,
when weights are optimized separately on each
collection, they differ substantially across differ-
ent collections (Ture et al., 2012). For monolin-
gual retrieval, there has been a series of learning-
to-rank (LTR) papers that determine weights for
query concepts (Bendersky et al., 2011), such
that retrieval effectiveness is maximized. A re-
cent study extends this idea to the cross-lingual
case, by learning how to weight each translated
word for English-Persian CLIR (Azarbonyad et
al., 2013). In contrast, we extract translated word
weights from diverse and sophisticated translation
methods, then learn how to weight each trans-
lated structured query, We call this “learning-to-
translate” (LTT), which can be formulated as a
simpler learning problem. In CLIR, both LTR and
LTT are under-explored problems, with a common
goal of applying machine learning techniques to
improve query translation, yet with complemen-
tary benefits.

To our knowledge, there has been one prior LTT
approach: a classifier was trained to predict ef-
fectiveness of each query translation, using fea-
tures based on statistics of the query terms (Berger
and Savoy, 2007). Instead of weighting, the
translations with highest classifier scores were
concatenated, yielding statistically significant im-
provements over using the single-best translation
method. However, the translation methods ex-
plored in this paper are all based on one-best MT
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systems, making it difficult to draw strong conclu-
sions.

3 Query Translation

The primary contribution of this paper is to show
how a diverse set of query translation (QT) meth-
ods can be combined effectively into a single
weighted structured query, with improved retrieval
effectiveness. While our approach can applied to
any set of translation methods, we focus on three
methods that have complementary strengths and
that have shown promise in CLIR: word-based
probabilistic translation, one-best MT, and n-best
probabilistic MT. We briefly present our imple-
mentation of each method; more details can be
found in earlier work (Darwish and Oard, 2003;
Ture et al., 2012).

Each QT method generates a representation of
the query in the document language. In the case of
word-based and n-best MT approaches, the repre-
sentation is a structured query itself, where each
query word is represented by a probability distri-
bution over translation alternatives. For one-best
MT, the query is represented by a bag of translated
words.

3.1 One-Best MT
A query translation approach that has become
more popular recently is to simply run the query
through an MT system, and use the best output as
the query:

t1t2 . . . tl = MT(s1s2 . . . sk) (1)

where s = s1s2 . . . sk is the query and t =
t1t2 . . . tl is the translated query.

Since modern statistical MT systems generate
high-quality translations for many language pairs,
this one-best strategy works reasonably well for
retrieval and provides a competitive baseline. A
practical advantage of this approach is the ease of
implementation – one can simply use any MT in-
terface (e.g., Google Translate) as a black
box in their CLIR system.

3.2 Probabilistic n-best MT
The top translation might sometimes be incorrect,
or might lack some of the alternative representa-
tions that are very useful in retrieval. Therefore,
considering the n highest scored translations (also
referred to as the n-best list in MT literature) has
become increasingly popular in CLIR approaches.

In order to benefit from the diversity amongst
the n-best translations, one can simply concate-
nate them together, forming a large list of query
terms. However, statistical MT systems also
assign probabilities to each translation, which
can be incorporated into the query representation
for better effectiveness, as suggested by Ture et
al. (2012).

In this approach, each of the top n transla-
tion candidates from the MT system are processed
one by one. For each translation candidate, the
MT system provides a translation probability, and
alignments between words in the query and its
translation. As we process each of the n transla-
tions, for each query word si, we accumulate prob-
abilities on each translated word tij aligned to si.
Finally, we normalize the translation probabilities
to get Prnbest(tij |si).
3.3 Word-based
One of the most widely used approaches in CLIR
is based on translating each query word si in-
dependently, with probabilities assigned to each
translation candidate tij . Translations are de-
rived automatically from a bilingual corpus using
statistical word alignment techniques, which are
used as part of the training of statistical MT sys-
tems (Brown et al., 1993). These probabilities can
be exploited for retrieval based on the technique
of Darwish and Oard (2003) for “projecting” text
into the document language. After cleaning up the
automatically learned translation probabilities (de-
tails omitted for space considerations), we end up
with the translation probabilities Prword(tij |si).

4 Combination of Evidence

Once we have multiple ways to represent the query
q in the document language (QTi(q), i = 1 . . .m),
it is possible to combine these “pieces of evi-
dence” into a single representation as follows:

QT(q) =
m∑
i=1

wi(q)QTi(q)

and each combination-of-evidence approach dif-
fers by how the combination weights wi are com-
puted:

Uniform In this baseline method, we ignore any
information we have about the collection or query
and assign equal weights to each method (i.e.,
wi(q) = 1/m). In our case, this means a weight

591



of 33.3% to each of the one-best, probabilistic n-
best, and word-based QT methods.

Task-specific We can optimize the combination
weights by overall effectiveness on a specific re-
trieval task. Given a query set and collection,
we perform a grid search on combination weights
(with a step interval of 0.1) and select the weights
that maximize retrieval effectiveness. The training
is performed in a leave-one-out manner: weights
for test query q are optimized on all queries except
for q.

Query-specific We propose a novel method to
compute combination weights specifically for
each query, resulting in a more customized op-
timization that can take into account how effec-
tiveness of each translation method varies across
queries.

In the remainder of this section, we describe
the details of our novel query-specific combina-
tion method.

4.1 Overview of Query-Specific Combination

We present a novel approach for determining
query-specific combination weights by training a
classifier for each QT method. Prior to train-
ing the classifier, we first run retrieval using each
QT method, and evaluate the effectiveness of the
retrieved documents. The effectiveness of the
ith method on query q (i.e., fi(q)) is then con-
verted into a binary label (further described in
Section 4.2). Treating each query as a separate
instance, a classifier is trained for each method,
generating classifiers C1, . . . , Cm. During re-
trieval (i.e., at test time), for each query q, each
trained classifier Ci is applied to the query, re-
sulting in a predicted label li(q) and the classi-
fier’s confidence in a positive label, Ci(q).1 These
values are then used to determine combination
weights w1(q), . . . , wm(q) that are custom-fit for
the query.

4.2 Labeling

First of all, we discard queries in which the dif-
ference between the best and worst performing
methods is small (specifically, the worst perform-
ing method scores at least k1% of the best per-
forming one). For such queries, generating fair
training labels is more difficult and therefore more

1The confidence in a negative label is 1− Ci(q).

likely to introduce noise into the process.2 More-
over, these are exactly the queries where choos-
ing optimal combination weights is less important
(since all methods perform relatively similarly), so
it is reasonable to exclude them from training. In
fact, a high number of such queries would indi-
cate lower potential for combination-of-evidence
approaches.

For each QT method i, we create training in-
stances per query, per retrieval task. Since our
goal is to select the best among existing methods,
the training label should reflect the effectiveness
of method i relative to other methods. A strategy
that we call best-by-measure assigns a label of 1
if the effectiveness of the ith method (i.e., fi(q)) is
at least k2% of the maximum effectiveness for that
query, and 0 otherwise. While this directly corre-
lates with retrieval effectiveness, labels might be
distributed in an unbalanced manner, which might
affect the training process negatively. A balanced
labeling requires sorting all training instances by
how much better the ith method is than other meth-
ods (maxi′ 6=i(fi′(q)/fi(q))), and then assigning a
label of 1 to the lower half and 0 to the higher half.
This strategy is called best-by-rank.

4.3 Features

We introduce a diverse set of features, in order to
train a robust classifier for predicting when each
QT method performs better and worse than others.
We split the feature set into four meaningful cate-
gories, so that we can measure the impact of each
subset separately:

Surface features These features do not require
a deep analysis of the query: (a) Number of words
in query and the translated query, (b) Type of
query that we automatically classify based on pre-
defined templates (e.g., fact question, cause-effect,
etc.), and (c) Number of stop words in the query
and the translated query.

Parse-based features These features are ex-
tracted from a deeper syntactic analysis of the
query text: (a) Number of related names found in
a named entity database, and (b) Existence of syn-
tactic constituents in query and its translation (e.g.,
“is there a VVB in the query parse tree”).

2We also experimented with including these queries with
a third label (e.g., “same”) and train a ternary classifier. Hav-
ing more labels requires more training data, which is not easy
to obtain for this task. Also, obtaining a balanced label dis-
tribution becomes even more difficult with three labels.
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Translation-based features These features
consist of statistics computed from the query and
its translation: (a) Number of query words that
were unaligned in at least half of the n-best query
translations, (b) Number of query words that were
aligned to multiple target words in at least half
of the n-best query translations, (c) Number of
query words that were self-aligned (i.e., target
word is exactly same string) in at least half of the
n-best query translations, (d) Average / Standard
deviation / Maximum / Minimum of entropy of
Prnbest of each query word, and (e) Average /
Standard deviation / Maximum / Minimum of
entropy of Prword of each query word.

Index-based features These features are based
on frequency statistics from a representative col-
lection:3 (a) Average / Standard deviation / Max-
imum / Minimum of document frequency (df) of
query words and their translations, (b) Average /
Standard deviation / Maximum / Minimum of term
frequency averaged across query words and their
translations, and (c) Sum / Maximum / Minimum
of total probability assigned to words that do not
appear in the collection (df = 0).

Additionally, the target language is a default
feature in all of our experiments. For each clas-
sification task, we train a separate classifier on
each subset of these four feature categories, so that
there are 16 different sets (including the empty
set). After we select which categories to pull fea-
tures from, we optionally perform feature selec-
tion to reduce the number of features by a pre-
defined percentage.

In our experimentation, we observed that
collection-based features were most useful for
classifying the one-best method, whereas parse-
based features were most discriminative for prob-
abilistic 10-best. For the word-based QT method,
the translation-based features were most effective
in our experiments. We further analyze the effect
of various features in Section 5.

4.4 Training and Tuning Classifiers

The scikit-learn package was used for the
training pipeline (Pedregosa et al., 2012). Using
an established toolkit allowed us to experiment
with many options for classification, such as the
learner type (support vector machine, maximum
entropy, decision tree), feature set (16 subsets of

3We used the BOLT collection in our experiments.

the four categories described earlier) and two fea-
ture selection methods (recursive elimination or
selection based on univariate statistical tests). In
the end, we get 96 different parameter combina-
tions while training a classifier for a particular QT
method, resulting in the need for tuning — picking
the parameters that produce highest accuracy on a
representative tuning set.

Given that we have a set of queries for testing
purposes, there are few strategies for selecting a
training and tuning set. One approach is to apply a
leave-one-out strategy, so that a classifier is trained
and tuned on all but one of the test queries, and
then applied on the remaining query to predict its
label. We call this the fully-open setting.

In a more realistic scenario, there will not be
relevance judgments for the test queries, yet there
might be a small amount of labeled data similar to
the test task (e.g., different queries on same col-
lection) that can be utilized for tuning purposes,
and a larger set of training queries from different
collections. We call this the half-blind setting.

If testing in a new domain, queries of similar
type are not available for training and tuning pur-
poses. This is a more challenging scenario than
the previous two, yet it is important for real-world
applications. In order to demonstrate the effec-
tiveness of the training pipeline in this case, we
hold out test queries entirely, then train and tune
on queries from a completely different task (i.e.,
different queries and collection). We call this the
fully-blind setting.

4.5 Retrieval

Once we have classifiers trained for all QT meth-
ods, we can apply them to a given query on-the-fly,
and compute query-specific combination weights.
One approach is hard weighting, putting all weight
onto a single method — when there are more than
one methods classified with label 1, we can ei-
ther pick one randomly or use the classifier con-
fidence value as a tie-breaker. An alternative is
soft weighting, where the weight of the ith method
can be computed either using classifier confidence
Ci (i.e., how confident the model is that the ith

method will perform well), precision on tuning set
precisioni (i.e., how precise the model is at its pre-
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dictions for the ith method), or both:

ws1i (q) =Ci(q)

ws2i (q) =precisioni(1)× li(q)
+(1−precisioni(0))× (1− li(q))

ws3i (q) =precisioni(1)× Ci(q)
+(1−precisioni(0))× (1− Ci(q))

The intuition behind all of these weighting
schemes is to produce a weight for each QT
method, by taking into account the confidence of
the classifier, and/or the precision of the classifier
on tuning instances.

The computed weights are normalized before
constructing the final query for retrieval:

wfinal
i (q) = wi(q)/

∑m
j=1wj(q)

When compared empirically, we noticed that
soft weighting is more effective than hard weight-
ing, as the latter is more sensitive to classifier er-
rors. Among the three soft weighting functions,
differences were mostly negligible in our exper-
iments. Hence, we decided to use the simplest
weighting function ws1.

4.6 Analytical Model
It is time-consuming to implement various
combination-of-evidence approaches and run re-
trieval experiments. Therefore, it is useful to have
an analytical model of the process that can pro-
vide a rough estimate of how fruitful it would be
to spend this effort, given certain details about the
task. The model we present in this section esti-
mates the effectiveness of combining QT methods
1 . . .m on a query set Q, given (1) the effective-
ness of each method on Q and (2) error rate of
binary classifiers C1 . . . Cm on Q. Using this for-
mulation, one can assess the benefit of combina-
tion without running retrieval, based only on er-
ror rates — this saves precious time during de-
velopment. Moreover, even without trained clas-
sifiers, this model can be used to estimate poten-
tial benefits by plugging in hypothetical error val-
ues. In other words, one can ask the question “If
I had classifiers with x% error on this query set,
what would be the benefit of using these classi-
fiers to combine QT methods?” before developing
any combination approach at all.

The analytical model considers a special case of
weighted combination: for each query q, we pick a
single QT method i = 1 . . .m, for which the clas-
sifier predicts a label of 1. If there are more than

one such method, one of them is picked randomly.
This simplified version allows us to compute ex-
pected effectiveness for q as follows:

E[f(q)] =
∑

method i

Pr(pick i|q)fi(q)

While fi(q) is an observed value (the effective-
ness of the ith method on query q), Pr(pick i|q)
needs to be estimated (the probability of selecting
the ith method). Since this depends on the pre-
dicted labels, we consider all possible scenarios
l = l1l2 . . . lm, where each value is the prediction
of a classifier. For instance, “l=010” means that
classifiers C1 and C3 predicted a label of 0, while
C2 predicted a positive label. Marginalizing over
the 2m possible scenarios gives us the following
estimate:

Pr(pick i|q)

=

 1∑
l1=0

. . .

1∑
lm=0

Pr(l|q)
× Pr(pick i|l, q)

=

 1∑
l1=0

. . .
1∑

lm=0

m∏
i=1

Pr(li|q)
× Pr(i|l, q)

In the final step, we assumed that classifiers make
predictions independent of each other, which is
a desired property for successful combination.
Pr(li|q) can be estimated using classifier error
statistics:

Pr(li|q) ∼ count(predicted = li, true = lq)
count(true = lq)

where lq is the true label of q. If li = lq, this ex-
pression becomes the true positive or true negative
rate, depending on the value. Similarly, if li 6= lq,
it is either the false positive or false negative rate.

Finally, the probability that the ith method is se-
lected in a particular scenario depends solely on
the predicted labels, since it is a random selection:
Pr(pick i|l) = li/

∑m
j=1 lj

This concludes the derivation of the analytical
model of query evidence combination, which we
use in Section 5.1 to evaluate the effectiveness of
labeling approaches.

5 Evaluation

We evaluated our approach on four different CLIR
tasks: TREC 2002 English-Arabic CLIR, NTCIR-
8 English-Chinese Advanced Cross-Lingual Infor-
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mation Access (ACLIA), and two forum post re-
trieval tasks as part of the DARPA Broad Oper-
ational Language Technologies (BOLT) program:
English-Arabic (BOLTar) and English-Chinese
(BOLTch). The query language is English in all
cases, and we preprocess the queries using BBN’s
information extraction toolkit SERIF (Ramshaw et
al., 2011). State-of-the-art English-Arabic (En-
Ar) and English-Chinese (En-Ch) MT systems
were trained on parallel corpora released in NIST
OpenMT 2012, in addition to parallel forum data
collected as part of the BOLT program (10m En-
Ar words; 30m En-Ch words). From these data,
word alignments were learned with GIZA++ (Och
and Ney, 2003), using five iterations of each of
IBM Models 1–4 and HMM.

3-gram Chinese and 5-gram Arabic Kneser-Ney
language models were trained from the Gigaword
corpus (1b words each) and non-English side of
the training corpus. Chinese and English parallel
text were preprocessed through the Treebank Tok-
enizer,4 while no special treatment was performed
on Arabic.

For retrieval, we used Indri, a state-of-the-
art probabilistic relevance model that supports
weighted query representations through operators
#combine and #weight (Metzler and Croft,
2005). A character-based index was built for
Chinese collections, whereas Arabic text was
stemmed using Lucene before indexing.5 En-
glish text was preprocessed by Indri’s imple-
mentation of the Porter stemmer (Porter, 1997).
Statistics for each collection and query set are
summarized in Table 1.

Before performing any combination, we first
ran the three baseline QT methods individually
and evaluated the retrieved documents. Mean
average precision (MAP) was used to measure
retrieval effectiveness, which is a widely used
and stable metric, estimating the area under the
precision-recall curve. We set n = 10 for the
n-best probabilistic translation method. Baseline
scores are reported in Table 2. The average preci-
sion (AP) of each query in these tasks was used to
label the query and construct training data accord-
ingly.

In subsequent sections, we evaluate the effect of
several variants in the training pipeline.

4http://www.cis.upenn.edu/˜treebank
5http://lucene.apache.org

5.1 Effect of Labeling

In Section 4.2, we introduced two ways to label
instances. In our evaluation, we set the free pa-
rameters k1 = k2 = 90, which filters out 33% of
queries from the training set of the BOLTar task;
this percentage is 29% in BOLTch, 44% in TREC,
and 27% in NTCIR.

Labeling determines which query translation
method is considered effective or not, which con-
sequently determines what the “learning problem”
is (since the objective of the classifier is to sep-
arate differently labeled instances). As a result,
there are two dimensions to consider when com-
paring labeling strategies. One is the accuracy of
the classifiers on held-out data, and the other is
how well the trained classifier reflects this accu-
racy when used in retrieval. To clarify the dis-
tinction, consider a case where every instance is
labeled 1. This generates a trivial learning prob-
lem with no test errors, yet this does not entail that
using these classifiers in retrieval will be more ef-
fective than other labeling strategies. If, even with
high classifier accuracy, the retrieval effectiveness
is low, that indicates a bad choice for labeling.

We can theoretically analyze how suitable each
labeling method is by applying the analytical
model to each CLIR task, setting parameters based
on a perfect classifier: true positive/negative rate
of 1 and false positive/negative rate of 0 (see Sec-
tion 4.6). Table 2 shows these results in the “Per-
fect” column, since these scores represent what
could be achieved if classifiers were trained to pre-
dict labels perfectly (no training or retrieval is ac-
tually performed). There are two values in each
row of the “Perfect” column, one for each labeling
strategy. In each row, we found these two values to
be statistically significantly higher than any of the
baseline scores. This shows that both labeling ap-
proaches have the potential to improve effective-
ness significantly.

We also made an empirical comparison of the
two labeling approaches by actually training clas-
sifiers with each labeling, and then using the clas-
sifiers to combine query translations in retrieval.
The “Trained” column in Table 2 shows the MAP
we get on each CLIR task (and average classifier
accuracies), using either labeling.6

Based on these results, we conclude that best-

6For a fair comparison, we fixed the train-tune setting to
fully-open, trained classifiers on the test collection and re-
ported leave-one-out accuracies.
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Lang Collection Topics MT Training data
Source Size (docs) Source (domain) Size (words)

Arabic TREC-02 383,872 50 OpenMT-12 (news/web)
10m

Arabic BOLT 12,258,904 45 BOLT (forum)
Chinese NTCIR-8 388,589 100 OpenMT-12 (news/web)

30m
Chinese BOLT 6,693,951 45 BOLT (forum)

Table 1: Summary of the CLIR tasks in our evaluations.

Task Baseline Perfect Trained
one-best ten-best word measure rank measure rank

BOLTar 0.296 0.311 0.318 0.341 0.341 0.342 (74) 0.330 (72)
BOLTch 0.370 0.406 0.407 0.458 0.462 0.438 (68) 0.426 (60)
TREC 0.292 0.298 0.301 0.327 0.330 0.305 (59) 0.316 (59)
NTCIR 0.146 0.152 0.141 0.180 0.177 0.163 (56) 0.162 (61)

Table 2: Retrieval effectiveness of baseline QT methods is presented on the left side, and a comparison of
labeling strategies is provided on the right side. All numbers represent MAP values, except for classifier
accuracy shown in percentage values (in parantheses). Analytically computed values are shown in italics.

by-measure labeling is more useful in practice,
supported by typically higher accuracy and effec-
tiveness. Best-by-rank yields better results only
on TREC, but a closer look reveals that the in-
crease in MAP is due to only two outlier queries.
For BOLTar, on the other hand, retrieval with best-
by-measure labeling is more effective (statistically
significant) than best-by-rank; hence, the former is
used in remaining parts of our evaluation.

5.2 Effect of Train-Tune Setting
In Section 4.4, we introduced three major train-
tune settings: fully-open, half-blind, and fully-
blind. In order to implement these settings, we
treat each of the three query sets (BOLT, TREC,
NTCIR) as a separate training dataset and experi-
ment with a variety of combinations.

For simplicity, let us demonstrate the variety of
experiments assuming the test collection is BOLT.
For the fully-open case, the default training data is
all of the BOLT queries (this training set is referred
to as b). Additionally, one can include queries
from TREC (referred to as t) and NTCIR (referred
to as n) into the training data. This gives us four
different training datasets for the fully-open case:
b, b + n, b + t, b + t + n. Similarly, each of the
half-blind and fully-blind settings can be applied
to three different training sets: For BOLT, these
are t, n, t + n.7 This results in ten different ex-
periments run for each task — in each experiment,

7In the case of half-blind, b is split into two: 20% is used
for tuning and the remainder is used for testing.

we train a classifier for each QT method, select the
best meta-parameters on the tuning set, and then
compute combination weights for retrieval using
the classifiers.

Each cell on the left side of Table 3 (under col-
umn “Query-specific Combination”) shows the re-
sults of the most effective experiment for a partic-
ular task and train-tune setting. Accuracy values
for classifiers varied widely across these experi-
ments. Still, even when accuracies dropped close
to or below 50% (i.e. random baseline), combined
retrieval was always more effective than any single
QT approach, which emphasizes the robustness of
our approach. For instance, in the fully-blind set-
ting for the NTCIR task, the individual classifiers
had accuracies of only 56%, 49%, and 44% but
MAP was 0.163, which is higher than the MAP of
any individual method for that collection (0.146,
0.152, or 0.141).

Another key observation in Table 3 is that
the domain effect (i.e., training and/or tuning on
queries similar to test queries) is only noticeable
on the two BOLT tasks. For NTCIR and TREC,
we do not observe a boost in MAP when queries
from the same task are included in training (i.e.,
fully-open setting). This can be explained by the
BOLT-centric nature of our system components:
the text analysis tool and MT systems are tuned
mainly for forum data, and the collection-based
features are extracted from BOLT. Due to this bias,
BOLT queries were most useful in our experi-
ments, supported by the fact that BOLT is always
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Task Query-specific Combination Uniform Task- Maxfully-open half-blind fully-blind specific
BOLTar 0.342∗† b 0.330 t+n 0.329 t+n 0.32412 0.3291 0.346
BOLTch 0.438∗† b 0.428 n 0.426 t+n 0.4221 0.4311 0.466
TREC 0.321 b+t 0.324∗† b+n 0.321 b+n 0.3141 0.3181 0.332
NTCIR 0.164∗ b+n 0.163 b+t 0.163 b 0.16213 0.16213 0.182

Table 3: A comparison of query combination approaches. For query-specific combination, MAP and
training data are shown for the most effective experiment of each train-tune setting. For each task, the
highest MAP achieved with our approach is shown in bold. Superscripts 1, 2, and 3 indicate statisti-
cally significant improvements over baseline methods one-best, probabilistic 10-best, and word-based,
whereas * indicates improvements over all three. Superscript † indicates results significantly better than
uniform and task-specific combination methods.

included in the train set when testing on TREC or
NTCIR (see lowest two rows in Table 3). Also,
when there is no domain effect (i.e., half-blind and
fully-blind ), more data yields higher effectiveness
in 6 out of 8 cases (see two right columns on the
left side of Table 3).

5.3 Retrieval Effectiveness

In this section, we compare our novel query-
specific combination-of-evidence approach to the
baseline CLIR approaches, as well as comparable
combination methods (uniform and task-specific
combination) in terms of retrieval effectiveness.
Based on a randomized significance test (Smucker
et al., 2007), the best query-specific combina-
tion method (shown in boldface in Table 3) out-
performs all baseline QT methods in all tasks
with 95% confidence (indicated by superscript *
in Table 3). This is not the case for uniform or
task-specific query combination, which are statis-
tically indistinguishable from at least one of the
QT methods, depending on the task (indicated by
superscripts 1, 2, and 3 for one-best, probabilis-
tic 10-best, and word-based QT methods, respec-
tively). When we directly compare our query-
specific combination approach to other combina-
tion methods, the differences are statistically sig-
nificant for all tasks but NTCIR (indicated by su-
perscript †).

For reference, we also computed effectiveness
for a hypothetical system (denoted by “Max” in
Table 3) that could select the best QT method for
each query and use only that for retrieval. This is
not a strict upper bound, since correctly weight-
ing each method can produce better results, but
it is still a reasonable target for effectiveness. In
our experiments, Arabic retrieval runs were very

close to this target with our combination approach,
while the gap for Chinese is still substantial, which
is worth further exploration.

6 Conclusions and Future Work

In this paper, we introduced a novel combination-
of-evidence approach for CLIR, which learns a
custom combination recipe for each query. We for-
mulate this as a set of binary classification prob-
lems, and show that trained classifiers can be used
to produce query-specific combination weights ef-
fectively. Our deep exploration of many variants
(e.g., labeling, training-tuning, weight computa-
tion, analytical formulation) and extensive empiri-
cal analysis on four different tasks provide insights
for future research on the under-studied problem
of combining translations for CLIR.

Our approach advances the state of the art of
CLIR, yielding higher effectiveness than three ad-
vanced query translation approaches, all based
on state-of-the-art MT systems. Furthermore, on
three of the four tasks, our combination strategy is
statistically significantly better than two compara-
ble combination techniques. Experimental results
also suggest that even a uniform combination of
query translations is consistently better than any
individual method. While it is known that com-
bining translations helps CLIR, we confirm this on
a set of modern CLIR tasks, including two target
languages and a variety of text domains.

Having a simple linear learning problem allows
us to train robust models with relatively simpler
features. Nevertheless, we are interested in ex-
perimenting with more sophisticated learning ap-
proaches. In terms of non-linear classifiers, our
experience with decision trees in this paper indi-
cated a higher tendency to overfit. In terms of
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combining queries in a non-linear fashion, our fu-
ture plans include integrating our approach into a
LTR framework, and directly optimize MAP. This
will also allow us to explore more complex fea-
tures extracted from query and document text, as
well as external sources.

Another possible future endeavor is to extend
these ideas to (i) other query translation ap-
proaches and (ii) document translation. While the
exact same problem can be formulated for learning
to translate documents effectively, a more compli-
cated infrastructure and longer running times are
two challenges that need to be considered.

Finally, we hope this to be a significant step to-
wards more context-dependent and robust CLIR
models, by taking advantage of modern translation
technologies, as well as machine learning tech-
niques.

Acknowledgments

This work was supported by DARPA/I2O Con-
tract No. HR0011-12-C-0014 under the BOLT
program (Approved for Public Release, Distribu-
tion Unlimited). The views, opinions, and/or find-
ings contained in this article are those of the author
and should not be interpreted as representing the
official views or policies, either expressed or im-
plied, of the Defense Advanced Research Projects
Agency or the Department of Defense.

References
Hosein Azarbonyad, Azadeh Shakery, and Heshaam

Faili. 2013. Exploiting multiple translation re-
sources for english-persian cross language informa-
tion retrieval. In Proceedings of the Cross-Language
Evaluation Forum on Cross-Language Information
Retrieval and Evaluation, CLEF ’13, pages 93–99.

Lisa Ballesteros and W. Bruce Croft. 1996. Dictionary
methods for cross-lingual information retrieval. In
Proceedings of the 7th International DEXA Confer-
ence on Database and Expert Systems Applications,
pages 791–801.

Nicholas J. Belkin, Paul Kantor, Edward A. Fox, and
Joseph A. Shaw. 1995. Combining the evidence
of multiple query representations for information
retrieval. Information Processing & Management,
31(3):431–448, May.

Michael Bendersky, Donald Metzler, and W. Bruce
Croft. 2011. Parameterized concept weighting in
verbose queries. In Proceedings of the 34th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’11,
pages 605–614, New York, NY, USA. ACM.

Pierre-Yves Berger and Jacques Savoy. 2007. Se-
lecting automatically the best query translations. In
Large Scale Semantic Access to Content (Text, Im-
age, Video, and Sound), RIAO ’07, pages 287–300,
Paris, France, France. Le Centre de Hautes Etudes
Internationales D’Informatique Documentaire.

Martin Braschler. 2004. Combination approaches for
multilingual text retrieval. Information Retrieval,
7(1-2):183–204, January.

Peter F. Brown, Vincent J. Della Pietra, Stephen
A. Della Pietra, and Robert L. Mercer. 1993.
The mathematics of statistical machine translation:
parameter estimation. Computational Linguistics,
19(2):263–311.

Aitao Chen and Fredric C. Gey. 2004. Multilingual in-
formation retrieval using machine translation, rele-
vance feedback and decompounding. Inf. Retr., 7(1-
2):149–182, January.

W. Bruce Croft. 2000. Combining approaches to in-
formation retrieval. In W. Bruce Croft, editor, Ad-
vances in Information Retrieval, volume 7 of The
Information Retrieval Series, pages 1–36. Springer.

Kareem Darwish and Douglas W. Oard. 2003. Proba-
bilistic structured query methods. In Proceedings of
the 26th Annual International ACM SIGIR Confer-
ence on Research and Development in Informaion
Retrieval, SIGIR ’03, pages 338–344.

Edward A. Fox. 1983. Extending the Boolean
and Vector Space Models of Information Retrieval
with P-norm Queries and Multiple Concept Types.
Ph.D. thesis, Cornell University, Ithaca, NY, USA.
AAI8328584.

Fredric C. Gey, Hailing Jiang, Vivien Petras, and
Aitao Chen. 2001. Cross-language retrieval for
the clef collections - comparing multiple meth-
ods of retrieval. In Revised Papers from the
Workshop of Cross-Language Evaluation Forum on
Cross-Language Information Retrieval and Evalua-
tion, CLEF ’00, pages 116–128, London, UK, UK.
Springer-Verlag.

Benjamin Herbert, György Szarvas, and Iryna
Gurevych. 2011. Combining query transla-
tion techniques to improve cross-language informa-
tion retrieval. In Proceedings of the 33rd Euro-
pean Conference on Advances in Information Re-
trieval, ECIR’11, pages 712–715, Berlin, Heidel-
berg. Springer-Verlag.

Djoerd Hiemstra, Wessel Kraaij, Renée Pohlmann,
and Thijs Westerveld. 2001. Translation re-
sources, merging strategies, and relevance feedback
for cross-language information retrieval. In Revised
Papers from the Workshop of Cross-Language Eval-
uation Forum on Cross-Language Information Re-
trieval and Evaluation, CLEF ’00, pages 102–115,
London, UK, UK. Springer-Verlag.

598



David A. Hull and Gregory Grefenstette. 1996. Query-
ing across languages: a dictionary-based approach
to multilingual information retrieval. In Proceed-
ings of the 19th Annual International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’96, pages 49–57.

Kui-Lam Kwok. 1999. English-Chinese cross-
language retrieval based on a translation package.
In Workshop on Machine Translation for Cross Lan-
guage Information Retrieval, Machine Translation
Summit VII, pages 8–13.

Patrice Lopez and Laurent Romary. 2009. Patatras:
Retrieval model combination and regression mod-
els for prior art search. In Proceedings of the 10th
Cross-language Evaluation Forum Conference on
Multilingual Information Access Evaluation: Text
Retrieval Experiments, CLEF’09, pages 430–437,
Berlin, Heidelberg. Springer-Verlag.

Yanjun Ma, Jian-Yun Nie, Hua Wu, and Haifeng Wang.
2012. Opening machine translation black box for
cross-language information retrieval. In Information
Retrieval Technology, pages 467–476. Springer.

Walid Magdy and Gareth J. F. Jones. 2011. Should
MT systems be used as black boxes in CLIR? In
Proceedings of the 33rd European Conference on In-
formation Retrieval, ECIR ’11, pages 683–686.

Michael McGill, Matthew Koll, and Terry Noreault.
1979. An Evaluation of Factors Affecting Document
Ranking by Information Retrieval Systems. ERIC
reports. School of Information Studies, Syracuse
University.

Donald Metzler and W. Bruce Croft. 2005. A Markov
random field model for term dependencies. In Pro-
ceedings of the 28th Annual International ACM SI-
GIR Conference on Research and Development in
Information Retrieval, SIGIR ’05, pages 472–479.

Franz J. Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1):19–51.

Judea Pearl. 1988. Probabilistic Reasoning in In-
telligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.
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Abstract
A major challenge in document clustering re-
search arises from the growing amount of text
data written in different languages. Previ-
ous approaches depend on language-specific
solutions (e.g., bilingual dictionaries, sequen-
tial machine translation) to evaluate document
similarities, and the required transformations
may alter the original document semantics. To
cope with this issue we propose a new docu-
ment clustering approach for multilingual cor-
pora that (i) exploits a large-scale multilingual
knowledge base, (ii) takes advantage of the
multi-topic nature of the text documents, and
(iii) employs a tensor-based model to deal with
high dimensionality and sparseness. Results
have shown the significance of our approach
and its better performance w.r.t. classic docu-
ment clustering approaches, in both a balanced
and an unbalanced corpus evaluation.

1 Introduction
Document clustering research was initially focused on
the development of general purpose strategies to group
unstructured text data. Recent studies have started de-
veloping new methodologies and algorithms that take
into account both linguistic and topical characteristics,
where the former include the size of the text and the
type of language, and the latter focus on the commu-
nicative function and targets of the documents.

A major challenge in document clustering research
arises from the growing amount of text data that are
written in different languages, also due to the increased
popularity of a number of tools for collaboratively edit-
ing through contributors across the world. Multilingual
document clustering (MDC) aims to detect clusters in a
collection of texts written in different languages. This
can aid a variety of applications in cross-lingual infor-
mation retrieval, including statistical machine transla-
tion and corpora alignment.

Existing approaches to MDC can be divided in two
broad categories, depending on whether a parallel cor-
pus rather than a comparable corpus is used (Kumar et
al., 2011c). A parallel corpus is typically comprised
of documents with their related translations (Kim et
al., 2010). These translations are usually obtained

through machine translation techniques based on a se-
lected anchor language. Conversely, a comparable cor-
pus is a collection of multilingual documents written
over the same set of classes (Ni et al., 2011; Yo-
gatama and Tanaka-Ishii, 2009) without any restric-
tion about translation or perfect correspondence be-
tween documents. To mine this kind of corpus, external
knowledge is employed to map concepts or terms from
a language to another (Kumar et al., 2011c; Kumar
et al., 2011a), which enables the extraction of cross-
lingual document correlations. In this case, a major
issue lies in the definition of a cross-lingual similarity
measure that can fit the extracted cross-lingual correla-
tions. Also, from a semi-supervised perspective, other
works attempt to define must-link constraints to de-
tect cross-lingual clusters (Yogatama and Tanaka-Ishii,
2009). This implies that, for each different dataset, the
set of constraints needs to be redefined; in general, the
final results can be negatively affected by the quantity
and the quality of involved constraints (Davidson et al.,
2006).

To the best of our knowledge, existing clustering ap-
proaches for comparable corpora are customized for a
small set (two or three) of languages (Montalvo et al.,
2007). Most of them are not generalizable to many
languages as they employ bilingual dictionaries and
the translation is performed sequentially considering
only pairs of languages. Therefore, the order in which
this process is done can seriously impact the results.
Another common drawback concerns the way most
of the recent approaches perform their analysis: the
various languages are analyzed independently of each
other (possibly by exploiting external knowledge like
Wikipedia to enrich documents (Kumar et al., 2011c;
Kumar et al., 2011a)), and then the language-specific
results are merged. This two-step analysis however
may fail in profitably exploiting cross-language infor-
mation from the multilingual corpus.

Contributions. We address the problem of MDC
by proposing a framework that features three key ele-
ments, namely: (1) to model documents over a unified
conceptual space, with the support of a large-scale mul-
tilingual knowledge base; (2) to decompose the mul-
tilingual documents into topically-cohesive segments;
and (3) to describe the multilingual corpus under a
multi-dimensional data structure.
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The first key element prevents loss of information
due to the translation of documents from different lan-
guages to a target one. It enables a conceptual represen-
tation of the documents in a language-independent way
preserving the content semantics. BabelNet (Navigli
and Ponzetto, 2012a) is used as multilingual knowl-
edge base. To the extent of our knowledge, this is the
first work in MDC that exploits BabelNet.

The second key element, document segmentation,
enables us to simplify the document representation
according to their multi-topic nature. Previous re-
search has demonstrated that a segment-based ap-
proach can significantly improve document clustering
performance (Tagarelli and Karypis, 2013). More-
over, the conceptual representation of the document
segments enables the grouping of linguistically dif-
ferent (portions of) documents into topically coherent
clusters.

The latter aspect is leveraged by the third key ele-
ment of our proposal, which relies on a tensor-based
model (Kolda and Bader, 2009) to effectively handle
the high dimensionality and sparseness in text. Ten-
sors are considered as a multi-linear generalization of
matrix factorizations, since all dimensions or modes
are retained thanks to multi-linear structures which can
produce meaningful components. The applicability of
tensor analysis has recently attracted growing atten-
tion in information retrieval and data mining, including
document clustering (e.g., (Liu et al., 2011; Romeo
et al., 2013)) and cross-lingual information retrieval
(e.g., (Chew et al., 2007)).

The rest of the paper is organized as follows. Sec-
tion 2 provides an overview of BabelNet and basic no-
tions on tensors. We describe our proposal in Section 3.
Data and experimental settings are described in Sec-
tion 4, while results are presented in Section 5. We
summarize our main findings in Section 6, finally Sec-
tion 7 concludes the paper.

2 Background
2.1 BabelNet
BabelNet (Navigli and Ponzetto, 2012a) is a multilin-
gual semantic network obtained by linking Wikipedia
with WordNet, that is, the largest multilingual Web en-
cyclopedia and the most popular computational lex-
icon. The linking of the two knowledge bases was
performed through an automatic mapping of WordNet
synsets and Wikipages, harvesting multilingual lexi-
calization of the available concepts through human-
generated translations provided by the Wikipedia inter-
language links or through machine translation tech-
niques. The result is an encyclopedic dictionary con-
taining concepts and named entities lexicalized in 50
different languages.

Multilingual knowledge in BabelNet is represented
as a labeled directed graph in which nodes are concepts
or named entities and edges connect pairs of nodes
through a semantic relation. Each edge is labeled with a

relation type (is-a, part-of, etc.), while each node corre-
sponds to a BabelNet synset, i.e., a set of lexicalizations
of a concept in different languages.

BabelNet can be accessed and easily integrated into
applications by means of a Java API provided by the
toolkit described in (Navigli and Ponzetto, 2012b).
The toolkit also provides functionalities for graph-
based WSD in a multilingual context. Given an in-
put set of words, a semantic graph is built by looking
for related synset paths and by merging all them in a
unique graph. Once the semantic graph is built, the
graph nodes can be scored with a variety of algorithms.
Finally, this graph with scored nodes is used to rank the
input word senses by a graph-based approach.

2.2 Tensor model representation
A tensor is a multi-dimensional array T ∈
<I1×I2×···×IM . The number of dimensions M , also
known as ways or modes, is called order of the ten-
sor, so that a tensor with order M is also said a M -
way or M -order tensor. A higher-order tensor (i.e., a
tensor with order three or higher) is denoted by bold-
face calligraphic letters, e.g., T ; a matrix (2-way ten-
sor) is denoted by boldface capital letters, e.g., U;
a vector (1-way tensor) is denoted by boldface low-
ercase letters, e.g., v. The generic entry (i1, i2, i3)
of a third-order tensor T is denoted by ti1i2i3 , with
i1 ∈ [1..I1], i2 ∈ [1..I2], i3 ∈ [1..I3].

A one-dimensional fragment of tensor, defined by
varying one index and keeping the others fixed, is a
1-way tensor called fiber. A third-order tensor has
column, row and tube fibers. Analogously, a two-
dimensional fragment of tensor, defined by varying two
indices and keeping the rest fixed, is a 2-way tensor
called slice. A third-order tensor has horizontal, lateral
and frontal slices.

The mode-m matricization of a tensor T , denoted
by T(m), is obtained by arranging the mode-m fibers
as columns of a matrix. A third-order tensor T ∈
<I1×I2×I3 is all-orthogonal if

∑
i1i2

ti1i2αti1i2β =∑
i1i3

ti1αi3ti1βi3 =
∑
i2i3

tαi2i3tβi2i3 = 0 when-
ever α 6= β. The mode-m product of a tensor T ∈
<I1×I2×···×IM with a matrix U ∈ <J×Im , denoted by
T ×m U, is a tensor of dimension I1 × . . . Im−1 ×
J × Im+1 × · · · × IM and can be expressed in terms
of matrix product as Y = T ×m U, whose mode-m
matricization is Y(m) = UT(m).

3 Our Proposal

3.1 Multilingual Document Clustering
framework

We are given a collection of multilingual documents
D =

⋃L
l=1Dl, where each Dl = {dli}Nl

i=1 represents a
subset of documents written in the same language, with
N =

∑L
l=1Nl = |D|. Our framework can be applied

to any multilingual document collection regardless of
the languages, and can deal with balanced as well as
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Algorithm 1 SeMDocT (Segment-based MultiLingual
Document Clustering via Tensor Modeling)
Input: A collection of multilingual documents D, the num-

ber k of segment clusters, the number of tensorial com-
ponents r.

Output: A document clustering solution C over D.
1: Apply a text segmentation algorithm over each of the

documents inD to produce a collection of document seg-
ments S. /* Section 3.1.1 */

2: Represent S in either a bag-of-words (BoW) or a bag-of-
synsets (BoS) space. /* Section 3.1.2 */

3: Apply any document clustering algorithm on S to obtain
a segment clustering CS = {Csi }ki=1. /* Section 3.1.2 */

4: Represent CS in either a bag-of-words (BoW) or a bag-
of-synsets (BoS) space. /* Section 3.1.3 */

5: Model S as a third-order tensor T ∈ <I1×I2×I3 , with
I1 = |D|, I2 = |F|, and I3 = k. /* Section 3.1.4 */

6: Decompose the tensor using a Truncated HOSVD.
/* Section 3.1.4 */

7: Apply a document clustering algorithm on the mode-1
factor matrix to obtain the final clusters of documents
C = {Ci}Ki=1. /* Section 3.1.5 */

unbalanced corpora. Therefore, no restriction is given
on both the number L of languages and the distribution
of documents over the languages (i.e., Ni Q Nj , with
i, j = 1..L, i 6= j).

Real-world documents often span multiple topics.
We assume that each document in D is relatively long
to be comprised of smaller textual units, or segments,
each of which can be considered cohesive w.r.t. a topic
over the document. This represents a key aspect in
our framework as it enables the use of a tensor model
to conveniently address the multi-faceted nature of the
documents.

Our overall framework, named SeMDocT (Segment-
based MultiLingual Document Clustering via Tensor
Modeling), is shown in Algorithm 1. In the following,
we shall describe in details each of the steps involved
in SeMDocT.

3.1.1 Computing within-document segments

Text segmentation is concerned with the fragmentation
of an input text into multi-paragraph, contiguous and
disjoint blocks that represent subtopics. Regardless of
the presence of logical structure clues in the document,
linguistic criteria (Beeferman et al., 1999) and statis-
tical similarity measures (Hearst, 1997; Choi et al.,
2001; Cristianini et al., 2001) have been mainly used to
detect subtopic boundaries between segments. A com-
mon assumption is that terms that discuss a subtopic
tend to co-occur locally, and a switch to a new subtopic
is detected by the ending of co-occurrence of a given
set of terms and the beginning of the co-occurrence of
another set of terms.

Our SeMDocT does not depend on a specific algo-
rithmic choice to perform text segmentation; in this
work, we refer to the classic TextTiling (Hearst, 1997),
which is the exemplary similarity-block-based method
for text segmentation.

3.1.2 Inducing document segment clusters
The result of the previous step is a collection of doc-
ument segments, henceforth denoted as S. Each seg-
ment in S is represented as a vector of feature oc-
currences, where a feature can be either lexical or se-
mantic. This corresponds to two alternative represen-
tation models: the standard bag-of-words (henceforth
BoW), whereby features correspond to lemmatized,
non-stopword terms, and the obtained feature space
results from the union of the vocabularies of the dif-
ferent languages; and bag-of-synsets (henceforth BoS),
whereby features correspond to BabelNet synsets. We
shall devote Section 3.2 to a detailed description of our
proposed BoS representation.

The segment collection S is given in input to a doc-
ument clustering algorithm to produce a clustering of
the segments CS = {Csi }ki=1. The obtained clusters
of segments can be disjoint or overlapping. Again, our
SeMDocT is parametric to the clustering algorithm as
well; here, we resort to a state-of-the-art clustering al-
gorithm, namely Bisecting K-Means (Steinbach et al.,
2000), which is widely known to produce high-quality
(hard) clustering solutions in high-dimensional, large
datasets (Zhao and Karypis, 2004). Note however
that it requires as input the number of clusters. To
cope with this issue, we adopt the method described
in (Salvador and Chan, 2004), which explores how the
within-cluster cohesion changes by varying the number
of clusters. The number of clusters for which the slope
of the plot changes drastically is chosen as a suitable
value for the clustering algorithm.

3.1.3 Segment-cluster based representation
Upon the segment clustering, each document is repre-
sented by its segments assigned to possibly multiple
segment clusters. Therefore, we derive a document-
feature matrix for each of the k segment clusters. The
features correspond either to the BoW or BoS model,
according to the choice made for the segment represen-
tation.

Let us denote with F the feature space for all seg-
ments in S. Given a segment cluster Cs, the cor-
responding document-feature matrix is constructed as
follows. The representation of each document d ∈ D
w.r.t. Cs is a vector of length |F| that results from the
sum of the feature vectors of the d’s segments belong-
ing to Cs. Moreover, in order to weight the appearance
of a document in a cluster based on its segment-based
portion covered in the cluster, the document vector of d
w.r.t. Cs is finally obtained by multiplying the sum of
the segment-vectors by a scalar representing the portion
of d’s features that appear in the segments belonging to
Cs. The document-feature matrix of Cs resulting from
the previous step is finally normalized by column.

3.1.4 Tensor model and decomposition
The document-feature matrices corresponding to the k
segment-clusters are used to form a third-order tensor.
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Figure 1: The third-order tensor model for the repre-
sentation of a multilingual document collection based
on segment clusters.

Our third-order tensor model is built by arranging
as frontal slices the k segment-cluster matrices. The
resulting tensor will be of the form T ∈ <I1×I2×I3 ,
with I1 = |D|, I2 = |F|, and I3 = k. The proposed
tensor model is sketched in Fig. 1.

The resulting tensor is decomposed through a Trun-
cated Higher Order SVD (T-HOSVD) (Lathauwer et
al., 2000) in order to obtain a low-dimensional rep-
resentation of the segment-cluster-based representation
of the document collection. The T-HOSVD can be con-
sidered as an extension of the Truncated Singular Value
Decomposition (T-SVD) to the case of three or more
dimensions. For a third-order tensor T ∈ <I1×I2×I3
the T-HOSVD is expressed as

T ≈ X ×1 U(1) ×2 U(2) ×3 U(3)

where U(m) = [u(m)
1 u(m)

2 . . .u(m)
rm ] ∈ <Im×rm (m =

1, 2, 3) are orthogonal matrices, rm � Im, and the core
tensor X ∈ <r1×r2×r3 is an all-orthogonal and ordered
tensor. T-HOSVD can be computed in two steps:

1. For m ∈ {1, 2, 3}, compute the unfolded ma-
trices T(m) from T and related standard SVD:
T(m) = U(m)S(m)V(m). The orthogonal matrix
U(m) contains the leading left singular vectors of
T(m).

2. Compute the core tensor X using the inversion
formula: X = T ×1 U(1)T ×2 U(2)T ×3 U(3)T .

Note that, since T-HOSVD is computed by means of
3 standard matrix T-SVDs, its computational cost can
be reduced by using fast and efficient SVD algorithms.
Moreover, the ability of T-HOSVD in effectively cap-
turing the variation in each of the modes independently
from the other ones, is particularly important to alle-
viate the problem of concentration of distances, thus
making T-HOSVD well-suited to clustering purposes.
In this work, in order to obtain a final clustering so-
lution of the documents, we will consider the mode-1
factor matrix U(1) of the T-HOSVD.

3.1.5 Document clustering
The mode-1 factor matrix is provided in input to a clus-
tering method to obtain a final organization of the doc-
uments into K clusters, i.e., C = {Ci}Ki=1. Note that
there is no principled relation between the numberK of
final document clusters and k. However, K is expected
to reflect the number of topics of interest for the docu-
ment collection. Also, possibly but not necessarily, the
same clustering algorithm used for the segment cluster-
ing step (i.e., Bisecting K-Means) can be employed for
this step.

3.2 Bag-of-synset representation
In the BoS model, our objective is to represent the doc-
ument segments in a conceptual feature space instead
of the traditional term space. Since we deal with mul-
tilingual documents, this task clearly relies on the mul-
tilingual lexical knowledge base functionalities of Ba-
belNet. Conceptual features will hence correspond to
BabelNet synsets.

The segment collection S is subject to a two-step
processing phase. In the first step, each segment is
broken down into a set of lemmatized and POS-tagged
sentences, in which each word is replaced with re-
lated lemma and associated POS-tag. Let us denote
with 〈w,POS(w)〉 a lemma and associated POS-tag
occurring in any sentence sen of the segment. In the
second step, a WSD method is applied to each pair
〈w,POS(w)〉 to detect the most appropriate Babel-
Net synset σw for 〈w,POS(w)〉 contextually to sen.
The WSD algorithm is carried out in such a way that
all words from all languages are disambiguated over
the same concept inventory, producing a language-
independent feature space for the whole multilingual
corpus. Each segment is finally modeled as a |BS|-
dimensional vector of BabelNet synset frequencies, be-
ing BS the set of retrieved BabelNet synsets.

As previously discussed in Section 2.1, BabelNet
provides WSD algorithms for multilingual corpora.
More specifically, the authors in (Navigli and Ponzetto,
2012b) suggest to use the Degree algorithm (Navigli
and Lapata, 2010), as it showed to yield highly com-
petitive performance in a multilingual context as well.
Note that the Degree algorithm, given a semantic graph
for the input context, simply selects the sense of the tar-
get word with the highest vertex degree. Clearly, other
graph-based methods for (unsupervised) WSD, partic-
ularly PageRank-style methods (e.g., (Mihalcea et al.,
2004; Agirre and Soroa, 2009; Yeh et al., 2009; Tsat-
saronis et al., 2010)), can be plugged in to address the
multilingual WSD task based on BabelNet. An investi-
gation of the performance of existing WSD algorithms
for a multilingual context is however out of the scope
of this paper.

4 Evaluation Methodology
In order to evaluate our proposal we need a multilin-
gual comparable document collection with annotated
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RCV2 Topics English French Italian
Balanced Corpus

C15 - PERFORMANCE 850 850 850
C18 - OWNERSHIP CHANGES 850 850 850

E11 - ECONOMIC PERFORMANCE 850 850 850
E12 - MONETARY/ECONOMIC 850 850 850

M11 - EQUITY MARKETS 850 850 850
M13 - MONEY MARKETS 850 850 850

Total 5 100 5 100 5 100
Unbalanced Corpus

C15 - PERFORMANCE 850 850 0
C18 - OWNERSHIP CHANGES 850 850 0

E11 - ECONOMIC PERFORMANCE 0 850 850
E12 - MONETARY/ECONOMIC 850 0 850

M11 - EQUITY MARKETS 0 850 850
M13 - MONEY MARKETS 850 0 850

Total 3 400 3 400 3 400

Table 1: Number of documents for each topic and lan-
guage.

Statistics Balanced Corpus Unbalanced Corpus
# of docs 15 300 10 200

# of terms 58 825 44 535
# of synsets 16 395 14 339

BoW Density 1.5E-3 2.0E-3
BoS Density 2.6E-3 3.1E-3

Table 2: Main characteristics of the corpora.

topics. For this reason, we used Reuters Corpus Volume
2 (RCV2), a multilingual corpus containing news arti-
cles in thirteen language.1 In the following, we present
the corpus characteristics and competing methods used
in our analysis.

4.1 Data preparation

We consider a subset of the RCV2 corpus correspond-
ing to three languages: English, French and Italian.
It covers six different topics, i.e., different labels of
the RCV2 TOPICS field. Topics are chosen accord-
ing with their coverage in the different languages.
The language-specific documents were lemmatized and
POS-tagged through the Freeling library (Padró and
Stanilovsky, 2012) in order to obtain a suitable rep-
resentation for the WSD process.

To assess the robustness of our proposal, we de-
sign two different scenarios. The first (Balanced Cor-
pus) is characterized by a completely balanced dataset.
Each language covers all topics and for each pair lan-
guage/topic the same number of documents is selected.
The second scenario corresponds to an Unbalanced
Corpus. Starting from the balanced corpus, we re-
moved for each topic all the documents belonging to
one language. In this way, we obtained a corpus in
which each topic is covered by only two of the three
languages.

Main characteristics of both evaluation corpora are
reported in Table 1 and Table 2. In the latter table,
we report the number of documents, number of terms,
number of synsets and the dataset density for both
representations. To quantify the density of each cor-

1http://trec.nist.gov/data/reuters/reuters.html

RCV2 Topics English French Italian
C15 - PERFORMANCE 3.41 3.67 3.27

C18 - OWNERSHIP CHANGES 3.20 3.32 2.40
E11 - ECONOMIC PERFORMANCE 4.89 3.17 2.07

E12 - MONETARY/ECONOMIC 5.22 3.69 2.05
M11 - EQUITY MARKETS 4.29 2.94 2.15
M13 - MONEY MARKETS 3.31 3.12 2.10

Table 3: Average number of document segments, for
each topic and language.

English French Italian
RCV2 avg BoS avg BoW avg BoS avg BoW avg BoS avg BoW
Topics seg. leng. seg. leng. seg. leng. seg. leng. seg. leng. seg. leng.

C15 21.76 36.32 11.54 34.92 10.58 37.75
C18 20.94 36.87 10.94 35.62 11.24 41.20
E11 22.90 37.24 11.47 34.73 11.96 38.60
E12 22.70 37.70 11.50 37.44 12.59 43.63

M11 22.04 36.83 10.91 32.76 11.57 42.39
M13 22.22 36.97 11.34 34.75 11.72 39.36

Table 4: Average length of document segment in the
BoW and BoS spaces, for each topic and language.

pus/representation combination, we counted the non-
zero entries of the induced document-synset matrix (al-
ternatively, document-term matrix) and we divided this
value by the size of such matrix. This number pro-
vides an estimate about the density/sparseness of each
dataset. Lower values indicate more sparse data. We
can note that BoS model yields more dense datasets for
both Balanced Corpus and Unbalanced Corpus.

As our proposal explicitly models document seg-
ments, we also report statistics, considering both topics
and languages, related to the average number of seg-
ments per document (Table 3), and the average length
of segments per document (Table 4). The latter statistic
is computed separately for BoW and BoS representa-
tions. We made this distinction because a term cannot
have a mapping to a synset, or it can be mapped to more
than one synset in the BoS space during the WSD pro-
cess (Section 3.2).

Looking at the average number of segments per doc-
ument in Table 3, it can be noted that English docu-
ments contain, for all topics, a larger number of seg-
ments. This means that English documents are gener-
ally richer than the ones in the other languages. Ital-
ian language corresponds to the smallest documents,
each of them containing between 2 and 3.2 segments
on average. A sharper difference appears in the MONE-
TARY/ECONOMIC topic for which English documents
contain 5.2 segments, while the Italian ones are com-
posed, on average, by only 2 segments.

Table 4 shows the average length of segments per
document for both space representations. Generally,
segments in the BoS representation are smaller than the
corresponding segments in the BoW space. More in de-
tail, if we consider the ratio between the segment length
in BoS and the one in BoW, this ratio is around 2/3 for
the English language, while for both French and Ital-
ian it varies between 1/4 and 1/3. This disequilibrium
is induced by the multilingual concept coverage of Ba-
belNet, as stated by its authors (Navigli and Ponzetto,
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2012a), (Navigli and Ponzetto, 2012b). In particular,
the WSD process tightly depends from the concept cov-
erage supplied from the language-specific knowledge
base.

4.2 Competing methods and settings
We compare our SeMDocT with two standard ap-
proaches, namely Bisecting K-Means (Steinbach et al.,
2000), and Latent Semantic Analysis (LSA)-based doc-
ument clustering (for short, LSA). Given a number K
of desired clusters, Bisecting K-Means produces a K-
way clustering solution by performing a sequence of
K-1 repeated bisections based on standard K-Means
algorithm. This process continues until the number K
of clusters is found. LSA performs a decomposition of
the document collection matrix through Singular Value
Decomposition in order to extract a more concise and
descriptive representation of the documents. After this
step, Bisecting K-Means is applied over the new docu-
ment space to get the final document clustering.

All the three methods, SeMDocT, Bisecting K-
Means and LSA are coupled with either BoS or BoW
representation models. The comparison between BoS
and BoW representations allows us to evaluate the
presumed benefits that can be derived by exploiting
synsets instead of terms for the multilingual document
clustering task.

Both SeMDocT and LSA require the number of com-
ponents as input; as concerns specifically SeMDocT,
we varied r1 (cf. Section 3.1.4) from 2 to 30, with in-
crements of 2. To determine the number of segment
clusters k, we employed an automatic way as discussed
in Section 3.1.2. By varying k from 2 to 40, for Bal-
anced Corpus and Unbalanced Corpus, respectively,
the values of k obtained were 22 and 23 under BoS,
and 25 and 11 under BoW.

As concerns the step of text segmentation, TextTiling
requires the setting of some interdependent parameters,
particularly the size of the text unit to be compared and
the number of words in a token sequence. We used the
setting suggested in (Hearst, 1997) and also confirmed
in (Tagarelli and Karypis, 2013), i.e., 10 for the text
unit size and 20 for the token-sequence size.

4.3 Assessment criteria
Performance of the different methods are evaluated us-
ing two standard clustering validation criteria, namely
F-Measure and Rand Index.

Given a document collection D, let Γ = {Γj}Hj=1

and C = {Ci}Ki=1 denote a reference classification
and a clustering solution for D, respectively. The lo-
cal precision and the local recall of a cluster Ci w.r.t.
a class Γj are defined as Pij = |Ci ∩ Γj |/|Ci| and
Rij = |Ci ∩Γj |/|Γj |, respectively. F-Measure (FM) is
computed as follows (Steinbach et al., 2000):

F =
H∑
j=1

|Γj |
|D| maxi=1...K{Fij}

where Fij = 2PijRij/(Pij +Rij).
Rand Index (RI) (Rand, 1971) measures the percent-

age of decisions that are correct, penalizing false pos-
itive and false negative decisions during clustering. It
takes into account the following quantities: TP, i.e., the
number of pairs of documents that are in the same clus-
ter in C and in the same class in Γ; TN, i.e., the number
of pairs of documents that are in different clusters in
C and in different classes in Γ; FN, i.e., the number of
pairs of documents that are in different clusters in C and
in the same class in Γ; and FP, i.e., the number of pairs
of documents that are in the same cluster in C and in
different classes in Γ. Rand Index is hence defined as:

RI =
TP + TN

TP + TN + FP + FN

Note that for each method, results were averaged
over 30 runs and the number of final document clusters
K was set equal to the number of topics in the docu-
ment collection (i.e., 6).

5 Results

We present here our main experimental results. We first
provide a comparative evaluation of our SeMDocT with
the competing methods, on both balanced and unbal-
anced corpus evaluation cases. Then we provide a per
language analysis focusing on SeMDocT.

5.1 Evaluation with competing methods

Evaluation on balanced corpus. Figure 2 shows FM
and RI results obtained by the various methods coupled
with the two document representations on the Balanced
Corpus. Several remarks stand out. First, the BoS
space positively influences the performance of all the
employed approaches. This is particularly evident for
Bisecting K-Means and LSA that clearly benefit from
this kind of representation. The former almost doubles
its performance in terms of FM and significantly im-
proves its result w.r.t. RI. LSA shows improvements
in both cases. SeMDocT-BoS generally outperforms
all the competitors for both FM and RI when the num-
ber of components is greater than 16. Note that, under
the BoW model, SeMDocT-BoW still outperforms the
other methods.

Evaluation on unbalanced corpus. Figure 3 reports
results for the Unbalanced Corpus. Also in this eval-
uation, the best performances for all the methods are
reached using the BoS representation. SeMDocT-BoS
shows similar behavior according to the two measures.
It always outperforms the competitors considering a
number of components greater than or equal to 12.
More precisely, SeMDocT-BoW obtains a gain of 0.047
and 0.103 in terms of FM and 0.006 and 0.058 in
terms of RI, w.r.t. LSA-BoW and Bisecting K-Means-
BoW, respectively. Similarly, SeMDocT-BoS obtains
improvements of 0.05 in terms of FM w.r.t. both BoS
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Figure 2: Average F-Measure (a) and Rand Index (b)
on the Balanced Corpus using BoW and BoS document
representation and varying the number of components
for both SeMDocT and LSA.

competitors, while in terms of RI the differences in per-
formance are 0.012 and 0.019 for LSA-BoS and Bisect-
ing K-Means-BoS, respectively.

5.2 Per language evaluation of SeMDocT-BoS

Starting from the clustering solutions produced by
SeMDocT-BoS in both balanced and unbalanced cases,
for each language we extracted a language-specific pro-
jection of the clustering. After that, we computed the
clustering validation criteria according to language spe-
cific solutions to quantify how well the clustering result
fits each specific language. The results of this experi-
ment are reported in Fig. 4 and Fig. 5.

On the Balanced Corpus, SeMDocT-BoS shows
comparable performance for English and French docu-
ments, while it behaves slightly worse for Italian texts.
This trend is highlighted for both clustering evaluation
criteria. Inspecting the results for the Unbalanced Cor-
pus, we observe a different trend. Results obtained for
the English texts are generally better than the results
for the French and Italian documents. For this bench-
mark, SeMDocT-BoS obtains similar results for docu-
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Figure 3: Average F-Measure (a) and Rand Index (b)
on the Unbalanced Corpus using BoW and BoS docu-
ment representation and varying the number of compo-
nents for both SeMDocT and LSA.

BoW BoS avg # synsets
Dataset Language size size per term (β)

Balanced
English 29 999 12 065 0.4021
French 17 826 5 310 0.2978
Italian 16 951 4 471 0.2637

Unbalanced
English 19 432 10 387 0.5345
French 14 439 4 431 0.3068
Italian 14 743 4 012 0.2721

Table 5: Statistics by language.

ments written in French and in Italian.
We gained an insight into the above discussed perfor-

mance behaviors by computing some additional statis-
tics that we report in Table 5: for each language and
each dataset, the size of the term and synset dictionar-
ies and the average number of synsets per lemma (β)
we retrieved through BabelNet according to the related
corpus. More in detail, β is the ratio between the BoS
and the BoW dictionaries. This quantity roughly eval-
uates how many synsets are produced per term during
the multilingual WSD process (Section 3.2). As we can
observe, this value is always smaller than one, which
means that not all the terms have a corresponding map-
ping to a synset. The β ratio can explain the discrep-
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Figure 4: Average F-Measure (a) and Rand Index (b)
for language specific solutions on the Balanced Corpus
obtained by SeMDocT-BoS.

ancy in (language-specific) performances in the two
scenarios. In particular, the difference in the β statis-
tic between English and the other languages is more
evident for the Unbalanced Corpus (i.e., 0.23 between
English and French), while it is lower for the Balanced
Corpus (around 0.1). The relatively large gap in β be-
tween the first and the second language (respectively,
English and French) for the Unbalanced Corpus re-
duces the relative gap between the second and the third
languages (respectively, French and Italian) while this
trend is less marked for the Balanced Corpus as β range
is narrower. In summary, we can state that our frame-
work works well if BabelNet knowledge base provides
a good coverage of the terms in the analyzed language.
Experimental evidence shows that, if this condition is
met, SeMDocT-BoS provides better clustering results
w.r.t. the competing approaches.

5.3 Runtime of tensor decomposition

As previously discussed, T-HOSVD of a third-order
tensor can be computed through three standard SVDs.
Furthermore, for clustering purposes, we considered
only the mode-1 factor matrix of the decomposition.

●

●

●

●

●

●
●

● ● ●

●

●

● ●

●

2 6 10 14 18 22 26 30

0.4

0.5

0.6

0.7

0.8

no. of components

F
−

m
ea

su
re

● English
French

Italian

(a)

●

●

●

● ●

● ● ● ● ●
●

●

● ●

●

2 6 10 14 18 22 26 30

0.4

0.5

0.6

0.7

0.8

no. of components

R
an

d 
in

de
x

● English
French

Italian

(b)

Figure 5: Average F-Measure (a) and Rand Index (b)
for language specific solutions on the Unbalanced Cor-
pus obtained by SeMDocT-BoS.

To compute the SVD, we used the svds() function of
MATLAB R2012b, which is based on an iterative algo-
rithm.2 Experiments were carried out on an Intel Core
I7-3610QM platform with 16GB DDR RAM.

Figure 6 shows the execution time of the SVD over
the mode-1 matricization of our tensor for the Balanced
Corpus, by varying the number of components, for both
BoW and BoS representation models. As it can be ob-
served, in both cases the runtime is linear in the number
of components. However, the SVD computation in the
BoS setting is one order of magnitude faster than time
performance in the BoW setting. This is mainly due to
a large difference in size between the feature spaces of
BoW and BoS (cf. Table 2), since the selected num-
ber of segment clusters (k) was nearly the same (25 for
BoW, and 22 for BoS). Therefore, by providing a more
compact feature space, BoS clearly allows for a much
less expensive SVD computation for our tensor decom-
position.

2http://www.mathworks.it/it/help/matlab/ref/svds.html
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Figure 6: Time performance of SVD over the mode-1
matricization of the Balanced Corpus tensor.

6 Discussion

Our work paves the way for the use of a multilingual
knowledge base to deal with the multilingual document
clustering task. Here we sum up our main findings.

SeMDocT vs. LSA. LSA achieved its best results
for a number of components generally smaller than the
one for which SeMDocT obtained its maximum. This
is due to the initial information that the two methods
summarize. LSA tries to capture the variation of the
initial document-term (alternatively, document-synset)
matrix representing the texts in a lower space, whereas
SeMDocT does the same starting from a richer repre-
sentation of the documents (i.e., a third-order tensor
model). For this reason, SeMDocT tends to employ
relatively more components in order to summarize the
documents content; however, a number of components
between 16 and 30 is generally enough to ensure good
performance of SeMDocT. Moreover, in most cases,
the highest performance results by SeMDocT are better
than the highest performances of LSA.

BoS vs. BoW. Our results have highlighted the
better quality in multilingual clustering supplied by
synsets compared with the one provided by terms. BoS
produces a smaller representation space over which
documents are projected, but it is enough rich to well
capture the documents content. In particular, BoS ben-
efits from the WSD process that is able to discriminate
the same term w.r.t. the context in which it appears.

BabelNet. BabelNet is a recent project that supports
many different languages. As the intention of the au-
thors is to enrich this resource, in the future our frame-
work will benefit of this fact. Moreover, our framework
can deal with documents written in many different lan-
guages as they are represented through the same space;
the only constraint is related to the available language
support in BabelNet. On the other hand, we point out
that any other multilingual knowledge base and WSD
tools can in principle be integrated in our framework.

7 Conclusion
In this paper we proposed a new approach for multi-
lingual document clustering. Our key idea lies in the
combination of a tensor-based model with a bag-of-
synsets description, which enables a common space to
project multilingual document collections. We evalu-
ated our approach w.r.t. standard document clustering
methods, using both term and synset representations.
Results have shown the benefits deriving from the use
of a multilingual knowledge base in the analysis of
comparable corpora, and also shown the significance
of our approach in both a balanced and an unbalanced
corpus evaluation. Our tensor-based representation of
topically-segmented multilingual documents can also
be applied to cross-lingual information retrieval or mul-
tilingual document categorization.
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Abstract

In this paper we examine the lexical substitu-
tion task for the medical domain. We adapt
the current best system from the open domain,
which trains a single classifier for all instances
using delexicalized features. We show sig-
nificant improvements over a strong baseline
coming from a distributional thesaurus (DT).
Whereas in the open domain system, features
derived from WordNet show only slight im-
provements, we show that its counterpart for
the medical domain (UMLS) shows a signif-
icant additional benefit when used for feature
generation.

1 Introduction
The task of lexical substitution (McCarthy and Navigli,
2009) deals with the substitution of a target term within
a sentence with words having the same meaning. Thus,
the task divides into two subtasks:

• Identification of substitution candidates, i.e.
terms that are, for some contexts, substitutable for
a given target term.

• Ranking the substitution candidates according to
their context

Such a substitution system can help for semantic text
similarity (Bär et al., 2012), textual entailment (Dagan
et al., 2013) or plagiarism detection (Chong and Specia,
2011).

Datasets provided by McCarthy and Navigli (2009)
and Biemann (2012) offer manually annotated substi-
tutes for a given set of target words within a context
(sentence). Contrary to these two datasets in Kremer et
al. (2014) a dataset is offered where all words have are
annotated with substitutes. All the datasets are suited
for the open domain.

But a system performing lexical substitution is not
only of interest for the open domain, but also for the
medical domain. Such a system could then be applied
to medical word sense disambiguation, entailment or
question answering tasks. Here we introduce a new
dataset and adapt the lexical substitution system, pro-
vided by Szarvas et al. (2013), to the medical domain.
Additionally, we do not make use of WordNet (Miller,

1995) to provide similar terms, but rather employ a Dis-
tributional Thesaurus (DT), computed on medical texts.

2 Related Work

For the general domain, the lexical substitution task
was initiated by a Semeval-2007 Task (McCarthy and
Navigli, 2009). This task was won by an unsupervised
method (Giuliano et al., 2007), which uses WordNet for
the substitution candidate generation and then relies on
the Google Web1T n-grams (Brants and Franz, 2006)1

to rank the substitutes.
The currently best system, to our knowledge, is pro-

posed by Szarvas et al. (2013). This is a supervised ap-
proach, where a single classifier is trained using delex-
icalized features for all substitutes and can thus be ap-
plied even to previously unseen substitutes. Although
there have been many approaches for solving the task
for the general domain, only slight effort has been done
in adapting it to different domains.

3 Method

To perform lexical substitution, we follow the delex-
icalization framework of Szarvas et al. (2013). We
automatically build Distributional Thesauri (DTs) for
the medical domain and use features from the Uni-
fied Medical Language System (UMLS) ontology. The
dataset for supervised lexical substitution consists of
sentences, containing an annotated target word t. Con-
sidering the sentence being the context for the target
word, the target word might have different meanings.
Thus annotated substitute candidates sg1 . . . sgn ∈ sg ,
need to be provided for each context. The negative ex-
amples are substitute candidates that either are incor-
rect for the target word, do not fit into the context or
both. We will refer to these substitutes as false substi-
tute candidates sf1 . . . sfm ∈ sf with sf ∩ sg = ∅.

For the generation of substitute candidates we do not
use WordNet, as done in previous works (Szarvas et al.,
2013), but use only substitutes from a DT. To train a
single classifier, features that distinguishing the mean-
ing of words in different context need to be considered.
Such features could be e.g. n-grams, features from dis-
tributional semantics or features which are extracted

1http://catalog.ldc.upenn.edu/
LDC2006T13

610



relative to the target word, such as the ratio between
frequencies of the substitute candidate and the target
word. After training, we apply the algorithm to un-
seen substitute candidates and rank them according to
their positive probabilities, given by the classifier. Con-
trary to Szarvas et al. (2013), we do not use any weight-
ing in the training if a substitute has been supplied by
many annotators, as we could not observe any improve-
ments. Additionally, we use logistic regression (Fan et
al., 2008) as classifier2.

4 Resources

For the substitutes and for the generation of delexical-
ized features, we rely on DTs, the UMLS and Google
Web1T.

4.1 Distributional thesauri (DTs)

We computed two different DTs using the framework
proposed in Biemann and Riedl (2013)3.

The first DT is computed based on Medline4 ab-
stracts. This thesaurus uses the left and the right word
as context features. To include multi-word expressions,
we allow the number of tokens that form a term to be
up to the length of three.

The second DT is based on dependencies as context
features from a English Slot Grammar (ESG) parser
(McCord et al., 2012) modified to handle medical data.
The ESG parser is also capable of finding multi-word
expressions. As input data we use 3.3 GB of texts
from medical textbooks, encyclopedias and clinical ref-
erence material as well as selected journals. This DT is
also used for the generation of candidates supplied to
annotators when creating the gold standard and there-
fore is the main resource to provide substitute candi-
dates.

4.2 UMLS

The Unified Medical Language System (UMLS) is an
ontology for the medical domain. In contrast to Szarvas
et al. (2013), which uses WordNet (Miller, 1995) to
generate substitute candidates and also for generating
features, we use UMLS solely for feature generation.

4.3 Google Web1T

We use the Google Web1T to generate n-gram features
as we expect this open domain resource to have consid-
erable coverage for most specific domains as well. For
accessing the resource, we use JWeb1T5 (Giuliano et
al., 2007).

2We use a Java port of LIBLINEAR (http://www.
csie.ntu.edu.tw/˜cjlin/liblinear/) available
from http://liblinear.bwaldvogel.de/

3We use Lexicographer’s Mutual Information (LMI) (Ev-
ert, 2005) as significance measure and consider only the top
1000 (p = 1000) features per term.

4http://www.nlm.nih.gov/bsd/licensee/
2014_stats/baseline_med_filecount.html

5https://code.google.com/p/jweb1t/

5 Lexical Substitution dataset
Besides the lexical substitution data sets for the open
domain (McCarthy and Navigli, 2009; Biemann, 2012;
Kremer et al., 2014) there is no dataset available that
can be used for the medical domain. Therefore, we
constructed an annotation task for the medical domain
using a medical corpus and domain experts.

In order to provide the annotators with a clear task,
we presented a question, and a passage that contains
the correct answer to the question. We restricted this to
a subset of passages that were previously annotated as
justifying the answer to the question. This is related to
a textual entailment task, essentially the passage entails
the question with the answer substituted for the focus of
the question. We instructed the annotators to first iden-
tify the terms that were relevant for the entailment rela-
tion. For each relevant term we randomly extracted 10
terms from the ESG-based DT within the top 100 most
similar terms. Using this list of distributionally similar
terms, the annotators selected those terms that would
preserve the entailment relation if substituted. This re-
sulted in a dataset of 699 target terms with substitutes.
On average from the 10 terms 0.846 are annotated as
correct substitutes. Thus, the remaining terms can be
used as false substitute candidates.

The agreement on this task by Fleiss Kappa was
0.551 indicating “moderate agreement” (Landis and
Koch, 1977). On the metric of pairwise agreement,
as defined in the SemEval lexical substitution task, we
achieve 0.627. This number is not directly comparable
to the pairwise agreement score of 0.277 for the Se-
mEval lexical substitution task (McCarthy and Navigli,
2009) since in our task the candidates are given. How-
ever, it shows promise that subjectivity may be reduced
by casting lexical substitution into a task of maintain-
ing entailment.

6 Evaluation
For the evaluation we use a ten-fold cross validation
and report P@1 (also called Average Precision (AP) at
1) and Mean Average Precision (MAP) (Buckley and
Voorhees, 2004) scores. The P@1 score indicates how
often the first substitute of the system matches the gold
standard. The MAP score is the mean of all AP from 1
to the number of all substitutes.

• Google Web 1T:
We use the same Google n-gram features, as
used in Giuliano et al. (2007) and Szarvas et al.
(2013). These are frequencies of n-grams formed
by the substitute candidate si and the left and right
words, taken from the context sentence, normal-
ized by the frequency of the same context n-gram
with the target term t. Additionally, we add the
same features, normalized by the frequency sum
of all n-grams of the substitute candidates. An-
other feature is generated using the frequencies
where t and s are listed together using the words
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and, or and ”,” as separator and also add the left
and right words of that phrase as context. Then we
normalize this frequency by the frequency of the
context occurring only with t.

• DT features:
To characterize if t and si have similar words
in common, and therefore are similar, we com-
pute the percentage of words their thesauri en-
tries share, considering the top n words in each
entry with n = 1, 5, 20, 50, 100, 200. During
the DT calculation we also calculate the signif-
icances between each word and its context fea-
tures (see Section 4.1). Using this information,
we compute if the words in the sentences also
occur as context features for the substitute can-
didate. A third feature group relying on DTs
is created by the overlapping context features
for the top m entries of t and si with m =
1, 5, 20, 50, 100, 1000, which are ranked regard-
ing their significance score. Whereas, the simi-
larities between the trigram-based and the ESG-
based DT are similar, the context features are dif-
ferent. Both feature types can be applied to the
two DTs. Additionally, we extract the thesaurus
entry for the target word t and generate a feature
indicating whether the substitute si is within the
top k entries with k = 1, 5, 10, 20, 100 entries6.

• Part-of-speech n-grams:
To identify the context of the word we use the
POS-tag (only the first letter) of si and t as feature
and POS-tag combinations of up to three neigh-
boring words.

• UMLS:
Considering UMLS we look up all concept unique
identifiers (CUIs) for si and t. The first two fea-
tures are the number of CUIs for si and t. The next
features compute the number of CUIs that si and t
share, starting from the minimal to the maximum
number of CUIs. Additionally, we use a feature
indicating that si and t do not share any CUI.

6.1 Substitute candidates

The candidates for the substitution are taken from the
ESG based DT. For each target term we use the gold
substitute candidates as correct instances and add all
possible substitutes for the same target term occurring
in a different context and do not have been annotated
as valid in the present context as false instances.

7 Results

Running the experiment, we get the results as shown
in Table 1. As baseline system we use the ranking of

6Whereas in Szarvas et al. (2013) only k = 100 is used,
we gained an improvement in performance when also adding
smaller values of k.

the ESG-based DT. As can be seen, the baseline is al-
ready quite high, which can be attributed to the fact
that this resource was used to generate substitutes und
thus contains all positive instances. Using the super-
vised approach, we can beat the baseline by 0.10 for
the MAP score and by 0.176 for the P@1 score, which
is a significant improvement (p < 0.0001, using a two
tailed permutation test). To get insights of the contri-

System MAP P@1
Baseline 0.6408 0.5365
ALL 0.7048 0.6366
w/o DT 0.5798 0.4835
w/o UMLS 0.6618 0.5651
w/o Ngrams 0.7009 0.6252
w/o POS 0.7027 0.6323

Table 1: Results for the evaluation using substitute can-
didates from the DT.

bution of individual feature types, we perform an abla-
tion test. We observe that the most prominent features
are coming from the two DTs as we only achieve re-
sults below the baseline, when removing DT features.
We still obtain significant improvements over the base-
line when removing other feature groups. The second
most important feature comes from the UMLS. Fea-
tures coming from the Google n-grams improve the
system only slightly. The lowest improvement is de-
rived from the part-of-speech features. This leads us
to summarize that a hybrid approach for feature gen-
eration using manually created resources (UMLS) and
unsupervised features (DTs) leads to the best result for
lexical substitution for the medical domain.

8 Analysis
For a better insight into the lexical substitution we ana-
lyzed how often we outperform the baseline, get equal
results or get decreased scores. According to Table 2 in

performance # of instances Avg. ∆ MAP
decline 180 -0.16
equal 244 0
improvements 275 0.26

Table 2: Error analysis for the task respectively to the
MAP score.

around 26% of the cases we observe a decreased MAP
score, which is on average 0.16 smaller then the scores
achieved with the baseline. On the other hand, we see
improvements in around 39% of the cases: an average
improvements of 0.26, which is much higher then the
loss. For the remaining 25% of cases we observe the
same score.

Looking inside the data, the largest error class is
caused by antonyms. A sub-class of this error are
multi-word expressions having an adjective modifier.
This problems might be solved by additional features
using the UMLS resource. An example is shown in
Figure 1.
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Figure 1: Example sentence for the target term mild
thrombocytopenia. The system returns a wrong rank-
ing, as the adjective changes the meaning and turns the
first ranked term into an antonym.

For feature generation, we currently lookup multi-
word expressions as one term, both in the DT and the
UMLS resource and do not split them into their sin-
gle tokens. This error also suggests considering the
single words inside the multi-word expression, espe-
cially adjectives, and looking them up in a resource
(e.g. UMLS) to detect synonymy and antonymy.

Figure 2 shows the case, where the ranking is per-
formed correctly, but the precise substitute is not an-
notated as a correct one. The term nail plate might be
even more precise in the context as the manual anno-
tated term nail bed. Due to the missing annotation the

Figure 2: Example sentence for the target term nails.
Here the ranking from the system is correct, but the first
substitute from the system was not annotated as such.

baseline gets better scores then the result from the sys-
tem.

9 Conclusion

In summary, we have examined the lexical substitution
task for the medical domain and could show that a sys-
tem for open domain text data can be applied to the

medical domain. We can show that following a hybrid
approach using features from UMLS and distributional
semantics leads to the best results. In future work, we
will work on integrating DTs using other context fea-
tures, as we could see an impact of using two different
DTs. Furthermore, we want to incorporate features us-
ing n-grams computed on a corpus from the domain
and include co-occurrence features.
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Abstract

This paper presents a system which learns
to answer questions on a broad range of
topics from a knowledge base using few
hand-crafted features. Our model learns
low-dimensional embeddings of words
and knowledge base constituents; these
representations are used to score natural
language questions against candidate an-
swers. Training our system using pairs of
questions and structured representations of
their answers, and pairs of question para-
phrases, yields competitive results on a re-
cent benchmark of the literature.

1 Introduction
Teaching machines how to automatically answer
questions asked in natural language on any topic
or in any domain has always been a long stand-
ing goal in Artificial Intelligence. With the rise
of large scale structured knowledge bases (KBs),
this problem, known as open-domain question an-
swering (or open QA), boils down to being able
to query efficiently such databases with natural
language. These KBs, such as FREEBASE (Bol-
lacker et al., 2008) encompass huge ever growing
amounts of information and ease open QA by or-
ganizing a great variety of answers in a structured
format. However, the scale and the difficulty for
machines to interpret natural language still makes
this task a challenging problem.

The state-of-the-art techniques in open QA can
be classified into two main classes, namely, infor-
mation retrieval based and semantic parsing based.
Information retrieval systems first retrieve a broad
set of candidate answers by querying the search
API of KBs with a transformation of the ques-
tion into a valid query and then use fine-grained
detection heuristics to identify the exact answer
(Kolomiyets and Moens, 2011; Unger et al., 2012;

Yao and Van Durme, 2014). On the other hand,
semantic parsing methods focus on the correct in-
terpretation of the meaning of a question by a se-
mantic parsing system. A correct interpretation
converts a question into the exact database query
that returns the correct answer. Interestingly, re-
cent works (Berant et al., 2013; Kwiatkowski et
al., 2013; Berant and Liang, 2014; Fader et al.,
2014) have shown that such systems can be ef-
ficiently trained under indirect and imperfect su-
pervision and hence scale to large-scale regimes,
while bypassing most of the annotation costs.

Yet, even if both kinds of system have shown the
ability to handle large-scale KBs, they still require
experts to hand-craft lexicons, grammars, and KB
schema to be effective. This non-negligible hu-
man intervention might not be generic enough to
conveniently scale up to new databases with other
schema, broader vocabularies or languages other
than English. In contrast, (Fader et al., 2013) pro-
posed a framework for open QA requiring almost
no human annotation. Despite being an interesting
approach, this method is outperformed by other
competing methods. (Bordes et al., 2014b) in-
troduced an embedding model, which learns low-
dimensional vector representations of words and
symbols (such as KBs constituents) and can be
trained with even less supervision than the system
of (Fader et al., 2013) while being able to achieve
better prediction performance. However, this ap-
proach is only compared with (Fader et al., 2013)
which operates in a simplified setting and has not
been applied in more realistic conditions nor eval-
uated against the best performing methods.

In this paper, we improve the model of (Bor-
des et al., 2014b) by providing the ability to an-
swer more complicated questions. The main con-
tributions of the paper are: (1) a more sophisti-
cated inference procedure that is both efficient and
can consider longer paths ((Bordes et al., 2014b)
considered only answers directly connected to the

615



question in the graph); and (2) a richer represen-
tation of the answers which encodes the question-
answer path and surrounding subgraph of the KB.
Our approach is competitive with the current state-
of-the-art on the recent benchmark WEBQUES-
TIONS (Berant et al., 2013) without using any lex-
icon, rules or additional system for part-of-speech
tagging, syntactic or dependency parsing during
training as most other systems do.

2 Task Definition
Our main motivation is to provide a system for
open QA able to be trained as long as it has ac-
cess to: (1) a training set of questions paired with
answers and (2) a KB providing a structure among
answers. We suppose that all potential answers are
entities in the KB and that questions are sequences
of words that include one identified KB entity.
When this entity is not given, plain string match-
ing is used to perform entity resolution. Smarter
methods could be used but this is not our focus.

We use WEBQUESTIONS (Berant et al., 2013)
as our evaluation bemchmark. Since it contains
few training samples, it is impossible to learn on
it alone, and this section describes the various data
sources that were used for training. These are sim-
ilar to those used in (Berant and Liang, 2014).

WebQuestions This dataset is built using FREE-
BASE as the KB and contains 5,810 question-
answer pairs. It was created by crawling questions
through the Google Suggest API, and then obtain-
ing answers using Amazon Mechanical Turk. We
used the original split (3,778 examples for train-
ing and 2,032 for testing), and isolated 1k ques-
tions from the training set for validation. WE-
BQUESTIONS is built on FREEBASE since all an-
swers are defined as FREEBASE entities. In each
question, we identified one FREEBASE entity us-
ing string matching between words of the ques-
tion and entity names in FREEBASE. When the
same string matches multiple entities, only the en-
tity appearing in most triples, i.e. the most popular
in FREEBASE, was kept. Example questions (an-
swers) in the dataset include “Where did Edgar
Allan Poe died?” (baltimore) or “What degrees
did Barack Obama get?” (bachelor of arts,
juris doctor).

Freebase FREEBASE (Bollacker et al., 2008)
is a huge and freely available database of
general facts; data is organized as triplets
(subject, type1.type2.predicate, object),

where two entities subject and object (identi-
fied by mids) are connected by the relation type
type1.type2.predicate. We used a subset, cre-
ated by only keeping triples where one of the
entities was appearing in either the WEBQUES-
TIONS training/validation set or in CLUEWEB ex-
tractions. We also removed all entities appearing
less than 5 times and finally obtained a FREEBASE

set containing 14M triples made of 2.2M entities
and 7k relation types.1 Since the format of triples
does not correspond to any structure one could
find in language, we decided to transform them
into automatically generated questions. Hence, all
triples were converted into questions “What is the
predicate of the type2 subject?” (using the
mid of the subject) with the answer being object.
An example is “What is the nationality of the
person barack obama?” (united states). More
examples and details are given in a longer version
of this paper (Bordes et al., 2014a).

ClueWeb Extractions FREEBASE data allows
to train our model on 14M questions but these have
a fixed lexicon and vocabulary, which is not real-
istic. Following (Berant et al., 2013), we also cre-
ated questions using CLUEWEB extractions pro-
vided by (Lin et al., 2012). Using string match-
ing, we ended up with 2M extractions structured
as (subject, “text string”, object) with both
subject and object linked to FREEBASE. We
also converted these triples into questions by using
simple patterns and FREEBASE types. An exam-
ple of generated question is “Where barack obama

was allegedly bear in?” (hawaii).

Paraphrases The automatically generated ques-
tions that are useful to connect FREEBASE triples
and natural language, do not provide a satisfac-
tory modeling of natural language because of their
semi-automatic wording and rigid syntax. To
overcome this issue, we follow (Fader et al., 2013)
and supplement our training data with an indirect
supervision signal made of pairs of question para-
phrases collected from the WIKIANSWERS web-
site. On WIKIANSWERS, users can tag pairs of
questions as rephrasings of each other: (Fader et
al., 2013) harvested a set of 2M distinct questions
from WIKIANSWERS, which were grouped into
350k paraphrase clusters.

1WEBQUESTIONS contains ∼2k entities, hence restrict-
ing FREEBASE to 2.2M entities does not ease the task for us.
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3 Embedding Questions and Answers
Inspired by (Bordes et al., 2014b), our model
works by learning low-dimensional vector embed-
dings of words appearing in questions and of enti-
ties and relation types of FREEBASE, so that repre-
sentations of questions and of their corresponding
answers are close to each other in the joint embed-
ding space. Let q denote a question and a a can-
didate answer. Learning embeddings is achieved
by learning a scoring function S(q, a), so that S
generates a high score if a is the correct answer to
the question q, and a low score otherwise. Note
that both q and a are represented as a combina-
tion of the embeddings of their individual words
and/or symbols; hence, learning S essentially in-
volves learning these embeddings. In our model,
the form of the scoring function is:

S(q, a) = f(q)>g(a). (1)

Let W be a matrix of Rk×N , where k is the di-
mension of the embedding space which is fixed a-
priori, andN is the dictionary of embeddings to be
learned. LetNW denote the total number of words
and NS the total number of entities and relation
types. WithN = NW +NS , the i-th column of W
is the embedding of the i-th element (word, entity
or relation type) in the dictionary. The function
f(.), which maps the questions into the embed-
ding space Rk is defined as f(q) = Wφ(q), where
φ(q) ∈ NN , is a sparse vector indicating the num-
ber of times each word appears in the question q
(usually 0 or 1). Likewise the function g(.) which
maps the answer into the same embedding space
Rk as the questions, is given by g(a) = Wψ(a).
Here ψ(a) ∈ NN is a sparse vector representation
of the answer a, which we now detail.

3.1 Representing Candidate Answers
We now describe possible feature representations
for a single candidate answer. (When there are
multiple correct answers, we average these rep-
resentations, see Section 3.4.) We consider three
different types of representation, corresponding to
different subgraphs of FREEBASE around it.

(i) Single Entity. The answer is represented as
a single entity from FREEBASE: ψ(a) is a 1-
of-NS coded vector with 1 corresponding to
the entity of the answer, and 0 elsewhere.

(ii) Path Representation. The answer is
represented as a path from the entity

mentioned in the question to the answer
entity. In our experiments, we consid-
ered 1- or 2-hops paths (i.e. with either
1 or 2 edges to traverse): (barack obama,
people.person.place of birth, honolulu)
is a 1-hop path and (barack obama,
people.person.place of birth, location.
location.containedby, hawaii) a 2-hops
path. This results in a ψ(a) which is a
3-of-NS or 4-of-NS coded vector, expressing
the start and end entities of the path and the
relation types (but not entities) in-between.

(iii) Subgraph Representation. We encode both
the path representation from (ii), and the en-
tire subgraph of entities connected to the can-
didate answer entity. That is, for each entity
connected to the answer we include both the
relation type and the entity itself in the repre-
sentation ψ(a). In order to represent the an-
swer path differently to the surrounding sub-
graph (so the model can differentiate them),
we double the dictionary size for entities, and
use one embedding representation if they are
in the path and another if they are in the sub-
graph. Thus we now learn a parameter matrix
Rk×N where N = NW + 2NS (NS is the to-
tal number of entities and relation types). If
there areC connected entities withD relation
types to the candidate answer, its representa-
tion is a 3+C+D or 4+C+D-of-NS coded
vector, depending on the path length.

Our hypothesis is that including more informa-
tion about the answer in its representation will lead
to improved results. While it is possible that all
required information could be encoded in the k di-
mensional embedding of the single entity (i), it is
unclear what dimension k should be to make this
possible. For example the embedding of a country
entity encoding all of its citizens seems unrealis-
tic. Similarly, only having access to the path ig-
nores all the other information we have about the
answer entity, unless it is encoded in the embed-
dings of either the entity of the question, the an-
swer or the relations linking them, which might be
quite complicated as well. We thus adopt the sub-
graph approach. Figure 1 illustrates our model.

3.2 Training and Loss Function
As in (Weston et al., 2010), we train our model
using a margin-based ranking loss function. Let
D = {(qi, ai) : i = 1, . . . , |D|} be the training set
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“Who did Clooney marry in 1987?” 

Embedding	  matrix	  W	  

G. Clooney 
K. Preston 

1987 

J. Travolta 

Model 

Honolulu 

Detec0on	  of	  Freebase	  
en0ty	  in	  the	  ques0on	  

Embedding model 

Freebase subgraph 

Binary	  encoding	  of	  
the	  subgraph	  ψ(a)	  

Embedding	  of	  the	  
subgraph	  g(a)	  

Binary	  encoding	  of	  
the	  ques0on	  Φ(q)	  

Embedding	  of	  the	  
ques0on	  f(q)	  

Ques0on	  q	  

Subgraph	  of	  a	  candidate	  
answer	  a	  (here	  K.	  Preston)	  

Score S(q,a) 
How	  the	  candidate	  answer	  

fits	  the	  ques0on	  

Dot	  product	  
Embedding	  matrix	  W	  

Figure 1: Illustration of the subgraph embedding model scoring a candidate answer: (i) locate entity in
the question; (ii) compute path from entity to answer; (iii) represent answer as path plus all connected
entities to the answer (the subgraph); (iv) embed both the question and the answer subgraph separately
using the learnt embedding vectors, and score the match via their dot product.

of questions qi paired with their correct answer ai.
The loss function we minimize is

|D|∑
i=1

∑
ā∈Ā(ai)

max{0,m−S(qi, ai)+S(qi, ā)}, (2)

where m is the margin (fixed to 0.1). Minimizing
Eq. (2) learns the embedding matrix W so that
the score of a question paired with a correct an-
swer is greater than with any incorrect answer ā
by at least m. ā is sampled from a set of incor-
rect candidates Ā. This is achieved by sampling
50% of the time from the set of entities connected
to the entity of the question (i.e. other candidate
paths), and by replacing the answer entity by a ran-
dom one otherwise. Optimization is accomplished
using stochastic gradient descent, multi-threaded
with Hogwild! (Recht et al., 2011), with the con-
straint that the columns wi of W remain within
the unit-ball, i.e., ∀i, ||wi||2 ≤ 1.

3.3 Multitask Training of Embeddings
Since a large number of questions in our training
datasets are synthetically generated, they do not
adequately cover the range of syntax used in natu-
ral language. Hence, we also multi-task the train-
ing of our model with the task of paraphrase pre-
diction. We do so by alternating the training of
S with that of a scoring function Sprp(q1, q2) =
f(q1)>f(q2), which uses the same embedding ma-
trix W and makes the embeddings of a pair of
questions (q1, q2) similar to each other if they are
paraphrases (i.e. if they belong to the same para-
phrase cluster), and make them different other-

wise. Training Sprp is similar to that of S except
that negative samples are obtained by sampling a
question from another paraphrase cluster.

We also multitask the training of the embed-
dings with the mapping of the mids of FREEBASE

entities to the actual words of their names, so that
the model learns that the embedding of the mid of
an entity should be similar to the embedding of the
word(s) that compose its name(s).

3.4 Inference
Once W is trained, at test time, for a given ques-
tion q the model predicts the answer with:

â = argmaxa′∈A(q)S(q, a′) (3)

where A(q) is the candidate answer set. This can-
didate set could be the whole KB but this has both
speed and potentially precision issues. Instead, we
create a candidate set A(q) for each question.

We recall that each question contains one identi-
fied FREEBASE entity. A(q) is first populated with
all triples from FREEBASE involving this entity.
This allows to answer simple factual questions
whose answers are directly connected to them (i.e.
1-hop paths). This strategy is denoted C1.

Since a system able to answer only such ques-
tions would be limited, we supplement A(q) with
examples situated in the KB graph at 2-hops from
the entity of the question. We do not add all such
quadruplets since this would lead to very large
candidate sets. Instead, we consider the follow-
ing general approach: given that we are predicting
a path, we can predict its elements in turn using
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Method P@1 F1 F1
(%) (Berant) (Yao)

Baselines
(Berant et al., 2013) – 31.4 –
(Bordes et al., 2014b) 31.3 29.7 31.8
(Yao and Van Durme, 2014) – 33.0 42.0
(Berant and Liang, 2014) – 39.9 43.0
Our approach
Subgraph & A(q) = C2 40.4 39.2 43.2
Ensemble with (Berant & Liang, 14) – 41.8 45.7
Variants
Without multiple predictions 40.4 31.3 34.2
Subgraph & A(q) = All 2-hops 38.0 37.1 41.4
Subgraph & A(q) = C1 34.0 32.6 35.1
Path & A(q) = C2 36.2 35.3 38.5
Single Entity & A(q) = C1 25.8 16.0 17.8

Table 1: Results on the WEBQUESTIONS test set.

a beam search, and hence avoid scoring all can-
didates. Specifically, our model first ranks rela-
tion types using Eq. (1), i.e. selects which rela-
tion types are the most likely to be expressed in
q. We keep the top 10 types (10 was selected on
the validation set) and only add 2-hops candidates
to A(q) when these relations appear in their path.
Scores of 1-hop triples are weighted by 1.5 since
they have one less element than 2-hops quadru-
plets. This strategy, denotedC2, is used by default.

A prediction a′ can commonly actually be
a set of candidate answers, not just one an-
swer, for example for questions like “Who are
David Beckham’s children?”. This is achieved
by considering a prediction to be all the en-
tities that lie on the same 1-hop or 2-hops
path from the entity found in the question.
Hence, all answers to the above question are
connected to david beckham via the same path
(david beckham, people.person.children, *).
The feature representation of the prediction is then
the average over each candidate entity’s features
(see Section 3.1), i.e. ψall(a′) = 1

|a′|
∑

a′j :a′
ψ(a′j)

where a′j are the individual entities in the over-
all prediction a′. In the results, we compare to a
baseline method that can only predict single can-
didates, which understandly performs poorly.

4 Experiments

We compare our system in terms of F1 score as
computed by the official evaluation script2 (F1
(Berant)) but also with a slightly different F1 def-
inition, termed F1 (Yao) which was used in (Yao
and Van Durme, 2014) (the difference being the
way that questions with no answers are dealt with),

2Available from www-nlp.stanford.edu/software/sempre/

and precision @ 1 (p@1) of the first candidate en-
tity (even when there are a set of correct answers),
comparing to recently published systems.3 The
upper part of Table 1 indicates that our approach
outperforms (Yao and Van Durme, 2014), (Berant
et al., 2013) and (Bordes et al., 2014b), and per-
forms similarly as (Berant and Liang, 2014).

The lower part of Table 1 compares various ver-
sions of our model. Our default approach uses
the Subgraph representation for answers and C2

as the candidate answers set. Replacing C2 by
C1 induces a large drop in performance because
many questions do not have answers thatare di-
rectly connected to their inluded entity (not in
C1). However, using all 2-hops connections as
a candidate set is also detrimental, because the
larger number of candidates confuses (and slows
a lot) our ranking based inference. Our results
also verify our hypothesis of Section 3.1, that a
richer representation for answers (using the local
subgraph) can store more pertinent information.
Finally, we demonstrate that we greatly improve
upon the model of (Bordes et al., 2014b), which
actually corresponds to a setting with the Path rep-
resentation and C1 as candidate set.

We also considered an ensemble of our ap-
proach and that of (Berant and Liang, 2014). As
we only had access to their test predictions we
used the following combination method. Our ap-
proach gives a score S(q, a) for the answer it pre-
dicts. We chose a threshold such that our approach
predicts 50% of the time (when S(q, a) is above
its value), and the other 50% of the time we use
the prediction of (Berant and Liang, 2014) instead.
We aimed for a 50/50 ratio because both meth-
ods perform similarly. The ensemble improves the
state-of-the-art, and indicates that our models are
significantly different in their design.

5 Conclusion

This paper presented an embedding model that
learns to perform open QA using training data
made of questions paired with their answers and
of a KB to provide a structure among answers, and
can achieve promising performance on the com-
petitive benchmark WEBQUESTIONS.

3Results of baselines except (Bordes et al., 2014b) have
been extracted from the original papers. For our experiments,
all hyperparameters have been selected on the WEBQUES-
TIONS validation set: k was chosen among {64, 128, 256},
the learning rate on a log. scale between 10−4 and 10−1 and
we used at most 100 paths in the subgraph representation.
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Abstract

Keyboard layout errors and homoglyphs
in cross-language queries impact our abil-
ity to correctly interpret user informa-
tion needs and offer relevant results.
We present a machine learning approach
to correcting these errors, based largely
on character-level n-gram features. We
demonstrate superior performance over
rule-based methods, as well as a signif-
icant reduction in the number of queries
that yield null search results.

1 Introduction

The success of an eCommerce site depends on
how well users are connected with products and
services of interest. Users typically communi-
cate their desires through search queries; however,
queries are often incomplete and contain errors,
which impact the quantity and quality of search
results.

New challenges arise for search engines in
cross-border eCommerce. In this paper, we fo-
cus on two cross-linguistic phenomena that make
interpreting queries difficult: (i) Homoglyphs:
(Miller, 2013): Tokens such as “case” (underlined
letters Cyrillic), in which users mix characters
from different character sets that are visually simi-
lar or identical. For instance, English and Russian
alphabets share homoglyphs such as c, a, e, o, y,
k, etc. Although the letters are visually similar or
in some cases identical, the underlying character
codes are different. (ii) Keyboard Layout Errors
(KLEs): (Baytin et al., 2013): When switching
one’s keyboard between language modes, users at
times enter terms in the wrong character set. For
instance, “чехол шзфв” may appear to be a Rus-
sian query. While “чехол” is the Russian word
for “case”, “шзфв” is actually the user’s attempt
to enter the characters “ipad” while leaving their

keyboard in Russian language mode. Queries con-
taining KLEs or homoglyphs are unlikely to pro-
duce any search results, unless the intended ASCII
sequences can be recovered. In a test set sam-
pled from Russian/English queries with null (i.e.
empty) search results (see Section 3.1), we found
approximately 7.8% contained at least one KLE or
homoglyph.

In this paper, we present a machine learning
approach to identifying and correcting query to-
kens containing homoglyphs and KLEs. We show
that the proposed method offers superior accuracy
over rule-based methods, as well as significant im-
provement in search recall. Although we focus our
results on Russian/English queries, the techniques
(particularly for KLEs) can be applied to other lan-
guage pairs that use different character sets, such
as Korean-English and Thai-English.

2 Methodology

In cross-border trade at eBay, multilingual queries
are translated into the inventory’s source language
prior to search. A key application of this, and
the focus of this paper, is the translation of Rus-
sian queries into English, in order to provide Rus-
sian users a more convenient interface to English-
based inventory in North America. The presence
of KLEs and homoglyphs in multilingual queries,
however, leads to poor query translations, which in
turn increases the incidence of null search results.
We have found that null search results correlate
with users exiting our site.

In this work, we seek to correct for KLEs and
homoglyphs, thereby improving query translation,
reducing the incidence of null search results, and
increasing user engagement. Prior to translation
and search, we preprocess multilingual queries
by identifying and transforming KLEs and homo-
glyphs as follows (we use the query “чехол шзфв
2 new” as a running example):

(a) Tag Tokens: label each query token

621



with one of the following semantically moti-
vated classes, which identify the user’s informa-
tion need: (i) E: a token intended as an English
search term; (ii) R: a Cyrillic token intended as a
Russian search term; (iii) K: A KLE, e.g. “шзфв”
for the term “ipad”. A token intended as an En-
glish search term, but at least partially entered in
the Russian keyboard layout; (iv) H: A Russian
homoglyph for an English term, e.g. “вмw” (un-
derlined letters Cyrillic). Employs visually sim-
ilar letters from the Cyrillic character set when
spelling an intended English term; (v) A: Ambigu-
ous tokens, consisting of numbers and punctuation
characters with equivalent codes that can be en-
tered in both Russian and English keyboard lay-
outs. Given the above classes, our example query
“чехол шзфв 2 new” should be tagged as “R K A
E”.

(b) Transform Queries: Apply a deterministic
mapping to transform KLE and homoglyph tokens
from Cyrillic to ASCII characters. For KLEs the
transformation maps between characters that share
the same location in Russian and English keyboard
layouts (e.g. ф → a, ы → s). For homoglyphs the
transformation maps between a smaller set of vi-
sually similar characters (e.g. е→ e, м→m). Our
example query would be transformed into “чехол
ipad 2 new”.

(c) Translate and Search: Translate the trans-
formed query (into “case ipad 2 new” for our ex-
ample), and dispatch it to the search engine.

In this paper, we formulate the token-level tag-
ging task as a standard multiclass classification
problem (each token is labeled independently), as
well as a sequence labeling problem (a first order
conditional Markov model). In order to provide
end-to-end results, we preprocess queries by de-
terministically transforming into ASCII the tokens
tagged by our model as KLEs or homoglyphs. We
conclude by presenting an evaluation of the impact
of this transformation on search.

2.1 Features

Our classification and sequence models share a
common set of features grouped into the follow-
ing categories:

2.1.1 Language Model Features
A series of 5-gram, character-level language mod-
els (LMs) capture the structure of different types
of words. Intuitively, valid Russian terms will
have high probability in Russian LMs. In contrast,

KLEs or homoglyph tokens, despite appearing on
the surface to be Russian terms, will generally
have low probability in the LMs trained on valid
Russian words. Once mapped into ASCII (see
Section 2 above), however, these tokens tend to
have higher probability in the English LMs. LMs
are trained on the following corpora:
English and Russian Vocabulary: based on
a collection of open source, parallel En-
glish/Russian corpora (∼50M words in all).
English Brands: built from a curated list of 35K
English brand names, which often have distinctive
linguistic properties compared with common En-
glish words (Lowrey et al., 2013).
Russian Transliterations: built from a col-
lection of Russian transliterations of proper
names from Wikipedia (the Russian portion of
guessed-names.ru-en made available as a
part of WMT 20131).

For every input token, each of the above LMs
fires a real-valued feature — the negated log-
probability of the token in the given language
model. Additionally, for tokens containing Cyril-
lic characters, we consider the token’s KLE and
homoglyph ASCII mappings, where available. For
each mapping, a real-valued feature fires corre-
sponding to the negated log-probability of the
mapped token in the English and Brands LMs.
Lastly, an equivalent set of LM features fires for
the two preceding and following tokens around the
current token, if applicable.

2.1.2 Token Features
We include several features commonly used in
token-level tagging problems, such as case and
shape features, token class (such as letters-only,
digits-only), position of the token within the query,
and token length. In addition, we include fea-
tures indicating the presence of characters from
the ASCII and/or Cyrillic character sets.

2.1.3 Dictionary Features
We incorporate a set of features that indicate
whether a given lowercased query token is a mem-
ber of one of the lexicons described below.
UNIX: The English dictionary shipped with Cen-
tOS, including ∼480K entries, used as a lexicon
of common English words.
BRANDS: An expanded version of the curated list
of brand names used for LM features. Includes

1www.statmt.org/wmt13/
translation-task.html#download
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∼58K brands.
PRODUCT TITLES: A lexicon of over 1.6M en-
tries extracted from a collection of 10M product
titles from eBay’s North American inventory.
QUERY LOGS: A larger, in-domain collection of
approximately 5M entries extracted from ∼100M
English search queries on eBay.

Dictionary features fire for Cyrillic tokens when
the KLE and/or homoglyph-mapped version of the
token appears in the above lexicons. Dictionary
features are binary for the Unix and Brands dictio-
naries, and weighted by relative frequency of the
entry for the Product Titles and Query Logs dic-
tionaries.

3 Experiments

3.1 Datasets
The following datasets were used for training and
evaluating the baseline (see Section 3.2 below) and
our proposed systems:
Training Set: A training set of 6472 human-
labeled query examples (17,239 tokens).
In-Domain Query Test Set: A set of 2500 Rus-
sian/English queries (8,357 tokens) randomly se-
lected from queries with null search results. By
focusing on queries with null results, we empha-
size the presence of KLEs and homoglyphs, which
occur in 7.8% of queries in our test set.

Queries were labeled by a team of Russian lan-
guage specialists. The test set was also indepen-
dently reviewed, which resulted in the correction
of labels for 8 out of the 8,357 query tokens.

Although our test set is representative of the
types of problematic queries targeted by our
model, our training data was not sampled using the
same methodology. We expect that the differences
in distributions between training and test sets, if
anything, make the results reported in Section 3.3
somewhat pessimistic2.

3.2 Dictionary Baseline
We implemented a rule-based baseline system em-
ploying the dictionaries described in Section 2.1.3.
In this system, each token was assigned a class
k ∈ {E,R,K,H,A} using a set of rules: a token
among a list of 101 Russian stopwords3 is tagged

2As expected, cross-validation experiments on the train-
ing data (for parameter tuning) yielded results slightly higher
than the results reported in Section 3.3, which use a held-out
test set

3Taken from the Russian Analyzer packaged with Lucene
— see lucene.apache.org.

as R. A token containing only ASCII characters is
labeled as A if all characters are common to En-
glish and Russian keyboards (i.e. numbers and
some punctuation), otherwise E. For tokens con-
taining Cyrillic characters, KLE and homoglyph-
mapped versions are searched in our dictionaries.
If found, K or H are assigned. If both mapped ver-
sions are found in the dictionaries, then either K
or H is assigned probabilistically4. In cases where
neither mapped version is found in the dictionary,
the token assigned is either R or A, depending on
whether it consists of purely Cyrillic characters, or
a mix of Cyrillic and ASCII, respectively.

Note that the above tagging rules allow tokens
with classes E and A to be identified with perfect
accuracy. As a result, we omit these classes from
all results reported in this work. We also note
that this simplification applies because we have
restricted our attention to the Russian → English
direction. In the bidirectional case, ASCII tokens
could represent either English tokens or KLEs (i.e.
a Russian term entered in the English keyboard
layout). We leave the joint treatment of the bidi-
rectional case to future work.

Tag Prec Recall F1
K .528 .924 .672
H .347 .510 .413
R .996 .967 .982

Table 1: Baseline results on the test set, using
UNIX, BRANDS, and the PRODUCT TITLES dic-
tionaries.

We experimented with different combinations
of dictionaries, and found the best combination to
be UNIX, BRANDS, and PRODUCT TITLES dic-
tionaries (see Table 1). We observed a sharp de-
crease in precision when incorporating the QUERY

LOGS dictionary, likely due to noise in the user-
generated content.

Error analysis suggests that shorter words are
the most problematic for the baseline system5.
Shorter Cyrillic tokens, when transformed from
Cyrillic to ASCII using KLE or homoglyph map-
pings, have a higher probability of spuriously
mapping to valid English acronyms, model IDs,
or short words. For instance, Russian car brand
“ваз” maps across keyboard layouts to “dfp”,

4We experimented with selecting K or H based on a prior
computed from training data; however, results were lower
than those reported, which use random selection.

5Stopwords are particularly problematic, and hence ex-
cluded from consideration as KLEs or homoglyphs.
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Tag Classification Sequence
P R F1 P R F1

LR
K .925 .944 .935 .915 .934 .925
H .708 .667 .687 .686 .686 .686
R .996 .997 .996 .997 .996 .997

RF
K .926 .949 .937 .935 .949 .942
H .732 .588 .652 .750 .588 .659
R .997 .997 .997 .996 .998 .997

Table 2: Classification and sequence tagging re-
sults on the test set

a commonly used acronym in product titles for
“Digital Flat Panel”. Russian words “муки” and
“рук” similarly map by chance to English words
“verb” and “her”.

A related problem occurs with product model
IDs, and highlights the limits of treating query to-
kens independently. Consider Cyrillic query “БМВ
e46”. The first token is a Russian transliteration
for the BMW brand. The second token, “e46”,
has three possible interpretations: i) as a Russian
token; ii) a homoglyph for ASCII “e46”; or iii)
a KLE for “t46”. It is difficult to discriminate
between these options without considering token
context, and in this case having some prior knowl-
edge that e46 is a BMW model.

3.3 Machine Learning Models

We trained linear classification models using lo-
gistic regression (LR)6, and non-linear models us-
ing random forests (RFs), using implementations
from the Scikit-learn package (Pedregosa et al.,
2011). Sequence models are implemented as first
order conditional Markov models by applying a
beam search (k = 3) on top of the LR and RF
classifiers. The LR and RF models were tuned us-
ing 5-fold cross-validation results, with models se-
lected based on the mean F1 score across R, K, and
H tags.

Table 2 shows the token-level results on our in-
domain test set. As with the baseline, we focus the
model on disambiguating between classes R, K and
H. Each of the reported models performs signifi-
cantly better than the baseline (on each tag), with
statistical significance evaluated using McNemar’s
test. The differences between LR and RF mod-
els, as well as sequence and classification variants,
however, are not statistically significant. Each of
the machine learning models achieves a query-
level accuracy score of roughly 98% (the LR se-

6Although CRFs are state-of-the-art for many tagging
problems, in our experiments they yielded results slightly
lower than LR or RF models.

quence model achieved the lowest with 97.78%,
the RF sequence model the highest with 97.90%).

Our feature ablation experiments show that
the majority of predictive power comes from the
character-level LM features. Dropping LM fea-
tures results in a significant reduction in perfor-
mance (F1 scores .878 and .638 for the RF Se-
quence model on classes K and H). These results
are still significantly above the baseline, suggest-
ing that token and dictionary features are by them-
selves good predictors. However, we do not see
a similar performance reduction when dropping
these feature groups.

We experimented with lexical features, which
are commonly used in token-level tagging prob-
lems. Results, however, were slightly lower than
the results reported in this section. We suspect the
issue is one of overfitting, due to the limited size of
our training data, and general sparsity associated
with lexical features. Continuous word presenta-
tions (Mikolov et al., 2013), noted as future work,
may offer improved generalization.

Error analysis for our machine learning mod-
els suggests patterns similar to those reported in
Section 3.2. Although errors are significantly less
frequent than in our dictionary baseline, shorter
words still present the most difficulty. We note
as future work the use of word-level LM scores
to target errors with shorter words.

3.4 Search Results

Recall that we translate multilingual queries into
English prior to search. KLEs and homoglyphs
in queries result in poor query translations, often
leading to null search results.

To evaluate the impact of KLE and homoglyph
correction, we consider a set of 100k randomly se-
lected Russian/English queries. We consider the
subset of queries that the RF or baseline models
predict as containing a KLE or homoglyph. Next,
we translate into English both the original query,
as well as a transformed version of it, with KLEs
and homoglyphs replaced with their ASCII map-
pings. Lastly, we execute independent searches
using original and transformed query translations.

Table 3 provides details on search results for
original and transformed queries. The baseline
model transforms over 12.6% of the 100k queries.
Of those, 24.3% yield search results where the un-
modified queries had null search results (i.e. Null
→ Non-null). In 20.9% of the cases, however, the
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transformations are destructive (i.e. Non-null →
Null), and yield null results where the unmodified
query produced results.

Compared with the baseline, the RF model
transforms only 7.4% of the 100k queries; a frac-
tion that is roughly in line with the 7.8% of queries
in our test set that contain KLEs or homoglyphs.
In over 42% of the cases (versus 24.3% for the
baseline), the transformed query generates search
results where the original query yields none. Only
4.81% of the transformations using the RF model
are destructive; a fraction significantly lower than
the baseline.

Note that we distinguish here only between
queries that produce null results, and those that do
not. We do not include queries for which original
and transformed queries both produce (potentially
differing) search results. Evaluating these cases
requires deeper insight into the relevance of search
results, which is left as future work.

Baseline RF model
#Transformed 12,661 7,364
Null→ Non-Null 3,078 (24.3%) 3,142 (42.7%)
Non-Null→ Null 2,651 (20.9%) 354 (4.81%)

Table 3: Impact of KLE and homoglyph correction
on search results for 100k queries

4 Related Work

Baytin et al. (2013) first refer to keyboard lay-
out errors in their work. However, their focus is
on predicting the performance of spell-correction,
not on fixing KLEs observed in their data. To
our knowledge, our work is the first to introduce
this problem and to propose a machine learning
solution. Since our task is a token-level tagging
problem, it is very similar to the part-of-speech
(POS) tagging task (Ratnaparkhi, 1996), only with
a very small set of candidate tags. We chose
a supervised machine learning approach in order
to achieve maximum precision. However, this
problem can also be approached in an unsuper-
vised setting, similar to the method Whitelaw et al.
(2009) use for spelling correction. In that setup,
the goal would be to directly choose the correct
transformation for an ill-formed KLE or homo-
glyph, instead of a tagging step followed by a de-
terministic mapping to ASCII.

5 Conclusions and Future Work

We investigate two kinds of errors in search
queries: keyboard layout errors (KLEs) and ho-
moglyphs. Applying machine learning methods,
we are able to accurately identify a user’s intended
query, in spite of the presence of KLEs and ho-
moglyphs. The proposed models are based largely
on compact, character-level language models. The
proposed techniques, when applied to multilingual
queries prior to translation and search, offer signif-
icant gains in search results.

In the future, we plan to focus on additional fea-
tures to improve KLE and homoglyph discrimina-
tion for shorter words and acronyms. Although
lexical features did not prove useful for this work,
presumably due to data sparsity and overfitting
issues, we intend to explore the application of
continuous word representations (Mikolov et al.,
2013). Compared with lexical features, we expect
continuous representations to be less susceptible
to overfitting, and to generalize better to unknown
words. For instance, using continuous word rep-
resentations, Turian et al. (2010) show significant
gains for a named entity recognition task.

We also intend on exploring the use of features
from in-domain, word-level LMs. Word-level fea-
tures are expected to be particularly useful in the
case of spurious mappings (e.g. “ваз” vs. “dfp”
from Section 3.2), where context from surround-
ing tokens in a query can often help in resolving
ambiguity. Word-level features may also be useful
in re-ranking translated queries prior to search, in
order to reduce the incidence of erroneous query
transformations generated through our methods.
Finally, our future work will explore KLE and ho-
moglyph correction bidirectionally, as opposed to
the unidirectional approach explored in this work.
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Abstract

Non-linear mappings of the form
P (ngram)γ and log(1+τP (ngram))

log(1+τ)
are applied to the n-gram probabilities
in five trainable open-source language
identifiers. The first mapping reduces
classification errors by 4.0% to 83.9%
over a test set of more than one million
65-character strings in 1366 languages,
and by 2.6% to 76.7% over a subset of 781
languages. The second mapping improves
four of the five identifiers by 10.6% to
83.8% on the larger corpus and 14.4% to
76.7% on the smaller corpus. The subset
corpus and the modified programs are
made freely available for download at
http://www.cs.cmu.edu/∼ralf/langid.html.

1 Introduction

Language identification, particularly of short
strings, is a task which is becoming quite impor-
tant as a preliminary step in much automated pro-
cessing of online data streams such as microblogs
(e.g. Twitter). In addition, an increasing num-
ber of languages are represented online, so it is
desireable that performance remain high as more
languages are added to the identifier.

In this paper, we stress-test five open-source
n-gram-based language identifiers by presenting
them with 65-character strings (about one printed
line of text in a book) in up to 1366 languages. We
then apply a simple modification to their scoring
algorithms which improves the classification ac-
curacy of all five of them, three quite dramatically.

2 Method

The selected modification to the scoring algorithm
is to apply a non-linear mapping which spreads
out the lower probability values while compact-
ing the higher ones. This low-end spreading of

values is the opposite of what one sees in a Zip-
fian distribution (Zipf, 1935), where the proba-
bilities of the most common items are the most
spread out while the less frequent items become
ever more crowded as there are increasing num-
bers of them in ever-smaller ranges. The hypoth-
esis is that regularizing the spacing between val-
ues will improve language-identification accuracy
by avoiding over-weighting frequent items (from
having higher probabilities in the training data and
also occurring more frequently in the test string).

Two functions were selected for experiments:

x = P (ngram)
gamma: y = xγ

loglike: y =
log(1 + 10τx)
log(1 + 10τ )

The first simply raises the n-gram probabil-
ity to a non-unity power; this exponent is named
“gamma” as in image processing (Poynton, 1998).
The second mapping function is a normalized vari-
ant of the logarithm function; the normalization
provides fixed points at 0 and 1, as is the case for
gamma. Each of the functions gamma and loglike
has one tunable parameter, γ and τ , respectively.

3 Related Work

Although n-gram statistics as a basis for language
identification has been in use for two decades since
Cavnar and Trenkle (1994) and Dunning (1994),
little work has been done on trying to optimize
the values used for those n-gram statistics. Where
some form of frequency mapping is used, it is of-
ten implicit (as in Cavnar and Trenkle’s use of
ranks instead of frequencies) and generally goes
unremarked as such.

Vogel and Tresner-Kirsch (2012) use the log-
arithm of the frequency for some experimental
runs, reporting that it improved accuracy in some
cases. Gebre et al (2013) used logarithmic term-
frequency scaling of words in an English-language
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essay to classify the native language of the writer,
reporting an improvement from 82.36% accuracy
to 84.55% in conjunction with inverse document
frequency (IDF) weighting, and from 79.18% ac-
curacy to 80.82% without IDF.

4 Programs

4.1 LangDetect

LangDetect, version 2011-09-13 (Shuyo,
2014), uses the Naive Bayes approach. Inputs are
split into a bag of character n-grams of length 1
through 3; each randomly-drawn n-gram’s prob-
ability in each of the trained models is multiplied
by the current score for that model. After 1000
n-grams, or when periodic renormalization into
a probability distribution detects that one model
has accumulated an overwhelming probability
mass, the iteration is terminated. After averaging
seven randomized iterations, each with a random
gaussian offset (mean 5×10−6, standard deviation
0.5× 10−6) that is added to each probability prior
to multiplication (to avoid multiplication by zero),
the highest-scoring model is declared to be the
language of the input.

The mapping function is applied to the model’s
probability before adding the randomized off-
set. To work around the limitation of one model
per language code, disambiguating digits are ap-
pended to the language code during training and
removed from the output prior to scoring.

4.2 libtextcat

libtextcat, version 2.2-9 (Hugueney, 2011),
is a C reimplementation of the Cavnar and Tren-
kle (1994) method. It compiles “fingerprints” con-
taining a ranked list of the 400 (by default) most
frequent 1- through 5-grams in the training data.
An unknown text is classified by forming its fin-
gerprint and comparing that fingerprint against the
trained fingerprints. A penalty is assigned based
on the number of positions by which each n-gram
differs between the input and the trained model;
n-grams which appear in only one of the two are
assigned the maximum penalty, equal to the size
of the fingerprints. The model with the lowest
penalty score is selected as the language of the in-
put.

For this work, the libtextcat source code
was modified to remove the hard-coded fingerprint
size of 400 n-grams. While adding the frequency
mapping, the code was discovered to also hard-

code the maximum distortion penalty at 400; this
was corrected to set the maximum penalty equal to
the maximum size of any loaded fingerprint.1

Score mapping was implemented by dividing
each penalty value by the maximum penalty to
produce a proportion, applying the mapping func-
tion, and then multiplying the result by the maxi-
mum penalty and rounding to an integer (to avoid
other code changes). Because there are only a lim-
ited number of possible penalties, a lookup table is
pre-computed, eliminating the impact on speed.

4.3 mguesser

mguesser, version 0.4 (Barkov, 2008), is part of
the mnoGoSearch search engine. While its doc-
umentation indicates that it implements the Cav-
nar and Trenkle approach, its actual similarity
computation is very different. Each training and
test text is converted into a 4096-element hash ta-
ble by extracting byte n-grams of length 6 (trun-
cated at control characters and multiple consecu-
tive blanks), hashing each n-gram using CRC-32,
and incrementing the count for the corresponding
hash entry. The hash table entries are then nor-
malized to a mean of 0.0 and standard deviation
of 1.0, and the similarity is computed as the inner
(dot) product of the hash tables treated as vectors.
The trained model receiving the highest similarity
score against the input is declared the language of
the input.

Nonlinear mapping was added by inserting a
step just prior to the normalization of the hash ta-
ble. The counts in the table are converted to proba-
bilities by dividing by the sum of counts, the map-
ping is applied to that probability, and the result is
converted back into a count by multiplying by the
original sum of counts.

4.4 whatlang

whatlang, version 1.24 (Brown, 2014a), is
the stand-alone identification program from LA-
Strings (Brown, 2013). It performs identifica-
tion by computing the inner product of byte tri-
grams through k-grams (k=6 by default and in
this work) between the input and the trained mod-
els; for speed, the computation is performed in-
crementally, adding the length-weighted probabil-

1The behavior observed by (Brown, 2013) of performance
rapidly degrading for fingerprints larger than 500 disappears
with this correction. It was an artifact of an increasing pro-
portion of n-grams present in the model receiving penalties
greater than n-grams absent from the model.
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ity of each n-gram as it is encountered in the in-
put. Models are formed by finding the highest-
frequency n-grams of the configured lengths, with
some filtering as described in (Brown, 2012).

4.5 YALI

YALI (Yet Another Language Identifier) (Majlis,
2012) is an identifier written in Perl. It performs
minor text normalization by collapsing multiple
blanks into a single blank and removing leading
and trailing blanks from lines. Thereafter, it uses
a sliding window to generate byte n-grams of a
(configurable) fixed length, and sums the proba-
bilities for each n-gram in each trained model. As
with whatlang, this effectively computes the in-
ner products between the input and the models.

Mapping was added by applying the mapping
function to the model probabilities as they are
read in from disk. As with LangDetect, disam-
biguating digits were used to allow multiple mod-
els per language code.

5 Data

The data used for the experiments described in
this paper comes predominantly from Bible trans-
lations, Wikipedia, and the Europarl corpus of Eu-
ropean parliamentary proceedings (Koehn, 2005).
The 1459 files of the training corpus generate 1483
models in 1368 languages. A number of train-
ing files generate models in both UTF-8 and ISO
8859-1, numerous languages have multiple train-
ing files in different writing systems, and several
have multiple files for different regional variants
(e.g. European and Brazilian Portugese).

The text for a language is split into training,
test, and possibly a disjoint development set. The
amount of text per language varies, with quartiles
of 1.19/1.47/2.22 million bytes. In general, ev-
ery thirtieth line of text is reserved for the test set;
some smaller languages reserve a higher propor-
tion. If more than 3.2 million bytes remain af-
ter reserving the test set, every thirtieth line of
the remaining text is reserved as a development
set. There are development sets for 220 languages.
The unreserved test is used for model training.

The test data is word-wrapped to 65 characters
or less, and wrapped lines shorter than 25 bytes
are excluded. Up to the first 1000 lines of wrapped
text are used for testing. One language with fewer
than 50 test strings is excluded from the test set, as
is the constructed language Klingon due to heavy

pollution with English. In total, the test files con-
tain 1,090,571 lines of text in 1366 languages.

Wikipedia text and many of the Bible transla-
tions are redistributable under Creative Commons
licenses, and have been packaged into the LTI
LangID Corpus (Brown, 2014b). This smaller
corpus contains 781 languages, 119 of them with
development sets, and a total of 649,589 lines in
the test files. The languages are a strict subset
of those in the larger corpus, but numerous lan-
guages have had Wikipedia text substituted for
non-redistributable Bible translations.

6 Experiments

Using the data sets described in the previous sec-
tion, we ran a sweep of different gamma and tau
values for each language identifier to determine
their optimal values on both development and test
strings. Step sizes for γ were generally 0.1, while
those for τ were 1.0, with smaller steps near the
minima. Since it does not provide explicit con-
trol over model sizes, LangDetect was trained
on a maximum of 1,000,000 bytes per model, as
reported optimal in (Brown, 2013). The other pro-
grams were trained on a maximum of 2,500,000
bytes per model; libtextcat and whatlang
used default model sizes of 400 and 3500, respec-
tively, while mguesserwas set to the previously-
reported 1500 n-grams per model. After some ex-
perimentation, YALI was set to use 5-grams, with
3500 n-grams per model to match whatlang.

7 Results

Tables 1 and 2 show the absolute performance and
relative percentage change in classification errors
for the five programs using the two mapping func-
tions, as well as the values of γ and τ at which the
fewest errors were made on the development set.
Overall, the smaller corpus performed worse due
to the greater percentage of Wikipedia texts, which
are polluted with words and phrases in other lan-
guages. In the test set, this occasionally causes
a correct identification as another language to be
scored as an error.

Figures 2 and 3 graph the classification error
rates (number of incorrectly-labeled strings di-
vided by total number of strings in the test set) in
percent for different values of γ. A gamma of 1.0
is the baseline condition. The dramatic improve-
ments in mguesser, whatlang and YALI are
quite evident, while the smaller but non-trivial im-
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gamma mapping loglike mapping
Program Error% Error% ∆% γ Error% ∆% τ

LangDet. 3.233 2.767 -14.4 0.80 2.889 -10.6 1.0
libtextcat 6.787 6.514 -4.0 2.20 – – –
mguesser 15.704 4.330 -72.4 0.39 4.177 -73.4 3.8
whatlang 13.309 2.136 -83.9 0.27 2.146 -83.8 4.5
YALI 9.883 2.313 -76.6 0.20 2.313 -76.6 8.0

Table 1: Language-identification accuracy on the 1366-language corpus. γ and τ were tuned on the
220-language development set; only marginally better results can be achieved by tuning on the test set.

gamma mapping loglike mapping
Program Error% Error% ∆% γ Error% ∆% τ

LangDet. 3.603 3.093 -14.2 0.68 3.083 -14.4 2.3
libtextcat 6.693 6.521 -2.6 1.70 – – –
mguesser 14.200 4.936 -65.2 0.40 4.779 -66.3 3.7
whatlang 11.879 2.770 -76.7 0.14 2.772 -76.7 5.6
YALI 8.726 2.972 -65.9 0.09 2.989 -65.7 9.0

Table 2: Language-identification accuracy on the 781-language corpus. γ and τ were tuned on the 119-
language development set. libtextcat did not improve with the loglike mapping (see text).

provements in libtextcat are difficult to dis-
cern at this scale. Since libtextcat uses much
smaller models than the others by default, Figure
1 gives a closer look at its performance for larger
model sizes. As the models grow, the absolute
baseline performance improves, but the change
from gamma-correction decreases and the optimal
value of γ also decreases toward 1.0. This hints
that the implicit mapping of ranks either becomes
closer to optimal, or that gamma becomes less ef-
fective at correcting it. At a model size of 3000
n-grams, the baseline error rate is 2.465% while
the best performance is 2.457% at γ = 1.10.

That the best γ for libtextcat is greater
than 1.0 was not entirely unexpected. The power-
law distribution of n-gram frequencies implies
that the conversion from frequencies to ranks is
essentially logarithmic, and log n eventually be-
comes less than nc for any c > 0. The implication
of γ > 1 is simply that the conversion to ranks
is too strong a correction, which must be partially
undone by the gamma mapping.

Figures 4 and 5 graph the error rates for differ-
ent values of τ . On the graph, zero is the baseline
condition without mapping for comparison pur-
poses; the mapping function is not the identity for
τ = 0. It can clearly be seen that libtextcat is
hurt by the loglike mapping, which never reduces
values, even with negative τ . Using the inverse of
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Figure 1: libtextcat performance at different
fingerprint sizes. γ = 1 is the baseline.

the loglike mapping should improve performance,
but has not yet been tried. The other programs
show very similar behavior to their results with
gamma.

8 Conclusions and Future Work

Non-linear mapping is shown to be effective at
improving the accuracy of five different language
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Figure 2: Performance of the identifiers on the
1366-language corpus using the gamma mapping.
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Figure 3: Performance of the identifiers on the
781-language corpus using the gamma mapping.

identifier using four highly-divergent algorithms
for computing model scores from n-gram statis-
tics. Improvements range from small – 2.6% re-
duction in classification errors – to dramatic for
the three programs with the worst baselines – 65.2
to 76.7% reduction in errors on the smaller cor-
pus and 72.4 to 83.9% on the larger. While both
mappings have similar performance for four of the
programs, libtextcat only benefits from the
gamma mapping, as it can also reduce n-gram
scores, unlike the loglike mapping.
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Figure 4: Performance of the identifiers on the
1366-language corpus using the loglike mapping.
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Figure 5: Performance of the identifiers on the
781-language corpus using the loglike mapping.

Training data, source code, and supple-
mentary information may be downloaded from
http://www.cs.cmu.edu/∼ralf/langid.html.

Future work includes modifying additional lan-
guage identifiers such as langid.py (Lui and
Baldwin, 2012) and VarClass (Zampieri and
Gebre, 2014), experimenting with other mapping
functions, and investigating the method’s efficacy
on pluricentric languages like those VarClass is
designed to identify.
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Abstract

Text classification methods for tasks
like factoid question answering typi-
cally use manually defined string match-
ing rules or bag of words representa-
tions. These methods are ineffective
when question text contains very few
individual words (e.g., named entities)
that are indicative of the answer. We
introduce a recursive neural network
(rnn) model that can reason over such
input by modeling textual composition-
ality. We apply our model, qanta, to
a dataset of questions from a trivia
competition called quiz bowl. Unlike
previous rnn models, qanta learns
word and phrase-level representations
that combine across sentences to reason
about entities. The model outperforms
multiple baselines and, when combined
with information retrieval methods, ri-
vals the best human players.

1 Introduction

Deep neural networks have seen widespread
use in natural language processing tasks such
as parsing, language modeling, and sentiment
analysis (Bengio et al., 2003; Socher et al.,
2013a; Socher et al., 2013c). The vector spaces
learned by these models cluster words and
phrases together based on similarity. For exam-
ple, a neural network trained for a sentiment
analysis task such as restaurant review classifi-
cation might learn that “tasty” and “delicious”
should have similar representations since they
are synonymous adjectives.

These models have so far only seen success in
a limited range of text-based prediction tasks,

Later in its existence, this polity’s leader was chosen
by a group that included three bishops and six laymen,
up from the seven who traditionally made the decision.
Free imperial cities in this polity included Basel and
Speyer. Dissolved in 1806, its key events included the
Investiture Controversy and the Golden Bull of 1356.
Led by Charles V, Frederick Barbarossa, and Otto I,
for 10 points, name this polity, which ruled most of
what is now Germany through the Middle Ages and
rarely ruled its titular city.

Figure 1: An example quiz bowl question about
the Holy Roman Empire. The first sentence
contains no words or named entities that by
themselves are indicative of the answer, while
subsequent sentences contain more and more
obvious clues.

where inputs are typically a single sentence and
outputs are either continuous or a limited dis-
crete set. Neural networks have not yet shown
to be useful for tasks that require mapping
paragraph-length inputs to rich output spaces.

Consider factoid question answering: given
a description of an entity, identify the per-
son, place, or thing discussed. We describe a
task with high-quality mappings from natural
language text to entities in Section 2. This
task—quiz bowl—is a challenging natural lan-
guage problem with large amounts of diverse
and compositional data.

To answer quiz bowl questions, we develop
a dependency tree recursive neural network
in Section 3 and extend it to combine predic-
tions across sentences to produce a question
answering neural network with trans-sentential
averaging (qanta). We evaluate our model
against strong computer and human baselines
in Section 4 and conclude by examining the
latent space and model mistakes.
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2 Matching Text to Entities: Quiz
Bowl

Every weekend, hundreds of high school and
college students play a game where they map
raw text to well-known entities. This is a trivia
competition called quiz bowl. Quiz bowl ques-
tions consist of four to six sentences and are
associated with factoid answers (e.g., history
questions ask players to identify specific battles,
presidents, or events). Every sentence in a quiz
bowl question is guaranteed to contain clues
that uniquely identify its answer, even without
the context of previous sentences. Players an-
swer at any time—ideally more quickly than
the opponent—and are rewarded for correct
answers.

Automatic approaches to quiz bowl based on
existing nlp techniques are doomed to failure.
Quiz bowl questions have a property called
pyramidality, which means that sentences early
in a question contain harder, more obscure
clues, while later sentences are “giveaways”.
This design rewards players with deep knowl-
edge of a particular subject and thwarts bag
of words methods. Sometimes the first sen-
tence contains no named entities—answering
the question correctly requires an actual un-
derstanding of the sentence (Figure 1). Later
sentences, however, progressively reveal more
well-known and uniquely identifying terms.

Previous work answers quiz bowl ques-
tions using a bag of words (näıve Bayes) ap-
proach (Boyd-Graber et al., 2012). These mod-
els fail on sentences like the first one in Figure 1,
a typical hard, initial clue. Recursive neural
networks (rnns), in contrast to simpler models,
can capture the compositional aspect of such
sentences (Hermann et al., 2013).

rnns require many redundant training exam-
ples to learn meaningful representations, which
in the quiz bowl setting means we need multiple
questions about the same answer. Fortunately,
hundreds of questions are produced during the
school year for quiz bowl competitions, yield-
ing many different examples of questions ask-
ing about any entity of note (see Section 4.1
for more details). Thus, we have built-in re-
dundancy (the number of “askable” entities is
limited), but also built-in diversity, as difficult
clues cannot appear in every question without
becoming well-known.

3 Dependency-Tree Recursive
Neural Networks

To compute distributed representations for the
individual sentences within quiz bowl ques-
tions, we use a dependency-tree rnn (dt-rnn).
These representations are then aggregated and
fed into a multinomial logistic regression clas-
sifier, where class labels are the answers asso-
ciated with each question instance.

In previous work, Socher et al. (2014) use
dt-rnns to map text descriptions to images.
dt-rnns are robust to similar sentences with
slightly different syntax, which is ideal for our
problem since answers are often described by
many sentences that are similar in meaning
but different in structure. Our model improves
upon the existing dt-rnn model by jointly
learning answer and question representations
in the same vector space rather than learning
them separately.

3.1 Model Description

As in other rnn models, we begin by associ-
ating each word w in our vocabulary with a
vector representation xw ∈ Rd. These vectors
are stored as the columns of a d × V dimen-
sional word embedding matrix We, where V is
the size of the vocabulary. Our model takes
dependency parse trees of question sentences
(De Marneffe et al., 2006) and their correspond-
ing answers as input.

Each node n in the parse tree for a partic-
ular sentence is associated with a word w, a
word vector xw, and a hidden vector hn ∈ Rd

of the same dimension as the word vectors. For
internal nodes, this vector is a phrase-level rep-
resentation, while at leaf nodes it is the word
vector xw mapped into the hidden space. Un-
like in constituency trees where all words reside
at the leaf level, internal nodes of dependency
trees are associated with words. Thus, the dt-
rnn has to combine the current node’s word
vector with its children’s hidden vectors to form
hn. This process continues recursively up to
the root, which represents the entire sentence.

We associate a separate d×d matrix Wr with
each dependency relation r in our dataset and
learn these matrices during training.1 Syntac-
tically untying these matrices improves com-

1We had 46 unique dependency relations in our quiz
bowl dataset.
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This city ’s economy depended on subjugated peasants called helots

ROOT

DET POSSESSIVE

POSS
NSUBJ

PREP

POBJ

AMOD
VMOD DOBJ

Figure 2: Dependency parse of a sentence from a question about Sparta.

positionality over the standard rnn model by
taking into account relation identity along with
tree structure. We include an additional d× d
matrix, Wv, to incorporate the word vector xw
at a node into the node vector hn.

Given a parse tree (Figure 2), we first com-
pute leaf representations. For example, the
hidden representation hhelots is

hhelots = f(Wv · xhelots + b), (1)

where f is a non-linear activation function such
as tanh and b is a bias term. Once all leaves
are finished, we move to interior nodes with
already processed children. Continuing from
“helots” to its parent, “called”, we compute

hcalled =f(WDOBJ · hhelots +Wv · xcalled

+ b). (2)

We repeat this process up to the root, which is

hdepended =f(WNSUBJ · heconomy +WPREP · hon

+Wv · xdepended + b). (3)

The composition equation for any node n with
children K(n) and word vector xw is hn =

f(Wv · xw + b+
∑

k∈K(n)

WR(n,k) · hk), (4)

where R(n, k) is the dependency relation be-
tween node n and child node k.

3.2 Training

Our goal is to map questions to their corre-
sponding answer entities. Because there are
a limited number of possible answers, we can
view this as a multi-class classification task.
While a softmax layer over every node in the
tree could predict answers (Socher et al., 2011;
Iyyer et al., 2014), this method overlooks that
most answers are themselves words (features)
in other questions (e.g., a question on World

War II might mention the Battle of the Bulge
and vice versa). Thus, word vectors associated
with such answers can be trained in the same
vector space as question text,2 enabling us to
model relationships between answers instead
of assuming incorrectly that all answers are
independent.

To take advantage of this observation, we
depart from Socher et al. (2014) by training
both the answers and questions jointly in a
single model, rather than training each sep-
arately and holding embeddings fixed during
dt-rnn training. This method cannot be ap-
plied to the multimodal text-to-image mapping
problem because text captions by definition are
made up of words and thus cannot include im-
ages; in our case, however, question text can
and frequently does include answer text.

Intuitively, we want to encourage the vectors
of question sentences to be near their correct
answers and far away from incorrect answers.
We accomplish this goal by using a contrastive
max-margin objective function described be-
low. While we are not interested in obtaining a
ranked list of answers,3 we observe better per-
formance by adding the weighted approximate-
rank pairwise (warp) loss proposed in Weston
et al. (2011) to our objective function.

Given a sentence paired with its correct an-
swer c, we randomly select j incorrect answers
from the set of all incorrect answers and denote
this subset as Z. Since c is part of the vocab-
ulary, it has a vector xc ∈ We. An incorrect
answer z ∈ Z is also associated with a vector
xz ∈We. We define S to be the set of all nodes
in the sentence’s dependency tree, where an
individual node s ∈ S is associated with the

2Of course, questions never contain their own answer
as part of the text.

3In quiz bowl, all wrong guesses are equally detri-
mental to a team’s score, no matter how “close” a guess
is to the correct answer.
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hidden vector hs. The error for the sentence is

C(S, θ) =
∑
s∈S

∑
z∈Z

L(rank(c, s, Z))max(0,

1− xc · hs + xz · hs), (5)

where the function rank(c, s, Z) provides the
rank of correct answer c with respect to the
incorrect answers Z. We transform this rank
into a loss function4 shown by Usunier et al.
(2009) to optimize the top of the ranked list,

L(r) =
r∑
i=1

1/i.

Since rank(c, s, Z) is expensive to compute,
we approximate it by randomly sampling K
incorrect answers until a violation is observed
(xc · hs < 1 + xz · hs) and set rank(c, s, Z) =
(|Z|−1)/K, as in previous work (Weston et al.,
2011; Hermann et al., 2014). The model mini-
mizes the sum of the error over all sentences T
normalized by the number of nodes N in the
training set,

J(θ) =
1
N

∑
t∈T

C(t, θ). (6)

The parameters θ = (Wr∈R,Wv,We, b), where
R represents all dependency relations in the
data, are optimized using AdaGrad(Duchi et
al., 2011).5 In Section 4 we compare perfor-
mance to an identical model (fixed-qanta)
that excludes answer vectors from We and show
that training them as part of θ produces signif-
icantly better results.

The gradient of the objective function,

∂C

∂θ
=

1
N

∑
t∈T

∂J(t)
∂θ

, (7)

is computed using backpropagation through
structure (Goller and Kuchler, 1996).

3.3 From Sentences to Questions

The model we have just described considers
each sentence in a quiz bowl question indepen-
dently. However, previously-heard sentences
within the same question contain useful infor-
mation that we do not want our model to ignore.

4Our experiments show that adding this loss term to
the objective function not only increases performance
but also speeds up convergence

5We set the initial learning rate η = 0.05 and reset
the squared gradient sum to zero every five epochs.

While past work on rnn models have been re-
stricted to the sentential and sub-sentential
levels, we show that sentence-level representa-
tions can be easily combined to generate useful
representations at the larger paragraph level.

The simplest and best6 aggregation method
is just to average the representations of each
sentence seen so far in a particular question.
As we show in Section 4, this method is very
powerful and performs better than most of our
baselines. We call this averaged dt-rnn model
qanta: a question answering neural network
with trans-sentential averaging.

4 Experiments

We compare the performance of qanta against
multiple strong baselines on two datasets.
qanta outperforms all baselines trained only
on question text and improves an information
retrieval model trained on all of Wikipedia.
qanta requires that an input sentence de-
scribes an entity without mentioning that
entity, a constraint that is not followed by
Wikipedia sentences.7 While ir methods can
operate over Wikipedia text with no issues,
we show that the representations learned by
qanta over just a dataset of question-answer
pairs can significantly improve the performance
of ir systems.

4.1 Datasets

We evaluate our algorithms on a corpus of over
100,000 question/answer pairs from two differ-
ent sources. First, we expand the dataset used
in Boyd-Graber et al. (2012) with publically-
available questions from quiz bowl tournaments
held after that work was published. This gives
us 46,842 questions in fourteen different cate-
gories. To this dataset we add 65,212 questions
from naqt, an organization that runs quiz
bowl tournaments and generously shared with
us all of their questions from 1998–2013.

6We experimented with weighting earlier sentences
less than later ones in the average as well as learning an
additional RNN on top of the sentence-level representa-
tions. In the former case, we observed no improvements
over a uniform average, while in the latter case the
model overfit even with strong regularization.

7We tried transforming Wikipedia sentences into
quiz bowl sentences by replacing answer mentions with
appropriate descriptors (e.g., “Joseph Heller” with “this
author”), but the resulting sentences suffered from a
variety of grammatical issues and did not help the final
result.
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Because some categories contain substan-
tially fewer questions than others (e.g., astron-
omy has only 331 questions), we consider only
literature and history questions, as these two
categories account for more than 40% of the
corpus. This leaves us with 21,041 history ques-
tions and 22,956 literature questions.

4.1.1 Data Preparation

To make this problem feasible, we only consider
a limited set of the most popular quiz bowl an-
swers. Before we filter out uncommon answers,
we first need to map all raw answer strings to
a canonical set to get around formatting and
redundancy issues. Most quiz bowl answers are
written to provide as much information about
the entity as possible. For example, the follow-
ing is the raw answer text of a question on the
Chinese leader Sun Yat-sen: Sun Yat-sen; or
Sun Yixian; or Sun Wen; or Sun Deming; or
Nakayama Sho; or Nagao Takano. Quiz bowl
writers vary in how many alternate acceptable
answers they provide, which makes it tricky to
strip superfluous information from the answers
using rule-based approaches.

Instead, we use Whoosh,8 an information re-
trieval library, to generate features in an active
learning classifier that matches existing answer
strings to Wikipedia titles. If we are unable
to find a match with a high enough confidence
score, we throw the question out of our dataset.
After this standardization process and manual
vetting of the resulting output, we can use the
Wikipedia page titles as training labels for the
dt-rnn and baseline models.9

65.6% of answers only occur once or twice
in the corpus. We filter out all answers that
do not occur at least six times, which leaves
us with 451 history answers and 595 literature
answers that occur on average twelve times
in the corpus. These pruning steps result in
4,460 usable history questions and 5,685 liter-
ature questions. While ideally we would have
used all answers, our model benefits from many
training examples per answer to learn mean-
ingful representations; this issue can possibly
be addressed with techniques from zero shot
learning (Palatucci et al., 2009; Pasupat and
Liang, 2014), which we leave to future work.

8https://pypi.python.org/pypi/Whoosh/
9Code and non-naqt data available at http://cs.

umd.edu/~miyyer/qblearn.

We apply basic named entity recogni-
tion (ner) by replacing all occurrences of
answers in the question text with single
entities (e.g., Ernest Hemingway becomes
Ernest Hemingway). While we experimented
with more advanced ner systems to detect
non-answer entities, they could not handle
multi-word named entities like the book Love
in the Time of Cholera (title case) or battle
names (e.g., Battle of Midway). A simple
search/replace on all answers in our corpus
works better for multi-word entities.

The preprocessed data are split into folds
by tournament. We choose the past two na-
tional tournaments10 as our test set as well
as questions previously answered by players in
Boyd-Graber et al. (2012) and assign all other
questions to train and dev sets. History results
are reported on a training set of 3,761 ques-
tions with 14,217 sentences and a test set of
699 questions with 2,768 sentences. Literature
results are reported on a training set of 4,777
questions with 17,972 sentences and a test set
of 908 questions with 3,577 sentences.

Finally, we initialize the word embedding
matrix We with word2vec (Mikolov et al., 2013)
trained on the preprocessed question text in
our training set.11 We use the hierarchical skip-
gram model setting with a window size of five
words.

4.2 Baselines

We pit qanta against two types of baselines:
bag of words models, which enable comparison
to a standard NLP baseline, and information
retrieval models, which allow us to compare
against traditional question answering tech-
niques.
BOW The bow baseline is a logistic regres-
sion classifier trained on binary unigram indi-
cators.12 This simple discriminative model is
an improvement over the generative quiz bowl
answering model of Boyd-Graber et al. (2012).

10The tournaments were selected because naqt does
not reuse any questions or clues within these tourna-
ments.

11Out-of-vocabulary words from the test set are ini-
tialized randomly.

12Raw word counts, frequencies, and TF-IDF
weighted features did not increase performance, nor
did adding bigrams to the feature set (possibly because
multi-word named entities are already collapsed into
single words).
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BOW-DT The bow-dt baseline is identical
to bow except we augment the feature set with
dependency relation indicators. We include
this baseline to isolate the effects of the depen-
dency tree structure from our compositional
model.
IR-QB The ir-qb baseline maps questions to
answers using the state-of-the-art Whoosh ir
engine. The knowledge base for ir-qb consists
of “pages” associated with each answer, where
each page is the union of training question text
for that answer. Given a partial question, the
text is first preprocessed using a query lan-
guage similar to that of Apache Lucene. This
processed query is then matched to pages uses
bm-25 term weighting, and the top-ranked page
is considered to be the model’s guess. We also
incorporate fuzzy queries to catch misspellings
and plurals and use Whoosh’s built-in query ex-
pansion functionality to add related keywords
to our queries. IR-WIKI The ir-wiki model
is identical to the ir-qb model except that each
“page” in its knowledge base also includes all
text from the associated answer’s Wikipedia
article. Since all other baselines and dt-rnn
models operate only on the question text, this
is not a valid comparison, but we offer it to
show that we can improve even this strong
model using qanta.

4.3 DT-RNN Configurations

For all dt-rnn models the vector dimension d
and the number of wrong answers per node j
is set to 100. All model parameters other than
We are randomly initialized. The non-linearity
f is the normalized tanh function,13

f(v) =
tanh(v)
‖tanh(v)‖ . (8)

qanta is our dt-rnn model with feature
averaging across previously-seen sentences in a
question. To obtain the final answer prediction
given a partial question, we first generate a
feature representation for each sentence within
that partial question. This representation is
computed by concatenating together the word
embeddings and hidden representations aver-
aged over all nodes in the tree as well as the

13The standard tanh function produced heavy sat-
uration at higher levels of the trees, and corrective
weighting as in Socher et al. (2014) hurt our model
because named entities that occur as leaves are often
more important than non-terminal phrases.

root node’s hidden vector. Finally, we send
the average of all of the individual sentence fea-
tures14 as input to a logistic regression classifier
for answer prediction.

fixed-qanta uses the same dt-rnn configu-
ration as qanta except the answer vectors are
kept constant as in the text-to-image model.

4.4 Human Comparison

Previous work provides human answers (Boyd-
Graber et al., 2012) for quiz bowl questions.
We use human records for 1,201 history guesses
and 1,715 literature guesses from twenty-two of
the quiz bowl players who answered the most
questions.15

The standard scoring system for quiz bowl is
10 points for a correct guess and -5 points for
an incorrect guess. We use this metric to com-
pute a total score for each human. To obtain
the corresponding score for our model, we force
it to imitate each human’s guessing policy. For
example, Figure 3 shows a human answering
in the middle of the second sentence. Since our
model only considers sentence-level increments,
we compare the model’s prediction after the
first sentence to the human prediction, which
means our model is privy to less information
than humans.

The resulting distributions are shown in Fig-
ure 4—our model does better than the average
player on history questions, tying or defeat-
ing sixteen of the twenty-two players, but it
does worse on literature questions, where it
only ties or defeats eight players. The figure
indicates that literature questions are harder
than history questions for our model, which is
corroborated by the experimental results dis-
cussed in the next section.

5 Discussion

In this section, we examine why qanta im-
proves over our baselines by giving examples
of questions that are incorrectly classified by
all baselines but correctly classified by qanta.
We also take a close look at some sentences that
all models fail to answer correctly. Finally, we
visualize the answer space learned by qanta.

14Initial experiments with L2 regularization hurt per-
formance on a validation set.

15Participants were skilled quiz bowl players and are
not representative of the general population.
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History Literature

Model Pos 1 Pos 2 Full Pos 1 Pos 2 Full

bow 27.5 51.3 53.1 19.3 43.4 46.7
bow-dt 35.4 57.7 60.2 24.4 51.8 55.7
ir-qb 37.5 65.9 71.4 27.4 54.0 61.9
fixed-qanta 38.3 64.4 66.2 28.9 57.7 62.3
qanta 47.1 72.1 73.7 36.4 68.2 69.1

ir-wiki 53.7 76.6 77.5 41.8 74.0 73.3
qanta+ir-wiki 59.8 81.8 82.3 44.7 78.7 76.6

Table 1: Accuracy for history and literature at the first two sentence positions of each question
and the full question. The top half of the table compares models trained on questions only, while
the IR models in the bottom half have access to Wikipedia. qanta outperforms all baselines
that are restricted to just the question data, and it substantially improves an IR model with
access to Wikipedia despite being trained on much less data.
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Figure 4: Comparisons of qanta+ir-wiki to human quiz bowl players. Each bar represents an
individual human, and the bar height corresponds to the difference between the model score and
the human score. Bars are ordered by human skill. Red bars indicate that the human is winning,
while blue bars indicate that the model is winning. qanta+ir-wiki outperforms most humans
on history questions but fails to defeat the “average” human on literature questions.

A minor character in this play can be summoned
by a bell that does not always work; that character
also doesn’t have eyelids. Near the end, a woman
who drowned her illegitimate child attempts to stab
another woman in the Second Empire-style 3 room
in which the entire play takes place. For 10 points,
Estelle and Ines are characters in which existentialist
play in which Garcin claims “Hell is other people”,
written by Jean-Paul Sartre?

Figure 3: A question on the play “No Exit”
with human buzz position marked as 3. Since
the buzz occurs in the middle of the second
sentence, our model is only allowed to see the
first sentence.

5.1 Experimental Results

Table 1 shows that when bag of words and
information retrieval methods are restricted to
question data, they perform significantly worse
than qanta on early sentence positions. The

performance of bow-dt indicates that while
the dependency tree structure helps by itself,
the compositional distributed representations
learned by qanta are more useful. The signif-
icant improvement when we train answers as
part of our vocabulary (see Section 3.2) indi-
cates that our model uses answer occurrences
within question text to learn a more informa-
tive vector space.

The disparity between ir-qb and ir-wiki
indicates that the information retrieval models
need lots of external data to work well at all
sentence positions. ir-wiki performs better
than other models because Wikipedia contains
many more sentences that partially match spe-
cific words or phrases found in early clues than
the question training set. In particular, it is
impossible for all other models to answer clues
in the test set that have no semantically similar
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or equivalent analogues in the training ques-
tion data. With that said, ir methods can
also operate over data that does not follow the
special constraints of quiz bowl questions (e.g.,
every sentence uniquely identifies the answer,
answers don’t appear in their corresponding
questions), which qanta cannot handle. By
combining qanta and ir-wiki, we are able to
leverage access to huge knowledge bases along
with deep compositional representations, giv-
ing us the best of both worlds.

5.2 Where the Attribute Space Helps
Answer Questions

We look closely at the first sentence from a
literature question about the author Thomas
Mann: “He left unfinished a novel whose title
character forges his father’s signature to get
out of school and avoids the draft by feigning
desire to join”.

All baselines, including ir-wiki, are unable
to predict the correct answer given only this
sentence. However, qanta makes the correct
prediction. The sentence contains no named
entities, which makes it almost impossible for
bag of words or string matching algorithms to
predict correctly. Figure 6 shows that the plot
description associated with the “novel” node
is strongly indicative of the answer. The five
highest-scored answers are all male authors,16

which shows that our model is able to learn the
answer type without any hand-crafted rules.

Our next example, the first sentence in Ta-
ble 2, is from the first position of a question
on John Quincy Adams, which is correctly an-
swered by only qanta. The bag of words
model guesses Henry Clay, who was also a Sec-
retary of State in the nineteenth century and
helped John Quincy Adams get elected to the
presidency in a “corrupt bargain”. However,
the model can reason that while Henry Clay
was active at the same time and involved in
the same political problems of the era, he did
not represent the Amistad slaves, nor did he
negotiate the Treaty of Ghent.

5.3 Where all Models Struggle

Quiz bowl questions are intentionally written to
make players work to get the answer, especially
at early sentence positions. Our model fails to

16three of whom who also have well-known unfinished
novels

answer correctly more than half the time after
hearing only the first sentence. We examine
some examples to see if there are any patterns
to what makes a question “hard” for machine
learning models.

Consider this question about the Italian ex-
plorer John Cabot: “As a young man, this
native of Genoa disguised himself as a Muslim
to make a pilgrimage to Mecca”.

While it is obvious to human readers that
the man described in this sentence is not actu-
ally a Muslim, qanta has to accurately model
the verb disguised to make that inference. We
show the score plot of this sentence in Figure 7.
The model, after presumably seeing many in-
stances of muslim and mecca associated with
Mughal emperors, is unable to prevent this
information from propagating up to the root
node. On the bright side, our model is able to
learn that the question is expecting a human
answer rather than non-human entities like the
Umayyad Caliphate.

More examples of impressive answers by
qanta as well as incorrect guesses by all sys-
tems are shown in Table 2.

5.4 Examining the Attribute Space

Figure 5 shows a t-SNE visualization (Van der
Maaten and Hinton, 2008) of the 451 answers
in our history dataset. The vector space is
divided into six general clusters, and we focus
in particular on the us presidents. Zooming
in on this section reveals temporal clustering:
presidents who were in office during the same
timeframe occur closer together. This observa-
tion shows that qanta is capable of learning
attributes of entities during training.

6 Related Work

There are two threads of related work relevant
to this paper. First, we discuss previous ap-
plications of compositional vector models to
related NLP tasks. Then, we examine existing
work on factoid question-answering and review
the similarities and differences between these
tasks and the game of quiz bowl.

6.1 Recursive Neural Networks for
NLP

The principle of semantic composition states
that the meaning of a phrase can be derived
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Wars, rebellions, and battles
U.S. presidents
Prime ministers
Explorers & emperors
Policies
Other

tammany_hall

calvin_coolidge

lollardy

fourth_crusade

songhai_empire

peace_of_westphalia

inca_empire

atahualpa

charles_sumner

john_paul_jones

wounded_knee_massacre

huldrych_zwingli

darius_i

battle_of_ayacucho

john_cabot
ghana

ulysses_s._grant

hartford_convention
civilian_conservation_corps

roger_williams_(theologian)

george_h._pendleton

william_mckinley

victoria_woodhull

credit_mobilier_of_america_scandal henry_cabot_lodge,_jr.

mughal_empire

john_marshall

cultural_revolution

guadalcanal

louisiana_purchase

night_of_the_long_knives

chandragupta_maurya

samuel_de_champlain

thirty_years'_war

compromise_of_1850

battle_of_hastings

battle_of_salamis

akbar

lewis_cass

dawes_plan

hernando_de_soto

carthage

joseph_mccarthy

maine

salvador_allende

battle_of_gettysburg

mikhail_gorbachev

aaron_burr

equal_rights_amendment

war_of_the_spanish_succession

coxey's_army

george_meade

fourteen_points

mapp_v._ohio
sam_houston

ming_dynasty

boxer_rebellion

anti-masonic_party

porfirio_diaz

treaty_of_portsmouth

thebes,_greece

golden_horde

francisco_i._madero

hittites

james_g._blaine
schenck_v._united_states

caligula

william_walker_(filibuster)

henry_vii_of_england

konrad_adenauer

kellogg-briand_pact

battle_of_culloden

treaty_of_brest-litovsk

william_penn

a._philip_randolph

henry_l._stimson

whig_party_(united_states)

caroline_affair
clarence_darrow

whiskey_rebellion

battle_of_midway

battle_of_lepanto

adolf_eichmann

georges_clemenceau

battle_of_the_little_bighornpontiac_(person)

black_hawk_war

battle_of_tannenberg

clayton_antitrust_act

provisions_of_oxford

battle_of_actium

suez_crisis

spartacus

dorr_rebellion

jay_treaty

triangle_shirtwaist_factory_fire

kamakura_shogunate

julius_nyerere

frederick_douglass

pierre_trudeau

nagasaki

suleiman_the_magnificent

falklands_war

war_of_devolution

charlemagne

daniel_boone

edict_of_nantes

harry_s._truman

shaka

pedro_alvares_cabral

thomas_hart_benton_(politician)

battle_of_the_coral_sea

peterloo_massacre

battle_of_bosworth_field

roger_b._taney

bernardo_o'higgins

neville_chamberlain

henry_hudson

cyrus_the_great

jane_addams

rough_riders

james_a._garfield

napoleon_iii

missouri_compromise

battle_of_leyte_gulf

ambrose_burnside

trent_affair

maria_theresa

william_ewart_gladstone

walter_mondale

barry_goldwater
louis_riel

hideki_tojo

marco_polo

brian_mulroney

truman_doctrine

roald_amundsen

tokugawa_shogunate

eleanor_of_aquitaine

louis_brandeis

battle_of_trenton

khmer_empire

benito_juarez

battle_of_antietam

whiskey_ring

otto_von_bismarck

booker_t._washington

battle_of_bannockburneugene_v._debs

erie_canal

jameson_raid

green_mountain_boys

haymarket_affair

finland

fashoda_incident

battle_of_shiloh

hannibal

john_jay

easter_rising

jamaica

brook_farm

umayyad_caliphate

muhammad

francis_drake

clara_barton

shays'_rebellion
verdun

hadrianvyacheslav_molotov
oda_nobunaga

canossa

samuel_gompers

battle_of_bunker_hill
battle_of_plassey

david_livingstone

solon
pericles

tang_dynasty

teutonic_knights

second_vatican_council

alfred_dreyfus

henry_the_navigator

nelson_mandela

peasants'_revolt

gaius_marius

getulio_vargas

horatio_gates

john_t._scopes

league_of_nations

first_battle_of_bull_run

alfred_the_great

leonid_brezhnev

cherokee

long_march

emiliano_zapata

james_monroe

woodrow_wilson

vandals

william_henry_harrison

battle_of_puebla

battle_of_zama

justinian_i

thaddeus_stevens

cecil_rhodes

kwame_nkrumah

diet_of_worms

george_armstrong_custer

battle_of_agincourt

seminole_wars

shah_jahan

amerigo_vespucci

john_foster_dulles

lester_b._pearson

oregon_trail

claudius

lateran_treaty

chester_a._arthur

opium_wars

treaty_of_utrecht
knights_of_labor

alexander_hamilton

plessy_v._ferguson

horace_greeley

mary_baker_eddy

alexander_kerensky

jacquerie

treaty_of_ghent
bay_of_pigs_invasion

antonio_lopez_de_santa_anna

great_northern_war

henry_i_of_england

council_of_trent

chiang_kai-shek

samuel_j._tilden

fidel_castro

wilmot_proviso

yuan_dynasty

bastille

benjamin_harrison

war_of_the_austrian_successioncrimean_war

john_brown_(abolitionist)

teapot_dome_scandal

albert_b._fall

marcus_licinius_crassus

earl_warren

warren_g._harding

gunpowder_plot

homestead_strike

samuel_adams

john_peter_zenger

thomas_paine

free_soil_party

st._bartholomew's_day_massacre

arthur_wellesley,_1st_duke_of_wellington

charles_de_gaulle

leon_trotsky

hugh_capet

alexander_h._stephens

haile_selassie

william_h._seward

rutherford_b._hayes

safavid_dynasty

muhammad_ali_jinnah

kulturkampf

maximilien_de_robespierre

hubert_humphrey

luddite

hull_house

philip_ii_of_macedon

guelphs_and_ghibellines

byzantine_empire

albigensian_crusade

diocletian

fort_ticonderoga

parthian_empire

charles_martel

william_jennings_bryan

alexander_ii_of_russia

ferdinand_magellan

state_of_franklin

ivan_the_terrible

martin_luther_(1953_film)

millard_fillmore

francisco_franco

aethelred_the_unready

ronald_reagan

benito_mussolini

henry_clay

kitchen_cabinet

black_hole_of_calcutta

ancient_corinth

john_wilkes_booth

john_tyler

robert_walpole

huey_long

tokugawa_ieyasu

thomas_nast

nikita_khrushchev

andrew_jackson

portugal

labour_party_(uk)

monroe_doctrine

john_quincy_adams

congress_of_berlin

tecumseh

jacques_cartier

battle_of_the_thames

spanish_civil_war

ethiopia

fugitive_slave_laws

john_a._macdonald

council_of_chalcedon

pancho_villa

war_of_the_pacific

george_wallace

susan_b._anthony

marcus_garvey

grover_cleveland
john_hay

george_b._mcclellan

october_manifesto

vitus_bering

john_hancock

william_lloyd_garrison

platt_amendment

mary,_queen_of_scots

first_triumvirate

francisco_vasquez_de_coronado

margaret_thatcher

sherman_antitrust_act

hanseatic_league

henry_morton_stanley

july_revolution

stephen_a._douglas

xyz_affair

jimmy_carter

francisco_pizarro

kublai_khan

vasco_da_gama

sparta

battle_of_caporetto

ostend_manifesto

mustafa_kemal_ataturk

peter_the_great

gang_of_four

battle_of_chancellorsville

david_lloyd_george

cardinal_mazarin

embargo_act_of_1807

brigham_young

charles_lindbergh

hudson's_bay_company

attila

paris_commune

jefferson_davis

amelia_earhart

mali_empire

adolf_hitler

benedict_arnold

camillo_benso,_count_of_cavour

meiji_restoration

black_panther_party

mark_antony

franklin_pierce

molly_maguires

zachary_taylor

han_dynasty

adlai_stevenson_ii

james_k._polk

douglas_macarthur

boston_massacre

toyotomi_hideyoshi

greenback_party

second_boer_war
third_crusade

james_buchanan

john_sherman

george_washington

wars_of_the_roses

atlantic_charter

eleanor_roosevelt

congress_of_vienna

john_wycliffe

winston_churchill

emilio_aguinaldo

miguel_hidalgo_y_costilla

second_bank_of_the_united_states

council_of_constance

seneca_falls_convention

first_crusade

spiro_agnew

taiping_rebellion

mao_zedong

paul_von_hindenburg

albany_congress

jawaharlal_nehru

battle_of_blenheim

ethan_allen

antonio_de_oliveira_salazar

herbert_hoover

pepin_the_short

indira_gandhi

william_howard_taftthomas_jefferson

gamal_abdel_nasser

oliver_cromwell

salmon_p._chase

battle_of_austerlitz

benjamin_disraeli

gadsden_purchase

girolamo_savonarola

treaty_of_tordesillas

battle_of_marathon

elizabeth_cady_stanton

battle_of_kings_mountain
christopher_columbus

william_the_conqueror

battle_of_trafalgar

charles_evans_hughes

cleisthenes

william_tecumseh_sherman

mobutu_sese_seko

prague_spring

babur

peloponnesian_war

jacques_marquette

nero

paraguay

hyksos

martin_van_buren

bonus_army

charles_stewart_parnell

edward_the_confessor

bartolomeu_dias

salem_witch_trials

battle_of_the_bulge

john_adams

maginot_line

henry_cabot_lodge

giuseppe_garibaldi

daniel_webster

john_c._calhoun

treaty_of_waitangi

zebulon_pike

genghis_khan

calvin_coolidge
william_mckinley

james_monroe

woodrow_wilson

william_henry_harrison

benjamin_harrison

millard_fillmore

ronald_reagan

john_tyler andrew_jackson
john_quincy_adams

grover_cleveland

jimmy_carter

franklin_pierce

zachary_taylor

james_buchanan

george_washington

herbert_hoover
william_howard_taft

thomas_jefferson

martin_van_buren

john_adams

Figure 5: t-SNE 2-D projections of 451 answer
vectors divided into six major clusters. The
blue cluster is predominantly populated by U.S.
presidents. The zoomed plot reveals temporal
clustering among the presidents based on the
years they spent in office.

from the meaning of the words that it con-
tains as well as the syntax that glues those
words together. Many computational models
of compositionality focus on learning vector
spaces (Zanzotto et al., 2010; Erk, 2012; Grefen-
stette et al., 2013; Yessenalina and Cardie,
2011). Recent approaches towards modeling
compositional vector spaces with neural net-
works have been successful, although simpler
functions have been proposed for short phrases
(Mitchell and Lapata, 2008).

Recursive neural networks have achieved
state-of-the-art performance in sentiment anal-
ysis and parsing (Socher et al., 2013c; Hermann
and Blunsom, 2013; Socher et al., 2013a). rnns
have not been previously used for learning at-
tribute spaces as we do here, although recursive
tensor networks were unsuccessfully applied to
a knowledge base completion task (Socher et
al., 2013b). More relevant to this work are the
dialogue analysis model proposed by Kalchbren-
ner & Blunsom (2013) and the paragraph vec-
tor model described in Le and Mikolov (2014),
both of which are able to generate distributed
representations of paragraphs. Here we present
a simpler approach where a single model is able
to learn complex sentence representations and
average them across paragraphs.

6.2 Factoid Question-Answering

Factoid question answering is often functionally
equivalent to information retrieval. Given a
knowledge base and a query, the goal is to

Thomas Mann
Joseph Conrad

Henrik Ibsen
Franz Kafka

Henry James

Figure 6: A question on the German novelist
Thomas Mann that contains no named entities,
along with the five top answers as scored by
qanta. Each cell in the heatmap corresponds
to the score (inner product) between a node
in the parse tree and the given answer, and
the dependency parse of the sentence is shown
on the left. All of our baselines, including ir-
wiki, are wrong, while qanta uses the plot
description to make a correct guess.

return the answer. Many approaches to this
problem rely on hand-crafted pattern matching
and answer-type classification to narrow down
the search space (Shen, 2007; Bilotti et al.,
2010; Wang, 2006). More recent factoid qa
systems incorporate the web and social media
into their retrieval systems (Bian et al., 2008).
In contrast to these approaches, we place the
burden of learning answer types and patterns
on the model.

7 Future Work

While we have shown that dt-rnns are effec-
tive models for quiz bowl question answering,
other factoid qa tasks are more challenging.
Questions like what does the aarp stand for?
from trec qa data require additional infras-
tructure. A more apt comparison would be to
IBM’s proprietary Watson system (Lally et al.,
2012) for Jeopardy, which is limited to single
sentences, or to models trained on Yago (Hof-
fart et al., 2013).

We would also like to fairly compare qanta
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Akbar
Shah Jahan

Muhammad
Babur

Ghana

Figure 7: An extremely misleading question
about John Cabot, at least to computer models.
The words muslim and mecca lead to three
Mughal emperors in the top five guesses from
qanta; other models are similarly led awry.

with ir-wiki. A promising avenue for future
work would be to incorporate Wikipedia data
into qanta by transforming sentences to look
like quiz bowl questions (Wang et al., 2007) and
to select relevant sentences, as not every sen-
tence in a Wikipedia article directly describes
its subject. Syntax-specific annotation (Sayeed
et al., 2012) may help in this regard.

Finally, we could adapt the attribute space
learned by the dt-rnn to use information from
knowledge bases and to aid in knowledge base
completion. Having learned many facts about
entities that occur in question text, a dt-rnn
could add new facts to a knowledge base or
check existing relationships.

8 Conclusion

We present qanta, a dependency-tree recursive
neural network for factoid question answering
that outperforms bag of words and informa-
tion retrieval baselines. Our model improves
upon a contrastive max-margin objective func-
tion from previous work to dynamically update
answer vectors during training with a single
model. Finally, we show that sentence-level
representations can be easily and effectively
combined to generate paragraph-level represen-

Q he also successfully represented the amistad
slaves and negotiated the treaty of ghent and
the annexation of florida from spain during his
stint as secretary of state under james monroe

A john quincy adams, henry clay, andrew jack-
son

Q this work refers to people who fell on their
knees in hopeless cathedrals and who jumped
off the brooklyn bridge

A howl, the tempest, paradise lost
Q despite the fact that twenty six martyrs were

crucified here in the late sixteenth century it
remained the center of christianity in its coun-
try

A nagasaki, guadalcanal, ethiopia
Q this novel parodies freudianism in a chapter

about the protagonist ’s dream of holding a
live fish in his hands

A
billy budd, the ambassadors, all my sons

Q a contemporary of elizabeth i he came to power
two years before her and died two years later

A
grover cleveland, benjamin harrison, henry
cabot lodge

Table 2: Five example sentences occuring at
the first sentence position along with their top
three answers as scored by qanta; correct an-
swers are marked with blue and wrong answers
are marked with red. qanta gets the first
three correct, unlike all other baselines. The
last two questions are too difficult for all of
our models, requiring external knowledge (e.g.,
Freudianism) and temporal reasoning.

tations with more predictive power than those
of the individual sentences.
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Abstract

Transforming a natural language (NL)
question into a corresponding logical form
(LF) is central to the knowledge-based
question answering (KB-QA) task. Un-
like most previous methods that achieve
this goal based on mappings between lex-
icalized phrases and logical predicates,
this paper goes one step further and pro-
poses a novel embedding-based approach
that maps NL-questions into LFs for KB-
QA by leveraging semantic associations
between lexical representations and KB-
properties in the latent space. Experimen-
tal results demonstrate that our proposed
method outperforms three KB-QA base-
line methods on two publicly released QA
data sets.

1 Introduction

Knowledge-based question answering (KB-QA)
involves answering questions posed in natural
language (NL) using existing knowledge bases
(KBs). As most KBs are structured databases,
how to transform the input question into its corre-
sponding structured query for KB (KB-query) as
a logical form (LF), also known as semantic pars-
ing, is the central task for KB-QA systems. Pre-
vious works (Mooney, 2007; Liang et al., 2011;
Cai and Yates, 2013; Fader et al., 2013; Berant et
al., 2013; Bao et al., 2014) usually leveraged map-
pings between NL phrases and logical predicates
as lexical triggers to perform transformation tasks
in semantic parsing, but they had to deal with two
limitations: (i) as the meaning of a logical pred-
icate often has different natural language expres-
sion (NLE) forms, the lexical triggers extracted for
a predicate may at times are limited in size; (ii)
entities detected by the named entity recognition
(NER) component will be used to compose the

logical forms together with the logical predicates,
so their types should be consistent with the pred-
icates as well. However, most NER components
used in existing KB-QA systems are independent
from the NLE-to-predicate mapping procedure.

We present a novel embedding-based KB-QA
method that takes all the aforementioned lim-
itations into account, and maps NLE-to-entity
and NLE-to-predicate simultaneously using sim-
ple vector operations for structured query con-
struction. First, low-dimensional embeddings of
n-grams, entity types, and predicates are jointly
learned from an existing knowledge base and from
entries <entitysubj, NL relation phrase, entityobj>
that are mined from NL texts labeled as KB-
properties with weak supervision. Each such en-
try corresponds to an NL expression of a triple
<entitysubj, predicate, entityobj> in the KB. These
embeddings are used to measure the semantic as-
sociations between lexical phrases and two prop-
erties of the KB, entity type and logical predicate.
Next, given an NL-question, all possible struc-
tured queries as candidate LFs are generated and
then they are ranked by the similarity between the
embeddings of observed features (n-grams) in the
NL-question and the embeddings of logical fea-
tures in the structured queries. Last, answers are
retrieved from the KB using the selected LFs.

The contributions of this work are two-fold: (1)
as a smoothing technique, the low-dimensional
embeddings can alleviate the coverage issues of
lexical triggers; (2) our joint approach integrates
entity span selection and predicate mapping tasks
for KB-QA. For this we built independent entity
embeddings as the additional component, solving
the entity disambiguation problem.

2 Related Work

Supervised semantic parsers (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005; Mooney,
2007) heavily rely on the <sentence, semantic an-
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notation> pairs for lexical trigger extraction and
model training. Due to the data annotation re-
quirement, such methods are usually restricted to
specific domains, and struggle with the coverage
issue caused by the limited size of lexical triggers.

Studies on weakly supervised semantic parsers
have tried to reduce the amount of human supervi-
sion by using question-answer pairs (Liang et al.,
2011) or distant supervision (Krishnamurthy and
Mitchell, 2012) instead of full semantic annota-
tions. Still, for KB-QA, the question of how to
leverage KB-properties and analyze the question
structures remains.

Bordes et al. (2012) and Weston et al. (2013) de-
signed embedding models that connect free texts
with KBs using the relational learning method
(Weston et al., 2010). Their inputs are often
statement sentences which include subject and ob-
ject entities for a given predicate, whereas NL-
questions lack either a subject or object entity that
is the potential answer. Hence, we can only use
the information of a subject or object entity, which
leads to a different training instance generation
procedure and a different training criterion.

Recently, researchers have developed open do-
main systems based on large scale KBs such as
FREEBASE1 (Cai and Yates, 2013; Fader et al.,
2013; Berant et al., 2013; Kwiatkowski et al.,
2013; Bao et al., 2014; Berant and Liang, 2014;
Yao and Van Durme, 2014). Their semantic
parsers for Open QA are unified formal and scal-
able: they enable the NL-question to be mapped
into the appropriate logical form. Our method ob-
tains similar logical forms, but using only low-
dimensional embeddings of n-grams, entity types,
and predicates learned from texts and KB.

3 Setup

3.1 Relational Components for KB-QA
Our method learns semantic mappings between
NLEs and the KB2 based on the paired relation-
ships of the following three components: C de-
notes a set of bag-of-words (or n-grams) as context
features (c) for NLEs that are the lexical represen-
tations of a logical predicate (p) in KB; T denotes
a set of entity types (t) in KB and each type can be
used as the abstract expression of a subject entity

1http://www.freebase.com
2For this paper, we used a large scale knowledge base that

contains 2.3B entities, 5.5K predicates, and 18B assertions.
A 16-machine cluster was used to host and serve the whole
data.

(s) that occurs in the input question; P denotes a
set of logical predicates (p) in KB, each of which
is the canonical form of different NLEs sharing an
identical meaning (bag-of-words; c).

Based on the components defined above, the
paired relationships are described as follows: T -
P can investigate the relationship between sub-
ject entity and logical predicate, as object entity
is always missing in KB-QA; C-T can scruti-
nize subject entity’s attributes for the entity span
selection such as its positional information and
relevant entity types to the given context, which
may solve the entity disambiguation problem in
KB-QA; C-P can leverage the semantic overlap
between question contexts (n-gram features) and
logical predicates, which is important for mapping
NL-questions to their corresponding predicates.

3.2 NLE-KB Pair Extraction
This section describes how we extract the semantic
associated pairs of NLE-entries and KB-triples to
learn the relational embeddings (Section 4.1).

<Relation Mention, Predicate> Pair (MP)
Each relation mention denotes a lexical phrase
of an existing KB-predicate. Following informa-
tion extraction methods, such as PATTY (Nakas-
hole et al., 2012), we extracted the <relation
mention, logical predicate> pairs from English
WIKIPEDIA3, which is closely connected to our
KB, as follows: Given a KB-triple <entitysubj,
logical predicate, entityobj>, we extracted NLE-
entries <entitysubj, relation mention, entityobj>
where relation mention is the shortest path be-
tween entitysubj and entityobj in the dependency
tree of sentences. The assumption is that any re-
lation mention (m) in the NLE-entry containing
such entity pairs that occurred in the KB-triple is
likely to express the predicate (p) of that triple.

With obtaining high-qualityMP pairs, we kept
only relation mentions that were highly associated
with a predicate measured by the scoring function:

S(m, p) = PMI(em; ep) + PMI(um;up) (1)

where ex is the set of total pairs of both-side
entities of entry x (m or p) and ux is the set
of unique (distinct) pairs of both-side entities of
entry x. In this case, the both-side entities in-
dicate entitysubj and entityobj. For a frequency-
based probability, PMI(x; y) = log P (x,y)

P (x)P (y)

3http://en.wikipedia.org/
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(Church and Hanks, 1990) can be re-written as
PMI(x; y) = log |x

⋂
y|·C

|x|·|y| , where C denotes the
total number of items shown in the corpus. The
function is partially derived from the support score
(Gerber and Ngonga Ngomo, 2011), but we fo-
cus on the correlation of shared entity pairs be-
tween relation mentions and predicates using the
PMI computation.

<Question Pattern, Predicate> Pair (QP)
Since WIKIPEDIA articles have no information to
leverage interrogative features which highly de-
pend on the object entity (answer), it is difficult to
distinguish some questions that are composed of
only different 5W1H words, e.g., {When|Where}
was Barack Obama born? Hence, we used the
method of collecting question patterns with human
labeled predicates that are restricted by the set of
predicates used inMP (Bao et al., 2014).

4 Embedding-based KB-QA

Our task is as follows. First, our model learns the
semantic associations of C-T , C-P , and T -P (Sec-
tion 3.1) based on NLE-KB pairs (Section 3.2),
and then predicts the semantic-related KB-query
which can directly find the answer to a given NL-
question.

For our feature space, given an NLE-KB pair,
the NLE (relation mention in MP or question
pattern in QP) is decomposed into n-gram fea-
tures: C = {c | c is a segment of NLE}, and
the KB-properties are represented by entity type
t of entitysubj and predicate p. Then we can ob-
tain a training triplet w = [C, t, p]. Each feature
(c ∈ C, t ∈ T , p ∈ P) is encoded in the distributed
representation which is n-dimensional embedding
vectors (En): ∀x, x encode⇒ E(x) ∈ En.

All n-gram features (C) for an NLE are merged
into one embedding vector to help speed up the
learning process: E(C) =

∑
c∈C E(c)/|C|. This

feature representation is inspired by previous work
in embedding-based relation extraction (Weston et
al., 2013), but differs in the following ways: (1)
entity information is represented on a separate em-
bedding, but its positional information remains as
symbol 〈entity〉; (2) when the vectors are com-
bined, we use the average of each index to normal-
ize features.

For our joint relational approach, we focus on
the set of paired relationships R = {C-t, C-p, t-
p} that can be semantically leveraged. Formally,
these features are embedded into the same latent

space (En) and their semantic similarities can be
computed by a dot product operation:

Sim(a, b) = Sim(rab) = E(a)ᵀE(b) (2)

where rab denotes a paired relationship a-b (or (a,
b)) in the above set R. We believe that our joint re-
lational learning can smooth the surface (lexical)
features for semantic parsing using the aligned en-
tity and predicate.

4.1 Joint Relational Embedding Learning
Our ranking-based relational learning is based on
a ranking loss (Weston et al., 2010) that supports
the idea that the similarity scores of observed pairs
in the training set (positive instances) should be
larger than those of any other pairs (negative in-
stances):

∀i, ∀y′ 6= yi, Sim(xi, yi) > 1+Sim(xi, y′) (3)

More precisely, for each triplet wi = [Ci, ti, pi]
obtained from an NLE-KB pair, the relationships
Ri = {Ci-ti, Ci-pi, ti-pi} are trained under the
soft ranking criterion, which conducts Stochastic
Gradient Descent (SGD). We thus aim to minimize
the following:

∀i,∀y′ 6= yi,max(0, 1−Sim(xi, yi)+Sim(xi, y′))
(4)

Our learning strategy is as follows. First, we ini-
tialize embedding space En by randomly giving
mean 0 and standard deviation 1/n to each vec-
tor. Then for each training triplet wi, we select the
negative pairs against positive pairs (Ci-ti, Ci-pi,
and ti-pi) in the triplet. Last, we make a stochastic
gradient step to minimize Equation 4 and update
En at each step.

4.2 KB-QA using Embedding Models
Our goal for KB-QA is to translate a given NL-
question to a KB-query with the form <subject
entity, predicate, ?>, where ? denotes the an-
swer entity we are looking for. The decoding pro-
cess consists of two stages. The first stage in-
volves generating all possible KB-queries (Kq) for
an NL-question q. We first extract n-gram fea-
tures (Cq) from the NL-question q. Then for a
KB-query kq, we find all available entity types
(tq) of the identified subject entities (sq) using
the dictionary-based entity detection on the NL-
question q (all of spans can be candidate entities),
and assign all items of predicate set (P) as the can-
didate predicates (pq). Like the training triplets,
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q where is the city of david?

k̂(q) [The City of David, contained by, ?]
Cq n-grams of “where is 〈entity〉 ?”
tq location
pq contained by

Table 1: The corresponding KB-query k̂(q) for a
NL-question q and its decoding triplet wq.

we also represent the above features as the triplet
form wqi = [Cq

i , t
q
i , p

q
i ] which is directly linked to

a KB-query kqi = [sqi , p
q
i , ?]. The second stage

involves ranking candidate KB-queries based on
the similarity scores between the following paired
relationships from the triplet wqi : Rq

i = {Cq
i -t

q
i ,

Cq
i -p

q
i , t

q
i -p

q
i }. Unlike in the training step, the sim-

ilarities of Cq
i -t

q
i and Cq

i -p
q
i are computed by sum-

mation of all pairwise elements (each context em-
bedding E(c), not E(C), with each paired E(t) or
E(p)) for a more precise measurement. Since sim-
ilarites of Rq are calculated on different scales, we
normalize each value using Z-score (Z(x) = x−µ

σ )
(Kreyszig, 1979). The final score is measured by:

Simq2k(q, kq) =
∑
r∈Rq

Z(Sim(r)) (5)

Then, given any NL-question q, we can predict the
corresponding KB-query k̂(q):

k̂(q) = arg max
k∈Kq

Simq2k(q, k) (6)

Last, we can retrieve an answer from the KB using
a structured query k̂(q). Table 1 shows an example
of our decoding process.

Multi-related Question Some questions in-
clude two-subject entities, both of which are cru-
cial to understanding the question. For the ques-
tion who plays gandalf in the lord of the rings?
Gandalf (character) and The Lord Of The
Rings (film) are explicit entities that should be
joined to a pair of the two entities (implicit entity).
More precisely, the two entities can be combined
into one concatenated entity (character-in-film)
using our manual rule, which compares the possi-
ble pairs of entity types in the question with the
list of pre-defined entity type pairs that can be
merged into a concatenated entity. Our solution
enables a multi-related question to be transformed
to a single-related question which can be directly
translated to a KB-query. Then, the two entity

# Entries Accuracy
MP pairs 291,585 89%
QP pairs 4,764 98%

Table 2: Statistics of NLE-KB pairs

mentions are replaced with the symbol 〈entity〉
(who play 〈entity〉 in 〈entity〉 ?). We re-
gard the result of this transformation as one of the
candidate KB-queries in the decoding step.

5 Experiments

Experimental Setting We first performed pre-
processing, including lowercase transformation,
lemmatization and tokenization, on NLE-KB pairs
and evaluation data. We used 71,310 n-grams
(uni-, bi-, tri-), 990 entity types, and 660 predi-
cates as relational components shown in Section
3.1. The sum of these three numbers (72,960)
equals the size of the embeddings we are going
to learn. In Table 2, we evaluated the quality of
NLE-KB pairs (MP and QP) described in Sec-
tion 3.2. We can see that the quality ofQP pairs is
good, mainly due to human efforts. Also, we ob-
tained MP pairs that have an acceptable quality
using threshold 3.0 for Equation 1, which lever-
ages the redundancy information in the large-scale
data (WIKIPEDIA). For our embedding learning,
we set the embedding dimension n to 100, the
learning rate (λ) for SGD to 0.0001, and the it-
eration number to 30. To make the decoding
procedure computable, we kept only the popular
KB-entity in the dictionary to map different entity
mentions into a KB-entity.

We used two publicly released data sets for QA
evaluations: Free917 (Cai and Yates, 2013) in-
cludes the annotated lambda calculus forms for
each question, and covers 81 domains and 635
Freebase relations; WebQ. (Berant et al., 2013)
provides 5,810 question-answer pairs that are built
by collecting common questions from Web-query
logs and by manually labeling answers. We used
the previous three approaches (Cai and Yates,
2013; Berant et al., 2013; Bao et al., 2014) as our
baselines.

Experimental Results Table 3 reports the over-
all performances of our proposed KB-QA method
on the two evaluation data sets and compares them
with those of the three baselines. Note that we
did not re-implement the baseline systems, but just
borrowed the evaluation results reported in their
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Methods Free917 WebQ.
Cai and Yates (2013) 59.00% N/A
Berant et al. (2013) 62.00% 31.40%
Bao et al. (2014) N/A 37.50%
Our method 71.38% 41.34%

Table 3: Accuracy on the evaluation data

Methods Free917 WebQ.
Our method 71.38% 41.34%
w/o T -P 70.65% 40.55%
w/o C-T 67.03% 38.44%
w/o C-P 31.16% 19.24%

Table 4: Ablation of the relationship types

papers. Although the KB used by our system is
much larger than FREEBASE, we still think that
the experimental results are directly comparable
because we disallow all the entities that are not in-
cluded in FREEBASE.

Table 3 shows that our method outperforms the
baselines on both Free917 and WebQ. data sets.
We think that using the low-dimensional embed-
dings of n-grams rather than the lexical triggers
greatly improves the coverage issue. Unlike the
previous methods which perform entity disam-
biguation and predicate prediction separately, our
method jointly performs these two tasks. More
precisely, we consider the relationships C-T and
C-P simultaneously to rank candidate KB-queries.
In Table 1, the most independent NER in KB-QA
systems may detect David as the subject entity,
but our joint approach can predict the appropriate
subject entity The City of David by leveraging
not only the relationships with other components
but also other relationships at once. The syntax-
based (grammar formalism) approaches such as
Combinatory Categorial Grammar (CCG) may ex-
perience errors if a question has grammatical er-
rors. However, our bag-of-words model-based ap-
proach can handle any question as long as the
question contains keywords that can help in un-
derstanding it.

Table 4 shows the contributions of the relation-
ships (R) between relational components C, T ,
and P . For each row, we remove the similarity
from each of the relationship types described in
Section 3.1. We can see that the C-P relationship
plays a crucial role in translating NL-questions to
KB-queries, while the other two relationships are
slightly helpful.

Result Analysis Since the majority of questions
in WebQ. tend to be more natural and diverse, our
method cannot find the correct answers to many
questions. The errors can be caused by any of
the following reasons. First, some NLEs cannot
be easily linked to existing KB-predicates, mak-
ing it difficult to find the answer entity. Second,
some entities can be mentioned in several different
ways, e.g., nickname (shaq→Shaquille O’neal)
and family name (hitler→Adolf Hitler). Third, in
terms of KB coverage issues, we cannot detect the
entities that are unpopular. Last, feature represen-
tation for a question can fail when the question
consists of rare n-grams.

The two training sets shown in Section 3.2 are
complementary: QP pairs provide more oppor-
tunities for us to learn the semantic associations
between interrogative words and predicates. Such
resources are especially important for understand-
ing NL-questions, as most of them start with such
5W1H words; on the other hand, MP pairs en-
rich the semantic associations between context in-
formation (n-gram features) and predicates.

6 Conclusion

In this paper, we propose a novel method that
transforms NL-questions into their corresponding
logical forms using joint relational embeddings.
We also built a simple and robust KB-QA system
based on only the learned embeddings. Such em-
beddings learn the semantic associations between
natural language statements and KB-properties
from NLE-KB pairs that are automatically ex-
tracted from English WIKIPEDIA using KB-triples
with weak supervision. Then, we generate all pos-
sible structured queries derived from latent logical
features of the given NL-question, and rank them
based on the similarity scores between those re-
lational attributes. The experimental results show
that our method outperforms the latest three KB-
QA baseline systems. For our future work, we will
build concept-level context embeddings by lever-
aging latent meanings of NLEs rather than their
surface n-grams with the aligned logical features
on KB.
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Abstract

Wikipedia’s link structure is a valuable
resource for natural language processing
tasks, but only a fraction of the concepts
mentioned in each article are annotated
with hyperlinks. In this paper, we study
how to augment Wikipedia with additional
high-precision links. We present 3W, a
system that identifies concept mentions in
Wikipedia text, and links each mention
to its referent page. 3W leverages
rich semantic information present in
Wikipedia to achieve high precision. Our
experiments demonstrate that 3W can add
an average of seven new links to each
Wikipedia article, at a precision of 0.98.

1 Introduction

Wikipedia forms a valuable resource for
many Natural Language Processing and
Information Extraction tasks, such as Entity
Linking (Cucerzan, 2007; Han and Zhao,
2009), Ontology Construction (Wu and Weld,
2008; Syed et al., 2008) and Knowledge Base
Population (Hoffart et al., 2013; Lehmann et al.,
2013). Wikipedia’s links provide disambiguated
semantic information. For example, when a
system processes the text “Chicago was received
with critical acclaim” from an article, the system
does not need to infer the referent entity of
“Chicago” if the word is already hyperlinked to
the Wikipedia page of the Oscar-winning film.
Unfortunately, in Wikipedia only a fraction of the
phrases that can be linked are in fact annotated
with a hyperlink. This is due to Wikipedia’s
conventions of only linking to each concept once,
and only when the links have a certain level of
utility for human readers.1 We see this as an

1http://en.wikipedia.org/wiki/
Wikipedia:Manual_of_Style_(linking)

opportunity to improve Wikipedia as a resource
for NLP systems. Our experiments estimate that
as of September 2013, there were an average of
30 references to Wikipedia concepts left unlinked
within each of English Wikipedia’s four million
pages.

In this paper, our goal is to augment Wikipedia
with additional high-precision links, in order
to provide a new resource for systems that
use Wikipedia’s link structure as a foundation.
Identifying references to concepts (called
mentions) in text and linking them to Wikipedia
is a task known as Wikification. Wikification for
general text has been addressed in a wide variety
of recent work (Mihalcea and Csomai, 2007;
Milne and Witten, 2008b; McNamee and Dang,
2009; Ratinov et al., 2011). The major challenge
of this task is to resolve the ambiguity of phrases,
and recent work makes use of various kinds of
information found in the document to tackle
the challenge. In contrast to this body of work,
here we focus on the special case of Wikifying
Wikipedia articles, instead of general documents.
This gives us an advantage over general-text
systems due to Wikipedia’s rich content and
existing link structure.

We introduce 3W, a system that identifies
mentions within Wikipedia and links each
to its referent concept. We show how a
Wikipedia-specific Semantic Relatedness measure
that leverages the link structure of Wikipedia
(Milne and Witten, 2008b) allows 3W to be
radically more precise at high levels of yield when
compared to baseline Wikifiers that target general
text. Our experiment shows that 3W can add on
average seven new links per article at precision of
0.98, adding approximately 28 million new links
to 4 million articles across English Wikipedia.2

2http://websail.cs.northwestern.edu/
projects/3W
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2 Problem Definition

In this section, we define our link extraction task.
A link l is a pair of a surface form sl and a
concept tl. A surface form is a span of tokens
in an article, and the concept is a Wikipedia
article referred to by the surface form. For
existing hyperlinks, the surface form corresponds
to the anchor text and the concept is the link
target. For example, a hyperlink [[Chicago City
| Chicago]] has surface form “Chicago City” and
referent concept Chicago.3 Given documentsD =
{d1, ..., d|D|} and a set of links L = {l1, .., l|L|} ∈
D, our goal is to generate a set of high-precision
links L∗ for D, distinct from L. In this paper, the
document set D consists of articles from English
Wikipedia, and L is the set of existing links on
Wikipedia.

The task can be divided into 3 steps. The first
step is to extract a set of potential mentionsM =
{m1, ..,m|M|} where m is, similar to l, a pair of
surface form sm and a set of candidate concepts
C(m) = {t1, ..., t|C(m)|}. For m having |C(m)| >
1, we need to disambiguate it by selecting only
one target concept tm ∈ C(m). Since the correct
concept may not exist in C(m) and the previous
step could output an incorrect concept, the final
step is to decide whether to link and include m in
L∗. We describe the details of these steps in the
following section.

3 System Overview

In this section, we describe in detail how 3W adds
high-precision links to Wikipedia.

3.1 Mention Extraction
In this step, we are given a document d, and
the goal is to output a set of mentions M. Our
system finds a set of potential surface forms, sm,
by finding substrings in d that match the surface
form of some links in L. For example, from the
phrase “map of the United States on the wall”,
we can match 4 potential surface forms: “map”,
“United States”, “map of the United States”, and
“wall”. Notice that some of them are overlapping.
The system selects a non-overlapping subset of the
surface forms that maximizes the following score
function:

Score(M) =
∑
m∈M

T (sm)PL(sm)
|C(m)| (1)

3http://en.wikipedia.org/wiki/Chicago

where PL(sm) is the probability that the text sm
is linked (that is, the fraction of the occurrences of
the string sm in the corpus that are hyperlinked),
T (sm) is the number of tokens in sm, and |C(m)|
is the number of candidate concepts. Intuitively,
we prefer a longer surface form that is frequently
linked and has a specific meaning. Furthermore,
we eliminate common surface forms (i.e. “wall”)
by requiring that PL(sm) exceed a threshold. In
the previous example, we are left with only “map
of the United States”.

Because Wikipedia’s concepts are largely noun
phrases, 3W only looks for surface forms from
top-level noun phrases generated by the Stanford
Parser (Socher et al., 2013). In addition, each
name entity (NE) (Finkel et al., 2005) is treated
as an atomic token, meaning that multi-word NEs
such as “California Institute of the Arts” will not
be broken into multiple surface forms.

Finally, the system pairs the result surface forms
with a set of candidate concepts, C(m), and
outputs a set of mentions. C(m) consists of those
concepts previously linked to the surface form in
L. For instance, the surface form “map of the
United States” has been linked to three distinct
concepts in English Wikipedia.

3.2 Disambiguation

Given a set of mentions M from the previous
step, The next step is to select a concept t ∈
C(m) for each m ∈ M. We take the common
approach of ranking the candidate concepts.
3W uses a machine learning model to perform
pair-wise ranking of t ∈ C(m) and select the
top-ranked candidate concept. We refer to 3W’s
disambiguation component as the ranker. The
ranker requires a feature vector for each candidate
concept of a mention. The rest of this section
describes the features utilized by the ranker. The
first two feature groups are commonly used in
Wikification systems. The third feature group is
specifically designed for mentions in Wikipedia
articles.

3.2.1 Prior Probability Features
The conditional probability of a concept t given
mention surface sm, P (t|sm), is a common
feature used for disambiguation. It forms
a very strong Wikification baseline (∼ 86%
in micro-accuracy). This probability can be
estimated using Wikipedia links (L). In
addition, we use the external partition of the
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Google “Cross-Lingual Dictionary” described in
(Spitkovsky and Chang, 2012) to get the estimates
for the probability from links outside Wikipedia.

3.2.2 Lexical Features
To make use of text around a mention m,
we create bag-of-word vectors of the mention’s
source document d(m), and of a set of words
surrounding the mention, referred to as the context
c(m). To compare with a concept, we also
create bag-of-word vectors of candidate concept’s
document d(t) and candidate concept’s context
c(t). We then compute cosine similarities between
the mention’s vectors for d(m) and c(m), with
the concept candidate vectors for d(t) and c(t) as
in the Illinois Wikifier (Ratinov et al., 2011). In
addition to similarities computed over the top-200
words (utilized in the Illinois Wikifier), we also
compute similarity features over vectors of all
words.

3.2.3 Wikipedia-specific Features
Because the links in an article are often related
to one another, the existing links in a document
form valuable clues for disambiguating mentions
in the document. For each concept candidate
t ∈ C(m), we compute a Semantic Relatedness
(SR) measure between t and each concept from
existing links in the source document. Our SR
measure is based on the proportion of shared
inlinks, as introduced by Milne and Witten
(2008b). However, because Milne and Witten
were focused on general text, they computed SR
only between t and the unambiguous mentions
(i.e. those m with |C(m)| = 1) identified
in the document. In our work, d(m) is a
Wikipedia article which is rich in existing links
to Wikipedia concepts, and we can compute
SR with all of them, resulting in a valuable
feature for disambiguation as illustrated in our
experiments. We use the SR implementation of
Hecht et al. (2012). It is a modified version of
Milne and Witten’s measure that emphasizes links
in Wikipedia article’s overview. In addition, we
add boolean features indicating whether sm or t
has already been linked in a document.

3.2.4 Reranking
The millions of existing Wikipedia links in L form
a valuable source of training examples for our
ranker. However, simply training on the links
in L may result in poor performance, because

those links exhibit systematic differences from the
mentions inM that the ranker will be applied to.
The reason is that our mention extractor attempts
to populate M with all mentions, whereas
L which contains only the specific subset of
mentions that meet the hyperlinking conventions
of Wikipedia, As a result, the features for M
are distributed differently from those in L, and a
model trained on L may not might not perform
well on M. Our strategy is to leverage L to
train an initial ranker, and then hand-label a small
set of mentions from M to train a second-stage
re-ranker that takes the ranking output of the
initial ranker as a feature.

3.3 Linker

Our linker is a binary classifier that decides
whether to include (link) each mention in M
to the final output L∗. Previous work has
typically used a linker to determine so-calledNIL
mentions, where the referred-to concept is not
in the target knowledge base (e.g., in the TAC
KBP competition, half of the given mentions are
NIL (Ji and Grishman, 2011)). The purpose
of our linker is slightly different, because we
also use a linker to control the precision of our
output. We use a probabilistic linker that predicts
a confidence estimate that the mention with its
top-ranked candidate is correct. Our linker uses
the same features as the ranker and an additional
set of confidence signals: the number of times the
top candidate concept appears in L, and the score
difference between the top-ranked candidate and
the second-ranked candidate.

4 Experiments and Result

In this section, we provide an evaluation of our
system and its subcomponents.

4.1 Experiment Setup

We trained our initial ranker models from 100,000
randomly selected existing links (L). These links
were excluded when building feature values (i.e.
the prior probability, or Semantic Relatedness).

We formed an evaluation set of new links by
applying our mention extractor to 2,000 randomly
selected articles, and then manually labeling 1,900
of the mentions with either the correct concept
or “no correct concept.” We trained and tested
our system on the evaluation set, using 10-fold
cross validation. For each fold, we partitioned data
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Model Acc Prec Recall F1
Prior 0.876 0.891 0.850 0.870
OnlyWikiLink
−Wiki

0.896 0.905 0.871 0.888

OnlyWikiLink 0.944 0.950 0.920 0.935

Table 1: 10-fold cross validation performance of the initial
rankers by Accuracy (excluded ∅-candidate mentions), BOT
Precision, BOT Recall, BOT F1 on the 100,000 existing links.

into 3 parts. We used 760 mentions for training
the final ranker. The linker was trained with 950
mentions and we tested our system using the other
190 mentions. Previous work has used various ML
approaches for ranking, such as SVMs (Dredze et
al., 2010). We found logistic regression produces
similar accuracy to SVMs, but is faster for our
feature set. For the linker, we use an SVM with
probabilistic output (Wu et al., 2004; Chang and
Lin, 2011) to estimate a confidence score for each
output link.

4.2 Result

We first evaluate 3W’s mention extraction. From
the selected 2, 000 articles, the system extracted
59, 454 mentions (∼30/article), in addition to
the original 54, 309 links (∼27/article). From
the 1, 900 hand-labeled mentions, 1, 530 (80.5%)
were solvable in that 3W candidate set contained
the correct target.

As described in section 3.2.4, 3W employs
a 2-stage ranker. We first evaluate just the
initial ranker, using 10-fold cross validation
on 100,000 existing links. We show micro
accuracy and bag-of-title (BOT) performance
used by Milne and Witten (2008b) in Table
1. The ranker with all features (OnlyWikiLink)
outperforms the ranker without Wikipedia-specific
features (OnlyWikiLink−Wiki) by approximately
five points in F1. This demonstrates that
Wikipedia’s rich semantic content is helpful for
disambiguation.

Next, we evaluate our full system performance
(disambiguation and linking) over the
hand-labeled evaluation set. We experimented
with different configurations of the rankers and
linkers. Our Baseline system disambiguates
a mention m by selecting the most common
concept for the surface s(m). OnlyWikiLink
uses the ranker model trained on only Wikipedia
links, ignoring the labeled mentions. 3W is our
system using all features described in section 3.2,

Model Acc Yield %Yield
Baseline 0.828 5 0.33%

OnlyWikiLink 0.705 150 9.80%
3W−Wiki 0.868 253 16.54%

3W 0.877 365 23.86%

Table 2: 10-fold cross validation performance of the system
over 1,900 labeled mentions. Acc is disambiguation accuracy
of solvable mentions. Yield is the number of output new
mentions at precision ≥ 0.98, and %Yield is the percentage
of Yield over the solvable mentions (recall).
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Figure 1: Plot between Precision and Recall of systems on
1,900 mentions from 10-fold cross validation.

and 3W−Wiki is 3W without Wikipedia-specific
features. The last two configurations are trained
using the labeled mentions.

Table 2 shows the disambiguation accuracy of
each system over the solvable mentions. Our final
system, 3W, has the best disambiguation accuracy.

To evaluate the linking performance, we select
the confidence threshold such that the system
outputs mentions with precision of ≥ 0.98. The
third column in Table 2 shows the yield, i.e. the
number of mentions output at precision 0.98. 3W
outputs the largest number of new links (365).
Nearly half (157) are new concepts that have not
been linked in the source article. We find that the
Rerank feature helps increase recall: without it,
the yield of 3W drops by 27%. Using %Yield,
we estimate that 3W will output 14, 000 new links
for the selected 2, 000 articles (∼7/article), and
approximately 28 million new links across the 4
million articles of English Wikipedia.

Adjusting the confidence threshold allows
the system to trade off precision and recall.
Figure 1 shows a precision and recall curve.
3W and OnlyWikiLink are comparable for
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many high-precision points, but below 0.95
OnlyWikiLink’s precision drops quickly. Plots
that finish at higher rightmost points in the graph
indicate systems that achieve higher accuracy on
the complete evaluation set.

5 Conclusions and Future Work

We presented 3W, a system that adds
high-precision links to Wikipedia. Whereas
many Wikification systems focus on general text,
3W is specialized toward Wikipedia articles.
We showed that leveraging the link structure of
Wikipedia provides advantages in disambiguation.
In experiments, 3W was shown to Wikipedia with
∼7 new links per article (an estimated 28m across
4 million Wikipedia articles) at high precision.
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Abstract

In this paper we present our task-based
evaluation of query biased summarization
for cross-language information retrieval
(CLIR) using relevance prediction. We de-
scribe our 13 summarization methods each
from one of four summarization strate-
gies. We show how well our methods
perform using Farsi text from the CLEF
2008 shared-task, which we translated to
English automtatically. We report preci-
sion/recall/F1, accuracy and time-on-task.
We found that different summarization
methods perform optimally for different
evaluation metrics, but overall query bi-
ased word clouds are the best summariza-
tion strategy. In our analysis, we demon-
strate that using the ROUGE metric on our
sentence-based summaries cannot make
the same kinds of distinctions as our evalu-
ation framework does. Finally, we present
our recommendations for creating much-
needed evaluation standards and datasets.

1 Introduction

Despite many recent advances in query biased
summarization for cross-language information re-
trieval (CLIR), there are no existing evaluation
standards or datasets to make comparisons among
different methods, and across different languages
(Tombros and Sanderson, 1998; Pingali et al.,
2007; McCallum et al., 2012; Bhaskar and Bandy-
opadhyay, 2012). Consider that creating this
kind of summary requires familiarity with tech-
niques from machine translation (MT), summa-
rization, and information retrieval (IR). In this

This work was sponsored by the Federal Bureau of Inves-
tigation under Air Force Contract FA8721-05-C-0002. Opin-
ions, interpretations, conclusions, and recommendations are
those of the authors and are not necessarily endorsed by the
United States Government.

paper, we arrive at the intersection of each of
these research areas. Query biased summariza-
tion (also known as query-focused, query-relevant,
and query-dependent) involves automatically cap-
turing relevant ideas and content from a document
with respect to a given query, and presenting it as a
condensed version of the original document. This
kind of summarization is mostly used in search en-
gines because when search results are tailored to a
user’s information need, the user can find texts that
they are looking for more quickly and more ac-
curately (Tombros and Sanderson, 1998; Mori et
al., 2004). Query biased summarization is a valu-
able research area in natural language processing
(NLP), especially for CLIR. Users of CLIR sys-
tems meet their information needs by submitting
their queries in L1 to search through documents
that have been composed in L2, even though they
may not be familiar with L2 (Hovy et al., 1999;
Pingali et al., 2007).

There are no standards for objectively evaluat-
ing summaries for CLIR – a research gap that we
begin to address in this paper. The problem we
explore is two-fold: what kinds of summaries are
well-suited for CLIR applications, and how should
the summaries be evaluated. Our evaluation is ex-
trinsic, that is to say we are interested in how sum-
marization affects performance on a different task
(Mani et al., 2002; McKeown et al., 2005; Dorr
et al., 2005; Murray et al., 2009; McCallum et
al., 2012). We use relevance prediction as our ex-
trinsic task: a human must decide if a summary
for a given document is relevant to a particular in-
formation need, or not. Relevance prediction is
known to be useful as it correlates with some au-
tomatic intrinsic methods as well (President and
Dorr, 2006; Hobson et al., 2007). To the best of
our knowledge, we are the first to apply this eval-
uation framework to cross language query biased
summarization.

Each one of the summarization methods that we
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present in this paper belongs to one of the fol-
lowing strategies: (1) unbiased full machine trans-
lated text, (2) unbiased word clouds, (3) query bi-
ased word clouds, and (4) query biased sentence
summaries. The methods and strategies that we
present are fast, cheap, and language-independent.
All of these strategies are extractive, meaning that
we used existing parts of a document to create the
condensed version, or summary.

We approach our task as an engineering prob-
lem: the goal is to decide if summaries are good
enough to help CLIR system users find what they
are looking for. We have simplified the task by as-
suming that a set of documents has already been
retrieved from a search engine, as CLIR tech-
niques are outside the scope of this paper. We
predict that showing the full MT English text as
a summarization strategy would not be particu-
larly helpful in our relevance prediction task be-
cause the words in the text could be mixed-up,
or sentences could be nonsensical, resulting in
poor readability. For the same reasons, we expect
that showing the full MT English text would take
longer to arrive at a relevance decision. Finally,
we predict that query biased summaries will result
in faster, more accurate decisions from the partic-
ipants (Tombros and Sanderson, 1998).

We treat the actual CLIR search engine as if it
were a black box so that we can focus on evaluat-
ing if the summaries themselves are useful. As a
starting point, we begin with some principles that
we expect to hold true when we evaluate. These
principles provide us with the kind of framework
that we need for a productive and judicious dis-
cussion about how well a summarization method
works. We encourage the NLP community to
consider the following concepts when developing
evaluation standards for this problem:

• End-user intelligiblity

• Query-salience

• Retrieval-relevance

Summaries should be presented to the end-user in
a way that is both concise and intelligible, even
if the machine translated text is difficult to under-
stand. Our notions of query-salience and retrieval-
relevance capture the expectation that good sum-
maries will be efficient enough to help end-users
fulfill their information needs. For query-salience,
we want users to positively identify relevant doc-
uments. Similarly, for retrieval-relevance we want

users to be able to find as many relevant docu-
ments as possible.

This paper is structured as follows: Section 2
presents related work; Section 3 describes our data
and pre-processing; Section 4 details our sum-
marization methods and strategies; Section 5 de-
scribes our experiments; Section 6 shows our re-
sults and analysis; and in Section 7, we conclude
and discuss some future directions for the NLP
community.

2 Related Work

Automatic summarization is generally a well-
investigated research area. Summarization is a
way of describing the relationships of words in
documents to the information content of that doc-
ument (Luhn, 1958; Edmunson, 1969; Salton and
Yang, 1973; Robertson and Walker, 1994; Church
and Gale, 1999; Robertson, 2004). Recent work
has looked at creating summaries of single and
multiple documents (Radev et al., 2004; Erkan and
Radev, 2004; Wan et al., 2007; Yin et al., 2012;
Chatterjee et al., 2012), as well as summary eval-
uation (Jing et al., 1998; Tombros and Sanderson
1998; Mani et al., 1998; Mani et al., 1999; Mani,
2001; Lin and Hovy, 2003; Lin, 2004; Nenkova
et al., 2007; Hobson et al., 2007; Owczarzak
et al., 2012), query and topic biased summariza-
tion (Berger and Mittal, 2000; Otterbacher et al.,
2005; Daume and Marcu, 2006; Chali and Joty,
2008; Otterbacher et al., 2009; Bando et al., 2010;
Bhaskar and Bandyopadhyay, 2012; Harwath and
Hazen, 2012; Yin et al., 2012), and summarization
across languages (Pingali et al., 2007; Orăsan and
Chiorean, 2008; Wan et al., 2010; Azarbonyad et
al., 2013).

2.1 Query Biased Summarization

Previous work most closely related to our own
comes from Pingali et al., (2007). In their work,
they present their method for cross-language
query biased summarization for Telugu and En-
glish. Their work was motivated by the need for
people to have access to foreign-language docu-
ments from a search engine even though the users
were not familiar with the foreign language, in
their case English. They used language model-
ing and translation probability to translate a user’s
query into L2, and then summarized each docu-
ment in L2 with respect to the query. In their final
step, they translated the summary from L2 back
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to L1 for the user. They evaluated their method
on the DUC 2005 query-focused summarization
shared-task with ROUGE scores. We compare our
methods to this work also on the DUC 2005 task.
Our work demonstrates the first attempt to draw at
a comparison between user-based studies and in-
trinsic evaluation with ROUGE. However, one of
the limitations with evaluating this way is that the
shared-task documents and queries are monolin-
gual.

Bhaskar and Bandyopadhyay (2012) tried a
subjective evaluation of extractive cross-language
query biased summarization for 7 different lan-
guages. They extracted sentences, then scored and
ranked the sentences to generate query dependent
snippets of documents for their cross lingual in-
formation access (CLIA) system. However, the
snippet quality was determined subjectively based
on scores on a scale of 0 to 1 (with 1 being best).
Each score indicated annotator satisfaction for a
given snippet. Our evaluation methodology is ob-
jective: we ask users to decide if a given document
is relevant to an information need, or not.

2.2 Machine Translation Effects

Machine translation quality can affect summa-
rization quality. Wan et al. (2010) researched
the effects of MT quality prediction on cross-
language document summarization. They gener-
ated 5-sentence summaries in Chinese using En-
glish source documents. To select sentences, they
used predicted translation quality, sentence posi-
tion, and sentence informativeness. In their eval-
uation, they employed 4 Chinese-speakers to sub-
jectively rate summaries on a 5-point scale (5 be-
ing best) along the dimensions of content, read-
ability, and overall impression. They showed that
their approach of using MT quality scores did im-
prove summarization quality on average. While
their findings are important, their work did not ad-
dress query biasing or objective evaluation of the
summaries. We attempt to overcome limitations of
machine translation quality by using word clouds
as one of our summarization strategies.

Knowing when to translate is another challenge
for cross-language query biased summarization.
Several options exist for when and what to trans-
late during the summarization process: (1) the
source documents can be translated, (2) the user’s
query can be translated, (3) the final summary can
be translated, or (4) some combination of these.

An example of translating only the summaries
themselves can be found in Wan et al., (2010).
On the other hand, Pingali et al. (2007) translated
the queries and the summaries. In our work, we
used gold-translated queries from the CLEF 2008
dataset, and machine translated source documents.
We briefly address this in our work, but note that a
full discussion of when and what to translate, and
those effects on summarization quality, is outside
of the scope of this paper.

2.3 Summarization Evaluation

There has been a lot of work towards developing
metrics for understanding what makes a summary
good. Evaluation metrics are either intrinsic or ex-
trinsic. Intrinsic metrics, such as ROUGE, mea-
sure the quality of a summary with respect to gold
human-generated summaries (Lin, 2004; Lin and
Hovy, 2003). Generating gold standard summaries
is expensive and time-consuming, a problem that
persists with cross-language query biased summa-
rization because those summaries must be query
biased as well as in a different language from the
source documents.

On the other hand, extrinsic metrics measure the
quality of summaries at the system level, by look-
ing at overall system performance on downstream
tasks (Jing et al, 1998; Tombros and Sanderson,
1998). One of the most important findings for
query biased summarization comes from Tombros
and Sanderson (1998). In their monolingual task-
based evaluation, they measured user speed and
accuracy at identifying relevant documents. They
found that query biased summarization improved
the user speed and accuracy when the user was
asked to make relevance judgements for IR tasks.
We also expect that our evaluation will demon-
strate that user speed and accuracy is better when
summaries are query biased.

3 Data and Pre-Processing

We used data from the Farsi CLEF 2008 ad hoc
task (Agirre et al., 2009). Each of the queries in-
cluded in this dataset consisted of a title, narrative,
and description. Figure 1 shows an example of the
elements of a CLEF 2008 query. All of the au-
tomatic query-biasing in this work was based on
the query titles. For our human relevance predic-
tion task on Mechanical Turk, we used the nar-
rative version. The CLEF 2008 dataset included
a ground-truth answer key indicating which docu-
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ments were relevant to each query. For each query,
we randomly selected 5 documents that were rele-
vant as well as 5 documents that were not relevant.
The subset of CLEF 2008 data that we used there-
fore consisted of 500 original Farsi documents and
50 parallel English-Farsi queries. Next we will de-
scribe our text pre-processing steps for both lan-
guages as well as how we created our parallel En-
glish documents.

Figure 1: Full MT English summary and CLEF
2008 English query (title, description, narrative).

3.1 English Documents
All of our English documents were created auto-
matically by translating the original Farsi docu-
ments into English (Drexler et al., 2012). The
translated documents were sentence-aligned with
one sentence per line. For all of our summariza-
tion experiments (except unbised full MT text),
we processed the text as follows: removed extra
spaces, removed punctuation, folded to lowercase,
and removed digits. We also removed common
English stopwords2 from the texts.

3.2 Farsi Documents
We used the original CLEF 2008 Farsi docu-
ments for two of our summarization methods. We
stemmed words in each document using automatic
morphological analysis with Morfessor CatMAP.
We note that within-sentence punctuation was re-
moved during this process (Creutz and Lagus,
2007). We also removed Farsi stopwords and dig-
its.

4 Summarization Strategies

All of our summarization methods were extrac-
tive except for unbiased full machine translated
text. In this section, we describe each of our
13 summarization methods which we have orga-
nized into one of the following strategies: (1) un-
biased full machine translated text, (2) unbiased

2English and Farsi stopword lists from:
http://members.unine.ch/jacques.savoy/clef/index.html

word cloud summaries, (3) query biased word
cloud summaries, and (4) query biased sentence
summaries. Regardless of which summarization
method used, we highlighted words in yellow that
also appeard in the query. Let t be a term in
document d where d ∈ DL and DL is a collec-
tion of documents in a particular language. Note
that for our summarization methods, term weight-
ings were calculated separately for each language.
While |D| = 1000, we calculated term weightings
based on |DE | = 500 and |DF | = 500. Finally,
let q be a query where q ∈ Q and Q is our set of
50 parallel English-Farsi CLEF queries. Assume
that log refers to log10.

Figure 2: Full MT English summary and CLEF
2008 English query.

4.1 Unbiased Full Machine Translated
English

Our first baseline approach was to use all of the
raw machine translation output (no subsets of
the sentences were used). Each summary there-
fore consisted of the full text of an entire doc-
ument automatically translated from Farsi to En-
glish (Drexler et al., 2012). Figure 2 shows an ex-
ample full text document translated from Farsi to
English and a gold-standard English CLEF query.
Note that we use this particular document-query
pair as an example throughout this paper (docu-
ment: H-770622-42472S8, query: 10.2452/552-
AH). According to the CLEF answer key, the sam-
ple document is relevant to the sample query.

4.2 Unbiased Word Clouds

For our second baseline approach, we ranked
terms in a document and displayed them as word
clouds. Word clouds are one a way to arrange
a collection of words where each word can vary
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in size. We used word clouds as a summariza-
tion strategy to overcome any potential disfluen-
cies from the machine translation output and also
to see if they are feasible at all for summarization.
All of our methods for word clouds used words
from machine translated English text. Each term-
ranking method below generates different ranked
lists of terms, which we used to create different
word clouds. We created one word cloud per doc-
ument using the top 12 ranked words. We used
the raw term scores to scale text font size, so that
words with a highter score appeared larger and
more prominent in a word cloud. Words were
shuffled such that the exact ordering of words was
at random.

I: Term Frequency (TF) Term frequency is
very commonly used for finding important terms
in a document. Given a term t in a document d,
the number of times that term occurs is:

tft,d = |t ∈ d|
II: Inverse Document Frequency (IDF) The
idf term weighting is typically used in IR and
other text categorization tasks to make distinc-
tions between documents. The version of idf that
we used throughout our work came from Erkan
and Radev (2004) and Otterbacher et al. (2009),
in keeping consistent with theirs. Let N be the
number of documents in the collection, such that
N = |D| and nt is the number of documents that
contain term t, such that nt = |{d ∈ D : t ∈ d}|,
then:

idft = log
N + 1

0.5× nt
While idf is usually thought of as a type of

heuristic, there have been some discussions about
its theoretical basis (Robertson, 2004; Robertson
and Walker, 1994; Church and Gale, 1999; Salton
and Yang, 1973). An example of this summary is
shown in Figure 3.

III: Term Frequency Inverse Document Fre-
quency (TFIDF) We use tfidft,d term weight-
ing to find terms which are both rare and impor-
tant for a document, with respect to terms across
all other documents in the collection:

tfidft,d = tft,d × idft
4.3 Query Biased Word Clouds
We generated query biased word clouds following
the same principles as our unbiased word clouds,

Figure 3: Word cloud summary for inverse docu-
ment frequency (IDF), for query “Tehran’s stock
market”.

namely the text font scaling and highlighting re-
mained the same.

IV. Query Biased Term Frequency (TFQ) In
Figure 4 we show a sample word cloud summary
based on query biased term frequency. We define
query biased term frequency tfQ at the document
level, as:

tfQt,d,q =

{
2tft,d, if t ∈ q
tft,d, otherwise

Figure 4: Word cloud summary for query biased
term frequency (TFQ), for query “Tehran’s stock
market”.

V. Query Biased Inverse Document Frequency
(IDFQ) Since idf helps with identifying terms
that discriminate documents in a collection, we
would expect that query biased idf would help to
identify documents that are relevant to a query:

idfQt,q =

{
2idft, if t ∈ q
idft, otherwise

VI. Query Biased TFIDF (TFIDFQ) We de-
fine query biased tf × idf similarly to our TFQ
and IDFQ, at the document level:

tfidfQt,d,q =

{
2tft,d × idft, if t ∈ q
tft,d × idft, otherwise
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Figure 5: Word cloud summary for scaled query
biased term frequency (SFQ) for query “Tehran’s
stock market”.

VII. Query Biased Scaled Frequency (SFQ)
This term weighting scheme, which we call scaled
query biased term frequency or sfQ, is a variant of
the traditional tf×idf weighting. First, we project
the usual term frequency into log-space, for a term
t in document d with:

tfSt,d = log(tft,d)

We let tfSt,d ≈ 0 when tft,d = 1. We believe that
singleton terms in a document provide no indica-
tion that a document is query-relevant, and trea-
ment of singleton terms in this way would have the
potential to reduce false-positives in our relevance
prediction task. Note that scaled term frequency
differs from Robertson’s (2004) inverse total term
frequency in the sense that our method involves no
consideration of term position within a document.
Scaled query biased term frequency, shown in Fig-
ure 5, is defined as:

sfQt,d,q =

{
2tfSt,d × idft, if t ∈ q
tfSt,d × idft, otherwise

VIII. Word Relevance (W) We adapted an
existing relevance weighting from Allan et al.,
(2003), that was originally formulated for ranking
sentences with respect to a query. However, we
modified their originaly ranking method so that we
could rank individual terms in a document instead
of sentences. Our method for word relevance, W
is defined as:

Wt,d,q = log(tft,d + 1)× log(tft,q + 1)× idft
In W , term frequency values are smoothed by

adding 1. The smoothing could especially af-
fect rare terms and singletons, when tft,d is very

low. All terms in a query or a document will
be weighted and each term could potentially con-
tribute to summary.

4.4 Query Biased Sentence Summaries
Sentences are a canonical unit to use in extractive
summaries. In this section we describe four differ-
ent sentence scoring methods that we used. These
methods show how to calculate sentence scores for
a given document with respect to a given query.
Sentences for a document were always ranked us-
ing the raw score value output generated from a
scoring method. Each document summary con-
tained the top 3 ranked sentences where the sen-
tences were simply listed out. Each of these meth-
ods used sentence-aligned English machine trans-
lated documents, and two of them also used the
original Farsi text.

IX. Sentence Relevance (REL) Our sentence
relevance scoring method comes from Allan et al.
(2003). The sentence weight is a summation over
words that appear in the query. We provide their
sentence scoring formula here. This calculates the
relevance score for a sentence s from document d,
to a query q:

rel(s|q) =
∑
t∈s

log(tft,s+1)× log(tft,q+1)× idft

Terms will occur in either the sentence or the
query, or both. We applied this method to machine
tranlsated English text. The output of this method
is a relevance score for each sentence in a given
document. We used those scores to rank sentences
in each document from our English machine trans-
lated text.

X. Query Biased Lexrank (LQ) We imple-
mented query biased LexRank, a well-known
graph-based summarization method (Otterbacher
et al., 2009). It is a modified version of the orig-
inal LexRank algorithm (Erkan and Radev, 2004;
Page et al., 1998). The similarity metric, simx,y,
also known as idf-modified cosine similarity, mea-
sures the distance between two sentences x and y
in a document d, defined as:

simx,y =

∑
t∈x,y tft,x × tft,y × (idft)2√∑
t∈x tfidf

2
t,x

√∑
t∈y tfidf

2
t,y

We used simx,y to score the similarity of
sentence-to-sentence, resulting in a similarity
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Figure 6: LQP - projecting Farsi sentence scores
onto parallel English sentences.

graph where each vertex was a sentence and each
edge was the cosine similarity between sentences.
We normalized the cosine matrix with a similarity
threshold (t = 0.05), so that sentences above this
threshold were given similarity 1, and 0 otherwise.
We used rel(s|q) to score sentence-to-query. The
LexRank score for each sentence was then calcu-
lated as:

LQs|q =
d× rels|q∑
z∈C relz|q

+ (1− d)×∑
v∈adj[s]

sims,v∑
r∈adj[v] simv,r

LQv|q

where C is the set of all sentences in a given doc-
ument. Here the parameter d is just a damper to
designate a probability of randomly jumping to
one of the sentences in the graph (d = 0.7). We
found the stationary distribution by applying the
power method (ε = 5), which is guaranteed to
converge to a stationary distribution (Otterbacher
et al., 2009). The output of LQ is a score for each
sentence from a given document with respect to
a query. We used that score to rank sentences in
each document from our English machine trans-
lated text.

XI. Projected Cross-Language Query Biased
Lexrank (LQP) We introduce LQP to describe
a way of scoring and ranking sentences such that
the L1 (English) summaries are biased from the
L2 (Farsi) query and source document. Our gold-
standard Farsi queries were included with our
CLEF 2008 data, making them more reliable than
what we could get from automatic translation.
First, sentences from each Farsi document were
scored with Farsi queries using LQ, described
above. Then each LQ score was projected onto
sentence-aligned English. We demonstrate LQP

Figure 7: LQC - Farsi sentence scores are com-
bined with parallel English sentence scores to ob-
tain sentence re-ranking.

in Figure 6. By doing this, we simulated trans-
lating the user’s English query into Farsi with the
best possible query translation, before proceed-
ing with summarization. This approach to cross-
language summarization could be of interest for
CLIR systems that do query translation on-the-fly.
It is also of interest for summarization systems that
need to utilize previously translated source docu-
ments the capability is lacking to translate sum-
maries from L2 to L1.

XII. Combinatory Query Biased Lexrank
(LQC) Another variation of LexRank that we
introduce in this work is LQC, which combines
LexRank scores from both languages to re-rank
sentences. A visual summary of this method is
shown in Figure 7. We accomplished our re-
ranking by first running LQ on Farsi and English
separately, then adding the two scores together.
This combination of Farsi and English scores pro-
vided us with a different way to score and rank
sentences, compared with LQ and LQP . The
idea behind combinatory query biased LexRank
is to take advantage of sentences which are high-
ranking in Farsi but not in English. The LQC
method exploits all available resources in our
dataset: L1 and L2 queries as well as L1 and L2

documents.

5 Experiments

We tested each of our summarization methods and
overall strategies in a task-based evaluation frame-
work using relevance prediction. We used Me-
chanical Turk for our experiments since it has been
shown to be useful for evaluating NLP systems
(Callison-Burch 2009; Gillick and Liu, 2010). We
obtained human judgments for whether or not a
document was considered relevant to a query, or
information need. We measured the relevance
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judgements by precision/recall/F1, accuracy, and
also time-on-task based on the average response
time per Human Intelligence Task (HIT).

5.1 Mechanical Turk

In our Mechanical Turk experiment, we used ter-
minology from CLEF 2008 to describe a query
as an “information need”. All of the Mechanical
Turk workers were presented with the following
for their individual HIT: instructions, an informa-
tion need and one summary for a document. Work-
ers were asked to indicate if the given summary
for a document was relevant to the given informa-
tion need (Hobson et al., 2007). Workers were
not shown the original Farsi source documents.
We paid workers $0.01 per HIT. We obtained 5
HITs for each information need and summary pair.
We used a built-in approval rate qualification pro-
vided by Mechanical Turk to restrict which work-
ers could work on our tasks. Each worker had an
approval rate of at least 95

Instructions: Each image below consists
of a statement summarizing the informa-
tion you are trying to find from a set
of documents followed by a summary
of one of the documents returned when
you query the documents. Based on the
summary, choose whether you think the
document returned is relevant to the in-
formation need. NOTE: It may be diffi-
cult to distinguish whether the document
is relevant as the text may be difficult
to understand. Just use your best judg-
ment.

6 Results and Analysis

We present our experiment results and additional
analysis. First, we report the results of our rel-
evance prediction task, showing performance for
individual summarization methods as well as per-
formance for the overall strategies. Then we
show analysis of our results from the monolin-
gual question-biased shared-task for DUC 2005,
as well as a comparison to previous work.

6.1 Results for Individual Methods

Our results are shown in Table 1. We report perfor-
mance for 13 individual methods as well as over-
all peformance on the 4 different summarization
strategies. To calculate the performance for each

strategy, we used the arithmetic mean of the corre-
sponding individual methods. We measured preci-
sion, recall and F1 to give us a sense of our sum-
maries might influence document retrieval in an
actual CLIR system. We also measured accuracy
and time-on-task. For these latter two metrics, we
distinguish between summaries that were relevant
(R) and non-relevant (NR).

All of the summarization-based methods fa-
vored recall over precision: documents were
marked ‘relevant’ more often than ‘non-relevant’.
For many of the methods shown in Table 1, work-
ers spent more time correctly deciding ‘relevant’
than correctly deciding ‘non-relevant’. This sug-
gests some workers participated in our Mechanical
Turk task purposefully. For many of the summa-
rization methods, workers were able to positively
identify relevant documents.

From Table 1 we see that Full MT performed
better on precision than all of the other methods
and strategies, but we note that performance on
precision was generally very low. This might be
due to Mechanical Turk workers overgeneraliz-
ing by marking summaries as relevant when they
were not. Some individual methods preserve our
principle of retrieval-relevance, as indicated by
the higher recall scores for SQF, LQEF, and TFQ.
That is to say, these particular query biased sum-
marization methods can be used to assist users
with identifying more relevant documents. The ac-
curacy on relevant documents addresses our prin-
ciple of query-salience, and it is especially high
for our query-biased methods: LQEF, SQF, LQ,
and TFQ. The results also seem to fit our intuition
that the summary in Figure 3 seems less relevant
to the summaries shown in Figures 4 & 5 even
though these are the same documents biased on
the same query “Tehran stock market”.

Overall, query biased word clouds outperform
the other summarization strategies for 5 out of
7 metrics. This could be due to the fact that
word clouds provide a very concise and overview
of a document, which is one of the main goals
for automatic summarization. Along these lines,
word clouds are probably not subject to the effects
of MT quality and we believe it is possible that
MT quality could have had a negative impact on
our query biased extracted sentence summaries, as
well as our full MT English texts.

664



Table 1: Individual method results: precision/recall/F1, time-on-task, and accuracy. Note that results for
time-on-task and accuracy scores are distinguished for relevant (R) and non-relevant (NR) documents.

Precision, Recall, F1 Time-on-Task Accuracy
Summarization Strategy Prec. Rec. F1 R NR R NR

Unbiased Full MT English 0.653 0.636 0.644 219.5 77.6 0.696 0.712
TF 0.615 0.777 0.686 33.5 34.6 0.840 0.508

IDF 0.537 0.470 0.501 84.7 45.8 0.444 0.700
TFIDF 0.647 0.710 0.677 33.2 38.2 0.772 0.656

Unbiased Word Clouds 0.599 0.652 0.621 50.5 39.5 0.685 0.621
TFQ 0.605 0.809 0.692 55.3 82.4 0.864 0.436

IDFQ 0.582 0.793 0.671 23.6 31.6 0.844 0.436
TFIDFQ 0.599 0.738 0.661 37.9 26.9 0.804 0.500

SFQ 0.591 0.813 0.685 55.7 49.4 0.876 0.504
W 0.611 0.738 0.669 28.2 28.9 0.840 0.564

Query Biased Word Clouds 0.597 0.778 0.675 36.4 34.2 0.846 0.488
REL 0.582 0.746 0.654 30.6 44.3 0.832 0.548

LQ 0.549 0.783 0.646 64.4 54.8 0.868 0.292
LQP 0.578 0.734 0.647 28.2 28.0 0.768 0.472
LQC 0.557 0.810 0.660 33.9 38.8 0.896 0.292

Query Biased Sentences 0.566 0.768 0.651 39.2 41.5 0.841 0.401

Table 2: Comparison of peer systems on DUC
2005 shared-task for monolingual question-biased
summarization, f-scores from ROUGE-2 and
ROUGE-SU4.

Peer ID ROUGE-2 ROUGE-SU4
17 0.07170 0.12970
8 0.06960 0.12790
4 0.06850 0.12770

Tel-Eng-Sum 0.06048 0.12058
LQ 0.05124 0.09343

REL 0.04914 0.09081

6.2 Analysis with DUC 2005

We analysed our summarization methods by
comparing two of our sentence-based methods
(LQ and REL) with peers from the monolin-
gual question-biased summarization shared-task
for DUC 2005. Even though DUC 2005 is a mono-
lingual task, we decided to use it as part of our
analysis for two reasons: (1) to see how well we
could do with query/question biasing while ignor-
ing the variables introduced by MT and cross-
language text, and (2) to make a comparison to
previous work. Pingali et al., (2007) also used this
the same DUC task to assess their cross-language
query biased summarization system. Systems

from the DUC 2005 question-biased summariza-
tion task were evaluated automatically against hu-
man gold-standard summaries using ROUGE (Lin
and Hovy, 2003) . Our results from the DUC
2005 shared-task are shown in Table 2, reported
as ROUGE-2 and ROUGE-SU4 f-scores, as these
two variations of ROUGE are the most helpful
(Dang, 2005; Pingali et al., 2007).

Table 2 shows scores for several top peer sys-
tems, as well as results for the Tel-Eng-Sum
method from Pingali et al., (2007). While we have
reported f-scores in our analysis, we also note that
our implementations of LQ and REL outperform
all of the DUC 2005 peer systems for precision, as
shown in Table 3. We also know that ROUGE can-
not be used for comparing sentence summaries to
ranked lists of words and there are no existing in-
trinsic methods to make that kind of comparison.
Therefore we were able to successfully compare
just 2 of our sentence-based methods to previous
work using ROUGE.

7 Discussion and Future Work

Cross-language query biased summarization is an
important part of CLIR, because it helps the user
decide which foreign-language documents they
might want to read. But, how do we know if
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Table 3: Top 3 system precision scores for
ROUGE-2 and ROUGE-SU4.

Peer ID ROUGE-2 ROUGE-SU4
LQ 0.08272 0.15197

REL 0.0809 0.15049
15 0.07249 0.13129

a query biased summary is “good enough” to be
used in a real-world CLIR system? We want to
be able to say that we can do query biased sum-
marization just as well for both monolingual and
cross-language IR systems. From previous work,
there has been some variability with regard to
when and what to translate - variables which have
no impact on monolingual summarization. We at-
tempted to address this issue with two of our meth-
ods: LQP and LQC. To fully exploit the MT vari-
able, we would need many more relevance pre-
diction experiments using humans who know L1

and others who know L2. Unfortunately in our
case, we were not able to find Farsi speakers on
Mechanical Turk. Access to these speakers would
have allowed us to try further experiments as well
as other kinds of analysis.

Our results on the relevance prediction task
tell us that query biased summarization strategies
help users identify relevant documents faster and
with better accuracy than unbiased summaries.
Our findings support the findings of Tombros and
Sanderson (1998). Another important finding is
that now we can weigh tradeoffs so that different
summarization methods could be used to optimize
over different metrics. For example, if we want
to optimize for retrieval-relevance we might select
a summarization method that tends to have higher
recall, such as scaled query biased term frequency
(SFQ). Similarly, we could optimize over accu-
racy on relevant documents, and use Combinatory
LexRank (LQC) with Farsi and English together.

We have shown that the relevance prediction
tasks can be crowdsourced on Mechanical Turk
with reasonable results. The data we used from
the Farsi CLEF 2008 ad-hoc task included an an-
swer key, but there were no parallel English docu-
ments. However, in order for the NLP community
to make strides in evaluating cross-language query
biased summarization for CLIR, we will need star-
dards and data. Optimal data would be parallel
datasets consisting of documents in L1 and L2

with queries in L1 and L2 along with an answer

key specifying which documents are relevant to
the queries. Further we would also need sets of
human gold-standard query biased summaries in
L1 and L2. These standards and data would al-
low us to compare method-to-method across dif-
ferent languages, while simultaneously allowing
us to tease apart other variables such as: when and
what to translate, translation quality, methods for
biasing, and type of summarization strategy (sen-
tences, words, etc). And of course it would be bet-
ter if this standard dataset was multilingual instead
of billingual, for obvious reasons.

We have approached cross-language query bi-
ased summarization as a stand-alone problem,
treating the CLIR system and document retrieval
as a black box. However, summaries need to pre-
serve query-salience: summaries should not make
it more difficult to positively identify relavant doc-
uments. And they should also preserve retrieval-
relevance: summaries should help users identify
as many relevant documents as possible.
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Abstract

We propose a model for Chinese poem
generation based on recurrent neural net-
works which we argue is ideally suited to
capturing poetic content and form. Our
generator jointly performs content selec-
tion (“what to say”) and surface realization
(“how to say”) by learning representations
of individual characters, and their com-
binations into one or more lines as well
as how these mutually reinforce and con-
strain each other. Poem lines are gener-
ated incrementally by taking into account
the entire history of what has been gen-
erated so far rather than the limited hori-
zon imposed by the previous line or lexical
n-grams. Experimental results show that
our model outperforms competitive Chi-
nese poetry generation systems using both
automatic and manual evaluation methods.

1 Introduction

Classical poems are a significant part of China’s
cultural heritage. Their popularity manifests itself
in many aspects of everyday life, e.g., as a means
of expressing personal emotion, political views,
or communicating messages at festive occasions
as well as funerals. Amongst the many differ-
ent types of classical Chinese poetry, quatrain and
regulated verse are perhaps the best-known ones.
Both types of poem must meet a set of structural,
phonological, and semantic requirements, render-
ing their composition a formidable task left to the
very best scholars.

An example of a quatrain is shown in Table 1.
Quatrains have four lines, each five or seven char-
acters long. Characters in turn follow specific
phonological patterns, within each line and across
lines. For instance, the final characters in the sec-
ond, fourth and (optionally) first line must rhyme,

相思

Missing You
红豆生南国， (* Z P P Z)

Red berries born in the warm southland.
春来发几枝枝枝？ (P P Z Z P)

How many branches flush in the spring?
愿 君多采撷， (* P P Z Z)

Take home an armful, for my sake,
此物最相思思思。 (* Z Z P P)

As a symbol of our love.

Table 1: An example of a 5-char quatrain ex-
hibiting one of the most popular tonal patterns.
The tone of each character is shown at the end of
each line (within parentheses); P and Z are short-
hands for Ping and Ze tones, respectively; * indi-
cates that the tone is not fixed and can be either.
Rhyming characters are shown in boldface.

whereas there are no rhyming constraints for the
third line. Moreover, poems must follow a pre-
scribed tonal pattern. In traditional Chinese, ev-
ery character has one tone, Ping (level tone) or Ze
(downward tone). The poem in Table 1 exempli-
fies one of the most popular tonal patterns (Wang,
2002). Besides adhering to the above formal crite-
ria, poems must exhibit concise and accurate use
of language, engage the reader/hearer, stimulate
their imagination, and bring out their feelings.

In this paper we are concerned with generat-
ing traditional Chinese poems automatically. Al-
though computers are no substitute for poetic cre-
ativity, they can analyze very large online text
repositories of poems, extract statistical patterns,
maintain them in memory and use them to gen-
erate many possible variants. Furthermore, while
amateur poets may struggle to remember and ap-
ply formal tonal and structural constraints, it is rel-
atively straightforward for the machine to check
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whether a candidate poem conforms to these re-
quirements. Poetry generation has received a fair
amount of attention over the past years (see the
discussion in Section 2), with dozens of computa-
tional systems written to produce poems of vary-
ing sophistication. Beyond the long-term goal of
building an autonomous intelligent system capa-
ble of creating meaningful poems, there are po-
tential short-term applications for computer gen-
erated poetry in the ever growing industry of elec-
tronic entertainment and interactive fiction as well
as in education. An assistive environment for
poem composition could allow teachers and stu-
dents to create poems subject to their require-
ments, and enhance their writing experience.

We propose a model for Chinese poem genera-
tion based on recurrent neural networks. Our gen-
erator jointly performs content selection (“what
to say”) and surface realization (“how to say”).
Given a large collection of poems, we learn repre-
sentations of individual characters, and their com-
binations into one or more lines as well as how
these mutually reinforce and constrain each other.
Our model generates lines in a poem probabilis-
tically: it estimates the probability of the current
line given the probability of all previously gener-
ated lines. We use a recurrent neural network to
learn the representations of the lines generated so
far which in turn serve as input to a recurrent lan-
guage model (Mikolov et al., 2010; Mikolov et al.,
2011b; Mikolov et al., 2011a) which generates the
current line. In contrast to previous approaches
(Greene et al., 2010; Jiang and Zhou, 2008), our
generator makes no Markov assumptions about the
dependencies of the words within a line and across
lines.

We evaluate our approach on the task of qua-
train generation (see Table 1 for a human-written
example). Experimental results show that our
model outperforms competitive Chinese poetry
generation systems using both automatic and man-
ual evaluation methods.

2 Related Work

Automated poetry generation has been a popular
research topic over the past decades (see Colton
et al. (2012) and the references therein). Most ap-
proaches employ templates to construct poems ac-
cording to a set of constraints (e.g., rhyme, me-
ter, stress, word frequency) in combination with
corpus-based and lexicographic resources. For

example, the Haiku poem generator presented in
Wu et al. (2009) and Tosa et al. (2008) produces
poems by expanding user queries with rules ex-
tracted from a corpus and additional lexical re-
sources. Netzer et al. (2009) generate Haiku
with Word Association Norms, Agirrezabal et
al. (2013) compose Basque poems using patterns
based on parts of speech and WordNet (Fellbaum,
1998), and Oliveira (2012) presents a generation
algorithm for Portuguese which leverages seman-
tic and grammar templates.

A second line of research uses genetic algo-
rithms for poem generation (Manurung, 2003;
Manurung et al., 2012; Zhou et al., 2010). Ma-
nurung et al. (2012) argue that at a basic level
all (machine-generated) poems must satisfy the
constraints of grammaticality (i.e., a poem must
syntactically well-formed), meaningfulness (i.e., a
poem must convey a message that is meaningful
under some interpretation) and poeticness (i.e., a
poem must exhibit features that distinguishes it
from non-poetic text, e.g., metre). Their model
generates several candidate poems and then uses
stochastic search to find those which are grammat-
ical, meaningful, and poetic.

A third line of research draws inspiration from
statistical machine translation (SMT) and re-
lated text-generation applications such as sum-
marization. Greene et al. (2010) infer meters
(stressed/unstressed syllable sequences) from a
corpus of poetic texts which they subsequently
use for generation together with a cascade of
weighted finite-state transducers interpolated with
IBM Model 1. Jiang and Zhou (2008) generate
Chinese couplets (two line poems) using a phrase-
based SMT approach which translates the first line
to the second line. He et al. (2012) extend this al-
gorithm to generate four-line quatrains by sequen-
tially translating the current line from the previous
one. Yan et al. (2013) generate Chinese quatrains
based on a query-focused summarization frame-
work. Their system takes a few keywords as input
and retrieves the most relevant poems from a cor-
pus collection. The retrieved poems are segmented
into their constituent terms which are then grouped
into clusters. Poems are generated by iteratively
selecting terms from clusters subject to phonolog-
ical, structural, and coherence constraints.

Our approach departs from previous work in
two important respects. Firstly, we model the tasks
of surface realization and content selection jointly
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春(spring)
琵琶(lute)
醉(drunk)

Keywords
ShiXueHanYing

spring

lute drunk

暖 风 迟 日 醉
莺 百 啭 莺 声

...

Candidate lines

Line 1Line 2Line 3Line 4

First line
generation

Next line
generation

Figure 1: Poem generation with keywords spring, lute, and drunk. The keywords are expanded into
phrases using a poetic taxonomy. Phrases are then used to generate the first line. Following lines are
generated by taking into account the representations of all previously generated lines.

using recurrent neural networks. Structural, se-
mantic, and coherence constraints are captured
naturally in our framework, through learning the
representations of individual characters and their
combinations. Secondly, generation proceeds by
taking into account multi-sentential context rather
than the immediately preceding sentence. Our
work joins others in using continuous representa-
tions to express the meaning of words and phrases
(Socher et al., 2012; Mikolov et al., 2013) and
how these may be combined in a language mod-
eling context (Mikolov and Zweig, 2012). More
recently, continuous translation models based on
recurrent neural networks have been proposed as
a means to map a sentence from the source lan-
guage to sentences in the target language (Auli
et al., 2013; Kalchbrenner and Blunsom, 2013).
These models are evaluated on the task of rescor-
ing n-best lists of translations. We use neural net-
works more directly to perform the actual poem
generation task.

3 The Poem Generator

As common in previous work (Yan et al., 2013;
He et al., 2012) we assume that our generator op-
erates in an interactive context. Specifically, the
user supplies keywords (e.g., spring, lute, drunk )
highlighting the main concepts around which the
poem will revolve. As illustrated in Figure 1, our
generator expands these keywords into a set of re-
lated phrases. We assume the keywords are re-
stricted to those attested in the ShiXueHanYing po-
etic phrase taxonomy (He et al., 2012; Yan et al.,
2013). The latter contains 1,016 manual clusters
of phrases (Liu, 1735); each cluster is labeled with
a keyword id describing general poem-worthy top-

ics. The generator creates the first line of the poem
based on these keywords. Subsequent lines are
generated based on all previously generated lines,
subject to phonological (e.g., admissible tonal pat-
terns) and structural constraints (e.g., whether the
quatrain is five or seven characters long).

To create the first line, we select all phrases
corresponding to the user’s keywords and gener-
ate all possible combinations satisfying the tonal
pattern constraints. We use a language model to
rank the generated candidates and select the best-
ranked one as the first line in the poem. In im-
plementation, we employ a character-based recur-
rent neural network language model (Mikolov et
al., 2010) interpolated with a Kneser-Ney trigram
and find the n-best candidates with a stack de-
coder (see Section 3.5 for details). We then gen-
erate the second line based on the first one, the
third line based on the first two lines, and so on.
Our generation model computes the probability
of line Si+1 = w1,w2, . . . ,wm, given all previously
generated lines S1:i(i≥ 1) as:

P(Si+1|S1:i) =
m−1

∏
j=1

P(w j+1|w1: j,S1:i) (1)

Equation (1), decomposes P(Si+1|S1:i) as the prod-
uct of the probability of each character w j in
the current line given all previously generated
characters w1: j−1 and lines S1:i. This means
that P(Si+1|S1:i) is sensitive to previously gener-
ated content and currently generated characters.

The estimation of the term P(w j+1|w1: j,S1:i)
lies at the heart of our model. We learn repre-
sentations for S1:i, the context generated so far,
using a recurrent neural network whose output
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serves as input to a second recurrent neural net-
work used to estimate P(w j+1|w1: j,S1:i). Figure 2
illustrates the generation process for the ( j + 1)th
character w j+1 in the (i + 1)th line Si+1. First,
lines S1:i are converted into vectors v1:i with a
convolutional sentence model (CSM; described in
Section 3.1). Next, a recurrent context model
(RCM; see Section 3.2) takes v1:i as input and
outputs u j

i , the representation needed for gener-
ating w j+1 ∈ Si+1. Finally, u1

i ,u
2
i , . . . ,u

j
i and the

first j characters w1: j in line Si+1 serve as input to
a recurrent generation model (RGM) which esti-
mates P(w j+1 = k|w1: j,S1:i) with k ∈V , the prob-
ability distribution of the ( j + 1)th character over
all words in the vocabulary V . More formally, to
estimate P(w j+1|w1: j,S1:i) in Equation (1), we ap-
ply the following procedure:

vi = CSM(Si) (2a)

u j
i = RCM(v1:i, j) (2b)

P(w j+1|w1: j,S1:i) = RGM(w1: j+1,u
1: j
i ) (2c)

We obtain the probability of the (i + 1)th sen-
tence P(Si+1|S1:i), by running the RGM in (2c)
above m− 1 times (see also Equation (1)). In the
following, we describe how the different compo-
nents of our model are obtained.

3.1 Convolutional Sentence Model (CSM)
The CSM converts a poem line into a vector. In
principle, any model that produces vector-based
representations of phrases or sentences could be
used (Mitchell and Lapata, 2010; Socher et al.,
2012). We opted for the convolutional sentence
model proposed in Kalchbrenner and Blunsom
(2013) as it is n-gram based and does not make
use of any parsing, POS-tagging or segmentation
tools which are not available for Chinese poems.
Their model computes a continuous representation
for a sentence by sequentially merging neighbor-
ing vectors (see Figure 3).

Let V denote the character vocabulary in our
corpus; L ∈ Rq×|V | denotes a character embed-
ding matrix whose columns correspond to char-
acter vectors (q represents the hidden unit size).
Such vectors can be initialized randomly or ob-
tained via a training procedure (Mikolov et al.,
2013). Let w denote a character with index k;
e(w) ∈R|V |×1 is a vector with zero in all positions
except e(w)k = 1; T l ∈ Rq×Nl

is the sentence rep-
resentation in the lth layer, where Nl is the num-
ber of columns in the lth layer (Nl = 1 in the

vi

u j
i

hi

hi−1

uk
i (k 6= j)

RCM

1-of-N encoding of
w j=(0,. . . ,1,. . . ,0)

r j
r j−1

P(w j+1|w1: j,S1:i)

RGM

Figure 2: Generation of the ( j + 1)th charac-
ter w j+1 in the (i + 1)th line Si+1. The recur-
rent context model (RCM) takes i lines as in-
put (represented by vectors v1, . . . ,vi) and cre-
ates context vectors for the recurrent generation
model (RGM). The RGM estimates the probabil-
ity P(w j+1|w1: j,S1:i).

top layer); Cl,n ∈ Rq×n is an array of weight ma-
trices which compress neighboring n columns in
the lth layer to one column in the (l + 1)th layer.
Given a sentence S = w1,w2, . . . ,wm, the first layer
is represented as:

T 1 = [L · e(w1),L · e(w2), . . . ,L · e(wm)]

N1 = m
(3)

The (l +1)th layer is then computed as follows:

T l+1
:, j = σ(

n

∑
i=1

T l
:, j+i−1�Cl,n

:,i )

Nl+1 = Nl−n+1

1≤ j ≤ Nl+1

(4)

where T l is the representation of the previous
layer l, Cl,n a weight matrix, � element-wise vec-
tor product, and σ a non-linear function. We com-
press two neighboring vectors in the first two lay-
ers and three neighboring vectors in the remaining
layers. Specifically, for quatrains with seven char-
acters, we use C1,2, C2,2, C3,3, C4,3 to merge vec-
tors in each layer (see Figure 3); and for quatrains
with five characters we use C1,2, C2,2, C3,3.
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遥 看 瀑 布 挂 前 川
Far off I watch the waterfall plunge to the
long river.

C1,2

C2,2

C3,3

C4,3

Figure 3: Convolutional sentence model for 7-char
quatrain. The first layer has seven vectors, one
for each character. Two neighboring vectors are
merged to one vector in the second layer with
weight matrix C1,2. In other layers, either two or
three neighboring vectors are merged.

3.2 Recurrent Context Model (RCM)
The RCM takes as input the vectors representing
the i lines generated so far and reduces them to a
single context vector which is then used to gener-
ate the next character (see Figure 2). We compress
the i previous lines to one vector (the hidden layer)
and then decode the compressed vector to different
character positions in the current line. The output
layer consists thus of several vectors (one for each
position) connected together. This way, different
aspects of the context modulate the generation of
different characters.

Let v1, . . . ,vi (vi ∈Rq×1) denote the vectors of
the previous i lines; hi ∈ Rq×1 is their compressed
representation (hidden layer) which is obtained
with matrix M ∈ Rq×2q; matrix U j decodes hi to
u j

i ∈ Rq×1 in the (i + 1)th line. The computation
of the RCM proceeds as follows:

h0 = 000

hi = σ(M ·
[

vi

hi−1

]
)

u j
i = σ(U j ·hi) 1≤ j ≤ m−1

(5)

where σ is a non-linear function such as sigmoid
and m the line length. Advantageously, lines in

classical Chinese poems have a fixed length of five
or seven characters. Therefore, the output layer of
the recurrent context model only needs two weight
matrices (one for each length) and the number of
parameters still remains tractable.

3.3 Recurrent Generation Model (RGM)

As shown in Figure 2, the RGM estimates the
probability distribution of the next character (over
the entire vocabulary) by taking into account the
context vector provided by the RCM and the
1-of-N encoding of the previous character. The
RGM is essentially a recurrent neural network lan-
guage model (Mikolov et al., 2010) with an aux-
iliary input layer, i.e., the context vector from
the RCM. Similar strategies for encoding addi-
tional information have been adopted in related
language modeling and machine translation work
(Mikolov and Zweig, 2012; Kalchbrenner and
Blunsom, 2013; Auli et al., 2013).

Let Si+1 = w1,w2, . . . ,wm denote the line
to be generated. The RGM must esti-
mate P(w j+1|w1: j,S1:i), however, since the first
i lines have been encoded in the context vector u j

i ,
we compute P(w j+1|w1: j,u

j
i ) instead. Therefore,

the probability P(Si+1|S1:i) becomes:

P(Si+1|S1:i) =
m−1

∏
j=1

P(w j+1|w1: j,u
j
i ) (6)

Let |V | denote the size of the character vocabu-
lary. The RGM is specified by a number of ma-
trices. Matrix H ∈ Rq×q (where q represents the
hidden unit size) transforms the context vector to
a hidden representation; matrix X ∈ Rq×|V | trans-
forms a character to a hidden representation, ma-
trix R ∈ Rq×q implements the recurrent transfor-
mation and matrix Y ∈ R|V |×q decodes the hidden
representation to weights for all words in the vo-
cabulary. Let w denote a character with index k
in V ; e(w) ∈ R|V |×1 represents a vector with zero
in all positions except e(w)k = 1, r j is the hidden
layer of the RGM at step j, and y j+1 the output of
the RGM, again at step j. The RGM proceeds as
follows:

r0 = 000 (7a)

r j = σ(R · r j−1 +X · e(w j)+H ·u j
i ) (7b)

y j+1 = Y · r j (7c)

where σ is a nonlinear function (e.g., sigmoid).
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The probability of the ( j + 1)th word given the
previous j words and the previous i lines is esti-
mated by a softmax function:

P(w j+1 = k|w1: j,u
j
i ) =

exp(y j+1,k)

∑|V |k=1 exp(y j+1,k)
(8)

We obtain P(Si+1|S1:i) by multiplying all the terms
in the right hand-side of Equation (6).

3.4 Training

The objective for training is the cross entropy er-
rors of the predicted character distribution and the
actual character distribution in our corpus. An
l2 regularization term is also added to the objec-
tive. The model is trained with back propagation
through time (Rumelhart et al., 1988) with sen-
tence length being the time step. The objective
is minimized by stochastic gradient descent. Dur-
ing training, the cross entropy error in the output
layer of the RGM is back-propagated to its hid-
den and input layers, then to the RCM and finally
to the CSM. The same number of hidden units
(q = 200) is used throughout (i.e., in the RGM,
RCM, and CSM). In our experiments all param-
eters were initialized randomly, with the excep-
tion of the word embedding matrix in the CSM
which was initialized with word2vec embeddings
(Mikolov et al., 2013) obtained from our poem
corpus (see Section 4 for details on the data we
used).

To speed up training, we employed word-
classing (Mikolov et al., 2011b). To compute the
probability of a character, we estimate the proba-
bility of its class and then multiply it by the proba-
bility of the character conditioned on the class. In
our experiments we used 82 (square root of |V |)
classes which we obtained by applying hierarchi-
cal clustering on character embeddings. This strat-
egy outperformed better known frequency-based
classing methods (Zweig and Makarychev, 2013)
on our task.

Our poem generator models content selection
and lexical choice and their interaction, but does
not have a strong notion of local coherence,
as manifested in poetically felicitous line-to-line
transitions. In contrast, machine translation mod-
els (Jiang and Zhou, 2008) have been particu-
larly successful at generating adjacent lines (cou-
plets). To enhance coherence, we thus interpolate
our model with two machine translation features
(i.e., inverted phrase translation model feature and

inverted lexical weight feature). Also note, that
in our model surface generation depends on the
last observed character and the state of the hidden
layer before this observation. This way, there is no
explicitly defined context, and history is captured
implicitly by the recurrent nature of the model.
This can be problematic for our texts which must
obey certain stylistic conventions and sound po-
etic. In default of a better way of incorporating
poeticness into our model, we further interpolate it
with a language model feature (i.e., a Kneser-Ney
trigram model).

Throughout our experiments, we use the
RNNLM toolkit to train the character-based recur-
rent neural network language model (Mikolov et
al., 2010). Kneser-Ney n-grams were trained with
KenLM (Heafield, 2011).

3.5 Decoding

Our decoder is a stack decoder similar to Koehn
et al. (2003). In addition, it implements the tonal
pattern and rhyming constraints necessary for gen-
erating well-formed Chinese quatrains. Once the
first line in a poem is generated, its tonal pattern
is determined. During decoding, phrases violat-
ing this pattern are ignored. As discussed in Sec-
tion 1, the final characters of the second and the
fourth lines must rhyme. We thus remove during
decoding fourth lines whose final characters do not
rhyme with the second line. Finally, we use MERT
training (Och, 2003) to learn feature weights for
the decoder.

4 Experimental Design

Data We created a corpus of classical Chinese
poems by collating several online resources: Tang
Poems, Song Poems, Song Ci, Ming Poems, Qing
Poems, and Tai Poems. The corpus consists
of 284,899 poems in total. 78,859 of these are
quatrains and were used for training and evalu-
ating our model.1 Table 2 shows the different
partitions of this dataset (POEMLM) into train-
ing (QTRAIN)2, validation (QVALID) and testing
(QTEST). Half of the poems in QVALID and
QTEST are 5-char quatrains and the other half
are 7-char quatrains. All poems except QVALID

1The data used in our experiments can be downloaded
from http://homepages.inf.ed.ac.uk/mlap/index.
php?page=resources.

2Singleton characters in QTRAIN (6,773 in total) were re-
placed by <R> to reduce data sparsity.
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Poems Lines Characters
QTRAIN 74,809 299,236 2,004,460
QVALID 2,000 8,000 48,000
QTEST 2,050 8,200 49,200
POEMLM 280,849 2,711,034 15,624,283

Table 2: Dataset partitions of our poem corpus.

and QTEST were used for training the character-
based language models (see row POEMLM in Ta-
ble 2). We also trained word2vec embeddings on
POEMLM. In our experiments, we generated qua-
trains following the eight most popular tonal pat-
terns according to Wang (2002).

Perplexity Evaluation Evaluation of machine-
generated poetry is a notoriously difficult task.
Our evaluation studies were designed to assess
Manurung et al.’s (2012) criteria of grammatical-
ity, meaningfulness, and poeticness. As a san-
ity check, we first measured the perplexity of our
model with respect to the goldstandard. Intu-
itively, a better model should assign larger proba-
bility (and therefore lower perplexity) to goldstan-
dard poems.

BLEU-based Evaluation We also used BLEU
to evaluate our model’s ability to generate the sec-
ond, third and fourth line given previous goldstan-
dard lines. A problematic aspect of this evalu-
ation is the need for human-authored references
(for a partially generated poem) which we do not
have. We obtain references automatically follow-
ing the method proposed in He et al. (2012). The
main idea is that if two lines share a similar topic,
the lines following them can be each other’s ref-
erences. Let A and B denote two adjacent lines
in a poem, with B following A. Similarly, let line
B′ follow line A′ in another poem. If lines A and
A′ share some keywords in the same cluster in the
Shixuehanying taxonomy, then B and B′ can be
used as references for both A and A′. We use this
algorithm on the Tang Poems section of our corpus
to build references for poems in the QVALID and
QTEST data sets. Poems in QVALID (with auto-
generated references) were used for MERT train-
ing and Poems in QTEST (with auto-generated ref-
erences) were used for BLEU evaluation.

Human Evaluation Finally, we also evaluated
the generated poems by eliciting human judg-

Models Perplexity
KN5 172
RNNLM 145
RNNPG 93

Table 3: Perplexities for different models.

ments. Specifically, we invited 30 experts3 on
Chinese poetry to assess the output of our gen-
erator (and comparison systems). These experts
were asked to rate the poems using a 1–5 scale on
four dimensions: fluency (is the poem grammati-
cal and syntactically well-formed?), coherence (is
the poem thematically and logically structured?),
meaningfulness (does the poem convey a mean-
ingful message to the reader?) and poeticness
(does the text display the features of a poem?).
We also asked our participants to evaluate system
outputs by ranking the generated poems relative to
each other as a way of determining overall poem
quality (Callison-Burch et al., 2012).

Participants rated the output of our model and
three comparison systems. These included He et
al.’s (2012) SMT-based model (SMT), Yan et al.’s
(2013) summarization-based system (SUM), and
a random baseline which creates poems by ran-
domly selecting phrases from the Shixuehanying
taxonomy given some keywords as input. We
also included human written poems whose content
matched the input keywords. All systems were
provided with the same keywords (i.e., the same
cluster names in the ShiXueHanYing taxonomy).
In order to compare all models on equal footing,
we randomly sampled 30 sets of keywords (with
three keywords in each set) and generated 30 qua-
trains for each system according to two lengths,
namely 5-char and 7-char. Overall, we obtained
ratings for 300 (5×30×2) poems.

5 Results

The results of our perplexity evaluation are sum-
marized in Table 3. We compare our RNN-based
poem generator (RNNPG) against Mikolov’s
(2010) recurrent neural network language model
(RNNLM) and a 5-gram language model with
Kneser-Ney smoothing (KN5). All models were
trained on QTRAIN and tuned on QVALID. The
perplexities were computed on QTEST. Note that

327 participants were professional or amateur poets and
three were Chinese literature students who had taken at least
one class on Chinese poetry composition.
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Models
1→ 2 2→ 3 3→ 4 Average

5-char 7-char 5-char 7-char 5-char 7-char 5-char 7-char
SMT 0.0559 0.0906 0.0410 0.1837 0.0547 0.1804 0.0505 0.1516
RNNPG 0.0561 0.1868 0.0515 0.2102 0.0572 0.1800 0.0549 0.1923

Table 4: BLEU-2 scores on 5-char and 7-char quatrains. Given i goldstandard lines, BLEU-2 scores are
computed for the next (i+1)th lines.

Models
Fluency Coherence Meaning Poeticness Rank

5-char 7-char 5-char 7-char 5-char 7-char 5-char 7-char 5-char 7-char
Random 2.52 2.18 2.22 2.16 2.02 1.93 1.77 1.71 0.31 0.26
SUM 1.97 1.91 2.08 2.33 1.84 1.98 1.66 1.73 0.25 0.22
SMT 2.81 3.01 2.47 2.76 2.33 2.73 2.08 2.36 0.43 0.53
RNNPG 4.01** 3.44* 3.18** 3.12* 3.20** 3.02 2.80** 2.68* 0.73** 0.64*

Human 4.31+ 4.19++ 3.81++ 4.00++ 3.61+ 3.91++ 3.29++ 3.49++ 0.79 0.84++

Table 5: Mean ratings elicited by humans on 5-char and 7-char quatrains. Diacritics ** (p < 0.01)
and * (p< 0.05) indicate our model (RNNPG) is significantly better than all other systems except Human.
Diacritics ++ (p< 0.01) and + (p< 0.05) indicate Human is significantly better than all other systems.

the RNNPG estimates the probability of a poem
line given at least one previous line. Therefore, the
probability of a quatrain assigned by the RNNPG
is the probability of the last three lines. For a fair
comparison, RNNLM and KN5 only leverage the
last three lines of each poem during training, vali-
dation and testing. The results in Table 3 indicate
that the generation ability of the RNNPG is better
than KN5 and RNNLM. Note that this perplexity-
style evaluation is not possible for models which
cannot produce probabilities for gold standard po-
ems. For this reason, other related poem gener-
ators (Yan et al., 2013; He et al., 2012) are not
included in the table.

The results of our evaluation using BLEU-2 are
summarized in Table 4. Here, we compare our
system against the SMT-based poem generation
model of He et al. (2012).4 Their system is a
linear combination of two translation models (one
with five features and another one with six). Our
model uses three of their features, namely the in-
verted phrase translation model feature, the lexical
weight feature, and a Kneser-Ney trigram feature.
Unfortunately, it is not possible to evaluate Yan
et al.’s (2013) summarization-based system with
BLEU, as it creates poems as a whole and there is
no obvious way to generate next lines with their

4Our re-implementation of their system delivered very
similar scores to He et al. (2012). For example, we ob-
tained an average BLEU-1 of 0.167 for 5-char quatrains and
0.428 for 7-char quatrains compared to their reported scores
of 0.141 and 0.380, respectively.

algorithm. The BLEU scores in Table 4 indicate
that, given the same context lines, the RNNPG is
better than SMT at generating what to say next.
BLEU scores should be, however, viewed with
some degree of caution. Aside from being an ap-
proximation of human judgment (Callison-Burch
et al., 2012), BLEU might be unnecessarily con-
servative for poem composition which by its very
nature is a creative endeavor.

The results of our human evaluation study are
shown in Table 5. Each column reports mean rat-
ings for a different dimension (e.g., fluency, co-
herence). Ratings for 5-char and 7-char quatrains
are shown separately. The last column reports
rank scores for each system (Callison-Burch et al.,
2012). In a ranked list of N items (N = 5 here), the
score of the ith ranked item is (N−i)

(N−1) . The numer-
ator indicates how many times a systems won in
pairwise comparisons, while the denominator nor-
malizes the score.

With respect to 5-char quatrains, RNNPG is
significantly better than Random, SUM and SMT
on fluency, coherence, meaningfulness, poeticness
and ranking scores (using a t-test). On all dimen-
sions, human-authored poems are rated as signif-
icantly better than machine-generated ones, with
the exception of overall ranking. Here, the dif-
ference between RNNPG and Human is not sig-
nificant. We obtain similar results with 7-char
quatrains. In general, RNNPG seems to perform
better on the shorter poems. The mean ratings
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白鹭窥鱼立, 满怀风月一枝春,
Egrets stood, peeping fishes. Budding branches are full of romance.

青山照水开. 未见梅花亦可人.
Water was still, reflecting mountains. Plum blossoms are invisible but adorable.

夜来风不动, 不为东风无此客,
The wind went down by nightfall, With the east wind comes Spring.

明月见楼台. 世间何处是前身.
as the moon came up by the tower. Where on earth do I come from?

Table 6: Example output produced by our model (RNNPG).

are higher and the improvements over other sys-
tems are larger. Also notice, that the score mar-
gins between the human- and machine-written po-
ems become larger for 7-char quatrains. This in-
dicates that the composition of 7-char quatrains is
more difficult compared to 5-char quatrains. Ta-
ble 6 shows two example poems (5-char and 7-
char) produced by our model which received high
scores with respect to poeticness.

Interestingly, poems generated by SUM5 are
given ratings similar to Random. In fact SUM
is slightly worse (although not significantly) than
Random on all dimensions, with the exception of
coherence. In the human study reported in Yan et
al. (2013), SUM is slightly better than SMT. There
are several reasons for this discrepancy. We used
a more balanced experimental design: all systems
generated poems from the same keywords which
were randomly chosen. We used a larger dataset
to train the SMT model compared to Yan et al.
(284,899 poems vs 61,960). The Random baseline
is not a straw-man; it selects phrases from a taxon-
omy of meaningful clusters edited by humans and
closely related to the input keywords.

6 Conclusions

In this paper we have presented a model for Chi-
nese poem generation based on recurrent neural
networks. Our model jointly performs content se-
lection and surface realization by learning repre-
sentations of individual characters and their com-
binations within and across poem lines. Previous
work on poetry generation has mostly leveraged
contextual information of limited length (e.g., one
sentence). In contrast, we introduced two recur-
rent neural networks (the recurrent context model
and recurrent generation model) which naturally

5We made a good-faith effort to re-implement their poem
generation system. We are grateful to Rui Yan for his help
and technical advice.

capture multi-sentential content. Experimental re-
sults show that our model yields high quality po-
ems compared to the state of the art. Perhaps un-
surprisingly, our human evaluation study revealed
that machine-generated poems lag behind human-
generated ones. It is worth bearing in mind that
poetry composition is a formidable task for hu-
mans, let alone machines. And that the poems
against which our output was compared have been
written by some of the most famous poets in Chi-
nese history!

Avenues for future work are many and varied.
We would like to generate poems across differ-
ent languages and genres (e.g., Engish sonnets or
Japanese haiku). We would also like to make the
model more sensitive to line-to-line transitions and
stylistic conventions by changing its training ob-
jective to a combination of cross-entropy error and
BLEU score. Finally, we hope that some of the
work described here might be of relevance to other
generation tasks such as summarization, concept-
to-text generation, and machine translation.
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Abstract

This paper explores alternate algorithms,
reward functions and feature sets for per-
forming multi-document summarization
using reinforcement learning with a high
focus on reproducibility. We show that
ROUGE results can be improved using
a unigram and bigram similarity metric
when training a learner to select sentences
for summarization. Learners are trained
to summarize document clusters based on
various algorithms and reward functions
and then evaluated using ROUGE. Our ex-
periments show a statistically significant
improvement of 1.33%, 1.58%, and 2.25%
for ROUGE-1, ROUGE-2 and ROUGE-
L scores, respectively, when compared
with the performance of the state of the
art in automatic summarization with re-
inforcement learning on the DUC2004
dataset. Furthermore query focused exten-
sions of our approach show an improve-
ment of 1.37% and 2.31% for ROUGE-2
and ROUGE-SU4 respectively over query
focused extensions of the state of the
art with reinforcement learning on the
DUC2006 dataset.

1 Introduction

The multi-document summarization problem has
received much attention recently (Lyngbaek,
2013; Sood, 2013; Qian and Liu, 2013) due to
its ability to reduce large quantities of text to a
human processable amount as well as its appli-
cation in other fields such as question answering
(Liu et al., 2008; Chali et al., 2009a; Chali et al.,
2009b; Chali et al., 2011b). We expect this trend
to further increase as the amount of linguistic data
on the web from sources such as social media,
wikipedia, and online newswire increases. This

paper focuses specifically on utilizing reinforce-
ment learning (Sutton and Barto, 1998; Szepesv,
2009) to create a policy for summarizing clusters
of multiple documents related to the same topic.

The task of extractive automated multi-
document summarization (Mani, 2001) is to se-
lect a subset of textual units, in this case sentences,
from the source document cluster to form a sum-
mary of the cluster in question. This extractive
approach allows the learner to construct a sum-
mary without concern for the linguistic quality of
the sentences generated, as the source documents
are assumed to be of a certain linguistic quality.
This paper aims to expand on the techniques used
in Ryang and Abekawa (2012) which uses a re-
inforcement learner, specifically TD(λ), to create
summaries of document clusters. We achieve this
through introducing a new algorithm, varying the
feature space and utilizing alternate reward func-
tions.

The TD(λ) learner used in Ryang and
Abekawa (2012) is a very early reinforcement
learning implementation. We explore the option of
leveraging more recent research in reinforcement
learning algorithms to improve results. To this end
we explore the use of SARSA which is a deriva-
tive of TD(λ) that models the action space in ad-
dition to the state space modelled by TD(λ). Fur-
thermore we explore the use of an algorithm not
based on temporal difference methods, but instead
on policy iteration techniques. Approximate Pol-
icy Iteration (Lagoudakis and Parr, 2003) gener-
ates a policy, then evaluates and iterates until con-
vergence.

The reward function in Ryang and Abekawa
(2012) is a delayed reward based on tf∗idf values.
We further explore the reward space by introduc-
ing similarity metric calculations used in ROUGE
(Lin, 2004) and base our ideas on Saggion et al.
(2010). The difference between immediate re-
wards and delayed rewards is that the learner re-
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ceives immediate feedback at every action in the
former and feedback only at the end of the episode
in the latter. We explore the performance differ-
ence of both reward types. Finally we develop
query focused extensions to both reward functions
and present their results on more recent Document
Understanding Conference (DUC) datasets which
ran a query focused task.

We first evaluate our systems using the
DUC2004 dataset for comparison with the results
in Ryang and Abekawa (2012). We then present
the results of query focused reward functions
against the DUC2006 dataset to provide refer-
ence with a more recent dataset and a more recent
task, specifically a query-focused summarization
task. Evaluations are performed using ROUGE
for ROUGE-1, ROUGE-2 and ROUGE-L values
for general summarization, while ROUGE-2 and
ROUGE-SU4 is used for query-focused summa-
rization. Furthermore we selected a small subset
of query focused summaries to be subjected to hu-
man evaluations and present the results.

Our implementation is named REAPER
(Relatedness-focused Extractive Automatic
summary Preparation Exploiting Reinfocement
learning) thusly for its ability to harvest a docu-
ment cluster for ideal sentences for performing
the automatic summarization task. REAPER is
not just a reward function and feature set, it is a
full framework for implementing summarization
tasks using reinforcement learning and is avail-
able online for experimentation.1 The primary
contributions of our experiments are as follows:

• Exploration of TD(λ), SARSA and Ap-
proximate Policy Iteration.

• Alternate REAPER reward function.

• Alternate REAPER feature set.

• Query focused extensions of automatic sum-
marization using reinforcement learning.

2 Previous Work and Motivation

Previous work using reinforcement learning for
natural language processing tasks (Branavan et
al., 2009; Wan, 2007; Ryang and Abekawa,
2012; Chali et al., 2011a; Chali et al., 2012)
inspired us to use a similar approach in our
experiments. Ryang and Abekawa (2012) im-
plemented a reinforcement learning approach to

1https://github.com/codyrioux/REAPER

multi-document summarization which they named
Automatic Summarization using Reinforcement
Learning (ASRL). ASRL uses TD(λ) to learn and
then execute a policy for summarizing a cluster of
documents. The algorithm performs N summa-
rizations from a blank state to termination, updat-
ing a set of state-value predictions as it does so.
From these N episodes a policy is created using
the estimated state-value pairs, this policy greed-
ily selects the best action until the summary enters
its terminal state. This summary produced is the
output of ASRL and is evaluated using ROUGE-
1, ROUGE-2, and ROUGE-L (Lin, 2004). The
results segment of the paper indicates that ASRL
outperforms greedy and integer linear program-
ming (ILP) techniques for the same task.

There are two notable details that provide the
motivation for our experiments; TD(λ) is rela-
tively old as far as reinforcement learning (RL)
algorithms are concerned, and the optimal ILP did
not outperform ASRL using the same reward func-
tion. The intuition gathered from this is that if
the optimal ILP algorithm did not outperform the
suboptimal ASRL on the ROUGE evaluation, us-
ing the same reward function, then there is clearly
room for improvement in the reward function’s
ability to accurately model values in the state
space. Furthermore one may expect to achieve
a performance boost exploiting more recent re-
search by utilizing an algorithm that intends to
improve upon the concepts on which TD(λ) is
based. These provide the motivation for the re-
mainder of the research preformed.

Query focused multi-document summarization
(Li and Li, 2013; Chali and Hasan, 2012b; Yin et
al., 2012; Wang et al., 2013) has recently gained
much attention due to increasing amounts of tex-
tual data, as well as increasingly specific user de-
mands for extracting information from said data.
This is reflected in the query focused tasks run in
the Document Understanding Conference (DUC)
and Text Analysis Conference (TAC) over the past
decade. This has motivated us to design and im-
plement query focused extensions to these rein-
forcement learning approaches to summarization.

There has been some research into the effects of
sentence compression on the output of automatic
summarization systems (Chali and Hasan, 2012a),
specifically the evaluation results garnered from
compressing sentences before evaluation (Qian
and Liu, 2013; Lin and Rey, 2003; Ryang and
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Abekawa, 2012). However Ryang and Abekawa
(2012) found this technique to be ineffective in im-
proving ROUGE metrics using a similar reinforce-
ment learning approach to this paper, as a result
we will not perform any further exploration into
the effects of sentence compression.

3 Problem Definition

We use an identical problem definition to Ryang
and Abekawa (2012). Assume the given cluster
of documents is represented as a set of textual
units D = {x1, x2, · · · , xn} where |D| = n and
xi represents a single textual unit. Textual units
for the purposes of this experiment are the indi-
vidual sentences in the document cluster, that is
D = D1 ∪D2 ∪ · · · ∪Dm where m is the number
of documents in the cluster and eachDi represents
a document.

The next necessary component is the score
function, which is to be used as the reward for the
learner. The function score(s) can be applied to
any s ⊂ D. s is a summary of the given document
or cluster of documents.

Given these parameters, and a length limitation
k we can define an optimal summary s∗ as:

s∗ = argmax score(s)
where s ⊂ D and length(s) ≤ k (1)

It is the objective of our learner to create a pol-
icy that produces the optimal summary for its pro-
vided document cluster D. Henceforth the length
limitations used for general summarization will be
665 bytes, and query focused summarization will
use 250 words. These limitations on summary
length match those set by the Document Under-
standing Conferences associated with the dataset
utilized in the respective experiments.

4 Algorithms

TD(λ) and SARSA (Sutton and Barto, 1998) are
temporal difference methods in which the primary
difference is that TD(λ) models state value pre-
dictions, and SARSA models state-action value
predictions. Approximate Policy Iteration (API)
follows a different paradigm by iteratively improv-
ing a policy for a markov decision process until the
policy converges.

4.1 TD(λ)
In the ASRL implementation of TD(λ) the learn-
ing rate αk and temperature τk decay as learning
progresses with the following equations with k set
to the number of learning episodes that had taken
place.

αk = 0.001 · 101/(100 + k1.1) (2)

τk = 1.0 ∗ 0.987k−1 (3)

One can infer from the decreasing values of αk
that as the number of elapsed episodes increases
the learner adjusts itself at a smaller rate. Simi-
larly as the temperature τk decreases the action se-
lection policy becomes greedier and thus performs
less exploration, this is evident in (5) below.

Note that unlike traditional TD(λ) implementa-
tions the eligibility trace e resets on every episode.
The reasons for this will become evident in the
experiments section of the paper in which λ =
1, γ = 1 and thus there is no decay during an
episode and complete decay after an episode. The
same holds true for SARSA below.

The action-value estimation Q(s, a) is approxi-
mated as:

Q(s, a) = r + γV (s′) (4)

The policy is implemented as such:

policy(a|s; θ; τ) =
eQ(s,a)/τ∑
a∈A eQ(s,a)/τ

(5)

Actions are selected probabilistically using soft-
max selection (Sutton and Barto, 1998) from a
Boltzmann distribution. As the value of τ ap-
proaches 0 the distribution becomes greedier.

4.2 SARSA

SARSA is implemented in a very similar manner
and shares αk, τk, φ(s), m, and policy(s) with the
TD(λ) implementation above. SARSA is also
a temporal difference algorithm and thus behaves
similarly to TD(λ) with the exception that values
are estimated not only on the state s but a state-
action pair [s, a].

4.3 Approximate Policy Iteration
The third algorithm in our experiment uses Ap-
proximate Policy Iteration (Lagoudakis and Parr,
2003) to implement a reinforcement learner. The
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novelty introduced by (Lagoudakis and Parr,
2003) is that they eschew standard representations
for a policy and instead use a classifier to represent
the current policy π. Further details on the algo-
rithm can be obtained from Lagoudakis and Parr
(2003).

5 Experiments

Our state space S is represented simply as a three-
tuple [s a f ] in which s is the set of textual units
(sentences) that have been added to the summary,
a is a sequence of actions that have been per-
formed on the summary and f is a boolean with
value 0 representing non-terminal states and 1 rep-
resenting a summary that has been terminated.

The individual units in our action space are de-
fined as [:insert xi] where xi is a textual unit as
described earlier, let us define Di as the set [:in-
sert xi] for all xi ∈ D where D is the document
set. We also have one additional action [:finish]
and thus we can define our action space.

A = Di ∪ {[: finish]} (6)

The actions eligible to be executed on any given
state s is defined by a function actions(A, s):

actions(A, s) =

{
[: finish] if length(s) > k

A− at otherwise
(7)

The state-action transitions are defined below:

[st , at , 0] a=insertxi−−−−−−−→ [st ∪ xi , at ∪ a , 0] (8)

[st , at , 0]
:finish−−−−→ [st , at , 1] (9)

[st , at+1 , 1]
any−−→ [st , at , 1] (10)

Insertion adds both the content of the textual
unit xi to the set s as well as the action itself to
set a. Conversely finishing does not alter s or a
but it flips the f bit to on. Notice from (10) that
once a state is terminal any further actions have no
effect.

5.1 Feature Space
We present an alternate feature set called
REAPER feature set based on the ideas presented
in Ryang and Abekawa (2012). Our proposed fea-
ture set follows a similar format to the previous

one but depends on the presence of top bigrams
instead of tf ∗ idf words.

• One bit b ∈ 0, 1 for each of the top n bigrams
(Manning and Schütze, 1999) present in the
summary.

• Coverage ratio calculated as the sum of the
bits in the previous feature divided by n.

• Redundancy Ratio calculated as the number
of redundant times a bit in the first feature is
flipped on, divided by n.

• Length Ratio calculated as length(s)/k
where k is the length limit.

• Longest common subsequence length.

• Length violation bit. Set to 1 if length(s) >
k

Summaries which exceed the length limitation
k are subject to the same reduction as the ASRL
feature set (Ryang and Abekawa, 2012) to an all
zero vector with the final bit set to one.

5.2 Reward Function

Our reward function (termed as REAPER reward)
is based on the n-gram concurrence score metric,
and the longest-common-subsequence recall met-
ric contained within ROUGE (Lin, 2004).

reward(s) =


−1, if length(s) > k

score(s) if s is terminal
0 otherwise

(11)

Where score is defined identically to ASRL,
with the exception that Sim is a new equation
based on ROUGE metrics.

score(s) =
∑
xi∈S

λsRel(xi)−

∑
xi,xj∈S,i<j

(1− λs)Red(xi, xj)

(12)

Rel(xi) = Sim(xi, D) + Pos(xi)−1 (13)

Red(xi, xj) = Sim(xi, xj) (14)
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Ryang and Abekawa (2012) experimentally de-
termined a value of 0.9 for the λs parameter. That
value is used herein unless otherwise specified.
Sim has been redefined as:

Sim(s) =1 ∗ ngco(1, D, s)+
4 ∗ ngco(2, D, s)+
1 ∗ ngco(3, D, s)+
1 ∗ ngco(4, D, s)+
1 ∗ rlcs(D, s)

(15)

and ngco is the ngram co-occurence score met-
ric as defined by Lin (2004).

ngco(n,D, s) =∑
r∈D

∑
ngram∈r Countmatch(ngram)∑

Sr∈D
∑

ngram∈r Count(ngram)
(16)

Where n is the n-gram count for example 2 for
bigrams, D is the set of documents, and s is the
summary in question. Countmatch is the maxi-
mum number of times the ngram occurred in either
D or s.

The rlcs(R,S) is also a recall oriented mea-
sure based on longest common subsequence
(Hirschberg, 1977). Recall was selected as
DUC2004 tasks favoured a β value for F-Measure
(Lin, 2004) high enough that only recall would
be considered. lcs is the longest common sub-
sequence, and length(D) is the total number of
tokens in the reference set D.

rlcs(D, s) =
lcs(D, s)
length(D)

(17)

We are measuring similarity between sentences
and our entire reference set, and thusly our D is
the set of documents defined in section 3. This
is also a delayed reward as the provided reward is
zero until the summary is terminal.

5.2.1 Query Focused Rewards
We have proposed an extension to both reward
functions to allow for query focused (QF) summa-
rization. We define a function score′ which aims
to balance the summarization abilities of the re-
ward with a preference for selecting textual units
related to the provided query q. Both ASRL and
REAPER score functions have been extended in
the following manner where Sim is the same sim-
ilarity functions used in equation (13) and (15).

score′(q, s) = βSim(q, s) + (1− β)score(s)
(18)

The parameter β is a balancing factor between
query similarity and overall summary score in
which 0 <= β <= 1, we used an arbitrarily cho-
sen value of 0.9 in these experiments. In the case
of ASRL the parameter q is the vectorized version
of the query function with tf ∗ idf values, and for
Sim q is a sequence of tokens which make up the
query, stemmed and stop-words removed.

5.2.2 Immediate Rewards

Finally we also employ immediate versions of the
reward functions which behave similarly to their
delayed counterparts with the exception that the
score is always provided to the caller regardless of
the terminal status of state s.

reward(s) =

{
−1, if length(s) > k

score(s) otherwise
(19)

6 Results

We first present results2 of our experiments, spec-
ifying parameters, and withholding discussion un-
til the following section. We establish a bench-
mark using ASRL and other top-scoring sum-
marization systems compared with REAPER us-
ing ROUGE. For generic multi-document sum-
marization we run experiments on all 50 docu-
ment clusters, each containing 10 documents, of
DUC2004 task 2 with parameters for REAPER
and ASRL fixed at λ = 1, γ = 1, and k = 665.
Sentences were stemmed using a Porter Stemmer
(Porter, 1980) and had the ROUGE stop word set
removed. All summaries were processed in this
manner and then projected back into their original
(unstemmed, with stop-words) state and output to
disk.

Config R-1 R-2 R-L
REAPER 0.40339 0.11397 0.36574
ASRL 0.39013 0.09479 0.33769
MCKP 0.39033 0.09613 0.34225
PEER65 0.38279 0.09217 0.33099
ILP 0.34712 0.07528 0.31241
GREEDY 0.30618 0.06400 0.27507

Table 1: Experimental results with ROUGE-1,
ROUGE-2 and ROUGE-L scores on DUC2004.

2ROUGE-1.5.5 run with -m -s -p 0
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Table 1 presents results for REAPER, ASRL
(Ryang and Abekawa, 2012), MCKP (Takamura
and Okumura, 2009), PEER65 (Conroy et al.,
2004) , and GREEDY (Ryang and Abekawa,
2012) algorithms on the same task. This allows
us to make a direct comparison with the results of
Ryang and Abekawa (2012).

REAPER results are shown using the TD(λ)
algorithm, REAPER reward function, and ASRL
feature set. This is to establish the validity of the
reward function holding all other factors constant.
REAPER results for ROUGE-1, ROUGE-2 and
ROUGE-L are statistically significant compared to
the result set presented in Table 2 of Ryang and
Abekawa (2012) using p < 0.01.

Run R-1 R-2 R-L
REAPER 0 0.39536 0.10679 0.35654
REAPER 1 0.40176 0.11048 0.36450
REAPER 2 0.39272 0.11171 0.35766
REAPER 3 0.39505 0.11021 0.35972
REAPER 4 0.40259 0.11396 0.36539
REAPER 5 0.40184 0.11306 0.36391
REAPER 6 0.39311 0.10873 0.35481
REAPER 7 0.39814 0.11001 0.35786
REAPER 8 0.39443 0.10740 0.35586
REAPER 9 0.40233 0.11397 0.36483
Average 0.39773 0.11063 0.36018

Table 2: REAPER run 10 times on the DUC2004.

We present the results of 10 runs of REAPER,
with REAPER feature set.. As with ASRL,
REAPER does not converge on a stable solution
which is attributable to the random elements of
TD(λ). Results in all three metrics are again
statistically significant compared to ASRL results
presented in the Ryang and Abekawa (2012) pa-
per. All further REAPER experiments use the bi-
gram oriented feature space.

Reward R-1 R-2 R-L
Delayed 0.39773 0.11397 0.36018
Immediate 0.32981 0.07709 0.30003

Table 3: REAPER with delayed and immediate re-
wards on DUC2004.

Table 3 shows the performance difference of
REAPER when using a delayed and immediate re-
ward. The immediate version of REAPER pro-
vides feedback on every learning step, unlike the

delayed version which only provides score at the
end of the episode.

Features R-1 R-2 R-L
ASRL 0.40339 0.11397 0.36574
REAPER 0.40259 0.11396 0.36539

Table 4: REAPER with alternate feature spaces on
DUC2004.

We can observe the results of using REAPER
with various feature sets in Table 4. Experiments
were run using REAPER reward, TD(λ), and the
specified feature set.

Algorithm R-1 R-2 R-L
TD(λ) 0.39773 0.11063 0.36018
SARSA 0.28287 0.04858 0.26172
API 0.29163 0.06570 0.26542

Table 5: REAPER with alternate algorithms on
DUC2004.

Table 5 displays the performance of REAPER
with alternate algorithms. TD(λ) and SARSA
are run using the delayed reward feature, while
API requires an immediate reward and was thus
run with the immediate reward.

System R-2 R-SU4
REAPER 0.07008 0.11689
ASRL 0.05639 0.09379
S24 0.09505 0.15464
Baseline 0.04947 0.09788

Table 6: QF-REAPER on DUC2006.

For query-focused multi-document summariza-
tion we experimented with the DUC2006 system
task, which contained 50 document clusters con-
sisting of 25 documents each. Parameters were
fixed to λ = 1, γ = 1 and k = 250 words. In
Table 6 we can observe the results3 of our query
focused systems against DUC2006’s top scorer
(S24) for ROUGE-2, and a baseline. The baseline
was generated by taking the most recent document
in the cluster and outputting the first 250 words.

Human Evaluations: We had three native
English-speaking human annotators evaluate a set
of four randomly chosen summaries produced by
REAPER on the DUC2004 dataset.

3ROUGE-1.5.5 run with -n 2 -x -m -2 4 -u -c 95 -r 1000
-f A -p 0.5 -t 0 -l 250
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Metric A1 A2 A3 AVG
Grammaticality 3.00 4.00 4.00 3.67
Redundancy 4.75 4.25 2.75 3.92
Referential Clarity 4.00 4.50 3.50 4.00
Focus 4.50 3.50 2.25 3.42
Structure 3.50 4.00 3.00 3.50
Responsiveness 4.25 3.75 3.00 3.67

Table 7: Human evaluation scores on DUC2004.

Table 7 shows the evaluation results accord-
ing to the DUC2006 human evaluation guidelines.
The first five metrics are related entirely to the lin-
guistic quality of the summary in question and the
final metric, Responsiveness, rates the summary
on its relevance to the source documents. Columns
represent the average provided by a given annota-
tor over the four summaries, and the AVG column
represents the average score for all three annota-
tors over all four summaries. Score values are an
integer between 1 and 5 inclusive.

7 Discussion

First we present a sample of a summary generated
from a randomly selected cluster. The following
summary was generated from cluster D30017 of
the DUC 2004 dataset using REAPER reward with
TD(λ) and REAPER feature space.

A congressman who visited remote parts of
North Korea last week said Saturday that the food
and health situation there was desperate and de-
teriorating, and that millions of North Koreans
might have starved to death in the last few years.
North Korea is entering its fourth winter of chronic
food shortages with its people malnourished and
at risk of dying from normally curable illnesses,
senior Red Cross officials said Tuesday. More than
five years of severe food shortages and a near-total
breakdown in the public health system have led to
devastating malnutrition in North Korea and prob-
ably left an entire generation of children physi-
cally and mentally impaired, a new study by in-
ternational aid groups has found. Years of food
shortages have stunted the growth of millions of
North Korean children, with two-thirds of children
under age seven suffering malnourishment, U.N.
experts said Wednesday. The founder of South Ko-
rea’s largest conglomerate plans to visit his native
North Korea again next week with a gift of 501
cattle, company officials said Thursday. “There is
enough rice.

We can observe that the summary is both syn-
tactically sound, and elegantly summarizes the
source documents.

Our baseline results table (Table 1) shows
REAPER outperforming ASRL in a statistically
significant manner on all three ROUGE metrics
in question. However we can see from the abso-
lute differences in score that very few additional
important words were extracted (ROUGE-1) how-
ever REAPER showed a significant improvement
in the structuring and ordering of those words
(ROUGE-2, and ROUGE-L).

The balancing factors used in the REAPER re-
ward function are responsible for the behaviour of
the reward function, and thus largely responsible
for the behaviour of the reinforcement learner. In
equation 15 we can see balance numbers of 1, 4, 1,
1, 1 for 1-grams, 2-grams, 3-grams, 4-grams, and
LCS respectively. In adjusting these values a user
can express a preference for a single metric or a
specific mixture of these metrics. Given that the
magnitude of scores for n-grams decrease as n in-
creases and given that the magnitude of scores for
1-grams is generally 3 to 4 times larger, in our ex-
perience, we can see that this specific reward func-
tion favours bigram similarity over unigram simi-
larity. These balance values can be adjusted to suit
the specific needs of a given situation, however we
leave exploration of this concept for future work.

We can observe in Figure 1 that ASRL does not
converge on a stable value, and dips towards the
300th episode while in Figure 2 REAPER does
not take nearly such a dramatic dip. These fig-
ures display average normalized reward for all 50
document clusters on a single run. Furthermore
we can observe that ASRL reaches it’s peak re-
ward around episode 225 while REAPER does so
around episode 175 suggesting that REAPER con-
verges faster.

7.1 Delayed vs. Immediate Rewards

The delayed vs. immediate rewards results in Ta-
ble 3 clearly show that delaying the reward pro-
vides a significant improvement in globally opti-
mizing the summary for ROUGE score. This can
be attributed to the λ = 1 and γ = 1 parame-
ter values being suboptimal for the immediate re-
ward situation. This has the added benefit of be-
ing much more performant computationally as far
fewer reward calculations need be done.
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Figure 1: ASRL normalized reward.

7.2 Feature Space

The feature space experiments in Table 4 seem to
imply that REAPER performs similarly with both
feature sets. We are confident that an improve-
ment could be made through further experimenta-
tion. Feature engineering, however, is a very broad
field and we plan to pursue this topic in depth in
the future.

7.3 Algorithms

TD(λ) significantly outperformed both SARSA
and API in the algorithm comparison. Ryang and
Abekawa (2012) conclude that the feature space is
largely responsible for the algorithm performance.
This is due to the fact that poor states such as those
that are too long, or those that contain few impor-
tant words will reduce to the same feature set and
receive negative rewards collectively. SARSA
loses this benefit as a result of its modelling of
state-action pairs.
API on the other hand may have suffered a per-

formance loss due to its requirements of an imme-
diate reward, this is because when using a delayed
reward if the trajectory of a rollout does not reach
a terminal state the algorithm will not be able to
make any estimations about the value of the state
in question. We propose altering the policy iter-
ation algorithm to use a trajectory length of one
episode instead of a fixed number of actions in or-
der to counter the need for an immediate reward
function.

7.4 Query Focused Rewards

From the ROUGE results in Table 6 we can infer
that while REAPER outperformed ASRL on the
query focused task, however it is notable that both

Figure 2: REAPER normalized reward.

systems under performed when compared to the
top system from the DUC2006 conference.

We can gather from these results that it is not
enough to simply naively calculate similarity with
the provided query in order to produce a query-
focused result. Given that the results produced by
the generic summarization task is rather accept-
able according to our human evaluations we sug-
gest that further research be focused on a proper
similarity metric between the query and summary
to improve the reward function’s overall ability to
score summaries in a query-focused setting.

8 Conclusion and Future Work

We have explored alternate reward functions, fea-
ture sets, and algorithms for the task of automatic
summarization using reinforcement learning. We
have shown that REAPER outperforms ASRL on
both generic summarization and the query focused
tasks. This suggests the effectiveness of our re-
ward function and feature space. Our results also
confirm that TD(λ) performs best for this task
compared to SARSA and API .

Due to the acceptable human evaluation scores
on the general summarization task it is clear that
the algorithm produces acceptable summaries of
newswire data. Given that we have a framework
for generating general summaries, and the cur-
rent popularity of the query-focused summariza-
tion task, we propose that the bulk of future work
in this area be focused on the query-focused task
specifically in assessing the relevance of a sum-
mary to a provided query. Therefore we intend to
pursue future research in utilizing word-sense dis-
ambiguation and synonyms, as well as other tech-
niques for furthering REAPER’s query similarity
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metrics in order to improve its ROUGE and human
evaluation scores on query-focused tasks.
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Abstract

In this paper, we focus on the problem
of using sentence compression techniques
to improve multi-document summariza-
tion. We propose an innovative sentence
compression method by considering every
node in the constituent parse tree and de-
ciding its status – remove or retain. In-
teger liner programming with discrimina-
tive training is used to solve the problem.
Under this model, we incorporate various
constraints to improve the linguistic qual-
ity of the compressed sentences. Then we
utilize a pipeline summarization frame-
work where sentences are first compressed
by our proposed compression model to ob-
tain top-n candidates and then a sentence
selection module is used to generate the
final summary. Compared with state-of-
the-art algorithms, our model has simi-
lar ROUGE-2 scores but better linguistic
quality on TAC data.

1 Introduction

Automatic summarization can be broadly divided
into two categories: extractive and abstractive
summarization. Extractive summarization focuses
on selecting salient sentences from the document
collection and concatenating them to form a sum-
mary; while abstractive summarization is gener-
ally considered more difficult, involving sophisti-
cated techniques for meaning representation, con-
tent planning, surface realization, etc.

There has been a surge of interest in recent years
on generating compressed document summaries as

a viable step towards abstractive summarization.
These compressive summaries often contain more
information than sentence-based extractive sum-
maries since they can remove insignificant sen-
tence constituents and make space for more salient
information that is otherwise dropped due to the
summary length constraint. Two general strate-
gies have been used for compressive summariza-
tion. One is a pipeline approach, where sentence-
based extractive summarization is followed or pro-
ceeded by sentence compression (Lin, 2003; Zajic
et al., 2007; Vanderwende et al., 2007; Wang et al.,
2013). Another line of work uses joint compres-
sion and summarization. Such methods have been
shown to achieve promising performance (Daumé,
2006; Chali and Hasan, 2012; Almeida and Mar-
tins, 2013; Qian and Liu, 2013), but they are typi-
cally computationally expensive.

In this study, we propose an innovative sen-
tence compression model based on expanded con-
stituent parse trees. Our model uses integer lin-
ear programming (ILP) to search the entire space
of compression, and is discriminatively trained.
It is built based on the discriminative sentence
compression model from (McDonald, 2006) and
(Clarke and Lapata, 2008), but our method uses
an expanded constituent parse tree rather than only
the leaf nodes in previous work. Therefore we
can extract rich features for every node in the con-
stituent parser tree. This is an advantage of tree-
based compression technique (Knight and Marcu,
2000; Galley and McKeown, 2007; Wang et al.,
2013). Similar to (Li et al., 2013a), we use a
pipeline summarization framework where multi-
ple compression candidates are generated for each
pre-selected important sentence, and then an ILP-
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based summarization model is used to select the
final compressed sentences. We evaluate our pro-
posed method on the TAC 2008 and 2011 data
sets using the standard ROUGE metric (Lin, 2004)
and human evaluation of the linguistic quality.
Our results show that using our proposed sentence
compression model in the summarization system
can yield significant performance gain in linguis-
tic quality, without losing much performance on
the ROUGE metric.

2 Related Work

Summarization research has seen great develop-
ment over the last fifty years (Nenkova and McKe-
own, 2011). Compared to the abstractive counter-
part, extractive summarization has received con-
siderable attention due to its clear problem for-
mulation: to extract a set of salient and non-
redundant sentences from the given document
set. Both unsupervised and supervised approaches
have been explored for sentence selection. Su-
pervised approaches include the Bayesian classi-
fier (Kupiec et al., 1995), maximum entropy (Os-
borne, 2002), skip-chain CRF (Galley, 2006), dis-
criminative reranking (Aker et al., 2010), among
others. The extractive summary sentence selec-
tion problem can also be formulated in an opti-
mization framework. Previous methods include
using integer linear programming (ILP) and sub-
modular functions to solve the optimization prob-
lem (Gillick et al., 2009; Li et al., 2013b; Lin and
Bilmes, 2010).

Compressive summarization receives increas-
ing attention in recent years, since it offers a vi-
able step towards abstractive summarization. The
compressed summaries can be generated through a
joint model of the sentence selection and compres-
sion processes, or through a pipeline approach that
integrates a sentence compression model with a
summary sentence pre-selection or post-selection
step.

Many studies have explored the joint sentence
compression and selection setting. Martins and
Smith (2009) jointly performed sentence extrac-
tion and compression by solving an ILP prob-
lem. Berg-Kirkpatrick et al. (2011) proposed an
approach to score the candidate summaries ac-
cording to a combined linear model of extrac-
tive sentence selection and compression. They
trained the model using a margin-based objec-
tive whose loss captures the final summary qual-

ity. Woodsend and Lapata (2012) presented an-
other method where the summary’s informative-
ness, succinctness, and grammaticality are learned
separately from data but optimized jointly using an
ILP setup. Yoshikawa et al. (2012) incorporated
semantic role information in the ILP model.

Our work is closely related with the pipeline
approach, where sentence-based extractive sum-
marization is followed or proceeded by sentence
compression. There have been many studies on
sentence compression, independent of the summa-
rization task. McDonald (2006) firstly introduced
a discriminative sentence compression model to
directly optimize the quality of the compressed
sentences produced. Clarke and Lapata (2008)
improved the above discriminative model by us-
ing ILP in decoding, making it convenient to
add constraints to preserve grammatical structure.
Nomoto (2007) treated the compression task as
a sequence labeling problem and used CRF for
it. Thadani and McKeown (2013) presented an
approach for discriminative sentence compression
that jointly produces sequential and syntactic rep-
resentations for output text. Filippova and Altun
(2013) presented a method to automatically build
a sentence compression corpus with hundreds of
thousands of instances on which deletion-based
compression algorithms can be trained.

In addition to the work on sentence compres-
sion as a stand-alone task, prior studies have also
investigated compression for the summarization
task. Knight and Marcu (2000) utilized the noisy
channel and decision tree method to perform sen-
tence compression in the summarization task. Lin
(2003) showed that pure syntactic-based compres-
sion may not significantly improve the summariza-
tion performance. Zajic et al. (2007) compared
two sentence compression approaches for multi-
document summarization, including a ‘parse-and-
trim’ and a noisy-channel approach. Galanis and
Androutsopoulos (2010) used the maximum en-
tropy model to generate the candidate compres-
sions by removing branches from the source sen-
tences. Woodsend and Lapata (2010) presented a
joint content selection and compression model for
single-document summarization. They operated
over a phrase-based representation of the source
document which they obtained by merging infor-
mation from PCFG parse trees and dependency
graphs. Liu and Liu (2013) adopted the CRF-
based sentence compression approach for summa-
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rizing spoken documents. Unlike the word-based
operation, some of these models e.g (Knight and
Marcu, 2000; Siddharthan et al., 2004; Turner
and Charniak, 2005; Galanis and Androutsopou-
los, 2010; Wang et al., 2013), are tree-based ap-
proaches that operate on the parse trees and thus
the compression decision can be made for a con-
stituent, instead of a single word.

3 Sentence Compression Method

Sentence compression is a task of producing a
summary for a single sentence. The compressed
sentence should be shorter, contain important con-
tent from the original sentence, and be grammat-
ical. In some sense, sentence compression can
be described as a ‘scaled down version of the
text summarization problem’ (Knight and Marcu,
2002). Here similar to much previous work on
sentence compression, we just focus on how to re-
move/select words in the original sentence without
using operation like rewriting sentence.

3.1 Discriminative Compression Model by
ILP

McDonald (2006) presented a discriminative com-
pression model, and Clarke and Lapata (2008) im-
proved it by using ILP for decoding. Since our
proposed method is based upon this model, in
the following we briefly describe it first. Details
can be found in (Clarke and Lapata, 2008). In
this model, the following score function is used
to evaluate each compression candidate:

s(x, y) =
|y|∑

j=2

s(x, L(yj−1), L(yj)) (1)

wherex = x1x2, ..., xn represents an original sen-
tence andy = y1y2, ..., ym denotes a compressed
sentence. Because the sentence compression prob-
lem is defined as a word deletion task,yj must oc-
cur inx. FunctionL(yi) ∈ [1...n] maps wordyi in
the compression to the word index in the original
sentencex. Note thatL(yi) < L(yi+1) is required,
that is, each word inx can only occur at most
once in compressiony. In this model, a first or-
der Markov assumption is used for the score func-
tion. Decoding this model is to find the combina-
tion of bigrams that maximizes the score function
in Eq (1). Clarke and Lapata (2008) introduced the
following variables and used ILP to solve it:

δi =

{
1 if xi is in the compression

0 otherwise

∀i ∈ [1..n]

αi =

{
1 if xi starts the compression

0 otherwise

∀i ∈ [1..n]

βi =

{
1 if xi ends the compression

0 otherwise

∀i ∈ [1..n]

γij =

{
1 if xi, xj are in the compression

0 otherwise

∀i ∈ [1..n − 1]∀j ∈ [i + 1..n]

Using these variables, the objective function can
be defined as:

max z =
n∑

i=1

αi · s(x, 0, i)

+
n−1∑
i=1

n∑
j=i+1

γij · s(x, i, j)

+
n∑

i=1

βi · s(x, i, n + 1) (2)

The following four basic constraints are used to
make the compressed result reasonable:

n∑
i=1

αi = 1 (3)

δj − αj −
j∑

i=1

γij = 0 ∀j ∈ [1..n] (4)

δi −
n∑

j=i+1

γij − βi = 0 ∀i ∈ [1..n] (5)

n∑
i=1

βi = 1 (6)

Formula (3) and (6) denote that exactly one
word can begin or end a sentence. Formula (4)
means if a word is in the compressed sentence, it
must either start the compression or follow another
word; formula (5) represents if a word is in the
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compressed sentence, it must either end the sen-
tence or be followed by another word.

Furthermore, discriminative models are used for
the score function:

s(x, y) =
|y|∑

j=2

w · f(x, L(yj−1), L(yj)) (7)

High dimensional features are used and their cor-
responding weights are trained discriminatively.

Above is the basic supervised ILP formula-
tion for sentence compression. Linguistically and
semantically motivated constraints can be added
in the ILP model to ensure the correct grammar
structure in the compressed sentence. For exam-
ple, Clarke and Lapata (2008) forced the introduc-
ing term of prepositional phrases and subordinate
clauses to be included in the compression if any
word from within that syntactic constituent is also
included, and vice versa.

3.2 Compression Model based on Expanded
Constituent Parse Tree

In the above ILP model, variables are defined for
each word in the sentence, and the task is to pre-
dict each word’s status. In this paper, we propose
to adopt the above ILP framework, but operate di-
rectly on the nodes in the constituent parse tree,
rather than just the words (leaf nodes in the tree).
This way we can remove or retain a chunk of the
sentence rather than isolated words, which we ex-
pect can improve the readability and grammar cor-
rectness of the compressed sentences.

The top part of Fig1 is a standard constituent
parse tree. For some levels of the tree, the nodes
at that same level can not represent a sentence. We
extend the parse tree by duplicating non-POS con-
stituents so that leaf nodes (words and their corre-
sponding POS tags) are aligned at the bottom level
as shown in bottom of as Fig1. In the example tree,
the solid lines represent relationship of nodes from
the original parse tree, the long dot lines denote the
extension of the duplication nodes from the up-
per level to the lower level, and the nodes at the
same level are connected (arrowed lines) to repre-
sent that is a sequence. Based on this expanded
constituent parse tree, we can consider every level
as a ‘sentence’ and the tokens are POS tags and
parse tree labels. We apply the above compression
model in Section 3.1 on every level to decide every
node’s status in the final compressed sentence. In
order to make the compressed parsed tree reason-
able, we model the relationship of nodes between
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Figure 1: A regular constituent parse tree and its
Expanded constituent tree.

adjacent levels as following: if the parent node is
labeled as removed, all of its children will be re-
moved; one node will retain if at least one of its
children is kept.

Therefore, the objective function in the new ILP
formulation is:

max z =
height∑
l=1

(
nl∑

i=1

αl
i · s(x, 0, li)

+
nl−1∑
i=1

nl∑
j=i+1

γl
ij · s(x, li, lj)

+
nl∑

i=1

βl
i · s(x, li, nl + 1) ) (8)

where height is the depth for a parse tree (starting
from level 1 for the tree), andnl means the length
of level l (for example,n5 = 6 in the example
in Fig1). Then every level will have a set of pa-
rametersδl

i, α
l
i, β

l
i , andγl

ij, and the corresponding
constraints as shown in Formula (3) to (6). The re-
lationship between nodes from adjacent levels can
be expressed as:

δl
i ≥ δ

(l+1)
j (9)

δl
i ≤

∑
δ
(l+1)
j (10)

in which nodej at level(l+1) is the child of node
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i at level l. In addition, 1 ≤ l ≤ height − 1,
1 ≤ i ≤ nl and1 ≤ j ≤ nl+1.

3.3 Linguistically Motivated Constraints

In our proposed model, we can jointly decide the
status of every node in the constituent parse tree
at the same time. One advantage is that we can
add constraints based on internal nodes or rela-
tionship in the parse tree, rather than only using
the relationship based on words. In addition to
the constraints proposed in (Clarke and Lapata,
2008), we introduce more linguistically motivated
constraints to keep the compressed sentence more
grammatically correct. The following describes
the constraints we used based on the constituent
parse tree.

• If a node’s label is ‘SBAR’, its parent’s label
is ‘NP’ and its first child’s label is ‘WHNP’ or
‘WHPP’ or ‘IN’, then if we can find a noun
in the left siblings of ‘SBAR’, this subordi-
nate clause could be an attributive clause or
appositive clause. Therefore the found noun
node should be included in the compression
if the ‘SBAR’ is also included, because the
node ‘SBAR’ decorates the noun. For exam-
ple, the top part of Fig 2 is part of expanded
constituent parse tree of sentence ‘Those who
knew David were all dead.’ The nodes in el-
lipse should share the same status.

• If a node’s label is ‘SBAR’, its parent’s label
is ‘VP’ and its first child’s label is ‘WHNP’,
then if we can find a verb in the left siblings
of ‘SBAR’, this subordinate clause could be
an objective clause. Therefore, the found
verb node should be included in the compres-
sion if the ‘SBAR’ node is also included, be-
cause the node ‘SBAR’ is the object of that
verb. An example is shown in the bottom part
of Fig 2. The nodes in ellipse should share the
same status.

• If a node’s label is ‘SBAR’, its parent’s
label is ‘VP’ and its first child’s label is
‘WHADVP’, then if the first leaf for this node
is a wh-word (e.g., ‘where, when, why’) or
‘how’, this clause may be an objective clause
(when the word is ‘why, how, where’) or at-
tributive clause (when the word is ‘where’) or
adverbial clause (when the word is ‘when’).
Therefore, similar to above, if a verb or noun
is found in the left siblings of ‘SBAR’, the
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Figure 2: Expanded constituent parse tree for ex-
amples.

found verb or noun node should be included
in the compression if the ‘SBAR’ node is also
included.

• If a node’s label is ‘SBAR’ and its parent’s la-
bel is ‘ADJP’, then if we can find a ‘JJ’, ‘JJR’,
or ‘JJS’ in the left siblings of ‘SBAR’, the
‘SBAR’ node should be included in the com-
pression if the found ‘JJ’, ‘JJR’ or ’JJS’ node
is also included because the node ‘SBAR’ is
decorated by the adjective.

• The node with a label of ‘PRN’ can be re-
moved without other constraints.

We also include some other constraints based on
the Stanford dependency parse tree. Table 1 lists
the dependency relations we considered.

• For type I relations, the parent and child node
with those relationships should have the same
value in the compressed result (both are kept
or removed).

• For type II relations, if the child node in
those relations is retained in the compressed
sentence, the parent node should be also re-
tained.
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Dependency Relation Example

prt: phrase verb particle They shut down the station. prt(shut,down)
prep: prepositional modifier He lives in a small village. prep(lives,in)

I pobj: object of a preposition I sat on the chair. pobj(on,chair)
nsubj: nominal subject The boy is cute. nsubj(cute,boy)
cop: copula Bill is big. cop(big,is)

partmod: participial modifier Truffles picked during the spring are tasty. partmod(truffles,picked)
II nn: noun compound modifier Oil price futures. nn(futures,oil)

acomp: adjectival complement She looks very beautiful. acomp(looks,beautiful)

pcomp: prepositional complement He felt sad after learning that tragedy. pcomp(after,learning)
III ccomp: clausal complement I am certain that he did it. ccomp(certain,did)

tmod: temporal modifier Last night I swam in the pool. tmod(swam,night)

Table 1: Some dependency relations used for extra constraints. All the examples are from (Marneffe and
Manning, 2002)

• For type III relations, if the parent node in
these relations is retained, the child node
should be kept as well.

3.4 Features

So far we have defined the decoding process
and related constraints used in decoding. These
all rely on the score functions(x, y) = w ·
f(x, L(yj−1), L(yj)) for every level in the con-
stituent parse tree. We included all the features in-
troduced in (Clarke and Lapata, 2008) (those fea-
tures are designed for leaves). Table 2 lists the
additional features we used in our system.

General Features for Every Node
1. individual node label and concatenation of a pair of
nodes
2. distance of two nodes at the same level
3. is the node at beginning or end at that level?
4. do the two nodes have the same parent?
5. if two nodes do not have the same parent, then is the left
node the rightmost child of its parent? is the right node the
leftmost child of its parent?
6. combination of parent label if the node pair are not
under the same parent
7. number of node’s children: 1/0/>1
8. depth of nodes in the parse tree
Extra Features for Leaf nodes
1. word itself and concatenation of two words
2. POS and concatenation of two words’ POS
3. whether the word is a stopword
4. node’s named entity tag
5. dependency relationship between two leaves

Table 2: Features used in our system besides those
used in (Clarke and Lapata, 2008).

3.5 Learning

To learn the feature weights during training, we
perform ILP decoding on every sentence in the
training set, to find the best hypothesis for each
node in the expanded constituent parse tree. If
the hypothesis is incorrect, we update the feature

weights using the structured perceptron learning
strategy (Collins, 2002). The reference label for
every node in the expanded constituent parse tree
is obtained automatically from the bottom to the
top of the tree. Since every leaf node (word) is
human annotated (removed or retain), we annotate
the internal nodes as removed if all of its children
are removed. Otherwise, the node is annotated as
retained.

During perceptron training, a fixed learning rate
is used and parameters are averaged to prevent
overfitting. In our experiment, we observe sta-
ble convergence using the held-out development
corpus, with best performance usually obtained
around 10-20 epochs.

4 Summarization System

Similar to (Li et al., 2013a), our summarization
system is , which consists of three key compo-
nents: an initial sentence pre-selection module
to select some important sentence candidates; the
above compression model to generate n-best com-
pressions for each sentence; and then an ILP sum-
marization method to select the best summary sen-
tences from the multiple compressed sentences.

The sentence pre-selection model is a simple su-
pervised support vector regression (SVR) model
that predicts a salience score for each sentence and
selects the top ranked sentences for further pro-
cessing (compression and summarization). The
target value for each sentence during training is
the ROUGE-2 score between the sentence and the
human written abstracts. We use three common
features: (1) sentence position in the document;
(2) sentence length; and (3) interpolated n-gram
document frequency as introduced in (Ng et al.,
2012).

The final sentence selection process follows the
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ILP method introduced in (Gillick et al., 2009).
Word bi-grams are used as concepts, and their doc-
ument frequency is used as weights. Since we use
multiple compressions for one sentence, an addi-
tional constraint is used: for each sentence, only
one of its n-best compressions may be included in
the summary.

For the compression module, using the ILP
method described above only finds the best com-
pression result for a given sentence. To generate
n-best compression candidates, we use an iterative
approach – we add one more constraints to prevent
it from generating the same answer every time af-
ter getting one solution.

5 Experimental Results

5.1 Experimental Setup

Summarization Data For summarization experi-
ments, we use the standard TAC data sets1, which
have been used in the NIST competitions. In par-
ticular, we used the TAC 2010 data set as train-
ing data for the SVR sentence pre-selection model,
TAC 2009 data set as development set for parame-
ter tuning, and the TAC 2008 and 2011 data as the
test set for reporting the final summarization re-
sults. The training data for the sentence compres-
sion module in the summarization system is sum-
mary guided compression corpus annotated by (Li
et al., 2013a) using TAC2010 data. In the com-
pression module, for each word we also used its
document level feature.2

Compression Data We also evaluate our com-
pression model using the data set from (Clarke
and Lapata, 2008). It includes 82 newswire arti-
cles with manually produced compression for each
sentence. We use the same partitions as (Martins
and Smith, 2009), i.e., 1,188 sentences for training
and 441 for testing.

Data Processing We use Stanford CoreNLP
toolkit3 to tokenize the sentences, extract name en-
tity tags, and generate the dependency parse tree.
Berkeley Parser (Petrov et al., 2006) is adopted
to obtain the constituent parse tree for every sen-
tence and POS tag for every token. We use Pocket

1http://www.nist.gov/tac/data/index.html
2Document level features for a word include information

such as the word’s document frequency in a topic. These
features cannot be extracted from a single sentence, as in the
standard sentence compression task, and are related to the
document summarization task.

3http://nlp.stanford.edu/software/corenlp.shtml

CRF4 to implement the CRF sentence compres-
sion model. SVMlight5 is used for the summary
sentence pre-selection model. Gurobi ILP solver6

does all ILP decoding.

5.2 Summarization Results

We compare our summarization system against
four recent studies, which have reported some of
the highest published results on this task. Berg-
Kirkpatrick et al. (2011) introduced a joint model
for sentence extraction and compression. Wood-
send and Lapata (2012) learned individual sum-
mary aspects from data, e.g., informativeness, suc-
cinctness, grammaticalness, stylistic writing con-
ventions, and jointly optimized the outcome in
an ILP framework. Ng et al. (2012) exploited
category-specific information for multi-document
summarization. Almeida and Martins (2013) pro-
posed compressive summarization method by dual
decomposition and multi-task learning. Our sum-
marization framework is the same as (Li et al.,
2013a), except they used a CRF-based compres-
sion model. In addition to the four previous stud-
ies, we also report the best achieved results in the
TAC competitions.

Table 3 shows the summarization results of our
method and others. The top part contains the re-
sults for TAC 2008 data and bottom part is for
TAC 2011 data. We use the ROUGE evaluation
metrics (Lin, 2004), with R-2 measuring the bi-
gram overlap between the system and reference
summaries and R-SU4 measuring the skip-bigram
with the maximum gap length of 4. In addition,
we evaluate the linguistic quality (LQ) of the sum-
maries for our system and (Li et al., 2013a).7 The
linguistic quality consists of two parts. One eval-
uates the grammar quality within a sentence. For
this, annotators marked if a compressed sentence
is grammatically correct. Typical grammar errors
include lack of verb or subordinate clause. The
other evaluates the coherence between sentences,
including the order of sentences and irrelevant sen-
tences. We invited 3 English native speakers to do
this evaluation. They gave every compressed sen-
tence a grammar score and a coherence score for

4http://sourceforge.net/projects/pocket-crf-1/
5http://svmlight.joachims.org/
6http://www.gurobi.com
7We chose to evaluate the linguistic quality for this system

because of two reasons: one is that we have an implementa-
tion of that method; the other more important one is that it
has the highest reported ROUGE results among the compared
methods.
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System R-2 R-SU4 Gram Cohere

TAC’08 Best System 11.03 13.96 n/a n/a
(Berg-Kirk et al., 2011) 11.70 14.38 n/a n/a
(Woodsend et al., 2012)11.37 14.47 n/a n/a
(Almeida et al.,2013) 12.30 15.18 n/a n/a
(Li et al., 2013a) 12.35 15.27 3.81 3.41
Our System 12.23 15.47 4.29 4.11

TAC’11 Best System 13.44 16.51 n/a n/a
(Ng et al., 2012) 13.93 16.83 n/a n/a
(Li et al., 2013a) 14.40 16.89 3.67 3.32
Our System 14.04 16.67 4.18 4.07

Table 3: Summarization results on the TAC 2008
and 2011 data sets.

each topic. The score is scaled and ranges from 1
(bad) to 5 (good). Therefore, in table 3, the gram-
mar score is the average score for each sentence
and coherence score is the average for each topic.
We measure annotators’ agreement in the follow-
ing way: we consider the scores from each anno-
tator as a distribution and we find that these three
distributions are not statistically significantly dif-
ferent each other (p> 0.05 based on paired t-test).

We can see from the table that in general, our
system achieves better ROUGE results than most
previous work except (Li et al., 2013a) on both
TAC 2008 and TAC 2011 data. However, our
system’s linguistic quality is better than (Li et
al., 2013a). The CRF-based compression model
used in (Li et al., 2013a) can not well model the
grammar. Particularly, our results (ROUGE-2) are
statistically significantly (p< 0.05) higher than
TAC08 Best system, but are not statistically signif-
icant compared with (Li et al., 2013a) (p> 0.05).
The pattern is similar in TAC 2011 data. Our result
(R-2) is statistically significantly (p< 0.05) better
than TAC11 Best system, but not statistically (p>
0.05) significantly different from (Li et al., 2013a).
However, for the grammar and coherence score,
our results are statistically significantly (p< 0.05)
than (Li et al., 2013a). All the above statistics are
based on paired t-test.

5.3 Compression Results

The results above show that our summarization
system is competitive. In this section we focus
on the evaluation of our proposed compression
method. We compare our compression system
against four other models. HedgeTrimmer in Dorr
et al. (2003) applied a variety of linguistically-
motivated heuristics to guide the sentences com-

System C Rate (%) Uni-F1 Rel-F1

HedgeTrimmer 57.64 0.64 0.50
McDonald (2006) 70.95 0.77 0.55
Martins (2009) 71.35 0.77 0.56
Wang (2013) 68.06 0.79 0.59
Our System 71.19 0.77 0.58

Table 4: Sentence compression results. The hu-
man compression rate of the test set is 69%.

pression; McDonald (2006) used the output of two
parsers as features in a discriminative model that
decomposes over pairs of consecutive words; Mar-
tins and Smith (2009) built the compression model
in the dependency parse and utilized the relation-
ship between the head and modifier to preserve the
grammar relationship; Wang et al. (2013) devel-
oped a novel beam search decoder using the tree-
based compression model on the constituent parse
tree, which could find the most probable compres-
sion efficiently.

Table 4 shows the compression results of vari-
ous systems, along with the compression ratio (C
Rate) of the system output. We adopt the com-
pression metrics as used in (Martins and Smith,
2009) that measures the macro F-measure for the
retained unigrams (Uni-F1), and the one used
in (Clarke and Lapata, 2008) that calculates the
F1 score of the grammatical relations labeled by
(Briscoe and Carroll, 2002) (Rel-F1). We can see
that our proposed compression method performs
well, similar to the state-of-the-art systems.

To evaluate the power of using the expanded
parse tree in our model, we conducted another ex-
periment where we only consider the bottom level
of the constituent parse tree. In some sense, this
could be considered as the system in (Clarke and
Lapata, 2008). Furthermore, we use two differ-
ent setups: one uses the lexical features (about the
words) and the other does not. Table 5 shows the
results using the data in (Clarke and Lapata, 2008).
For a comparison, we also include the results us-
ing the CRF-based compression model (the one
used in (Nomoto, 2007; Li et al., 2013a)). We
report results using both the automatically calcu-
lated compression metrics and the linguistic qual-
ity score. Three English native speaker annotators
were asked to judge two aspects of the compressed
sentence compared with the gold result: one is the
content that looks at whether the important words
are kept and the other is the grammar score which
evaluates the sentence’s readability. Each of these
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two scores ranges from 1(bad) to 5(good).
Table 5 shows that when using lexical features,

our system has statistically significantly (p< 0.05)
higher Grammar value and content importance
value than the CRF and the leaves only system.
When no lexical features are used, default system
can achieve statistically significantly (p< 0.01)
higher results than the CRF and the leaves only
system.

We can see that using the expanded parse tree
performs better than using the leaves only, espe-
cially when lexical features are not used. In ad-
dition, we observe that our proposed compression
method is more generalizable than the CRF-based
model. When our system does not use lexical
features in the leaves, it achieves better perfor-
mance than the CRF-based model. This is impor-
tant since such a model is more robust and may be
used in multiple domains, whereas a model rely-
ing on lexical information may suffer more from
domain mismatch. From the table we can see our
proposed tree based compression method consis-
tently has better linguistic quality. On the other
hand, the CRF compression model is the most
computationally efficient one among these three
compression methods. It is about 200 times faster
than our model using the expanded parse tree. Ta-
ble 6 shows some examples using different meth-
ods.

System C Rate(%) Uni-F1 Rel-F1 Gram Imp
Using lexical features

CRF 79.98 0.80 0.51 3.9 4.0
ILP(I) 80.54 0.79 0.57 4.0 4.2
ILP(II) 79.90 0.80 0.57 4.2 4.4

No lexical features
CRF 77.75 0.78 0.51 3.35 3.5
ILP(I) 77.77 0.78 0.56 3.7 3.9
ILP(II) 77.78 0.80 0.58 4.1 4.2

Table 5: Sentence compression results: effect of
lexical features and expanded parse tree. ILP(I)
represents the system using only bottom nodes in
constituent parse tree. ILP(II) is our system. Imp
means the content importance value.

6 Conclusion

In this paper, we propose a discriminative ILP sen-
tence compression model based on the expanded
constituent parse tree, which aims to improve the
linguistic quality of the compressed sentences in
the summarization task. Linguistically motivated
constraints are incorporated to improve the sen-
tence quality. We conduct experiments on the TAC

Using lexical features
Source:
Apart from drugs, detectives believe money is laun-
dered from a variety of black market deals involving
arms and high technology.
Human compress:
detectives believe money is laundered from a variety of
black market deals.
CRF result :
Apart from drugs detectives believe money is laundered
from a black market deals involving arms and technol-
ogy.
ILP(I) Result:
detectives believe money is laundered from a variety of
black deals involving arms.
ILP(II) Result:
detectives believe money is laundered from black mar-
ket deals.

No lexical features
Source:
Mrs Allan’s son disappeared in May 1989, after a party
during his back packing trip across North America.
Human compress:
Mrs Allan’s son disappeared in 1989, after a party dur-
ing his trip across North America.
CRF result :
Mrs Allan’s son disappeared May 1989, after during his
packing trip across North America.
ILP(I) Result:
Mrs Allan’s son disappeared in May, 1989, after a party
during his packing trip across North America .
ILP(II) Result:
Mrs Allan’s son disappeared in May 1989, after a party
during his trip.

Table 6: Examples of original sentences and their
compressed sentences from different systems.

2008 and 2011 summarization data sets and show
that by incorporating this sentence compression
model, our summarization system can yield signif-
icant performance gain in linguistic quality with-
out losing much ROUGE results. The analysis
of the compression module also demonstrates its
competitiveness, in particular the better linguistic
quality and less reliance on lexical cues.
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Abstract

In this study, we analyzed the effects of ap-
plying different levels of stemming approaches
such as fixed-length word truncation and mor-
phological analysis for multi-document sum-
marization (MDS) on Turkish, which is an ag-
glutinative and morphologically rich language.
We constructed a manually annotated MDS
data set, and to our best knowledge, reported
the first results on Turkish MDS. Our results
show that a simple fixed-length word trun-
cation approach performs slightly better than
no stemming, whereas applying complex mor-
phological analysis does not improve Turkish
MDS.

1 Introduction

Automatic text summarization has gained more impor-
tance with the enormous growth and easy availability of
the Internet. It is now possible to reach extensive and
continuously growing amount of resources. However,
this situation brings its own challenges such as finding
the relevant documents, and absorbing a large quan-
tity of relevant information (Gupta and Lehal, 2010).
The goal of multi-document summarization (MDS) is
to automatically create a summary of a set of docu-
ments about the same topic without losing the impor-
tant information. Several approaches for MDS have
been proposed in the last decade. However, most of
them have only been applied to a relatively small set
of languages, mostly English, and recently also to lan-
guages like Chinese, Romanian, Arabic, and Spanish
(Giannakopoulos, 2013).

Previous studies have shown that methods proposed
for languages like English do not generally work well
for morphologically rich languages like Finnish, Turk-
ish, and Czech, and additional methods considering the
morphological structures of these languages are needed
(Eryiğit et al., 2008). For instance, Turkish is an ag-
glutinative language where root words can take many
derivational and inflectional affixes. This feature re-
sults in a very high number of different word surface
forms, and eventually leads to the data sparseness prob-
lem. Hakkani-Tür et al. (2000) analyzed the number of
unique terms for Turkish and English and showed that

the term count for Turkish is three times more than En-
glish for a corpus of 1M words.

There are only a few studies for text summariza-
tion on Turkish, all of which are about single-document
summarization (Altan, 2004; Çığır et al., 2009; Özsoy
et al., 2010; Güran et al., 2010; Güran et al., 2011).
Some of these studies applied morphological analysis
methods, but none of them analyzed their effects in de-
tail.

To our best knowledge, this paper reports the first
multi-document summarization study for Turkish. We
used LexRank as the main summarization algorithm
(Erkan and Radev, 2004), applied and analyzed differ-
ent levels of stemming methods such as complex mor-
phological analysis and fixed-length word truncation.
We also created the first manually annotated MDS data
set for Turkish, which has been made publicly available
for future studies.

The rest of the paper is organized as follows. Sec-
tion 2 presents the related work on MDS, as well as
on the applications of morphological analysis on Turk-
ish for different Natural Language Processing (NLP)
and Information Retrieval (IR) problems. In Section
3, we provide a very brief introduction to the Turkish
morphology and present the stemming methods that we
evaluated. The details about the created data set and
our experimental setup are presented in Section 4. We
present and discuss the results in Section 5, and con-
clude in Section 6.

2 Related Work

A large number of methods have been proposed for
multi-document summarization in the last 10-15 years
(e.g. (Erkan and Radev, 2004; Shen and Li, 2010;
Christensen et al., 2013)). While most of these ap-
proaches have only been applied to English, summa-
rization data sets and systems for other languages like
Chinese, Romanian, and Arabic have also been pro-
posed in the recent years (Giannakopoulos, 2013).

Previous studies on automatic summarization for
Turkish only tackled the problem of single-document
summarization (SDS). Altan (2004) and Çığır et al.
(2009) proposed feature-based approaches for Turk-
ish SDS, whereas Özsoy et al. (2010) and Güran et
al. (2010) used Latent Semantic Analysis (LSA) based
methods. Güran et al. (2011) applied non-negative ma-
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Word Analysis
gören (the one who sees) gör+en(DB)
görülen (the one which is seen) gör+ül(DB)+en(DB)
görüş (opinion) gör+üş(DB)
görüşün (your opinion) gör+üş(DB)+ün
görüşler (opinions) gör+üş(DB)+ler
görüşme (negotiation) gör+üş(DB)+me(DB)
görüşmelerin (of negotiations) gör+üş(DB)+me(DB)+ler+in

Table 1: Different word forms and their morphological analysis for the stem “gör” (to see). The derivational
boundaries are marked with (DB).

trix factorization (NMF) and used consecutive words
detection as a preprocessing step.

The effect of morphological analysis for Turkish
was analyzed in detail for Information Retrieval (Can
et al., 2008) and Text Categorization (Akkuş and
Çakıcı, 2013). Can et al. (2008) showed that us-
ing fixed-length truncation methods perform similarly
to lemmatization-based stemming for information re-
trieval. Akkuş and Çakıcı (2013) obtained better results
for text categorization with fixed-length word trunca-
tion rather than complex morphological analysis, but
the difference was not significant. For other morpho-
logically rich languages, there is a case study on Greek
by Galiotou et al. (2013). They applied different stem-
ming algorithms and showed that stemming on Greek
texts improves the summarization performance.

3 Methodology

This section contains detailed information about the ap-
plication of different levels of morphological features
during the summarization process. Before diving into
the details, we provide a very brief description of the
morphological structure of the Turkish language.

3.1 Turkish Morphology

Turkish is an agglutinative language with a productive
morphology. Root words can take one or more deriva-
tional and inflectional affixes; therefore, a root can be
seen in a large number of different word forms. An-
other issue is the morphological ambiguity, where a
word can have more than one morphological parse.

Table 1 shows an example list of different word
forms for the stem “gör” (to see). All the words in the
table have the same root, but the different suffixes lead
to different surface forms which may have similar or
different meanings. When the surface forms of these
words are used in a summarization system, they will be
regarded as totally different words. However, if a mor-
phological analysis method is applied to the sentences
before giving them to the summarization system, words
with similar meanings can match during the sentence
similarity calculations.

3.2 Stemming Policies

In this section, we explain the different stemming meth-
ods that we investigated.

Raw: In this method, we take the surface forms of
words, without applying any stemming.

Root: This method takes the most simple unit of a
word, namely the root form. For example, in Table 1,
the words “gören”, “görüşün”, and “görüşmelerin”
have the same root (gör), so they will match during sen-
tence similarity calculations.

Deriv: Using the Root method may oversimplify
words because some words that are derived from the
same root may have irrelevant meanings. In the above
example, “görüşler” and “gören” have different mean-
ings, but they have the same root (gör). In order to solve
this oversimplification issue, we propose to preserve
derivational affixes, and only remove the inflectional
affixes from the words. In this method, “görüşler”
and “gören” will not match because when we remove
only the inflectional affixes, they become “görüş” and
“gören”. On the other hand, the words “görüşler” and
“görüşün” will match because their Deriv forms are the
same, which is “görüş”.

Prefix: In Turkish, affixes almost always occur as
suffixes, not prefixes. Additionally, applying morpho-
logical analysis methods is a time consuming process,
and may become an overhead for online applications.
Therefore, a fixed-length simplification method is also
tried, since it is both a fast method and can help match
similar words by taking the first n characters of words
which have lengths larger than n.

As the summarization algorithm, we used LexRank
(Erkan and Radev, 2004), which is a salient graph-
based method that achieves promising results for MDS.
In LexRank, first a sentence connectivity graph is con-
structed based on the cosine similarities between sen-
tences, and then the PageRank (Page et al., 1999) algo-
rithm is used to find the most important sentences.

4 Experimental Setup

4.1 Data Set

One of the greatest challenges for MDS studies in Turk-
ish is that there does not exist a manually annotated
data set. In this study, we have collected and manually
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annotated a Turkish MDS data set, which is publicly
available for future studies1.

In order to match the standards for MDS data sets,
we tried to follow the specifications of the DUC 2004
data set. Our data set consists of 21 clusters, each con-
sisting of around 10 documents. We selected 21 differ-
ent topics from different domains (e.g., politics, eco-
nomics, sports, social, daily, and technology), and se-
lected 10 documents on average for each topic. The
documents were obtained from the websites of various
news sources. The average number of words per doc-
ument is 337, and the average number of letters in a
word is 6.84.

For manual annotation, we divided the 21 clusters
into three groups and sent them to three annotators dif-
ferent from the authors. We required the human sum-
maries not to exceed 120 words for the summary of
each cluster.

4.2 Tools
4.2.1 Turkish Morphological Analysis
In order to perform different levels of morphological
analysis on documents, we used a two-level morpho-
logical analyzer (Oflazer, 1994) and a perceptron-based
morphological disambiguator (Sak et al., 2007), which
is trained with a corpus of about 750, 000 tokens from
news articles. The accuracy of the disambiguator has
been reported as 96% (Sak et al., 2007). The Root and
Deriv forms of words were generated from the disam-
biguator output.

4.2.2 MEAD Summarization Toolkit
We used MEAD (Radev et al., 2004), which is an open-
source toolkit created for extractive MDS, in our exper-
iments. MEAD handles all the necessary processes to
generate a summary document (e.g., sentence ranking,
selection, re-ordering, and etc.).

We used the LexRank implementation that comes
with MEAD as a feature, together with the Cen-
troid and Position features (each feature is equally
weighted). We forced the generated summaries not to
exceed 120 words. However, we define the following
exception in order to preserve the readability and the
grammaticality of the generated summary. For a can-
didate sentence S having n words, if the absolute dif-
ference between the threshold (which is 120) and the
summary length including sentence S (say Nw) is less
than the absolute difference between the threshold and
the summary length excluding sentence S (say Nwo),
and ifNw is less than 132 (which is 120∗1.1), we allow
the summary to exceed the threshold and add sentence
S as the last summary sentence.

We used term frequency (tf) based cosine similarity
as the similarity measure during the sentence selection
step. We also required sentence length to be between

1The data set can be retrieved from the following github
repository: https://github.com/manuyavuz/
TurkishMDSDataSet_alpha

6 and 50 words (which we found empirically) in or-
der to increase the readability of the summaries. The
reason behind applying this filtering is that very short
sentences generally do not contain much information
to become a summary sentence, whereas very long sen-
tences decrease the readability and fill a significant per-
centage of the summary limit.

4.2.3 ROUGE
For evaluation, we used ROUGE, which is a standard
metric for automated evaluation of summaries based
on n-gram co-occurrence. We used ROUGE-1 (based
on uni-grams), ROUGE-2 (based on bi-grams), and
ROUGE-W (based on longest common sub-sequence
weighted by length) in our experiments. Among these,
ROUGE-1 has been shown to agree with human judges
the most (Lin and Hovy, 2003), so we give importance
to it while interpreting the results.

5 Evaluation and Results
We ran MEAD with the proposed stemming policies
using different levels of cosine similarity threshold val-
ues to analyze the effect of the similarity threshold on
the summarization performance. After the sentences
are ranked using the LexRank method, the similarity
threshold is used to decide whether to include a sen-
tence to the summary. A sentence is not included to the
summary, if its similarity to a previously picked sen-
tence is larger than the similarity threshold.

In our preliminary experiments, we used the default
similarity threshold 0.7, which was found empirically
by the MEAD developers for English. However, it pro-
duced poor results on the Turkish data set.

Policy ROUGE-1 ROUGE-2 ROUGE-W
Prefix10 0.438 0.194 0.197
Prefix12 0.433 0.197 0.195
Prefix9 0.432 0.194 0.194
Prefix4 0.432 0.178 0.190
Prefix7 0.431 0.189 0.190
Prefix5 0.431 0.183 0.190
Prefix6 0.430 0.185 0.189

Raw 0.428 0.189 0.191
Deriv 0.428 0.178 0.188

Prefix8 0.427 0.187 0.188
Prefix11 0.427 0.190 0.193

Root 0.420 0.186 0.185

Table 2: Best scores for different policies

Figure 1 shows the F-1 scores for the ROUGE-1
metric for policies with different thresholds. After the
threshold exceeds 0.5, the performances for all poli-
cies start to decrease, so we don’t report the values
here to make the chart more readable. In general, Raw
and Prefix10 (taking the first 10 letters of the words)
achieve better performances with lower threshold val-
ues, whereas Root and Deriv operate better with rel-
atively higher threshold values. As we stated earlier,
in Turkish, words with similar meanings can occur in
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Figure 1: F-1 scores for different similarity threshold values

text with different surface forms due to their inflec-
tions. Such words can not be matched during similar-
ity computation if morphological analysis is not per-
formed. Therefore, using higher similarity threshold
values cause very similar sentences to occur together
in the summaries, and eventually, result in poor scores.

Table 2 shows the best scores obtained by each pol-
icy. The Prefix policy generally outperforms the Raw
policy. The Prefix10 policy achieves the best ROUGE-
1 score. On the other hand, the policies that apply com-
plex morphological analysis (i.e. Root and Deriv) are
not able to outperform the simple Prefix and Raw poli-
cies. The Deriv policy performs similarly to the Raw
and Prefix policies, whereas the Root policy obtains the
lowest ROUGE-1 score.

5.1 Discussion

The results show that using a simple fixed-length pre-
fix policy outperforms all other methods, and apply-
ing complex morphological analysis does not improve
Turkish MDS. The poor performance of the Root pol-
icy is somewhat expected due to the fact that, if we pre-
serve only the roots of the words, we lose the semantic
differences among the surface forms provided by the
derivational affixes. On the other hand, the reason be-
hind the observation that Deriv and Raw obtain similar
performances is not obvious.

In order to further analyze this observation, we
used an entropy based measure, which is calculated as
shown below, to quantify the homogeneity of the clus-
ters in the data set in terms of the variety of the surface
forms corresponding to the Deriv forms of each word
in the cluster. We first compute the entropy for each
Deriv form in a cluster. The entropy of a Deriv form
is lower, if it occurs with fewer different surface forms
in the cluster. The entropy of a cluster is computed by

summing the entropies of the Deriv forms in the clus-
ter and dividing the sum by the number of words in the
cluster (i.e. N).

DDerivi = {t | t inflected fromDeriv i}
H(Derivi) =

∑
t∈DDerivi

p(t) log p(t)

H(C) =
∑

i

H(Derivi)
N

To compare with the data set clusters, we generated
random document clusters by randomly selecting 10
different clusters and then randomly selecting one doc-
ument from each selected cluster. The average entropy
value for the data set clusters and the random clusters
were 4.99 and 7.58, respectively. Due to this signifi-
cant difference, we can hypothesize that the documents
about the same topic show a more homogeneous struc-
ture. In other words, a Deriv form is usually seen in the
same surface form in a cluster of documents which are
about the same topic. Therefore, the Deriv policy and
the Raw policy achieve similar results for summarizing
documents about the same topic.

During evaluation, we ran ROUGE with the Deriv
versions of the human summaries and the system sum-
maries in order to match semantically similar words
having different surface forms. We also experimented
with ROUGE using the Raw versions, but the results
followed very similar patterns, so those results were not
reported.

6 Conclusion
In this paper, we reported the first steps for a multi-
document summarization system for Turkish. A manu-
ally annotated data set has been constructed from news
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articles, and made publicly available for future stud-
ies. We utilized the LexRank summarization algorithm,
and analyzed the effects of different stemming poli-
cies for Turkish MDS. Our results show that simple
fixed-length truncation methods with high limits (such
as taking the first 10 letters) improves summarization
scores. In contrast to our expectation, using morpho-
logical analysis does not enhance Turkish MDS, possi-
bly due to the homogeneousness of the documents in a
cluster to be summarized. As future work, we plan to
extend the data set with more clusters and more refer-
ence summaries, as well as to develop sentence com-
pression methods for Turkish MDS.
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A comparison of feature and semantic-based sum-
marization algorithms for turkish. In International
Symposium on Innovations in Intelligent Systems
and Applications. Citeseer.
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Abstract

The ability to learn from user interactions
can give systems access to unprecedented
amounts of knowledge. This is evident
in search engines, recommender systems,
and electronic commerce, and it can be
the key to solving other knowledge in-
tensive tasks. However, extracting the
knowledge conveyed by user interactions
is less straightforward than standard ma-
chine learning, since it requires learning
systems that explicitly account for human
decision making, human motivation, and
human abilities.

In this talk, I argue that the design space of
such interactive learning systems encom-
passes not only the machine learning algo-
rithm itself, but also the design of the inter-
action under an appropriate model of user
behavior. To this effect, the talk explores
how integrating microeconomic models of
human behavior into the learning process
leads to new interaction models and their
associated learning algorithms, leading to
systems that have provable guarantees and
that perform robustly in practice.
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Abstract

We provide a comparative study be-
tween neural word representations and
traditional vector spaces based on co-
occurrence counts, in a number of com-
positional tasks. We use three differ-
ent semantic spaces and implement seven
tensor-based compositional models, which
we then test (together with simpler ad-
ditive and multiplicative approaches) in
tasks involving verb disambiguation and
sentence similarity. To check their scala-
bility, we additionally evaluate the spaces
using simple compositional methods on
larger-scale tasks with less constrained
language: paraphrase detection and di-
alogue act tagging. In the more con-
strained tasks, co-occurrence vectors are
competitive, although choice of composi-
tional method is important; on the larger-
scale tasks, they are outperformed by neu-
ral word embeddings, which show robust,
stable performance across the tasks.

1 Introduction

Neural word embeddings (Bengio et al., 2006;
Collobert and Weston, 2008; Mikolov et al.,
2013a) have received much attention in the dis-
tributional semantics community, and have shown
state-of-the-art performance in many natural lan-
guage processing tasks. While they have been
compared with co-occurrence based models in
simple similarity tasks at the word level (Levy et
al., 2014; Baroni et al., 2014), we are aware of
only one work that attempts a comparison of the
two approaches in compositional settings (Blacoe
and Lapata, 2012), and this is limited to additive
and multiplicative composition, compared against
composition via a neural autoencoder.

The purpose of this paper is to provide a more
complete picture regarding the potential of neu-

ral word embeddings in compositional tasks, and
meaningfully compare them with the traditional
distributional approach based on co-occurrence
counts. We are especially interested in investi-
gating the performance of neural word vectors in
compositional models involving general mathe-
matical composition operators, rather than in the
more task- or domain-specific deep-learning com-
positional settings they have generally been used
with so far (for example, by Socher et al. (2012),
Kalchbrenner and Blunsom (2013) and many oth-
ers).

In particular, this is the first large-scale study
to date that applies neural word representations in
tensor-based compositional distributional models
of meaning similar to those formalized by Coecke
et al. (2010). We test a range of implementations
based on this framework, together with additive
and multiplicative approaches (Mitchell and Lap-
ata, 2008), in a variety of different tasks. Specif-
ically, we use the verb disambiguation task of
Grefenstette and Sadrzadeh (2011a) and the tran-
sitive sentence similarity task of Kartsaklis and
Sadrzadeh (2014) as small-scale focused experi-
ments on pre-defined sentence structures. Addi-
tionally, we evaluate our vector spaces on para-
phrase detection (using the Microsoft Research
Paraphrase Corpus of Dolan et al. (2005)) and di-
alogue act tagging using the Switchboard Corpus
(see e.g. (Stolcke et al., 2000)).

In all of the above tasks, we compare the neural
word embeddings of Mikolov et al. (2013a) with
two vector spaces both based on co-occurrence
counts and produced by standard distributional
techniques, as described in detail below. The gen-
eral picture we get from the results is that in almost
all cases the neural vectors are more effective than
the traditional approaches.

We proceed as follows: Section 2 provides a
concise introduction to distributional word repre-
sentations in natural language processing. Section
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3 takes a closer look to the subject of composi-
tionality in vector space models of meaning and
describes the range of compositional operators ex-
amined here. In Section 4 we provide details about
the vector spaces used in the experiments. Our ex-
perimental work is described in detail in Section 5,
and the results are discussed in Section 6. Finally,
Section 7 provides conclusions.

2 Meaning representation

There are several approaches to the representation
of word, phrase and sentence meaning. As nat-
ural languages are highly creative and it is very
rare to see the same sentence twice, any practical
approach dealing with large text segments must
be compositional, constructing the meaning of
phrases and sentences from their constituent parts.
The ideal method would therefore express not
only the similarity in meaning between those con-
stituent parts, but also between the results of their
composition, and do this in ways which fit with
linguistic structure and generalisations thereof.

Formal semantics Formal approaches to the
semantics of natural language have long built
upon the classical idea of compositionality –
that the meaning of a sentence is a function
of the meanings of its parts (Frege, 1892). In
compositional type-logical approaches, predicate-
argument structures representing phrases and sen-
tences are built from their constituent parts by β-
reduction within the lambda calculus framework
(Montague, 1970): for example, given a represen-
tation of John as john ′ and sleeps as λx.sleep′(x),
the meaning of the sentence “John sleeps”
can be constructed as λx.sleep′(x)(john ′) =
sleep′(john ′). Given a suitable pairing between
words and semantic representations of them, this
method can produce structured sentential repre-
sentations with broad coverage and good gener-
alisability (see e.g. (Bos, 2008)). The above logi-
cal approach is extremely powerful because it can
capture complex aspects of meaning such as quan-
tifiers and their interaction (see e.g. (Copestake et
al., 2005)), and enables inference using well stud-
ied and developed logical methods (see e.g. (Bos
and Gabsdil, 2000)).

Distributional hypothesis However, such for-
mal approaches are less able to express similar-
ity in meaning. We would like to capture the
intuition that while John and Mary are distinct,

they are rather similar to each other (both of them
are humans) and dissimilar to words such as dog,
pavement or idea. The same applies at the phrase
and sentence level: “dogs chase cats” is similar in
meaning to “hounds pursue kittens”, but less so to
“cats chase dogs” (despite the lexical overlap).

Distributional methods provide a way to address
this problem. By representing words and phrases
as vectors or tensors in a (usually highly dimen-
sional) vector space, one can express similarity
in meaning via a suitable distance metric within
that space (usually cosine distance); furthermore,
composition can be modelled via suitable linear-
algebraic operations.

Co-occurrence-based word representations
One way to produce such vectorial representa-
tions is to directly exploit Harris (1954)’s intuition
that semantically similar words tend to appear in
similar contexts. We can construct a vector space
in which the dimensions correspond to contexts,
usually taken to be words as well. The word
vector components can then be calculated from
the frequency with which a word has co-occurred
with the corresponding contexts in a window of
words, with a predefined length.

Table 1 shows 5 3-dimensional vectors for the
words Mary, John, girl, boy and idea. The words
philosophy, book and school signify vector space
dimensions. As the vector for John is closer to
Mary than it is to idea in the vector space—a di-
rect consequence of the fact that John’s contexts
are similar to Mary’s and dissimilar to idea’s—we
can infer that John is semantically more similar to
Mary than to idea.

Many variants of this approach exist: perfor-
mance on word similarity tasks has been shown
to be improved by replacing raw counts with
weighted values (e.g. mutual information)—see
(Turney et al., 2010) and below for discussion, and
(Kiela and Clark, 2014) for a detailed comparison.

philosophy book school

Mary 0 10 22
John 4 60 59
girl 0 19 93
boy 0 12 164
idea 10 47 39

Table 1: Word co-occurrence frequencies ex-
tracted from the BNC (Leech et al., 1994).
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Neural word embeddings Deep learning tech-
niques exploit the distributional hypothesis dif-
ferently. Instead of relying on observed co-
occurrence frequencies, a neural language model
is trained to maximise some objective function re-
lated to e.g. the probability of observing the sur-
rounding words in some context (Mikolov et al.,
2013b):

1
T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt) (1)

Optimizing the above function, for example, pro-
duces vectors which maximise the conditional
probability of observing words in a context around
the target word wt, where c is the size of the
training window, and w1w2, · · ·wT a sequence of
words forming a training instance. Therefore, the
resulting vectors will capture the distributional in-
tuition and can express degrees of lexical similar-
ity.

This method has an obvious advantage com-
pared to co-occurrence method: since now the
context is predicted, the model in principle can
be much more robust in data sparsity prob-
lems, which is always an important issue for co-
occurrence word spaces. Additionally, neural vec-
tors have also proven successful in other tasks
(Mikolov et al., 2013c), since they seem to en-
code not only attributional similarity (the degree to
which similar words are close to each other), but
also relational similarity (Turney, 2006). For ex-
ample, it is possible to extract the singular:plural
relation (apple:apples, car:cars) using vector sub-
traction:

−−−→
apple −−−−−→apples ≈ −→car −−−→cars

Perhaps even more importantly, semantic relation-
ships are preserved in a very intuitive way:

−−→
king −−−→man ≈ −−−→queen −−−−−→woman

allowing the formation of analogy queries similar
to
−−→
king −−−→man +−−−−→woman = ?, obtaining−−−→queen as

the result.1

Both neural and co-occurrence-based ap-
proaches have advantages over classical formal
approaches in their ability to capture lexical se-
mantics and degrees of similarity; their success at

1Levy et al. (2014) improved Mikolov et al. (2013c)’s
method of retrieving relational similarities by changing the
underlying objective function.

extending this to the sentence level and to more
complex semantic phenomena, though, depends
on their applicability within compositional mod-
els, which is the subject of the next section.

3 Compositional models

Compositional distributional models represent
meaning of a sequence of words by a vector, ob-
tained by combining meaning vectors of the words
within the sequence using some vector composi-
tion operation. In a general classification of these
models, one can distinguish between three broad
cases: simplistic models which combine word
vectors irrespective of their order or relation to one
another, models which exploit linear word order,
and models which use grammatical structure.

The first approach combines word vectors
by vector addition or point-wise multiplication
(Mitchell and Lapata, 2008)—as this is indepen-
dent of word order, it cannot capture the differ-
ence between the two sentences “dogs chase cats”
and “cats chase dogs”. The second approach has
generally been implemented using some form of
deep learning, and captures word order, but not by
necessarily caring about the grammatical structure
of the sentence. Here, one works by recursively
building and combining vectors for subsequences
of words within the sentence using e.g. autoen-
coders (Socher et al., 2012) or convolutional fil-
ters (Kalchbrenner et al., 2014). We do not con-
sider this approach in this paper. This is because,
as mentioned in the introduction, their vectors and
composition operators are task-specific. These are
trained directly to achieve specific objectives in
certain pre-determined tasks. We are interested
in vector and composition operators that work for
any compositional task, and which can be com-
bined with results in linguistics and formal se-
mantics to provide generalisable models that can
canonically extend to complex semantic phenom-
ena. The third (i.e. the grammatical) approach
promises a way to achieve this, and has been in-
stantiated in various ways in the work of Baroni
and Zamparelli (2010),Grefenstette and Sadrzadeh
(2011a), and Kartsaklis et al. (2012).

General framework Formally, we can spec-
ify the vector representation of a word sequence
w1w2 · · ·wn as the vector−→s = −→w1 ?

−→w2 ? · · ·?−→wn,
where ? is a vector operator, such as addition +,
point-wise multiplication �, tensor product ⊗, or
matrix multiplication ×.
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In the simplest compositional models (the first
approach described above), ? is + or �, e.g. see
(Mitchell and Lapata, 2008). Grammar-based
compositional models (the third approach) are
based on a generalisation of the notion of vectors,
known as tensors. Whereas a vector −→v is an ele-
ment of an atomic vector space V , a tensor z is an
element of a tensor space V ⊗W ⊗ · · · ⊗ Z. The
number of tensored spaces is referred to by the or-
der of the space. Using a general duality theorem
from multi-linear algebra (Bourbaki, 1989), it fol-
lows that tensors are in one-one correspondence
with multi-linear maps, that is we have:

z ∈ V ⊗W⊗· · ·⊗Z ∼= fz : V →W → · · · → Z

In such a tensor-based formalism, meanings of
nouns are vectors and meanings of predicates such
as adjectives and verbs are tensors. Meaning of a
string of words is obtained by applying the compo-
sitions of multi-linear map duals of the tensors to
the vectors. For the sake of demonstration, take
the case of an intransitive sentence “Sbj Verb”;
the meaning of the subject is a vector

−→
Sbj ∈ V

and the meaning of the intransitive verb is a ten-
sor Verb ∈ V ⊗W . Meaning of the sentence is
obtained by applying fV erb to

−→
Sbj, as follows:

−−−−−→
Sbj Verb = fV erb(

−→
Sbj)

By tensor-map duality, the above becomes
equivalent to the following, where composition
has now become the familiar notion of matrix mul-
tiplication, that is ? is ×:

Verb×−→Sbj

In general and for words with tensors of order
higher than two, ? becomes a generalisation of ×,
referred to by tensor contraction, see e.g. Kartsak-
lis and Sadrzadeh (2013). Since the creation and
manipulation of tensors of order higher than 2 is
difficult, one can work with simplified versions of
tensors, faithful to their underlying mathematical
basis; these have found intuitive interpretations,
e.g. see Grefenstette and Sadrzadeh (2011a), Kart-
saklis and Sadrzadeh (2014). In such cases, ? be-
comes a combination of a range of operations such
as ×, ⊗, �, and +.

Specific models In the current paper we will ex-
periment with a variety of models. In Table 2, we
present these models in terms of their composi-
tion operators and a reference to the main paper in

which each model was introduced. For the sim-
ple compositional models the sentence is a string
of any number of words; for the grammar-based
models, we consider simple transitive sentences
“Sbj Verb Obj” and introduce the following abbre-
viations for the concrete method used to build a
tensor for the verb:

1. Verb is a verb matrix computed using the for-
mula

∑
i

−−→
Sbji⊗

−−→
Obji, where

−−→
Sbji and

−−→
Obji are

the subjects and objects of the verb across the
corpus. These models are referred to by rela-
tional (Grefenstette and Sadrzadeh, 2011a);
they are generalisations of predicate seman-
tics of transitive verbs, from pairs of individ-
uals to pairs of vectors. The models reduce
the order 3 tensor of a transitive verb to an
order 2 tensor (i.e. a matrix).

2. Ṽerb is a verb matrix computed using the for-
mula

−−→
Verb ⊗ −−→Verb, where

−−→
Verb is the distri-

butional vector of the verb. These models are
referred to by Kronecker, which is the term
sometimes used to denote the outer prod-
uct of tensors (Grefenstette and Sadrzadeh,
2011b). This models also reduces the order
3 tensor of a transitive verb to an order 2 ten-
sor.

3. The models of the last five lines of the table
use the so-called Frobenius operators from
categorical compositional distributional se-
mantics (Kartsaklis et al., 2012) to expand
the relational matrices of verbs from order 2
to order 3. The expansion is obtained by ei-
ther copying the dimension of the subject into
the space provided by the third tensor, hence
referred to by Copy-Sbj, or copying the di-
mension of the object in that space, hence re-
ferred to by Copy-Obj; furthermore, we can
take addition, multiplication, or outer product
of these, which are referred to by Frobenius-
Add, Frobenius-Mult, and Frobenius-Outer
(Kartsaklis and Sadrzadeh, 2014).

4 Semantic word spaces

Co-occurrence-based vector space instantiations
have received a lot of attention from the scientific
community (refer to (Kiela and Clark, 2014; Pola-
jnar and Clark, 2014) for recent studies). We in-
stantiate two co-occurrence-based vectors spaces
with different underlying corpora and weighting
schemes.
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Method Sentence Linear algebraic formula Reference

Addition w1w2 · · ·wn −→w1 +−→w2 + · · ·+−→wn Mitchell and Lapata (2008)
Multiplication w1w2 · · ·wn −→w1 �−→w2 � · · · � −→wn Mitchell and Lapata (2008)

Relational Sbj Verb Obj Verb� (
−→
Sbj⊗−→Obj) Grefenstette and Sadrzadeh (2011a)

Kronecker Sbj Verb Obj Ṽerb� (
−→
Sbj⊗−→Obj) Grefenstette and Sadrzadeh (2011b)

Copy object Sbj Verb Obj
−→
Sbj� (Verb×−→Obj) Kartsaklis et al. (2012)

Copy subject Sbj Verb Obj
−→
Obj� (Verb

T ×−→Sbj) Kartsaklis et al. (2012)
Frob. add. Sbj Verb Obj (

−→
Sbj� (Verb×−→Obj)) + (

−→
Obj� (Verb

T ×−→Sbj)) Kartsaklis and Sadrzadeh (2014)
Frob. mult. Sbj Verb Obj (

−→
Sbj� (Verb×−→Obj))� (

−→
Obj� (Verb

T ×−→Sbj)) Kartsaklis and Sadrzadeh (2014)
Frob. outer Sbj Verb Obj (

−→
Sbj� (Verb×−→Obj))⊗ (

−→
Obj� (Verb

T ×−→Sbj)) Kartsaklis and Sadrzadeh (2014)

Table 2: Compositional methods.

GS11 Our first word space is based on a typ-
ical configuration that has been used in the past
extensively for compositional distributional mod-
els (see below for details), so it will serve as a
useful baseline for the current work. In this vec-
tor space, the co-occurrence counts are extracted
from the British National Corpus (BNC) (Leech et
al., 1994). As basis words, we use the most fre-
quent nouns, verbs, adjectives and adverbs (POS
tags SUBST, VERB, ADJ and ADV in the BNC
XML distribution2). The vector space is lemma-
tized, that is, it contains only “canonical” forms of
words.

In order to weight the raw co-occurrence counts,
we use positive point-wise mutual information
(PPMI). The component value for a target word
t and a context word c is given by:

PPMI(t, c) = max
(

0, log
p(c|t)
p(c)

)
where p(c|t) is the probability of word c given t
in a symmetric window of length 5 and p(c) is the
probability of c overall.

Vector spaces based on point-wise mutual in-
formation (or variants thereof) have been success-
fully applied in various distributional and compo-
sitional tasks; see e.g. Grefenstette and Sadrzadeh
(2011a), Mitchell and Lapata (2008), Levy et al.
(2014) for details. PPMI has been shown to
achieve state-of-the-art results (Levy et al., 2014)
and is suggested by the review of Kiela and Clark
(2014). Our use here of the BNC as a corpus
and the window length of 5 is based on previ-
ous use and better performance of these param-
eters in a number of compositional experiments
(Grefenstette and Sadrzadeh, 2011a; Grefenstette

2http://www.natcorp.ox.ac.uk/

and Sadrzadeh, 2011b; Mitchell and Lapata, 2008;
Kartsaklis et al., 2012).

KS14 In this variation, we train a vector space
from the ukWaC corpus3 (Ferraresi et al., 2008),
originally using as a basis the 2,000 content words
with the highest frequency (but excluding a list of
stop words as well as the 50 most frequent content
words since they exhibit low information content).
The vector space is again lemmatized. As context
we consider a 5-word window from either side of
the target word, while as our weighting scheme we
use local mutual information (i.e. point-wise mu-
tual information multiplied by raw counts). In a
further step, the vector space was normalized and
projected onto a 300-dimensional space using sin-
gular value decomposition (SVD).

In general, dimensionality reduction produces
more compact word representations that are robust
against potential noise in the corpus (Landauer and
Dumais, 1997; Schütze, 1997). SVD has been
shown to perform well on a variety of tasks similar
to ours (Baroni and Zamparelli, 2010; Kartsaklis
and Sadrzadeh, 2014).

Neural word embeddings (NWE) For our neu-
ral setting, we used the skip-gram model of
Mikolov et al. (2013b) trained with negative sam-
pling. The specific implementation that was tested
in our experiments was a 300-dimensional vec-
tor space learned from the Google News corpus
and provided by the word2vec4 toolkit. Fur-
thermore, the gensim library (Řehůřek and So-
jka, 2010) was used for accessing the vectors.
On the contrary with the previously described co-

3http://wacky.sslmit.unibo.it/
4https://code.google.com/p/word2vec/
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occurrence vector spaces, this version is not lem-
matized.

The negative sampling method improves the ob-
jective function of Equation 1 by introducing neg-
ative examples to the training algorithm. Assume
that the probability of a specific (c, t) pair of words
(where t is a target word and c another word in
the same context with t), coming from the training
data, is denoted as p(D = 1|c, t). The objective
function is then expressed as follows:∏

(c,t)∈D
p(D = 1|c, t) (2)

That is, the goal is to set the model parameters in
a way that maximizes the probability of all obser-
vations coming from the training data. Assume
now that D′ is a set of randomly selected incorrect
(c′, t′) pairs that do not occur in D, then Equation
2 above can be recasted in the following way:∏

(c,t)∈D
p(D = 1|c, t)

∏
(c′,t′)∈D′

p(D = 0|c′, t′)

(3)
In other words, the model tries to distinguish a tar-
get word t from random draws that come from a
noise distribution. In the implementation we used
for our experiments, c is always selected from
a 5-word window around t. More details about
the negative sampling approach can be found in
(Mikolov et al., 2013b); the note of Goldberg and
Levy (2014) also provides an intuitive explanation
of the underlying setting.

5 Experiments

Our experiments explore the use of the vector
spaces above, together with the compositional op-
erators described in Section 3, in a range of tasks
all of which require semantic composition: verb
sense disambiguation; sentence similarity; para-
phrasing; and dialogue act tagging.

5.1 Disambiguation
We use the transitive verb disambiguation dataset
described in Grefenstette and Sadrzadeh (2011a)5.
This dataset consists of ambiguous transitive verbs
together with their arguments, landmark verbs
that identify one of the verb senses, and human
judgements that specify how similar is the disam-
biguated sense of the verb in the given context to

5This and the sentence similarity dataset are avail-
able at http://www.cs.ox.ac.uk/activities/
compdistmeaning/

one of the landmarks. This is similar to the in-
transitive dataset described in (Mitchell and Lap-
ata, 2008). Consider the sentence “system meets
specification”; here, meets is the ambiguous tran-
sitive verb, and system and specification are its ar-
guments in this context. Possible landmarks for
meet are satisfy and visit; for this sentence, the
human judgements show that the disambiguated
meaning of the verb is more similar to the land-
mark satisfy and less similar to visit.

The task is to estimate the similarity of the sense
of a verb in a context with a given landmark. To
get our similarity measures, we compose the verb
with its arguments using one of our compositional
models; we do the same for the landmark and then
compute the cosine similarity of the two vectors.
We evaluate the performance by averaging the hu-
man judgements for the same verb, argument and
landmark entries, and calculating the Spearman’s
correlation between the average values and the co-
sine scores. As a baseline, we compare this with
the correlation produced by using only the verb
vector, without composing it with its arguments.

Table 3 shows the results of the experiment.
NWE copy-object composition yields the best cor-
relation with the human judgements, and top per-
formance across all vector spaces and models with
a Spearman ρ of 0.456. For the KS14 space, the
best result comes from Frobenius outer (0.350),

Method GS11 KS14 NWE

Verb only 0.212 0.325 0.107

Addition 0.103 0.275 0.149
Multiplication 0.348 0.041 0.095

Kronecker 0.304 0.176 0.117
Relational 0.285 0.341 0.362
Copy subject 0.089 0.317 0.131
Copy object 0.334 0.331 0.456
Frobenius add. 0.261 0.344 0.359
Frobenius mult. 0.233 0.341 0.239
Frobenius outer 0.284 0.350 0.375

Table 3: Spearman ρ correlations of models with
human judgements for the word sense disam-
biguation task. The best result (NWE Copy ob-
ject) outperforms the nearest co-occurrence-based
competitor (KS14 Frobenius outer) with a statisti-
cally significant difference (p < 0.05, t-test).
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while the best operator for the GS11 space is
point-wise multiplication (0.348).

For simple point-wise composition, only mul-
tiplicative GS11 and additive NWE improve over
their corresponding verb-only baselines (but both
perform worse than the KS14 baseline). With
tensor-based composition in co-occurrence based
spaces, copy subject yields lower results than
the corresponding baselines. Other composition
methods, except Kronecker for KS14, improve
over the verb-only baselines. Finally we should
note that, despite the small training corpus, the
GS11 vector space performs comparatively well:
for instance, Kronecker model improves the pre-
viously reported score of 0.28 (Grefenstette and
Sadrzadeh, 2011b).

5.2 Sentence similarity
In this experiment we use the transitive sen-
tence similarity dataset described in Kartsaklis and
Sadrzadeh (2014). The dataset consists of transi-
tive sentence pairs and a human similarity judge-
ment6. The task is to estimate a similarity measure
between two sentences. As in the disambiguation
task, we first compose word vectors to obtain sen-
tence vectors, then compute cosine similarity of
them. We average the human judgements for iden-
tical sentence pairs to compute a correlation with
cosine scores.

Table 4 shows the results. Again, the best
performing vector space is KS14, but this time
with addition: the Spearman ρ correlation score
with averaged human judgements is 0.732. Addi-
tion was the means for the other vector spaces to
achieve top performance as well: GS11 and NWE
got 0.682 and 0.689 respectively.

None of the models in tensor-based composi-
tion outperformed addition. KS14 performs worse
with tensor-based methods here than in the other
vector spaces. However, GS11 and NWE, except
copy subject for both of them and Frobenius multi-
plication for NWE, improved over their verb-only
baselines.

5.3 Paraphrasing
In this experiment we evaluate our vector spaces
on a mainstream paraphrase detection task.

6The textual content of this dataset is the same as that of
(Kartsaklis and Sadrzadeh, 2013), the difference is that the
dataset of (Kartsaklis and Sadrzadeh, 2014) has updated hu-
man judgements whereas the previous dataset used the orig-
inal annotations of the intransitive dataset of (Mitchell and
Lapata, 2010).

Method GS11 KS14 NWE

Verb only 0.491 0.602 0.561

Addition 0.682 0.732 0.689
Multiplication 0.597 0.321 0.341

Kronecker 0.581 0.408 0.561
Relational 0.558 0.437 0.618
Copy subject 0.370 0.448 0.405
Copy object 0.571 0.306 0.655
Frobenius add. 0.566 0.460 0.585
Frobenius mult. 0.525 0.226 0.387
Frobenius outer 0.560 0.439 0.622

Table 4: Results for sentence similarity. There
is no statistically significant difference between
KS14 addition and NWE addition (the second best
result).

Specifically, we get classification results on the
Microsoft Research Paraphrase Corpus paraphrase
corpus (Dolan et al., 2005) working in the follow-
ing way: we construct vectors for the sentences
of each pair; if the cosine similarity between the
two sentence vectors exceeds a certain threshold,
the pair is classified as a paraphrase, otherwise as
not a paraphrase. For this experiment and that of
Section 5.4 below, we investigate only the addi-
tion and point-wise multiplication compositional
models, since at their current stage of development
tensor-based models can only efficiently handle
sentences of fixed structure. Nevertheless, the
simple point-wise compositional models still al-
low for a direct comparison of the vector spaces,
which is the main goal of this paper.

For each vector space and model, a number of
different thresholds were tested on the first 2000
pairs of the training set, which we used as a de-
velopment set; in each case, the best-performed
threshold was selected for a single run of our
“classifier” on the test set (1726 pairs). Addition-
ally, we evaluate the NWE model with a lemma-
tized version of the corpus, so that the experimen-
tal setup is maximally similar for all vector spaces.
The results are shown in the first part of Table 5.

Additive NWE gives the highest performance,
with both lemmatized and un-lemmatized versions
outperforming the GS11 and KS14 spaces. In
the un-lemmatized case, the accuracy of our sim-
ple “classifier” (0.73) is close to state-of-the-art
range. The state-of-the art result (0.77 accuracy
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Co-occurrence Neural word embeddings

Baseline GS11 KS14 Unlemmatized Lemmatized

Model Accuracy F-Score Accuracy F-Score Accuracy F-Score Accuracy F-Score Accuracy F-Score

MSR addition 0.65 0.75 0.62 0.79 0.70 0.80 0.73 0.82 0.72 0.81
MSR multiplication 0.52 0.58 0.66 0.80 0.42 0.34 0.41 0.36

SWDA addition 0.60 0.58 0.35 0.35 0.40 0.35 0.63 0.60 0.44 0.40
SWDA multiplication 0.32 0.16 0.39 0.33 0.58 0.53 0.43 0.38

Table 5: Results for paraphrase detection (MSR) and dialog act tagging (SWDA) tasks. All top results
significantly outperform corresponding nearest competitors (for accuracy): p < 0.05, χ2 test.

and 0.84 F-score7) by the time of this writing has
been obtained using 8 machine translation metrics
and three constituent classifiers (Madnani et al.,
2012).

The multiplicative model gives lower results
than the additive model across all vector spaces.
The KS14 vector space shows the steadiest per-
formance, with a drop in accuracy of only 0.04
and no drop in F-score, while for the GS11 and
NWE spaces both accuracy and F-score experi-
enced drops by more than 0.20.

5.4 Dialogue act tagging

As our last experiment, we evaluate the word
spaces on a dialogue act tagging task (Stolcke et
al., 2000) over the Switchboard corpus (Godfrey
et al., 1992). Switchboard is a collection of ap-
proximately 2500 dialogs over a telephone line by
500 speakers from the U.S. on predefined topics.8

The experiment pipeline follows (Milajevs and
Purver, 2014). The input utterances are prepro-
cessed so that the parts of interrupted utterances
are concatenated (Webb et al., 2005). Disfluency
markers and commas are removed from the utter-
ance raw texts. For GS11 and KS14 the utterance
tokens are POS-tagged and lemmatized; for NWE,
we test the vectors in both a lemmatized and an
un-lemmatized version of the corpus.9 We split
the training and testing utterances as suggested by
Stolcke et al. (2000). Utterance vectors are then
obtained as in the previous experiments; they are
reduced to 50 dimensions using SVD and a k-
nearest-neighbour classifier is trained on these re-
duced utterance vectors (the 5 closest neighbours
by Euclidean distance are retrieved to make a clas-

7F-scores use the standard definition F = 2(precision ∗
recall)/(precision + recall).

8The dataset and a Python interface to it are available
at http://compprag.christopherpotts.net/
swda.html

9We use WordNetLemmatizer of the NLTK library
(Bird, 2006).

sification decision). The results are shown in the
second part of Table 5.

Un-lemmatized NWE addition gave the best ac-
curacy (0.63) and F-score (0.60) (averaged over
tag classes), i.e. similar results to (Milajevs and
Purver, 2014)—although note that the dimension-
ality of our NWE vectors is 10 times lower than
theirs. Multiplicative NWE outperformed the cor-
responding model in (Milajevs and Purver, 2014).
In general, addition consistently outperforms mul-
tiplication for all the models. Lemmatization
dramatically lowers tagging accuracy: the lem-
matized GS11, KS14 and NWE models perform
much worse than un-lemmatized NWE, suggest-
ing that morphological features are important for
this task.

6 Discussion

Previous comparisons of co-occurrence-based and
neural word vector representations vary widely
in their conclusions. While Baroni et al. (2014)
conclude that “context-predicting models obtain
a thorough and resounding victory against their
count-based counterparts”, this seems to contra-
dict, at least at the first consideration, the more
conservative conclusion of Levy et al. (2014) that
“analogy recovery is not restricted to neural word
embeddings [. . . ] a similar amount of relational
similarities can be recovered from traditional dis-
tributional word representations” and the findings
of Blacoe and Lapata (2012) that “shallow ap-
proaches are as good as more computationally in-
tensive alternatives” on phrase similarity and para-
phrase detection tasks.

It seems clear that neural word embeddings
have an advantage when used in tasks for which
they have been trained; our main questions here
are whether they outperform co-occurrence based
alternatives across the board; and which ap-
proach lends itself better to composition using
general mathematical operators. To partially an-
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swer this question, we can compare model be-
haviour against the baselines in isolation.

For the disambiguation and sentence similarity
tasks the baseline is the similarity between verbs
only, ignoring the context—see above. For the
paraphrase task, we take the global vector-based
similarity reported in (Mihalcea et al., 2006): 0.65
accuracy and 0.75 F-score. For the dialogue act
tagging task the baseline is the accuracy of the
bag-of-unigrams model in (Milajevs and Purver,
2014): 0.60.

Sections 5.1 and 5.2 show that although the best
choice of vector representation might vary, for
small-scale tasks all methods give fairly compet-
itive results. The choice of compositional oper-
ator seems to be more important and more task-
specific: while a tensor-based operation (Frobe-
nius copy-object) performs best for verb disam-
biguation, the best result for sentence similarity
is achieved by a simple additive model, with all
other compositional methods behaving worse than
the verb-only baseline in the KS14 case. GS11 and
NWE, on the other hand, outperform their base-
lines with a number of compositional methods, al-
though both of them achieve lower performance
than KS14 overall.

Based on only small-scale experiment results,
one could conclude that there is little significant
difference between the two ways of obtaining vec-
tors. GS11 and NWE show similar behaviour in
comparison to their baselines, while it is possible
to tune a co-occurrence based vector space (KS14)
and obtain the best result. Large scale tasks reveal
another pattern: the GS11 vector space, which be-
haves stably on the small scale, drags behind the
KS14 and NWE spaces in the paraphrase detec-
tion task. In addition, NWE consistently yields
best results. Finally, only the NWE space was able
to provide adequate results on the dialogue act tag-
ging task. Table 6 summarizes model performance
with regard to baselines.

7 Conclusion

In this work we compared the performance of two
co-occurrence-based semantic spaces with vectors
learned by a neural network in compositional set-
tings. We carried out two small-scale tasks (word
sense disambiguation and sentence similarity) and
two large-scale tasks (paraphrase detection and di-
alogue act tagging).

Task GS11 KS14 NWE

Disambiguation + + +
Sentence similarity + – +

Paraphrase − + +
Dialog act tagging − − +

Table 6: Summary of vector space performance
against baselines. General improvement (cases
where more than a half of the models perform bet-
ter) and decrease with regard to a corresponding
baseline is respectively marked by + and −. A
bold value means that the model gave the best re-
sult in the task.

On small-scale tasks, where the sentence struc-
tures are predefined and relatively constrained,
NWE gives better or similar results to count-based
vectors. Tensor-based composition does not al-
ways outperform simple compositional operators,
but for most of the cases gives results within the
same range.

On large-scale tasks, neural vectors are more
successful than the co-occurrence based alterna-
tives. However, this study does not reveal whether
this is because of their neural nature, or just be-
cause they are trained on a larger amount of data.

The question of whether neural vectors outper-
form co-occurrence vectors therefore requires fur-
ther detailed comparison to be entirely resolved;
our experiments suggest that this is indeed the case
in large-scale tasks, but the difference in size and
nature of the original corpora may be a confound-
ing factor. In any case, it is clear that the neural
vectors of word2vec package perform steadily
off-the-shelf across a large variety of tasks. The
size of the vector space (3 million words) and the
available code-base that simplifies the access to
the vectors, makes this set a good and safe choice
for experiments in the future. Of course, even bet-
ter performances can be achieved by training neu-
ral language models specifically for a given task
(see e.g. Kalchbrenner et al. (2014)).

The choice of compositional operator (tensor-
based or a simple point-wise operation) depends
strongly on the task and dataset: tensor-based
composition performed best with the verb dis-
ambiguation task, where the verb senses depend
strongly on the arguments of the verb. However, it
seems to depend less on the nature of the vectors
itself: in the disambiguation task, tensor-based
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composition proved best for both co-occurrence-
based and neural vectors; in the sentence similar-
ity task, where point-wise operators proved best,
this was again true across vector spaces.
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Abstract

Recurrent neural networks (RNNs) are con-
nectionist models of sequential data that are
naturally applicable to the analysis of natural
language. Recently, “depth in space” — as
an orthogonal notion to “depth in time” — in
RNNs has been investigated by stacking mul-
tiple layers of RNNs and shown empirically
to bring a temporal hierarchy to the architec-
ture. In this work we apply these deep RNNs
to the task of opinion expression extraction
formulated as a token-level sequence-labeling
task. Experimental results show that deep,
narrow RNNs outperform traditional shallow,
wide RNNs with the same number of parame-
ters. Furthermore, our approach outperforms
previous CRF-based baselines, including the
state-of-the-art semi-Markov CRF model, and
does so without access to the powerful opinion
lexicons and syntactic features relied upon by
the semi-CRF, as well as without the standard
layer-by-layer pre-training typically required
of RNN architectures.

1 Introduction

Fine-grained opinion analysis aims to detect the sub-
jective expressions in a text (e.g. “hate”) and to char-
acterize their intensity (e.g. strong) and sentiment (e.g.
negative) as well as to identify the opinion holder (the
entity expressing the opinion) and the target, or topic,
of the opinion (i.e. what the opinion is about) (Wiebe et
al., 2005). Fine-grained opinion analysis is important
for a variety of NLP tasks including opinion-oriented
question answering and opinion summarization. As a
result, it has been studied extensively in recent years.

In this work, we focus on the detection of opinion ex-
pressions — both direct subjective expressions (DSEs)
and expressive subjective expressions (ESEs) as de-
fined in Wiebe et al. (2005). DSEs consist of explicit
mentions of private states or speech events expressing
private states; and ESEs consist of expressions that in-
dicate sentiment, emotion, etc., without explicitly con-
veying them. An example sentence shown in Table 1 in
which the DSE “has refused to make any statements”
explicitly expresses an opinion holder’s attitude and the

The committee , as usual , has
O O O B ESE I ESE O B DSE

refused to make any statements .
I DSE I DSE I DSE I DSE I DSE O

Table 1: An example sentence with labels

ESE “as usual” indirectly expresses the attitude of the
writer.

Opinion extraction has often been tackled as a se-
quence labeling problem in previous work (e.g. Choi
et al. (2005)). This approach views a sentence as
a sequence of tokens labeled using the conventional
BIO tagging scheme: B indicates the beginning of an
opinion-related expression, I is used for tokens inside
the opinion-related expression, and O indicates tokens
outside any opinion-related class. The example sen-
tence in Table 1 shows the appropriate tags in the BIO
scheme. For instance, the ESE “as usual” results in the
tags B ESE for “as” and I ESE for “usual”.

Variants of conditional random field (CRF) ap-
proaches have been successfully applied to opinion ex-
pression extraction using this token-based view (Choi
et al., 2005; Breck et al., 2007): the state-of-the-art
approach is the semiCRF, which relaxes the Marko-
vian assumption inherent to CRFs and operates at the
phrase level rather than the token level, allowing the in-
corporation of phrase-level features (Yang and Cardie,
2012). The success of the CRF- and semiCRF-based
approaches, however, hinges critically on access to an
appropriate feature set, typically based on constituent
and dependency parse trees, manually crafted opinion
lexicons, named entity taggers and other preprocessing
components (see Yang and Cardie (2012) for an up-to-
date list).

Distributed representation learners provide a differ-
ent approach to learning in which latent features are
modeled as distributed dense vectors of hidden lay-
ers. A recurrent neural network (RNN) is one such
learner that can operate on sequential data of variable
length, which means it can also be applied as a se-
quence labeler. Moreover, bidirectional RNNs incor-
porate information from preceding as well as follow-
ing tokens (Schuster and Paliwal, 1997) while recent
advances in word embedding induction (Collobert and
Weston, 2008; Mnih and Hinton, 2007; Mikolov et
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al., 2013; Turian et al., 2010) have enabled more ef-
fective training of RNNs by allowing a lower dimen-
sional dense input representation and hence, more com-
pact networks (Mikolov et al., 2010; Mesnil et al.,
2013). Finally, deep recurrent networks, a type of
RNN with multiple stacked hidden layers, are shown
to naturally employ a temporal hierarchy with multi-
ple layers operating at different time scales (Hermans
and Schrauwen, 2013): lower levels capture short term
interactions among words; higher layers reflect inter-
pretations aggregated over longer spans of text. When
applied to natural language sentences, such hierarchies
might better model the multi-scale language effects that
are emblematic of natural languages, as suggested by
previous results (Hermans and Schrauwen, 2013).

Motivated by the recent success of deep architectures
in general and deep recurrent networks in particular, we
explore an application of deep bidirectional RNNs —
henceforth deep RNNs — to the task of opinion ex-
pression extraction. For both DSE and ESE detection,
we show that such models outperform conventional,
shallow (uni- and bidirectional) RNNs as well as previ-
ous CRF-based state-of-the-art baselines, including the
semiCRF model.

In the rest of the paper we discuss related work
(Section 2) and describe the architecture and training
methods for recurrent neural networks (RNNs), bidi-
rectional RNNs, and deep (bidirectional) RNNs (Sec-
tion 3). We present experiments using a standard cor-
pus for fine-grained opinion extraction in Section 4.

2 Related Work

Opinion extraction. Early work on fine-grained
opinion extraction focused on recognizing subjective
phrases (Wilson et al., 2005; Munson et al., 2005).
Breck et al. (2007), for example, formulated the prob-
lem as a token-level sequence-labeling problem and ap-
ply a CRF-based approach, which significantly outper-
formed previous baselines. Choi et al. (2005) extended
the sequential prediction approach to jointly identify
opinion holders; Choi and Cardie (2010) jointly de-
tected polarity and intensity along with the opinion ex-
pression. Reranking approaches have also been ex-
plored to improve the performance of a single sequence
labeler (Johansson and Moschitti, 2010; Johansson and
Moschitti, 2011). More recent work relaxes the Marko-
vian assumption of CRFs to capture phrase-level inter-
actions, significantly improving upon the token-level
labeling approach (Yang and Cardie, 2012). In par-
ticular, Yang and Cardie (2013) propose a joint infer-
ence model to jointly detect opinion expressions, opin-
ion holders and targets, as well as the relations among
them, outperforming previous pipelined approaches.

Deep learning. Recurrent neural networks (Elman,
1990) constitute one important class of naturally deep
architecture that has been applied to many sequential
prediction tasks. In the context of NLP, recurrent neu-

ral networks view a sentence as a sequence of tokens
and have been successfully applied to tasks such as lan-
guage modeling (Mikolov et al., 2011) and spoken lan-
guage understanding (Mesnil et al., 2013). Since clas-
sical recurrent neural networks only incorporate infor-
mation from the past (i.e. preceding tokens), bidirec-
tional variants have been proposed to incorporate in-
formation from both the past and the future (i.e. sub-
sequent tokens) (Schuster and Paliwal, 1997). Bidirec-
tionality is especially useful for NLP tasks, since infor-
mation provided by the following tokens is generally
helpful (and sometimes essential) when making a deci-
sion on the current token.

Stacked recurrent neural networks have been pro-
posed as a way of constructing deep RNNs (Schmidhu-
ber, 1992; El Hihi and Bengio, 1995). Careful empir-
ical investigation of this architecture showed that mul-
tiple layers in the stack can operate at different time
scales (Hermans and Schrauwen, 2013). Pascanu et al.
(2013) explore other ways of constructing deep RNNs
that are orthogonal to the concept of stacking layers on
top of each other. In this work, we focus on the stacking
notion of depth.

3 Methodology
This section describes the architecture and training
methods for the deep bidirectional recurrent networks
that we propose for the task of opinion expression min-
ing. Recurrent neural networks are presented in 3.1,
bidirectionality is introduced in 3.2, and deep bidirec-
tional RNNs, in 3.3.

3.1 Recurrent Neural Networks
A recurrent neural network (Elman, 1990) is a class of
neural network that has recurrent connections, which
allow a form of memory. This makes them applica-
ble for sequential prediction tasks with arbitrary spatio-
temporal dimensions. Thus, their structure fits many
NLP tasks, when the interpretation of a single sentence
is viewed as analyzing a sequence of tokens. In this
work, we focus our attention on only Elman-type net-
works (Elman, 1990).

In an Elman-type network, the hidden layer ht at
time step t is computed from a nonlinear transforma-
tion of the current input layer xt and the previous hid-
den layer ht−1. Then, the final output yt is computed
using the hidden layer ht. One can interpret ht as an in-
termediate representation summarizing the past, which
is used to make a final decision on the current input.

More formally, given a sequence of vectors
{xt}t=1..T , an Elman-type RNN operates by comput-
ing the following memory and output sequences:

ht = f(Wxt + V ht−1 + b) (1)
yt = g(Uht + c) (2)

where f is a nonlinear function, such as the sigmoid
function and g is the output nonlinearity, such as the
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Figure 1: Recurrent neural networks. Each black, orange and red node denotes an input, hidden or output layer,
respectively. Solid and dotted lines denote the connections of forward and backward layers, respectively. Top:
Shallow unidirectional (left) and bidirectional (right) RNN. Bottom: 3-layer deep unidirectional (left) and bidirec-
tional (right) RNN.

softmax function. W and V are weight matrices be-
tween the input and hidden layer, and among the hidden
units themselves (connecting the previous intermediate
representation to the current one), respectively, while
U is the output weight matrix. b and c are bias vec-
tors connected to hidden and output units, respectively.
As a base case for the recursion in Equation 1, h0 is
assumed to be 0.

Training an RNN can be done by optimizing a dis-
criminative objective (e.g. the cross entropy for classifi-
cation tasks) with a gradient-based method. Backprop-
agation through time can be used to efficiently com-
pute the gradients (Werbos, 1990). This method is es-
sentially equivalent to unfolding the network in time
and using backpropagation as in feedforward neural
networks, while sharing the connection weights across
different time steps. The Elman-style RNN is shown in
Figure 1, top left.

3.2 Bidirectionality

Observe that with the above definition of RNNs, we
have information only about the past, when making a
decision on xt. This is limiting for most NLP tasks.
As a simple example, consider the two sentences: “I
did not accept his suggestion” and “I did not go to
the rodeo”. The first has a DSE phrase (“did not ac-
cept”) and the second does not. However, any such
RNN will assign the same labels for the words “did”
and “not” in both sentences, since the preceding se-
quences (past) are the same: the Elman-style unidirec-

tional RNNs lack the representational power to model
this task. A simple way to work around this problem
is to include a fixed-size future context around a single
input vector (token). However, this approach requires
tuning the context size, and ignores future information
from outside of the context window. Another way to
incorporate information about the future is to add bidi-
rectionality to the architecture, referred as the bidirec-
tional RNN (Schuster and Paliwal, 1997):

−→
h t = f(

−→
Wxt +

−→
V
−→
h t−1 +

−→
b ) (3)

←−
h t = f(

←−
Wxt +

←−
V
←−
h t+1 +

←−
b ) (4)

yt = g(U→
−→
h t + U←

←−
h t + c) (5)

where
−→
W ,
−→
V and

−→
b are the forward weight matri-

ces and bias vector as before;
←−
W ,
←−
V and

←−
b are their

backward counterparts; U→, U← are the output ma-
trices; and c is the output bias.1 Again, we assume−→
h 0 =

←−
h T+1 = 0. In this setting

−→
h t and

←−
h t can

be interpreted as a summary of the past, and the future,
respectively, around the time step t. When we make
a decision on an input vector, we employ the two in-
termediate representations

−→
h t and

←−
h t of the past and

1As a convention, we adopt the following notation
throughout the paper: Superscript arrows for vectors disam-
biguate between forward and backward representations. Su-
perscript arrows for matrices denote the resulting vector rep-
resentations (connection outputs), and subscript arrows for
matrices denote incoming vector representations (connection
inputs). We omit subscripts when there is no ambiguity.
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the future. (See Figure 1, top right.) Therefore in the
bidirectional case, we have perfect information about
the sequence (ignoring the practical difficulties about
capturing long term dependencies, caused by vanishing
gradients), whereas the classical Elman-type network
uses only partial information as described above.

Note that the forward and backward parts of the net-
work are independent of each other until the output
layer when they are combined. This means that during
training, after backpropagating the error terms from the
output layer to the forward and backward hidden lay-
ers, the two parts can be thought of as separate, and
each trained with the classical backpropagation through
time (Werbos, 1990).

3.3 Depth in Space
Recurrent neural networks are often characterized as
having depth in time: when unfolded, they are equiv-
alent to feedforward neural networks with as many
hidden layers as the number tokens in the input se-
quence (with shared connections across multiple layers
of time). However, this notion of depth likely does not
involve hierarchical processing of the data: across dif-
ferent time steps, we repeatedly apply the same trans-
formation to compute the memory contribution of the
input (W ), to compute the response value from the cur-
rent memory (U ) and to compute the next memory vec-
tor from the previous one (V ). Therefore, assuming the
input vectors {xt} together lie in the same representa-
tion space, as do the output vectors {yt}, hidden rep-
resentations {ht} lie in the same space as well. As a
result, they do not necessarily become more and more
abstract, hierarchical representations of one another as
we traverse in time. However in the more conventional,
stacked deep learners (e.g. deep feedforward nets), an
important benefit of depth is the hierarchy among hid-
den representations: every hidden layer conceptually
lies in a different representation space, and constitutes
a more abstract and higher-level representation of the
input (Bengio, 2009).

In order to address these concerns, we investi-
gate deep RNNs, which are constructed by stacking
Elman-type RNNs on top of each other (Hermans and
Schrauwen, 2013). Intuitively, every layer of the deep
RNN treats the memory sequence of the previous layer
as the input sequence, and computes its own memory
representation.

More formally, we have:
−→
h

(i)
t = f(

−→
W (i)
→
−→
h

(i−1)
t +

−→
W (i)
←
←−
h

(i−1)
t

+
−→
V (i)−→h (i)

t−1 +
−→
b (i)) (6)

←−
h

(i)
t = f(

←−
W (i)
→
−→
h

(i−1)
t +

←−
W (i)
←
←−
h

(i−1)
t

+
←−
V (i)←−h (i)

t+1 +
←−
b (i)) (7)

when i > 1 and
−→
h

(1)
t = f(

−→
W (1)xt +

−→
V (1)−→h (1)

t−1 +
−→
b (1)) (8)

←−
h

(1)
t = f(

←−
W (1)xt +

←−
V (1)←−h (1)

t+1 +
←−
b (1)) (9)

Importantly, note that both forward and backward rep-
resentations are employed when computing the forward
and backward memory of the next layer.

Two alternatives for the output layer computations
are to employ all memory layers or only the last. In
this work we adopt the second approach:

yt = g(U→
−→
h

(L)
t + U←

←−
h

(L)
t + c) (10)

whereL is the number of layers. Intuitively, connecting
the output layer to only the last hidden layer forces the
architecture to capture enough high-level information
at the final layer for producing the appropriate output-
layer decision.

Training a deep RNN can be conceptualized as in-
terleaved applications of the conventional backprop-
agation across multiple layers, and backpropagation
through time within a single layer.

The unidirectional and bidirectional deep RNNs are
depicted in the bottom half of Figure 1.

Hypotheses. In general, we expected that the deep
RNNs would show the most improvement over shal-
low RNNS for ESEs — phrases that implicitly convey
subjectivity. Existing research has shown that these
are harder to identify than direct expressions of sub-
jectivity (DSEs): they are variable in length and in-
volve terms that, in many (or most) contexts, are neu-
tral with respect to sentiment and subjectivity. As a re-
sult, models that do a better job interpreting the context
should be better at disambiguating subjective vs. non-
subjective uses of phrases involving common words
(e.g. “as usual”, “in fact”). Whether or not deep RNNs
would be powerful enough to outperform the state-of-
the-art semiCRF was unclear, especially if the semi-
CRF is given access to the distributed word represen-
tations (embeddings) employed by the deep RNNs. In
addition, the semiCRF has access to parse tree informa-
tion and opinion lexicons, neither of which is available
to the deep RNNs.

4 Experiments
Activation Units. We employ the standard softmax
activation for the output layer: g(x) = exi/

∑
j e

xj .
For the hidden layers we use the rectifier linear ac-
tivation: f(x) = max{0, x}. Experimentally, recti-
fier activation gives better performance, faster conver-
gence, and sparse representations. Previous work also
reported good results when training deep neural net-
works using rectifiers, without a pretraining step (Glo-
rot et al., 2011).

Data. We use the MPQA 1.2 corpus (Wiebe et al.,
2005) (535 news articles, 11,111 sentences) that is
manually annotated with both DSEs and ESEs at the
phrase level. As in previous work, we separate 135
documents as a development set and employ 10-fold
CV over the remaining 400 documents. The develop-
ment set is used during cross validation to do model
selection.
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Layers |h| Precision Recall F1
Prop. Bin. Prop. Bin. Prop Bin.

Shallow 36 62.24 65.90 65.63* 73.89* 63.83 69.62
Deep 2 29 63.85* 67.23* 65.70* 74.23* 64.70* 70.52*
Deep 3 25 63.53* 67.67* 65.95* 73.87* 64.57* 70.55*
Deep 4 22 64.19* 68.05* 66.01* 73.76* 64.96* 70.69*
Deep 5 21 60.65 61.67 56.83 69.01 58.60 65.06
Shallow 200 62.78 66.28 65.66* 74.00* 64.09 69.85
Deep 2 125 62.92* 66.71* 66.45* 74.70* 64.47 70.36
Deep 3 100 65.56* 69.12* 66.73* 74.69* 66.01* 71.72*
Deep 4 86 61.76 65.64 63.52 72.88* 62.56 69.01
Deep 5 77 61.64 64.90 62.37 72.10 61.93 68.25

Table 2: Experimental evaluation of RNNs for DSE extraction

Layers |h| Precision Recall F1
Prop. Bin. Prop. Bin. Prop Bin.

Shallow 36 51.34 59.54 57.60 72.89* 54.22 65.44
Deep 2 29 51.13 59.94 61.20* 75.37* 55.63* 66.64*
Deep 3 25 53.14* 61.46* 58.01 72.50 55.40* 66.36*
Deep 4 22 51.48 60.59* 59.25* 73.22 54.94 66.15*
Deep 5 21 49.67 58.42 48.98 65.36 49.25 61.61
Shallow 200 52.20* 60.42* 58.11 72.64 54.75 65.75
Deep 2 125 51.75* 60.75* 60.69* 74.39* 55.77* 66.79*
Deep 3 100 52.04* 60.50* 61.71* 76.02* 56.26* 67.18*
Deep 4 86 50.62* 58.41* 53.55 69.99 51.98 63.60
Deep 5 77 49.90* 57.82 52.37 69.13 51.01 62.89

Table 3: Experimental evaluation of RNNs for ESE extraction

Evaluation Metrics. We use precision, recall and F-
measure for performance evaluation. Since the bound-
aries of expressions are hard to define even for human
annotators (Wiebe et al., 2005), we use two soft notions
of the measures: Binary Overlap counts every over-
lapping match between a predicted and true expres-
sion as correct (Breck et al., 2007; Yang and Cardie,
2012), and Proportional Overlap imparts a partial cor-
rectness, proportional to the overlapping amount, to
each match (Johansson and Moschitti, 2010; Yang and
Cardie, 2012). All statistical comparisons are done us-
ing a two-sided paired t-test with a confidence level of
α = .05.

Baselines (CRF and SEMICRF). As baselines, we
use the CRF-based method of Breck et al. (2007)
and the SEMICRF-based method of Yang and Cardie
(2012), which is the state-of-the-art in opinion expres-
sion extraction. Features that the baselines use are
words, part-of-speech tags and membership in a manu-
ally constructed opinion lexicon (within a [-1, +1] con-
text window). Since SEMICRF relaxes the Markovian
assumption and operates at the segment-level instead
of the token-level, it also has access to parse trees of
sentences to generate candidate segments (Yang and
Cardie, 2012).

Word Vectors (+VEC). We also include versions of
the baselines that have access to pre-trained word vec-
tors. In particular, CRF+VEC employs word vectors
as continuous features per every token. Since SEMI-
CRF has phrase-level rather than word-level features,
we simply take the mean of every word vector for a
phrase-level vector representation for SEMICRF+VEC
as suggested in Mikolov et al. (2013).

In all of our experiments, we keep the word vec-
tors fixed (i.e. do not finetune) to reduce the degree
of freedom of our models. We use the publicly avail-
able 300-dimensional word vectors of Mikolov et al.
(2013), trained on part of the Google News dataset
(∼100B words). Preliminary experiments with other
word vector representations such as Collobert-Weston
(2008) embeddings or HLBL (Mnih and Hinton, 2007)
provided poorer results (∼ −3% difference in propor-
tional and binary F1).

Regularizer. We do not employ any regularization
for smaller networks (∼24,000 parameters) because we
have not observed strong overfitting (i.e. the differ-
ence between training and test performance is small).
Larger networks are regularized with the recently pro-
posed dropout technique (Hinton et al., 2012): we ran-
domly set entries of hidden representations to 0 with
a probability called the dropout rate, which is tuned
over the development set. Dropout prevents learned
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Model Precision Recall F1
Prop. Bin. Prop. Bin. Prop Bin.

DSE CRF 74.96* 82.28* 46.98 52.99 57.74 64.45
semiCRF 61.67 69.41 67.22* 73.08* 64.27 71.15*
CRF +vec 74.97* 82.43* 49.47 55.67 59.59 66.44
semiCRF +vec 66.00 71.98 60.96 68.13 63.30 69.91
Deep RNN 3 100 65.56 69.12 66.73* 74.69* 66.01* 71.72*

ESE CRF 56.08 68.36 42.26 51.84 48.10 58.85
semiCRF 45.64 69.06 58.05 64.15 50.95 66.37*
CRF +vec 57.15* 69.84* 44.67 54.38 50.01 61.01
semiCRF +vec 53.76 70.82* 52.72 61.59 53.10 65.73
Deep RNN 3 100 52.04 60.50 61.71* 76.02* 56.26* 67.18*

Table 4: Comparison of Deep RNNs to state-of-the-art (semi)CRF baselines for DSE and ESE detection

features from co-adapting, and it has been reported
to yield good results when training deep neural net-
works (Krizhevsky et al., 2012; Dahl et al., 2013).

Network Training. We use the standard multiclass
cross-entropy as the objective function when training
the neural networks. We use stochastic gradient de-
scent with momentum with a fixed learning rate (.005)
and a fixed momentum rate (.7). We update weights
after minibatches of 80 sentences. We run 200 epochs
for training. Weights are initialized from small random
uniform noise. We experiment with networks of vari-
ous sizes, however we have the same number of hidden
units across multiple forward and backward hidden lay-
ers of a single RNN. We do not employ a pre-training
step; deep architectures are trained with the supervised
error signal, even though the output layer is connected
to only the final hidden layer. With these configura-
tions, every architecture successfully converges with-
out any oscillatory behavior. Additionally, we employ
early stopping for the neural networks: out of all itera-
tions, the model with the best development set perfor-
mance (Proportional F1) is selected as the final model
to be evaluated.

4.1 Results and Discussion

Bidirectional vs. Unidirectional. Although our fo-
cus is on bidirectional RNNs, we first confirm that the
SHALLOW bidirectional RNN outperforms a (shallow)
unidirectional RNN for both DSE and ESE recogni-
tion. To make the comparison fair, each network has
the same number of total parameters: we use 65 hid-
den units for the unidirectional, and 36 for the bidirec-
tional network, respectively. Results are as expected:
the bidirectional RNN obtains higher F1 scores than the
unidirectional RNN — 63.83 vs. 60.35 (proportional
overlap) and 69.62 vs. 68.31 (binary overlap) for DSEs;
54.22 vs. 51.51 (proportional) and 65.44 vs. 63.65 (bi-
nary) for ESEs. All differences are statistically signif-
icant at the 0.05 level. Thus, we will not include com-
parisons to the unidirectional RNNs in the remaining
experiments.

Adding Depth. Next, we quantitatively investigate
the effects of adding depth to RNNs. Tables 2
and 3 show the evaluation of RNNs of various depths
and sizes. In both tables, the first group networks
have approximately 24,000 parameters and the second
group networks have approximately 200,000 parame-
ters. Since all RNNs within a group have approxi-
mately the same number of parameters, they grow nar-
rower as they get deeper. Within each group, bold
shows the best result with an asterisk denoting statis-
tically indistinguishable performance with respect to
the best. As noted above, all statistical comparisons
use a two-sided paired t-test with a confidence level of
α = .05.

In both DSE and ESE detection and for larger net-
works (bottom set of results), 3-layer RNNs provide the
best results. For smaller networks (top set of results),
2, 3 and 4-layer RNNs show equally good performance
for certain sizes and metrics and, in general, adding ad-
ditional layers degrades performance. This could be re-
lated to how we train the architectures as well as to the
decrease in width of the networks. In general, we ob-
serve a trend of increasing performance as we increase
the number of layers, until a certain depth.

deepRNNs vs. (semi)CRF. Table 4 shows compari-
son of the best deep RNNs to the previous best results
in the literature. In terms of F-measure, DEEP RNN
performs best for both DSE and ESE detection, achiev-
ing a new state-of-the-art performance for the more
strict proportional overlap measure, which is harder to
improve upon than the binary evaluation metric. SEMI-
CRF, with its very high recall, performs comparably to
the DEEP RNN on the binary metric. Note that RNNs
do not have access to any features other than word vec-
tors.

In general, CRFs exhibit high precision but low re-
call (CRFs have the best precision on both DSE and
ESE detection) while SEMICRFs exhibit a high re-
call, low precision performance. Compared to SEMI-
CRF, the DEEP RNNs produce an even higher recall
but sometimes lower precision for ESE detection. This
suggests that the methods are complementary, and can
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(1)
The situation obviously remains fluid from hour to hour but it [seems to be] [going in the right direction]

DEEPRNN The situation [obviously] remains fluid from hour to hour but it [seems to be going in the right] direction
SHALLOW The situation [obviously] remains fluid from hour to hour but it [seems to be going in] the right direction
SEMICRF The situation [obviously remains fluid from hour to hour but it seems to be going in the right direction]

(2)
have always said this is a multi-faceted campaign [but equally] we have also said any future military action
[would have to be based on evidence] , ...

DEEPRNN have always said this is a multi-faceted campaign but [equally we] have also said any future military action
[would have to be based on evidence] , ...

SHALLOW have always said this is a multi-faceted [campaign but equally we] have also said any future military action
would have to be based on evidence , ...

SEMICRF have always said this is a multi-faceted campaign but equally we have also said any future military action
would have to be based on evidence , ...

(3)
Ruud Lubbers , the United Nations Commissioner for Refugees , said Afghanistan was [not yet] secure
for aid agencies to operate in and “ [not enough] ” food had been taken into the country .

DEEPRNN Ruud Lubbers , the United Nations Commissioner for Refugees , said Afghanistan was [not yet] secure
for aid agencies to operate in and “ [not enough] ” food had been taken into the country .

SHALLOW Ruud Lubbers , the United Nations Commissioner for Refugees , said Afghanistan was [not yet] secure
for aid agencies to operate in and “ [not enough] ” food had been taken into the country .

SEMICRF Ruud Lubbers , the United Nations Commissioner for Refugees , said Afghanistan was not yet secure
for aid agencies to operate in and “ not enough ” food had been taken into the country .

Figure 2: Examples of output. In each set, the gold-standard annotations are shown in the first line.

potentially be even more powerful when combined in
an ensemble method.

Word vectors. Word vectors help CRFs on both pre-
cision and recall on both tasks. However, SEMICRFs
become more conservative with word vectors, produc-
ing higher precision and lower recall on both tasks.
This sometimes hurts overall F-measure.

Among the (SEMI)CRF-based methods, SEMICRF
obtains the highest F1 score for DSEs and for ESEs
using the softer metric; SEMICRF+VEC performs best
for ESEs according to the stricter proportional overlap
measure.

Network size. Finally, we observe that even small
networks (such as 4-layer deep RNN for DSE and
2-layer deep RNN for ESE) outperform conventional
CRFs. This suggests that with the help of good word
vectors, we can train compact but powerful sequential
neural models.

When examining the output, we see some system-
atic differences between the previously top-performing
SEMICRF and the RNN-based models. (See Figure 2.)
First, SEMICRF often identifies excessively long sub-
jective phrases as in Example 1. Here, none of the mod-
els exactly matches the gold standard, but the RNNs
are much closer. And all three models appear to have
identified an ESE that was mistakenly omitted by the
human annotator — “obviously”. At the same time,
the SEMICRF sometimes entirely misses subjective ex-
pressions that the RNNs identify — this seems to occur
when there are no clear indications of sentiment in the

subjective expression. The latter can be seen in Exam-
ples 2 and 3, in which the SEMICRF does not identify
“but equally”, “would have to be based on evidence”,
“not yet”, and “not enough”.

We also observe evidence of the power of the DEEP-
RNN over the SHALLOWRNN in Examples 4 and 5.
(See Figure 3.) In contrast to Figure 2, Figure 3 dis-
tinguishes subjective expressions that are (correctly)
assigned an initial Begin label from those that con-
sist only of Inside labels2 — the latter are shown in
ALL CAPS and indicate some degree of confusion in
the model that produced them. In Example 4, SHAL-
LOWRNN exhibits some evidence for each ESE — it
labels one or more tokens as Inside an ESE (“any” and
“time”). But it does not explicitly tag the beginning
of the ESE. DEEPRNN does better, identifying the first
ESE in its entirety (“in any case”) and identifying more
words as being Inside the second ESE (“it is high time).
A similar situation occurs in Example 5.

5 Conclusion

In this paper we have explored an application of deep
recurrent neural networks to the task of sentence-level
opinion expression extraction. We empirically evalu-
ated deep RNNs against conventional, shallow RNNs
that have only a single hidden layer. We also com-
pared our models with previous (semi)CRF-based ap-
proaches.

Experiments showed that deep RNNs outperformed
shallow RNNs on both DSE and ESE extrac-

2Sequences of I’s are decoded as the associated DSE or
ESE even though they lack the initial B.
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(4)
[In any case] , [it is high time] that a social debate be organized ...

DEEPRNN [In any case] , it is HIGH TIME that a social debate be organized ...
SHALLOW In ANY case , it is high TIME that a social debate be organized ...
(5)

Mr. Stoiber [has come a long way] from his refusal to [sacrifice himself] for the CDU in an election that
[once looked impossible to win] , through his statement that he would [under no circumstances]
run against the wishes...

DEEPRNN Mr. Stoiber [has come a long way from] his [refusal to sacrifice himself] for the CDU in an election that
[once looked impossible to win] , through his statement that he would [under no circumstances
run against] the wishes...

SHALLOW Mr. Stoiber has come A LONG WAY FROM his refusal to sacrifice himself for the CDU in an election that
[once looked impossible] to win , through his statement that he would under NO CIRCUMSTANCES
run against the wishes...

Figure 3: DEEPRNN Output vs. SHALLOWRNN Output. In each set of examples, the gold-standard annotations
are shown in the first line. Tokens assigned a label of Inside with no preceding Begin tag are shown in ALL CAPS.

tion. Furthermore, deep RNNs outperformed previous
(semi)CRF baselines, achieving new state-of-the-art re-
sults for fine-grained on opinion expression extraction.

We have trained our deep networks without any pre-
training and with only the last hidden layer connected
to the output layer. One potential future direction is
to explore the effects of pre-training on the architec-
ture. Pre-training might help to exploit the additional
representational power available in deeper networks.
Another direction is to investigate the impact of fine-
tuning the word vectors during supervised training.
Additionally, alternative notions of depth that are or-
thogonal to stacking, as in Pascanu et al. (2013) can be
investigated for this task.
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Abstract

We propose the first implementation of
an infinite-order generative dependency
model. The model is based on a new
recursive neural network architecture, the
Inside-Outside Recursive Neural Network.
This architecture allows information to
flow not only bottom-up, as in traditional
recursive neural networks, but also top-
down. This is achieved by computing
content as well as context representations
for any constituent, and letting these rep-
resentations interact. Experimental re-
sults on the English section of the Uni-
versal Dependency Treebank show that
the infinite-order model achieves a per-
plexity seven times lower than the tradi-
tional third-order model using counting,
and tends to choose more accurate parses
in k-best lists. In addition, reranking with
this model achieves state-of-the-art unla-
belled attachment scores and unlabelled
exact match scores.

1 Introduction

Estimating probability distributions is the core is-
sue in modern, data-driven natural language pro-
cessing methods. Because of the traditional defi-
nition of discrete probability

Pr(A) ≡ the number of times A occurs
the size of event space

counting has become a standard method to tackle
the problem. When data are sparse, smoothing
techniques are needed to adjust counts for non-
observed or rare events. However, successful use
of those techniques has turned out to be an art. For
instance, much skill and expertise is required to
create reasonable reduction lists for back-off, and
to avoid impractically large count tables, which
store events and their counts.

An alternative to counting for estimating prob-
ability distributions is to use neural networks.
Thanks to recent advances in deep learning, this
approach has recently started to look very promis-
ing again, with state-of-the-art results in senti-
ment analysis (Socher et al., 2013), language mod-
elling (Mikolov et al., 2010), and other tasks. The
Mikolov et al. (2010) work, in particular, demon-
strates the advantage of neural-network-based ap-
proaches over counting-based approaches in lan-
guage modelling: it shows that recurrent neu-
ral networks are capable of capturing long histo-
ries efficiently and surpass standard n-gram tech-
niques (e.g., Kneser-Ney smoothed 5-gram).

In this paper, keeping in mind the success of
these models, we compare the two approaches.
Complementing recent work that focused on such
a comparison for the case of finding appropriate
word vectors (Baroni et al., 2014), we focus here
on models that involve more complex, hierarchical
structures. Starting with existing generative mod-
els that use counting to estimate probability distri-
butions over constituency and dependency parses
(e.g., Eisner (1996b), Collins (2003)), we develop
an alternative based on recursive neural networks.
This is a non-trivial task because, to our knowl-
edge, no existing neural network architecture can
be used in this way. For instance, classic recur-
rent neural networks (Elman, 1990) unfold to left-
branching trees, and are not able to process ar-
bitrarily shaped parse trees that the counting ap-
proaches are applied to. Recursive neural net-
works (Socher et al., 2010) and extensions (Socher
et al., 2012; Le et al., 2013), on the other hand,
do work with trees of arbitrary shape, but pro-
cess them in a bottom-up manner. The probabil-
ities we need to estimate are, in contrast, defined
by top-down generative models, or by models that
require information flows in both directions (e.g.,
the probability of generating a node depends on
the whole fragment rooted at its just-generated sis-
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Figure 1: Inner (ip) and outer (op) representations
at the node that covers constituent p. They are vec-
torial representations of p’s content and context,
respectively.

ter).
To tackle this problem, we propose a new ar-

chitecture: the Inside-Outside Recursive Neural
Network (IORNN) in which information can flow
not only bottom-up but also top-down, inward and
outward. The crucial innovation in our architec-
ture is that every node in a hierarchical structure
is associated with two vectors: one vector, the in-
ner representation, representing the content under
that node, and another vector, the outer represen-
tation, representing its context (see Figure 1). In-
ner representations can be computed bottom-up;
outer representations, in turn, can be computed
top-down. This allows information to flow in
any direction, depending on the application, and
makes the IORNN a natural tool for estimating
probabilities in tree-based generative models.

We demonstrate the use of the IORNN by ap-
plying it to an ∞-order generative dependency
model which is impractical for counting due to
the problem of data sparsity. Counting, instead, is
used to estimate a third-order generative model as
in Sangati et al. (2009) and Hayashi et al. (2011).
Our experimental results show that our new model
not only achieves a seven times lower perplex-
ity than the third-order model, but also tends to
choose more accurate candidates in k-best lists. In
addition, reranking with this model achieves state-
of-the-art scores on the task of supervised depen-
dency parsing.

The outline of the paper is following. Firstly, we
give an introduction to Eisner’s generative model
in Section 2. Then, we present the third-order
model using counting in Section 3, and propose
the IORNN in Section 4. Finally, in Section 5 we
show our experimental results.

2 Eisner’s Generative Model

Eisner (1996b) proposed a generative model for

dependency parsing. The generation process is
top-down: starting at the ROOT, it generates
left dependents and then right dependents for the
ROOT. After that, it generates left dependents and
right dependents for each of ROOT’s dependents.
The process recursively continues until there is no
further dependent to generate. The whole process
is captured in the following formula

P (T (H)) =
L∏
l=1

P
(
HL
l |CHL

l

)
P
(
T (HL

l )
)×

R∏
r=1

P
(
HR
r |CHR

r

)
P
(
T (HR

r )
)

(1)

whereH is the current head, T (N) is the fragment
of the dependency parse rooted in N , and CN is
the context in which N is generated. HL, HR are
respectively H’s left dependents and right depen-
dents, plus EOC (End-Of-Children), a special to-
ken to indicate that there are no more dependents
to generate. Thus, P (T (ROOT )) is the proba-
bility of generating the entire dependency struc-
ture T . We refer to 〈HL

l , CHL
l
〉, 〈HR

r , CHR
r
〉 as

“events”, and 〈CHL
l
〉, 〈CHR

r
〉 as “conditioning con-

texts”.
In order to avoid the problem of data sparsity,

the conditioning context in which a dependent D
is generated should capture only part of the frag-
ment generated so far. Based on the amount of
information that contexts hold, we can define the
order of a generative model (see Hayashi et al.
(2011, Table 3) for examples)

• first-order: C1
D contains the head H ,

• second-order: C2
D contains H and the just-

generated sibling S,
• third-order: C3

D contains H , S, the sibling S′

before S (tri-sibling); or H , S and the grand-
head G (the head of H) (grandsibling) (the
fragment enclosed in the blue doted contour
in Figure 2),
• ∞-order: C∞D contains all of D’s ancestors,

theirs siblings, and its generated siblings (the
fragment enclosed in the red dashed contour
in Figure 2).

In the original models (Eisner, 1996a), each de-
pendent D is a 4-tuple 〈dist, w, c, t〉
• dist(H,D) the distance between D and its

headH , represented as one of the four ranges
1, 2, 3-6, 7-∞.
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Figure 2: Example of different orders of context of “diversified”. The blue dotted shape corresponds
to the third-order outward context, while the red dashed shape corresponds to the∞-order left-to-right
context. The green dot-dashed shape corresponds to the context to compute the outer representation.

• word(D) the lowercase version of the word
of D,
• cap(D) the capitalisation feature of the word

of D (all letters are lowercase, all letters are
uppercase, the first letter is uppercase, the
first letter is lowercase),
• tag(D) the POS-tag of D,

Here, to make the dependency complete,
deprel(D), the dependency relation of D (e.g.,
SBJ, DEP), is also taken into account.

3 Third-order Model with Counting

The third-order model we suggest is similar to
the grandsibling model proposed by Sangati et
al. (2009) and Hayashi et al. (2011). It defines
the probability of generating a dependent D =
〈dist, d, w, c, t〉 as the product of the distance-
based probability and the probabilities of gener-
ating each of its components (d, t, w, c, denoting
dependency relation, POS-tag, word and capitali-
sation feature, respectively). Each of these prob-
abilities is smoothed using back-off according to
the given reduction lists (as explained below).

P (D|CD)

= P (dist(H,D), dwct(D)|H,S,G, dir)
= P (d(D)|H,S,G, dir)

reduction list:

tw(H), tw(S), tw(G), dir
tw(H), tw(S), t(G), dir{
tw(H), t(S), t(G), dir
t(H), tw(S), t(G), dir

t(H), t(S), t(G), dir

× P (t(D)|d(D), H, S,G, dir)

reduction list:
d(D), dtw(H), t(S), dir
d(D), d(H), t(S), dir
d(D), d(D), dir

× P (w(D)|dt(D), H, S,G, dir)

reduction list:
dtw(H), t(S), dir
dt(H), t(S), dir

× P (c(D)|dtw(D), H, S,G, dir)

reduction list:
tw(D), d(H), dir
tw(D), dir

× P (dist(H,D)|dtwc(D), H, S,G, dir) (2)

reduction list:
dtw(D), dt(H), t(S), dir
dt(D), dt(H), t(S), dir

The reason for generating the dependency rela-
tion first is based on the similarity between rela-
tion/dependent and role/filler: we generate a role
and then choose a filler for that role.

Back-off The back-off parameters are identi-
cal to Eisner (1996b). To estimate the proba-
bility P (A|context) given a reduction list L =
(l1, l2, ..., ln) of context, let

pi =

{
count(A,li)+0.005
count(li)+0.5 if i = n

count(A,li)+3pi+1

count(li)+3 otherwise

then P (A|context) = p1.

4 The Inside-Outside Recursive Neural
Network

In this section, we first describe the Recur-
sive Neural Network architecture of Socher et
al. (2010) and then propose an extension we
call the Inside-Outside Recursive Neural Network
(IORNN). The IORNN is a general architecture
for trees, which works with tree-based genera-
tive models including those employed by Eisner
(1996b) and Collins (2003). We then explain how
to apply the IORNN to the∞-order model. Note
that for the present paper we are only concerned
with the problem of computing the probability of

731



Figure 3: Recursive Neural Network (RNN).

a tree; we assume an independently given parser is
available to assign a syntactic structure, or multi-
ple candidate structures, to an input string.

4.1 Recursive Neural Network

The architecture we propose can best be under-
stood as an extension of the Recursive Neural Net-
works (RNNs) proposed by Socher et al. (2010),
that we mentioned above. In order to see how
an RNN works, consider the following example.
Assume that there is a constituent with parse tree
(p2 (p1 x y) z) (Figure 3), and that x,y, z ∈ Rn

are the (inner) representations of the three words
x, y and z, respectively. We use a neural network
which consists of a weight matrix W1 ∈ Rn×n for
left children and a weight matrix W2 ∈ Rn×n for
right children to compute the vector for a parent
node in a bottom up manner. Thus, we compute
p1 as follows

p1 = f(W1x + W2y + b)

where b is a bias vector and f is an activation
function (e.g., tanh or logistic). Having computed
p1, we can then move one level up in the hierarchy
and compute p2:

p2 = f(W1p1 + W2z + b)

This process is continued until we reach the root
node. The RNN thus computes a single vector
for each node p in the tree, representing the con-
tent under that node. It has in common with log-
ical semantics that representations for compounds
(here xyz) are computed by recursively applying a
composition function to meaning representations
of the parts. It is difficult to characterise the ex-
pressivity of the resulting system in logical terms,
but recent work suggests it is surprisingly power-
ful (e.g., Kanerva (2009)).

Figure 4: Inside-Outside Recursive Neural Net-
work (IORNN). Black rectangles correspond to in-
ner representations, white rectangles correspond
to outer representations.

4.2 IORNN

We extend the RNN-architecture by adding a sec-
ond vector to each node, representing the context
of the node, shown as white rectangles in figure 4.
The job of this second vector, the outer represen-
tation, is to summarize all information about the
context of node p so that we can either predict its
content (i.e., predict an inner representation), or
pass on this information to the daughters of p (i.e.,
compute outer representations of these daughters).
Outer representations thus allow information to
flow top-down.

We explain the operation of the resulting Inside-
Outside Recursive Neural Network in terms of the
same example parse tree (p2 (p1 x y) z) (see Fig-
ure 4). Each node u in the syntactic tree carries
two vectors ou and iu, the outer representation and
inner representation of the constituent that is cov-
ered by the node.

Computing inner representations Inner repre-
sentations are computed from the bottom up. We
assume for every word w an inner representation
iw ∈ Rn. The inner representation of a non-
terminal node, say p1, is given by

ip1 = f(Wi
1ix + Wi

2iy + bi)

where Wi
1,W

i
2 are n × n real matrices, bi is a

bias vector, and f is an activation function, e.g.
tanh. (This is the same as the computation of
non-terminal vectors in the RNNs.) The inner rep-
resentation of a parent node is thus a function of
the inner representations of its children.

Computing outer representations Outer repre-
sentations are computed from the top down. For a
node which is not the root, say p1, the outer repre-
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sentation is given by

op1 = g(Wo
1op2 + Wo

2iz + bo)

where Wo
1,W

o
2 are n × n real matrices, bo is a

bias vector, and g is an activation function. The
outer representation of a node is thus a function of
the outer representation of its parent and the inner
representation of its sisters.

If there is information about the external context
of the utterance that is being processed, this infor-
mation determines the outer representation of the
root node oroot. In our first experiments reported
here, no such information was assumed to be avail-
able. In this case, a random value o∅ is chosen at
initialisation and assigned to the root nodes of all
utterances; this value is then adjusted by the learn-
ing process discussed below.

Training Training the IORNN is to minimise an
objective function J(θ) which depends on the pur-
pose of usage where θ is the set of parameters. To
do so, we compute the gradient ∂J/∂θ and ap-
ply the gradient descent method. The gradient is
effectively computed thanks to back-propagation
through structure (Goller and Küchler, 1996). Fol-
lowing Socher et al. (2013), we use AdaGrad
(Duchi et al., 2011) to update the parameters.

4.3 The∞-order Model with IORNN
The RNN and IORNN are defined for context-
free trees. To apply the IORNN architecture to
dependency parses we need to adapt the defini-
tions somewhat. In particular, in the generative
dependency model, every step in the generative
story involves the decision to generate a specific
word while the span of the subtree that this word
will dominate only becomes clear when all depen-
dents are generated. We therefore introduce par-
tial outer representation as a representation of the
current context of a word in the generative pro-
cess, and compute the final outer representation
only when all its siblings have been generated.

Consider an example of head h and its depen-
dents x, y (we ignore directions for simplicity) in
Figure 5. Assume that we are in the state in the
generative process where the generation of h is
complete, i.e. we know its inner and outer rep-
resentations ih and oh. Now, when generating h’s
first dependent x (see Figure 5-a), we first com-
pute x’s partial outer representation (representing
its context at this stage in the process), which is
a function of the outer representation of the head

(representing the head’s context) and the inner rep-
resentation of the head (representing the content of
the head word):

ō1 = f(Whiih + Whooh + bo)

where Whi,Who are n × n real matrices, bo is a
bias vector, f is an activation function.

With the context of the first dependent deter-
mined, we can proceed and generate its content.
For this purpose, we assume a separate weight ma-
trix W, trained (as explained below) to predict a
specific word given a (partial) outer representa-
tion. To compute a proper probability for word
x, we use the softmax function:

softmax(x, ō1) =
eu(x,ō1)∑

w∈V eu(w,ō1)

where
[
u(w1, ō1), ..., u(w|V |, ō1)

]T = Wō1 + b
and V is the set of all possible dependents.

Note that since oh, the outer representation of
h, represents the entire dependency structure gen-
erated up to that point, ō1 is a vectorial represen-
tation of the ∞-order context generating the first
dependent (like the fragment enclosed in the red
dashed contour in Figure 2). The softmax func-
tion thus estimates the probability P (D = x|C∞D ).

The next step, now that x is generated, is to
compute the partial outer representation for the
second dependent (see Figure 5-b)

ō2 = f(Whiih + Whooh + Wdr(x)ix + bo)

where Wdr(x) is a n × n real matrix specific for
the dependency relation of x with h.

Next y is generated (using the softmax function
above), and the partial outer representation for the
third dependent (see Figure 5-c) is computed:

ō3 = f(Whiih + Whooh+
1
2
(
Wdr(x)ix + Wdr(y)iy

)
+ bo)

Since the third dependent is the End-of-
Children symbol (EOC), the process of generat-
ing dependents for h stops. We can then return
to x and y to replace the partial outer represen-
tations with complete outer representations1 (see

1According to the IORNN architecture, to compute the
outer representation of a node, the inner representations of
the whole fragments rooting at its sisters must be taken into
account. Here, we replace the inner representation of a frag-
ment by the inner representation of its root since the meaning
of a phrase is often dominated by the meaning of its head.
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Figure 5: Example of applying IORNN to dependency parsing. Black, grey, white boxes are respectively
inner, partial outer, and outer representations. For simplicity, only links related to the current computation
are drawn (see text).

Figure 5-d,e):

ox = f(Whiih + Whooh + Wdr(y)iy + bo)

oy = f(Whiih + Whooh + Wdr(x)ix + bo)

In general, if u is the first dependent of h then

ōu = f(Whiih + Whooh + bo)

otherwise

ōu = f(Whiih + Whooh + bo+
1

|S̄(u)|
∑

v∈S̄(u)

Wdr(v)iv)

where S̄(u) is the set of u’s sisters generated be-
fore it. And, if u is the only dependent of h (ig-
noring EOC) then

ou = f(Whiih + Whooh + bo)

otherwise

ou = f(Whiih + Whooh + bo+
1

|S(u)|
∑

v∈S(u)

Wdr(v)iv)

where S(u) is the set of u’s sisters.
We then continue this process to generate de-

pendents for x and y until the process stops.

Inner Representations In the calculation of the
probability of generating a word, described above,
we assumed inner representations of all possible
words to be given. These are, in fact, themselves a
function of vector representations for the words (in
our case, the word vectors are initially borrowed
from Collobert et al. (2011)), the POS-tags and
capitalisation features. That is, the inner represen-
tation at a node h is given by:

ih = f (Wwwh + Wpph + Wcch)

where Ww ∈ Rn×dw , Wp ∈ Rn×dp , Wc ∈
Rn×dc , wh is the word vector of h, and ph, ch are
respectively binary vectors representing the POS-
tag and capitalisation feature of h.

Training Training this IORNN is to minimise
the following objective function which is the reg-
ularised cross-entropy

J(θ) =− 1
m

∑
T∈D

∑
w∈T

log(P (w|ōw))

+
1
2
(
λW ‖θW ‖2 + λL‖θL‖2

)
where D is the set of training dependency parses,
m is the number of dependents; θW , θL are
the weight matrix set and the word embeddings
(θ = (θW , θL)); λW , λL are regularisation hyper-
parameters.

Implementation We decompose a dependent D
into four features: dependency relation, POS-tag,
lowercase version of word, capitalisation feature
of word. We then factorise P (D|C∞D ) similarly to
Section 3, where each component is estimated by
a softmax function.

5 Experiments

In our experiments, we convert the Penn Treebank
to dependencies using the Universal dependency
annotation (McDonald et al., 2013)2; this yields
a dependency tree corpus we label PTB-U. In or-
der to compare with other systems, we also ex-
periment with an alternative conversion using the
head rules of Yamada and Matsumoto (2003)3;
this yields a dependency tree corpus we label PTB-
YM. Sections 2-21 are used for training, section
22 for development, and section 23 for testing. For
the PTB-U, the gold POS-tags are used. For the
PTB-YM, the development and test sets are tagged
by the Stanford POS-tagger4 trained on the whole

2https://code.google.com/p/uni-dep-tb/
3http://stp.lingfil.uu.se/˜nivre/

research/Penn2Malt.html
4http://nlp.stanford.edu/software/

tagger.shtml
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Perplexity
3rd-order model 1736.73
∞-order model 236.58

Table 1: Perplexities of the two models on PTB-
U-22.

training data, whereas 10-way jackknifing is used
to generate tags for the training set.

The vocabulary for both models, the third-order
model and the ∞-order model, is taken as a list
of words occurring more than two times in the
training data. All other words are labelled ‘UN-
KNOWN’ and every digit is replaced by ‘0’. For
the IORNN used by the ∞-order model, we set
n = 200, and define f as the tanh activation func-
tion. We initialise it with the 50-dim word embed-
dings from Collobert et al. (2011) and train it with
the learning rate 0.1, λW = 10−4, λL = 10−10.

5.1 Perplexity

We firstly evaluate the two models on PTB-U-22
using the perplexity-per-word metric

ppl(P ) = 2−
1
N

∑
T∈D log2 P (T )

where D is a set of dependency parses, N is the
total number of words. It is worth noting that,
the better P estimates the true distribution P ∗ of
D, the lower its perplexity is. Because Eisner’s
model with the dist(H,D) feature (Equation 2)
is leaky (the model allocates some probability to
events that can never legally arise), this feature is
discarded (only in this experiment).

Table 1 shows results. The perplexity of the
third-order model is more than seven times higher
than the∞-order model. This reflects the fact that
data sparsity is more problematic for counting than
for the IORNN.

To investigate why the perplexity of the third-
order model is so high, we compute the percent-
ages of events extracted from the development
set appearing more than twice in the training set.
Events are grouped according to the reduction lists
in Equation 2 (see Table 2). We can see that re-
ductions at level 0 (the finest) for dependency re-
lations and words seriously suffer from data spar-
sity: more than half of the events occur less than
three times, or not at all, in the training data. We
thus conclude that counting-based models heavily
rely on carefully designed reduction lists for back-
off.

back-off level d t w c
0 47.4 61.6 43.7 87.7
1 69.8 98.4 77.8 97.3
2 76.0, 89.5 99.7
3 97.9

total 76.1 86.6 60.7 92.5

Table 2: Percentages of events extracted from
PTB-U-22 appearing more than twice in the train-
ing set. Events are grouped according to the reduc-
tion lists in Equation 2. d, t, w, c stand for depen-
dency relation, POS-tag, word, and capitalisation
feature.

5.2 Reranking
In the second experiment, we evaluate the two
models in the reranking framework proposed by
Sangati et al. (2009) on PTB-U. We used the MST-
Parser (with the 2nd-order feature mode) (McDon-
ald et al., 2005) to generate k-best lists. Two
evaluation metrics are labelled attachment score
(LAS) and unlabelled attachment score (UAS), in-
cluding punctuation.

Rerankers Given D(S), a k-best list of parses
of a sentence S, we define the generative reranker

T ∗ = arg max
T∈D(S)

P (T (ROOT ))

which is identical to Sangati et al. (2009).
Moreover, as in many mixture-model-based ap-
proaches, we define the mixture reranker as a com-
bination of the generative model and the MST dis-
criminative model (Hayashi et al., 2011)

T ∗ = arg max
T∈D(S)

α logP (T (ROOT ))+(1−α)s(S, T )

where s(S, T ) is the score given by the MST-
Parser, and α ∈ [0, 1].

Results Figure 6 shows UASs of the generative
reranker on the development set. The MSTParser
achieves 92.32% and the Oracle achieve 96.23%
when k = 10. With the third-order model, the
generative reranker performs better than the MST-
Parser when k < 6 and the maximum improve-
ment is 0.17%. Meanwhile, with the ∞-order
model, the generative reranker always gains higher
UASs than the MSTParser, and with k = 6, the
difference reaches 0.7%. Figure 7 shows UASs of
the mixture reranker on the same set. α is opti-
mised by searching with the step-size 0.005. Un-
surprisingly, we observe improvements over the
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Figure 6: Performance of the generative reranker
on PTB-U-22.

Figure 7: Performance of the mixture reranker on
PTB-U-22. For each k, α was optimized with the
step-size 0.005.

LAS UAS
MSTParser 89.97 91.99
Oracle (k = 10) 93.73 96.24
Generative reranker with
3rd-order (k = 3) 90.27 (+0.30) 92.27 (+0.28)
∞-order (k = 6) 90.76 (+0.79) 92.83 (+0.84)
Mixture reranker with
3rd-order (k = 6) 90.62 (+0.65) 92.62 (+0.63)
∞-order (k = 9) 91.02 (+1.05) 93.08 (+1.09)

Table 3: Comparison based on reranking on PTB-
U-23. The numbers in the brackets are improve-
ments over the MSTParser.

generative reranker as the mixture reranker can
combine the advantages of the two models.

Table 3 shows scores of the two rerankers on the
test set with the parameters tuned on the develop-
ment set. Both the rerankers, either using third-
order or ∞-order models, outperform the MST-
Parser. The fact that both gain higher improve-
ments with the ∞-order model suggests that the
IORNN surpasses counting.

Figure 9: F1-scores of binned HEAD distance
(PTB-U-23).

5.3 Comparison with other systems

We first compare the mixture reranker using the
∞-order model against the state-of-the-art depen-
dency parser TurboParser (with the full mode)
(Martins et al., 2013) on PTB-U-23. Table 4 shows
LASs and UASs. When taking labels into account,
the TurboParser outperforms the reranker. But
without counting labels, the two systems perform
comparably, and when ignoring punctuation the
reranker even outperforms the TurboParser. This
pattern is also observed when the exact match met-
rics are used (see Table 4). This is due to the fact
that the TurboParser performs significantly better
than the MSTParser, which generates k-best lists
for the reranker, in labelling: the former achieves
96.03% label accuracy score whereas the latter
achieves 94.92%.

One remarkable point is that reranking with
the ∞-order model helps to improve the exact
match scores 4% - 6.4% (see Table 4). Because
the exact match scores correlate with the ability
to handle global structures, we conclude that the
IORNN is able to capture∞-order contexts. Fig-
ure 8 shows distributions of correct-head accuracy
over CPOS-tags and Figure 9 shows F1-scores of
binned HEAD distance. Reranking with the ∞-
order model is clearly helpful for all CPOS-tags
and dependent-to-head distances, except a minor
decrease on PRT.

We compare the reranker against other systems
on PTB-YM-23 using the UAS metric ignoring
punctuation (as the standard evaluation for En-
glish) (see Table 5). Our system performs slightly
better than many state-of-the-art systems such as
Martins et al. (2013) (a.k.a. TurboParser), Zhang
and McDonald (2012), Koo and Collins (2010).
It outperforms Hayashi et al. (2011) which is a
reranker using a combination of third-order gen-
erative models with a variational model learnt
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LAS (w/o punc) UAS (w/o punc) LEM (w/o punc) UEM (w/o punc)
MSTParser 89.97 (90.54) 91.99 (92.82) 32.37 (34.19) 42.80 (45.24)
w. ∞-order (k = 9) 91.02 (91.51) 93.08 (93.84) 37.58 (39.16) 49.17 (51.53)
TurboParser 91.56 (92.02) 93.05 (93.70) 40.65 (41.72) 48.05 (49.83)

Table 4: Comparison with the TurboParser on PTB-U-23. LEM and UEM are respectively the labelled
exact match score and unlabelled exact match score metrics. The numbers in brackets are scores com-
puted excluding punctuation.

Figure 8: Distributions of correct-head accuracy over CPOS-tags (PTB-U-23).

System UAS
Huang and Sagae (2010) 92.1
Koo and Collins (2010) 93.04
Zhang and McDonald (2012) 93.06
Martins et al. (2013) 93.07
Bohnet and Kuhn (2012) 93.39
Reranking
Hayashi et al. (2011) 92.89
Hayashi et al. (2013) 93.12
MST+∞-order (k = 12) 93.12

Table 5: Comparison with other systems on PTB-
YM-23 (excluding punctuation).

on the fly; performs equally with Hayashi et al.
(2013) which is a discriminative reranker using the
stacked technique; and slightly worse than Bohnet
and Kuhn (2012), who develop a hybrid transition-
based and graphical-based approach.

6 Related Work

Using neural networks to process trees was first
proposed by Pollack (1990) in the Recursive Au-
toassociative Memory model which was used for
unsupervised learning. Socher et al. (2010) later
introduced the Recursive Neural Network archi-
tecture for supervised learning tasks such as syn-
tactic parsing and sentiment analysis (Socher et
al., 2013). Our IORNN is an extension of
the RNN: the former can process trees not only

bottom-up like the latter but also top-down.
Elman (1990) invented the simple recurrent

neural network (SRNN) architecture which is ca-
pable of capturing very long histories. Mikolov
et al. (2010) then applied it to language mod-
elling and gained state-of-the-art results, outper-
forming the the standard n-gram techniques such
as Kneser-Ney smoothed 5-gram. Our IORNN
architecture for dependency parsing bears a re-
semblance to the SRNN in the sense that it can
also capture long ‘histories’ in context represen-
tations (i.e., outer representations in our terminol-
ogy). Moreover, the IORNN can be seen as a gen-
eralization of the SRNN since a left-branching tree
is equivalent to a chain and vice versa.

The idea of letting parsing decisions depend
on arbitrarily long derivation histories is also ex-
plored in Borensztajn and Zuidema (2011) and
is related to parsing frameworks that allow arbi-
trarily large elementary trees (e.g., Scha (1990),
O’Donnell et al. (2009), Sangati and Zuidema
(2011), and van Cranenburgh and Bod (2013)).

Titov and Henderson (2007) were the first
proposing to use deep networks for dependency
parsing. They introduced a transition-based gen-
erative dependency model using incremental sig-
moid belief networks and applied beam pruning
for searching best trees. Differing from them,
our work uses the IORNN architecture to rescore
k-best candidates generated by an independent
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graph-based parser, namely the MSTParser.
Reranking k-best lists was introduced by

Collins and Koo (2005) and Charniak and Johnson
(2005). Their rerankers are discriminative and for
constituent parsing. Sangati et al. (2009) proposed
to use a third-order generative model for reranking
k-best lists of dependency parses. Hayashi et al.
(2011) then followed this idea but combined gen-
erative models with a variational model learnt on
the fly to rerank forests. In this paper, we also
followed Sangati et al. (2009)’s idea but used an
∞-order generative model, which has never been
used before.

7 Conclusion

In this paper, we proposed a new neural network
architecture, the Inside-Outside Recursive Neural
Network, that can process trees both bottom-up
and top-down. The key idea is to extend the RNN
such that every node in the tree has two vectors
associated with it: an inner representation for its
content, and an outer representation for its context.
Inner and outer representations of any constituent
can be computed simultaneously and interact with
each other. This way, information can flow top-
down, bottom-up, inward and outward. Thanks to
this property, by applying the IORNN to depen-
dency parses, we have shown that using an ∞-
order generative model for dependency parsing,
which has never been done before, is practical.

Our experimental results on the English section
of the Universal Dependency Treebanks show that
the ∞-order generative model approximates the
true dependency distribution better than the tradi-
tional third-order model using counting, and tends
to choose more accurate parses in k-best lists.
In addition, reranking with this model even out-
performs the state-of-the-art TurboParser on unla-
belled score metrics.

Our source code is available at: github.
com/lephong/iornn-depparse.
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Abstract

Almost all current dependency parsers
classify based on millions of sparse indi-
cator features. Not only do these features
generalize poorly, but the cost of feature
computation restricts parsing speed signif-
icantly. In this work, we propose a novel
way of learning a neural network classifier
for use in a greedy, transition-based depen-
dency parser. Because this classifier learns
and uses just a small number of dense fea-
tures, it can work very fast, while achiev-
ing an about 2% improvement in unla-
beled and labeled attachment scores on
both English and Chinese datasets. Con-
cretely, our parser is able to parse more
than 1000 sentences per second at 92.2%
unlabeled attachment score on the English
Penn Treebank.

1 Introduction

In recent years, enormous parsing success has
been achieved by the use of feature-based discrim-
inative dependency parsers (Kübler et al., 2009).
In particular, for practical applications, the speed
of the subclass of transition-based dependency
parsers has been very appealing.

However, these parsers are not perfect. First,
from a statistical perspective, these parsers suffer
from the use of millions of mainly poorly esti-
mated feature weights. While in aggregate both
lexicalized features and higher-order interaction
term features are very important in improving the
performance of these systems, nevertheless, there
is insufficient data to correctly weight most such
features. For this reason, techniques for introduc-
ing higher-support features such as word class fea-
tures have also been very successful in improving
parsing performance (Koo et al., 2008). Second,
almost all existing parsers rely on a manually de-
signed set of feature templates, which require a lot

of expertise and are usually incomplete. Third, the
use of many feature templates cause a less stud-
ied problem: in modern dependency parsers, most
of the runtime is consumed not by the core pars-
ing algorithm but in the feature extraction step (He
et al., 2013). For instance, Bohnet (2010) reports
that his baseline parser spends 99% of its time do-
ing feature extraction, despite that being done in
standard efficient ways.

In this work, we address all of these problems
by using dense features in place of the sparse indi-
cator features. This is inspired by the recent suc-
cess of distributed word representations in many
NLP tasks, e.g., POS tagging (Collobert et al.,
2011), machine translation (Devlin et al., 2014),
and constituency parsing (Socher et al., 2013).
Low-dimensional, dense word embeddings can ef-
fectively alleviate sparsity by sharing statistical
strength between similar words, and can provide
us a good starting point to construct features of
words and their interactions.

Nevertheless, there remain challenging prob-
lems of how to encode all the available infor-
mation from the configuration and how to model
higher-order features based on the dense repre-
sentations. In this paper, we train a neural net-
work classifier to make parsing decisions within
a transition-based dependency parser. The neu-
ral network learns compact dense vector represen-
tations of words, part-of-speech (POS) tags, and
dependency labels. This results in a fast, com-
pact classifier, which uses only 200 learned dense
features while yielding good gains in parsing ac-
curacy and speed on two languages (English and
Chinese) and two different dependency represen-
tations (CoNLL and Stanford dependencies). The
main contributions of this work are: (i) showing
the usefulness of dense representations that are
learned within the parsing task, (ii) developing a
neural network architecture that gives good accu-
racy and speed, and (iii) introducing a novel acti-
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vation function for the neural network that better
captures higher-order interaction features.

2 Transition-based Dependency Parsing

Transition-based dependency parsing aims to pre-
dict a transition sequence from an initial configu-
ration to some terminal configuration, which de-
rives a target dependency parse tree, as shown in
Figure 1. In this paper, we examine only greedy
parsing, which uses a classifier to predict the cor-
rect transition based on features extracted from the
configuration. This class of parsers is of great in-
terest because of their efficiency, although they
tend to perform slightly worse than the search-
based parsers because of subsequent error prop-
agation. However, our greedy parser can achieve
comparable accuracy with a very good speed.1

As the basis of our parser, we employ the
arc-standard system (Nivre, 2004), one of the
most popular transition systems. In the arc-
standard system, a configuration c = (s, b, A)
consists of a stack s, a buffer b, and a set of
dependency arcs A. The initial configuration
for a sentence w1, . . . , wn is s = [ROOT], b =
[w1, . . . , wn], A = ∅. A configuration c is termi-
nal if the buffer is empty and the stack contains
the single node ROOT, and the parse tree is given
by Ac. Denoting si (i = 1, 2, . . .) as the ith top
element on the stack, and bi (i = 1, 2, . . .) as the
ith element on the buffer, the arc-standard system
defines three types of transitions:

• LEFT-ARC(l): adds an arc s1 → s2 with
label l and removes s2 from the stack. Pre-
condition: |s| ≥ 2.

• RIGHT-ARC(l): adds an arc s2 → s1 with
label l and removes s1 from the stack. Pre-
condition: |s| ≥ 2.

• SHIFT: moves b1 from the buffer to the
stack. Precondition: |b| ≥ 1.

In the labeled version of parsing, there are in total
|T | = 2Nl + 1 transitions, where Nl is number
of different arc labels. Figure 1 illustrates an ex-
ample of one transition sequence from the initial
configuration to a terminal one.

The essential goal of a greedy parser is to pre-
dict a correct transition from T , based on one

1Additionally, our parser can be naturally incorporated
with beam search, but we leave this to future work.

Single-word features (9)
s1.w; s1.t; s1.wt; s2.w; s2.t;
s2.wt; b1.w; b1.t; b1.wt
Word-pair features (8)
s1.wt ◦ s2.wt; s1.wt ◦ s2.w; s1.wts2.t;
s1.w ◦ s2.wt; s1.t ◦ s2.wt; s1.w ◦ s2.w
s1.t ◦ s2.t; s1.t ◦ b1.t
Three-word feaures (8)
s2.t ◦ s1.t ◦ b1.t; s2.t ◦ s1.t ◦ lc1(s1).t;
s2.t ◦ s1.t ◦ rc1(s1).t; s2.t ◦ s1.t ◦ lc1(s2).t;
s2.t ◦ s1.t ◦ rc1(s2).t; s2.t ◦ s1.w ◦ rc1(s2).t;
s2.t ◦ s1.w ◦ lc1(s1).t; s2.t ◦ s1.w ◦ b1.t

Table 1: The feature templates used for analysis.
lc1(si) and rc1(si) denote the leftmost and right-
most children of si, w denotes word, t denotes
POS tag.

given configuration. Information that can be ob-
tained from one configuration includes: (1) all
the words and their corresponding POS tags (e.g.,
has / VBZ); (2) the head of a word and its label
(e.g., nsubj, dobj) if applicable; (3) the posi-
tion of a word on the stack/buffer or whether it has
already been removed from the stack.

Conventional approaches extract indicator fea-
tures such as the conjunction of 1 ∼ 3 elements
from the stack/buffer using their words, POS tags
or arc labels. Table 1 lists a typical set of feature
templates chosen from the ones of (Huang et al.,
2009; Zhang and Nivre, 2011).2 These features
suffer from the following problems:

• Sparsity. The features, especially lexicalized
features are highly sparse, and this is a com-
mon problem in many NLP tasks. The sit-
uation is severe in dependency parsing, be-
cause it depends critically on word-to-word
interactions and thus the high-order features.
To give a better understanding, we perform a
feature analysis using the features in Table 1
on the English Penn Treebank (CoNLL rep-
resentations). The results given in Table 2
demonstrate that: (1) lexicalized features are
indispensable; (2) Not only are the word-pair
features (especially s1 and s2) vital for pre-
dictions, the three-word conjunctions (e.g.,
{s2, s1, b1}, {s2, lc1(s1), s1}) are also very
important.

2We exclude sophisticated features using labels, distance,
valency and third-order features in this analysis, but we will
include all of them in the final evaluation.
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ROOT He has good control .
PRP VBZ JJ NN .

root

nsubj

punct
dobj

amod

1

ROOT has VBZ

He PRP

nsubj

has VBZ good JJ control NN . .

Stack Bu↵er

Correct transition: SHIFT

1

Transition Stack Buffer A
[ROOT] [He has good control .] ∅

SHIFT [ROOT He] [has good control .]
SHIFT [ROOT He has] [good control .]
LEFT-ARC(nsubj) [ROOT has] [good control .] A∪ nsubj(has,He)
SHIFT [ROOT has good] [control .]
SHIFT [ROOT has good control] [.]
LEFT-ARC(amod) [ROOT has control] [.] A∪amod(control,good)
RIGHT-ARC(dobj) [ROOT has] [.] A∪ dobj(has,control)
. . . . . . . . . . . .
RIGHT-ARC(root) [ROOT] [] A∪ root(ROOT,has)

Figure 1: An example of transition-based dependency parsing. Above left: a desired dependency tree,
above right: an intermediate configuration, bottom: a transition sequence of the arc-standard system.

Features UAS
All features in Table 1 88.0
single-word & word-pair features 82.7
only single-word features 76.9
excluding all lexicalized features 81.5

Table 2: Performance of different feature sets.
UAS: unlabeled attachment score.

• Incompleteness. Incompleteness is an un-
avoidable issue in all existing feature tem-
plates. Because even with expertise and man-
ual handling involved, they still do not in-
clude the conjunction of every useful word
combination. For example, the conjunc-
tion of s1 and b2 is omitted in almost all
commonly used feature templates, however
it could indicate that we cannot perform a
RIGHT-ARC action if there is an arc from s1
to b2.
• Expensive feature computation. The fea-

ture generation of indicator features is gen-
erally expensive — we have to concatenate
some words, POS tags, or arc labels for gen-
erating feature strings, and look them up in a
huge table containing several millions of fea-
tures. In our experiments, more than 95% of
the time is consumed by feature computation
during the parsing process.

So far, we have discussed preliminaries of

transition-based dependency parsing and existing
problems of sparse indicator features. In the fol-
lowing sections, we will elaborate our neural net-
work model for learning dense features along with
experimental evaluations that prove its efficiency.

3 Neural Network Based Parser

In this section, we first present our neural network
model and its main components. Later, we give
details of training and speedup of parsing process.

3.1 Model

Figure 2 describes our neural network architec-
ture. First, as usual word embeddings, we repre-
sent each word as a d-dimensional vector ewi ∈ Rd

and the full embedding matrix is Ew ∈ Rd×Nw
where Nw is the dictionary size. Meanwhile,
we also map POS tags and arc labels to a d-
dimensional vector space, where eti, e

l
j ∈ Rd are

the representations of ith POS tag and jth arc la-
bel. Correspondingly, the POS and label embed-
ding matrices are Et ∈ Rd×Nt and El ∈ Rd×Nl
where Nt and Nl are the number of distinct POS
tags and arc labels.

We choose a set of elements based on the
stack / buffer positions for each type of in-
formation (word, POS or label), which might
be useful for our predictions. We denote the
sets as Sw, St, Sl respectively. For example,
given the configuration in Figure 2 and St =
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· · · · · ·

· · ·

· · ·

Input layer: [xw, xt, xl]

Hidden layer:
h = (Ww

1 x
w +W t

1x
t +W l

1x
l + b1)3

Softmax layer:
p = softmax(W2h)

words POS tags arc labels

ROOT has VBZ

He PRP
nsubj

has VBZ good JJ control NN . .

Stack Buffer

Configuration

Figure 2: Our neural network architecture.

{lc1(s2).t, s2.t, rc1(s2).t, s1.t}, we will extract
PRP, VBZ, NULL, JJ in order. Here we use a spe-
cial token NULL to represent a non-existent ele-
ment.

We build a standard neural network with one
hidden layer, where the corresponding embed-
dings of our chosen elements from Sw, St, Sl will
be added to the input layer. Denoting nw, nt, nl as
the number of chosen elements of each type, we
add xw = [eww1

; eww2
; . . . ewwnw ] to the input layer,

where Sw = {w1, . . . , wnw}. Similarly, we add
the POS tag features xt and arc label features xl to
the input layer.

We map the input layer to a hidden layer with
dh nodes through a cube activation function:

h = (Ww
1 x

w +W t
1x

t +W l
1x
l + b1)3

where Ww
1 ∈ Rdh×(d·nw), W t

1 ∈ Rdh×(d·nt),
W l

1 ∈ Rdh×(d·nl), and b1 ∈ Rdh is the bias.
A softmax layer is finally added on the top of

the hidden layer for modeling multi-class prob-
abilities p = softmax(W2h), where W2 ∈
R|T |×dh .

POS and label embeddings
To our best knowledge, this is the first attempt to
introduce POS tag and arc label embeddings in-
stead of discrete representations.

Although the POS tags P = {NN,NNP,
NNS,DT,JJ, . . .} (for English) and arc labels
L = {amod,tmod,nsubj,csubj,dobj, . . .}
(for Stanford Dependencies on English) are rela-
tively small discrete sets, they still exhibit many
semantical similarities like words. For example,
NN (singular noun) should be closer to NNS (plural

−1 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8 1

−1

−0.5

0.5

1

cube
sigmoid

tanh
identity

Figure 3: Different activation functions used in
neural networks.

noun) than DT (determiner), and amod (adjective
modifier) should be closer to num (numeric mod-
ifier) than nsubj (nominal subject). We expect
these semantic meanings to be effectively captured
by the dense representations.

Cube activation function
As stated above, we introduce a novel activation
function: cube g(x) = x3 in our model instead
of the commonly used tanh or sigmoid functions
(Figure 3).

Intuitively, every hidden unit is computed by a
(non-linear) mapping on a weighted sum of input
units plus a bias. Using g(x) = x3 can model
the product terms of xixjxk for any three different
elements at the input layer directly:

g(w1x1 + . . .+ wmxm + b) =∑
i,j,k

(wiwjwk)xixjxk +
∑
i,j

b(wiwj)xixj . . .

In our case, xi, xj , xk could come from different
dimensions of three embeddings. We believe that
this better captures the interaction of three ele-
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ments, which is a very desired property of depen-
dency parsing.

Experimental results also verify the success of
the cube activation function empirically (see more
comparisons in Section 4). However, the expres-
sive power of this activation function is still open
to investigate theoretically.

The choice of Sw, St, Sl

Following (Zhang and Nivre, 2011), we pick a
rich set of elements for our final parser. In de-
tail, Sw contains nw = 18 elements: (1) The top 3
words on the stack and buffer: s1, s2, s3, b1, b2, b3;
(2) The first and second leftmost / rightmost
children of the top two words on the stack:
lc1(si), rc1(si), lc2(si), rc2(si), i = 1, 2. (3)
The leftmost of leftmost / rightmost of right-
most children of the top two words on the stack:
lc1(lc1(si)), rc1(rc1(si)), i = 1, 2.

We use the corresponding POS tags for St

(nt = 18), and the corresponding arc labels of
words excluding those 6 words on the stack/buffer
for Sl (nl = 12). A good advantage of our parser
is that we can add a rich set of elements cheaply,
instead of hand-crafting many more indicator fea-
tures.

3.2 Training
We first generate training examples {(ci, ti)}mi=1

from the training sentences and their gold parse
trees using a “shortest stack” oracle which always
prefers LEFT-ARCl over SHIFT, where ci is a
configuration, ti ∈ T is the oracle transition.

The final training objective is to minimize the
cross-entropy loss, plus a l2-regularization term:

L(θ) = −
∑
i

log pti +
λ

2
‖θ‖2

where θ is the set of all parameters
{Ww

1 ,W
t
1,W

l
1, b1,W2, E

w, Et, El}. A slight
variation is that we compute the softmax prob-
abilities only among the feasible transitions in
practice.

For initialization of parameters, we use pre-
trained word embeddings to initialize Ew and use
random initialization within (−0.01, 0.01) for Et

and El. Concretely, we use the pre-trained word
embeddings from (Collobert et al., 2011) for En-
glish (#dictionary = 130,000, coverage = 72.7%),
and our trained 50-dimensional word2vec em-
beddings (Mikolov et al., 2013) on Wikipedia
and Gigaword corpus for Chinese (#dictionary =

285,791, coverage = 79.0%). We will also com-
pare with random initialization of Ew in Section
4. The training error derivatives will be back-
propagated to these embeddings during the train-
ing process.

We use mini-batched AdaGrad (Duchi et al.,
2011) for optimization and also apply a dropout
(Hinton et al., 2012) with 0.5 rate. The parame-
ters which achieve the best unlabeled attachment
score on the development set will be chosen for
final evaluation.

3.3 Parsing

We perform greedy decoding in parsing. At each
step, we extract all the corresponding word, POS
and label embeddings from the current configu-
ration c, compute the hidden layer h(c) ∈ Rdh ,
and pick the transition with the highest score:
t = arg maxt is feasible W2(t, ·)h(c), and then ex-
ecute c→ t(c).

Comparing with indicator features, our parser
does not need to compute conjunction features and
look them up in a huge feature table, and thus
greatly reduces feature generation time. Instead,
it involves many matrix addition and multiplica-
tion operations. To further speed up the parsing
time, we apply a pre-computation trick, similar
to (Devlin et al., 2014). For each position cho-
sen from Sw, we pre-compute matrix multiplica-
tions for most top frequent 10, 000 words. Thus,
computing the hidden layer only requires looking
up the table for these frequent words, and adding
the dh-dimensional vector. Similarly, we also pre-
compute matrix computations for all positions and
all POS tags and arc labels. We only use this opti-
mization in the neural network parser, but it is only
feasible for a parser like the neural network parser
which uses a small number of features. In prac-
tice, this pre-computation step increases the speed
of our parser 8 ∼ 10 times.

4 Experiments

4.1 Datasets

We conduct our experiments on the English Penn
Treebank (PTB) and the Chinese Penn Treebank
(CTB) datasets.

For English, we follow the standard splits of
PTB3, using sections 2-21 for training, section
22 as development set and 23 as test set. We
adopt two different dependency representations:
CoNLL Syntactic Dependencies (CD) (Johansson
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Dataset #Train #Dev #Test #words (Nw) #POS (Nt) #labels (Nl) projective (%)
PTB: CD 39,832 1,700 2,416 44,352 45 17 99.4
PTB: SD 39,832 1,700 2,416 44,389 45 45 99.9
CTB 16,091 803 1,910 34,577 35 12 100.0

Table 3: Data Statistics. “Projective” is the percentage of projective trees on the training set.

and Nugues, 2007) using the LTH Constituent-to-
Dependency Conversion Tool3 and Stanford Basic
Dependencies (SD) (de Marneffe et al., 2006) us-
ing the Stanford parser v3.3.0.4 The POS tags are
assigned using Stanford POS tagger (Toutanova et
al., 2003) with ten-way jackknifing of the training
data (accuracy ≈ 97.3%).

For Chinese, we adopt the same split of CTB5
as described in (Zhang and Clark, 2008). Depen-
dencies are converted using the Penn2Malt tool5

with the head-finding rules of (Zhang and Clark,
2008). And following (Zhang and Clark, 2008;
Zhang and Nivre, 2011), we use gold segmenta-
tion and POS tags for the input.

Table 3 gives statistics of the three datasets.6 In
particular, over 99% of the trees are projective in
all datasets.

4.2 Results

The following hyper-parameters are used in all ex-
periments: embedding size d = 50, hidden layer
size h = 200, regularization parameter λ = 10−8,
initial learning rate of Adagrad α = 0.01.

To situate the performance of our parser, we first
make a comparison with our own implementa-
tion of greedy arc-eager and arc-standard parsers.
These parsers are trained with structured averaged
perceptron using the “early-update” strategy. The
feature templates of (Zhang and Nivre, 2011) are
used for the arc-eager system, and they are also
adapted to the arc-standard system.7

Furthermore, we also compare our parser
with two popular, off-the-shelf parsers: Malt-
Parser — a greedy transition-based dependency
parser (Nivre et al., 2006),8 and MSTParser —

3http://nlp.cs.lth.se/software/treebank converter/
4http://nlp.stanford.edu/software/lex-parser.shtml
5http://stp.lingfil.uu.se/ nivre/research/Penn2Malt.html
6Pennconverter and Stanford dependencies generate

slightly different tokenization, e.g., Pennconverter splits the
token WCRS\/Boston NNP into three tokens WCRS NNP /
CC Boston NNP.

7Since arc-standard is bottom-up, we remove all features
using the head of stack elements, and also add the right child
features of the first stack element.

8http://www.maltparser.org/

a first-order graph-based parser (McDonald and
Pereira, 2006).9 In this comparison, for Malt-
Parser, we select stackproj (arc-standard) and
nivreeager (arc-eager) as parsing algorithms,
and liblinear (Fan et al., 2008) for optimization.10

For MSTParser, we use default options.
On all datasets, we report unlabeled attach-

ment scores (UAS) and labeled attachment scores
(LAS) and punctuation is excluded in all evalua-
tion metrics.11 Our parser and the baseline arc-
standard and arc-eager parsers are all implemented
in Java. The parsing speeds are measured on an
Intel Core i7 2.7GHz CPU with 16GB RAM and
the runtime does not include pre-computation or
parameter loading time.

Table 4, Table 5 and Table 6 show the com-
parison of accuracy and parsing speed on PTB
(CoNLL dependencies), PTB (Stanford dependen-
cies) and CTB respectively.

Parser
Dev Test Speed

UAS LAS UAS LAS (sent/s)
standard 89.9 88.7 89.7 88.3 51
eager 90.3 89.2 89.9 88.6 63
Malt:sp 90.0 88.8 89.9 88.5 560
Malt:eager 90.1 88.9 90.1 88.7 535
MSTParser 92.1 90.8 92.0 90.5 12
Our parser 92.2 91.0 92.0 90.7 1013

Table 4: Accuracy and parsing speed on PTB +
CoNLL dependencies.

Clearly, our parser is superior in terms of both
accuracy and speed. Comparing with the base-
lines of arc-eager and arc-standard parsers, our
parser achieves around 2% improvement in UAS
and LAS on all datasets, while running about 20
times faster.

It is worth noting that the efficiency of our
9http://www.seas.upenn.edu/ strctlrn/MSTParser/

MSTParser.html
10We do not compare with libsvm optimization, which is

known to be sightly more accurate, but orders of magnitude
slower (Kong and Smith, 2014).

11A token is a punctuation if its gold POS tag is {“ ” : , .}
for English and PU for Chinese.
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Parser
Dev Test Speed

UAS LAS UAS LAS (sent/s)
standard 90.2 87.8 89.4 87.3 26
eager 89.8 87.4 89.6 87.4 34
Malt:sp 89.8 87.2 89.3 86.9 469
Malt:eager 89.6 86.9 89.4 86.8 448
MSTParser 91.4 88.1 90.7 87.6 10
Our parser 92.0 89.7 91.8 89.6 654

Table 5: Accuracy and parsing speed on PTB +
Stanford dependencies.

Parser
Dev Test Speed

UAS LAS UAS LAS (sent/s)
standard 82.4 80.9 82.7 81.2 72
eager 81.1 79.7 80.3 78.7 80
Malt:sp 82.4 80.5 82.4 80.6 420
Malt:eager 81.2 79.3 80.2 78.4 393
MSTParser 84.0 82.1 83.0 81.2 6
Our parser 84.0 82.4 83.9 82.4 936

Table 6: Accuracy and parsing speed on CTB.

parser even surpasses MaltParser using liblinear,
which is known to be highly optimized, while our
parser achieves much better accuracy.

Also, despite the fact that the graph-based MST-
Parser achieves a similar result to ours on PTB
(CoNLL dependencies), our parser is nearly 100
times faster. In particular, our transition-based
parser has a great advantage in LAS, especially
for the fine-grained label set of Stanford depen-
dencies.

4.3 Effects of Parser Components

Herein, we examine components that account for
the performance of our parser.

Cube activation function

We compare our cube activation function (x3)
with two widely used non-linear functions: tanh
( e
x−e−x
ex+e−x ), sigmoid ( 1

1+e−x ), and also the
identity function (x), as shown in Figure 4
(left).

In short, cube outperforms all other activation
functions significantly and identity works the
worst. Concretely, cube can achieve 0.8% ∼
1.2% improvement in UAS over tanh and other
functions, thus verifying the effectiveness of the
cube activation function empirically.

Initialization of pre-trained word embeddings
We further analyze the influence of using pre-
trained word embeddings for initialization. Fig-
ure 4 (middle) shows that using pre-trained word
embeddings can obtain around 0.7% improve-
ment on PTB and 1.7% improvement on CTB,
compared with using random initialization within
(−0.01, 0.01). On the one hand, the pre-trained
word embeddings of Chinese appear more use-
ful than those of English; on the other hand, our
model is still able to achieve comparable accuracy
without the help of pre-trained word embeddings.

POS tag and arc label embeddings
As shown in Figure 4 (right), POS embeddings
yield around 1.7% improvement on PTB and
nearly 10% improvement on CTB and the label
embeddings yield a much smaller 0.3% and 1.4%
improvement respectively.

However, we can obtain little gain from la-
bel embeddings when the POS embeddings are
present. This may be because the POS tags of two
tokens already capture most of the label informa-
tion between them.

4.4 Model Analysis

Last but not least, we will examine the parame-
ters we have learned, and hope to investigate what
these dense features capture. We use the weights
learned from the English Penn Treebank using
Stanford dependencies for analysis.

What do Et, El capture?
We first introduced Et and El as the dense rep-
resentations of all POS tags and arc labels, and
we wonder whether these embeddings could carry
some semantic information.

Figure 5 presents t-SNE visualizations (van der
Maaten and Hinton, 2008) of these embeddings.
It clearly shows that these embeddings effectively
exhibit the similarities between POS tags or arc
labels. For instance, the three adjective POS tags
JJ, JJR, JJS have very close embeddings, and
also the three labels representing clausal comple-
ments acomp, ccomp, xcomp are grouped to-
gether.

Since these embeddings can effectively encode
the semantic regularities, we believe that they can
be also used as alternative features of POS tags (or
arc labels) in other NLP tasks, and help boost the
performance.
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What do Ww
1 , W t

1 , W l
1 capture?

Knowing that Et and El (as well as the word em-
beddings Ew) can capture semantic information
very well, next we hope to investigate what each
feature in the hidden layer has really learned.

Since we currently only have h = 200 learned
dense features, we wonder if it is sufficient to
learn the word conjunctions as sparse indicator
features, or even more. We examine the weights
Ww

1 (k, ·) ∈ Rd·nw , W t
1(k, ·) ∈ Rd·nt , W l

1(k, ·) ∈
Rd·nl for each hidden unit k, and reshape them to
d × nt, d × nw, d × nl matrices, such that the
weights of each column corresponds to the embed-
dings of one specific element (e.g., s1.t).

We pick the weights with absolute value > 0.2,
and visualize them for each feature. Figure 6 gives
the visualization of three sampled features, and it
exhibits many interesting phenomena:

• Different features have varied distributions of
the weights. However, most of the discrim-
inative weights come from W t

1 (the middle
zone in Figure 6), and this further justifies the
importance of POS tags in dependency pars-
ing.

• We carefully examine many of the h = 200
features, and find that they actually encode
very different views of information. For the
three sampled features in Figure 6, the largest
weights are dominated by:

– Feature 1: s1.t, s2.t, lc(s1).t.
– Feautre 2: rc(s1).t, s1.t, b1.t.
– Feature 3: s1.t, s1.w, lc(s1).t, lc(s1).l.

These features all seem very plausible, as ob-
served in the experiments on indicator feature
systems. Thus our model is able to automati-
cally identify the most useful information for
predictions, instead of hand-crafting them as
indicator features.

• More importantly, we can extract features re-
garding the conjunctions of more than 3 ele-
ments easily, and also those not presented in
the indicator feature systems. For example,
the 3rd feature above captures the conjunc-
tion of words and POS tags of s1, the tag of
its leftmost child, and also the label between
them, while this information is not encoded
in the original feature templates of (Zhang
and Nivre, 2011).

5 Related Work

There have been several lines of earlier work in us-
ing neural networks for parsing which have points
of overlap but also major differences from our
work here. One big difference is that much early
work uses localist one-hot word representations
rather than the distributed representations of mod-
ern work. (Mayberry III and Miikkulainen, 1999)
explored a shift reduce constituency parser with
one-hot word representations and did subsequent
parsing work in (Mayberry III and Miikkulainen,
2005).

(Henderson, 2004) was the first to attempt to use
neural networks in a broad-coverage Penn Tree-
bank parser, using a simple synchrony network to
predict parse decisions in a constituency parser.
More recently, (Titov and Henderson, 2007) ap-
plied Incremental Sigmoid Belief Networks to
constituency parsing and then (Garg and Hender-
son, 2011) extended this work to transition-based
dependency parsers using a Temporal Restricted
Boltzman Machine. These are very different neu-
ral network architectures, and are much less scal-
able and in practice a restricted vocabulary was
used to make the architecture practical.

There have been a number of recent uses of
deep learning for constituency parsing (Collobert,
2011; Socher et al., 2013). (Socher et al., 2014)
has also built models over dependency representa-
tions but this work has not attempted to learn neu-
ral networks for dependency parsing.

Most recently, (Stenetorp, 2013) attempted to
build recursive neural networks for transition-
based dependency parsing, however the empirical
performance of his model is still unsatisfactory.

6 Conclusion

We have presented a novel dependency parser us-
ing neural networks. Experimental evaluations
show that our parser outperforms other greedy
parsers using sparse indicator features in both ac-
curacy and speed. This is achieved by represent-
ing all words, POS tags and arc labels as dense
vectors, and modeling their interactions through a
novel cube activation function. Our model only
relies on dense features, and is able to automat-
ically learn the most useful feature conjunctions
for making predictions.

An interesting line of future work is to combine
our neural network based classifier with search-
based models to further improve accuracy. Also,
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label embeddings.
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Figure 6: Three sampled features. In each feature, each row denotes a dimension of embeddings and
each column denotes a chosen element, e.g., s1.t or lc(s1).w, and the parameters are divided into 3
zones, corresponding to Ww

1 (k, :) (left), W t
1(k, :) (middle) and W l

1(k, :) (right). White and black dots
denote the most positive weights and most negative weights respectively.
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there is still room for improvement in our architec-
ture, such as better capturing word conjunctions,
or adding richer features (e.g., distance, valency).

Acknowledgments

Stanford University gratefully acknowledges the
support of the Defense Advanced Research
Projects Agency (DARPA) Deep Exploration and
Filtering of Text (DEFT) Program under Air
Force Research Laboratory (AFRL) contract no.
FA8750-13-2-0040 and the Defense Threat Re-
duction Agency (DTRA) under Air Force Re-
search Laboratory (AFRL) contract no. FA8650-
10-C-7020. Any opinions, findings, and conclu-
sion or recommendations expressed in this mate-
rial are those of the authors and do not necessarily
reflect the view of the DARPA, AFRL, or the US
government.

References
Bernd Bohnet. 2010. Very high accuracy and fast de-

pendency parsing is not a contradiction. In Coling.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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Abstract

Recent years have seen a surge of interest
in stance classification in online debates.
Oftentimes, however, it is important to de-
termine not only the stance expressed by
an author in her debate posts, but also the
reasons behind her supporting or oppos-
ing the issue under debate. We therefore
examine the new task of reason classifi-
cation in this paper. Given the close in-
terplay between stance classification and
reason classification, we design computa-
tional models for examining how automat-
ically computed stance information can be
profitably exploited for reason classifica-
tion. Experiments on our reason-annotated
corpus of ideological debate posts from
four domains demonstrate that sophisti-
cated models of stances and reasons can
indeed yield more accurate reason and
stance classification results than their sim-
pler counterparts.

1 Introduction

In recent years, researchers have begun exploring
new opinion mining tasks. One such task is debate
stance classification (SC): given a post written for
a two-sided topic discussed in an online debate fo-
rum, determine which of the two sides (i.e., for or
against) its author is taking (Agrawal et al., 2003;
Thomas et al., 2006; Bansal et al., 2008; Soma-
sundaran and Wiebe, 2009; Burfoot et al., 2011;
Hasan and Ng, 2013b). For example, the author of
the post shown in Figure 1 is pro-abortion.

Oftentimes, however, it is important to deter-
mine not only the author’s stance expressed in her
debate posts, but also the reasons why she supports
or opposes the issue under debate. Intuitively,
given a debate topic such as “Should abortion be
banned?” or “Do you support Obamacare?”, it

[I feel that abortion should remain legal, or rather, parents
should have the power to make the decision themselves and
not face any legal hindrance of any form.]1 Let us take a
look from the social perspective. [If parents cannot afford
to provide for the child, or if the family is facing financial
constraints, it is understandable that abortion can remain as
one of the options.]2

Reason 1: Woman’s right to abort
Reason 2: Unwanted babies are threat to their parents’ fu-
ture

Figure 1: A sample post on abortion annotated
with reasons.

should not be difficult for us to come up with a set
of reasons people typically use to back up their
stances. Given a set of reasons associated with
each stance in an online debate, the goal of post-
level reason classification is to identify those rea-
son(s) an author uses to back up her stance in her
debate post. A more challenging version of this
task is sentence-level reason classification, where
the goal is to identify not only the reason(s) an au-
thor uses in her post, but also the sentence(s) in
the post that the author uses to describe each of
her reasons. For example, the author of the post
shown in Figure 1 mentions two reasons why she
supports abortion, namely it’s a woman’s right to
abort and unwanted babies are threat to their par-
ents’ future, which are mentioned in the first and
third sentences in the post respectively.

Our goal in this paper is to examine post- and
sentence-level reason classification (RC) in ideo-
logical debates. Many online debaters use emo-
tional languages, which may involve sarcasm and
insults, to express their points, thereby making
RC and SC in ideological debates potentially more
challenging than that in other debate settings such
as congressional debates and company-internal
discussions (Walker et al., 2012).

Besides examining the new task of RC in ide-
ological debates, we believe that our work makes
three contributions. First, we propose to address
post-level RC by means of sentence-level RC by
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(1) determining the reason(s) associated with each
of its sentences (if any), and then (2) taking the
union of the set of reasons associated with all of its
sentences to be the set of reasons associated with
the post. We hypothesize that this sentence-based
approach, which exploits a training set in which
each sentence in a post is labeled with its reason,
would achieve better performance than a multi-
label text classification approach to post-level RC,
which learns to determine the subset of reasons a
post contains directly from a training set in which
each post is labeled with the corresponding set of
reasons. In other words, we hypothesize that we
could achieve better results for post-level RC by
learning from sentence-level than from post-level
reason annotations, as sentence-level reason anno-
tations can enable a learning algorithm to accu-
rately attribute an annotated reason to a particular
portion of a post.

Second, we propose stance-supported RC sys-
tems, hypothesizing that automatically computed
stance information can be profitably exploited for
RC. Since we are exploiting automatically com-
puted (and thus potentially noisy) stance informa-
tion, we hypothesize that the effectiveness of such
information would depend in part on the way it is
exploited in RC systems. As a result, we introduce
a set of stance-supported models for RC, start-
ing with simple pipeline models and then mov-
ing on to joint models with increasing sophisti-
cation. Note that exploiting stance information
by no means guarantees that RC performance will
improve, as an incorrect determination of stance
could lead to an incorrect identification of rea-
sons. Hence, one of our goals is to examine how to
model stances and reasons so that RC can benefit
from stance information.

Finally, since progress on RC is hindered in part
by the lack of an annotated corpus, we make our
reason-annotated dataset publicly available.1 To
our knowledge, this will be the first publicly avail-
able corpus for sentence- and post-level RC.

2 Corpus and Annotation

We collected debate posts from four popular
domains, Abortion (ABO), Gay Rights (GAY),
Obama (OBA), and Marijuana (MAR), from an
online debate forum2. All debates are two-sided,

1http://www.hlt.utdallas.edu/˜saidul/
stance/

2http://www.createdebate.com/

so each post receives one of two stance labels, for
or against, depending on whether the author of
the post supports or opposes abortion, gay rights,
Obama, or the legalization of marijuana respec-
tively. A post’s stance label is given by its author.

Note that each post belongs to a thread, which
is a tree with one or more nodes such that (1) each
node corresponds to a debate post, and (2) a post
yi is the parent of another post yj if yj is a reply
to yi. Given a thread, we generate post sequences,
each of which is a path from the root of the thread
to one of its leaves. Hence, a post sequence is an
ordered set of posts such that each post is a reply
to its immediately preceding post in the sequence.
Table 2a shows the statistics of the four stance-
labeled datasets.

While the debate posts contain the stance labels
given by their authors, they are not annotated with
reasons. As part of our study of RC, we annotate
each post with the reasons it gives for its stance.
Our annotation procedure is composed of three
steps. First, two human annotators independently
examined each post and identified the reasons au-
thors present to support their stances (i.e., for and
against) in each domain. Second, they discussed
and agreed on the reasons identified for each do-
main. Third, they independently annotated the text
of each post with reason labels from the post’s do-
main. To do this, they labeled each sentence of a
post with the set of reasons the author expressed in
that sentence. Any sentence that does not belong
to any reason class was assigned the NONE class.

After the annotators completed the aforemen-
tioned steps, they were asked to collapse all the
reason classes that occur in less than 2% of the
sentences annotated with non-NONE classes into
the OTHER class. In other words, all the sentences
that were originally annotated with one of these
infrequent reason classes will now be labeled as
OTHER. Our decision to merge infrequent classes
is motivated by two observations. First, from a
practical point of view, infrequent reasons do not
carry much weight. Second, from a modeling per-
spective, it is often not worth increasing model
complexity by handling infrequent classes. The
resulting set of reason classes for each domain is
shown in Table 1.

A closer examination of the resulting annota-
tions reveals that approximately 3% of the sen-
tences received multiple reason labels. Again, to
avoid the complexity of modeling multi-labeled
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Domain Stance Reason classes

ABO
for [F1] Abortion is a woman’s right (26%); [F2] Rape victims need it to be legal (7%); [F3] A fetus

is not human (38%); [F4] Mother’s life in danger (5%); [F5] Unwanted babies are ill-treated by
parents (8%); [F6] Birth control fails at times (3%); [F7] Abortion is not murder (3%); [F8] Mother
is not healthy/financially solvent (4%); [F9] Others (6%)

against [A1] Put baby up for adoption (9%); [A2] Abortion kills a life (29%); [A3] An unborn baby is a
human and has the right to live (40%); [A4] Be willing to have the baby if you have sex (14%);
[A5] Abortion is harmful for women (5%); [A6] Others (3%)

GAY
for [F1] Gay marriage is like any other marriage (14%); [F2] Gay people should have the same rights

as straight people (36%); [F3] Gay parents can adopt and ensure a happy life for a baby (10%); [F4]
People are born gay (18%); [F5] Religion should not be used against gay rights (11%); [F6] Others
(11%)

against [A1] Religion does not permit gay marriages (18%); [A2] Gay marriages are not normal/against
nature (39%); [A3] Gay parents can not raise kids properly (11%); [A4] Gay people have problems
and create social issues (16%); [A5] Others (16%)

OBA
for [F1] Fixed the economy (21%); [F2] Ending the wars (7%); [F3] Better than the republican candi-

dates (25%); [F4] Makes good decisions/policies (8%); [F5] Has qualities of a good leader (14%);
[F6] Ensured better healthcare (8%); [F7] Executed effective foreign policies (6%); [F8] Created
more jobs (4%); [F9] Others (7%)

against [A1] Destroyed our economy (26%); [A2] Wars are still on (11%); [A3] Unemployment rate is high
(5%); [A4] Healthcare bill is a failure(9%); [A5] Poor decision-maker (7%); [A6] We have better
republicans than Obama (5%); [A7] Not eligible as a leader (20%); [A8] Ineffective foreign policies
(4%); [A9] Others (13%)

MAR
for [F1] Not addictive (23%); [F2] Used as a medicine (11%); [F3] Legalized marijuana can be con-

trolled and regulated by the government (33%); [F4] Prohibition violates human rights (15%); [F5]
Does not cause any damage to our bodies (6%); [F6] Others (12%)

against [A1] Damages our bodies (23%); [A2] Responsible for brain damage (22%); [A3] If legalized,
people will use marijuana and other drugs more (12%); [A4] Causes crime (9%); [A5] Highly
addictive (17%); [A6] Others (17%)

Table 1: Reason classes and their percentages in the corresponding stance for each domain.

sentences given their rarity, we asked each annota-
tor to pick the reason that was highlighted the most
in each multi-labeled sentence.

Inter-annotator agreement scores at the sentence
level and the post level, expressed in terms of Co-
hen’s Kappa (Carletta, 1996), are shown in Ta-
ble 2b. Given that the majority of sentences were
labeled as NONE, we avoid inflating agreement by
not considering the sentences labeled with NONE

by both annotators when computing Kappa. As we
can see, we achieved substantial post-level agree-
ment and high sentence-level agreement.

The major source of inter-annotator disagree-
ment for all four datasets stems from the fact that
in many cases, the annotators, while agreeing on
the reason class, differ on how long the text span
for a reason should be. This hurts sentence-level
agreement but not post-level agreement, since the
latter only concerns whether a reason was men-
tioned in a post, and explains why the sentence-
level agreement scores are lower than the corre-
sponding post-level scores. Minor sources of dis-
agreement arise from the facts that (1) the anno-
tators selected different reason labels for some of
the multi-labeled sentences, and (2) they tend to
disagree in some cases where authors use sarcasm

ABO GAY OBA MAR
Stance-labeled posts 1741 1376 985 626
for posts (%) 54.9 63.4 53.9 69.5
Average post sequence length 4.1 4.0 2.6 2.5

(a) Statistics of stance-labeled posts
ABO GAY OBA MAR

Reason-labeled posts 463 561 447 432
% of sentences w/ reason tags 20.4 29.8 34.4 43.7
Kappa (sentence) 0.66 0.63 0.61 0.67
Kappa (post) 0.82 0.80 0.78 0.83

(b) Statistics of reason-labeled posts

Table 2: Stance and reason annotation statistics.

to present a reason. Each case of disagreement is
resolved through discussion among the annotators.

3 Baseline RC System

Our baseline system uses a maximum entropy
(MaxEnt) classifier to determine whether a reason
is expressed in a post and/or its sentence(s). We
create one training instance for each sentence in
each post in the training set, using the reason label
as its class label. We represent each instance using
five types of features, as described below.

N-gram features. We encode each unigram and
bigram collected from the training sentences as a
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binary feature indicating the n-gram’s presence or
absence in a given sentence.

Dependency-based features. To capture the
inter-word relationships that n-grams may not,
we employ the dependency-based features previ-
ously used for stance classification in Anand et
al. (2011). These features have three variants. In
the first variant, the pair of arguments involved in
each dependency relation extracted by a depen-
dency parser is used as a feature. The second vari-
ant is the same as the first except that the head (i.e.,
the first argument in a relation) is replaced by its
part-of-speech tag. The features in the third vari-
ant, the topic-opinion features, are created by re-
placing each sentiment-bearing word in features of
the first two types with its corresponding polarity
label (i.e., + or −).

Frame-semantic features. While dependency-
based features capture the syntactic dependencies,
frame-semantic features encode the semantic rep-
resentation of the concepts in a sentence. Fol-
lowing our previous work on stance classification
(Hasan and Ng, 2013c), we employ three types
of features computed based on the frame-semantic
parse of each sentence in a post obtained from SE-
MAFOR (Das et al., 2010). Frame-word interac-
tion features encode whether two words appear in
different elements of the same frame. Hence, each
frame-word interaction feature consists of (1) the
name of the frame f from which it is created, and
(2) an unordered word pair in which the words are
taken from two frame elements of f . A frame-pair
feature is represented as a word pair corresponding
to the names of two frames and encodes whether
the target word of the first frame appears within
an element of the second frame. Finally, frame n-
gram features are a variant of word n-grams. For
each word n-gram in the sentence, a frame n-gram
feature is created by replacing one or more words
in the word n-gram with the name of the frame or
the frame element in which the word appears. A
detailed description of these features can be found
in Hasan and Ng (2013c).

Quotation features. We employ two quotation
features. IsQuote is a binary feature that indicates
whether a sentence is a quote or not (i.e., whether
it appeared in its parent post in the post sequence).
Note that if an instance is a quote from a previ-
ous post, it is unlikely that it represents a reason
the author is presenting to support her argument.
Instead, the author may have quoted this before

stating her counter-argument. FollowsQuote is a
binary feature that indicates whether a sentence
follows a sentence for which the IsQuote feature
value is true. Intuitively, a sentence following a
quote is likely to present a counter-argument.

Positional feature. We split each post into four
parts (such that each part contains roughly the
same number of sentences) and create one posi-
tional feature that encodes which part of the post
contains a given sentence. This feature is moti-
vated by our observations on the training data that
(1) reasons are more likely to appear in the second
half of a post and (2) on average more than one-
third of the reasons appear in the last quarter of a
post.

After training, we can apply the resulting RC
system to classify the test instances, which are
generated in the same way as the training in-
stances. Once the sentences of a test post are clas-
sified, we simply assume its post-level reason la-
bels to be the set of reason labels assigned by the
classifier to its sentences.

4 Stance-Supported RC Systems

In this section, we propose a set of systems for
RC. Unlike the baseline RC system, these RC
systems are stance-supported, enabling us to ex-
plore how different ways of modeling automati-
cally computed stances and reasons can improve
RC classification. Below we present our systems
in increasing order of modeling sophistication.

4.1 Pipeline Systems

We examine two pipeline systems, P1 and P2.
Given a set of test posts, both systems first de-
termine the stance of each post and then apply a
stance-specific reason classifier to each of them.

More specifically, both P1 and P2 employ two
stance-specific reason classifiers: one is trained on
all the posts labeled as for and the other is trained
on all the posts labeled as against. Each stance-
specific reason classifier is trained using MaxEnt
on the same feature set as that of the Baseline RC
system. It computes for a particular stance s the
probability P (r|s, t), where r is a reason label and
t is a sentence in a test post p.

P1 and P2 differ only with respect to the SC
model used to stance-label each post. In P1, the
stance s of a post p is determined by applying to p
a stance classifier that computes P (s|p). To train
the classifier, we employ MaxEnt. Each train-
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ing instance corresponds to a training post and
is represented by all but the quotation and posi-
tional features used to train the Baseline RC sys-
tem, since these two feature types are sentence-
based rather than post-based. After training, the
resulting classifier can be used to stance-label a
post independently of the other posts.

In P2, on the other hand, we recast SC as a se-
quence labeling task. In other words, we train a
SC model that assumes as input a post sequence
and outputs a stance sequence, with one stance la-
bel for each post in the input post sequence. This
choice is motivated by an observation we made
previously (Hasan and Ng, 2013a): since each post
in a sequence is a reply to the preceding post, we
could exploit their dependencies by determining
their stance labels together.3

As our sequence learner, we employ a maxi-
mum entropy Markov model (MEMM) (McCal-
lum et al., 2000). Given an input post sequence
PS = (p1, p2, . . . , pn), the MEMM finds the most
probable stance sequence S = (s1, s2, . . . , sn) by
computing P (S|PS), where:

P (S|PS) =
n∏

k=1

P (sk|sk−1, pk) (1)

This probability can be computed efficiently via
dynamic programming (DP), using a modified ver-
sion of the Viterbi algorithm (Viterbi, 1967).

There is a caveat, however. Recall that the post
sequences are generated from a thread. Since a
test post may appear in more than one sequence,
different occurrences of it may be assigned differ-
ent stance labels by the MEMM. To determine the
final stance label for the post, we average the prob-
abilities assigned to the for stance over all its oc-
currences; if the average is ≥ 0.5, then its final
label is for; otherwise, its label is against.

4.2 System based on Joint Inference

One weakness of the pipeline systems is that errors
may propagate from the SC system to the RC sys-
tem. If the stance of a post is incorrectly labeled,
its reasons will also be incorrectly labeled.

To avoid this problem, we employ joint infer-
ence. Specifically, we first train a SC system and

3While we could similarly recast the problem of assigning
reasons to the sentences in a post as a sequence learning task,
we did not pursue this idea further because preliminary ex-
periments indicated that sequence learning for RC was inef-
fective: there is little, if any, dependency between the reason
labels in consecutive sentences.

a RC system independently of each other. We em-
ploy the Baseline as our RC system, since this is
the only RC system that is not stance-specific. For
the SC system, we employ P2.

Since the SC system and the RC system are
trained independently of each other, their outputs
may not be consistent. For instance, an inconsis-
tency arises if a post is labeled as for but one or
more of its reasons are associated with the oppos-
ing stance. In fact, an inconsistency can arise in
the output of the RC system alone: reasons associ-
ated with both stances may be assigned by the RC
systems to different sentences of a given post.

To enforce consistency, we apply integer lin-
ear programming (ILP) (Roth and Yih, 2004). We
formulate one ILP program for each debate post.
Each ILP program contains two post-stance vari-
ables (xfor and xagainst) and |T | ∗ |LR| reason
variables (i.e., one indicator variable zt,r for each
reason class r and each sentence t), where |T | is
the number of sentences in the post and |LR| is the
number of reason labels. Our objective is to maxi-
mize the linear combination of these variables and
their corresponding probabilities assigned by their
respective classifiers (see (2) below) subject to two
types of constraints, the integrity constraints and
the post-reason constraints. The integrity con-
straints ensure that each post is assigned exactly
one stance and each sentence in a post is assigned
exactly one reason class (see the two equality con-
straints in (3)). The post-reason constraints ensure
consistency between the predictions made by the
SC and the RC systems. Specifically, (1) if there
is at least one reason supporting the for stance, the
post must be assigned a for label; and (2) a for
post must have at least one for reason. These con-
straints are defined for the against label as well
(see the constraints in (4)).

Maximize:∑
s∈LS

asxs +
1
|T |

|T |∑
t=1

∑
r∈LR

bt,rzt,r (2)

subject to:∑
s∈LS

xs = 1, ∀ t
∑

r∈LR

zt,r = 1,

xs ∈ {0, 1}, zt,r ∈ {0, 1}
(3)

∀ t xs ≥ zt,r,

|T |∑
t=1

zt,r ≥ xs (4)
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Note that (1) as and bt,r are two sets of probabil-
ities assigned by the SC and RC systems respec-
tively; (2) LS and LR denote the set of stance
labels and reason labels respectively; and (3) the
fraction 1

|T | ensures that both classifiers are con-
tributing equally to the objective function.

4.3 Systems based on Joint Learning
Another way to avoid the error propagation prob-
lem in pipeline systems is to perform joint learn-
ing. In joint learning, the two tasks, SC and RC,
are learned jointly. Below we propose three joint
models in increasing level of sophistication.

J1 is a joint model that, given a test post p, finds
the stance label s and the reason label for each of
the sentences that together maximize the probabil-
ity P (Rp, s|p), where Rp = (r1, r2, . . . , rn) is the
sequence of reason labels with ri (1 ≤ i ≤ n)
being the reason label assigned to ti, the i-th sen-
tence in p. Using Chain Rule,

P (Rp, s|p) = P (s|p)P (Rp|s, p)

= P (s|p)
n∏

i=1

P (ri|s, ti)
(5)

Hence, P (Rp, s|p) can be computed by using
the stance-specific RC classifier and the SC classi-
fier employed in P1.

The second joint model, J2, is the same as
J1, except that we recast SC as a sequence la-
beling task. As before, we employ MEMM to
learn how to predict stance sequences. Given a
post sequence PS = (p1, p2, . . . , pn), J2 finds the
stance sequence S = (s1, s2, . . . , sn) and rea-
sons R = (R1, R2, . . . , Rn) that jointly maximize
P (R,S|PS). Note that Ri is the sequence of rea-
son labels assigned to the sentences in post i.

The R and S that jointly maximize P (R,S|PS)
can be found efficiently via DP, using a modified
version of the Viterbi algorithm. Unlike in P2, in
J2 the decoding process is slightly more compli-
cated because we have to take into account Ri. Be-
low we show the recursive definitions used to com-
pute the entries in the DP table, where vk(h) is the
(k,h)-th entry of the table; P (h|p) is provided by
the MaxEnt stance classifier used in P1; P (h|j, p)
is provided by the MEMM stance classifier used
in P2; P (rmax

i |h, ti) is provided by the stance-
specific reason classifier used in the pipeline sys-
tems; and rmax

i is the reason label for sentence ti

that has the highest probability according to the
reason classifier.

Base case:

v1(h) = P (h|p)
n∏

i=1

P (rmax
i |h, ti) (6)

Recursive definition:

vk(h) = max
j

vk−1(j)P (h|j, p)
n∏

i=1

P (rmax
i |h, ti)

(7)

To motivate our third joint model, J3, we make
the following observation. Recall that a post in
a post sequence is a reply to its preceding post.
An inspection of the training data reveals that in
many cases, a reply is a rebuttal to the preced-
ing post, where an author attempts to argue why
the points or reasons raised in the preceding post
are wrong and then provides her reasons for the
opposing stance. Motivated by this observation,
we hypothesize that the reasons mentioned in the
preceding post could be useful for predicting the
reasons in the current post. However, none of the
models we have presented so far makes use of the
reasons predicted for the preceding post.

This motivates the design of J3, which we build
on top of J2. Specifically, to incorporate the reason
labels predicted for the preceding post in a post se-
quence, we augment the feature set of the stance-
specific reason classifiers with a set of reason fea-
tures, with one binary feature for each reason. The
value of a reason feature is 1 if and only if the cor-
responding reason is predicted to be present in the
preceding post. Hence, in J3, we can apply the
same DP equations we used in J2 except that the
set of features used by the reason classifier is aug-
mented with the reason features.

5 Evaluation

While our primary goal is to evaluate the RC sys-
tems introduced in the previous section, we are
also interested in whether SC performance can im-
prove when SC is jointly modeled with RC. More
specifically, our evaluation is driven by the follow-
ing question: will RC performance and SC perfor-
mance improve as we employ more sophisticated
methods for modeling reasons and stances? Be-
fore showing the results, we describe the metrics
for evaluating RC and SC systems.

756



System

ABO GAY OBA MAR

Stance
Reason

Stance
Reason

Stance
Reason

Stance
Reason

Sentence Post Sentence Post Sentence Post Sentence Post
Baseline – 32.7 45.0 – 23.3 40.5 – 19.5 31.5 – 28.7 44.2

P1 62.8 34.5 46.3 63.4 24.5 43.2 61.0 20.3 33.5 67.2 30.5 47.3
P2 65.1 36.1 47.7 64.2 26.6 45.5 63.8 21.1 34.4 68.5 32.9 48.8
ILP 65.2 36.5 48.4 64.6 28.0 46.7 63.6 22.8 35.0 68.8 33.1 48.9
J1 62.5 36.0 47.6 64.0 26.7 45.6 61.2 23.1 35.7 67.8 33.3 49.2
J2 65.9 37.9 50.6 65.3 29.6 48.5 63.5 24.5 37.1 68.7 34.5 50.5
J3 66.3 39.5 52.3 65.7 31.4 49.8 64.0 25.1 38.0 69.0 35.1 51.1

Table 3: SC accuracies and RC F-scores for our five-fold cross-validation experiments.

5.1 Experimental Setup

We express SC results in terms of accuracy (i.e.,
the percentage of test posts labeled with the cor-
rect stance) and RC results in terms of F-score
micro-averaged over all reason classes except the
NONE class. For each RC system, we report its
sentence-level RC score and post-level RC score,
which are computed over sentences and posts re-
spectively. As mentioned at the end of Section 3,
the set of post-level reason labels of a given post
is automatically obtained by taking the union of
the set of reason labels assigned to each of its sen-
tences. Hence, a reason classifier will be rewarded
as long as it can predict, for any sentence in a test
post, a reason label that the annotators assigned to
some sentence in the same post.

We obtain these scores via five-fold cross-
validation experiments. During fold partition, all
posts that are in the same post sequence are as-
signed to the same fold. All reason and stance
classifiers are domain-specific, meaning that each
of them is trained on sentences/posts from ex-
actly one domain and is applied to classify sen-
tences/posts from the same domain. We use the
Stanford maximum entropy classifier4 for classifi-
cation and solve ILP programs using lpsolve5.

5.2 Results and Discussion

Results are shown in Table 3. Each row corre-
sponds to one of our seven RC systems, showing
its SC accuracy as well as its sentence- and post-
level RC F-scores for each domain.

Let us begin by discussing the RC results. First,
P1 and P2 significantly beat the Baseline on all

4http://nlp.stanford.edu/software/
classifier.shtml

5http://sourceforge.net/projects/
lpsolve/

four domains by an average of 1.4 and 3.1 points
at the sentence level and by an average of 2.3 and
3.8 points at the post level respectively.6 These re-
sults show that stance information can indeed be
profitably used for RC even if it is incorporated
into RC systems in a simple manner. Second,
improving SC through sequence learning can im-
prove RC: the systems in which SC is recast as se-
quence labeling (P2 and J2) perform significantly
better than the corresponding systems that do not
(P1 and J1). Third, ILP significantly beats P2 on
two domains (ABO and GAY) and achieves the
same level of performance as P2 on the remain-
ing domains. These results suggest that joint infer-
ence is no worse (and sometimes even better) than
pipeline learning as far as exploiting stance infor-
mation for RC is concerned. Fourth, the systems
trained via joint learning (J1 and J2) beat their cor-
responding pipeline counterparts (P1 and P2) on
all four domains, significantly so by an average of
2.3 and 2.5 points at the sentence level and by an
average of 2.0 and 2.6 points at the post level re-
spectively, suggesting that joint learning is indeed
a better way to incorporate stance information than
pipeline learning. Finally, J3, the joint system that
exploits reasons predicted for the previous post,
significantly beats J2, the system on which it is
built, by 1.6 and 1.8 points at the sentence level
and by 1.7 and 1.3 points at the post level for ABO
and GAY respectively. It also yields small, statis-
tically insignificant, improvements (0.6 points at
the sentence level and 0.6–0.9 points at the post
level) for the remaining two domains. These re-
sults suggest that the reasons predicted for the pre-
vious post indeed provide useful information for
predicting the current post’s reasons.

Overall, these results are consistent with our hy-
6All significance tests are paired t-tests (p < 0.05).
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pothesis that the usefulness of stance information
depends in part on the way it is exploited, and
that RC performance increases as we employ more
sophisticated methods for modeling reasons and
stances. Our best system, J3, significantly beats
the Baseline by an average of 6.7 and 7.5 points at
the sentence and post levels respectively.

As mentioned earlier, a secondary goal of this
work is to determine whether joint modeling can
improve SC as well. For that reason, we com-
pare the performances of the best pipeline model
(P2) and the best joint model (J3) on each domain.
We find that in terms of SC accuracy, J3 is signifi-
cantly better than P2 on ABO and GAY, and yields
slightly, though insignificantly, better performance
on the remaining two domains. In other words, our
results suggest that joint modeling of SC and RC
has a positive impact on SC performance on all
domains, and the impact can sometimes be large
enough to yield significantly better results.

5.3 Further Comparison

We hypothesized in the introduction that the
sentence-based approach to post-level RC would
yield better performance than the multi-label text
classification approach. In Section 5.2, we pre-
sented results of the sentence-based approach to
RC. So, to test this hypothesis, we next evaluate
the multi-label text classification approach to RC.

Recall that the multi-label text classification ap-
proach assumes the following setup. Given a set
of training posts where each post is multi-labeled
with the set of reasons it contains, the goal is to
train a system to determine the set of reasons a
test post contains. Hence, unlike in the sentence-
based approach, in this approach no sentence-level
reason annotations are exploited during training.

We implement this approach by recasting multi-
label text classification as n binary text classifica-
tion tasks, where n is the number of reason classes
for a domain. In the binary classification task for
predicting reason i, we train a binary classifier ci

using the one-versus-all training scheme. Specif-
ically, to train ci, we create one training instance
for each post p in the training set, labeling it as
positive if and only if p contains reason i. Note
that if i is a minority reason, the class distribution
of the resulting training set will be highly skewed
towards the negatives, which will in turn cause the
resulting MaxEnt classifier to be biased towards
predicting a test instance as negative.

To address this problem, we adjust the classifi-
cation thresholds associated with the binary classi-
fiers. Recall that a test instance is classified as pos-
itive by a binary classifier if and only if its prob-
ability of belonging to the positive class is above
the classification threshold used. Hence, adjusting
the threshold amounts to adjusting the number of
test instances classified as positive, thus address-
ing the bias problem mentioned above. Specifi-
cally, we adjust the thresholds of the classifiers as
follows. We train the binary classifiers to optimize
the overall F-score by jointly tuning their classifi-
cation thresholds on 25% of the training data re-
served for development purposes. Since comput-
ing the exact solution to this optimization prob-
lem is computationally expensive, we employ a lo-
cal search algorithm that changes the value of one
threshold at a time to optimize F-score while keep-
ing the remaining thresholds fixed. During testing,
classifier ci will classify a test instance as positive
if its probability of belonging to the positive class
is above the corresponding threshold.

We apply this multi-label text classification ap-
proach to obtain post-level RC scores for the Base-
line, P1 and P2. Note that since P1 and P2 are
pipeline systems, the binary classifiers they use to
predict a test post’s reasons depend on the post’s
predicted stance. Specifically, if a test post is pre-
dicted to have a positive (negative) stance, then
only the reason classifiers associated with the pos-
itive (negative) stance will be used to predict the
reasons it contains. On the other hand, this ap-
proach cannot be used in combination with ILP or
the joint models to produce post-level RC scores:
they all require a reason classifier trained on
reason-annotated sentences, which are not avail-
able in the multi-label text classification approach.

Post-level RC results of the Baseline and the
two pipeline systems, P1 and P2, obtained via this
multi-label text classification approach are shown
in Table 4. These scores are significantly lower
than the corresponding scores in Table 3 by 3.2,
2.9, and 3.1 points for the Baseline, P1, and P2 re-
spectively, when averaged over the four domains.
They confirm our hypothesis that the sentence-
based approach to post-level RC is indeed better
than its multi-class text classification counterpart.

5.4 Error Analysis

To get a better understanding of our best-
performing RC system (J3), we examine its major
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System ABO GAY OBA MAR
Baseline 39.8 37.9 30.1 40.8

P1 41.5 41.0 31.7 44.7
P2 43.3 42.6 32.0 46.3

Table 4: Post-level RC F-scores obtained via the
multi-class text classification approach.

sources of error in this subsection.
For the four domains, 75–83% of the errors

can be attributed to the system’s inability to de-
cide whether a sentence describes a reason or not.
Specifically, in 51–54% of the erroneous cases, a
reason sentence is misclassified as NONE. On the
other hand, 23–30% of the cases are concerned
with assigning a reason label to a NONE sentence.
The remaining 17–25% of the errors concern mis-
labeling a reason sentence with the wrong reason.

A closer examination of the errors reveals that
they resulted primarily from (1) the lack of access
to background knowledge, (2) the failure to pro-
cess complex discourse structures, and (3) the fail-
ure to process sarcastic statements and rhetorical
questions. We present two examples for each of
these three major sources of error from the ABO
and OBA domains in Table 5. In each example,
we show their predicted (P) and gold (G) labels.

Lack of access to background knowledge.
Consider the first example for ABO in Table 5.
Our system misclassifies this sentence in part be-
cause it lacks the background knowledge that “ge-
netic code” is one of the characteristics of life and
a fetus having it means a fetus has life (A3). Sim-
ilarly, the system cannot determine the reason for
the first OBA example without the knowledge that
“deficit spending” is a term related to the econ-
omy and that increasing it is bad (A1). We believe
some of these relations can be extracted from lex-
ical knowledge bases such as YAGO2 (Suchanek
et al., 2007), Freebase (Bollacker et al., 2008), and
BabelNet (Navigli and Ponzetto, 2012).

Failure to process complex discourse struc-
tures. Our system misclassifies the second ex-
ample for ABO in part because the first part of
the sentence (i.e., Sure, the fetus has the potential
to one day be a person) expresses a meaning that
is completely inverted by the second part. Such
complex discourse structures often lead to classi-
fication errors even for sentences whose interpre-
tation requires no background knowledge. We be-
lieve that this problem can be addressed in part

by a better understanding of the structure of a dis-
course, particularly the relation between two dis-
course segments, using a discourse parser.
Failure to process sarcastic statements and
rhetorical questions. Owing to the nature of
our dataset (i.e., debate posts), many errors arise
from sentences containing sarcasm and/or rhetori-
cal questions. This is especially a problem in long
post sequences, where authors frequently restate
their opponents’ positions, sometimes ironically.
A first step towards handling these errors would
therefore be to identify sentences containing sar-
casm and/or rhetorical questions.

6 Related Work

In this section, we discuss related work in the areas
of document-level RC, argument recognition, tex-
tual entailment in online debates, argumentation
mining, and sentiment analysis.
Document-level reason classification. Persing
and Ng (2009) apply a multi-label text classifi-
cation approach to document-level RC of aviation
safety incident reports. Given a set of pre-defined
reasons, their RC system seeks to identify the rea-
sons that can explain why the incident described
in a given report occurred. Their work is dif-
ferent from ours in at least two respects. First,
while our posts occur in post sequences (which
can be profitably exploited in RC, for example, as
in J3), their incident reports were written indepen-
dently of each other. Second, they do not perform
sentence-level RC, as the lack of sentence-level
reason annotations in their dataset prevented them
from training a sentence-level reason classifier.
Argument recognition. Boltužić and Šnajder
(2014) propose a multi-class classification task
called argument recognition in online discussions.
Given a post and a reason for a particular domain,
the task is to predict the extent to which the au-
thor of the post supports or opposes the reason
as measured on a five-point ordinal scale rang-
ing from “explicitly supports” to “explicitly op-
poses”. Hence, unlike RC, argument recognition
focuses on the magnitude rather than the exis-
tence of a post-reason relationship. In addition,
Boltužić and Šnajder focus on post-level (rather
than sentence-level) classification and employ per-
fect (rather than predicted) stance information.
Textual entailment in online debates. Given
the title of a debate and a post written in re-
sponse to it, this task seeks to detect arguments in
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Domain
Background knowledge Complex discourse structure Sarcasm/rhetorical questions
Example P G Example P G Example P G

ABO Science does agree that
the fetus has an individ-
ual genetic code and fits
into the biological defi-
nition of life.

NONE A3 Sure, the fetus has the
potential to one day be
a person, but right now
it is not.

NONE F3 So are there enough
homes for 50,000,000
babies?

F9 F5

OBA Democrats have
increased deficit spend-
ing by 2 trillion dollars
over 2 years.

NONE A1 Bush raised the debt
by two billion for the
wars, Obama has out-
spent that in a week.

A2 A1 I agree, Bush put us in
debt for the next 100
years, so we can blame
Obama forever.

NONE F3

Table 5: Examples of the major sources of error. P and G stand for predicted tag and gold tag respectively.

the post that entail or contradict the title (Cabrio
and Villata, 2012). Hence, this task is concerned
with identifying text segments that correspond to
rationales without a predefined set of rationales,
whereas RC is concerned with both identifying
text segments and classifying them based on a
given set of reasons.
Argumentation mining. The goal of this task is
to extract the argumentative structure of a docu-
ment. Researchers have proposed approaches to
mine the structure of scientific papers (Teufel and
Moens, 2000; Teufel, 2001), product reviews (Vil-
lalba and Saint-Dizier, 2012; Wyner et al., 2012),
newspaper articles (Feng and Hirst, 2011), and le-
gal documents (Brüninghaus and Ashley, 2005;
Wyner et al., 2010; Palau and Moens, 2011; Ash-
ley and Walker, 2013). A major difference be-
tween this task and RC is that the argument types
refer to generic structural cues, textual patterns
etc., whereas our reason classes refer to the spe-
cific reasons an author may mention to support her
stance in a domain. For instance, in the case of
a scientific article, the argument types correspond
to general background, description of the paper’s
or some other papers’ approach, objective, con-
trastive and/or comparative comments, etc. (Teufel
and Moens, 2000). The argument types for legal
documents refer to legal factors which are either
pro-plaintiff or pro-defendant (Brüninghaus and
Ashley, 2005). For instance, for trade secret law
cases, factors such as Waiver-of-Confidentiality
and Disclosure-in-Public-Forum refer to certain
facts strengthening the claim of one of the sides
participating in a case.
Sentiment analysis. RC resembles certain tasks
in sentiment analysis. One such task is pro and con
reason classification in reviews (Kim and Hovy,
2006), where sentences containing opinions as
well as reasons justifying the opinions are to be
extracted and classified as PRO, CON, or NONE.

Hence, this task focuses on categorizing sentences
into coarse-grained, high-level groups (e.g., PRO

vs. CON, POSITIVE vs. NEGATIVE), but does not
attempt to subcategorize the PRO and CON classes
into fine-grained reason classes, unlike RC. Some-
what similar to the PRO and CON sentence classifi-
cation task is the task of determining the relevance
of a sentence in a review for polarity classifica-
tion. Zaidan et al. (2007) coined the term ratio-
nale to refer to any subjective textual content that
contains evidence supporting the author’s opinion
or stance. These rationales, however, may not al-
ways contain reasons. For instance, a sentence that
mentions that the author likes a product is a ra-
tionale, but it does not contain any reason for her
liking it. Methods have been proposed for auto-
matically identifying rationales (e.g., Yessenalina
et al. (2010), Trivedi and Eisenstein (2013)) and
distinguishing subjective from objective materials
in a review (e.g., Pang and Lee (2004), Wiebe and
Riloff (2005), McDonald et al. (2007), Zhao et al.
(2008)). Note that in all these attempts, the end
goal is not to classify sentences, but to employ
the results of sentence classification to improve a
higher-level task, such as sentiment classification.

7 Conclusion

We examined the new task of reason classification.
We exploited stance information for reason classi-
fication, proposing systems of varying complexity
for modeling stances and reasons. Experiments on
our reason-annotated corpus of ideological debate
posts from four domains demonstrate that sophis-
ticated models of stances and reasons can indeed
yield more accurate reason and stance classifica-
tion results than their simpler counterparts. Nev-
ertheless, reason classification remains a challeng-
ing task: the best post-level F-scores are in the low
50s. By making our corpus publicly available, we
hope to stimulate further research on this task.
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Abstract
State-of-the-art Chinese zero pronoun res-
olution systems are supervised, thus re-
lying on training data containing manu-
ally resolved zero pronouns. To elimi-
nate the reliance on annotated data, we
present a generative model for unsuper-
vised Chinese zero pronoun resolution.
At the core of our model is a novel hy-
pothesis: a probabilistic pronoun resolver
trained on overt pronouns in an unsuper-
vised manner can be used to resolve zero
pronouns. Experiments demonstrate that
our unsupervised model rivals its state-of-
the-art supervised counterparts in perfor-
mance when resolving the Chinese zero
pronouns in the OntoNotes corpus.

1 Introduction

A zero pronoun (ZP) is a gap in a sentence that
is found when a phonetically null form is used to
refer to a real-world entity. An anaphoric zero
pronoun (AZP) is a ZP that corefers with one or
more preceding noun phrases (NPs) in the asso-
ciated text. Below is an example taken from the
Chinese TreeBank (CTB), where the ZP (denoted
as *pro*) refers to俄罗斯 (Russia).

[俄罗斯] 作为米洛舍夫维奇一贯的支持者，
*pro*曾经提出调停这场政治危机。
([Russia] is a consistent supporter of Milošević,
*pro* has proposed to mediate the political crisis.)

As we can see, ZPs lack grammatical attributes
that are useful for overt pronoun resolution such as
number and gender. This makes ZP resolution
more challenging than overt pronoun resolution.
Automatic ZP resolution is typically composed

of two steps. The first step, AZP identification, in-
volves extracting ZPs that are anaphoric. The sec-
ond step, AZP resolution, aims to identify an an-
tecedent of an AZP. State-of-the-art ZP resolvers

have tackled both of these steps in a supervised
manner, training a classifier for AZP identification
and another one for AZP resolution (e.g., Zhao and
Ng (2007), Chen and Ng (2013)).
In this paper, we focus on the second task, AZP

resolution, designing a model that assumes as in-
put the AZPs in a document and resolves each of
them. Note that the task of AZP resolution alone is
by no means easy: even when gold-standard AZPs
are given, state-of-the-art supervised resolvers can
only achieve an F-score of 47.7% for resolving
Chinese AZPs (Chen and Ng, 2013). For the sake
of completeness, we will evaluate our AZP resolu-
tion model using both gold-standard AZPs as well
as AZPs automatically identified by a rule-based
approach that we propose in this paper.
Our contribution lies in the proposal of the first

unsupervised probabilistic model for AZP resolu-
tion that rivals its supervised counterparts in per-
formance when evaluated on the Chinese portion
of the OntoNotes 5.0 corpus. Its main advan-
tage is that it does not require training data with
manually resolved AZPs. This, together with the
fact that its underlying generative process is not
language-dependent, enables it to be applied to
languages where such annotated data is not read-
ily available. At its core is a novel hypothesis:
we can apply a probabilistic pronoun resolution
model trained on overt pronouns in an unsuper-
vised manner to resolve zero pronouns. Moti-
vated by Cherry and Bergsma's (2005) and Char-
niak and Elsner's (2009) work on unsupervised
English pronoun resolution, we train our unsu-
pervised resolver on Chinese overt pronouns us-
ing the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977).

2 Related Work

Chinese ZP resolution. Early approaches to
Chinese ZP resolution are rule-based. Con-
verse (2006) applied Hobbs' algorithm (Hobbs,
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1978) to resolve the ZPs in the CTB documents.
Yeh and Chen (2007) hand-engineered a set of
rules for ZP resolution based on Centering The-
ory (Grosz et al., 1995).
In contrast, virtually all recent approaches to

this task are based on supervised learning. Zhao
and Ng (2007) are the first to employ a supervised
learning approach to Chinese ZP resolution. They
trained an AZP resolver by employing syntactic
and positional features in combination with a de-
cision tree learner. Unlike Zhao and Ng, Kong
and Zhou (2010) employed context-sensitive con-
volution tree kernels (Zhou et al., 2008) in their
resolver to model syntactic information. More re-
cently, we extended Zhao and Ng's feature set with
novel features that encode the context surrounding
a ZP and its candidate antecedents, and exploited
the coreference links between ZPs as bridges to
find textually distant antecedents for ZPs (Chen
and Ng, 2013).
ZP resolution for other languages. There have
been rule-based and supervised machine learning
approaches for resolving ZPs in other languages.
For example, to resolve ZPs in Spanish texts,
Ferrández and Peral (2000) proposed a set of hand-
crafted rules that encode preferences for candidate
antecedents. In addition, supervised approaches
have been extensively employed to resolve ZPs
in Korean (e.g., Han (2006)), Japanese (e.g., Seki
et al. (2002), Isozaki and Hirao (2003), Iida et
al. (2006; 2007), Imamura et al. (2009), Iida and
Poesio (2011), Sasano and Kurohashi (2011)), and
Italian (e.g., Iida and Poesio (2011)).

3 Chinese Overt Pronouns

Since our approach relies heavily on Chinese
overt pronouns, in this section we introduce them
by describing their four grammatical attributes,
namely Number, Gender, Person and Ani-
macy. Number has two values, singular and
plural. Gender has three values, neuter, mascu-
line and feminine. Person has three values, first,
second and third. Finally, Animacy has two val-
ues, animate and inanimate.
We exploit ten personal pronouns that have

well-defined grammatical attribute values, namely
你 (singular you),我 (I),他 (he),她 (she),它 (it),
你们 (plural you), 我们 (we), 他们 (masculine
they),她们 (feminine they), and它们 (impersonal
they). As can be seen in Table 1, each of them can
be uniquely identified using these four attributes.

Pronouns Number Gender Person Animacy
我 (I) singular neuter first animate
你 (you) singular neuter second animate
他 (he) singular masculine third animate
她 (she) singular feminine third animate
它 (it) singular neuter third inanimate
你们 (you) plural neuter second animate
我们 (we) plural neuter first animate
他们 (they) plural masculine third animate
她们 (they) plural feminine third animate
它们 (they) plural neuter third inanimate

Table 1: Attribute values of Chinese overt pronouns.

4 The Generative Model

4.1 Notation

Let p be an overt pronoun in PR, the set of the
10 overt pronouns described in Section 3. C, the
set of candidate antecedents of p, contains all and
only those maximal or modifier NPs that precede
p in the associated text and are at most two sen-
tences away from it.1 k is the context surround-
ing p as well as every candidate antecedent c in
C; kc is the context surrounding p and candidate
antecedent c; and l is a binary variable indicat-
ing whether c is the correct antecedent of p. The
set A = {Num,Gen, Per,Ani} has four ele-
ments, which correspond to Number, Gender,
Person and Animacy respectively. a is an at-
tribute in A. Finally, pa and ca are the attribute
values of p and c with respect to a respectively.

4.2 Training

Our model estimates P (p, k, c, l), the probability
of seeing (1) the overt pronoun p; (2) the context
k surrounding p and its candidate antecedents; (3)
a candidate antecedent c of p; and (4) whether c is
the correct antecedent of p. Since we estimate this
probability from a raw, unannotated corpus, we are
effectively treating p, k, and c as observed data and
l as hidden data.
Owing to the presence of hidden data, we es-

timate the model parameters using the EM algo-
rithm. Specifically, we use EM to iteratively es-
timate the model parameters from data in which
each overt pronoun is labeled with the probability
it corefers with each of its candidate antecedents
and apply the resultingmodel to re-label each overt
pronoun with the probability it corefers with each
of its candidate antecedents. Below we describe

1Only 8% of the overt pronouns in our corpus, the Chi-
nese portion of the OntoNotes 5.0 corpus, do not have any
antecedent in the preceding two sentences.
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the details of the E-step and the M-step.

4.2.1 E-Step
The goal of the E-step is to compute
P (l=1|p, k, c), the probability that a candi-
date antecedent c is the correct antecedent of p
given context k. Assuming that exactly one of the
p's candidate antecedents is its correct antecedent,
we can rewrite P (l=1|p, k, c) as follows:

P (l=1|p, k, c) =
P (p, k, c, l=1)∑

c′∈C P (p, k, c′, l=1)
(1)

Applying Chain Rule, we can rewrite
P (p, k, c, l=1) as follows:

P (p, k, c, l=1) = P (p|k, c, l=1) ∗ P (l=1|k, c)
∗ P (c|k) ∗ P (k)

(2)
Next, given l = 1 (i.e., c is the antecedent of p),

we assume that we can generate p from c without
looking at the context.2 Then we represent p using
its grammatical attributes A. We further assume
that p's value with respect to attribute a ∈ A is
independent of the value of each of its remaining
attributes given the antecedent's value with respect
to a. So we can rewrite P (p|k, c, l=1) as follows:

P (p|k, c, l=1) ≈ P (p|c, l=1)
≈ P (pNum, pGen, pPer, pAni|c, l=1)

≈
∏
a∈A

P (pa|ca, l=1)
(3)

Moreover, we assume that (1) given p and c's
context, the probability of c being the antecedent
of p is not affected by the context of the other can-
didate antecedents; and (2) kc is sufficient for de-
termining whether c is the antecedent of p. So,

P (l=1|k, c) ≈ P (l=1|kc, c) ≈ P (l=1|kc) (4)

Furthermore, we assume that given context k,
each candidate antecedent of p is generated with
equal probability. In other words,

P (c|k) ≈ P (c′|k) ∀ c, c′ ∈ C (5)

Given Equations (2), (3), (4) and (5), we can
rewrite P (l=1|p, k, c) as:

P (l=1|p, k, c) =
P (p, k, c, l=1)∑

c′∈C P (p, k, c′, l=1)

≈
∏

a∈A P (pa|ca, l=1) ∗ P (l=1|kc)∑
c′∈C

∏
a∈A P (pa|c′a, l=1) ∗ P (l=1|kc′)

(6)
2This assumption is reasonable because it is fairly easy to

determine which pronoun can be used to refer to a given NP.

As we can see from Equation (6), our model has
two groups of parameters, namely P (pa|ca, l=1)
and P (l=1|kc). Since we have four grammatical
attributes, P (pa|ca, l=1) contains four sets of pa-
rameters, with one set per attribute. Using Equa-
tion (6) and the current parameter estimates, we
can compute P (l=1|p, k, c).
Two points deserve mention before we describe

the M-step. First, we estimate P (l=1|p, k, c) from
all and only those overt pronouns p ∈ PR that
are surface or deep subjects in their correspond-
ing sentences. This condition is motivated by our
observation that 99.56% of the ZPs in our evalu-
ation corpus (i.e., OntoNotes 5.0) are surface or
deep subjects. In other words, we impose this con-
dition so that we can focus our efforts on learn-
ing a model for resolving overt pronouns that are
subjects. This is by no means a limitation of our
model: if we were given a corpus in which many
ZPs occur as grammatical objects, we could sim-
ilarly train another model on overt objects. Sec-
ond, since in the E-step we attempt to probabilisti-
cally label every overt pronoun p that satisfies the
condition above, our model is effectively making
the simplifying assumption that every overt pro-
noun is anaphoric. This is clearly an overly sim-
plistic assumption. One way to relax this assump-
tion, which we leave as future work, is to first iden-
tify those pronouns that are anaphoric and then use
EM to estimate the joint probability only from the
anaphoric pronouns.

4.2.2 M-Step

Given P (l=1|p, k, c), the goal of the M-step is to
(re)estimate the model parameters, P (pa|ca, l=1)
and P (l=1|kc), using maximum likelihood esti-
mation. Specifically, P (pa|ca, l=1) is estimated
as follows:

P (pa|ca, l=1) =
Count(pa, ca, l=1) + θ

Count(ca, l=1) + θ ∗ |a| (7)

where Count(ca, l=1) is the expected number of
times c has attribute value ca when it is the an-
tecedent of p; |a| is the number of possible values
of attribute a; θ is the Laplace smoothing param-
eter, which we set to 1; and Count(pa, ca, l=1)
is the expected number of times p has attribute
value pa when its antecedent c has attribute value
ca. Given attribute values p′

a and c′a, we compute
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Count(p′
a, c

′
a, l=1) as follows:

Count(p′
a, c

′
a, l=1) =

∑
p,c:pa=p′

a,ca=c′
a

P (l=1|p, k, c)

(8)
Similarly, P (l=1|kc) is estimated as follows:

P (l=1|kc) =
Count(kc, l=1) + θ

Count(kc) + θ ∗ 2
(9)

where Count(kc) is the number of times kc ap-
pears in the training data, and Count(kc, l=1) is
the expected number of times kc is the context sur-
rounding a pronoun and its antecedent c. Given
context k′

c, we compute Count(k′
c, l=1) as fol-

lows:

Count(k′
c, l=1) =

∑
k:kc=k′

c

P (l=1|p, k, c) (10)

To start the induction process, we initialize all
parameters with uniform values. Specifically,
P (pa|ca, l=1) is set to 1

|a| , and P (l=1|kc) is set
to 0.5. Then we iteratively run the E-step and the
M-step until convergence.
There are two important questions we have not

addressed. First, how can we compute the four at-
tribute values of a candidate antecedent (i.e., ca

for each attribute a), which we need to estimate
P (pa|ca, l=1)? Second, what features should we
use to represent context kc, which we need to esti-
mate P (l=1|kc)? We defer the discussion of these
questions to Sections 5 and 6.

4.3 Inference
After training, we can apply the resulting model to
resolve AZPs. Given an AZP z, we determine its
antecedent as follows:

(ĉ, p̂) = argmax
c∈C, p∈PR

P (l=1|p, k, c) (11)

where PR is our set of 10 Chinese overt pronouns
and C is the set of candidate antecedents of z. In
other words, we apply Formula (11) to eachAZP z,
searching for the candidate antecedent c and overt
pronoun p that maximize P (l=1|p, k, c) when p is
used to fill the ZP gap left behind by z. The c that
results in the maximum probability value over all
overt pronouns in PR is chosen as the antecedent
of z. In essence, since the model is trained on
overt pronouns but is applied to ZPs, we have to
exhaustively fill the ZP's gap under consideration
with each of the 10 overt pronouns in PR during
inference.

Although we can now apply our generative
model to resolve AZPs, the resolution procedure
can be improved further. The improvement is
motivated by a problem we observed previously
(Chen and Ng, 2013): an AZP and its closest an-
tecedent can sometimes be far away from each
other, thus making it difficult to correctly resolve
the AZP. To address this problem, we employ the
following resolution procedure in our experiments.
Given a test document, we process its AZPs in a
left-to-right manner. As soon as we resolve an
AZP to a preceding NP c, we fill the correspond-
ing AZP's gap with c. Hence, when we process
an AZP z, all of its preceding AZPs in the associ-
ated text have been resolved, with their gaps filled
by the NPs they are resolved to. To resolve z, we
create test instances between z and its candidate
antecedents in the same way as described before.
The only difference is that the set of candidate an-
tecedents of z may now include those NPs that are
used to fill the gaps of the AZPs resolved so far. In
other words, this incremental resolution procedure
may increase the number of candidate antecedents
of each AZP z. Some of these additional candidate
antecedents are closer to z than the original candi-
date antecedents, thereby facilitating the resolution
of z. If the model resolves z to the additional can-
didate antecedent that fills the gap left behind by,
say, AZP z′, we postprocess the output by resolv-
ing z to the NP that z′ is resolved to.3

5 Attributes of Candidate Antecedents

In this section, we describe how we determine
the four grammatical attribute values (Number,
Gender, Person and Animacy) of a candidate
antecedent c, as they are used to represent c when
estimating P (pa|ca, l=1) for each attribute a.

5.1 ANIMACY

We determine the Animacy of a candidate an-
tecedent c heuristically. Specifically, we first
check the NP type of c. If c is a pronoun, we look
up its Animacy in Table 1. If c is a named en-
tity, there are two cases to consider: if c is a per-
son4, we label it as animate; otherwise, we label it
as inanimate. If c is a common noun, we look up
the Animacy of its head noun in an automatically

3This postprocessing step is needed because the additional
candidate antecedents are only gap fillers.

4A detailed description of our named entity recognizer can
be found in Chen and Ng (2014).
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constructed word list WL. If the head noun is not
in WL, we set its Animacy to unknown.
Our method for constructing WL is motivated

by an observation of measure words in Chinese:
some of them only modify inanimate nouns while
others only modify animate nouns. For example,
the nouns modified by the measure word张 are al-
ways inanimate, as in一张纸 (one piece of paper).
On the other hand, the nouns modified by the mea-
sure word位 are always animate, as in一位工人
(one worker).
Given this observation, we first define two lists,

Mani and Minani. Mani is a list of measure words
that can only modify animate nouns. Minani is a
list of measure words that can only modify inan-
imate nouns.5 There exists a special measure
word in Chinese, 个, which can be used to mod-
ify most of the common nouns regardless of their
Animacy. As a result, we remove 个 from both
lists. After constructing Mani and Minani, we (1)
parse the Chinese Gigaword corpus (Parker et al.,
2009), which contains 4,370,600 documents, using
an efficient dependency parser, ctbparser6 (Qian et
al., 2010), and then (2) collect all pairs of words
(m,n), where m is a measure word, n is a com-
mon noun, and there is a NMOD dependency re-
lation between m and n. Finally, we determine
the Animacy of a given common noun n as fol-
lows. First, we retrieve all of the pairs contain-
ing n. Then, we sum over all occurrences of m
in Mani (call the sum Cani), as well as all occur-
rences of m in Minani (call the sum Cinani). If
Cani > Cinani, we label this common noun as an-
imate; otherwise, we label it as inanimate.
Table 2 shows the learned values of

P (pAni|cAni, l=1). These results are consis-
tent with our intuition: an animate (inanimate)
pronoun is more likely to be generated from
an animate (inanimate) antecedent than from an
inanimate (animate) antecedent. Note that animate
pronouns are more likely to be generated than
inanimate pronouns regardless of the antecedent's
Animacy. This can be attributed to the fact that
94.6% of the pronouns in our corpus are animate.

5.2 GENDER
We determine the Gender of a candidate an-
tecedent c as follows. If c is a pronoun, we look up
its Gender in Table 1. Otherwise, we determine

5We create these two lists with the help of this page:
http://chinesenotes.com/ref_measure_words.htm

6http://code.google.com/p/ctbparser/

``````````Antecedent
Pronoun animate inanimate

animate 0.999 0.001
inanimate 0.858 0.142
unknown 0.945 0.055

Table 2: Learned values of P (pAni|cAni, l=1).

its Gender based on its Animacy. Specifically,
if c is inanimate, we set its Gender to neuter.
Otherwise, we determine its gender by looking up
a gender word list constructed by Bergsma and
Lin's (2006) approach. If the word is not in the
list, we set its Gender to masculine by default.
Next, we describe how the aforementioned gen-

der word list is constructed. Following Bergsma
and Lin (2006), we define a dependency path as the
sequence of non-terminal nodes and dependency
labels between two potentially coreferent entities
in a dependency parse tree. From the parsed Chi-
nese Gigaword corpus, we first collect every de-
pendency path that connects two pronouns. For
each path P collected, we compute CL(P ), the
coreference likelihood of P , as follows:

CL(P ) =
NI(P )

NI(P ) + ND(P )
(12)

where NI(P ) is the number of times P connects
two identical pronouns, and ND(P ) is the number
of times it connects two different pronouns. As-
suming that two identical pronouns in a sentence
are coreferent (Bergsma and Lin, 2006), we can
see that the larger a path's CL value is, the more
likely it is that the two NPs it connects are corefer-
ent. To ensure that we have dependency paths that
are strongly indicative of coreference relations, we
consider a dependency path P a coreferent path if
and only if CL(P ) > 0.8.
Given these coreferent paths, we can compute

theGender of a nounn as follows. First, we com-
pute (1) NM (n), the number of coreferent paths
connecting n with a masculine pronoun; and (2)
NF (n), the number of coreferent paths connect-
ing n with a feminine pronoun. Then, if NF (n) >
NM (n), we set n's gender to feminine; otherwise,
we set it to masculine.
Table 3 shows the learned values of

P (pGen|cGen, l=1). These results are con-
sistent with our intuition: a pronoun is a lot more
likely to be generated from an antecedent with the
same Gender than one with a different Gender.
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``````````Antecedent
Pronoun neuter feminine masculine

neuter 0.864 0.018 0.117
feminine 0.065 0.930 0.005
masculine 0.130 0.041 0.828

Table 3: Learned values of P (pGen|cGen, l=1).

``````````Antecedent
Pronoun singular plural

singular 0.861 0.139
plural 0.26 0.74

Table 4: Learned values of P (pNum|cNum, l=1).

5.3 NUMBER

When computing the Number of a candidate an-
tecedent in English, Charniak and Elsner (2009)
rely on part-of-speech information. For example,
NN and NNP denote singular nouns, whereas NNS
and NNPS denote plural nouns. However, Chi-
nese part-of-speech tags do not provide such in-
formation. Hence, we need a different method for
finding theNumber of a candidate antecedent c in
Chinese. If c is a pronoun, we look up itsNumber
in Table 1. If c is a named entity, its Number is
singular. If c is a common noun, we infer itsNum-
ber from its string: if the string ends with们 or is
modified by a quantity word (e.g.,一些,许多), c
is plural; otherwise, c is singular.
Table 4 shows the learned values of

P (pNum|cNum, l=1). These results are con-
sistent with our intuition: a pronoun is more likely
to be generated from an antecedent with the same
Number than one with a different Number.

5.4 PERSON

Finally, we compute the Person of a candi-
date antecedent c. Similar to Charniak and El-
sner (2009), we set 我 (I) and 我们 (we) to first
person, 你 (singular you) and 你们 (plural you)
to second person, and everything else to third
person. We estimate two sets of probabilities
P (pPer|cPer, l=1), one where p and c are from the
same speaker, and the other where they are from
different speakers.7 This is based on our observa-
tion thatP (pPer|cPer, l=1) could be very different
in these two cases.

7We employ a simple heuristic to identify the speaker of
NPs occurring in direct speech: we assume that the speaker
is the subject of the speech's reporting verb. So for example,
we identify Jack as the speaker of This book in the sentence
"This book is good," Jack said.

``````````Antecedent
Pronoun first second third

first 0.856 0.119 0.025
second 0.219 0.766 0.016
third 0.289 0.077 0.634

Table 5: Learned values of P (pPer|cPer, l=1)
(same speaker).

``````````Antecedent
Pronoun first second third

first 0.417 0.525 0.057
second 0.75 0.23 0.02
third 0.437 0.229 0.334

Table 6: Learned values of P (pPer|cPer, l=1)
(different speakers).

Tables 5 and 6 show the learned values of these
two sets of probabilities. These results are consis-
tent with our intuition. In the same-speaker case, a
pronoun is a lot more likely to be generated from
an antecedent with the same speaker than one with
a different speaker. In the different-speaker case,
a first (second) person pronoun is most likely to be
generated from a second (first) person pronoun.

6 Context Features

To fully specify our model, we need to describe
how to represent kc, which is needed to compute
P (l=1|kc). Recall that kc encodes the context sur-
rounding candidate antecedent c and the associated
pronoun p. As described below, we represent kc

using eight features, some of which are motivated
by previous work on supervised AZP resolution
(e.g., Zhao and Ng (2007), Chen and Ng (2013)).
Note that (1) all but feature 1 are computed based
on syntactic parse trees, and (2) features 2, 3, 6,
and 8 are ternary-valued features.

1. the sentence distance between c and p;

2. whether the node spanning c has an ancestor
NP node; if so, whether this NP node is a de-
scendant of c's lowest ancestor IP node;

3. whether the node spanning c has an ancestor
VP node; if so, whether this VP node is a de-
scendant of c's lowest ancestor IP node;

4. whether vp has an ancestor NP node, where
vp is the VP node spanning the VP that fol-
lows p;

5. whether vp has an ancestor VP node;
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Training Test
Documents 1,391 172
Sentences 36,487 6,083
Words 756,063 110,034

Overt Subject Pronouns 13,418 −
AZPs − 1,713

Table 7: Statistics on the training and test sets.

6. whether p is the first word of a sentence; if
not, whether p is the first word of an IP clause;

7. whether c is a subject whose governing verb
is lexically identical to the verb governing p;

8. whether c is the closest candidate antecedent
with subject grammatical role and is seman-
tically compatible with p's governing verb; if
not, whether c is the first semantically com-
patible candidate antecedent8.

Our approach to determine semantic compatibil-
ity (in feature 8) resembles Kehler et al.'s (2004)
and Yang et al.'s (2005) methods for computing se-
lectional preferences. Specifically, for each verb
and each noun that serves as a subject in Chinese
Gigaword, we compute their mutual information
(MI). Now, given a pronoun p and a candidate an-
tecedent c in the training/test corpus, we retrieve
the MI value of c and p's governing verb. We then
consider them semantically compatible if and only
if their MI value is greater than zero.

7 Evaluation

7.1 Experimental Setup
Datasets. We employ the Chinese portion of the
OntoNotes 5.0 corpus that was used in the official
CoNLL-2012 shared task (Pradhan et al., 2012).
In the CoNLL-2012 data, the training set and de-
velopment set contain ZP coreference annotations,
but the test set does not. Therefore, we train our
models on the training set and perform evaluation
on the development set. Statistics on the datasets
are shown in Table 7. The documents in these
datasets come from six sources, namely Broadcast
News (BN), Newswire (NW), Broadcast Conver-
sation (BC), Telephone Conversation (TC), Web
Blog (WB) and Magazine (MZ).

8 We sort the candidate antecedents of p as follows. We
first consider the subject candidate antecedents in the same
sentence as p from right to left, then the other candidate an-
tecedents in the same sentence from right to left. Next, we
consider the candidate antecedents in the previous sentence,
also preferring candidates that are subjects, but in left-to-right
order. Finally, we consider the candidate antecedents two
sentences back, following the subject-first, left-to-right order.

Evaluation measures. We express the results of
ZP resolution in terms of recall (R), precision (P)
and F-score (F).
Evaluation settings. Following Chen and Ng
(2013), we evaluate our model in three settings.
In Setting 1, we assume the availability of gold
syntactic parse trees and gold AZPs. In Setting 2,
we employ gold syntactic parse trees and system
(i.e., automatically identified) AZPs. Finally, in
Setting 3, we employ system syntactic parse trees
and system AZPs. The gold and system syntactic
parse trees, as well as the gold AZPs, are obtained
from the CoNLL-2012 shared task dataset, while
the system AZPs are identified by the rule-based
approach described in the Appendix.9 Since our
AZP identification approach does not rely on any
labeled data, we are effectively evaluating an end-
to-end unsupervised AZP resolver in Setting 3.

7.2 Results
Baseline systems. We employ seven resolvers
as baseline systems. To gauge the difficulty of
the task, we employ four simple rule-based re-
solvers, which resolve an AZP z to (1) the can-
didate antecedent closest to z (Baseline 1); (2) the
subject NP closest to z (Baseline 2); (3) the clos-
est candidate antecedent that is semantically com-
patible with z (Baseline 3); and (4) the first can-
didate antecedent that is semantically compatible
with z, where the candidate antecedents are vis-
ited according to the order described in Footnote 8
(Baseline 4). These four baselines allow us to
study the role of (1) recency, (2) salience, (3) re-
cency combined with semantic compatibility, and
(4) salience combined with semantic compatibil-
ity in AZP resolution respectively. The remaining
three baselines are state-of-the-art supervised AZP
resolvers, which include our own resolver (Chen
and Ng, 2013) as well as our re-implementations
of Zhao and Ng's (2007) resolver and Kong and
Zhou's (2010) resolver.
The test set results of these seven baseline re-

solvers when evaluated under the three afore-
mentioned evaluation settings are shown in Ta-
ble 8. The system AZPs employed by the rule-
based resolvers are obtained using our rule-based

9One may wonder why we do not train a supervised sys-
tem for identifying AZPs and instead experiment with a rule-
based AZP identification system. The reason is that employ-
ing labeled data defeats the whole purpose of having an unsu-
pervised AZP resolution model: if annotated data is available
for training an AZP identification system, the same data can
be used to train an AZP resolution system.
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Setting 1: Setting 2: Setting 3:
Gold Parses, Gold Parses, System Parses,
Gold AZPs System AZPs System AZPs

Baseline R P F R P F R P F
Selecting closest candidate antecedent 25.0 25.2 25.1 18.3 10.8 13.6 10.3 6.7 8.1
Selecting closest subject 42.0 43.6 42.8 31.8 19.2 23.9 18.0 11.9 14.4
Selecting closest semantically compatible candidate antecedent 28.5 28.8 28.7 20.5 12.2 15.3 11.7 7.6 9.2
Selecting first semantically compatible candidate antecedent 45.2 45.7 45.5 33.6 20.0 25.1 18.9 12.3 14.9
Zhao and Ng (2007) 41.5 41.5 41.5 22.4 24.4 23.3 12.7 14.2 13.4
Kong and Zhou (2010) 44.9 44.9 44.9 33.0 19.3 24.4 18.7 11.9 14.5
Chen and Ng (2013) 47.7 47.7 47.7 25.3 27.6 26.4 14.9 16.7 15.7

Table 8: AZP resolution results of the baseline systems on the test set.

Setting 1: Gold Parses, Gold AZPs Setting 2: Gold Parses, System AZPs Setting 3: System Parses, System AZPs
Best Baseline Our Model Best Baseline Our Model Best Baseline Our Model

Source R P F R P F R P F R P F R P F R P F
Overall 47.7 47.7 47.7 47.5 47.9 47.7 25.3 27.6 26.4 35.4 21.0 26.4 14.9 16.7 15.7 19.9 12.9 15.7
NW 38.1 38.1 38.1 41.7 41.7 41.7 15.5 21.7 18.1 29.8 24.8 27.0 6.0 12.2 8.0 11.9 13.0 12.4
MZ 34.6 34.6 34.6 34.0 34.2 34.1 18.5 19.6 19.0 24.1 14.5 18.1 6.2 9.4 7.5 6.2 5.2 5.7
WB 46.1 46.1 46.1 47.9 47.9 47.9 21.8 22.0 21.8 37.3 18.7 24.9 8.5 11.4 9.7 19.0 11.3 14.2
BN 47.2 47.2 47.2 52.8 52.8 52.8 21.8 33.2 26.3 31.5 28.1 29.7 14.6 26.3 18.8 18.2 19.5 18.8
BC 52.7 52.7 52.7 49.8 50.3 50.0 23.3 30.7 26.5 38.0 21.0 27.0 12.7 16.2 14.3 20.6 12.4 15.5
TC 51.2 51.2 51.2 45.2 46.7 46.0 43.1 28.2 34.1 42.4 20.3 27.4 33.2 17.1 22.5 32.2 13.3 18.8

Table 9: AZP resolution results of the best baseline and our unsupervised model on the test set.

AZP identification system. On the other hand,
since our supervised resolvers are meant to be re-
implementations of existing resolvers, we follow
previous work and let them employ a supervised
AZP identification system. In particular, we em-
ploy the one described in Chen and Ng (2013).
Several observations can be made about these

results. First, among the rule-based resolvers,
Baseline 4 achieves the best performance, outper-
forming Baselines 1, 2, and 3 by 12.9%, 1.5%,
and 10.8% in F-score respectively when averaged
over the three evaluation settings. From their
relative performance, which remains the same in
the three settings, we can conclude that as far as
AZP resolution is concerned, (1) salience plays a
greater role than recency; and (2) semantic com-
patibility is useful. Second, among the super-
vised baselines, our supervised resolver (Chen and
Ng, 2013) achieves the best performance, outper-
forming Zhao and Ng's resolver and Kong and
Zhou's resolver by 3.9% and 2.0% in F-score re-
spectively when averaged over the three evalua-
tion settings. Finally, comparing the rule-based
resolvers and the learning-based resolvers, we can
see that the best rule-based baseline (Baseline 4)
performs even better than Zhao and Ng's resolver
and Kong and Zhou's resolver.
In the rest of this subsection, we will compare

our unsupervised model against the best baseline,
Chen and Ng's (2013) supervised resolver.

Our model. Results of the best baseline and our
model on the entire test set and each of the six
sources are shown in Table 9. As we can see, our
model achieves the same overall F-score as the best
baseline under all three settings, despite the fact
that it is unsupervised. In fact, our model even out-
performs the best baseline on NW, WB and BN in
Setting 1, NW, WB, BN and BC in Setting 2, and
NW, WB and BC in Setting 3.
It is worth mentioning that while the two re-

solvers achieved the same overall performance,
their outputs differ a lot from each other. Specifi-
cally, the twomodels only agree on the antecedents
of 55% of the AZPs in Setting 1.10

7.3 Ablation Experiments

Impact of P (pa|ca, l=1) and P (l=1|kc). Re-
call that our model is composed of five probability
terms,P (pa|ca, l=1) for each of the four grammat-
ical attributes and P (l=1|kc), the context proba-
bility. To investigate the contribution of context
and each attribute to overall performance, we con-
duct ablation experiments. Specifically, in each
ablation experiment, we remove exactly one prob-
ability term from the model and retrain it.

10Note that it is difficult to directly compare the outputs
produced under Settings 2 and 3: the AZPs identified by the
best baseline are quite different from those identified by our
rule-based system, as can be inferred from the AZP identifi-
cation results in Table 12.
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Setting 1 Setting 3
System R P F R P F
Full model 47.5 47.9 47.7 19.9 12.9 15.7
− Number 47.5 47.9 47.7 19.7 12.8 15.5
− Gender 44.5 45.0 44.7 19.2 12.5 15.1
− Person 45.2 45.6 45.4 19.1 12.4 15.1
− Animacy 45.1 45.5 45.3 19.1 12.4 15.1
− Context Features 32.9 33.1 33.0 15.2 9.8 11.9

Table 10: Probability term ablation results.

Ablation results under Settings 1 and 3 are
shown in Table 10. As we can see, under Set-
ting 1, afterNumber is ablated, performance does
not drop. We attribute this to the fact that al-
most all candidate antecedents are singular. On the
other hand, when we ablate any of the remaining
three attributes, performance drops significantly
by 2.3−3.0% in overall F-score.11 Similar trends
can be observed with respect to Setting 3: after
Number is ablated, performance only decreases
by 0.2%, while ablating any of the other three at-
tributes results in a drop of 0.6%.
Results after ablating context are shown in the

last row of Table 10. As we can see, the F-score
drops significantly by 14.7% and 3.8% under Set-
tings 1 and 3 respectively. These results illustrate
the importance of context features in our model.
Context feature ablation. Recall that we em-
ployed eight context features to encode the rela-
tionship between a pronoun and a candidate an-
tecedent. To determine the relative contribution
of these eight features to overall performance,
we conduct ablation experiments under Settings 1
and 3. In these ablation experiments, all four gram-
matical attributes are retained in the model.
Ablation results are shown in rows 2−9 of Ta-

ble 11. To facilitate comparison, the F-score of the
model in which all eight context features are used
is shown in row 1. As we can see, feature 8 (the
rule-based feature) is the most useful feature: its
removal causes the F-scores of our resolver to drop
significantly by 6.4% under Setting 1 and 1.5% un-
der Setting 3.

7.4 Error Analysis
To gain additional insights into our full model, we
examine its major sources of error below. To focus
on errors attributable to AZP resolution, we ana-
lyze our full model under Setting 1.
Specifically, we randomly select 100 AZPs that

our model incorrectly resolves under Setting 1.
11All significance tests are paired t-tests, with p < 0.05.

Setting 1 Setting 3
System R P F R P F
Full model 47.5 47.9 47.7 19.9 12.9 15.7
− Feature 1 46.1 46.5 46.3 19.4 12.6 15.3
− Feature 2 46.5 46.9 46.7 19.4 12.6 15.3
− Feature 3 45.3 45.7 45.5 19.1 12.4 15.1
− Feature 4 47.4 47.8 47.6 20.1 13.0 15.8
− Feature 5 47.4 47.8 47.6 19.7 12.8 15.5
− Feature 6 47.1 47.5 47.3 19.6 12.7 15.4
− Feature 7 47.1 47.5 47.3 20.1 13.0 15.8
− Feature 8 41.2 41.6 41.4 18.0 11.8 14.2

Table 11: Context feature ablation results.

We found that 17 errors are attributable to dis-
course disfluency, lack of background knowledge
and subject detection, while the remaining 83 er-
rors can be divided into three types:
Failure to recognize the topics of a document.
Our model incorrectly resolves 32 AZPs that are
coreferent with NPs corresponding to the topics of
the associated documents. Consider the following
example:
[八里乡]位于台北盆地西北端。行政区隶属于
台北县，*pro*为台北县廿九个乡镇市之一。
([Bali Town] is located in the Northwest of Taipei
Basin. Its administrative area is affiliated with
Taipei County, *pro* is one of Taipei County's 29
towns and cities.)12

The model incorrectly resolves the AZP *pro*
to行政区 (Its administrative area). The reason is
that the correct antecedent, 八里乡 (Bali Town),
is far from *pro*: there are five candidate an-
tecedents between *pro* and八里乡 (Bali Town).
Note, however, that it is easy for a human to re-
solve *pro* to 八里乡 (Bali Town) because the
whole passage is discussing八里乡 (Bali Town).
Hence, to correctly handle such cases, one may
construct a topic model over the passage and as-
sign each candidate antecedent a prior probability
so that the resulting system favors the selection of
candidates representing the topics as antecedents.
Errors in computing semantic compatibility.
This type of error contributes to 28 of the incor-
rectly resolved AZPs. When computing seman-
tic compatibility in our model, we only consider
the mutual information between a candidate an-
tecedent and the pronoun's governing verb, but in
some cases, additional context needs to be taken
into account. Consider the following example:

12The pronoun Its in the phrase Its administrative area is
inserted into the English translation for the sake of grammat-
icality and correct understanding of the sentence. The corre-
sponding Chinese phrase does not contain any pronoun.
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[一支海军陆战队]杀死了约 [24名手无寸铁的
伊拉克人]，*pro*包括妇女和六名儿童。
([Marines] killed about [24 unarmed Iraqis], *pro*
include women and six children.)
There are two candidate antecedents in this ex-

ample,一支海军陆战队 (Marines) and 24名手无
寸铁的伊拉克人 (24 unarmed Iraqis), which we
denote as c1 and c2 respectively. The correct an-
tecedent of *pro* is c2 , while our model wrongly
resolves *pro* to c1. Note that both c1 and c2 are
compatible with the AZP's governing verb 包括
(include). However, if the object of the govern-
ing verb, i.e., 妇女和六名儿童 (women and six
children), were also considered, the model could
determine that c1 is not compatible with the object
while c2 is, and then correctly resolve *pro* to c2.
Failure to recognize and exploit semantically
similar sentences. This type of error contributes
to 23 wrongly resolved AZPs. Recall that an AZP
is omitted for brevity, so the sentence it appears in
often expresses similar meaning to an earlier sen-
tence. However, our model fails to handle such
cases. Consider the following example:
[指挥部和突进的部队]之间也会失去联络。.....
*pro*就联络不上了。
([The command and the onrush of troops] lost con-
nection with each other. ... *pro* cannot connect
with each other.)
The above example shows two sentences that

are separated by some other sentences. The AZP
under consideration is in the last sentence, while
the first sentence contains the correct antecedent
指挥部和突进的部队 (the command and the on-
rush troops), denoted as c1. Our model fails to re-
solve *pro* to c1, because there are many com-
peting candidate antecedents between c1 and AZP.
However, if our model were aware of the similarity
between the constructions appearing after c1 and
*pro*, i.e., 之间也会失去联络 (lost connection
with each other) and就联络不上了 (cannot con-
nect with each other), then it might be able to cor-
rectly resolve the AZP.

8 Conclusion

We proposed an unsupervised model for Chinese
zero pronoun resolution, investigating the novel
hypothesis that an unsupervised probabilistic re-
solver trained on overt pronouns can be applied to
resolve ZPs. To our knowledge, this is the first un-
supervised probabilistic model for this task. Ex-
periments on the OntoNotes 5.0 corpus showed

that our unsupervised model rivaled its state-of-
the-art supervised counterparts in performance.
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Appendix: Automatic AZP Identification

Our automatic AZP identification system employs
an ordered set of rules. The first rule is a positive
rule that aims to extract as many candidate AZPs
as possible. It is followed by seven negative rules
that aim to improve precision by filtering out er-
roneous candidate AZPs. Below we first describe
the rules and then evaluate this rule-based system.

Rule 1. Add candidate AZP z if it occurs before
the leftmost word spanned by a VP node vp.
Rule 2. Remove z if its associated vp is in a coor-
dinate structure or modified by an adverbial node.

Rule 3. Remove z if the parent of its associated
vp node is not an IP node.
Rule 4. Remove z if its associated vp has a NP
or QP node as an ancestor.
Rule 5. Remove z if one of the left sibling nodes
of vp is NP, QP, IP or ICP.
Rule 6. Remove z if (1) z does not begin a sen-
tence, (2) the highest node whose spanning word
sequence ends with the left non-comma neighbor
word of z is either NP, QP or IP, and (3) the parent
of this node is VP.
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Gold Parses System Parses
Systems R P F R P F
Rule-based 72.4 42.3 53.4 42.3 26.8 32.8
Supervised 50.6 55.1 52.8 30.8 34.4 32.5

Table 12: AZP identification results on the test set.

Rule 7. Remove z if vp's lowest IP ancestor has
(1) a VP node as its parent and (2) a VV node as
its left sibling.
Rule 8. Remove z if it begins a document.

To gauge the performance of our rule-based
AZP identification system, we compare it with our
supervised AZP identification system (Chen and
Ng, 2013). Results of the two systems on our test
set are shown in Table 12. As we can see, the F-
scores achieved by the rule-based system is com-
parable to those of the supervised system.
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Abstract

We present sentence enhancement as a
novel technique for text-to-text genera-
tion in abstractive summarization. Com-
pared to extraction or previous approaches
to sentence fusion, sentence enhancement
increases the range of possible summary
sentences by allowing the combination of
dependency subtrees from any sentence
from the source text. Our experiments in-
dicate that our approach yields summary
sentences that are competitive with a sen-
tence fusion baseline in terms of con-
tent quality, but better in terms of gram-
maticality, and that the benefit of sen-
tence enhancement relies crucially on an
event coreference resolution algorithm us-
ing distributional semantics. We also
consider how text-to-text generation ap-
proaches to summarization can be ex-
tended beyond the source text by exam-
ining how human summary writers incor-
porate source-text-external elements into
their summary sentences.

1 Introduction

Sentence fusion is the technique of merging sev-
eral input sentences into one output sentence
while retaining the important content (Barzilay
and McKeown, 2005; Filippova and Strube, 2008;
Thadani and McKeown, 2013). For example, the
input sentences in Figure 1 may be fused into one
output sentence.

As a text-to-text generation technique, sentence
fusion is attractive because it provides an avenue
for moving beyond sentence extraction in auto-
matic summarization, while not requiring deep se-

Input: Bil Mar Foods Co., a meat processor
owned by Sara Lee, announced a recall of
certain lots of hot dogs and packaged meat.

Input: The outbreak led to the recall on Tues-
day of 15 million pounds of hot dogs and cold
cuts produced at the Bil Mar Foods plant.

Output: The outbreak led to the recall on Tues-
day of lots of hot dogs and packaged meats
produced at the Bil Mar Foods plant.

Figure 1: An example of fusing two input sen-
tences into an output sentence. The sections of the
input sentences that are retained in the output are
shown in bold.

mantic analysis beyond, say, a dependency parser
and lexical semantic resources.

The overall trajectory pursued in the field can
be characterized as a move away from local con-
texts relying heavily on the original source text to-
wards more global contexts involving reformula-
tion of the text. Whereas sentence extraction and
sentence compression (Knight and Marcu, 2000,
for example) involve taking one sentence and per-
haps removing parts of it, traditional sentence fu-
sion involves reformulating a small number of rel-
atively similar sentences in order to take the union
or intersection of the information present therein.

In this paper, we move further along this path
in the following ways. First, we present sen-
tence enhancement as a novel technique which
extends sentence fusion by combining the subtrees
of many sentences into the output sentence, rather
than just a few. Doing so allows relevant informa-
tion from sentences that are not similar to the orig-
inal input sentences to be added during fusion. As
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Source text: This fact has been underscored in
the last few months by two unexpected out-
breaks of food-borne illness.

Output: The outbreak of food-borne illness led
to the recall on Tuesday of lots of hot dogs
and meats produced at the Bil Mar Foods
plant.

Figure 2: An example of sentence enhancement,
in which parts of dissimilar sentences are incorpo-
rated into the output sentence.

shown in Figure 2, the phrase of food-borne illness
can be added to the previous output sentence, de-
spite originating in a source text sentence that is
quite different overall.

Elsner and Santhanam (2011) proposed a super-
vised method to fuse disparate sentences, which
takes as input a small number of sentences with
compatible information that have been manually
identified by editors of articles. By contrast, our
algorithm is unsupervised, and tackles the prob-
lem of identifying compatible event mergers in the
entire source text using an event coreference mod-
ule. Our method outperforms a previous syntax-
based sentence fusion baseline on measures of
summary content quality and grammaticality.

Second, we analyze how text-to-text genera-
tion systems may make use of text that is not in
the source text itself, but in articles on a related
topic in the same domain. By examining the parts
of human-written summaries that are not found
in the source text, we find that using in-domain
text allows summary writers to more precisely ex-
press some target semantic content, but that more
sophisticated computational semantic techniques
will be required to enable automatic systems to
likewise do so.

A more general argument of this paper is that
the apparent dichotomy between text-to-text gen-
eration and semantics-to-text generation can be
resolved by viewing them simply as having dif-
ferent starting points towards the same end goal
of precise and wide-coverage NLG. The statisti-
cal generation techniques developed by the text-
to-text generation community have been success-
ful in many domains. Yet the results of our ex-
periments and studies demonstrate the following:
as text-to-text generation techniques move beyond

using local contexts towards more dramatic refor-
mulations of the kind that human writers perform,
more semantic analysis will be needed in order to
ensure that the reformulations preserve the infer-
ences that can be drawn from the input text.

2 Related Work

A relatively large body of work exists in sentence
compression (Knight and Marcu, 2000; McDon-
ald, 2006; Galley and McKeown, 2007; Cohn
and Lapata, 2008; Clarke and Lapata, 2008, in-
ter alia), and sentence fusion (Barzilay and McK-
eown, 2005; Marsi and Krahmer, 2005; Filippova
and Strube, 2008; Filippova, 2010; Thadani and
McKeown, 2013). Unlike this work, our sentence
enhancement algorithm considers the entire source
text and is not limited to the initial input sentences.
Few previous papers focus on combining the con-
tent of diverse sentences into one output sentence.
Wan et al. (2008) propose sentence augmentation
by identifying “seed” words in a single original
sentence, then adding information from auxiliary
sentences based on word co-occurrence counts.
Elsner and Santhanam (2011) investigate the idea
of fusing disparate sentences with a supervised al-
gorithm, as discussed above.

Previous studies on cut-and-paste summariza-
tion (Jing and McKeown, 2000; Saggion and La-
palme, 2002) investigate the operations that hu-
man summarizers perform on the source text in
order to produce the summary text. Our previ-
ous work argued that current extractive systems
rely too heavily on notions of information central-
ity (Cheung and Penn, 2013). This paper extends
this work by identifying specific linguistic factors
correlated with the use of source-text-external ele-
ments.

3 A Sentence Enhancement Algorithm

The basic steps in our sentence expansion algo-
rithm are as follows: (1) clustering to identify ini-
tial input sentences, (2) sentence graph creation,
(3) sentence graph expansion, (4) tree generation,
and (5) linearization.

At a high level, our method for sentence en-
hancement is inspired by the syntactic sentence
fusion approach of Filippova and Strube (2008)
(henceforth, F&S) originally developed for Ger-
man, in that it operates over the dependency parses
of a small number of input sentences to produce
an output sentence which fuses parts of the in-
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put sentences. We adopt the same assumption as
F&S that these initial core sentences have a high
degree of similarity with each other, and should
form the core of a new sentence to be generated
(Step 1). While fusion from highly disparate in-
put sentences is possible, Elsner and Santhanam
(2011) showed how difficult it is to do so cor-
rectly, even where such cases are manually iden-
tified. We thus aim for a more targeted type of
fusion initially. Next, the dependency trees of
the core sentences are fused into an intermediate
sentence graph (Step 2), a directed acyclic graph
from which the final sentence will be generated
(Steps 4 and 5). We will compare against our im-
plementation of F&S, adapted to English.

However, unlike F&S or other previous ap-
proaches to sentence fusion, the sentence enhance-
ment algorithm may also avail itself of the de-
pendency parses of all of the other sentences in
the source text, which expands the range of pos-
sible sentences that may be produced. This is ac-
complished by expanding the sentence graph with
parts of these sentences (Step 3). One important
issue here is that the expansion must be modulated
by an event coreference component to ensure that
the merging of information from different points
in the source text is valid and does not result in
incorrect or nonsensical inferences.

3.1 Core sentence identification
To generate the core sentence clusters, we first
identify clusters of similar sentences, then rank the
clusters according to their salience. The top clus-
ter in the source text is then selected to be the input
to the sentence fusion algorithms.

Sentence alignment is performed by complete-
link agglomerative clustering, which requires a
measure of similarity between sentences and a
stopping criterion. We define the similarity be-
tween two sentences to be the standard cosine
similarity between the lemmata of the sentences,
weighted by IDF and excluding stopwords, and
clustering is run until a similarity threshold of
0.5 is reached. Since complete-link clustering
prefers small coherent clusters and we select the
top-scoring cluster in each document collection,
the method is somewhat robust to different choices
of the stopping threshold.

The clusters are scored according to the signa-
ture term method of Lin and Hovy (2000), which
assigns an importance score to each term accord-

BMFoods    announce    recall    certain lots...

outbreak    led    recall    Tuesday    15M pounds...

nsubj dobj

nsubj dobj

prep_of

prep_of
prep_on

(a) Abbreviated dependency trees.

BMFoods    announce                 certain lots...

outbreak    led                 Tuesday    15M pounds...

nsubj dobj

nsubj

dobj

prep_of

prep_of
prep_onrecall

food-borne illness

prep_of

(b) Sentence graph after merging the nodes with lemma recall
(in bold), and expanding the node outbreak (dashed outgoing
edge).

Figure 3: An example of the input dependency
trees for sentence graph creation and expansion,
using the input sentences of Figure 1.

ing to how much more often it appears in the
source text compared to some irrelevant back-
ground text using a log likelihood ratio. Specifi-
cally, the score of a cluster is equal to the sum of
the importance scores of the set of lemmata in the
cluster.

3.2 Sentence graph creation
After core sentence identification, the next step
is to align the nodes of the dependency trees of
the core input sentences in order to create the ini-
tial sentence graph. The input to this step is the
collapsed dependency tree representations of the
core sentences produced by the Stanford parser1.
In this representation, preposition nodes are col-
lapsed into the label of the dependency edge be-
tween the functor of the prepositional phrase and
the prepositional object. Chains of conjuncts are
also split, and each argument is attached to the
parent. In addition, auxiliary verbs, negation par-
ticles, and noun-phrase-internal elements2 are col-
lapsed into their parent nodes. Figure 3a shows
the abbreviated dependency representations of the
input sentences from Figure 1.

Then, a sentence graph is created by merging
nodes that share a common lemma and part-of-

1As part of the CoreNLP suite: http://nlp.
stanford.edu/software/corenlp.shtml

2As indicated by the dependency edge label nn.
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speech tag. In addition, we allow synonyms to
be merged, defined as being in the same Word-
Net synset. Merging is blocked if the word is a
stop word, which includes function words as well
as a number of very common verbs (e.g., be, have,
do). Throughout the sentence graph creation and
expansion process, the algorithm disallows the ad-
dition of edges that would result in a cycle in the
graph.

3.3 Sentence graph expansion
The initial sentence graph is expanded by merg-
ing in subtrees from dependency parses of non-
core sentences drawn from the source text. First,
expansion candidates are identified for each node
in the sentence graph by finding all of the depen-
dency edges in the source text from non-core sen-
tences in which the governor of the edge shares
the same lemma and POS tag as the node in the
sentence graph.

Then, these candidate edges are pruned accord-
ing to two heuristics. The first is to keep only one
candidate edge of each dependency relation type
according to the edge that has the highest informa-
tiveness score (Section 3.4.1), with ties being bro-
ken according to which edge has a subtree with a
fewer number of nodes. The second is to perform
event coreference in order to prune away those
candidate edges which are unlikely to be describ-
ing the same event as the core sentences, as ex-
plained in the next section. Finally, any remaining
candidate edges are fused into the sentence graph,
and the subtree rooted at the dependent of the can-
didate edge is added to the sentence graph as well.
See Figure 3b for an example of sentence graph
creation and expansion.

3.3.1 Event coreference
One problem of sentence fusion is that the differ-
ent inputs of the fusion may not refer to the same
event, resulting in an incorrect merging of infor-
mation, as would be the case in the following ex-
ample:
S1: Officers pled not guilty but risked 25 years to

life.
S2: Officers recklessly engaged in conduct which

seriously risked the lives of others.
Here, the first usage of risk refers to the potential
sentence imposed if the officers are convicted in
a trial, whereas the second refers to the potential
harm caused by the officer.

Context 1: Officers ... risked 25 years to life...

(nsubj, officers)   (dobj, life)

(nsubj, conduct)    (advmod, seriously)   (dobj, life)

sim1((risk, dobj), (risk, dobj))
    × sim2(life, life) = 1.0

sim1((risk, nsubj), (risk, nsubj))
  × sim2(officer, conduct) = 0.38

Context 2: ...conduct seriously risked the lives...

Figure 4: Event coreference resolution as a
maximum-weight bipartite graph matching prob-
lem. All the nodes share the predicate risk.

In order to ensure that sentence enhancement
does not lead to the merging of such incompati-
ble events, we designed a simple method to ap-
proximate event coreference resolution that does
not require event coreference labels. This method
is based on the intuition that different mentions of
an event should contain many of the same partic-
ipants. Thus, by measuring the similarity of the
arguments and the syntactic contexts between the
node in the sentence graph and the candidate edge,
we can have a measure of the likelihood that they
refer to the same event.

We would be interested in integrating existing
event coreference resolution systems into this step
in the future, such as the unsupervised method
of Bejan and Harabagiu (2010). Existing event
coreference systems tend to focus on cases with
different heads (e.g., X kicked Y, then Y was in-
jured), which could increase the possibilities for
sentence enhancement, if the event coreference
module is sufficiently accurate. However, since
our method currently only merges identical heads,
we require a more fine-grained method based on
distributional measures of similarity.

We measure the similarity of these syntactic
contexts by aligning the arguments in the syn-
tactic contexts and computing the similarity of
the aligned arguments. These problems can be
jointly solved as a maximum-weight bipartite
graph matching problem (Figure 4). Formally, let
a syntactic context be a list of dependency triples
(h, r, a), consisting of a governor or head node h
and a dependent argument a in the dependency re-
lation r, where head node h is fixed across each
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element of the list. Then, each of the two in-
put syntactic contexts forms one of the two dis-
joint sets in a complete weighted bipartite graph
where each node corresponds to one dependency
triple. We define the edge weights according to
the similarities of the edge’s incident nodes; i.e.,
between two dependency triples (h1, r1, a1) and
(h2, r2, a2). We also decompose the similarity
into the similarities between the head and relation
types ((h1, r1) and (h2, r2)), and between the ar-
guments (a1 and a2). The edge weight function is
thus:

sim((h1, r1, a1), (h2, r2, a2)) = (1)

sim1((h1, r1), (h2, r2))× sim2(a1, a2),

where sim1 and sim2 are binary functions that rep-
resent the similarities between governor-relation
pairs and dependents, respectively. We train mod-
els of distributional semantics using a large back-
ground corpus; namely, the Annotated Gigaword
corpus (Napoles et al., 2012). For sim1, we cre-
ate a vector of counts of the arguments that are
seen filling each (h, r) pair, and define the similar-
ity between two such pairs to be the cosine simi-
larity between their argument vectors. For sim2,
we create a basic vector-space representation of
a word d according to words that are found in
the context of word d within a five-word context
window, and likewise compute the cosine simi-
larity between the word vectors. These methods
of computing distributional similarity are well at-
tested in lexical semantics for measuring the re-
latedness of words and syntactic structures (Tur-
ney and Pantel, 2010), and similar methods have
been applied in text-to-text generation by Ganitke-
vitch et al. (2012), though the focus of that work is
to use paraphrase information thus learned to im-
prove sentence compression.

The resulting graph matching problem is solved
using the NetworkX package for Python3. The fi-
nal similarity score is an average of the similarity
scores from Equation 1 that participate in the se-
lected matching, weighted by the product of the
IDF scores of the dependent nodes of each edge.
This final score is used as a threshold that candi-
date contexts from the source text must meet in
order to be eligible for being merged into the sen-
tence graph. This threshold was tuned by cross-
validation, and can remain constant, although re-

3http://networkx.github.io/

tuning to different domains (a weakly supervised
alternative) is likely to be beneficial.

3.4 Tree generation
The next major step of the algorithm is to extract
an output dependency tree from the expanded sen-
tence graph. We formulate this as an integer linear
program, in which variables correspond to edges
of the sentence graph, and a solution to the linear
program determines the structure of an output de-
pendency tree. We use ILOG CPLEX to solve all
of the integer linear programs in our experiments.

A good dependency tree must at once express
the salient or important information present in the
input text as well as be grammatically correct and
of a manageable length. These desiderata are en-
coded into the linear program as constraints or as
part of the objective function.

3.4.1 Objective function
We designed an objective function that considers
the importance of the words and syntactic rela-
tions that are selected as well as accounts for re-
dundancy in the output sentence. Let X be the set
of variables in the program, and let each variable
in X take the form xh,r,a, a binary variable that
represents whether an edge in the sentence graph
from a head node with lemma h to an argument
with lemma a in relation r is selected. For a lexi-
con Σ, our objective function is:

max
∑
w∈Σ

max
xh,r,a∈Xs.t.a=w

(xh,r,w · P (r|h) · I(w)),

(2)

where P (r|h) is the probability that head h
projects the dependency relation r, and I(w) is
the informativeness score for word w as defined
by Clarke and Lapata (2008). This formulation
encourages the selection of words that are infor-
mative according to I(w) and syntactic relations
that are probable. The inner max function for each
w in the lexicon encourages non-redundancy, as
each word may only contribute once to the objec-
tive value. This function can be rewritten into a
form compatible with a standard linear program by
the addition of auxiliary variables and constraints.
For more details of how this and other aspects of
the linear program are implemented, see the sup-
plementary document.

3.4.2 Constraints
Well-formedness constraints, taken directly from
F&S, ensure that the set of selected edges pro-
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duces a tree. Another constraint limits the number
of content nodes in the tree to 11, which corre-
sponds to the average number of content nodes in
human-written summary sentences in the data set.
Syntactic constraints aim to ensure grammatical-
ity of the output sentence. In addition to the con-
straint proposed by F&S regarding subordinating
conjunctions, we propose two other ones. The first
ensures that a nominal or adjectival predicate must
be selected with a copular construction at the top
level of a non-finite clause. The second ensures
that transitive verbs retain both of their comple-
ments in the output4. Semantic constraints ensure
that only noun phrases of sufficiently high simi-
larity which are not in a hyperonym-hyponym or
holonym-meronym relation with each other may
be joined by coordination.

3.5 Linearization
The final step of our method is to linearize the de-
pendency tree from the previous step into the final
sequence of words. We implemented our own lin-
earization method to take advantage of the order-
ing information can be inferred from the original
source text sentences.

Our linearization algorithm proceeds top-down
from the root of the dependency tree to the leaves.
At each node of the tree, linearization consists of
realizing the previously collapsed elements such
as prepositions, determiners and noun compound
elements, then ordering the dependent nodes with
respect to the root node and each other. Restoring
the collapsed elements is accomplished by simple
heuristics. For example, prepositions and deter-
miners precede their accompanying noun phrase.

The dependent nodes are ordered by a sort-
ing algorithm, where the order between two syn-
tactic relations and dependent nodes (r1, a1) and
(r2, a2) is determined as follows. First, if a1 and
a2 originated from the same source text sentence,
then they are ordered according to their order of
appearance in the source text. Otherwise, we con-
sider the probability P (r1 precedes r2), and order
a1 before a2 iff P (r1 precedes r2) > 0.5. This
distribution, P (r1 precedes r2), is estimated by
counting and normalizing the order of the relation
types in the source text corpus. For the purposes
of ordering, the governor node is treated as if it

4We did not experiment with changing the grammatical
voice in the output tree, such as introducing a passive con-
struction if only a direct object is selected, but this is one
possible extension of the algorithm.

were a dependent node with a special syntactic re-
lation label self. This algorithm always produces
an output ordering with a projective dependency
tree, which is a reasonable assumption for English.

4 Experiments

4.1 Method
Recent approaches to sentence fusion have of-
ten been evaluated as isolated components. For
example, F&S evaluate the output sentences by
asking human judges to rate the sentences’ in-
formativeness and grammaticality according to a
1–5 Likert scale rating. Thadani and McKe-
own (2013) combine grammaticality ratings with
an automatic evaluation which compares the sys-
tem output against gold-standard sentences drawn
from summarization data sets. However, this eval-
uation setting still does not reflect the utility of
sentence fusion in summarization, because the
input sentences come from human-written sum-
maries rather than the original source text.

We adopt a more realistic setting of using sen-
tence fusion in automatic summarization by draw-
ing the input or core sentences automatically from
the source text, then evaluating the output of the
fusion and expansion algorithm directly as one-
sentence summaries according to standard sum-
marization evaluation measures of content quality.

Data preparation. Our experiments are con-
ducted on the TAC 2010 and TAC 2011 Guided
Summarization corpus (Owczarzak and Dang,
2010), on the initial summarization task. Each
document cluster is summarized by one sentence,
generated from an initial cluster of core sentences
as described in Section 3.1.

Evaluation measures. We evaluate summary
content quality using the word-overlap measures
ROUGE-1 and ROUGE-2, as is standard in the
summarization community. We also measure the
quality of sentences at a syntactic or shallow se-
mantic level that operates at the level of depen-
dency triples by a measure that we call Pyra-
mid BE. Specifically, we extract all of the depen-
dency triples of the form t = (h, r, a) from the
sentence under evaluation and the gold-standard
summaries, where h and a are the lemmata of
the head and the argument, and r is the syntac-
tic relation, normalized for grammatical voice and
excluding the collapsed edges which are mostly
noun-phrase-internal elements and grammatical
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Method Pyramid BE ROUGE-1 ROUGE-2 Log Likelihood Oracle Pyramid BE
Fusion (F&S) 10.61 10.07 2.15 -159.31 28.00
Expansion 8.82 9.41 1.82 -157.46 52.97
+Event coref 11.00 9.76 1.93 -156.20 40.30

Table 1: Results of the sentence enhancement and fusion experiments.

particles. Then, we perform a matching between
the set of triples in the sentence under evalua-
tion and in a reference summary following the
Transformed BE method of Tratz and Hovy (2008)
with the total weighting scheme. This match-
ing is performed between the sentence and ev-
ery gold-standard summary, and the maximum of
these scores is taken. This score is then divided
by the maximum score that is achievable using the
number of triples present in the input sentence, as
inspired by the Pyramid method. This denom-
inator is more appropriate than the one used in
Transformed BE, which is designed for the case
where the evaluated summary and the reference
summaries are of comparable length.

For grammaticality, we parse the output sen-
tences using the Stanford parser5, and use the log
likelihood of the most likely parse of the sentence
as a coarse estimate of grammaticality. Parse log
likelihoods have been shown to be useful in deter-
mining grammaticality (Wagner et al., 2009), and
many of the problems associated with using it do
not apply in our evaluation, because our sentences
have a fixed number of content nodes, and contain
similar content. While we could have conducted
a user study to elicit Likert-scale grammaticality
judgements, such results are difficult to interpret
and the scores depend heavily on the set of judges
and the precise evaluation setting, as is the case for
sentence compression (Napoles et al., 2011).

4.2 Results and discussion
As shown in Table 1, sentence enhancement with
coreference outperforms the sentence fusion algo-
rithm of F&S in terms of the Pyramid BE measure
and the baseline expansion algorithm, though only
the latter difference is statistically significant (p =
0.0196). In terms of the ROUGE word overlap

5The likelihoods are obtained by the PCFG model of
CoreNLP version 1.3.2. We experimented with the Berke-
ley parser (Petrov et al., 2006) as well, with similar results
that favour the sentence enhancement with event coreference
method, but because the parser failed to parse a number of
cases, we do not report those results here.

6All statistical significance results in this section are for
Wilcoxon signed-rank tests.

measures, fusion achieves a better performance,
but it only outperforms the expansion baseline
significantly (ROUGE-1: p = 0.021, ROUGE-
2: p = 0.012). Note that the ROUGE scores
are low because they involve comparing a one-
sentence summary against a paragraph-long gold
standard. The average log likelihood result sug-
gests that sentence enhancement with event coref-
erence produces sentences that are more grammat-
ical than traditional fusion does, and this differ-
ence is statistically significant (p = 0.044). These
results show that sentence enhancement with event
coreference is competitive with a strong previous
sentence fusion method in terms of content, de-
spite having to combine information from more
diverse sentences. This does not come at the ex-
pense of grammaticality; in fact, it seems that hav-
ing a greater possible range of output sentences
may even improve the grammaticality of the out-
put sentences.

Oracle score. To examine the potential of sen-
tence enhancement, we computed an oracle score
that provides an upper bound to the best possi-
ble sentence that may be extracted from the sen-
tence graph. First, we ranked all of dependency
triples found in each gold-standard summary by
their score (i.e., the number of gold-standard sum-
maries they appear in). Then, we took the high-
est scoring triples from this ranking that are found
in the sentence graph until the length limit was
reached, and divided by the Pyramid-based de-
nominator as above7. The oracle score is the max-
imum of these scores over the gold-standard sum-
maries. The resulting oracle scores are shown
in the rightmost column of Table 1. While it
is no surprise that the oracle score improves af-
ter the sentence graph is expanded, the large in-
crease in the oracle score indicates the potential of
sentence enhancement for generating high-quality
summary sentences.

7There is no guarantee that these dependency triples form
a tree structure. Hence, this is an upper bound.
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Grammaticality. There is still room for im-
provement in the grammaticality of the generated
sentences, which will require modelling contexts
larger than individual predicates and their argu-
ments. Consider the following output of the sen-
tence enhancement with event coreference system:

(3) The government has launched an
investigation into Soeharto’s wealth by the
Attorney General’s office on the wealth of
former government officials.

This sentence suffers from coherence problems
because two pieces of information are duplicated.
The first is the subject of the investigation, which
is expressed by two prepositional objects of in-
vestigation with the prepositions into and on.
The second, more subtle incoherence concerns
the body that is responsible for the investigation,
which is expressed both by the subject of launch
(The government has launched an investigation),
and the by-prepositional object of investigation (an
investigation ... by the Attorney General’s office).
Clearly, a model that makes fewer independence
assumptions about the relation between different
edges in the sentence graph is needed.

5 A Study of Source-External Elements

The sentence enhancement algorithm presented
above demonstrates that it is possible to use the
entire source text to produce an informative sen-
tence. Yet it is still limited by the particular pred-
icates and dependency relations that are found
in the source. The next step towards develop-
ing abstractive systems that exhibit human-like be-
haviour is to try to incorporate elements into the
summary that are not found in the source text at
all.

Despite its apparent difficulty, there is reason to
be hopeful for text-to-text generation techniques
even in such a scenario. In particular, we showed
in earlier work that almost all of the caseframes,
or pairs of governors and relations, in human-
written summaries can be found in the source text
or in a small set of additional related articles that
belong to the same domain as the source text (e.g.,
natural disasters) (Cheung and Penn, 2013). What
that study lacks, however, is a detailed analysis
of the factors surrounding why human summary
writers use non-source-text elements in their sum-
maries, and how these may be automatically iden-
tified in the in-domain text. In this section, we

supply such an analysis and provide evidence that
human summary writers actually do incorporate
elements external to the source text for a reason,
namely, that these elements are more specific to
the semantic content that they wish to convey. We
also identify a number of features that may be use-
ful for automatically determining the appropriate-
ness of these in-domain elements in a summary.

5.1 Method
We performed our analysis on the predicates
present in text, such as kill and computer. We also
analyzed predicate-relation pairs (PR pairs) such
as (kill, nsubj) or (computer, amod). This choice
is similar to the caseframes used by Cheung and
Penn (2013), and we similarly apply transforma-
tions to normalize for grammatical voice and other
syntactic alternations, but we consider PR pairs of
all relation types, unlike caseframes, which only
consider verb complements and prepositional ob-
jects. PR pairs are extracted from the prepro-
cessed corpus. We use the TAC 2010 Guided
Summarization data set for our analyses, which
we organize into two sub-studies. In the prove-
nance study, we divide the PR pairs in human-
written summaries according to whether they are
found in the source text (source-internal) or not
(source-external). In the domain study, we divide
in-domain but source-external predicate-relation
pairs according to whether they are used in a
human-written summary (gold-standard) or not
(non-gold-standard).

5.2 Provenance Study
In the first study, we compare the characteristics
of gold-standard predicates and PR pairs accord-
ing to their provenance; that is, are they found in
the source text itself? The question that we try to
answer is why human summarizers need to look
beyond the source text at all when writing their
summaries. We will provide evidence that they do
so because they can find predicates that are more
appropriate to the content that is being expressed
according to two quantitative measures.

Predicate provenance. Source-external PR
pairs may be external to the source text for two
reasons. Either the predicate (i.e., the actual word)
is found in the source text, but the dependency
relation (i.e., the semantic predication that holds
between the predicate and its arguments) is
not found with that particular predicate, or the
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Average freq (millions)
Source-internal 1.77 (1.57, 2.08)
Source-external 1.15 (0.99, 1.50)

(a) The average predicate frequency of source-internal vs.
source-external gold-standard predicates in an external corpus.

Arg entropy
Source-internal 7.94 (7.90, 7.97)
Source-external 7.42 (7.37, 7.48)

(b) The average argument entropy of source-internal vs. source-
external PR pairs in bits.

Table 2: Results of the provenance study. 95%
confidence intervals are estimated by the bootstrap
method and indicated in parentheses.

predicate itself may be external to the source text
altogether. If the former is true, then a generalized
version of the sentence enhancement algorithm
presented in this paper could in principle capture
these PR-pairs. We thus compute the proportion
of source-external PR pairs where the predicate
already exists in the source text.

We find that 2413 of the 4745 source-external
PR pairs, or 51% have a predicate that can be
found in the source text. This indicates that an
extension of the sentence enhancement with event
coreference approach presented in this paper could
capture a substantial portion of the source-external
PR pairs in its hypothesis space already.

Predicate frequency. What factors then can ac-
count for the remaining predicates that are not
found in the source text at all? The first such fac-
tor we identify is the frequency of the predicates.
Here, we take frequency to be the number of oc-
currences of the predicate in an external corpus;
namely the Annotated Gigaword, which gives us
a proxy for the specificity or informativeness of a
word. In this comparison, we take the set of pred-
icates in human-written summaries, divide them
according to whether they are found in the source
text or not, and then look up their frequency of ap-
pearance in the Annotated Gigaword corpus.

As Table 2a shows, the predicates that are not
found in the source text consist of significantly less
frequent words on average (Wilcoxon rank-sums
test, p < 10−17). This suggests that human sum-
mary writers are motivated to use source-external
predicates, because they are able to find a more in-

formative or apposite predicate than the ones that
are available in the source text.

Entropy of argument distribution. Another
measure of the informativeness or appropriateness
of a predicate is to examine the range of arguments
that it tends to take. A more generic word would
be expected to take a wider range of arguments,
whereas a more particular word would take a nar-
rower range of arguments, for example those of
a specific entity type. We formalize this notion
by measuring the entropy of the distribution of ar-
guments that a predicate-relation pair takes as ob-
served in Annotated Gigaword. Given frequency
statistics f(h, r, a) of predicate head h taking an
argument word a in relation r, we define the argu-
ment distribution of predicate-relation pair (h, r)
as:

P (a|h, r) = f(h, r, a)/
∑
a′
f(h, r, a′) (4)

We then compute the entropy of P (a|h, r) for the
gold-standard predicate-relation pairs, and com-
pare the average argument entropies of the source-
internal and the source-external subsets.

Table 2b shows the result of this comparison.
Source-external PR pairs exhibit a lower average
argument entropy, taking a narrower range of pos-
sible arguments. Together these two findings indi-
cate that human summary writers look beyond the
source text not just for the sake of diversity or to
avoid copying the source text; they do so because
they can find predicates that more specifically con-
vey some desired semantic content.

5.3 Domain study
The second study examines how to distinguish
those source-external predicates and PR pairs in
in-domain articles that are used in a summary from
those that are not. For this study, we rely on the
topic category divisions in the TAC 2010 data set,
and define the in-domain text to be the documents
that belong to the same topic category as the target
document cluster (but not including the target doc-
ument cluster itself). This study demonstrates the
importance of better semantic understanding for
developing a text-to-text generation system that
uses in-domain text, and identifies potentially use-
ful features for training such a system.

Nearest neighbour similarity. In the event-
coreference step of the sentence enhancement al-
gorithm, we relied on distributional semantics to

783



N NN sim
GS 2202 0.493 (0.486, 0.501)
Non-GS 789K 0.443 (0.442, 0.443)

(a) Average similarity of gold-standard (GS) and
non-gold-standard (non-GS) PR pairs to the near-
est neighbour in the source text.

N Freq. (millions) Fecundity
GS 1568 2.44 (2.05, 2.94) 21.6 (20.8, 22.5)
non-GS 268K 0.85 (0.83, 0.87) 6.43 (6.41, 6.47)

(b) Average frequency and fecundity of GS and non-GS predicates in
an external corpus. The differences are statistically significant (p <
10−10).

Table 3: Results of the domain study. 95% confidence intervals are given in parentheses.

measure the similarity of arguments. Here, we
examine how well distributional similarity deter-
mines the appropriateness of a source-external PR
pair in a summary. Specifically, we measure its
similarity to the nearest PR pair in the source text.
To determine the similarity between two PR pairs,
we compute the cosine similarity between their
vector representations. The vector representation
of a PR pair is the concatenation of a context vec-
tor for the predicate itself and a selectional pref-
erences vector for the PR pair; that is, the vector
of counts with elements f(h, r, a) for fixed h and
r. These vectors are trained from the Annotated
Gigaword corpus.

The average nearest-neighbour similarities of
PR pairs are shown in Table 3a. While the dif-
ference between the gold-standard and non-gold-
standard PR pairs is indeed statistically signifi-
cant, the magnitude of the difference is not large.
This illustrates the challenge of mining source-
external text for abstractive summarization, and
demonstrates the need for a more structured or
detailed semantic representation in order to deter-
mine the PR pairs that would be appropriate. In
other words, the kind of simple event coreference
method based solely on distributional semantics
that we used in Section 3.3.1 is unlikely to be suf-
ficient when moving beyond the source text.

Frequency and fecundity. We also explore sev-
eral features that would be relevant to identifying
predicates in in-domain text that are used in the
automatic summary. This is a difficult problem, as
less than 0.6% of such predicates are actually used
in the source text. As a first step, we consider sev-
eral simple measures of the frequency and charac-
teristics of the predicates.

The first measure that we compute is the aver-
age predicate frequency of the gold-standard and
non-gold-standard predicates in an external cor-
pus, as in Section 5.2. A second, related mea-
sure is to compute the number of possible relations
that may occur with a given predicate. We call

this measure the fecundity of a predicate. Both
of these are computed with respect to the external
Annotated Gigaword corpus, as before.

As shown in Table 3b, there is a dramatic dif-
ference in both measures between gold-standard
and non-gold-standard predicates in in-domain ar-
ticles. Gold-standard predicates tend to be more
common words compared to non-gold-standard
ones. This result is not in conflict with the re-
sult in the provenance study that source-external
predicates are less common words. Rather, it is
a reminder that the background frequencies of the
predicates matter, and must be considered together
with the semantic appropriateness of the candidate
word.

6 Conclusions

This paper introduced sentence enhancement as
a method to incorporate information from multi-
ple points in the source text into one output sen-
tence in a fashion that is more flexible than previ-
ous sentence fusion algorithms. Our results show
that sentence enhancement improves the content
and grammaticality of summary sentences com-
pared to previous syntax-based sentence fusion ap-
proaches. Then, we presented studies on the com-
ponents of human-written summaries that are ex-
ternal to the source text. Our analyses suggest that
human summary writers look beyond the source
text to find predicates and relations that more pre-
cisely express some target semantic content, and
that more sophisticated semantic techniques are
needed in order to exploit in-domain articles for
text-to-text generation in summarization.
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Abstract

In this paper we introduce a new game
to crowd-source natural language referring
expressions. By designing a two player
game, we can both collect and verify refer-
ring expressions directly within the game.
To date, the game has produced a dataset
containing 130,525 expressions, referring
to 96,654 distinct objects, in 19,894 pho-
tographs of natural scenes. This dataset is
larger and more varied than previous REG
datasets and allows us to study referring
expressions in real-world scenes. We pro-
vide an in depth analysis of the resulting
dataset. Based on our findings, we design
a new optimization based model for gen-
erating referring expressions and perform
experimental evaluations on 3 test sets.

1 Introduction

Much of everyday language and discourse con-
cerns the visual world around us, making under-
standing the relationship between objects in the
physical world and language describing those ob-
jects an important challenge problem for AI. From
robotics, to image search, to situated language
learning, and natural language grounding, there
are a number of research areas that would bene-
fit from a better understanding of how people refer
to physical entities in the world.

Recent advances in automatic computer vision
methods have started to make technologies for rec-
ognizing thousands of object categories a near re-
ality (Perronnin et al., 2012; Deng et al., 2012;
Deng et al., 2010; Krizhevsky et al., 2012). As a
result, there has been a spurt of recent work trying
to estimate higher level semantics, including ex-
citing efforts to automatically produce natural lan-
guage descriptions of images and video (Farhadi et
∗Indicates equal author contribution.

al., 2010; Kulkarni et al., 2011; Yang et al., 2011;
Ordonez et al., 2011; Kuznetsova et al., 2012;
Feng and Lapata, 2013). Common challenges en-
countered in these pursuits include the fact that
descriptions can be highly task dependent, open-
ended, and difficult to evaluate automatically.

Therefore, we look at the related, but more fo-
cused problem of referring expression generation
(REG). Previous work on REG has made signif-
icant progress toward understanding how people
generate expressions to refer to objects (a recent
survey of techniques is provided in Krahmer and
van Deemter (2012)). In this paper, we study the
relatively unexplored setting of how people refer
to objects in complex photographs of real-world
cluttered scenes. One initial stumbling block to
examining this scenario is lack of existing rele-
vant datasets, as previous collections for studying
REG have used relatively focused domains such
as graphics generated objects (van Deemter et al.,
2006; Viethen and Dale, 2008), crafts (Mitchell et
al., 2010), or small everyday (home and office) ob-
jects arrayed on a simple background (Mitchell et
al., 2013a; FitzGerald et al., 2013).

In this paper, we collect a new large-scale cor-
pus, currently containing 130,525 expressions, re-
ferring to 96,654 distinct objects, in 19,894 pho-
tographs of real world scenes. Some examples
from our dataset are shown in Figure 5. To con-
struct this corpus efficiently, we design a new two
player referring expression game (ReferItGame)
to crowd-source the data collection. Popular-
ized by efforts like the ESP game (von Ahn and
Dabbish, 2004) and Peekaboom (von Ahn et al.,
2006b), Human Computation based games can be
an effective way to engage users and collect large
amounts of data inexpensively. Two player games
can also automate verification of human provided
annotations.

Our resulting corpus is both more real-world
and much bigger than previous datasets, allowing

787



us to examine referring expression generation in
a new setting at large scale. To understand and
quantify this new dataset, we perform an exten-
sive set of analyses. One significant difference
from previous work is that we study how refer-
ring expressions vary for different categories. We
find that an object’s category greatly influences the
types of attributes used in their referring expres-
sion (e.g. people use color words to describe cars
more often than mountains). Additionally, we find
that references to an object are sometimes made
with respect to other nearby objects, e.g. “the ball
to left of the man”. Interestingly, the types of ref-
erence objects (i.e. “the man”) used in referring
expressions is also biased toward some categories.
Finally, we find that the word used to refer to the
object category itself displays consistencies across
people. This notion is related to ideas of entry-
level categories from Psychology (Rosch, 1978).

Given these findings, we propose an optimiza-
tion model for generating referring expressions
that jointly selects which attributes to include in
the expression, and what attribute values to gener-
ate. This model incorporates both visual models
for selecting attribute-values and object category
specific priors. Experimental evaluations indicate
that our proposed model produces reasonable re-
sults for REG.
In summary, contributions of our paper include:
• A two player online game to collect and ver-

ify natural language referring expressions.

• A new large-scale dataset containing natural
language expressions referring to objects in
photographs of real world scenes.

• Analyses of the collected dataset, including
studying category-specific variations in refer-
ring expressions.

• An optimization based model to generate
referring expressions for objects in real-
world scenes with experimental evaluations
on three labeled test sets.

The rest of the paper is organized as follows.
First we outline related work from the vision and
language communities (§2). Then we describe our
online game for collecting referring expressions
(§3) and provide an analysis of our new Refer-
ItGame Dataset (§4). Finally, we present and eval-
uate our model for generating referring expres-
sions (§5) and discuss conclusions and future work
(§6).

2 Related Work

Referring Expression Generation: There has
been a long history of research on understanding
how people generate referring expressions, dating
back to the 1970s (Winograd, 1972). One com-
mon approach is the Incremental Algorithm (Dale
and Reiter, 1995; Dale and Reiter, 2000) which
uses logical expressions for generation. Much
work in REG follows the Gricean maxims (Grice,
1975) which provide principles for how people
will behave in conversation.

Recently, there has been progress examining
other aspects of the referring expression prob-
lem such as understanding what types of attributes
are used (Mitchell et al., 2013a), modeling varia-
tions between speakers (Viethen and Dale, 2010;
Viethen et al., 2013; Van Deemter et al., 2012;
Mitchell et al., 2013b), incorporating visual classi-
fiers (Mitchell et al., 2011), producing algorithms
to refer to object sets (Ren et al., 2010; FitzGerald
et al., 2013), or examining impoverished percep-
tion REG (Fang et al., 2013). A good survey of
work in this area is provided in Krahmer and van
Deemter (2012). We build on past work, extending
models to generate attributes jointly in a category
specific framework.
Referring Expression Datasets: Some initial
datasets in REG used graphics engines to pro-
duce images of objects (van Deemter et al., 2006;
Viethen and Dale, 2008). Recently more realis-
tic datasets have been introduced, consisting of
craft objects like pipecleaners, ribbons, and feath-
ers (Mitchell et al., 2010), or everyday home
and office objects such as staplers, combs, or
rulers (Mitchell et al., 2013a), arrayed on a sim-
ple background. These datasets helped moved re-
ferring expression generation research into the do-
main of real world objects. We seek to further
these pursuits by constructing a dataset of natural
objects in photographs of the real world.
Image & Video Description Generation: Re-
cent research on automatic image description has
followed two main directions. Retrieval based
methods (Aker and Gaizauskas, 2010; Farhadi et
al., 2010; Ordonez et al., 2011; Feng and Lap-
ata, 2010; Feng and Lapata, 2013) retrieve exist-
ing captions or phrases to describe a query image.
Bottom up methods (Kulkarni et al., 2011; Yang
et al., 2011; Yao et al., 2010) rely on visual classi-
fiers to first recognize image content and then con-
struct captions from scratch, perhaps with some
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Figure 1: An example game. Player 1 (left) sees an image with an object outlined in red (the man)
and provides a referring expression for the object (“man in red shirt on horse”). Player 2 (right) sees
the image and the expression from Player 1 and must localize the correct object by clicking on it (click
indicated by the red square). Elapsed time and current scores are also provided.

input from natural language statistics. Very re-
cently, these ideas have been extended to produce
descriptions for videos (Guadarrama et al., 2013;
Barbu et al., 2012). Like these methods, we gen-
erate descriptions for natural scenes, but focus on
referring to particular objects rather than provid-
ing an overall description of an image or video.

Human Computation Games: Games can be
a useful tool for collecting large amounts of la-
beled data quickly. Human Computation Games
were first introduced by Luis von Ahn in the ESP
game (von Ahn and Dabbish, 2004) for image la-
beling, and later extended to segment objects (von
Ahn et al., 2006b), collect common-sense knowl-
edge (von Ahn et al., 2006a), or disambiguate
words (Seemakurty et al., 2010). Recently, crowd
games have also been introduced into the com-
puter vision community for tasks like fine grained
category recognition (Deng et al., 2013). These
games can be released publicly on the web or
used on Mechanical Turk to enhance and encour-
age turker participation (Deng et al., 2013). In-
spired by the success of previous games, we cre-
ate a game to collect and verify natural language
expressions referring to objects in natural scenes.

3 Referring Expression Game
(ReferItGame)

In this section we describe our referring expres-
sion game (ReferItGame∗), a simple two player
game where players alternate between generating
expressions referring to objects in images of nat-
ural scenes, and clicking on the locations of de-
scribed objects. An example game is shown in
Figure 1.

∗Available online at http://referitgame.com

3.1 Game Play

Player 1: is shown an image with an object out-
lined in red and provided with a text box in which
to write a referring expression. Player 2: is shown
the same image and the referring expression writ-
ten by Player 1 and must click on the location of
the described object (note, Player 2 does not see
the object segmentation). If Player 2 clicks on
the correct object, then both players receive game
points and the Player 1 and Player 2 roles swap for
the next image. If Player 2 does not click on the
correct object then no points are received and the
players remain in their current roles.

This provides us with referring expressions for
our dataset and verification that the expressions
are valid since they led to correct object localiza-
tions. Expressions written for games where the
object was not correctly localized are kept and re-
leased with the dataset for future study, but are not
included in our final dataset analyses or statistics.
A game timer encourages players to write expres-
sions quickly, resulting in more natural expres-
sions. Also, IP addresses are filtered to prevent
people from simultaneously playing both roles.

3.2 Playing Against the Computer

To promote engagement, we implement a single
player version of the game. When a player con-
nects, if there is another player online then the two
people are paired. If there are currently no other
available players, then the person plays a “canned”
game against the computer. If at any point another
person connects, the canned game ends and the
player is paired with the new person.

To implement canned games we seed the
game with 5000 pre-recorded referring expression
games (5 referring expressions and resulting clicks
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for each of 1000 objects) collected using Ama-
zon’s Mechanical Turk service. Implementing an
automated version of Player 1 is simple; we just
show the person one of the pre-collected referring
expressions and they click as usual.

Automating the role of Player 2 is a bit more
complicated. In this case, we compare the per-
son’s written expression against the pre-recorded
expressions for the same object. For this compar-
ison we use a parser to lemmatize the words in an
expression and then compute cosine similarity be-
tween expressions with a bag of words representa-
tion. Based on this measure the closest matching
expression is determined. If there is no similarity
between the newly generated expression and the
canned expressions, the expression is deemed in-
correct and a random click location (outside of the
object) is generated. If there is a successful match
with a previously generated expression, then the
canned click from the most similar pre-recorded
game is used. More complex similarities could be
used, but since we require real-time performance
in our game setting we use this simple implemen-
tation which works well for our expressions.

4 ReferItGame Dataset

In this section we describe the ReferItGame
dataset†, including images and labels, processing
the dataset, and analysis of the collection.

4.1 Images and Labels

We build our dataset of referring expressions
on top of the ImageCLEF IAPR image retrieval
dataset (Grubinger et al., 2006). This dataset is
a collection of 20,000 images available free of
charge without copyright restrictions, depicting a
variety of aspects of everyday life, from sports,
to animals, to cities, and landscapes. Crucial for
our purposes, the SAIAPR TC-12 expansion (Es-
calante et al., 2010) includes segmentations of
each image into regions indicating the locations of
constituent objects. 238 different object categories
are labeled, including animals, people, buildings,
objects, and background elements like grass or
sky. This provides us with information regarding
object category, object location, and object size, as
well as the location and categories of other objects
present in the same image.

†Available at http://tamaraberg.com/referitgame

4.2 Collecting the Dataset

From the ImageCLEF dataset, we created a total
of over 100k distinct games (one per object labeled
in the dataset). For the games we imposed an or-
dering to allow for collecting the most interesting
expressions first. Initially we prioritized games
for objects in images with multiple objects of the
same category. Once these games were completed,
we prioritized ordering based on object category to
include a comprehensive range of objects. Finally,
after successfully collecting referring expressions
from the prioritized games, we posted games for
the remaining objects. In order to evaluate consis-
tency of expression generation across people, we
also include a probability of repeating previously
played games during collection.

To date, we have collected 130,525 successfully
completed games. This includes 10,431 canned
games (a person playing against the computer, not
including the initial seed set) and 120,094 real
games (two people playing). 96,654 distinct ob-
jects from 19,984 photographs are represented in
the dataset. This covers almost all of the objects
present in the IAPR corpus. The remaining ob-
jects from the collection were either too small or
too ambiguous to result in successful games.

For data collection, we posted the game online
for anyone on the web to play and encouraged par-
ticipation through social media and the survey sec-
tion of reddit. In this manner we collected over
4 thousand referring expressions over a period of
3 weeks. To speed up data collection, we also
posted the game on Mechanical Turk. Turkers
were paid upon completion of 10 correct games
(games where Player 2 clicks on the correct object
of interest). Turkers were pre-screened to have ap-
proval ratings above 80% and to be located in the
US for language consistency.

4.3 Processing the Dataset

Because of the size of the dataset, hand annotation
of all referring expressions is prohibitive. There-
fore, similar to past work (FitzGerald et al., 2013),
we design an automatic method to pre-process the
expressions and extract object and attribute men-
tions. These automatically processed expressions
are used only for analysis and model training. We
also fully hand label portions of the dataset for
evaluation (§5.2).

By examining the expressions in the collected
dataset, we define a set of attributes with broad
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S ::= subject word

color word ′ ::= rel(S, color word)color word ′=color word |
prep in(S, color word)color word ′=color word

size word ′ ::= rel(S, size word)size word ′=size word

abs loc word ′ ::= rel(S, abs loc word) abs loc word ′=abs loc word|
prep on(S, orientation word) ∧ ¬prep of(S, )abs loc word ′=on+orientation word

rel loc word ′ ::= RL

RL ::= prep rel loc word(S, object word)RL=rel loc word |
prep on(S, orientation word) ∧ prep of(S, object word) RL=on orientation word|
prep to(S, orientation word) ∧ prep of(S, object word) RL=to orientation word|
prep at(S, orientation word) ∧ prep of(S, object word) RL=at orientation word

generic word ′ ::= amod(S, generic word)

Figure 2: Templates for parsing attributes from referring expressions (§4.3).

coverage of the attribute types used in the re-
ferring expressions. We define the set of at-
tributes for a referring expression as a 7-tupleR =
{r1, r2, r3, r4, r5, r6, r7}:
• r1 is an entry-level category attribute,
• r2 is a color attribute,
• r3 is a size attribute,
• r4 is an absolute location attribute,
• r5 is a relative location relation attribute,
• r6 is a relative location object attribute,
• r7 is a generic attribute,
Color and size attributes refer to the object color

(e.g. “blue”) and object size (e.g. “tiny”) respec-
tively. Absolute location refers to the location of
the object in the image (e.g. “top of the image”).
Relative location relation and relative location ob-
ject attributes allow for referring expressions that
localize the object with respect to another object
in the picture (e.g. “the car to the left of the tree”).
Generic attributes cover all less frequently ob-
served attribute types (e.g. “wooden” or “round”).

The entry-level category attribute is related to
the concept of entry-level categories first proposed
by Psychologists in the 1970s (Rosch, 1978) and
recently explored in visual recognition (Ordonez
et al., 2013). The idea of entry-level categories is
that an object can belong to many different cate-
gories; an indigo bunting is an oscine, a bird, a
vertebrate, a chordate, and so on. But, a person
looking at a picture of one would probably call it
a bird (unless they are very familiar with ornithol-
ogy). Therefore, we include this attribute to cap-
ture how people name object categories in refer-
ring expressions.

Parsing the referring expressions: We parse
the expressions using the most recent version
of the StanfordCoreNLP parser (Socher et al.,
2013). We begin by traversing the parse tree in a
breadth-first manner and selecting the head noun
of the sentence to determine the object of the
referring expression, denoted as subject word.
We pre-define a dictionary of attribute-values
(color word, size word, abs location word,
rel location word) for each of the attributes
based on the observed data using a combination
of POS-tagging and manual labeling.

We then apply a template-based approach on the
collapsed dependency relations to recover the set
of attributes (the main template rules are shown
in Figure 2). The relationship rel indicates any
linguistic binary relationship between the subject
word S and another word, including the amod re-
lationship. Orientation word captures the words
like left, right, top and bottom. For generic word
we consider any modifier words other than those
captured by our other attributes (color, size, loca-
tion).

Using this template-based parser we can
for instance parse the following expression:
“Red flower on top of pedestal”. The first
rule would match the prep(S, color word)
relation, effectively recovering the attribute
color word ′ as “red”. The second rule would
match the prep on(S, orientation word) ∧
prep of(S, object word) relations, recovering
rel loc word ′ as “on top of ” and object word
as “pedestal”.

The accuracy of our parser based processing is
91%. This was evaluated on 4,500 expressions
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Figure 3: Analyses of the ReferItGame Dataset. Plot A shows frequency and attribute occurrence for
common object categories. Plot B shows objects frequently used as reference points, ie “to the left of the
man”. Plot C shows frequencies of using 0, 1 or 2 attributes within the same expression. Plot D shows
object locations vs location words used. Plot E shows normalized object size vs size words used (bars
show 1st through 3rd quartiles). Plot F shows the frequency of usage of each attribute type for images
containing either a single instance of the object category or multiple instances of the category.
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Figure 4: Left: Tag clouds showing entry-Level category words used in referring expressions to name
various object categories, with word size indicating frequency. For example, this indicates that “streets”
are often called “road”, sometimes “ground”, sometimes “roadway”, etc. Right: example objects pre-
dicted to portray some of our color attribute values. Note sometimes our color predictor is quite accurate,
and sometimes it makes mistakes (see the man in a red shirt predicted as “yellow”).

that were manually parsed by a human annotator.

4.4 Dataset Analysis

In the resulting dataset, we have a range of cov-
erage over objects. For 10,304 of the objects we
have 2 or more referring expressions while for the
rest of the objects we have collected only one ex-
pression. This creates a dataset that emphasizes
breadth while also containing enough data to study
speaker variation.

Multiple attribute analyses are provided in Fig-
ure 3. We find that most expressions use 0, 1, or
2 attributes (in addition to the entry-level attribute
object word), with very few expressions contain-
ing more than 2 attributes (frequencies are shown
in Fig 3c). We also examine what types of at-
tributes are used most frequently, according to ob-
ject category in Fig 3a, and when associated with
single or multiple occurrences of the same object
category in an image in Fig 3f. The frequency
of attribute usage in images containing multiple
objects of the same type increases for all types,
compared to single object occurrences. Perhaps
more interestingly, the use of different attributes is
highly category dependent. People use more at-
tribute words overall to describe some categories,
like “man”, “woman”, or “plant”, and the distribu-
tion of attribute types also varies by category. For
example, color attributes are used more frequently
for categories like “car” or “woman” than for cat-
egories like “sky” or “rock”.

We also examine which objects are most fre-
quently used as points of reference, e.g.,“the chair
next to the man” in Fig 3b. We observe that peo-
ple and some background categories like “tree” or
“wall” are often used to help localize objects in

referring expressions. Additionally, we provide
plots showing the relationship between object lo-
cation in the image and use of absolute location
words, Fig 3d, as well as size words vs object area,
Fig 3e.

Finally, we study entry-level category attribute-
values to understand how people name objects in
referring expressions. Tag clouds indicating the
frequencies of words used to name various ob-
ject categories are provided in Fig 4 (left). Ob-
jects like “street” are usually referred to as “road”,
but sometimes they are called “ground”, “road-
way”, etc. “Bottles” are usually called “bottle”,
but sometimes referred to as “coke” or “beer”. In-
terestingly, “man” is usually called “man” while
“woman” is most often called “person” in the re-
ferring expressions.

5 Generating Referring Expressions

In this section we describe our proposed genera-
tion model and provide experimental evaluations
on three test sets.

5.1 Generation Model

Given an input tuple I = {P, S}, where P is a
target object and S is a scene (image containing
multiple objects), our goal is to generate an output
referring expression, R. For instance, the repre-
sentation R for the referring expression: The big
old white cabin beside the tree would be R =
{cabin, white, big,∅, beside, tree, old}.

To generate referring expressions we construct
vocabularies Vri with candidate values for each at-
tribute ri ∈ R, where attribute vocabulary Vri con-
tains the set of words observed in our parsed refer-
ring expressions for attribute ri plus an additional
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Image Human Expressions Generated Expressions 

picture on the wall 
picture 
picture 

Baseline:[picture, white, , 
right, , , ]  
Full: [picture, , , , prep_on, 
wall, ]   

Door 
white door middle 
white door 

Baseline:[door, white, , 
right, , , ]   
Full:[door, white, , right, , , ] 

big gated window on right of 
white section 
black big window right 
brown railings on right 

Baseline:[window, white, , 
right, , , ]   
Full:[window, brown, , right, 
, , ]   

white shirt man 
white shirt on right 
man on right 

Baseline:[man, white, , right, 
, , ]  
Full:[man, white, , right, , , ] 
  

building on right behind guys 
blue right building 
building on right 

Baseline:[building, white, , 
right, , , ]   
Full:[building, white, , right, , 
, ]  

Image Human Expressions Generated Expressions 

picture 
santa 
the santa picture 

Baseline:[picture, white, , right, , , 
]  
Full:[picture, , , , prep_on, plant, ] 
  

right doorway 
right brown door 
right door 

Baseline:[door, , , right, prep_on, 
person, ]   
Full:[door, , , right, prep_above, 
person, ]  

with flag 
window top 2nd left 
2nd window top left 

Baseline:[window, , , right, 
prep_on, person, ]  
Full:[window, , , left, prep_above, 
door, ]   

red guy left sitting 
left bottom guy 
red shirt lef 

Baseline:[man, , , right, prep_on, 
wall, ]  
Full:[man, , , left, prep_in, woman, 
]   

buildings 
buildings 
buildings 

Baseline:[building, white, , right, , , 
]   
Full:[building, brown, , middle, , ,   

Figure 5: Example results, including human generated expressions, baseline and full model generated
expressions. For some images the model does well at mimicking human expressions (left). For others it
does not generate the correct attributes (right).

ε value indicating that the attribute should be om-
mited from the referring expression entirely.

In this way, our framework can jointly deter-
mine which attributes to include in the expression
(e.g.,“size” and “color”) and what attribute values
to generate (e.g.,“small” and “blue”) from the list
of all possible values. We enforce a constraint to
always include an “entry-level category” attribute
(e.g. “boy”) so that we always generate a word
referring to the object.

We pose our problem as an optimization where
we map a tuple {P, S} to a referring expression
R∗ as:

R∗ = argmax
R

E(R,P, S)

s. t. fi(R) ≤ bi
(1)

Where the objective function E is decomposed as:

E(R,P, S) = α
6∑
i=2

φi(ri, P, S)

+ β

7∑
i=1

ψi(ri, type(P ))

+
∑
i>j

ψi,j(ri, rj)

(2)

Where φi is the compatibility function between an
attribute-value for ri and the properties of the ob-
served scene S and object P (described in §5.1.1).
The terms ψi and ψi,j are unary and pairwise pri-
ors computed based on observed co-occurrence
statistics of attribute-values for ri with categories
(where type(P ) denotes the type or category of an

object) and between pairs of attribute-values (de-
scribed in §5.1.2). Attributes r1 and r7 are mod-
eled only in the priors since we do not have visual
models for these attributes.

The constraints fi(R) ≤ bi are restricted to be
linear constraints and are used to impose hard con-
straints on the solution. The first such constraint is
used to control the verbosity (length) of the gener-
ated referring expression using a constraint func-
tion that imposes a minimum attribute length re-
quirement by restricting the number of entries ri
that can take value ε in the solution.∑

i

1[ri = ε] ≤ 7− γ(P, S) (3)

Where 1[.] is the indicator function and γ(P, S) is
a term that allows us to change the length require-
ment based on the object and scene (so that images
with a larger number of objects of the same type
have a larger length requirement).

Finally we add hard constraints such that r5 = ε
⇐⇒ r6 = ε, so that relative location and relative
object attributes are produced together.

5.1.1 Content-based potentials
Potentials φi are defined for attributes r2 to r6.
Attribute r7 represents a variety of different at-
tributes, e.g. material or shape attributes, but
we lack sufficient data to train visual models for
these infrequent attribute terms. Therefore, we
model these attributes using only prior statistics-
based potentials (§5.1.2). Visual recognition mod-
els for recognizing entry-level object categories
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could also be incorporated for modeling r1, but we
leave this as future work.

Color attribute:

φ2(r2 = ck, P, S) = sim(histck , hist(P ))

Where hist(P ) is the HSV color histogram of the
object P . We compute similarity sim using cosine
similarity, and histck is the mean histogram of all
objects in our training data that were referred to
with color attribute-value ck ∈ Vr2 .

Size attribute:

φ3(r3 = sk, P, S) =
1

σsk
√

2π
e
−(size(P )−µsk)2

/
2σ2
sk

Where size(P ) is the size of object P normalized
by image size. We model the probabilities of each
size word sk ∈ Vr3 as a Gaussian learned on our
training set.

Absolute-location attribute:

φ4(r4 = ak, P, S) =
1√

(2π)n|Σak |
e−

1
2

(loc(P )−µak )TΣak
−1(loc(P )−µak )

Where loc(P ) are the 2-dimensional coordi-
nates of the object P normalized to be ∈ [0 − 1].
Parameters µak and Σak are estimated from
training data for each absolute location word
ak ∈ Vr4 .

Relative-location and Relative object:

φ5(r5 = lk, P, S) =
1[lk = ε] · g(count(type(P ), S))

If there are a larger number of objects of the same
type in the image we find that the probability of us-
ing a relative-location-object increases (e.g., “the
car to the right of the man”). For images where P
was the only object of that category type, the prob-
ability of using a relative-location-object is 0.12.
This increases to 0.22 when there were two ob-
jects of the same type and further increases to 0.26
for additional objects of the same type. There-
fore, we model the probability of selecting rela-
tive location value lk ∈ Vr5 as a function g, where
count(type(P ), S) counts the number of objects

in the scene S of the same category type as the
object P .

φ6(r6 = ok, P, S) =
1[ok ∈ objectsnear(location(P ), S)]

The above expression filters out potential relative
objects ok ∈ Vr6 that are not located in sufficient
proximity to object P or are not present in the im-
age at all.

5.1.2 Prior statistics-based potentials
Prior statistics-based potentials are modeled for all
of the attributes r1 - r7. Note that these potentials
do not depend on specific attribute-values but only
on the given object category type(P ).

Unary prior potentials ψi are defined as:

ψi(ri, type(P )) =
|D|∑
j=1

1[(r(j)
i 6= ε) ∧ (type(P (j)) = type(P ))]

|D|∑
j=1

1[type(P (j)) = type(P )]

+

|D|∑
j=1

1[r(j)
i 6= ε]

|D| + λ

Where D = {P (j), S(j), R(j)} is our training
dataset and λ is a small additive smoothing term.
The two terms in the above expression represent
category-specific counts and global counts of the
number of times a given attribute ri was output in
a referring expression in training data. Pairwise
prior potentials ψi,j are defined as:∑
i<j

ψi,j(ri, rj) =
∑
i<j

ψ
(1)
i,j (ri, rj) + ψ

(2)
5,6(r5, r6)

ψ
(1)
i,j (ri, rj) =

{
1 if ri = rj = ε
C + λ o.w.

ψ
(2)
5,6(r5 = a, r6 = b) =

|D|∑
t=1

1[(r(t)
5 = a) ∧ (r(t)

6 = b)]

|D|

where C =

|D|∑
t=1

1[(r
(t)
i 6=ε) ∧ (r

(t)
j 6=ε)]

|D| . The pairwise

potential ψ(1)
i,j captures the pairwise statistics of

how frequently people use pairs of attribute types.
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SOURCE PREC(%) RECALL(%)
Baseline - A 27.92 43.27

Full Model - A 36.28 53.44
Baseline - B 29.87 50.57

Full Model - B 36.68 59.80
Baseline - C 28.85 37.41

Full Model - C 37.73 48.54

Table 1: Baseline Model & Full Model perfor-
mance on the three test sets (A,B,C).

For instance how frequently people use both color
and size attributes to refer to an object. The pair-
wise potential ψ(2)

i,j produces a cohesion score be-
tween relative-location words and relative-object
words based on global dataset statistics.

5.2 Experiments

We implement the proposed model using commer-
cial binary integer linear programming software
(IBM ILOG CPLEX). This requires introducing
a set of indicator variables for each of our multi-
valued attributes and another set of indicator vari-
ables to model pairwise interactions between our
variables, as well as incorporating additional con-
sistency constraints between variables. Model pa-
rameters (α and β) are tuned on data randomly
sampled from the training set.
Test Sets: We evaluate our model on three test
sets, each containing 500 objects. For each ob-
ject in the test sets we collect 3 referring expres-
sions using the ReferItGame and manually label
the attributes mentioned in each expression. We
find human agreement to be 72.31% on our dataset
(where we measure agreement as mean match-
ing accuracy of attribute values for pairs of users
across images in our test sets). The three test
sets are created to evaluate different aspects of our
data.

Test Set A contains objects sampled randomly
from the entire dataset. This test set is meant to
closely resemble the full dataset distribution. The
goal of the other two test sets is to sample expres-
sions for “interesting” objects. We first identify
categories that are mainly related to background
content elements, e.g. “sky, ground, floor, sand,
sidewalk, etc”. We consider these categories to
be potentially less interesting for study than cat-
egories like people, animals, cars, etc. Test Set B
contains objects sampled from the most frequently
occurring object categories in the dataset, selected

to contain a balanced number of objects from each
category, excluding the less interesting categories.
Test Set C contains objects sampled from images
that contain at least 2 objects of the same category,
excluding the less interesting categories.

Results: Qualitative examples are shown in Fig 5
comparing our results to the human produced ex-
pressions. For some images (left) we do quite well
at predicting the correct attributes and values. For
others we do less well (right). We also show exam-
ple objects predicted for some color words in Fig 4
(right). We see that our model can fail in several
ways, such as generating the wrong attribute-value
due to inaccurate predictions by visual models or
selecting incorrect attributes to include in the gen-
erated expression.

Quantitative results: precision and recall mea-
sures for the 3 test sets are reported in Table 1,
including evaluation of a baseline version of our
model which incorporates only the prior potentials
(§5.1.2) without any content based estimates. We
see that our model performs reasonably on both
measures, and outperforms the baseline by a large
margin on all test sets, with highest performance
on the broadly sampled interesting category test
set. Note that our problem is somewhat differ-
ent than traditional REG where the input is often
attribute-value pairs and the task is to select which
pairs to include in the expression. Our goal is to
jointly select which attributes to include and what
values to predict from a list of all possible values
for the attribute.

6 Conclusions & Future Work

In this paper we have introduced a new game to
crowd-source referring expressions for objects in
natural scenes. We have used this game to pro-
duce a new large-scale dataset with analysis. We
have also proposed an optimization based model
for REG and performed experimental evaluations.
Future work includes developing fully automatic
visual recognition methods for REG in real world
scenes, and incorporating linguistically inspired
models for entry-level category prediction.
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Abstract

We propose an unsupervised approach to
constructing templates from a large collec-
tion of semantic category names, and use
the templates as the semantic representa-
tion of categories. The main challenge is
that many terms have multiple meanings,
resulting in a lot of wrong templates. Sta-
tistical data and semantic knowledge are
extracted from a web corpus to improve
template generation. A nonlinear scoring
function is proposed and demonstrated to
be effective. Experiments show that our
approach achieves significantly better re-
sults than baseline methods. As an imme-
diate application, we apply the extracted
templates to the cleaning of a category col-
lection and see promising results (preci-
sion improved from 81% to 89%).

1 Introduction

A semantic category is a collection of items shar-
ing common semantic properties. For example,
all cities in Germany form a semantic category
named “city in Germany” or “German city”. In
Wikipedia, the category names of an entity are
manually edited and displayed at the end of the
page for the entity. There have been quite a lot of
approaches (Hearst, 1992; Pantel and Ravichan-
dran, 2004; Van Durme and Pasca, 2008; Zhang et
al., 2011) in the literature to automatically extract-
ing category names and instances (also called is-a
or hypernymy relations) from the web.

Most existing work simply treats a category
name as a text string containing one or multiple
words, without caring about its internal structure.
In this paper, we explore the semantic structure
of category names (or simply called “categories”).

∗This work was performed when the first author was vis-
iting Microsoft Research Asia.

For example, both “CEO of General Motors” and
“CEO of Yahoo” have structure “CEO of [com-
pany]”. We call such a structure a category tem-
plate. Taking a large collection of open-domain
categories as input, we construct a list of category
templates and build a mapping from categories to
templates. Figure 1 shows some example semantic
categories and their corresponding templates.

Templates can be treated as additional features
of semantic categories. The new features can be
exploited to improve some upper-layer applica-
tions like web search and question answering. In
addition, by linking categories to templates, it is
possible (for a computer program) to infer the se-
mantic meaning of the categories. For example in
Figure 1, from the two templates linking to cat-
egory “symptom of insulin deficiency”, it is rea-
sonable to interpret the category as: “a symptom
of a medical condition called insulin deficiency
which is about the deficiency of one type of hor-
mone called insulin.” In this way, our knowledge
about a category can go beyond a simple string
and its member entities. An immediate application
of templates is removing invalid category names
from a noisy category collection. Promising re-
sults are observed for this application in our ex-
periments.

An intuitive approach to this task (i.e., extract-
ing templates from a collection of category names)

national holiday of South Africa
(instances: Heritage Day, Christmas…)

national holiday of Brazil
(instances: Carnival, Christmas…)

national holiday of [country]

symptom of cortisol deficiency
(instances: low blood sugar…)

symptom of insulin deficiency
(instances: nocturia, weight loss…)

symptom of [hormone] deficiency

symptom of [medical condition]

school in Denver

school in Houston

school in [place]

school in [city]

Semantic Categories Category templates

football player

basketball player
[sport] player

Figure 1: Examples of semantic categories and
their corresponding templates.
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contains two stages: category labeling, and tem-
plate scoring.

Category labeling: Divide a category name
into multiple segments and replace some key seg-
ments with its hypernyms. As an example, as-
sume “CEO of Delphinus” is divided to three seg-
ments “CEO + of + Delphinus”; and the last seg-
ment (Delphinus) has hypernyms “constellation”,
“company”, etc. By replacing this segment with
its hypernyms, we get candidate templates “CEO
of [constellation]” (a wrong template), “CEO of
[company]”, and the like.

Template scoring: Compute the score of each
candidate template by aggregating the information
obtained in the first phase.

A major challenge here is that many segments
(like “Delphinus” in the above example) have mul-
tiple meanings. As a result, wrong hypernyms
may be adopted to generate incorrect candidate
templates (like “CEO of [constellation]”). In this
paper, we focus on improving the template scor-
ing stage, with the goal of assigning lower scores
to bad templates and larger scores to high-quality
ones.

There have been some research efforts (Third,
2012; Fernandez-Breis et al., 2010; Quesada-
Martınez et al., 2012) on exploring the structure of
category names by building patterns. However, we
automatically assign semantic types to the pattern
variables (or called arguments) while they do not.
For example, our template has the form of “city
in [country]” while their patterns are like “city in
[X]”. More details are given in the related work
section.

A similar task is query understanding, including
query tagging and query template mining. Query
tagging (Li et al., 2009; Reisinger and Pasca,
2011) corresponds to the category labeling stage
described above. It is different from template gen-
eration because the results are for one query only,
without merging the information of all queries to
generate the final templates. Category template
construction are slightly different from query tem-
plate construction. First, some useful features
such as query click-through is not available in cat-
egory template construction. Second, categories
should be valid natural language phrases, while
queries need not. For example, “city Germany” is
a query but not a valid category name. We discuss
in more details in the related work section.

Our major contributions are as follows.

1) To the best of our knowledge, this is the first
work of template generation specifically for cate-
gories in unsupervised manner.

2) We extract semantic knowledge and statisti-
cal information from a web corpus for improving
template generation. Significant performance im-
provement is obtained in our experiments.

3) We study the characteristics of the scoring
function from the viewpoint of probabilistic evi-
dence combination and demonstrate that nonlinear
functions are more effective in this task.

4) We employ the output templates to clean
our category collection mined from the web, and
get apparent quality improvement (precision im-
proved from 81% to 89%).

After discussing related work in Section 2, we
define the problem and describe one baseline ap-
proach in Section 3. Then we introduce our ap-
proach in Section 4. Experimental results are re-
ported and analyzed in Section 5. We conclude the
paper in Section 6.

2 Related work

Several kinds of work are related to ours.
Hypernymy relation extraction: Hypernymy

relation extraction is an important task in text min-
ing. There have been a lot of efforts (Hearst, 1992;
Pantel and Ravichandran, 2004; Van Durme and
Pasca, 2008; Zhang et al., 2011) in the literature to
extract hypernymy (or is-a) relations from the web.
Our target here is not hypernymy extraction, but
discovering the semantic structure of hypernyms
(or category names).

Category name exploration: Category name
patterns are explored and built in some ex-
isting research work. Third (2012) pro-
posed to find axiom patterns among category
names on an existing ontology. For ex-
ample, infer axiom pattern “SubClassOf(AB,
B)” from “SubClassOf(junior school school)”
and “SubClassOf(domestic mammal mammal)”.
Fernandez-Breis et al. (2010) and Quesada-
Martınez et al. (2012) proposed to find lexical pat-
terns in category names to define axioms (in med-
ical domain). One example pattern mentioned in
their papers is “[X] binding”. They need man-
ual intervention to determine what X means. The
main difference between the above work and ours
is that we automatically assign semantic types to
the pattern variables (or called arguments) while
they do not.
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Template mining for IE: Some research work
in information extraction (IE) involves patterns.
Yangarber (2003) and Stevenson and Greenwood
(2005) proposed to learn patterns which were in
the form of [subject, verb, object]. The category
names and learned templates in our work are not
in this form. Another difference between our work
and their work is that, their methods need a super-
vised name classifer to generate the candidate pat-
terns while our approach is unsupervised. Cham-
bers and Jurafsky (2011) leverage templates to de-
scribe an event while the templates in our work are
for understanding category names (a kind of short
text).

Query tagging/labeling: Some research work
in recent years focuses on segmenting web search
queries and assigning semantic tags to key seg-
ments. Li et al. (2009) and Li (2010) employed
CRF (Conditional Random Field) or semi-CRF
models for query tagging. A crowdsourcing-
assisted method was proposed by Han et al. (2013)
for query structure interpretation. These super-
vised or semi-supervised approaches require much
manual annotation effort. Unsupervised meth-
ods were proposed by Sarkas et al. (2010) and
Reisinger and Pasca (2011). As been discussed
in the introduction section, query tagging is only
one of the two stages of template generation. The
tagging results are for one query only, without ag-
gregating the global information of all queries to
generate the final templates.

Query template construction: Some existing
work leveraged query templates or patterns for
query understanding. A semi-supervised random
walk based method was proposed by Agarwal et
al. (2010) to generate a ranked templates list which
are relevant to a domain of interest. A predefined
domain schema and seed information is needed for
this method. Pandey and Punera (2012) proposed
an unsupervised method based on graphical mod-
els to mine query templates. The above methods
are either domain-specific (i.e., generating tem-
plates for a specific domain), or have some degree
of supervision (supervised or semi-supervised).
Cheung and Li (2012) proposed an unsupervised
method to generate query templates by the aid of
knowledge bases. An approach was proposed in
(Szpektor et al., 2011) to improve query recom-
mendation via query templates. Query session in-
formation (which is not available in our task) is
needed in this approach for templates generation.

Li et al. (2013) proposed an clustering algorithm
to group existing query templates by search intents
of users.

Compared to the open-domain unsupervised
methods for query template construction, our ap-
proach improves on two aspects. First, we propose
to incorporate multiple types of semantic knowl-
edge (e.g., term peer similarity and term clusters)
to improve template generation. Second, we pro-
pose a nonlinear template scoring function which
is demonstrated to be more effective.

3 Problem Definition and Analysis

3.1 Problem definition

The goal of this paper is to construct a list of cat-
egory templates from a collection of open-domain
category names.

Input: The input is a collection of category
names, which can either be manually compiled
(like Wikipedia categories) or be automatically ex-
tracted. The categories used in our experiments
were automatically mined from the web, by fol-
lowing existing work (Hearst, 1992, Pantel and
Ravichandran 2004; Snow et al., 2005; Talukdar
et al., 2008; Zhang et al., 2011). Specifically,
we applied Hearst patterns (e.g., “NP [,] (such
as | including) {NP, }∗ {and|or} NP”) and is-
a patterns (“NP (is|are|was|were|being) (a|an|the)
NP”) to a large corpus containing 3 billion En-
glish web pages. As a result, we obtained a
term→hypernym bi-partite graph containing 40
million terms, 74 million hypernyms (i.e., cate-
gory names), and 321 million edges (e.g., one
example edge is “Berlin”→“city in Germany”,
where “Berlin” is a term and “city in Germany” is
the corresponding hypernym). Then all the multi-
word hypernyms are used as the input category
collection.

Output: The output is a list of templates, each
having a score indicating how likely it is valid. A
template is a multi-word string with one headword
and at least one argument. For example, in tem-
plate “national holiday of [country]”, “holiday” is
the headword, and “[country]” is the argument.
We only consider one-argument templates in this
paper, and the case of multiple arguments is left as
future work. A template is valid if it is syntacti-
cally and semantically correct. “CEO of [constel-
lation]” (wrongly generated from “CEO of Del-
phinus”, “CEO of Aquila”, etc.) is not valid be-
cause it is semantically unreasonable.
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3.2 Baseline approach

An intuitive approach to this task contains two
stages: category labeling and template scoring.
Figure 2 shows its workflow with simple exam-
ples.

3.2.1 Phase-1: Category labeling
At this stage, each category name is automatically
segmented and labeled; and some candidate tem-
plate tuples (CTTs) are derived based on the la-
beling results. This can be done in the following
steps.

Category segmentation: Divide each cate-
gory name into multiple segments (e.g., “holi-
day of South Africa” to “holiday + of + South
Africa”). Each segment is one word or a phrase
appearing in an entity dictionary. The dictionary
used in this paper is comprised of all Freebase
(www.freebase.com) entities.

Segment to hypernym: Find hypernyms for
every segment (except for the headword and some
trivial segments like prepositions and articles), by
referring to a term→hypernym mapping graph.
Following most existing query labeling work, we
derive the term→hypernym graph from a dump of
Freebase. Below are some examples of Freebase
types (hypernyms),

German city (id: /location/de city)
Italian province (id: /location/it province)
Poem character (id: /book/poem character)
Book (id: /book/book)
To avoid generating too fine-grained templates

like “mayor of [Germany city]” and “mayor of
[Italian city]” (semantically “mayor of [city]”
is more desirable), we discard type modifiers
and map terms to the headwords of Freebase
types. For example, “Berlin” is mapped to
“city”. In this way, we build our basic version of
term→hypernym mapping which contains 16.13
million terms and 696 hypernyms. Since “South
Africa” is both a country and a book name in Free-
base, hypernyms “country”, “book”, and others
are assigned to the segment “South Africa” in this
step.

CTT generation: Construct CTTs by choosing
one segment (called the target segment) each time
and replacing the segment with its hypernyms. An
CTT is formed by the candidate template (with
one argument), the target segment (as an argument
value), and the tuple score (indicating tuple qual-
ity). Below are example CTTs obtained after the

last segment of “holiday + of + South Africa” is
processed,
U1: (holiday of [country], South Africa, w1)
U2: (holiday of [book], South Africa, w2)

3.2.2 Phase-2: Template scoring
The main objective of this stage is to merge all
the CTTs obtained from the previous stage and to
compute a final score for each template. In this
stage, the CTTs are first grouped by the first ele-
ment (i.e., the template string). For example, tu-
ples for “holiday of [country]” may include,
U1: (holiday of [country], South Africa, w1)
U2: (holiday of [country], Brazil, w2)
U3: (holiday of [country], Germany, w3)
...
Then a scoring function is employed to calcu-

late the template score from the tuple scores. For-
mally, given n tuples ~U=(U1, U2..., Un) for a tem-
plate, the goal is to find a score fusion function
F (~U) which yields large values for high-quality
templates and small (or zero) values for invalid
ones.

Borrowing the idea of TF-IDF from information
retrieval, a reasonable scoring function is,

F (~U) =
n∑
i=1

wi · IDF (h) (1)

where h is the argument type (i.e., the hypernym
of the argument value) of each tuple. TF means
the “term frequency” and IDF means the “inverse
document frequency”. An IDF function assigns
lower scores to common hypernyms (like person
and music track which contain a lot of entities).
Let DF (h) be the number of entities having hy-
pernym h, we test two IDF functions in our exper-
iments,

IDF1(h) = log
1 +N

1 +DF (h)
IDF2(h) = 1/sqrt(DF (h))

(2)

where N is total number of entities in the entity
dictionary.

The next problem is estimating tuple score wi.
Please note that there is no weight or score infor-
mation in the term→hypernym mapping of Free-
base. So we have to set wi to be constant in the
baseline,

wi = 1 (3)
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Wikipedia

holiday of Brazil

holiday of South Africa

…

Brazil  country

Brazil  book

South Africa  country

South Africa  book

…

holiday of [country], Brazil, w1

holiday of [book], Brazil, w2

holiday of [country], South Africa, w3

holiday of [book], South Africa, w4

…

holiday of [country], S1

holiday of [book], S2

…

Phase-1: Category labeling

Phase-2: Template scoring

Phase-1 Phase-2

Input: Category names

Term-hypernym mapping

Output: Category templates

head argument

argument

argument value

tuple score

Candidate template tuples (CTTs)

Figure 2: Problem definition and baseline approach.

4 Approach: Enhancing Template
Scoring

In our approach, we follow the same framework
as in the above baseline approach, and focus on
improving the template scoring phase (i.e., phase-
2).

We try three techniques: First, a better tuple
scorewi is calculated in Section 4.1 by performing
statistics on a large corpus. The corpus is a collec-
tion of 3 billion web pages crawled in early 2013
by ourselves. During this paper, we use “our web
corpus” or “our corpus” to refer to this corpus.

Second, a nonlinear function is adopted in Sec-
tion 4.2 to replace the baseline tuple fusion func-
tion (Formula 1). Third, we extract term peer sim-
ilarity and term clusters from our corpus and use
them as additional semantic knowledge to refine
template scores.

4.1 Enhancing tuple scoring

Let’s examine the following two template tuples,
U1: (holiday of [country], South Africa, w1)
U2: (holiday of [book], South Africa, w2)
Intuitively, “South Africa” is more likely to be

a country than a book when it appears in text. So
for a reasonable tuple scoring formula, we should
have w1 > w2.

The main idea is to automatically calculate
the popularity of a hypernym given a term, by
referring to a large corpus. Then by adding
the popularity information to (the edges of) the
term→hypernym graph of Freebase, we obtain a
weighted term→hypernym graph. The weighted
graph is then employed to enhance the estimation
of wi.

For popularity calculation, we apply Hearst
patterns (Hearst, 1992) and is-a patterns (“NP
(is|are|was|were|being) (a|an|the) NP”) to every

sentence of our web corpus. For a (term, hyper-
nym) pair, its popularity F is calculated as the
number of sentences in which the term and the hy-
pernym co-occur and also follow at least one of
the patterns.

For a template tuple Ui with argument type h
and argument value v, we test two ways of esti-
mating the tuple score wi,

wi = log (1 + F (v, h)) (4)

wi =
F (v, h))

λ+
∑

hj∈H F (v, hj)
(5)

where F (v, h) is the popularity of the (v, h) pair
in our corpus, H is the set of all hypernyms for v
in the weighted term→hypernym graph. Parame-
ter λ (=1.0 in our experiments) is introduced for
smoothing purpose. Note that the second formula
is the conditional probability of hypernym h given
term v.

Since it is intuitive to estimate tuple scores with
their frequencies in a corpus, we treat the approach
with the improved wi as another baseline (our
strong baseline).

4.2 Enhancing tuple combination function
Now we study the possibility of improving the tu-
ple combination function (Formula 1), by examin-
ing the tuple fusion problem from the viewpoint
of probabilistic evidence combination. We first
demonstrate that the linear function in Formula 1
corresponds to the conditional independence as-
sumption of the tuples. Then we propose to adopt
a series of nonlinear functions for combining tuple
scores.

We define the following events:
T : Template T is a valid template;
T : T is an invalid template;
Ei: The observation of tuple Ui.
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Let’s compute the posterior odds of event T ,
given two tuples U1 and U2. Assuming E1 and
E2 are conditionally independent given T or T ,
according to the Bayes rule, we have,

P (T |E1, E2)
P (T |E1, E2)

=
P (E1, E2|T ) · P (T )
P (E1, E2|T ) · P (T )

=
P (E1|T )
P (E1|T )

· P (E2|T )
P (E2|T )

· P (T )
P (T )

=
P (T |E1) · P (T )
P (T |E1) · P (T )

· P (T |E2) · P (T )
P (T |E2) · P (T )

· P (T )
P (T )

(6)

Define the log-odds-gain of T given E as,

G(T |E) = log
P (T |E)
P (T |E)

− log
P (T )
P (T )

(7)

Here G means the gain of the log-odds of T af-
ter E occurs. By combining formulas 6 and 7, we
get

G(T |E1, E2) = G(T |E1) +G(T |E2) (8)

It is easy to prove that the above conclusion
holds true when n > 2, i.e.,

G(T |E1, ..., En) =
n∑
i=1

G(T |Ei) (9)

If we treat G(T |Ei) as the score of template T
when only Ui is observed, andG(T |E1, ..., En) as
the template score after the n tuples are observed,
then the above equation means that the combined
template score should be the sum of wi · IDF (h),
which is exactly Formula 1. Please keep in mind
that Equation 9 is based on the assumption that the
tuples are conditional independent. This assump-
tion, however, may not hold in reality. The case
of conditional dependence was studied in (Zhang
et al., 2011), where a group of nonlinear combina-
tion functions were proposed and achieved good
performance in their task of hypernymy extrac-
tion. We choose p-Norm as our nonlinear fusion
functions, as below,

F (~U) = p

√√√√ n∑
i=1

wpi · IDF (h) (p > 1) (10)

where p (=2 in experiments) is a parameter.
Experiments show that the above nonlinear

function performs better than the linear function

of Formula 1. Let’s use an example to show the
intuition. Consider a good template “city of [coun-
try]” corresponding to CTTs ~UA and a wrong tem-
plate “city of [book]” having tuples ~UB . Sup-
pose |~UA| = 200 (including most countries in
the world) and |~UB| = 1000 (considering that
many place names have already been used as book
names). We observe that each tuple score corre-
sponding to “city of [country]” is larger than the
tuple score corresponding to “city of [book]”. For
simplicity, we assume each tuple in ~UA has score
1.0 and each tuple in ~UB has score 0.2. With the
linear and nonlinear (p=2) fusion functions, we
can get,

Linear:

F (~UA) = 200 ∗ 1.0 = 200

F (~UB) = 1000 ∗ 0.2 = 200
(11)

Nonlinear:

F (~UA) = 14.1

F (~UB) = 6.32
(12)

In the above settings the nonlinear function
yields a much higher score for the good template
(than for the invalid template), while the linear one
does not.

4.3 Refinement with term similarity and
term clusters

The above techniques neglect the similarity among
terms, which has a high potential to improve the
template scoring process. Intuitively, for a toy set
{“city in Brazil”, “city in South Africa”,“city in
China”, “city in Japan”}, since “Brazil”, “South
Africa”, “China” and “Japan” are very similar to
each other and they all have a large probability to
be a “country”, so we have more confidence that
“city in [country]” is a good template. In this sec-
tion, we propose to leverage the term similarity
information to improve the template scoring pro-
cess.

We start with building a large group of small
and overlapped clusters from our web corpus.

4.3.1 Building term clusters
Term clusters are built in three steps.

Mining term peer similarity: Two terms are
peers if they share a common hypernym and they
are semantically correlated. For example, “dog”
and “cat” should have a high peer similarity score.
Following existing work (Hearst, 1992; Kozareva
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et al., 2008; Shi et al., 2010; Agirre et al., 2009;
Pantel et al., 2009), we built a peer similarity graph
containing about 40.5 million nodes and 1.33 bil-
lion edges.

Clustering: For each term, choose its top-30
neighbors from the peer similarity graph and run a
hierarchical clustering algorithm, resulting in one
or multiple clusters. Then we merge highly du-
plicated clusters. The algorithm is similar to the
first part of CBC (Pantel and Lin, 2002), with the
difference that a very high merging threshold is
adopted here in order to generate small and over-
lapped clusters. Please note that one term may be
included in many clusters.

Assigning top hypernyms: Up to two hyper-
nyms are assigned for each term cluster by major-
ity voting of its member terms, with the aid of the
weighted term→hypernym graph of Section 4.1.
To be an eligible hypernym for the cluster, it has
to be the hypernym of at least 70% of terms in the
cluster. The score of each hypernym is the aver-
age of the term→hypernym weights over all the
member terms.

4.3.2 Template score refinement
With term clusters at hand, now we describe the
score refinement procedure for a template T hav-
ing argument type h and supporting tuples ~U=(U1,
U2..., Un). Denote V = {V1, V2, ..., Vn} to be the
set of argument values for the tuples (where Vi is
the argument value of Ui).

By computing the intersection of V and every
term cluster, we can get a distribution of the argu-
ment values in the clusters. We find that for a good
template like “holiday in [country]”, we can often
find at least one cluster (one of the country clus-
ters in this example) which has hypernym h and
also contains many elements in V . However, for
invalid templates like “holiday of [book]”, every
cluster having hypernym h (=“book” here) only
contains a few elements in V . Inspired by such
an observation, our score refinement algorithm for
template T is as follows,

Step-1. Calculating supporting scores: For
each term cluster C having hypernym h, compute
its supporting score to T as follows:

S(C, T ) = k(C, V ) · w(C, h) (13)

where k(C, V ) is the number of elements shared
by C and V , and w(C, h) is hypernym score of h
to C (computed in the last step of building clus-
ters).

Step-2. Calculating the final template score:
Let term cluster C∗ has the maximal supporting
score to T , the final template score is computed
as,

S(T ) = F (~U) · S(C∗, T ) (14)

where F (~U) is the template score before refine-
ment.

5 Experiments

5.1 Experimental setup
5.1.1 Methods for comparison
We make a comparison among 10 methods.

SC: The method is proposed in (Cheung and Li,
2012) to construct templates from queries. The
method firstly represents a query as a matrix based
on Freebase data. Then a hierarchical clustering
algorithm is employed to group queries having the
same structure and meaning. Then an intent sum-
marization algorithm is employed to create tem-
plates for each query group.

Base: The linear function in Formula 1 is
adopted to combine the tuple scores. We use
IDF2 here because it achieves higher precision
than IDF1 in this setting.

LW: The linear function in Formula 1 is
adopted to combine the tuple scores generated by
Formula 4. IDF1 is used rather than IDF2 for
better performance.

LP: The linear function in Formula 1 is adopted
to combine the tuple scores generated by Formula
5. IDF2 is used rather than IDF1 for better per-
formance.

NLW: The nonlinear fusion function in For-
mula 10 is used. Other settings are the same as
LW.

NLP: The nonlinear fusion function in Formula
10 is used. Other settings are the same as LP.

LW+C, LP+C, NLW+C, NLP+C: All the set-
tings of LW, LP, NLW, NLP respectively, with the
refinement technology in Section 4.3 applied.

5.1.2 Data sets, annotation and evaluation
metrics

The input category names for experiments are au-
tomatically extracted from a web corpus (Section
3.1). Two test-sets are built for evaluation from the
output templates of various methods.

Subsets: In order to conveniently compare the
performance of different methods, we create 20
sub-collections (called subsets) from the whole in-
put category collection. Each subset contains all
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the categories having the same headword (e.g.,
“symptom of insulin deficiency” and “depression
symptom” are in the same subset because they
share the same headword “symptom”). To choose
the 20 headwords, we first sample 100 at ran-
dom from the set of all headwords; then manu-
ally choose 20 for diversity. The headwords in-
clude symptom, school, food, gem, hero, weapon,
model, etc. We run the 10 methods on these sub-
sets and sort the output templates by their scores.
Top-30 templates from each method on each sub-
set are selected and mixed together for annotation.

Fullset: We run method NLP+C (which has
the best performance according to our subsets
experiments) on the input categories and sort
the output templates by their scores. Then we
split the templates into 9 sections according
to their ranking position. The sections are:
[1∼100], (100∼1K], (1K∼10K], (10K∼100K],
(100K,120K], (120K∼140K], (140K∼160K],
(160K∼180K], (180K∼200K]. Then 40 templates
are randomly chosen from each section and mixed
together for annotation.

The selected templates (from subsets and the
fullset) are annotated by six annotators, with each
template assigned to two annotators. A template is
assigned a label of “good”, “fair”, or “bad” by an
annotator. The percentage agreement between the
annotators is 80.2%, with kappa 0.624.

For the subset experiments, we adopt
Precision@k (k=10,20,30) to evaluate the
top templates generated by each method. The
scores for “good”, “fair”, and “bad” are 1, 0.5,
and 0. The score of each template is the average
annotation score over two annotators (e.g., if a
template is annotated “good” by one annotator and
“fair” by another, its score is (1.0+0.5)/2=0.75).
The evaluation score of a method is the average
over the 20 subsets. For the fullset experiments,
we report the precision for each section.

5.2 Experimental results

5.2.1 Results for subsets

The results of each method on the 20 subsets
are presented in Table 1. A few observations
can be made. First, by comparing the per-
formance of baseline-1 (Base) and the methods
adopting term→hypernym weight (LW and LP),
we can see big performance improvement. The
bad performance of baseline-1 is mainly due to
the lack of weight (or frequency) information on

Method P@10 P@20 P@30
Base (baseline-1) 0.359 0.361 0.358

SC (Cheung and Li, 2012) 0.382 0.366 0.371
Weighted LW 0.633 0.582 0.559

(baseline-2) LP 0.771 0.734 0.707
Nonlinear NLW 0.711 0.671 0.638

NLP 0.818 0.791 0.765
LW+C 0.813 0.786 0.754

Term cluster NLW+C 0.854 0.833 0.808
LP+C 0.818 0.788 0.778

NLP+C 0.868 0.839 0.788

Table 1: Performance comparison among the
methods on subset.

term→hypernym edges. The results demonstrate
that edge scores are critical for generating high
quality templates. Manually built semantic re-
sources typically lack such kinds of scores. There-
fore, it is very important to enhance them by de-
riving statistical data from a large corpus. Since
it is relatively easy to have the idea of adopt-
ing a weighted term→hypernym graph, we treat
LW and LP as another (stronger) baseline named
baseline-2.

As the second observation, the results show that
the nonlinear methods (NLP and NLW) achieve
performance improvement over their linear ver-
sions (LW and LP).

Third, let’s examine the methods with template
scores refined by term similarity and term clus-
ters (LW+C, NLW+C, LP+C, NLP+C). It is shown
that the refine-by-cluster technology brings addi-
tional performance gains on all the four settings
(linear and nonlinear, two different ways of calcu-
lating tuple scores). So we can conclude that the
peer similarity and term clusters are quite effective
in improving template generation.

Fourth, the best performance is achieved
when the three techniques (i.e., term→hypernym
weight, nonlinear fusion function, and refine-by-
cluster) are combined together. For instance, by
comparing the P@20 scores of baseline-2 and
NLP+C, we see a performance improvement of
14.3% (from 0.734 to 0.839). Therefore every
technique studied in this paper has its own merit
in template generation.

Finally, by comparing the method SC (Cheung
and Li, 2012) with other methods, we can see that
SC is slightly better than baseline-1, but has much
lower performance than others. The major reason
may be that this method did not employ a weighted
term→hypernym graph or term peer similarity in-
formation in template construction.
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Base SC LP NLP LP+C
SC ∼
LP > ∗∗ > ∗∗

P@10 NLP > ∗∗ > ∗∗ >
LP+C > ∗∗ > ∗∗ > ∗∗ ∼

NLP+C > ∗∗ > ∗∗ > ∗∗ > ∗∗ >
Base SC LP NLP LP+C

SC ∼
LP > ∗∗ > ∗∗

P@20 NLP > ∗∗ > ∗∗ > ∗∗
LP+C > ∗∗ > ∗∗ > ∗∗ ∼

NLP+C > ∗∗ > ∗∗ > ∗∗ > ∗∗ > ∗∗
Base SC LP NLP LP+C

SC ∼
LP > ∗∗ > ∗∗

P@30 NLP > ∗∗ > ∗∗ > ∗∗
LP+C > ∗∗ > ∗∗ > ∗∗ ∼

NLP+C > ∗∗ > ∗∗ > ∗∗ > ∼

Table 2: Paired t-test results on subsets.

Base SC LW NLW LW+C
SC ∼
LW > ∗∗ > ∗∗

P@10 NLW > ∗∗ > ∗∗ > ∗
LW+C > ∗∗ > ∗∗ > ∗∗ > ∗∗

NLW+C > ∗∗ > ∗∗ > ∗∗ > ∗∗ > ∗
Base SC LW NLW LW+C

SC ∼
LW > ∗∗ > ∗∗

P@20 NLW > ∗∗ > ∗∗ > ∗∗
LW+C > ∗∗ > ∗∗ > ∗∗ > ∗∗

NLW+C > ∗∗ > ∗∗ > ∗∗ > ∗∗ > ∗∗
Base SC LW NLW LW+C

SC ∼
LW > ∗∗ > ∗∗

P@30 NLW > ∗∗ > ∗∗ > ∗∗
LW+C > ∗∗ > ∗∗ > ∗∗ > ∗∗

NLW+C > ∗∗ > ∗∗ > ∗∗ > ∗∗ > ∗∗

Table 3: Paired t-test results on subsets.

Are the performance differences between meth-
ods significant enough for us to say that one is bet-
ter than the other? To answer this question, we run
paired two-tailed t-test on every pair of methods.
We report the t-test values among methods in ta-
bles 2, 3 and 4.

The meaning of the symbols in the tables are,

∼: The method on the row and the one on the
column have similar performance.

>: The method on the row outperforms the
method on the column, but the performance dif-
ference is not statistically significant (0.05 ≤ P <
0.1 in two-tailed t-test).

> ∗: The performance difference is statistically
significant (P < 0.05 in two-tailed t-test).

> ∗∗: The performance difference is statisti-
cally highly significant (P < 0.01 in two-tailed
t-test).

P@10 P@20 P@30
LP V.S. LW > ∗∗ > ∗∗ > ∗∗

NLP V.S. NLW > ∗∗ > ∗∗ > ∗∗
LP+C V.S. LW+C ∼ ∼ ∼

NLP+C V.S. NLW+C ∼ ∼ ∼

Table 4: Paired t-test results on subsets.
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Figure 3: Precision by section in the fullset.

5.2.2 Fullset results
As described in the Section 5.1.2, for the fullset
experiments, we conduct a section-wise evalua-
tion, selecting 40 templates from each of the 9 sec-
tions of the NLP+C results. The results are shown
in Figure 3. It can be observed that the precision
for each section decreases when the section ID in-
creases. The results indicate the effectiveness of
our approach, since it can rank good templates in
top sections and bad templates in bottom sections.
According to the section-wise precision data, we
are able to determine the template score threshold
for choosing different numbers of top templates in
different applications.

5.2.3 Templates for category collection
cleaning

Since our input category collection is automati-
cally constructed from the web, some wrong or
invalid category names is inevitably contained. In
this subsection, we apply our category templates
to clean the category collection. The basic idea is
that if a category can match a template, it is more
likely to be correct. We compute a new score for
every category name H as follows,

Snew(H) = log(1 + S(H)) · S(T ∗) (15)

where S(H) is the existing category score, deter-
mined by its frequency in the corpus. Here S(T ∗)
is the score of template T ∗, the best template (i.e.,
the template with the highest score) for the cate-
gory.

Then we re-rank the categories according to
their new scores to get a re-ranked category list.
We randomly sampled 150 category names from
the top 2 million categories of each list (the old list
and the new list) and asked annotators to judge the
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quality of the categories. The annotation results
show that, after re-ranking, the precision increases
from 0.81 to 0.89 (i.e., the percent of invalid cate-
gory names decreases from 19% to 11%).

6 Conclusion

In this paper, we studied the problem of build-
ing templates for a large collection of category
names. We tested three techniques (tuple scor-
ing by weighted term→hypernym mapping, non-
linear score fusion, refinement by term clusters)
and found that all of them are very effective and
their combination achieves the best performance.
By employing the output templates to clean our
category collection mined from the web, we get
apparent quality improvement. Future work in-
cludes supporting multi-argument templates, dis-
ambiguating headwords of category names and ap-
plying our approach to general short text template
mining.
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Abstract

Taxonomies are the backbone of many
structured, semantic knowledge resources.
Recent works for extracting taxonomic
relations from text focused on collect-
ing lexical-syntactic patterns to extract the
taxonomic relations by matching the pat-
terns to text. These approaches, however,
often show low coverage due to the lack of
contextual analysis across sentences. To
address this issue, we propose a novel ap-
proach that collectively utilizes contextual
information of terms in syntactic struc-
tures such that if the set of contexts of
a term includes most of contexts of an-
other term, a subsumption relation be-
tween the two terms is inferred. We ap-
ply this method to the task of taxonomy
construction from scratch, where we intro-
duce another novel graph-based algorithm
for taxonomic structure induction. Our ex-
periment results show that the proposed
method is well complementary with previ-
ous methods of linguistic pattern matching
and significantly improves recall and thus
F-measure.

1 Introduction

Taxonomies that are backbone of structured on-
tology knowledge have been found to be use-
ful for many areas such as question answering
(Harabagiu et al., 2003), document clustering
(Fodeh et al., 2011) and textual entailment (Gef-
fet and Dagan, 2005). There have been an in-
creasing number of hand-crafted, well-structured
taxonomies publicly available, including WordNet
(Miller, 1995), OpenCyc (Matuszek et al., 2006),
and Freebase (Bollacker et al., 2008). However,
the manual curation of those taxonomies is time-
consuming and human experts may miss relevant
terms. As such, there are still needs to extend ex-

isting taxonomies or even to construct new tax-
onomies from scratch.

The previous methods for identifying taxo-
nomic relations (i.e. is-a relations) from text can
be generally classified into two categories: statis-
tical and linguistic approaches. The former in-
cludes co-occurrence analysis (Budanitsky, 1999),
term subsumption (Fotzo and Gallinari, 2004) and
clustering (Wong et al., 2007). The main idea be-
hinds these techniques is that the terms that fre-
quently co-occur may have taxonomic relation-
ships. Such approaches, however, usually suffer
from low accuracy, though relatively high cover-
age, and heavily depend on the choice of feature
types and datasets. Most previous methods of the
linguistic approach, on the other hand, rely on the
lexical-syntactic patterns (e.g. A is a B, A such as
B) (Hearst, 1992). Those patterns can be manu-
ally created (Kozareva et al., 2008; Wentao et al.,
2012), chosen via automatic bootstrapping (Wid-
dows and Dorow, 2002; Girju et al., 2003) or iden-
tified from machine-learned classifiers (Navigli et
al., 2011). The pattern matching methods gen-
erally achieve high precision, but low coverage
due to the lack of contextual analysis across sen-
tences. In this paper, we introduce a novel statisti-
cal method and shows that when combined with a
pattern matching method, it shows significant per-
formance improvement.

The proposed statistical method, called syntac-
tic contextual subsumption (SCS), compares the
syntactic contexts of terms for the taxonomic re-
lation identification, instead of the usage of bag-
of-words model by the previous statistical meth-
ods. We observe that the terms in taxonomic rela-
tions may not occur in the same sentences, but in
similar syntactic structures of different sentences,
and that the contexts of a specific term are often
found in the contexts of a general term but not vice
versa. By context of a term, we mean the set of
words frequently have a particular syntactic rela-
tion (e.g. Subject-Verb-Object) with the term in a
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given corpus. Given two terms, the SCS method
collects from the Web pre-defined syntactic rela-
tions of each of the terms and checks if the syntac-
tic contexts of a term properly includes that of the
other term in order to determine their taxonomic
relation. The method scores each taxonomic rela-
tion candidate based on the two measures of Web-
based evidence and contextual set inclusion, and
as such, is able to find implicit subsumption rela-
tions between terms across sentences. The SCS
shows itself (Section 3.1) to be complementary to
linguistic pattern matching.

After the relation identification, the identified
taxonomic relations should be integrated into a
graph for the task of taxonomy construction from
scratch or associated with existing concepts of a
given taxonomy via is-a relations (Snow et al.,
2006). In this step of taxonomic structure con-
struction, there is a need for pruning incorrect
and redundant relations. Previous methods for the
pruning task (Kozareva and Hovy, 2010; Velardi et
al., 2012) treat the identified taxonomic relations
equally, and the pruning task is thus reduced to
finding the best trade-off between path length and
the connectivity of traversed nodes. This assump-
tion, however, is not always true due to the fact
that the identified taxonomic relations may have
different confidence values, and the relations with
high confidence values can be incorrectly elimi-
nated during the pruning process. We thus propose
a novel method for the taxonomy induction by uti-
lizing the evidence scores from the relation iden-
tification method and the topological properties of
the graph. We show that it can effectively prune
redundant edges and remove loops while preserv-
ing the correct edges of taxonomy.

We apply the proposed methods of taxonomic
relation identification and taxonomy induction to
the task of constructing a taxonomy from a given
text collection from scratch. The resultant system
consists of three modules: Term extraction and
filtering (Section 2.1), taxonomic relation iden-
tification (Section 2.2), and taxonomy induction
(Section 2.3). The outputs of the term extrac-
tion/filtering module are used as inputs of the tax-
onomic relation identification, such that the tax-
onomic relation identification module checks if
there is a taxonomic relation between each pair
of terms from the term extraction/filtering module.
The taxonomy induction module gets the identi-
fied taxonomic relation set as the input, and out-

puts the final optimal taxonomy by pruning redun-
dant and incorrect relations.

2 Methodology

2.1 Term Extraction and Filtering

The first step to construct taxonomies is to col-
lect candidate terms from text documents in the
domain of interest. Like most of linguistic ap-
proaches, we use pre-defined linguistic filters to
extract candidate terms, including single-word
terms and multi-word terms which are noun or
noun phrases in sentences. These terms are
then preprocessed by removing determiners and
lemmatization.

The candidate terms collected are then filtered
to select the terms that are most relevant to the
domain of interest. Many statistical techniques
are developed for the filtering, such as TF -IDF ,
domain relevance (DR), and domain consensus
(DC) (Navigli and Velardi, 2004). DR measures
the amount of information that a term t captures
within a domain of interest Di, compared to other
contrasting domains (Dj), while DC measures the
distributed use of a term t across documents d in
a domain Di. Since three measures have pros and
cons, and might be complementary to each other,
our term filtering method is thus the linear combi-
nation of them:

TS(t,Di) = α× TFIDF (t,Di)
+ β ×DR(t,Di) + γ ×DC(t,Di)

(1)

We experimented (see Section 3) with different
values of α, β and γ, and found that the method
shows the best performance when the values for α
and β are 0.2 and 0.8 and the value for γ is be-
tween 0.15 and 0.35, depending on the size of the
domain corpus.

2.2 Taxonomic Relation Identification

In this section, we present three taxonomic rela-
tion identification methods which are adopted in
our system. First, two methods of string inclusion
with WordNet and lexical-syntactic pattern match-
ing, which were commonly used in the literature
will be introduced with some modifications. Then,
a novel syntactic contextual subsumption method
to find implicit relations between terms across sen-
tences by using contextual evidence from syntactic
structures and Web data will be proposed. Finally,
these three methods will be linearly combined to
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Notation Meaning
t1 ≫ t2 t1 is a hypernym of t2
t1 ≈ t2 t1 semantically equals or is sim-

ilar to t2
t1 ≫WN t2 t1 is a direct or inherited hyper-

nym of t2 according to WordNet
t1 ≈WN t2 t1 and t2 belong to the same

synset of WordNet

Table 1: Notations

form an integrating solution for taxonomic rela-
tion identification. Given two terms t1 and t2, Ta-
ble 1 summarizes important notations used in this
paper.

2.2.1 String Inclusion with WordNet (SIWN)
One simple way to check taxonomic relation is to
test string inclusion. For example, “terrorist orga-
nization” is a hypernym of “foreign terrorist orga-
nization”, as the former is a substring of the lat-
ter. We propose an algorithm to extend the string
inclusion test by using WordNet, which will be
named SIWN. Given a candidate general term tg
and a candidate specific term ts, the SIWN al-
gorithm examines tg from left to right (designat-
ing each word in tg to be examined as wg) to
check if there is any word (ws) in ts such that
wg ≈WN ws or wg ≫WN ws, and identifies
the taxonomic relation between two terms if ev-
ery word of tg has a corresponding word in ts
(with at least one ≫WN relation). For example,
consider two terms: “suicide attack” and “world
trade center self-destruction bombing”. Because
“attack” ≫WN “bombing” and “suicide” ≈WN

“self-destruction”, according to SIWN algorithm,
we conclude that “suicide attack” is the hypernym
of “world trade center self-destruction bombing”.

Given two terms t1 and t2, the evidence score
for SIWN algorithm is calculated as follows:

ScoreSIWN (t1, t2) =
{

1 if t1 ≫ t2 via SIWN
0 otherwise

(2)

2.2.2 Lexical-syntactic Pattern
Extending the ideas of Kozareva and Hovy (2010)
and Navigli et al. (2011), we propose a method
of extracting taxonomic relations by matching
lexical-syntactic patterns to the Web data.

Definition 1 (Syntactic patterns). Given two terms
t1 and t2, Pat(t1, t2) is defined as the set of the

following patterns:

• “t1 such as t2”

• “t1, including t2”

• “t2 is [a|an] t1”

• “t2 is a [kind|type] of t1”

• “t2, [and|or] other t1”

, where t1 and t2 are replaced with actual terms
and [a|b] denotes a choice between a and b.

Given candidate general term t1 and candi-
date specific term t2, the lexical-syntactic pattern
(LSP) method works as follows:

1. Submit each phrase in Pat(t1, t2) to a Web
search engine as a query. The number of
the search results of the query is denoted as
WH(t1, t2).

2. Calculate the following evidence score:

ScoreLSP (t1, t2) =
log(WH(t1, t2))

1 + log(WH(t2, t1))
(3)

3. If ScoreLSP (t1, t2) is greater than a thresh-
old value then t1 ≫ t2.

While most lexical-syntactic pattern meth-
ods in the literature only consider the value of
WH(t1, t2) in checking t1 ≫ t2 (Wentao et al.,
2012), we take into account both WH(t1, t2) and
WH(t2, t1). The intuition of formula (3) is that if
t1 is a hypernym of t2 then the size of WH(t1, t2)
will be much larger than that of WH(t2, t1),
which means the lexical-syntactic patterns are
more applicable for the ordered pair (t1, t2) than
(t2, t1).

2.2.3 Syntactic Contextual Subsumption
The LSP method performs well in recognizing
the taxonomic relations between terms in the
sentences containing those pre-defined syntactic
patterns. This method, however, has a major
shortcoming: it cannot derive taxonomic relations
between two terms occurring in two different
sentences. We thus propose a novel syntactic
contextual subsumption (SCS) method which uti-
lizes contextual information of terms in syntactic
structure (i.e. Subject-Verb-Object in this study)
and Web data to infer implicit taxonomic relations
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between terms across sentences. Note that the
chosen syntactic structure Subject-Verb-Object
is identical to the definition of non-taxonomic
relations in the literature (Buitelaar et al., 2004),
where the Verb indicate non-taxonomic relations
between Subject and Object. In this subsection,
we first present the method to collect those
non-taxonomic relations. Then we present in
detail the ideas of the SCS method and how we
can use it to derive taxonomic relations in practice.

A. Non-taxonomic Relation Identification
Following previous approaches to non-

taxonomic relation identification, e.g. (Ciaramita
et al., 2005), we use the Stanford parser (Klein
and Manning, 2003) to identify the syntactic
structures of sentences and extract triples of
(Subject, Verb, Object), where Subject and Object
are noun phrases.

We further consider the following issues: First,
if a term (or noun phrase) includes a preposition,
we remove the prepositional phrase. However, if
the headword of a term is a quantitative noun like
“lot”, “many” or “dozen” and it is modified by the
preposition “of”, we replace it with the headword
of the object of the preposition “of”. For example,
we can extract the triples (people, need, food)
and (people, like, snow) from the following sen-
tences, respectively:

• “People in poor countries need food”

• “A lot of people like snow”

Second, if the object of a verb is in a verb form,
we replace it with, if any, the object of the em-
bedded verb. For example, we can extract the
triple (soldier, attack, terrorist) from the fol-
lowing sentence:

• “The soldiers continue to attack terrorists”

Third, if a term has a coordinate structure with
a conjunction like “and” or “or”, we split it into all
coordinated noun phrases and duplicate the triple
by replacing the term with each of the coordinated
noun phrases. For example, we can extract the
triples of R(girl, like, dog) and R(girl, like, cat)
from the following sentence:

• “The girl likes both dogs and cats”

Given two terms t1, t2 and a non-taxonomic re-
lation r, some notations which will be used here-
after are shown below:

• R(t1, r, t2): t1, r, and t2 have a (Subject,
Verb, Object) triple.

• Θ(t1, t2): the set of relations r such that there
exists R(t1, r, t2) or R(t2, r, t1).

B. Syntactic Contextual Subsumption Method
The idea of the SCS method derived from the

following two observations.

Observation 1. Given three terms t1, t2, t3, and a
non-taxonomic relation r, if we have two triples
R(t1, r, t3) and R(t2, r, t3) (or R(t3, r, t1) and
R(t3, r, t2)), t1 and t2 may be in taxonomic rela-
tion.

For example, given two triples R(Al-Qaeda, at-
tack, American) and R(Terrorist group, attack,
American), a taxonomic relation Terrorist group
≫ Al-Qaeda can be induced. However, it is not
always guaranteed to induce a taxonomic rela-
tions from such a pair of triples, for example from
R(animal, eat, meat) and R(animal, eat, grass).
The second observation introduced hereafter will
provide more chance to infer taxonomic relation-
ship.

Definition 2 (Contextual set of a term). Given
a term t1 and a non-taxonomic relation r,
S(t1, r, “subj”) denotes the set of terms t2 such
that there exists triple R(t1, r, t2). Similarly,
S(t1, r, “obj”) is the set of terms t2 such that
there exists triple R(t2, r, t1).

Observation 2. Given two terms t1, t2, and a non-
taxonomic relation r, if S(t1, r, “subj”) mostly
contains S(t2, r, “subj”) but not vice versa, then
most likely t1 is a hypernym of t2. Similarly, if
S(t1, r, “obj”) mostly contains S(t2, r, ‘obj”) but
not vice versa, then most likely t1 is a hypernym of
t2.

For example, assume that S(animal, eat,
“subj”) = {grass, potato, mouse, insects, meat,
wild boar, deer, buffalo} and S(tiger, eat, “subj”)
= {meat, wild boar, deer, buffalo}. Since
S(animal, eat, “subj”) properly contains S(tiger,
eat, “subj”), we can induce animal ≫ tiger.

Based on Observation 2, our strategy to infer
taxonomic relations is to first find the contextual
set of terms via the evidence of syntactic structures
and Web data, and then compute the score of the
set inclusion. The detail of the method is presented
hereafter.
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Definition 3. Given two terms t1, t2 and a non-
taxonomic relation r, C(t1, t2, r, “subj”) denotes
the number of terms t3 such that there exists
both triples R(t1, r, t3) and R(t2, r, t3). Simi-
larly, C(t1, t2, r, “obj”) is the number of terms
t3 such that there exists both relations R(t3, r, t1)
and R(t3, r, t2).

Given the pair of a candidate general term t1
and a candidate specific term t2, we extract their
non-taxonomic relations from corpora extracted
from the Web, and use them to determine the tax-
onomic relation between t1 and t2 as follows:

1. Find from a domain corpus the relation r and
type Γ such that:

C(t1, t2, r, Γ) = max
r′∈Θ(t1,t2)

Γ′∈{“subj”,“obj”}
C(t1, t2, r′, Γ′)

2. If type Γ is “subj”, collect the first 1,000
search results of the query “t1 r” using
the Google search engine, designated as
CorpusΓ

t1 . In the same way, construct
CorpusΓ

t2 with the query “t2 r”. If Γ is “obj”,
two queries “r t1” and “r t2” are submitted
instead to collect CorpusΓ

t1 and CorpusΓ
t2 ,

respectively.

3. Find the sets of S(t1, r, Γ) and S(t2, r,Γ)
from CorpusΓ

t1 and CorpusΓ
t2 , respectively,

using the non-taxonomic relation identifica-
tion method above.

4. Calculate the following evidence score for
SCS method:

ScoreSCS =

[
|S(t1, r,Γ)

∩
S(t2, r, Γ)|

|S(t2, r,Γ)| +

(
1− |S(t1, r,Γ)

∩
S(t2, r,Γ)|

|S(t1, r,Γ)|
)]

× log(|S(t1, r,Γ)|+ |S(t2, r, Γ)|)
(4)

The basic idea of the contextual subsumption
score in our method is that if t1 is a hyper-
nym of t2 then the set S(t1, r,Γ) will mostly
contain S(t2, r,Γ) but not vice versa. The in-
tuition of formula (5) is inspired by Jaccard
similarity coefficient. We then multiply the
score with the log value of total size of two
sets to avoid the bias of small set inclusion.

5. If ScoreSCS(t1, t2) is greater than a thresh-
old value, then we have t1 ≫ t2.

2.2.4 Combined Method
In our study, we linearly combine three methods
as follows:

1. For each ordered pair of terms (t1, t2) calcu-
late the total evidence score:

Score(t1, t2) = α× ScoreSIWN (t1, t2)
+ β × ScoreLSP (t1, t2)
+ γ × ScoreSCS(t1, t2)

(5)
2. If Score(t1, t2) is greater than a threshold

value, then we have t1 ≫ t2.

We experimented with various combinations of
values for α, β and γ, and found that the method
shows the best performance when the value of α is
0.5, β is between 0.35 and 0.45, and γ is between
0.15 and 0.25, depending on the domain corpus
size.

2.3 Taxonomy Induction

The output of the taxonomic relation identifica-
tion module is a set of taxonomic relations T .
In this section, we will introduce a graph-based
algorithm (Algorithm 1) to convert this set into
an optimal tree-structured taxonomy, as well as
to eliminate incorrect and redundant relations.
Denote e(t1, t2) as an directed edge from t1 to t2,
the algorithm consists of three steps which will be
described hereafter with the corresponding lines
in Algorithm 1.

Step 1: Initial hypernym graph creation
(line 1 - 16) This step is to construct a connected
directed graph from the list of taxonomic rela-
tions. The idea is to add each taxonomic relation
t1 ≫ t2 as a directed edge from parent node
t1 to child node t2, and if t1 does not have any
hypernym term, t1 will become a child node of
ROOT node. The result of this step is a con-
nected graph containing all taxonomic relations
with the common ROOT node.

Step 2: Edge weighting (line 17) This step
is to calculate the weight of each edge in the
hypernym graph. Unlike the algorithm of Velardi
et al. (2012) and Kozareva and Hovy (2010)
where every taxonomic relation is treated equally,
we assume the confidence of each taxonomic
relation is different, depending on the amount of
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Algorithm 1 Taxonomy Induction Algorithm
Input: T : the taxonomic relation set
Output: V : the vertex set of resultant taxonomy;

E: the edge set of resultant taxonomy;
1: Initialize V = {ROOT}, E = ∅;
2: for each taxonomic relation (t1 ≫ t2) ∈ T do
3: E = E ∪ {e(t1, t2)}
4: if t1 ̸∈ V then
5: V = V ∪ {t1}
6: end if
7: if t2 ̸∈ V then
8: V = V ∪ {t2}
9: end if

10: if ∄ e(t3, t1) ∈ E with t3 ̸= ROOT then
11: E = E ∪ {e(ROOT, t1)}
12: end if
13: if ∃ e(ROOT, t2) ∈ E then
14: E = E \ {e(ROOT, t2)}
15: end if
16: end for
17: edgeWeighting(V, E);
18: graphPruning(V,E);

evidence it has. Thus, the hypernym graph edges
will be weighted as follows:

w(e(t1, t2)) =
{

1 if t1 = ROOT
Score(t1, t2) otherwise

(6)

Note that the Score value in formula (6) is de-
termined by the taxonomic relation identification
process described in Section 2.2.4.

Step 3: Graph pruning (line 18) The hy-
pernym graph generated in Step 1 is not an
optimal taxonomy as it may contain many redun-
dant edges or incorrect edges which together form
in a loop. In this step, we aim at producing an
optimal taxonomy by pruning the graph based
on our edge weighting strategy. A maximum
spanning tree algorithm, however, cannot be
applied as the graph is directed. For this purpose,
we apply Edmonds’ algorithm (Edmonds, 1967)
for finding a maximum optimum branching of a
weighted directed graph. Using this algorithm,
we can find a subset of the current edge set, which
is the optimized taxonomy where every non-root
node has in-degree 1 and the sum of the edge
weights is maximized. Figure 1 shows an example
of the taxonomy induction process.

3 Experiment Results

We evaluated our methods for taxonomy construc-
tion against the following text collections of five
domains:

• Artificial Intelligence (AI) domain: 4,119 pa-
pers extracted from the IJCAI proceedings
from 1969 to 2011 and the ACL archives
from year 1979 to 2010. The same dataset
used in the work of Velardi et al. (2012).

• Terrorism domain: 104 reports of the US
state department, titled “Patterns of Global
Terrorism (1991-2002)” 1. A report contains
about 1,500 words.

• Animals, Plants and Vehicles domains: Col-
lections of Web pages crawled by using
the bootstrapping algorithm described by
Kozareva et al. (2008). Navigli et al. (2011)
and Kozareva and Hovy (2010) used these
datasets to compare their outputs against
WordNet sub-hierarchies.

There are two experiments performed in this sec-
tion: 1) Evaluating the construction of new tax-
onomies for Terrorism and AI domains, and 2)
Comparing our results with the gold-standard
WordNet sub-hierarchies. Note that in the experi-
ments, the threshold value we used for ScoreLSP

is 1.9, ScoreSCS is 1.5 and Score is 2.1.

3.1 Constructing new taxonomies for AI and
Terrorism domains

Referential taxonomy structures such as WordNet
or OpenCyc are widely used in semantic analyt-
ics applications. However, their coverage is lim-
ited to common well-known areas, and many spe-
cific domains like Terrorism and AI are not well
covered in those structures. Therefore, an auto-
matic method which can induce taxonomies for
those specific domains from scratch can greatly
contribute to the process of knowledge discovery.

First, we applied our taxonomy construction
system to the AI domain corpus. We compared
the taxonomy constructed by our system with that
obtained by Velardi et al. (2012), and show the
comparison results in Table 2. Notice that in this
comparison, to be fair, we use the same set of
terms that was used in (Velardi et al., 2012). The
result shows that our approach can extract 9.8%

1http://www.fas.org/irp/threat/terror.htm
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Figure 1: An example of taxonomy induction. (a) Initial weighted hypernym graph. (b) Final optimal
taxonomy, where we prune two redundant edges (group, International terrorist organization), (Militant
group, Hezbollah) and remove the loop by cutting an incorrect edge (Al-Qaeda, Terrorist organization).

more taxonomic relations and achieve 7% better
term coverage than Velardi’s approach.

Our system Velardi’s system
#vertex 1839 1675
#edge 1838 1674
Average depth 6.2 6
Max depth 10 10
Term coverage 83% 76%

Table 2: Comparison of our system with (Velardi
et al., 2012)

We also applied our system to the Terrorism
corpus. The proposed taxonomic relation identifi-
cation algorithm extracts a total of 976 taxonomic
relations, from which the taxonomy induction al-
gorithm builds the optimal taxonomy. The total
number of vertices in the taxonomy is 281, and the
total number of edges is 280. The average depth
of the trees is 3.1, with the maximum depth 6. In
addition, term coverage (the ratio of the number
of terms in the final optimal trees to the number
of terms obtained by the term suggestion/filtering
method) is 85%.

To judge the contribution of each of taxonomic
relation identification methods described in Sec-
tion 2.2 to the overall system, we alternately run
the system for the AI and Terrorism domains with
different combinations of the three methods (i.e.
SIWN, LSP, and SCS) as shown in Table 3. Note
that we employed only the first two modules of
term suggestion/filtering and taxonomic relation
identification except the last module of taxonomy

No. of extracted relations
Terrorism AI domain

SCS 484 1308
SIWN 301 984
LSP 527 1537
SIWN + LSP 711 2203
SCS + SIWN + LSP 976 3122

Table 3: The number of taxonomic relations ex-
tracted by different methods.

induction for this experiment. Table 3 shows the
number of the taxonomic relations extracted by
each of the combinations. Since SIWN and LSP
are commonly used by previous taxonomic rela-
tion identification systems, we consider the com-
bination of SIWN + LSP as the baseline of the
experiment. The results in Table 3 show that the
three methods are all well complementary to each
other. In addition, the proposed SCS method can
contribute up to about 27% - 29% of all the iden-
tified taxonomic relations, which were not discov-
ered by the other two baseline methods.

Percentage of correct relations
Terrorism AI domain

SCS 91% 88%
SIWN 96% 91%
LSP 93% 93%
SCS + SIWN + LSP 92% 90%

Table 4: Estimated precision of taxonomic relation
identification methods in 100 extracted relations.
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Animals domain Plants domain Vehicles domain
Our Kozareva Navigli Our Kozareva Navigli Our Kozareva Navigli

#Correct relations 2427 1643 N.A. 1243 905 N.A. 281 246 N.A.
Term coverage 96% N.A. 94% 98% N.A. 97% 97% N.A. 96%
Precision 95% 98% 97% 95% 97% 97% 93% 99% 91%
Recall 56% 38% 44% 53% 39% 38% 69% 60% 49%
F-measure 71% 55% 61% 68% 56% 55% 79% 75% 64%

Table 5: Comparison of (Navigli et al., 2011), (Kozareva and Hovy, 2010) and our system against Word-
Net in three domains: Animals, Plants and Vehicles.

We further evaluated the precision of each in-
dividual taxonomic relation identification method.
For AI and Terrorism domains, we again run the
system with each of the three methods and with all
together, and then randomly select 100 extracted
taxonomic relations each time. These selected tax-
onomic relations are then examined by two do-
main experts to check the correctness. The evalua-
tion results are given in Table 4. Note that only the
first two modules of term suggestion/filtering and
taxonomic relation identification are employed for
this experiment as well. The SIWN and LSP meth-
ods achieve high precision because they are based
on the gold-standard taxonomy hierarchy Word-
Net and on the well-defined patterns, respectively.
In contrast, the SCS method ambitiously looks
for terms pairs that share similar syntactic con-
texts across sentences, though the contextual ev-
idence is restricted to certain syntactic structures,
and thus has a slightly lower precision compared
to the other two methods.

In short, the SCS method is complementary to
the baseline methods, significantly improving the
coverage of the combined methods, when its pre-
cision is comparable to those of the baseline meth-
ods. We performed next experiments to show that
the SCS method overall has synergistic impact to
improve the F-measure of the combined methods.

3.2 Evaluation against WordNet

In this experiment, we constructed taxonomies
for three domains Animals, Plants and Vehicles,
and then checked whether the identified relations
can be found in the WordNet, and which relations
in WordNet are not found by our method. Note
that in this comparison, to be fair, we changed our
algorithm to avoid using WordNet in identifying
taxonomic relations. Specifically, in the SIWN
algorithm, all operations of “≈WN ” are replaced
with normal string-matching comparison, and all

“≫WN ” relations are falsified. The evaluation
uses the following measures:

Precision = #relations found in WordNet and by the method
#relations found by the method

Recall = #relations found in WordNet and by the method
#relations found in WordNet

We also compared our results with those ob-
tained by the approaches of Navigli et al. (2011)
and Kozareva and Hovy (2010), where they
also compared their resultant taxonomies against
WordNet. In this comparison, all the three ap-
proaches (i.e. ours, the two previous methods)
use the same corpora and term lists. The com-
parison results are given in Table 5. “N.A.”
value means that this parameter is not applicable to
the corresponding method. The results show that
our approach achieves better performance than the
other two approaches, in terms of both the num-
ber of correctly extracted taxonomic relations and
the term coverage. Our system has a slightly
lower precision than that of (Navigli et al., 2011)
and (Kozareva and Hovy, 2010) due to the SCS
method, but it significantly contributes to improve
the recall and eventually the F-measure over the
other two systems.

To judge the effectiveness of our proposed tax-
onomy induction algorithm described in Section
2.3, we compared it with the graph-based algo-
rithm of Velardi et al. (2012). Recall that in this al-
gorithm, they treat all taxonomic relations equally,
and the pruning task is reduced to finding the best
trade-off between path length and the connectiv-
ity of traversed nodes. For each of five domains
(i.e. Terrorism, AI, Animals, Plants and Vehicles),
we alternately run the two taxonomy induction
algorithms over the same taxonomic relation set
produced by our taxonomic relation identification
process. For Terrorism and AI domains, we ran-
domly pick up 100 edges in each resultant taxon-
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omy and ask two domain experts to judge for the
correctness. For Animals, Plants and Vehicles do-
mains, we check the correctness of the edges in re-
sultant taxonomies by comparing them against the
corresponding sub-hierarchies in WordNet. The
evaluation is given in Table 6. The results show
that the proposed taxonomy induction algorithm
can achieve better performance than the algorithm
of Velardi et al. (2012). This may be due to the fact
that our algorithm considers the scores of the iden-
tified taxonomic relations from the relation identi-
fication module, and thus is more precise in elim-
inating incorrect relations during the pruning pro-
cess.

Percentage of correct edges
Our algorithm Velardi’s algorithm

Terrorism 94% 90%
AI 93% 88%
Animals 95% 93%
Plants 95% 92%
Vehicles 93% 92%

Table 6: Comparison of our taxonomy induction
algorithms and that of Velardi et al. (2012).

In addition, when comparing Tables 4 and 6, we
can find that the precision of taxonomic relations
after the pruning process is higher than that before
the pruning process, which proves that the pro-
posed taxonomy induction algorithm effectively
trims the incorrect relations of Terrorism and AI
taxonomies, leveraging the percentage of correct
relations 2% - 3% up.

For the SCS method, besides the triple Subject-
Verb-Object, we also explore other syntactic
structures like Noun-Preposition-Noun and Noun-
Adjective-Noun. For example, from the sentence
“I visited Microsoft in Washington”, the triple
(Microsoft, in, Washington) is extracted using
Noun-Preposition-Noun structure. Similarly, from
the sentence “Washington is a beautiful city”, the
triple (Washington, beautiful, city) is extracted us-
ing Noun-Adjective-Noun structure. We then use
the triples for the contextual subsumption method
described in Section 2.2.3, and test the method
against the Animals, Plants and Vehicles domains.
The results are then compared against WordNet
sub hierarchies. The experiment results in Table
7 show that the triples of Subject-Verb-Object give
the best performance compared to the other syn-
tactic structures. These can be explained as the

S-V-O N-P-N N-A-N
Animals domain
Precision 95% 68% 72%
Recall 56% 52% 47%
F-measure 71% 59% 57%
Plants domain
Precision 95% 63% 66%
Recall 53% 41% 43%
F-measure 68% 50% 52%
Vehicles domain
Precision 93% 59% 60%
Recall 69% 45% 48%
F-measure 79% 51% 53%

Table 7: Comparison of three syntactic struc-
tures: S-V-O (Subject-Verb-Object), N-P-N
(Noun-Preposition-Noun) and N-A-N (Noun-
Adjective-Noun).

number of triples of two types Noun-Preposition-
Noun and Noun-Adjective-Noun are smaller than
that of Subject-Verb-Object, and the number of
Verb is much greater than number of Preposition
or Adjective.

All experiment results are available at
http://nlp.sce.ntu.edu.sg/wiki/projects/taxogen.

4 Conclusion

In this paper, we proposed a novel method of iden-
tifying taxonomic relations using contextual evi-
dence from syntactic structure and Web data. This
method is proved well complementary with pre-
vious method of linguistic pattern matching. We
also present a novel graph-based algorithm to in-
duce an optimal taxonomy from a given taxo-
nomic relation set. The experiment results show
that our system can generally achieve better per-
formance than the state-of-the-art methods. In
the future, we will apply the proposed taxon-
omy construction method to other domains such
as biomedicine and integrate it into other frame-
works such as ontology authoring.
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Abstract

State-of-the-art fact extraction is heavily
constrained by recall, as demonstrated by
recent performance in TAC Slot Filling.
We isolate this recall loss for NE slots by
systematically analysing each stage of the
slot filling pipeline as a filter over correct
answers. Recall is critical as candidates
never generated can never be recovered,
whereas precision can always be increased
in downstream processing.

We provide precise, empirical confirma-
tion of previously hypothesised sources of
recall loss in slot filling. While NE type
constraints substantially reduce the search
space with only a minor recall penalty, we
find that 10% to 39% of slot fills will be
entirely ignored by most systems. One in
six correct answers are lost if coreference
is not used, but this can be mostly retained
by simple name matching rules.

1 Introduction

The TAC Knowledge Base Population (KBP) Slot
Filling (SF) consists of extracting named attributes
from text. Given a query, e.g. John Kerry, a system
searches a corpus for documents which contain the
entity. It then fills a list of slots, named attributes
such as (per:spouse, Teresa Heinz).

The top TAC SF 2013 (TAC13) system scored
37.3% F-score (Roth et al., 2013), and the median
F-score was 16.9% (Surdeanu, 2013). Recall for
SF systems is especially low, with many systems
using precise extractors with low recall. Precision
ranges from 9% to 40% greater than recall for the
top 5 systems in TAC13, and unsurprisingly, Roth
et al. (2013) has the highest recall at 33%. Closing
the recall gap without substantially increasing the
search space is critical to improving SF results.

Ji and Grishman (2011) and Min and Grishman
(2012) identify many of the challenges of SF, and
suggest that inference, coreference and named en-
tity recognition (NER) are key sources of error.
Min and Grishman categorise the slot fills found
by human annotators but not found in the aggre-
gated output of all systems. However, this ap-
proach only allows them to hypothesise the likely
source of recall loss. For instance, it is impossible
to distinguish candidate generation errors from an-
swer merging errors. Roth et al. (2014) categorise
these errors at a high level, without specific anal-
ysis of candidate generation pipeline components
such as coreference.

In this paper, we take this analysis further by
performing a systematic recall analysis that al-
lows us to pinpoint the cause of every recall er-
ror (candidates lost that can never be recovered)
and estimate upper bounds on recall in existing ap-
proaches. We implement a collection of naı̈ve SF

systems utilizing a set of increasingly restrictive
filters over documents and named entities (NEs).
TAC has three slot types: NE, string and value slots.
We consider only those slots filled by NEs as there
are widely-used, high accuracy tools available for
NER, and focusing on NEs only allows us to pre-
cisely gauge performance of filters. String slots do
not have reliable classifiers, and value slots require
more normalisation than directly returning a token
span. Otherwise, this evaluation is not specifically
dependent on the nature of NEs, and we expect
similar results for other slot types.

We focus on systems which first generate can-
didates and then process them, the approach of the
majority of TAC systems. Our filters apply hard
constraints over NEs commonly used in the litera-
ture, accounting for a typical SF candidate genera-
tion pipeline—matching the query term, the form
of candidate fills and the distance between the
query and the candidate—but not performing any
further scoring or thresholding. We compare sev-
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eral forms of coreference as filters, motivated by
the need for efficient coreference resolution when
processing large corpora. Complementing these
unsupervised experiments, we implement a max-
imum recall bootstrap to identify which fills are
reachable from training data.

We find ∼10% of recall is ignored by most sys-
tems due to NER bounds errors, and despite state-
of-the-art coreference, 8% is lost when queries
and fills occur in different sentences. Using NE

type constraints is very effective, reducing recall
by only 2% for a search space reduction of 81%.
Without any coreference, 16% of typed fills are
lost, but 12% of this recall can be recovered us-
ing fast naı̈ve name matching rules, reducing the
search space to 59% that of full coreference. 15%
of recall is lost if a SF approach, such as a boot-
strapping, requires that dependency paths be non-
unique in a corpus. We show that most remaining
candidates are reachable via bootstrapping from
a small number of seeds. Our results provide
systematic confirmation that effective coreference
and NER are critical to high recall slot filling.

2 Why focus on recall?

In this work, we determine the recall loss caused
by candidate generation constraints in SF systems.
SF pipelines are typically implemented using a
coarse-to-fine approach, where all possible candi-
dates are generated and then filtered by hard con-
straints and more sophisticated downstream pro-
cesses. Following this, we maximally generate
candidates and assume a high-precision but rela-
tively costly downstream process selects the final
extractions. While ultimately any system makes
precision-recall trade-offs, the recall of a system’s
coarse candidate generation process sets a hard
upper bound on performance, as candidates that
are not generated at all can never be recovered by
downstream processes. SF systems could gener-
ate every noun phrase in a corpus as potential can-
didates, but they apply hard candidate generation
constraints for efficiency and precision.

We implement these hard constraints as a se-
ries of filters, and return every candidate which
passes a filter without further ranking or threshold-
ing. These filters are comprised of generic com-
ponents, such as NER, which are representative of
SF pipelines. We are only interested in precision
in so much as it corresponds to the size of the
search space (the candidates generated), assum-

ing a small, fixed number of answers. The search
space determines the workload of later stages re-
sponsible for extraction, merging and ranking.
Precision can be improved by this post-processing
of the candidate set, but recall cannot.

3 Background

Slot filling (SF) is a query-oriented relation ex-
traction (RE) task in the Knowledge Base Popu-
lation (KBP) track of the Text Analysis Confer-
ences (TAC) (McNamee and Dang, 2009). A SF

system is queried with a name and a predefined
relation schema, or slots, and must seek instances
of any relations involving the query entity, and the
corresponding slot fills, from a corpus.

Systems typically consist of several pipelined
stages (Ji et al., 2011), providing many potential
locations for error. The basic pipeline, in Fig-
ure 1, consists of four stages (Ji and Grishman,
2011): document retrieval, candidate generation,
answer extraction, and answer merging and rank-
ing. The output of the second stage is a set of can-
didates which are then usually ranked using RE

techniques,1 to precisely pinpoint answers. TAC

penalises redundant responses, requiring a final
answer merging and ranking stage. The first two
stages are the focus of this work, as they inad-
vertently filter correct answers that cannot be re-
covered, and they determine the size of the search
space for later stages.

Min and Grishman (2012) conducted an analy-
sis of the 140 TAC 2010 SF fills that were found by
human annotators but not any system, and manu-
ally look for evidence in the reference document
and categorise the hypothetical sources of error.
They find inference, coreference and NER to be
the top sources of error, and that the most studied
component (sentence-level RE) is not the domi-
nant problem, contributing only 10% of recall loss.
We precisely characterise the contribution of these
sources of error.

We follow the SF literature in adopting RE tech-
niques for filtering candidates. RE focuses on
identifying relations between entities (or attributes
of entities) as mentioned in text. Both relation
schema and training data are often provided, and
extraction is done using learnt classifiers (Mintz
et al., 2009; Surdeanu et al., 2012; Riedel et al.,

1We note that question answering techniques have been
used directly by SF systems (Byrne and Dunnion, 2011) but
RE techniques are the primary method for answer extraction.
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Figure 1: Candidate filters within the standard SF pipeline. Arrows indicate a sequence of filters.

2013; Zhang et al., 2013) or semi-supervised tech-
niques (Agichtein and Gravano, 2000; Wang et al.,
2011; Carlson et al., 2010).

Relation phrases or patterns may be identified
without labels (Fader et al., 2011; Mausam et al.,
2012) or clustered (Yao et al., 2012) into types.
Generating candidate entity pairs and using the
syntactic or surface path between them to decide
whether a relation exists are common threads in
RE that also form part of the SF pipeline. In some
RE tasks, entities mentioned may already be iden-
tified in a document and provided to a RE sys-
tem; in general, automatic NER is required. Some
tasks are defined more generally to include com-
mon noun phrases (Fader et al., 2011; Carlson et
al., 2010). SF specifically includes slots that can
be filled by arbitrary strings such as per:cause
of death, which make up a large number of
slot fills but may require the use of different tech-
niques for extraction, separate from names. NER

may be further enhanced by resolving names to
a KB (Mintz et al., 2009; Hoffmann et al., 2011;
Surdeanu et al., 2012; Wang et al., 2011), reduc-
ing noise in learning and extraction processes, but
we do not take this step in this work.

Typically, a RE system will only consider enti-
ties mentioned together in a sentence. When seek-
ing all instances of a given relation between known
entities, coreference resolution is necessary to sub-
stantially expand the set of candidate pairs (Gab-
bard et al., 2011). Coreference resolution may
not be necessary where each relation is redun-
dantly mentioned in a large corpus, as in SF; in
this vein, “Open” approaches prefer precision and
avoid automatic coreference resolution (Banko et
al., 2007). Moreover, previous analysis attributed
substantial SF error to these tools (Ji and Grish-

man, 2011). Our work evaluates NER, locality
heuristics and coreference within a SF context.

Classification features for RE typically encode:
attributes of the entities; the surface form, depen-
dency path, or phrase structure subtree between
them; and surrounding context (Zhou et al., 2005;
Mintz et al., 2009; Zhang et al., 2013). We eval-
uate the length of dependency path between enti-
ties as a variable affecting SF candidate recall, and
apply naı̈ve entity pair bootstrapping (Brin, 1998;
Agichtein and Gravano, 2000) to assess the gener-
alisation over dependency paths from examples.

4 Experimental setup

We begin with a set of queries (a query being a
NE entity grounded in a mention in a document)
and, for each query q, the documentsDq known to
contain any slot fill for q, as determined by oracle
information retrieval (IR) from human annotation
and judged system output. Filling every slot in q
with every n-gram in Dq constitutes a system with
nearly perfect recall. We apply a series of increas-
ingly restrictive filters over this set. As in Figure 1,
SF systems in practice must retrieve relevant docu-
ments and generate candidates. We propose filters
that allow for analysis of recall lost during these
stages. We ignore the remaining stages and evalu-
ate the set of candidates directly.

Filters define what documents or NEs are al-
lowed to pass through, based on constraints im-
posed by query matching, entity form, and sen-
tence and syntactic context. We combine these fil-
ters in series in a number of configurations. The
use or absence of coreference varies across our
configurations, as the need to identify the query
mention and terms that refer to the query mention
is critical. Finally, we experiment with a boot-
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strapping training process, to reflect constraints
implicitly applied by a training approach.

The SF typical system pipeline presented in Sec-
tion 3 applies to most, but not all SF approaches.
The following filters directly apply only to sys-
tems that use NER as the method of candidate gen-
eration, and where candidate generation is distinct
from answer extraction. Fourteen of the eighteen
teams participating in TAC13 submitted system re-
ports (Surdeanu, 2013). Eleven of these systems
identify NEs with NER and pass these to an answer
extraction process. The remaining three systems
either do not document whether they rely on or do
not rely on NER for candidate generation for name
slots. We include a high recall baseline based on
noun phrases (NPs) to cover these systems.

4.1 Filters

The first step in the SF pipeline is to find a relevant
document and the query entity mentioned within
that document. We use oracle IR to find docu-
ments Dq (ORACLE DOCS in Figure 1) but need to
find a reference to q in these documents for other
filters and downstream stages (ALIAS MATCH in
Figure 1). An exact match to the query name is
trivial, but some documents may not contain the
query verbatim. This primarily occurs in cases
where an alias is used, e.g. where the query Fyffes
PLC is only mentioned as Fyffes in a document.

SF systems typically implement a query expan-
sion step prior to searching for relevant docu-
ments, generating and extracting aliases based on
the corpus and external sources (Ji et al., 2011).
For documents that do not mention the query ver-
batim, we manually annotate the longest token
span which refers to the query. All of our filters
are applied to this base setup. To measure the ef-
fect of our manual aliases on recall, we implement
a naı̈ve EXACT MATCH filter, which allows a doc-
ument only if a NE matches the query verbatim.

Entity form filters are based on the form of the
entities extracted from documents. We initially
consider all substrings of all NPs for a high-recall,
yet tractable, baseline. The NP N-GRAMS filter al-
lows every n-gram of every NP. NES allows NEs
only; and for TYPES, fill NEs must be of a NER

type defined by the slot, e.g. for per:city of
birth only LOC NEs are allowed.

Sentence filters require the query mention and
fill to be in the same sentence, or to have mentions
in the same sentence. Sentence filters are COREF:

the query and the fill must be mentioned in the
same sentence; COREF NNP: as for COREF, but
the query and the fill must have coreferent proper
noun mentions in the same sentence; NAÏVE NNP:
as for COREF NNP, but instead of using a full
coreference system and identifying proper noun
mentions, we use a naı̈ve proper noun coreference
process; and NOCOREF: the verbatim query and
the fill must be named in the same sentence.

As dependency paths are often a key fea-
ture for extracting relations, we apply further
syntactic filters based on dependency paths be-
tween NEs and mentions in sentences. Where
we use dependencies, we use the Stanford col-
lapsed and propagated representation (de Marn-
effe and Manning, 2008), e.g. in Alice is an em-
ployee of Bob and Charlie the collapsed and prop-
agated dependency path between Alice and Charlie
is→nsubj→employee←prep of←.

Syntactic filters roughly capture the complex-
ity of the syntactic configuration between query
and filler: LENGTH ≤ N requires that the query
and fill are separated by a dependency path of at
most N arcs, e.g. the above dependency path is
two arcs; VERB requires a verb to be present in the
dependency path between the query and fill men-
tions or names; and NON-UNIQUE requires the de-
pendency path between the query and fill to occur
more than once in a corpus, modelling a hard con-
straint on bootstrapping and other learning pro-
cesses that require a shared dependency context
between training and test examples.

4.2 Bootstrapping reachability

In addition to the upper bound set by these explicit
hard constraints, we want to reflect constraints that
are implicitly applied by an extraction process—
are there fills that are never learnable given a set of
features and a set of training data? We extend our
evaluation to include a training process in a semi-
supervised setting. We treat this as a bootstrap-
ping task (Agichtein and Gravano, 2000): given
training pairs of NEs in text (each pair effectively
a query entity and a candidate slot fill, or vice-
versa), extract the context of each pair, and find
other pairs in the corpus that share that context.
A pair is reachable, and hence learnable, if it can
be found by iterating this process. We continue to
evaluate maximum recall and do not apply thresh-
olding or ranking that would typically be utilised
in a bootstrapping process. We simply output all
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Figure 2: Bootstrapping. The rightmost vertex is labelled with per:employee of after two iterations.

possible candidates in order to measure recall loss:
as with hard constraints applied by filters, if recall
is lost it can never be recovered.

Given a set of training data, we identify if we
can reach a test instance by bootstrapping, no mat-
ter how remotely it is connected to training in-
stances. We use lemmatised dependency paths as
the context for this process as they are relatively
precise and discriminative, compared to other fea-
tures used for SF. In order to simplify process-
ing, we construct a graph of all pairs and paths
in the corpus first, and then bootstrap from train-
ing instances over this graph. Bootstrapping more
general features (e.g. bag-of-words) results in the
graph becoming too large to process on our com-
puting resources.

The graph is constructed as follows. Each ver-
tex represents a typed pair of NEs that occur in the
same sentence in the TAC KBP Source Data (LDC,
2010), collapsing vertices that have equal names
and types into a single vertex. An edge exists
between pairs that are connected at least once by
the same dependency path. The constructed graph
is equivalent to the EXACT MATCH + NOCOREF

+ NON-UNIQUE filter. Constructing a graph for
COREF (which requires many more edges than
NOCOREF) was impractical.

Initially, pairs in training data are labelled with
their corresponding slots (see Figure 2). In each
bootstrap iteration, the labels of each vertex are
added to its neighbouring vertices. There is no fil-
tering or competition between labels on a vertex,
they are all added. We analyse performance after
each iteration, evaluating by mapping the labelled
graph back to the equivalent SF queries. This en-
ables us to determine what fills are recoverable
from the bootstrapping process.

5 Evaluation

We evaluate our filters on the TAC KBP English
Slot Filling 2011 corpus, queries and task spec-
ification. As we aim to determine recall upper

bounds and recall loss, we use only the documents
D from the TAC KBP Source Data (LDC, 2010)
that are known to contain at least one correct slot
fill in the TAC KBP 2011 English Slot Filling As-
sessment Results (LDC, 2011).

We restrict the assessment results and the eval-
uation process to all slot types that are filled by
name content types as opposed to value or
string. We also do not evaluate the per:alt-
ernate names or org:alternate names
slots, as extraction of fills for these slots typically
falls outside the RE task: while X also known as Y
or similar may appear in text, X and Y are typically
mentioned independently across documents.

There are 100 TAC11 queries, 50 PER and 50
ORG. There are 535 fills in our reduced evalua-
tion, 1,171 correct responses over these fills: 56%
of the original evaluation slots. The distribution of
fills per slot is listed in Table 1. The number of fills
per query ranges from 0 (one query has no name
fills) to 71, with a median of 17. D is comprised
of 1,351 documents. The number of documents
per query ranges from 0 to 63, with a median of
15.5. We use TAC 2009 and 2010 results and an-
notations as training data for bootstrapping, with
4,647 relevant training examples.

We evaluate ignoring case and without requir-
ing a specific source document: nocase and
anydoc in SF evaluation. Note that each slot
fill is an equivalence class of responses: e.g. for
org:founded by the correct fills Clifford S. As-
ness and Clifford Asness are equivalent. Consis-
tent with SF evaluation, we identify at what con-
straint an entire equivalence class no longer has
any member proposed as a fill.

We process documents with Stanford CoreNLP:
tokenisation, POS tagging (Toutanova et al.,
2003), NER (Finkel et al., 2005), parsing (Klein
and Manning, 2003), and coreference resolution
(Lee et al., 2011), and these annotations form the
relevant components of our filters. Where we use
dependency paths, we lemmatise tokens on the
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slot #
org:top members,employees 118
per:employee of 71
per:member of 47
org:subsidiaries 32
org:parents 24
per:origin 23
org:country of headquarters 22
per:countries of residence 20
org:city of headquarters 19
org:shareholders 18

slot #
per:cities of residence 17
per:children 17
org:stateorprovince of headquarters 17
per:schools attended 16
per:stateorprovinces of residence 11
org:member of 11
per:spouse 8
org:members 8
org:founded by 7
per:siblings 6

slot #
per:other family 6
per:city of birth 6
per:parents 3
per:country of birth 3
org:political,religious affiliation 2
per:stateorprovince of birth 1
per:country of death 1
per:city of death 1

Table 1: Number of fills for slots in the evaluation.

path to increase generality and recall in further
analysis. For example, for Alice employs Bob we
extract the path←nsubj←employ→dobj→.

The COREF NNP filter uses CoreNLP corefer-
ence, limited to mentions which are headed by
NNPs. For NAÏVE NNP we use a naı̈ve rule-based
coreference process (Pink et al., 2013), motivated
by efficiency reasons, as the full CoreNLP requires
parsing and a more complex model. The rules do
not require deep processing and can run quickly
over large volumes of text. All NEs from a doc-
ument are matched by processing in decreasing
length order. Two names are marked coreferent
where, ignoring titles and case: they match ex-
actly; they have a matching final word; they have
a matching initial word; or one is an acronym of
the other. If multiple conditions are matched, the
earliest (the most strict match) is used.

The NON-UNIQUE filter requires that a depen-
dency path occurs more than once between NEs
in the full TAC KBP Source Data (LDC, 2010),
comprised of 1.8M documents and 318M NE pairs.
There are 38.6M distinct lemmatised dependency
paths, 5M of which occur more than once.

6 Results

We now analyse where the filters lose recall. Re-
sults for non-syntactic filters are listed in Table 2.
Figure 3 illustrates our main pipeline which con-
tains filters that would typically be implemented.

NP n-grams We choose all n-grams of NPs
(from the CoreNLP constituency parser) to be our
highest recall filter, and so our highest baseline
has 3% recall loss. We identify the reasons for
loss at this filter. There are four errors due to
the fill not existing verbatim in text, e.g. Pinellas
and Pasco counties does not contain Pinellas County
verbatim. Four errors occur where an NP is not

correctly identified, which occurs in two differ-
ent cases: where there is genuine error or where
the sentence being parsed is actually a list or other
semi-structured data as opposed to an actual sen-
tence. four errors are where a correct answer has
not been annotated as correct, we refer to this as
ANNOTATION error below, and one case where an
incorrect response has been annotated as correct.

While 97% recall is an excellent starting point,
53M candidates is a huge, likely intractable search
space for any downstream process. Hence NER is
commonly used as the starting point for SF.

NEs Most errors here are due to NER errors, and
these errors result in nearly a 10% recall loss. 25
errors are caused where no token in the fill has
been tagged as part of a NE (NO NER); and 13
where some tokens were missed (NER BOUNDS).
There are two additional cases of ANNOTATION

due to determiners not being included in an NE,
where they perhaps should have also been anno-
tated. Hence, in agreement with previous analy-
ses, NER error has a large impact on SF.

On this data set we have 10% recall loss that
most SF or RE approaches would never be able to
extract. However, it is still fairly unconstrained
and a high recall bound in comparison to the fol-
lowing filters. Recall errors could be substan-
tially reduced if SF approaches were to take into
consideration all NEs in documents as a set of
candidates, and take a more document-based ap-
proach to RE as opposed to sentence-based. While
there has been some work in extracting relations
across sentences without coreference (Swampillai
and Stevenson, 2011), RE across sentence bound-
aries is effectively limited to coreference chains
between sentences. Currently whole document
extraction is not a research focus for SF, and
the implementation of whole document techniques
throughout SF pipelines would likely be beneficial.
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Figure 3: Results for NP N-GRAMS + NES + TYPES, followed by sentence filters with a range of corefer-
ence configurations. Grey fill and % indicates recall after each filter, and the number in the arrow is the
size of the result set passed to the next filter or to the downstream process.

experiment R (%) |search space|
NP N-GRAMS 97 53966773
. . . + NEs 90 562318
. . . + TYPES (1) 88 109241
. . . + EXACT MATCH (2) 85 105764
(1) + COREF 80 49170
(1) + NNP COREF 78 43476
(1) + NNP NAÏVE 76 29171
(1) + NOCOREF 64 18331
(2) + COREF 77 47439
(2) + NNP COREF 73 30089
(2) + NNP NAÏVE 73 27770
(2) + NOCOREF 61 16978
(1) + COREF + NON-UNIQUE 65 19958
(1) + NNP COREF + NON-UNIQUE 62 17692
(1) + NNP NAÏVE + NON-UNIQUE 61 13960
(1) + NOCOREF + NON-UNIQUE 48 8084
(2) + COREF + NON-UNIQUE 63 18953
(2) + NNP COREF + NON-UNIQUE 60 16712
(2) + NNP NAÏVE + NON-UNIQUE 56 13064
(2) + NOCOREF + NON-UNIQUE 43 7236

Table 2: Results on D given sets of filters config-
urations. The ellipses indicate the previous line.

Exact match Requiring that the query name is
exactly matched (EXACT MATCH) loses a further
2% recall. Effectively this is the recall error cre-
ated by the IR component of SF. Five error cases
occur when an alias is required, e.g. Quds Force
for IRGC-QF; Chris Bentley for Christopher Bentley.
Eight errors occur where the query term is a refer-
ence to an entity but not its name, all pertaining to
the query GMAC’s Residential Capital LLC.

Types All errors created by the TYPES filter are
due to incorrect NER types on mentions proposed
by CoreNLP. We do not aggregate the NE type over
the coreference chain. Applying this filter cuts
down the search space substantially, with minimal
loss to recall. Adding TYPES results in a recall loss
of 2%, but cuts down the search space by 80%.

Coref This filter is the starting point for many
recent SF approaches: we consider entities that are
either named or mentioned in the same sentence.
Table 3 shows that coreference is the largest cat-
egory of recall error created by the COREF filter.
NN COREF, NNP COREF and PRP COREF indicate
failure to resolve common noun, proper noun and
pronoun coreference.

The remainder of the errors are cases where
mentions of the fills do not occur in the same sen-
tence. ROLE INF indicates that an individual’s role
is mentioned, e.g. Gene Roberts, the executive editor,
where The Inquirer is mentioned in a previous sen-
tence. LOC INF where additional location knowl-
edge is required: a French company is headquar-
tered in France. The search space has been sub-
stantially reduced, by a further 55% to 0.1% of the
original space. However, the recall upper bound
has dropped to 80% of all fills.

Coref NNP and naive NNP While coreference
is important for high recall, more difficult coref-
erence cases (common noun and pronoun coref-
erence) may generate a large number of spurious
cases. Using COREF NNP as the sentence filter
loses 2% recall, to an upper bound of 78%, for
a 12% reduction in the search space. However,
using a full coreference system generates may
more candidates than using simple NNP corefer-
ence. NAÏVE NNP has an upper bound of 76%.
This is only 4% lower recall than COREF, but
for a 41% reduction in search space. In addi-
tion, CoreNLP coreference is much more expen-
sive than our naı̈ve approach as it requires parsing.

No coref Errors for NOCOREF are listed in Ta-
ble 3. INF indicates that inference or more sophis-
ticated analysis is required to find the fill, such as
correctly identifying the relation between entities
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Experiment NN COREF NNP COREF PRP COREF ROLE INF LOC INF INF NO NER ANNOTATION

COREF 9 6 13 4 3 0 8 1
NOCOREF 16 52 20 4 3 2 14 3

Table 3: Error types for COREF and NOCOREF.
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Figure 4: Effect of COREF.
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Figure 5: Effect of short dependency paths, taking
the NOCOREF points from Figure 4.
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Figure 6: Effect of the VERB filter.

referred to in an interview. NOCOREF results in a
recall upper bound of 64%. While this gives us a
small search space, we are now losing a substan-
tial proportion of the correct fills.

Precision-recall curves for the dependency path
filters are given in Figures 4, 5 and 6. We choose

to report precision for simplicity, and note that the
downstream search space is the inverse of preci-
sion multiplied by the number of correct fills. Dots
from low recall to high recall indicate maximum
dependency path length from n = 1 to n = 7. De-
pendency paths of length 7 give maximum recall
in our experiments. Results for the addition of the
NON-UNIQUE constraint are given in Table 2.

Use of coreference While critical for recall, use
of coreference generates a large number of candi-
dates and presents a key trade-off for SF, as indi-
cated by Figure 4. At maximum dependency path
length, coreference gives 16% greater recall at a
cost of 1.1% precision, roughly half the precision
of no coreference.

Higher precision indicates that fewer candidates
are generated. Fewer candidates allows for SF ap-
proaches to be scaled to larger amounts of data,
and enables techniques that take advantage of re-
dundancy or clustering to be used. Hence the
higher precision no coreference approach may al-
low for more precise learning methods to be used,
which may provide better results overall than an
approach using coreference.

Short dependency paths In all of our filter con-
figurations, a short dependency path length is suf-
ficient for extracting the majority of slot fills for
that particular configuration. Improving precision
of fills found on short dependency paths may be a
more effective and scalable approach to improving
F-score rather than focusing on long paths.

In Figure 5 we consider NOCOREF. Limiting the
dependency path length to three loses 11% recall,
but gains 0.7% precision. While this loss of re-
call is high, the reduction in unique dependency
paths is substantial. For maximum path length
three there are 10,732 paths (1,551 unique); for all
paths there are 17,394 paths (2,863 unique).

Verb Figure 6 shows the VERB filters has less
impact or recall or precision than some other de-
pendency filters. For COREF with all paths, adding
the VERB filter loses 6% recall for a 0.1% gain in
precision. Some slots not included in this anal-
ysis, such as per:title, tend to be described
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by shorter paths that often do not include verbs.
These slots are also frequent in the TAC11 dataset.

Non-unique The frequency of a dependency
path may be a critical feature for learning, as paths
that occur only once will not been seen by a boot-
strapping process or may not be considered by
other machine learning approaches. Applying the
NON-UNIQUE filter (Table 2) has a large effect on
recall: COREF loses 15% recall for a 41% reduc-
tion in the size of the search space; NOCOREF

loses 15% recall for a 44% reduction in search
space. To recover this recall, the strictness of this
filter could be relaxed by further generalising de-
pendency paths or using a different similarity met-
ric to direct match of paths. However, this is the
upper bound for approaches which consider only
exact dependency paths as a feature.

Bootstrapping A small amount of training data
quickly finds slot fills via bootstrapping. One it-
eration has a recall of 24%, with 7,665 candidates
generated. Two to four iterations have recall of
37%–39% (maximum recall), with 31,702–37,797
candidates. The recall upper bound for these con-
figurations is 43%—more training data will allow
for better precision, but will only minimally im-
prove recall in this setup. We note that limit-
ing bootstrap to one or two iterations is ideal for
the best trade-off between recall and search space.
However, closer analysis of discriminative paths is
required for a full SF system.

Note that even when bootstrapping through ev-
ery dependency path in the corpus, there is an up-
per bound on recall of 39%. Even if we used
the test data as additional training data the recall
would still be limited to 43%. This demonstrates
that systems need distributional features, depen-
dency tree kernels or other similarity comparison
as opposed to exact feature matching if depen-
dency paths are to be a useful feature for SF.

7 Discussion

We present an analysis of SF recall bounds given
hard constraints applied by standard system com-
ponents. Pipeline error is common across all NLP

tasks. Our analysis suggests that high-precision
naı̈ve tools, e.g. naı̈ve coreference, can lead to
state-of-the-art performance.

However, the SF task is not strictly an exhaus-
tive evaluation for each query, as the evaluation
data is comprised of the time-limited human anno-

tation plus aggregated system output only. There
may be fills that are missed in the evaluation re-
sults but are correct and returned by our high recall
filters—affecting our reported precisions.

We manually evaluate a small sample of the
queries, the first five person and the first five
organization queries, to identify missed fills in
the COREF output (2,903 of 49,170 total fills, or
5.9%). For these fills, there were 29 fills in the as-
sessment data. Of these fills, 21 are returned by
COREF, however there are two correct fills found
by COREF that are not in the assessment data. One
of these two errors would be identified with cor-
rect coreference, and the other requires complex
long range inference. These additional correct fills
that are identified will not have a large impact on
the absolute precision, as there are two of 2,903
more fills. However, the relative difference in true
positives, 21 to 23, results in some uncertainty in
results when comparing them relatively.

8 Conclusion

Recent TAC KBP Slot Filling results have shown
that state-of-the-art systems are substantially lim-
ited by low recall. In this work, we perform a
maximum recall analysis of slot filling, providing
a comprehensive analysis of recall error created
in the document retrieval and candidate generation
stages. We focus on recall error in candidate gen-
eration as a performance limitation, as candidates
that are lost in the pipeline cannot be recovered by
downstream processes.

We find ∼10% of recall is ignored by most slot
filling systems due to NER error, and while state-
of-the-art coreference provides a substantial recall
gain over no coreference, 8% of recall is still lost
when queries and fills occur in different sentences.
Using NE type constraints is very effective, reduc-
ing recall by only 2% for a search space reduc-
tion of 81%. Without coreference, a further 16%
of fills are lost, but 12% of this recall can be re-
gained using efficient naı̈ve name matching rules,
while still reducing the search space by 41%, mak-
ing such an approach possibly preferable over full
coreference. We confirm that coreference and ac-
curate NER are critical to high recall slot filling.

We find that using maximum recall bootstrap-
ping, 39% of test slots fills are reachable from the
TAC09 and TAC10 training data, limited by an up-
per bound on non-unique paths of 43%.

In the future, we intend to assess how specific
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slots are affected by recall and search space trade-
off, and perform evaluation over all slot types:
names, values and strings. In addition, we in-
tend to expand the bootstrapping experiments with
variations over the training data.

This work highlights NER, coreference and typ-
ing as the areas that have the most impact on
slot filling recall, enabling researchers to focus on
problems that will most improve performance.
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Abstract

Several state-of-the-art event extraction sys-
tems employ models based on Support Vec-
tor Machines (SVMs) in a pipeline architec-
ture, which fails to exploit the joint depen-
dencies that typically exist among events
and arguments. While there have been at-
tempts to overcome this limitation using
Markov Logic Networks (MLNs), it re-
mains challenging to perform joint infer-
ence in MLNs when the model encodes
many high-dimensional sophisticated fea-
tures such as those essential for event ex-
traction. In this paper, we propose a new
model for event extraction that combines
the power of MLNs and SVMs, dwarfing
their limitations. The key idea is to reli-
ably learn and process high-dimensional
features using SVMs; encode the output
of SVMs as low-dimensional, soft formu-
las in MLNs; and use the superior joint in-
ferencing power of MLNs to enforce joint
consistency constraints over the soft for-
mulas. We evaluate our approach for the
task of extracting biomedical events on
the BioNLP 2013, 2011 and 2009 Genia
shared task datasets. Our approach yields
the best F1 score to date on the BioNLP’13
(53.61) and BioNLP’11 (58.07) datasets
and the second-best F1 score to date on the
BioNLP’09 dataset (58.16).

1 Introduction

Event extraction is the task of extracting and la-
beling all instances in a text document that corre-
spond to a pre-defined event type. This task is quite
challenging for a multitude of reasons: events are
often nested, recursive and have several arguments;
there is no clear distinction between arguments and
events; etc. For instance, consider the BioNLP Ge-
nia event extraction shared task (Nédellec et al.,

2013). In this task, participants are asked to extract
instances of a pre-defined set of biomedical events
from text. An event is identified by a keyword
called the trigger and can have an arbitrary number
of arguments that correspond to pre-defined argu-
ment types. The task is complicated by the fact
that an event may serve as an argument of another
event (nested events). An example of the task is
shown in Figure 1. As we can see, event E13 takes
as arguments two events, E14 and E12, which in
turn has E11 as one of its arguments.

A standard method that has been frequently em-
ployed to perform this shared task uses a pipeline
architecture with three steps: (1) detect if a token
is a trigger and assign a trigger type label to it; (2)
for every detected trigger, determine all its argu-
ments and assign types to each detected argument;
and (3) combine the extracted triggers and argu-
ments to obtain events. Though adopted by the
top-performing systems such as the highest scoring
system on the BioNLP’13 Genia shared task (Kim
et al., 2013), this approach is problematic for at
least two reasons. First, as is typical in pipeline
architectures, errors may propagate from one stage
to the next. Second, since each event/argument is
identified and assigned a type independently of the
others, it fails to capture the relationship between
a trigger and its neighboring triggers, an argument
and its neighboring arguments, etc.

More recently, researchers have investigated
joint inference techniques for event extraction us-
ing Markov Logic Networks (MLNs) (e.g., Poon
and Domingos (2007), Poon and Vanderwende
(2010), Riedel and McCallum (2011a)), a statis-
tical relational model that enables us to model the
dependencies between different instances of a data
sample. However, it is extremely challenging to
make joint inference using MLNs work well in
practice (Poon and Domingos, 2007). One reason
is that it is generally difficult to model sophisti-
cated linguistic features using MLNs. The diffi-
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. . . demonstrated that HOIL-1L interacting protein (HOIP), a ubiquitin ligase that can catalyze the assembly of linear
polyubiquitin chains, is recruited to DC40 in a TRAF2-dependent manner following engagement of CD40 . . .

(a) Sentence fragment

ID Event Type Trigger Arguments
E11 Binding recruited Theme={HOIL-1L interacting protein,CD40}
E12 Regulation dependent Theme=E11, Cause=TRAF2
E13 +ve Regulation following Theme=E12, Cause=E14
E14 Binding engagement Theme=CD40

(b) Events

Figure 1: Example of event extraction in the BioNLP Genia task. The table in (b) shows all the events
extracted from sentence (a). Note that successful extraction of E13 depends on E12 and E14.

culty stems from the fact that some of these fea-
tures are extremely high dimensional (e.g., Chen
and Ng (2012), Huang and Riloff (2012b), Li et al.
(2012), Li et al. (2013b), Li et al. (2013c)), and to
reliably learn weights of formulas that encode such
features, one would require an enormous number
of data samples. Moreover, even the complexity of
approximate inference on such models is quite high,
often prohibitively so. For example, a trigram can
be encoded as an MLN formula, Word(w1, p−1)∧
Word(w2, p) ∧ Word(w3, p + 1)⇒ Type(p, T ).
For any given position (p), this formula has W 3

groundings, where W is the number of possible
words, making it too large for learning/inference.
Therefore, current MLN-based systems tend to in-
clude a highly simplified model ignoring powerful
linguistic features. This is problematic because
such features are essential for event extraction.

Our contributions in this paper are two-fold.
First, we propose a novel model for biomedical
event extraction based on MLNs that addresses the
aforementioned limitations by leveraging the power
of Support Vector Machines (SVMs) (Vapnik,
1995; Joachims, 1999) to handle high-dimensional
features. Specifically, we (1) learn SVM models us-
ing rich linguistic features for trigger and argument
detection and type labeling; (2) design an MLN
composed of soft formulas (each of which encodes
a soft constraint whose associated weight indicates
how important it is to satisfy the constraint) and
hard formulas (constraints that always need to be
satisfied, thus having a weight of ∞) to capture
the relational dependencies between triggers and
arguments; and (3) encode the SVM output as prior
knowledge in the MLN in the form of soft formulas,
whose weights are computed using the confidence
values generated by the SVMs. This formulation
naturally allows SVMs and MLNs to complement
each other’s strengths and weaknesses: learning

in a large and sparse feature space is much easier
with SVMs than with MLNs, whereas modeling
relational dependencies is much easier with MLNs
than with SVMs.

Our second contribution concerns making infer-
ence with this MLN feasible. Recall that inference
involves detecting and assigning the type label to
all the triggers and arguments. We show that exist-
ing Maximum-a-posteriori (MAP) inference meth-
ods, even the most advanced approximate ones
(e.g., Selman et al. (1996), Marinescu and Dechter
(2009), Sontag and Globerson (2011) ), are infea-
sible on our proposed MLN because of their high
memory cost. Consequently, we identify decompo-
sitions of the MLN into disconnected components
and solve each independently, thereby drastically
reducing the memory requirements.

We evaluate our approach on the BioNLP 2009,
2011 and 2013 Genia shared task datasets. On
the BioNLP’13 dataset, our model significantly
outperforms state-of-the-art pipeline approaches
and achieves the best F1 score to date. On the
BioNLP’11 and BioNLP’09 datasets, our scores
are slightly better and slightly worse respectively
than the best reported results. However, they
are significantly better than state-of-the-art MLN-
based systems.

2 Background

2.1 Related Work

As a core task in information extraction, event ex-
traction has received significant attention in the nat-
ural language processing (NLP) community. The
development and evaluation of large-scale learning-
based event extraction systems was propelled in
part by the availability of annotated corpora pro-
duced as part of the Message Understanding Con-
ferences (MUCs), the Automatic Content Extrac-
tion (ACE) evaluations, and the BioNLP shared
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tasks on event extraction. Previous work on event
extraction can be broadly divided into two cate-
gories, one focusing on the development of fea-
tures (henceforth feature-based approaches) and
the other focusing on the development of models
(henceforth model-based approaches).

Feature-based approaches. Early work on
feature-based approaches has primarily focused
on designing local sentence-level features such as
token and syntactic features (Grishman et al., 2005;
Ahn, 2006). Later, it was realized that local features
were insufficient to reliably and accurately perform
event extraction in complex domains and therefore
several researchers proposed using high-level fea-
tures. For instance, Ji and Grishman (2008) used
global information from related documents; Gupta
and Ji (2009) extracted implicit time information;
Patwardhan and Riloff (2009) used broader sen-
tential context; Liao and Grishman (2010; 2011)
leveraged document-level cross-event information
and topic-based features; and Huang and Riloff
(2012b) explored discourse properties.

Model-based approaches. The model-based ap-
proaches developed to date have focused on mod-
eling global properties and seldom use rich, high-
dimensional features. To capture global event struc-
ture properties, McClosky et al. (2011a) proposed
a dependency parsing model. To extract event ar-
guments, Li et al. (2013b) proposed an Integer
Linear Programming (ILP) model to encode the
relationship between event mentions. To overcome
the error propagation problem associated with the
pipeline architecture, several joint models have
been proposed, including those that are based on
MLNs (e.g., Poon and Domingos (2007), Riedel et
al. (2009), Poon and Vanderwende (2010)), struc-
tured perceptrons (e.g., Li et al. (2013c)), and dual
decomposition with minimal domain adaptation
(e.g., Riedel and McCallum (2011a; 2011b)).

In light of the high annotation cost required by
supervised learning-based event extraction systems,
several semi-supervised, unsupervised, and rule-
based systems have been proposed. For instance,
Huang and Riloff (2012a) proposed a bootstrap-
ping method to extract event arguments using only
a small amount of annotated data; Lu and Roth
(2012) developed a novel unsupervised sequence
labeling model; Bui et al. (2013) implemented a
rule-based approach to extract biomedical events;
and Ritter et al. (2012) used unsupervised learning
to extract events from Twitter data.

Our work extends prior work by developing a
rich framework that leverages sophisticated feature-
based approaches as well as joint inference using
MLNs. This combination gives us the best of both
worlds because on one hand, it is challenging to
model sophisticated linguistic features using MLNs
while on the other hand, feature-based approaches
employing sophisticated high-dimensional features
suffer from error propagation as the model is gen-
erally not rich enough for joint inference.

2.2 The Genia Event Extraction Task

The BioNLP Shared Task (BioNLP-ST) series
(Kim et al. (2009), Kim et al. (2011a) and Nédellec
et al. (2013)) is designed to tackle the problem of
extracting structured information from the biomedi-
cal literature. The Genia Event Extraction task is ar-
guably the most important of all the tasks proposed
in BioNLP-ST and is also the only task organized
in all three events in the series.

The 2009 edition of the Genia task (Kim et
al., 2009) was conducted on the Genia event
corpus (Kim et al., 2008), which only contains
abstracts of the articles that represent domain
knowledge around NFκB proteins. The 2011 edi-
tion (Kim et al., 2011b) augmented the dataset to
include full text articles, resulting in two collec-
tions, the abstract collection and the full text col-
lection. The 2013 edition (Kim et al., 2013) further
augmented the dataset with recent full text articles
but removed the abstract collection entirely.

The targeted event types have also changed
slightly over the years. Both the 2009 and 2011
editions are concerned with nine fine-grained event
sub-types that can be categorized into three main
types, namely simple, binding and regulation
events. These three main event types can be dis-
tinguished by the kinds of arguments they take. A
simple event can take exactly one protein as its
Theme argument. A binding event can take one
or more proteins as its Theme arguments, and is
therefore slightly more difficult to extract than a
simple event. A regulation event takes exactly one
protein or event as its Theme argument and option-
ally one protein or event as its Cause argument. If
a regulation event takes another event as its Theme
or Cause argument, it will lead to a nested event.
Regulation events are considered the most difficult-
to-extract among the three event types owing in part
to the presence of an optional Cause argument and
their recursive structure. The 2013 edition intro-
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duced a new event type, protein-mod, and its three
sub-types. Theoretically, a protein-mod event takes
exactly one protein as its Theme argument and
optionally one protein or event as its Cause argu-
ment. In practice, however, it rarely occurs: there
are only six protein-mod events having Cause ar-
guments in the training data for the 2013 edition.
Consequently, our model makes the simplifying
assumption that a protein-mod event can only take
one Theme argument, meaning that we are effec-
tively processing protein-mod events in the same
way as simple events.

2.3 Markov Logic Networks
Statistical relational learning (SRL) (Getoor and
Taskar, 2007) is an emerging field that seeks to
unify logic and probability, and since most NLP
techniques are grounded either in logic or proba-
bility or both, NLP serves as an ideal application
domain for SRL. In this paper, we will employ a
popular SRL approach called Markov logic net-
works (MLNs) (Domingos and Lowd, 2009). At a
high level, an MLN is a set of weighted first-order
logic formulas (fi, wi), where wi is the weight
associated with formula fi. Given a set of con-
stants that model objects in the domain, it defines a
Markov network or a log-linear model (Koller and
Friedman, 2009) in which we have one node per
ground first-order atom and a propositional feature
corresponding to each grounding of each first-order
formula. The weight of the feature is the weight of
the corresponding first-order formula.

Formally, the probability of a world ω, which
represents an assignment of values to all ground
atoms in the Markov network, is given by:

Pr(ω) =
1
Z

exp

(∑
i

wiN(fi, ω)

)
where N(fi, ω) is the number of groundings of fi
that evaluate to True in ω and Z is a normalization
constant called the partition function.

The key inference tasks over MLNs are com-
puting the partition function (Z) and the most-
probable explanation given evidence (the MAP
task). Most queries, including those required by
event extraction, can be reduced to these inference
tasks. Formally, the partition function and the MAP
tasks are given by:

Z =
∑
ω

exp

(∑
i

wiN(fi, ω)

)
(1)

arg max
ω

P (ω) = arg max
ω

∑
i

wiN(fi, ω) (2)

3 Pipeline Model

We implement a pipeline event extraction system
using SVMs. This pipeline model serves two im-
portant functions: (1) providing a baseline for eval-
uation and (2) producing prior knowledge for the
joint model.

Our pipeline model consists of two steps: trig-
ger labeling and argument labeling. In the trigger
labeling step, we determine whether a candidate
trigger is a true trigger and label each true trigger
with its trigger type. Then, in the argument label-
ing step, we identify the arguments for each true
trigger discovered in the trigger labeling step and
assign a role to each argument.

We recast each of the two steps as a classification
task and employ SVMmulticlass (Tsochantaridis
et al., 2004) to train the two classifiers. We describe
each step in detail below.

3.1 Trigger Labeling

A preliminary study of the BioNLP’13 training
data suggests that 98.7% of the true triggers’ head
words1 are either verbs, nouns or adjectives. There-
fore, we consider only those words whose part-of-
speech tags belong to the above three categories
as candidate triggers. To train the trigger classifier,
we create one training instance for each candidate
trigger in the training data. If the candidate trigger
is not a trigger, the class label of the corresponding
instance is None; otherwise, the label is the type
of the trigger. Thus, the number of class labels
equals the number of trigger types plus one. Each
training instance is represented by the features de-
scribed in Table 1(a). These features closely mirror
those used in state-of-the-art trigger labeling sys-
tems such as Miwa et al. (2010b) and Björne and
Salakoski (2013).

After training, we apply the resulting trigger clas-
sifier to classify the test instances, which are cre-
ated in the same way as the training instances. If a
test instance is predicted as None by the classifier,
the corresponding candidate trigger is labeled as
a non-trigger; otherwise, the corresponding candi-
date trigger is posited as a true trigger whose type
is the class value assigned by the classifier.

1Head words are found using Collins’ (1999) rules.
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(a) Features for trigger labeling
Token features The basic token features (see Table 1(c)) computed from (1) the candidate trigger word and (2) the

surrounding tokens in a window of two; character bigrams and trigrams of the candidate trigger word;
word n-grams (n=1,2,3) of the candidate trigger word and its context words in a window of three; whether
the candidate trigger word contains a digit; whether the candidate trigger word contains an upper case
letter; whether the candidate trigger word contains a symbol.

Dependency
features

The basic dependency path features (see Table 1(c)) computed using the shortest paths from the candidate
trigger to (1) the nearest protein word, (2) the nearest protein word to its left, and (3) the nearest protein
word to its right.

Other
features

The distances from the candidate trigger word to (1) the nearest protein word, (2) the nearest protein
word to its left, and (3) the nearest protein word to its right; the number of protein words in the sentence.

(b) Features for argument labeling
Token features Word n-grams (n=1,2,3) of (1) the candidate trigger word and its context in a window of three and (2) the

candidate argument word and its context in a window of three; the basic token features (see Table 1(c))
computed from (1) the candidate trigger word and (2) the candidate argument word; the trigger type of
the candidate trigger word.

Dependency
features

The basic dependency features (see Table 1(c)) computed using the shortest path from the candidate
trigger word to the candidate argument word.

Other
features

The distance between the candidate trigger word and the candidate argument word; the number of
proteins between the candidate trigger word and the candidate argument word; the concatenation of the
candidate trigger word and the candidate argument word; the concatenation of the candidate trigger type
and the candidate argument word.

(c) Basic token and dependency features
Basic token fea-
tures

Six features are computed given a token t, including: (a) the lexical string of t, (b) the lemma of t, (c) the
stem of t obtained using the Porter stemmer (Porter, 1980), (d) the part-of-speech tag of t, (e) whether t
appears as a true trigger in the training data, and (f) whether t is a protein name.

Basic
dependency
features

Six features are computed given a dependency path p, including: (a) the vertex walk in p, (b) the edge
walk in p, (c) the n-grams (n=2,3,4) of the (stemmed) words associated with the vertices in p, (d) the
n-grams (n=2,3,4) of the part-of-speech tags of the words associated with the vertices in p, (e) the
n-grams (n=2,3,4) of the dependency types associated with the edges in p, and (f) the length of p.

Table 1: Features for trigger labeling and argument labeling.

3.2 Argument Labeling

The argument classifier is trained as follows. Each
training instance corresponds to a candidate trigger
and one of its candidate arguments.2 A candidate
argument for a candidate trigger ct is either a pro-
tein or a candidate trigger that appears in the same
sentence as ct. If ct is not a true trigger, the label of
the associated instance is set toNone. On the other
hand, if ct is a true trigger, we check whether the
candidate argument in the associated instance is in-
deed one of ct’s arguments. If so, the class label of
the instance is the argument’s role; otherwise, the
class label is None. The features used for repre-
senting each training instance, which are modeled
after those used in Miwa et al. (2010b) and Björne
and Salakoski (2013), are shown in Table 1(b).

After training, we can apply the resulting clas-
sifier to classify the test instances, which are cre-
ated in the same way as the training instances. If
a test instance is assigned the class None by the
classifier, the corresponding candidate argument is
classified as not an argument of the trigger. Other-

2Following the definition of the GENIA event extraction
task, the protein names are provided as part of the input.

wise, the candidate argument is a true argument of
the trigger whose role is the class value assigned
by the classifier.

4 Joint Model

In this section, we describe our Markov logic model
that encodes the relational dependencies in the
shared task and uses the output of the pipeline
model as prior knowledge (soft evidence). We be-
gin by describing the structure of our Markov logic
model, and then describe the parameter learning
and inference algorithms for it.

4.1 MLN Structure

Figure 2 shows our proposed MLN for BioNLP
event extraction, which we refer to as BioMLN.
The MLN contains six predicates.

The query predicates in Figure 2(a) are those
whose assignments are not given during infer-
ence and thus need to be predicted. Predicate
TriggerType(sid,tid,ttype!) is true when the
token located in sentence sid at position tid has
type ttype. ∆ttype, which denotes the set of con-
stants (or objects) that the logical variable ttype
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TriggerType(sid,tid,ttype!)
ArgumentRole(sid,aid,tid,arole!)

(a) Query

Simple(sid,tid)
Regulation(sid,tid)

(b) Hidden

Word(sid,tid,word)
DepType(sid,aid,tid,dtype)

(c) Evidence

1. ∃t TriggerType(i,j,t).

2. ∃a ArgumentRole(i,k,j,a).

3. ¬TriggerType(i,j,None) ⇒ ∃k ArgumentRole(i,k,j,Theme).

4. Simple(i,j) ⇒¬ ∃k ArgumentRole(i,k,j,Cause).

5. TriggerType(i,j,None) ⇔ ArgumentRole(i,k,j,None).

6. ¬ArgumentRole(i,k,j,None) ∧¬TriggerType(i,k,None)⇒ Regulation(i,j).

7. Simple(i,j)⇔ TriggerType(i,j,Simple1) ∨ . . .∨ TriggerType(i,j,Binding).

8. Regulation(i,j)⇔ TriggerType(i,j,Reg) ∨ TriggerType(i,j,PosReg)
∨ TriggerType(i,j,NegReg).

9. Word(i,j,+w) ∧ TriggerType(i,j,+t) ∧ DepType(i,k,j,+d) ∧ ArgumentRole(i,k,j,+a)

(d) Joint Formulas

Figure 2: The BioMLN structure.

can be instantiated to, includes all possible trigger
types in the dataset plus None (which indicates
that the token is not a trigger). The “!” symbol mod-
els commonsense knowledge that only one of the
types in the domain ∆ttype of ttype is true for every
unique combination of sid and tid. Similarly, pred-
icate ArgumentRole(sid,aid,tid,arole!) as-
serts that a token in sentence sid at position aid
plays exactly one argument role, denoted by arole,
with respect to the token at position tid. ∆arole

includes the two argument types, namely, Theme
and Cause plus the additional None that indicates
that the token is not an argument.

The hidden predicates in Figure 2(b) are “clus-
ters” of trigger types. Predicate Simple(sid,tid)
is true when the token in sentence sid at posi-
tion tid corresponds to one of the Simple event
trigger types (BioNLP’13 has 9 simple events,
BioNLP’09/’11 have 5) or a binding event trig-
ger type. Similarly, Regulation(sid,tid) asserts
that the token in sentence sid at position tid corre-
sponds to any of the three regulation event trigger
types.

The evidence predicates in Figure 2(c) are those
that are always assumed to be known during in-
ference. We define two evidence predicates based
on dependency structures. Word(sid,tid,word) is
true when the word in sentence sid at position tid
is equal to word. DepType(sid,aid,tid,dtype)
asserts that dtype is the dependency type in the de-

pendency parse tree that connects the token at posi-
tion tid to the token at position aid in sentence sid.
If the word at tid and the word at aid are directly
connected in the dependency tree, then dtype is the
label of dependency edge with direction; otherwise
dtype is None.

The MLN formulas, expressing commonsense,
prior knowledge in the domain (Poon and Van-
derwende, 2010; Riedel and McCallum, 2011a),
are shown in Fig. 2(d). All formulas, except For-
mula (9), are hard formulas, meaning that they have
infinite weights. Note that during weight learning,
we only learn the weights of soft formulas.

Formulas (1) and (2) along with the “!” con-
straint in the predicate definition ensure that the
token types are mutually exclusive and exhaustive.
Formula (3) asserts that every trigger should have
an argument of type Theme, since a Theme argu-
ment is mandatory for any event. Formula (4) mod-
els the constraint that a Simple orBinding trigger
has no arguments of type Cause since only regu-
lation events have a Cause. Formula (5) asserts
that non-triggers have no arguments and vice-versa.
Formula (6) models the constraint that if a token
is both an argument of t and a trigger by itself,
then t must belong to one of the three regulation
trigger types. This formula captures the recursive
relationship between triggers. Formulas (7) and
(8) connect the hidden predicates with the query
predicates. Formula (9) is a soft formula encoding
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the relationship between triggers and arguments in
a dependency parse tree. It joins a word and the
dependency type label that connects the word token
to the argument token in the dependency parse tree
with the trigger types and argument types of the
two tokens. The “+” symbol indicates that each
grounding of Formula (9) may have a different
weight.

4.2 Weight Learning
We can learn BioMLN from data either discrimina-
tively or generatively. Since discriminative learning
is much faster than generative learning, we use the
former. In discriminative training, we maximize
the conditional log-likelihood (CLL) of the query
and the hidden variables given an assignment to
the evidence variables. In principle, we can use the
standard gradient descent algorithm for maximiz-
ing the CLL. In each iteration of gradient descent,
we update the weights using the following equation
(cf. Singla and Domingos (2005) and Domingos
and Lowd (2009)):

wt+1
j = wtj − α(Ew(nj)− nj) (3)

where wtj represents the weight of the jth formula
in the tth iteration, nj is the number of groundings
in which the jth formula is satisfied in the training
data, Ew(nj) is the expected number of ground-
ings in which the jth formula is satisfied given the
current weight vector w, and α is the learning rate.

As such, the update rule given in Equation (3)
is likely to yield poor accuracy because the num-
ber of training examples of some types (e.g.,
None) far outnumber other types. To rectify this
ill-conditioning problem (Singla and Domingos,
2005; Lowd and Domingos, 2007), we divide the
gradient with the number of true groundings in
the data, namely, we compute the gradient using
(Ew(nj)−nj)

nj
.

Another key issue with using Equation (3) is that
computing Ew(nj) requires performing inference
over the MLN. This step is intractable, #P-complete
in the worst case. To circumvent this problem and
for fast, scalable training, we instead propose to
use the voted perceptron algorithm (Collins, 2002;
Singla and Domingos, 2005). This algorithm ap-
proximates Ew(nj) by counting the number of
satisfied groundings of each formula in the MAP
assignment. Computing the MAP assignment is
much easier (although still NP-hard in the worst
case) than computing Ew(nj), and as a result the

voted perceptron algorithm is more scalable than
the standard gradient descent algorithm. In addi-
tion, it converges much faster.

4.3 Testing

In the testing phase, we combine BioMLN with the
output of the pipeline model (see Section 3) to ob-
tain a new MLN, which we refer to as BioMLN+.
For every candidate trigger, the SVM trigger clas-
sifier outputs a vector of signed confidence val-
ues (which is proportional to the distance from
the separating hyperplane) of dimension ∆ttype

with one entry for each trigger type. Similarly,
for every candidate argument, the SVM argu-
ment classifier outputs a vector of signed confi-
dence values of dimension ∆arole with one en-
try for each argument role. In BioMLN+, we
model the SVM output as soft evidence, using
two soft unit clauses, TriggerType(i,+j,+t) and
ArgumentRole(i,+k,+j,+a). We use the con-
fidence values to determine the weights of these
clauses. Intuitively, higher (smaller) the confidence,
higher (smaller) the weight.

Specifically, the weights of the soft unit clauses
are set as follows. If the SVM trigger classifier
determines that the trigger in sentence i at po-
sition j belongs to type t with confidence Ci,j ,
then we attach a weight of Ci,j

αni
to the clause

TriggerType(i,j,t). Here, ni denotes the num-
ber of trigger candidates in sentence i. Similarly,
if the SVM argument classifier determines that the
token at position k in sentence i belongs to the ar-
gument role a with respect to the token at position
j, with confidence C ′i,k,j , then we attach a weight

of
C′i,k,j

β
∑ni
j=1mij

to the clause ArgumentRole(i, k,

j,a). Here, mij denotes the number of argument
candidates for the jth trigger candidate in sentence
i. α and β act as scale parameters for the confi-
dence values ensuring that the weights don’t get
too large (or too small).

4.4 Inference

As we need to perform MAP inference, both at
training time and at test time, in this subsection we
will describe how to do it efficiently by exploiting
unique properties of our proposed BioMLN.

Naively, we can perform MAP inference by
grounding BioMLN to a Markov network and
then reducing the Markov network by removing
from it all (grounded propositional) formulas that
are inconsistent with the evidence. On the re-
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duced Markov network, we can then compute the
MAP solution using standard MAP solvers such as
MaxWalkSAT (a state-of-the-art local search based
MAP solver) (Selman et al., 1996) and Gurobi3 (a
state-of-the-art, parallelized ILP solver).

The problem with the above approach is that
grounding the MLN is infeasible in practice; even
the reduced Markov network is just too large. For
example, assuming a total of |∆sid| sentences and
a maximum of N tokens in a sentence, Formula (3)
alone has O(|∆sid|N3) groundings. Concretely, at
training time, assuming 1000 sentences with 10
tokens per sentence, Formula (3) itself yields one
million groundings. Clearly, this approach is not
scalable. It turns out, however, that the (ground)
Markov network can be decomposed into several
disconnected components, each of which can be
solved independently. This greatly reduces the
memory requirement of the inference step. Specif-
ically, for every grounding of sid, we get a set of
nodes in the Markov network that are disconnected
from the rest of the Markov network and therefore
independent of the rest of the network. Formally,

Proposition 1. For any world ω of the BioMLN,

PM(ω) = PMi(ωi)PM\Mi
(ω \ ωi) (4)

where ωi is the world ω projected on the ground-
ings of sentence i andMi is BioMLN grounded
only using sentence i.

Using Equation (4), it is easy to see that the MLN
M can be decomposed into |∆sid| disjoint MLNs,
{Mk}|∆sid|

k=1 . The MAP assignment toM can be

computed using,
|∆sid|⋃
i=1

(
arg max

ωi
PMi(ωi)

)
. This

result ensures that to approximate the expected
counts Ew(nj), it is sufficient to keep exactly one
sentence’s groundings in memory. Specifically,
Ew(nj) can be written as

∑|∆sid|
k=1 Ew(nkj ), where

Ew(nkj ) indicates the expected number of satisfied
groundings of the jth formula in the kth sentence.
Since the MAP computation is decomposable, we
can estimate Ew(nkj ) using MAP inference on just
the kth sentence.

5 Evaluation

5.1 Experimental Setup
We evaluate our system on the BioNLP’13 (Kim
et al., 2013), ’11 (Kim et al., 2011a) and ’09 (Kim

3http://www.gurobi.com/

Dataset #Papers #Abstracts #TT #Events
BioNLP’13 (10,10,14) (0,0,0) 13 (2817,3199,3348)
BioNLP’11 (5,5,4) (800,150,260) 9 (10310,4690,5301)
BioNLP’09 (0,0,0) (800,150,260) 9 (8597,1809,3182)

Table 2: Statistics on the BioNLP datasets, which
consist of annotated papers/abstracts from PubMed.
(x, y, z): x in training, y in development and z
in test. #TT indicates the total number of trigger
types. The total number of argument types is 2.

et al., 2009) Genia datasets for the main event ex-
traction shared task. Note that this task is the most
important one for Genia and therefore has the most
active participation. Statistics on the datasets are
shown in Table 2. All our evaluations use the on-
line tool provided by the shared task organizers.
We report scores obtained using the approximate
span, recursive evaluation.

To generate features, we employ the support-
ing resources provided by the organizers. Specif-
ically, sentence split and tokenization are done
using the GENIA tools, while part-of-speech in-
formation is provided by the BLLIP parser that
uses the self-trained biomedical model (McClosky,
2010). Also, we create dependency features from
the parse trees provided by two dependency parsers,
the Enju parser (Miyao and Tsujii, 2008) and the
aforementioned BLLIP parser that uses the self-
trained biomedical model, which results in two sets
of dependency features.

For MAP inference, we use Gurobi, a par-
allelized ILP solver. After inference, a post-
processing step is required to generate biomedi-
cal events from the extracted triggers and argu-
ments. Specifically, for binding events, we em-
ploy a learning-based method similar to Björne and
Salakoski (2011), while for the other events, we
employ a rule-based approach similar to Björne et
al. (2009). Both the SVM baseline system and the
combined MLN+SVM system employ the same
post-processing strategy.

During weight learning, in order to combat the
problem of different initializations yielding radi-
cally different parameter estimates, we start at sev-
eral different initialization points and average the
weights obtained after 100 iterations of gradient
descent. However, we noticed that if we simply
choose random initialization points, the variance of
the weights was quite high and some initialization
points were much worse than others. To counter
this, we use the following method to systematically
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System Rec. Prec. F1
Our System 48.95 59.24 53.61
EVEX (Hakala et al., 2013) 45.44 58.03 50.97
TEES-2.1 (Björne and Salakoski, 2013) 46.17 56.32 50.74
BIOSEM (Bui et al., 2013) 42.47 62.83 50.68
NCBI (Liu et al., 2013) 40.53 61.72 48.93
DLUTNLP (Li et al., 2013a) 40.81 57.00 47.56

Table 3: Recall (Rec.), Precision (Prec.) and F1
score on the BioNLP’13 test data.

initialize the weights. Let ni be the number of sat-
isfied groundings of formula fi in the training data
and mi be the total number of possible groundings
of fi. We use a threshold γ to determine whether
we wish to make the initial weight positive or neg-
ative. If ni

mi
≤ γ, then we choose the initial weight

uniformly at random from the range [−0.1, 0]. Oth-
erwise, we chose it from the range [0, 0.1]. These
steps ensure that the weights generated from dif-
ferent initialization points have smaller variance.
Also, in the testing phase, we set the scale parame-
ters for the soft evidence as α = β = max

c∈C
|c|, where

C is the set of SVM confidence values.

5.2 Results on the BioNLP’13 Dataset
Among the three datasets, the BioNLP’13 dataset
is most “realistic” one because it is the only one
that contains full papers and no abstracts. As a re-
sult, it is also the most challenging dataset among
the three. Table 3 shows the results of our system
along with the results of other top systems pub-
lished in the official evaluation of BioNLP’13. Our
system achieves the best F1-score (an improvement
of 2.64 points over the top-performing system) and
has a much higher recall (mainly because our sys-
tem detects more regulation events which outnum-
ber other event types in the dataset) and a slightly
higher precision than the winning system. Of the
top five teams, NCBI is the only other joint infer-
ence system, which adopts joint pattern matching
to predict triggers and arguments at the same time.
These results illustrate the challenge in using joint
inference effectively. NCBI performed much worse
than the SVM-based pipeline systems, EVEX and
TEES2.1. It was also worse than BIOSEM, a rule-
based system that uses considerable domain exper-
tise. Nevertheless, it was better than DLUTNLP,
another SVM-based system.

Figure 3 compares our baseline pipeline model
with our combined model. We can clearly see that
the combined model has a significantly better F1
score than the pipeline model on most event types.

System Rec. Prec. F1
Our System 53.42 63.61 58.07
Miwa12 (Miwa et al., 2012) 53.35 63.48 57.98
Riedel11 (Riedel et al., 2011) − − 56
UTurku (Björne and Salakoski, 2011) 49.56 57.65 53.30
MSR-NLP (Quirk et al., 2011) 48.64 54.71 51.50

Table 4: Results on the BioNLP’11 test data.

The regulation events are considered the most com-
plex events to detect because they have a recursive
structure. At the same time, this structure yields a
large number of joint dependencies. The advantage
of using a rich model such as MLNs can be clearly
seen in this case; the combined model yields a 10
point and 6 point increase in F1-score on the test
data and development data respectively compared
to the pipeline model.

5.3 Results on the BioNLP’11 Dataset

Table 4 shows the results on the BioNLP’11 dataset.
We can see that our system is marginally better than
Miwa12, which is a pipeline-based system. It is
also more than two points better than Riedel11,
a state-of-the-art structured prediction-based joint
inference system. Reidel11 incorporates the Stan-
ford predictions (McClosky et al., 2011b) as fea-
tures in the model. On the two hardest, most
complex tasks, detecting regulation events (which
have recursive structures and more joint dependen-
cies than other event types) and detecting bind-
ing events (which may have multiple arguments),
our system performs better than both Miwa12 and
Riedel11.4 Specifically, our system’s F1 score for
regulation events is 46.84, while those of Miwa12
and Riedel11 are 45.46 and 44.94 respectively. Our
system’s F1 score for the binding event is 58.79,
while those of Miwa12 and Riedel11 are 56.64 and
48.49 respectively. These results clearly demon-
strate the effectiveness of enforcing joint dependen-
cies along with high-dimensional features.

5.4 Results on the BioNLP’09 Dataset

Table 5 shows the results on the BioNLP’09 dataset.
Our system has a marginally lower score (by 0.11
points) than Miwa12, which is the best performing
system on this dataset. Specifically, our system
achieves a higher recall but a lower precision than
Miwa12. However, note that Miwa12 used co-
reference features while we are able to achieve

4Detailed results are not shown for any of these three
datasets due to space limitations.
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SVM MLN+SVM
Type Rec. Prec. F1 Rec. Prec. F1
Simple 64.47 87.89 74.38 73.11 78.99 75.94
Protein-Mod 66.49 79.87 72.57 72.25 69.70 70.95
Binding 39.04 50.00 43.84 48.05 43.84 45.85
Regulation 23.51 56.21 33.15 36.47 50.86 42.48
Overall 37.90 67.88 48.64 48.95 59.24 53.61

(a) Test

SVM MLN+SVM
Type Rec. Prec. F1 Rec. Prec. F1
Simple 55.79 81.63 66.28 63.21 75.10 68.64
Protein-Mod 64.47 87.89 74.38 71.14 85.63 77.72
Binding 31.90 48.77 38.57 47.99 50.00 48.97
Regulation 20.13 52.46 29.10 28.57 43.41 34.46
Overall 34.42 66.14 45.28 43.50 57.45 49.51

(b) Development

Figure 3: Comparison of the combined model (MLN+SVM) with the pipeline model on the BioNLP’13
test and development data.

System Rec. Prec. F1
Miwa12 (Miwa et al., 2012) 52.67 65.19 58.27
Our System 53.96 63.08 58.16
Riedel11 (Riedel et al., 2011) − − 57.4
Miwa10 (Miwa et al., 2010a) 50.13 64.16 56.28
Bjorne (Björne et al., 2009) 46.73 58.48 51.95
PoonMLN (Poon&Vanderwende,2010) 43.7 58.6 50.0
RiedelMLN (Riedel et al., 2009) 36.9 55.6 44.4

Table 5: Results on the BioNLP’09 test data. “−”
indicates that the corresponding values are not
known.

similar accuracy without the use of co-reference
data. The F1 score of Miwa10, which does not
use co-reference features, is nearly 2 points lower
than that of our system. Our system also has a
higher F1 score than Reidel11, which is the best
joint inference-based system for this task.

On the regulation events, our system (47.55) out-
performs both Miwa12 (45.99) and Riedel11 (46.9),
while on the binding event, our system (59.88) is
marginally worse than Miwa12 (59.91) and signifi-
cantly better than Riedel11 (52.6). As mentioned
earlier, these are the hardest events to extract. Also,
existing MLN-based joint inference systems such
as RiedelMLN and PoonMLN do not achieve state-
of-the-art results because they do not leverage com-
plex, high-dimensional features.

6 Summary and Future Work

Markov logic networks (MLNs) are a powerful
representation that can compactly encode rich rela-
tional structures and ambiguities (uncertainty). As
a result, they are an ideal representation for com-
plex NLP tasks that require joint inference, such
as event extraction. Unfortunately, the superior
representational power greatly complicates infer-
ence and learning over MLN models. Even the
most advanced methods for inference and learning
in MLNs (Gogate and Domingos, 2011) are un-

able to handle complex, high-dimensional features,
and therefore existing MLN systems primarily use
low-dimensional features. This limitation severely
affects the accuracy of MLN-based NLP systems,
and as a result, in some cases their performance
is inferior to pipeline methods that do not employ
joint inference.

In this paper, we presented a general approach
for exploiting the power of high-dimensional lin-
guistic features in MLNs. Our approach involves
reliably processing and learning high-dimensional
features using SVMs and encoding their output as
low-dimensional features in MLNs. We showed
that we could achieve scalable learning and in-
ference in our proposed MLN model by exploit-
ing decomposition. Our results on the BioNLP
shared tasks from ’13, ’11, and ’09 clearly show
that our proposed combination is extremely effec-
tive, achieving the best or second best score on all
three datasets.

In future work, we plan to (1) improve our joint
model by incorporating co-reference information
and developing model ensembles; (2) transfer the
results of this investigation to other complex NLP
tasks that can potentially benefit from joint infer-
ence; and (3) develop scalable inference and learn-
ing algorithms (Ahmadi et al., 2013).
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Abstract

Stress is a useful cue for English word
segmentation. A wide range of computa-
tional models have found that stress cues
enable a 2-10% improvement in segmen-
tation accuracy, depending on the kind of
model, by using input that has been anno-
tated with stress using a pronouncing dic-
tionary. However, stress is neither invari-
ably produced nor unambiguously iden-
tifiable in real speech. Heavy syllables,
i.e. those with long vowels or syllable
codas, attract stress in English. We de-
vise Adaptor Grammar word segmentation
models that exploit either stress, or sylla-
ble weight, or both, and evaluate the util-
ity of syllable weight as a cue to word
boundaries. Our results suggest that sylla-
ble weight encodes largely the same infor-
mation for word segmentation in English
that annotated dictionary stress does.

1 Introduction

One of the first skills a child must develop in the
course of language acquisition is the ability to seg-
ment speech into words. Stress has long been
recognized as a useful cue for English word seg-
mentation, following the observation that words
in English are predominantly stress-initial (Cutler
and Carter, 1987), together with the result that 9-
month-old English-learning infants prefer stress-
initial stimuli (Jusczyk et al., 1993). A range of
statistical (Doyle and Levy, 2013; Christiansen et
al., 1998; Börschinger and Johnson, 2014) and
rule-based (Yang, 2004; Lignos and Yang, 2010)
models have used stress information to improve
word segmentation. However, that work uses
stress-marked input prepared by marking vowels
that are listed as stressed in a pronouncing dic-
tionary. This pre-processing step glosses over the

fact that stress identification itself involves a non-
trival learning problem, since stress has many pos-
sible phonetic reflexes and no known invariants
(Campbell and Beckman, 1997; Fry, 1955; Fry,
1958). One known strong correlate of stress in
English is syllable weight: heavy syllables, which
end in a consonant or have a long vowel, at-
tract stress in English. We present experiments
with Bayesian Adaptor Grammars (Johnson et al.,
2007) that suggest syllable weight encodes largely
the same information for word segmentation that
dictionary stress information does.

Specifically, we modify the Adaptor
Grammar word segmentation model of
Börschinger and Johnson (2014) to compare
the utility of syllable weight and stress cues for
finding word boundaries, both individually and in
combination. We describe how a shortcoming of
Adaptor Grammars prevents us from comparing
stress and weight cues in combination with the full
range of phonotactic cues for word segmentation,
and design two experiments to work around this
limitation. The first experiment uses grammars
that provide parallel analyses for syllable weight
and stress, and learns initial/non-initial phonotac-
tic distinctions. In this first experiment, syllable
weight cues are actually more useful than stress
cues at larger input sizes. The second experiment
focuses on incorporating phonotactic cues for
typical word-final consonant clusters (such as
inflectional morphemes), at the expense of parallel
structures. In this second experiment, weight cues
merely match stress cues at larger input sizes,
and the learning curve for the combined weight-
and-stress grammar follows almost perfectly with
the stress-only grammar. This second experiment
suggests that the advantage of weight over stress
in the first experiment was purely due to poor
modeling of word-final consonant clusters by
the stress-only grammar, not weight per se. All
together, these results indicate that syllable weight
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is highly redundant with dictionary-based stress
for the purposes of English word segmentation;
in fact, in our experiments, there is no detectable
difference between relying on syllable weight and
relying on dictionary stress.

2 Background

Stress is the perception that some syllables are
more prominent than others, and reflects a com-
plex, language-specific interaction between acous-
tic cues (such as loudness and duration), and
phonological patterns (such as syllable shapes).
The details on how stress is assigned, produced,
and perceived vary greatly across languages.
Three aspects of the English stress system are
relevant for this paper. First, although English
stress can shift in different contexts (Liberman and
Prince, 1977), such as from the first syllable of
‘fourteen’ in isolation to the second syllable when
followed by a stressed syllable, it is largely stable
across different tokens of a given word. Second,
most words in English end up being stress-initial
on a type and token basis. Third, heavy syllables
(those with a long vowel or a consonant coda) at-
tract stress in English.

There is experimental evidence that English-
learning infants prefer stress-initial words from
around the age of seven months (Jusczyk et al.,
1993; Juszcyk et al., 1999; Jusczyk et al., 1993;
Thiessen and Saffran, 2003). A variety of com-
putational models have subsequently been devel-
oped that take stress-annotated input and use this
regularity to improve segmentation accuracy. The
earliest Simple Recurrent Network (SRN) mod-
eling experiments of Christiansen et al. (1998)
and Christiansen and Curtin (1999) found that
stress improved word segmentation from about
39% to 43% token f-score (see Evaluation). Ryt-
ting et al. (2010) applied the SRN model to prob-
ability distributions over phones obtained from a
speech recognition system, and found that the en-
tropy of the probability distribution over phones,
as a proxy to local hyperarticulation and hence a
stress cue, improved token f-score from about 16%
to 23%. In a deterministic approach using pre-
syllabified input, Yang (2004), with follow-ups in
Lignos and Yang (2010) and Lignos (2011; 2012),
showed that a ‘Unique Stress Constraint’ (USC),
or assuming each word has at most one stressed
syllable, leads to an improvement of about 2.5%
boundary f-score.

Among explicitly probabilistic models,
Doyle and Levy (2013) incorporated stress into
Goldwater et al.’s (2009) Bigram model. They
did this by modifying the base distribution over
lexical forms to generate not simply phone strings
but a sequence of syllables that may or may
not be stressed. The resulting model can learn
that some sequences of syllables (in particular,
sequences that start with a stressed syllable)
are more likely than others. However, observed
stress improved token f-score by only 1%.
Börschinger and Johnson (2014) used Adaptor
Grammars (Johnson et al., 2007), a generalization
of Goldwater et al.’s (2009) Bigram model that
will be described shortly, and found a clearer
4-10% advantage in token f-score, depending on
the amount of training data.

Together, the experimental and computational
results suggest that infants in fact pay attention
to stress, and that stress carries useful information
for segmenting words in running speech. How-
ever, stress identification is itself a non-trivial
task, as stress has many highly variable, context-
sensitive, and optional phonetic reflexes. How-
ever, one strong phonological cue in English is
syllable weight: heavy syllables attract stress.
Heavy syllables, in turn, are syllables with a
coda and/or a long vowel, which, in English,
are tense vowels. Turk et al. (1995) replicated
the Jusczyk et al. (1993) finding that English-
learning infants prefer stress-initial stimuli (using
non-words), and then examined how stress inter-
acted with syllable weight. They found that sylla-
ble weight was not a necessary condition to trig-
ger the preference: infants preferred stress-initial
stimuli even if the initial syllable was light. How-
ever, they also found that infants most strongly
preferred stimuli whose first syllable was both
stressed and heavy: infants preferred stress-initial
and heavy-initial stimuli to stress-initial and light-
initial stimuli. This result suggests that infants are
sensitive to syllable weight in determining typical
stress and rythmic patterns in their language.

2.1 Models

We will adopt the Adaptor Grammar framework
used by Börschinger and Johnson (2014) to ex-
plore the utility of syllable weight as a cue
to word segmentation by way of its covariance
with stress. Adaptor Grammars are Probabilis-
tic Context Free Grammars (PCFGs) with a spe-
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Figure 1: Different ways to incorporate phonotactics. It is not possible to capture word-final codas and
word initial rhymes in monosyllabic words with factors the size of a PCFG rule.

cial set of adapted non-terminal nodes. We un-
derline adapted non-terminals (X) to distinguish
them from non-adapted non-terminals (Y). While
a vanilla PCFG can only directly model regular-
ities that are expressed by a single re-write rule,
an Adaptor Grammar model caches entire subtrees
that are rooted at adapted non-terminals. Adaptor
Grammars can thus learn the internal structure of
words, such as syllables, syllable onsets, and syl-
lable rhymes, while still learning entire words as
well.

In Adaptor Grammars, parameters are associ-
ated with PCFG rules. While this has been a useful
factorization in previous work, it makes it difficult
to integrate syllable weight and syllable stress in
a linguistically natural way. A syllable is typically
analyzed as having an optional onset followed by a
rhyme, with the rhyme rewriting to a nucleus (the
vowel) followed by an optional coda, as in Fig-
ure 1a. We expect stress and syllable weight to be
useful primarily because initial syllables tend to be
different from non-initial syllables. However, dis-
tinguishing final from non-final codas should be
useful as well, due to the frequency of suffixes in
English, and the importance of edge phenomena in
phonology more generally (Brent and Cartwright,
1996). These principles come into conflict when
modeling monosyllabic words. If we say that a
monosyllable is an Initial and Final SyllIF, and
has an initial Onset and an initial Rhyme, as in
Figure 1b, then we can learn the initial/non-initial
generalization about stressed or heavy rhymes at
the expense of the generalization about final and
non-final codas. If we say that a monosyllable is
an initial onset with a final rhyme, the reverse oc-
curs: we can learn the final/non-final coda gen-
eralization at the expense of the initial/non-initial
regularities. If we split the symbols further, we’d
generalize even less: we’d essentially have to learn

the initial/non-initial patterns separately for mono-
syllables and polysyllables.

The most direct solution would introduce fac-
tors that are ‘smaller’ than a single PCFG rule. Es-
sentially, we would compute the score of a PCFG
rule in terms of multiple features of its right-hand
side, rather than a single ‘one-hot’ feature identi-
fying the expansion. We left this direction for fu-
ture work and instead carried out two experiments
using Adaptor Grammars that were designed to
work around this limitation.

Our first experiment focuses on modeling
the initial/non-initial distinction, leaving the
final/non-final coda distinction unmodeled. The
models in this experiment assume parallel struc-
tures for syllable weight and stress, and focus on
providing the most direct comparison between syl-
lable weight and stress with a strictly initial/non-
initial distinction. This first experiment shows that
observing dictionary stress is better early in learn-
ing, but that modeling syllable weight is better
later in learning. However, it is possible that sylla-
ble weight was more useful because modeling syl-
lable weight involves modeling the characteristics
of codas; the advantage may not have been due to
weight per se but due to having learned something
about the effects of suffixes on final codas.

Our second experiment focuses on modeling
some aspects of final codas at the expense of main-
taining a rigid parallelism in the structures for syl-
lable weight and stress. The models in this exper-
iment split only those symbols that are necessary
to bring stress or weight patterns into the expres-
sive power of the model, and focus on comparing
richer models of syllable weight and stress that
account for inital/internal/final distinctions. This
second experiment shows that observing dictio-
nary stress is better early in learning, and that
modeling syllable weight merely catches up to
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Sentence→ Collocations3+ (1)

Collocations3→ Collocations2+ (2)

Collocations2→ Collocation+ (3)

Collocation→Word+ (4)

Figure 2: Three levels of collocation; symbols fol-
lowed by + may occur one or more times.

stress without surpassing it. Moreover, a com-
bined stress-and-weight model does no better than
a stress model, suggesting that the weight gram-
mar’s contribution is fully redundant, for the pur-
poses of word segmentation, with the stress obser-
vations.

Together, these experiments suggest that sylla-
ble weight eventually encodes everything about
word segmentation that dictionary stress does, and
that any advantage that syllable weight has over
observing dictionary stress is entirely redundant
with knowledge of word-final codas.

3 Experiments

3.1 Adaptor Grammars

We follow Börschinger and Johnson (2014) in us-
ing a 3-level collocation Adaptor Grammar, as in-
troduced by Johnson and Goldwater (2009) and
presented in Figure 2, as the backbone for all
models, including the baseline. A 3-level collo-
cation grammar assumes that words are grouped
into collocations of words that tend to appear with
each other, and that the collocations themselves
are grouped into larger collocations, up to three
levels of collocations. This collocational struc-
ture allows the model to capture strong word-
to-word dependencies without having to group
frequently-occuring word sequences into a single,
incorrect, undersegmented ‘word’ as the unigram
model tends to do (Johnson and Goldwater, 2009)

Word rewrites in different ways in Experiment I
and Experiment II, which will be explained in the
relevant experiment section.

3.2 Experimental Set-up

We applied the same experimental set-up used by
Börschinger and Johnson (2014), to their dataset,
as described below. To understand how different
modeling assumptions interact with corpus size,
we train on prefixes of each corpus with increas-

ing input size: 100, 200, 500, 1,000, 2,000, 5,000,
and 10,000 utterances. Inference closely fol-
lowed Börschinger and Johnson (2014) and John-
son and Goldwater (2009). We set our hyperpa-
rameters to encourage onset maximization. The
hyperparameter for syllable nodes to rewrite to
an onset followed by a rhyme was 10, and the
hyperparameter for syllable nodes to rewrite to a
rhyme only was 1. Similarly, the hyperparame-
ter for rhyme nodes to include a coda was 1, and
the hyperparameter for rhyme nodes to exclude
the coda was 10. All other hyperparameters spec-
ified vague priors. We ran eight chains of each
model for 1,000 iterations, collecting 20 samples
with a lag of 10 iterations between samples and a
burn-in of 800 iterations. We used the same batch-
initialization and table-label resampling to encour-
age the model to mix.

After gathering the samples, we used them to
perform a single minimum Bayes risk decoding
of a separate, held-out test set. This test set was
constructed by taking the last 1,000 utterances of
each corpus. We use a common test-set instead
of just evaluating on the training data to ensure
that performance figures are comparable across in-
put sizes; when we see learning curves slope up-
ward, we can be confident that the increase is due
to learning rather than easier evaluation sets.

We measured our models’ performance with the
usual token f-score metric (Brent, 1999), the har-
monic mean of how many proposed word tokens
are correct (token precision) and how many of the
actual word tokens are recovered (token recall).
For example, a model may propose “the in side”
when the true segmentation is “the inside.” This
segmentation would have a token precision of 1

3 ,
since one of three predicted words matches the
true word token (even though the other predicted
words are valid word types), and a token recall of
1
2 , since it correctly recovered one of two words,
yield a token f-score of 0.4.

3.3 Dataset

We evaluated on a dataset drawn from the Alex
portion of the Providence corpus (Demuth et al.,
2006). This dataset contains 17, 948 utterances
with 72, 859 word tokens directed to one child
from the age of 16 months to 41 months. We used
a version of this dataset that contained annota-
tions of primary stress that Börschinger and John-
son (2014) added to this input using an extended
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RhymeI→ HeavyRhyme

RhymeI→ LightRhyme

Rhyme→ HeavyRhyme

Rhyme→ LightRhyme

HeavyRhyme→ LongVowel

HeavyRhyme→ Vowel Coda

LightRhyme→ ShortVowel

(a) Weight-sensitive grammar

RhymeI→ RhymeS

RhymeI→ RhymeU

Rhyme→ RhymeS

Rhyme→ RhymeU

RhymeS→ Vowel Stress (Coda)
RhymeU→ Vowel (Coda)

(b) Stress-sensitive grammar

RhymeI→ Vowel (Coda)
Rhyme→ Vowel (Coda)

(c) Baseline grammar

RhymeI→ HeavyRhymeS

RhymeI→ HeavyRhymeU

RhymeI→ LightRhymeS

RhymeI→ LightRhymeU

Rhyme→ HeavyRhymeS

Rhyme→ HeavyRhymeU

Rhyme→ LightRhymeS

Rhyme→ LightRhymeU

HeavyRhymeS→ LongVowel Stress

HeavyRhymeS→ LongVowel Stress Coda

HeavyRhymeU→ LongVowel

HeavyRhymeU→ LongVowel Coda

LightRhymeS→ ShortVowel Stress

LightRhymeU→ ShortVowel

(d) Combined grammar

Figure 3: Experiment I Grammars

version of CMUDict (cmu, 2008).1 The mean
number of syllables per word token was 1.2, and
only three word tokens had more than five sylla-
bles. Of the 40, 323 word tokens with a stressed
syllable, 27, 258 were monosyllabic. Of the
13, 065 polysyllabic word tokens with a stressed
syllable, 9, 931 were stress-initial. Turning to the
32, 536 word tokens with no stress (i.e., the func-
tion words), all but 23 were monosyllabic (the 23
were primarily contractions, such as “couldn’t”).

3.4 Experiment I: Parallel Structures

The goal of this first experiment is to provide the
most direct comparison possible between gram-
mars that attend to stress cues and grammars that
attend to syllable weight cues. As these are both
hypothesized to be useful by way of an initial/non-
initial distinction, we defined a word to be an ini-
tial syllable SyllI followed by zero to three sylla-
bles, and syllables to consist of an optional onset

1This dataset and these Adap-
tor Grammar models are available at:
http://web.science.mq.edu.au/˜jpate/stress/

and a rhyme:

Word→ SyllI (Syll){0,3} (5)

SyllI→ (OnsetI) RhymeI (6)

Syll→ (Onset) Rhyme (7)

In the baseline grammar, presented in Figure 3c,
rhymes rewrite to a vowel followed by an optional
consonant coda. Rhymes then rewrite to be heavy
or light in the weight grammar, as in Figure 3a, to
be stressed or unstressed in the stress grammar, as
in Figure 3b. In the combination grammar, rhymes
rewrite to be heavy or light and stressed or un-
stressed, as in Figure 3d. LongVowel and Short-
Vowel both re-write to all vowels. An additional
grammar that restricted them to rewrite to long and
short vowels, respectively, led to virtually identi-
cal performance, suggesting that vowel quantity
can be learned for the purposes of word segmenta-
tion from distributional cues. We will also present
evidence that the model did manage to learn most
of the contrast.

Figure 4 presents learning curves for the gram-
mars in this parallel structured comparison. We
see that observing stress without modeling weight
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Figure 4: Learning curves on the Alex corpus for Experiment I grammars with parallel distinctions
between Stressed/Unstressed and Heavy/Light syllable rhymes.
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Figure 5: Heatmap of learned vowels in the Ex-
periment I weight-only grammar. Each cell cor-
responds to the count of a particular vowel being
analyzed as one of the three vowel types. Diph-
thongs are rarely ShortVowel.

outperforms both the baseline and the weight-only
grammar early in learning. The weight-only gram-
mar rapidly improves in performance at larger
training data sizes, increasing its advantage over
the baseline, while the advantage of the stress-
only grammar slows and appears to disappear at
the largest training data size. At 10,000 utterances,
the improvement of the weight-only grammar over
the stress-only grammar is significant according to
an independent samples t-test (t = 7.2, p < 0.001,
14 degrees of freedom). This pattern suggests that
annotated dictionary stress is easy to take advan-
tage of at low data sizes, but that, with sufficient
data, syllable weight can provide even more in-
formation about word boundaries. The best over-
all performance early in learning is obtained by
the combined grammar, suggesting that syllable
weight and dictionary stress provide information
about word segmentation that is not redundant.

An examination of the final segmentation sug-
gests that the weight grammar has learned that
initial syllables tend to be heavy. Specifically,
across eight runs, 98.1% of RhymeI symbols
rewrote to HeavyRhyme, whereas only 54.5% of
Rhyme symbols (i.e. non-initial rhymes) rewrote
to HeavyRhyme.
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Model Mean TF Std. Dev.
noweight:nostress 0.830 0.005
noweight:stress 0.831 0.008
weight:nostress 0.861 0.008
weight:stress 0.861 0.008

Table 1: Segmentation Token F-score for Experi-
ment I at 10,000 utterances across eight runs.

We also examined the final segmentation to see
well the model learned the distinction between
long vowels and short vowels. Figure 5 presents a
heatmap, with colors on a log-scale, showing how
many times each vowel label rewrote to each pos-
sible vowel in the (translated to IPA). Although the
quantity generalisations are not perfect, we do see
a general trend where ShortVowel rarely rewrites
to diphthongs.

3.5 Experiment II: Word-final Codas

Experiment I suggested that, under a ba-
sic initial/non-initial distinction, syllable weight
eventually encodes more information about word
boundaries than does dictionary stress. This is
a surprising result, since we initially investigated
syllable weight as a noisy proxy for dictionary
stress. One possible source of the ‘extra’ advan-
tage that the syllable weight grammar exhibited
has to do with the importance of word-final codas,
which can encode word-final morphemes in En-
glish (Brent and Cartwright, 1996). Even though
the grammars did not explicitly model them, the
weight grammar could implicitly capture a bias for
or against having a coda in non-initial position,
while the stress grammar could not. This is be-
cause most word tokens are one or two syllables,
and only one of the two rhyme types of the weight
grammar included a coda. Thus, the HeavyRhyme
symbol could simultaneously capture the most im-
portant aspects of both stress and coda constraints.

To see if the extra advantage of the syllable
weight grammar can be attributed to the influence
of word-final codas, we formulated a set of gram-
mars that model word-final codas and also can
learn stress and/or syllable weight patterns. These
grammars are more similar in structure to the ones
that Börschinger and Johnson (2014) used. For the
baseline and weight grammar, we again defined
words to consist of up to four syllables with an ini-
tial SyllI syllable, but this time distinguished final
syllables SyllF in polysyllabic words. The non-

stress grammars use the following rules for pro-
ducing syllables:

Word→ SyllIF (8)

Word→ SyllI (Syll){0,2} SyllF (9)

SyllIF→ (OnsetI) RhymeI (10)

SyllI→ (OnsetI) RhymeI (11)

Syll→ (Onset) Rhyme (12)

SyllF→ (Onset) RhymeF (13)

For the stress grammar, we followed
Börschinger and Johnson (2014) in distin-
guishing stressed and unstressed syllables, rather
than simply stressed rhymes as in Experiment I,
to allow the model to learn likely stress patterns
at the word level. A word can consist of up to
four syllables, and any syllable and any number
of syllables may be stressed, as in Figure 6a.

The baseline grammar is similar to the previous
one, except it distinguishes word-final codas, as
in Figure 6b. The weight grammar, presented in
Figure 6c, rewrites rhymes to a nucleus followed
by an optional coda and distinguishes nuclei in
open syllables according to their position in the
word. The stress grammar, presented in Figure 6d,
is the all-stress-patterns model (without the unique
stress constraint) Börschinger and Johnson (2014).
This grammar introduces additional distinctions at
the syllable level to learn likely stress patterns,
and distinguishes final from non-final codas. The
combined model is identical to the stress model,
except Vowel non-terminals in closed and word-
internal syllables are replaced with Nucleus non-
terminals, and Vowel non-terminals in word-inital
(-final) open syllables are replaced with NucleusI
(NucleusF) non-terminals.

To summarize, the stress models distinguish
stressed and unstressed syllables in initial, final,
and internal position. The weight models distin-
guish the vowels of initial open syllables, the vow-
els of final open syllables, and other vowels, al-
lowing them to take advantage of an important cue
from syllable weight for word segmentation: if an
initial vowel is open, it should usually be long.

Figure 7 shows segmentation performance on
the Alex corpus with these more complete models.
While the performance of the weight grammars is
virtually unchanged compared to Figure 4, the two
grammars that do not model syllable weight im-
prove dramatically. This result supports our pro-
posal that much of the advantage of the weight
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Word→ {SyllUIF|SyllSIF}
Word→ {SyllUI|SyllSI} {SyllU|SyllS}{0,2} {SyllUF|SyllSF}

(a) The all-patterns stress model

Rhyme→ Vowel (Coda)
RhymeF→ Vowel (CodaF)

(b) Baseline grammar

RhymeI→ NucleusI

RhymeI→ Nucleus Coda

Rhyme→ Nucleus (Coda)
RhymeF→ NucleusF

RhymeF→ Nucleus CodaF

(c) Weight-sensitive grammar

SyllSIF→ OnsetI RhymeSF

SyllUIF→ OnsetI RhymeUF

SyllSI→ Onset RhymeS

SyllUI→ Onset RhymeU

SyllSF→ Onset RhymeSF

SyllUF→ Onset RhymeUF

RhymeSI→ Vowel Stress (Coda)
RhymeUI→ Vowel (Coda)
RhymeS→ Vowel Stress (Coda)
RhymeU→ Vowel (Coda)

RhymeSF→ Vowel Stress (CodaF)
RhymeUF→ Vowel (CodaF)

(d) Stress-sensitive grammar

Figure 6: Experiment II Grammars.
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Figure 7: Learning curves on the Alex corpus for Experiment II grammars with word-final phonotactics
that exploit Stress and Weight.
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Model Mean TF Std. Dev.
noweight:nostress 0.846 0.007
noweight:stress 0.880 0.005
weight:nostress 0.865 0.011
weight:stress 0.875 0.005

Table 2: Segmentation Token F-score for Experi-
ment II at 10,000 utterances across eight runs.

grammars over stress in Experiment I was due to
modeling of word-final coda phonotactics.

Table 2 presents token f-score at 10,000 train-
ing utterances averaged across eight runs, along
with the standard deviation in f-score. We see that
the noweight:nostress grammar is several standard
deviations than the grammars that model sylla-
ble weight and/or stress, while the syllable weight
and/or stress grammars exhibit a high degree of
overlap.

4 Conclusion

We have presented computational modeling exper-
iments that suggest that syllable weight (eventu-
ally) encodes nearly everything about word seg-
mentation that dictionary stress does. Indeed,
our experiments did not find a persistent advan-
tage to observing stress over modeling syllable
weight. While it is possible that a different mod-
eling approach might find such a persistent advan-
tage, this advantage could not provide more than
13% absolute F-score. This result suggests that
children may be able to learn and exploit impor-
tant rhythm cues to word boundaries purely on
the basis of segmental input. However, this result
also suggests that annotating input with dictionary
stress has missed important aspects of the role
of stress in word segmentation. As mentioned,
Turk et al. (1995) found that infants preferred ini-
tial light syllables to be stressed. Such a prefer-
ence obviously cannot be learned by attending to
syllable weight alone, so infants who have learned
weight distinctions must also be sensitive to non-
segmental acoustic correlates to stress. There was
no long-term advantage to observing stress in ad-
dition to attending to syllable weight in our mod-
els, however, suggesting that annotated dictionary
stress does not capture the relevant non-segmental
phonetic detail. More modeling is necessary to as-
sess the non-segmental phonetic features that dis-
tinguish stressed light syllables from unstressed
light syllables.

This investigation also highlighted a weakness
of current Adaptor Grammar models: the ‘small-
est’ factors are the size of one PCFG rule. Allow-
ing further factorizations, perhaps using feature
functions of a rule’s right-hand side, would allow
models to capture finer-grained distinctions with-
out fully splitting the symbols that are involved.
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Abstract

In this paper, we propose a joint model for
unsupervised Chinese word segmentation
(CWS). Inspired by the “products of ex-
perts” idea, our joint model firstly com-
bines two generative models, which are
word-based hierarchical Dirichlet process
model and character-based hidden Markov
model, by simply multiplying their proba-
bilities together. Gibbs sampling is used
for model inference. In order to further
combine the strength of goodness-based
model, we then integrated nVBE into our
joint model by using it to initializing the
Gibbs sampler. We conduct our experi-
ments on PKU and MSRA datasets pro-
vided by the second SIGHAN bakeoff.
Test results on these two datasets show
that the joint model achieves much bet-
ter results than all of its component mod-
els. Statistical significance tests also show
that it is significantly better than state-
of-the-art systems, achieving the highest
F-scores. Finally, analysis indicates that
compared with nVBE and HDP, the joint
model has a stronger ability to solve both
combinational and overlapping ambigui-
ties in Chinese word segmentation.

1 Introduction

Unlike English and many other western languages,
there are no explicit word boundaries in Chinese
sentences. Therefore, word segmentation is a cru-
cial first step for many Chinese language process-
ing tasks such as syntactic parsing, information re-
trieval and machine translation. A great deal of su-
pervised methods have been proposed for Chinese
word segmentation. While successful, they re-
quire manually labeled resources and often suffer
from issues like poor domain adaptability. Thus,

unsupervised word segmentation methods are still
attractive to researchers due to its independence on
domain and manually labeled corpora.

Previous unsupervised approaches to word seg-
mentation can be roughly classified into two types.
The first type uses carefully designed goodness
measure to identify word candidates. Popular
goodness measures include description length gain
(DLG) (Kit and Wilks, 1999), accessor variety
(AV) (Feng et al., 2004), boundary entropy (BE)
(Jin and Tanaka-Ishii, 2006) and normalized vari-
ation of branching entropy (nVBE) (Magistry and
Sagot, 2012) etc. Goodness measure based model
is not segmentation model in a very strict mean-
ing and is actually strong in generating word list
without supervision. It inherently lacks capabil-
ity to deal with ambiguous string, which is one of
main sources of segmentation errors and has been
extensively explored in supervised Chinese word
segmentation.

The second type focuses on designing sophis-
ticated statistical model, usually nonparametric
Bayesian models, to find the segmentation with
highest posterior probability, given the observed
character sequences. Typical statistical mod-
els includes Hierarchical Dirichlet process (HDP)
model (Goldwater et al., 2009), Nested Pitman-
Yor process (NPY) model (Mochihashi et al.,
2009) etc, which are actually nonparametric lan-
guage models and therefor can be categorized as
word-based model. Word-based model makes de-
cision on wordhood of a candidate character se-
quence mainly based on information outside the
sequence, namely, the wordhood of character se-
quences being adjacent to the concerned sequence.

Inspired by the success of character-based
model in supervised word segmentation, we pro-
pose a Bayesian HMM model for unsupervised
Chinese word segmentation. With the Bayesian
HMM model, we formulate the unsupervised seg-
mentation tasks as procedure of tagging positional
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tags to characters. Different from word-based
model, character-based model like HMM-based
model as we propose make decisions on word-
hood of a candidate character sequence based on
information inside the sequence, namely, ability of
characters to form words. Although the Bayesian
HMM model alone does not produce competi-
tive results, it contributes substantially to the joint
model as proposed in this paper.

Our joint model takes advantage from three dif-
ferent models: namely, a character-based model
(HMM-based), a word-based model (HDP-based)
and a goodness measure based model (nVBE
model). The combination of HDP-based model
and HMM-based model enables to utilize infor-
mation of both word-level and character-level. We
also show that using nVBE model as initialization
model could further improve the performance to
outperform the state-of-the-art systems and leads
to improvement in both wordhood judgment and
disambiguation ability.

Word segmentation systems are usually eval-
uated with metrics like precision, recall and F-
Score, regardless of supervised or unsupervised.
Following normal practice, we evaluate our model
and compare it with state-of-the-art systems us-
ing F-Score. However, we argue that the ability
to solve segmentation ambiguities is also impor-
tant when evaluating different types of unsuper-
vised word segmentation systems.

This paper is organized as follows. In Section
2, we will introduce several related systems for
unsupervised word segmentation. Then our joint
model is presented in Section 3. Section 4 shows
our experiment results on the benchmark datasets
and Section 5 concludes the paper.

2 Related Work

Unsupervised Chinese word segmentation has
been explored in a number of previous works and
by various methods. Most of these methods can
be divided into two categories: goodness measure
based methods and nonparametric Bayesian meth-
ods.

There have been a plenty of work that is based
on a specific goodness measure. Zhao and Kit
(2008) compared several popular unsupervised
models within a unified framework. They tried
various types of goodness measures, such as De-
scription Length Gain (DLG) proposed by Kit and
Wilks (1999), Accessor Variety (AV) proposed by

Feng et al. (2004) and Boundary Entropy (Jin and
Tanaka-Ishii, 2006). A notable goodness-based
method is ESA: “Evaluation, Selection, Adjust-
ment”, which is proposed by Wang et al. (2011)
for unsupervised Mandarin Chinese word segmen-
tation. ESA is an iterative model based on a new
goodness algorithm that adopts a local maximum
strategy and avoids threshold setting. One disad-
vantage of ESA is that it needs to iterate the pro-
cess several times on the corpus to get good perfor-
mance. Another disadvantage is the requirement
for a manually segmented training corpus to find
best value for parameters (they called it proper ex-
ponent). Another notable work is nVBE: Mag-
istry and Sagot (2012) proposed a model based
on the Variation of Branching Entropy. By adding
normalization and viterbi decoding, they improve
performance over Jin and Tanaka-Ishii (2006)
and remove most of the parameters and thresholds
from the model.

Nonparametric Bayesian models also achieved
state-of-the-art performance in unsupervised word
segmentation. Goldwater et al. (2009) introduced
a unigram and a bigram model for unsupervised
word segmentation, which are based on Dirichlet
process and hierarchical Dirichlet process (Teh et
al., 2006) respectively. The main drawback is that
it needs almost 20,000 iterations before the Gibbs
sampler converges. Mochihashi et al. (2009) ex-
tended this method by introducing a nested charac-
ter model and an efficient blocked Gibbs sampler.
Their method is based on what they called nested
Pitman-Yor language model.

One disadvantage of goodness measure based
methods is that they do not have any disambigua-
tion ability in theory in spite of their competitive
performances. This is because once the goodness
measure is given, the decoding algorithm will seg-
ment any ambiguous strings into the same word
sequences, no matter what their context is. In
contrast, nonparametric Bayesian language mod-
els aim to segment character string into a “reason-
able” sentence according to the posterior probabil-
ity. Thus, theoretically, this method should have
better ability to solve ambiguities over goodness
measure based methods.

3 Joint Model

In this section, we will discuss our joint model in
detail.
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3.1 Combining HDP and HMM
In supervised Chinese word segmentation lit-
erature, word-based approaches and character-
based approaches often have complementary ad-
vantages (Wang et al., 2010).Since the two types
of model try to solve the problem from different
perspectives and by utilizing different levels of in-
formation (word level and character level). In un-
supervised Chinese word segmentation literature,
the HDP-base model can be viewed as a typi-
cal word-based method. And we can also build
a character-based unsupervised model by using a
hidden Markov model. We believe that the HDP-
based model and the HMM-based model are also
complementary with each other, and a combina-
tion of them will take advantage of both and thus
capture different levels of information.

Now the problem we are facing is how to com-
bine these two models. To keep the joint model
simple and involve as little extra parameters as
possible, we combine the two baseline models by
just multiplying their probabilities together and
then renormalizing it. Let C = c1c2 · · · c|C| be a
string of characters andW = w1w2 · · ·w|W | is the
corresponding segmented words sequence. Then
the conditional probability of the segmentation W
given the character string C in our joint model is
defined as:

PJ(W |C) =
1

Z(C)
PD(W |C)PM (W |C) (1)

where PD(W |C) is the probability from the HDP
model as given in Equation 6 and PM (W |C)
is the probability given by the Bayesian HMM
model as given in Equation 2. Z(C) is a nor-
malization term to make sure that PJ(W |C) is a
probability distribution. The combining method is
inspired by Hinton (1999), which proved that it is
possible to combine many individual expert mod-
els by multiplying the probabilities and then renor-
malizing it. They called it “product of experts”.
We can see that combining models in this way
does not involve any extra parameters and Gibbs
sampling can be easily used for model inference.

3.2 Bayesian HMM
The dominant method for supervised Chinese
word segmentation is character-based model
which was first proposed by Xue (2003). This
method treats word segmentation as a tagging
problem, each tag indicates the position of a char-
acter within a word. The most commonly used

tag set is {Single, Begin, Middle, End}. Specifi-
cally, S means the character forms a single word,
B/E means the character is the begining/ending
character of the word, and M means the charac-
ter is in the middle of the word. Existing models
are trained on manually annotated data in a super-
vised way based on discriminative models such as
Conditional Random Fields (Peng et al., 2004;
Tseng et al., 2005). Supervised character-based
methods make full use of character level informa-
tion and thus have been very successful in the last
decade. However, no unsupervised model has uti-
lized character level information in the way as su-
pervised method does.

We can also build a character-based model for
Chinese word segmentation using hidden Markov
model(HMM) as formulated in the following
equation:

PM (W |C) =
|C|∏
i=1

Pt(ti|ti−1)Pe(ci|ti) (2)

where C and W have the same meaning as be-
fore. Pt(ti|ti−1) is the transition probability of
tag ti given its former tag ti−1 and Pe(ci|ti) is the
emission probability of character ci given its tag ti.
This model can be easily trained with Maximum
Likelihood Estimation (MLE) on annotated data
or with Expectation Maximization (EM) on raw
texts. But using any of this methods will make it
difficult to combine it with the HDP-based model.
Instead, we propose a Bayesian HMM for unsu-
pervised word segmentation. The Bayesian HMM
model is defined as follows:

ti|ti−1 = t, pt ∼Mult(pt)
ci|ti = t, et ∼Mult(et)

pt|θ ∼ Dirichlet(θ)
et|σ ∼ Dirichlet(σ)

where pt and et are transition and emission dis-
tributions, θ and σ are the symmetric parameters
of Dirichlet distributions. Now suppose we have
observed tagged text h, then the conditional prob-
ability PM (wi|wi−1 = l, h) can be obtained:

PM (wi|wi−1 = l, h)

=
|wi|∏
j=1

Pt(tj |tj−1, h)Pe(cj |tj , h) (3)

where < wi−1, wi > is a word bigram, l is the in-
dex of word wi−1, cj is the jth character in word
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wi and tj is the corresponding tag.Pt(tj |tj−1, h)
and Pe(cj |tj , h) are the posterior probabilities,
they are given as:

Pt(tj |tj−1, h) =
n<tj−1,tj> + θ

n<tj−1,∗> + Tθ
(4)

Pe(cj |tj , h) =
n<tj ,cj> + σ

n<tj ,∗> + V σ
(5)

where n<tj−1,tj> is the tag bigram count of <
tj−1, tj > in h, n<tj ,cj> denotes the number of oc-
currences of tag tj and character cj , and ∗ means
a sum operation. T and V are the size of character
tag set (we follow the commonly used {SBME}
tag set and thus T = 4 in this case) and character
vocabulary.

3.3 HDP Model
Goldwater et al. (2009) proposed a nonparametric
Bayesian model for unsupervised word segmenta-
tion which is based on HDP (Teh et al., 2006). In
this model, the conditional probability of the seg-
mentation W given the character string C is de-
fined as:

PD(W |C) =
|W |∏
i=0

PD(wi|wi−1) (6)

where wi is the ith word in W . This is actually
a nonparametric bigram language model. This bi-
gram model assumes that each different word has
a different distribution over words following it, but
all these different distributions are linked through
a HDP model:

wi|wi−1 = l ∼ Gl
Gl ∼ DP (α1, G0)
G0 ∼ DP (α,H)

where DP denotes a Dirichlet process.
Suppose we have observed segmentation re-

sult h, then we can get the posterior probability
PD(wi|wi−1 = l, h) by integrating out Gl:

PD(wi|wi−1 = l, h)

=
n<wi−1,wi> + α1PD(wi|h)

n<wi−1,∗> + α1
(7)

where n<wi−1,wi> denotes the total number of oc-
currences of the bigram < wi−1, wi > in the ob-
servation h. And PD(wi|h) can be got by integrat-
ing out G0:

PD(wi|h) =
twi + αH(wi)

t+ α
(8)

where twi denotes the number of tables associ-
ated with wi in the Chinese Restaurant Franchise
metaphor (Teh et al., 2006), t is the total number
of tables and H(wi) is the base measure of G0. In
fact, H(wi) is the prior distribution over words, so
prior knowledge can be injected in this distribution
to enhance the performance.

In Goldwater et al. (2009)’s work, the base
measureH(wi) are defined as a character unigram
model:

H(wi) = (1− ps)|wi|−1ps
∏
j

P (cij)

where, ps is the probability of generating a word
boundary. P (cij) is the probability of the jth char-
acter cij in word wi, this probability can be esti-
mated from the training data using maximum like-
lihood estimation.

3.4 Initializing with nVBE

Among various goodness measure based models,
we choose nVBE (Magistry and Sagot, 2012) to
initialize our Gibbs sampler with its segmentation
results. nVBE achieved a relatively high perfo-
mance over other goodness measure based meth-
ods. And it’s very simple as well as efficient.

Theoretically, the Gibbs sampler may be initial-
ized at random or using any other methods. Initial-
ization does not make a difference since the Gibbs
sampler will eventually converge to the posterior
distribution if it iterates as much as possible. This
is an essential attribute of Gibbs sampling. How-
ever, we believe that initializing the Gibbs sam-
pler with the result of nVBE will benefit us in
two ways. On one hand, in consideration of its
combination of nonparametric Bayesian method
and goodness-based method, it will improve the
overall performance as well as solve more seg-
mentation ambiguities with the help of HDP-based
model. On the other hand, it makes the conver-
gence of Gibbs sampling faster. In practice, ran-
dom initialization often leads to extremely slow
convergence.

3.5 Inference with Gibbs Sampling

In our proposed joint model, Gibbs sam-
pling (Casella and George, 1992) can be easily
used to identify the highest probability segmen-
tation from among all possibilities. Following
Goldwater et al. (2009), we can repeatedly sample
from potential word boundaries. Each boundary
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variable can only take on two possible values, cor-
responding to a word boundary or not word bound-
ary.

For instance, suppose we have obtained a seg-
mentation result β|ci−2ci−1cici+1ci+2|γ, where β
and γ are the words sequences to the left and
right and ci−2ci−1cici+1ci+2 are characters be-
tween them. Now we are sampling at location i
to decide whether there is a word boundary be-
tween ci and ci+1. Denote h1 as the hypothesis
that it forms a word boundary (the correspond-
ing result is βw1w2γ where w1 = ci−2ci−1ci and
w2 = ci+1ci+2), and h2 as the opposite hypoth-
esis (then the corresponding result is βwγ where
w = ci−2ci−1cici+1ci+2). The posterior probabil-
ity for these two hypotheses would be:

P (h1|h−) ∝ PD(h1|h−)PM (h1|h−) (9)

P (h2|h−) ∝ PD(h2|h−)PM (h2|h−) (10)

where PD(h|h−) and PM (h|h−) are the pos-
terior probabilities in HDP-based model and in
HMM-based model, and h− denotes the current
segmentation results for all observed data except
ci−2ci−1cici+1ci+2. Note that the normalization
term Z(C) can be ignored during inference. The
posterior probabilities for these two hypotheses in
the HDP-based model is given as:

PD(h1|h−) = PD(w1|wl, h−)
× PD(w2|w1, h

−)PD(wr|w2, h
−) (11)

PD(h2|h−) = PD(w|wl, h−)
× PD(wr|w, h−) (12)

where wl(wr) is the first word to the left (right) of
w. And the posterior probabilities for the Bayesian
HMM model is given as:

PM (h1|h−)

∝
i+2∏
j=i−2

Pt(tj |tj−1, h
−)Pe(cj |tj , h−) (13)

PM (h2|h−)

∝
i+2∏
j=i−2

Pt(tj |tj−1, h
−)Pe(cj |tj , h−) (14)

where Pt(tj |tj−1, h
−) and Pe(cj |tj , h−) are given

in Equation 4 and 5. The difference is that un-
der hypothesis h1, ci−2ci−1cici+1ci+2 are tagged
as “BMEBE” and under hypothesis h2 as “BM-
MME”.

Once the Gibbs sampler is converged, a natu-
ral way to is to treat the result of last iteration as
the final segmentation result, since each set of as-
signments to the boundary variables uniquely de-
termines a segmentation.

4 Experiments

In this section, we test our joint model on PKU
and MSRA datesets provided by the Second Seg-
mentation Bake-off (SIGHAN 2005) (Emerson,
2005). Most previous works reported their results
on these two datasets, this will make it convenient
to directly compare our joint model with theirs.

4.1 Setting

The second SIGHAN Bakeoff provides several
large-scale labeled data for evaluating the per-
formance of Chinese word segmentation systems.
Two of the four datasets are used in our exper-
iments. Both of the dataset contains only sim-
plified Chinese. Table 1 shows the statistics of
the two selected corpus. For development set, we
randomly select a small subset (about 10%) of
the training data. Specifically, 2000 sentences are
selected for PKU corpus and 8000 sentences for
MSRA corpus. The rest training data plus the test
set is then combined for segmentation but only test
data is used for evaluation. The development set is
used to tune parameters of the HDP-based model
and HMM-based model separately. Since our joint
model does not involve any additional parameters,
we reuse the parameters of the HDP-based model
and HMM-based model in the joint model. Specif-
ically, we set α1 = 1000.0, α = 10.0, ps = 0.5 for
the HDP-based model and set θ = 1.0, σ = 0.01
for the HMM-based model.

For evaluation, we use standard F-Score on
words for all following experiments. F-Score is
the harmonic mean of the word precision and re-
call. Precision is given as:

P =
#correct words in result
#total words in result

and recall is given as:

R =
#correct words in result

#total words in gold corpus

then F-Score is calculated as:

F =
2×R× F
R+ F
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Corpus TrainingSize (words) TestSize (words)
PKU 1.1M 104K

MSRA 2.37M 107K

Table 1: Statistics of training and testing data

Huang and Zhao (2007) provided an empirical
method to estimate the consistency between the
four different segmentation standards involved in
the Bakeoff-3. A lowest consistency rate 84.8%
is found among the four standards. Zhao and Kit
(2008) considered this figure as the upper bound
for any unsupervised Chinese word segmentation
systems. We also use it as the topline in our com-
parison.

4.2 Prior Knowledge Used

When it comes to the evaluation and compari-
son for unsupervised word segmentation systems,
an important issue is what kind of pre-processing
steps and prior knowledge are needed. To be fully
unsupervised, any prior knowledge such as punc-
tuation information, encoding scheme and word
length could not be used in principle. Neverthe-
less, information like punctuation can be easily in-
jected to most existing systems and significantly
enhance the performance. The problem we are
faced with is that we don’t know for sure what
kind of prior information are used in other sys-
tems. One may use a small punctuation set to
segment a long sentence into shorter ones, while
another may write simple regular expressions to
identify dates and numbers. Lot of work we com-
pare to don’t even mention this subject.

Fortunately, we notice that Wang et al. (2011)
provided four kinds of preprocessings (they call
settings). In their settings 1 and 2, punctuation
and other encoding information are not used. In
setting 3, punctuation is used to segment charac-
ter sequences into sentences, and both punctuation
and other encoding information are used in setting
4. Then the results reported in Magistry and Sagot
(2012) relied on setting 3 and setting 4. In order
to make the comparison as fair as possible, we use
setting 3 in our experiment, i.e., only a punctua-
tion set for simplified Chinese is used in all our
experiments. We will compare our experiment re-
sults to previous work on the same setting if they
are provided .

4.3 Experiment Results
Table 2 summarizes the F-Scores obtained by dif-
ferent models on PKU and MSRA corpus, as well
as several state-of-the-art systems. Detailed infor-
mation about the presented models are listed as
follows:

• nVBE: the model based on Variation of
Branching Entropy in Magistry and Sagot
(2012). We re-implement their model on set-
ting 31.

• HDP: the HDP-based model proposed by
Goldwater et al. (2009), initialized randomly.

• HDP+HMM: the model combining HDP-
based model and HMM-based model as pro-
posed in Section 3, initialized randomly.

• HDP+nVBE: the HDP-based model, initial-
ized with the results of nVBE model.

• Joint: the “HDP+HMM” model initialized
with nVBE model.

• ESA: the model proposed in Wang et al.
(2011), as mentioned above, the conducted
experiments on four different settings, we re-
port their results on setting 3.

• NPY(2): the 2-gram language model pre-
sented by Mochihashi et al. (2009).

• NPY(3): the 3-gram language model pre-
sented by Mochihashi et al. (2009).

For all of our Gibbs samplers, we run 5 times to
get the averaged F-Scores. We also give the vari-
ance of the F-Scores in Table 2. For each run, we
find that random initialization takes around 1,000
iterations to converge, while initialing with nVBE
only takes as few as 10 iterations. This makes

1The results we got with our implementation is slightly
lower than what was reported in Magistry and Sagot (2012).
According to Pei et al. (2013), they had contacted the authors
and confirmed that the higher results was due to a bug in code.
So we report the results with our bug free implementation as
Pei et al. (2013) did. Our reported results are identical to
those of Pei et al. (2013)
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System PKU MSRA
R P F R P F

nVBE 78.3 77.5 77.9 79.1 77.3 78.2
HDP 69.0 68.4 68.7(0.012) 70.4 69.4 69.9(0.020)
HDP+HMM 77.5 73.2 75.3(0.005) 79.9 73.0 76.3(0.013)
HDP+nVBE 80.7 77.9 79.3(0.012) 81.8 77.3 79.5(0.005)
Joint 83.1 79.2 81.1(0.002) 84.2 79.3 81.7(0.005)
ESA N/A N/A 77.4 N/A N/A 78.4
NPY(2) N/A N/A N/A N/A N/A 80.2
NPY(3) N/A N/A N/A N/A N/A 80.7
Topline N/A N/A 84.8 N/A N/A 84.8

Table 2: Experiment results and comparison to state-of-the-art systems. The figures in parentheses denote
the variance the of F-Scores.

our joint model very efficient and possible to work
in practical applications as well. At last, a single
sample (the last one) is used for evaluation.

From Table 2, we can see that the joint
model (Joint) outperforms all the presented sys-
tems in F-Score on all testing corpora. Specifi-
cally, comparing “HDP+HMM” with “HDP”, the
former model increases the overall F-Score from
68.7% to 75.3% (+6.6%) in PKU corpora and
from 69.9% to 76.3% (+6.4%) in MSRA corpora,
which proves that the character information in
the HMM-based model can actually enhance the
performance of the HDP-based model. Compar-
ing “HDP+nVBE” with “HDP”, the former model
also increases the overall F-Score by 10.6%/9.6%
in PKU/MSRA corpora, which demonstrates that
initializing the HDP-based model with nVBE will
improve the performance by a large margin. Fi-
nally, the joint model “Joint” take advantage from
both from the character-based HMM model and
the nVBE model, it achieves a F-Score of 81.1%
on PKU and 81.7% on MSRA. This result outper-
forms all its component baselines such as “HDP”,
“HDP+HMM” and “HDP+nVBE”.

Our joint model also shows competitive advan-
tages over several state-of-the-art systems. Com-
pared with nVBE,the F-Score increases by 3.2%
on PKU corpora and by 3.5% on MSRA cor-
pora. Compared with ESA, the F-Score increases
by 3.7%/3.3% in PKU/MSRA corpora. Lastly,
compared to the nonparametric Bayesian models
(NPY(n)), our joint model still increases the F-
Score by 1.5% (NPY(2)) and 1.0% (NPY(3)) on
MSRA corpora. Moreover, compared with the
empirical topline figure 84.8%, our joint model
achieves a pretty close F-Score. The differences

are 3.7% on PKU corpora and 3.1% on MSRA
corpora.

An phenomenon we should pay attention to is
the poor performance of the HMM-based model.
With our implementation of the Bayesian HMM,
we achieves a 34.3% F-Score on PKU corpora and
a 34.9% F-Score on MSRA corpora, just slightly
better than random segmentation. The result show
that the hidden Markov Model alone is not suit-
able for character-based Chinese word segmenta-
tion problem. However, it still substantially con-
tributes to the joint model.

We find that the variance of the results are rather
small, this shows the stability of our Gibbs sam-
plers. From the segmentation results generated
by the joint model, we also found that quite a
large amount of errors it made are related to dates,
numbers (both Chinese and English) and English
words. This problem can be easily addressed dur-
ing preprocessing by considering encoding infor-
mation as previous work, and we believe this will
bring us much better performance.

4.4 Disambiguation Ability

Previous unsupervised work usually evaluated
their models using F-score, regardless of goodness
measure based model or nonparametric Bayesian
model. However, segmentation ambiguity is
a very important factor influencing accuracy of
Chinese word segmentation systems (Huang and
Zhao, 2007). We believe that the disambigua-
tion ability of the models should also be consid-
ered when evaluating different types of unsuper-
vised segmentation systems, since different type
of models shows different disambiguation ability.
We will compare the disambiguation ability of dif-
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ferent systems in this section.
In general, there are mainly two kinds of ambi-

guity in Chinese word segmentation problem:

• Combinational Ambiguity: Given charac-
ter strings “A” and “B”, if “A”, “B”, “AB”
are all in the vocabulary, and “AB” or “A-B”
(here “-” denotes a space) occurred in the real
text,then “AB” can be called a combinational
ambiguous string.

• Overlapping Ambiguity: Given character
strings “A”, “J” and “B”, if “A”, “B”, “AJ”
and “JB” are all in the vocabulary, and “A-
JB” or “AJ-B” occurred in the real text, then
“AJB” can be called an overlapping ambigu-
ous string.

We count the total number of mistakes differ-
ent systems made at ambiguous strings (the vo-
cabulary is obtained from the gold standard an-
swer of testing set). As we have mentioned in
Section 2, goodness measure based methods such
as nVBE do not have any disambiguation ability
in theory. Our observation is identical to this ar-
gument. We find that nVBE always segments am-
biguous strings into the same result. Take a combi-
national string “�k” as an example, “� (just)”,
“k (have)” and “�k (only)” are all in the vo-
cabulary. In the PKU test set, this string occurs
14 times as “�-k (just have)” and 18 times as
“�k (only)”, 32 times in total. nVBE segments
all the 32 strings into “�k (only)” (i.e. 18 of
them are correct), while the joint model segments
it 22 times as “�k (only)” and 10 times as “�-
k (just have)” according to its context, and 24 of
them are correct.

Table 3 and 4 show the statistics of combi-
national ambiguity and overlapping ambiguity re-
spectively. The numbers in parentheses denote the
total number of ambiguous strings. From these
tables, we can see that HDP+nVBE makes less
mistakes than nVBE in most circumstances, ex-
cept that it solves less combinational ambigui-
ties on MSRA corpora. But our proposed joint
model solves the most combinational and over-
lapping ambiguities, on both PKU and MSRA
corpora. Specifically, compared to nVBE, the
joint model correctly solves 171/871 more com-
binational ambiguities on PKU/MSRA corpora,
which is a 0.6%/13.8% relative error reduction.
It also solves 28/45 more overlapping ambiguities
on PKU/MSRA corpora, which is a 11.5%/23.4%

relative error reduction. This indicates that the
joint model has a stronger ability of disambigua-
tion over the compared systems.

System PKU(35371) MSRA(38506)
nVBE 8087 7236

HDP+nVBE 7970 7500
Joint 7916 6305

Table 3: Statistics of combinational ambiguity.
This table shows the total number of mistakes
made by different systems at combinational am-
biguous strings. The numbers in parentheses de-
note the total number of combinational ambiguous
strings.

System PKU(603) MSRA(467)
nVBE 244 192

HDP+nVBE 239 164
Joint 216 157

Table 4: Statistics of overlapping ambiguity. This
table shows the total number of mistakes made
by different systems at overlapping ambiguous
strings. The numbers in parentheses denote the to-
tal number of overlapping ambiguous strings.

4.5 Statistical Significance Test

The main results presented in Table 2 has shown
that our proposed joint model outperforms the
two baselines as well as state-of-the-art systems.
But it is also important to know if the improve-
ment is statistically significant over these sys-
tems. So we conduct statistical significance tests
of F-scores among these various models. Follow-
ing Wang et al. (2010), we use the bootstrapping
method (Zhang et al., 2004).

Here is how it works: suppose we have a testing
set T0 to test several word segmentation systems,
there are N testing examples (sentences or line of
characters) in T0. We create a new testing set T1

with N examples by sampling with replacement
from T0, then repeat these process M − 1 times.
And we will have a totalM+1 testing sets. In our
test procedures, M is set to 2000.

Since we just implement our joint model and
its component models, we can not generate paired
samples for other models (i.e. ESA and NPY(n)).
Instead, we follow Wang et al. (2010)’s method
and first calculate the 95% confidence interval for
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our proposed model. Then other systems can be
compared with the joint model in this way: if the
F-score of system B doesn’t fall into the 95% con-
fidence interval of system A, they are considered
as statistically significantly different from each
other.

For all significant tests, we measure the 95%
confidence interval for the difference between
two models. First, the test results show that
“HDP+nVBE” and “HDP+HMM” are both sig-
nificantly better than “HDP”. Second, the
“Joint” model significantly outperforms all its
component models, including “HDP”, “nVBE”,
“HDP+nVBE” and “HDP+HMM”. Finally, the
comparison also shows that the joint model signif-
icantly outperforms state-of-the-art systems like
ESA and NPY(n).

5 Conclusion

In this paper, we proposed a joint model for un-
supervised Chinese word segmentation. Our joint
model is a combination of the HDP-based model,
which is a word-based model, and HMM-based
model, which is a character-based model. The
way we combined these two component base-
lines makes it natural and simple to inference with
Gibbs sampling. Then the joint model take ad-
vantage of a goodness-based method (nVBE) by
using it to initialize the sampler. Experiment re-
sults conducted on PKU and MSRA datasets pro-
vided by the second SIGHAN Bakeoff show that
the proposed joint model not only outperforms the
baseline systems but also achieves better perfor-
mance (F-Score) over several state-of-the-art sys-
tems. Significance tests showed that the improve-
ment is statistically significant. Analysis also in-
dicates that the joint model has a stronger abil-
ity to solve ambiguities in Chinese word segmen-
tation. In summary, the joint model we pro-
posed combines the strengths of character-based
model, nonparametric Bayesian language model
and goodness-based model.
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Abstract

Supervised methods have been the domi-
nant approach for Chinese word segmen-
tation. The performance can drop signif-
icantly when the test domain is different
from the training domain. In this paper,
we study the problem of obtaining par-
tial annotation from freely available data
to help Chinese word segmentation on dif-
ferent domains. Different sources of free
annotations are transformed into a unified
form of partial annotation and a variant
CRF model is used to leverage both fully
and partially annotated data consistently.
Experimental results show that the Chi-
nese word segmentation model benefits
from free partially annotated data. On the
SIGHAN Bakeoff 2010 data, we achieve
results that are competitive to the best re-
ported in the literature.

1 Introduction

Statistical Chinese word segmentation gains high
accuracies on newswire (Xue and Shen, 2003;
Zhang and Clark, 2007; Jiang et al., 2009; Zhao
et al., 2010; Sun and Xu, 2011). However, man-
ually annotated training data mostly come from
the news domain, and the performance can drop
severely when the test data shift from newswire
to blogs, computer forums and Internet literature
(Liu and Zhang, 2012).

Several methods have been proposed for solv-
ing the domain adaptation problem for segmenta-
tion, which include the traditional token- and type-
supervised methods (Song et al., 2012; Zhang et
al., 2014). While token-supervised methods rely
on manually annotated target-domain sentences,
type-supervised methods leverage manually as-
sembled domain-specific lexicons to improve
target-domain segmentation accuracies. Both
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Figure 1: The segmentation problem, illustrated
using the sentence “浦东 (Pudong) 开发 (devel-
opment) 与 (and) 法制 (legal) 建设 (construc-
tion)”. Possible segmentation labels are drawn un-
der each character, where b, m, e, s stand for the
beginning, middle, end of a multi-character word,
and a single character word, respectively. The path
shows the correct segmentation by choosing one
label for each character.

methods are competitive given the same amount of
annotation effects (Garrette and Baldridge, 2012;
Zhang et al., 2014). However, obtaining manually
annotated data can be expensive.

On the other hand, there are free data which
contain limited but useful segmentation informa-
tion over the Internet, including large-scale un-
labeled data, domain-specific lexicons and semi-
annotated web pages such as Wikipedia. In the
last case, word-boundary information is contained
in hyperlinks and other markup annotations. Such
free data offer a useful alternative for improving
the segmentation performance, especially on do-
mains that are not identical to newswire, and for
which little annotation is available.

In this paper, we investigate techniques for
adopting freely available data to help improve the
performance on Chinese word segmentation. We
propose a simple but robust method for construct-
ing partial segmentation from different sources
of free data, including unlabeled data and the
Wikipedia. There has been work on making use
of both unlabeled data (Sun and Xu, 2011; Wang
et al., 2011) and Wikipedia (Jiang et al., 2013)
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to improve segmentation. However, no empiri-
cal results have been reported on a unified ap-
proach to deal with different types of free data.
We use a conditional random fields (Lafferty et al.,
2001; Tsuboi et al., 2008) variant that can lever-
age the partial annotations obtained from different
sources of free annotation. Training is achieved by
a modification to the learning objective, incorpo-
rating partial annotation likelihood, so that a single
model can be trained consistently with a mixture
of full and partial annotation.

Experimental results show that our method of
using partially annotated data can consistently im-
proves cross-domain segmentation performance.
We obtain results which are competitive to the
best reported in the literature. Our segmentor
is freely released at https://github.com/
ExpResults/partial-crfsuite.

2 Obtaining Partially Annotated Data

We model the Chinese word segmentation task as
a character sequence tagging problem, which is to
give each character in a sentence a word-boundary
tag (Xue and Shen, 2003). We adopt four tags, b,
m, e and s, which represent the beginning, middle,
end of a multi-character word, and a single char-
acter word, respectively. A manually segmented
sentence can be represented as a tag sequence, as
shown in Figure 1.

We investigate two major sources of freely-
available annotations: lexicons and natural anno-
tation, both with the help of unannotated data.
To make use of the first source of informa-
tion, we incorporate words from a lexicon into
unannotated sentences by matching of character
sequences, resulting in partially annotated sen-
tences, as shown in Figure 2a. In this example,
the word “狐岐山 (the Huqi Mountain)” in the
unannotated sentence matches an item in the lex-
icon. As a result, we obtain a partially-annotated
sentence, in which the segmentation ambiguity of
the characters “狐 (fox)”, “岐 (brandy road)” and
“山 (mountain)” are resolved (“狐” being the be-
ginning, “岐” being the middle and “山” being the
end of the same word). At the same time, the seg-
mentation ambiguity of the surrounding characters
“在 (at)” and “救 (save)” are reduced (“在” be-
ing either a single-character word or the end of
a multi-character word, and “救” being either a
single-character word or the beginning of a multi-
character word).

.. 在. 狐. 歧. 山. 救. 治. 碧. 瑶. ，.

b

.

b

.

b

.

b

.

b

.

b

.

b

.

b

.

b

.

m

.

m

.

m

.

m

.

m

.

m

.

m

.

m

.

m

.

e

.

e

.

e

.

e

.

e

.

e

.

e

.

e

.

e

.

s

.

s

.

s

.

s

.

s

.

s

.

s

.

s

.

s

(a) “在 (at) 狐岐山 (Huqi Mountain) 救 治 (save) 碧
瑶 (Biyao)”, where “狐岐山” matches a lexicon word.
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(b) “如 (e.g.)乳铁蛋白 (lysozyme)、 溶菌酶 (lactoferrin)”,
where “乳铁蛋白” is a hyperlink.

Figure 2: Examples of partially annotated data.
The paths show possible correct segmentations.

Natural annotation, which refers to word
boundaries that can be inferred from URLs, fonts
or colors on web pages, also result in partially-
annotated sentences. Taking a web page shown
in Figure 2b for example. It can be inferred from
the URL tags on “乳铁蛋白” that “乳” should be
either the beginning of a multi-character word or
a single-character word, and “白” should be either
the end a multi-character word or single-character
word. Similarly, possible tags of the surrounding
character “如” and “、” can also be inferred.

We turn both lexicons and natural annotation
into the same form of partial annotation with
same unresolved ambiguities, as shown in Figure
2, and use them together with available full anno-
tation (Figure 1) as the training data for the seg-
mentor. In this section, we describe in detail how
to obtain partially annotated sentences from each
resource, respectively.

2.1 Lexicons

In this scenario, we assume that there are unla-
beled sentences along with a lexicon for the target
domain. We obtain partially segmented sentences
by extracting word boundaries from the unlabeled
sentences with the help of the lexicon. Previous
matching methods (Wu and Tseng, 1993; Wong
and Chan, 1996) for Chinese word segmentation
largely rely on the lexicons, and are generally con-
sidered being weak in ambiguity resolution (Gao
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People’s
Daily

看到 (saw)海南 (Hainan)旅游业 (tourist industry)充满 (full)希望 (hope)
saw tourist industry in Hainan is full of hope

Wikipedia
主要(mainly)是(is)旅游 (tourist)业 (industry)和(and)软件 (software)产业(industry)
mainly is tourist industry and software industry

(a) Case of incompatible annotation on “旅游业(tourist industry)” between People’s Daily and Wikipedia.

Literature
《说文解字 (Shuo Wen Jie Zi, a book)段(segmented)注(annotated)》
the segmented and annotated version of Shuo Wen Jie Zi

Computer
每条(each)记录(record)被(is)分隔(splitted)为(into)字段 (fields)
each record is splitted into several fields

(b) Similar subsequence “字段(field)” is segmented differently under different domains in Wikipedia.

Table 1: Examples natural annotation from Wikipedia. Underline marks annotated words.

et al., 2005). But for obtaining the partial labeled
data with lexicon, the matching method can still be
a solution. Since we do not aim to recognize every
word from sentence, we can select a lexicon with
smaller coverage but less ambiguity to achieve rel-
atively precise matching result.

In this paper, we apply two matching schemes
to the same raw sentences to obtain partially an-
notated sentences. The first is a simple forward-
maximum matching (FMM) scheme, which is
very close to the forward maximum matching al-
gorithm of Wu and Tseng (1993) for Chinese word
segmentation. This scheme scans the input sen-
tence from left to right. At each position, it at-
tempts to find the longest subsequence of Chi-
nese characters that matches a lexicon entry. If
such an entry is found, the subsequence is tagged
with the corresponding tags, and its surrounding
characters are also constrained to a smaller set of
tags. If no subsequence is found in the lexicon, the
character is left with all the possible tags. Taking
the sentence in Figure 2a for example. When the
algorithm scans the second character, “狐”, and
finds the entry “狐岐山” in the lexicon, the sub-
sequence of characters is recognized as a word,
and tagged with b, m and e, respectively. At the
same time, the previous character “在” can be in-
ferred as only end of a multi-character word (e) or
a single-character word (s). The second matching
scheme is backward maximum matching, which
can be treated as the application of FMM on the
reverse of unlabeled sentences using a lexicon of
reversed words.

To mitigate the errors resulting from one single
matching scheme, we combine the two matching
results by agreement. The basic idea is that if a
subsequence of sentence is recognized as word by

multiple matching results, it can be considered as a
more precise annotation. Our algorithm reads par-
tial segmentation by different methods and selects
the subsequences that are identified as word by all
methods as annotated words.

2.2 Natural Annotation

We use the Chinese Wikipedia for natural anno-
tation. Partially annotated sentences are readily
formed in Wikipedia by markup syntax, such as
URLs. However, some subtle issues exist if the
sentences are used directly. One problem is in-
compatibility of segmentation standards between
the annotated training data and Wikipedia. Jiang
et al. (2009) discuss this incompatibility problem
between two corpora — the CTB and the Peo-
ple’s Daily; the problem is even more severe on
Wikipedia because it can be edited by any user.
Table 1a shows a case of incompatible annota-
tion between the People’s Daily data and natural
annotation in Wikipedia, where the three charac-
ters “旅游业” are segmented differently. Both can
be treated as correct, although they have different
segmentation granularities.

Another problem is the intrinsic ambiguity of
segmentation. The same character sequence can
be segmented into different words under differ-
ent contexts. If the training and test data contain
different contexts, the learned model can give in-
correct results on the test data. This is particu-
larly true across different domains. Table 1b gives
such an example, where the character sequence
“字段” is segmented differently in two of our test
domains, but both cases exist in Wikipedia.

In summary, Wikipedia introduces both use-
ful information for domain adaptation and harm-
ful noise with negative effects on the model. To
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achieve better performance of domain adaptation
using Wikipedia, one intuitive approach is to se-
lect more domain-related data and less irrelevant
data to minimize the risks that result from incom-
patible annotation and domain difference.

To this end, we assume that there are some raw
sentences on the target domain, which can be used
to evaluate the relevance between Wikipedia and
target domain test data. We assume that URL-
tagged entries reflect the segmentation standards
of Wikipedia sentence, and use them to match
Wikipedia sentences with the raw target domain
data. If the character sequence of any URL-tagged
entry in a Wikipedia sentence matches the target
domain data, the Wikipedia sentence is selected
for training. Another advantage of such data se-
lection is that the training time consumption can
be reduced by reducing the size of training data.

3 CRF for Word Segmentation

We follow the work of Zhao et al. (2010) and Sun
and Xu (2011), and adopt the Conditional Random
Fields (CRF) model (Lafferty et al., 2001) for the
sequence labeling problem of word segmentation.
Given an input characters sequence, the task is to
assign one segmentation label from {b,m, e, s} on
each character. Let x = (x1, x2, ..., xT ) be the
sequence of characters in sentence whose length
is T , and y = (y1, y2, ..., yT ) be the correspond-
ing label sequence, where yi ∈ Y . The linear-
chain conditional random field for Chinese word
segmentation can be formalized as

p(y|x) =
1
Z

exp
T∑

t=1

∑
k

λkfk(yt, yt−1,x) (1)

where λk are the model parameters, fk are the fea-
ture functions and Z is the probability normalizer.

Z =
∑
y

exp
T∑

t=1

∑
k

λkfk(yt, yt−1,x) (2)

We follow Sun and Xu (2011) and use the fea-
ture templates shown in Table 2 to model the seg-
mented task. For ith character in the sentence, the
n-gram features represent the surrounding charac-
ters of this character; Type categorizes the charac-
ter it into digit, punctuation, english and other;
Identical indicates whether the input character is
the same with its surrounding characters. This
feature captures repetition patterns such as “试
试 (try)” or “走走 (stroll)”.

Type Template
unigram Cs (i− 3 < s < i + 3)
bigram CsCs+1 (i− 3 < s < i + 2)

CsCs+2 (i− 3 < s < i + 1)
type Type(Ci)

Type(Cs)Type(Cs+1)
(i− 1 < s < i + 2)

identical Identical(Cs, Cs+1) (i − 3 <
s < i + 1)
Identical(Cs, Cs+2) (i − 3 <
s < i)

Table 2: Feature templates for the ith character.

For fully-annotated training data, the learning
problem of conditional random fields is to maxi-
mize the log likelihood over all the training data
(Lafferty et al., 2001)

L =
N∑

n=1

log p(y(n)|x(n))

Here N is the number of training sentences. Both
the likelihood p(y(n)|x(n)) and its gradient can be
calculated by performing the forward-backward
algorithm (Baum and Petrie, 1966) on the se-
quence, and several optimization algorithm can be
adopted to learn parameters from data, including
L-BFGS (Liu and Nocedal, 1989) and SGD (Bot-
tou, 1991).

4 Training a CRF with partially
annotated data

For word segmentation with partially annotated
data, some characters in a sentence can have
a definite segmentation label, while some can
have multiple labels with ambiguities remain-
ing. Taking the partially annotated sentence
in Figure 2a for example, the corresponding
potential label sequence for “在狐岐山救” is
{(e, s), (b), (m), (e), (b, s)}, where the characters
“狐”, “岐” and “山” have fixed labels but for “在”
and “救”, some ambiguities exist. Note that the
full annotation in Figure 1 can be regarded as a
special case of partial annotation, where the num-
ber of potential labels for each character is one.

We follow Tsuboi et al. (2008) and model
marginal probabilities over partially annotated
data. Define the possible labels that correspond
to the partial annotation as L = (L1, L2, ..., LT ),
where each Li is a non-empty subset of Y that cor-
responds to the set of possible labels for xi. Let
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YL be the set of all possible label sequences where
∀y ∈ YL, yi ∈ Li. The marginal probability of
YL can be modeled as

p(YL|x) =
1

Z

∑
y∈YL

exp

T∑
t=1

∑
k

λkfk(yt, yt−1,x) (3)

Defining the unnormalized marginal probability as

ZYL
=

∑
y∈YL

exp
T∑

t=1

∑
k

λkfk(yt, yt−1,x),

and the normalizer Z being the same as Equation
2, the log marginal probability of YL over N par-
tially annotated training examples can be formal-
ized as

LYL
=

N∑
n=1

log p(YL|x) =
N∑

n=1

(log ZYL
− log Z)

The gradient of the likelihood can be written as

∂LYL

∂λk
=

N∑
n=1

T∑
t=1

∑
yYL

∈Lt,

y′YL
∈Lt−1

fk(yYL , y′YL
,x)pYL(yYL , y′YL

|x)

−
N∑

n=1

T∑
t=1

∑
y,y′

fk(y, y′,x)p(y, y′|x)

Both ZYL
and its gradient are similar in form to

Z. By introducing a modification to the forward-
backward algorithm, ZYL

and LYL
can be calcu-

lated. Define the forward variable for partially an-
notated data αYL,t(j) = pYL

(x⟨1,...,t⟩, yt = j). A
modification on the forward algorithm can be for-
malized as

αYL,t(j) =

{
0 j /∈ Lt∑

i∈Lt−1
Ψt(j, i, xt)αYL,t−1(i) j ∈ Lt

where Ψt(j, i, x) is a potential function that equals∑
k λkfk(yt = j, yt−1 = i, xt). Similarly, for the

backward variable βYL,t,

βYL,t(i) =

{
0 i /∈ Lt∑

j∈Lt+1
Ψt(j, i, xt+1)βYL,t+1(j) i ∈ Lt

ZYL
can be calculated by αYL

(T ),
and pYL

(y, y′|x) can be calculated by
αYL,t−1(y′)Ψt(y, y′, xt)βYL,t(y).

Note that if each element in YL is constrained
to one single label, the CRF model in Equation 3

degrades into Equation 1. So we can train a unified
model with both fully and partially annotated data.
We implement this CRF model based on a open
source toolkit CRFSuite.1 In our experiments, we
use the L-BFGS (Liu and Nocedal, 1989) algo-
rithm to learn parameters from both fully and par-
tially annotated data.

5 Experiments

We perform our experiments on the domain adap-
tation test data from SIGHAN Bakeoff 2010 (Zhao
et al., 2010), adapting annotated training sentences
from People’s Daily (PD) (Yu et al., 2001) to
different test domains. The fully annotated data
is selected from the People’s Daily newspaper
in January of 1998, and the four test domains
from the SIGHAN Bakeoff 2010 include finance,
medicine, literature and computer. Sample seg-
mented data in the computer domain from this
bakeoff is used as development set. Statistics of
the data are shown in first half of Table 3. We
use wikidump201404192 for the Wikipedia data.
All the traditional Chinese pages in Wikipedia are
converted to simplified Chinese. After filtering
functional pages like redirection and removing du-
plication, 5.45 million sentences are reserved.

For comparison with related work on using a
lexicon to improve segmentation, another set of
test data is chosen for this setting. We use the Chi-
nese Treebank (CTB) as the source domain data,
and Zhuxian (a free Internet novel, also named as
“Jade dynasty”, referred to as ZX henceforth) as
the target domain data.3 The ZX data are written
in a different style from newswire, and contains
many out-of-vocabulary words. This setting has
been used by Liu and Zhang (2012) and Zhang et
al. (2014) for domain adaptation of segmentation
and POS-tagging. We use the standard training,
development and test split. Statistics of the test
data annotated by Zhang et al. (2014) are shown
in the second half of Table 3.

The data preparation method in Section 2 and
the CRF method in Section 4 are used for all
the experiments. Both recall of out-of-vocabulary
words (Roov) and F-score are used to evaluate the

1http://www.chokkan.org/software/
crfsuite/

2http://dumps.wikimedia.org/zhwiki/
20140419/

3Annotated target domain test data and lexicon are avail-
able from http://ir.hit.edu.cn/˜mszhang/
eacl14mszhang.zip.
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PD
→

SI
G

H
A

N Data set Train Development Test
PD Computer Finance Medicine Literature Computer

# sent. 19,056 1,000 560 1,308 670 1,329
# words 1,109,734 21,398 33,035 31,499 35,735 35,319
OOV 0.1766 0.0874 0.1102 0.0619 0.1522

C
T

B
5
→

Z
X Data set Train Development Test Unlabeled

W
ik

ip
ed

ia

Unlabeled
CTB5 ZX

# sent. 18,086 788 1,394 32,023 5,456,151
# words 493,934 20,393 34,355
OOV 0.1377 0.1550

Table 3: Statistics of data used in this paper.

segmentation performance. There is a mixture of
Chinese characters, English words and numeric
expression in the test data from SIGHAN Bakeoff
2010. To test the influence of Wikipedia data on
Chinese word segmentation alone, we apply reg-
ular expressions to detect English words and nu-
meric expressions, so that they are marked as not
segmented. After performing this preprocessing
step, cleaned test input data are fed to the CRF
model to give a relatively strong baseline.

5.1 Free Lexicons

5.1.1 Obtaining lexicons
For domain adaption from CTB to ZX, we use
a lexicon released by Zhang et al. (2014). The
lexicon is crawled from a online encyclopedia4,
and contains the names of 159 characters and ar-
tifacts in the Zhuxian novel. We follow Zhang et
al. (2014) and name it NR for convenience of fur-
ther discussion. The NR lexicon can be treated
as a strongly domain-related, high quality but rel-
atively small lexicon. It’s a typical example of
freely available lexicon over the Internet.

For domain adaptation from PD to medicine and
computer, we collect a list of page titles under
the corresponding categories in Wikipedia. For
medicine, entries under essential medicines, bi-
ological system and diseases are collected. For
computer, entries under computer network, Mi-
crosoft Windows and software widgets are se-
lected. These lexicons are typical freely available
lexicons that we can access to.

5.1.2 Obtaining Unlabeled Sentences
For ZX, partially annotated sentences are obtained
using the NR lexicon and unlabeled ZX sentences
by applying the matching scheme described in

4http://baike.baidu.com/view/18277.htm
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Figure 3: F-score on the development data when
using different numbers of unlabeled data.

Section 2. The CTB5 training data and the par-
tially annotated data are mixed as the final train-
ing data. Different amounts of unlabeled data are
applied to the development test set, and results are
shown in Figure 3. From this figure we can see
that incorporating 16K sentences gives the high-
est accuracy, and adding more partial labeled data
does not change the accuracy significantly. So for
the ZX experiments, we choose the 16K sentences
as the unlabeled data.

For the medicine and computer experiments, we
selected domain-specific sentences by matching
with the domain-specific lexicons. About 46K out
of the 5.45 million wiki sentences contain subse-
quences in the medicine lexicon and 22K in the
case of the computer domain. We randomly se-
lect 16K sentences as the unlabeled data for each
domain, respectively.

5.1.3 Final results

We incorporate the partially annotated data ob-
tained with the help of lexicon for each of the
test domain. For adaptation from CTB to ZX, we
trained our baseline model on the CTB5 training
data with the feature templates in Table 2. For
adaptation from PD to medicine and computer, we
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Domain ZX Medicine Computer
F Roov F Roov F Roov

Baseline 87.50 73.65 91.36 72.95 93.16 84.02
Baseline+Lexicon Feature 90.36 80.69 91.60 74.39 93.14 84.27
Baseline+PA (Lex) 90.63 84.88 91.68 74.99 93.47 85.63
Zhang et al. (2014) 88.34 - - - - -

Table 4: Final result for adapting CTB to Zhuxian and adapting PD to the medicine and computer
domains, using partially annotated data (referred to as PA) obtained from unlabeled data and lexicons.

trained our baseline model on the PD training data
with the same feature template setting.

Previous research makes use of a lexicon by
adding lexicon features directly into a model (Sun
and Xu, 2011; Zhang et al., 2014), rather than
transforming them into partially annotated sen-
tences. To make a comparison, we follow Sun and
Xu (2011) and add three lexicon features to repre-
sent whether ci is located at the beginning, middle
or the end of a word in the lexicon, respectively.
For each test domain, the lexicon for the lexi-
con feature model consists of the most frequent
words in the source domain training data (about
6.7K for CTB5 and 8K for PD, respectively) and
the domain-specific lexicon we obtained in Sec-
tion 5.1.1.

The results are shown in Table 4, where the first
row shows the performance of the baseline mod-
els and the second row shows the performance
of the model incorporating lexicon feature. The
third row shows our method using partial anno-
tation. On the ZX test set, our method outper-
forms the baseline by more than 3 absolute per-
centage. The model with partially annotated data
performs better than the one with additional lexi-
con features. Similar conclusion is obtained when
adapting from PD to medicine and computer. By
incorporating the partially annotated data, the seg-
mentation of lexicon words, along with the con-
text, is learned.

We also compare our method with the work of
Zhang et al. (2014), who reported results only on
the ZX test data. We use the same lexicon settings.
Our method gives better result than Zhang et al.
(2014), showing that the combination of a lexicon
and unannotated sentence into partially annotated
data can lead to better performance than using a
dictionary alone in type-supervision. Given that
we only explore the use of free resource, combin-
ing a lexicon with unannotated sentences is a bet-
ter option than using the lexicon directly. Zhang
et al.’s concern, on the other hand, is to compare

Method
Com. Dev
F Roov

Baseline 93.56 83.75
Baseline+PA (Random 160K) 94.29 86.58
Baseline+PA (Selected) 95.00 88.28

Table 5: The performance of data selection on the
development set of the computer domain.

type- and token-annotation. Our partial annota-
tion can thus be treated as a compromise to obtain
some pseudo partial token-annotations when full
token annotations are unavailable. Another thing
to note is that the model of Zhang et al. (2014) is
a joint model for segmentation and POS-tagging,
which is generally considered stronger than a sin-
gle segmentation model.

5.2 Free Natural Annotation

When extracting word boundaries from Wikipedia
sentences, we ignore natural annotations on En-
glish words and digits because these words are rec-
ognized by the preprocessor. Following Jiang et
al. (2013), we also recognize a naturally annotated
two-character subsequence as a word.

5.2.1 Effect of data selection
To make better use of more domain-specific data,
and to alleviate noise in partial annotation, we ap-
ply the selection method proposed in Section 2
to the Wikipedia data. On the computer domain
development test data, this selection method re-
sults in 9.4K computer-related sentences with par-
tial annotation. A model is trained with both the
PD training data and the partially annotated com-
puter domain Wikipedia data. For comparison, we
also trained a model with 160K randomly selected
Wikipedia sentences. The experimental result is
shown in Table 5. The model incorporating se-
lected data achieves better performance compared
to the model with randomly sampled data, demon-
strating that data selection is helpful to improving
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Method
Finance Medicine Literature Computer

Avg-FF Roov F Roov F Roov F Roov
Baseline 95.20 86.90 91.36 72.90 92.27 73.61 93.16 83.48 93.00
Baseline+PA (Ran-
dom 160K)

95.16 87.60 92.41 78.13 92.17 75.30 93.91 83.48 93.41

Baseline+PA
(Selected)

95.54 88.53 92.47 78.28 92.49 76.84 93.93 87.53 93.61
+0.34 +1.11 +0.22 +0.77

Jiang et al. (2013) 93.16 93.34 93.53 91.19 92.80

Table 6: Experimental results on the SIGHAN Bakeoff 2010 data.

the domain adaption accuracy.

5.2.2 Final Result
The final results on the four test domains are
shown in Table 6. From this table, we can see
that significant improvements are achieved with
the help of the partially annotated Wikipedia data,
when compared to the baseline. The models
trained with selected partial annotation perform
better than those trained with random partial an-
notation. Our F-scores are competitive to those re-
ported by Jiang et al. (2013). However, since their
model is trained on a different source domain, the
results are not directly comparable.

5.2.3 Analysis
In this section, we study the effect of Wikipedia on
domain adaptation when no data selection is per-
formed, in order to analyze the effect of partially
annotated data. We randomly sample 10K, 20K,
40K, 80K and 160K sentences from the 5.45 mil-
lion Wikipedia sentences, and incorporate them
into the training process, respectively. Five models
are obtained adding the baseline, and we test their
performances on the four test domains. Figure 4
shows the results.

From the figure we can see that for the medicine
and computer domains, where the OOV rate is rel-
atively high, the F-score generally increases when
more data from Wikipedia are used. The trends
of F-score and OOV recall against the volume of
Wikipedia data are almost identical. However, for
the finance and literature domains, which have low
OOV rates, such a relation between data size and
accuracy is not witnessed. For the literature do-
main, even an opposite trends is shown.

We can draw the following conclusions: (1)
Natural annotation on Wikipedia data contributes
to the recognition of OOV words on domain adap-
tation; (2) target domains with more OOV words
benefit more from Wikipedia data. (3) along with

Method
Med. Com.

F F
Baseline 91.36 93.16
Baseline+PA (Lex) 91.68 93.47
Baseline+PA (Natural) 92.47 93.93
Baseline+PA (Lex+Natural) 92.63 94.07

Table 7: Results by combining different sources of
free annotation.

the positive effect on OOV recognition, Wikipedia
data can also introduce noise, and hence data se-
lection can be useful.

5.3 Combining Lexicon and Natural
Annotation

To make the most use of free annotation, we com-
bine available free lexicon and natural annotation
resources by joining the partially annotated sen-
tences derived using each resource, training our
CRF model with these partially annotated sen-
tences and the fully annotated PD sentences. The
tests are performed on medicine and computer do-
mains. Table 7 shows the results, where further
improvements are made on both domains when the
two types of resources are combined.

6 Related Work

There has been a line of research on making use of
unlabeled data for word segmentation. Zhao and
Kit (2008) improve segmentation performance by
mutual information between characters, collected
from large unlabeled data; Li and Sun (2009) use
punctuation information in a large raw corpus to
learn a segmentation model, and achieve better
recognition of OOV words; Sun and Xu (2011) ex-
plore several statistical features derived from un-
labeled data to help improve character-based word
segmentation. These investigations mainly focus
on in-domain accuracies. Liu and Zhang (2012)
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Figure 4: Performance of the model incorporating difference sizes of Wikipedia data. The solid line
represents the F-score and dashed line represents the recall of OOV words.

study domain adaptation using an unsupervised
self-training method. In contrast to their work,
we make use of not only unlabeled data, but also
leverage any free annotation to achieve better re-
sults for domain adaptation.

There has also been work on making use of a
dictionary and natural annotation for segmenta-
tion. Zhang et al. (2014) study type-supervised do-
main adaptation for Chinese segmentation. They
categorize domain difference into two types: dif-
ferent vocabulary and different POS distributions.
While the first type of difference can be effec-
tively resolved by using lexicon for each domain,
the second type of difference needs to be resolved
by using annotated sentences. They found that
given the same manual annotation time, a com-
bination of the lexicon and sentence is the most
effective. Jiang et al. (2013) use 160K Wikipedia
sentences to improves segmentation accuracies on
several domains. Both Zhang et al. (2014) and
Jiang et al. (2013) work on discriminative mod-
els using the structure perceptron (Collins, 2002),
although they study two different sources of infor-
mation. In contrast to their work, we unify both
types of information under the CRF framework.

CRF has been used for Chinese word segmenta-
tion (Tseng, 2005; Shi and Wang, 2007; Zhao and
Kit, 2008; Wang et al., 2011). However, most pre-
vious work train a CRF by using full annotation
only. In contrast, we study CRF based segmenta-
tion by using both full and partial annotation.

Several other variants of CRF model has been
proposed in the machine learning literature, such
as the generalized expectation method (Mann and
McCallum, 2008), which introduce knowledge by
incorporating a manually annotated feature dis-
tribution into the regularizer, and the JESS-CM
(Suzuki and Isozaki, 2008), which use a EM-like
method to iteratively optimize the parameter on
both the annotated data and unlabeled data. In
contrast, we directly incorporate the likelihood of
partial annotation into the objective function. The
work that is the most similar to ours is Tsuboi et
al. (2008), who modify the CRF learning objec-
tive for partial data. They focus on Japanese lexi-
cal analysis using manually collected partial data,
while we investigate the effect of partial annota-
tion from freely available sources for Chinese seg-
mentation.

7 Conclusion

In this paper, we investigated the problem of do-
main adaptation for word segmentation, by trans-
ferring various sources of free annotations into a
consistent form of partially annotated data and ap-
plying a variant of CRF that can be trained using
fully- and partially-annotated data simultaneously.
We performed a large set of experiments to study
the effectness of free data, finding that they are
useful for improving segmentation accuracy. Ex-
periments also show that proper data selection can
further benefit the model’s performance.
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Abstract 

Most studies on statistical Korean word spac-
ing do not utilize the information provided by 
the input sentence and assume that it was 
completely concatenated. This makes the word 
spacer ignore the correct spaced parts of the 
input sentence and erroneously alter them. To 
overcome such limit, this paper proposes a 
structural SVM-based Korean word spacing 
method that can utilize the space information 
of the input sentence. The experiment on sen-
tences with 10% spacing errors showed that 
our method achieved 96.81% F-score, while 
the basic structural SVM method only 
achieved 92.53% F-score. The more the input 
sentence was correctly spaced, the more accu-
rately our method performed. 

1 Introduction 

Automatic word spacing is a task to decide 
boundaries between words, which is frequently 
used for correcting spacing errors of text mes-
sages, Tweets, or Internet comments before using 
them in information retrieval applications (Lee 
and Kim, 2012). It is also often used in post-
processing optical character recognition (OCR) 
or voice recognition (Lee et al., 2007). Except 
for some Asian languages such as Chinese, Japa-
nese and Thai, most languages have explicit 
word spacing that improves the readability of the 
text and helps readers better understand the 
meaning of it. Korean especially has a tricky 
word spacing system and users often make mis-
takes, which makes automatic word spacing an 
interesting and essential task. 

In order to easily acquire the training data, 
most studies on statistical Korean word spacing 
assume that well-spaced raw text (e.g. newspaper 
articles) is perfectly spaced and use it for training 
(Lee and Kim, 2012; Lee and Kim, 2013; Lee et 
al., 2007; Shim, 2011). This approach, however, 
cannot observe incorrect spacing since the as-
sumption makes the training data devoid of nega-
tive example. Consequently, word spacers cannot 
use the spacing information given by the user, 
and erroneously alter the correctly spaced parts 

of the sentence. To utilize the user-given spacing 
information, a corpus of input sentences and their 
correctly spaced version is necessary. Construct-
ing such corpus, however, requires much time 
and resource. 

In this paper, to resolve such issue, we propose 
a structural SVM-based Korean word spacing 
model that can utilize the word spacing infor-
mation given by the user. We name the proposed 
model “Balanced Word Spacing Model 
(BWSM)”. Our approach trains a basic structural 
SVM-based Korean word spacing model as in 
(Lee and Kim, 2013), and tries to obtain the sen-
tence which achieves the maximum score for the 
basic model while minimally altering the input 
sentence. 

In the following section, we discuss related 
studies. In Section 3, the proposed method and 
its relation to Karush-Kuhn-Tucker (KKT) con-
dition are explained. The experiment and discus-
sion is presented in Section 4. Finally, in Section 
5, the conclusion and future work for this study 
is given. 

2 Related Work 

There are two common approaches to Korean 
word spacing: rule-based approach and statistical 
approach. In rule-based approach, it is not easy 
to construct rules and maintain them. Further-
more, it requires morphological analysis to apply 
rule-based approach, which slows down the pro-
cess. Recent studies, therefore, mostly focus on 
the statistical approach.  

Most statistical approaches use well-spaced 
raw corpus as training data (e.g. newspaper arti-
cles) assuming that they are perfectly spaced. 
This is to avoid the expensive job of constructing 
new training data. Lee et al. (2007) treated the 
word spacing task as a sequence labeling prob-
lem on the input sentence which is a sequence of 
syllables. They proposed a method based on 
Hidden Markov Model (HMM). Shim (2011) 
also considered the word spacing task as a se-
quence labeling problem and proposed a method 
using Conditional Random Field (CRF) (Lafferty 
et al., 2001), which is a well-known powerful 
model for sequence labeling tasks. Lee and Kim 
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(2013) tried to solve the sequence labeling prob-
lem using structural SVM (Tsochantaridis et al., 
2004; Joachims et al., 2009; Lee and Jang 2010; 
Shalev-Shwartz et al., 2011). 

The studies above (Lee and Kim, 2013; Lee et 
al., 2007; Shim, 2011), however, do not take ad-
vantage of the spacing information provided by 
the user, and often erroneously alter the correctly 
spaced part of the sentence. Lee et al. (2007) 
tries to resolve this issue by combining an HMM 
model with an additional confidence model con-
structed from another corpus. Given an input 
sentence, they first apply the basic HMM model 
to obtain a candidate sentence. For every differ-
ent word spacing between the input sentence and 
the candidate sentence, they calculate and com-
pare the confidence using the confidence model, 
and whichever gets the higher confidence is used. 
The spacing accuracy was improved from 97.52% 
to 97.64%1.  

This study is similar to (Lee et al., 2007) in 
that it utilizes the spacing information given by 
the user. But unlike (Lee et al., 2007), BWSM 
uses structural SVM as the basic model and do 
not require an additional confidence model. Fur-
thermore, while Lee et al. (2007) compares the 
spacing confidence for each syllable to obtain the 
final outcome, BWSM considers the whole sen-
tence when altering its spacing, enabling it to 
achieve higher improvement on performance 
(from 92.53% F-score to 96.81% F-score). 

3 Balanced Word Spacing Model 

Like previous studies, the proposed model treats 
the Korean word spacing task as a sequence la-
beling problem. The label consists of B and I, 
which are assigned to each syllable of the sen-
tence. Assuming that x = <x1, x2, …, xT> is a se-
quence of total T syllables of the input sentence 
and y = <y1, y2, …, yT> is a sequence of labels 
for each syllable, an example could be given as 
follows2:  
 

Input: ah/beo/ji/ga   bang/eh   deul/eo/ga/sin/da 
(Father entered the room) 
x = <ah, beo, ji, ga, bang, eh, deul, eo, ga, sin, da> 
y = <B,    I,    I,   I,    B,     I,     B,    I,   I,    I,    I> 

Figure 1: An example of word spacing. 
 
In order to utilize the spacing information pro-

vided by the user, we propose a new model, the 

                                                
1 Accuracy was calculated based on syllables. 
2 Slashes are used for distinguishing between syllables. 

Balanced Word Spacing Model that adheres to 
the following principles: 

 
1. The model must obtain the most likely se-

quence of labels(y*), while minimally altering 
the user-given sequence of labels (𝐲!"#$%). 

2. We assume that it costs α per syllable to 
change the spacing of the original sentence, in 
order to keep the original spacing information 
as much as possible. 

 
Mathematically formulating the above princi-

ples would give us the following equation: 
 

𝐲∗ = argmax 𝑠𝑐𝑜𝑟𝑒 𝐱, 𝐲 − 𝛼 ∙ 𝐿 𝐲!"#$% , 𝐲          (1) 
 
In Equation 1, 𝑠𝑐𝑜𝑟𝑒 𝐱, 𝐲  calculates how com-
patible the sequence of label y is with the input 
sentence x. It is calculated by a basic word spac-
ing model as in (Lee and Kim, 2013). 
𝐿 𝐲!"#$% , 𝐲  counts the number of different la-
bels between the user-given sequence of labels 
𝐲!"#$% and an arbitrary sequence of labels 𝐲. 𝐲∗ 
of Equation 1 can be obtained by setting the gra-
dient of 𝑠𝑐𝑜𝑟𝑒 𝐱, 𝐲 − 𝛼 ∙ 𝐿 𝐲!"#$% , 𝐲  to 0, 
which is equivalent to the following equation: 
 
∇𝑠𝑐𝑜𝑟𝑒 𝐱, 𝐲∗ =   𝛼 ∙ ∇𝐿 𝐲!"#$% , 𝐲∗                         (2) 
 

In order to view the proposed model in a dif-
ferent perspective, we consider BWSM in terms 
of Karush-Kuhn-Tucker (KKT) condition. KKT 
condition is a technique for solving optimization 
problems with inequality constraints. It is a gen-
eralized version of Lagrange multipliers, which 
is a technique for solving optimization problems 
with equality constraints. Converting the afore-
mentioned principles to a constrained optimiza-
tion problem gives: 
 
Maximize:  𝑠𝑐𝑜𝑟𝑒 𝐱, 𝐲   
subject  to  𝐿 𝐲!"#$% , 𝐲 ≤ 𝑏                                      (3) 
 
Equation 3 tries to obtain y that maximizes 
𝑠𝑐𝑜𝑟𝑒 𝐱, 𝐲 , namely the score of the basic model, 
while maintaining 𝐿 𝐲!"#$% , 𝐲  below b, which is 
equivalent to altering the word spacing of the 
input sentence less than or equal to b times. To 
solve this constrained optimization problem, we 
apply KKT condition and define a new Lagran-
gian function as follows: 
 
Λ 𝐱, 𝐲,𝛼 = 𝑠𝑐𝑜𝑟𝑒 𝐱, 𝐲 − 𝛼 𝐿 𝐲!!"#$ , 𝐲 − 𝑏       (4) 
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Setting the gradient of the Equation 4 to zero, 
namely ∇Λ 𝐱, 𝐲,𝛼 = 0 , we get the following 
necessary conditions: 
 
Stationarity:  ∇𝑠𝑐𝑜𝑟𝑒 𝐱, 𝐲∗ = 𝛼∗ ∇𝐿 𝐲!"#$% , 𝐲∗   
Primal feasibility: 𝐿 𝐲!"#$% , 𝐲∗ ≤ 𝑏  
Dual  feasibility:  𝛼∗ ≥ 0  
Complementary  slackness:  𝛼∗ 𝐿 𝐲!"#$% , 𝐲∗ − 𝑏 = 0   (5) 
 

Comparing Equation 1 with Equation 4 reveals 
that they are the same except the constant b. And 
𝐲∗ which satisfies the conditions of Equation 5, 
and hence the solution to Equation 4, is also the 
same as 𝐲∗ which satisfies Equation 2, and hence 
the solution to Equation 1. 

For the basic word spacing model, we use 
margin rescaled version of structural SVM as 
Lee and Kim (2013). The objective function of 
structural SVM is as follows: 
 
min𝒘,!

!
!
∥ 𝐰 ∥! + !

!
𝜉!!

! ,      𝑠. 𝑡.    ∀𝑖, 𝜉! ≥ 0  
∀𝑖,∀𝐲 ∈ Y\𝐲!:𝐰!𝛿Ψ 𝐱! , 𝐲 ≥ 𝐿 𝐲! , 𝐲 − 𝜉!  
where  𝛿Ψ 𝐱! , 𝐲 = Ψ 𝐱! , 𝐲! − Ψ 𝐱! , 𝐲                  (6) 
 

In Equation 6, 𝐱! , 𝐲!  represents the i-th se-
quence of syllables and its correct spacing labels. 
𝐿 𝐲! , 𝐲  is a loss function that counts the number 
of different labels between the correct labels 𝐲! 
and the predicted sequence of labels 𝐲. Ψ 𝐱, 𝐲  is 
a typical feature vector function. The features 
used for the basic word spacing model are the 
same features used in (Lee and Kim, 2013). 
Since structural SVM was used for the basic 
word spacing model, the score function of Equa-
tion 1 becomes 𝑠𝑐𝑜𝑟𝑒 𝐱, 𝐲 = 𝐰!Ψ 𝐱, 𝐲 . 

We propose two approaches for implementing 
Equation 1.  

 
1. N-best re-ranking: N-best sequences of spac-

ing labels are obtained using the basic struc-
tural SVM model. For each of the sequence, 
𝛼∗𝐿 𝐲!"#$% , 𝐲∗  is calculated and subtracted 
from 𝑠𝑐𝑜𝑟𝑒 𝐱, 𝐲 . The result of the subtrac-
tion is used to re-rank the sequences, and the 
one with the highest rank is chosen. 

2. Modified Viterbi search: Viterbi search algo-
rithm, which is used in the basic word spacing 
model to solve 𝐲∗ = argmax 𝐰!Ψ 𝐱, 𝐲 , is 
modified to solve 𝐲∗ = argmax 𝐰!Ψ 𝐱, 𝐲 −
𝛼 ∙ 𝐿 𝐲!"#$% , 𝐲 . Both Ψ 𝐱, 𝐲  and 
𝐿 𝐲!"#$% , 𝐲  can be calculated syllable by syl-
lable, which makes it easy to modify Viterbi 
search algorithm. 

 

The first approach seems straightforward and 
easy, but it would take a long time to obtain N-
best sequences of labels. Furthermore, the correct 
label sequence might not be in those N-best se-
quences, hence degrading the overall perfor-
mance. The second approach is fast since it does 
not calculate N-best sequences, and unlike the 
first approach, will always consider the correct 
label sequence as a candidate. 

4 Experiment 

In order to compare the performance of BWSM 
with HMM-based Korean word spacing and 
structural SVM-based Korean word spacing, we 
use Sejong raw corpus (Kang and Kim, 2004) as 
train data and ETRI POS tagging corpus as test 
data3. Pegasos-struct algorithm from (Lee and 
Kim, 2013) was used to train the basic structural 
SVM-based model. The optimal value for the 
tradeoff variable C of structural SVM was found 
after conducting several experiments4.  

The rate of word spacing error varies depend-
ing on the corpus. Newspaper articles rarely have 
word spacing errors but text messages or Tweets 
frequently contain word spacing errors. To re-
flect such variety, we randomly insert spacing 
errors into the test set to produce various test sets 
with spacing error rate 0%, 10%, 20%, 35%, 
50%, 60%, and 70%5. 

 

 
Figure 2: Word-based F-score of N-best re-

ranking approach. 
 

Figure 2 shows the relation between 𝛼(x-axis) 
and word-based F-score6(y-axis) of N-best re-

                                                
3 The number of words for the training set and test set are 26 
million and 290,000 respectively. 
4 We experimented with 10, 100, 1000, 10000, 100000 and 
1000000, the optimal value being 100000. 
5 We altered the input to the system and retained the origi-
nal gold standard’s space unit. 
6 Word-based F-score = 2*Precword*Recallword / (Precword + 
Recallword), 
Precword = (# of correctly spaced words) / (the total number 
of words produced by the system), 
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ranking approach using test sets with different 
spacing error rate. When 𝛼 = 0 , BWSM be-
comes a normal structural SVM-based model. As 
𝛼 increases, F-score also increases for a while 
but decreases afterward. And F-score increases 
more when using test sets with low error rate. It 
is worth noticing that when using the test set 
with 0% error rate, as 𝛼 increases, F-score con-
verges to 98%. The reason it does not reach 100% 
is that the correct label sequence is sometimes 
not included in the N-best sequences. 
 

 
Figure 3: Word-based F-score of modified 

Viterbi search. 
 

Figure 3 shows the relation between 𝛼(x-axis) 
and word-based F-score(y-axis) of modified 
Viterbi search approach using test sets with dif-
ferent spacing error rate. The graphs are similar 
to Figure 2, but F-score reaches higher values 
compared to N-best re-ranking approach. Notice 
that, when using the test set with 0% error rate, 
F-score becomes 100% as 𝛼 surpasses 3. This is 
because, unlike N-best re-ranking approach, 
modified Viterbi search approach considers all 
possible sequences as candidates.  

From Figure 2 and 3, it can be seen that 
BWSM, which takes into consideration the spac-
ing information provided by the user, can im-
prove performance significantly. It is also appar-
ent that modified Viterbi search approach outper-
forms N-best re-ranking approach. The optimal 
value for 𝛼 varies as test sets with different error 
rate are used. It is natural that, for test sets with 
low error rate, the optimal value of 𝛼 increases, 
thus forcing the model to more utilize the user-
given spacing information. It is difficult to auto-
matically obtain the optimal 𝛼 for an arbitrary 
input sentence. Therefore we set 𝛼 to 1, which, 
according to Figure 3, is more or less the optimal 
value for most of the test sets. 
 

                                                                       
Recallword = (# of correctly spaced words) / (the total num-
ber of words in the test data) 

Model 
Syllable 
based 
precision 

Word  
based 
precision 

HMM (Lee et al., 2007) 
S-SVM (Lee and Kim, 2013) 

98.44 
99.01 

90.31 
92.53 

Modified Viterbi (error rate 10%) 
Modified Viterbi (error rate 20%) 
Modified Viterbi (error rate 35%) 

99.64 
99.55 
99.35 

96.81 
96.21 
95.01 

Table 1: Precision of BWSM and previous  
studies 

 
With 𝛼 set to 1, and using modified Viterbi 

search algorithm, the performance of BWSM is 
shown in Table 1 with other previous studies 
(Lee and Kim, 2013; Lee et al., 2007). Table 1 
shows that BWSM gives superior performance 
than other studies that do not utilize user-given 
spacing information. 
 

 
Figure 4: Word-based F-score of modified 

Viterbi search on Tweets. 
 

We also collected Tweets from Twitter and 
tested modified Viterbi algorithm on them. Fig-
ure 4 shows the relation between 𝛼 (x-axis) and 
word-based F-score (y-axis). The raw Tweets 
showed word-based F-score of approximate 91%, 
and the basic structural SVM model (𝛼 = 0) 
showed somewhat inferior 88%. Modified 
Viterbi algorithm showed the similar behavior as 
Figure 3, showing 93.2~93.4% word-based F-
score when 𝛼 was set to 0.5~1. Figure 4 shows 
that BWSM is effective not only on text with 
randomly inserted spacing errors, but also on 
actual data, Tweets. 

5 Conclusion 

In this paper, we proposed BWSM, a new struc-
tural SVM-based Korean word spacing model 
that utilizes user-given spacing information. 
BWSM can obtain the most likely sequence of 
spacing labels while minimally altering the word 
spacing of the input sentence. Experiments on 
test sets with various error rate showed that 
BWSM significantly improved word-based F-
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score, from 95.47% to 98.39% in case of the test 
set with 10% error rate.  

For future work, there are two interesting di-
rections. First is to improve BWSM so that it can 
automatically obtain the optimal value of 𝛼 for 
an arbitrary sentence. This will require a training 
set consisting of text with actual human spacing 
errors and its corrected version. Second is to ap-
ply BWSM to other interesting problems such as 
named entity recognition (NER). Newspaper ar-
ticles often use certain symbols such as quotation 
marks or brackets around the titles of movies, 
songs and books. Such symbols can be viewed as 
user-given input, which BWSM will try to re-
spect as much as possible while trying to find the 
most likely named entities. 
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Abstract

We explore the impact of morpholog-
ical segmentation on keyword spotting
(KWS). Despite potential benefits, state-
of-the-art KWS systems do not use mor-
phological information. In this paper,
we augment a state-of-the-art KWS sys-
tem with sub-word units derived from su-
pervised and unsupervised morphological
segmentations, and compare with phonetic
and syllabic segmentations. Our exper-
iments demonstrate that morphemes im-
prove overall performance of KWS sys-
tems. Syllabic units, however, rival the
performance of morphological units when
used in KWS. By combining morphologi-
cal, phonetic and syllabic segmentations,
we demonstrate substantial performance
gains.

1 Introduction

Morphological analysis plays an increasingly im-
portant role in many language processing appli-
cations. Recent research has demonstrated that
adding information about word structure increases
the quality of translation systems and alleviates
sparsity in language modeling (Chahuneau et al.,
2013b; Habash, 2008; Kirchhoff et al., 2006; Stal-
lard et al., 2012).

In this paper, we study the impact of morpho-
logical analysis on the keyword spotting (KWS)
task. The aim of KWS is to find instances of a
given keyword in a corpus of speech data. The
task is particularly challenging for morphologi-
cally rich languages as many target keywords are
unseen in the training data. For instance, in the
Turkish dataset (Babel, 2013) we use, from the
2013 IARPA Babel evaluations, 36.06% of the test
words are unseen in the training data. However,
81.44% of these unseen words have a morpholog-
ical variant in the training data. Similar patterns

are observed in other languages used in the Babel
evaluations. This observation strongly supports
the use of morphological analysis to handle out-
of-vocabulary (OOV) words in KWS systems.

Despite this potential promise, state-of-the-art
KWS systems do not commonly use morphologi-
cal information. This surprising fact can be due to
multiple reasons, ranging from the accuracy of ex-
isting morphological analyzers to the challenge of
integrating morphological information into exist-
ing KWS architectures. While using morphemes
is likely to increase coverage, it makes recogni-
tion harder due to the inherent ambiguity in the
recognition of smaller units. Moreover, it is not
clear a priori that morphemes, which are based on
the semantics of written language, are appropriate
segmentation units for a speech-based application.

We investigate the above hypotheses in the
context of a state-of-the-art KWS architec-
ture (Karakos et al., 2013). We augment word
lattices with smaller units obtained via segmenta-
tion of words, and use these modified lattices for
keyword spotting. We consider multiple segmen-
tation algorithms, ranging from near-perfect su-
pervised segmentations to random segmentations,
along with unsupervised segmentations and purely
phonetic and syllabic segmentations. Our exper-
iments show how sub-word units can be used ef-
fectively to improve the performance of KWS sys-
tems. Further, we study the extent of impact of the
subwords, and the manner in which they can be
used in KWS systems.

2 Related Work

Prior research on applications of morphological
analyzers has focused on machine translation, lan-
guage modeling and speech recognition (Habash,
2008; Chahuneau et al., 2013a; Kirchhoff et al.,
2006). Morphological analysis enables us to link
together multiple inflections of the same root,
thereby alleviating word sparsity common in mor-
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phologically rich languages. This results in im-
proved language model perplexity, better word
alignments and higher BLEU scores.

Recent work has demonstrated that even mor-
phological analyzers that use little or no supervi-
sion can help improve performance in language
modeling and machine translation (Chahuneau et
al., 2013b; Stallard et al., 2012). It has also been
shown that segmentation lattices improve the qual-
ity of machine translation systems (Dyer, 2009).

In this work, we leverage morphological seg-
mentation to reduce OOV rates in KWS. We in-
vestigate segmentations produced by a range of
models, including acoustic sub-word units. We in-
corporate these subword units into a lattice frame-
work within the KWS system. We also demon-
strate the value of using alternative segmentations
instead of or in combination with morphemes. In
addition to improving the performance of KWS
systems, this finding may also benefit other appli-
cations that currently use morphological segmen-
tation for OOV reduction.

3 Segmentation Methods

Supervised Morphological Segmentation Due
to the unavailability of gold morphological seg-
mentations for our corpus (Babel, 2013), we use
a resource-rich supervised system as a proxy. As
training data for this system, we use the Mor-
phoChallenge 2010 corpus1 which consists of
1760 gold segmentations for Turkish.

We consider two supervised frameworks, both
made up of two stages. In the first stage, com-
mon to both systems, we use a FST-based mor-
phological parser (Çöltekin, 2010) that generates a
set of candidate segmentations, leveraging a large
database of Turkish roots and affixes. This stage
tends to overgenerate, segmenting each word in
eight different ways on average. In the next stage,
we filter the resulting segmentations using one of
two supervised filters (described below) trained on
the MorphoChallenge corpus.

In the first approach, we use a binary log-linear
classifier to accept/reject each segmentation hy-
pothesis. For each word, this classifier may ac-
cept multiple segmentations, or rule out all the al-
ternatives. In the second approach, to control the
number of segmentations per word, we train a log-
linear ranker that orders the segmentations for a
word in decreasing order of likelihood. In our

1http://research.ics.aalto.fi/events/morphochallenge2010/

Feature Example
morpheme unigrams tak, acak
morpheme bigram 〈tak, acak〉

phonetic seq. unigrams t.a.k., 1v.dZ.a.k.
phonetic seq. bigram 〈t.a.k., 1v.dZ.a.k.〉

number of morphemes 2
morpheme lengths 3, 4

Table 1: Example of features used in the super-
vised filters for the segmentation tak-acak. Each
phone is followed by a dot for clarity.

training corpus, each word has on average 2.5 gold
segmentations. Hence, we choose the top two seg-
mentations per word from the output of the ranker
to use in our KWS system. In both filters, we
use several features like morpheme unigrams, bi-
grams, lengths, number of morphemes, and phone
sequences corresponding to the morphemes.

In our supervised systems, we can encode fea-
tures that go beyond individual boundaries, like
the total number of morphemes in the segmenta-
tion. This global view distinguishes our classi-
fier/ranker from traditional approaches that model
segmentation as a sequence tagging task (Ruoko-
lainen et al., 2013; Kudo et al., 2004; Kru-
engkrai et al., 2006). Another departure of our
approach is the use of phonetic information, in
the form of phonetic sequences corresponding to
the morpheme unigrams and bigrams. The hy-
pothesis is that syllabic boundaries are correlated
with morpheme boundaries to some extent. The
phonetic sequences for words are obtained using
a publicly available Text-to-Phone (T2P) system
(Lenzo, 1998).

Unsupervised Morphological Segmentation
We employ a widely-used unsupervised sys-
tem Morfessor (Creutz and Lagus, 2005) which
achieves state-of-the-art unsupervised perfor-
mance in the MorphoChallenge evaluation. Mor-
fessor uses probabilistic generative models with
sparse priors which are motivated by the Minimum
Description Length (MDL) principle. The system
derives segmentations from raw data, without re-
liance on extra linguistic sources. It outputs a sin-
gle segmentation per word.

Random Segmentation As a baseline, we in-
clude sub-word units from random segmentations,
where we mark a segmentation boundary at each
character position in a word with a fixed probabil-
ity p. For comparison purposes, we consider two
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Sub-word units Example
Morphemes tak - acak

Random t - aka - c - a - k
Phones t - a - k - 1v - dZ - a - k

Syllables ta - k1v - dZak

Table 2: Segmentations of the word takacak into
different types of sub-word units.

types of random segmentations that match the su-
pervised morphological segmentations in terms of
the number of uniques morphemes and the average
morpheme length, respectively. These segmenta-
tions are obtained by adjusting the segmentation
probability p appropriately.

Phones and Syllables In addition to letter-
based segmentation, we also consider other sub-
word units that stem from word acoustics. In par-
ticular, we consider segmentation using phones
and syllables, which are available for the Babel
data we work with.

Table 2 shows examples of different segmenta-
tions for the Turkish word takacak.

4 Keyword Spotting

The keyword spotting system used in this work
follows, to a large extent, the pipeline of (Bulyko
et al., 2012). Using standard speech recognition
machinery, the system produces a detailed lattice
of word hypotheses. The resulting lattice is used to
extract keyword hits with nominal posterior prob-
ability scores.

We modify this basic architecture in two ways.
First, we use subwords instead of whole-words in
the decoding lexicon. Second, we represent key-
words using all possible paths in a lattice of sub-
words. For each sequence of matching arcs in the
lattice, the posteriors of these arcs are multiplied
together to form the score of detection (hit). A
post-processing step adds up (or takes the max of)
the scores of all hits of each keyword which have
significant overlap in time. Finally, the hit lists are
processed by the score normalization and combi-
nation method described in (Karakos et al., 2013).

We use whole-word extraction for words in vo-
cabulary, but rely on subword models for OOV
words. Since we combine the hits separately for
IV and OOV keywords, using subwords can only
improve the performance of the overall system.

Language Dev Set Eval Set
Turkish 403 226

Assamese 158 563
Bengali 176 629
Haitian 107 319

Lao 110 194
Tamil 238 700
Zulu 323 1251

Table 3: Number of OOV keywords in the differ-
ent Dev and Eval sets.

5 Experimental Setup

Data The segmentation algorithms described in
Section 3 are tested using the setup of the KWS
system described in Section 4. Our experiments
are conducted using the IARPA Babel Program
language collections for Turkish, Assamese, Ben-
gali, Haitian, Lao, Tamil and Zulu (Babel, 2013)2.
The dataset contains audio corpora and a set of
keywords. The training corpus for KWS consists
of 10 hours of speech, while the development and
test sets have durations of 10 and 5 hours, respec-
tively. We evaluate KWS performance over the
OOV keywords in the data, which are unseen in
the training set, but appear in the development/test
set. Table 3 contains statistics on the number of
OOV keywords in the data for each language.

In our experiments, we consider the pre-indexed
condition, where the keywords are known only af-
ter the decoding of the speech has taken place.

Evaluation Measures We consider two differ-
ent evaluation metrics. To evaluate the accuracy
of the different segmentations, we compare them
against gold segmentations from the MorphoChal-
lenge data for Turkish. This set consists of 1760
words, which are manually segmented. We use
a measure of word accuracy (WordAcc), which
captures the accuracy of all segmentation deci-
sions within the word. If one of the segmenta-
tion boundaries is wrong in a proposed segmen-
tation, then that segmentation does not contribute
towards the WordAcc score. We use 10-fold cross-
validation for the supervised segmentations, while
we use the entire set for unsupervised and acoustic
cases.

We evaluate the performance of our KWS sys-
tem using a widely used metric in KWS, the Ac-

2We perform the experiments with supervised segmenta-
tion only on Turkish, due to the lack of gold morphological
data for the other languages.

882



tual Term Weighted Value (ATWV) measure, as
described in (Fiscus et al., 2007). This measure
uses a combination of penalties for misses and
false positives to score the system. The maximum
score achievable is 1.0, if there are no misses and
false positives, while the score can be lower than
0.0 if there are a lot of misses or false positives.

6 Results

Table 4 summarizes the performance of all con-
sidered segmentation systems in the KWS task on
Turkish. The quality of the segmentations com-
pared to the gold standard is also shown. Table 5
shows the OOV ATWV performance on the six
other languages, used in the second year of the
IARPA Babel project. We summarize below our
conclusions based on these results.

Using sub-word units improves overall KWS
performance If we use a word-based KWS sys-
tem, the ATWV score will be 0.0 since the OOV
keywords are not present in the lexicon. En-
riching our KWS system with sub-word segments
yields performance gains for all the segmentation
methods, including random segmentations. How-
ever, the observed gain exhibits significant vari-
ance across the segmentation methods. For in-
stance, the gap between the performance of the
KWS system using the best supervised classifier-
based segmenter (CP) and that using the unsuper-
vised segmenter (U) is 0.059, which corresponds
to a 43.7% in relative gain. Table 4 also shows that
while methods with shorter sub-units (U, P) yield
lower OOV rate, they do not necessarily fare better
in the KWS evaluation.

Syllabic units rival the performance of mor-
phological units A surprising discovery from our
experiments is the good performance of the syl-
labic segmentation-based KWS system (S). It out-
performs all the alternative segmentations on the
test set, and ranks second on the development set
behind the CP system. These units are particularly
attractive as they can easily be computed from
acoustic input and do not require any prior linguis-
tic knowledge. We hypothesize that the granular-
ity of this segmentation is crucial to its success.
For instance, a finer-grained phone-based segmen-
tation (P) performs substantially worse than other
segmentation algorithms as the derived sub-units
are shorter and hence, harder to recognize.

Improving morphological accuracy beyond a
certain level does not translate into improved

KWS performance We observe that the segmen-
tation accuracy and KWS performance are not
positively correlated. Clearly, bad segmentations
translate into poor ATWV scores, as in the case
of random and unsupervised segmentations. How-
ever, gains on segmentation accuracy do not al-
ways result in better KWS performance. For in-
stance, the ranker systems (RP, RNP) have better
accuracies on MC2010, while the classifier sys-
tems (CP, CNP) perform better on the KWS task.
This discrepancy in performance suggests that fur-
ther gains can be obtained by optimizing segmen-
tations directly with respect to KWS metrics.

Adding phonetic information improves mor-
phological segmentation For all the morpholog-
ical systems, adding phonetic information results
in consistent performance gains. For instance,
it increases segmentation accuracy by 4% when
added to the classifier (CNP and CP in table 4).
The phonetic information used in our experiments
is computed automatically using a T2P system
(Lenzo, 1998), and can be easily obtained for a
range of languages. This finding sheds new light
on the relation between phonetic and morphologi-
cal systems, and can be beneficial for morpholog-
ical analyzers developed for other applications.

Combining morphological, phonetic and syl-
labic segmentations gives better results than ei-
ther in isolation As table 4 shows, the best KWS
results are achieved when syllabic and morphemic
systems are combined. The best combination sys-
tem (CP+P+S) outperforms the best individual
system (S) by 5.5%. This result suggests that mor-
phemic, phonemic and syllabic segmentations en-
code complementary information which benefits
KWS systems in handling OOV keywords.

Morphological segmentation helps KWS
across different languages Table 5 demonstrates
that we can obtain gains in KWS performance
across different languages using unsupervised seg-
mentation. The improvement is significant in 3 of
the 6 languages - as high as 3.2% for Assamese
and Bengali, and 2.7% for Tamil (absolute per-
centages). As such, the results of Table 2 can-
not be directly compared to those of Table 1 since
the system architecture is slightly different3. How-

3The keyword spotting pipeline is based on the one used
by the Babelon team in the 2014 NIST evaluation (Tsakalidis,
2014). The pipeline was much more involved than the one de-
scribed for Turkish; multiple search methods (with/without
fuzzy search) and data structures (lattices, confusion net-
works and generalized versions of these) were all used in
combination (Karakos and Schwartz, 2014). The recognition
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Method Unique
units

Avg. unit
length

Reduction
in OOV (abs) WordAcc Dev

ATWV
Test

ATWV
Phone-based (P) 51 1 36.06% 0.06% 0.099 0.164

Syllable-based (S) 2.1k 3.62 23.91% 10.29% 0.127 0.201
Classifier w/ phone info (CP) 18.5k 6.39 18.20% 80.41% 0.146 0.194

Classifier w/o phone info (CNP) 19k 6.42 21.50% 75.66% 0.133 0.181
Ranker w/ phone info (RP) 10k 5.62 16.86% 86.03% 0.104 0.153

Ranker w/o phone info (RNP) 10k 5.71 16.44% 84.19% 0.109 0.159
Unsupervised (U) 2.4k 5.44 22.45% 39.57% 0.080 0.135

RANDLen-Classifier 11.7k 6.39 0.73% 5.11% 0.061 0.086
RANDNum-Classifier 18.2k 3.03 8.56% 3.69% 0.111 0.154

RANDLen-Ranker 11.6k 5.62 1.94% 5.79% 0.072 0.136
RANDNum-Ranker 11.7k 6.13 1.15% 5.34% 0.081 0.116

CP + P - - - - 0.190 0.246
RP + P - - - - 0.150 0.210

CP + P + S - - - - 0.208 0.257
RP + P + S - - - - 0.186 0.249

Word-based for IV words - - - - 0.385 0.400

Table 4: Segmentation Statistics and ATWV scores on Babel Turkish data along with WordAcc on
MorphoChallenge 2010 data. All rows except the last are for OOV words. Absolute reduction is from an
initial OOV of 36.06%. Higher ATWV scores are better. Best system scores are shown in bold.

Assamese Bengali Haitian Lao Tamil Zulu
Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test

P + S 0.213 0.230 0.277 0.296 0.371 0.342 0.228 0.139 0.349 0.267 0.279 0.215
P + S + U 0.214 0.263 0.294 0.328 0.393 0.342 0.237 0.146 0.395 0.284 0.275 0.218

Table 5: ATWV scores for languages used in the second year of the IARPA Babel project, using two
KWS systems: Phone + Syllable (P+S) and Phone + Syllable + Unsupervised Morphemes (P+S+U).
Bold numbers show significant performance gains obtained by adding morphemes to the system.

ever, they are indicative of the large gains (1.5%,
on average, over the six languages) that can be ob-
tained through unsupervised morphology, on top
of a very good combined phonetic/syllabic system.

7 Conclusion

We explore the extent of impact of morphological
segmentation on keyword spotting (KWS). To in-
vestigate this issue, we augmented a KWS system
with sub-word units derived by multiple segmen-
tation algorithms. Our experiments demonstrate
that morphemes improve the overall performance
of KWS systems. Syllabic units, however, rival the
performance of morphemes in the KWS task. Fur-
thermore, we demonstrate that substantial perfor-
mance gains in KWS performance are obtained by
combining morphological, phonetic and syllabic

was done with audio features supplied by BUT (Karafiát et
al., 2014), which were improved versions of those used for
Turkish.

segmentations. Finally, we also show that adding
phonetic information improves the quality of mor-
phological segmentation.
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mann, Karel Veselý, Igor Szoke, and Jan ”Honza”
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Abstract

In this paper we address the problem
of multilingual part-of-speech tagging for
resource-poor languages. We use par-
allel data to transfer part-of-speech in-
formation from resource-rich to resource-
poor languages. Additionally, we use a
small amount of annotated data to learn to
“correct” errors from projected approach
such as tagset mismatch between lan-
guages, achieving state-of-the-art perfor-
mance (91.3%) across 8 languages. Our
approach is based on modest data require-
ments, and uses minimum divergence clas-
sification. For situations where no uni-
versal tagset mapping is available, we
propose an alternate method, resulting
in state-of-the-art 85.6% accuracy on the
resource-poor language Malagasy.

1 Introduction

Part-of-speech (POS) tagging is a crucial task for
natural language processing (NLP) tasks, provid-
ing basic information about syntax. Supervised
POS tagging has achieved great success, reach-
ing as high as 95% accuracy for many languages
(Petrov et al., 2012). However, supervised tech-
niques need manually annotated data, and this
is either lacking or limited in most resource-
poor languages. Fully unsupervised POS tagging
is not yet useful in practice due to low accu-
racy (Christodoulopoulos et al., 2010). In this pa-
per, we propose a semi-supervised method to nar-
row the gap between supervised and unsupervised
approaches. We demonstrate that even a small
amount of supervised data leads to substantial im-
provement.

Our method is motivated by the availability of
parallel data. Thanks to the development of mul-
tilingual documents from government projects,

book translations, multilingual websites, and so
forth, parallel data between resource-rich and
resource-poor languages is relatively easy to ac-
quire. This parallel data provides the bridge that
permits us to transfer POS information from a
resource-rich to a resource-poor language.

Systems that make use of cross-lingual tag
projection typically face several issues, includ-
ing mismatches between the tagsets used for the
languages, artifacts from noisy alignments and
cross-lingual syntactic divergence. Our approach
compensates for these issues by training on a
small amount of annotated data on the target side,
demonstrating that only 1k tokens of annotated
data is sufficient to improve performance.

We first tag the resource-rich language using a
supervised POS tagger. We then project POS tags
from the resource-rich language to the resource-
poor language using parallel word alignments.
The projected labels are noisy, and so we use
various heuristics to select only “good” training
examples. We train the model in two stages.
First, we build a maximum entropy classifier T
on the (noisy) projected data. Next, we train
a supervised classifier P on a small amount of
annotated data (1,000 tokens) in the target lan-
guage, using a minimum divergence technique
to incorporate the first model, T . Compared
with the state of the art (Täckström et al., 2013),
we make more-realistic assumptions (e.g. relying
on a tiny amount of annotated data rather than
a huge crowd-sourced dictionary) and use less
parallel data, yet achieve a better overall result.
We achieved 91.3% average accuracy over 8 lan-
guages, exceeding Täckström et al. (2013)’s result
of 88.8%.

The test data we employ makes use of map-
pings from language-specific POS tag inventories
to a universal tagset (Petrov et al., 2012). How-
ever, such a mapping might not be available for
resource-poor languages. Therefore, we also pro-
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pose a variant of our method which removes the
need for identical tagsets between the projection
model T and the correction model P , based on
a two-output maximum entropy model over tag
pairs. Evaluating on the resource-poor language
Malagasy, we achieved 85.6% accuracy, exceed-
ing the state-of-the-art of 81.2% (Garrette et al.,
2013).

2 Background and Related Work

There is a wealth of prior work on multilingual
POS tagging. The simplest approach takes advan-
tage of the typological similarities that exist be-
tween languages pairs such as Czech and Russian,
or Serbian and Croatian. They build the tagger
— or estimate part of the tagger — on one lan-
guage and apply it to the other language (Reddy
and Sharoff, 2011, Hana et al., 2004).

Yarowsky and Ngai (2001) pioneered the use of
parallel data for projecting tag information from
a resource-rich language to a resource-poor lan-
guage. Duong et al. (2013b) used a similar method
on using sentence alignment scores to rank the
goodness of sentences. They trained a seed model
from a small part of the data, then applied this
model to the rest of the data using self-training
with revision.

Das and Petrov (2011) also used parallel data
but additionally exploited graph-based label prop-
agation to expand the coverage of labelled tokens.
Each node in the graph represents a trigram in the
target language. Each edge connects two nodes
which have similar context. Originally, only some
nodes received a label from direct label projection,
and then labels were propagated to the rest of the
graph. They only extracted the dictionary from
the graph because the labels of nodes are noisy.
They used the dictionary as the constraints for a
feature-based HMM tagger (Berg-Kirkpatrick et
al., 2010). Both Duong et al. (2013b) and Das and
Petrov (2011) achieved 83.4% accuracy on the test
set of 8 European languages.

Goldberg et al. (2008) pointed out that, with the
presence of a dictionary, even an incomplete one,
a modest POS tagger can be built using simple
methods such as expectation maximization. This
is because most of the time, words have a very
limited number of possible tags, thus a dictionary
that specifies the allowable tags for a word helps
to restrict the search space. With a gold-standard
dictionary, Das and Petrov (2011) achieved an ac-

curacy of approximately 94% on the same 8 lan-
guages. The effectiveness of a gold-standard dic-
tionary is undeniable, however it is costly to build
one, especially for resource-poor languages. Li et
al. (2012) used the dictionary from Wiktionary,1 a
crowd-sourced dictionary. They scored 84.8% ac-
curacy on the same 8 languages. Currently, Wik-
tionary covers over 170 languages, but the cov-
erage varies substantially between languages and,
unsurprisingly, it is poor for resource-poor lan-
guages. Therefore, relying on Wiktionary is not
effective for building POS taggers for resource-
poor languages.

Täckström et al. (2013) combined both token
information (from direct projected data) and type
constraints (from Wiktionary’s dictionary) to form
the state-of-the-art multilingual tagger. They built
a tag lattice and used these token and type con-
straints to prune it. The remaining paths are the
training data for a CRF tagger. They achieved
88.8% accuracy on the same 8 languages.

Table 1 summarises the performance of the
above models across all 8 languages. Note that
these methods vary in their reliance on external
resources. Duong et al. (2013b) use the least, i.e.
only the Europarl Corpus (Koehn, 2005). Das and
Petrov (2011) additionally use the United Nation
Parallel Corpus. Li et al. (2012) didn’t use any par-
allel text but used Wiktionary instead. Täckström
et al. (2013) exploited more parallel data than Das
and Petrov (2011) and also used a dictionary
from Li et al. (2012).

Another approach for resource-poor languages
is based on the availability of a small amount
of annotated data. Garrette et al. (2013) built a
POS tagger for Kinyarwanda and Malagasy. They
didn’t use parallel data but instead exploited four
hours of manual annotation to build∼4,000 tokens
or ∼3,000 word-types of annotated data. These
tokens or word-types were used to build a tag dic-
tionary. They employed label propagation for ex-
panding the coverage of this dictionary in a sim-
ilar vein to Das and Petrov (2011), but they also
used an external dictionary. They built training
examples using the combined dictionary and then
trained the tagger on this data. They achieved
81.9% and 81.2% accuracy for Kinyarwanda and
Malagasy respectively. Note that their usage of an
external dictionary compromises their claim of us-
ing only 4 hours of annotation.

1http://www.wiktionary.org/
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da nl de el it pt es sv Average
Das and Petrov (2011) 83.2 79.5 82.8 82.5 86.8 87.9 84.2 80.5 83.4
Duong et al. (2013b) 85.6 84.0 85.4 80.4 81.4 86.3 83.3 81.0 83.4
Li et al. (2012) 83.3 86.3 85.4 79.2 86.5 84.5 86.4 86.1 84.8
Täckström et al. (2013) 88.2 85.9 90.5 89.5 89.3 91.0 87.1 88.9 88.8

Table 1: Previously published token-level POS tagging accuracy for various models across 8 languages
— Danish (da), Dutch (nl), German (de), Greek (el), Italian (it), Portuguese (pt), Spanish (es), Swedish
(sv) — evaluated on CoNLL data (Buchholz and Marsi, 2006).

The method we propose in this paper is similar
in only using a small amount of annotation. How-
ever, we directly use the annotated data to train
the model rather than using a dictionary. We argue
that with a proper “guide”, we can take advantage
of very limited annotated data.

2.1 Annotated data

Our annotated data mainly comes from CoNLL
shared tasks on dependency parsing (Buchholz
and Marsi, 2006). The language specific tagsets
are mapped into the universal tagset. We will
use this annotated data mainly for evaluation. Ta-
ble 2 shows the size of annotated data for each
language. The 8 languages we are considering
in this experiment are not actually resource-poor
languages. However, running on these 8 lan-
guages makes our system comparable with pre-
viously proposed methods. Nevertheless, we try
to use as few resources as possible, in order to
simulate the situation for resource-poor languages.
Later in Section 6 we adapt the approach for Mala-
gasy, a truly resource-poor language.

2.2 Universal tagset

We employ the universal tagset from (Petrov et
al., 2012) for our experiment. It consists of 12
common tags: NOUN, VERB, ADJ (adjective),
ADV (adverb), PRON (pronoun), DET (deter-
miner and article), ADP (preposition and post-
position), CONJ (conjunctions), NUM (numeri-
cal), PRT (particle), PUNC (punctuation) and X
(all other categories including foreign words and
abbreviations). Petrov et al. (2012) provide the
mapping from each language-specific tagset to the
universal tagset.

The idea of using the universal tagset is of great
use in multilingual applications, enabling compar-
ison across languages. However, the mapping is
not always straightforward. Table 2 shows the size
of the annotated data for each language, the num-

ber of tags presented in the data, and the list of
tags that are not matched. We can see that only 8
tags are presented in the annotated data for Dan-
ish, i.e, 4 tags (DET, PRT, PUNC, and NUM) are
missing.2 Thus, a classifier using all 12 tags will
be heavily penalized in the evaluation.

Li et al. (2012) considered this problem and
tried to manually modify the Danish mappings.
Moreover, PRT is not really a universal tag since
it only appears in 3 out of the 8 languages. Plank
et al. (2014) pointed out that PRT often gets con-
fused with ADP even in English. We will later
show that the mapping problem causes substantial
degradation in the performance of a POS tagger
exploiting parallel data. The method we present
here is more target-language oriented: our model
is trained on the target language, in this way, only
relevant information from the source language is
retained. Thus, we automatically correct the map-
ping, and other incompatibilities arising from in-
correct alignments and syntactic divergence be-
tween the source and target languages.

Lang Size(k) # Tags Not Matched
da 94 8 DET, PRT, PUNC, NUM
nl 203 11 PRT
de 712 12
el 70 12
it 76 11 PRT
pt 207 11 PRT
es 89 11 PRT
sv 191 11 DET

AVG 205

Table 2: The size of annotated data from
CoNLL (Buchholz and Marsi, 2006), and the
number of tags included and missing for 8 lan-
guages.

2Many of these are mistakes in the mapping, however,
they are indicative of the kinds of issues expected in low-
resource languages.
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3 Directly Projected Model (DPM)

In this section we describe a maximum entropy
tagger that only uses information from directly
projected data.

3.1 Parallel data

We first collect Europarl data having English as
the source language, an average of 1.85 million
parallel sentences for each of the 8 language pairs.
In terms of parallel data, we use far less data com-
pared with other recent work. Das and Petrov
(2011) used Europarl and the ODS United Na-
tion dataset, while Täckström et al. (2013) addi-
tionally used parallel data crawled from the web.
The amount of parallel data is crucial for align-
ment quality. Since DPM uses alignments to trans-
fer tags from source to target language, the per-
formance of DPM (and other models that exploit
projection) largely depends on the quantity of par-
allel data. The “No LP” model of Das and Petrov
(2011), which only uses directly projected labels
(without label propagation), scored 81.3% for 8
languages. However, using the same model but
with more parallel data, Täckström et al. (2013)
scored 84.9% on the same test set.

3.2 Label projection

We use the standard alignment tool Giza++ (Och
and Ney, 2003) to word align the parallel data. We
employ the Stanford POS tagger (Toutanova et al.,
2003) to tag the English side of the parallel data
and then project the label to the target side. It has
been confirmed in many studies (Täckström et al.,
2013, Das and Petrov, 2011, Toutanova and John-
son, 2008) that directly projected labels are noisy.
Thus we need a method to reduce the noise. We
employ the strategy of Yarowsky and Ngai (2001)
of ranking sentences using a their alignment scores
from IBM model 3.

Firstly, we want to know how noisy the pro-
jected data is. Thus, we use the test data to build
a simple supervised POS tagger using the TnT
tagger (Brants, 2000) which employs a second-
order Hidden Markov Model (HMM). We tag the
projected data and compare the label from direct
projection and from the TnT tagger. The labels
from the TnT Tagger are considered as pseudo-
gold labels. Column “Without Mapping” from Ta-
ble 3 shows the average accuracy for the first n-
sentences (n = 60k, 100k, 200k, 500k) for 8 lan-
guages according to the ranking. Column “Cov-

erage” shows the percentages of projected label
(the other tokens are Null aligned). We can see
that when we select more data, both coverage and
accuracy fall. In other words, using the sentence
alignment score, we can rank sentences with high
coverage and accuracy first. However, even after
ranking, the accuracy of projected labels is less
than 80% demonstrating how noisy the projected
labels are.

Table 3 (column “With Mapping”) additionally
shows the accuracy using simple tagset mapping,
i.e. mapping each tag to the tag it is assigned most
frequently in the test data. For example DET, PRT,
PUNC, NUM, missing from Danish gold data, will
be matched to PRON, X, X, ADJ respectively. This
simple matching yields a ∼ 4% (absolute) im-
provement in average accuracy. This illustrates the
importance of handling tagset mapping carefully.

3.3 The model

In this section, we introduce a maximum entropy
tagger exploiting the projected data. We select the
first 200k sentences from Table 3 for this experi-
ment. This number represents a trade-off between
size and accuracy. More sentences provide more
information but at the cost of noisier data. Duong
et al. (2013b) also used sentence alignment scores
to rank sentences. Their model stabilizes after us-
ing 200k sentences. We conclude that 200k sen-
tences is enough and capture most information
from the parallel data.

Features Descriptions
W@-1 Previous word
W@+1 Next word
W@0 Current word
CAP First character is capitalized
NUMBER Is number
PUNCT Is punctuation
SUFFIX@k Suffix up to length 3 (k <= 3)
WC Word class

Table 4: Feature template for a maximum entropy
tagger

We ignore tokens that don’t have labels, which
arise from null alignments and constitute approxi-
mately 14% of the data. The remaining data (∼1.4
million tokens) are used to train a maximum en-
tropy (MaxEnt) model. MaxEnt is one of the
simplest forms of probabilistic classifier, and is
appropriate in this setting due to the incomplete
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Data Size (k) Coverage (%) Without Mapping With Mapping
60 91.5 79.9 84.2
100 89.1 79.4 83.6
200 86.1 79.1 82.9
500 82.4 78.0 81.5

Table 3: The coverage, and POS tagging accuracy with and without tagset mapping of directly projected
labels, averaged over 8 languages for different data sizes

Model da nl de el it pt es sv Avg
All features 64.4 83.3 86.3 79.7 82.0 86.5 82.5 76.5 80.2
- Word Class 64.7 82.6 86.6 79.0 82.8 84.6 82.2 76.9 79.9
- Suffix 64.0 82.8 86.3 78.1 81.0 85.9 82.3 76.2 79.6
- Prev, Next Word 62.6 82.5 87.4 79.0 81.9 86.5 82.2 74.8 79.6
- Cap, Num, Punct 64.0 81.9 84.0 78.0 79.1 86.3 81.8 75.6 78.8

Table 5: The accuracy of Directed Project Model (DPM) with different feature sets, removing one feature
set at a time

sequence data. While sequence models such as
HMMs or CRFs can provide more accurate mod-
els of label sequences, they impose a more strin-
gent training requirement.3 We also experimented
with a first-order linear chain CRF trained on con-
tiguous sub-sequences but observed ∼ 4% (abso-
lute) drop in performance.

The maximum entropy classifier estimates the
probability of tag t given a word w as

P (t|w) =
1

Z(w)
exp

D∑
j=1

λjfj(w, t) ,

where Z(w) =
∑

t exp
∑D

j=1 λjfj(w, t) is the
normalization factor to ensure the probabilities
P (t|w) sum to one. Here fj is a feature function
and λj is the weight for this feature, learned as
part of training. We use Maximum A Posteriori
(MAP) estimation to maximize the log likelihood
of the training data, D = {wi, ti}Ni=1, subject to a
zero-mean Gaussian regularisation term,

L = logP (Λ)
N∏
i=1

P (t(i)|w(i))

= −
D∑
j=1

λ2
j

2δ2
+

N∑
i=1

D∑
j=1

λjfj(wi, ti)− logZ(wi)

where the regularisation term limits over-fitting,
an important concern when using large feature

3Täckström et al. (2013) train a CRF on incomplete data,
using a tag dictionary heuristic to define a ‘gold standard’
lattice over label sequences.

sets. For our experiments we set δ2 = 1. We use
L-BFGS which performs gradient ascent to maxi-
mize L. Table 4 shows the features we considered
for building the DPM. We use mkcls, an unsu-
pervised method for word class induction which is
widely used in machine translation (Och, 1999).
We run mkcls to obtain 100 word classes, using
only the target language side of the parallel data.

Table 5 shows the accuracy of the DPM evalu-
ated on 8 languages (“All features model”). DPM
performs poorly on Danish, probably because of
the tagset mapping issue discussed above. The
DPM result of 80.2% accuracy is encouraging,
particularly because the model had no explicit su-
pervision.

To see what features are meaningful for our
model, we remove features in turn and report
the result. The result in Table 5 disagrees with
Täckström et al. (2013) on the word class features.
They reported a gain of approximately 3% (ab-
solute) using the word class. However, it seems
to us that these features are not especially mean-
ingful (at least in the present setting). Possible
reasons for the discrepancy are that they train the
word class model on a massive quantity of exter-
nal monolingual data, or their algorithms for word
clustering are better (Uszkoreit and Brants, 2008).
We can see that the most informative features are
Capitalization, Number and Punctuation. This
makes sense because in languages such as Ger-
man, capitalization is a strong indicator of NOUN.
Number and punctuation features ensure that we
classify NUM and PUNCT tags correctly.
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4 Correction Model

In this section we incorporate the directly pro-
jected model into a second correction model
trained on a small supervised sample of 1,000 an-
notated tokens. Our DPM model is not very accu-
rate; as we have discussed it makes many errors,
due to invalid or inconsistent tag mappings, noisy
alignments, and cross-linguistic syntactic diver-
gence. However, our aim is to see how effectively
we can exploit the strengths of the DPM model
while correcting for its inadequacies using direct
supervision. We select only 1,000 annotated to-
kens to reflect a low resource scenario. A small
supervised training sample is a more realistic form
of supervision than a tag dictionary (noisy or oth-
erwise). Although used in most prior work, a tag
dictionary for a new language requires significant
manual effort to construct. Garrette and Baldridge
(2013) showed that a 1,000 token dataset could be
collected very cheaply, requiring less than 2 hours
of non-expert time.

Our correction model makes use of a mini-
mum divergence (MD) model (Berger et al., 1996),
a variant of the maximum entropy model which
biases the target distribution to be similar to a
static reference distribution. The method has been
used in several language applications including
machine translation (Foster, 2000) and parsing
(Plank and van Noord, 2008, Johnson and Riezler,
2000). These previous approaches have used var-
ious sources of reference distribution, e.g., incor-
porating information from a simpler model (John-
son and Riezler, 2000) or combining in- and out-
of-domain models (Plank and van Noord, 2008).
Plank and van Noord (2008) concluded that this
method for adding prior knowledge only works
with high quality reference distributions, other-
wise performance suffers.

In contrast to these previous approaches, we
consider the specific setting where both the
learned model and the reference model so =
P (t|w) are both maximum entropy models. In this
case we show that the MD setup can be simplified
to a regularization term, namely a Gaussian prior
with a non-zero mean. We model the classification
probability, P ′(t|w) as the product between a base
model and a maximum entropy classifier,

P ′(t|w) ∝ P (t|w) exp
D∑
j=1

γjfj(w, t)

where here we use the DPM model as base model

P (t|w). Under this setup, where P ′ uses the same
features as P , and both are log-linear models, this
simplifies to

P ′(t|w) ∝ exp

 D∑
j=1

λjfj(w, t) +
D∑
j=1

γjfj(w, t)


∝ exp

D∑
j=1

(λj + γj) fj(w, t) (1)

where the constant of proportionality is Z ′(w) =∑
t exp

∑D
j=1 (λj + γj) fj(w, t). It is clear that

Equation (1) also defines a maximum entropy clas-
sifier, with parameters αj = λj + γj , and conse-
quently this might seem to be a pointless exercise.
The utility of this approach arises from the prior:
MAP training with a zero mean Gaussian prior
over γ is equivalent to a Gaussian prior over the
aggregate weights, αj ∼ N (λj , σ2). This prior
enforces parameter sharing between the two mod-
els by penalising parameter divergence from the
underlying DPM model λ. The resulting training
objective is

Lcorr = logP (t|w, α)− 1
2σ2

D∑
j=1

(αj − λj)2

which can be easily optimised using standard
gradient-based methods, e.g., L-BFGS. The con-
tribution of the regulariser is scaled by the constant

1
2σ2 .

4.1 Regulariser sensitivity

Careful tuning of the regularisation term σ2 is crit-
ical for the correction model, both to limit over-
fitting on the very small training sample of 1,000
tokens, and to control the extent of the influence
of the DPM model over the correction model.
A larger value of σ2 lessens the reliance on the
DPM and allows for more flexible modelling of
the training set, while a small value of σ2 forces
the parameters to be close to the DPM estimates at
the expense of data fit. We expect the best value
to be somewhere between these extremes, and use
line-search to find the optimal value for σ2. For
this purpose, we hold out 100 tokens from the
1,000 instance training set, for use as our devel-
opment set for hyper-parameter selection.

From Figure 1, we can see that the model per-
forms poorly on small values of σ2. This is under-
standable because the small σ2 makes the model
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Figure 1: Sensitivity of regularisation parameter
σ2 against the average accuracy measured on 8
languages on the development set

too similar to DPM, which is not very accurate
(80.2%). At the other extreme, if σ2 is large, the
DPM model is ignored, and the correction model
is equivalent with the supervised model (∼ 88%
accuracy). We select the value of σ2 = 70, which
maximizes the accuracy on the development set.

4.2 The model

Using the value of σ2 = 70, we retrain the model
on the whole 1,000-token training set and evalu-
ate the model on the rest of the annotated data.
Table 6 shows the performance of DPM, Super-
vised model, Correction model and the state-of-
the-art model (Täckström et al., 2013). The super-
vised model trains a maximum entropy tagger us-
ing the same features as in Table 4 on this 1000 to-
kens. The only difference between the supervised
model and the correction model is that in the cor-
rection model we additionally incorporate DPM as
the prior.

The supervised model performs surprisingly
well confirming that our features are meaning-
ful in distinguishing between tags. This model
achieves high accuracy on Danish compared with
other languages probably because Danish is eas-
ier to learn since it contains only 8 tags. Despite
the fact that the DPM is not very accurate, the cor-
rection model consistently outperforms the super-
vised model on all considered languages, approx-
imately 4.3% (absolute) better on average. This
shows that our method of incorporating DPM to
the model is efficient and robust.

The correction model performs much bet-
ter than the state-of-the-art for 7 languages but
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Figure 2: Learning curve for correction model and
supervised model: the x-axis is the size of data
(number of tokens); the y-axis is the average ac-
curacy measured on 8 languages; the dashed line
shows the data condition reported in Table 6

slightly worse for 1 language. On average we
achieve 91.3% accuracy compared with 88.8%
for the state-of-the-art, an error rate reduction of
22.3%. This is despite using fewer resources and
only modest supervision.

5 Analysis

Tagset mismatch In the correction model, we
implicitly resolve the mismatched tagset issue.
DPM might contain tags that don’t appear in the
target language or generally are errors in the map-
ping. However, when incorporating DPM into the
correction model, only the feature weight of tags
that appear in the target language are retained. In
general, because we don’t explicitly do any map-
ping between languages, we might have trouble if
the tagset size of the target language is bigger than
the source language tagset. However, this is not
the case for our experiment because we choose En-
glish as the source-side and English has the full 12
tags.

Learning curve We investigate the impact of
the number of available annotated tokens on the
correction model. Figure 2 shows the learning
curve of the correction model and the supervised
model. We can clearly see the differences be-
tween 2 models when the size of training data is
small. For example, at 100 tokens, the difference
is very large, approximately 18% (absolute), it is
also 6% (absolute) better than DPM. This differ-
ence diminishes as we add more data. This make
sense because when we add more data, the super-
vised model become stronger, while the effective-
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Model da nl de el it pt es sv Avg
DPM 64.4 83.3 86.3 79.7 82.0 86.5 82.5 76.5 80.2
Täckström et al. (2013) 88.2 85.9 90.5 89.5 89.3 91.0 87.1 88.9 88.8
Supervised model 90.1 84.6 89.6 88.2 81.4 87.6 88.9 85.4 87.0
Correction Model 92.1 91.1 92.5 92.1 89.9 92.5 91.6 88.7 91.3
DPM (with dict) 65.2 83.9 87.0 79.1 83.5 87.1 83.0 77.5 80.8
Correction Model (with dict) 93.3 92.2 93.7 93.2 92.2 93.1 92.8 90.0 92.6

Table 6: The comparison of our Directly Projected Model, Supervised Model, Correction Model and the
state-of-the-art system (Täckström et al., 2013). The best performance for each language is shown in
bold. The models that are built with a dictionary are provided for reference.

ness of the DPM prior on the correction model is
wearing off. An interesting observation is that the
correction model is always better, even when we
add massive amounts of annotated data. At 50,000
tokens, when the supervised model reaches 96%
accuracy, the correction model is still 0.3% (abso-
lute) better, reaching 96.3%. It means that even
at that high level of confidence, some informa-
tion can still be added from DPM to the correc-
tion model. This improvement probably comes
from the observation that the ambiguity in one
language is explained through the alignment. It
also suggests that this method could improve the
performance of a supervised POS tagger even for
resource-rich languages.

Our methods are also relevant for annotation
projects for resource-poor languages. Assuming
that it is very costly to annotate even 100 tokens,
applying our methods can save annotation effort
but maintain high performance. For example, we
just need 100 tokens to match the accuracy of a su-
pervised method trained on 700 tokens, or we just
need 500 tokens to match the performance with
nearly 2,000 tokens of supervised learning.

Our method is simple, but particularly suitable
for resource-poor languages. We need a small
amount of annotated data for a high performance
POS tagger. For example, we need only around
300 annotated tokens to reach the same accuracy
as the state-of-the-art unsupervised POS tagger
(88.8%).

Tag dictionary Although, it is not our objec-
tive to rely on the dictionary, we are interested
in whether the gains from the correction model
still persist when the DPM performance is im-
proved. We attempt to improve DPM, following
the method of Li et al. (2012) by building a tag dic-
tionary using Wiktionary. This dictionary is then
used as a feature which fires for word-tag pairings

present in the dictionary. We expect that when we
add this additional supervision, the DPM model
should perform better. Table 6 shows the perfor-
mance of DPM and the correction model when in-
corporating the dictionary. The DPM model only
increases 0.6% absolute but the correction model
increases 1.3%. Additionally, it shows that our
model can improve further by incorporating exter-
nal information where available.

CRF Our approach of using simple classifiers
begs the question of whether better results could
be obtained using sequence models, such as con-
ditional random fields (CRFs). As mentioned pre-
viously, a CRF is not well suited for incomplete
data. However, as our second ‘correction’ model
is trained on complete sequences, we now con-
sider using a CRF in this stage. The training al-
gorithm is as follows: first we estimate the DPM
feature weights on the incomplete data as before,
and next we incorporate the feature weights into a
CRF trained on the 1,000 annotated tokens. This is
complicated by the different feature sets between
the MaxEnt classifier and the CRF, however the
classifier uses a strict subset of the CRF features.
Thus, we use the minimum divergence prior for
the token level features, and a standard zero-mean
prior for the sequence features. That is, the ob-
jective function of the CRF correction model be-
comes:

Lcorr
crf = logP (t|w, α)

− 1
2δ21

∑
j∈F1

(αj − λj)2 − 1
2δ22

∑
j∈F2

α2
j (2)

where F1 is the set of features referring to only
one label as in the DPM maxent model and F2

is the set of features over label pairs. The union
of F = F1 ∪ F2 is the set of all features for
the CRF. We perform grid search using held out
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data as before for δ21 and δ22 . The CRF correc-
tion model scores 88.1% compared with 86.5% of
the supervised CRF model trained on the 1,000
tokens. Clearly, this is beneficial, however, the
CRF correction model still performs worse than
the MaxEnt correction model (91.3%). We are not
sure why but one reason might be overfitting of
the CRF, due to its large feature set and tiny train-
ing sample. Moreover, this CRF approach is or-
thogonal to Täckström et al. (2013): we could use
their CRF model as the DPM model and train the
CRF correction model using the same minimum
divergence method, presumably resulting in even
higher performance.

6 Two-output model

Garrette and Baldridge (2013) also use only a
small amount of annotated data, evaluating on
two resource-poor languages Kinyarwanda (KIN)
and Malagasy (MLG). As a simple baseline, we
trained a maxent supervised classifier on this data,
achieving competitive results of 76.4% and 80.0%
accuracy compared with their published results
of 81.9% and 81.2% for KIN and MLG, respec-
tively. Note that the Garrette and Baldridge (2013)
method is much more complicated than this base-
line, and additionally uses an external dictionary.

We want to further improve the accuracy of
MLG using parallel data. Applying the technique
from Section 4 will not work directly, due to the
tagset mismatch (the Malagasy tagset contains 24
tags) which results in highly different feature sets.
Moreover, we don’t have the language expertise
to manually map the tagset. Thus, in this section,
we propose a method capable of handling tagset
mismatch. For data, we use a parallel English-
Malagasy corpus of ∼100k sentences,4 and the
POS annotated dataset developed by Garrette and
Baldridge (2013), which comprises 4230 tokens
for training and 5300 tokens for testing.

6.1 The model
Traditionally, MaxEnt classifiers are trained us-
ing a single label.5 The method we propose is
trained with pairs of output labels: one for the

4http://www.ark.cs.cmu.edu/global-voices/
5Or else a sequence of labels, in the case of a conditional

random field (Lafferty et al., 2001). However, even in this
case, each token is usually assigned a single label. An excep-
tion is the factorial CRF (Sutton et al., 2007), which models
several co-dependent sequences. Our approach is equivalent
to a factorial CRF without edges between tags for adjacent
tokens in the input.

Malagasy tag (tM ) and one for the universal tag
(tU ), which are both predicted conditioned on a
Malagasy word (wM ) in context. Our two-output
model is defined as

P (tM , tU |wM ) =
1

Z(wM )
exp

( D∑
j=1

λjf
M
j (w, tM )

+
E∑
j=1

γjf
U
j (w, tU ) +

F∑
j=1

αjf
B
j (w, tM , tU )

)
(3)

where fM , fU , fB are the feature functions con-
sidering tM only, tU only, and over both outputs
tM and tU respectively, and Z(wM ) is the parti-
tion function. We can think of Eq. (3) as the com-
bination of 3 models: the Malagasy maxent super-
vised model, the DPM model, and the tagset map-
ping model. The central idea behind this model is
to learn to predict not just the MLG tags, as in a
standard supervised model, but also to learn the
mapping between MLG and the noisy projected
universal tags. Framing this as a two output model
allows for information to flow both ways, such that
confident taggings in either space can inform the
other, and accordingly the mapping weights α are
optimised to maximally exploit this effect.

One important question is how to obtain la-
belled data for training the two-output model, as
our small supervised sample of MLG text is only
annotated for MLG labels tM . We resolve this
by first learning the DPM model on the projected
labels, after which we automatically label our
correction training set with predicted tags from
the DPM model. That is, we augment the an-
notated training data from (tM , wM ) to become
(tM , tU , wM ). This is then used to train the two-
output maxent classifier, optimising a MAP ob-
jective using standard gradient descent. Note that
it would be possible to apply the same minimum
divergence technique for the two-output maxent
model. In this case the correction model would
include a regularization term over the λ to bias to-
wards the DPM parameters, while γ and α would
use a zero-mean regularizer. However, we leave
this for future work.

Table 7 summarises the performance of the
state-of-the-art (Garrette et al., 2013), the super-
vised model and the two-output maxent model
evaluated on the Malagasy test set. The two-output
maxent model performs much better than the su-
pervised model, achieving ∼5.3% (absolute) im-
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Model Accuracy (%)
Garrette et al. (2013) 81.2
MaxEnt Supervised 80.0
2-output MaxEnt (Universal tagset) 85.3
2-output MaxEnt (Penn tagset) 85.6

Table 7: The performance of different models for
Malagasy.

provement. An interesting property of this ap-
proach is that we can use different tagsets for the
DPM. We also tried the original Penn treebank
tagset which is much larger than the universal
tagset (48 vs. 12 tags). We observed a small im-
provement reaching 85.6%, suggesting that some
pertinent information is lost in the universal tagset.
All in all, this is a substantial improvement over
the state-of-the-art result of 81.2% (Garrette et al.,
2013) and an error reduction of 23.4%.

7 Conclusion

In this paper, we thoroughly review the work on
multilingual POS tagging of the past decade. We
propose a simple method for building a POS tag-
ger for resource-poor languages by taking advan-
tage of parallel data and a small amount of anno-
tated data. Our method also efficiently resolves
the tagset mismatch issue identified for some lan-
guage pairs. We carefully choose and tune the
model. Comparing with the state-of-the-art, we
are using the more realistic assumption that a
small amount of labelled data can be made avail-
able rather than requiring a crowd-sourced dic-
tionary. We use less parallel data which as we
pointed out in section 3.1, could have been a huge
disadvantage for us. Moreover, we did not exploit
any external monolingual data. Importantly, our
method is simpler but performs better than previ-
ously proposed methods. With only 1,000 anno-
tated tokens, less than 1% of the test data, we can
achieve an average accuracy of 91.3% compared
with 88.8% of the state-of-the-art (error reduction
rate ∼22%). Across the 8 languages we are sub-
stantially better at 7 and slightly worse at one. Our
method is reliable and could even be used to im-
prove the performance of a supervised POS tagger.

Currently, we are building the tagger and eval-
uating through several layers of mapping. Each
layer might introduce some noise which accumu-
lates and leads to a biased model. Moreover,
the tagset mappings are not available for many

resource-poor languages. We therefore also pro-
posed a method to automatically match between
tagsets based on a two-output maximum entropy
model. On the resource-poor language Mala-
gasy, we achieved the accuracy of 85.6% com-
pared with the state-of-the-art of 81.2% (Garrette
et al., 2013). Unlike their method, we didn’t use an
external dictionary but instead use a small amount
of parallel data.

In future work, we would like to improve the
performance of DPM by collecting more parallel
data. Duong et al. (2013a) pointed out that using
a different source language can greatly alter the
performance of the target language POS tagger.
We would like to experiment with different source
languages other than English. We assume that we
have 1,000 tokens for each language. Thus, for the
8 languages we considered we will have 8,000 an-
notated tokens. Currently, we treat each language
independently, however, it might also be interest-
ing to find some way to incorporate information
from multiple languages simultaneously to build
the tagger for a single target language.
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Abstract

Active learning (AL) consists of asking human
annotators to annotate automatically selected
data that are assumed to bring the most bene-
fit in the creation of a classifier. AL allows to
learn accurate systems with much less anno-
tated data than what is required by pure super-
vised learning algorithms, hence limiting the
tedious effort of annotating a large collection
of data.

We experimentally investigate the behav-
ior of several AL strategies for sequence
labeling tasks (in a partially-labeled sce-
nario) tailored on Partially-Labeled Condi-
tional Random Fields, on four sequence la-
beling tasks: phrase chunking, part-of-speech
tagging, named-entity recognition, and bio-
entity recognition.

1 Introduction
Today, the state-of-the-art methods in most natural lan-
guage processing tasks are supervised machine learn-
ing approaches. Their main problem lies in their need
of large human-annotated training corpus, which re-
quires a tedious and expensive work from domain ex-
perts. The process of active learning (AL) employs one
or more human annotators by asking them to label new
samples which are supposed to be the most informa-
tive in the creation of a new classifier. A classifier is
incrementally retrained with all the data labeled by the
annotator. AL has been demonstrated to work well and
to produce accurate classifiers while saving much hu-
man annotation effort. One critical issue is to define
a measure of the informativeness which should reflect
how much new information a new example would give
in the learning of a new classifier once annotated.

A lot of work has been done on the AL field in
the past years (see (Settles, 2012) for an exhaustive
overview). In particular, AL proved its usefulness in se-
quence labeling tasks (Settles and Craven, 2008). Yet,
researchers have always adopted as annotation unit an
entire sequence (i.e., the annotator is asked to anno-
tate the whole sequence) while it looks like it could be
much more relevant to ask for labeling only small parts
of it (e.g., the ones with highest ambiguity). A few

works have investigated this idea. For instance, Wan-
varie et al. (2011) proposed to use Partially-Labeled
Conditional Random Fields (PL-CRFs) (Tsuboi et al.,
2008), a semi-supervised variation of Conditional Ran-
dom Fields (CRFs) (Lafferty et al., 2001) able to deal
with partially-labeled sequences, thus enabling to adopt
as annotation unit single tokens and still learning from
full sequences. AL with partially labeled sequences
has proven to be effective in substantially reducing the
amount of annotated data with respect to common AL
approaches (see (Wanvarie et al., 2011)).

In this work we focus on AL strategies for partially
labeled sequences adopting the single token as annota-
tion unit and PL-CRFs as learning algorithm given its
nature in dealing with partially labeled sequences. We
propose several AL strategies based on measures of un-
certainty adapted for the AL with partially labeled se-
quences scenario and tailored on PL-CRFs. We further
propose two strategies that exploit the finer granularity
given by the partially-labeled scenario. We also show
that the choice of single-token annotation can bring
to unpredictable results on sequence labeling tasks in
which the structure of the sequences is not regular, e.g.,
named-entity recognition. We propose a first solution
to the problem of unpredictability. The aim of this
work is thoroughly compare the effectiveness and the
behavior of all the proposed AL strategies on four stan-
dard sequence labeling tasks, phrase chunking, part-
of-speech tagging, named-entity recognition and bio-
entity recognition.

The remainder of this paper is as follows. In Sec-
tion 2 we summarize the related work in AL, in Sec-
tion 3 we describe PL-CRFs, the semi-supervised al-
gorithm we adopt in this work. Section 4 describes
in details the AL framework and the AL strategies we
propose. Section 5 provides a description of the experi-
mental setting, the datasets, and discusses the empirical
results. Section 6 summarizes our findings.

2 Related Work

Our work belongs to the pool-based AL framework. It
considers the case in which a large amount (pool) of
unlabeled examples is available, from which samples
to be labeled must be chosen. This framework fits all
the sequence labeling problems we consider here. For
a more exhaustive survey on other AL frameworks see
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(Settles, 2012).
Most of the AL works on sequence labeling adopted

the entire sequence as annotation unit (Settles and
Craven, 2008) which was demonstrated by Wanvarie
et al. (2011) to be less effective than using the single
token as annotation unit. The main AL works in this
latter line of work are (Shen et al., 2004), (Tomanek
and Hahn, 2009) and (Wanvarie et al., 2011). Shen
et al. (2004) adopted SVMs as learning algorithm and
proposed two strategies that combine three criteria, in-
formativeness, representativeness and diversity. SVMs
allowed them to use as annotation unit a subset of the
tokens in a sequence, without annotating, in any way,
the rest of the tokens in the sequence. In (Tomanek and
Hahn, 2009), the most uncertain tokens of the sequence
are singularly annotated, but the rest of the labels in the
sequence are then chosen by the classifier in a semi-
supervised fashion. Wanvarie et al. (2011) is the clos-
est work to ours, they adopt a minimum confidence se-
lection strategy with re-estimation using the PL-CRFs.
Differently from our work, Wanvarie et al. (2011) show
that adopting the AL with partially labeled sequences
using re-estimation, the annotation cost can be dramat-
ically reduced (by annotating from 8% to 10% of the
tokens of the entire training set), obtaining the same
level of performance of the classifier trained on the en-
tire, fully-labeled, training set. We started our work
from this conclusion and we focused on AL with par-
tially labeled sequences using re-estimation by compar-
ing several AL strategies in order to find the strategy
that allows to create the best classifier with the mini-
mum annotation effort.

3 Partially-Labeled
Conditional Random Fields

Nowadays, CRFs are the de-facto standard for the so-
lution of sequence labeling tasks (Sarawagi, 2008). In
traditional CRFs (Lafferty et al., 2001) the conditional
probability of a sequence of labels y given a sequence
of observed feature vectors x is given by:

p(y|x) =
1

Z(x)

T∏
t=1

Ψt(y,x) (1)

where a standard choice for sequence labeling tasks are
the so called Linear-chain CRFs:

p(y|x) =
1

Z(x)

T∏
t=1

Ψt(yt, yt−1,xt) (2)

with:

Ψt(yt, yt−1,xt) = Ψu(yt, xt)Ψb(yt, yt−1) (3)

where Ψu(yt, xt) models the co-occurrence between
features xt, and label yt at time t, and Ψb(yt, yt−1)
models the co-occurrence between two adjacent labels
yt and yt−1.

PL-CRFs introduced by Tsuboi et al. (2008) allow to
learn a CRF model using partially-labeled sequences,
marginalizing on those tokens that do not have an as-
signed label. In PL-CRFs, L denotes a partially labeled
information about a sequence. It consists of a sequence
of sets Lt in which Lt = Y (where Y is the set of all
the possible labels) if there is no label information for
token at time t. Lt is a singleton containing yt if the
label of the token at time t is known, and YL is the set
of label sequences that fits the partial label information
L. Then the probability of a partial labeling may be
computed as:

p(YL|x) =
∑

y∈YL

p(y|x) (4)

In order to perform inference and parameter learning
on PL-CRFs, some modifications on traditional CRFs
inference algorithms are required.

3.1 Forward-Backward Algorithm
Differently from traditional CRFs, the forward and
backward scores (respectively α and β), are calculated
as follows:

αt,L(j) =


0 if j 6∈ Lt

Ψ1(j, y0, x1) else if t = 1
and j ∈ Lt

SA(j) otherwise

(5)

βt,L(i) =


0 if j 6∈ Lt

1 else if t = T
and j ∈ Lt

SB(j) otherwise

(6)

where

SA(j) =
∑

i∈Lt−1

αt−1,L(i)Ψt(j, i, xt) (7)

SB(j) =
∑

j∈Lt+1

βt+1,L(j)Ψt+1(j, i, xt+1) (8)

and y0 is a special label that encodes the beginning of
a sequence.

3.2 Marginal Probability
The marginal probability p(yt = j|x,L) is calculated
as:

p(yt = j|x,L) =
αt,L(j) · βt,L(j)

ZL(x)
(9)

with:

∀t, ZL(x) =
∑
j∈Lt

αt,L(j) · βt,L(j) (10)

In case there is no label information, the formulas for
forward and backward scores (Equations (5) and (6))
and for the marginal probabilities (Equation (9)) yield
the standard results of CRFs.
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3.3 Viterbi Algorithm
The most probable sequence assignment may be de-
rived with a Viterbi algorithm by recursively comput-
ing the following quantities:

δt,L(j) =


0 if j 6∈ Lt

Ψ1(j, y0, x1) else if t = 1
and j ∈ Lt

M(j) otherwise

(11)

where

M(j) = max
i∈Lt−1

δt−1,L(i)Ψt(j, i, xt) (12)

The most probable assignment is then calculated as:
y∗ = argmaxyp(y|x,L)

3.4 Log-Likelihood
PL-CRFs’s parameters θ are learnt through maximum
log-likelihood estimation, that is to maximize the log-
likelihood function LL(θ):

LL(θ) =
N∑

i=1

log p(YL(i) |x(i))

=
N∑

i=1

logZY
L(i) (x(i))− logZY(x(i))

(13)

The parameters θ that maximize Equation (13) are
computed via the LBFGS optimization method (Byrd
et al., 1994).

4 Active Learning Strategies
Pool-based AL (see (Lewis and Catlett, 1994)) is prob-
ably the most common scenario in AL, where one has
a large amount (pool) of unlabeled examples U1 and a
small amount of labeled examples T1. In this scenario,
the process of AL consists in a series of n iterations
where a classifier Φi is trained with labeled examples
Ti, and then is used to classify the unlabeled examples
Ui. At this point an AL strategy S will select a number
of examplesB that once labeled will hopefully improve
the performance of the next classifier Φi+1.

Algorithm 1 shows the pool-based AL framework
for partially annotated sequences as introduced in
(Wanvarie et al., 2011). Differently from AL for fully
labeled sequences (Esuli et al., 2010), thanks to the
finer granularity of the partially labeled model, we use
the token as basic annotation unit, instead of the entire
sequence.

The point of using the partial labeling is in saving the
request for human annotations on tokens whose labels
are already known (inferred) by the classifier and con-
centrate on those tokens that the classifier finds hard to
label. Using the semi-supervised approach of the PL-
CRFs we can take advantage of single-labeled tokens
instead of an entire labeled sequence.

The entire pool-based AL process with partially la-
beled sequences is summarized in Algorithm 1. The

Algorithm 1 Pool-based active learning framework

Require: T1, the initial training set
U1, the initial unlabeled set
S, the selected AL strategy
n, the number of iterations
B, the dimension of the update batch

1: for i← 1 to n do
2: Φi ← train(Ti)
3: Li ← Φi(Ui)
4: for b← 1 to B do
5: x(b)

∗ ← arg minxt∈x,x∈Li
S(t,x)

6: Li ←Li − x(b) ∪ Φi(x(b), y∗)
7: Ui← Ui − x(b)

∗ ∪ (x(b)
∗ , y∗)

8: Ti ← Ti − x(b)
∗ ∪ (x(b)

∗ , y∗)
9: Ui+1← Ui

10: Ti+1← Ti

function S(t,x) is what, hereafter, we call an AL strat-
egy. S(t,x) takes as input an automatically annotated
sequence x and an element t of this sequence, from the
set of sequences Li annotated by the PL-CRF classi-
fier Φi, and returns a measure of informativeness as a
function of the classifier decision.

For each iteration through the update batch B, the
most informative element x(b)

∗ , according to the AL
strategy, is chosen. The subscript ∗, in this case, repre-
sents the most informative token, while the superscript
(b) represents the sequence in which the token appears.
After the choice of the most informative token the sets
Li, Ui and Ti are updated. Li is updated by remov-
ing the annotated sequence x(b) and all the informa-
tion given by the classifier, and by adding the same se-
quence with the new manually labeled token (y∗) and
all the re-estimated annotation given by the classifier
Φi(x(b), y∗). In the unlabeled set Ui and the training
set Ti the most informative token x(b)

∗ is updated with
its manually labeled version (x(b)

∗ , y∗)1. After B token
annotations, the unlabeled set and the training set for
the next iteration, respectively Ui+1 and Ti+1, are up-
dated.

The inference methods of Section 3 allow not only
to train a CRF model with partially labeled sequences,
but give the possibility of classifying partially labeled
sequences, using the known labels as support for the
prediction of the other ones. Thus, in this AL scenario,
each time a token is chosen it is immediately labeled,
and this new information, as we can see from line 6 of
Algorithm 1, is promptly used to re-estimate the infor-
mativeness of the other tokens in the sequence in which
the chosen token appears.

One may argue that, for a human annotator, anno-

1In order to have a light notation we omit the fact that
when the most informative token is the first annotated token
of a sentence, the whole sentence, with just one annotated
token, is added to the training set Ti
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tating only one or few tokens, instead of the entire se-
quence, is a difficult task. This would be correct in
the scenario in which the text is presented to the hu-
man annotator without any visual clue about the an-
notations. However, in (Culotta and McCallum, 2005)
it is shown that presenting to the human annotator the
highlighted sequence to be annotated along with the as-
sociated sequence of labels obtained by the classifier
requires much less effort from the annotator than per-
forming the annotation without any visual and contex-
tual clue.

4.1 Greedy Strategies
In this section we present three AL strategies that select
the most informative tokens, regardless of the assign-
ment performed by the Viterbi algorithm. The ratio-
nale behind these strategies is that, even though we are
looking for the most probable sequence assignment, we
also want to annotate the most informative tokens sin-
gularly.

The Minimum Token Probability (MTP) strategy
employs as measure of informativeness the probability
of the most probable assignment at time t. This strategy
greedily samples the tokens whose highest probability
among the labels is lowest.

SMTP (t,x) = max
j∈Y

p(yt = j|x,L) (14)

The Maximum Token Entropy (MTE) strategy relies
on the entropy measure to evaluate the ambiguity about
the label of a token. The rationale of it is that, if more
than one label have the same assigned marginal proba-
bility, the entropy will be high, that is,

SMTE(t,x) =∑
j∈Y

p(yt = j|x,L) · log p(yt = j|x,L) (15)

In order to directly plug the SMTE strategy into the AL
framework of Algorithm 1, we removed the minus sign
at the beginning of the entropy formula. This allow
us to use the min operator with a maximum entropy
approach.

The Minimum Token Margin (MTM) strategy is
a variant of the margin sampling strategy introduced
in (Scheffer et al., 2001). It calculates the informative-
ness by considering the two most probable assignments
and by subtracting the highest probability by the low-
est. With max ′ that calculates the second maximum
value, MTM is defined as:

SMTM (t,x) =
max
j∈Y

p(yt =j|x,L)−max
j∈Y

′p(yt = j|x,L) (16)

4.2 Viterbi Strategies
The following AL strategies take into consideration the
most probable sequence assignments obtained from the
Viterbi algorithm computed on already known labels in
the sequence.

The rationale is that, with these strategies, the mea-
sure of uncertainty is chosen according to the informa-
tion obtained from the outcome of the Viterbi algorithm
(i.e., the most probable sequence assignment).

The Minimum Viterbi Probability (MVP) is the
base strategy adopted in (Wanvarie et al., 2011). It
takes as measure of informativeness the probability of
the label chosen by the Viterbi algorithm.

SMV P (t,x) = p(y∗t |x,L) (17)

where y∗t is the label assignment chosen by the Viterbi
algorithm. In general, the token assignments that max-
imize the probability of the sequence assignment y∗t
are different from the token assignments that maxi-
mize the probability of the individual token assign-
ments argmaxj∈Yp(yt = j).

The Maximum Viterbi Pseudo-Entropy (MVPE)
strategy calculates for each token the “pseudo” entropy
of the most probable sequences at the variation of the
label at position t. The prefix pseudo is used because
even though it is calculated as an entropy, the summa-
tion is over all the possible labels that can be associated
to a token, and not all the possible sequence assign-
ments.

SMV PE(t,x) =∑
j∈Y

p(y∗yt=j |x,L) · log p(y∗yt=j |x,L) (18)

where y∗yt=j represents the most probable assignment
with the label at time t constrained to the value j. As
in the MTE strategy the minus sign is removed in order
to plug the functions directly into the AL framework of
Algorithm 1.

The Minimum Viterbi Margin (MVM) strategy
calculates the difference of the sequence probabili-
ties of the two most probable sequence assignments
at the variation of the label at time t. When the dif-
ference at time t is low, the Viterbi algorithm, in that
time, chooses between two almost equally probable, se-
quence assignments. Formally:

SMV M (t,x) = p(y∗y∗t |x,L)− p(y′∗y′∗t |x,L) (19)

where y′∗ is the second most probable assignment.
PL-CRFs allow us to inspect one token at time in or-

der to decide if it is worth to annotate. This fact give
us the possibility of exploit two quantities in order to
estimate the informativeness of a token, the sequence
probability, usually adopted in the traditional AL for
sequence labeling, and the marginal probabilities of the
single tokens as in Section 4.1. The Minimum Expec-
tation (ME) strategy combines the marginal probabili-
ties, p(yt = j|x,L) and p(y∗yt=j |x,L).

SME(t,x) =
∑
j∈Y

p(yt = j|x,L) · p(y∗yt=j |x,L)

(20)
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Here the maximum sequence probability is seen as a
function, and what we calculate is the expected value of
this very function. The rationale of this strategy is pick-
ing those tokens in which both, the sequence probabil-
ity returned by the Viterbi algorithm, and the marginal
probability of the considered labels are low.

Given that the ME strategy gives a high weight to
the sequence probability, one might expect that tokens
that belongs to longer sequences are selected more fre-
quently, given that, the sequence probability of longer
sequences is usually lower than shorter ones. One way
to normalize this difference is subtracting the current
maximum sequence probability, that is, the maximum
sequence probability calculated without any new label
estimation, to the expected value obtained from the es-
timation of the label assignment of the token. This is
the Minimum Expectation Difference (MED) strat-
egy.

SMED(t,x) = SME(t,x)− p(y∗|x,L) (21)

The rationale of this strategy is that when the expected
value is far from the maximum value, that is the value
returned by the Viterbi algorithm, it means that we have
uncertainty on the token taken into consideration.

The Random (RAND) strategy samples random to-
kens without any external information. It is used as
baseline to compare the real effectiveness of the pro-
posed strategy.

At the best of our knowledge the strategies presented
in this section (with the exception of the MVP strategy)
have never been applied in the context of AL with par-
tially labeled sequences scenario.

5 Experiments

5.1 Datasets

We have experimented and evaluated the AL strate-
gies of Section 4 on four sequence labeling tasks,
part-of-speech tagging, phrase chunking, named-entity
recognition and bio-entity recognition. We used the
CoNLL2000 dataset (Tjong Kim Sang and Buchholz,
2000) for the phrase chunking task, the CoNLL2003
dataset (Tjong Kim Sang and De Meulder, 2003),
for the named-entity recognition task, the NLPBA2004
dataset (Kim et al., 2004), for the biomedical entity
recognition task and the CoNLL2000POS dataset2 for
the part-of-speech labeling task. All the datasets are
publicly available and are standard benchmarks in se-
quence labeling tasks. Table 1 shows some statistics of
the datasets in terms of dimensions, number of labels,
distribution of the labels, etc. The data heterogeneity of
the different datasets allowed us to test the AL strate-
gies on different “experimental settings”, thus to have
a more robust empirical evaluation.

2This is the CoNLL2000 dataset annotated with part-of-
speech labels instead of chunking labels.

5.2 Experimental Setting

We tested the AL strategies described in Section 4
on test sets composed by 2012 sequences and 47377
tokens for the CoNLL2000 and CoNLL2000POS
datasets, by 3452 sequences and 46394 tokens for
the CoNLL2003 dataset and by 3856 sequences and
101039 tokens for the NLPBA2004 dataset. We
chose an initial training set T1 of ∼5 sequences on
CoNLL2000 and CoNLL2000POS datasets, ∼7 se-
quences on CoNLL2003 dataset and ∼4 sequences on
NLPBA2004 dataset, for a total of∼100 labeled tokens
for each dataset. The dimension of the batch update B
has been chosen as a trade-off between an ideal case in
which the system is retrained after every single anno-
tation (i.e., B = 1) and a practical case with higher B
to limit the algorithmic complexity (since the PL-CRF
classifier must be retrained every iteration). We used in
our experiments B = 50. We fixed the number of AL
iterations n at 40 because what matters here is how the
strategies behave in the beginning of AL process when
the annotation effort remains low. For each strategy
and for each dataset, we report averaged results of three
runs with a different randomly sampled initial training
set T1.

For each dataset we adopted a standard set of fea-
tures. For the CoNLL2000 dataset we adopted the same
standard features used in (Wanvarie et al., 2011) for the
same dataset, for the CoNLL2003 and the NLPBA2004
dataset we adopted the features used in (Wanvarie et
al., 2011) for the CoNLL2003 dataset, while for the
CoNLL2000POS dataset we used the features pre-
sented in (Ratnaparkhi, 1996). As evaluation measure
we adopted the token variant of the F1 measure, intro-
duced by Esuli and Sebastiani (2010). This variant, in-
stead of the entire annotation (chunk/entity), calculates
TP s, FP s, and FNs, singularly for each token that
compose the annotation, bringing to a finer evaluation.

5.3 Results

From the learning curves of Figure 1 and Figure 2 it
is clear that most of the strategies have the same trend
throughout the different datasets. This results is some-
what different from the results obtained in (Settles and
Craven, 2008) in which there is not a clear winner
among the strategies they proposed in a fully-labeled
scenario. The strategies that perform particularly bad
(worse than the RAND strategy in CoNLL2000POS
and in CoNLL2003 dataset) in all the datasets are the
MTE and MTP. This is expected, because the choice
of the measure of informativeness related to the token
without taking in consideration the Viterbi path is sub-
optimal in this task. Surprisingly, the MTM strategy
even though based on the same principle of MTE and
MTP, is very effective in most of the datasets. The
most effective strategies, that is, the ones that are the
faster at helping the classifier to reach a better accu-
racy are the MTM, MVM, and MVP, in particular the
margin-based strategies perform very good in all the
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Table 1: Training Data Statistics. #S is the number of total sequences in the dataset, #T is the number of tokens
in the dataset, #L is the number of positive labels (labels different from the negative label O), AAL is the average
length, in tokens, of annotations (sequence of tokens that refer to the same instance of a label), APT is the average
number of token in a sequence annotated with a positive label, ASL is the average length of a sequence, AA is the
average number of annotations in a sequence, %AC is the percentage of sequences with more than one positive
annotation, %DAC is the percentage of sequences that have two or more annotations with different labels.

Dataset #S #T #L AAL APT ASL AA %AC %DAC

CoNLL2000 8936 211727 11 1.6 20.6 24 12.0 98% 98%
CoNLL2000POS 8936 211727 35 1.0 20.8 24 20.8 100% 99%
CoNLL2003 17290 254979 4 1.4 2.5 15 2.2 45% 32%
NLPBA2004 18546 492551 5 2.5 5.9 27 3.1 72% 47%
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Figure 1: F1 results on CoNLL2000 dataset (left) and CoNLL2000POS dataset (right). For both datasets the
maximum number of annotated tokens used (2100) represents ∼1% of the entire training set.

datasets. The MVPE strategy performs particularly bad
in the CoNLL2003 dataset but it performs better than
the RAND strategy in the other datasets. The perfor-
mance of the ME strategy is always above the aver-
age, in particular it is the best performing strategy in
the NLPBA2004 dataset. However, in the CoNLL2003
dataset its performance is similar to the RAND’s per-
formance. Looking at the data, as expected, ME tends
to choose tokens belonging to the longest sequences,
regardless if the sequence is already partially anno-
tated, that is, it tends to choose tokens from the same
sequences. This behavior is not particularly relevant on
the CoNLL2003 dataset given that the average num-
ber of positive tokens per sentence is not high (2.5,
see Table 1). For the other datasets, the average num-
ber of positive tokens per sentence is high, and so
the ME strategy is particularly effective. The MED
strategy has the most heterogeneous behavior among
the datasets. It shows average performances in the
CoNLL2000 dataset and NLPBA2004 dataset, but is
slower than the RAND strategy in the CoNLL2003 and
CoNLL2000POS datasets.

In Figure 2 (left) we can notice that there are some
strategies that are consistently worse than the RAND
strategy. The difference between the strategies below

the RAND strategy and the RAND strategy itself might
be due to the fact that those strategies ask to label to-
kens that are “outliers” (if we imagine tokens as points
of the features space) that rarely appear in the training
and test set, and on which the classifier is very uncer-
tain. Given that we are in a semi-supervised setting,
with very few training examples, these “outliers” can
introduce a lot of noise in the created models and so
yielding poor results. This phenomenon does not hap-
pen in the RAND strategy given that it samples uni-
formly from the unlabeled set and given that the “out-
liers” (special cases) are not many, the probability of
randomly selecting an “outlier” is low.

5.3.1 Performance Drop

The AL strategies applied on the CoNLL2003 dataset
(Figure 2 (left)) suffer of some “random” drop of per-
formance. We believe that the first reason that yield
such a behavior is that named entities often appear once
in a sentence, and have heterogeneous structures with
respect to some homogenous structures as the chunk
and POS. The second reason is that, it may happen that
the strategies are not accurate enough to localize pre-
cisely the best token to label or that getting the label
of an isolated token does not help the classifier much
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Figure 2: F1 results on CoNLL2003 dataset (left) and NLPBA2004 dataset (right). 2100 annotated tokens repre-
sent the ∼0.8% and ∼0.4% respectively of the CoNLL2003 training set and the NLPBA2004 training set.

for the remaining of the (unlabeled) tokens in the se-
quence.
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Figure 3: F1 results on CoNLL2003 dataset, three to-
kens annotation. 6100 annotated tokens represent the
∼2.4% of the CoNLL2003 training set.

A similar phenomenon, called missed class effect
(Tomanek et al., 2009), happens in AL when the strate-
gies inspect regions of the example space around the
decision boundaries, bringing to a slow AL process. In
(Tomanek et al., 2009) the missed class effect prob-
lem is solved by helping the AL strategies to inspect
regions far from the decision boundaries, that is, by
choosing an entire sequence instead of a single to-
ken. This solution is not suitable in this context given
that we will loose all the advantages we have in the
partially-labeled scenario, thus, we decided to anno-
tate for each chosen token the previous token and the
next token. The learning curves of the AL strategies
adopting this method (Figure 3) show a monotonically
increasing performance in function of the number of
annotated tokens.

By annotating three tokens at time, the tokens that
were considered “outliers” in the scenario with a single

token annotation are now supported by other tokens of
the sequence. This fact helps to decrease the noise in-
troduced in the semi-supervised model yielding better
results.

5.3.2 Statistical Analysis
Figure 4 reports a few statistics that highlight the be-
havior of the methods on one of the datasets. One may
see for instance that the MVM and ME strategies are
very different from the other methods in that they se-
lect tokens that belong to significantly longer sentences
on average. Also it may be seen that MVM in partic-
ular selects tokens that are far from already annotated
tokens in the sentence. This strategy probably yields a
particular behavior with respect to exploration and ex-
ploitation that seems to suit the two tasks well. The
other strategies do exhibit different behaviors that intu-
itively should not work well. For instance the MED and
the MVPE strategies select tokens from new fully unla-
beled sentences (not shown statistics), preferably short,
so that the distance from selected tokens to already la-
beled tokens in the sentence (when any) is low. These
curves look like relevant indicators of the behavior of
the methods, and it would probably be worth monitor-
ing these all along the AL process to make sure the
learning exhibit a suitable behavior. This will be a fu-
ture study that is out of the scope of this work.

6 Conclusion

In this paper we have presented several AL strategies
tailored for the PL-CRFs in a pool-based scenario. We
have tested the proposed strategies on four different
datasets for four different sequence labeling tasks. Dif-
ferently from other similar work in the field of AL,
in this study we have shown that margin-based strate-
gies constantly achieve good performance on four tasks
with very different data characteristics. Furthermore,
we have found that on datasets with certain character-
istics a particular phenomenon that makes the entire
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Figure 4: Behavior of the methods on CoNLL2000 dataset as a function of the number of the iterations (x-axis,
from 1 to 40). Average length of the sentence the tokens that are selected by the AL strategy belong to (left) and
average distance from a token that is selected to the closest already labeled token in the sentence, if any (right).

AL process highly unpredictable shows up. This phe-
nomenon consists in random drops of accuracy of the
classifiers learnt during the AL process. We have pro-
posed a first solution for this problem that does not have
a relevant impact on the human annotation effort.
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Abstract
In this paper, we propose novel struc-
tured language modeling methods for code
mixing speech recognition by incorporat-
ing a well-known syntactic constraint for
switching code, namely the Functional
Head Constraint (FHC). Code mixing data
is not abundantly available for training
language models. Our proposed meth-
ods successfully alleviate this core prob-
lem for code mixing speech recognition
by using bilingual data to train a struc-
tured language model with syntactic con-
straint. Linguists and bilingual speakers
found that code switch do not happen be-
tween the functional head and its comple-
ments. We propose to learn the code mix-
ing language model from bilingual data
with this constraint in a weighted finite
state transducer (WFST) framework. The
constrained code switch language model is
obtained by first expanding the search net-
work with a translation model, and then
using parsing to restrict paths to those per-
missible under the constraint. We im-
plement and compare two approaches -
lattice parsing enables a sequential cou-
pling whereas partial parsing enables a
tight coupling between parsing and fil-
tering. We tested our system on a lec-
ture speech dataset with 16% embedded
second language, and on a lunch conver-
sation dataset with 20% embedded lan-
guage. Our language models with lattice
parsing and partial parsing reduce word
error rates from a baseline mixed lan-
guage model by 3.8% and 3.9% in terms
of word error rate relatively on the aver-
age on the first and second tasks respec-
tively. It outperforms the interpolated lan-
guage model by 3.7% and 5.6% in terms of

word error rate relatively, and outperforms
the adapted language model by 2.6% and
4.6% relatively. Our proposed approach
avoids making early decisions on code-
switch boundaries and is therefore more
robust. We address the code switch data
scarcity challenge by using bilingual data
with syntactic structure.

1 Introduction

In multilingual communities, it is common for
people to mix two or more languages in their
speech. A single sentence spoken by bilingual
speakers often contains the main, matrix language
and an embedded second language. This type
of linguistic phenomenon is called ”code switch-
ing” by linguists. It is increasingly important for
automatic speech recognition (ASR) systems to
recognize code switching speech as they exist in
scenarios such as meeting and interview speech,
lecture speech, and conversational speech. Code
switching is common among bilingual speakers of
Spanish-English, Hindi-English, Chinese-English,
and Arabic-English, among others. In China,
lectures, meetings and conversations with techni-
cal contents are frequently peppered with English
terms even though the general population is not
considered bilingual in Chinese and English. Un-
like the thousands and tens of thousands of hours
of monolingual data available to train, for exam-
ple, voice search engines, transcribed code switch
data necessary for training language models is
hard to come by. Code switch language modeling
is therefore an even harder problem than acoustic
modeling.

One approach for code switch speech recogni-
tion is to explicitly recognizing the code switch
points by language identification first using pho-
netic or acoustic information, before applying
speech recognizers for the matrix and embed-
ded languages (Chan et. al, 2004; Shia et. al,
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2004; Lyu and Lyu, 2008). This approach is ex-
tremely error-prone as language identification at
each frame of the speech is necessary and any er-
ror will be propagated in the second speech recog-
nition stage leading to fatal and irrecoverable er-
rors.

Meanwhile, there are two general approaches to
solve the problem of lack of training data for lan-
guage modeling. In a first approach, two language
models are trained from both the matrix and em-
bedded language separately and then interpolated
together (Vu et. al, 2012; Chan et. al, 2006). How-
ever, an interpolated language model effectively
allows code switch at all word boundaries without
much of a constraint. Another approach is to adapt
the matrix language language model with a small
amount of code switch data (Tsai et. al, 2010; Yeh
et. al, 2010; Bhuvanagiri and Kopparapu, 2010;
Cao et. al, 2010). The effectiveness of adapta-
tion is also limited as positions of code switch-
ing points are not generalizable from the limited
data. Significant progress in speech recognition
has been made by using deep neural networks for
acoustic modeling and language model. However,
improvement thus gained on code switch speech
recognition remains very small. Again, we pro-
pose that syntactic constraints of the code switch-
ing phenomenon can help improve performance
and model accuracy. Previous work of using part-
of-speech tags (Zhang et. al, 2008; Vu et al 2012)
and our previous work using syntactic constraints
(Li and Fung, 2012, 2013) have made progress
in this area. Part-of-speech is relatively weak in
predicting code switching points. It is generally
accepted by linguists that code switching follows
the so-called Functional Head Constraint, where
words on the nodes of a syntactic sub tree must
follow the language of that of the headword. If the
headword is in the matrix language then none of
its complements can switch to the embedded lan-
guage.

In this work, we propose two ways to incorpo-
rate the Functional Head Constraint into speech
recognition and compare them. We suggest two
approaches of introducing syntactic constraints
into the speech recognition system. One is to ap-
ply the knowledge sources in a sequential order.
The acoustic model and a monolingual language
model are used first to produce an intermediate
lattice, then a second pass choose the best result
using the syntactic constraints. Another approach

uses tight coupling. We propose using structured
language model (Chelba and Jelinek, 2000) to
build the syntactic structure incrementally.

Following our previous work, we suggest in-
corporating the acoustic model, the monolingual
language model and a translation model into a
WFST framework. Using a translation model al-
lows us to learn what happens when a language
switches to another with context information. We
will motivate and describe this WFST framework
for code switching speech recognition in the next
section. The Functional Head Constraint is de-
scribed in Section 3. The proposed code switch
language models and speech recognition coupling
is described in Section 4. Experimental setup and
results are presented in Section 5. Finally we con-
clude in Section 6.

2 Code Switch Language Modeling in a
WFST Framework

As code switch text data is scarce, we do not have
enough data to train the language model for code
switch speech recognition. We propose instead to
incorporate language model trained in the matrix
language with a translation model to obtain a code
switch language model. We propose to integrate a
bilingual acoustic model (Li et. al, 2011) and the
code switch language model in a weighted finite
state transducer framework as follows.

Suppose X denotes the observed code switch
speech vector, wJ1 denotes a word sequence in the
matrix language, the hypothesis transcript vI1 is as
follows:

v̂I1 = arg max
vI1

P (vI1 |X)

= arg max
vI1

P (X|vI1)P (vI1)

= arg max
vI1

P (X|vI1)
∑
wJ1

P (vI1 |wJ1 )P (wJ1 )

∼= arg max
vI1

P (X|vI1)P (vI1 |wJ1 )P (wJ1 ) (1)

where P (X|vI1) is the acoustic model and P (vI1)
is the language model in the mixed language.

Our code switch language model is obtained
from a translation model P (vI1 |wJ1 ) from the ma-
trix language to the mixed language, and the lan-
guage model in the matrix language P (wJ1 ).

Instead of word-to-word translation, the trans-
duction of the context dependent lexicon trans-
fer is constrained by previous words. Assume the
transduction depends on the previous n words:
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P (vI1 |wJ1 ) =
I∏
i=1

P (vi|vi−1
1 , wi1)

∼=
I∏
i=1

P (vi−1
i−n+1|wii−n+1)

=
I∏
i=1

P (vi, wi|vi−1
i−n+1, w

i−1
i−n+1)

P (wi|vi−1
i−n+1, w

i−1
i−n+1)

=
I∏
i=1

P (vi, wi|vi−1
i−n+1, w

i−1
i−n+1)

P (wi|∑vi v
i−1
i−n+1, w

i−1
i−n+1)

(2)

There are C-level and H-level search networks
in the WFST framework. The C-level search net-
work is composed of the universal phone model
P , the context model C, the lexicon L, and the
grammar G

N = P ◦ C ◦ L ◦G (3)

The H-level search network is composed of the
state model H , the phoneme model P , the context
model C, the lexicon L, and the grammar G

N = H ◦ P ◦ C ◦ L ◦G (4)

The C-level requires less memory then the H-level
search network. We propose to use a weighted fi-
nite state transducer framework incorporating the
bilingual acoustic model P , the context model C,
the lexicon L, and the code switching language
models GCS into a C-level search network for
mixed language speech recognition. The output
of the recognition result is in the mixed language
after projection π(GCS).

N = P ◦ C ◦ L ◦ π(GCS) (5)

The WFST implementation to obtain the code
switch language model GCS is as follows:

Gcs = T ◦G
(6)

where T is the translation model

P (ṽL1 |wJ1 ) =
L∏
l=1

Pl(ṽl|wl) (7)

Pl(ṽl|wl) is the probability ofwl translated into ṽl.
In order to make use of the text data in the ma-

trix language to recognize speech in the mixed lan-
guage, the translation model P (vI1 |wJ1 ) transduce

the language model in the matrix language to the
mixed language.

P (vI1 |wJ1 ) =
∑

ṽL1 ,c
L
1 ,r

K
1 ,w̃

K
1

P (w̃K1 |wJ1 )

·P (rK1 |w̃K1 , wJ1 )
·P (cL1 , r

K
1 , w̃

K
1 , w

J
1 )

·P (ṽK1 |cL1 , rK1 , w̃K1 , wJ1 )
·P (vI1 |ṽK1 , rK1 , w̃K1 , wJ1 ) (8)

where P (w̃K1 |wJ1 ) is the word-to-phrase segmen-
tation model, P (rK1 |w̃K1 , wJ1 ) is the phrasal re-
ordering model, P (cL1 , r

K
1 , w̃

K
1 , w

J
1 ) is the chunk

segmentation model, P (ṽK1 |cL1 , rK1 , w̃K1 , wJ1 )
is the chunk-to-chunk transduction model,
P (vI1 |ṽK1 , rK1 , w̃K1 , wJ1 ) is the chunk-to-word
reconstruction model.

The word-to-phrase segmentation model ex-
tracts a table of phrases {ṽ1, ṽ2, ..., ṽK} for
the transcript in the embedded language and
{w̃1, w̃2, ..., w̃K} for the transcript in the ma-
trix language based on word-to-word alignments
trained in both directions with GIZA++ (Och and
Ney, 2003). The chunk segmentation model per-
forms the segmentation of a phrase sequence w̃K1
into L phrases {c1, c2, ..., cL} using a segmenta-
tion weighted finite-state transducer. Assumes that
a chunk cl is code-switched to the embedded lan-
guage independently by each chunk, the chunk-
to-chunk transduction model is the probability of
a chunk to be code switched to the embedded lan-
guage trained on parallel data. The reconstruction
model generates word sequence from chunk se-
quences and operates in the opposite direction to
the segmentation model.

3 Functional Head Constraint

Many linguistics (Abney 1986; Belazi et. al, 1994;
Bhatt 1994) have discovered the so-called Func-
tional Head Constraint in code switching. They
have found that code switches between a func-
tional head (a complementizer, a determiner, an
inflection, etc.) and its complement (sentence,
noun-phrase, verb-phrase) do not happen in natu-
ral speech. In addition, the Functional Head Con-
straint is language independent.

In this work, we propose to investigate and
incorporate the Functional Head Constraint into
code switching language modeling in a WFST
framework. Figure 1 shows one of the Functional
Head Constraint examples. Functional heads are
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the roots of the sub trees and complements are part
of the sub trees. Actual words are the leaf nodes.
According to the Functional Head Constraint, the
leave nodes of a sub tree must be in either the
matrix language or embedded language, following
the language of the functional head. For instance,
the third word “東西/something” is the head of
the constituents “非常/very 重要的/important 東
西/something”. These three constituent words
cannot be switched. Thus, it is not permissible
to code switch in the constituent. More precisely,
the language of the constituent is constrained to be
the same as the language of the headword. In the
following sections, we describe the integration of
the Functional Head Constraint and the language
model.

We have found this constraint to be empirically
sound as we look into our collected code mixing
speech and language data. The only violation of
the constraint comes from rare cases of borrowed
words such as brand names with no translation in
the local, matrix language. Borrowed words are
used even by monolingual speakers so they are in
general part of the matrix language lexicon and
require little, if any, special treatment in speech
recognition.

In the following sections, we describe the inte-
gration of Functional Head Constraint and the lan-
guage model.

4 Code Switching Language Modeling
with Functional Head Constraint

We propose two approaches of language model-
ing with Functional Head Constraint: 1) lattice-
parsing and sequential-coupling (Chapplerler et.
al, 1999); 2) partial-parsing and tight-coupling
(Chapplerler et. al, 1999). The two approaches
will be described in the followed sections.

4.1 Sequential-coupling by Lattice-based
Parsing

In this first approach, the acoustic models, the
code switch language model and the syntactic con-
straint are incorporated in a sequential order to
progressively constrain the search. The acoustic
models and the matrix language model are used
first to produce an intermediate output. The in-
termediate output is a lattice in which word se-
quences are compactly presented. Lattice-based
parsing is used to expand the word lattice gener-
ated from the first decoding step according to the

Functional Head Constraint.

We have reasons to use word lattice instead
of N-best hypothesis. The number of hypothesis
of word lattice is larger than N-best hypothesis.
Moreover, different kinds of errors correspond to
the language model would be observed if N-best
list is extracted after the first decoding step. The
second pass run over the N-best list will prevent
the language model with Functional Head Con-
straint from correcting the errors. In order to ob-
tain a computational feasible number of hypothe-
ses without bias to the language model in the first
decoding step, word lattice is used as the interme-
diate output of the first decoding step.

A Probabilistic Context-Free Grammar (PCFG)
parser is trained on Penn Treebank data. The
PCFG parser is generalized to take the lattice gen-
erated by the recognizer as the input. Figure 2 il-
lustrates a word lattice which is a compact repre-
sentation of the hypothesis transcriptions of a an
input sentence. All the nodes of the word-lattice
are ordered by increasing depth.

A CYK table is obtained by associating the arcs
with their start and end states in the lattice instead
of their sentence position and initialized all the
cells in the table corresponding to the arcs (Chap-
plerler et. al, 1999). Each cell Ck,j of the ta-
ble is filled by a n-tuple of the non-terminal A,
the length k and the starting position of the word
sequence wj ...wj+k if there exists a PCFG rule
A→ wj ...wj+k, where A is a non-terminal which
parse sequences of words wj ...wj+k. In order to
allow all hypothesis transcriptions of word lattice
to be taken into account, multiple word sequences
of the same length and starting point are initialized
in the same cell. Figure 2 mapped the word lattice
of the example to the table, where the starting node
label of the arc is the column index and the length
of the arc is the row index.

The sequential-coupling by lattice-parsing con-
sists of the standard cell-filling and the self-filling
steps. First, the cells Ck,j and Ci−k,j+k are com-
bined to produce a new interpretation for cell Ci,j
. In order to handle the unary context-free produc-
tion A → B and update the cells after the stan-
dard cell-filling, a n-tuple of A, i and j is added
for each n-tuple of the non-terminal B, the length
i and the start j in the cell Ci,j . The parse trees
extracted are associated with the input lattice from
the table starting from the non-terminal label of
the top cell. After the parse tree is obtained, we re-
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Figure 1: A Functional Head Constraint example.

0	   1	   2	   6	   7	   8	  

非常/very	  

很/very	   重要的/important	  

重要的/	  
important	  

東西/	  
something	   是/is	  

是/is	  

包括/	  
conclude	   這個/	  

this	  
最大期望/	  
EM	  

理論/	  
theory	  

4	  3	   5	  

Figure 2: An example word lattice in the matrix language.
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cursively enumerate all its subtrees. Each subtree
is able to code-switch to the embedded language
with a translation probability Pl(ṽl|wl).

The lattice parsing operation consists of the an
encoding of a given word sequence along with
a parse tree (W,T ) and a sequence of elemen-
tary model actions. In order to obtain a correct
probability assignment P (W,T ) one simply as-
sign proper conditional probabilities to each tran-
sition in the weighted finite states.

The probability of a parse T of a word sequence
WP (W,T ) can be calculated as the product of the
probabilities of the subtrees.

P (W,T ) =
n+1∏
k=1

[P (wk|Wk−1Tk−1) (9)

Where Wk = w0...wk is the first k words in the
sentence, and (Wk, Tk) is the word-and-parse k-
prefix. The probability of the n-tuple of the non-
terminal A, the length i and the starting position j
is the probability of the subtree corresponding to
A parsing throughout the sequence wj ...wj+i−1.
The probability of the partial parsing is the product
of probabilities of the subtree parses it is made of.
The probability of an n-tuple is the maximum over
the probabilities of probable parsing path.

The N most probable parses are obtained during
the lattice-parsing.

The probability of a sentence is computed by
adding on the probability of each new context-free
rule in the sentences.

4.2 Tight-coupling by Incremental Parsing
To integrate the acoustic models, language model
and the syntactic constraint in time synchronous
decoding, an incremental operation is used in this
approach. The final word-level probability as-
signed by our model is calculated using the acous-
tic models, the matrix language model, the struc-
tured language model and the translation model.
The structured language model uses probabilistic
parameterization of a shift-reduce parse (Chelba
and Jelinek, 2000). The tight-coupled language
model consists of three transducers, the word pre-
dictor, the tagger and the constructor. As shown
in Figure 3, Wk = w0...wk is the first k words of
the sentence, Tk contains only those binary sub-
trees whose leaves are completely included inWk,
excluding w0 =<s>. Single words along with
their POS tag can be regarded as root-only trees.
The exposed head hk is a pair of the headword

of the constituent Wk and the non-terminal label.
The exposed head of single words are pairs of the
words and their POS tags.

Given the word-and-parse (k-1)-prefix
Wk−1Tk−1, the new word wk is predicted by
the word-predictor P (wk|Wk−1Tk−1). Taking
the word-and-parse k − 1-prefix and the next
word as input, the tagger P (tk|wk,Wk−1Tk−1)
gives the POS tag tk of the word wk. Constructor
P (pki |WkTk) assigns a non-terminal label to the
constituent Wk+1. The headword of the newly
built constituent is inherited from either the
headword of the constituent Wk or the next word
wk+1.

P (wk|Wk−1Tk−1)
= P (wk|[Wk−1Tk−1])
= P (wk|h0, h−1) (10)

P (tk|wk,Wk−1Tk−1)
= P (tk|wk, [Wk−1Tk−1])
= P (tk|wk, h0.tag, h−1.tag) (11)

P (pki |WkTk)
= P (pki |[WkTk])
= P (pki |h0, h1) (12)

The probability of a parse tree T P (W,T ) of a
word sequence W and a complete parse T can be
calculated as:

P (W,T ) =
n+1∏
k=1

[P (wk|Wk−1Tk−1)

P (tk|Wk−1Tk−1, wk)
P (Tk|Wk−1Tk−1, wk, tk)](13)

P (T kk−1|Wk−1Tk−1, wk, tk)

=
Nk∏
i=1

P (pk|Wk−1Tk−1, wk, tk, p
k
1...p

k
i−1)

(14)

Where wk is the word predicted by the word-
predictor, tk is the POS tag of the word wk pre-
dicted by the tagger, Wk−1Tk−1 is the word-parse
(k - 1)-prefix, T kk−1 is the incremental parse struc-
ture that generates Tk = Tk−1||T kk−1 when at-
tached to Tk−1; it is the parse structure built on
top of Tk−1 and the newly predicted word wk; the
|| notation stands for concatenation; Nk−1 is the
number of operations the constructor executes at
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Figure 4: A word-and-parse example.

position k of the input string before passing con-
trol to the word-predictor (the Nk th operation at
position k is the null transition); Nk is a function
of T ; pki denotes the i th constructor action carried
out at position k in the word string.

The probability models of word-predictor, tag-
ger and constructor are initialized from the Upenn
Treebank with headword percolation and bina-
rization. The headwords are percolated using a
context-free approach based on rules of predict-
ing the position of the headword of the constituent.
The approach consists of three steps. First a parse
tree is decomposed to phrase constituents. Then
the headword position is identified and filled in
with the actual word percolated up from the leaves
of the tree recursively.

Instead of the UPenn Treebank-style, we use a
more convenient binary branching tree. The parse
trees are binarized using a rule-based approach.

The probability models of the word-predictor,
tagger and constructor are trained in a maximiza-
tion likelihood manner. The possible POS tag as-
signments, binary branching parse, non-terminal
labels and the head-word annotation for a given
sentence are hidden. We re-estimate them using
EM algorithm.

Instead of generating only the complete parse,
all parses for all the subsequences of the sen-
tence are produced. The headwords of the subtrees
are code switched to the embedded language with
a translation probability Pl(ṽl|wl) as well as the
leaves.

4.3 Decoding by Translation
Using either lattice parsing or partial parsing, a
two-pass decoding is needed to recognize code
switch speech. A computationally feasible first
pass generates an intermediate result so that the
language model with Functional Head constraint
can be used in the second pass. The first decoding
pass composes of the transducer of the universal

phoneme model P , the transducerC from context-
dependent phones to context-independent phones,
the lexicon transducer L which maps context-
independent phone sequences to word strings and
the transducer of the language model G. A T3 de-
coder is used in the first pass.

ASR1 = P ◦ C ◦ L ◦G (15)

Instead of N-best list, word lattice is used as the
intermediate output of the first decoding step.

The language model GCS of the transducer in
the second pass is improved from G by compos-
ing with the translation model Pl(ṽl|wl). Finally,
the recognition transducer is optimized by deter-
mination and minimization operations.

ASR2 = P◦C◦min(det(L◦min(det(π(GCS)))))
(16)

5 Experiments

5.1 Experimental Setup
The bilingual acoustic model used for our mixed
language ASR is trained from 160 hours of speech
from GALE Phase 1 Chinese broadcast conver-
sation, 40 hours of speech from GALE Phase 1
English broadcast conversation, and 3 hours of
in-house nonnative English data. The acoustic
features used in our experiments consist of 39
components (13MFCC, 13MFCC, 13MFCC us-
ing cepstral mean normalization), which are an-
alyzed at a 10msec frame rate with a 25msec win-
dow size. The acoustic models used throughout
our paper are state-clustered crossword tri-phone
HMMs with 16 Gaussian mixture output densi-
ties per state. We use the phone set consists of
21 Mandarin standard initials, 37 Mandarin finals,
6 zero initials and 6 extended English phones. The
pronunciation dictionary is obtained by modify-
ing Mandarin and English dictionaries using the
phone set. The acoustic models are reconstructed
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Table 1: Code switching point detection evaluation (Precision/Recall/F-measure)

Lecture speech Lunch conversation
MixedLM 0.61/0.64/0.64 0.54/0.63/0.58

InterpolatedLM 0.62/0.66/0.64 0.55/0.63/0.58
AdaptedLM 0.63/0.71/0.67 0.54/0.63/0.58

Sequential coupling 0.66/0.71/0.68 0.55/0.70/0.61
Tight coupling 0.68/0.71/0.70 0.56/0.70/0.62

by decision tree tying. We also collected two
speech databases with Chinese to English code
switching - namely, 20 hours of lecture speech cor-
pus (Data 1) and 3 hours of lunch conversation
corpus (Data 2). 18 hours of Data 1 is used for
acoustic model adaptation and 1 hour of data are
used as the test set (Test 1). 2 hours of Data 2 con-
taining 2389 utterances is used to adapt the acous-
tic model and 280 utterances are used as the test
set (Test 2). To train the parser, we use Chinese
Treebank Version 5.0 which consists of 500 thou-
sand words and use the standard data split (Petrov
and Klein, 2007).

For the language models, transcriptions of 18
hours of Data 1 are trained as a baseline mixed
language model for the lecture speech domain.
250,000 sentences from Chinese speech confer-
ence papers, power point slides and web data
are used for training a baseline Chinese matrix
language model for the lecture speech domain
(LM 1). Transcriptions of 2 hours of Data 2 are
used as the baseline mixed language model in the
lunch conversation domain. 250,000 sentences of
the GALE Phase 1 Chinese conversational speech
transcriptions are used to train a Chinese ma-
trix language model (LM 2). 250,000 of GALE
Phase 1 English conversational speech transcrip-
tion are used to train the English embedded lan-
guage model (LM 3). To train the bilingual trans-
lation model, the Chinese Gale Phase 1 conversa-
tional speech transcriptions are used to generate
a bilingual corpus using machine translation. For
comparison, an interpolated language model for
the lunch conversation domain is trained from in-
terpolating LM 2 with LM 3. Also for comparison,
an adapted language model for lecture speech is
trained from LM 1 and transcriptions of 18 hours
of Data 1. An adapted language mode l for conver-
sation is trained from LM 2 and 2 hours of Data 2.
The size of the vocabulary for recognition is 20k
words. The perplexity of the baseline language

model trained on the code switching speech tran-
scription is 236 on the lecture speech and 279 on
the conversation speech test sets.

5.2 Experimental Results

Table 1 reports precision, recall and F-measure
of code switching point in the recognition results
of the baseline and our proposed language mod-
els. Our proposed code switching language mod-
els with functional head constraint improve both
precision and recall of the code switching point
detection on the code switching lecture speech and
lunch conversation 4.48%. Our method by tight-
coupling increases the F-measure by 9.38% rela-
tively on the lecture speech and by 6.90% rela-
tively on the lunch conversation compared to the
baseline adapted language model.

The Table 2 shows the word error rates (WERs)
of experiments on the code switching lecture
speech and Table 3 shows the WERs on the code
switching lunch conversations. Our proposed code
switching language model with Functional Head
Constraints by sequential-coupling reduces the
WERs in the baseline mixed language model by
3.72% relative on Test 1, and 5.85% on Test 2. Our
method by tight-coupling also reduces WER by
2.51% relative compared to the baseline language
model on Test 1, and by 4.57% on Test 2. We
use the speech recognition scoring toolkit (SCTK)
developed by the National Institute of Standards
and Technology to compute the significance lev-
els, which is based on two-proportion z-test com-
paring the difference between the recognition re-
sults of our proposed approach and the baseline.
All the WER reductions are statistically signifi-
cant. For our reference, we also compare the per-
formance of using Functional Head Constraint to
that of using inversion constraint in (Li and Fung,
2012, 2013) and found that the present model re-
duces WER by 0.85% on Test 2 but gives no im-
provement on Test 1. We hypothesize that since
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Table 2: Our proposed system outperforms the baselines in terms of WER on the lecture speech
Matrix Embedded Overall

MixedLM 34.41% 39.16% 35.17%
InterpolatedLM 34.11% 40.28% 35.10%

AdaptedLM 35.11% 38.41% 34.73%
Sequential coupling 33.17% 36.84% 33.76%

Tight coupling 33.14% 36.65% 33.70%

Table 3: Our proposed system outperforms the baselines in terms of WER on the lunch conversation
Matrix Embedded Overall

MixedLM 46.4% 48.55% 46.83%
InterpolatedLM 46.04% 49.04% 46.64%

AdaptedLM 46.64% 48.39% 46.20%
Sequential coupling 43.24% 46.27% 43.89%

Tight coupling 42.97% 46.03% 43.58%

Test 1 has mostly Chinese words, the proposed
method is not as advantageous compared to our
previous work. Another future direction is for us
to improve the lattice parser as we believe it will
lead to further improvement on the final result of
our proposed method.

6 Conclusion

In this paper, we propose using lattice parsing and
partial parsing to incorporate a well-known syn-
tactic constraint for code mixing speech, namely
the Functional Head Constraint, into a continu-
ous speech recognition system. Under the Func-
tional Head Constraint, code switch cannot occur
between the functional head and its complements.
Since code mixing speech data is scarce, we pro-
pose to instead learn the code mixing language
model from bilingual data with this constraint.
The constrained code switching language model
is obtained by first expanding the search network
with a translation model, and then using parsing to
restrict paths to those permissible under the con-
straint. Lattice parsing enables a sequential cou-
pling of parsing then constraint filtering whereas
partial parsing enables a tight coupling between
parsing and filtering. A WFST-based decoder
then combines a bilingual acoustic model and the
proposed code-switch language model in an inte-
grated approach. Lattice-based parsing and partial
parsing are used to provide the syntactic structure
of the matrix language. Matrix words at the leave
nodes of the syntax tree are permitted to switch to
the embedded language if the switch does not vio-

late the Functional Head Constraint. This reduces
the permissible search paths from those expanded
by the bilingual language model. We tested our
system on a lecture speech dataset with 16% em-
bedded second language, and on a lunch conversa-
tion dataset with 20% embedded second language.
Our language models with lattice parsing and par-
tial parsing reduce word error rates from a baseline
mixed language model by 3.72% to 3.89% rela-
tive in the first task, and by 5.85% to 5.97% in
the second task. They are reduced from an inter-
polated language model by 3.69% to 3.74%, and
by 5.46% to 5.77% in the first and second task re-
spectively. WER reductions from an adapted lan-
guage model are 2.51% to 2.63%, and by 4.47%
to 4.74% in the two tasks. The F-measure for code
switch point detection is improved from 0.64 by
the interpolated model to 0.68, and from 0.67 by
the adapted model to 0.70 by our method. Our
proposed approach avoids making early decisions
on code-switch boundaries and is therefore more
robust. Our approach also avoids the bottleneck of
code switch data scarcity by using bilingual data
with syntactic structure. Moreover, our method re-
duces word error rates for both the matrix and the
embedded language.
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Abstract

The introduction of dynamic oracles has
considerably improved the accuracy of
greedy transition-based dependency pars-
ers, without sacrificing parsing efficiency.
However, this enhancement is limited to
projective parsing, and dynamic oracles
have not yet been implemented for pars-
ers supporting non-projectivity. In this
paper we introduce the first such oracle,
for a non-projective parser based on At-
tardi’s parser. We show that training with
this oracle improves parsing accuracy over
a conventional (static) oracle on a wide
range of datasets.

1 Introduction
Greedy transition-based parsers for dependency
grammars have been pioneered by Yamada and
Matsumoto (2003) and Nivre (2003). These meth-
ods incrementally process the input sentence from
left to right, predicting the next parsing action,
called transition, on the basis of a compact rep-
resentation of the derivation history.

Greedy transition-based parsers can be very
efficient, allowing web-scale parsing with high
throughput. However, the accuracy of these meth-
ods still falls behind that of transition-based pars-
ers using beam-search, where the accuracy im-
provement is obtained at the cost of a decrease
in parsing efficiency; see for instance Zhang and
Nivre (2011), Huang and Sagae (2010), Choi and
McCallum (2013). As an alternative to beam-
search, recent research on transition-based parsing
has therefore explored possible ways of improving
accuracy at no extra cost in parsing efficiency.

The training of transition-based parsers relies
on a component called the parsing oracle, which
maps parser configurations to optimal transitions
with respect to a gold tree. A discriminative model
is then trained to simulate the oracle’s behavior,

and is later used for decoding. Traditionally, so-
called static oracles have been exploited in train-
ing, where a static oracle is defined only for con-
figurations that have been reached by computa-
tions with no mistake, and it returns a single ca-
nonical transition among those that are optimal.

Very recently, Goldberg and Nivre (2012),
Goldberg and Nivre (2013) and Goldberg et al.
(2014) showed that the accuracy of transition-
based parsers can be substantially improved using
dynamic oracles. A dynamic oracle returns the
set of all transitions that are optimal for a given
configuration, with respect to the gold tree, and
is well-defined and correct for every configuration
that is reachable by the parser.

Naı̈ve implementations of dynamic oracles run
in exponential time, since they need to simulate
all possible computations of the parser for the in-
put configuration. Polynomial-time implementa-
tions of dynamic oracles have been proposed by
the above mentioned authors for several project-
ive dependency parsers. To our knowledge, no
polynomial-time algorithm has been published for
transition-based parsers based on non-projective
dependency grammars.

In this paper we consider a restriction of a
transition-based, non-projective parser originally
presented by Attardi (2006). This restriction
was further investigated by Kuhlmann and Nivre
(2010) and Cohen et al. (2011). We provide an im-
plementation for a dynamic oracle for this parser
running in polynomial time.

We experimentally compare the parser trained
with the dynamic oracle to a baseline obtained
by training with a static oracle. Significant ac-
curacy improvements are achieved on many lan-
guages when using our dynamic oracle. To our
knowledge, these are the first experimental results
on non-projective parsing based on a dynamic or-
acle.
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2 Preliminary Definitions

Transition-based dependency parsing was origin-
ally introduced by Yamada and Matsumoto (2003)
and Nivre (2003). In this section we briefly sum-
marize the notation we use for this framework and
introduce the notion of dynamic oracle.

2.1 Transition-Based Dependency Parsing

We represent an input sentence as a string w =
w0 · · ·wn, n ≥ 1, where each wi with i 6= 0 is a
lexical symbol and w0 is a special symbol called
root. Set Vw = {i | 0 ≤ i ≤ n} denotes the sym-
bol occurrences in w. For i, j ∈ Vw with i 6= j,
we write i → j to denote a grammatical depend-
ency of some unspecified type betweenwi andwj ,
where wi is the head and wj is the dependent.

A dependency tree t for w is a directed tree
with node set Vw and with root node 0. An arc of t
is a pair (i, j), encoding a dependency i → j; we
will often use the latter notation to denote arcs.

A transition-based dependency parser typically
uses a stack data structure to process the input
string from left to right, in a way very similar
to the classical push-down automaton for context-
free languages (Hopcroft et al., 2006). Each stack
element is a node from Vw, representing the root
of a dependency tree spanning some portion of the
input w, and no internal state is used. At each step
the parser applies some transition that updates the
stack and/or consumes one symbol from the input.
Transitions may also construct new dependencies,
which are added to the current configuration of the
parser.

We represent the stack as an ordered sequence
σ = [hd, . . . , h1], d ≥ 0, of nodes hi ∈ Vw, with
the topmost element placed at the right. When
d = 0, we have the empty stack σ = []. We use
the vertical bar to denote the append operator for
σ, and write σ = σ′|h1 to indicate that h1 is the
topmost element of σ.

The portion of the input string still to be pro-
cessed by the parser is called the buffer. We
represent the buffer as an ordered sequence β =
[i, . . . , n] of nodes from Vw, with i the first ele-
ment of the buffer. We denote the empty buffer
as β = []. Again, we use the vertical bar to de-
note the append operator, and write β = i|β′ to
indicate that i is the first symbol occurrence of β;
consequently, we have β′ = [i+ 1, . . . , n].

In a transition-based parser, the parsing pro-
cess is defined through the technical notions of

configuration and transition. A configuration of
the parser relative to w is a triple c = (σ, β,A),
where σ and β are a stack and a buffer, respect-
ively, and A is the set of arcs that have been built
so far. A transition is a partial function map-
ping the set of parser configurations into itself.
Each transition-based parser is defined by means
of some finite inventory of transitions. We will
later introduce the specific inventory of transitions
for the parser that we investigate in this paper.
We use the symbol ` to denote the binary relation
formed by the union of all transitions of a parser.

With the notions of configuration and transition
in place, we can define a computation of the
parser on w as a sequence c0, c1, . . . , cm, m ≥ 0,
of configurations relative tow, under the condition
that ci−1 ` ci for each i with 1 ≤ i ≤ m. We use
the reflexive and transitive closure of `, written
`∗, to represent computations.

2.2 Configuration Loss and Dynamic Oracles

A transition-based dependency parser is a non-
deterministic device, meaning that a given con-
figuration can be mapped into several configur-
ations by the available transitions. However, in
several implementations the parser is associated
with a discriminative model that, on the basis of
some features of the current configuration, always
chooses a single transition. In other words, the
model is used to run the parser as a pseudo-de-
terministic device. The training of the discriminat-
ive model relies on a component called the parsing
oracle, which maps parser configurations to “op-
timal” transitions with respect to some reference
dependency tree, which we call the gold tree.

Traditionally, so-called static oracles have been
used which return a single, canonical transition
and they do so only for configurations that can
reach the gold tree, that is, configurations repres-
enting parsing histories with no mistake. In re-
cent work, Goldberg and Nivre (2012), Goldberg
and Nivre (2013) and Goldberg et al. (2014) have
introduced dynamic oracles, which return the set
of all transitions that are optimal with respect to
a gold tree, and are well-defined and correct for
every configuration that is reachable by the parser.
These authors have shown that the accuracy of
transition-based dependency parsers can be sub-
stantially improved if dynamic oracles are used in
place of static ones. In what follows, we provide
a mathematical definition of dynamic oracles, fol-
lowing Goldberg et al. (2014).
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(σ, k|β,A) `sh (σ|k, β,A)
(σ|i|j, β,A) `la (σ|j, β,A ∪ {j → i})
(σ|i|j, β,A) `ra (σ|i, β, A ∪ {i→ j})

(σ|i|j|k, β,A) `la2 (σ|j|k, β,A ∪ {k → i})
(σ|i|j|k, β,A) `ra2 (σ|i|j, β,A ∪ {i→ k})

Figure 1: Transitions of the non-projective parser.

Let t1 and t2 be dependency trees for w, with
arc sets A1 and A2, respectively. The loss of t1
with respect to t2 is defined as

L(t1, t2) = |A1 \A2| . (1)

Note that L(t1, t2) = L(t2, t1), since |A1| = |A2|.
Furthermore L(t1, t2) = 0 if and only if t1 and t2
are the same tree.

Let c be a configuration of a transition-based
parser relative to w. Let also D(c) be the set of all
dependency trees that can be obtained in a com-
putation of the form c `∗ cf , where cf is a final
configuration, that is, a configuration that has con-
structed a dependency tree for w. We extend the
loss function in (1) to configurations by letting

L(c, t2) = min
t1∈D(c)

L(t1, t2) . (2)

Let tG be the gold tree for w. Quantity L(c, tG)
can be used to define a dynamic oracle as follows.
For any transition `τ in the finite inventory of our
parser, we use the functional notation τ(c) = c′ in
place of c `τ c′. We then let

oracle(c, tG) =
{τ | L(τ(c), tG)− L(c, tG) = 0} . (3)

In words, (3) provides the set of transitions that do
not increase the loss of c; we call these transitions
optimal for c.

A naı̈ve way of implementing (3) would be
to explicitly compute the set D(c) in (2), which
has exponential size. More interestingly, the im-
plementation of dynamic oracles proposed by the
above cited authors all run in polynomial time.
These oracles are all defined for projective pars-
ing. In this paper, we present a polynomial-time
oracle for a non-projective parser.

3 Non-Projective Dependency Parsing
In this section we introduce a parser for non-
projective dependency grammars that is derived

from the transition-based parser originally presen-
ted by Attardi (2006), and was further investigated
by Kuhlmann and Nivre (2010) and Cohen et al.
(2011). Our definitions follow the framework in-
troduced in Section 2.1.

We start with some additional notation. Let t be
a dependency tree for w and let k be a node of t.
Consider the complete subtree t′ of t rooted at k,
that is, the subtree of t induced by k and all of the
descendants of k in t. The span of t′ is the sub-
sequence of tokens in w represented by the nodes
of t′. Node k has gap-degree 0 if the span of t′

forms a (contiguous) substring of w. A depend-
ency tree is called projective if all of its nodes
have gap-degree 0; a dependency tree which is not
projective is called non-projective.

Given w as input, the parser starts with the ini-
tial configuration ([], [0, . . . , n], ∅), consisting of
an empty stack, a buffer with all the nodes repres-
enting the symbol occurrences in w, and an empty
set of constructed dependencies (arcs). The parser
stops when it reaches a final configuration of the
form ([0], [], A), consisting of a stack with only the
root node and of an empty buffer; in any such con-
figuration, set A always implicitly defines a valid
dependency tree (rooted in node 0).

The core of the parser consists of an invent-
ory of five transitions, defined in Figure 1. Each
transition is specified using the free variables σ,
β, A, i, j and k. As an example, the schema
(σ|i|j, β,A) `la (σ|j, β,A∪ {j → i}) means that
if a configuration c matches the antecedent, then a
new configuration is obtained by instantiating the
variables in the consequent accordingly.

The transition `sh, called shift, reads a new
token from the input sentence by removing it from
the buffer and pushing it into the stack. Each
of the other transitions, collectively called reduce
transitions, has the effect of building a dependency
between two nodes in the stack, and then removing
the dependent node from the stack. The removal
of the dependent ensures that the output depend-
ency tree is built in a bottom-up order, collecting
all of the dependents of each node i before linking
i to its head.

The transition `la, called left-arc, creates a left-
ward arc where the topmost stack node is the
head and the second topmost node is the depend-
ent, and removes the latter from the stack. The
transition `ra, called right-arc, is defined sym-
metrically, so that the topmost stack node is at-
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Figure 2: General form of the computations asso-
ciated with an item [h1, h2, h3].

tached as a dependent of the second topmost node.
The combination of the shift, left-arc and right-
arc transitions provides complete coverage of pro-
jective dependency trees, but no support for non-
projectivity, and corresponds to the so-called arc-
standard parser introduced by Nivre (2004).

Support for non-projective dependencies is
achieved by adding the transitions `la2 and `ra2 ,
which are variants of the left-arc and right-arc
transitions, respectively. These new transitions
create dependencies involving the first and the
third topmost nodes in the stack. The creation of
dependencies between non-adjacent stack nodes
might produce crossing arcs and is the key to the
construction of non-projective trees.

Recall that transitions are partial functions,
meaning that they might be undefined for some
configurations. Specifically, the shift transition is
only defined for configurations with a non-empty
buffer. Similarly, the left-arc and right-arc trans-
itions can only be applied if the length of the stack
is at least 2, while the transitions `la2 and `ra2 re-
quire at least 3 nodes in the stack.

Transitions `la2 and `ra2 were originally intro-
duced by Attardi (2006) together with other, more
complex transitions. The parser we define here
is therefore more restrictive than Attardi (2006),
meaning that it does not cover all the non-pro-
jective trees that can be processed by the ori-
ginal parser. However, the restricted parser has re-
cently attracted some research interest, as it covers
the vast majority of non-projective constructions
appearing in standard treebanks (Attardi, 2006;
Kuhlmann and Nivre, 2010), while keeping sim-
plicity and interesting properties like being com-
patible with polynomial-time dynamic program-
ming (Cohen et al., 2011).

4 Representation of Computations
Our oracle algorithm exploits a dynamic program-
ming technique which, given an input string, com-
bines certain pieces of a computation of the parser
from Section 3 to obtain larger pieces. In order
to efficiently encode pieces of computations, we
borrow a representation proposed by Cohen et al.
(2011), which is introduced in this section.

Let w = a0 · · · an and Vw be specified as in
Section 2, and let w′ be some substring of w. (The
specification of w′ is not of our concern in this
section.) Let also h1, h2, h3 ∈ Vw. We are inter-
ested in computations of the parser processing the
substring w′ and having the form c0, c1, . . . , cm,
m ≥ 1, that satisfy both of the following condi-
tions, exemplified in Figure 2.

• For some sequence of nodes σ with |σ| ≥ 0,
the stack associated with c0 has the form σ|h1

and the stack associated with cm has the form
σ|h2|h3.

• For each intermediate configuration ci, 1 ≤
i ≤ m − 1, the stack associated with ci has
the form σσi, where σi is a sequence of nodes
with |σi| ≥ 2.

An important property of the above definition
needs to be discussed here, which is at the heart of
the polynomial-time algorithm in the next section.
If in c0, c1, . . . , cm we replace σ with a different
sequence σ′, we obtain a valid computation for w′

constructing exactly the same dependencies as the
original computation. To see this, let ci−1 `τi ci
for each i with 1 ≤ i ≤ m. Then `τ1 must be a
shift, otherwise |σ1| ≥ 2 would be violated. Con-
sider now a transition `τi with 2 ≤ i ≤ m that
builds some dependency. From |σi| ≥ 2 we derive
|σi−1| ≥ 3. We can easily check from Figure 1
that none of the nodes in σ can be involved in the
constructed dependency.

Intuitively, the above property asserts that the
sequence of transitions `τ1 ,`τ2 , . . . ,`τm can be
applied to parse substring w′ independently of the
context σ. This suggests that we can group into
an equivalence class all the computations satisfy-
ing the conditions above, for different values of
σ. We indicate such class by means of the tuple
[h1, h2h3], called item. It is easy to see that each
item represents an exponential number of compu-
tations. In the next section we will show how we
can process items with the purpose of obtaining an
efficient computation for dynamic oracles.
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5 Dynamic Oracle Algorithm
Our algorithm takes as input a gold tree tG for
string w and a parser configuration c = (σ, β,A)
relative to w, specified as in Section 2. We assume
that tG can be parsed by the non-projective parser
of Section 3 starting from the initial configuration.

5.1 Basic Idea

The algorithm consists of two separate stages, in-
formally discussed in what follows. In the first
stage we identify some tree fragments of tG that
can be constructed by the parser after reaching
configuration c, in a way that does not depend on
the content of σ. This means that these fragments
can be precomputed by looking only into β. Fur-
thermore, since these fragments are subtrees of tG,
their computation has no effect on the overall loss
of a computation on w.

For each fragment t with the above properties,
we replace all the nodes in β that are also nodes
of t with the root node of t itself. The result of the
first stage is therefore a new node sequence shorter
than β, which we call the reduced buffer βR.

In the second stage of the algorithm we use a
variant of the tabular method developed by Co-
hen et al. (2011), which was originally designed
to simulate all computations of the parser in Sec-
tion 3 on an input string w. We run the above
method on the concatenation of the stack and the
reduced buffer, with some additional constraints
that restrict the search space in two respects. First,
we visit only those computations of the parser
that step through configuration c. Second, we
reach only those dependency trees that contain all
the tree fragments precomputed in the first stage.
We can show that such search space always con-
tains at least one dependency tree with the desired
loss, which we then retrieve performing a Viterbi
search.

5.2 Preprocessing of the Buffer

Let t be a complete subtree of tG, having root
node k in β. Consider the following two condi-
tions, defined on t.

• Bottom-up completeness: No arc i → j in t
is such that i is a node in β, i 6= k, and j is a
node in σ.

• Zero gap-degree: The nodes of t that are in β
form a (contiguous) substring of w.

We claim that if t satisfies the above conditions,
then we can safely reduce the nodes of t appearing

in β, replacing them with node k. We only report
here an informal discussion of this claim, and omit
a formal proof.

As a first remark, recall that our parser imple-
ments a purely bottom-up strategy. This means
that after a tree has been constructed, all of its
nodes but the root are removed from the parser
configuration. Then the Bottom-up completeness
condition guarantees that if we remove from β all
nodes of t but k, the nodes of t that are in σ can still
be processed in a way that does not affect the loss,
since their parent must be either k or a node that is
neither in β nor in σ. Note that the nodes of t that
are neither in β nor in σ are irrelevant to the pre-
computation of t from β, since these nodes have
already been attached and are no longer available
to the parser.

As a second remark, the Zero gap-degree con-
dition guarantees that the span of t over the nodes
of β is not interleaved by nodes that do not belong
to t. This is also an important requirement for the
precomputation of t from β, since a tree fragment
having a discontinuous span over β might not be
constructable independently of σ. More specific-
ally, parsing such fragment implies dealing with
the nodes in the discontinuities, and this might re-
quire transitions involving nodes from σ.

We can now use the sufficient condition above
to compute βR. We process β from left to right.
For each node k, we can easily test the Bottom-up
completeness condition and the Zero gap-degree
condition for the complete subtree t of tG rooted
at k, and perform the reduction if both conditions
are satisfied. Note that in this process a node k
resulting from the reduction of t might in turn be
removed from β if, at some later point, we reduce
a supertree of t.

5.3 Computation of the Loss

We describe here our dynamic programming al-
gorithm for the computation of the loss of an in-
put configuration c. We start with some additional
notation. Let γ = σβR be the concatenation of σ
and βR, which we treat as a string of nodes. For
integers i with 0 ≤ i ≤ |γ| − 1, we write γ[i] to
denote the (i + 1)-th node of γ. Let also ` = |σ|.
Symbol ` is used to mark the boundary between
the stack and the reduced buffer in γ, thus γ[i] with
i < ` is a node of σ, while γ[i] with i ≥ ` is a node
of βR.

Algorithm 1 computes the loss of c by pro-
cessing the sequence γ in a way quite similar to the
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standard nested loop implementation of the CKY
parser for context-free grammars (Hopcroft et al.,
2006). The algorithm uses a two-dimensional ar-
ray T whose indexes range from 0 to |γ| = ` +
|βR|, and only the cells T [i, j] with i < j are
filled.

We view each T [i, j] as an association list
whose keys are items [h1, h2h3], defined in the
context of the substring γ[i] · · · γ[j − 1] of γ; see
Section 4. The value stored at T [i, j]([h1, h2h3])
is the minimum loss contribution due to the com-
putations represented by [h1, h2h3]. For technical
reasons, we assume that our parser starts with a
symbol $ 6∈ Vw in the stack, denoting the bottom
of the stack.

We initialize the table by populating the cells
of the form T [i, i + 1] with information about
the trivial computations consisting of a single `sh

transition that shifts the node γ[i] into the stack.
These computations are known to have zero loss
contribution, because a `sh transition does not cre-
ate any arcs. In the case where the node γ[i] be-
longs to σ, i.e., i < `, we assign loss contribution
0 to the entry T [i, i + 1]([γ[i− 1], γ[i− 1]γ[i]])
(line 3 of Algorithm 1), because γ[i] is shifted with
γ[i− 1] at the top of the stack. On the other hand,
if γ[i] is in β, i.e., i ≥ `, we assign loss contri-
bution 0 to several entries in T [i, i + 1] (line 6)
because, at the time γ[i] is shifted, the content of
the stack depends on the transitions executed be-
fore that point.

After the above initialization, we consider
pairs of contiguous substrings γ[i] · · · γ[k − 1] and
γ[k] · · · γ[j − 1] of γ. At each inner iteration
of the nested loops of lines 7-11 we update cell
T [i, j] based on the content of the cells T [i, k] and
T [k, j]. We do this through the procedure PRO-
CESSCELL(T , i, k, j), which considers all pairs
of keys [h1, h2h3] in T [i, k] and [h3, h4h5] in
T [k, j]. Note that we require the index h3 to match
between both items, meaning that their computa-
tions can be concatenated. In this way, for each
reduce transition τ in our parser, we compute the
loss contribution for a new piece of computation
defined by concatenating a computation with min-
imum loss contribution in the first item and a com-
putation with minimum loss contribution in the
second item, followed by the transition τ . The fact
that the new piece of computation can be repres-
ented by an item is exemplified in Figure 3 for the
case τ = `ra2 .
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Figure 3: Concatenation of two computa-
tions/items and transition `ra2 , resulting in a new
computation/item.

The computed loss contribution is used to up-
date the entry in T [i, j] corresponding to the item
associated with the new computation. Observe
how the loss contribution provided by the arc cre-
ated by τ is computed by the δG function at lines
17, 20, 23 and 26, which is defined as:

δG(i→ j) =
{

0, if i→ j is in tG;
1, otherwise.

(4)

We remark that the nature of our problem al-
lows us to apply several shortcuts and optimiza-
tions that would not be possible in a setting where
we actually needed to parse the string γ. First, the
range of variable i in the loop in line 8 starts at
max{0, `−d}, rather than at 0, because we do not
need to combine pairs of items originating from
nodes in σ below the topmost node, as the items
resulting from such combinations correspond to
computations that do not contain our input config-
uration c. Second, when we have set values for i
such that i+2 < `, we can omit calling PROCESS-
CELL for values of the parameter k ranging from
i+2 to `−1, as those calls would use as their input
one of the items described above, which are not of
interest. Finally, when processing substrings that
are entirely in βR (i ≥ `) we can restrict the trans-
itions that we explore to those that generate arcs
that either are in the gold tree tG, or have a parent
node which is not present in γ (see conditions in
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Algorithm 1 Computation of the loss function
1: T [0, 1]([$, $0])← 0 . shift node 0 on top of empty stack symbol $
2: for i← 1 to `− 1 do
3: T [i, i+ 1]([γ[i− 1], γ[i− 1]γ[i]])← 0 . shift node γ[i] with γ[i− 1] on top of the stack
4: for i← ` to |γ| do
5: for h← 0 to i− 1 do
6: T [i, i+ 1]([γ[h], γ[h]γ[i]])← 0 . shift node γ[i] with γ[h] on top of the stack
7: for d← 2 to |γ| do . consider substrings of length d
8: for i← max{0, `− d} to |γ| − d do . i = beginning of substring
9: j ← i+ d . j − 1 = end of substring

10: PROCESSCELL(T , i, i+ 1, j) . We omit the range k = i+ 2 to max{i+ 2, `} − 1
11: for k ← max{i+ 2, `} to j do . factorization of substring at k
12: PROCESSCELL(T , i, k, j)
13: return T [0, |γ|]([$, $0]) +

∑
i∈[0,`−1] Lc(σ[i], tG)

14: procedure PROCESSCELL(T , i, k, j)
15: for each key [h1, h2h3]) defined in T [i, k] do
16: for each key [h3, h4h5]) defined in T [k, j] do . h3 must match between the two entries
17: loss la ← T [i, k]([h1, h2h3]) + T [k, j]([h3, h4h5]) + δG(h5 → h4)
18: if (i < `) ∨ δG(h5 → h4) = 0 ∨ (h5 6∈ γ) then
19: T [i, j]([h1, h2h5])← min{loss la, T [i, j]([h1, h2h5])} . cell update `la

20: loss ra ← T [i, k]([h1, h2h3]) + T [k, j]([h3, h4h5]) + δG(h4 → h5)
21: if (i < `) ∨ δG(h4 → h5) = 0 ∨ (h4 6∈ γ) then
22: T [i, j]([h1, h2h4])← min{loss ra, T [i, j]([h1, h2h4])} . cell update `ra

23: loss la2 ← T [i, k]([h1, h2h3]) + T [k, j]([h3, h4h5]) + δG(h5 → h2)
24: if (i < `) ∨ δG(h5 → h2) = 0 ∨ (h5 6∈ γ) then
25: T [i, j]([h1, h4h5])← min{loss la2 , T [i, j]([h1, h4h5])} . cell update `la2

26: loss ra2 ← T [i, k]([h1, h2h3]) + T [k, j]([h3, h4h5]) + δG(h2 → h5)
27: if (i < `) ∨ δG(h2 → h5) = 0 ∨ (h2 6∈ γ) then
28: T [i, j]([h1, h2h4])← min{loss ra2 , T [i, j]([h1, h2h4])} . cell update `ra2

lines 18, 21, 24, 27), because we know that incor-
rectly attaching a buffer node as a dependent of an-
other buffer node, when the correct head is avail-
able, can never be an optimal decision in terms of
loss.

Once we have filled the table T , the loss for
the input configuration c can be obtained from the
value of the entry T [0, |γ|]([$, $0]), representing
the minimum loss contribution among computa-
tions that reach the input configuration c and parse
the whole input string. To obtain the total loss,
we add to this value the loss contribution accu-
mulated by the dependency trees with root in the
stack σ of c. This is represented in Algorithm 1 as∑

i∈[0,`−1] Lc(σ[i], tG), where Lc(σ[i], tG) is the
count of the descendants of σ[i] (the (i+1)-th ele-
ment of σ) that had been assigned the wrong head
by the parser with respect to tG.

5.4 Sample Run

Consider the Czech sentence and the gold depend-
ency tree tG shown in Figure 4(a). Given the con-
figuration c = (σ, β,A) where σ = [0, 1, 3, 4],
β = [5, . . . , 13] and A = {3 → 2}, we trace the
two stages of the algorithm.

Preprocessing of the buffer The complete sub-
tree rooted at node 7 satisfies the Bottom-up com-
pleteness and the Zero gap-degree conditions in
Section 5.2, so the nodes 5, . . . , 12 in β can be
replaced with the root 7. Note that all the nodes in
the span 5, . . . , 12 have all their (gold) dependents
in that span, with the exception of the root 7, with
its dependent node 1 still in the stack. No other
reduction is possible, and we have βR = [7, 13].
The corresponding fragment of tG is represented
in Figure 4(b).

Computation of the loss Let γ = σβR. Al-
gorithm 1 builds the two-dimensional array T in
Figure 4(c). Each cell T [i, j] contains an asso-
ciation list, whose (key:value) pairs map items to
their loss contribution. Figure 4(c) only shows the
pairs involved in the minimum-loss computation.

Lines 1-6 of Algorithm 1 initialize the cells in
the diagonal, T [0, 1], . . . , T [5, 6]. The boundary
between stack and buffer is ` = 4, thus cells
T [0, 1], T [1, 2], and T [2, 3] contain only one ele-
ment, while T [3, 4], T [4, 5] and T [5, 6] contain as
many as the previous elements in γ, although not
all of them are shown in the figure.

Lines 7-12 fill the superdiagonals until T [0, 6]
is reached. The cells T [0, 2], T [0, 3] and T [1, 3]
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-Root- V běžném provozu však telefonńı linky nermaj́ı takivou kvalitu jako v laboratoři .

0 1 2 3 4 5 6 7 8 9 10 11 12 13

(a) Non-projective dependency tree from the Prague Dependency Treebank.

-Root- V provozu však nermaj́ı .

0 1 3 4 7 13
σ βR

(b) Fragment of dependency tree in (a) after buffer
reduction.

i
j

1 2 3 4 5 6

0 [$,$ 0]:0 ∅ ∅ . . . [$,$ 0]:1 [$,$ 0]:1

1 [0,0 1]:0 ∅ . . . [0,0 4]:1 . . .

2 [1,1 3]:0 [1,1 4]:1 [1,4 7]:1 . . .

3 [3,3 4]:0 [3,4 7]:1 . . .

4 [4,4 7]:0 . . .

5 [0,0 13]:0

(c) Relevant portion of T computed by Algorithm 1, with the
loss of c in the yellow entry.

Figure 4: Example of loss computation given the sentence in (a) and considering a configuration c with
σ = [0, 1, 3, 4] and β = [5, . . . , 13].

are left empty because ` = 4. Once T [0, 6]
is calculated, it contains only the entry with key
[$, $, 0], with the associated value 1 representing
the minimum number of wrong arcs that the pars-
ing algorithm has to build to reach a final con-
figuration from c. Then, Line 13 retrieves the
loss of the configuration, computed as the sum of
T [0, 6]([$, $, 0]) with the termLc, representing the
erroneous arcs made before reaching c.

Note that in our example the loss of c is 1, even
though Lc = 0, meaning that there are no wrong
arcs in A. Indeed, given c, there is no single com-
putation that builds all the remaining arcs in tG.
This is reflected in T , where the path to reach the
item with minimum loss has to go through either
T [3, 5] or T [2, 4], which implies building the erro-
neous arc (w7 → w3) or (w4 → w3), respectively.

6 Computational Analysis

The first stage of our algorithm can be easily im-
plemented in time O(|β| |tG|), where |tG| is the
number of nodes in tG, which is equal to the length
n of the input string.

For the worst-case complexity of the second
stage (Algorithm 1), note that the number
of cell updates made by calling PROCESS-
CELL(T , i, k, j) with k < ` is O(|σ|3 |γ|2 |βR|).
This is because these updates can only be caused
by procedure calls on line 10 (as those on line 12
always set k ≥ `) and therefore the index k always
equals i + 1, while h2 must equal h1 because the
item [h1, h2h3] is one of the initial items created

on line 3. The variables i, h1 and h3 must index
nodes on the stack σ as they are bounded by k,
while j ranges over βR and h4 and h5 can refer to
nodes either on σ or on βR.

On the other hand, the number of cell updates
triggered by calls to PROCESSCELL such that k ≥
` is O(|γ|4|βR|4), as they happen for four indices
referring to nodes of βR (k, j, h4, h5) and four
indices that can range over σ or βR (i, h1, h2, h3).

Putting everything together, we conclude that
the overall complexity of our algorithm is
O(|β| |tG|+ |σ|3 |γ|2 |βR|+ |γ|4 |βR|4).

In practice, quantities |σ|, |βR| and |γ| are signi-
ficantly smaller than n, providing reasonable train-
ing times as we will see in Section 7. For instance,
when measured on the Czech treebank, the aver-
age value of |σ| is 7.2, with a maximum of 87.
Even more interesting, the average value of |βR|
is 2.6, with a maximum of 23. Comparing this to
the average and maximum values of |β|, 11 and
192, respectively, we see that the buffer reduction
is crucial in reducing training time.

Note that, when expressed as a function of n,
our dynamic oracle has a worst-case time com-
plexity of O(n8). This is also the time complexity
of the dynamic programming algorithm of Cohen
et al. (2011) we started with, simulating all com-
putations of our parser. In contrast, the dynamic
oracle of Goldberg et al. (2014) for the projective
case achieves a time complexity ofO(n3) from the
dynamic programming parser by Kuhlmann et al.
(2011) running in time O(n5).
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The reason why we do not achieve any asymp-
totic improvement is that some helpful properties
that hold with projective trees are no longer satis-
fied in the non-projective case. In the projective
(arc-standard) case, subtrees that are in the buf-
fer can be completely reduced. As a consequence,
each oracle step always combines an inferred entry
in the table with either a node from the stack or a
node from the reduced buffer, asymptotically re-
ducing the time complexity. However, in the non-
projective (Attardi) case, subtrees in the buffer can
not always be completely reduced, for the reasons
mentioned in the second-to-last paragraph of Sec-
tion 5.2. As a consequence, the oracle needs to
make cell updates in a more general way, which
includes linking pairs of elements in the reduced
buffer or pairs of inferred entries in the table.

-Root- John was not as good for the job as Kate .

0 1 2 3 4 5 6 7 8 9 10 11

Figure 5: Non-projective dependency tree adapted
from the Penn Treebank.

An example of why this is needed is provided
by the gold tree in Figure 5. Assume a config-
uration c = (σ, β,A) where σ = [0, 1, 2, 3, 4],
β = [5, . . . , 11], and A = ∅. It is easy to see that
the loss of c is greater than zero, since the gold tree
is not reachable from c: parsing the subtree rooted
at node 5 requires shifting 6 into the stack, and
this makes it impossible to build the arcs 2 → 5
and 2→ 6. However, if we reduced the subtree in
the buffer with root 5, we would incorrectly obtain
a loss of 0, as the resulting tree is parsable if we
start with `sh followed by `la and `ra2 . Note that
there is no way of knowing whether it is safe to
reduce the subtree rooted at 5 without using non-
local information. For example, the arc 2 → 6 is
crucial here: if 6 depended on 5 or 4 instead, the
loss would be zero. These complications are not
found in the projective case, allowing for the men-
tioned asymptotic improvement.

7 Experimental Evaluation
For comparability with previous work on dynamic
oracles, we follow the experimental settings repor-
ted by Goldberg et al. (2014) for their arc-standard
dynamic oracle. In particular, we use the same
training algorithm, features, and root node posi-
tion. However, we train the model for 20 itera-

static dynamic
UAS LAS UAS LAS

Arabic 80.90 71.56 82.23 72.63
Basque 75.96 66.74 74.32 65.59
Catalan 90.55 85.20 89.94 84.96
Chinese 84.72 79.93 85.34 81.00
Czech 79.83 72.69 82.08 74.44
English 85.52 84.46 87.38 86.40
Greek 79.84 72.26 81.55 74.14
Hungarian 78.13 68.90 76.27 68.14
Italian 83.08 78.94 84.43 80.45
Turkish 79.57 69.44 79.41 70.32
Bulgarian 89.46 85.99 89.32 85.92
Danish 85.58 81.25 86.03 81.59
Dutch 79.05 75.69 80.13 77.22
German 88.34 86.48 88.86 86.94
Japanese 93.06 91.64 93.56 92.18
Portuguese 84.80 81.38 85.36 82.10
Slovene 76.33 68.43 78.20 70.22
Spanish 79.88 76.84 80.25 77.45
Swedish 87.26 82.77 87.24 82.49
PTB 89.55 87.18 90.47 88.18

Table 1: Unlabelled Attachment Score (UAS) and
Labelled Attachment Score (LAS) using a static
and a dynamic oracle. Evaluation on CoNLL 2007
(first block) and CoNLL 2006 (second block) data-
sets is carried out including punctuation, evalu-
ation on the Penn Treebank excludes it.

tions rather than 15, as the increased search space
and spurious ambiguity of Attardi’s non-project-
ive parser implies that more iterations are required
to converge to a stable model. A more detailed
description of the experimental settings follows.

7.1 Experimental Setup

Training We train a global linear model using
the averaged perceptron algorithm and a labelled
version of the parser described in Section 3. We
perform on-line training using the oracle defined
in Section 5: at each parsing step, the model’s
weights are updated if the predicted transition res-
ults into an increase in configuration loss, but
the process continues by following the predicted
transition independently of the loss increase.

As our baseline we train the model using the
static oracle defined by (Cohen et al., 2012). This
oracle follows a canonical computation that cre-
ates arcs as soon as possible, and prioritizes the
`la transition over the `la2 transition in situations
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where both create a gold arc. The static oracle
is not able to deal with configurations that can-
not reach the gold dependency tree, so we con-
strain the training algorithm to follow the zero-loss
transition provided by the oracle.

While this version of Attardi’s parser has been
shown to cover the vast majority of non-projective
sentences in several treebanks (Attardi, 2006; Co-
hen et al., 2012), there still are some sentences
which are not parsable. These sentences are
skipped during training, but not during test and
evaluation of the model.

Datasets We evaluate the parser performance
over CoNLL 2006 and CoNLL 2007 datasets.
If a language is present in both datasets, we
use the latest version. We also include res-
ults over the Penn Treebank (PTB) (Marcus et
al., 1993) converted to Stanford basic dependen-
cies (De Marneffe et al., 2006). For the CoNLL
datasets we use the provided part-of-speech tags
and the standard training/test partition; for the
PTB we use automatically assigned tags, we train
on sections 2-21 and test on section 23.

7.2 Results and Analysis

In Table 1 we report the unlabelled (UAS) and la-
belled (LAS) attachment scores for the static and
the dynamic oracles. Each figure is an average
over the accuracy provided by 5 models trained
with the same setup but using a different random
seed. The seed is only used to shuffle the sentences
in random order during each iteration of training.

Our results are consistent with the results re-
ported by Goldberg and Nivre (2013) and Gold-
berg et al. (2014). For most of the datasets, we
obtain a relevant improvement in both UAS and
LAS. For Dutch, Czech and German, we achieve
an error reduction of 5.2%, 11.2% and 4.5%, re-
spectively. Exceptions to this general trend are
Swedish and Bulgarian, where the accuracy differ-
ences are negligible, and the Basque, Catalan and
Hungarian datasets, where the performance actu-
ally decreases.

If instead of testing on the standard test sets we
use 10-fold cross-validation and average the res-
ulting accuracies, we obtain improvements for all
languages in Table 1 but Basque and Hungarian.
More specifically, measured (UAS, LAS) pairs for
Swedish are (86.85, 82.17) with dynamic oracle
against (86.6, 81.93) with static oracle; for Bul-
garian (88.42, 83.91) against (88.20, 83.55); and

for Catalan (88.33, 83.64) against (88.06, 83.13).
This suggests that the negligible or unfavourable
results in Table 1 for these languages are due to
statistical variability given the small size of the test
sets.

As for Basque, we measure (75.54, 67.58)
against (76.77, 68.20); similarly, for Hungarian
we measure (75.66, 67.66) against (77.22, 68.42).
Unfortunately, we have no explanation for these
performance decreases, in terms of the typology
of the non-projective patterns found in these two
datasets. Note that Goldberg et al. (2014) also
observed a performance decrease on the Basque
dataset in the projective case, although not on
Hungarian.

The parsing times measured in our experiments
for the static and the dynamic oracles are the same,
since the oracle algorithm is only used during the
training stage. Thus the reported improvements in
parsing accuracy come at no extra cost for parsing
time. In the training stage, the extra processing
needed to compute the loss and to explore paths
that do not lead to a gold tree made training about
4 times slower, on average, for the dynamic oracle
model. This confirms that our oracle algorithm is
fast enough to be of practical interest, in spite of its
relatively high worst-case asymptotic complexity.

8 Conclusions

We have presented what, to our knowledge, are
the first experimental results for a transition-based
non-projective parser trained with a dynamic or-
acle. We have also shown significant accuracy im-
provements on many languages over a static oracle
baseline.

The general picture that emerges from our ap-
proach is that dynamic programming algorithms
originally conceived for the simulation of trans-
ition-based parsers can effectively be used in the
development of polynomial-time algorithms for
dynamic oracles.
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Abstract 

The syntactic ambiguity of a transitive 
verb (Vt) followed by a noun (N) has 
long been a problem in Chinese parsing. 
In this paper, we propose a classifier to 
resolve the ambiguity of Vt-N structures. 
The design of the classifier is based on 
three important guidelines, namely, 
adopting linguistically motivated features, 
using all available resources, and easy in-
tegration into a parsing model. The lin-
guistically motivated features include 
semantic relations, context, and morpho-
logical structures; and the available re-
sources are treebank, thesaurus, affix da-
tabase, and large corpora. We also pro-
pose two learning approaches that resolve 
the problem of data sparseness by auto-
parsing and extracting relative 
knowledge from large-scale unlabeled 
data. Our experiment results show that 
the Vt-N classifier outperforms the cur-
rent PCFG parser. Furthermore, it can be 
easily and effectively integrated into the 
PCFG parser and general statistical pars-
ing models. Evaluation of the learning 
approaches indicates that world 
knowledge facilitates Vt-N disambigua-
tion through data selection and error cor-
rection. 

1 Introduction 

In Chinese, the structure of a transitive verb (Vt) 
followed by a noun (N) may be a verb phrase 
(VP), a noun phrase (NP), or there may not be a 
dependent relation, as shown in (1) below. In 
general, parsers may prefer VP reading because a 
transitive verb followed by a noun object is nor-

mally a VP structure. However, Chinese verbs 
can also modify nouns without morphological 
inflection, e.g., 養殖 /farming 池 /pond. Conse-
quently, parsing Vt-N structures is difficult be-
cause it is hard to resolve such ambiguities with-
out prior knowledge. The following are some 
typical examples of various Vt-N structures:  

1) 
解決/solve 問題/problem  VP 
解決/solving 方案/method  NP 
解決/solve 人類/mankind (問題/problem)None 

To find the most effective disambiguation fea-
tures, we need more information about the Vt-N 
 NP construction and the semantic relations 
between Vt and N. Statistical data from the Sini-
ca Treebank (Chen et al., 2003) indicates that 
58% of Vt-N structures are verb phrases, 16% 
are noun phrases, and 26% do not have any de-
pendent relations. It is obvious that the semantic 
relations between a Vt-N structure and its con-
text information are very important for differen-
tiating between dependent relations. Although 
the verb-argument relation of VP structures is 
well understood, it is not clear what kind of se-
mantic relations result in NP structures. In the 
next sub-section, we consider three questions: 
What sets of nouns accept verbs as their modifi-
ers? Is it possible to identify the semantic types 
of such pairs of verbs and nouns? What are their 
semantic relations? 

1.1 Problem Analysis 

Analysis of the instances of NP(Vt-N) structures 
in the Sinica Treebank reveals the following four 
types of semantic structures, which are used in 
the design of our classifier. 

 
Type 1. Telic(Vt) + Host(N): Vt denotes the 

telic function (purpose) of the head noun N, e.g., 
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研 究 /research 工 具 /tool; 探 測 /explore 機
/machine; 賭/gamble 館/house; 搜尋/search 程
式/program. The telic function must be a salient 
property of head nouns, such as tools, buildings, 
artifacts, organizations and people. To identify 
such cases, we need to know the types of nouns 
which take telic function as their salient property. 
Furthermore, many of the nouns are monosyl-
labic words, such as 員/people, 器/instruments, 
機/machines. 

Type 2. Host-Event(Vt) + Attribute(N): 
Head nouns are attribute nouns that denote the 
attributes of the verb, e.g., 研究/research 方法

/method (method of research); 攻擊/attack 策略

/strategy (attacking strategy); 書寫/write 內容

/context (context of writing); 賭/gamble 規/rule 
(gambling rules). An attribute noun is a special 
type of noun. Semantically, attribute nouns de-
note the attribute types of objects or events, such 
as weight, color, method, and rule. Syntactically, 
attribute nouns do not play adjectival roles (Liu, 
2008). By contrast, object nouns may modify 
nouns. The number of attributes for events is 
limited. If we could discover all event-attribute 
relations, then we can solve this type of construc-
tion. 

Type 3. Agentive + Host: There is only a lim-
ited number of such constructions and the results 
of the constructions are usually ambiguous, e.g., 
炒飯/fried rice (NP), 叫聲/shouting sound. The 
first example also has the VP reading. 

Type 4. Apposition + Affair: Head nouns are 
event nouns and modifiers are verbs of apposi-
tion events, e.g. 追撞/collide 事故/accident, 破
壞 /destruct 運動 /movement, 憤恨 /hate 行為

/behavior. There is finite number of event nouns.  
 
Furthermore, when we consider verbal modi-

fiers, we find that verbs can play adjectival roles 
in Chinese without inflection, but not all verbs 
play adjectival roles. According to Chang et al. 
(2000) and our observations, adjectival verbs are 
verbs that denote event types rather than event 
instances; that is, they denote a class of events 
which that are concepts in an upper-level ontolo-
gy. One important characteristic of adjectival 
verbs is that they have conjunctive morphologi-
cal structures, i.e., the words are conjunct with 
two nearly synonymous verbs, e.g., 研/study 究
/search (research), 探 /explore 測 /detect (ex-
plore), and 搜/search 尋/find (search). Therefore, 
we need a morphological classifier that can de-
tect the conjunctive morphological structure of a 

verb by checking the semantic parity of two 
morphemes of the verb. 

Based on our analysis, we designed a Vt-N 
classifier that incorporates the above features to 
solve the problem. However, there is a data 
sparseness problem because of the limited size of 
the current Treebank. In other words, Treebank 
cannot provide enough training data to train a 
classifier properly. To resolve the problem, we 
should mine useful information from all availa-
ble resources. 

The remainder of this paper is organized as 
follows. Section 2 provides a review of related 
works. In Section 3, we describe the disambigua-
tion model with our selected features, and intro-
duce a strategy for handling unknown words. We 
also propose a learning approach for a large-
scale unlabeled corpus. In Section 4, we report 
the results of experiments conducted to evaluate 
the proposed Vt-N classifier on different feature 
combinations and learning approaches. Section 5 
contains our concluding remarks. 

2 Related Work 

Most works on V-N structure identification focus 
on two types of relation classification: modifier-
head relations and predicate-object relations (Wu, 
2003; Qiu, 2005; Chen, 2008; Chen et al., 2008; 
Yu et al., 2008). They exclude the independent 
structure and conjunctive head-head relation, but 
the cross-bracket relation does exist between two 
adjacent words in real language. For example, if 
“遍佈/all over  世界/world ” was included in the 
short sentence “遍佈/all over  世界/world 各國
/countries”, it would be an independent structure. 
A conjunctive head-head relation between a verb 
and a noun is rare. However, in the sentence “服
務 設備 都 甚 周到” (Both service and equip-
ment are very thoughtful.), there is a conjunctive 
head-head relation between the verb 服 務

/service and the noun 設備/equipment. Therefore, 
we use four types of relations to describe the V-
N structures in our experiments. The symbol 
‘H/X’ denotes a predicate-object relation; ‘X/H’ 
denotes a modifier-head relation; ‘H/H’ denotes 
a conjunctive head-head relation; and ‘X/X’ de-
notes an independent relation. 

Feature selection is an important task in V-N 
disambiguation. Hence, a number of studies have 
suggested features that may help resolve the am-
biguity of V-N structures (Zhao and Huang, 1999; 
Sun and Jurafsky, 2003; Chiu et al., 2004; Qiu, 
2005; Chen, 2008). Zhao and Huang used lexi-
cons, semantic knowledge, and word length in-
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formation to increase the accuracy of identifica-
tion. Although they used the Chinese thesaurus 
CiLin (Mei et al., 1983) to derive lexical seman-
tic knowledge, the word coverage of CiLin is 
insufficient. Moreover, none of the above papers 
tackle the problem of unknown words. Sun and 
Jurafsky exploit the probabilistic rhythm feature 
(i.e., the number of syllables in a word or the 
number of words in a phrase) in their shallow 
parser. Their results show that the feature im-
proves the parsing performance, which coincides 
with our analysis in Section 1.1. Chiu et al.’s 
study shows that the morphological structure of 
verbs influences their syntactic behavior. We 
follow this finding and utilize the morphological 
structure of verbs as a feature in the proposed Vt-
N classifier. Qiu’s approach uses an electronic 
syntactic dictionary and a semantic dictionary to 
analyze the relations of V-N phrases. However, 
the approach suffers from two problems: (1) low 
word coverage of the semantic dictionary and (2) 
the semantic type classifier is inadequate. Finally, 
Chen proposed an automatic VN combination 
method with features of verbs, nouns, context, 
and the syllables of words. The experiment re-
sults show that the method performs reasonably 
well without using any other resources. 

Based on the above feature selection methods, 
we extract relevant knowledge from Treebank to 
design a Vt-N classifier. However we have to 
resolve the common problem of data sparseness. 
Learning knowledge by analyzing large-scale 
unlabeled data is necessary and proved useful in 
previous works (Wu, 2003; Chen et al., 2008; Yu 
et al., 2008). Wu developed a machine learning 
method that acquires verb-object and modifier-
head relations automatically. The mutual infor-
mation scores are then used to prune verb-noun 
whose scores are below a certain threshold. The 
author found that accurate identification of the 
verb-noun relation improved the parsing perfor-
mance by 4%. Yu et al. learned head-modifier 
pairs from parsed data and proposed a head-
modifier classifier to filter the data. The filtering 
model uses the following features: a PoS-tag pair 
of the head and the modifier; the distance be-
tween the head and the modifier; and the pres-
ence or absence of punctuation marks (e.g., 
commas, colons, and semi-colons) between the 
head and the modifier. Although the method im-
proves the parsing performance by 2%, the filter-
ing model obtains limited data; the recall rate is 
only 46.35%. The authors also fail to solve the 
problem of Vt-N ambiguity. 

Our review of previous works and the obser-
vations in Section 1.1 show that lexical words, 
semantic information, the syllabic length of 
words, neighboring PoSs and the knowledge 
learned from large-scale data are important for 
Vt-N disambiguation. We consider more features 
for disambiguating Vt-N structures than previous 
studies. For example, we utilize (1) four relation 
classification in a real environment, including 
‘X/H’, ‘H/X’, ‘X/X’ and ‘H/H’ relations; (2) un-
known word processing of Vt-N words (includ-
ing semantic type predication and morph-
structure predication); (3) unsupervised data se-
lection (a simple and effective way to extend 
knowledge); and (4) supervised knowledge cor-
rection, which makes the extracted knowledge 
more useful. 

3 Design of the Disambiguation Model 

The disambiguation model is a Vt-N relation 
classifier that classifies Vt-N relations into ‘H/X’ 
(predicate-object relations), ‘X/H’ (modifier-
head relations), ‘H/H’ (conjunctive head-head 
relations), or ‘X/X’ (independent relations). We 
use the Maximum Entropy toolkit (Zhang, 2004) 
to construct the classifier. The advantage of us-
ing the Maximum Entropy model is twofold: (1) 
it has the flexibility to adjust features; and (2) it 
provides the probability values of the classifica-
tion, which can be easily integrated into our 
PCFG parsing model. 

In the following sections, we discuss the de-
sign of our model for feature selection and ex-
traction, unknown word processing, and world 
knowledge learning. 

3.1 Feature Selection and Extraction 

We divide the selected features into five groups: 
PoS tags of Vt and N, PoS tags of the context, 
words, semantics, and additional information. 
Table 1 shows the feature types and symbol nota-
tions. We use symbols of t1 and t2 to denote the 
PoS of Vt and N respectively. The context fea-
ture is neighboring PoSs of Vt and N: the sym-
bols of t-2 and t-1 represent its left PoSs, and the 
symbol t3 and t4 represent its right PoSs. The se-
mantic feature is the lexicon’s semantic type ex-
tracted from E-HowNet sense expressions 
(Huang et al., 2008). For example, the E-
HowNet expression of “ 車 輛 /vehicles” is 
{LandVehicle| 車 :quantity={mass| 眾 }}, so its 
semantic type is {LandVehicle|車}. We discuss 
the model’s performance with different feature 
combinations in Section 4. 
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Feature  Feature Description 
PoS PoS of Vt and N 

t1; t2 
Context Neighboring PoSs 

t-2; t-1; t3; t4 
Word Lexical word 

w1; w2 
Semantic Semantic type of word 

st1; st2 
Additional 
Information 

Morphological structure of verb 
Vmorph 

 Syllabic length of noun 
Nlen 

 
Table 1. The features used in the Vt-N classifier 
 

The example in Figure 1 illustrates feature la-
beling of a Vt-N structure. First, an instance of a 
Vt-N structure is identified from Treebank. Then, 
we assign the semantic type of each word with-
out considering the problem of sense ambiguity 
for the moment. This is because sense ambigui-
ties are partially resolved by PoS tagging, and 
the general problem of sense disambiguation is 
beyond the scope of this paper. Furthermore, 
Zhao and Huang (1999) demonstrated that the 
retained ambiguity does not have an adverse im-
pact on identification. Therefore, we keep the 
ambiguous semantic type for future processing. 

 
zhe        zaochen     xuexi  zhongwen    DE    fongchao 
this         cause        learn     Chinese                    trend 
“This causes the trend of learning Chinese.” 

 
Figure 1. An example of a tree with a Vt-N struc-
ture 

 
Table 2 shows the labeled features for “學習

/learn  中文/Chinese” in Figure 1. The column x  
and y describe relevant features in “學習/learn” 
and “中文/Chinese” respectively. Some features 
are not explicitly annotated in the Treebank, e.g., 
the semantic types of words and the morphologi-
cal structure of verbs. We propose labeling 
methods for them in the next sub-section. 

Feature Type x y 
Word w1=學習 w2=中文 
PoS t1=VC t2=Na 
Semantic st1=study|學習 st2=language|語言 
Context t-2=Nep; t-1=VK; t3=DE; t4=Na 
Additional 
Information Vmorph=VV Nlen=2 

Relation Type  rt = H/X 
 
Table 2. The feature labels of Vt-N pair in Figure 
1 

3.2 Unknown Word Processing 

In Chinese documents, 3% to 7% of the words 
are usually unknown (Sproat and Emerson, 
2003). By ‘unknown words’, we mean words not 
listed in the dictionary. More specifically, in this 
paper, unknown words means words without se-
mantic type information (i.e., E-HowNet expres-
sions) and verbs without morphological structure 
information. Therefore, we propose a method for 
predicting the semantic types of unknown words, 
and use an affix database to train a morph-
structure classifier to derive the morphological 
structure of verbs. 

 
Morph-Structure Predication of Verbs: We 

use data analyzed by Chiu et al. (2004) to devel-
op a classifier for predicating the morphological 
structure of verbs. There are four types of mor-
phological structures for verbs: the coordinating 
structure (VV), the modifier-head structure (AV), 
the verb-complement structure (VR), and the 
verb-object structure (VO). To classify verbs 
automatically, we incorporate three features in 
the proposed classifier, namely, the lexeme itself, 
the prefix and the suffix, and the semantic types 
of the prefix and the suffix. Then, we use train-
ing data from the affix database to train the clas-
sifier. Table 3 shows an example of the unknown 
verb “ 傳播到 /disseminate” and the morph-
structure classifier shows that it is a ‘VR’ type. 

 
Feature Feature Description 
Word=傳播到 Lexicon 
PW=傳播 Prefix word 
PWST={disseminate|傳播} Semantic Type of 

Prefix Word 傳播 
SW=到 Suffix Word 
SWST={Vachieve|達成} Semantic Type of 

Suffix Word 到 
 
Table 3. An example of an unknown verb and 
feature templates for morph-structure predication 

931



 
Semantic Type Provider: The system ex-

ploits WORD, PoS, affix and E-HowNet infor-
mation to obtain the semantic types of words (see 
Figure 2). If a word is known and its PoS is giv-
en, we can usually find its semantic type by 
searching the E-HowNet database. For an un-
known word, the semantic type of its head mor-
pheme is its semantic type; and the semantic type 
of the head morpheme is obtained from E-
HowNet1. For example, the unknown word “傳
播到 /disseminate”, its prefix word is “傳播
/disseminate” and we learn that its semantic type 
is {disseminate|傳播} from E-HowNet. There-
fore, we assign {disseminate|傳播} as the se-
mantic type of “傳播到 /disseminate”. If the 
word or head morpheme does not exist in the 
affix database, we assign a general semantic type 
based on its PoS, e.g., nouns are {thing|萬物} 
and verbs are {act|行動}. In this matching pro-
cedure, we may encounter multiple matching 
data of words and affixes. Our strategy is to keep 
the ambiguous semantic type for future pro-
cessing. 
 
Input: WORD, PoS 
Output: Semantic Type (ST) 
procedure STP(WORD, PoS) 
 (* Initial Step *) 
 ST := null; 
 (* Step 1: Known word *) 
 if WORD already in E-HowNet then 
  ST := EHowNet(WORD, PoS); 
 else if WORD in Affix database then 
  ST := EHowNet(affix of WORD, PoS); 
 (* Step 2 : Unknown word *) 
 if ST is null and PoS is ‘Vt’ then 
  ST := EHowNet(prefix of WORD, PoS);  
 else if ST is null and PoS is ‘N’ then 
  ST := EHowNet(suffix of WORD, PoS);  
 (* Step 3 : default *) 
 if ST is null and PoS is ‘Vt’ then 
  ST := ‘act|行動’; 
 else if ST is null and PoS is ‘N’ then 
  ST := ‘thing|萬物’ 
 (* Finally *) 
 STP := ST; 
end; 
 
Figure 2. The Pseudo-code of the Semantic Type 
Predication Algorithm. 
 

1 The E-HowNet function in Figure 2 will return a null ST 
value where words do not exist in E-HowNet or Affix data-
base. 

3.3 Learning World Knowledge 

Based on the features discussed in the previous 
sub-section, we extract prior knowledge from 
Treebank to design the Vt-N classifier. However, 
the training suffers from the data sparseness 
problem. Furthermore most ambiguous Vt-N 
relations are resolved by common sense 
knowledge that makes it even harder to construct 
a well-trained system. An alternative way to ex-
tend world knowledge is to learn from large-
scale unlabeled data (Wu, 2003; Chen et al., 
2008; Yu et al., 2008). However, the unsuper-
vised approach accumulates errors caused by 
automatic annotation processes, such as word 
segmentation, PoS tagging, syntactic parsing, 
and semantic role assignment. Therefore, how to 
extract useful knowledge accurately is an im-
portant issue. 

To resolve the error accumulation problem, we 
propose two methods: unsupervised NP selection 
and supervised error correction. The NP selec-
tion method exploits the fact that an intransitive 
verb followed by a noun can only be interpreted 
as an NP structure, not a VP structure. It is easy 
to find such instances with high precision by 
parsing a large corpus. Based on the selection 
method, we can extend contextual knowledge 
about NP(V+N) and extract nouns that take ad-
jectival verbs as modifiers. The error correction 
method involves a small amount of manual edit-
ing in order to make the data more useful and 
reduce the number of errors in auto-extracted 
knowledge. The rationale is that, in general, high 
frequency Vt-N word-bigram is either VP or NP 
without ambiguity. Therefore, to obtain more 
accurate training data, we simply classify each 
high frequency Vt-N word bigram into a unique 
correct type without checking all of its instances. 
We provide more detailed information about the 
method in Section 4.3. 

4 Experiments and Results 

4.1 Experimental Setting 

We classify Vt-N structures into four types of 
syntactic structures by using the bracketed in-
formation (tree structure) and dependency rela-
tion (head-modifier) to extract the Vt-N relations 
from treebank automatically. The resources used 
in the experiments as follows. 

Treebank: The Sinica Treebank contains 
61,087 syntactic tree structures with 361,834 
words. We extracted 9,017 instances of Vt-N 
structures from the corpus. Then, we randomly 
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selected 1,000 of the instances as test data and 
used the remainder (8,017 instances) as training 
data. Labeled information of word segmentation 
and PoS-tagging were retained and utilized in the 
experiments. 

E-HowNet: E-HowNet contains 99,525 lexi-
cal semantic definitions that provide information 
about the semantic type of words. We also im-
plement the semantic type predication algorithm 
in Figure 2 to generate the semantic types of all 
Vt and N words, including unknown words. 

Affix Data: The database includes 13,287 ex-
amples of verbs and 27,267 examples of nouns, 
each example relates to an affix. The detailed 
statistics of the verb morph-structure categoriza-
tion are shown in Table 4. The data is used to 
train a classifier to predicate the morph-structure 
of verbs. We found that verbs with a conjunctive 
structure (VV) are more likely to play adjectival 
roles than the other three types of verbs. The 
classifier achieved 87.88% accuracy on 10-fold 
cross validation of the above 13,287 verbs. 
 

 VV VR AV VO 
Prefix 920 2,892 904 662 
Suffix 439 7,388 51 31 

 
Table 4. The statistics of verb morph-structure 
categorization 
 

Large Corpus: We used a Chinese parser to 
analyze sentence structures automatically. The 
auto-parsed tree structures are used in Experi-
ment 2 (described in the Sub-section 4.3). We 
obtained 1,262,420 parsed sentences and derived 
237,843 instances of Vt-N structure as our da-
taset (called as ASBC). 

4.2 Experiment 1: Evaluation of the Vt-N 
Classifier 

In this experiment, we used the Maximum En-
tropy Toolkit (Zhang, 2004) to develop the Vt-N 
classifier. Based on the features discussed in Sec-
tion 3.1, we designed five models to evaluate the 
classifier’s performance on different feature 
combinations.  

The features and used in each model are de-
scribed below. The feature values shown in 
brackets refer to the example in Figure 1. 

• M1 is the baseline model. It uses PoS-tag 
pairs as features, such as (t1=VC, t2=Na). 

• M2 extends the M1 model by adding con-
text features of (t-1=VK, t1=VC), (t2=Na, 

t3=DE), (t-2=Nep, t-1=VK, t1=VC), (t2=Na, 
t3=DE, t4=Na) and (t-1=VK, t3=DE). 

• M3 extends the M2 model by adding lexi-
con features of (w1=學習, t1=VK, w2=中
文, t2=Na), (w1＝學習, w2=中文), (w1=學
習) and (w2=中文). 

• M4 extends the M3 model by adding se-
mantic features of (st1=study|學習, t1=VK , 
st2=language|語言 , t2=Na), (st1=study|學
習 , t1=VK) and (st2=language| 語 言 , 
t2=Na). 

• M5 extends the M4 model by adding two 
features: the morph-structure of verbs; and 
the syllabic length of nouns 
(Vmorph=‘VV’) and (Nlen=2). 

Table 5 shows the results of using different 
feature combinations in the models. The symbol 
P1(%) is the 10-fold cross validation accuracy of 
the training data, and the symbol P2(%) is the 
accuracy of the test data. By adding contextual 
features, the accuracy rate of M2 increases from 
59.10% to 72.30%. The result shows that contex-
tual information is the most important feature 
used to disambiguate VP, NP and independent 
structures. The accuracy of M2 is approximately 
the same as the result of our PCFG parser be-
cause both systems use contextual information. 
By adding lexical features (M3), the accuracy 
rate increases from 72.30% to 80.20%. For se-
mantic type features (M4), the accuracy rate in-
creases from 80.20% to 81.90%. The 1.7% in-
crease in the accuracy rate indicates that seman-
tic generalization is useful. Finally, in M5, the 
accuracy rate increases from 81.90% to 83.00%. 
The improvement demonstrates the benefits of 
using the verb morph-structure and noun length 
features. 

 
Models Feature for Vt-N P1(%) P2(%) 

M1 (t1,t2) 61.94 59.10 
M2 + (t-1,t1) (t2,t3) (t-2,t-

1,t1) (t2,t3,t4) (t-1,t3) 
76.59 72.30 

M3 + (w1,t1,w2,t2) (w1,w2) 
(w2) (w1) 

83.55 80.20 

M4 + (st1,t1,st2,t2) (st1,t1) 
(st2, t2) 

84.63 81.90 

M5 + (Vmorph) (Nlen) 85.01 83.00 
 

Table 5. The results of using different feature 
combinations 
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Next, we consider the influence of unknown 
words on the Vt-N classifier. The statistics shows 
that 17% of the words in Treebank lack semantic 
type information, e.g., 留在/StayIn, 填飽/fill, 貼
出/posted, and 綁好/tied. The accuracy of the 
Vt-N classifier declines by 0.7% without seman-
tic type information for unknown words. In other 
words, lexical semantic information improves the 
accuracy of the Vt-N classifier. Regarding the 
problem of unknown morph-structure of words, 
we observe that over 85% of verbs with more 
than 2 characters are not found in the affix data-
base. If we exclude unknown words, the accura-
cy of the Vt-N prediction decreases by 1%. 
Therefore, morph-structure information has a 
positive effect on the classifier. 

4.3 Experiment 2: Using Knowledge Ob-
tained from Large-scale Unlabeled Data 
by the Selection and Correction Meth-
ods. 

In this experiment, we evaluated the two 
methods discussed in Section 3, i.e., unsuper-
vised NP selection and supervised error correc-
tion. We applied the data selection method (i.e., 
distance=1, with an intransitive verb (Vi) fol-
lowed by an object noun (Na)) to select 46,258 
instances from the ASBC corpus and compile a 
dataset called Treebank+ASBC-Vi-N. Table 6 
shows the performance of model 5 (M5) on the 
training data derived from Treebank and Tree-
bank+ASBC-Vi-N. The results demonstrate that 
learning more nouns that accept verbal modifiers 
improves the accuracy. 

 

 Treebank+ 
ASBC-Vi-N Treebank 

size of training 
instances 

46,258 8,017 

M5 - P2(%) 83.90 83.00 
 
Table 6. Experiment results on the test data for 
various knowledge sources 

 
We had also try to use the auto-parsed results 

of the Vt-N structures from the ASBC corpus as 
supplementary training data for train M5. It de-
grades the model’s performance by too much 
error when using the supplementary training data. 
To resolve the problem, we utilize the supervised 
error correction method, which manually correct 
errors rapidly because high frequency instances 
(w1, w2) rarely have ambiguous classifications in 
different contexts. So we designed an editing tool 

to correct errors made by the parser in the classi-
fication of high frequency Vt-N word pairs. After 
the manual correction operation, which takes 40 
man-hours, we assign the correct classifications 
(w1, t1, w2, t2, rt) for 2,674 Vt-N structure types 
which contains 10,263 instances to creates the 
ASBC+Correction dataset. Adding the corrected 
data to the original training data increases the 
precision rate to 88.40% and reduces the number 
of errors by approximately 31.76%, as shown in 
the Treebank+ASBC+Correction column of Ta-
ble 7. 
 

 Treebank+ 
ASBC+Correction 

Treebank+ 
ASBC-Vi-N Treebank 

size of train-
ing instances 

56,521 46,258 8,017 

M5 - P2(%) 88.40 83.90 83.00 
 
Table 7. Experiment results of classifiers with 
different training data 
 

We also used the precision and recall rates to 
evaluate the performance of the models on each 
type of relation. The results are shown in Table 8. 
Overall, the Treebank+ASBC+Correction meth-
od achieves the best performance in terms of the 
precision rate. The results for Treebank+ASBC-
Vi-N show that the unsupervised data selection 
method can find some knowledge to help identi-
fy NP structures. In addition, the proposed mod-
els achieve better precision rates than the PCFG 
parser. The results demonstrate that using our 
guidelines to design a disambiguation model to 
resolve the Vt-N problem is successful. 
 

 H/X X/H X/X 

Treebank 
R(%) 91.11 67.90 74.62 
P(%) 84.43 78.57 81.86 

Treebank+ 
ASBC-Vi-N 

R(%) 91.00 72.22 71.54 
P(%) 84.57 72.67 85.71 

Treebank+ 
ASBC+Correction 

R(%) 98.62 60.49 83.08 
P(%) 86.63 88.29 93.51 

PCFG 
R(%) 90.54 23.63 80.21 
P(%) 78.24 73.58 75.00 

 
Table 8. Performance comparison of different 
classification models. 

 

4.4 Experiment 3: Integrating the Vt-N 
classifier with the PCFG Parser 

Identifying Vt-N structures correctly facilitates 
statistical parsing, machine translation, infor-
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mation retrieval, and text classification. In this 
experiment, we develop a baseline PCFG parser 
based on feature-based grammar representation 
by Hsieh et al. (2012) to find the best tree struc-
tures (T) of a given sentence (S). The parser then 
selects the best tree according to the evaluation 
score Score(T,S) of all possible trees. If there are 
n PCFG rules in the tree T, the Score(T,S) is the 
accumulation of the logarithmic probabilities of 
the i-th grammar rule (RPi). Formula 1 shows the 
baseline PCFG parser. 
 

∑
=

=
n

i
iRPSTScore

1
)(),(  (1)

 
 

The Vt-N models can be easily integrated into 
the PCFG parser. Formula 2 represents the inte-
grated structural evaluation model. We combine 
RPi and VtNPi with the weights w1 and w2 re-
spectively, and set the value of w2 higher than 
that of w1. VtNPi is the probability produced by 
the Vt-N classifier for the type of the relation 
between Vt-N bigram determined by the PCFG 
parsing. The classifier is triggered when a [Vt, N] 
structure is encountered; otherwise, the Vt-N 
model is not processed. 
 

∑
=

×+×=
n

i
ii VtNPwRPwSTScore

1
21 )(),(  (2)

 
 

The results of evaluating the parsing model in-
corporated with the Vt-N classifier (see Formula 
2) are shown in Table 9 and Table 10. The P2 is 
the accuracy of Vt-N classification on the test 
data. The bracketed f-score (BF2) is the parsing 
performance metric. Based on these results, the 
integrated model outperforms the PCFG parser in 
terms of Vt-N classification. Because the Vt-N 
classifier only considers sentences that contain 
Vt-N structures, it does not affect the parsing 
accuracies of other sentences.  
 

 PCFG +  
M5 (Treebank) PCFG 

P2(%) 80.68 77.09 
BF(%) 83.64 82.80 

 
Table 9. The performance of the PCFG parser 
with and without model M5 from Treebank. 

 

2 The evaluation formula is (BP*BR*2) / (BP+BR), where 
BP is the precision and BR is the recall. 

 PCFG +  
M5 (Treebank+ASBC+Correction) PCFG 

P2(%) 87.88 77.09 
BF(%) 84.68 82.80 

 
Table 10. The performance of the PCFG parser 
with and without model M5 from Tree-
bank+ASBC+Correction data set. 

 

4.5 Experiment 4: Comparison of Various 
Chinese Parsers 

In this experiment, we give some comparison 
results in various parser: ‘PCFG Parser’ (base-
line), ‘CDM Parser’ (Hsieh et al., 2012), and 
‘Berkeley Parser’ (Petrov et al., 2006). The CDM 
parser achieves the best score in Traditional Chi-
nese Parsing task of SIGHAN Bake-offs 2012 
(Tseng et al., 2012). Petrov’s parser (as Berkeley, 
version is 2009 1.1) is the best PCFG parser for 
non-English language and it is an open source. In 
our comparison, we use the same training data 
for training models and parse the same test da-
taset based on the gold standard word segmenta-
tion and PoS tags. We have already discussed the 
PCFG parser in Section 4.4. As for CDM parser, 
we retrain relevant model in our experiments. 
And since Berkeley parser take different tree 
structure (Penn Treebank format), we transform 
the experimental data to Berkeley CoNLL format 
and re-train a new model with parameters “-
treebank CHINESE -SMcycles 4” 3 from training 
data. Moreover we use “-useGoldPOS” parame-
ters to parse test data and further transform them 
to Sinica Treebank style from the Berkeley par-
ser’s results. The different tree structure formats 
of Sinica Treebank and Penn Treebank are as 
follow: 

 
Sinica Treebank:  
S(NP(Head:Nh:他們)|Head:VC:散播

|NP(Head:Na:熱情)) 
 

Penn Treebank:  
( (S (NP (Head:Nh (Nh 他們))) (Head:VC 
(VC 散播)) (NP (Head:Na (Na 熱情))))) 

 
The evaluation results on the testing data, i.e. 

in P2 metric, are as follows. The accuracy of 
PCFG parser is 77.09%; CDM parser reaches 
78.45% of accuracy; and Berkeley parser is 
70.68%. The results show that the problem of Vt-

3 The “-treebank CHINESE -SMcycles 4” is the best train-
ing parameter in Traditional Chinese Parsing task of 
SIGHAN Bake-offs 2012. 
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N cannot be well solved by any general parser 
including CDM parser and Berkeley’s parser. It 
is necessary to have a different approach aside 
from the general model. So we set the target for a 
better model for Vt-N classification which can be 
easily integrated into the existing parsing model. 
So far our best model achieved the P2 accuracy 
of 87.88%.  

5 Concluding Remarks 

We have proposed a classifier to resolve the am-
biguity of Vt-N structures. The design of the 
classifier is based on three important guidelines, 
namely, adopting linguistically motivated fea-
tures, using all available resources, and easy in-
tegration into parsing model. After analyzing the 
Vt-N structures, we identify linguistically moti-
vated features, such as lexical words, semantic 
knowledge, the morphological structure of verbs, 
neighboring parts-of-speech, and the syllabic 
length of words. Then, we design a classifier to 
verify the usefulness of each feature. We also 
resolve the technical problems that affect the 
prediction of the semantic types and morph-
structures of unknown words. In addition, we 
propose a framework for unsupervised data se-
lection and supervised error correction for learn-
ing more useful knowledge. Our experiment re-
sults show that the proposed Vt-N classifier sig-
nificantly outperforms the PCFG Chinese parser 
in terms of Vt-N structure identification. Moreo-
ver, integrating the Vt-N classifier with a parsing 
model improves the overall parsing performance 
without side effects. 

In our future research, we will exploit the pro-
posed framework to resolve other parsing diffi-
culties in Chinese, e.g., N-N combination. We 
will also extend the Semantic Type Predication 
Algorithm (Figure 2) to deal with all Chinese 
words. Finally, for real world knowledge learn-
ing, we will continue to learn more useful 
knowledge by auto-parsing to improve the pars-
ing performance. 
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Abstract

We propose a neural network approach to
benefit from the non-linearity of corpus-
wide statistics for part-of-speech (POS)
tagging. We investigated several types
of corpus-wide information for the words,
such as word embeddings and POS tag dis-
tributions. Since these statistics are en-
coded as dense continuous features, it is
not trivial to combine these features com-
paring with sparse discrete features. Our
tagger is designed as a combination of
a linear model for discrete features and
a feed-forward neural network that cap-
tures the non-linear interactions among the
continuous features. By using several re-
cent advances in the activation functions
for neural networks, the proposed method
marks new state-of-the-art accuracies for
English POS tagging tasks.

1 Introduction

Almost all of the approaches to NLP tasks such
as part-of-speech tagging and syntactic parsing
mainly use sparse discrete features to represent lo-
cal information such as word surfaces in a size-
limited window. The non-linearity of those dis-
crete features is often used in many NLP tasks
since the simple conjunction (AND) of discrete
features represents the co-occurrence of the fea-
tures and is intuitively understandable. In addi-
tion, the thresholding of these combinatorial fea-
tures by simple counts effectively suppresses the
combinatorial increase of the parameters. At the
same time, although global information had also
been used in several reports (Nakagawa and Mat-
sumoto, 2006; Huang and Yates, 2009; Turian et
al., 2010; Schnabel and Schütze, 2014), the non-
linear interactions of these features were not well
investigated since these features are often dense

continuous features and the explicit non-linear ex-
pansions are counterintuitive and drastically in-
crease the number of the model parameters. In our
work, we investigate neural networks used to rep-
resent the non-linearity of global information for
POS tagging in a compact way.

We focus on four kinds of corpus-wide infor-
mation: (1) word embeddings, (2) POS tag dis-
tributions, (3) supertag distributions, and (4) con-
text word distributions. All of them are continuous
dense features and we use a feed-forward neural
network to exploit the non-linearity of these fea-
tures. Although all of them except (3) have been
used for POS tagging in previous work (Nakamura
et al., 1990; Schmid, 1994; Schnabel and Schütze,
2014; Huang and Yates, 2009), we propose a neu-
ral network approach to capture the non-linear in-
teractions of these features. By feeding these fea-
tures into neural networks as an input vector, we
can expect our tagger can handle not only the non-
linearity of the N-grams of the same kinds of fea-
tures but also the non-linear interactions among
the different kind of features.

Our tagger combines a linear model using
sparse high-dimensional features and a neural net-
work using continuous dense features. Although
Collobert et al. (2011) seeks to solve NLP tasks
without depending on the feature engineering of
conventional NLP methods, our architecture is
more practical because it integrates the neural
networks into a well-tuned conventional method.
Thus, our tagger enjoys both the manually ex-
plored combinations of discrete features and the
automatically learned non-linearity of the contin-
uous features. We also studied some of the newer
activation functions: Rectified Linear Units (Nair
and Hinton, 2010), Maxout networks (Goodfel-
low et al., 2013), and Lp-pooling (Gulcehre et al.,
2014; Zhang et al., 2014).

Deep neural networks have been a hot topic
in many application areas such as computer vi-
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sion and voice recognition. However, although
neural networks show state-of-the-art results on
a few semantic tasks (Zhila et al., 2013; Socher
et al., 2013; Socher et al., 2011), neural net-
work approaches have not performed better than
the state-of-the-art systems for traditional syn-
tactic tasks. Our neural tagger shows state-of-
the-art results: 97.51% accuracy in the standard
benchmark on the Penn Treebank (Marcus et al.,
1993) and 98.02% accuracy in POS tagging on
CoNLL2009 (Hajič et al., 2009). In our experi-
ments, we found that the selection of the activation
functions led to large differences in the tagging ac-
curacies. We also observed that the POS tags of
the words are effectively clustered by the hidden
activations of the intermediate layer. This obser-
vation is evidence that the neural network can find
good representations for POS tagging.

The remainder of this paper is organized as fol-
lows. Section 2 introduces our deterministic tag-
ger and its learning algorithm. Section 3 describes
the continuous features that represent corpus-wide
information and Section 4 is about the neural net-
work we used. Section 5 presents our empiri-
cal study of the effects of corpus-wide informa-
tion and neural networks on English POS tagging
tasks. Section 6 describes related work, and Sec-
tion 7 concludes and suggests items for future
work.

2 Transition-based tagging

Our tagging model is a deterministic tagger based
on Choi and Palmer (2012), which is a one-pass,
left-to-right tagging algorithm that uses well-tuned
binary features.

Let x = (x1, x2, . . . , xT ) ∈ XT be an
input token sequence of length T and y =
(y1, y2, . . . , yT ) ∈ Y T be a corresponding POS
tag sequence of x. We denote the predicted tags
by a tagger as ŷ and the subsequence from r to t
as yt

r. The prediction of the t-th tag is determinis-
tically done by the classifier:

ŷt = argmax
y∈Y

fθ(zt, y), (1)

where fθ is a scoring function with arbitrary pa-
rameters, θ ∈ Rd, that are to be learned and zt is
an arbitrary feature representation of the t-th po-
sition using x and ŷt−1

1 which is the prediction
history of the previous tokens.

We extend Choi and Palmer (2012) in three
ways: (1) an online SVM learning algorithm with

L1 and L2 regularization, (2) continuous features
for corpus-wide information, and (3) the compos-
ite function of a linear model for discrete features
and a non-linear model for continuous features.
Since (2) and (3) are the main topics of this pa-
per, they are explained in detail in Sections 3 and
4 and we describe only (1) here.

First, our learning algorithm trains a multi-class
SVM with L1 and L2 regularization based on Fol-
low the Proximally Regularized Leader (FTRL-
Proximal) (McMahan, 2011). In the k-th iteration,
the parameter update is done by

θk =argmin
θ

k∑
l=1

(
gl · θ+

1
2ηl

∣∣∣∣∣∣θ−θl
∣∣∣∣∣∣2

2

)
+R(θ),

where gk ∈ Rd is a subgradient of the hinge loss
function and R(θ) = λ1 ||θ||1 + λ2

2 ||θ||22 is the
composite function of the L1 and L2 regulariza-
tion terms with hyper-parameters λ1 ≥ 0 and
λ2 ≥ 0. To incorporate an adaptive learning rate
scheduling, Adagrad (Duchi et al., 2010), we use
per-coordinate learning rates for {i|1 ≤ i < d}:

ηk
i =

αi(
βi +

√∑k
l=1(g

l
i)2

) ,

where α ≥ 0 and β ≥ 0. Although the
naive implementation may require O(k) compu-
tation in the k-th iteration, FTRL-Proximal can
be implemented efficiently by maintaining two
length-d vectors, m =

∑k
l gl − 1

2ηl θ
l and n =∑k

l (g
l
i)

2 (McMahan et al., 2013).
Second, to overcome the error propagation

problem, we train the classifier with a simple vari-
ant of the on-the-fly example generation algorithm
from Goldberg and Nivre (2012). Since the scor-
ing function refers to the prediction history, Choi
and Palmer (2012) uses the gold POS tags, yt−1

1 ,
to generate training examples, which means they
assume all of the past decisions are correct. How-
ever, this causes error propagation problems, since
each state depends on the history of the past deci-
sions. Therefore, at the k-th iteration and the t-th
position of the input sequence, we simply use the
predictions of the previously learned classifiers to
generate training examples, i.e.,

ŷt−r = argmax
y∈Y

fθk−r
(zt−r, y)

for all {r|1 ≤ r < t − 1}. Although it is
not theoretically justified, it empirically runs as a
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stochastic version of DAGGER (Ross et al., 2011)
or SEARN (Daumé III et al., 2009) with the speed
benefit of online learning.

Algorithm 1 Learning algorithm

function LEARN(α, β, λ1, λ2, m, n, θk)
while ¬ stop do

Select a random sentence (x, y)
for t = 1 to T do

u=UPDATE(α,β, λ1, λ2, m, n, θk)
ŷt = argmaxy∈Y fu(zt, y)
ỹ = argmaxy ̸=yt

fu(zt, , y)
if fu(zt, yt)− fu(zt, ỹ) < 1 then

g=∂uℓ(zt, yt, ỹ) ▷ Subgradient
For all i ∈ I compute

σi =
(√

ni + g2
i −
√

ni

)
/αi

mi ← mi + gi − σiui

ni ← ni + g2
i

end if
k ← k + 1

end for
end while
return θk

end function

function UPDATE(α,β, λ1, λ2, m, n, θk)
for i ∈ I do

θk
i =

0 if |mi| ≤ λ1
−mi+sgn(mi)λ1

(βiλ2+
√

ni)/αi+λ2
otherwise

ui ← θk
i

if acceleration then
ui ← θk

i + k
k+3

(
θk
i − θk−1

i

)
end if

end for
for i ̸∈ I do

ui ← θk
i ← θk−1

i

▷ Leaving all θ for inactive i unchanged
end for
return u

end function

Algorithm 1 summarizes our training process
where ℓ(zt, yt, ỹ) := max(0, 1 − fθ(zt, y) +
fθ(zt, ỹ)) is the multi-class hinge loss (Crammer
and Singer, 2001). I in Algorithm 1 is a set of
parameter indexes that correspond to the non-zero
features, so the update is sparse for sparse fea-
tures. In addition, for the parameter update of the
neural networks, we also use an accelerated prox-
imal method (Parikh and Boyd, 2013), which is

considered as a variant of the momentum meth-
ods (Sutskever et al., 2013). Although u and θ are
the same when the acceleration is not used, u in
Algorithm 1 is an extrapolation step in the accel-
erated method. Although we do not focus on the
learning algorithm in this work, the algorithm con-
verges quite quickly and the speed is important be-
cause the neural network extension described later
requires a hyper-parameter search which is com-
putationally demanding.

3 Corpus-wide Information

Since typical discrete features indicate only the
occurrence in a local context and do not convey
corpus-wide statistics, we studied four kinds of
continuous features for POS tagging to represent
the corpus-wide information.

3.1 Word embeddings

Word embeddings, or distributed word represen-
tations, embed the words into a low-dimensional
continuous space. Most of the neural network ap-
plications for NLP use word embeddings (Col-
lobert et al., 2011; Socher et al., 2011; Zhila et
al., 2013; Socher et al., 2013), and even for linear
models, Turian et al. (2010) highlights the benefit
of word embeddings on sequential labeling tasks.

In particular, in our experiments, we used two
recently proposed algorithms, word2vec (Mikolov
et al., 2013) and glove (Pennington et al.,
2014), which are simple and scalable, although
our method could use other word embeddings.
Word2vec trains the word embeddings to pre-
dict the words surrounding each word, and glove
trains the word embeddings to predict the loga-
rithmic count of the surrounding words of each
word. Thus, these embeddings can be seen as
the distributed versions of the distributional fea-
tures since the word vectors compactly represent
the distribution of the context in which a word ap-
pears. We normalized the word embeddings to
unit length and used the average vector of training
vocabulary for the unknown tokens.

3.2 POS tag distribution

In a way similar to Schmid (1994), we use POS tag
distribution over a training corpus. Each word is
represented by a vector of length |Y | in which the
y-th element is the conditional probabilities with
which that word gets the y-th POS tag. We also
use the POS tag distributions of the affixes and
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spelling binary features used in Choi and Palmer
(2012). We cite the definitions of these features.

1. Affix: c:1, c:2, c:3, cn:, cn−1:, cn−2:, cn−3:

where c∗ is a character string in a word. For
example c:2 is the prefix of length two of a
word and cn−1: is the suffix of length two of
a word.

2. Spelling: initial uppercase, all upper-
case, all lowercase, contains 1/2+ capi-
tal(s) not at the beginning, contains a (pe-
riod/number/hyphen).

The probabilities for a feature b is estimated with
additive smoothing as

P (y|b) =
C(b, y) + 1
C(b) + |Y | , (2)

where C(b) and C(b, y) are the counts of b and
co-occurrences of b and y, respectively. In addi-
tion, an extra dimension for sentence boundaries
is added to the vector for word-forms. In total, the
POS tag distributions for each word are encoded
by a vector of dimension |Y |+1+|Y |×14 (|Y | for
lowercase simplified word-forms, 1 for sentence
boundaries, |Y | × 7 for affixes, and |Y | × 7 for
spellings).

3.3 Supertag distribution

We also use the distribution of supertags for de-
pendency parsing. Supertags are lexical templates
which are extracted from the syntactic dependency
structures and suppertagging is often used for the
pre-processing of a parsing task. Since the su-
pertags encode rich syntactic information, we ex-
pect the supertag distribution of a word to also
provide clues for the POS tagging. We used two
types of supertags: One is the dependency rela-
tion label of the head of the word and the other
is that of the dependents of the word. Following
Ouchi et al. (2014), we added the relative posi-
tion, left (L) or right (R), to the supertags. For
example, a word has its dependents in the left di-
rection with a label “nn” and in the right direc-
tion with a label “amod”, so its supertag set for
dependents is {“nn/L”, “amod/R”}. A special su-
pertag “NO-CHILD” is used for a word that has
no dependent. Note that, although the Model 2 su-
pertag set of Ouchi et al. (2014) is defined as the
combination of head and dependent tags, we used
them separately. The feature values for each word

are defined in the same way as Equation 2 in Sec-
tion 3.2. Since a word can have more than one
dependent, the dependent supertag features are no
longer multinomial distributions but we used them
in that way. Note that, since the feature values are
calculated using the tree annotations from training
set, our tagger does not require any dependency
parser at runtime.

3.4 Context word distribution

This is the simplest distributional features in
which each word is represented by the distribu-
tions of its left and right neighbors. Although the
context word distribution is similar to word em-
beddings, we believe they complement each other,
as reported by Levy and Goldberg (2014). Fol-
lowing Schnabel and Schütze (2014), we restricted
the set of indicator words to the 500 most frequent
words in the corpus, and used two special feature
entries: One is the marginal probability of the non-
indicator words and the other is the probabilities
of neighboring sentence boundaries. The condi-
tional probabilities for left and right neighbors are
estimated in the same way as Equation 2 in Sec-
tion 3.2, and there are a total of 1, 004 dimensions
of this feature for a word.

4 Neural Networks

The non-linearity of the discrete features has been
exploited in many NLP tasks, since the simple
conjunction of the discrete features is intuitive and
the thresholding of these combinatorial features
by their feature counts effectively suppresses the
combinatorial increase of the parameters.

In contrast, it is not easy to manually tune the
non-linearity of the continuous features. For ex-
ample, it is not intuitive to design the conjunc-
tion features of two kinds of word embeddings,
word2vec and glove. Although kernel methods
have been used to incorporate non-linearity in
prior research, they are rarely used now because
their tagging speed is too slow (Giménez and
Màrquez, 2003). Our solution is to introduce
feed-forward neural networks to capture the non-
linearity of the corpus-wide information.

4.1 Hybrid model

We designed our tagger as a hybrid of a linear
model and a non-linear model. Wang and Man-
ning (2013) reported that a neural network us-
ing both sparse discrete features and dense (low-
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Figure 1: A hybrid architecture of a linear model
and a neural network with a pooling activation
function

dimensional) continuous features was worse than
a linear model using the same two features. At
the same time, they also reported that a neural net-
work using only the dense continuous features out-
performed a linear model using the same features.
Based on their results, we applied neural networks
only for the continuous features and used a linear
model for the discrete features.

Formally, the scoring function (1) in Section 2
is defined as the composite function of two terms:
f(z, y) := flinear(z, y)+fnn(z, y). The first flinear
is the linear model and the second fnn is a neu-
ral network. Since this is a linear combination of
two functions, the subgradient of the loss function
required for Algorithm 1 is also the linear com-
bination of subgradients of two functions, which
means

∂θℓ(zt, yt, ỹ) = ∂θflinear(zt, ỹ) + ∂θfnn(zt, ỹ)
− ∂θflinear(zt, yt)− ∂θfnn(zt, yt)

if fθ(zt, yt)− fθ(zt, ỹ) < 0.
First, the linear model can be defined as

flinear(z, y) := θd · ϕd(z, y),

where ϕd(z, y) is a feature mapping for the dis-
crete part of z and a POS tag, and θd is the cor-
responding parameter vector. Since this is a lin-
ear model, the gradient of this function is simply
∂θflinear(z, y) = ϕd(z, y).

Second, each hidden layer of our neural net-
works non-linearly transforms an input vector h′

into an output vector h and we can say h′ is the
continuous part of z at the first layer. Let hL be
a hidden activation of the top layer, which is the
non-linear transformation of the continuous part
of z. The output layer of the neural network is
defined as

fnn(z, y) := θo · ϕo(hL, y),

where ϕo(h, y) is a feature mapping for the hidden
variables and a POS tag, and θo is the correspond-
ing parameter vector.

4.2 Activation functions

The hidden variables h are computed by the re-
cursive application of a non-linear activation func-
tion. Since new styles of the activation functions
were recently proposed, we review several acti-
vation functions here. Let v ∈ R|V | be the in-
put of an activation function and each element is
vj = θnn,j · h′ + θbias,j , where θnn,j is the param-
eter vector for vj and θbias,j is the bias parameter
for vj . We also assume v is divided into groups
of size G, and denote the j-th element of the i-th
group as {vij |1 ≤ i ≤ |V |/G ∧ 1 ≤ j ≤ G}. We
studied three activation functions:

1. Rectified linear units (ReLUs) (Nair and Hin-
ton, 2010):

hj = max(0, vj) for all {j|1 ≤ j ≤ |V |}.

Note that a subgradient of ReLUs is

∂hj

∂θ
=

{
∂vj

∂θ if vj > 0
0 otherwise.

2. Maxout networks (MAXOUT) (Goodfellow
et al., 2013):

hi = max
1≤j≤G

vij for all {i|1 ≤ i ≤ |V |
G
}.

Note that a subgradient of MAXOUT is

∂hi

∂θ
=

∂viĵ

∂θ
, where ĵ = argmax

1≤j≤G
vij

3. Normalized Lp-pooling (Lp) (Gulcehre et al.,
2014):

hi =

 1
G

G∑
j=1

|vij |p
 1

p

for all {i|1 ≤ i ≤ |V |
G
}.

Note that a subgradient of Lp is

∂hi

∂θ
=

G∑
j=1

∂vij

∂θ

vij |vij |p−2

G

 1
G

G∑
j=1

|vi,j |p
 1

p
−1

.
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The activation inputs for each predefined group,
{v1j , . . . , vGj}, are aggregated by a non-linear
function in MAXOUT or Lp activation functions,
while each input is transformed into a correspond-
ing hidden variable in the ReLUs. When the
number of parameters required for these activation
functions is the same, the number of output vari-
ables h for MAXOUT and Lp is one-G-th smaller
than that for ReLUs. Boureau et al. (2010) show
pooling operations theoretically reduce the vari-
ance of hidden activations, and our experimental
results also show MAXOUT and Lp perform bet-
ter than the ReLUs with the same number of pa-
rameters. Note that MAXOUT is a special case
of unnormalized Lp pooling when p = ∞ and
vj > 0 for all j (Zhang et al., 2014). Figure 1
summarizes the proposed architecture with a sin-
gle hidden layer and a pooling activation function.

4.3 Hyper-parameter search
Finally, the subgradients of the neural network,
fnn(z, y), can be computed through standard
back-propagation algorithms and we can apply
them in Algorithm 1. However, many of the hyper-
parameters have to be determined for the training
of the neural networks, and two stages of random
hyper-parameter searches (Bergstra and Bengio,
2012) are used in our experiments. Note that the
parameters are grouped into three sets, θd, θo,θnn,
and the same values for λ1, λ2, α, β are used for
each parameter set.

In the first stage, we randomly select 32 combi-
nations of λ2 for fnn, λ1, λ2 for flinear, the epoch
to start the L1/L2 regularizations, and the on and
off the acceleration in Algorithm 1. Here are the
candidates of three hyper-parameters:

1. λ1: 0 for the update of fnn and
{0, 10−8, 10−6, 10−4, 10−2, 1} for the
update of flinear;

2. λ2: {0.1, 0.5, 1, 5, 10} for the update of
fnn and {1, 5, 10, 50, 100} for the update of
flinear; and

3. Epoch to start the regularizations: {0, 1, 2}.
In the second stage with each hyper-parameter
combination above, we select 8 random combina-
tions of α, β for both flinear and fnn and initial pa-
rameter ranges R for fnn. Here are the candidates
of the three hyper-parameters:

1. α: {0.01, 0.05, 0.1, 0.5, 1, 5};

Data Set #Sent. #Tokens #Unknown
Training 38,219 912,344 0
Development 5,527 131,768 4,467
Testing 5,462 129,654 3,649

Table 1: Data set splits for PTB.

2. β: {0.5, 1, 5};

3. R: {[−0.1, 0.1], [−0.05, 0.05], [−0.01, 0.01],
[−0.005, 0.005]}.

The values of θ for fnn are uniformly sampled in
the range of the randomly selected R. Note that,
according to Goodfellow et al. (2014), the biases
θbias are initialized as 0 for MAXOUT and Lp, and
uniformly sampled from a range R + max(R),
i.e., always initialized with non-negative values.
The best combination for the development set is
chosen after training that uses random 20% of the
training set at the second stage, and Algorithm 1
is terminated when the all token accuracy of the
development data has been declining for 5 epochs
at the first stage. In other words, 32 × 8 random
combinations of α, β, and θ for fnn were tested.

5 Experiments

5.1 Setup

Our experiments were mainly performed using
the Wall Street Journal from Penn Treebank
(PTB) (Marcus et al., 1993). We used tagged sen-
tences from the parse trees (Toutanova et al., 2003)
and followed the standard approach of splitting the
PTB, using sections 0–18 for training, section 19–
21 for development, and section 22–24 for testing
(Table 1). In addition, we used the CoNLL2009
data sets with the training, development, and
test splits used in the shared task (Hajič et al.,
2009) for better comparison with a joint model of
POS tagging and dependency parsing (Bohnet and
Nivre, 2012).

Our baseline tagger was trained by Algorithm 1.
As discrete features for our tagger, we used the
same binary feature set as Choi and Palmer (2012)
which is composed of (a) 1, 2, 3-grams of the
surface word-forms and their predicted/dominated
POS tags, (b) the prefixes and suffixes of the
words, and (c) the spelling types of the words. In
the same way as Choi and Palmer (2012), we used
lowercase simplified word-forms which appeared
at least 3 times.
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In addition to their binary features, we used con-
tinuous features which are the concatenation of the
corpus-wide features in a context window. The
window of size w = 2s + 1 is the local context
centered around xt: xt−s, · · · , xt, · · · , xt+s. The
experimental settings of each feature described in
Section 3 are as follows.

Word embeddings
We used two word vectors: 300-dimensional
vectors that were learned by word2vec using
a part of the Google News dataset (around
100 billion tokens) 1, and 300-dimensional
vectors that were learned by glove using a
part of the Common Crawl dataset (840 bil-
lion tokens) 2. For sentence boundaries, we
use the vector of the special entry “</s>” for
the word2vec embeddings and the zero vec-
tor for the glove embeddings.

POS tag distribution
The counts are calculated using training data.

Supertag distribution
In the experiments on PTB, we used the Stan-
ford parser v2.0.43 to convert from phrase
structures to dependency structures so that
the dependency relation labels of the Stan-
ford dependencies are used. The size of the
supertag set is 85 for both heads and depen-
dents in our experiments. In the experiments
on CoNLL2009, the dependency structures
and labels defined in CoNLL2009 are used
and the size of supertag set is 99 for both
heads and dependents.

Context word distribution
To count the neighboring words in our exper-
iments, we used sections 0–18 of the Wall
Street Journal and all of the Brown corpus
from Penn Treebank (Marcus et al., 1993).

Since the training of the neural networks is com-
putationally demanding, first, we trained the lin-
ear classifiers using Algorithm 1 to select the best
window sizes for each corpus-wide information of
Section 3. Then the best window size setting for
the development set of PTB was used for train-
ing the neural networks described in Section 4.

1The pre-trained vectors are available at https://
code.google.com/p/word2vec

2The pre-trained vectors are available at http://nlp.
stanford.edu/projects/glove/

3http://nlp.stanford.edu/software/
lex-parser.shtml

Window size Accuracy (%)
# w2v glv pos stg cw All Unk.
1 - - - - - 97.15 86.81
2 3 - - - - 97.36 88.96
3 - 3 - - - 97.34 89.55
4 3 3 - - - 97.40 90.44
5 3 3 3 - 1 97.44 90.17
6 3 3 3 1 1 97.44 90.53
7 3 3 3 3 1 97.45 90.22
8 3 3 6 - 1 97.41 90.51
9 3 3 6 3 1 97.44 90.15

Table 2: Feature and window size selection: de-
velopment accuracies of all tokens (All) and un-
known tokens (Unk.) of linear models trained on
PTB (w2v: word2vec; glv: glove; pos: POS tag
distribution; stg: supertag distribution; cw: con-
text word distribution).

We fixed the group size at 8 for MAXOUT and
Lp, and the number of hidden variables was cho-
sen from {32, 48} for MAXOUT and Lp and from
{32, 64, 128, 256, 384} for ReLUs according to all
token accuracy on the development data of PTB.
We report the POS tagging accuracy for both all
of the tokens and only for the unknown tokens that
do not appear in the training set.

5.2 Results

Table 2 shows the accuracies of the linear models
on PTB with different window sizes for the con-
tinuous features. The window sizes of the word
embeddings (word2vec and glove) in Section 3.1,
POS tag distributions in Section 3.2, supertag dis-
tributions in Section 3.3, and context word distri-
butions in Section 3.4 are shown in the columns
of w2v, glv, pos, stg, and cw, respectively. Note
that “-” denotes the corresponding feature was not
used at all and the first row with all “-” denotes the
results only using the original binary features from
Choi and Palmer (2012). The window sizes in Ta-
ble 2 are chosen mainly to investigate the effect
of the word2vec embeddings, glove embeddings,
and supertag distributions, since they had not pre-
viously been used for POS tagging.

The additions of the word embeddings improve
all token accuracy by about 0.2 points accord-
ing to the results shown in Nos. 1, 2, 3. Al-
though both word embeddings improved the ac-
curacy of the unknown tokens, the gain of the
glove embeddings (No. 3) is larger than that of the

944



Neural Network Settings Development Set Test Set
# Activation functions #Hidden Group size (G) All Unk. All Unk.
1 Linear model - - 97.45 90.22 97.46 91.39
2 ReLUs 384 1 97.45 90.87 97.42 91.04
3 Lp(p = 2) 48 8 97.52 90.91 97.51 91.64
4 Lp(p = 3) 32 8 97.51 90.91 97.51 91.53
5 MAXOUT 48 8 97.50 90.89 97.50 91.67
6 Lp(p = 2) (w/o linear part) 48 8 97.39 91.18 97.40 91.23

Table 3: Development and test accuracies of all tokens and unknown tokens (%) on PTB.

Tagger All Unk.
Manning (2011) 97.32 90.79
Søgaard (2011) 97.50 N/A
Lp(p = 2) 97.51 91.64

(a) Test accuracies on PTB

Tagger All Unk.
Bohnet and Nivre (2012) 97.84 N/A
Lp(p = 2) 98.02 92.01

(b) Test accuracies on CoNLL2009

Table 4: Test accuracies of all tokens and unknown tokens (%) comparing with the previously reported
results

word2vec (No. 2). The reason for this difference
in the two embeddings may be because the train-
ing data for the glove vectors is 8 times larger than
that for the word2vec vectors. The usage of the
two word embeddings shows further improvement
in the tagging accuracy over single word embed-
dings (No. 4).

The addition of the POS tag distributions and
the context word distributions improves all token
accuracy (Nos. 5, 8). The comparison between the
results with stag=“-” (Nos. 5, 8) and stag = {1, 3}
(Nos. 6, 7, 9) indicates the minor but consistent
improvement by using the supertag distribution
features in Section 3.3. Finally, the 7th window-
size setting in Table 2 achieves the best all token
accuracy among the linear models, so we chose
this setting for the experiments with the neural net-
works.

In Table 3, we compare the different settings of
the neural networks with a single hidden layer 4

on the development set and test set from PTB.
Neural networks with the MAXOUT and Lp

(Nos. 3, 4, 5) significantly outperform the best lin-
ear model (No. 1) 5, but the accuracy of the Re-
LUs (No. 2) was similar to that of the best lin-
ear model. According to these results, we argue

4We leave the investigation of deeper neural networks as
future work.

5For significance tests, we have used the Wilcoxon
matched-pairs signed-rank test at the 95% confidence level
dividing the data into 100 data pairs.

that the activation function selection is important,
although conventional research in NLP has used
only a single activation function. It took roughly
7 times as long to learn the hybrid models than
the linear model (No. 1). “Lp(p = 2) (w/o linear
part)” (No. 6) shows the result for a Lp(p = 2)
model which does not include the linear model
flinear for the binary features. Comparing the test
results of No. 6 with that of No. 3, the proposed
hybrid architecture of a linear model and a neural
network enjoys the benefits of both models. Note
that No. 6’s accuracies of the unknown tokens are
relatively competitive, and this may be because the
continuous features for the neural network do not
include word surfaces.

Since it shows the best accuracy for all tokens
on the development set, we refer to Lp(p = 2)
with 48 hidden variables and the group size of 8
(No. 3 in Table 3) as our representative tagger and
denote it as Lp(p = 2) in the rest of discussion.
In Table 4a, we compare our result with the pre-
viously reported results and we see that our tagger
outperforms the current state-of-the-art systems on
PTB for the accuracies of all tokens and unknown
tokens.

In addition, since our tagger was trained us-
ing the dependency tree annotations as described
in Section 3.3, we compare it with the results of
Bohnet and Nivre (2012) which is also trained
using both POS tag and dependency annotations.
Although their focus is on the dependency pars-
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Figure 2: Scatter plots of verbs for all combinations between the first four principal components of the
raw features and the activation of hidden variables.

ing, they report state-of-the art POS accuracies
for many languages. Note that Bohnet and Nivre
(2012) also used external resources. Table 4b
gives the results for CoNLL2009 data set6. Our
tagger outperform Bohnet and Nivre (2012), so we
believe this is the highest POS accuracy ever re-
ported for a tagger trained on this data set.

Finally, to visualize the learned representations,
we applied principal components analysis (PCA)
to the hidden activations hL of the first 10, 000 to-
kens of the development set from PTB. We also
performed PCA to the raw continuous inputs of
the same data set. Figure 2 shows the data plots
for all the combinations among the first four prin-
cipal components. We plots only the verb tokens
to make the plots easier to see. Figures 2a and
2b show the PCA results of the raw features and
the hidden activations of Lp(p = 2), respectively.
Compared to Figure 2a, the tokens with the same
POS tag are more clearly clustered in Figure 2b.
This suggests the neural network learned the good
representations for POS tagging and these hidden
activations can be used as the input of the succeed-
ing processes, such as parsing.

6The accuracies of our tagger on the development set of
CoNLL2009 data are 97.76% for all tokens and 93.42% for
unknown tokens.

6 Related Work

There is some old work on the POS tagging by
neural networks. Nakamura et al. (1990) proposed
a neural tagger that predicts the POS tag using a
previous POS predictions. Schmid (1994) is most
similar to our work. The inputs of his neural net-
work are the POS tag distributions of a word and
its suffix in a context window, and he reports a
2% improvement over a regular hidden Markov
model. However, his tagger did not use the other
kinds of corpus-wide information as we used.

Most of the recent studies on POS tagging use
linear models (Suzuki and Isozaki, 2008; Spous-
tová et al., 2009) or other non-linear models, such
as k-nearest neighbor (kNN) (Søgaard, 2011).
One trend in these studies is model combinations.
Suzuki and Isozaki (2008) combined generative
and discriminative models, Spoustová et al. (2009)
used the combination of three taggers to gener-
ate automatically annotated corpus, and Søgaard
(2011) used the outputs of a supervised tagger and
an unsupervised tagger as the feature space of the
kNN. Our work also follows this trend since neural
networks can be considered as non-linear integra-
tion of several linear classifiers.

Apart from POS tagging, some previous studies
in parsing used the discretization method to handle
the combination of continuous features. Bohnet
and Nivre (2012) binned the difference of two con-
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tinuous features in discrete steps of a predefined
small interval. Bansal et al. (2014) used the con-
junction of discretized features and studied two
discretization methods: One is the binning of real
values into discrete steps and the other is a hard
clustering of continuous feature vectors. It is not
easy to determine the optimal intervals for the bin-
ning method, and the clustering method is unsu-
pervised so that the clusters are not guaranteed for
good representations of the target tasks.

To capture rich syntactic information for Chi-
nese POS tagging, Sun and Uszkoreit (2012) used
the ensemble model of both a POS tagger and a
constituency parser. Sun et al. (2013) improved
the efficiency of Sun and Uszkoreit (2012) in
which a single tagging model is trained using au-
tomatically annotated corpus generated by the en-
semble tagger. Although the supertag distribution
feature in Section 3.3 is a simple way to incor-
porate syntactic information, automatically parsed
large corpora may make the estimate of the su-
pertag distributions more accurate.

7 Conclusion and Future Work

We are studying a neural network approach to han-
dle the non-linear interaction among corpus-wide
statistics. For POS tagging, we used word em-
beddings, POS tag distributions, supertag distribu-
tions, and context word distributions in a context
window. These features are beneficial, even for
linear classifiers, but the neural networks leverage
these features for improving tagging accuracies.
Our tagger with Maxout networks (Goodfellow et
al., 2013) or Lp-pooling (Zhang et al., 2014; Gul-
cehre et al., 2014) show the state-of-the-art results
on two English benchmark sets.

Our empirical results suggest further opportu-
nities to investigate continuous features not only
for POS tagging but also for other NLP tasks.
An obvious use case for continuous features is
the N-best outputs with confidence values, which
were predicted by the previous process in a NLP
pipeline, such as the POS tags used for syntactic
parsing. Another interesting extension is the use of
on-the-fly features which reflect previous network
states, although the neural networks in our current
work do not refer to the prediction history. Recur-
rent neural networks (RNNs) may be a solution to
represent the prediction history in a compact way,
and Mesnil et al. (2013) reported that RNNs out-
perform conditional random fields (CRFs) on a se-

quential labeling task. They also show the superi-
ority of bi-directional RNNs on their task, so the
bi-directional RNNs may also be effective on the
POS tagging, since bi-directional inferences were
also used in earlier work (Tsuruoka and Tsujii,
2005).

It has a clear benefit over kernel methods in
that the test-time computational cost of neural net-
works is independent from training data. How-
ever, although the test-time speed of original ker-
nel methods is proportional to the number of train-
ing data, recent development of kernel approxima-
tion techniques achieve significant speed improve-
ments (Le et al., 2013; Pham and Pagh, 2013).
Since this work shows the non-linearity of contin-
uous features should be exploited, those approxi-
mated kernel methods may also improve the tag-
ging accuracies without sacrifice tagging speed.

Independent from our work, Ma et al. (2014)
and Santos and Zadrozny (2014) also recently pro-
posed neural network approaches for POS tagging.
Ma et al. (2014)’s approach is similar to our ap-
proach, with a combination of a linear model and
a neural network, although a direct comparison is
not easy since their focus is the Web domain adap-
tation of POS tagging. Remarkably, they report n-
gram embeddings are better than single word em-
beddings. Santos and Zadrozny (2014) proposed
character-level embedding to capture the morpho-
logical and shape information for POS tagging.
Although the reported accuracy (97.32%) on PTB
data is lower than state of the art results, their ap-
proach is promising for morphologically rich lan-
guages. We may study the integration of these em-
beddings into our approach as future work.
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Abstract

Different approaches to high-quality
grammatical error correction have been
proposed recently, many of which have
their own strengths and weaknesses. Most
of these approaches are based on classi-
fication or statistical machine translation
(SMT). In this paper, we propose to com-
bine the output from a classification-based
system and an SMT-based system to
improve the correction quality. We adopt
the system combination technique of
Heafield and Lavie (2010). We achieve an
F0.5 score of 39.39% on the test set of the
CoNLL-2014 shared task, outperforming
the best system in the shared task.

1 Introduction

Grammatical error correction (GEC) refers to the
task of detecting and correcting grammatical er-
rors present in a text written by a second language
learner. For example, a GEC system to correct
English promises to benefit millions of learners
around the world, since it functions as a learning
aid by providing instantaneous feedback on ESL
writing.

Research in this area has attracted much interest
recently, with four shared tasks organized in the
past several years: Helping Our Own (HOO) 2011
and 2012 (Dale and Kilgarriff, 2010; Dale et al.,
2012), and the CoNLL 2013 and 2014 shared tasks
(Ng et al., 2013; Ng et al., 2014). Each shared task
comes with an annotated corpus of learner texts
and a benchmark test set, facilitating further re-
search in GEC.

Many approaches have been proposed to de-
tect and correct grammatical errors. The most
dominant approaches are based on classification
(a set of classifier modules where each module ad-
dresses a specific error type) and statistical ma-

chine translation (SMT) (formulated as a transla-
tion task from “bad” to “good” English). Other ap-
proaches combine the classification and SMT ap-
proaches, and often have some rule-based compo-
nents.

Each approach has its own strengths and weak-
nesses. Since the classification approach is able to
focus on each individual error type using a sep-
arate classifier, it may perform better on an er-
ror type where it can build a custom-made classi-
fier tailored to the error type, such as subject-verb
agreement errors. The drawback of the classifica-
tion approach is that one classifier must be built
for each error type, so a comprehensive GEC sys-
tem will need to build many classifiers which com-
plicates its design. Furthermore, the classification
approach does not address multiple error types that
may interact.

The SMT approach, on the other hand, natu-
rally takes care of interaction among words in a
sentence as it attempts to find the best overall cor-
rected sentence. It usually has a better coverage
of different error types. The drawback of this ap-
proach is its reliance on error-annotated learner
data, which is expensive to produce. It is not pos-
sible to build a competitive SMT system without a
sufficiently large parallel training corpus, consist-
ing of texts written by ESL learners and the corre-
sponding corrected texts.

In this work, we aim to take advantage of both
the classification and the SMT approaches. By
combining the outputs of both systems, we hope
that the strengths of one approach will offset the
weaknesses of the other approach. We adopt the
system combination technique of (Heafield and
Lavie, 2010), which starts by creating word-level
alignments among multiple outputs. By perform-
ing beam search over these alignments, it tries
to find the best corrected sentence that combines
parts of multiple system outputs.

The main contributions of this paper are as fol-
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lows:

• It is the first work that makes use of a system
combination strategy to improve grammatical
error correction;

• It gives a detailed description of methods
and experimental setup for building compo-
nent systems using two state-of-the-art ap-
proaches; and

• It provides a detailed analysis of how one ap-
proach can benefit from the other approach
through system combination.

We evaluate our system combination approach
on the CoNLL-2014 shared task. The approach
achieves an F0.5 score of 39.39%, outperforming
the best participating team in the shared task.

The remainder of this paper is organized as fol-
lows. Section 2 gives the related work. Section 3
describes the individual systems. Section 4 ex-
plains the system combination method. Section 5
presents experimental setup and results. Section 6
provides a discussion and analysis of the results.
Section 7 describes further experiments on system
combination. Finally, Section 8 concludes the pa-
per.

2 Related Work

2.1 Grammatical Error Correction
Early research in grammatical error correction fo-
cused on a single error type in isolation. For ex-
ample, Knight and Chander (1994) built an article
correction system for post-editing machine trans-
lation output.

The classification approach has been used to
deal with the most common grammatical mistakes
made by ESL learners, such as article and prepo-
sition errors (Han et al., 2006; Chodorow et al.,
2007; Tetreault and Chodorow, 2008; Gamon,
2010; Dahlmeier and Ng, 2011; Rozovskaya and
Roth, 2011; Wu and Ng, 2013), and more recently,
verb errors (Rozovskaya et al., 2014b). Statis-
tical classifiers are trained either from learner or
non-learner texts. Features are extracted from the
sentence context. Typically, these are shallow fea-
tures, such as surrounding n-grams, part-of-speech
(POS) tags, chunks, etc. Different sets of fea-
tures are employed depending on the error type
addressed.

The statistical machine translation (SMT) ap-
proach has gained more interest recently. Earlier

work was done by Brockett et al. (2006), where
they used SMT to correct mass noun errors. The
major impediment in using the SMT approach for
GEC is the lack of error-annotated learner (“par-
allel”) corpora. Mizumoto et al. (2011) mined a
learner corpus from the social learning platform
Lang-8 and built an SMT system for correcting
grammatical errors in Japanese. They further tried
their method for English (Mizumoto et al., 2012).

Other approaches combine the advantages of
classification and SMT (Dahlmeier and Ng,
2012a) and sometimes also include rule-based
components. Note that in the hybrid approaches
proposed previously, the output of each compo-
nent system might be only partially corrected for
some subset of error types. This is different from
our system combination approach, where the out-
put of each component system is a complete cor-
rection of the input sentence where all error types
are dealt with.

State-of-the-art performance is achieved by
both the classification (Dahlmeier et al., 2012;
Rozovskaya et al., 2013; Rozovskaya et al.,
2014a) and the SMT approach (Felice et al., 2014;
Junczys-Dowmunt and Grundkiewicz, 2014),
which motivates us to attempt system output com-
bination from both approaches.

2.2 System Combination

System combination is the task of combining the
outputs of multiple systems to produce an out-
put better than each of its individual component
systems. In machine translation (MT), combin-
ing multiple MT outputs has been attempted in
the Workshop on Statistical Machine Translation
(Callison-Burch et al., 2009; Bojar et al., 2011).

One of the common approaches in system com-
bination is the confusion network approach (Rosti
et al., 2007b). In this approach, a confusion net-
work is created by aligning the outputs of multi-
ple systems. The combined output is generated by
choosing the output of one single system as the
“backbone”, and aligning the outputs of all other
systems to this backbone. The word order of the
combined output will then follow the word order
of the backbone. The alignment step is critical in
system combination. If there is an alignment er-
ror, the resulting combined output sentence may
be ungrammatical.

Rosti et al. (2007a) evaluated three system com-
bination methods in their work:

952



• Sentence level This method looks at the com-
bined N-best list of the systems and selects
the best output.

• Phrase level This method creates new hy-
potheses using a new phrase translation ta-
ble, built according to the phrase alignments
of the systems.

• Word level This method creates a graph by
aligning the hypotheses of the systems. The
confidence score of each aligned word is then
calculated according to the votes from the hy-
potheses.

Combining different component sub-systems
was attempted by CUUI (Rozovskaya et al.,
2014a) and CAMB (Felice et al., 2014) in the
CoNLL-2014 shared task. The CUUI system em-
ploys different classifiers to correct various error
types and then merges the results. The CAMB
system uses a pipeline of systems to combine the
outputs of their rule based system and their SMT
system. The combination methods used in those
systems are different from our approach, because
they combine individual sub-system components,
by piping the output from one sub-system to an-
other, whereas we combine the outputs of whole
systems. Moreover, our approach is able to com-
bine the advantages of both the classification and
SMT approaches. In the field of grammatical error
correction, our work is novel as it is the first that
uses system combination to improve grammatical
error correction.

3 The Component Systems

We build four individual error correction systems.
Two systems are pipeline systems based on the
classification approach, whereas the other two are
phrase-based SMT systems. In this section, we
describe how we build each system.

3.1 Pipeline
We build two different pipeline systems. Each sys-
tem consists of a sequence of classifier-based cor-
rection steps. We use two different sequences of
correction steps as shown in Table 1. As shown
by the table, the only difference between the two
pipeline systems is that we swap the noun number
and the article correction step. We do this because
there is an interaction between noun number and
article correction. Swapping them generates sys-
tem outputs that are quite different.

Step Pipeline 1 (P1) Pipeline 2 (P2)
1 Spelling Spelling
2 Noun number Article
3 Preposition Preposition
4 Punctuation Punctuation
5 Article Noun number
6 Verb form, SVA Verb form, SVA

Table 1: The two pipeline systems.

We model each of the article, preposition, and
noun number correction task as a multi-class clas-
sification problem. A separate multi-class confi-
dence weighted classifier (Crammer et al., 2009)
is used for correcting each of these error types. A
correction is only made if the difference between
the scores of the original class and the proposed
class is larger than a threshold tuned on the devel-
opment set. The features of the article and prepo-
sition classifiers follow the features used by the
NUS system from HOO 2012 (Dahlmeier et al.,
2012). For the noun number error type, we use
lexical n-grams, ngram counts, dependency rela-
tions, noun lemma, and countability features.

For article correction, the classes are the arti-
cles a, the, and the null article. The article an
is considered to be the same class as a. A sub-
sequent post-processing step chooses between a
and an based on the following word. For prepo-
sition correction, we choose 36 common English
prepositions as used in (Dahlmeier et al., 2012).
We only deal with preposition replacement but not
preposition insertion or deletion. For noun number
correction, the classes are singular and plural.

Punctuation, subject-verb agreement (SVA),
and verb form errors are corrected using rule-
based classifiers. For SVA errors, we assume that
noun number errors have already been corrected
by classifiers earlier in the pipeline. Hence, only
the verb is corrected when an SVA error is de-
tected. For verb form errors, we change a verb into
its base form if it is preceded by a modal verb, and
we change it into the past participle form if it is
preceded by has, have, or had.

The spelling corrector uses Jazzy, an open
source Java spell-checker1. We filter the sugges-
tions given by Jazzy using a language model. We
accept a suggestion from Jazzy only if the sugges-
tion increases the language model score of the sen-
tence.

1http://jazzy.sourceforge.net/
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3.2 Statistical Machine Translation
The other two component systems are based
on phrase-based statistical machine translation
(Koehn et al., 2003). It follows the well-
known log-linear model formulation (Och and
Ney, 2002):

ê = arg max
e

P (e|f)

= arg max
e

exp

(
M∑
m=1

λmhm(e, f)

)
(1)

where f is the input sentence, e is the corrected
output sentence, hm is a feature function, and λm
is its weight. The feature functions include a trans-
lation model learned from a sentence-aligned par-
allel corpus and a language model learned from a
large English corpus. More feature functions can
be integrated into the log-linear model. A decoder
finds the best correction ê that maximizes Equa-
tion 1 above.

The parallel corpora that we use to train
the translation model come from two different
sources. The first corpus is NUCLE (Dahlmeier et
al., 2013), containing essays written by students at
the National University of Singapore (NUS) which
have been manually corrected by English instruc-
tors at NUS. The other corpus is collected from
the language exchange social networking website
Lang-8. We develop two versions of SMT sys-
tems: one with two phrase tables trained on NU-
CLE and Lang-8 separately (S1), and the other
with a single phrase table trained on the concate-
nation of NUCLE and Lang-8 data (S2). Multiple
phrase tables are used with alternative decoding
paths (Birch et al., 2007). We add a word-level
Levenshtein distance feature in the phrase table
used by S2, similar to (Felice et al., 2014; Junczys-
Dowmunt and Grundkiewicz, 2014). This feature
is not included in S1.

4 System Combination

We use MEMT (Heafield and Lavie, 2010) to
combine the outputs of our systems. MEMT uses
METEOR (Banerjee and Lavie, 2005) to perform
alignment of each pair of outputs from the compo-
nent systems. The METEOR matcher can identify
exact matches, words with identical stems, syn-
onyms, and unigram paraphrases.

MEMT uses an approach similar to the confu-
sion network approach in SMT system combina-
tion. The difference is that it performs alignment

on the outputs of every pair of component systems,
so it does not need to choose a single backbone.
As MEMT does not choose any single system out-
put as its backbone, it can consider the output of
each component system in a symmetrical manner.
This increases word order flexibility, as choosing
a single hypothesis as the backbone will limit the
number of possible word order permutations.

After creating pairwise alignments using ME-
TEOR, the alignments form a confusion network.
MEMT will then perform a beam search over this
graph to find the one-best hypothesis. The search
is carried out from left to right, one word at a time,
creating a partial hypothesis. During beam search,
it can freely switch among the component sys-
tems, combining the outputs together into a sen-
tence. When it adds a word to its hypothesis, all
the words aligned to it in the other systems are also
marked as “used”. If it switches to another input
sentence, it has to use the first “unused” word in
that sentence. This is done to make sure that ev-
ery aligned word in the sentences is used. In some
cases, a heuristic could be used to allow skipping
over some words (Heafield et al., 2009).

During beam search, MEMT uses a few features
to score the hypotheses (both partial hypotheses
and full hypotheses):

• Length The number of tokens in a hypoth-
esis. It is useful to normalize the impact of
sentence length.

• Language model Log probability from a lan-
guage model. It is especially useful in main-
taining sentence fluency.

• Backoff The average n-gram length found in
the language model.

• Match The number of n-gram matches be-
tween the outputs of the component systems
and the hypothesis, counted for small order
n-grams.

The weights of these features are tuned using Z-
MERT (Zaidan, 2009) on a development set.

This system combination approach has a few
advantages in grammatical error correction. ME-
TEOR not only can match words with exact
matches, but also words with identical stems, syn-
onyms, and unigram paraphrases. This means that
it can deal with word form, noun number, and verb
form corrections that share identical stems, as well

954



Data set # sentences # source tokens
NUCLE 57,151 1,161,567
Lang-8 1,114,139 12,945,666
CoNLL-2013 1,381 29,207
CoNLL-2014 1,312 30,144
English
Wikipedia

86,992,889 1,778,849,655

Table 2: Statistics of the data sets.

as word choice corrections (with synonyms and
unigram paraphrases). Also, MEMT uses a lan-
guage model feature to maintain sentence fluency,
favoring grammatical output sentences.

In this paper, we combine the pipeline system
P1 (Table 1) with the SMT system S1, and also
combine P2 with S2. The two component sys-
tems in each pair have comparable performance.
For our final system, we also combine all four sys-
tems together.

5 Experiments

Our approach is evaluated in the context of the
CoNLL-2014 shared task on grammatical error
correction. Specific details of the shared task can
be found in the overview paper (Ng et al., 2014),
but we summarize the most important details rele-
vant to our study here.

5.1 Data
We use NUCLE version 3.2 (Dahlmeier et al.,
2013), the official training data of the CoNLL-
2014 shared task, to train our component systems.
The grammatical errors in this corpus are catego-
rized into 28 different error types. We also use the
“Lang-8 Corpus of Learner English v1.0”2 (Tajiri
et al., 2012) to obtain additional learner data. En-
glish Wikipedia3 is used for language modeling
and collecting n-gram counts. All systems are
tuned on the CoNLL-2013 test data (which serves
as the development data set) and tested on the
CoNLL-2014 test data. The statistics of the data
sets can be found in Table 2.

5.2 Evaluation
System performance is evaluated based on pre-
cision, recall, and F0.5 (which weights precision
twice as much as recall). Given a set of n sen-
tences, where gi is the set of gold-standard edits

2http://cl.naist.jp/nldata/lang-8/
3http://dumps.wikimedia.org/enwiki/20140102/enwiki-

20140102-pages-articles.xml.bz2

for sentence i, and ei is the set of system edits for
sentence i, precision, recall, and F0.5 are defined
as follows:

P =
∑n

i=1 |gi ∩ ei|∑n
i=1 |ei|

(2)

R =
∑n

i=1 |gi ∩ ei|∑n
i=1 |gi|

(3)

F0.5 =
(1 + 0.52)×R× P
R+ 0.52 × P (4)

where the intersection between gi and ei for sen-
tence i is defined as

gi ∩ ei = {e ∈ ei|∃g ∈ gi,match(g, e)} (5)

The official scorer for the shared task was
the MaxMatch (M2) scorer4 (Dahlmeier and Ng,
2012b). The scorer computes the sequence of sys-
tem edits between a source sentence and a system
hypothesis that achieves the maximal overlap with
the gold-standard edits. Like CoNLL-2014, F0.5

is used instead of F1 to emphasize precision. For
statistical significance testing, we use the sign test
with bootstrap re-sampling on 100 samples.

5.3 Pipeline System
We use ClearNLP5 for POS tagging and depen-
dency parsing, and OpenNLP for chunking6. We
use the WordNet (Fellbaum, 1998) morphology
software to generate singular and plural word sur-
face forms.

The article, preposition, and noun number cor-
rectors use the classifier approach to correct errors.
Each classifier is trained using multi-class confi-
dence weighted learning on the NUCLE and Lang-
8 corpora. The classifier threshold is tuned using a
simple grid search on the development data set for
each class of a classifier.

5.4 SMT System
The system is trained using Moses (Koehn et al.,
2007), with Giza++ (Och and Ney, 2003) for word
alignment. The translation table is trained using
the “parallel” corpora of NUCLE and Lang-8. The
table contains phrase pairs of maximum length
seven. We include five standard parameters in the
translation table: forward and reverse phrase trans-
lations, forward and reverse lexical translations,

4http://www.comp.nus.edu.sg/∼nlp/sw/m2scorer.tar.gz
5https://code.google.com/p/clearnlp/
6http://opennlp.apache.org/
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and phrase penalty. We further add a word-level
Levenshtein distance feature for S2.

We do not use any reordering model in our sys-
tem. The intuition is that most error types do not
involve long-range reordering and local reorder-
ing can be easily captured in the phrase translation
table. The distortion limit is set to 0 to prohibit
reordering during hypothesis generation.

We build two 5-gram language models using the
corrected side of NUCLE and English Wikipedia.
The language models are estimated using the
KenLM toolkit (Heafield et al., 2013) with mod-
ified Kneser-Ney smoothing. These two language
models are used as separate feature functions in
the log-linear model. Finally, they are binarized
into a probing data structure (Heafield, 2011).
Tuning is done on the development data set with
MERT (Och, 2003). We use BLEU (Papineni et
al., 2002) as the tuning metric, which turns out to
work well in our experiment.

5.5 Combined System
We use an open source MEMT implementation
by Heafield and Lavie (2010) to combine the out-
puts of our systems. Parameters are set to the val-
ues recommended by (Heafield and Lavie, 2010):
a beam size of 500, word skipping using length
heuristic with radius 5, and with the length nor-
malization option turned off. We use five match-
ing features for each system: the number of exact
unigram and bigram matches between hypotheses
and the number of matches in terms of stems, syn-
onyms, or paraphrases for unigrams, bigrams, and
trigrams. We use the Wikipedia 5-gram language
model in this experiment.

We tune the combined system on the develop-
ment data set. The test data is input into both
the pipeline and SMT system respectively and the
output from each system is then matched using
METEOR (Banerjee and Lavie, 2005). Feature
weights, based on BLEU, are then tuned using Z-
MERT (Zaidan, 2009). We repeat this process five
times and use the weights that achieve the best
score on the development data set in our final com-
bined system.

5.6 Results
Our experimental results using the CoNLL-2014
test data as the test set are shown in Table 3. Each
system is evaluated against the same gold standard
human annotations. As recommended in Ng et al.
(2014), we do not use the revised gold standard to

System P R F0.5

Pipeline
P1 40.24 23.99 35.44
P2 39.93 22.77 34.70
SMT
S1 57.90 14.16 35.80
S2 62.11 12.54 34.69
Combined
P1+S1 53.85 17.65 38.19
P2+S2 56.92 16.22 37.90
P1+P2+S1+S2 53.55 19.14 39.39
Top 4 Systems in CoNLL-2014
CAMB 39.71 30.10 37.33
CUUI 41.78 24.88 36.79
AMU 41.62 21.40 35.01
POST 34.51 21.73 30.88

Table 3: Performance of the pipeline, SMT,
and combined systems on the CoNLL-2014 test
set. All improvements of combined systems over
their component systems are statistically signifi-
cant (p < 0.01). The differences between P1 and
S1 and between P2 and S2 are not statistically sig-
nificant.

ensure a fairer evaluation (i.e., without using alter-
native answers).

First, we can see that both the pipeline and
SMT systems individually achieve relatively good
results that are comparable with the third high-
est ranking participant in the CoNLL-2014 shared
task. It is worth noting that the pipeline systems
only target the seven most common error types,
yet still perform well in an all-error-type setting.
In general, the pipeline systems have higher recall
but lower precision than the SMT systems.

The pipeline system is also sensitive to the or-
der in which corrections are applied; for example
applying noun number corrections before article
corrections results in a better score. This means
that there is definitely some interaction between
grammatical errors and, for instance, the phrase a
houses can be corrected to a house or houses de-
pending on the order of correction.

We noticed that the performance of the SMT
system could be improved by using multiple trans-
lation models. This is most likely due to domain
differences between the NUCLE and Lang-8 cor-
pus, e.g., text genres, writing style, topics, etc.
Note also that the Lang-8 corpus is more than
10 times larger than the NUCLE corpus, so there
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is some benefit from training and weighting two
translation tables separately.

The performance of the pipeline system P1 is
comparable to that of the SMT system S1, and
likewise the performance of P2 is comparable to
that of S2. The differences between them are not
statistically significant, making it appropriate to
combine their respective outputs.

Every combined system achieves a better result
than its component systems. In every combina-
tion, there is some improvement in precision over
the pipeline systems, and some improvement in re-
call over the SMT systems. The combination of
the better component systems (P1+S1) is also sta-
tistically significantly better than the combination
of the other component systems (P2+S2). Com-
bining all four component systems yields an even
better result of 39.39% F0.5, which is even better
than the CoNLL-2014 shared task winner. This is
significant because the individual component sys-
tems barely reached the score of the third highest
ranking participant before they were combined.

6 Discussion

In this section, we discuss the strengths and weak-
nesses of the pipeline and SMT systems, and show
how system output combination improves perfor-
mance. Specifically, we compare P1, S1, and
P1+S1, although the discussion also applies to P2,
S2, and P2+S2.

Type performance. We start by computing the
recall for each of the 28 error types achieved by
each system. This computation is straightforward
as each gold standard edit is also annotated with
error type. On the other hand, precision, as men-
tioned in the overview paper (Ng et al., 2014), is
much harder to compute because systems typically
do not categorize their corrections by error type.
Although it may be possible to compute the pre-
cision for each error type in the pipeline system
(since we know which correction was proposed by
which classifier), this is more difficult to do in the
SMT and combined system, where we would need
to rely on heuristics which are more prone to er-
rors. As a result, we decided to analyze a sample
of 200 sentences by hand for a comparatively more
robust comparison. The results can be seen in Ta-
ble 4.

We observe that the pipeline system has a higher
recall than the SMT system for the following er-
ror types: ArtOrDet, Mec, Nn, Prep, SVA, Vform,

and Vt. Conversely, the SMT system generally has
a higher precision than the pipeline system. The
combined system usually has slightly lower pre-
cision than the SMT system, but higher than the
pipeline system, and slightly higher recall than the
SMT system but lower than the pipeline system.
In some cases however, like for Vform correction,
both precision and recall increase.

The combined system can also make use of cor-
rections which are only corrected in one of the
systems. For example, it corrects both Wform
and Pform errors, which are only corrected by the
SMT system, and SVA errors, which are only cor-
rected by the pipeline system.

Error analysis. For illustration on how sys-
tem combination helps, we provide example out-
put from the pipeline system P1, SMT system
S1, and the combined system P1+S1 in Table 5.
We illustrate three common scenarios where sys-
tem combination helps: the first is when P1 per-
forms better than S1, and the combined system
chooses the corrections made by P1, the second is
the opposite where S1 performs better than P1 and
the combined system chooses S1, and the last is
when the combined system combines the correc-
tions made by P1 and S1 to produce output better
than both P1 and S1.

7 Additional System Combination
Experiments

We further evaluate our system combination ap-
proach by making use of the corrected system out-
puts of 12 participating teams in the CoNLL-2014
shared task, which are publicly available on the
shared task website.7 Specifically, we combined
the system outputs of the top 2, 3, . . . , 12 CoNLL-
2014 shared task teams and computed the results.

In our earlier experiments, the CoNLL-2013
test data was used as the development set. How-
ever, the participants’ outputs for this 2013 data
are not available. Therefore, we split the CoNLL-
2014 test data into two parts: the first 500 sen-
tences for the development set and the remaining
812 sentences for the test set. We then tried com-
bining the n best performing systems, for n =
2, 3, . . . , 12. Other than the data, the experimen-
tal setup is the same as that described in Sec-
tion 5.5. Table 6 shows the ranking of the par-
ticipants on the 812 test sentences (without alter-

7http://www.comp.nus.edu.sg/∼nlp/conll14st/
official submissions.tar.gz
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System Example sentence
Source Nowadays , the use of the sociall media platforms is a commonplace in our lives .
P1 Nowadays , the use of social media platforms is a commonplace in our lives .
S1 Nowadays , the use of the sociall media platforms is a commonplace in our lives .
P1+S1 Nowadays , the use of social media platforms is a commonplace in our lives .
Gold Nowadays , the use of social media platforms is commonplace in our lives .
Source Human has their own rights and privacy .
P1 Human has their own rights and privacy .
S1 Humans have their own rights and privacy .
P1+S1 Humans have their own rights and privacy .
Gold Humans have their own rights and privacy .
Source People that living in the modern world really can not live without the social media sites .
P1 People that living in the modern world really can not live without social media sites .
S1 People living in the modern world really can not live without the social media sites .
P1+S1 People living in the modern world really can not live without social media sites .
Gold People living in the modern world really can not live without social media sites .

Table 5: Example output from three systems.

System P R F0.5

CUUI 44.62 27.54 39.69
CAMB 39.93 31.02 37.76
AMU 40.77 21.31 34.47
POST 38.88 23.06 34.19
NTHU 36.30 20.50 31.45
RAC 32.38 13.62 25.39
PKU 30.14 13.12 23.93
UMC 29.03 12.88 23.21
SJTU 32.04 5.43 16.18
UFC 76.92 2.49 11.04
IPN 11.99 2.88 7.34
IITB 28.12 1.53 6.28

Table 6: Performance of each participant when
evaluated on 812 sentences from CoNLL-2014
test data.

native answers). Note that since we use a subset of
the original CoNLL-2014 test data for testing, the
ranking is different from the official CoNLL-2014
ranking.

Table 7 shows the results of system combina-
tion in terms of increasing numbers of top sys-
tems. We observe consistent improvements in F0.5

when we combine more system outputs, up to 5
best performing systems. When combining 6 or
more systems, the performance starts to fluctu-
ate and degrade. An important observation is that
when we perform system combination, it is more
effective, in terms of F0.5, to combine a handful
of high-quality system outputs than many outputs

# systems P R F0.5

2 44.72 29.78 40.64
3 56.24 25.04 45.02
4 59.16 23.63 45.48
5 63.41 24.09 47.80
6 65.02 19.54 44.37
7 64.95 18.13 42.83
8 66.09 14.70 38.90
9 70.22 14.81 40.16
10 69.72 13.67 38.31
11 70.23 14.23 39.30
12 69.72 11.82 35.22

Table 7: Performance with different numbers of
combined top systems.

of variable quality. Precision tends to increase as
more systems are combined although recall tends
to decrease. This indicates that combining multi-
ple systems can produce a grammatical error cor-
rection system with high precision, which is useful
in a practical application setting where high preci-
sion is desirable. Figure 1 shows how the perfor-
mance varies as the number of combined systems
increases.

8 Conclusion

We have presented a system combination ap-
proach for grammatical error correction using
MEMT. Our approach combines the outputs from
two of the most common paradigms in GEC: the
pipeline and statistical machine translation ap-
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Figure 1: Performance in terms of precision (P ),
recall (R), and F0.5 versus the number of com-
bined top systems.

proach. We created two variants of the pipeline
and statistical machine translation approaches and
showed that system combination can be used to
combine their outputs together to yield a superior
system.

Our best combined system achieves an F0.5

score of 39.39% on the official CoNLL 2014 test
set without alternative answers, higher than the top
participating team in CoNLL 2014 on this data
set. We achieved this by using component systems
which were individually weaker than the top three
systems that participated in the shared task.
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Abstract

In this paper we propose a method to
increase dependency parser performance
without using additional labeled or unla-
beled data by refining the layer of pre-
dicted part-of-speech (POS) tags. We per-
form experiments on English and Ger-
man and show significant improvements
for both languages. The refinement is
based on generative split-merge training
for Hidden Markov models (HMMs).

1 Introduction

Probabilistic Context-free Grammars with latent
annotations (PCFG-LA) have been shown (Petrov
et al., 2006) to yield phrase structure parsers
with state-of-the-art accuracy. While Hidden
Markov Models with latent annotations (HMM-
LA) (Huang et al., 2009), stay somewhat behind
the performance of state-of-the-art discriminative
taggers (Eidelman et al., 2010). In this paper we
address the question of whether the resulting la-
tent POS tags are linguistically meaningful and
useful for upstream tasks such as syntactic pars-
ing. We find that this is indeed the case, lead-
ing to a procedure that significantly increases the
performance of dependency parsers. The proce-
dure is attractive because the refinement of pre-
dicted part-of-speech sequences using a coarse-to-
fine strategy (Petrov and Klein, 2007) is fast and
efficient. More precisely, we show that incorpo-
rating the induced POS into a state-of-the-art de-
pendency parser (Bohnet, 2010) gives increases in
Labeled Attachment Score (LAS): from 90.34 to
90.57 for English and from 87.92 to 88.24 (resp.
88.35 to 88.51) for German without using (resp.
with using) morphological features.

2 Related Work

Petrov et al. (2006) introduce generative split-
merge training for PCFGs and provide a fully au-
tomatic method for training state-of-the-art phrase
structure parsers. They argue that the resulting la-
tent annotations are linguistically meaningful. Sun
et al. (2008) induce latent sub-states into CRFs and
show that noun phrase (NP) recognition can be im-
proved, especially if no part-of-speech features are
available. Huang et al. (2009) apply split-merge
training to create HMMs with latent annotations
(HMM-LA) for Chinese POS tagging. They re-
port that the method outperforms standard gener-
ative bigram and trigram tagging, but do not com-
pare to discriminative methods. Eidelman et al.
(2010) show that a bidirectional variant of latent
HMMs with incorporation of prosodic information
can yield state-of-the-art results in POS tagging of
conversational speech.

3 Split-Merge Training for HMMs

Split-merge training for HMMs (Huang et al.,
2009) iteratively splits every tag into two subtags.
Word emission and tag transition probabilities of
subtags are then initialized close to the values of
the parent tags but with some randomness to break
symmetry. Using expectation–maximization (EM)
training the parameters can then be set to a local
maximum of the training data likelihood. After
this split phase, the merge phase reverts splits that
only lead to small improvements in the likelihood
function in order to increase the robustness of the
model. This approach requires an approximation
of the gain in likelihood of every split analogous
to Petrov et al. (2006) as an exact computation is
not feasible.

We have observed that this procedure is not
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Universal Tag Feature Tag0 Tag1

English Adjectives p(w|t) more (0.05) many (0.03) last (0.03) new (0.03) other (0.03) first (0.02)
(ADJ) p(u|t) VERB (0.32) ADV (0.27) NOUN (0.14) DET (0.39) ADP (0.17) ADJ (0.10)
Particles p(w|t) ’s (0.93) ’ (0.07) to (0.89) up (0.04) out (0.02) off (0.01)
(PRT) p(b|t) POS (1.00) TO (0.89) RP (0.10)
Prepositions p(w|t) that (0.11) in (0.10) by (0.09) of (0.43) in (0.19) for (0.11)
(ADP) p(u|t) VERB (0.46) NOUN (0.15) . (0.13) NOUN (0.84) NUM (0.06) ADJ (0.03)
Pronouns p(w|t) its (0.30) their (0.15) his (0.14) it (0.21) he (0.16) they (0.12)
(PRON) p(b|t) PRP$ (0.68) PRP (0.26) WP (0.05) PRP (0.87) WP (0.11) PRP$ (0.02)
Verbs p(w|t) be (0.06) been (0.02) have (0.02) is (0.10) said (0.08) was (0.05)
(VERB) p(u|t) VERB (0.38) PRT (0.22) ADV (0.11) NOUN (0.52) PRON (0.20) . (0.12)

German Conjunctions p(w|t) daß (0.26) wenn (0.08) um (0.06) und (0.76) oder (0.07) als (0.06)
(CONJ) p(b|t) KOUS (0.58) KON (0.30) KOUI (0.06) KON (0.88) KOKOM (0.10) APPR (0.02)
Particles p(w|t) an (0.13) aus (0.10) ab (0.09) nicht (0.49) zu (0.46) Nicht (0.01)
(PRT) p(b|t) PTKVZ (0.92) ADV (0.04) ADJD (0.01) PTKNEG (0.52) PTKZU (0.44) PTKA (0.02)
Pronouns p(w|t) sich (0.13) die (0.08) es (0.07) ihre (0.06) seine (0.05) seiner (0.05)
(PRON) p(b|t) PPER (0.33) PRF (0.14) PRELS (0.14) PPOSAT (0.40) PIAT (0.34) PDAT (0.16)
Verbs p(w|t) werden (0.04) worden (0.02) ist (0.02) ist (0.07) hat (0.04) sind (0.03)
(VERB) p(u|t) NOUN (0.46) VERB (0.22) PRT (0.10) NOUN (0.49) . (0.19) PRON (0.16)

Table 1: Induced sub-tags and their statistics, word forms (p(w|t)), treebank tag (p(b|t)) and preceding
Universal tag probability (p(u|t)). Bold: linguistically interesting differences.

only a way to increase HMM tagger performance
but also yields annotations that are to a consid-
erable extent linguistically interpretable. As an
example we discuss some splits that occurred af-
ter a particular split-merge step for English and
German. For the sake of comparability we ap-
plied the split to the Universal Tagset (Petrov et
al., 2011). Table 1 shows the statistics used for
this analysis. The Universal POS tag set puts the
three Penn-Treebank tags RP (particle), POS (pos-
sessive marker) and TO into one particle tag (see
“PRT” in English part of the table). The training
essentially reverses this by splitting particles first
into possessive and non-possessive markers and in
a subsequent split the non-possessives into TO and
particles. For German we have a similar split into
verb particles, negation particles like nicht ‘not’
and the infinitive marker zu ‘to’ (“PRT”) in the
German part of the table). English prepositions
get split by proximity to verbs or nouns (“ADP”).
Subordinate conjunctions like that, which in the
Penn-Treebank annotation are part of the prepo-
sition tag IN, get assigned to the sub-class next
to verbs. For German we also see a separation
of “CONJ” into predominantly subordinate con-
junctions (Tag 0) and predominantly coordinating
conjunctions (Tag 1). For both languages adjec-
tives get split by predicative and attributive use.
For English the predicative sub-class also seems
to hold rather atypical adjectives like “such” and
“last.” For English, verbs (“VERB”) get split into
a predominantly infinite tag (Tag 0) and a predom-
inantly finite tag (Tag 1) while for German we get
a separation by verb position. In German we get a

separation of pronouns (“PRON”) into possessive
and non-possessive; in English, pronouns get split
by predominant usage in subject position (Tag 0)
and as possessives (Tag 1).

Our implementation of HMM-LA has been re-
leased under an open-source licence.1

In the next section we evaluate the utility of
these annotations for dependency parsing.

4 Dependency Parsing

In this section we investigate the utility of in-
duced POS as features for dependency parsing.
We run our experiments on the CoNLL-2009 data
sets (Hajič et al., 2009) for English and German.
As a baseline system we use the latest version
of the mate-tools parser (Bohnet, 2010).3 It was
the highest scoring syntactic parser for German
and English in the CoNLL 2009 shared task eval-
uation. The parser gets automatically annotated
lemmas, POS and morphological features as input
which are part of the CoNLL-2009 data sets.

In this experiment we want to examine the ben-
efits of tag refinements isolated from the improve-
ments caused by using two taggers in parallel,
thus we train the HMM-LA on the automatically
tagged POS sequences of the training set and use
it to add an additional layer of refined POS to the
input data of the parser. We do this by calculating
the forward-backward charts that are also used in
the E-steps during training — in these charts base

1https://code.google.com/p/cistern/
1Unlabeled Attachment Score
3We use v3.3 of Bohnet’s graph-based parser.
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#Tags µLAS maxLAS σLAS µUAS maxUAS σUAS

English Baseline 88.43 91.46
58 88.52 (88.59) 0.06 91.52 (91.61) 0.08
73 88.55 (88.61) 0.05 91.54 (91.59) 0.04
92 88.60 (88.71) 0.08 91.60 (91.72) 0.08

115 88.62 (88.73) 0.07 91.58 (91.71) 0.08
144 88.60 (88.70) 0.07 91.60 (91.71) 0.07

German (no feat.) Baseline 87.06 89.54
85 87.09 (87.18) 0.06 89.61 (89.67) 0.04

107 87.23 (87.36) 0.09 89.74 (89.83) 0.08
134 87.22 (87.31) 0.09 89.75 (89.86) 0.09

German (feat.) Baseline 87.35 89.75
85 87.33 (87.47) 0.11 89.76 (89.88) 0.09

107 87.43 (87.73) 0.16 89.81 (90.14) 0.17
134 87.38 (87.53) 0.08 89.75 (89.89) 0.08

Table 2: LAS and UAS1 mean (µ), best value (max) and std. deviation (σ) for the development set for
English and German dependency parsing with (feat.) and without morphological features (no feat.).

tags of the refined tags are constrained to be iden-
tical to the automatically predicted tags.

We use 100 EM iterations after each split and
merge phase. The percentage of splits reverted in
each merge phase is set to .75.

We integrate the tags by adding one additional
feature for every edge: the conjunction of latent
tags of the two words connected by the edge.

Table 2 shows results of our experiments. All
numbers are averages of five independent runs.
For English the smaller models with 58 and 73
tags achieve improvements of ≈.1. The improve-
ments for the larger tag sets are ≈.2. The best
individual model improves LAS by .3. For the
German experiments without morphological fea-
tures we get only marginal average improvements
for the smallest tag set and improvements of ≈.15
for the bigger tag sets. The average ULA scores
for 107 and 134 tags are at the same level as the
ULA scores of the baseline with morph. features.
The best model improves LAS by .3. For German
with morphological features the absolute differ-
ences are smaller: The smallest tag set does not
improve the parser on average. For the tag set
of 107 tags the average improvement is .08. The
best model improves LAS by .38. In all experi-
ments we see the highest improvements for tag set
sizes of roughly the same size (115 for English,
107 for German). While average improvements
are low (esp. for German with morphological fea-
tures), peak improvements are substantial.

Running the best English system on the test set
gives an improvement in LAS from 90.34 to 90.57;
this improvement is significant4 (p < .02). For
German we get an improvement from 87.92 to

4Approx. randomization test (Yeh, 2000) on LAS scores

88.24 without and from 88.35 to 88.51 with mor-
phological features. The difference between the
values without morphological features is signifi-
cant (p < .05), but the difference between mod-
els with morphological features is not (p = .26).
However, the difference between the baseline sys-
tem with morphological features and the best sys-
tem without morphological features is also not sig-
nificant (p = .49).

We can conclude that HMM-LA tags can sig-
nificantly improve parsing results. For German we
see that HMM-LA tags can substitute morpholog-
ical features up to an insignificant difference. We
also see that morphological features and HMM-
LA seem to be correlated as combining the two
gives only insignificant improvements.

5 Contribution Analysis

In this section we try to find statistical evidence
for why a parser using a fine-grained tag set might
outperform a parser based on treebank tags only.

The results indicate that an induced latent tag
set as a whole increases parsing performance.
However, not every split made by the HMM-LA
seems to be useful for the parser. The scatter plots
in Figure 1 show that there is no strict correlation
between tagging accuracy of a model and the re-
sulting LAS. This is expected as the latent induc-
tion optimizes a tagging objective function, which
does not directly translate into better parsing per-
formance. An example is lexicalization. Most
latent models for English create a subtag for the
preposition “of”. This is useful for a HMM as “of”
is frequent and has a very specific context. A lexi-
calized syntactic parser, however, does not benefit
from such a tag.
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Figure 1: Scatter plots of LAS vs tagging accuracy for English (left) and German without (middle) and
with (right) morphological features. English tag set sizes are 58 (squares), 73 (diamonds), 92 (trian-
gles), 115 (triangles pointing downwards) and 144 (circles). German tag set sizes are 85 (squares), 107
(diamonds) and 134 (triangles). The dashed lines indicate the baselines.

We base the remainder of our analysis on the
results of the baseline parser on the English devel-
opment set and the results of the best performing
latent model. The best performing model has a
LAS score of 88.73 vs 88.43 for the baseline, a dif-
ference of .3. If we just look at the LAS of words
with incorrectly predicted POS we see a difference
of 1.49. A look at the data shows that the latent
model helps the parser to identify words that might
have been annotated incorrectly. As an example
consider plural nouns (NNS) and two of their la-
tent subtags NNS1 and NNS2 and how often they
get classified correctly and misclassified as proper
nouns (NNPS):

NNS NNPS
NNS 2019 104
NNS1 90 72
NNS2 1100 13
. . . . . . . . .

We see that NNS1 is roughly equally likely to
be a NNPS or NNS while NNS2 gives much more
confidence of the actual POS being NNS. So one
benefit of HMM-LA POS tag sets are tags of dif-
ferent levels of confidence.

Another positive effect is that latent POS tags
have a higher correlation with certain dependency
relations. Consider proper nouns (NNP):

NAME NMOD SBJ
NNP 962 662 468
NNP1 10 27 206
NNP2 24 50 137
. . . . . . . . . . . .

We see that NNP1 and NNP2 are more likely
to appear in subject relations. NNP1 contains sur-
names; the most frequent word forms are Keating,
Papandreou and Kaye. In contrast, NNP2 con-

tains company names such as Sony, NBC and Key-
stone. This explains why the difference in LAS is
twice as high for NNPs as on average.

For German we see similar effects and the an-
ticipated correlation with morphology. The 5 de-
terminer subtags, for example, strongly correlate
with grammatical case:

Nom Gen Dat Acc
ART 1185 636 756 961
ART1 367 7 38
ART2 11 28 682 21
ART3 6 602 7 3
ART4 39 43 429
ART5 762 6 17 470

6 Conclusion and Future Work

We have shown that HMMs with latent anno-
tations (HMMLA) can generate latent part-of-
speech tagsets are linguistically interpretable and
can be used to improve dependency parsing. Our
best systems improve an English parser from a
LAS of 90.34 to 90.57 and a German parser from
87.92 to 88.24 when not using morphological fea-
tures and from 88.35 to 88.51 when using mor-
phological features . Our analysis of the parsing
results shows that the major reasons for the im-
provements are: the separation of POS tags into
more and less trustworthy subtags, the creation of
POS subtags with higher correlation to certain de-
pendency labels and for German a correlation of
tags and morphological features such as case.

7 Future Work

The procedure works well in general. However,
not every split is useful for the parser; e.g., as
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discussed above lexicalization increases HMM ac-
curacy, but does not help an already lexicalized
parser. We would like to use additional informa-
tion (e.g., from the dependency trees) to identify
useless splits. The different granularities of the hi-
erarchy induced by split-merge training are poten-
tially useful. However, the levels of the hierarchy
are incomparable: a child tag is in general not a
subtag of a parent tag. We think that coupling par-
ents and children in the tag hierarchy might be one
way to force a consistent hierarchy.
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Abstract

Importance weighting is a generalization
of various statistical bias correction tech-
niques. While our labeled data in NLP is
heavily biased, importance weighting has
seen only few applications in NLP, most of
them relying on a small amount of labeled
target data. The publication bias toward
reporting positive results makes it hard to
say whether researchers have tried. This
paper presents a negative result on unsu-
pervised domain adaptation for POS tag-
ging. In this setup, we only have unlabeled
data and thus only indirect access to the
bias in emission and transition probabili-
ties. Moreover, most errors in POS tag-
ging are due to unseen words, and there,
importance weighting cannot help. We
present experiments with a wide variety of
weight functions, quantilizations, as well
as with randomly generated weights, to
support these claims.

1 Introduction

Many NLP tasks rely on the availability of anno-
tated data. The majority of annotated data, how-
ever, is sampled from newswire corpora. The
performance of NLP systems, e.g., part-of-speech
(POS) tagger, parsers, relation extraction sys-
tems, etc., drops significantly when they are ap-
plied to data that departs from newswire conven-
tions. So while we can extract information, trans-
late and summarize newswire in major languages
with some success, we are much less successful
processing microblogs, chat, weblogs, answers,
emails or literature in a robust way. The main rea-
sons for the drops in accuracy have been attributed
to factors such as previously unseen words and bi-
grams, missing punctuation and capitalization, as
well as differences in the marginal distribution of

data (Blitzer et al., 2006; McClosky et al., 2008;
Søgaard and Haulrich, 2011).

The move from one domain to another (from a
source to a new target domain), say from newspa-
per articles to weblogs, results in a sample selec-
tion bias. Our training data is now biased, since
it is sampled from a related, but nevertheless dif-
ferent distribution. The problem of automatically
adjusting the model induced from source to a dif-
ferent target is referred to as domain adaptation.

Some researchers have studied domain adap-
tation scenarios, where small samples of labeled
data have been assumed to be available for the
target domains. This is usually an unrealistic as-
sumption, since even for major languages, small
samples are only available from a limited number
of domains, and in this work we focus on unsuper-
vised domain adaptation, assuming only unlabeled
target data is available.

Jiang and Zhai (2007), Foster et al. (2010; Plank
and Moschitti (2013) and Søgaard and Haulrich
(2011) have previously tried to use importance
weighting to correct sample bias in NLP. Im-
portance weighting means assigning a weight
to each training instance, reflecting its impor-
tance for modeling the target distribution. Im-
portance weighting is a generalization over post-
stratification (Smith, 1991) and importance sam-
pling (Smith et al., 1997) and can be used to cor-
rect bias in the labeled data.

Out of the four papers mentioned, only Søgaard
and Haulrich (2011) and Plank and Moschitti
(2013) considered an unsupervised domain adap-
tation scenario, obtaining mixed results. These
two papers assume covariate shift (Shimodaira,
2000), i.e., that there is only a bias in the marginal
distribution of the training data. Under this as-
sumption, we can correct the bias by applying a
weight function Pt(x)

Ps(x) to our training data points
(labeled sentences) and learn from the weighted
data. Of course this weight function cannot be
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computed in general, but we can approximate it
in different ways.

In POS tagging, we typically factorize se-
quences into emission and transition probabilities.
Importance weighting can change emission prob-
abilities and transition probabilities by assigning
weights to sentences. For instance, if our corpus
consisted of three sequences: 1) a/A b/A, 2) a/A
b/B, and 3) a/A b/B, then P (B|A) = 2/3. If se-
quences two and three were down-weighted to 0.5,
then P (B|A) = 1/2.

However, this paper argues that importance
weighting cannot help adapting POS taggers to
new domains using only unlabeled target data. We
present three sources of evidence: (a) negative
results with the most obvious weight functions
across various English datasets, (b) negative re-
sults with randomly sampled weights, as well as
(c) an analysis of annotated data indicating that
there is little variation in emission and transition
probabilities across the various domains.

2 Related work

Most prior work on importance weighting use a
domain classifier, i.e., train a classifier to discrimi-
nate between source and target instances (Søgaard
and Haulrich, 2011; Plank and Moschitti, 2013)
(y ∈ {s, t}). For instance, Søgaard and Haulrich
(2011) train a n-gram text classifier and Plank
and Moschitti (2013) a tree-kernel based clas-
sifier on relation extraction instances. In these
studies, P̂ (t|x) is used as an approximation of
Pt(x)
Ps(x) , following Zadrozny (2004). In §3, we fol-
low the approach of Søgaard and Haulrich (2011),
but consider a wider range of weight functions.
Others have proposed to use kernel mean match-
ing (Huang et al., 2007) or minimizing KL-
divergence (Sugiyama et al., 2007).

Jiang and Zhai (2007) use importance weight-
ing to select a subsample of the source data by
subsequently setting the weight of all selected data
points to 1, and 0 otherwise. However, they do
so by relying on a sequential model trained on
labeled target data. Our results indicate that the
covariate shift assumption fails to hold for cross-
domain POS tagging. While the marginal distri-
butions obviously do differ (since we can tell do-
mains apart without POS analysis), this is most
likely not the only difference. This might explain
the positive results obtained by Jiang and Zhai
(2007). We will come back to this in §4.

Cortes et al. (2010) show that importance
weighting potentially leads to over-fitting, but pro-
pose to use quantiles to obtain more robust weight
functions. The idea is to rank all weights and ob-
tain q quantiles. If a data point x is weighted by
w, and w lies in the ith quantile of the ranking
(i ≤ q), x is weighted by the average weight of
data points in the ith quantile.

The weighted structured perceptron (§3) used in
the experiments below was recently used for a dif-
ferent problem, namely for correcting for bias in
annotations (Plank et al., 2014).
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Figure 1: Training epochs vs tagging accuracy for
the baseline model on the dev data.

3 Experiments

3.1 Data
We use the data made available in the SANCL
2012 Shared Task (Petrov and McDonald, 2012).
The training data is the OntoNotes 4.0 release
of the Wall Street Journal section of the Penn
Treebank, while the target domain evaluation data
comes from various sources, incl. Yahoo Answers,
user reviews, emails, weblogs and newsgroups.
For each target domain, we have both development
and test data.

3.2 Model
In the weighted perceptron (Cavallanti et al.,
2006), we make the learning rate dependent on the
current instance xn, using the following update:

wi+1 ← wi + βnα(yn − sign(wi · xn))xn (1)

where βn is the weight associated with xn. See
Huang et al. (2007) for similar notation.

We extend this idea straightforwardly to the
structured perceptron (Collins, 2002), for which
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System Answers Newsgroups Reviews Avg Emails Weblogs WSJ
Our system 91.08 91.57 91.59 91.41 87.97 92.19 97.32
SANCL12-2nd 90.99 92.32 90.65 91.32 – – 97.76
SANCL12-best 91.79 93.81 93.11 92.90 – – 97.29
SANCL12-last 88.24 89.70 88.15 88.70 – – 95.14
FLORS basic 91.17 92.41 92.25 88.67 91.37 97.11 91.94

Table 1: Tagging accuracies and comparison to prior work on the SANCL test sets (fine-grained POS).

we use an in-house implementation. We use
commonly used features, i.e., w,w−1, w−2,
w+1, w+2, digit, hyphen, capitalization, pre-
/suffix features, and Brown word clusters. The
model seems robust with respect to number
of training epochs, cf. Figure 1. Therefore
we fix the number of epochs to five and use
this setting in all our experiments. Our code
is available at: https://bitbucket.org/
bplank/importance-weighting-exp.

3.3 Importance weighting

In our first set of experiments, we follow Søgaard
and Haulrich (2011) in using document classifiers
to obtain weights for the source instances. We
train a text classifier that discriminates the two
domains (source and target). For each sentence
in the source and target domain (the unlabeled
text that comes with the SANCL data), we mark
whether it comes from the source or target do-
main and train a binary classifier (logistic regres-
sion) to discriminate between the two. For ev-
ery sentence in the source we obtain its probabil-
ity for the target domain by doing 5-fold cross-
validation. While Søgaard and Haulrich (2011)
use only token-based features (word n-grams ≤
3), we here exploit a variety of features: word
token n-grams, and two generalizations: using
Brown clusters (estimated from the union of the
5 target domains), and Wiktionary tags (if a word
has multiple tags, we assign it the union of tags as
single tag; OOV words are marked as such).

The distributions of weights can be seen in the
upper half of Figure 2.

3.3.1 Results
Table 1 shows that our baseline model achieves
state-of-the-art performance compared to
SANCL (Petrov and McDonald, 2012)1 and
FLORS (Schnabel and Schütze, 2014). Our
results align well with the second best POS
tagger in the SANCL 2012 Shared Task. Note

1
https://sites.google.com/site/sancl2012/home/

shared-task/results

Figure 2: Histogram of different weight functions.

that the best tagger in the shared task explicitly
used normalization and various other heuristics
to achieve better performance. In the rest of the
paper, we use the universal tag set part of the
SANCL data (Petrov et al., 2012).

Figure 3 presents our results on development
data for different importance weighting setups.
None of the above weight functions lead to signifi-
cant improvements on any of the datasets. We also
tried scaling and binning the weights, as suggested
by Cortes et al. (2010), but results kept fluctuating
around baseline performance, with no significant
improvements.

3.4 Random weighting

Obviously, weight functions based on document
classifiers may simply not characterize the rele-
vant properties of the instances and hence lead to
bad re-weighting of the data. We consider three
random sampling strategies, namely sampling ran-
dom uniforms, random exponentials, and random
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Figure 3: Results on development data for different weight functions, i.e., document classifiers trained
on a) raw tokens; b) tokens replaced by Wiktionary tags; c) tokens replaced by Brown cluster ids. The
weight was the raw pt(y|x) value, no scaling, no quantiles. Replacing only open-class tokens for b) and
c) gave similar or lower performance.

Zipfians and ran 500 samples for each. For these
experiments, we estimate significance cut-off lev-
els of tagging accuracies using the approximate
randomization test. To find the cut-off levels,
we randomly replace labels with gold labels until
the achieved accuracy significantly improves over
the baseline for more than 50% of the samples.
For each accuracy level, 50 random samples were
taken.
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Figure 4: Random weight functions (500 runs
each) on test sets. Solid line is the baseline per-
formance, while the dashed line is the p-value cut-
off. From top: random, exponential and Zipfian
weighting. All runs fall below the cut-off.

3.4.1 Results
The dashed lines in Figure 4 show the p-value cut-
offs for positive results. We see that most random
weightings of data lead to slight drops in perfor-
mance or are around baseline performance, and no
weightings lead to significant improvements. Ran-
dom uniforms seem slightly better than exponen-
tials and Zipfians.

domain (tokens) avg tag ambiguity OOV KL ρ
type token

wsj (train/test: 731k/39k) 1.09 1.41 11.5 0.0006 0.99
answers (28k) 1.09 1.22 27.7 0.048 0.77
reviews (28k) 1.07 1.19 29.5 0.040 0.82
emails (28k) 1.07 1.19 29.9 0.027 0.92
weblogs (20k) 1.05 1.11 22.1 0.010 0.96
newsgroups (20k) 1.05 1.14 23.1 0.011 0.96

Table 2: Relevant statistics for our analysis (§4)
on the test sets: average tag ambiguity, out-of-
vocabulary rate, and KL-divergence and Pearson
correlation coefficient (ρ) on POS bigrams.

4 Analysis

Some differences between the gold-annotated
source domain data and the gold-annotated tar-
get data used for evaluation are presented in Ta-
ble 2. One important observation is the low ambi-
guity of word forms in the data. This makes the
room for improvement with importance weight-
ing smaller. Moreover, the KL divergencies over
POS bigrams are also very low. This tells us that
transition probabilities are also relatively constant
across domains, again suggesting limited room for
improvement for importance weighting.

Compared to this, we see much bigger differ-
ences in OOV rates. OOV rates do seem to explain
most of the performance drop across domains.
In order to verify this, we implemented a ver-
sion of our structured perceptron tagger with type-
constrained inference (Täckström et al., 2013).
This technique only improves performance on un-
seen words, but nevertheless we saw significant
improvements across all five domains (cf. Ta-
ble 3). This suggests that unseen words are a
more important problem than the marginal distri-
bution of data for unsupervised domain adaptation
of POS taggers.
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ans rev email webl newsg
base 93.41 94.44 93.54 94.81 94.55
+type constr. 94.09† 94.85† 94.31† 95.99† 95.97†
p-val cut-off 93.90 94.85 94.10 95.3 95.10

Table 3: Results on the test sets by adding Wik-
tionary type constraints. †=p-value < 0.001.

We also tried Jiang and Zhai’s subset selection
technique (§3.1 in Jiang and Zhai (2007)), which
assumes labeled training material for the target
domain. However, we did not see any improve-
ments. A possible explanation for these different
findings might be the following. Jiang and Zhai
(2007) use labeled target data to learn their weight-
ing model, i.e., in a supervised domain adaptation
scenario. This potentially leads to very different
weight functions. For example, let the source do-
main be 100 instances of a/A b/B and 100 in-
stances of b/B b/B, and the target domain be 100
instances of a/B a/B. Note that a domain classi-
fier would favor the first 100 sentences, but in an
HMM model induced from the labeled target data,
things look very different. If we apply Laplace
smoothing, the probability of a/A b/B accord-
ing to the target domain HMM model would be
∼ 8.9e−7, and the probability of b/B b/B would
be ∼ 9e−5. Note also that this set-up does not as-
sume covariate shift.

5 Conclusions and Future Work

Importance weighting, a generalization of various
statistical bias correction techniques, can poten-
tially correct bias in our labeled training data, but
this paper presented a negative result about impor-
tance weighting for unsupervised domain adapta-
tion of POS taggers. We first presented exper-
iments with a wide variety of weight functions,
quantilizations, as well as with randomly gener-
ated weights, none of which lead to significant im-
provements. Our analysis indicates that most er-
rors in POS tagging are due to unseen words, and
what remains seem to not be captured adequately
by unsupervised weight functions.

For future work we plan to extend this work to
further weight functions, data sets and NLP tasks.
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Abstract

Code-mixing is frequently observed in
user generated content on social media,
especially from multilingual users. The
linguistic complexity of such content is
compounded by presence of spelling vari-
ations, transliteration and non-adherance
to formal grammar. We describe our
initial efforts to create a multi-level an-
notated corpus of Hindi-English code-
mixed text collated from Facebook fo-
rums, and explore language identifica-
tion, back-transliteration, normalization
and POS tagging of this data. Our re-
sults show that language identification and
transliteration for Hindi are two major
challenges that impact POS tagging accu-
racy.

1 Introduction

Code-Switching and Code-Mixing are typical
and well-studied phenomena of multilingual so-
cieties (Gumperz, 1964; Auer, 1984; Myers-
Scotton, 1993; Danet and Herring, 2007;
Cardenas-Claros and Isharyanti, 2009). Lin-
guists differentiate between the two, where
Code-Switching is juxtaposition within the same
speech exchange of passages of speech be-
longing to two different grammatical systems
or sub-systems (Gumperz, 1982), and Code-
Mixing (CM) refers to the embedding of linguis-
tic units such as phrases, words and morphemes
of one language into an utterance of another lan-
guage (Myers-Scotton, 1993). The first exam-
ple in Fig. 1 features CM where English words
are embedded in a Hindi sentence, whereas the
second example shows codeswitching. Here, we
will use CM to imply both. Work on computa-

∗This work was done during authors’ internship at Mi-
crosoft Research India.

tional models of CM have been few and far be-
tween (Solorio and Liu, 2008a; Solorio and Liu,
2008b; Nguyen and Dogruoz, 2013), primarily
due to the paucity of CM data in conventional
text-corpora which makes data-intensive methods
hard to apply. Solorio and Liu (2008a) in their
work on English-Spanish CM use models built on
smaller datasets to predict valid switching points
to synthetically generate data from monolingual
corpora, and in another work (2008b) describe
parts-of-speech (POS) tagging of CM text.

CM though typically observed in spoken lan-
guage is now increasingly more common in text,
thanks to the proliferation of the Computer Me-
diated Communication channels, especially so-
cial media like Twitter and Facebook (Crys-
tal, 2001; Herring, 2003; Danet and Herring,
2007; Cardenas-Claros and Isharyanti, 2009).
Social media content is tremendously important
for studying trends, reviews, events, human-
behaviour as well as linguistic analysis, and there-
fore in recent times has spurred a lot of interest
in automatic processing of such data. Neverthe-
less, CM on social media has not been studied
from a computational aspect. Moreover, social
media content presents additional challenges due
to contractions, non-standard spellings and non-
grammatical constructions. Furthermore, for lan-
guages written in scripts other than Roman, like
Hindi, Bangla, Japanese, Chinese and Arabic, Ro-
man transliterations are typically used for repre-
senting the words (Sowmya et al., 2010). This can
prove a challenge for language identification and
segregation of the two languages.

In this paper, we describe our initial efforts to
POS tag social media content from English-Hindi
(henceforth En-Hi) bilinguals while trying to ad-
dress the challenges of CM, transliteration and
non-standard spelling, as well as lack of anno-
tated data. POS tagging is one of the fundamen-
tal pre-processing steps for NLP, and while there
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have been works on POS tagging of social media
data (Gimpel et al., 2011; Owoputi et al., 2013)
and of CM (Solorio and Liu, 2008b), but we do
not know of any work on POS tagging of CM
text from social media that involves transliteration.
The salient contributions of this work are in for-
malizing the problem and related challenges for
processing of En-Hi social media data, creation
of an annotated dataset and some initial experi-
ments for language identification, transliteration,
normalization and POS tagging of this data.

2 Corpus Creation
For this study, we collected data from Face-
book public pages of three celebrities: Amitabh
Bachchan, Shahrukh Khan, Narendra Modi, and
the BBC Hindi news page. All these pages are
very popular with 1.8 to 15.5 million “likes”. A to-
tal of 40 posts were manually selected from these
pages, which were published between 22nd – 28th
October 2013. The posts having a long thread of
comments (50+) were preferred, because CM and
non-standard usage of language is more common
in the comments. We shall use the term post to re-
fer to either a post or a comment. The corpus thus
created has 6,983 posts and 113,578 words. The
data was semi-automatically cleaned and format-
ted. The user names were removed for anonymity,
but the names appearing in comments, which are
mostly of celebrities, were retained.
2.1 Annotation
There are various interesting linguistic as well as
socio-pragmatic features (e.g., user demograph-
ics, presence of sarcasm or humor, polarity) for
which this corpus could be annotated because CM
is influenced by both linguistic as well as extra-
linguistic features. However, initial attempts at
such detailed and layered annotation soon revealed
the resource-intensiveness of the task. We, thus,
scaled down the annotation to the following four
layers:

Matrix: The posts are split into contiguous
fragments of words such that each fragment has
a unique matrix language (either En or Hi). The
matrix language is defined as the language which
governs the grammatical relation between the con-
stituents of the utterance. Any other language
words that are nested into the matrix constitute the
embedded language(s). Usually, matrix language
can be assigned to clauses or sentences.

Word origin: Every word is marked for its ori-
gin or source language, En or Hi, depending on

whether it is an English or Hindi word. Words that
are of neither Hindi nor English origin are marked
as Ot or Other. Here, we assume that code-mixing
does not happen at sublexical levels, as it is un-
common in this data; Hi and En have a sim-
pler inflectional morphology and thus, sub-lexical
mixing though present (e.g., computeron has
a En root - computer and a Hi plural marker
on) is relatively less common. In languages with
richer morphology and agglutination, like Bangla
and most Dravidian languages, more frequent sub-
lexical mixing may be observed. Also note that
words are borrowed extensively between Hi and
En such that certain English words (e.g., bus,
party, vote etc) are no longer perceived as English
words by the Hindi speakers. However, here we
will not distinguish between CM and borrowing,
and such borrowed English words have also been
labeled as En words.

Normalization/Transliteration: Whenever the
word is in a transliterated form, which is often the
case for the Hi words, it is labeled with the in-
tended word in the native script (e.g., Devanagari
for Hi). If the word is in native script, but uses
a non-standard spelling, it is labeled with the cor-
rect standard spelling. We call this the spelling
normalization layer.

Parts-of-Speech (POS): Finally, each word is
also labeled with its POS. We use the Universal
POS tagset proposed by Petrov et al. (2011) which
has 12 POS tags that are applicable to both En
and Hi. The POS labels are decided based on the
function of a word in the context, rather than a
decontextualized lexical category. This is an im-
portant notion, especially for CM text, because of-
ten the original lexical category of an embedded
word is lost in the context of the matrix language,
and it plays the role of a different lexical category.
Though the Universal POS tagset does not pre-
scribe a separate tag for Named Entities, we felt
the necessity of marking three different kinds of
NEs - people, location and organization, because
almost every comment has one or more NEs and
strictly speaking word origin does not make sense
for these words.

Annotation Scheme: Fig. 1 illustrates the an-
notation scheme through two examples. Each
post is enclosed within <s></s> tags. The
matrices within a post are separated by the
<matrix></matrix> tags which take the matrix
language as an argument. Each word is anno-
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Figure 1: Two example annotations.

tated for POS, and the language (/E or /H for En
or Hi respectively) only if it is different from the
language of the matrix. In case of non-standard
spelling in English, the correct spelling is ap-
pended as “sol NOUN=soul”, while for the
Hindi words, the correct Devanagari translitera-
tion is appended. The NEs are marked with the
tags P (person), L (location) or O (organization)
and multiword NEs are enclosed within square
brackets “[]”.

A random subsample of 1062 posts consisting
of 10171 words were annotated by a linguist who
is a native speaker of Hi and proficient in En. The
annotations were reviewed and corrected by two
experts linguists. During this phase, it was also
observed that a large number of comments were
very short, typically an eulogism of their favorite
celebrity and hence were not interesting from a
linguistic point of view. For our experiments, we
removed all posts that had fewer than 5 words.
The resulting corpus had 381 comments/posts and
4135 words.

2.2 CM Distribution
Most of the posts (93.17%) are in Roman script,
and only 2.93% were in Devanagari. Around 3.5%
of the posts contain words in both the scripts (typ-
ically a post in Devanagari with hashtags or urls in
Roman script), and a very small fraction of the text
(0.4% of comments/posts and 0.6% words) was in
some other script. The fraction of words present
in Roman and Devanagri scripts are 80.76% and
15.32% respectively, which shows that the De-
vanagari posts are relatively longer than the Ro-
man posts. Due to their relative rarity, the posts

containing words in Devanagari or any other script
were not considered for annotation.

In the annotated data, 1102 sentences are in a
single matrix (398 Hi, 698 En and 6 Ot) and in
45 posts there is at least one switch of matrix
(mostly between Hi and En. Thus, 4.2% of the
data shows code-switching. This is a strict defi-
nition of code-switching; if we consider a change
in matrix within a conversation thread as a code-
switch, then in this data all the threads exhibit
code-switching. However, out of the 398 com-
ments in Hi-matrix, 23.37% feature CM (i.e., they
have at least one or more non-Hi (or rather, al-
most always En) words embedded. On the other
hand, only 7.34% En-matrix comments feature
CM (again almost always with Hi). Thus, a total
of 17.2% comments/posts, which contains a quar-
ter of all the words in the annotated corpus, fea-
ture either CM or code-switching or both. We also
note that more than 40% words in the corpus are
in Hi or other Indian languages, but written in Ro-
man script; hence, they are in transliterated form.
See (Bali et al., 2014) for an in-depth discussion
on the characteristics of the CM data.

This analysis demonstrates the necessity of CM
and transliterated text processing in the context of
Indian user-generated social media content. Per-
haps, the numbers are not too different for such
content generated by the users of any other bilin-
gual and multilingual societies.

3 Models and Experiments

POS tagging of En-Hi code-mixed data requires
language identification at both word and matrix
level as well back-transliteration of the text into
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Actual Predicted Label Recall
Label Hi En

Hi 1057 515 0.672
En 45 2023 0.978

Precision 0.959 0.797

Table 1: Confusion matrix, precision and recall of
the language identification module.

the native script. Additionaly, since we are work-
ing with content from social media, the usage of
non-standard spelling is rampant and thus, nor-
malization of text into some standard form is re-
quired. Ideally, these tasks should be performed
jointly since they are interdependent. However,
due to lack of resources, we implement a pipelined
approach in which the tasks - language identifica-
tion, text normalization and POS tagging - are per-
formed sequentially, in that order. This pipelined
approach also allows us to use various off-the-
shelf tools for solving these subtasks and quickly
create a baseline system. The baseline results can
also provide useful insight into the inherent hard-
ness of POS tagging of code-mixed social media
text. In this section, we first describe our approach
to solve these three tasks, and then discuss the ex-
periments and results.

3.1 Language identification

Langauge identification is a well studied prob-
lem (King and Abney, 2013; Carter et al., 2013;
Goldszmidt et al., 2013; Nguyen and Dogruoz,
2013), though for CM text, especially those in-
volving transliterations and orthographic varia-
tion, this is far from a solved problem (Nguyen and
Dogruoz, 2013). There was a shared task in FIRE
2013 (Saha Roy et al., 2013) on language iden-
tification and back transliteration for En mixed
with Hi, Bangla and Gujarati. Along the lines
of Gella et al (Gella et al., 2013), which was the
best performing system in this shared task, we
used the word-level logistic regression classifier
built by King and Abney (2013). This system pro-
vides a source language with a confidence prob-
ability for each word in the test set. We trained
the classifier on 3201 English words extracted
from the SMS corpus developed by Choudhury
et al (2007), while the Hindi data was obtained
by sampling 3218 Hindi transliterations out of the
En-Hi transliteration pairs developed by Sowmya
et al. (Sowmya et al., 2010). Ideally, the context of
a token is important for identifying the language.

Again, following (Gella et al., 2013) we incorpo-
rate context information through a code-switching
probability, Ps. A higher value of Ps implies a
lower probability of code-switching, i.e., adjacent
words are more likely to be in the same language.

Table 1 shows the token (word) level confusion
matrix for the language identification task on our
dataset. The language labels of 84.6% of the to-
kens were correctly predicted by the system. As
can be seen from the Table, the precision for pre-
dicting Hi is high, whereas that for En is low. This
is mainly due to the presence of a large number of
contracted and distorted Hi words in the dataset,
e.g. h for hai (Fig. 1), which were tagged as
En by our system because the training examples
had no contracted Hi words, but short and non-
conventional spellings were in plenty in the En
training examples as those were extracted from the
SMS corpus.

3.2 Normalization

In our dataset, if a word is identified as Hi, then
it must be back-transliterated to Devanagari script
so that any off-the-shelf Hindi POS tagger can be
used. We used the system by Gella et al. (Gella
et al., 2013) for this task, which is part rule-based
and part statistical. The system was trained on the
35000 unique transliteration pairs extracted from
Hindi song lyrics (Gupta et al., 2012). This corpus
has a reasonably wide coverage of Hindi words,
and past researchers have also shown that translit-
eration does not require a very large amount of
training data. Normalization of the En text was
not needed because the POS tagger (Owoputi et
al., 2013) could handle unnormalized text.

3.3 POS tagging

Solorio and Liu (2008b) describes a few ap-
proaches to POS-tagging of code-switched Span-
glish text, all of which primarily relies on two
monolingual taggers and certain heuristics to com-
bine the output from the two. One of the sim-
pler heuristics is based on language identification,
where the POS tag of a word is the output of the
monolingual tagger of the language in which the
word is. In this initial study, we apply this ba-
sic idea for POS tagging of CM data. We divide
the text (which is already sentence-separated) into
contiguous maximal chunks of words which are in
the same language. Then we apply a Hi POS tag-
ger to the Hi chunks, and an En POS tagger to the
En chunks.
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Model LI HN Tagger Hi Acc. En Acc. Total Acc. Hi CA En CA Total CA
1a K K Standard 75.14 81.91 79.02 27.34 39.67 34.05
1b K K Twitter 75.14 82.66 79.02 27.34 35.74 31.91
2 K NK Twitter 65.61 81.73 74.87 17.58 33.77 26.38
3 NK NK Twitter 44.74 80.68 65.39 40.00 13.17 25.00

Table 2: POS Tagging accuracies for the different models. K=Known, NK = Not Known. LI = Language
labels, HN = Hindi normalized forms, Acc. = Token level accuracy, CA = Chunk level accuracy.

We use a CRF++ based POS tagger for Hi,
which is freely available from http://nltr.
org/snltr-software/. For En, we use the
Twitter POS tagger (Owoputi et al., 2013). It
also has an inbuilt tokenizer and can work di-
rectly on unnormalized text. This tagger has been
chosen because Facebook posts and comments
are more Twitter-like. We also use the Stanford
POS Tagger (Toutanova et al., 2003) which, un-
like the Twitter POS Tagger, has not been tuned
for Twitter-like text. These taggers use different
tagsets - the ILPOST for Hi (Sankaran et al., 2008)
and Penn-TreeBank for En (Marcus et al., 1993).
The output tags are appropriately mapped to the
smaller Universal tagset (Petrov et al., 2011).

3.4 Experiments and Results

We conducted three different experiments as fol-
lows. In the first experiment, we assume that
we know the language identities and normal-
ized/transliterated forms of the words, and only do
the POS tagging. This experiment gives us an idea
of the accuracy of POS tagging task, if normal-
ization, transliteration and language identification
could be done perfectly. We conduct this exper-
iments with two different En POS taggers: the
Stanford POS tagger which is trained on formal
English text (Model 1a) and the Twitter POS tag-
ger (Model 1b). In the next experiment (Model
2), we assume that only the language identity of
the words are known, but for Hindi we apply our
model to generate the back transliterations. For
English, we apply the Twitter POS tagger directly
because it can handle unnormalized social media
text. The third experiment (Model 3) assumes that
nothing is known. So language identifier is first
applied, and based on the language detected, we
apply the Hi translitertaion module, and Hi POS
tagger, or the En tagger. This is the most chal-
lenging and realistic setting. Note that the matrix
information is not used in any of our experiments,
though it could be potentially useful for POS tag-
ging and could be explored in future.

Table 2 gives a summary of the four models
along with the POS tagging accuracies (in %). It
shows token level as well as chunk leve accuracies
(CA), i.e., what percentage of chunks have been
correctly POS tagged. As can be seen, Hi POS
tagging has relatively low accuracies than En POS
tagging at word level for all cases. This is primar-
ily due to the errors of the transliteration module,
which in turn, is because the transliteration does
not address spelling contractions. This is also re-
flected in the drop in the accuracies for the case
where LI is unknown. The very low CA for En
for model 3 is primarily because some of the Hi
chunks are incorrectly identified as En by the lan-
guage identification module (see Table 1). How-
ever, the gradual drop of token and chunk level
accuracies from model 1 to model 3 clearly shows
the effect of gradual error accumulation from each
of the modules. We observe that Nouns were
usually confused most with Verbs and vice versa,
while the Adj were mostly confused with Nouns,
Pronouns with Determiners, and Adpositions with
Conjunctions.

4 Conclusion

This is a work in progress. We have identified
normalization and transliteration as two very chal-
lenging problems for En-Hi CM text. Joint mod-
elling of language identification, normalization,
transliteration as well as POS tagging is expected
to yield better results. We plan to continue our
work in that direction, specifically for conversa-
tional text in social media in a multilingual con-
text. CM is a common phenomenon found in all
bilingual and multilingual societies. The issue of
transliteration exist for most of the South Asian
languages as well as many other languages such as
Arabic and Greek, which use a non-Roman based
script (Gupta et al., 2014). The challenges and is-
sues identified in this study are likely to hold for
many other languages as well, which makes this a
very important and globally prevalent problem.
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Abstract

We investigate grammatical error detec-
tion in spoken language, and present a
data-driven method to train a dependency
parser to automatically identify and label
grammatical errors. This method is ag-
nostic to the label set used, and the only
manual annotations needed for training are
grammatical error labels. We find that the
proposed system is robust to disfluencies,
so that a separate stage to elide disfluen-
cies is not required. The proposed system
outperforms two baseline systems on two
different corpora that use different sets of
error tags. It is able to identify utterances
with grammatical errors with an F1-score
as high as 0.623, as compared to a baseline
F1 of 0.350 on the same data.

1 Introduction

Research into automatic grammatical error detec-
tion has primarily been motivated by the task of
providing feedback to writers, whether they be na-
tive speakers of a language or second language
learners. Grammatical error detection, however, is
also useful in the clinical domain, for example, to
assess a child’s ability to produce grammatical lan-
guage. At present, clinicians and researchers into
child language must manually identify and clas-
sify particular kinds of grammatical errors in tran-
scripts of children’s speech if they wish to assess
particular aspects of the child’s linguistic ability
from a sample of spoken language. Such manual
annotation, which is called language sample anal-
ysis in the clinical field, is expensive, hindering
its widespread adoption. Manual annotations may
also be inconsistent, particularly between different
research groups, which may be investigating dif-
ferent phenomena. Automated grammatical error
detection has the potential to address both of these
issues, being both cheap and consistent.

Aside from performance, there are at least two
key requirements for a grammatical error detector
to be useful in a clinical setting: 1) it must be able
to handle spoken language, and 2) it must be train-
able. Clinical data typically consists of transcripts
of spoken language, rather than formal written lan-
guage. As a result, a system must be prepared
to handle disfluencies, utterance fragments, and
other phenomena that are entirely grammatical in
speech, but not in writing. On the other hand, a
system designed for transcripts of speech does not
need to identify errors specific to written language
such as punctuation or spelling mistakes. Further-
more, a system designed for clinical data must be
able to handle language produced by children who
may have atypical language due to a developmen-
tal disorder, and therefore may produce grammati-
cal errors that would be unexpected in written lan-
guage. A grammatical error detector appropriate
for a clinical setting must also be trainable be-
cause different groups of clinicians may wish to
investigate different phenomena, and will there-
fore prefer different annotation standards. This
is quite different from grammatical error detectors
for written language, which may have models for
different domains, but which are not typically de-
signed to enable the detection of novel error sets.

We examine two baseline techniques for gram-
matical error detection, then present a simple data-
driven technique to turn a dependency parser into a
grammatical error detector. Interestingly, we find
that the dependency parser-based approach mas-
sively outperforms the baseline systems in terms
of identifying ungrammatical utterances. Further-
more, the proposed system is able to identify spe-
cific error codes, which the baseline systems can-
not do. We find that disfluencies do not degrade
performance of the proposed detector, obviating
the need (for this task) for explicit disfluency de-
tection. We also analyze the output of our system
to see which errors it finds, and which it misses.
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Code Description Example
[EO] Overgeneralization errors He falled [EO] .
[EW] Other word level errors He were [EW] looking .
[EU] Utterance level errors And they came to stopped .
[OM] Omitted bound morpheme He go [OM] .
[OW] Omitted word She [OW] running .

Table 1: Error codes proposed in the SALT manual. Note that in SALT annotated transcripts, [OM] and
[OW] are actually indicated by ‘*’ followed by the morpheme or word hypothesized to be omitted.
When treating codes (other than [EU]) as tags, they are attached to the previous word in the string.

Finally, we evaluate our detector on a second set
of data with a different label set and annotation
standards. Although our proposed system does not
perform as well on the second data set, it still out-
performs both baseline systems. One interesting
difference between the two data sets, which does
appear to impact performance, is that the latter set
more strictly follows SALT guidelines (see Sec-
tion 2.1) to collapse multiple errors into a single
label. This yields transcripts with a granularity of
labeling somewhat less amenable to automation,
to the extent that labels are fewer and can be re-
liant on non-local context for aggregation.

2 Background

2.1 Systematic Analysis of Language
Transcripts (SALT)

The Systematic Analysis of Language Transcripts
(SALT) is the de facto standard for clinicians look-
ing to analyze samples of natural language. The
SALT manual includes guidelines for transcrip-
tion, as well as three types of annotations, of
which two are relevant here: maze annotations,
and error codes.1

Mazes are similar to what is referred to as ‘dis-
fluencies’ in the speech literature. The SALT
manual defines mazes as “filled pauses, false
starts, repetitions, reformulations, and interjec-
tions” (Miller et al., 2011, p. 6), without defining
any of these terms. Partial words, which are in-
cluded and marked in SALT-annotated transcripts,
are also included in mazes. Mazes are delimited
by parentheses, and have no internal structure, un-
like disfluencies annotated following the Switch-
board guidelines (Meteer et al., 1995), which are
commonly followed by the speech and language

1SALT also prescribes annotation of bound morphemes
and clitics, for example -ed in past tense verbs. We preprocess
all of the transcripts to remove bound morpheme and clitic
annotations.

processing communities. An example maze anno-
tation would be: “He (can not) can not get up.”

The SALT manual proposes the set of error
codes shown (with examples) in Table 1, but re-
search groups may use a subset of these codes, or
augment them with additional codes. For example,
the SALT-annotated Edmonton Narrative Norms
Instrument (ENNI) corpus (Schneider et al., 2006)
rarely annotates omitted morphemes ([OM]), in-
stead using the [EW] code. Other SALT-annotated
corpora include errors that are not described in the
SALT manual. For example the CSLU ADOS cor-
pus (Van Santen et al., 2010) includes the [EX]
tag for extraneous words, and the Narrative Story
Retell corpus (SALT Software, 2014b) uses the
code [EP] to indicate pronominal errors (albeit
inconsistently, as many such errors are coded as
[EW] in this corpus). We note that the definitions
of certain SALT errors, notably [EW] and [EU],
are open to interpretation, and that these codes
capture a wide variety of errors. For example,
some of the errors captured by the [EW] code are:
pronominal case and gender errors; verb tense er-
rors; confusing ‘a’ and ‘an’; and using the wrong
preposition.

The SALT guidelines specify as a general rule
that annotators should not mark utterances with
more than two omissions ([OM] or [OW]) and/or
word-level errors (ex [EW], [EP]) (SALT Soft-
ware, 2014a). Instead, annotators are instructed
to code such utterances with an utterance-level er-
ror ([EU]). How strictly annotators adhere to this
rule affects the distribution of errors, reducing the
number of word-level errors and increasing the
number of utterance-level errors. Following this
rule also increases the variety of errors captured
by the [EU] code. The annotations in different
corpora, including ENNI and NSR, vary in how
strictly they follow this rule, even though this is
not mentioned in the the published descriptions of
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these corpora.

2.2 Grammatical Error Detection

The most visible fruits of research into grammati-
cal error detection are the spellchecking and gram-
mar checking tools commonly included with word
processors, for example Microsoft Word’s gram-
mar checker. Although developed for handling
written language, many of the techniques used
to address these tasks could still be applicable to
transcripts of speech because many of the same
errors can still occur. The earliest grammatical-
ity tools simply performed pattern matching (Mac-
donald et al., 1982), but this approach is not robust
enough to identify many types of errors, and pat-
tern matching systems are not trainable, and there-
fore cannot be adapted quickly to new label sets.
Subsequent efforts to create grammaticality classi-
fiers and detectors leveraged information extracted
from parsers (Heidorn et al., 1982) and language
models (Atwell, 1987). These systems, however,
were developed for formal written English pro-
duced by well-educated adults, as opposed to spo-
ken English produced by young children, partic-
ularly children with suspected developmental de-
lays.

There have been a few investigations into tech-
niques to automatically identify particular con-
structions in transcripts of spoken English. Bow-
den and Fox (2002) proposed a rule-based sys-
tem to classify many types of errors made by
learners of English. Although their system could
be used on either transcripts of speech, or on
written English, they did not evaluate their sys-
tem in any way. Caines and Buttery (2010) use
a logistic regression model to identify the zero-
auxiliary construction (e.g., ‘you going home?’)
with over 96% accuracy. Even though the zero-
auxilliary construction is not necessarily ungram-
matical, identifying such constructions may be
useful as a preprocessing step to a grammatical-
ity classifier. Caines and Buttery also demonstrate
that their detector can be integrated into a sta-
tistical parser yielding improved performance, al-
though they are vague about the nature of the parse
improvement (see Caines and Buttery, 2010, p. 6).

Hassanali and Liu (2011) conducted the first in-
vestigation into grammaticality detection and clas-
sification in both speech of children, and speech of
children with language impairments. They identi-
fied 11 types of errors, and compared three types

of systems designed to identify the presence of
each type of error: 1) rule based systems; 2) deci-
sion trees that use rules as features; and 3) naive
Bayes classifiers that use a variety of features.
They were able to identify all error types well
(F1 > 0.9 in all cases), and found that in general
the statistical systems outperformed the rule based
systems. Hassanali and Liu’s system was designed
for transcripts of spoken language collected from
children with impaired language, and is able to
detect the set of errors they defined very well.
However, it cannot be straightforwardly adapted
to novel error sets.

Morley et al. (2013) evaluated how well the
detectors proposed by Hassanali and Liu could
identify utterances with SALT error codes. They
found that a simplified version of one of Has-
sanali and Liu’s detectors was the most effective at
identifying utterances with any SALT error codes,
although performance was very low (F1=0.18).
Their system uses features extracted solely from
part of speech tags with the Bernoulli Naive Bayes
classifier in Scikit (Pedregosa et al., 2012). Their
detector may be adaptable to other annotation
standards, but it does not identify which errors are
in each utterance; it only identifies which utter-
ances have errors, and which do not.

2.3 Redshift Parser
We perform our experiments with the redshift
parser2, which is an arc-eager transition-based de-
pendency parser. We selected redshift because of
its ability to perform disfluency detection and de-
pendency parsing jointly. Honnibal and Johnson
(2014) demonstrate that this system achieves state-
of-the-art performance on disfluency detection,
even compared to single purpose systems such as
the one proposed by Qian and Liu (2013). Ra-
sooli and Tetreault (2014) have developed a sys-
tem that performs disfluency detection and depen-
dency parsing jointly, and with comparable perfor-
mance to redshift, but it is not publicly available as
of yet.

Redshift uses an averaged perceptron learner,
and implements several feature sets. The first fea-
ture set, which we will refer to as ZHANG is the
one proposed by Zhang and Nivre (2011). It in-
cludes 73 templates that capture various aspects
of: the word at the top of the stack, along with its

2Redshift is available at https://github.com/
syllog1sm/redshift. We use the version in the
experiment branch from May 15, 2014.
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leftmost and rightmost children, parent and grand-
parent; and the word on the buffer, along with
its leftmost children; and the second and third
words on the buffer. Redshift also includes fea-
tures extracted from the Brown clustering algo-
rithm (Brown et al., 1992). Finally, redshift in-
cludes features that are designed to help iden-
tify disfluencies; these capture rough copies, ex-
act copies, and whether neighboring words were
marked as disfluent. We will refer to the feature
set containing all of the features implemented in
redshift as FULL. We refer the reader to Honnibal
and Johnson (2014) for more details.

3 Data, Preprocessing, and Evaluation

Our investigation into using a dependency parser
to identify and label grammatical errors requires
training data with two types of annotations: de-
pendency labels, and grammatical error labels. We
are not aware of any corpora of speech with both
of these annotations. Therefore, we use two dif-
ferent sets of training data: the Switchboard cor-
pus, which contains syntactic parses; and SALT
annotated corpora, which have grammatical error
annotations.

3.1 Switchboard

The Switchboard treebank (Godfrey et al., 1992)
is a corpus of transcribed conversations that have
been manually parsed. These parses include
EDITED nodes, which span disfluencies. We pre-
process the Switchboard treebank by removing all
partial words as well as all words dominated by
EDITED nodes, and converting all words to lower-
case. We then convert the phrase-structure trees to
dependencies using the Stanford dependency con-
verter (De Marneffe et al., 2006) with the basic de-
pendency scheme, which produces dependencies
that are strictly projective.

3.2 SALT Annotated Corpora

We perform two sets of experiments on the two
SALT-annotated corpora described in Table 2. We
carry out the first set of experiments on on the Ed-
monton Narrative Norms Instrument (ENNI) cor-
pus, which contains 377 transcripts collected from
children between the ages of 3 years 11 months
and 10 years old. The children all lived in Edmon-
ton, Alberta, Canada, were typically developing,
and were native speakers of English.

After exploring various system configurations,

ENNI NSR
Words Utts Words Utts

Train 360,912 44,915 103,810 11,869
Dev. 45,504 5,614 12,860 1,483
Test 44,996 5,615 12,982 1,485
% with error 13.2 14.3

(a) Word and utterance counts
ENNI NSR

[EP] 0 20
[EO] 0 495
[EW] 4,916 1,506
[EU] 3,332 568
[OM] 10 297
[OW] 766 569
Total 9,024 3,455

(b) Error code counts

Table 2: Summary of ENNI and NSR Corpora.
There can be multiple errors per utterance. Word

counts include mazes.

we evaluate how well our method works when it
is applied to another corpus with different anno-
tation standards. Specifically, we train and test
our technique on the Narrative Story Retell (NSR)
corpus (SALT Software, 2014b), which contains
496 transcripts collected from typically develop-
ing children living in Wisconsin and California
who were between the ages of 4 years 4 months
and 12 years 8 months old. The ENNI and NSR
corpora were annotated by two different research
groups, and as Table 2 illustrates, they contain
a different distribution of errors. First, ENNI
uses the [EW] (other word-level error) tag to code
both overgeneralization errors instead of [EO], and
omitted morphemes instead of [OM]. The [EU]
code is also far more frequent in ENNI than NSR.
Finally, the NSR corpus includes an error code that
does not appear in the ENNI corpus: [EP], which
indicates a pronominal error, for example using
the wrong person or case. [EP], however, is rarely
used.

We preprocess the ENNI and NSR corpora to
reconstruct surface forms from bound morpheme
annotations (ex. ‘go/3S’ becomes ‘goes’), partial
words, and non-speech sounds. We also either ex-
cise manually identified mazes or remove maze
annotations, depending upon the experiment.

3.3 Evaluation

Evaluating system performance in tagging tasks
on manually annotated data is typically straight-
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Evaluation Level: ERROR UTTERANCE

Individual error codes Has error?
Gold error codes: [EW] [EW] Yes

Predicted error codes: [EW] [OW] Yes
Evaluation: TP FN FP TP

Figure 1: Illustration of UTTERANCE and ERROR level evaluation
TP = true positive; FP = false positive; FN = false negative

forward: we simply compare system output to the
gold standard. Such evaluation assumes that the
best system is the one that most faithfully repro-
duces the gold standard. This is not necessarily
the case with applying SALT error codes for three
reasons, and each of these reasons suggests a dif-
ferent form of evaluation.

First, automatically detecting SALT error codes
is an important task because it can aid clini-
cal investigations. As Morley et al. (2013) il-
lustrated, even extremely coarse features derived
from SALT annotations, for example a binary fea-
ture for each utterance indicating the presence of
any error codes, can be of immense utility for iden-
tifying language impairments. Therefore, we will
evaluate our system as a binary tagger: each ut-
terance, both in the manually annotated data and
system output either contains an error code, or it
does not. We will label this form of evaluation as
UTTERANCE level.

Second, clinicians are not only interested in
how many utterances have an error, but also which
particular errors appear in which utterances. To
address this issue, we will compute precision, re-
call, and F1 score from the counts of each er-
ror code in each utterance. We will label this
form of evaluation as ERROR level. Figure 1 illus-
trates both UTTERANCE and ERROR level evalua-
tion. Note that the utterance level error code [EU]
is only allowed to appear once per utterance. As
a result, we will ignore any predicted [EU] codes
beyond the first.

Third, the quality of the SALT annotations
themselves is unknown, and therefore evaluation
in which we treat the manually annotated data as a
gold standard may not yield informative metrics.
Morley et al. (2014) found that there are likely
inconsistencies in maze annotations both within
and across corpora. In light of that finding, it is
possible that error code annotations are somewhat
inconsistent as well. Furthermore, our approach
has a critical difference from manual annotation:

we perform classification one utterance at a time,
while manual annotators have access to the context
of an utterance. Therefore certain types of errors,
for example using a pronoun of the wrong gender,
or responding ungrammatically to a question (ex.
‘What are you doing?’ ‘Eat.’) will appear gram-
matical to our system, but not to a human anno-
tator. We address both of these issues with an in-
depth analysis of the output of one of our systems,
which includes manually re-coding utterances out
of context.

4 Detecting Errors in ENNI

4.1 Baselines
We evaluate two existing systems to see how ef-
fectively they can identify utterances with SALT
error codes: 1) Microsoft Word 2010’s gram-
mar check, and 2) the simplified version of Has-
sanali and Liu’s grammaticality detector (2011)
proposed by Morley et al. (2013) (mentioned in
Section 2.2). We configured Microsoft Word
2010’s grammar check to look for the following
classes of errors: negation, noun phrases, subject-
verb agreement, and verb phrases (see http://
bit.ly/1kphUHa). Most error classes in gram-
mar check are not relevant for transcribed speech,
for example capitalization errors or confusing it’s
and its; we selected classes of errors that would
typically be indicated by SALT error codes.

Note that these baseline systems can only give
us an indication of whether there is an error in
the utterance or not; they do not provide the spe-
cific error tags that mimic the SALT guidelines.
Hence we evaluate just the UTTERANCE level per-
formance of the baseline systems on the ENNI de-
velopment and test sets. These results are given
in the top two rows of each section of Table 3.
We apply these systems to utterances in two condi-
tions: with mazes (i.e., disfluencies) excised; and
with unannotated mazes left in the utterances. As
can be seen in Table 3, the performance Microsoft
Word’s grammar checker degrades severely when
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(a)

Him [EW] (can not) can not get up .

(b)

ROOT him can not can not get up .

nsubj+[EW]

aux

neg

aux

neg

ROOT

prt

P

Figure 2: (a) SALT annotated utterance; mazes indicated by parentheses; (b) Dependency parse of same
utterance parsed with a grammar trained on the Switchboard corpus and augmented dependency labels.

We use a corpus of parses with augmented labels to train our grammaticality detector.

mazes are not excised, but this is not the case for
the Morley et al. (2013) detector.

4.2 Proposed System

Using the ENNI corpus, we now explore various
configurations of a system for grammatical error
code detection. All of our systems use redshift
to learn grammars and to parse. First, we train
an initial grammar G0 on the Switchboard tree-
bank (Godfrey et al., 1992) (preprocessed as de-
scribed in Section 3.1). Redshift learns a model for
part of speech tagging concurrently with G0. We
use G0 to parse the training portion of the ENNI
corpus. Then, using the SALT annotations, we
append error codes to the dependency arc labels
in the parsed ENNI corpus, assigning each error
code to the word it follows in the SALT annotated
data. Figure 2 shows a SALT annotated utterance,
as well as its dependency parse augmented with
error codes. Finally, we train a grammar GErr on
the parse of the ENNI training fold that includes
the augmented arc labels. We can now use GErr
to automatically apply SALT error codes: they are
simply encoded in the dependency labels. We also
apply the [EW] label to any word that is in a list of
overgeneralization errors3.

We modify three variables in our initial trials on
the ENNI development set. First, we change the
proportion of utterances in the training data that
contain an error by removing utterances.4 Doing
so allows us to alter the operating point of our sys-

3The list of overgeneralization errors was generously pro-
vided by Kyle Gorman

4Of course, we never modify the development or test data.

tem in terms of precision and recall. Second, we
again train and test on two versions of the ENNI
corpus: one which has had mazes excised, and the
other which has them present (but not annotated).
Third, we evaluate two feature sets: ZHANG and
FULL.

The plots in Figure 3 show how the per-
formances of our systems at different operating
points vary, while Table 3 shows the performance
of our best system configurations on the ENNI de-
velopment and test sets. Surprisingly, we see that
neither the choice of feature set, nor the presence
of mazes has much of an effect on system per-
formance. This is in strong contrast to Microsoft
Word’s grammar check, which is minimally effec-
tive when mazes are included in the data. The
Morley et al. (2013) system is robust to mazes,
but still performs substantially worse than our pro-
posed system.

4.3 Error Analysis

We now examine the errors produced by our best
performing system for data in which mazes are
present. As shown in Table 3, when we apply our
system to ENNI-development, the UTTERANCE

P/R/F1 is 0.831 / 0.502 / 0.626 and the ERROR

P/R/F1is 0.759 / 0.434 / 0.552. This system’s per-
formance detecting specific error codes is shown
in Table 4. We see that the recall of [EU] errors is
quite low compared with the recall for [EW] and
[OW] errors. This is not surprising, as human an-
notators may need to leverage the context of an ut-
terance to identify [EU] errors, while our system
makes predictions for each utterance in isolation.
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(a) UTTERANCE level evaluation (b) ERROR level evaluation

Figure 3: SALT error code detection performance at various operating points on ENNI development set

Eval Mazes Excised Mazes Present
System type P R F1 P R F1

Development
MS Word UTT 0.843 0.245 0.380 0.127 0.063 0.084
Morley et al. (2013) UTT 0.407 0.349 0.376 0.343 0.321 0.332

Current paper
UTT 0.943 0.470 0.627 0.831 0.502 0.626
ERR 0.895 0.412 0.564 0.759 0.434 0.552

Test
MS Word UTT 0.824 0.209 0.334 0.513 0.219 0.307
Morley et al. (2013) UTT 0.375 0.328 0.350 0.349 0.252 0.293

Current Paper
UTT 0.909 0.474 0.623 0.809 0.501 0.618
ERR 0.682 0.338 0.452 0.608 0.360 0.452

Table 3: Baseline and current paper systems’ performance on ENNI. Evaluation is at the UTTERANCE

(UTT) level except for the current paper’s system, which also presents evaluation at the ERROR (ERR)
level.

Error Code P R F1
EU 0.639 0.193 0.297
EW 0.832 0.582 0.685
OW 0.680 0.548 0.607

Table 4: ERROR level detection performance for
each code (system trained on ENNI; 30% error

utterances; ZHANG feature set; with mazes)

We randomly sampled 200 utterances from the
development set that have a manually annotated
error, are predicted by our system to have an er-
ror, or both. A speech-language pathologist who
has extensive experience with using SALT for re-
search purposes in both clinical and typically de-
veloping populations annotated the errors in each
utterance. She annotated each utterance in isola-
tion so as to ignore contextual errors. We compare

our annotations to the original annotations, and
system performance using our annotations and the
original annotations as different gold standards.
The results of this comparison are shown in Table
5.

Comparing our manual annotations to the orig-
inal annotations, we notice some disagreements.
We suspect there are two reasons for this. First,
unlike the original annotators, we annotate these
utterances out of context. This may explain why
we identify far fewer utterance level error [EU]
codes than the original annotators (20 compared
with 67). Second, we may be using different cri-
teria for each error code than the original anno-
tators. This is an inevitable issue, as the SALT
guidelines do not provide detailed definitions of
the error codes, nor do individual groups of anno-
tators. To illustrate, the “coding notes” section of
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Tag Gold Gold Count Disagreement P R F1
[EU] Original 67 52 0.500 0.149 0.230

Revised 20 0.450 0.333 0.383
[EW] Original 137 27 0.859 0.533 0.658

Revised 126 0.800 0.540 0.645
[OW] Original 16 13 0.667 0.275 0.480

Revised 15 0.444 0.267 0.333

Table 5: System performance using ERROR level evaluation on 200 utterances selected from ENNI-dev
using original and revised annotations as gold standard

UTTERANCE level ERROR level
System P R F1 P R F1
ENNI-trained 0.310 0.124 0.178 0.157 0.057 0.084
NSR-trained 0.243 0.249 0.277 0.150 0.195 0.170
MS Word 0.561 0.171 0.261 – – –
Morley et al. (2013) 0.250 0.281 0.264 – – –
NSR ∪MS Word 0.291 0.447 0.353 – – –
NSR ∪Morley et al. (2013) 0.297 0.387 0.336 – – –
All 3 0.330 0.498 0.397 – – –

Table 6: Error detection performance on NSR-development, mazes included

the description of the ENNI corpus5 only lists the
error codes that were used consistently, but does
not describe how to apply them. These findings
illustrate the importance of having a rapidly train-
able error code detector: research groups will be
interested in different phenomena, and therefore
will likely have different annotation standards.

5 Detecting Errors in NSR

We apply our system directly to the NSR corpus
with mazes included. We use the same parameters
set on the ENNI corpus in Section 4.2. We apply
the model trained on ENNI to NSR, but find that it
does not perform very well as illustrated in Table
6. These results further underscore the need for
a trainable error code detector in this domain, as
opposed to the static error detectors that are more
common in the grammatical error detection litera-
ture.

We see in Table 6 that retraining our model
on NSR data improves performance substantially
(UTTERANCE F1 improves from 0.178 to 0.277),
but not to the level we observed on the ENNI cor-
pus. The Morley et al. (2013) system also per-
forms worse when trained and tested on NSR, as
compared with ENNI. When mazes are included,

5http://www.saltsoftware.com/salt/
databases/ENNIRDBDoc.pdf

the performance of Microsoft Word’s grammar
check is higher on NSR than on ENNI (F1=0.261
vs 0.084), but it it still yields the lowest perfor-
mance of the three systems. We find that combin-
ing our proposed system with either or both of the
baseline systems further improves performance.

The NSR corpus differs from ENNI in several
ways: it is smaller, contains fewer errors, and uses
a different set of tags with a different distribution
from the ENNI corpus, as shown in Table 2. We
found that the smaller amount of training data is
not the only reason for the degradation in perfor-
mance; we trained a model for ENNI with a set of
training data that is the same size as the one for
NSR, but did not observe a major drop in perfor-
mance. We found that UTTERANCE F1 drops from
0.626 to 0.581, and ERROR F1 goes from 0.552 to
0.380, not nearly the magnitude drop in accuracy
observed for NSR.

We believe that a major reason for why our sys-
tem performs worse on NSR than ENNI may be
that the ENNI annotations adhere less strictly to
certain SALT recommendations than do the ones
in NSR. The SALT guidelines suggest that utter-
ances with two or more word-level [EW] and/or
omitted word [OW] errors should only be tagged
with an utterance-level [EU] error (SALT Soft-
ware, 2014a). ENNI, however, has many utter-
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ances with multiple [EW] and [OW] error codes,
along with utterances containing all three error
codes. NSR has very few utterances with [EU] and
other codes, or multiple [EW] and [OW] codes.
The finer grained annotations in ENNI may sim-
ply be easier to learn.

6 Conclusion and Future Directions

We have proposed a very simple method to rapidly
train a grammatical error detector and classifier.
Our proposed system only requires training data
with error code annotations, and is agnostic as to
the nature of the specific error codes. Furthermore,
our system’s performance does not appear to be
affected by disfluencies, which reduces the burden
required to produce training data.

There are several key areas we plan to inves-
tigate in the future. First, we would like to ex-
plore different update functions for the parser; the
predicted error codes are a byproduct of parsing,
but we do not care what the parse itself looks like.
At present, the parser is updated whenever it pro-
duces a parse that diverges from the gold stan-
dard. It may be better to update only when the
error codes predicted for an utterance differ from
the gold standard. Second, we hope to explore fea-
tures that could be useful for identifying grammat-
ical errors in multiple data sets. Finally, we plan
to investigate why our system performed so much
better on ENNI than on NSR.
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Abstract

We introduce a new CCG parsing model
which is factored on lexical category as-
signments. Parsing is then simply a de-
terministic search for the most probable
category sequence that supports a CCG
derivation. The parser is extremely simple,
with a tiny feature set, no POS tagger, and
no statistical model of the derivation or
dependencies. Formulating the model in
this way allows a highly effective heuris-
tic for A∗ parsing, which makes parsing
extremely fast. Compared to the standard
C&C CCG parser, our model is more ac-
curate out-of-domain, is four times faster,
has higher coverage, and is greatly simpli-
fied. We also show that using our parser
improves the performance of a state-of-
the-art question answering system.

1 Introduction

CCG is a strongly lexicalized grammatical formal-
ism, in which the vast majority of the decisions
made during interpretation involve choosing the
correct definitions of words. We explore the ef-
fect of modelling this explicitly in a parser, by
only using a probabilistic model of lexical cate-
gories (based on a local context window), rather
than modelling the derivation or dependencies.

Existing state-of-the-art CCG parsers use com-
plex pipelines of POS-tagging, supertagging and
parsing—each with its own feature sets and pa-
rameters (and sources of error)—together with fur-
ther parameters governing their integration (Clark
and Curran, 2007). We show that much simpler
models can achieve high performance. Our model
predicts lexical categories based on a tiny fea-
ture set of word embeddings, capitalization, and 2-
character suffixes—with no parsing model beyond
a small set of CCG combinators, and no POS-

tagger. Simpler models are easier to implement,
replicate and extend.

Another goal of our model is to parse CCG
optimally and efficiently, without using excessive
pruning. CCG’s large set of lexical categories,
and generalized notion of constituency, mean that
sentences can have a huge number of potential
parses. Fast existing CCG parsers rely on aggres-
sive pruning—for example, the C&C parser uses
a supertagger to dramatically cut the search space
considered by the parser. Even the loosest beam
setting for their supertagger discards the correct
parse for 20% of sentences. The structure of our
model allows us to introduce a simple but power-
ful heuristic for A∗ parsing, meaning it can parse
almost 50 sentences per second exactly, with no
beam-search or pruning. Adding very mild prun-
ing increases the speed to 186 sentences per sec-
ond with minimal loss of accuracy.

Our approach faces two obvious challenges.
Firstly, categories are assigned based on a local
window, which may not contain the necessary con-
text for resolving some attachment decisions. For
example, in I saw a squirrel 2 weeks ago with a
nut, the model cannot make an informed decision
on whether to assign with an adverbial or adnomi-
nal preposition category, as the crucial words saw
and squirrel fall outside the local context window.
Secondly, even if the supertagger makes all lexical
category decisions correctly, then the parser can
still make erroneous decisions. One example is
in coordination-scope ambiguities, such as clever
boys and girls, where the two interpretations use
the same assignment of categories.

We hypothesise that such decisions are rela-
tively rare, and are challenging for any parsing
model, so a weak model is unlikely to result in
substantially lower accuracy. Our implementation
of this model1, which we call EASYCCG, has high

1Available from https://github.com/
mikelewis0/easyccg
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accuracy—suggesting that most parsing decisions
can be made accurately based on a local context
window.

Of course, there are many parsing decisions that
can only be made accurately with more complex
models. However, exploring the power and lim-
itations of simpler models may help focus future
research on the more challenging cases.

2 Background

2.1 Combinatory Categorial Grammar

CCG (Steedman, 2000) is a strongly lexicalized
grammatical formalism. Words have categories
representing their syntactic role, which are either
atomic, or functions from one category to another.

Phrase-structure grammars have a relatively
small number of lexical categories types (e.g.
POS-tags), and a large set of rules used to build
a syntactic analysis of a complete sentence (e.g.
an adjective and noun can combine into a noun).
In contrast, CCG parsing has many lexical cate-
gory types (we use 425), but a small set of combi-
natory rule types (we use 10 binary and 13 unary
rule schemata). This means that, aside from the
lexicon, the grammar is small enough to be hand-
coded—which allows us, in this paper, to confine
the entire statistical model to the lexicon.

CCG’s generalized notion of constituency
means that many derivations are possible for
a given a set of lexical categories. However,
most of these derivations will be semantically
equivalent—for example, deriving the same de-
pendency structures—in which case the actual
choice of derivation is unimportant. Such ambi-
guity is often called spurious.

2.2 Existing CCG Parsing Models

The seminal C&C parser is by far the most pop-
ular choice of CCG parser (Clark and Curran,
2007). It showed that it was possible to parse to
an expressive linguistic formalism with high speed
and accuracy. The performance of the parser has
enabled large-scale logic-based distributional re-
search (Harrington, 2010; Lewis and Steedman,
2013a; Lewis and Steedman, 2013b; Reddy et al.,
2014), and it is a key component of Boxer (Bos,
2008).

The C&C parser uses CKY chart parsing, with a
log-linear model to rank parses. The vast number
of possible parses means that computing the com-
plete chart is impractical. To resolve this prob-

lem, a supertagger is first run over the sentence to
prune the set of lexical categories considered by
the parser for each word. The initial beam out-
puts an average of just 1.2 categories per word,
rather than the 425 possible categories—making
the standard CKY parsing algorithm very efficient.
If the parser fails to find any analysis of the com-
plete sentence with this set of supertags, the su-
pertagger re-analyses the sentence with a more re-
laxed beam (adaptive supertagging).

2.3 A∗ Parsing

Klein and Manning (2003a) introduce A∗ parsing
for PCFGs. The parser maintains a chart and an
agenda, which is a priority queue of items to add to
the chart. The agenda is sorted based on the items’
inside probability, and a heuristic upper-bound on
the outside probability—to give an upper bound
on the probability of the complete parse. The chart
is then expanded in best-first order, until a com-
plete parse for the sentence is found.

Klein and Manning calculate an upper bound on
the outside probability of a span based on a sum-
mary of the context. For example, the summary
for the SX heuristic is the category of the span, and
the number of words in the sentence before and af-
ter the span. The value of the heuristic is the prob-
ability of the best possible sentence meeting these
restrictions. These probabilities are pre-computed
for every non-terminal symbol and for every pos-
sible number of preceding and succeeding words,
leading to large look-up tables.

Auli and Lopez (2011b) find that A∗ CCG pars-
ing with this heuristic is very slow. However,
they achieve a modest 15% speed improvement
over CKY when A∗ is combined with adaptive su-
pertagging. One reason is that the heuristic esti-
mate is rather coarse, as it deals with the best pos-
sible outside context, rather than the actual sen-
tence. We introduce a new heuristic which gives a
tighter upper bound on the outside probability.

3 Model

3.1 Lexical Category Model

As input, our parser takes a distribution over all
CCG lexical categories for each word in the sen-
tence. These distributions are assigned using
Lewis and Steedman (2014)’s semi-supervised su-
pertagging model. The supertagger is a unigram
log-linear classifier that uses features of the ±3
word context window surrounding a word. The
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key feature is word embeddings, initialized with
the 50-dimensional embeddings trained in Turian
et al. (2010), and fine-tuned during supervised
training. The model also uses 2-character suffixes
and capitalization features.

The use of word embeddings, which are trained
on a large unlabelled corpus, allows the supertag-
ger to generalize well to words not present in the
labelled data. It does not use a POS-tagger, which
avoids problems caused by POS-tagging errors.

Our methods could be applied to any supertag-
ging model, but we find empirically that this
model gives higher performance than the C&C su-
pertagger.

3.2 Parsing Model

Let a CCG parse y of a sentence S be a list of
lexical categories c1 . . . cn and a derivation. If we
assume all derivations licensed by our grammar
are equally likely, and that lexical category assign-
ments are conditionally independent given the sen-
tence, we can compute the optimal parse ŷ as:
ŷ = argmaxy

∏n
i=1 p(ci|S)

As discussed in Section 2.1, many derivations
are possible given a sequence of lexical categories,
some of which may be semantically distinct. How-
ever, our model will assign all of these an equal
score, as they use the same sequence of lexical
categories. Therefore we extend our model with
a simple deterministic heuristic for ranking parses
that use the same lexical categories. Given a set of
derivations with equal probability, we output the
one maximizing the sums of the length of all arcs
in the corresponding dependency tree.

The effect of this heuristic is to prefer non-
local attachments in cases of ambiguity, which
we found worked better on development data than
favouring local attachments. In cases of spurious
ambiguity, all parses will have the same value of
this heuristic, so one is chosen arbitrarily. For
example, one of the parses in Figures 1a and 1b
would be selected over the parse in Figure 1c.

Of course, we could use any function of the
parses in place of this heuristic, for example a
head-dependency model. However, one aim of
this paper is to demonstrate that an extremely sim-
ple parsing model can achieve high performance,
so we leave more sophisticated alternatives to fu-
ture work.

a house in Paris in France

NP (NP\NP)/NP NP (NP\NP)/NP NP
> >

NP\NP NP\NP
<

NP
<

NP

(a) A standard derivation of a house in Paris in France, with a
dependency from in France to house

a house in Paris in France

NP (NP\NP)/NP NP (NP\NP)/NP NP
> >

NP\NP NP\NP
>B

NP\NP
<

NP

(b) A derivation of a house in Paris in France, which is spu-
riously equivalent to Figure 1a. A composition combinator is
used to compose the predicates in Paris and in France, creating
a constituent which creates dependencies to its argument from
both in Paris and in France.

a house in Paris in France

NP (NP\NP)/NP NP (NP\NP)/NP NP
>

NP\NP
<

NP
>

NP\NP
<

NP

(c) A derivation of a house in Paris in France, which yields
different dependencies to Figures 1a and 1b: here, there is a
dependency from in France to Paris, not house.

Figure 1: Three CCG parses of a house in Paris
in France, given the same set of supertags. The
first two are spuriously equivalent, but the third is
semantically distinct.

3.3 A∗ Search

For parsing, we use an A∗ search for the most-
probable complete CCG derivation of a sentence.
A key advantage of A∗ parsing over CKY parsing
is that it does not require us to prune the search
space first with a supertagger, allowing the parser
to consider the complete distribution of 425 cate-
gories for each word (in contrast to an average of
3.57 categories per word considered by the C&C
parser’s most relaxed beam). This is possible be-
cause A∗ only searches for the Viterbi parse of
a sentence, rather than building a complete chart
with every possible category per word (another al-
ternative, used by Hockenmaier (2003), is to use a
highly aggressive beam search in the parser).

In A∗ parsing, items on the agenda are sorted by
their cost; the product of their inside probability
and an upper bound on their outside probability.
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For a span wi . . . wj with lexical categories
ci . . . cj in a sentence S = w1 . . . wn, the inside
probability is simply:

∏j
k=i p(ck|S)

The factorization of our model lets us give the
following upper-bound on the outside probability:
h(wi . . . wj) =

∏k<i
k=1maxckp(ck|S)×∏k≤n
k=j+1maxckp(ck|S)

This heuristic assumes that all words outside the
span will take their highest-probability supertag.
Because the model is factored on lexical cate-
gories, this estimate is clearly an upper bound.
As supertagging is over 90% accurate, the upper
bound will often be exact, and in Section 4.3 we
show empirically that it is extremely efficient. The
values of the heuristic can be computed once for
each sentence and cached.

To implement the preference for non-local at-
tachment described in Section 3.2, if two agenda
items have the same cost, the one with the longer
dependencies is preferred.

Intuitively, the parser first attempts to find a
parse for the sentence using the 1-best category for
each word, by building as complete a chart as pos-
sible. If it fails to find a parse for the complete
sentence, it adds one more supertag to the chart
(choosing the most probable tag not already in the
chart), and tries again. This strategy allows the
parser to consider an unbounded number of cate-
gories for each word, as it does not build a com-
plete chart with all supertags.

3.4 Grammar

Here, we describe the set of combinators and
unary rules in the EASYCCG grammar. Because
we do not have any probabilistic model of the
derivation, all rules can apply with equal probabil-
ity. This means that some care needs to be taken
in designing the grammar to ensure that all the
rules are generally applicable. We also try to limit
spurious ambiguity, and build derivations which
are compatible with the C&C parser’s scripts for
extracting dependencies (for evaluation). We de-
scribe the grammar in detail, to ensure replicabil-
ity.

Our parser uses the following binary combi-
nators from Steedman (2012): forward applica-
tion, backward application, forward composition,
backward crossed composition, generalized for-
ward composition, generalized backward crossed
composition. These combinators are posited to
be linguistically universal. The generalized rules

Initial Result Usage
N NP Bare

noun
phrases

NP S/(S\NP ) Type
NP (S\NP )/((S\NP )/NP ) raising
PP (S\NP )/((S\NP )/PP )
Spss\NP NP\NP
Sng\NP NP\NP Reduced
Sadj\NP NP\NP relative
Sto\NP NP\NP clauses
Sto\NP N\N
Sdcl/NP NP\NP
Spss\NP S/S VP
Sng\NP S/S Sentence
Sto\NP S/S Modifiers

Table 1: Set of unary rules used by the parser.

are generalized to degree 2. Following Steedman
(2000) and Clark and Curran (2007), backward
composition is blocked where the argument of the
right-hand category is anN orNP . The unhelpful
[nb] feature is ignored.

As in the C&C parser, we add a special Con-
junction rule:

Y X
>

X \X
Where Y ∈ {conj, comma, semicolon}. We

block conjunctions where the right-hand category
is type-raised, punctuation, N , or NP\NP . This
rule (and the restrictions) could be removed by
changing CCGBank to analyse conjunctions with
(X\X)/X categories.

We also add syntagmatic rules for removing any
punctuation to the right, and for removing open-
brackets and open-quotes to the left

The grammar also contains 13 unary rules,
listed in Table 1. These rules were chosen based
on their frequency in the training data, and their
clear semantic interpretations.

Following Clark and Curran (2007), we also add
a (switchable) constraint that only category com-
binations that have combined in the training data
may combine in the test data. We found that this
was necessary for evaluation, as the C&C conver-
sion tool for extracting predicate-argument depen-
dencies had relatively low coverage on the CCG
derivations produced by our parser. While this
restriction is theoretically inelegant, we found it
did increase parsing speed without lowering lexi-
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cal category accuracy.
We also use Eisner Normal Form Constraints

(Eisner, 1996), and Hockenmaier and Bisk’s
(2010) Constraint 5, which automatically rule out
certain spuriously equivalent derivations, improv-
ing parsing speed.

We add a hard constraint that the root category
of the sentence must be a declarative sentence, a
question, or a noun-phrase.

This grammar is smaller and cleaner than that
used by the C&C parser, which uses 32 unary
rules (some of which are semantically dubious,
such as S[dcl]→ NP\NP ), and non-standard bi-
nary combinators such as merging two NP s into
an NP . The C&C parser also has a large num-
ber of special case rules for handling punctua-
tion. Our smaller grammar reduces the grammar
constant, eases implementation, and simplifies the
job of building downstream semantic parsers such
as those of Bos (2008) or Lewis and Steedman
(2013a) (which must implement semantic analogs
of each syntactic rule).

3.5 Extracting Dependency Structures
The parsing model defined in Section 3.2 re-
quires us to compute unlabelled dependency trees
from CCG derivations (to prefer non-local attach-
ments). It is simple to extract an unlabelled depen-
dency tree from a CCG parse, by defining one ar-
gument of each binary rule instantiation to be the
head. For forward application and (generalized)
forward composition, we define the head to be the
left argument, unless the left argument is an endo-
centric head-passing modifier category X/X . We
do the inverse for the corresponding ‘backward’
combinators. For punctuation rules, the head is the
argument which is not punctuation, and the head
of a Conjunction rule is the right-hand argument.

The standard CCG parsing evaluation uses a
different concept of dependencies, correspond-
ing to the predicate-argument structure defined by
CCGBank. These dependencies capture a deeper
information—for example by assigning both boy
and girl as subjects of talk in a boy and a girl
talked. We extract these dependencies using
the generate program supplied with the C&C
parser.

3.6 Pruning
Our parsing model is able to efficiently and op-
timally search for the best parse. However,
we found that over 80% of the run-time of our

pipeline was spent during supertagging. Naively,
the log-linear model needs to output a probability
for each of the 425 categories. This is expensive
both in terms of the number of dot products re-
quired, and the cost of building the initial priority-
queue for the A∗ parsing agenda. It is also largely
unnecessary—for example, periods at the end of
sentences always have the same category, but our
supertagger calculates a distribution over all pos-
sible categories.

Note that the motivation for introducing prun-
ing here is fundamentally different from for the
C&C pipeline. The C&C supertagger prunes the
the categories so that the parser can build the com-
plete set of derivations given those categories. In
contrast, our parser can efficiently search large (or
infinite) spaces of categories, but pruning is help-
ful for making supertagging itself more efficient,
and for building the initial agenda.

We therefore implemented the following strate-
gies to improve efficiency:

• Only allowing at most 50 categories per
word. The C&C parser takes on average 1.27
tags per word (and an average of 3.57 at its
loosest beam setting), so this restriction is a
very mild one. Nevertheless, it considerably
reduces the potential size of the agenda.

• Using a variable-width beam β which prunes
categories less likely than β times the prob-
ability of the best category. We set β =
0.00001, which is two orders-of-magnitude
smaller than the equivalent C&C beam.
Again, this heuristic is useful for reducing the
length of the agenda.

• Using a tag dictionary of possible categories
for each word, so that weights are only cal-
culated for a subset of the categories. Unlike
the other methods, this approach does affect
the probabilities which are calculated, as the
normalizing constant is only computed for a
subset of the categories. However, the proba-
bility mass contained in the pruned categories
is small, and it only slightly decreases pars-
ing accuracy. To build the tag dictionary, we
parsed 42 million sentences of Wikipedia us-
ing our parser, and for all words occurring at
least 500 times, we stored the set of observed
word-category combinations. When parsing
new sentences, these words are only allowed
to occur with one of these categories.
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Supertagger Parser CCGBank Wikipedia Bioinfer
F1 COV F1 Time F1 COV F1 F1 COV F1
(cov) (all) (cov) (all) (cov) (all)

C&C C&C 85.47 99.63 85.30 54s 81.19 99.0 80.64 76.08 97.2 74.88
EASYCCG EASYCCG 83.37 99.96 83.37 13s 81.75 100 81.75 77.24 100 77.24
EASYCCG C&C 86.14 99.96 86.11 69s 82.46 100 82.46 78.00 99.8 77.88

Table 2: Parsing F1-scores for labelled dependencies across a range of domains. F1 (cov) refers to
results on sentences which the parser is able to parse, and F1 (all) gives results over all sentences. For
the EASYCCG results, scores are only over parses where the C&C dependency extraction script was
successful, which was 99.3% on CCGBank, 99.5% on Wikipedia, and 100% on Bioinfer.

4 Experiments

4.1 Experimental Setup
We trained our model on Sections 02-21 of CCG-
Bank (Hockenmaier and Steedman, 2007), using
Section 00 for development. For testing, we used
Section 23 of CCGBank, a Wikipedia corpus an-
notated by Honnibal and Curran (2009), and the
Bioinfer corpus of biomedical abstracts (Pyysalo
et al., 2007). The latter two are out-of-domain, so
are more challenging for the parsers.

We compare the performance of our model
against both the C&C parser, and the system de-
scribed in Lewis and Steedman (2014). This
model uses the same supertagger as used in EASY-
CCG, but uses the C&C parser for parsing, using
adaptive supertagging with the default values.

All timing experiments used the same 1.8Ghz
AMD machine.

4.2 Parsing Accuracy
Results are shown in Table 2. Our parser per-
forms competitively with a much more complex
parsing model, and outperforms the C&C pipeline
on both out-of-domain datasets. This result con-
firms our hypothesis that the majority of parsing
decisions can be made accurately with a simple
tagging model and a deterministic parser.

We see that the combination of the EASYCCG
supertagger and the C&C parser achieves the best
accuracy across all domains. This result shows
that, unsurprisingly, there is some value to hav-
ing a statistical model of the dependencies that the
parser is evaluated on. However, the difference is
not large, particularly out-of-domain, considering
that a sophisticated and complex statistical parser
is being compared with a deterministic one. Our
parser is also far faster than this baseline.

It is interesting that the performance gap is

Speed (sentences/second)
System Tagger Parser Total
C&C 343 52 45
EASYCCG tagger +
C&C parser

299 58 49

EASYCCG baseline 56 222 45
+Tag Dictionary 185 217 99
+Max 50 tags/word 238 345 141
+β=0.00001 299 493 186
EASYCCG — null
heuristic

300 221 127

Table 3: Effect of our optimizations of parsing
speed.

much lower on out-of-domain datasets (2.8 points
in domain, but only 0.65-0.75 out-of-domain),
suggesting that much of the C&C parser’s depen-
dency model is domain specific, and does not gen-
eralize well to other domains.

We also briefly experimented using the C&C
supertagger (with a beam of β = 10−5) with the
EASYCCG parser. Performance was much worse,
with an F-score of 79.63% on the 97.8% of sen-
tences it parsed on CCGBank Section 23. This
shows that our model is reliant on the accuracy of
the supertagger.

4.3 Parsing Speed

CCG parsers have been used in distributional
approaches to semantics (Lewis and Steedman,
2013a; Lewis and Steedman, 2013b), which bene-
fit from large corpora. However, even though the
C&C parser is relatively fast, it will still take over
40 CPU-days to parse the Gigaword corpus on our
hardware, which is slow enough to be an obstacle
to scaling distributional semantics to larger cor-

995



0 20 40 60 80 100

10

20

30

40

50

Sentence Length

A
ve

ra
ge

Pa
rs

e
Ti

m
e

(m
s)

Figure 2: Average parse times in milliseconds, by
sentence length.

pora such as ClueWeb. Therefore, it is important
to be able to parse sentences at a high speed.

We measured parsing times on Section 23 of
CCGBank (after developing against Section 00),
using the optimizations described in Section 4.3.
We also experimented with the null heuristic,
which always estimates the outside probability as
being 1.0. Times exclude the time taken to load
models.

Results are shown in Table 3. The best EASY-
CCG model is roughly four times faster than the
C&C parser2. Adding the tag dictionary caused
accuracy to drop slightly from 83.46 to 83.37, and
meant the parser failed to parse a single sentence
in the test set (“Among its provisions :”) but other
changes did not affect accuracy. The pruning in
the supertagger improves parsing speed, by limit-
ing the length of the priority queue it builds for the
agenda. Of course, we could use a backoff model
to ensure full coverage (analogously to adaptive
supertagging), but we leave that to future work.
Using our A∗ heuristic doubles the speed of pars-
ing (excluding supertagging).

To better understand the properties of our
model, we also investigate how parsing time varies
with sentence length. Unlike the cubic CKY al-
gorithm typically used by chart parsers, our A∗

search potentially takes exponential time in the
sentence length. For this experiment, we used the
Sections 02-21 of CCGBank. Sentences were di-
vided into bins of width 10, and we calculated the
average parsing time for sentences in each bin.

Results are shown in Figure 2, and demon-

2It is worth noting that the C&C parser code is written in
highly-optimized C++, compared to our simple Java imple-
mentation. It seems likely that our parser could be made sub-
stantially faster with a similar level of engineering effort.

strate that while parsing is highly efficient for sen-
tences of up to 50 words (over 95% of CCGBank),
it scales super-linearly with long sentences. In
fact, Section 00 contains a sentence of 249 words,
which took 37 seconds to parse (3 times longer
than the other 1912 sentences put together). In
practice, this scaling is unlikely to be problematic,
as long sentences are typically filtered when pro-
cessing large corpora.

4.4 Semantic Parsing

A major motivation for CCG parsing is to exploit
its transparent interface to the semantics, allowing
syntactic parsers to do much of the work of seman-
tic parsers. Therefore, perhaps the most relevant
measure of the performance of a CCG parser is its
effect on the accuracy of downstream applications.

We experimented with a supervised version
of Reddy et al. (2014)’s model for question-
answering on Freebase (i.e. without using Reddy
et al.’s lexicon derived from unlabelled text), us-
ing the WEBQUESTIONS dataset (Berant et al.,
2013)3. The model learns to map CCG parses to
database queries. We compare the performance of
the QA system using both our parser and C&C,
taking the 10-best parses from each parser for
each sentence. Syntactic question parsing models
were trained from the combination of 10 copies
of Rimell and Clark (2008)’s question dataset and
one copy of the CCGBank

The accuracy of Reddy et al. (2014)’s model
varies significantly between iterations of the train-
ing data. Rather than tune the number of iterations,
we instead measure the accuracy after each iter-
ation. We experimented with the models’ 1-best
answers, and the oracle accuracy of their 100 best
answers. The oracle accuracy gives a better indi-
cation of the performance of the parser, by miti-
gating errors caused by the semantic component.

Results are shown in Figure 3, and demonstrate
that using EASYCCG can lead to better down-
stream performance than the C&C parser. The im-
provement is particularly large on oracle accuracy,
increasing the upper bound on the performance of
the semantic parser by around 4 points.

5 Related Work

CCG parsing has been the subject of much re-
search. We have already described the C&C pars-

3Using the Business, Film and People domains, with 1115
questions for training and 570 for testing.
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Figure 3: Question Answering accuracy per iteration of Reddy et al. (2014)’s supervised model.

ing model. Kummerfeld et al. (2010) showed that
the speed of the C&C parser can be improved
with domain-specific self-training—similar im-
provements may be possible applying this tech-
nique to our model. Auli and Lopez (2011a)
have achieved the best CCG parsing accuracy, by
allowing the parser and supertagger to perform
joint inference (though there is a significant speed
penalty). Auli and Lopez (2011b) were the first to
use A∗ parsing for CCG, but their system is both
much slower and less accurate than ours (due to a
different model and a different A∗ heuristic). Kr-
ishnamurthy and Mitchell (2014) show how CCG
parsing can be improved by jointly modelling the
syntax and semantics. Fowler and Penn (2010)
apply the Petrov parser to CCG, making a small
improvement in accuracy over the C&C parser,
at the cost of a 300-fold speed decrease. Zhang
and Clark (2011) and Xu et al. (2014) explored
shift-reduce CCG parsing, but despite the use of a
linear-time algorithm, parsing speed in practice is
significantly slower than the C&C parser.

Parsers based on supertagging models have pre-
viously been applied to other strongly lexical-
ized formalisms, such as to LTAG (Bangalore and
Joshi, 1999) and to HPSG (Ninomiya et al., 2006).
A major contribution of our work over these is
showing that factoring models on lexical cate-
gories allows fast and exact A∗ parsing, without
the need for beam search. Our parsing approach
could be applied to any strongly lexicalized for-
malism.

Our work fits into a tradition of attempting to
simplify complex models without sacrificing per-
formance. Klein and Manning (2003b) showed
that unlexicalized parsers were only slightly less
accurate than their lexicalized counterparts. Col-

lobert et al. (2011) showed how a range of NLP
tagging tasks could be performed at high accu-
racy using a small feature set based on vector-
space word embeddings. However, the extension
of this work to phrase-structure parsing (Collobert,
2011) required a more complex model, and did not
match the performance of traditional parsing tech-
niques. We achieve state-of-the-art results using
the same feature set and a simpler model by ex-
ploiting CCG’s lexicalized nature, which makes it
more natural to delegate parsing decisions to a tag-
ging model.

Other parsing research has focused on build-
ing fast parsers for web-scale processing, typically
using dependency grammars (e.g. Nivre (2003)).
CCG has some advantages over dependency gram-
mars, such as supporting surface-compositional
semantics. The fastest dependency parsers use
an easy-first strategy, in which edges are added
greedily in order of their score, with O(nlog(n))
complexity (Goldberg and Elhadad, 2010; Tratz
and Hovy, 2011). This strategy is reminiscent of
our A∗ search, which expands the chart in a best-
first order. A∗ has higher asymptotic complexity,
but finds a globally optimal solution.

6 Future Work

We believe that our model opens several interest-
ing directions for future research.

One interesting angle would be to increase the
amount of information in CCGBank’s lexical en-
tries, to further reduce the search space for the
parser. For example, PP categories could be dis-
tinguished with the relevant preposition as a fea-
ture; punctuation and coordination could be given
more detailed categories to avoid needing their
own combinators, and slashes could be extended
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with Baldridge and Kruijff (2003)’s multi-modal
extensions to limit over-generation. Honnibal and
Curran (2009) show how unary rules can be lexi-
calized in CCG. Such improvements may improve
both the speed and accuracy of our model.

Because our parser is factored on a unigram tag-
ging model, it can be trained from isolated anno-
tated words, and does not require annotated parse
trees or full sentences. Reducing the requirements
for training data eases the task for human annota-
tors. It may also make the model more amenable
to semi-supervised approaches to CCG parsing,
which have typically focused on extending the lex-
icon (Thomforde and Steedman, 2011; Deoskar et
al., 2014). Finally, it may make it easier to convert
other annotated resources, such as UCCA (Abend
and Rappoport, 2013) or AMR (Banarescu et al.,
2013), to CCG training data—as only specific
words need to be converted, rather than full sen-
tences.

Our model is weak at certain kinds of deci-
sions, e.g. coordination-scope ambiguities or non-
local attachments. Incorporating specific models
for such decisions may improve accuracy, while
still allowing fast and exact search—for example,
we intend to try including Coppola et al. (2011)’s
model for prepositional phrase attachment.

7 Conclusions

We have shown that a simple, principled, deter-
ministic parser combined with a tagging model
can parse an expressive linguistic formalism with
high speed and accuracy. Although accuracy
is not state-of-the-art on CCGBank, our model
gives excellent performance on two out-of-domain
datasets, and improves the accuracy of a question-
answering system. We have shown that this model
allows an efficient heuristic for A∗ parsing, which
makes parsing extremely fast, and may enable
logic-based distributional semantics to scale to
larger corpora. Our methods are directly applica-
ble to other lexicalized formalisms, such as LTAG,
LFG and HPSG.
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Abstract

We describe a new dependency parser for
English tweets, TWEEBOPARSER. The
parser builds on several contributions: new
syntactic annotations for a corpus of tweets
(TWEEBANK), with conventions informed
by the domain; adaptations to a statistical
parsing algorithm; and a new approach to
exploiting out-of-domain Penn Treebank
data. Our experiments show that the parser
achieves over 80% unlabeled attachment
accuracy on our new, high-quality test set
and measure the benefit of our contribu-
tions.

Our dataset and parser can be found at
http://www.ark.cs.cmu.edu/TweetNLP.

1 Introduction

In contrast to the edited, standardized language of
traditional publications such as news reports, social
media text closely represents language as it is used
by people in their everyday lives. These informal
texts, which account for ever larger proportions of
written content, are of considerable interest to re-
searchers, with applications such as sentiment anal-
ysis (Greene and Resnik, 2009; Kouloumpis et al.,
2011). However, their often nonstandard content
makes them challenging for traditional NLP tools.
Among the tools currently available for tweets are
a POS tagger (Gimpel et al., 2011; Owoputi et al.,
2013) and a named entity recognizer (Ritter et al.,
2011)—but not a parser.

Important steps have been taken. The English
Web Treebank (Bies et al., 2012) represents an
annotation effort on web text—which likely lies
somewhere between newspaper text and social me-
dia messages in formality and care of editing—that
was sufficient to support a shared task (Petrov and
McDonald, 2012). Foster et al. (2011b) annotated
a small test set of tweets to evaluate parsers trained

on the Penn Treebank (Marcus et al., 1993), aug-
mented using semi-supervision and in-domain data.
Others, such as Soni et al. (2014), have used exist-
ing Penn Treebank–trained models on tweets.

In this work, we argue that the Penn Treebank
approach to annotation—while well-matched to
edited genres like newswire—is poorly suited to
more informal genres. Our starting point is that
rapid, small-scale annotation efforts performed
by imperfectly-trained annotators should provide
enough evidence to train an effective parser. We
see this starting point as a necessity, given observa-
tions about the rapidly changing nature of tweets
(Eisenstein, 2013), the attested difficulties of do-
main adaptation for parsing (Dredze et al., 2007),
and the expense of creating Penn Treebank–style
annotations (Marcus et al., 1993).

This paper presents TWEEBOPARSER, the first
syntactic dependency parser designed explicitly for
English tweets. We developed this parser follow-
ing current best practices in empirical NLP: we
annotate a corpus (TWEEBANK) and train the pa-
rameters of a statistical parsing algorithm. Our
research contributions include:
• a survey of key challenges posed by syntactic

analysis of tweets (by humans or machines) and
decisions motivated by those challenges and by
our limited annotation-resource scenario (§2);

• our annotation process and quantitative mea-
sures of the quality of the annotations (§3);

• adaptations to a statistical dependency parsing
algorithm to make it fully compatible with the
above, and also to exploit information from out-
of-domain data cheaply and without a strong
commitment (§4); and

• an experimental analysis of the parser’s unla-
beled attachment accuracy—which surpasses
80%—and contributions of various important
components (§5).

The dataset and parser can be found at http://www.
ark.cs.cmu.edu/TweetNLP.
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2 Annotation Challenges

Before describing our annotated corpus of tweets
(§3), we illustrate some of the challenges of syn-
tactic analysis they present. These challenges moti-
vate an approach to annotation that diverges signif-
icantly from conventional approaches to treebank-
ing. Figure 1 presents a single example illustrating
four of these: token selection, multiword expres-
sions, multiple roots, and structure within noun
phrases. We discuss each in turn.

2.1 Token Selection

Many elements in tweets have no syntactic function.
These include, in many cases, hashtags, URLs, and
emoticons. For example:

RT @justinbieber : now Hailee get a twitter

The retweet discourse marker, username, and colon
should not, we argue, be included in the syntactic
analysis. By contrast, consider:

Got #college admissions questions ? Ask them
tonight during #CampusChat I’m looking

forward to advice from @collegevisit
http://bit.ly/cchOTk

Here, both the hashtags and the at-mentioned user-
name are syntactically part of the utterances, while
the punctuation and the hyperlink are not. In the
example of Figure 1, the unselected tokens include
several punctuation tokens and the final token #be-
lieber, which marks the topic of the tweet.

Typically, dependency parsing evaluations ig-
nore punctuation token attachment (Buchholz and
Marsi, 2006), and we believe it is a waste of an-
notator (and parser) time to decide how to attach
punctuation and other non-syntactic tokens. Ma
et al. (2014) recently proposed to treat punctua-
tion as context features rather than dependents, and
found that this led to state-of-the-art performance
in a transition-based parser. A small adaptation
to our graph-based parsing approach, described in
§4.2, allows a similar treatment.

Our approach to annotation (§3) forces annota-
tors to explicitly select tokens that have a syntactic
function. 75.6% tokens were selected by the anno-
tators. Against the annotators’ gold standard, we
found that a simple rule-based filter for usernames,
hashtags, punctuation, and retweet tokens achieves
95.2% (with gold-standard POS tags) and 95.1%
(with automatic POS tags) average accuracy in the
task of selecting tokens with a syntactic function
in a ten-fold cross-validation experiment. To take

context into account, we developed a first-order
sequence model and found that it achieves 97.4%
average accuracy (again, ten-fold cross-validated)
with either gold-standard or automatic POS tags.
Features include POS; shape features that recog-
nize the retweet marker, hashtags, usernames, and
hyperlinks; capitalization; and a binary feature
for tokens that include punctuation. We trained
the model using the structured perceptron (Collins,
2002).

2.2 Multiword Expressions
We consider multiword expressions (MWEs) of
two kinds. The first, proper names, have been
widely modeled for information extraction pur-
poses, and even incorporated into parsing (Finkel
and Manning, 2009). (An example found in Fig-
ure 1 is LA Times.) The second, lexical idioms,
have been a “pain in the neck” for many years (Sag
et al., 2002) and have recently received shallow
treatment in NLP (Baldwin and Kim, 2010; Con-
stant and Sigogne, 2011; Schneider et al., 2014).
Constant et al. (2012), Green et al. (2012), Candito
and Constant (2014), and Le Roux et al. (2014)
considered MWEs in parsing. Figure 1 provides
LA Times and All the Rage as examples.

Penn Treebank–style syntactic analysis (and de-
pendency representations derived from it) does
not give first-class treatment to this phenomenon,
though there is precedent for marking multiword
lexical units and certain kinds of idiomatic relation-
ships (Hajič et al., 2012; Abeillé et al., 2003).1

We argue that internal analysis of MWEs is not
critical for many downstream applications, and
therefore annotators should not expend energy on
developing and respecting conventions (or mak-
ing arbitrary decisions) within syntactically opaque
or idiosyncratic units. We therefore allow annota-
tors to decide to group words as explicit MWEs,
including: proper names (Justin Bieber, World
Series), noncompositional or entrenched nominal
compounds (belly button, grilled cheese), connec-
tives (as well as), prepositions (out of), adverbials
(so far), and idioms (giving up, make sure).

From an annotator’s perspective, a MWE func-
tions as a single node in the dependency parse,
with no internal structure. For idioms whose in-
ternal syntax is easily characterized, the parse can
be used to capture compositional structure, an at-

1The popular Stanford typed dependencies (de Marneffe
and Manning, 2008) scheme includes a special dependency
type for multiwords, though this is only applied to a small list.
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Figure 1: Parse tree for a (constructed) example illustrating annotation challenges discussed in §2. Colors highlight token
selection (gray; §2.1), multiword expressions (blue; §2.2), multiple roots (red; §2.3), coordination (dotted arcs, green; §3.2), and
noun phrase internal structure (orange; §2.4). The internal structure of multiword expressions (dashed arcs below the sentence)
was predicted automatically by a parser, as described in §2.2.

tractive property from the perspective of semantic
processing.

To allow training a fairly conventional statisti-
cal dependency parser from these annotations, we
find it expedient to apply an automatic conversion
to the MWE annotations, in the spirit of Johnson
(1998). We apply an existing dependency parser,
the first-order TurboParser (Martins et al., 2009)
trained on the Penn Treebank, to parse each MWE
independently, assigning structures like those for
LA Times and All the Rage in Figure 1. Arcs
involving the MWE in the annotation are then re-
connected to the MWE-internal root, so that the re-
sulting tree respects the original tokenization. The
MWE-internal arcs are given a special label so that
the transformation can be reversed and MWEs re-
constructed from parser output.

2.3 Multiple Roots

For news text such as that found in the Penn Tree-
bank, sentence segmentation is generally consid-
ered a very easy task (Reynar and Ratnaparkhi,
1997). Tweets, however, often contain multiple
sentences or fragments, which we call “utterances,”
each with its own syntactic root disconnected from
the others. The selected tokens in Figure 1 com-
prise four utterances.

Our approach to annotation allows multiple ut-
terances to emerge directly from the connectedness
properties of the graph implied by an annotator’s
decisions. Our parser allows multiple attachments
to the “wall” symbol, so that multi-rooted analyses
can be predicted.

2.4 Noun Phrase Internal Structure

A potentially important drawback of deriving de-
pendency structures from phrase-structure annota-
tions, as is typically done using the Penn Treebank,
is that flat annotations lead to loss of information.
This is especially notable for noun phrases in the
Penn Treebank (Vadas and Curran, 2007). Consider
Teen Pop Star Heartthrob in Figure 1; Penn Tree-
bank conventions would label this as a single NP

with four NN children and no internal structure. De-
pendency conversion tools would likely attach the
first three words in the NP to Heartthrob. Direct de-
pendency annotation (rather than phrase-structure
annotation followed by automatic conversion) al-
lows a richer treatment of such structures, which is
potentially important for semantic analysis (Vecchi
et al., 2013).

3 A Twitter Dependency Corpus

In this section, we describe the TWEEBANK cor-
pus, highlighting data selection (§3.1), the annota-
tion process (§3.2), important convention choices
(§3.3), and measures of quality (§3.4).

3.1 Data Selection
We added manual dependency parses to 929 tweets
(12,318 tokens) drawn from the POS-tagged Twit-
ter corpus of Owoputi et al. (2013), which are tok-
enized and contain manually annotated POS tags.

Owoputi et al.’s data consists of two parts. The
first, originally annotated by Gimpel et al. (2011),
consists of tweets sampled from a particular day,
October 27, 2010—this is known as OCT27. Due
to concerns about overfitting to phenomena specific
to that day (e.g., tweets about a particular sports
game), Owoputi et al. (2013) created a new set of
547 tweets (DAILY547) consisting of one random
English tweet per day from January 2011 through
June 2012.

Our corpus is drawn roughly equally from
OCT27 and DAILY547.2 Despite its obvious tem-
poral skew, there is no reason to believe this sample
is otherwise biased; our experiments in §5 suggest
that this property is important.

3.2 Annotation
Unlike a typical treebanking project, which may
take years and involve thousands of person-hours
of work by linguists, most of TWEEBANK was built
in a day by two dozen annotators, most of whom
had only cursory training in the annotation scheme.

2This results from a long-term goal to fully annotate both.
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(1) RT @FRIENDSHlP : Friendship is love without
kissing ...
Friendship > is < love < without < kissing

(2) bieber is an alien ! :O he went down to earth .
bieber > is** < alien < an
he > [went down]** < to < earth

(3) RT @YourFavWhiteGuy : Helppp meeeee . I’mmm
meltiiinngggg → http://twitpic.com/316cjg
Helppp** < meeeee
I’mmm** < meltiiinngggg

Figure 2: Examples of GFL annotations from the corpus.

Our annotators used the Graph Fragment Lan-
guage (GFL), a text-based notation that facilitates
keyboard entry of parses (Schneider et al., 2013). A
Python Flask web application allows the annotator
to validate and visualize each parse (Mordowanec
et al., 2014). Some examples are shown in Fig-
ure 2. Note that all of the challenges in §2 are
handled easily by GFL notation: “retweet” infor-
mation, punctuation, and a URL are not selected by
virtue of their exclusion from the GFL expression;
in (2) went down is annotated as a MWE using
GFL’s square bracket notation; in (3) the tokens
are grouped into two utterances whose roots are
marked by the ** symbol.

Schneider et al.’s GFL offers some additional fea-
tures, only some of which we made use of in this
project. One important feature allows an annotator
to leave the parse underspecified in some ways. We
allowed our annotators to make use of this feature;
however, we excluded from our training and test-
ing data any parse that was incomplete (i.e., any
parse that contained multiple disconnected frag-
ments with no explicit root, excluding unselected
tokens). Learning to parse from incomplete anno-
tations is a fascinating topic explored in the past
(Hwa, 2001; Pereira and Schabes, 1992) and, in the
case of tweets, left for future work.

An important feature of GFL that we did use is
special notation for coordination structures. For
the coordination structure in Figure 1, for example,
the notation is:

$a :: {♥ want} :: {&}

where $a creates a new node in the parse tree as it is
visualized for the annotator, and this new node at-
taches to the syntactic parent of the conjoined struc-
ture, avoiding the classic forced choice between
coordinator and conjunct as parent. For learning to
parse, we transform GFL’s coordination structures
into specially-labeled dependency parses collaps-
ing nodes like $a with the coordinator and labeling

the attachments specially for postprocessing, fol-
lowing Schneider et al. (2013). In our evaluation
(§5), these are treated like other attachments.

3.3 Annotation Conventions

A wide range of dependency conventions are in use;
in many cases these are conversion conventions
specifying how dependency trees can be derived
from phrase-structure trees. For English, the most
popular are due to Yamada and Matsumoto (2003)
and de Marneffe and Manning (2008), known as
“Yamada-Matsumoto” (YM) and “Stanford” depen-
dencies, respectively. The main differences be-
tween them are in whether the auxiliary is the par-
ent of the main verb (or vice versa) and whether the
preposition or its argument heads a prepositional
phrase (Elming et al., 2013).

A full discussion of our annotation conventions
is out of scope. We largely followed the conven-
tions suggested by Schneider et al. (2013), which in
turn are close to those of YM. Auxiliary verbs are
parents of main verbs, and prepositions are parents
of their arguments. The key differences from YM
are in coordination structures (discussed in §3.2;
YM makes the first conjunct the head) and posses-
sive structures, in which the possessor is the child
of the clitic, which is the child of the semantic head,
e.g., the > king > ’s > horses.

3.4 Intrinsic Quality

Our approach to developing this initial corpus of
syntactically annotated tweets was informed by an
aversion to making the perfect the enemy of the
good; that is, we sought enough data of sufficient
quality to build a usable parser within a relatively
short amount of time. If our research goals had
been to develop a replicable process for annotation,
more training and more quality control would have
been called for. Under our budgeted time and anno-
tator resources, this overhead was simply too costly.
Nonetheless, we performed a few analyses that give
a general picture of the quality of the annotations.

Inter-annotator agreement. 170 of the tweets
were annotated by multiple users. By the softCom-
Prec measure (Schneider et al., 2013),3 the agree-
ment rate on dependencies is above 90%.

Expert linguistic judgment. A linguist co-
author examined a stratified sample (balanced

3softComPrec is a generalization of attachment accuracy
that handles unselected tokens and MWEs.
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across annotators) of 60 annotations and rated their
quality on a 5-point scale. 30 annotations were
deemed to have “no obvious errors,” 15 only minor
errors, 3 a major error (i.e., clear violation of an-
notation guidelines),4 4 a major error and at least
one minor error, and 8 as containing multiple major
errors. Thus, 75% are judged as having no major
errors. We found this encouraging, considering that
this sample is skewed in favor of people who anno-
tated less (including many of the less experienced
and/or lower-proficiency annotators).

Pairwise ranking. For 170 of the doubly anno-
tated tweets, an experienced annotator examined
whether one or the other was markedly better. In
100 cases the two annotations were of comparable
quality (neither was obviously better) and did not
contain any obvious major errors. In only 7 pairs
did both of the annotations contain a serious error.

Qualitatively, we found several unsurprising
sources of error or disagreement, including em-
bedded/subordinate clauses, subject-auxiliary in-
version, predeterminers, and adverbial modifiers
following a modal/auxiliary verb and a main verb.
Clarification of the conventions, or even explicit
rule-based checking in the validation step, might
lead to quality improvements in further annotation
efforts.

4 Parsing Algorithm

For parsing, we start with TurboParser, which is
open-source and has been found to perform well on
a range of parsing problems in different languages
(Martins et al., 2013; Kong and Smith, 2014). The
underlying model allows for flexible incorporation
of new features and changes to specification in the
output space. We briefly review the key ideas in
TurboParser (§4.1), then describe decoder modifi-
cations required for our problem (§4.2). We then
discuss features we added to TurboParser (§4.3).

4.1 TurboParser

Let an input sentence be denoted by x and the set
of possible dependency parses for x be denoted by
Yx. A generic linear scoring function based on a

4What we deemed major errors included, for example,
an incorrect dependency relation between an auxiliary verb
and the main verb (like ima > [have to]). Minor errors
included an incorrect attachment between two modifiers of
the same head, as in the > only > [grocery store]—the
correct annotation would have two attachments to a single
head, i.e. the > [grocery store] < only (or equivalent).

feature vector representation g is used in parsing
algorithms that seek to find:

parse∗(x) = argmax
y∈Yx

w⊺g(x,y) (1)

The score is parameterized by a vector w of
weights, which are learned from data (most com-
monly using MIRA, McDonald et al., 2005a).

The decomposition of the features into local
“parts” is a critical choice affecting the computa-
tional difficulty of solving Eq. 1. The most aggres-
sive decomposition leads to an “arc-factored” or
“first-order” model, which permits exact, efficient
solution of Eq. 1 using spanning tree algorithms
(McDonald et al., 2005b) or, with a projectivity
constraint, dynamic programming (Eisner, 1996).

Second- and third-order models have also been
introduced, typically relying on approximations,
since less-local features increase the computational
cost, sometimes to the point of NP-hardness (Mc-
Donald and Satta, 2007). TurboParser attacks the
parsing problem using a compact integer linear pro-
gramming (ILP) representation of Eq. 1 (Martins
et al., 2009), then employing alternating directions
dual decomposition (AD3; Martins et al., 2011).
This enables inclusion of second-order features
(e.g., on a word with its sibling or grandparent;
Carreras, 2007) and third-order features (e.g., a
word with its parent, grandparent, and a sibling, or
with its parent and two siblings; Koo and Collins,
2010).

For a collection of (possibly overlapping) parts
for input x, Sx (which includes the union of all
parts of all trees in Yx), we will use the following
notation. Let

g(x,y) = ∑
s∈Sx

fs(x,y), (2)

where fs only considers part s and is nonzero only
if s is present in y. In the ILP framework, each s
has a corresponding binary variable zs indicating
whether part s is included in the output. A col-
lection of constraints relating zs define the set of
feasible vectors z that correspond to valid outputs
and enfore agreement between parts that overlap.
Many different versions of these constraints have
been studied (Riedel and Clarke, 2006; Smith and
Eisner, 2008; Martins et al., 2009, 2010).

A key attraction of TurboParser is that many
overlapping parts can be handled, making use of
separate combinatorial algorithms for efficiently
handling subsets of constraints. For example, the
constraints that force z to encode a valid tree can
be exploited within the framework by making calls
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to classic arborescence algorithms (Chu and Liu,
1965; Edmonds, 1967). As a result, when describ-
ing modifications to TurboParser, we need only to
explain additional constraints and features imposed
on parts.

4.2 Adapted Parse Parts

The first collection of parts we adapt are simple
arcs, each consisting of an ordered pair of indices
of words in x; arc(p,c) corresponds to the attach-
ment of xc as a child of xp (iff zarc(p,c) = 1). Our rep-
resentation explicitly excludes some tokens from
being part of the syntactic analysis (§2.1); to han-
dle this, we constrain zarc(i, j) = 0 whenever xi or x j

is excluded.
The implication is that excluded tokens are still

“visible” to feature functions that involve other
edges. For example, some conventional first-order
features consider the tokens occurring between a
parent and child. Even if a token plays no syntactic
role of its own, it might still be informative about
the syntactic relationships among other tokens. We
note three alternative methods:
1. We might remove all unselected tokens from

x before running the parser. In §5.6 we find
this method to fare 1.7–2.3% worse than our
modified decoding algorithm.

2. We might remove unselected tokens but use
them to define new features, so that they still
serve as evidence. This is the approach taken
by Ma et al. (2014) for punctuation. We judge
our simple modification to the decoding algo-
rithm to be more expedient, and leave the trans-
lation of existing context-word features into that
framework for future exploration.

3. We might incorporate the token selection deci-
sions into the parser, performing joint inference
for selection and parsing. The AD3 algorithm
within TurboParser is well-suited to this kind
of extension: z-variables for each token’s se-
lection could be added, and similar scores to
those of our token selection sequence model
(§2.1) could be integrated into parsing. Given,
however, that the sequence model achieves over
97% accuracy, and that perfect token selection
would gain only 0.1–1% in parsing accuracy (re-
ported in §5.5), we leave this option for future
work as well.

For first-order models, the above change is all
that is necessary. For second- and third-order
models, TurboParser makes use of head automata,

in particular “grand-sibling head automata” that
assign scores to word tuples of xg, its child xp,
and two of xp’s adjacent children, xc and x′c (Koo
et al., 2010). The second-order models in our
experiments include parts for sibling(p,c,c′) and
grandparent(p,c,g) and use the grand-sibling head
automaton to reason about these together. Au-
tomata for an unselected xp or xg, and transitions
that consider unselected tokens as children, are
eliminated. In order to allow the scores to depend
on unselected tokens between xc and x′c, we added
the binned counts of unselected tokens (mostly
punctuation) joint with the word form and POS
tag of xp and the POS tag of xc and x′c as features
scored in the sibling(p,c,c′) part. The changes dis-
cussed above comprise the totality of adaptations
we made to the TurboParser algorithm; we refer to
them as “parsing adaptations” in the experiments.

4.3 Additional Features

Brown clusters. Owoputi et al. (2013) found that
Brown et al. (1992) clusters served as excellent fea-
tures in Twitter POS tagging. Others have found
them useful in parsing (Koo et al., 2008) and other
tasks (Turian et al., 2010). We therefore follow
Koo et al. in incorporating Brown clusters as fea-
tures, making use of the publicly available Twitter
clusters from Owoputi et al.5 We use 4 and 6 bit
cluster representations to create features wherever
POS tags are used, and full bit strings to create
features wherever words were used.

Penn Treebank features. A potential danger of
our choice to “start from scratch” in developing
a dependency parser for Twitter is that the result-
ing annotation conventions, data, and desired out-
put are very different from dependency parses de-
rived from the Penn Treebank. Indeed, Foster et al.
(2011a) took a very different approach, applying
Penn Treebank conventions in annotation of a test
dataset for evaluation of a parser trained using Penn
Treebank trees. In §5.4, we replicate, for depen-
dencies, their finding that a Penn Treebank–trained
parser is hard to beat on their dataset, which was
not designed to be topically representative of En-
glish Twitter. When we turn to a more realistic
dataset like ours, we find the performance of the
Penn Treebank–trained parser to be poor.

Nonetheless, it is hard to ignore such a large
amount of high-quality syntactic data. We there-

5http://www.ark.cs.cmu.edu/TweetNLP/clusters/
50mpaths2
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fore opted for a simple, stacking-inspired incor-
poration of Penn Treebank information into our
model.6 We define a feature on every candidate arc
whose value is the (quantized) score of the same arc
under a first-order model trained on the Penn Tree-
bank converted using head rules that are as close
as possible to our conventions (discussed in more
detail in §5.1). This lets a Penn Treebank model
literally “weigh in” on the parse for a tweet, and
lets the learning algorithm determine how much
consideration it deserves.

5 Experiments

Our experiments quantify the contributions of vari-
ous components of our approach.

5.1 Setup
We consider two test sets. The first, TEST-NEW,
consists of 201 tweets from our corpus annotated
by the most experienced of our annotators (one
of whom is a co-author of this work). Given very
limited data, we believe using the highest quality
data for measuring performance, and lower-quality
data for training, is a sensibly realistic choice.

Our second test set, TEST-FOSTER, is the dataset
annotated by Foster et al. (2011b), which consists
of 250 sentences. Recall that their corpus was
annotated with phrase structures according to Penn
Treebank conventions. Conversion to match our
annotation conventions was carried out as follows:
1. We used the PennConverter tool with head rule

options selected to approximate our annotation
conventions as closely as possible.7

2. An experienced annotator manually modified
the automatically converted trees by:

(a) Performing token selection (§2.1) to remove
the tokens which have no syntactic function.

(b) Grouping MWEs (§2.2). Here, most of the
MWEs are named entities such as Manch-
ester United.

(c) Attaching the roots of the utterance in tweets
to the “wall” symbol (§2.3).8

6Stacking is a machine learning method where the predic-
tions of one model are used to create features for another. The
second model may be from a different family. Stacking has
been found successful for dependency parsing by Nivre and
McDonald (2008) and Martins et al. (2008). Johansson (2013)
describes further advances that use path features.

7http://nlp.cs.lth.se/software/treebank_

converter; run with -rightBranching=false
-coordStructure=prague -prepAsHead=true
-posAsHead=true -subAsHead=true -imAsHead=true
-whAsHead=false.

8This was infrequent; their annotations split most multi-

TRAIN TEST-NEW TEST-FOSTER

tweets 717 201 < 250†

unique tweets 569 201 < 250†

tokens 9,310 2,839 2,841
selected tokens 7,015 2,158 2,366
types 3,566 1,461 1,230
utterances 1,473 429 337
multi-root tweets 398 123 60
MWEs 387 78 109

Table 1: Statistics of our datasets. (A tweet with k annotations
in the training set is counted k times for the totals of tokens,
utterances, etc.). †TEST-FOSTER contains 250 manually split
sentences. The number of tweets should be smaller but is not
recoverable from the data release.

(d) Recovering the internal structure of the noun
phrases.

(e) Fixing a difference in conventions with re-
spect to subject-auxiliary inversion.9

We consider two training sets. TRAIN-NEW con-
sists of the remaining 717 tweets from our corpus
(§3) annotated by the rest of the annotators. Some
of these tweets have annotations from multiple an-
notators; 11 annotations for tweets that also oc-
curred in TEST-NEW were excluded. TRAIN-PTB
is the conventional training set from the Penn Tree-
bank (§2–21). The PennConverter tool was used
to extract dependencies, with head rule options se-
lected to approximate our annotation conventions
as closely as possible (see footnote 7). The result-
ing annotations lack the same attention to noun
phrase–internal structure (§2.4) and handle subject-
auxiliary inversions differently than our data. Part-
of-speech tags were coarsened to be compatible
with the Twitter POS tags, using the mappings spec-
ified by Gimpel et al. (2011).

Statistics for the in-domain datasets are given in
Table 1. As we can see in the table, more than half
of the tweets in our corpus have multiple utterances.
The out-of-vocabulary rate for our TRAIN/TEST-
NEW split is 33.7% by token and 62.5% by type;
for TRAIN/TEST-FOSTER it is 41.4% and 64.6%
respectively. These are much higher than the 2.5%
and 13.2% in the standard Penn Treebank split.

All evaluations here are on unlabeled attachment
F1 scores.10 Our parser provides labels for coordi-
nation structures and MWEs (§2), but we do not
present detailed evaluations of those due to space
constraints.

utterance tweets into separate sentence-instances.
9For example, in the sentence Is he driving, we attached

he to driving while PennConverter attaches it to Is.
10Because of token selection, precision and recall may not

be equal.
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5.2 Preprocessing

Because some of the tweets in our test set were
also in the training set of Owoputi et al. (2013),
we retrained their POS tagger on all the annotated
data they have minus the 201 tweets in our test
set. Its tagging accuracy was 92.8% and 88.7% on
TEST-NEW and TEST-FOSTER, respectively. The
token selection model (§2.1) achieves 97.4% on
TEST-NEW with gold or automatic POS tagging;
and on TEST-FOSTER, 99.0% and 99.5% with gold
and automatic POS tagging, respectively.

As noted in §4.3, Penn Treebank features were
developed using a first-order TurboParser trained
on TRAIN-PTB; Brown clusters were included in
computing these Penn Treebank features if they
were available in the parser to which the features
(i.e. Brown clusters) were added.

5.3 Main Parser

The second-order TurboParser described in §4,
trained on TRAIN-NEW (default hyperparameter
values), achieves 80.9% unlabeled attachment ac-
curacy on TEST-NEW and 76.1% on TEST-FOSTER.
The experiments consider variations on this main
approach, which is the version released as TWEE-
BOPARSER.

The discrepancy between the two test sets is
easily explained: as noted in §3.1, the dataset
from which our tweets are drawn was designed
to be representative of English on Twitter. Fos-
ter et al. (2011b) selected tweets from Berming-
ham and Smeaton’s (2010) corpus, which uses fifty
predefined topics like politics, business, sports,
and entertainment—in short, topics not unlike
those found in the Penn Treebank. Relative to
the Penn Treebank training set, the by-type out-
of-vocabulary rates are 45.2% for TEST-NEW and
only 21.6% for TEST-FOSTER (cf. 13.2% for the
Penn Treebank test set).

Another mismatch is in the handling of utter-
ances. In our corpus, utterance segmentation
emerges from multi-rooted annotations (§2.3). Fos-
ter et al. (2011b) manually split each tweet into
utterances and treat those as separate instances in
their corpus, so that our model trained on often
multi-rooted tweets from TRAIN is being tested
only on single-rooted utterances.

5.4 Experiment: Which Training Set?

We consider the direct use of TRAIN-PTB instead
of TRAIN-NEW. Table 2 reports the results on both

Unlabeled Attachment F1 (%)
mod. POS POS as-is

TEST-NEW

Baseline 73.0 73.5
+ Brown 73.7 73.3
+ Brown & PA 72.9 73.1

TEST-FOSTER

Baseline 76.3 75.2
+ Brown 75.5 76.7
+ Brown & PA 76.9 77.0

Table 2: Performance of second-order TurboParser trained on
TRAIN-PTB, with various preprocessing options. The main
parser (§5.3) achieves 80.9% and 76.1% on the two test sets,
respectively; see §5.4 for discussion.

test sets, with various options. “Baseline” is off-
the-shelf second-order TurboParser. We consider
augmenting it with Brown cluster features (§4.3;
“+ Brown”) and then also with the parsing adapta-
tions of §4.2 (“+ Brown & PA”). Another choice
is whether to modify the POS tags at test time; the
modified version (“mod. POS”) maps at-mentions
to pronoun, and hashtags and URLs to noun.

We note that comparing these scores to our main
parser (§5.3) conflates three very important inde-
pendent variables: the amount of training data
(39,832 Penn Treebank sentences vs. 1,473 Twitter
utterances), the annotation method, and the source
of the data. However, we are encouraged that, on
what we believe is the superior test set (TEST-NEW),
our overall approach obtains a 7.8% gain with an
order of magnitude less annotated data.

5.5 Experiment: Effect of Preprocessing
Table 3 (second block, italicized) shows the per-
formance of the main parser on both test sets with
gold-standard and automatic POS tagging and to-
ken selection. On TEST-NEW, with either gold-
standard POS tags or gold-standard token selection,
performance increases by 1.1%; with both, it in-
creases by 2.3%. On TEST-FOSTER, token selec-
tion matters much less, but POS tagging accounts
for a drop of more than 6%. This is consistent with
Foster et al.’s finding: using a fine-grained Penn
Treebank–trained POS tagger (achieving around
84% accuracy on Twitter), they saw 5–8% improve-
ment in unlabeled dependency attachment accuracy
using gold-standard POS tags.

5.6 Experiment: Ablations
We ablated each key element of our main parser—
PTB features, Brown features, second order fea-
tures and decoding, and the parsing adaptations of
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Figure 3: Feature ablations; these charts present the same scores shown in Table 3 and more variants of the first-order model.

Unlabeled Attachment F1 (%)
TEST-NEW TEST-FOSTER

Main parser 80.9 76.1

Gold POS and TS 83.2 82.8
Gold POS, automatic TS 82.0 82.3
Automatic POS, gold TS 82.0 76.2

Single ablations:

− PTB 80.2 72.6
− Brown 81.2 75.4
− 2nd order 80.1 75.6
− PA 79.2 73.7

Double ablations:

− PTB, − Brown 79.5 72.8
− PTB, − 2nd order 78.5 72.2
− PTB, − PA 77.4 69.6
− Brown, − 2nd order 80.7 74.5
− Brown, − PA 78.2 73.7
− 2nd order, − PA 77.7 73.5

Baselines:

Second order 76.5 70.4
First order 76.1 70.4

Table 3: Effects of gold-standard POS tagging and token
selection (TS; §5.5) and of feature ablation (§5.6). The “base-
lines” are TurboParser without the parsing adaptations in §4.2
and without Penn Treebank or Brown features. The best result
in each column is bolded. See also Figure 3.

§4.2—as well as each pair of these. These condi-
tions use automatic POS tags and token selection.
The “− PA” condition, which ablates parsing adap-
tations, is accomplished by deleting punctuation
(in training and test data) and parsing using Turbo-
Parser’s existing algorithm.

Results are shown in Table 3. Further results
with first- and second-order TurboParsers are plot-
ted in Figure 3. Notably, a 2–3% gain is obtained by
modifying the parsing algorithm, and our stacking-
inspired use of Penn Treebank data contributes in
both cases, quite a lot on TEST-FOSTER (unsur-
prisingly given that test set’s similarity to the Penn
Treebank). More surprisingly, we find that Brown

cluster features do not consistently improve perfor-
mance, at least not as instantiated here, with our
small training set.

6 Conclusion

We described TWEEBOPARSER, a dependency
parser for English tweets that achieves over 80%
unlabeled attachment score on a new, high-quality
test set. This is on par with state-of-the-art re-
ported results for news text in Turkish (77.6%;
Koo et al., 2010) and Arabic (81.1%; Martins
et al., 2011). Our contributions include impor-
tant steps taken to build the parser: a considera-
tion of the challenges of parsing tweets that in-
formed our annotation process, the resulting new
TWEEBANK corpus, adaptations to a statistical
parsing algorithm, a new approach to exploiting
data in a better-resourced domain (the Penn Tree-
bank), and experimental analysis of the decisions
we made. The dataset and parser can be found at
http://www.ark.cs.cmu.edu/TweetNLP.
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Abstract

Dependency parsing with high-order fea-
tures results in a provably hard decoding
problem. A lot of work has gone into
developing powerful optimization meth-
ods for solving these combinatorial prob-
lems. In contrast, we explore, analyze, and
demonstrate that a substantially simpler
randomized greedy inference algorithm al-
ready suffices for near optimal parsing: a)
we analytically quantify the number of lo-
cal optima that the greedy method has to
overcome in the context of first-order pars-
ing; b) we show that, as a decoding algo-
rithm, the greedy method surpasses dual
decomposition in second-order parsing; c)
we empirically demonstrate that our ap-
proach with up to third-order and global
features outperforms the state-of-the-art
dual decomposition and MCMC sampling
methods when evaluated on 14 languages
of non-projective CoNLL datasets.1

1 Introduction

Dependency parsing is typically guided by param-
eterized scoring functions that involve rich fea-
tures exerting refined control over the choice of
parse trees. As a consequence, finding the high-
est scoring parse tree is a provably hard combina-
torial inference problem (McDonald and Pereira,
2006). Much of the recent work on parsing has
focused on solving these problems using powerful
optimization techniques. In this paper, we follow a
different strategy, arguing that a much simpler in-
ference strategy suffices. In fact, we demonstrate
that a randomized greedy method of inference sur-
passes the state-of-the-art performance in depen-
dency parsing.
∗Both authors contributed equally.
1Our code is available at https://github.com/

taolei87/RBGParser.

Our choice of a randomized greedy algorithm
for parsing follows from a successful track record
of such methods in other hard combinatorial prob-
lems. These conceptually simple and intuitive
algorithms have delivered competitive approxi-
mations across a broad class of NP-hard prob-
lems ranging from set cover (Hochbaum, 1982) to
MAX-SAT (Resende et al., 1997). Their success
is predicated on the observation that most realiza-
tions of problems are much easier to solve than the
worst-cases. A simpler algorithm will therefore
suffice in typical cases. Evidence is accumulating
that parsing problems may exhibit similar proper-
ties. For instance, methods such as dual decom-
position offer certificates of optimality when the
highest scoring tree is found. Across languages,
dual decomposition has shown to lead to a cer-
tificate of optimality for the vast majority of the
sentences (Koo et al., 2010; Martins et al., 2011).
These remarkable results suggest that, as a com-
binatorial problem, parsing appears simpler than
its broader complexity class would suggest. In-
deed, we show that a simpler inference algorithm
already suffices for superior results.

In this paper, we introduce a randomized greedy
algorithm that can be easily used with any rich
scoring function. Starting with an initial tree
drawn uniformly at random, the algorithm makes
only local myopic changes to the parse tree in an
attempt to climb the objective function. While a
single run of the hill-climbing algorithm may in-
deed get stuck in a locally optimal solution, mul-
tiple random restarts can help to overcome this
problem. The same algorithm is used both for
learning the parameters of the scoring function as
well as for parsing test sentences.

The success of a randomized greedy algorithm
is tied to the number of local maxima in the search
space. When the number is small, only a few
restarts will suffice for the greedy algorithm to
find the highest scoring parse. We provide an al-
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gorithm for explicitly counting the number of lo-
cal optima in the context of first-order parsing,
and demonstrate that the number is typically quite
small. Indeed, we find that a first-order parser
trained with exact inference or using our random-
ized greedy algorithm delivers basically the same
performance.

We hypothesize that parsing with high-order
scoring functions exhibits similar properties. The
main rationale is that, even in the presence of high-
order features, the resulting scoring function re-
mains first-order dominant. The performance of
a simple arc-factored first-order parser is only a
few percentage points behind higher-order parsers.
The higher-order features in the scoring function
offer additional refinement but only a few changes
above and beyond the first-order result. As a
consequence, most of the arc choices are already
determined by a much simpler, polynomial time
parser.

We use dual decomposition to show that the
greedy method indeed succeeds as an inference al-
gorithm even with higher-order scoring functions.
In fact, with second-order features, regardless of
which method was used for training, the random-
ized greedy method outperforms dual decomposi-
tion by finding higher scoring trees. For the sen-
tences that dual decomposition is optimal (obtains
a certificate), the greedy method finds the same
solution in over 99% of the cases. Our simple
inference algorithm is therefore likely to scale to
higher-order parsing and we demonstrate empiri-
cally that this is indeed so.

We validate our claim by evaluating the method
on the CoNLL dependency benchmark that com-
prises treebanks from 14 languages. Aver-
aged across all languages, our method out-
performs state-of-the-art parsers, including Tur-
boParser (Martins et al., 2013) and our earlier
sampling-based parser (Zhang et al., 2014). On
seven languages, we report the best published re-
sults. The method is not sensitive to initialization.
In fact, drawing the initial tree uniformly at ran-
dom results in the same performance as when ini-
tialized from a trained first-order distribution. In
contrast, sufficient randomization of the starting
point is critical. Only a small number of restarts
suffices for finding (near) optimal parse trees.

2 Related Work

Finding Optimal Structure in Parsing The use
of rich-scoring functions in dependency parsing
inevitably leads to the challenging combinatorial
problem of finding the maximizing parse. In fact,
McDonald and Pereira (2006) demonstrated that
the task is provably NP-hard for non-projective
second-order parsing. Not surprisingly, approx-
imate inference has been at the center of pars-
ing research. Examples of these approaches in-
clude easy-first parsing (Goldberg and Elhadad,
2010), inexact search (Johansson and Nugues,
2007; Zhang and Clark, 2008; Huang et al., 2012;
Zhang et al., 2013), partial dynamic program-
ming (Huang and Sagae, 2010) and dual decom-
position (Koo et al., 2010; Martins et al., 2011).

Our work is most closely related to the MCMC
sampling-based approaches (Nakagawa, 2007;
Zhang et al., 2014). In our earlier work, we devel-
oped a method that learns to take guided stochas-
tic steps towards a high-scoring parse (Zhang et
al., 2014). In the heart of that technique are so-
phisticated samplers for traversing the space of
trees. In this paper, we demonstrate that a sub-
stantially simpler approach that starts from a tree
drawn from the uniform distribution and uses hill-
climbing for parameter updates achieves similar or
higher performance.

Another related greedy inference method has
been used for non-projective dependency pars-
ing (McDonald and Pereira, 2006). This method
relies on hill-climbing to convert the highest scor-
ing projective tree into its non-projective approxi-
mation. Our experiments demonstrate that when
hill-climbing is employed as a primary learning
mechanism for high-order parsing, it exhibits dif-
ferent properties: the distribution for initialization
does not play a major role in the final outcome,
while the use of restarts contributes significantly
to the quality of the resulting tree.

Greedy Approximations for NP-hard Problems
There is an expansive body of research on greedy
approximations for NP-hard problems. Examples
of NP-hard problems with successful greedy ap-
proximations include the traveling saleman prob-
lem problem (Held and Karp, 1970; Rego et
al., 2011), the MAX-SAT problem (Mitchell et
al., 1992; Resende et al., 1997) and vertex
cover (Hochbaum, 1982). While some greedy
methods have poor worst-case complexity, many
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of them work remarkably well in practice. Despite
the apparent simplicity of these algorithms, un-
derstanding their properties is challenging: often
their “theoretical analyses are negative and incon-
clusive” (Amenta and Ziegler, 1999; Spielman and
Teng, 2001). Identifying conditions under which
approximations are provably optimal is an active
area of research in computer science theory (Du-
mitrescu and Tóth, 2013; Jonsson et al., 2013).

In NLP, randomized and greedy approximations
have been successfully used across multiple ap-
plications, including machine translation and lan-
guage modeling (Brown et al., 1993; Ravi and
Knight, 2010; Daumé III et al., 2009; Moore and
Quirk, 2008; Deoras et al., 2011). In this paper,
we study the properties of these approximations in
the context of dependency parsing.

3 Method

3.1 Preliminaries
Let x be a sentence and T (x) be the set of possi-
ble dependency trees over the words in x. We use
y ∈ T (x) to denote a dependency tree for x, and
y(m) to specify the head (parent) of the modifier
word indexed by m in tree y. We also use m to
denote the indexed word when there is no ambi-
guity. In addition, we define T (y,m) as the set
of “neighboring trees” of y obtained by changing
only the head of the modifier, i.e. y(m).

The dependency trees are scored according to
S(x, y) = θ · φ(x, y), where θ is a vector of pa-
rameters and φ(x, y) is a sparse feature vector rep-
resentation of tree y for sentence x. In this work,
φ(x, y) will include up to third-order features as
well as a range of global features commonly used
in re-ranking methods (Collins, 2000; Charniak
and Johnson, 2005; Huang, 2008).

The parameters θ in the scoring function are
estimated on the basis of a training set D =
{(x̂i, ŷi)}Ni=1 of sentences x̂i and the correspond-
ing gold (target) trees ŷi. We adopt a max-margin
framework for this learning problem. Specifically,
we aim to find parameter values that score the gold
target trees higher than others:

∀i ∈ {1, · · · , N}, y ∈ T (x̂i),
S(x̂i, ŷi) ≥ S(x̂i, y) + ‖ŷi − y‖1 − ξi

where ξi ≥ 0 is the slack variable (non-zero values
are penalized against) and ‖ŷi − y‖1 is the ham-
ming distance between the gold tree ŷi and a can-
didate parse y.

In an online learning setup, parameters are up-
dated successively after each sentence. Each up-
date still requires us to find the “strongest viola-
tion”, i.e., a candidate tree ỹ that scores higher
than the gold tree ŷi:

ỹ = arg max
y∈T (x̂i)

{S(x̂i, y) + ‖y − ŷi‖1}

The parameters are then revised so as to select
against the offending ỹ. Instead of a standard
parameter update based on ỹ as in perceptron,
stochastic gradient descent, or passive-aggressive
updates, our implementation follows Lei et al.
(2014) where the first-order parameters are broken
up into a tensor. Each tensor component is updated
successively in combination with the parameters
corresponding to MST features (McDonald et al.,
2005) and higher-order features (when included).2

3.2 Algorithm
During training and testing, the key combinatorial
problem we must solve is that of decoding, i.e.,
finding the highest scoring tree ỹ ∈ T (x) for each
sentence x (or x̂i). In our notation,

ỹ = arg max
y∈T (x̂i)

{θ · φ(x̂i, y) + ‖y − ŷi‖1} (train)

ỹ = arg max
y∈T (x)

{θ · φ(x, y)} (test)

While the decoding problem with feature sets sim-
ilar to ours has been shown to be NP-hard, many
approximation algorithms work remarkably well.
We commence with a motivating example.

Locality and Parsing One possible reason for
why greedy or other approximation algorithms
work well for dependency parsing is that typical
sentences and therefore the learned scoring func-
tions S(x, y) = θ · φ(x, y) are primarily “lo-
cal”. By this we mean that head-modifier deci-
sions could be made largely without considering
the surrounding structure (the context). For exam-
ple, in English an adjective and a determiner are
typically attached to the following noun.

We demonstrate the degree of locality in de-
pendency parsing by comparing a first-order tree-
based parser to the parser that predicts each head
word independently of others. Note that the in-
dependent prediction of dependency arcs does not
necessarily give rise to a tree. The parameters of

2We refer the readers to Lei et al. (2014) for more details
about the tensor scoring function and the online update.
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Dataset Indp. Pred Tree Pred
Slovene 83.7 84.2
Arabic 79.0 79.2
Japanese 93.4 93.7
English 91.6 91.9
Average 86.9 87.3

Table 1: Head attachment accuracy of a first-order
local classifier (left) and a first-order structural
prediction model (right). The two types of mod-
els are trained using the same set of features.

Input: parameter θ, sentence x
Output: dependency tree ỹ

1: Randomly initialize tree y(0);
2: t = 0;
3: repeat
4: list = bottom-up node list of y(t);
5: for each word m in list do
6: y(t+1) = arg maxy∈T (y(t),m) S(x, y);
7: t = t+ 1;
8: end for
9: until no change in this iteration

10: return ỹ = y(t);

Figure 1: A randomized hill-climbing algorithm
for dependency parsing.

the two parsers, the independent prediction and
a tree-based parser, are trained separately with
the corresponding decoding algorithm but with the
same feature set.

Table 1 shows that the accuracy of the inde-
pendent prediction ranges from 79% to 93% on
four CoNLL datasets. The results are on par with
the first-order structured prediction model. This
experiment reinforces the conclusion in Liang et
al. (2008), where a local classifier was shown
to achieve comparable accuracy to a sequential
model (e.g. CRF) in POS tagging and named-
entity recognition.

Hill-Climbing with Random Restarts We
build here on the motivating example and explore
greedy algorithms as generalizations of purely lo-
cal decoding. Greedy algorithms break the decod-
ing problem into a sequence of simple local steps,
each required to improve the solution. In our case,
simple local steps correspond to choosing the head

for each modifier word.
We begin with a tree y(0), which can be a sam-

ple drawn uniformly from T (x) (Wilson, 1996).
Our greedy algorithm then updates y(t) to a bet-
ter tree y(t+1) by revising the head of one modifier
word while maintaining the constraint that the re-
sulting structure is a tree. The modifiers are con-
sidered in the bottom-up order relative to the cur-
rent tree (the word furthest from the root is consid-
ered first). We provide an analysis to motivate this
bottom-up update strategy in Section 4.1. The al-
gorithm continues until the score can no longer be
improved by changing the head of a single word.
The resulting tree represents a locally optimal pre-
diction relative to a single-arc greedy algorithm.
Figure 1 gives the algorithm in pseudo-code.

There are many possible variations of the sim-
ple randomized greedy hill-climbing algorithm.
First, the Wilson sampling algorithm (Wilson,
1996) can be naturally extended to obtain i.i.d.
samples from any first-order distributions. There-
fore, we could initialize the tree y(0) with a tree
from a first-order parser, or draw the initial tree
from a first-order distribution other than uniform.
However, perhaps surprisingly, as we demon-
strate later, little is lost with uniform initializa-
tion. Second, since a single run of randomized
hill-climbing is relatively cheap and runs are in-
dependent to each other, it is easy to execute mul-
tiple runs independently in parallel. The final pre-
dicted tree is then simply the highest scoring tree
across the multiple runs. We demonstrate that only
a small number of parallel runs are necessary for
near optimal prediction.

4 Analysis

4.1 First-Order Parsing

We provide here a firmer basis for why the ran-
domized greedy algorithm can be expected to
work. While the focus of the rest of the paper
is on higher-order parsing, we limit ourselves in
this subsection to first-order parsing. The reasons
for this are threefold. First, a simple greedy algo-
rithm is already not guaranteed a priori to work in
the context of a first-order scoring function. The
conclusions from this analysis are therefore likely
to carry over to higher-order parsing scenarios as
well. Second, a first-order arc-factored scoring
provides us an easy way to ascertain when the ran-
domized greedy algorithm indeed found the high-
est scoring tree. Finally, we are able to count the
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Dataset Average Len.
# of local optima at percentile fraction of finding global optima (%)
50% 70% 90% 0 <Len.≤ 15 Len.> 15

Turkish 12.1 1 1 2 100 100
Slovene 15.9 2 20 3647 100 98.1
English 24.0 21 121 2443 100 99.3
Arabic 36.8 2 35 >10000 100 99.1

Table 2: The left part of the table shows the local optimum statistics of the first-order model. The
sentences are sorted by the number of local optima. Columns 3 to 5 show the number of local optima of
a sentence at different percentile of the sorted list. For example, on English 50% of the sentences have
no more than 21 local optimum trees. The right part shows the fraction of finding global optima using
300 uniform restarts for each sentence.

number of locally optimal solutions for a greedy
algorithm in the context of first-order parsing and
can therefore relate this property to the success
rates of the algorithm.

Reachability We begin by highlighting a basic
property of trees, namely that single arc changes
suffice for transforming any tree to any other tree
in a small number of steps while maintaining that
each intermediate structure is also a tree. In this
sense, a target tree is reachable from any start-
ing point using only single arc changes. More
formally, let y be any starting tree and y′ the de-
sired target. Let m1,m2, · · · ,mn be the bottom-
up list of words (modifiers) corresponding to tree
y, where m1 is the word furthest from the root.
We can simply change each head y(mi) to that of
y′(mi) in this order i = 1, . . . , n. The bottom-up
order guarantees that no cycle is introduced with
respect to the remaining (yet unmodified) nodes of
y. The fact that y′ is a valid tree implies no cycle
will appear with respect to the already modified
nodes.

Note that, according to this property, any tree
is reachable from any starting point using only k
modifications, where k is the number of head dif-
ferences, i.e. k = |{m : y(m) 6= y′(m)}|. The
result also suggests that it may be helpful to per-
form the greedy steps in the bottom-up order, a
suggestion that we follow in our implementation.

Broadly speaking, we have established that
the greedy algorithm is not inherently limited by
virtue of its basic steps. Of course, it is a differ-
ent question whether the scoring function supports
such local changes towards the correct target tree.

Locally Optimal Trees While greedy algo-
rithms are notoriously prone to getting stuck in
locally optimal solutions, we establish here that

Function CountOptima(G = 〈V,E〉)
V = {w0, w1, · · · , wn} where w0 is the
root
E = {eij ∈ R} are the arc scores

Return: the number of local optima

1: Let y(0) = ∅ and y(i) = arg maxj eji;
2: if y is a tree (no cycle) then return 1;
3: Find a cycle C ⊂ V in y;
4: count = 0;

// contract the cycle
5: create a vertex w∗;
6: ∀j /∈ C : e∗j = maxk∈C ekj ;
7: for each vertex wi ∈ C do
8: ∀j /∈ C : ej∗ = eji;
9: V ′ = V ∪ {w∗} \ C;

10: E′ = E ∪ {e∗j , ej∗ | ∀j /∈ C}
11: count += CountOptima(G′ = 〈V ′, E′〉);
12: end for
13: return count;

Figure 2: A recursive algorithm for counting lo-
cal optima for a sentence with words w1, · · · , wn
(first-order parsing). The algorithm resembles the
Chu-Liu-Edmonds algorithm for finding the max-
imum directed spanning tree (Chu and Liu, 1965).

decoding with learned scoring functions involves
only a small number of local optima. In our case,
a local optimum corresponds to a tree y where no
single change of head y(m) results in a higher
scoring tree. Clearly, the highest scoring tree is
also a local optimum in this sense. If there were
many such local optima, finding the one with the
highest score would be challenging for a greedy
algorithm, even with randomization.

We begin with a worst case analysis and estab-
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Dataset Trained with Hill-Climbing (HC) Trained with Dual Decomposition (DD)
%Cert (DD) sDD>sHC sDD=sHC sDD<sHC %Cert (DD) sDD>sHC sDD=sHC sDD<sHC

Turkish 98.7 0.0 99.8 0.2 98.7 0.0 100.0 0.0
Slovene 94.5 0.0 98.7 1.3 92.3 0.2 99.0 0.8
English 94.5 0.3 98.7 1.0 94.6 0.5 98.7 0.8
Arabic 78.8 3.4 93.9 2.7 75.3 4.7 88.4 6.9

Table 3: Decoding quality comparison between hill-climbing (HC) and dual decomposition (DD). Mod-
els are trained either with HC (left) or DD (right). sHC denotes the score of the tree retrieved by HC
and sDD gives the analogous score for DD. The columns show the percentage of all test sentences for
which one method succeeds in finding a higher or the same score. “Cert” column gives the percentage
of sentences for which DD finds a certificate.

lish a tight upper bound on the number of local
optima for a first-order scoring function.

Theorem 1 For any first-order scoring function
that factorizes into the sum of arc scores S(x, y) =∑
Sarc(y(m),m): (a) the number of locally op-

timal trees is at most 2n−1 for n words; (b) this
upper bound is tight.3

While the number of possible dependency trees
is (n + 1)n−1 (Cayley’s formula), the number of
local optima is at most 2n−1. This is still too many
for longer sentences, suggesting that, in the worst
case, a randomized greedy algorithm is unlikely to
find the highest scoring tree. However, the scor-
ing functions we learn for dependency parsing are
considerably easier.

Average Case Analysis In contrast to the worst-
case analysis above, we will count here the actual
number of local optima per sentence for a first-
order scoring function learned from data with the
randomized greedy algorithm. Figure 2 provides
pseudo-code for our counting algorithm. The al-
gorithm is derived by tailoring the proof of Theo-
rem 1 to each sentence.

Table 2 shows the empirical number of locally
optimal trees estimated by our algorithm across 4
different languages. Decoding with trained scor-
ing functions in the average case is clearly sub-
stantially easier than the worst case. For exam-
ple, on the English test set more than 70% of the
sentences have at most 121 locally optimal trees.
Since the average sentence length is 24, the dis-
crepancy between the typical number (e.g., 121)
and the worst case (224−1) is substantial. As a re-
sult, only a small number of restarts is likely to
suffice for finding optimal trees in practice.

Optimal Decoding We can easily verify
whether the randomized greedy algorithm indeed

3A proof sketch is given in Appendix.

succeeds in finding the highest scoring trees with
a learned first-order scoring function. We have
established above that there are typically only a
small number of locally optimal trees. We would
therefore expect the algorithm to work. We show
the results in the second part of Table 2. For short
sentences of length up to 15, our method finds the
global optimum for all the test sentences. Success
rates remain high even for longer test sentences.

4.2 Higher-Order Parsing

Exact decoding with high-order features is known
to be provably hard (McDonald et al., 2005). We
begin our analysis here with a second-order (sib-
ling/grandparent) model, and compare our ran-
domized hill-climbing (HC) method to dual de-
composition (DD), re-implementing Koo et al.
(2010). Table 3 compares decoding quality for the
two methods across four languages. Overall, in
97.8% of the sentences, HC obtains the same score
as DD, in 1.3% of the cases HC finds a higher
scoring tree, and in 0.9% of cases DD results in
a better tree. The results follow the same pattern
regardless of which method was used to train the
scoring function. The average rate of certificates
for DD was 92%. In over 99% of these sentences,
HC reaches the same optimum.

We expect that these observations about the suc-
cess of HC carry over to other high-order parsing
models for several reasons. First, a large num-
ber of arcs are pruned in the initial stage, con-
siderably reducing the search space and minimiz-
ing the number of possible locally optimal trees.
Second, many dependencies can be determined
already with independent arc prediction (see our
motivating example above), predictions that are
readily achieved with a greedy algorithm. Finally,
high-order features represent smaller refinements,
i.e., suggest only a few changes above and be-
yond the dominant first-order scores. Greedy al-
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gorithms are therefore likely to be able to leverage
at least some of this potential. We demonstrate be-
low that this is indeed so.

Our methods are trained within the max-margin
framework. As a result, we are expected to find
the highest scoring competing tree for each train-
ing sentence (the “strongest violation”). One may
question therefore whether possible sub-optimal
decoding for some training sentences (finding “a
violation” rather than the “strongest violation”)
impacts the learned parser. To this end, Huang et
al. (2012) have established that weaker violations
do suffice for separable training sets.

5 Experimental Setup

Dataset and Evaluation Measures We evalu-
ate our model on CoNLL dependency treebanks
for 14 different languages (Buchholz and Marsi,
2006; Surdeanu et al., 2008), using standard train-
ing and testing splits. We use part-of-speech tags
and the morphological information provided in the
corpus. Following standard practice, we use Unla-
beled Attachment Score (UAS) excluding punctu-
ation (Koo et al., 2010; Martins et al., 2013) as the
evaluation metric in all our experiments.

Baselines We compare our model with the Tur-
boParser (Martins et al., 2013) and our earlier
sampling-based parser (Zhang et al., 2014). For
both parsers, we directly compare with the re-
cent published results on the CoNLL datasets.
We also compare our parser against the best pub-
lished results for the individual languages in our
datasets. This comparison set includes four ad-
ditional parsers: Martins et al. (2011), Koo et al.
(2010), Zhang et al. (2013) and our tensor-based
parser (Lei et al., 2014).

Features We use the same feature templates as
in our prior work (Zhang et al., 2014; Lei et al.,
2014)4. Figure 3 shows the first- to third-order
feature templates that we use in our model. For
the global features we use right-branching, coor-
dination, PP attachment, span length, neighbors,
valency and non-projective arcs features.

Implementation Details Following standard
practices, we train our model using the passive-
aggressive online learning algorithm (MIRA)
and parameter averaging (Crammer et al., 2006;

4We refer the readers to Zhang et al. (2014) and Lei et al.
(2014) for the detailed definition of each feature template.

arc!

head bigram!

!h h m m+1

h m

consecutive sibling!

h m s

grandparent!

g h m

grand-sibling!

g h m s

tri-siblings!

h m s t

grand-grandparent!

g h mgg

outer-sibling-grandchild!

h m sgc h s gcm

inner-sibling-grandchild!

Figure 3: First- to third-order features.

Arabic Slovene English Chinese German

−2

−1
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1

2

3

4

5

Len ≤ 15
Len > 15

Figure 4: Absolute UAS improvement of our full
model over the first-order model. Sentences in the
test set are divided into 2 groups based on their
lengths.

Collins, 2002). By default we use an adaptive
strategy for running the hill-climbing algorithm
– for a given sentence we repeatedly run the al-
gorithm in parallel5 until the best tree does not
change for K = 300 consecutive restarts. For
each restart, by default we initialize the tree y(0)

by sampling from the first-order distribution us-
ing the current learned parameter values (and first-
order scores). We train our first-order and third-
order model for 10 epochs and our full model for
20 epochs for all languages, and report the average
performance across three independent runs.

6 Results

Comparison with the Baselines Table 4 sum-
marizes the results of our model, along with the
state-of-the-art baselines. On average across 14
languages, our full model with the tensor com-
ponent outperforms both TurboParser and the
sampling-based parser. The direct comparison

5We use 8 threads in all the experiments.
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Our Model Exact 1st Turbo Sampling Best Published1st 3rd Fullw/o tensor Full (MA13) (ZL14)
Arabic 78.98 79.95 79.38 80.24 79.22 79.64 80.12 81.12 (MS11)
Bulgarian 92.15 93.38 93.69 93.72 92.24 93.10 93.30 94.02 (ZH13)
Chinese 91.20 93.00 92.76 93.04 91.17 89.98 92.63 92.68 (LX14)
Czech 87.65 90.11 90.34 90.77 87.82 90.32 91.04 91.04 (ZL14)
Danish 90.50 91.43 91.66 91.86 90.56 91.48 91.80 92.00 (ZH13)
Dutch 84.49 86.43 87.04 87.39 84.79 86.19 86.47 86.47 (ZL14)
English 91.85 93.01 93.20 93.25 91.94 93.22 92.94 93.22 (MA13)
German 90.52 91.91 92.64 92.67 90.54 92.41 92.07 92.41 (MA13)
Japanese 93.78 93.80 93.35 93.56 93.74 93.52 93.42 93.74 (LX14)
Portuguese 91.12 92.07 92.60 92.36 91.16 92.69 92.41 93.03 (KR10)
Slovene 84.29 86.48 87.06 86.72 84.15 86.01 86.82 86.95 (MS11)
Spanish 85.52 87.87 88.17 88.75 85.59 85.59 88.24 88.24 (ZL14)
Swedish 89.89 91.17 91.35 91.08 89.78 91.14 90.71 91.62 (ZH13)
Turkish 76.57 76.80 76.13 76.68 76.40 76.90 77.21 77.55 (KR10)
Average 87.75 89.10 89.24 89.44 87.79 88.72 89.23 89.58

Table 4: Results of our model and several state-of-the-art systems. “Best Published UAS” includes the
most accurate parsers among Martins et al. (2011), Martins et al. (2013), Koo et al. (2010), Zhang et
al. (2013), Lei et al. (2014) and Zhang et al. (2014). For the third-order model, we use the feature set
of TurboParser (Martins et al., 2013). The full model combines features of our sampling-based parser
(Zhang et al., 2014) and tensor features (Lei et al., 2014).

Dataset MAP-1st Uniform Rnd-1st
UAS Init. UAS Init. UAS Init.

Slovene 85.2 80.1 86.7 13.7 86.7 34.2
Arabic 78.8 75.1 79.7 12.4 80.2 32.8
English 91.1 82.0 93.3 39.6 93.3 55.6
Chinese 87.2 75.3 93.2 36.8 93.0 54.5
Dutch 84.8 79.5 87.0 26.9 87.4 45.6
Average 85.4 78.4 88.0 25.9 88.1 44.5

Table 5: Comparison between different initializa-
tion strategies: (a) MAP-1st: only the MAP tree
of the first-order score; (b) Uniform: random trees
are sampled from the uniform distribution; and
(c) Rnd-1st: random trees are sampled from the
first-order distribution. For each method, the table
shows the average accuracy of the initial tree and
the final parsing accuracy.

with TurboParser is achieved by restricting our
model to third order features which still outper-
forms TurboParser (89.10% vs 88.72%). To com-
pare against the sampling-based parser, we em-
ploy our model without the tensor component. The
two models achieve a similar average performance
(89.24% and 89.23% respectively). Since relative
parsing performance depends on a target language,
we also include comparison with the best pub-
lished results. The model achieves the best pub-
lished results for seven languages.

Another noteworthy comparison concerns first-
order parsers. As Table 4 shows, the exact and ap-
proximate versions of the first-order parser deliver
almost identical performance.

Impact of High-Order Features Table 4 shows
that the model can effectively utilize high-order
features. Comparing the average performance of
the model variants, we see that the accuracy on
the benchmark languages consistently improves
when higher-order features are added. This char-
acteristic of the randomized greedy parser is in
line with findings about other state-of-the-art high-
order parsers (Martins et al., 2013; Zhang et al.,
2014). Figure 4 breaks down these gains based
on the sentence length. As expected, on most lan-
guages high-order features are particularly helpful
when parsing longer sentences.

Impact of Initialization and Restarts Table 5
shows the impact of initialization on the model
performance for several languages. We consider
three strategies: the MAP estimate of the first-
order score from the model, uniform sampling and
sampling from the first-order distribution. The ac-
curacy of initial trees varies greatly, ranging from
78.4% for the MAP estimate to 25.9% and 44.5%
for the latter randomized strategies. However, the
resulting parsing accuracy is not determined by
the initial accuracy. In fact, the two sampling
strategies result in almost identical parsing perfor-
mance. While the first-order MAP estimate gives
the best initial guess, the overall parsing accuracy
of this method lags behind. This result demon-
strates the importance of restarts – in contrast to
the randomized strategies, the MAP initialization
performs only a single run of hill-climbing.
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Length ≤ 15 Length > 15
Slovene 100 98.11
English 100 99.12

Table 6: Fractions (%) of the sentences that find
the best solution among 3,000 restarts within the
first 300 restarts.
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Figure 5: Convergence analysis on Slovene and
English datasets. The graph shows the normalized
score of the output tree as a function of the number
of restarts. The score of each sentence is normal-
ized by the highest score obtained for this sentence
after 3,000 restarts. We only show the curves up to
1,000 restarts because they all reach convergence
after around 500 restarts.

Convergence Properties Figure 5 shows the
score of the trees retrieved by our full model with
respect to the number of restarts, for short and long
sentences in English and Slovene. To facilitate the
comparison, we normalize the score of each sen-
tence by the maximal score obtained for this sen-
tence after 3,000 restarts. Overall, most sentences
converge quickly. This view is also supported by
Table 6 which shows the fraction of the sentences
that converge within the first 300 restarts. We can
see that all the short sentences (length up to 15)
reach convergence within the allocated restarts.
Perhaps surprisingly, more than 98% of the long
sentences also converge within 300 restarts.

Decoding Speed As the number of restarts im-
pacts the parsing accuracy, we can trade perfor-
mance for speed. Figure 6 shows that the model
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Figure 6: Trade-off between performance and
speed on Slovene and English datasets. The graph
shows the accuracy as a function of decoding
speed measured in second per token. Variations in
decoding speed is achieved by changing the num-
ber of restarts.

achieves high performance with acceptable pars-
ing speed. While various system implementation
issues such as programming language and com-
putational platform complicate a direct compari-
son with other parsing systems, our model deliv-
ers parsing time roughly comparable to other state-
of-the-art graph-based systems (for example, Tur-
boParser and MST parser) and the sampling-based
parser.

7 Conclusions

We have shown that a simple, generally appli-
cable randomized greedy algorithm for inference
suffices to deliver state-of-the-art parsing perfor-
mance. We argued that the effectiveness of such
greedy algorithms is contingent on having a small
number of local optima in the scoring function. By
algorithmically counting the number of locally op-
timal solutions in the context of first-order parsing,
we show that this number is indeed quite small.
Moreover, we show that, as a decoding algorithm,
the greedy method surpasses dual decomposition
in second-order parsing. Finally, we empirically
demonstrate that our approach with up to third-
order and global features outperforms the state-of-
the-art parsers when evaluated on 14 languages of
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non-projective CoNLL datasets.

Appendix

We provide here a more detailed justification for
the counting algorithm in Figure 2 and, by exten-
sion, a proof sketch of Theorem 1. The bullets
below follow the operation of the algorithm.

• Whenever independent selection of the heads
results in a valid tree, there is only 1 opti-
mum (Lines 1&2 of the algorithm). Other-
wise there must be a cycle C in y (Line 3 of
the algorithm)

• We claim that any locally optimal tree y′ of
the graph G = (V,E) must contain |C| − 1
arcs of the cycle C ⊆ V . This can be shown
by contradiction. If y′ contains less than
|C| − 1 arcs of C, then (a) we can construct
a tree y′′ that contains |C| − 1 arcs; (b) the
heads in y′′ are strictly better than those in
y′ over the unused part of the cycle; (c) by
reachability, there is a path y′ → y′′ so y′

cannot be a local optimum.

• Any locally optimal tree in G must select an
arc inC and reassign it. The rest of the |C|−1
arcs will then result in a chain.

• By contracting cycle C we obtain a new
graph G′ of size |G| − |C| + 1 (Lines 5-11
of the algorithm). Easy to verify that (not
shown): any local optimum in G′ is a local
optimum in G and vice versa.

The theorem follows as a corollary of these
steps. To see this, let F (Gm) be the number of
local optima in the graph of size m:

F (Gm) ≤ max
C⊆V (G)

∑
i

F (G(i)
m−c+1)

where G(i)
m−c+1 is the graph (of size m − c + 1)

created by selecting the ith arc in cycleC and con-
tracting Gm accordingly, and c = |C| is the size
of the cycle. Define F̂ (m) as the upper bound of
F (Gm) for any graph of size m. By the above
formula, we know that

F̂ (m) ≤ max
2≤c<m

F̂ (m− c+ 1)× c

By solving for F̂ (m) we get F̂ (m) ≤ 2m−2. Since
m = n+1 for a sentence with n words, the upper-
bound of local optima is 2n−1.

To show the tightness, for any n > 0, create
the graph Gn+1 with arc scores eij = eji = i for
any 0 ≤ i < j ≤ n. Note that wn → wn−1 →
wn forms the circle C of size 2, it can be shown
by induction on n and F (Gn+1) that F (Gn+1) =
F (Gn)× 2 = 2n−1.
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Abstract

Most word representation methods assume
that each word owns a single semantic vec-
tor. This is usually problematic because
lexical ambiguity is ubiquitous, which is
also the problem to be resolved by word
sense disambiguation. In this paper, we
present a unified model for joint word
sense representation and disambiguation,
which will assign distinct representation-
s for each word sense.1 The basic idea is
that both word sense representation (WS-
R) and word sense disambiguation (WS-
D) will benefit from each other: (1) high-
quality WSR will capture rich informa-
tion about words and senses, which should
be helpful for WSD, and (2) high-quality
WSD will provide reliable disambiguat-
ed corpora for learning better sense rep-
resentations. Experimental results show
that, our model improves the performance
of contextual word similarity compared to
existing WSR methods, outperforms state-
of-the-art supervised methods on domain-
specific WSD, and achieves competitive
performance on coarse-grained all-words
WSD.

1 Introduction

Word representation aims to build vectors for each
word based on its context in a large corpus, usually
capturing both semantic and syntactic information
of words. These representations can be used as
features or inputs, which are widely employed in
information retrieval (Manning et al., 2008), doc-
ument classification (Sebastiani, 2002) and other
NLP tasks.

1Our sense representations can be downloaded at http:
//pan.baidu.com/s/1eQcPK8i.

Most word representation methods assume each
word owns a single vector. However, this is usual-
ly problematic due to the homonymy and polyse-
my of many words. To remedy the issue, Reisinger
and Mooney (2010) proposed a multi-prototype
vector space model, where the contexts of each
word are first clustered into groups, and then each
cluster generates a distinct prototype vector for a
word by averaging over all context vectors with-
in the cluster. Huang et al. (2012) followed this
idea, but introduced continuous distributed vectors
based on probabilistic neural language models for
word representations.

These cluster-based models conduct unsuper-
vised word sense induction by clustering word
contexts and, thus, suffer from the following is-
sues:

• It is usually difficult for these cluster-based
models to determine the number of cluster-
s. Huang et al. (2012) simply cluster word
contexts into static K clusters for each word,
which is arbitrary and may introduce mis-
takes.

• These cluster-based models are typically off-
line , so they cannot be efficiently adapted to
new senses, new words or new data.

• It is also troublesome to find the sense that
a word prototype corresponds to; thus, these
cluster-based models cannot be directly used
to perform word sense disambiguation.

In reality, many large knowledge bases have
been constructed with word senses available
online, such as WordNet (Miller, 1995) and
Wikipedia. Utilizing these knowledge bases to
learn word representation and sense representation
is a natural choice. In this paper, we present a uni-
fied model for both word sense representation and
disambiguation based on these knowledge bases
and large-scale text corpora. The unified model
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can (1) perform word sense disambiguation based
on vector representations, and (2) learn continu-
ous distributed vector representation for word and
sense jointly.

The basic idea is that, the tasks of word sense
representation (WSR) and word sense disam-
biguation (WSD) can benefit from each other: (1)
high-quality WSR will capture rich semantic and
syntactic information of words and senses, which
should be helpful for WSD; (2) high-quality WS-
D will provide reliable disambiguated corpora for
learning better sense representations.

By utilizing these knowledge bases, the prob-
lem mentioned above can be overcome:

• The number of senses of a word can be de-
cided by the expert annotators or web users.

• When a new sense appears, our model can be
easily applied to obtain a new sense represen-
tation.

• Every sense vector has a corresponding sense
in these knowledge bases.

We conduct experiments to investigate the per-
formance of our model for both WSR and WS-
D. We evaluate the performance of WSR using a
contextual word similarity task, and results show
that out model can significantly improve the cor-
relation with human judgments compared to base-
lines. We further evaluate the performance on
both domain-specific WSD and coarse-grained all-
words WSD, and results show that our model
yields performance competitive with state-of-the-
art supervised approaches.

2 Methodology

We describe our method as a 3-stage process:

1. Initializing word vectors and sense vectors.
Given large amounts of text data, we first use
the Skip-gram model (Mikolov et al., 2013),
a neural network based language model, to
learn word vectors. Then, we assign vector
representations for senses based on their def-
initions (e.g, glosses in WordNet).

2. Performing word sense disambiguation.
Given word vectors and sense vectors, we
propose two simple and efficient WSD algo-
rithms to obtain more relevant occurrences
for each sense.

3. Learning sense vectors from relevant oc-
currences. Based on the relevant occur-
rences of ambiguous words, we modify the
training objective of Skip-gram to learn word
vectors and sense vectors jointly. Then, we
obtain the sense vectors directly from the
model.

Before illustrating the three stages of our
method in Sections 2.2, 2.3 and 2.4, we briefly
introduce our sense inventory, WordNet, in Sec-
tion 2.1. Note that, although our experiments will
use the WordNet sense inventory, our model is not
limited to this particular lexicon. Other knowledge
bases containing word sense distinctions and defi-
nitions can also serve as input to our model.

2.1 WordNet

WordNet (Miller, 1995) is the most widely used
computational lexicon of English where a concep-
t is represented as a synonym set, or synset. The
words in the same synset share a common mean-
ing. Each synset has a textual definition, or gloss.
Table 1 shows the synsets and the corresponding
glosses of the two common senses of bank.

Before introducing the method in detail, we in-
troduce the notations. The unlabeled texts are de-
noted as R, and the vocabulary of the texts is de-
noted as W . For a word w in W , wsi is the ith
sense in WordNet WN. Each sense wsi has a gloss
gloss(wsi) in WN. The word embedding of w is
denoted as vec(w), and the sense embedding of its
ith sense wsi is denoted as vec(wsi).

2.2 Initializing Word Vectors and Sense
Vectors

Initializing word vectors. First, we use Skip-
gram to train the word vectors from large amounts
of text data. We choose Skip-gram for its sim-
plicity and effectiveness. The training objective of
Skip-gram is to train word vector representations
that are good at predicting its context in the same
sentence (Mikolov et al., 2013).

More formally, given a sequence of training
words w1, w2, w3,...,wT , the objective of Skip-
gram is to maximize the average log probability

1
T

T

∑
t=1

(
∑

−k≤ j≤k, j 6=0
log p(wt+ j|wt)

)
(1)

where k is the size of the training window. The
inner summation spans from −k to k to compute
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Sense Synset Gloss

banks1

(sloping land (especially the slope beside a body of water))
bank “they pulled the canoe up on the bank”;

“he sat on the bank of the river and watched the currents”

banks2

depository institution, (a financial institution that accepts deposits and channels the
bank, money into lending activities)
banking concern, “he cashed a check at the bank”;
banking company “that bank holds the mortgage on my home”

Table 1: Example of a synset in WordNet.

the log probability of correctly predicting the word
wt+ j given the word in the middle wt . The outer
summation covers all words in the training data.

The prediction task is performed via softmax, a
multiclass classifier. There, we have

p(wt+ j|wt) =
exp(vec′(wt+ j)

>vec(wt))

∑W
w=1 exp(vec′(w)>vec(wt))

(2)

where vec(w) and vec′(w) are the “input” and
“output” vector representations of w. This formu-
lation is impractical because the cost of comput-
ing p(wt+ j|wt) is proportional to W , which is often
large( 105−107 terms).

Initializing sense vectors. After learning the
word vectors using the Skip-gram model, we ini-
tialize the sense vectors based on the glosses of
senses. The basic idea of the sense vector initial-
ization is to represent the sense by using the sim-
ilar words in the gloss. From the content words
in the gloss, we select those words whose cosine
similarities with the original word are larger than
a similarity threshold δ . Formally, for each sense
wsi in WN, we first define a candidate set from
gloss(wsi)

cand(wsi) = {u|u ∈ gloss(wsi),u 6= w,

POS(u) ∈CW,cos(vec(w),vec(u))> δ} (3)

where POS(u) is the part-of-speech tagging of the
word u and CW is the set of all possible part-of-
speech tags that content words could have. In this
paper, CW contains the following tags: noun, verb,
adjective and adverb.

Then the average of the word vectors in
cand(wsi) is used as the initialization value of the
sense vector vec(wsi).

vec(wsi) =
1

|cand(wsi)| ∑
u∈cand(wsi )

vec(u) (4)

For example, in WordNet, the gloss of the sense
banks1 is “sloping land (especially the slope beside
a body of water)) they pulled the canoe up on the
bank; he sat on the bank of the river and watched
the currents”. The gloss contains a definition of
the sense and two examples of the sense. The
content words and the cosine similarities with the
word “bank” are listed as follows: (sloping, 0.12),
(land, 0.21), (slope, 0.17), (body, 0.01), (water,
0.10), (pulled, 0.01), (canoe, 0.09), (sat, 0.06),
(river, 0.43), (watch, -0.11), (currents, 0.01). If
the threshold, δ , is set to 0.05, then cand(banks1)
is {sloping, land, slope, water, canoe, sat, riv-
er}. Then the average of the word vectors in
cand(banksi) is used as the initialization value of
vec(banksi).

2.3 Performing Word Sense Disambiguation.

One of the state-of-the-art WSD results can be
obtained using exemplar models, i.e., the word
meaning is modeled by using relevant occurrences
only, rather than merging all of the occurrences in-
to a single word vector (Erk and Pado, 2010). In-
spired by this idea, we perform word sense disam-
biguation to obtain more relevant occurrences.

Here, we perform knowledge-based word sense
disambiguation for training data on an all-words
setting, i.e., we will disambiguate all of the con-
tent words in a sentence. Formally, the sentence S
is a sequence of words (w1,w2,...,wn), and we will
identify a mapping M from words to senses such
that M(i) ∈ SensesWN(wi), where SensesWN(wi) is
the set of senses encoded in the WN for word wi.
For sentence S, there are ∏n

i=1 |SenseWN(wi)| pos-
sible mapping answers, which are impractical to
compute. Thus, we design two simple algorithms,
L2R (left to right) algorithm and S2C (simple to
complex) algorithm, for word sense disambigua-
tion based on the sense vectors.

The main difference between L2R and S2C is
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the order of words when performing word sense
disambiguation. When given a sentence, the L2R
algorithm disambiguates the words from left to
right (the natural order of a sentence), whereas the
S2C algorithm disambiguates the words with few-
er senses first. The main idea of S2C algorithm
is that the words with fewer senses are easier to
disambiguate, and the disambiguation result can
be helpful to disambiguate the words with more
senses. Both of the algorithms have three steps:

Context vector initialization. Similar to the ini-
tialization of sense vectors, we use the average of
all of the content words’ vectors in a sentence as
the initialization vector of context.

vec(context) =
1

|cand(S)| ∑
u∈cand(S)

vec(u) (5)

where cand(S) is the set of content words
cand(S) = {u|u ∈ S,POS(u) ∈CW}.
Ranking words. For L2R, we do nothing in this
step. For S2C, we rank the words based on the
ascending order of |SensesWN(wi)|.
Word sense disambiguation. For both L2R and
S2C, we denote the order of words as L and per-
form word sense disambiguation according to L.

First, we skip a word if the word is not
a content word or the word is monosemous
(|SensesWN(wi)| = 1). Then, for each word in
L, we can compute the cosine similarities be-
tween the context vector and its sense vectors. We
choose the sense that yields the maximum cosine
similarity as its disambiguation result. If the s-
core margin between the maximum and the sec-
ond maximum is larger than the threshold ε , we
are confident with the disambiguation result of wi

and then use the sense vector to replace the word
vector in the context vector. Thus, we obtain a
more accurate context vector for other words that
are still yet to be disambiguated.

For example, given a sentence “He sat on the
bank of the lake”, we first explain how S2C work-
s. In the sentence, there are three content word-
s, “sat”, “bank” and “lake”, to be disambiguated.
First, the sum of the three word vectors is used as
the initialization of the context vector. Then we
rank the words by |SensesW N(wi)|, in ascending
order, that is, lake (3 senses), bank (10 senses), sat
(10 senses). We first disambiguate the word “lake”
based on the similarities between its sense vectors
and context vector. If the score margin is larger

bank
input

projection

output

sat on the of the lakesit lake1 1

Figure 1: The architecture of our model. The
training objective of Skip-gram is to train word
vector representations that are not only good at
predicting its context words but are also good at
predicting its context words’ senses. The center
word “bank” is used to predict not only its context
words but also the sense “sit1” and “lake1”.

than the threshold ε , then we are confident with
this disambiguation result and replace the word
vector with the sense vector to update the contex-
t vector. It would be helpful to disambiguate the
next word, “bank”. We repeat this process until all
three words are disambiguated.

For L2R, the order of words to be disambiguat-
ed will be “sat”, “bank” and “lake”. In this time,
when disambiguating “bank” (10 senses), we still
don’t know the sense of “lake” (3 senses).

2.4 Learning Sense Vectors from Relevant
Occurrences.

Based on the disambiguation result, we modify the
training objective of Skip-gram and train the sense
vectors directly from the large-scale corpus. Our
training objective is to train the vector representa-
tions that are not only good at predicting its con-
text words but are also good at predicting its con-
text words’ senses. The architecture of our model
is shown in Figure 1.

More formally, given the disambiguation result
M(w1), M(w2), M(w3),...,M(wT ), the training ob-
jective is modified to

1
T

T

∑
t=1

(
k

∑
j=−k

log{p(wt+ j|wt)p(M(wt+ j)|wt)}
)
(6)

where k is the size of the training window. The
inner summation spans from −k to k to compute
the log probability of correctly predicting the word
wt+ j and the log probability of correctly predicting
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the sense M(wt+ j) given the word in the middle
wt . The outer summation covers all words in the
training data.

Because not all of the disambiguation results are
correct, we only disambiguate the words that we
are confident in. Similar to step 3 of our WSD
algorithm, we only disambiguate words under the
condition that the score margin between the max-
imum and the second maximum is larger than the
score margin threshold, ε .

We also use the softmax function to define
p(wt+ j|wt) and p(M(wt+ j)|wt). Then, we use hi-
erarchical softmax (Morin and Bengio, 2005) to
greatly reduce the computational complexity and
learn the sense vectors directly from the relevant
occurrences.

3 Experiments

In this section, we first present the nearest neigh-
bors of some words and their senses, showing that
our sense vectors can capture the semantics of
words. Then, we use three tasks to evaluate our u-
nified model: a contextual word similarity task to
evaluate our sense representations, and two stan-
dard WSD tasks to evaluate our knowledge-based
WSD algorithm based on the sense vectors. Ex-
perimental results show that our model not only
improves the correlation with human judgments
on the contextual word similarity task but also out-
performs state-of-the-art supervised WSD system-
s on domain-specific datasets and competes with
them in a coarse-grained all-words setting.

We choose Wikipedia as the corpus to train
the word vectors because of its wide coverage
of topics and words usages. We use an English
Wikipedia database dump from October 2013 2,
which includes roughly 3 million articles and 1
billion tokens. We use Wikipedia Extractor 3 to
preprocess the Wikipedia pages and only save the
content of the articles.

We use word2vec 4 to train Skip-gram. We use
the default parameters of word2vec and the dimen-
sion of the vector representations is 200.

We use WordNet 5 as our sense inventory. The
datasets for different tasks are tagged with differ-
ent versions of WordNet. The version of WordNet

2http://download.wikipedia.org.
3The tool is available from http://medialab.di.

unipi.it/wiki/Wikipedia_Extractor.
4The code is available from https://code.

google.com/p/word2vec/.
5http://wordnet.princeton.edu/.

Word or sense Nearest neighbors
bank banks, IDBI, CitiBank

banks1 river, slope, Sooes
banks2 mortgage, lending, loans

star stars, stellar, trek

stars1

photosphere, radiation,
gamma-rays

stars2 someone, skilled, genuinely
plant plants, glavaticevo, herbaceous

plants1

factories, machinery,
manufacturing

plants2

locomotion, organism,
organisms

Table 2: Nearest neighbors of word vectors and
sense vectors learned by our model based on co-
sine similarity. The subscript of each sense label
corresponds to the index of the sense in Word-
Net. For example, banks2 is the second sense of
the word bank in WordNet.

is 1.7 for the domain-specific WSD task and 2.1
for the coarse-grained WSD task.

We use the S2C algorithm described in Section
2.3 to perform word sense disambiguation to ob-
tain more relevant occurrences for each sense. We
compare S2C and L2R on the coarse-grained WS-
D task in a all-words setting.

The experimental results of our model are ob-
tained by setting the similarity threshold as δ = 0
and the score margin threshold as ε = 0.1. The in-
fluence of parameters on our model can be found
in Section 3.5.

3.1 Examples for Sense Vectors
Table 2 shows the nearest neighbors of word vec-
tors and sense vectors based on cosine similari-
ty. We see that our sense representations can i-
dentify different meanings of a word, allowing our
model to capture more semantic and syntactic re-
lationships between words and senses. Note that
each sense vector in our model corresponds to a
sense in WordNet; thus, our sense vectors can be
used to perform knowledge-based word sense dis-
ambiguation, whereas the vectors of cluster-based
models cannot.

3.2 Contextual Word Similarity
Experimental setting. A standard dataset for e-
valuating a vector-space model is the WordSim-
353 dataset (Finkelstein et al., 2001), which con-
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Model ρ×100
C&W-S 57.0
Huang-S 58.6
Huang-M AvgSim 62.8
Huang-M AvgSimC 65.7
Our Model-S 64.2
Our Model-M AvgSim 66.2
Our Model-M AvgSimC 68.9

Table 3: Spearman’s ρ on the SCWS dataset. Our
Model-S uses one representation per word to com-
pute similarities, while Our Model-M uses one
representation per sense to compute similarities.
AvgSim calculates the similarity with each sense
contributing equally, while AvgSimC weighs the
sense according to the probability of the word
choosing that sense in context c.

sists of 353 pairs of nouns. However, each pair of
nouns in WordSim-353 is presented without con-
text. This is problematic because the meanings
of homonymous and polysemous words depend
highly on the words’ contexts. Thus we choose the
Stanford’s Contextual Word Similarities (SCWS)
dataset from (Huang et al., 2012) 6. The SCWS
dataset contains 2003 pairs of words and each pair
is associated with 10 human judgments on similar-
ity on a scale from 0 to 10. In the SCWS dataset,
each word in a pair has a sentential context.

In our experiments, the similarity between a
pair of words (w, w′) is computed as follows:

AvgSimC(w,w′) =
1

MN

M

∑
i=1

N

∑
j=1

p(i|w,c)p( j|w′,c′)d(vec(wsi),vec(w′s j
)) (7)

where p(i|w,c) is the likelihood that word w
chooses its ith sense given context c. d(vec,vec′)
is a function computing the similarity between two
vectors, and here we use cosine similarity.

Results and discussion. For evaluation, we
compute the Spearman correlation between a
model’s computed similarity scores and human
judgements. Table 3 shows our results com-
pared to previous methods, including (Collobert
and Weston, 2008)’s language model (C&W), and
Huang’s model which utilize the global context
and multi-prototype to improve the word represen-
tations.

6The dataset can be downloaded at http://ai.
stanford.edu/˜ehhuang/.

From Table 3, we observe that:

• Our single-vector version outperforms
Huang’s single-vector version. This indi-
cates that, by training the word vectors and
sense vectors jointly, our model can better
capture the semantic relationships between
words and senses.

• With one representation per sense, our mod-
el can outperform the single-vector version
without using context (66.2 vs. 64.2).

• Our model obtains the best performance
(68.9) by using AvgSimC, which takes con-
text into account.

3.3 Domain-Specific WSD
Experimental setting. We use Wikipedia as
training data because of its wide coverage for spe-
cific domains. To test our performance on do-
main word sense disambiguation, we evaluated
our system on the dataset published in (Koeling
et al., 2005). This dataset consists of examples
retrieved from the Sports and Finance sections of
the Reuters corpus. 41 words related to the Sports
and Finance domains were selected, with an aver-
age polysemy of 6.7 senses, ranging from 2 to 13
senses.

Approximately 100 examples for each word
were annotated with senses from WordNet v.1.7
by three reviewers, yielding an inter-tagger agree-
ment of 65%. (Koeling et al., 2005) did not clarify
how to select the “correct” sense for each word, so
we followed the work of (Agirre et al., 2009) and,
used the sense chosen by the majority of taggers
as the correct answer.

Baseline methods. As a baseline, we use the
most frequent WordNet sense (MFS), as well as
a random sense assignment. We also compare our
results with four systems 7: Static PageRank (A-
girre et al., 2009), the k nearest neighbor algorith-
m (k-NN), Degree (Navigli and Lapata, 2010) and
Personalized PageRank (Agirre et al., 2009).

Static PageRank applies traditional PageRank
over the semantic graph based on WordNet and
obtains a context-independent ranking of word
senses.

k-NN is a widely used classification method,
where neighbors are the k labeled examples most

7We compare only with those systems performing token-
based WSD, i.e., disambiguating each instance of a target
word separately.
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Algorithm
Sports Finance
Recall Recall

Random BL 19.5 19.6
MFS BL 19.6 37.1

k-NN 30.3 43.4
Static PR 20.1 39.6

Personalized PR 35.6 46.9
Degree 42.0 47.8

Our Model 57.3 60.6

Table 4: Performance on the Sports and Finance
sections of the dataset from (Koeling et al., 2005).

similar to the test example. The k-NN system is
trained on SemCor (Miller et al., 1993), the largest
publicly available annotated corpus.

Degree and Personalized PageRank are state-
of-the-art systems that exploit WordNet to build
a semantic graph and exploit the structural proper-
ties of the graph in order to choose the appropriate
senses of words in context.

Results and discussion. Similar to other work
on this dataset, we use recall (the ratio of correct
sense labels to the total labels in the gold standard)
as our evaluation measure. Table 4 shows the re-
sults of different WSD systems on the dataset, and
the best results are shown in bold. The differences
between other results and the best result in each
column of the table are statistically significant at
p< 0.05.

The results show that:

• Our model outperforms k-NN on the t-
wo domains by a large margin, support-
ing the findings from (Agirre et al., 2009)
that knowledge-based systems perform bet-
ter than supervised systems when evaluated
across different domains.

• Our model also achieves better results than
the state-of-the-art system (+15.3% recall on
Sports and +12.8% recall on Finance against
Degree). The reason for this is that when
dealing with short sentences or context words
that are not in WordNet, our model can still
compute similarity based on the context vec-
tor and sense vectors, whereas Degree will
have difficulty building the semantic graph.

• Moreover, our model achieves the best per-
formance by only using the unlabeled text da-
ta and the definitions of senses, whereas other

Algorithm Type
Nouns only All words

F1 F1

Random BL U 63.5 62.7
MFS BL Semi 77.4 78.9

SUSSX-FR Semi 81.1 77.0
NUS-PT S 82.3 82.5

SSI Semi 84.1 83.2
Degree Semi 85.5 81.7

Our ModelL2R U 79.2 73.9
Our ModelS2C U 81.6 75.8
Our ModelL2R Semi 82.5 79.6
Our ModelS2C Semi 85.3 82.6

Table 5: Performance on Semeval-2007 coarse-
grained all-words WSD. In the type column,
U, Semi and S stand for unsupervised, semi-
supervised and supervised, respectively. The dif-
ferences between the results in bold in each col-
umn of the table are not statistically significant at
p< 0.05.

methods rely greatly on high-quality seman-
tic relations or annotated data, which are hard
to acquire.

3.4 Coarse-grained WSD

Experimental setting. We also evaluate our
WSD model on the Semeval-2007 coarse-grained
all-words WSD task (Navigli et al., 2007). There
are multiple reasons that we perform experiments
in a coarse-grained setting: first, it has been ar-
gued that the fine granularity of WordNet is one
of the main obstacles to accurate WSD (cf. the
discussion in (Navigli, 2009)); second, the train-
ing corpus of word representations is Wikipedia,
which is quite different from WordNet.

Baseline methods. We compare our model with
the best unsupervised system SUSSX-FR (Koel-
ing and McCarthy, 2007), and the best supervised
system, NUS-PT (Chan et al., 2007), participat-
ing in the Semeval-2007 coarse-grained all-words
task. We also compare with SSI (Navigli and Ve-
lardi, 2005) and the state-of-the-art system De-
gree (Navigli and Lapata, 2010). We use different
baseline methods for the two WSD tasks because
we want to compare our model with the state-
of-the-art systems that are applicable to different
datasets and show that our WSD method can per-
form robustly in these different WSD tasks.
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Results and discussion. We report our results in
terms of F1-measure on the Semeval-2007 coarse-
grained all-words dataset (Navigli et al., 2007).
Table 5 reports the results for nouns (1,108 words)
and all words (2,269 words). The difference be-
tween unsupervised and semi-supervised methods
is whether the method uses MFS as a back-off s-
trategy.

We can see that the S2C algorithm outperforms
the L2R algorithm no matter on the nouns subset
or on the entire set. This indicates that words with
fewer senses are easier to disambiguate, and it can
be helpful to disambiguate the words with more
senses.

On the nouns subset, our model yields compa-
rable performance to SSI and Degree, and it out-
performs NUS-PT and SUSSX-FR. Moreover, our
unsupervised WSD method (S2C) beats the MF-
S baseline, which is notably a difficult competitor
for knowledge-based systems.

On the entire set, our semi-supervised model is
significantly better than SUSSX-FR, and it is com-
parable with SSI and Degree. In contrast to SSI,
our model is simple and does not rely on a cost-
ly annotation effort to engineer the set of semantic
relations.

Overall, our model achieves state-of-the-art per-
formance on the Semeval-2007 coarse-grained all-
words dataset compared to other systems, with a
simple WSD algorithm that only relies on a large-
scale unlabeled text corpora and a sense inventory.

3.5 Parameter Influence

We investigate the influence of parameters on our
model with coarse-grained all-words WSD task.
The parameters include the similarity threshold, δ ,
and the score margin threshold, ε .

Similarity threshold. In Table 6, we show the
performance of domain WSD when the similari-
ty threshold δ ranges from −0.1 to 0.3. The co-
sine similarity interval is [-1, 1], and we focus on
the performance in the interval [-0.1, 0.3] for two
reasons: first, no words are removed from glosses
when δ < −0.1; second, nearly half of the word-
s are removed when δ > 0.3 and the performance
drops significantly for the WSD task. From table
6, we can see that our model achieves the best per-
formance when δ = 0.0.

Score margin threshold. In Table 7, we show
the performance on the coarse-grained all-words

Parameter Nouns only All words
δ =−0.10 79.8 74.3
δ =−0.05 81.0 74.6
δ = 0.00 81.6 75.8
δ = 0.05 81.3 75.4
δ = 0.10 80.8 75.2
δ = 0.15 80.0 75.0
δ = 0.20 77.1 73.3
δ = 0.30 75.0 72.1

Table 6: Evaluation results on the coarse-grained
all-words WSD when the similarity threshold δ
ranges from −0.1 to 0.3.

Parameter Nouns only All words
ε = 0.00 78.2 72.9
ε = 0.05 79.5 74.5
ε = 0.10 81.6 75.8
ε = 0.15 81.2 74.7
ε = 0.20 80.9 75.1
ε = 0.25 80.2 74.8
ε = 0.30 80.4 74.9

Table 7: Evaluation results on the coarse-grained
all-words WSD when the score margin threshold
ε ranges from 0.0 to 0.3.

WSD when the score margin threshold ε ranges
from 0.0 to 0.3. When ε = 0.0, we use every
disambiguation result to update the context vec-
tor. When ε 6= 0, we only use the confident disam-
biguation results to update the context vector if the
score margin is larger than ε . Our model achieves
the best performance when ε = 0.1.

4 Related Work

4.1 Word Representations

Distributed representations for words were pro-
posed in (Rumelhart et al., 1986) and have been
successfully used in language models (Bengio et
al., 2006; Mnih and Hinton, 2008) and many nat-
ural language processing tasks, such as word rep-
resentation learning (Mikolov, 2012), named enti-
ty recognition (Turian et al., 2010), disambigua-
tion (Collobert et al., 2011), parsing and tag-
ging (Socher et al., 2011; Socher et al., 2013).
They are very useful in NLP tasks because they
can be used as inputs to learning algorithms or as
extra word features in NLP systems. Hence, many
NLP applications, such as keyword extraction (Li-
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u et al., 2010; Liu et al., 2011b; Liu et al., 2012),
social tag suggestion (Liu et al., 2011a) and text
classification (Baker and McCallum, 1998), may
also potentially benefit from distributed word rep-
resentation. The main advantage is that the rep-
resentations of similar words are close in vector
space, which makes generalization to novel pat-
terns easier and model estimation more robust.

Word representations are hard to train due to the
computational complexity. Recently, (Mikolov et
al., 2013) proposed two particular models, Skip-
gram and CBOW, to learn word representations in
large amounts of text data. The training objective
of the CBOW model is to combine the representa-
tions of the surrounding words to predict the word
in the middle, while the Skip-gram model’s is to
learn word representations that are good at predict-
ing its context in the same sentence (Mikolov et
al., 2013). Our paper uses the model architecture
of Skip-gram.

Most of the previous vector-space models use
one representation per word. This is problematic
because many words have multiple senses. The
multi-prototype approach has been widely stud-
ied. (Reisinger and Mooney, 2010) proposed the
multi-prototype vector-space model. (Huang et
al., 2012) used the multi-prototype models to learn
the vector for different senses of a word. All of
these models use the clustering of contexts as a
word sense and can not be directly used in word
sense disambiguation.

After our paper was submitted, we perceive the
following recent advances: (Tian et al., 2014) pro-
posed a probabilistic model for multi-prototype
word representation. (Guo et al., 2014) explored
bilingual resources to learn sense-specific word
representation. (Neelakantan et al., 2014) pro-
posed an efficient non-parametric model for multi-
prototype word representation.

4.2 Knowledge-based WSD

The objective of word sense disambiguation (WS-
D) is to computationally identify the meaning of
words in context (Navigli, 2009). There are t-
wo approaches of WSD that assign meaning of
words from a fixed sense inventory, supervised and
knowledge-based methods. Supervised approach-
es require large labeled training sets, which are
time consuming to create. In this paper, we on-
ly focus on knowledge-based word sense disam-
biguation.

Knowledge-based approaches exploit knowl-
edge resources (such as dictionaries, thesauri, on-
tologies, collocations, etc.) to determine the
senses of words in context. However, it has
been shown in (Cuadros and Rigau, 2006) that
the amount of lexical and semantic information
contained in such resources is typically insuf-
ficient for high-performance WSD. Much work
has been presented to automatically extend ex-
isting resources, including automatically linking
Wikipedia to WordNet to include full use of the
first WordNet sense heuristic (Suchanek et al.,
2008), a graph-based mapping of Wikipedia cat-
egories to WordNet synsets (Ponzetto and Nav-
igli, 2009), and automatically mapping Wikipedia
pages to WordNet synsets (Ponzetto and Navigli,
2010).

It was recently shown that word representation-
s can capture semantic and syntactic information
between words (Mikolov et al., 2013). Some re-
searchers tried to incorporate WordNet senses in a
neural model to learn better word representation-
s (Bordes et al., 2011). In this paper, we have pro-
posed a unified method for word sense representa-
tion and disambiguation to extend the information
contained in the vector representations to the ex-
isting resources. Our method only requires a large
amount of unlabeled text to train sense representa-
tions and a dictionary to provide the definitions of
word meanings, which makes it easily applicable
to other resources.

5 Conclusion

In this paper, we present a unified model for word
sense representation and disambiguation that us-
es one representation per sense. Experimental re-
sults show that our model improves the perfor-
mance of contextual word similarity compared to
existing WSR methods, outperforms state-of-the-
art supervised methods on domain-specific WSD,
and achieves competitive performance on coarse-
grained all-words WSD. Our model only requires
large-scale unlabeled text corpora and a sense in-
ventory for WSD, thus it can be easily applied to
other corpora and tasks.

There are still several open problems that
should be investigated further:

1. Because the senses of words change over
time (new senses appear), we will incorpo-
rate cluster-based methods in our model to
find senses that are not in the sense inventory.
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2. We can explore other WSD methods based
on sense vectors to improve our performance.
For example, (Li et al., 2010) used LDA to
perform data-driven WSD in a manner simi-
lar to our model. We may integrate the advan-
tages of these models and our model together
to build a more powerful WSD system.

3. To learn better sense vectors, we can exploit
the semantic relations (such as the hypernym
and hyponym relations defined in WordNet)
between senses in our model.
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Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. JMLR, 12:2493–2537.

Montse Cuadros and German Rigau. 2006. Quality
assessment of large scale knowledge resources. In
Proceedings of EMNLP, pages 534–541.

Katrin Erk and Sebastian Pado. 2010. Exemplar-based
models for word meaning in context. In Proceedings
of ACL, pages 92–97.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, E-
hud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2001. Placing search in context: The con-
cept revisited. In Proceedings of WWW, pages 406–
414.

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting Li-
u. 2014. Learning sense-specific word embeddings
by exploiting bilingual resources. In Proceedings of
COLING, pages 497–507.

Eric H Huang, Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proceedings of ACL, pages 873–882.

Rob Koeling and Diana McCarthy. 2007. Sussx: Ws-
d using automatically acquired predominant senses.
In Proceedings of SemEval, pages 314–317.

Rob Koeling, Diana McCarthy, and John Carroll.
2005. Domain-specific sense distributions and pre-
dominant sense acquisition. In Proceedings of HLT-
EMNLP, pages 419–426.

Linlin Li, Benjamin Roth, and Caroline Sporleder.
2010. Topic models for word sense disambiguation
and token-based idiom detection. In Proceedings of
ACL, pages 1138–1147.

Zhiyuan Liu, Wenyi Huang, Yabin Zheng, and
Maosong Sun. 2010. Automatic keyphrase extrac-
tion via topic decomposition. In Proceedings of
EMNLP, pages 366–376.

Zhiyuan Liu, Xinxiong Chen, and Maosong Sun.
2011a. A simple word trigger method for social tag
suggestion. In Proceedings of EMNLP, pages 1577–
1588.

Zhiyuan Liu, Xinxiong Chen, Yabin Zheng, and
Maosong Sun. 2011b. Automatic keyphrase extrac-
tion by bridging vocabulary gap. In Proceedings of
CoNLL, pages 135–144.

Zhiyuan Liu, Xinxiong Chen, and Maosong Sun. 2012.
Mining the interests of chinese microbloggers via
keyword extraction. Frontiers of Computer Science,
6(1):76–87.

Christopher D Manning, Prabhakar Raghavan, and
Hinrich Schütze. 2008. Introduction to information
retrieval. Cambridge University Press Cambridge.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. Proceedings of ICLR.

Tomas Mikolov. 2012. Statistical Language Model-
s Based on Neural Networks. Ph.D. thesis, Ph. D.
thesis, Brno University of Technology.

1034



George A Miller, Claudia Leacock, Randee Tengi, and
Ross T Bunker. 1993. A semantic concordance. In
Proceedings of the workshop on HLT, pages 303–
308.

George A Miller. 1995. Wordnet: a lexical
database for english. Communications of the ACM,
38(11):39–41.

Andriy Mnih and Geoffrey E Hinton. 2008. A s-
calable hierarchical distributed language model. In
Proceedings of NIPS, pages 1081–1088.

Frederic Morin and Yoshua Bengio. 2005. Hierarchi-
cal probabilistic neural network language model. In
Proceedings of the international workshop on artifi-
cial intelligence and statistics, pages 246–252.

Roberto Navigli and Mirella Lapata. 2010. An ex-
perimental study of graph connectivity for unsu-
pervised word sense disambiguation. IEEE PAMI,
32(4):678–692.

Roberto Navigli and Paola Velardi. 2005. Structural
semantic interconnections: a knowledge-based ap-
proach to word sense disambiguation. IEEE PAMI,
27(7):1075–1086.

Roberto Navigli, Kenneth C Litkowski, and Orin Har-
graves. 2007. Semeval-2007 task 07: Coarse-
grained english all-words task. In Proceedings of
SemEval, pages 30–35.

Roberto Navigli. 2009. Word sense disambiguation: A
survey. CSUR, 41(2):10.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per
word in vector space. In Proceedings of EMNLP.

Simone Paolo Ponzetto and Roberto Navigli. 2009.
Large-scale taxonomy mapping for restructuring
and integrating wikipedia. In Proceedings of IJCAI,
volume 9, pages 2083–2088.

Simone Paolo Ponzetto and Roberto Navigli. 2010.
Knowledge-rich word sense disambiguation rivaling
supervised systems. In Proceedings of ACL, pages
1522–1531.

Joseph Reisinger and Raymond J Mooney. 2010.
Multi-prototype vector-space models of word mean-
ing. In Proceedings of HLT-NAACL, pages 109–
117.

David E Rumelhart, Geoffrey E Hintont, and Ronald J
Williams. 1986. Learning representations by back-
propagating errors. Nature, 323(6088):533–536.

Fabrizio Sebastiani. 2002. Machine learning in auto-
mated text categorization. CSUR, 34(1):1–47.

Richard Socher, Cliff C Lin, Andrew Ng, and Chris
Manning. 2011. Parsing natural scenes and natural
language with recursive neural networks. In Pro-
ceedings of ICML, pages 129–136.

Richard Socher, John Bauer, Christopher D Manning,
and Andrew Y Ng. 2013. Parsing with composi-
tional vector grammars. In Proceedings of ACL.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2008. Yago: A large ontology from
wikipedia and wordnet. Web Semantics: Sci-
ence, Services and Agents on the World Wide Web,
6(3):203–217.

Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang,
Enhong Chen, and Tie-Yan Liu. 2014. A probabilis-
tic model for learning multi-prototype word embed-
dings. In Proceedings of COLING, pages 151–160.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of A-
CL, pages 384–394.

1035



Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1036–1046,
October 25-29, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

Reducing Dimensions of Tensors in Type-Driven Distributional Semantics

Tamara Polajnar Luana Fǎgǎrǎşan Stephen Clark
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Abstract

Compositional distributional semantics is
a subfield of Computational Linguistics
which investigates methods for represent-
ing the meanings of phrases and sen-
tences. In this paper, we explore im-
plementations of a framework based on
Combinatory Categorial Grammar (CCG),
in which words with certain grammatical
types have meanings represented by multi-
linear maps (i.e. multi-dimensional arrays,
or tensors). An obstacle to full implemen-
tation of the framework is the size of these
tensors. We examine the performance of
lower dimensional approximations of tran-
sitive verb tensors on a sentence plausi-
bility/selectional preference task. We find
that the matrices perform as well as, and
sometimes even better than, full tensors,
allowing a reduction in the number of pa-
rameters needed to model the framework.

1 Introduction

An emerging subfield of computational linguis-
tics is concerned with learning compositional dis-
tributional representations of meaning (Mitchell
and Lapata, 2008; Baroni and Zamparelli, 2010;
Coecke et al., 2010; Grefenstette and Sadrzadeh,
2011; Clarke, 2012; Socher et al., 2012; Clark,
2013). The advantage of such representations lies
in their potential to combine the benefits of dis-
tributional approachs to word meaning (Schütze,
1998; Turney and Pantel, 2010) with the more tra-
ditional compositional methods from formal se-
mantics (Dowty et al., 1981). Distributional repre-
sentations have the properties of robustness, learn-
ability from data, ease of handling ambiguity,
and the ability to represent gradations of mean-
ing; whereas compositional models handle the un-
bounded nature of natural language, as well as

providing established accounts of logical words,
quantification, and inference.

One promising approach which attempts to
combine elements of compositional and distribu-
tional semantics is by Coecke et al. (2010). The
underlying idea is to take the type-driven approach
from formal semantics — in particular the idea
that the meanings of complex grammatical types
should be represented as functions — and ap-
ply it to distributional representations. Since the
mathematics of distributional semantics is pro-
vided by linear algebra, a natural set of functions
to consider is the set of linear maps. Coecke et
al. recognize that there is a natural correspon-
dence from complex grammatical types to tensors
(multi-linear maps), so that the meaning of an ad-
jective, for example, is represented by a matrix (a
2nd-order tensor)1 and the meaning of a transitive
verb is represented by a 3rd-order tensor.

Coecke et al. use the grammar of pregroups
as the syntactic machinery to construct distribu-
tional meaning representations, since both pre-
groups and vector spaces can be seen as exam-
ples of the same abstract structure, which leads
to a particularly clean mathematical description of
the compositional process. However, the approach
applies more generally, for example to other forms
of categorial grammar, such as Combinatory Cate-
gorial Grammar (Steedman, 2000; Maillard et al.,
2014), and also to phrase-structure grammars in a
way that a formal linguist would recognize (Ba-
roni et al., 2014). Clark (2013) provides a descrip-
tion of the tensor-based framework aimed more at
computational linguists, relying only on the math-
ematics of multi-linear algebra rather than the cat-
egory theory used in Coecke et al. (2010). Sec-
tion 2 repeats some of this description.

A major open question associated with the
tensor-based semantic framework is how to learn

1This same insight lies behind the work of Baroni and
Zamparelli (2010).
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the tensors representing the meanings of words
with complex types, such as verbs and adjec-
tives. The framework is essentially a composi-
tional framework, providing a recipe for how to
combine distributional representations, but leav-
ing open what the underlying vector spaces are and
how they can be acquired. One significant chal-
lenge is an engineering one: in a wide-coverage
grammar, which is able to handle naturally occur-
ring text, there will be a) a large lexicon with many
word-category pairs requiring tensor representa-
tions; and b) many higher-order tensors with large
numbers of parameters which need to be learned.
In this paper we take a first step towards learning
such representations, by learning tensors for tran-
sitive verbs.

One feature of the tensor-based framework is
that it allows the meanings of words and phrases
with different basic types, for example nouns and
sentences, to live in different vector spaces. This
means that the sentence space is task specific, and
must be defined in advance. For example, to calcu-
late sentence similarity, we would have to learn a
vector space where distances between vectors rep-
resenting the meanings of sentences reflect simi-
larity scores assigned by human annotators.

In this paper we describe an initial investi-
gation into the learning of word meanings with
complex syntactic types, together with a simple
sentence space. The space we consider is the
“plausibility space” described by Clark (2013), to-
gether with sentences of the form subject-verb-
object. This space is defined to distinguish se-
mantically plausible sentences (e.g. Animals eat
plants) from implausible ones (e.g. Animals eat
planets). Plausibility can be either represented
as a single continuous variable between 0 and 1,
or as a two-dimensional probability distribution
over the classes plausible (>) and implausible (⊥).
Whether we consider a one- or two-dimensional
sentence space depends on the architecture of the
logistic regression classifier that is used to learn
the verb (Section 3).

We begin with this simple plausibility sentence
space to determine if, in fact, the tensor-based rep-
resentation can be learned to a sufficiently useful
degree. Other simple sentence spaces which can
perhaps be represented using one or two variables
include a “sentence space” for the sentiment anal-
ysis task (Socher et al., 2013), where one variable
represents positive sentiment and the other nega-

tive. We also expect that the insights gained from
research on this task can be applied to more com-
plex sentence spaces, for example a semantic simi-
larity space which will require more than two vari-
ables.

2 Syntactic Types to Tensors

The syntactic type of a transitive verb in English
is (S\NP)/NP (using notation from Steedman
(2000)), meaning that a transitive verb is a func-
tion which takes an NP argument to the right, an
NP argument to the left, and results in a sentence
S . Such categories with slashes are complex cate-
gories; S and NP are basic or atomic categories.
Interpreting such categories under the Coecke et
al. framework is straightforward. First, for each
atomic category there is a corresponding vector
space; in this case the sentence space S and the
noun space N.2 Hence the meaning of a noun or
noun phrase, for example people, will be a vector
in the noun space:

−−−→
people ∈ N. In order to obtain

the meaning of a transitive verb, each slash is re-
placed with a tensor product operator, so that the
meaning of eat, for example, is a 3rd-order tensor:
eat ∈ S⊗N⊗N. Just as in the syntactic case,
the meaning of a transitive verb is a function (a
multi-linear map) which takes two noun vectors as
arguments and returns a sentence vector.

Meanings combine using tensor contraction,
which can be thought of as a multi-linear gen-
eralisation of matrix multiplication (Grefenstette,
2013). Consider first the adjective-noun case, for
example black cat. The syntactic type of black
is N /N ; hence its meaning is a 2nd-order tensor
(matrix): black ∈ N⊗N. In the syntax, N /N
combines with N using the rule of forward appli-
cation (N /N N ⇒ N ), which is an instance of
function application. Function application is also
used in the tensor-based semantics, which, for a
matrix and vector argument, corresponds to ma-
trix multiplication.

Figure 1 shows how the syntactic types com-
bine with a transitive verb, and the corresponding
tensor-based semantic types. Note that, after the
verb has combined with its object NP , the type
of the verb phrase is S\NP , with a correspond-
ing meaning tensor (matrix) in S ⊗N. This ma-
trix then combines with the subject vector, through

2In practice, for example using the CCG parser of Clark
and Curran (2007), there will be additional atomic categories,
such as PP , but not many more.
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people eat fish

NP (S\NP)/NP NP
N S⊗N⊗N N

>
S\NP
S⊗N

<
S
S

Figure 1: Syntactic reduction and tensor-based se-
mantic types for a transitive verb sentence

matrix multiplication, to give a sentence vector.
In practice, using for example the wide-

coverage grammar from CCGbank (Hockenmaier
and Steedman, 2007), there will be many types
with more than 3 slashes, with corresponding
higher-order tensors. For example, a com-
mon category for a preposition is the follow-
ing: ((S\NP)\(S\NP))/NP , which would be
assigned to WITH in eat WITH a fork. (The way
to read the syntactic type is as follows: with re-
quires an NP argument to the right – a fork in
this example – and then a verb phrase to the
left – eat with type S\NP – resulting in a verb
phrase S\NP .) The corresponding meaning ten-
sor lives in the tensor space S⊗N⊗S⊗N⊗N,
i.e. a 5th-order tensor. Categories with even
more slashes are not uncommon, for example
((N /N )/(N /N ))/((N /N )/(N /N )). Clearly
learning parameters for such tensors is highly
challenging, and it is likely that lower dimensional
approximations will be required.

3 Methods

In this paper we compare five different methods
for modelling the type-driven semantic represen-
tation of subject-verb-object sentences. The ten-
sor is a function that encodes the meaning of a
verb. It takes two vectors from the K-dimensional
noun space as input, and produces a representa-
tion of the sentence in the S-dimensional sentence
space. In this paper, we consider a plausibility
space where S is either a single variable or a two-
dimensional space over two classes: plausible (>)
and implausible (⊥).

The first method (Tensor) follows Krishna-
murthy and Mitchell (2013) by learning a tensor as
parameters in a softmax classifier. We introduce
three related methods (2Mat, SKMat, KKMat),
all of which model the verb as a matrix or a pair of
matrices (Figure 2). Table 1 gives the number of

Tensor 2Mat SKMat KKMat DMat
V 2K2 4K 2K K2 K2

Θ 4 8 4 0 0

Table 1: Number of parameters per method.

parameters for each method. Tensor, 2Mat, and
SKMat all have a two-dimensional S space, while
KKMat produces a scalar value. In all of these
learning-based methods the derivatives were ob-
tained via the chain rule with respect to each set
of parameters and gradient descent was performed
using the Adagrad algorithm (Duchi et al., 2011).

We also reimplement a distributional method
(DMat), which was previously used in SVO
experiments with the type-driven framework
(Grefenstette and Sadrzadeh, 2011). While the
other methods are trained as plausibility classi-
fiers, in DMat we estimate the class boundary
from cosine similarity via training data (see expla-
nation below).

Tensor If subject (ns) and object (no) nouns are
K-dimensional vectors and the plausibility vec-
tor is S-dimensional with S = 2, we can learn
the values of the K × K × S tensor represent-
ing the verb as parameters (V) of a regression al-
gorithm. To represent this space as a distribution
over two classes (>,⊥) we apply a sigmoid func-
tion (σ) to restrict the output to the [0,1] range and
the softmax activation function (g) to balance the
class probabilities. The full parameter set which
needs to be optimised for is B = {V,Θ}, where
Θ = {θ>, θ⊥} are the softmax parameters for
the two classes. For each verb we optimise the
KL-divergence L between the training labels ti

and classifier predictions using the following reg-
ularised objective:

O(B) =

N∑
i=1

L
(
ti, g

(
σ
(
hV

(
nis, n

i
o

))
,Θ
))

+
λ

2
||B||2

(1)

where nis and nio are the subject and object of
the training instance i ∈ N , and hV

(
nis, n

i
o

)
=

(nis)V(nio)
T describes tensor contraction. The

function hV is described diagrammatically in Fig-
ure 2-(a), where the verb tensor parameters are
drawn as a cube with the subject and object noun
vectors as operands on either side. The output
is a two-dimensional vector which is then trans-
formed using the sigmoid and softmax functions.
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Figure 2: Illustrations of the hV function for the regression-based methods (a)-Tensor, (b)-2Mat, (c)-
SKMat, (d)-KKMat. The operation in (a) is tensor contraction, T denotes transpose, and × denotes
matrix multiplication.

The gold-standard distribution over training labels
is defined as (1, 0) or (0, 1), depending on whether
the training instance is a positive (plausible) or
negative (implausible) example. Tensor contrac-
tion is implemented using the Matlab Tensor Tool-
box (Bader et al., 2012).

2Mat An alternative approach is to decouple
the interaction between the object and subject by
learning a pair of S × K (S = 2) matrices (Vs,
Vo) for each of the input noun vectors (one ma-
trix for the subject slot of the verb and one for the
object slot). The resulting S-vectors are concate-
nated, after the subject and object nouns have been
combined with their matrices, and combined with
the softmax component to produce the output dis-
tribution. Therefore the objective function is the
same as in Equation 1, but hV is defined as:

hV

(
nis, n

i
o

)
=
(
(nis)V

T
s

) || (Vo(nio)
T
)T

where || represents vector concatenation. The in-
tention is to test whether we can learn the verb
without directly multiplying subject and object
features, nis and njo. The function hV is shown in
Figure 2-(b), where the verb tensor parameters are

drawn as two 2×K matrices, one of which inter-
acts with the subject and the other with the object
noun vector. The output is a four-dimensional vec-
tor whose values are then restricted to [0,1] using
the sigmoid function and then transformed into a
two-dimensional distribution over the classes us-
ing the softmax function.

SKMat A third option for generating a sentence
vector with S = 2 dimensions is to consider the
verb as an S ×K matrix. If we transform the ob-
ject vector into a K ×K matrix with the noun on
the diagonal and zeroes elsewhere, we can com-
bine the verb and object to produce a new S ×K
matrix, which is encoding the meaning of the verb
phrase. We can then complete the sentence re-
duction by multiplying the subject vector with this
verb phrase vector to produce an S-dimensional
sentence vector. Formally, we define SKMat as:

hV

(
nis, n

i
o

)
= nis

(
Vdiag(nio)

)T
and use it in Equation 1. The function hV is

described in Figure 2-(c), where the verb ten-
sor parameters are drawn as a matrix, the sub-
ject as a vector, and the object as a diagonal ma-

1039



trix. The graphic demonstrates the two-step com-
bination and the intermediate S × K verb phrase
matrix, as well as the the noun vector product
that results in a two-dimensional vector which is
then transformed using the sigmoid and softmax
functions. Whilst the tensor method captures the
interactions between all pairs of context features
(nsi · noj), SKMat only captures the interactions
between matching features (nsi · noi).
KKMat Given a two-class problem, such as
plausibility classification, the softmax implemen-
tation is overparameterised because the class
membership can be estimated with a single vari-
able. To produce a scalar output, we can learn the
parameters for a single K × K matrix (V) using
standard logistic regression with the mean squared
error cost function:

O(V) = − 1

m

[
N∑

i=1

t
i
log hV

(
n

i
s, n

i
o

)
+ (1− t

i
) log hV

(
n

i
s, n

i
o

)]

where hV

(
nis, n

i
o

)
= (nis)V(nio)

T and the objec-
tive is regularised: O(V) + λ

2 ||V||2. This function
is shown in Figure 2-(d), where the verb parame-
ters are shown as a matrix, while the subject and
object are vectors. The output is a single scalar,
which is then transformed with the sigmoid func-
tion. Values over 0.5 are considered plausible.

DMat The final method produces a scalar as in
KKMat, but is distributional and based on corpus
counts rather than regression-based. Grefenstette
and Sadrzadeh (2011) introduced a corpus-based
approach for generating a K ×K matrix for each
verb from an average of Kronecker products of the
subject and object vectors from the positively la-
belled subset of the training data. The intuition is
that, for example, the matrix for eat may have a
high value for the contextual topic pair describing
animate subjects and edible objects. To determine
the plausibility of a new subject-object pair for a
particular verb, we calculate the Kronecker prod-
uct of the subject and object noun vectors for this
pair, and compare the resulting matrix with the av-
erage verb matrix using cosine similarity.

For label prediction, we calculate the similar-
ity between each of the training data pairs and the
learned average matrix. Unlike for KKmat, the
class cutoff is estimated at the break-even point
of the receiver operator characteristic (ROC) gen-
erated by comparing the training labels with this

cosine similarity value. The break-even point is
when the true positive rate is equal to the false pos-
itive rate. In practice it would be more accurate
to estimate the cutoff on a validation dataset, but
some of the verbs have so few training instances
that this was not possible.

4 Experiments

In order to examine the quality of learning we run
several experiments where we compare the differ-
ent methods. In these experiments we consider
the DMat method as the baseline. Some of the
experiments employ cross-validation, in particular
five repetitions of 2-fold cross validation (5x2cv),
which has been shown to be statistically more ro-
bust than the traditional 10-fold cross validation
(Alpaydin, 1999; Ulaş et al., 2012). The results of
5x2cv experiments can be compared using the reg-
ular paired t-test, but the specially designed 5x2cv
F-test has been proven to produce fewer statistical
errors (Ulaş et al., 2012).

The performance was evaluated using the area
under the ROC (AUC) and the F1 measure (based
on precision and recall over the plausible class).
The AUC evaluates whether a method is ranking
positive examples above negative ones, regardless
of the class cutoff value. F1 shows how accurately
a method assigns the correct class label. Another
way to interpret the results is to consider the AUC
as the measure of the quality of the parameters in
the verb matrix or tensor, while the F-score indi-
cates how well the softmax, the sigmoid, and the
DMat cutoff algorithm are estimating class partic-
ipation.

Ex-1. In the first experiment, we compare the
different transitive verb representations by running
5x2cv experiments on ten verbs chosen to cover a
range of concreteness and frequency values (Sec-
tion 4.2).

Ex-2. In the initial experiments we found that
some models had low performance, so we applied
the column normalisation technique, which is of-
ten used with regression learning to standardise
the numerical range of features:

~x :=
~x−min(~x)

max(~x)−min(~x)
(2)

This preserves the relative values of features be-
tween training samples, while moving the values
to the [0,1] range.
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Ex-3. There are varying numbers of training ex-
amples for each of the verbs, so we repeated the
5x2cv with datasets of 52 training points for each
verb, since this is the size of the smallest dataset of
the verb CENSOR. The points were randomly sam-
pled from the datasets used in the first experiment.
Finally, the four verbs with the largest datasets
were used to examine how the performance of the
methods changes as the amount of training data
increases. The 4,000 training samples were ran-
domised and half were used for testing. We sam-
pled between 10 and 1000 training triples from the
other half (Figure 4).

4.1 Noun vectors
Distributional semantic models (Turney and Pan-
tel, 2010) encode word meaning in a vector for-
mat by counting co-occurrences with other words
within a specified context window. We con-
structed the vectors from the October 2013 dump
of Wikipedia articles, which was tokenised us-
ing the Stanford NLP tools3, lemmatised with the
Morpha lemmatiser (Minnen et al., 2001), and
parsed with the C&C parser (Clark and Curran,
2007). In this paper we use sentence boundaries to
define context windows and the top 10,000 most
frequent lemmatised words in the whole corpus
(excluding stopwords) as context words. The raw
co-occurrence counts are re-weighted using the
standard tTest weighting scheme (Curran, 2004),
where fwicj is the number of times target noun wi
occurs with context word cj :

tTest( ~wi, cj) =
p(wi, cj)− p(wi)p(cj)√

p(wi)p(cj)
(3)

where p(wi) =
∑
j fwicj∑

k

∑
l fwkcl

, p(cj) =
∑
i fwicj∑

k

∑
l fwkcl

,

and p(wi, cj) =
fwicj∑

k

∑
l fwkcl

.

Using all 10,000 context words would result in
a large number of parameters for each verb ten-
sor, and so we apply singular value decomposition
(SVD) (Turney and Pantel, 2010) with 40 latent
dimensions to the target-context word matrix. We
use context selection (with N = 140) and row
normalisation as described in Polajnar and Clark
(2014) to markedly improve the performance of
SVD on smaller dimensions (K) and enable us to
train the verb tensors using very low-dimensional

3http://nlp.stanford.edu/software/index.shtml

Verb Concreteness # of Positive Frequency
APPLY 2.5 5618 47361762
CENSOR 3 26 278525
COMB 5 164 644447
DEPOSE 2.5 118 874463
EAT 4.44 5067 26396728
IDEALIZE 1.17 99 485580
INCUBATE 3.5 82 833621
JUSTIFY 1.45 5636 10517616
REDUCE 2 26917 40336784
WIPE 4 1090 6348595

Table 2: The 10 chosen verbs together with their
concreteness scores. The number of positive SVO
examples was capped at 2000. Frequency is the
frequency of the verb in the GSN corpus.

noun vectors. Performance of the noun vectors
was measured on standard word similarity datasets
and the results were comparable to those reported
by Polajnar and Clark (2014).

4.2 Training data
In order to generate training data we made use
of two large corpora: the Google Syntactic N-
grams (GSN) (Goldberg and Orwant, 2013) and
the Wikipedia October 2013 dump. We first chose
ten transitive verbs with different concreteness
scores (Brysbaert et al., 2013) and frequencies, in
order to obtain a variety of verb types. Then the
positive (plausible) SVO examples were extracted
from the GSN corpus. More precisely, we col-
lected all distinct syntactic trigrams of the form
nsubj ROOT dobj, where the root of the phrase was
one of our target verbs. We lemmatised the words
using the NLTK4 lemmatiser and filtered these ex-
amples to retain only the ones that contain nouns
that also occur in Wikipedia, obtaining the counts
reported in Table 2.

For every positive training example, we con-
structed a negative (implausible) one by replac-
ing both the subject and the object with a con-
founder, using a standard technique from the se-
lectional preference literature (Chambers and Ju-
rafsky, 2010). A confounder was generated by
choosing a random noun from the same frequency
bucket as the original noun.5 Frequency buckets
of size 10 were constructed by collecting noun fre-
quency counts from the Wikipedia corpus. For ex-

4http://nltk.org/
5Note that the random selection of the confounder could

result in a plausible negative example by chance, but man-
ual inspection of a subset of the data suggests this happens
infrequently for those verbs which select strongly for their
arguments, but more often for those verbs that don’t.
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Verb Tensor DMat KKMat SKMat 2Mat
AUC

APPLY 85.68† 81.46‡ 88.88†‡ 68.02 88.92†‡
CENSOR 79.40 85.54 80.55 78.52 83.19
COMB 89.41 85.65 88.38 69.20†‡ 89.56
DEPOSE 92.70 94.44 93.12 84.47† 93.20
EAT 94.62 93.81 95.17 67.92 95.88‡
IDEALIZE 69.56 75.84 72.46 61.19 70.23
INCUBATE 89.33 85.53 88.61 70.59 91.40
JUSTIFY 85.27† 88.70‡ 89.97‡ 73.56 90.10‡
REDUCE 96.13 95.48 96.69† 79.32 97.21
WIPE 85.19 84.47 87.84† 64.93†‡ 81.29
MEAN 86.93 87.29 88.37 71.96 88.30

Tensor DMat KKMat SKMat 2Mat
F1

79.27 64.00 81.24‡ 54.06 80.80‡
70.66 47.93 73.52 37.86 71.07
81.15 45.02 81.38 39.67 82.36
84.60 54.77 84.79 43.79 86.15
88.91 52.45 88.83 56.22 89.95
66.53 48.28 68.39 31.03 67.43
80.30 50.84 80.90 31.99 84.55
79.73 73.71 81.10 54.09 82.52
91.24 71.24‡ 87.46 76.67‡ 92.22
78.57 47.62 80.65 39.50 78.90
80.30 55.79 81.03 46.69 81.79

Table 3: The best AUC and F1 results for all the verbs, where † denotes statistical significance compared
to DMat and ‡ denotes significance compared to Tensor according to the 5x2cv F-test with p < 0.05.

ample, for the plausible triple animal EAT plant,
we generate the implausible triple mountain EAT

product. Some verbs were well represented in the
corpus, so we used up to the top 2,000 most fre-
quent triples for training.
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Figure 3: The effect of column normalisation (*)
on Tensor and SKMat. Top table shows AUC and
the bottom F1-score, while the error bars indicate
standard deviation.

5 Results

The results from Ex-1 are summarised in Ta-
ble 3. We can see that linear regression can lead

to models that are able to distinguish between
plausible and implausible SVO triples. The Ten-
sor method outperforms DMat, which was pre-
viously shown to produce reasonable verb repre-
sentations in related experiments (Grefenstette and
Sadrzadeh, 2011). 2Mat and KKMat, in turn,
outperform Tensor demonstrating that it is pos-
sible to learn lower dimensional approximations
of the tensor-based framework. 2Mat is an appro-
priate approximation for functions with two inputs
and a sentence space of any dimensionality, while
KKMat is only appropriate for a single valued
sentence space, such as the plausibility or senti-
ment space. Due to method variance and dataset
size there are very few AUC results that are sig-
nificantly better than DMat and even fewer that
outperform Tensor. All methods perform poorly
on the verb IDEALIZE, probably because it has
the lowest concreteness value and is in one of the
smallest datasets. This verb is also particularly dif-
ficult because it does not select strongly for either
its subject or object, and so some of the pseudo-
negative examples are in fact somewhat plausible
(e.g. town IDEALIZE authority or child IDEALIZE

racehorse). In general, this would indicate that
more concrete verbs are easier to learn, as they
have a clearer pattern of preferred property types,
but there is no distinct correlation.

The results of the normalisation experiments
(Ex-2) are shown in Table 4. We can see that the
SKMat method, which performed poorly in Ex-
1 notably improves with normalisation. Tensor
AUC scores also improve through normalisation,
but the F-scores decrease. The rest of the methods,
and in particular DMat are negatively affected by
column normalisation. The results from Ex-1 and
Ex-2 for SKMat and Tensor are summarised in
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Verb Tensor DMat KKMat SKMat 2Mat
AUC

APPLY 86.16† 48.63‡ 82.63†‡ 85.73† 85.65†
CENSOR 75.74 71.20 78.00 82.77 78.64
COMB 91.67† 62.42‡ 90.85† 89.79† 91.42†
DEPOSE 93.96† 54.93‡ 93.56† 93.87† 93.81†
EAT 95.64† 47.68‡ 92.92† 94.99†‡ 94.76†
IDEALIZE 69.64 55.98 72.20†‡ 76.71†‡ 71.85†
INCUBATE 90.97† 61.31‡ 89.69† 90.19† 90.05†
JUSTIFY 89.76† 54.87‡ 87.26†‡ 89.64† 89.05†
REDUCE 96.63† 59.58‡ 94.99†‡ 96.14† 96.53†
WIPE 86.82† 58.02‡ 84.18† 83.65† 86.02†
MEAN 87.90 57.66 86.83 88.55 87.98

Tensor DMat KKMat SKMat 2Mat
F1

45.57 46.99 46.17 60.86 76.60†
30.43 55.16 65.19 49.59 44.22
33.37 61.05 71.20 64.56 75.96
42.73 39.71 73.07 54.51 56.54
60.42 47.42 58.80 69.05 87.44†
39.14 49.16 41.75 31.57 50.59
46.35 53.33 70.45 41.57 63.61
47.38 51.40 41.91 63.96 80.55†
51.63 54.27 69.18 69.76 90.77†
44.04 55.19 47.84 49.89 75.80
44.31 51.57 58.76 55.73 70.41

Table 4: The best AUC and F1 results for all the verbs with normalised vectors, where † denotes statistical
significance compared to DMat and ‡ denotes significance compared to Tensor according to the 5x2cv
F-test with p < 0.05.

Figure 3. This figure also shows that AUC values
have much lower variance, but that high variance
in F-score leads to results that are not statistically
significant.

When considering the size of the datasets (Ex-
3), it would seem from Table 5 that 2Mat is able to
learn from less data than DMat or Tensor. While
this may be true over a 5x2cv experiment on small
data, Figure 4 shows that this view may be overly
simplistic and that different training examples can
influence learning. Analysis of errors shows that
the baseline method mostly generates false nega-
tive errors (i.e. predicting implausible when the
gold standard label is plausible). In contrast, Ten-
sor produces almost equal numbers of false posi-
tives and false negatives, but sometimes produces
false negatives with low frequency nouns (e.g.
bourgeoisie IDEALIZE work), presumably because
there is not enough information in the noun vec-
tor to decide on the correct class. It also produces
some false positive errors when either of the nouns
is plausible (but the triple is implausible), which
would suggest results may be improved by train-
ing with data where only one noun is confounded
or by treating negative data as possibly positive
(Lee and Liu, 2003).

6 Discussion

Current methods which derive distributed repre-
sentations for phrases, for example the work of
Socher et al. (2012), typically use only matrix rep-
resentations, and also assume that words, phrases
and sentences all live in the same vector space.
The tensor-based semantic framework is more
flexible, in that it allows different spaces for dif-
ferent grammatical types, which results from it be-

Verb Tensor DMat 2Mat
APPLY 95.76 86.50 86.31
CENSOR 82.97 84.09 77.79
COMB 90.13 92.93 95.18
DEPOSE 92.41 91.27 95.61
EAT 99.64 98.25 99.58
IDEALIZE 75.03 76.68 88.98
INCUBATE 91.10 87.20 96.42
JUSTIFY 88.96 88.99 87.31
REDUCE 100.0 99.87 99.46
WIPE 97.20 91.63 96.36
MEAN 91.52 89.94 92.50

Table 5: Results show average of 5x2cv AUC on
small data (26 positive + 26 negative per verb).
None of the results are significant.

ing tied more closely to a type-driven syntactic de-
scription; however, this flexibility comes at a cost,
since there are many more paramaters to learn.

Various communities are beginning to recog-
nize the additional power that tensor representa-
tions can provide, through the capturing of interac-
tions that are difficult to represent with vectors and
matrices (see e.g. (Ranzato et al., 2010; Sutskever
et al., 2009; Van de Cruys et al., 2012)). Hierar-
chical recursive structures in language potentially
represent a large number of such interactions – the
obvious example for this paper being the interac-
tion between a transitive verb’s subject and object
– and present a significant challenge for machine
learning.

This paper is a practical extension of the work
in Krishnamurthy and Mitchell (2013), which in-
troduced learning of CCG-based function tensors
with logistic regression on a compositional se-
mantics task, but was implemented as a proof-of-
concept with vectors of length 2 and on small,
manually created datasets based on propositional
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Figure 4: Comparison of DMat, Tensor, and 2Mat methods as the number of training instances in-
creases.

logic examples. Here, we go beyond this by learn-
ing tensors using corpus data and by deriving sev-
eral different matrix representations for the verb in
the subject-verb-object (SVO) sentence.

This work can also be thought of as applying
neural network learning techniques to the clas-
sic problem of selectional preference acquisition,
since the design of the pseudo-disambiguation ex-
periments is taken from the literature on selec-
tional preferences (Clark and Weir, 2002; Cham-
bers and Jurafsky, 2010). We do not compare di-
rectly with methods from this literature, e.g. those
based on WordNet (Resnik, 1996; Clark and Weir,
2002) or topic modelling techniques (Seaghdha,
2010), since our goal in this paper is not to ex-
tend the state-of-the-art in that area, but rather to
use selectional preference acquisition as a test bed
for the tensor-based semantic framework.

7 Conclusion

In this paper we introduced three dimensionally
reduced representations of the transitive verb ten-
sor defined in the type-driven framework for com-
positional distributional semantics (Coecke et al.,
2010). In a comprehensive experiment on ten dif-
ferent verbs we find no significant difference be-
tween the full tensor representation and the re-
duced representations. The SKMat and 2Mat rep-

resentations have the lowest number of parame-
ters and offer a promising avenue of research for
more complex sentence structures and sentence
spaces. KKMat and DMat also had high scores
on some verbs, but these representations are appli-
cable only in spaces where a single-value output is
appropriate.

In experiments where we varied the amount of
training data, we found that in general more con-
crete verbs can learn from less data. Low con-
creteness verbs require particular care with dataset
design, since some of the seemingly random ex-
amples can be plausible. This problem may be
circumvented by using semi-supervised learning
techniques.

We also found that simple numerical tech-
niques, such as column normalisation, can
markedly alter the values and quality of learning.
On our data, column normalisation has a side-
effect of removing the negative values that were
introduced by the use of tTest weighting measure.
The use of the PPMI weighting scheme and non-
negative matrix factorisation (NMF) (Grefenstette
et al., 2013; Van de Cruys, 2010) could lead to a
similar effect, and should be investigated. Further
numerical techniques for improving the estimation
of the class decision boundary, and consequently
the F-score, will also constitute future work.
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Abstract
In this paper we propose a computational
method for determining the orthographic
similarity between Romanian and related
languages. We account for etymons and
cognates and we investigate not only the
number of related words, but also their
forms, quantifying orthographic similari-
ties. The method we propose is adaptable
to any language, as far as resources are
available.

1 Introduction

Language relatedness and language change across
space and time are two of the main questions of the
historical and comparative linguistics (Rama and
Borin, 2014). Many comparative methods have
been used to establish relationships between lan-
guages, to determine language families and to re-
construct their proto-languages (Durie and Ross,
1996). If grouping of languages in linguistic fam-
ilies is generally accepted, the relationships be-
tween languages belonging to the same family are
periodically investigated. In spite of the fact that
linguistic literature abounds in claims of classifi-
cation of natural languages, the degrees of similar-
ity between languages are far from being certain.
In many situations, the similarity of natural lan-
guages is a fairly vague notion, both linguists and
non-linguists having intuitions about which lan-
guages are more similar to which others. McMa-
hon and McMahon (2003) and Rama and Borin
(2014) note that the computational historical lin-
guistics did not receive much attention until the
beginning of the 1990s, and argue for the necessity
of development of quantitative and computational
methods in this field.

1.1 Related Work
According to Campbell (2003), the methods based
on comparisons of cognate lists and sound corre-

spondences are the most popular approaches em-
ployed for establishing relationships between lan-
guages. Barbançon et al. (2013) emphasize the va-
riety of computational methods used in this field,
and state that the differences in datasets and ap-
proaches cause difficulties in the evaluation of the
results regarding the reconstruction of the phylo-
genetic tree of languages. Linguistic phylogeny
reconstruction proves especially useful in histor-
ical and comparative linguistics, as it enables the
analysis of language evolution. Ringe et al. (2002)
propose a computational method for evolutionary
tree reconstruction based on a “perfect phylogeny”
algorithm; using a Bayesian phylogeographic ap-
proach, Alekseyenko et al. (2012), continuing the
work of Atkinson et al. (2005), model the expan-
sion of the Indo-European language family and
find support for the hypothesis which places its
homeland in Anatolia; Atkinson and Gray (2006)
analyze language divergence dates and argue for
the usage of computational phylogenetic meth-
ods in the question of Indo-European age and ori-
gins. Using modified versions of Swadesh’s lists1,
Dyen et al. (1992) investigate the classification of
Indo-European languages by applying a lexicosta-
tistical method.

The similarity of languages is interesting not
only for historical and comparative linguistics,
but for machine translation and language acqui-
sition as well. Scannell (2006) and Hajič et al.
(2000) argue for the possibility of obtaining a bet-
ter translation quality using simple methods for
very closely related languages. Koppel and Ordan
(2011) study the impact of the distance between
languages on the translation product and conclude
that it is directly correlated with the ability to dis-
tinguish translations from a given source language
from non-translated text. Some genetically re-
lated languages are so similar to each other, that

1http://www.wordgumbo.com/ie/cmp/iedata.txt
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speakers of such languages are able to communi-
cate without prior instruction (Gooskens, 2007).
Gooskens et al. (2008) analyze several phonetic
and lexical predictors and their conclusion is that
lexical similarity can be seen as a predictor of lan-
guage intelligibility. The impact of language sim-
ilarities in the process of second language acquisi-
tion is argued by the contrastive analysis hypoth-
esis, which claims that where similarities between
the first and the second language occur, the acqui-
sition would be easier compared with the situation
in which there were differences between the two
languages (Benati and VanPatten, 2011).

1.2 Our Approach

Although there are multiple aspects that are rele-
vant in the study of language relatedness, such as
the orthographic, phonetic, syntactic and semantic
differences, in this paper we focus only on the or-
thographic similarity. The orthographic approach
relies on the idea that sound changes leave traces
in the orthography, and alphabetic character cor-
respondences represent, to a fairly large extent,
sound correspondences (Delmestri and Cristianini,
2010).

In this paper we propose an orthographic simi-
larity method focused on etymons (direct sources
of the words in a foreign language) and cognates
(words in different languages having the same ety-
mology and a common ancestor). In a broadly ac-
cepted sense, the higher the similarity degree be-
tween two languages, the closer they are.

One of our motivations is that when people en-
counter a language for the first time in written
form, it is most likely that they can distinguish and
individualize words which resemble words from
their native language. These words are proba-
bly either inherited from their mother tongue (ety-
mons), or have a common ancestor with the words
in their language (cognates).

Our first goal is, given a corpus C, to automat-
ically detect etymons and cognates. In Section 2
we propose a dictionary-based approach to auto-
matically extract related words, and a method for
computing the orthographic similarity of natural
languages. Most of the traditional approaches in
this field focus either on etymology detection or
on cognate identification, most of them reporting
results only on small sets of cognate pairs (usually
manually determined lists of about 200 cognates,
for which the cognate judgments are made by hu-

man experts (Rama and Borin, 2014)). Our ap-
proach implies a detailed investigation which ac-
counts not only for the number of related words,
as it is usually done in lexicostatistics (where the
relationships between languages are determined
based on the percentage of related words), but also
for their forms, quantifying orthographic similari-
ties. We employ three string similarity metrics for
a finer-grained analysis, as related words in dif-
ferent languages do not have identical forms and
their partial similarity implies different degrees of
recognition and comprehensibility. For example,
the Romanian word lună (moon) is closer to its
Latin etymon luna than the word bătrân (old) to
its etymon veteranus, and the Romanian word vânt
(wind) is closer to its French cognate pair vent than
the word castel (castle) to its cognate pair château.

In this paper we investigate the orthographic
similarity between Romanian and related lan-
guages. Romanian is a Romance language, be-
longing to the Italic branch of the Indo-European
language family, and is of particular interest re-
garding its geographic setting. It is surrounded
by Slavic languages and its relationship with the
big Romance kernel was difficult. Besides gen-
eral typological comparisons that can be made
between any two or more languages, Romanian
can be studied based on comparisons of ge-
netic and geographical nature, participating in nu-
merous areally-based similarities that define the
Balkan convergence area. Joseph (1999) states
that, regarding the genetic relationships, Roma-
nian can be studied in the context of those lan-
guages most closely related to it and that the
well-studied Romance languages enable compar-
isons that might not be possible otherwise, within
less well-documented families of languages. The
position of Romanian within the Romance fam-
ily is controversial (McMahon and McMahon,
2003): either marginal or more integrated within
the group, depending on the versions of the cog-
nate lists that are used in the analysis.

In Section 3.1 we apply our method on Roma-
nian in different stages of its evolution, running
our experiments on high-volume corpora from
three historical periods: the period approximately
between 1642 and 1743, the second half of 19th

century (1870 - 1889), and the present period. In
Section 3.2 we make use of a fourth corpus, Eu-
roparl, with a double goal: on the one hand, to
check if degrees of similarity between Romanian
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and other languages in the present period are con-
sistent across two different corpora, and on the
other hand, to investigate whether there are dif-
ferences between the overall degrees of similarity
obtained for the entire corpus and those obtained
in various experiments at sentence level. The con-
clusions of our paper are outlined in Section 4.

2 Methodology and Algorithm

In this section we introduce a technique for deter-
mining the orthographic similarity of languages.
In order to obtain accurate results, we investigate
both etymons and cognates. First, we automati-
cally identify etymons and cognates, then we mea-
sure the distances between related words, and fi-
nally we compute the overall degrees of similarity
between pairs of languages. We also applied this
method for investigating the mutual intelligibility
of the Romance languages, and preliminary results
are presented in (Ciobanu and Dinu, 2014b).

2.1 Similarity Method

Let C � tw1, w2, ..., wNwordsu be a corpus in L1

and letL2 be a related language. We assume, with-
out any loss of generality, that the elements of C
are ordered such that CL � tw1, w2, ..., wNlinguau
is the subset of C containing all the words that
have an etymon or a cognate pair in L2. We use
the following notations: Nwords is the number of
token words in C, Nlingua is the number of token
words in CL, λ is the empty string and xi is the
etymon or cognate pair of wi in L2. Given a string
distance ∆, we define the distance between L1 and
L2 (non-metric distance), with frequency support
from corpus C, as follows:

∆pL1, L2q � 1�
Nlingua
Nwords

�

°Nlingua

i�1 ∆pwi, xiq

Nwords
(1)

Hence, the similarity between languages L1 and
L2 is defined as follows:

SimpL1, L2q � 1�∆pL1, L2q (2)

2.2 Algorithm

We present here the algorithm based on linguistic
relationships detection and string similarity meth-
ods for determining the orthographic similarity
between languages, with frequency support from
corpora in the source language. This algorithm,

λ

λ
λ

λ

etymology

etymology

cognates

cognates

LinguaC

Nlingua

Nwords - Nlingua

|C| = Nwords, |Lingua| = Nlingua

Figure 1: Schema for determining the ortho-
graphic similarity between related languages with
frequency support from corpus C.

Corpus #words #stop words #lemmas
token type token type type

Parliament 22,469,290 162,399 14,451,178 214 40,065
Eminescu 870,828 65,742 565,396 212 21,456
Chronicles 253,786 28,936 170,582 193 8,189
RVR 2,464 2,464 124 124 2,252

Table 1: Statistics for the Romanian datasets.

represented in Figure 2, is applicable to any lan-
guage. After a preprocessing phase, which is de-
tailed in Subsection 2.2.1, we analyze words and
begin by identifying their etymologies.

2.2.1 Preprocessing
Given a corpus C, we start by preprocessing the
text.

Step 1. Data Cleaning. We perform basic
word segmentation, using whitespace and punc-
tuation marks as delimiters and we lower-case all
words. We remove from the datasets tokens that
are irrelevant for our investigation, such as dates,
numbers and non-textual annotations marked by
non-alphanumeric characters.

Step 2. Stop Words Removal. We focus on
analyzing word content and, in order to obtain
relevant results, we remove stop words from the
datasets. We use the lists of stop words for Roma-
nian provided by the Apache Lucene2 text search
engine library. In Table 1 we list the total number
of stop words from each corpus.

2http://lucene.apache.org
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Step 3. Lemmatization. We use lemmas for
identifying words’ definitions in dictionaries and
for computing adequate distances between words
and their cognates or etymons. We use the Dex-
online3 machine-readable dictionary to lemmatize
Romanian words.

Step 4. Diacritics Removal. Many words have
undergone transformations by the augmentation of
language-specific diacritics when entering a new
language. From an orthographic perspective, the
resemblance of words is higher between words
without diacritics than between words with dia-
critics. For example, the orthographic distance
is higher for the Romanian word amiciţie (friend-
ship) and its French cognate pair amitié than for
their corresponding forms without diacritics, am-
icitie and amitie. For this reason, in this step
of our procedure we create two versions of each
dataset, with and without diacritics, in order to fur-
ther investigate the influence of the diacritics on
the cross-language orthographic similarity. In Ro-
manian, 5 diacritics are used today: ă, ı̂, â, ş, ţ.

2.2.2 Relationships Identification
Step 1. Etymology Detection. For most words,
etymological dictionaries offer a unique etymol-
ogy, but when more options are possible for ex-
plaining a word’s etymology (there are words
whose etymology was and remains difficult to
ascertain), dictionaries may provide multiple al-
ternatives. For example, the Romanian word
parlament (parliament) has a double etymology:
French (with the etymon parlement) and Italian
(with the etymon parlamento). We account for all
the given etymological hypotheses, enabling our
method to provide more accurate results.

For determining words’ etymologies we use the
Dexonline machine-readable dictionary, which is
an aggregation of over 30 Romanian dictionaries.
By parsing its definitions, we are able to automat-
ically extract information regarding words’ ety-
mologies and etymons. The most frequently used
pattern is shown below.

<abbr class="abbrev"
title="limba language_name">
language_abbreviation </abbr>

<b> origin_word </b>

As an example, we provide below an excerpt
from a Dexonline entry which uses this pattern to

3http://dexonline.ro

specify the etymology of the Romanian word capi-
tol (chapter), which has double etymology: Latin
(with the etymon capitulum) and Italian (with the
etymon capitolo).

<b> CAPÍTOL </b>
<abbr class="abbrev"

title="limba italiana"> it. </abbr>
<b> capitolo </b>
<abbr class="abbrev"

title="limba latina"> lat. </abbr>
<b> capitulum </b>

Step 2. Cognate Identification. Cognates are
words in different languages having the same ety-
mology and a common ancestor. The methods for
cognate detection proposed so far are mostly based
on orthographic/phonetic and semantic similari-
ties (Kondrak, 2001; Frunza et al., 2005), but the
term “cognates” is often used with a somewhat dif-
ferent meaning, denoting words with high ortho-
graphic/phonetic and cross-lingual meaning simi-
larity, the condition of common etymology being
left aside. We focus on etymology and we intro-
duce an automatic strategy for detecting pairs of

INPUT TEXT

Stop words removal

Lemmatization

GENETIC RELATIONSHIPS
IDENTIFICATION

Etymology detection

Cognate identification

Language clustering

Orthographic similarity
computation

SIMILARITY HIERARCHY

Romanian
dictionaries

LANGUAGE SIMILARITY 
COMPUTATION

Foreign languages
dictionaries

TEXT PROCESSING

Words distances 
measuring

Figure 2: Algorithm for determining the ortho-
graphic similarity between related languages.
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victoria (lat.)

victorie (ro.)

ety
mo
n etymon

cognates vittoria (it.)

Figure 3: Word-etymon and cognate pairs.

cognates between two given languages, which en-
ables the identification of all cognate pairs for the
studied corpus.

Considering a set of words in a given language
L, to identify the cognate pairs between L and a re-
lated language L’, we first determine the etymolo-
gies of the given words. Then we translate in L’
all words without L’ etymology. We consider cog-
nate candidates pairs formed of input words and
their translations. Using electronic dictionaries,
we extract etymology-related information for the
translated words. To identify cognates, we com-
pare, for each pair of candidates, the etymologies
and the etymons. If they match, we identify the
words as being cognates.

In our previous work (Ciobanu and Dinu,
2014a) we applied this method on a Romanian dic-
tionary, while here we extract cognates from Ro-
manian corpora. We identify cognate pairs be-
tween Romanian and six other languages: Ital-
ian, French, Spanish, Portuguese, Turkish and En-
glish. We use electronic dictionaries4 to extract
etymology-related information and Google Trans-
late5 to translate Romanian words. We are re-
stricted in our investigation by the available re-
sources, but we plan to extend our method to
other related languages as well. We selected
these six languages for the following reason: the
first four in our list are Romance languages, and
our intuition is that there are numerous words in
these languages which share a common ancestor
with Romanian words. We investigate the cog-
nate pairs for Turkish because many French words
were imported in both Romanian and Turkish in
the 19th century, and we believe that accounting
for Romanian-Turkish cognates would provide a
more accurate result for the similarity of these lan-

4 Italian: http://www.sapere.it/sapere/dizionari
French: http://www.cnrtl.fr
Spanish: http://lema.rae.es/drae
Portuguese: http://www.infopedia.pt/lingua-portuguesa
Turkish: http://www.nisanyansozluk.com
English: http://www.collinsdictionary.com

5http://translate.google.com

guages. As for English, we decided to investigate
the cognate pairs for this language in order to ana-
lyze to what extent the influence of English on Ro-
manian increases across time. In Table 2 we report
the number of Romanian words having an etymon
or a cognate pair in the six related languages.

Step 3. Evaluation. In order to evaluate our au-
tomatic method for extracting etymology-related
information and for detecting related words, we
excerpt a sample of 500 words for each of the
considered languages (Romanian, French, Italian,
Spanish, Portuguese, Turkish and English). The
samples are drawn using a proportionate stratifi-
cation sampling method with regard to the length
of the lemmas in our datasets. We manually deter-
mine the etymologies of the words in the samples,
and we compare these results with the automati-
cally obtained etymologies. We compute the accu-
racy for etymology extraction for each language,
and we obtain the following results: 95.8% accu-
racy for Romanian, 97.8% for Italian, 96.8% for
French, 96.6% for Spanish, 97.0% for Portuguese,
96.0% for Turkish and, finally, 97.2% for English.

Language Relationship Corpus
Parliament Eminescu Chronicles RVR

French cognates 192,275 13,074 3,139 43
etymons 15,665,865 484,668 89,946 1,203

Italian cognates 1,660,588 40,491 2,743 100
etymons 9,234,710 348,948 77,633 957

Spanish cognates 4,616,528 119,627 9,942 355
etymons 4,411,707 212,106 65,336 482

Portuguese cognates 4,378,354 115,309 15,755 324
etymons 3,477,285 156,908 55,991 435

Turkish cognates 1,401,569 33,070 2,332 113
etymons 331,863 24,115 11,985 69

English cognates 4,347,302 146,377 21,966 296
etymons 625,596 17,328 6,799 56

Table 2: Number of Romanian token words having
etymons or cognate pairs in related languages.

2.2.3 Linguistic Distances
Various approaches have been previously em-
ployed for assessing the orthographic distance
or similarity between related words. Their per-
formance has been investigated and compared
(Frunza et al., 2005; Rama and Borin, 2014), but
a clear conclusion cannot be drawn with respect to
which method is the most appropriate for a given
task. We employ three metrics to determine the
orthographic similarity between related words. In
Subsection 3.1.2 we investigate to what extent the
similarity scores computed with each of these met-
rics differ, and whether the differences are statisti-
cally significant. We use the following metrics:
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• LCSR: The longest common subsequence
ratio (Melamed, 1995) is the longest common
subsequence of two strings u and v divided
by the length of the longer string. We sub-
tract this value from 1, in order to obtain the
distance between two words.

• EDIT: The edit distance (Levenshtein, 1965)
counts the minimum number of operations
(insertion, deletion and substitution) required
to transform one string into another. We use
a normalized version of the edit distance, di-
viding it by the length of the longer string.

• RD: The rank distance (Dinu and Dinu,
2005) is used to measure the similarity be-
tween two ranked lists. A ranking of a set
of n objects can be represented as a permuta-
tion of the integers 1, 2, ..., n. Let S be a set
of ranking results, σ P S. σpiq represents the
rank of object i in the ranking result σ. The
rank distance is computed as: RDpσ, τq �°n
i�1 |σpiq � τpiq|. The ranks of the ele-

ments are assigned from bottom up, i.e. from
n to 1, using the Borda count method (de
Borda, 1781). The elements which do not oc-
cur in any of the rankings receive the rank
0. To extend the rank distance to strings,
we index each occurrence of a given letter
a with ak, where k is the number of its pre-
vious occurrences, and then apply the rank
distance on the new indexed strings, which
become rankings in this situation. In order
to normalize it, we divide the rank distance
by the maximum possible distance between
two strings u and v (Dinu and Sgarro, 2006):
∆maxpu, vq � |u|p|u|�1q{2�|v|p|v|�1q{2.

3 Experiments and Results

In this section we present the results obtained by
applying our method for determining orthographic
similarity on Romanian datasets.

To our knowledge, only basic lexicostatistical
methods (generally based on different dictionar-
ies or versions of the representative vocabulary
of Romanian) which compute the percentage of
words with a given etymology have been applied
for determining the relationships between Roma-
nian and related languages. Because of the diffi-
culty of setting the bounds between the basic lex-
icon and the remaining words, Graur (1968) uses
in his experiments three concentric versions of the

basic Romanian lexicon. Dinu (1996) reevaluates
the etymology detection for the three versions of
the basic Romanian lexicon and reclassifies the
lexical material. He argues against grouping to-
gether all the words with Slavic origins, without
differentiation between Old Slavic and languages
such as Bulgarian, Russian, Ukrainian and Polish.
Sala (1988) builds a version of the representative
vocabulary of Romanian comprising 2588 words,
which we use in our experiments as well.

3.1 Romanian Evolution

We apply our similarity method on high-volume
Romanian corpora from three distinct historical
periods of time, with different cultural, econom-
ical, political and social contexts. In Table 1 we
report statistics for these corpora and for the basic
Romanian lexicon.

3.1.1 Data
The first corpus consists of the transcription of the
parliamentary debates held in the Romanian Par-
liament from 1996 to 2007 (Grozea, 2012). The
second corpus consists of the publishing works of
Mihai Eminescu (Eminescu, 1980 1985), the lead-
ing Romanian poet. His works provide an insight-
ful description of the period between 1870 and
1889, with respect to its cultural, economical, so-
cial and political aspects, including some major
events in the Romanian history. Many researchers
consider that Eminescu had a crucial influence on
Romanian, his contribution to modern language
development being highly appreciated. The third
corpus dates back to the period approximately be-
tween 1642 and 1743, the beginning period of the
Romanian writing. Miron Costin, Grigore Ure-
che and Ion Neculce are Romanian chroniclers
whose main works follow one another in creat-
ing one of the most detailed and valuable descrip-
tions of Moldavia in that period, “Letopiseţul Ţării
Moldovei”. Along with them, Dimitrie Cantermir
contributed to the early development of the Roma-
nian writing, having written what is considered to
be the first attempt at a socio-political novel (“Isto-
ria Ieroglifică”, 1703-1705). Their chronicles ac-
count for social, cultural, economical and political
events with the purpose of recreating historical pe-
riods of time. We also use the basic Romanian lex-
icon (Sala, 1988), abbreviated RVR, for our exper-
iments. The Dexonline machine-readable dictio-
nary, which we use for determining the etymolo-
gies for the Romanian words, aggregates defini-

1052



Language Parliament Eminescu Chronicles RVR
%words D ND %words D ND %words D ND %words D ND

French 70.6 45.5 46.0 48.3 48.8 57.2 35.2 36.1 37.2 38.2 36.7 20.3 21.1 22.3 23.1 50.6 30.3 31.4 32.2 33.3
Latin 63.7 40.2 42.0 59.9 34.6 36.6 44.9 24.2 25.7 56.5 34.0 37.3
Italian 48.5 28.1 33.4 29.1 34.5 44.7 26.9 30.2 27.9 31.2 31.7 19.6 20.3 20.7 21.4 41.4 23.4 26.2 25.2 28.0
Spanish 40.2 9.2 24.9 10.7 27.0 38.1 10.9 21.2 12.9 23.7 29.7 11.9 15.1 13.9 17.2 32.5 9.0 19.5 9.9 21.0
Portuguese 35.0 8.3 22.1 9.5 24.0 31.3 9.6 18.5 11.3 21.0 28.3 12.2 16.3 13.9 18.4 29.3 8.6 17.4 9.4 18.9
English 22.1 2.2 14.0 2.2 14.2 18.8 1.1 9.9 1.2 10.1 11.3 1.3 5.9 1.3 6.2 14.3 1.6 10.3 1.6 10.4
Provencal 17.7 9.6 9.8 20.7 11.3 11.6 21.8 13.0 13.4 16.8 9.7 10.5
German 9.2 5.8 5.9 6.9 4.5 4.6 4.9 2.4 2.4 10.2 6.3 6.6
Turkish 7.7 0.9 5.4 0.9 5.6 6.6 1.7 4.5 1.7 4.7 5.6 2.9 3.7 3.1 3.9 7.4 1.6 5.0 1.8 5.3
Russian 5.9 3.7 4.0 6.5 4.0 4.4 7.5 4.3 4.9 9.0 5.4 6.2
Catalan 5.9 3.3 3.4 9.0 4.8 5.1 11.2 5.9 6.4 8.4 4.6 4.9
Greek 4.8 2.9 3.0 6.0 3.6 3.7 4.5 2.6 2.7 4.6 2.5 2.6
Albanian 4.8 2.6 3.0 6.7 3.7 4.0 9.1 4.9 5.3 8.4 4.2 4.8
Bulgarian 4.0 2.6 3.0 7.4 4.7 5.5 10.6 6.8 7.8 11.8 7.2 8.4
Slavic 4.9 2.3 2.5 6.6 3.4 3.8 12.1 6.5 7.7 9.8 5.0 5.7
Old Slavic 3.8 2.2 2.7 6.1 3.3 4.3 11.9 6.8 8.7 9.5 5.2 6.0
Hungarian 2.9 1.8 2.0 5.1 2.9 3.3 7.5 4.3 4.7 7.4 3.7 4.6
Ruthenian 2.4 1.6 2.0 4.7 3.0 3.7 6.0 3.7 4.4 4.5 2.4 3.0
Serbian 2.6 1.4 1.6 5.8 3.0 3.4 8.9 5.0 5.5 8.6 5.2 6.0
Sardinian 1.7 1.0 1.0 3.3 1.7 1.8 4.0 2.0 2.1 2.6 1.4 1.5

Table 3: Results for the Romanian datasets. In the D and ND columns we provide the average degrees
of similarity for the datasets with and without diacritics. For languages for which we determine cognate
pairs (besides etymons), we report both versions of the results, before and after cognate identification.
In the %words column we provide the percentage of words having an etymon or a cognate pair in each
language. The results are ordered according to the ranking of similarity for the corpus comprising the
parliamentary debates after identifying cognates and with diacritics included.

tions from over 30 dictionaries ranging from 1927
to the present time and contains archaisms and
obsolete words (which are marked accordingly);
therefore, we are able to identify etymologies for
words in all used corpora.

3.1.2 Results

In this subsection we present and analyze the main
results drawn from our research. In Table 3 we
list the output of our method for each corpus, with
and without diacritics6. We report the similarity
between Romanian and related languages, provid-
ing the average value of the three metrics used. In
the %words column we provide, for each corpus,
the percentage of words having an etymon or a
cognate pair in a given language (the typical mea-
sure used in lexicostatistical comparison, i.e., the
0 distance function). The results for the Romanian
datasets are plotted in Figure 4 and Figure 5.

Cognate Influence. Table 3 and Figure 4
present the gain obtained by cognate analysis. Ac-
counting for cognates leads to an increase of sim-
ilarity between Romanian and Spanish and Por-
tuguese with almost 300%, and between Roma-
nian and Italian with almost 20%. Another spec-
tacular increase of closeness is for Turkish, which
draws closer to Romanian with more than 500%

6The complete ranking of similarity is available online at
http://nlp.unibuc.ro/resources/rosim.pdf.

by using the cognate gain. The degree of sim-
ilarity is not given by the contribution of words
inherited in Romanian from Turkish (about 1%),
but by the pairs of shared cognates. Both Ro-
manian and Turkish borrowed words from French
massively towards the end of the 19th century.
Thus, most pairs of Romanian-Turkish cognates
have common French ancestors, and words in Ro-
manian and Turkish which resemble are actually
loans from the same French words. We also notice
a significant increase in similarity between Roma-
nian and English in the modern period. This in-
crease is natural and probably arises for the simi-
larity between English and most of the other lan-
guages as well. We notice that this increase is
due preponderantly to the cognate pairs. Most of
the Romanian-English cognates have a Romance
common ancestor (78.4% Latin, 4.2% French,
3.4% Italian), and 11.8% have a Greek common
ancestor, counted at lemma level on the corpus
comprising the parliamentary debates.

Romanian Evolution. Some significant results
can be observed in the evolution of Romanian: the
degrees of similarity between Romanian and all
the Romance languages has increased significantly
from the Chronicles period until today. Besides
them, German is the only language to which Ro-
manian drew closer (a possible explanation might
be the fact that, after the establishment of Germans
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Figure 4: Degrees of similarity for the Romanian datasets. For French, Italian, Spanish, Portuguese,
Turkish and English, the values obtained after the cognate identification phase are also plotted.

in Banat and Transylvania, many German words
entered the basic Romanian lexicon). On the con-
trary, the similarity between Romanian and almost
all the Slavic languages decreased in the same pe-
riod. Russian is the only Slavic language which
preserved its degree of similarity with Romanian
(being, in the 2000s, the only Slavic language
among the top 10 most closely related languages
with Romanian, on the ninth position, with a de-
gree of similarity of less than 4%). In the 18th and
19th centuries, the transition to the Latin alpha-
bet and the desire to restore Romanian’s Latin ap-
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Figure 5: Degrees of similarity for the language
families. Iranian and Baltic have a degree of simi-
larity of less than 0.5.

pearance contributed to the decrease of the Slavic
influence (Gheţie, 1978). In fact, all Slavic in-
fluences in the 2000s sum up to 8.9%, in con-
trast with Latin influences, reaching 61.8%. Greek
is the only language which reaches its peak re-
garding the similarity with Romanian in the 19th

century (due to the brief Phanariot dominance in
the 19th century). Therefore, Romanian preserved
its Latin character all along, and the influence of
the non-Latin languages on Romanian (overesti-
mated in some works) was in fact not so signif-
icant. This fact supports Darwin’s theory (Dar-
win, 1859), which states that the genealogy of lan-
guages is consistent with the genealogy of the na-
tions (analyzed based on DNA similarity).

Orthographic Metrics. In order to compare the
similarity scores computed with the three metrics
used, we conduct hypothesis tests (Sheskin, 2003)
to determine whether the differences between the
results obtained with each metric are statistically
significant. We extract a sample of 5,000 words
and we compute the pairwise differences between
the similarity scores. Using the R v3.1.0 software
environment for statistical computing (R Core
Team, 2014), we perform the one-way ANOVA
F-test, with the null hypothesis H0: µEDIT �
µLCSR � µRD (where µ∆ is the mean of the val-
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ues computed with the ∆ metric) and the alterna-
tive hypothesis Ha : not all µEDIT , µLCSR, µRD
are equal. Since the p-value of 2.88e-05 is much
smaller than the 0.05 significance level, we have
very strong evidence to reject the null hypothesis
that the mean computed values for the three met-
rics are all equal. Further, we perform post-hoc
comparisons applying pairwise t-tests with Bon-
feronni correction for the p-value, in order to an-
alyze the differences between the metrics. For
each pair of metrics, p ! 0.05. The differences
are statistically significant, but we notice that they
are small. Applying a two-sampled t-test, we ob-
tain a [0.012, 0.015] confidence interval for the
mean difference between EDIT and LCSR, [0.015,
0.018] for EDIT and RD, and [0.001, 0.003] for
RD and LCSR, at 95% confidence level. More-
over, computing Spearman’s rank correlation co-
efficient for the rankings obtained by each metric
for each dataset, we observe a very high corre-
lation between them (ρ ¡ 0.98 for each pair of
variables). Thus, we conclude that reporting the
average of the three metrics is relevant for our ex-
periments, as differences are small and do not in-
fluence the ranking.

3.2 Europarl Experiments

We continue our investigation regarding the sim-
ilarity of natural languages with two additional
experiments. First, we want to see if degrees
of similarity between Romanian and other lan-
guages in the present period are consistent across
two different corpora. In the second experi-
ment we are interested to see if there are differ-
ences between the overall degrees of similarity
obtained for the entire corpus (the bag-of-words
model) and those obtained in various experiments
at sentence level. Our main corpus is Europarl
(Koehn, 2005). More specifically, we use the por-
tions larger than 2KB collected between 2007 and
2011 from the Romanian subcorpus of Europarl.
The corpus is tokenized and sentence-aligned in
21 languages. For preprocessing this corpus, we
discard all the transcribers’ descriptions of the par-
liamentary sessions (such as “The President in-
terrupted the speaker” or “The session was sus-
pended at 19:30 and resumed at 21:00”).

Exp. #1. In a first step, we apply the methodol-
ogy described in Section 2 on the entire Europarl
corpus for Romanian, using a bag-of-words model
for the entire corpus, in which we account for the

overall frequencies of the words. In this experi-
ment, as in the previous ones, we cannot detect
outliers, i.e., sentences which are unbalanced re-
garding the etymologies of the comprised words.
For this reason, we conduct a second experiment
which addresses this potential issue.

Exp. #2. We determine sentence-level ortho-
graphic similarity and we aggregate the results to
compute the average values for the related lan-
guages. In this second experiment, we apply the
methodology described in Section 2 for each sen-
tence in the Europarl corpus for Romanian. For
each sentence we obtain a ranking of related lan-
guages and, in order to obtain a ranking of sim-
ilarity for the entire corpus, we compute the av-
erage degrees of similarity: for each related lan-
guage, we sum up the degrees of similarity for all
the sentences and divide this value by the number
of sentences in the corpus.

Exp. #3. Because the interpretation of statis-
tics derived from datasets that include outliers may
be misleading, we compute the standard quartiles
Q1, Q2 and Q3 (Sheskin, 2003) with regard to the
length of the sentences. We use the interquartile
range IQR � Q3 � Q1 to find outliers in the
data. We consider outliers the observations that
fall below the lower fence LF = Q1 � 1.5pIQRq
or above the upper fence UF = Q3 � 1.5pIQRq.
We apply our methodology again only for the sen-
tences having the length in the rLF,UF s range.

Language Exp. #1 Exp. #2 Exp. #3 Exp. #4
French 53.1 52.1 52.1 52.8
Latin 44.1 43.6 43.6 44.0
Italian 40.6 39.9 39.9 40.2
Portuguese 33.6 32.9 32.8 33.2
Spanish 27.6 27.3 27.3 26.8
English 16.0 15.7 15.7 15.1
Provencal 10.0 10.1 10.1 9.3
Turkish 6.3 6.2 6.1 5.7
German 5.9 5.8 5.8 5.3
Greek 4.4 4.3 4.3 3.8
Russian 4.2 4.1 4.1 3.6
Catalan 4.1 4.2 4.2 3.5
Old Slavic 3.1 3.2 3.2 2.7
Albanian 3.0 3.1 3.1 2.5
Bulgarian 2.9 2.9 2.9 2.2
Slavic 2.6 2.5 2.5 1.9
Hungarian 2.5 2.4 2.4 1.7
Ruthenian 2.1 2.1 2.1 1.3
Serbian 1.6 1.5 1.5 0.7
Sardinian 1.2 1.2 1.3 0.1

Table 4: Results for Europarl on the entire corpus
(Exp. #1) and at sentence level (Exp. #2 - #4).
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Figure 6: Distribution of the Romanian sentences in Europarl based on their similarity with the top 5
ranked languages. The OX axis represents the degree of similarity normalized to [0,1].

Exp. #4. As a last experiment, for each language
L we consider as observations the degrees of sim-
ilarity between Romanian and L, we discard out-
liers and we compute the average value of the ob-
servations inside the rLF,UF s range. For each
language, we determine the distribution of the sen-
tences according to their similarity with the given
language (the histograms for the top 5 languages
are presented in Figure 6).

In Figure 7 we report the top 20 languages in
the ranking of similarity for Europarl, emphasiz-
ing the gain obtained by identifying cognates. In
Table 4 we report the similarity scores for the top
20 languages in the rankings of similarity for all
the 4 experiments: overall similarity for the entire
Europarl corpus (Exp. #1), sentence-level similar-
ity (Exp. #2), similarity for the sentences having
the length in the rLF,UF s range (Exp. #3), and
similarity for the sentences having the similarity
between Romanian and each related language in
the rLF,UF s range (Exp. #4).

Some remarks are immediate. We observe
that the differences between the values obtained
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Figure 7: Degrees of similarity for Europarl.

for the entire corpus (Exp. #1) and those ob-
tained in various experiments at sentence level
(Exp. #2 - #4) are very small (an exception is
Exp. #4, for languages whose degrees of similarity
with Romanian are of less than 10%). We test the
bag-of-words model on two corpora from the same
period (the Parliament corpus and Europarl – in
Exp. #1) and we notice that the results are consis-
tent across different corpora (0.98 Spearman’s ρ).
The only significant difference is for Portuguese,
which is closer to Romanian as measured on Eu-
roparl than on the Parliament corpus.

4 Conclusions and Future Work

In this paper we proposed a computational method
for determining cross-language orthographic
similarity, with application on Romanian. We
investigated etymons and cognates and we con-
ducted a fine-grained analysis of the orthographic
similarity between Romanian and related lan-
guages. Our results provide a new insight into
the classification and evolution of Romanian. We
plan to apply our similarity method on a corpus
of spoken language, and to extend our analysis
to other languages as well, as we gain access to
available resources. We further intend to combine
our orthographic approach with syntactic and
semantic evidence for a wider perspective on
language similarity.
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Abstract

There is rising interest in vector-space
word embeddings and their use in NLP,
especially given recent methods for their
fast estimation at very large scale. Nearly
all this work, however, assumes a sin-
gle vector per word type—ignoring poly-
semy and thus jeopardizing their useful-
ness for downstream tasks. We present
an extension to the Skip-gram model that
efficiently learns multiple embeddings per
word type. It differs from recent related
work by jointly performing word sense
discrimination and embedding learning,
by non-parametrically estimating the num-
ber of senses per word type, and by its ef-
ficiency and scalability. We present new
state-of-the-art results in the word similar-
ity in context task and demonstrate its scal-
ability by training with one machine on a
corpus of nearly 1 billion tokens in less
than 6 hours.

1 Introduction

Representing words by dense, real-valued vector
embeddings, also commonly called “distributed
representations,” helps address the curse of di-
mensionality and improve generalization because
they can place near each other words having sim-
ilar semantic and syntactic roles. This has been
shown dramatically in state-of-the-art results on
language modeling (Bengio et al, 2003; Mnih and
Hinton, 2007) as well as improvements in other
natural language processing tasks (Collobert and
Weston, 2008; Turian et al, 2010). Substantial
benefit arises when embeddings can be trained on
large volumes of data. Hence the recent consider-
able interest in the CBOW and Skip-gram models

*The first two authors contributed equally to this paper.

of Mikolov et al (2013a); Mikolov et al (2013b)—
relatively simple log-linear models that can be
trained to produce high-quality word embeddings
on the entirety of English Wikipedia text in less
than half a day on one machine.

There is rising enthusiasm for applying these
models to improve accuracy in natural language
processing, much like Brown clusters (Brown et
al, 1992) have become common input features
for many tasks, such as named entity extraction
(Miller et al, 2004; Ratinov and Roth, 2009) and
parsing (Koo et al, 2008; Täckström et al, 2012).
In comparison to Brown clusters, the vector em-
beddings have the advantages of substantially bet-
ter scalability in their training, and intriguing po-
tential for their continuous and multi-dimensional
interrelations. In fact, Passos et al (2014) present
new state-of-the-art results in CoNLL 2003 named
entity extraction by directly inputting continuous
vector embeddings obtained by a version of Skip-
gram that injects supervision with lexicons. Sim-
ilarly Bansal et al (2014) show results in depen-
dency parsing using Skip-gram embeddings. They
have also recently been applied to machine trans-
lation (Zou et al, 2013; Mikolov et al, 2013c).

A notable deficiency in this prior work is that
each word type (e.g. the word string plant) has
only one vector representation—polysemy and
hononymy are ignored. This results in the word
plant having an embedding that is approximately
the average of its different contextual seman-
tics relating to biology, placement, manufactur-
ing and power generation. In moderately high-
dimensional spaces a vector can be relatively
“close” to multiple regions at a time, but this does
not negate the unfortunate influence of the triangle
inequality2 here: words that are not synonyms but
are synonymous with different senses of the same
word will be pulled together. For example, pollen
and refinery will be inappropriately pulled to a dis-

2For distance d, d(a, c) ≤ d(a, b) + d(b, c).
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tance not more than the sum of the distances plant–
pollen and plant–refinery. Fitting the constraints of
legitimate continuous gradations of semantics are
challenge enough without the additional encum-
brance of these illegitimate triangle inequalities.

Discovering embeddings for multiple senses per
word type is the focus of work by Reisinger and
Mooney (2010a) and Huang et al (2012). They
both pre-cluster the contexts of a word type’s to-
kens into discriminated senses, use the clusters to
re-label the corpus’ tokens according to sense, and
then learn embeddings for these re-labeled words.
The second paper improves upon the first by em-
ploying an earlier pass of non-discriminated em-
bedding learning to obtain vectors used to rep-
resent the contexts. Note that by pre-clustering,
these methods lose the opportunity to jointly learn
the sense-discriminated vectors and the cluster-
ing. Other weaknesses include their fixed num-
ber of sense per word type, and the computational
expense of the two-step process—the Huang et
al (2012) method took one week of computation
to learn multiple embeddings for a 6,000 subset
of the 30,000 vocabulary on a corpus containing
close to billion tokens.3

This paper presents a new method for learn-
ing vector-space embeddings for multiple senses
per word type, designed to provide several ad-
vantages over previous approaches. (1) Sense-
discriminated vectors are learned jointly with the
assignment of token contexts to senses; thus we
can use the emerging sense representation to more
accurately perform the clustering. (2) A non-
parametric variant of our method automatically
discovers a varying number of senses per word
type. (3) Efficient online joint training makes
it fast and scalable. We refer to our method as
Multiple-sense Skip-gram, or MSSG, and its non-
parametric counterpart as NP-MSSG.

Our method builds on the Skip-gram model
(Mikolov et al, 2013a), but maintains multiple
vectors per word type. During online training
with a particular token, we use the average of its
context words’ vectors to select the token’s sense
that is closest, and perform a gradient update on
that sense. In the non-parametric version of our
method, we build on facility location (Meyerson,
2001): a new cluster is created with probability
proportional to the distance from the context to the

3Personal communication with authors Eric H. Huang and
Richard Socher.

nearest sense.
We present experimental results demonstrating

the benefits of our approach. We show quali-
tative improvements over single-sense Skip-gram
and Huang et al (2012), comparing against word
neighbors from our parametric and non-parametric
methods. We present quantitative results in three
tasks. On both the SCWS and WordSim353 data
sets our methods surpass the previous state-of-
the-art. The Google Analogy task is not espe-
cially well-suited for word-sense evaluation since
its lack of context makes selecting the sense dif-
ficult; however our method dramatically outper-
forms Huang et al (2012) on this task. Finally
we also demonstrate scalabilty, learning multiple
senses, training on nearly a billion tokens in less
than 6 hours—a 27x improvement on Huang et al.

2 Related Work

Much prior work has focused on learning vector
representations of words; here we will describe
only those most relevant to understanding this pa-
per. Our work is based on neural language mod-
els, proposed by Bengio et al (2003), which extend
the traditional idea of n-gram language models by
replacing the conditional probability table with a
neural network, representing each word token by
a small vector instead of an indicator variable, and
estimating the parameters of the neural network
and these vectors jointly. Since the Bengio et al
(2003) model is quite expensive to train, much re-
search has focused on optimizing it. Collobert and
Weston (2008) replaces the max-likelihood char-
acter of the model with a max-margin approach,
where the network is encouraged to score the cor-
rect n-grams higher than randomly chosen incor-
rect n-grams. Mnih and Hinton (2007) replaces
the global normalization of the Bengio model with
a tree-structured probability distribution, and also
considers multiple positions for each word in the
tree.

More relevantly, Mikolov et al (2013a) and
Mikolov et al (2013b) propose extremely com-
putationally efficient log-linear neural language
models by removing the hidden layers of the neu-
ral networks and training from larger context win-
dows with very aggressive subsampling. The
goal of the models in Mikolov et al (2013a) and
Mikolov et al (2013b) is not so much obtain-
ing a low-perplexity language model as learn-
ing word representations which will be useful in
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downstream tasks. Neural networks or log-linear
models also do not appear to be necessary to
learn high-quality word embeddings, as Dhillon
and Ungar (2011) estimate word vector repre-
sentations using Canonical Correlation Analysis
(CCA).

Word vector representations or embeddings
have been used in various NLP tasks such
as named entity recognition (Neelakantan and
Collins, 2014; Passos et al, 2014; Turian et al,
2010), dependency parsing (Bansal et al, 2014),
chunking (Turian et al, 2010; Dhillon and Ungar,
2011), sentiment analysis (Maas et al, 2011), para-
phrase detection (Socher et al, 2011) and learning
representations of paragraphs and documents (Le
and Mikolov, 2014). The word clusters obtained
from Brown clustering (Brown et al, 1992) have
similarly been used as features in named entity
recognition (Miller et al, 2004; Ratinov and Roth,
2009) and dependency parsing (Koo et al, 2008),
among other tasks.

There is considerably less prior work on learn-
ing multiple vector representations for the same
word type. Reisinger and Mooney (2010a) intro-
duce a method for constructing multiple sparse,
high-dimensional vector representations of words.
Huang et al (2012) extends this approach incor-
porating global document context to learn mul-
tiple dense, low-dimensional embeddings by us-
ing recursive neural networks. Both the meth-
ods perform word sense discrimination as a pre-
processing step by clustering contexts for each
word type, making training more expensive.
While methods such as those described in Dhillon
and Ungar (2011) and Reddy et al (2011) use
token-specific representations of words as part
of the learning algorithm, the final outputs are
still one-to-one mappings between word types and
word embeddings.

3 Background: Skip-gram model

The Skip-gram model learns word embeddings
such that they are useful in predicting the sur-
rounding words in a sentence. In the Skip-gram
model, v(w) ∈ Rd is the vector representation of
the word w ∈ W , where W is the words vocabu-
lary and d is the embedding dimensionality.

Given a pair of words (wt, c), the probability
that the word c is observed in the context of word

wt is given by,

P (D = 1|v(wt), v(c)) =
1

1 + e−v(wt)T v(c)
(1)

The probability of not observing word c in the con-
text of wt is given by,

P (D = 0|v(wt), v(c)) =
1− P (D = 1|v(wt), v(c))

Given a training set containing the sequence of
word types w1, w2, . . . , wT , the word embeddings
are learned by maximizing the following objective
function:

J(θ) =
∑

(wt,ct)∈D+

∑
c∈ct

logP (D = 1|v(wt), v(c))

+
∑

(wt,c′t)∈D−

∑
c′∈c′t

logP (D = 0|v(wt), v(c′))

where wt is the tth word in the training set, ct
is the set of observed context words of word wt
and c′t is the set of randomly sampled, noisy con-
text words for the word wt. D+ consists of
the set of all observed word-context pairs (wt, ct)
(t = 1, 2 . . . , T ). D− consists of pairs (wt, c′t)
(t = 1, 2 . . . , T ) where c′t is the set of randomly
sampled, noisy context words for the word wt.

For each training word wt, the set of context
words ct = {wt−Rt , . . . , wt−1, wt+1, . . . , wt+Rt}
includesRt words to the left and right of the given
word as shown in Figure 1. Rt is the window size
considered for the word wt uniformly randomly
sampled from the set {1, 2, . . . , N}, where N is
the maximum context window size.

The set of noisy context words c′t for the word
wt is constructed by randomly sampling S noisy
context words for each word in the context ct. The
noisy context words are randomly sampled from
the following distribution,

P (w) =
punigram(w)3/4

Z
(2)

where punigram(w) is the unigram distribution of
the words and Z is the normalization constant.

4 Multi-Sense Skip-gram (MSSG) model

To extend the Skip-gram model to learn multiple
embeddings per word we follow previous work
(Huang et al, 2012; Reisinger and Mooney, 2010a)
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Word 
Vector

word wt

v(wt+2)

Context   
Vectors

v(wt+1)

v(wt-1)

v(wt-2)

v(wt)

Figure 1: Architecture of the Skip-gram model
with window size Rt = 2. Context ct of word
wt consists of wt−1, wt−2, wt+1, wt+2.

and let each sense of word have its own embed-
ding, and induce the senses by clustering the em-
beddings of the context words around each token.
The vector representation of the context is the av-
erage of its context words’ vectors. For every word
type, we maintain clusters of its contexts and the
sense of a word token is predicted as the cluster
that is closest to its context representation. After
predicting the sense of a word token, we perform
a gradient update on the embedding of that sense.
The crucial difference from previous approaches
is that word sense discrimination and learning em-
beddings are performed jointly by predicting the
sense of the word using the current parameter es-
timates.

In the MSSG model, each word w ∈ W is
associated with a global vector vg(w) and each
sense of the word has an embedding (sense vec-
tor) vs(w, k) (k = 1, 2, . . . ,K) and a context clus-
ter with center µ(w, k) (k = 1, 2, . . . ,K). The K
sense vectors and the global vectors are of dimen-
sion d and K is a hyperparameter.

Consider the word wt and let ct =
{wt−Rt , . . . , wt−1, wt+1, . . . , wt+Rt} be the
set of observed context words. The vector repre-
sentation of the context is defined as the average
of the global vector representation of the words in
the context. Let vcontext(ct) = 1

2∗Rt
∑

c∈ct vg(c)
be the vector representation of the context ct. We
use the global vectors of the context words instead
of its sense vectors to avoid the computational
complexity associated with predicting the sense
of the context words. We predict st, the sense

Word Sense 
Vectors

v(wt,2)

vg(wt+2)

Context   
Vectors

vg(wt+1)

 vg(wt-1)

vg(wt-2)

Average Context 
Vector

Context Cluster 
Centers

v(wt,1)

v(wt,3)Predicted 
Sense st

μ(wt,1)

vcontext(ct)

 

 

 

μ(wt,2)

μ(wt,3) 

Context   
Vectors

vg(wt+2)

vg(wt+1)

vg(wt-1)

vg(wt-2)

Figure 2: Architecture of Multi-Sense Skip-gram
(MSSG) model with window size Rt = 2 and
K = 3. Context ct of word wt consists of
wt−1, wt−2, wt+1, wt+2. The sense is predicted by
finding the cluster center of the context that is clos-
est to the average of the context vectors.

of word wt when observed with context ct as
the context cluster membership of the vector
vcontext(ct) as shown in Figure 2. More formally,

st = arg max
k=1,2,...,K

sim(µ(wt, k), vcontext(ct)) (3)

The hard cluster assignment is similar to the k-
means algorithm. The cluster center is the aver-
age of the vector representations of all the contexts
which belong to that cluster. For sim we use co-
sine similarity in our experiments.

Here, the probability that the word c is observed
in the context of word wt given the sense of the
word wt is,

P (D = 1|st,vs(wt, 1), . . . , vs(wt,K), vg(c))
= P (D = 1|vs(wt, st), vg(c))
=

1
1 + e−vs(wt,st)T vg(c)

The probability of not observing word c in the con-
text of wt given the sense of the word wt is,

P (D = 0|st,vs(wt, 1), . . . , vs(wt,K), vg(c))
= P (D = 0|vs(wt, st), vg(c))
= 1− P (D = 1|vs(wt, st), vg(c))

Given a training set containing the sequence of
word types w1, w2, ..., wT , the word embeddings
are learned by maximizing the following objective
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Algorithm 1 Training Algorithm of MSSG model

1: Input: w1, w2, ..., wT , d, K, N .
2: Initialize vs(w, k) and vg(w), ∀w ∈ W,k ∈
{1, . . . ,K} randomly, µ(w, k) ∀w ∈ W,k ∈
{1, . . . ,K} to 0.

3: for t = 1, 2, . . . , T do
4: Rt ∼ {1, . . . , N}
5: ct = {wt−Rt , . . . , wt−1, wt+1, . . . , wt+Rt}
6: vcontext(ct) = 1

2∗Rt
∑

c∈ct vg(c)
7: st = arg maxk=1,2,...,K {

sim(µ(wt, k), vcontext(ct))}
8: Update context cluster center µ(wt, st)

since context ct is added to context cluster st
of word wt.

9: c′t = Noisy Samples(ct)
10: Gradient update on vs(wt, st), global vec-

tors of words in ct and c′t.
11: end for
12: Output: vs(w, k), vg(w) and context cluster

centers µ(w, k), ∀w ∈W,k ∈ {1, . . . ,K}

function:

J(θ) =∑
(wt,ct)∈D+

∑
c∈ct

logP (D = 1|vs(wt, st), vg(c))+
∑

(wt,c′t)∈D−

∑
c′∈c′t

logP (D = 0|vs(wt, st), vg(c′))

where wt is the tth word in the sequence, ct is the
set of observed context words and c′t is the set of
noisy context words for the word wt. D+ and D−

are constructed in the same way as in the Skip-
gram model.

After predicting the sense of word wt, we up-
date the embedding of the predicted sense for
the word wt (vs(wt, st)), the global vector of the
words in the context and the global vector of the
randomly sampled, noisy context words. The con-
text cluster center of cluster st for the word wt
(µ(wt, st)) is updated since context ct is added to
the cluster st.

5 Non-Parametric MSSG model
(NP-MSSG)

The MSSG model learns a fixed number of senses
per word type. In this section, we describe a
non-parametric version of MSSG, the NP-MSSG
model, which learns varying number of senses per
word type. Our approach is closely related to

the online non-parametric clustering procedure de-
scribed in Meyerson (2001). We create a new clus-
ter (sense) for a word type with probability propor-
tional to the distance of its context to the nearest
cluster (sense).

Each wordw ∈W is associated with sense vec-
tors, context clusters and a global vector vg(w) as
in the MSSG model. The number of senses for a
word is unknown and is learned during training.
Initially, the words do not have sense vectors and
context clusters. We create the first sense vector
and context cluster for each word on its first occur-
rence in the training data. After creating the first
context cluster for a word, a new context cluster
and a sense vector are created online during train-
ing when the word is observed with a context were
the similarity between the vector representation of
the context with every existing cluster center of the
word is less than λ, where λ is a hyperparameter
of the model.

Consider the word wt and let ct =
{wt−Rt , . . . , wt−1, wt+1, . . . , wt+Rt} be the
set of observed context words. The vector repre-
sentation of the context is defined as the average
of the global vector representation of the words in
the context. Let vcontext(ct) = 1

2∗Rt
∑

c∈ct vg(c)
be the vector representation of the context ct. Let
k(wt) be the number of context clusters or the
number of senses currently associated with word
wt. st, the sense of word wt when k(wt) > 0 is
given by

st =


k(wt) + 1, if maxk=1,2,...,k(wt){sim

(µ(wt, k), vcontext(ct))} < λ

kmax, otherwise
(4)

where µ(wt, k) is the cluster center of
the kth cluster of word wt and kmax =
arg maxk=1,2,...,k(wt) sim(µ(wt, k), vcontext(ct)).

The cluster center is the average of the vector
representations of all the contexts which belong to
that cluster. If st = k(wt) + 1, a new context
cluster and a new sense vector are created for the
word wt.

The NP-MSSG model and the MSSG model
described previously differ only in the way word
sense discrimination is performed. The objec-
tive function and the probabilistic model associ-
ated with observing a (word, context) pair given
the sense of the word remain the same.
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Model Time (in hours)
Huang et al 168
MSSG 50d 1
MSSG-300d 6
NP-MSSG-50d 1.83
NP-MSSG-300d 5
Skip-gram-50d 0.33
Skip-gram-300d 1.5

Table 1: Training Time Results. First five model
reported in the table are capable of learning mul-
tiple embeddings for each word and Skip-gram
is capable of learning only single embedding for
each word.

6 Experiments

To evaluate our algorithms we train embeddings
using the same corpus and vocabulary as used in
Huang et al (2012), which is the April 2010 snap-
shot of the Wikipedia corpus (Shaoul and West-
bury, 2010). It contains approximately 2 million
articles and 990 million tokens. In all our experi-
ments we remove all the words with less than 20
occurrences and use a maximum context window
(N ) of length 5 (5 words before and after the word
occurrence). We fix the number of senses (K) to
be 3 for the MSSG model unless otherwise speci-
fied. Our hyperparameter values were selected by
a small amount of manual exploration on a vali-
dation set. In NP-MSSG we set λ to -0.5. The
Skip-gram model, MSSG and NP-MSSG models
sample one noisy context word (S) for each of the
observed context words. We train our models us-
ing AdaGrad stochastic gradient decent (Duchi et
al, 2011) with initial learning rate set to 0.025.
Similarly to Huang et al (2012), we don’t use a
regularization penalty.

Below we describe qualitative results, display-
ing the embeddings and the nearest neighbors of
each word sense, and quantitative experiments in
two benchmark word similarity tasks.

Table 1 shows time to train our models, com-
pared with other models from previous work. All
these times are from single-machine implementa-
tions running on similar-sized corpora. We see
that our model shows significant improvement in
the training time over the model in Huang et
al (2012), being within well within an order-of-
magnitude of the training time for Skip-gram mod-
els.

APPLE

Skip-gram blackberry, macintosh, acorn, pear, plum

MSSG
pear, honey, pumpkin, potato, nut
microsoft, activision, sony, retail, gamestop
macintosh, pc, ibm, iigs, chipsets

NP-MSSG apricot, blackberry, cabbage, blackberries, pear
microsoft, ibm, wordperfect, amiga, trs-80

FOX

Skip-gram abc, nbc, soapnet, espn, kttv

MSSG
beaver, wolf, moose, otter, swan
nbc, espn, cbs, ctv, pbs
dexter, myers, sawyer, kelly, griffith

NP-MSSG rabbit, squirrel, wolf, badger, stoat
cbs,abc, nbc, wnyw, abc-tv

NET

Skip-gram profit, dividends, pegged, profits, nets

MSSG
snap, sideline, ball, game-trying, scoring
negative, offset, constant, hence, potential
pre-tax, billion, revenue, annualized, us$

NP-MSSG

negative, total, transfer, minimizes, loop
pre-tax, taxable, per, billion, us$, income
ball, yard, fouled, bounced, 50-yard
wnet, tvontorio, cable, tv, tv-5

ROCK

Skip-gram glam, indie, punk, band, pop

MSSG
rocks, basalt, boulders, sand, quartzite
alternative, progressive, roll, indie, blues-rock
rocks, pine, rocky, butte, deer

NP-MSSG granite, basalt, outcropping, rocks, quartzite
alternative, indie, pop/rock, rock/metal, blues-rock

RUN

Skip-gram running, ran, runs, afoul, amok

MSSG
running, stretch, ran, pinch-hit, runs
operated , running, runs, operate, managed
running, runs, operate, drivers, configure

NP-MSSG

two-run, walk-off, runs, three-runs, starts
operated, runs, serviced, links, walk
running, operating, ran, go, configure
re-election, reelection, re-elect, unseat, term-limited
helmed, longest-running, mtv, promoted, produced

Table 2: Nearest neighbors of each sense of each
word, by cosine similarity, for different algo-
rithms. Note that the different senses closely cor-
respond to intuitions regarding the senses of the
given word types.

6.1 Nearest Neighbors

Table 2 shows qualitatively the results of dis-
covering multiple senses by presenting the near-
est neighbors associated with various embeddings.
The nearest neighbors of a word are computed by
comparing the cosine similarity between the em-
bedding for each sense of the word and the context
embeddings of all other words in the vocabulary.
Note that each of the discovered senses are indeed
semantically coherent, and that a reasonable num-
ber of senses are created by the non-parametric
method. Table 3 shows the nearest neighbors of
the word plant for Skip-gram, MSSG , NP-MSSG
and Haung’s model (Huang et al, 2012).
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Skip-
gram

plants, flowering, weed, fungus, biomass

MS
-SG

plants, tubers, soil, seed, biomass
refinery, reactor, coal-fired, factory, smelter
asteraceae, fabaceae, arecaceae, lamiaceae, eri-
caceae

NP
MS
-SG

plants, seeds, pollen, fungal, fungus
factory, manufacturing, refinery, bottling, steel
fabaceae, legume, asteraceae, apiaceae, flowering
power, coal-fired, hydro-power, hydroelectric, re-
finery

Hua
-ng
et al

insect, capable, food, solanaceous, subsurface
robust, belong, pitcher, comprises, eagles
food, animal, catching, catch, ecology, fly
seafood, equipment, oil, dairy, manufacturer
facility, expansion, corporation, camp, co.
treatment, skin, mechanism, sugar, drug
facility, theater, platform, structure, storage
natural, blast, energy, hurl, power
matter, physical, certain, expression, agents
vine, mute, chalcedony, quandong, excrete

Table 3: Nearest Neighbors of the word plant
for different models. We see that the discovered
senses in both our models are more semantically
coherent than Huang et al (2012) and NP-MSSG
is able to learn reasonable number of senses.

6.2 Word Similarity

We evaluate our embeddings on two related
datasets: the WordSim-353 (Finkelstein et al,
2001) dataset and the Contextual Word Similari-
ties (SCWS) dataset Huang et al (2012).

WordSim-353 is a standard dataset for evaluat-
ing word vector representations. It consists of a
list of pairs of word types, the similarity of which
is rated in an integral scale from 1 to 10. Pairs
include both monosemic and polysemic words.
These scores to each word pairs are given with-
out any contextual information, which makes them
tricky to interpret.

To overcome this issue, Stanford’s Contextual
Word Similarities (SCWS) dataset was developed
by Huang et al (2012). The dataset consists of
2003 word pairs and their sentential contexts. It
consists of 1328 noun-noun pairs, 399 verb-verb
pairs, 140 verb-noun, 97 adjective-adjective, 30
noun-adjective, 9 verb-adjective, and 241 same-
word pairs. We evaluate and compare our embed-
dings on both WordSim-353 and SCWS word sim-
ilarity corpus.

Since it is not trivial to deal with multiple em-
beddings per word, we consider the following sim-
ilarity measures between words w and w′ given
their respective contexts c and c′, where P (w, c, k)
is the probability that w takes the kth sense given

the context c, and d(vs(w, i), vs(w′, j)) is the sim-
ilarity measure between the given embeddings
vs(w, i) and vs(w′, j).

The avgSim metric,

avgSim(w,w′)

=
1
K2

K∑
i=1

K∑
j=1

d (vs(w, i), vs(w′, j)) ,

computes the average similarity over all embed-
dings for each word, ignoring information from
the context.

To address this, the avgSimC metric,

avgSimC(w,w′) =
K∑
j=1

K∑
i=1

P (w, c, i)P (w′, c′, j)

× d (vs(w, i), vs(w′, j))

weighs the similarity between each pair of senses
by how well does each sense fit the context at
hand.

The globalSim metric uses each word’s global
context vector, ignoring the many senses:

globalSim(w,w′) = d (vg(w), vg(w′)) .

Finally, localSim metric selects a single sense
for each word based independently on its context
and computes the similarity by

localSim(w,w′) = d (vs(w, k), vs(w′, k′)) ,

where k = arg maxi P (w, c, i) and k′ =
arg maxj P (w′, c′, j) and P (w, c, i) is the prob-
ability that w takes the ith sense given context c.
The probability of being in a cluster is calculated
as the inverse of the cosine distance to the cluster
center (Huang et al, 2012).

We report the Spearman correlation between a
model’s similarity scores and the human judge-
ments in the datasets.

Table 5 shows the results on WordSim-353
task. C&W refers to the language model by Col-
lobert and Weston (2008) and HLBL model is the
method described in Mnih and Hinton (2007). On
WordSim-353 task, we see that our model per-
forms significantly better than the previous neural
network model for learning multi-representations
per word (Huang et al, 2012). Among the meth-
ods that learn low-dimensional and dense repre-
sentations, our model performs slightly better than
Skip-gram. Table 4 shows the results for the
SCWS task. In this task, when the words are
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Model globalSim avgSim avgSimC localSim
TF-IDF 26.3 - - -
Collobort & Weston-50d 57.0 - - -
Skip-gram-50d 63.4 - - -
Skip-gram-300d 65.2 - - -
Pruned TF-IDF 62.5 60.4 60.5 -
Huang et al-50d 58.6 62.8 65.7 26.1
MSSG-50d 62.1 64.2 66.9 49.17
MSSG-300d 65.3 67.2 69.3 57.26
NP-MSSG-50d 62.3 64.0 66.1 50.27
NP-MSSG-300d 65.5 67.3 69.1 59.80

Table 4: Experimental results in the SCWS task. The numbers are Spearmans correlation ρ × 100
between each model’s similarity judgments and the human judgments, in context. First three models
learn only a single embedding per model and hence, avgSim, avgSimC and localSim are not reported
for these models, as they’d be identical to globalSim. Both our parametric and non-parametric models
outperform the baseline models, and our best model achieves a score of 69.3 in this task. NP-MSSG
achieves the best results when globalSim, avgSim and localSim similarity measures are used. The best
results according to each metric are in bold face.

Model ρ× 100
HLBL 33.2
C&W 55.3
Skip-gram-300d 70.4
Huang et al-G 22.8
Huang et al-M 64.2
MSSG 50d-G 60.6
MSSG 50d-M 63.2
MSSG 300d-G 69.2
MSSG 300d-M 70.9
NP-MSSG 50d-G 61.5
NP-MSSG 50d-M 62.4
NP-MSSG 300d-G 69.1
NP-MSSG 300d-M 68.6
Pruned TF-IDF 73.4
ESA 75
Tiered TF-IDF 76.9

Table 5: Results on the WordSim-353 dataset.
The table shows the Spearmans correlation ρ be-
tween the model’s similarities and human judg-
ments. G indicates the globalSim similarity mea-
sure and M indicates avgSim measure.The best
results among models that learn low-dimensional
and dense representations are in bold face. Pruned
TF-IDF (Reisinger and Mooney, 2010a), ESA
(Gabrilovich and Markovitch, 2007) and Tiered
TF-IDF (Reisinger and Mooney, 2010b) construct
spare, high-dimensional representations.

Figure 3: The plot shows the distribution of num-
ber of senses learned per word type in NP-MSSG
model

given with their context, our model achieves new
state-of-the-art results on SCWS as shown in the
Table-4. The previous state-of-art model (Huang
et al, 2012) on this task achieves 65.7% using
the avgSimC measure, while the MSSG model
achieves the best score of 69.3% on this task. The
results on the other metrics are similar. For a
fixed embedding dimension, the model by Huang
et al (2012) has more parameters than our model
since it uses a hidden layer. The results show
that our model performs better than Huang et al
(2012) even when both the models use 50 dimen-
sional vectors and the performance of our model
improves as we increase the number of dimensions
to 300.

We evaluate the models in a word analogy task
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(a) (b)

Figure 4: Figures (a) and (b) show the effect of varying embedding dimensionality and number of senses
respectively of the MSSG Model on the SCWS task.

Model Task Sim ρ× 100
Skip-gram WS-353 globalSim 70.4
MSSG WS-353 globalSim 68.4
MSSG WS-353 avgSim 71.2
NP MSSG WS-353 globalSim 68.3
NP MSSG WS-353 avgSim 69.66
MSSG SCWS localSim 59.3
MSSG SCWS globalSim 64.7
MSSG SCWS avgSim 67.2
MSSG SCWS avgSimC 69.2
NP MSSG SCWS localSim 60.11
NP MSSG SCWS globalSim 65.3
NP MSSG SCWS avgSim 67
NP MSSG SCWS avgSimC 68.6

Table 6: Experiment results on WordSim-353 and
SCWS Task. Multiple Embeddings are learned for
top 30,000 most frequent words in the vocabulary.
The embedding dimension size is 300 for all the
models for this task. The number of senses for
MSSG model is 3.

introduced by Mikolov et al (2013a) where both
MSSG and NP-MSSG models achieve 64% accu-
racy compared to 12% accuracy by Huang et al
(2012). Skip-gram which is the state-of-art model
for this task achieves 67% accuracy.

Figure 3 shows the distribution of number of
senses learned per word type in the NP-MSSG
model. We learn the multiple embeddings for the
same set of approximately 6000 words that were
used in Huang et al (2012) for all our experiments

to ensure fair comparision. These approximately
6000 words were choosen by Huang et al. mainly
from the top 30,00 frequent words in the vocab-
ulary. This selection was likely made to avoid
the noise of learning multiple senses for infre-
quent words. However, our method is robust to
noise, which can be seen by the good performance
of our model that learns multiple embeddings for
the top 30,000 most frequent words. We found
that even by learning multiple embeddings for the
top 30,000 most frequent words in the vocubu-
lary, MSSG model still achieves state-of-art result
on SCWS task with an avgSimC score of 69.2 as
shown in Table 6.

7 Conclusion

We present an extension to the Skip-gram model
that efficiently learns multiple embeddings per
word type. The model jointly performs word
sense discrimination and embedding learning, and
non-parametrically estimates the number of senses
per word type. Our method achieves new state-
of-the-art results in the word similarity in con-
text task and learns multiple senses, training on
close to billion tokens in less than 6 hours. The
global vectors, sense vectors and cluster centers of
our model and code for learning them are avail-
able at https://people.cs.umass.edu/
˜arvind/emnlp2014wordvectors. In fu-
ture work we plan to use the multiple embeddings
per word type in downstream NLP tasks.
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Abstract

Knowledge graphs are recently used for
enriching query representations in an
entity-aware way for the rich facts or-
ganized around entities in it. How-
ever, few of the methods pay attention to
non-entity words and clicked websites in
queries, which also help conveying user
intent. In this paper, we tackle the prob-
lem of intent understanding with innova-
tively representing entity words, refiners
and clicked urls as intent topics in a uni-
fied knowledge graph based framework,
in a way to exploit and expand knowl-
edge graph which we call ‘tailor’. We
collaboratively exploit global knowledge
in knowledge graphs and local contexts in
query log to initialize intent representa-
tion, then propagate the enriched features
in a graph consisting of intent topics us-
ing an unsupervised algorithm. The ex-
periments prove intent topics with knowl-
edge graph enriched features significantly
enhance intent understanding.

1 Introduction

Query understanding is the process of generating a
representation which characterizes a user’s search
intent (Croft et al., 2010), which is of vital im-
portance for information retrieval. However, users
are remarkably laconic in describing their infor-
mation needs due to anomalous state of knowledge
(Belkin et al., 1982), resulting in vague and under-
specified queries, which makes it especially dif-
ficult to understand and locate what they intended
for in mountains of web data. The problem is often
significantly compounded that people convey their
intent rather in a series of behaviors called a search
session than a single query, leaving a wealth of
clues including query reformulations, page visits,

dwell times, etc. What’s more, as entities are tak-
ing center stage (Yin and Shah, 2010), string-level
or phrase-level modeling of intent soon hits the
bottleneck, calling for an entity-aware perspective.

Knowledge repositories, better known as
knowledge graphs, such as Wikipedia, DBpedia
and Freebase, have been recently utilized for en-
hancing query understanding for the large amounts
of world knowledge they’ve harvested about en-
tities and facts. A widely accepted way to use
knowledge graph is tying queries with it by anno-
tating entities in them, also known as entity link-
ing.

However, information need is conveyed through
more than entities. Quite a few non-entity words,
aka refiners or modifiers, as well as many urls are
barely included in knowledge graph, while they
play an irreplaceable role in intent understand-
ing. For example, a user may query toyota, volvo
or just enter car soup, cars for sale and click
www.carsoup.com, which should be encoded in
a form that we could perceive their closeness in
intent. That’s why at-a-glance info cards about
merely recognized entity in the query are far from
enough and previous methods disregarding refin-
ers and urls are too limited to cover queries in ma-
jority.

We move one step further to tailor knowledge
graph for representing more than entity words. We
collect refiners and clicked urls along with en-
tity words and model intents they represent us-
ing knowledge graph based features. We use
Freebase1, one of the largest available knowledge
graph, in our work and our method can be easily
generalized to other knowledge repositories.

We put up an idea of intent topic which can
be query words or urls, whether mean an entity
or not, representing an atomic information need.
We identify them with intent features by exploit-
ing global knowledge in Freebase and local con-

1http://www.freebase.com
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texts in query sessions. Notice the new concept
here is distinguished from query intent or query
facet in previous literature for it is in a holistic
view, not specifically meaning subtopics around a
certain query.

Our intuitive observations as follows inspire us
to represent intent features with topics and do-
mains in knowledge graph and propagate the en-
riched features in the intent topic graph.
1) Query words and urls within the same session

tend to indicate the same query intent.
2) Intent topics sharing similar query intent often

relate to similar topics in knowledge graph.
3) Knowledge graph domains sketch the query in-

tent briefly.
Observation 1 indicates domain coherency

within sessions is a good starting point to gener-
ate intent features, along with Observation 2 and 3
lay the basis of proximity that the propagation rely
on.

To the best of our knowledge, we’re the first to
represent intent behind entity words, refiners and
urls in a unified knowledge graph based frame-
work, in a way to exploit and expand knowledge
graph which we call ‘tailor’.

Our contributions include:
• An innovative and unified framework to rep-

resent intent topics, whether they can directly
link to an entity in knowledge graph or not.
• A novel algorithm to generate a specified in-

tent topic graph, which enables learning in-
tent features in an unsupervised propagation
method.
• With intent topic graph we can better under-

stand user intent conducting session-based
contextualization and potentially find highly-
related intent topic.

The rest of the paper is organized as follows. Sec-
tion 2 tells our methods to map queries to Freebase
and initialize intent features. Section 3 is about
how we model intent topics in a unified graph and
the propagation framework to learn intent features.
We provide experiments and analysis in Section 4.
Related work and conclusions are presented at the
end of the paper.

2 Labeling intent topic nodes with
Freebase-enriched features

In Freebase, facts around a certain topic and multi-
faceted intents they reflect is more like a global
domain distribution, what facet do users exactly

intend for is difficult to locate until in a specified
context, namely a query session.

We take a line in query log as a query, exhibit-
ing an interaction with the search engine, includ-
ing query words and page clicks. And a sequence
of queries with a certain time interval constitute
a session, completely conveying an information
need.

In existing knowledge graph, only a small part
of urls are contained in views of web pages be-
yond number online. Even for query words, we
can merely get access to some of them, which we
call entity words and the rest refiners. To avoid
misunderstanding, the url intent topics in the fol-
lowing will specially refer to the clicks without di-
rectly matched concepts in knowledge graph, oth-
erwise they’ll be taken as entity intent topic.

In this section, we propose a framework of
knowledge graph enriched representation of in-
tent topics, the following propagation in Section3
bases on it.

2.1 Freebase as a knowledge graph

Freebase has over 39 million concepts, aka top-
ics, about real-world entities like people, places
and things stored as nodes in a graph. They’re
linked to each other with annotated egdes named
as property. These edges actually represent facts.
There are over a billion such facts or relations that
make up the graph and they’re all available for
free. Properties are grouped into types, types are
grouped into domains, which gives a broad view
of knowledge in addtion to specific topics.

We can tap into Freebase through dump data or
API2. In our work, we retrieve related Freebase
topics with relevance scores for entity words via
Freebase search API, which is based on combina-
tion of topic’s inbound and outbound link counts
in Freebase and Wikipedia as well as a popularity
score computed by Google, and all the facts about
a given topic through Freebase topic API. We use
T = {t1, t2, ...tn}, D = {d1, d2, ...dn} to denote
all Freebase topics and domains used in our work.

2.2 Enriching entities and queries with
Freebase

We represent a query’s candidate intent topics by
three sets, Eq, Rq, Cq, where Eq includes entity
words and clicks which have equivalents in Free-
base, Rq the refiner words and Cq the rest clicks.

2http://developers.google.com/freebase/
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Global knowledge in Freebase can directly enrich
each e in Eq with Freebase topics represented in
vector te, for each candidate topic there’s a Free-
base domain distribution vector dt. As for the rest
inRq and Cq, they can learn features in later prop-
agation process.

For any topic ti in te, the relevance of entity
words e and knowledge graph topic ti is estimated
as follows:

tei =
RelevanceScore(e, ti)

maxtj∈TRelevanceScore(e, tj)
(1)

And the domain vector dti for ti is:

dtij =
pr(dj |ti)∑

dk∈D pr(dk|ti)
(2)

pr(dj |ti) =
# of links of ti in domain dj
# of all links in domain dj

(3)
Then we’ll get a knowledge graph enriched in-

tent description of the query by combining that of
e, r, c.

tqi =
∑
e∈Eq

teiwq(e) +
∑
r∈Rq

triwq(r) +
∑
c∈Cq

tciwq(c)

(4)
wq(e) = NCountq(e)ϕ(e) (5)

Here te tr tc correspond to the topic vector of each
entity, refiner and click respectively. The weight
indicates how dominant it is in conveying intent
in the query. It is in proportion to the normalized
count as well as each occurrence’s quality denoted
by ϕ(e). Such as for entity words in Equation (5),
the quality ϕ(e) can be estimated with the help of
entity linking methods, which describes the proba-
bility of e as a candidate reference. That for clicks
and refiners will be explained later.

The query’s domain feature can be calculated as
follows:

dqi =

∑
tj∈T dtji tqj∑

dk∈D
∑

tj∈T dtjk tqj
(6)

It describes the probability of query q in domain
di, in which tqj can be calculated by Equation (4)

and dtji via facts around topic tj by Equation (2).

2.3 Contextualized intent depiction of
sessions

The aforesaid enriched features we get about
queries rely heavily on global knowledge in Free-
base, reflecting prior distribution in the feature

space. In this part, we derive a contextualized de-
scription of session intent in a local view by aggre-
gating all the global knowledge we get about the
session’s queries. The ambiguity of a single query
can be alleviated by looking at the dominant do-
main within the session.

The intent features ts and ds of session s can
be represented by computations on its query set
Qs = {q1, q2, ...qn} with time-order decay.

tsi =

∑
q∈Qs t

q
iα

rank(q)∑
tj∈T

∑
q∈Qs t

q
jα

rank(q)
(7)

where we put an exponential decay controlled by
decay factor α. We get domain feature the same
way as Equation (6).

We’ll put up an unsupervised method of learn-
ing knowledge graph based intent representation
of refiners and clicks in the following part.

3 Propagating intent features in the
intent topic graph

In this section, our idea is to characterize entities,
refiners and urls uniformly as intent topics, tailor-
ing knowledge graph to intent topic graph so as to
enrich representations by propagation.

3.1 Modeling intent topic graph
As in last section, with ds featuring the context,
candidate intent topics in sessions can make intent
topic nodes now. We use the concept intent topic
to stress words with local contexts tell a specified
information need, thus making a node. Taking en-
tity word fl as an example, it can be recognized
as the topic Florida in Freebase, while the intent
behind it can hardly be mapped to a single intent
topic, such as travel domain in hollywood fl, ed-
ucation domain in community college in florida,
and florida department of health actually convey
intent in government domain.

So each intent topic node is identified with its
name string and Freebase-enriched intent features
t and d. They’re directly linked by co-occurring
in the same line in the query log and implicitly
related via intent features similarities, so that con-
stitute a large graph G =< V,E,W >, where
∀w ∈ W denotes an explicit edge weight and
∀v ∈ V an intent topic. With intent topics and
their relations modeled in a graph, we can better
understand the query space so as to find the in-
tended query faster. We realize it by aggregating
massive sessions.
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The implicit intent similarity ISim of any node
pair n and v can be encoded as follows.

ISimn,v = βSSimn,v +γDSimn,v +ηTSimn,v

(8)
where SSim denotes the names’ string similar-
ity, DSim the similarity of their domain feature
and TSim the topic vector similarity, with β, γ
and η controlling the weight. The parameters may
vary due to different scenarios. We just provide
a framework of modeling nodes’ intent features,
which actually mirror their proximity in query in-
tent.

To put it in more details, we use jaccard sim-
ilarity for name shinglings and cosine similarity
for domain and topic vector. As query log in-
duced intent topic graph is of considerable large
size, the pair-wise similarity is computationally
prohibitive, hence we use Local Sensitive Hash
(Indyk and Motwani, 1998) for each similarity
metric so as to compute ISim just in candidate
set. We use random hyperplane based hash fam-
ily proposed in (Charikar, 2002) and set the hash
code dimension and hash table numbers empiri-
cally to ensure the number of nodes falling into
each bucket is relatively stable.

3.2 Merging nodes
Although our idea of specifying intent topics by
context better models the multi-facets of queries,
it obviously also brings a sparse issue. For exam-
ple, in one session user query beep lyrics and click
www.lyricsandsongs.com, lyrics is tagged with the
song beep and the musician Pussycat Dolls, in an-
other scenario lyrics occurs with the song what
you know and url www.dapslyrics.com, intents be-
hind these two nodes are so similar that they
should come into one, otherwise connections be-
tween the two intent-coherent urls may be lost.

To avoid that, we conduct a merge process to
integrate nodes with exactly the same names and
contexts into one, combing linked nodes and intent
features together.

For a set of nearly duplicate nodes ω the cal-
culation of new node’s features can be written as:

t̂ =
∑

u∈ω tu

|ω| (9)

d̂ =
∑

u∈ω du

|ω| (10)

In other words, we gather candidate nodes re-
trieved by LSH and then calculate ISim for them

with η setting to 0. Only node pairs with ISim
higher than a merge threshold θ can be seen as
duplicates. The merge process is summarized in
Algorithm 1.

Algorithm 1: Merging similar nodes
Input: G =< V,E,W >, β, γ, η, θ
Output: Ĝ =< V̂ , Ê, Ŵ >
begin

Initialize Ω← ∅
for v ∈ V do

Find dupset ωv with ISimβ,γ,η

if ∃u ∈ V, ωu ∈ Ω and ωv ∩ ωu 6= ∅
then

ωv ← ωv ∪ ωu
Remove ωu from Ω

Add ωv to Ω
for ω ∈ Ω do

Merge nodes in ω into new node v̂
Update G with replacing nodes in ω
with v̂

3.3 Label propagation

We utilize knowledge graph induced intent fea-
tures instead of manually labels as constraints to
conduct label propagation(Zhu and Ghahramani,
2002). The idea is that node labels are propa-
gated to nearby nodes via weighted edges until
convergence, as highly weighted edges indicate
high probability of sharing labels.

Nodes in our work have soft labels, where each
dimension of intent features denotes a label, such
as a topic or domain of knowledge graph. As de-
scribed in aforesaid observations, it is intuitively
reasonable to propagate on the basis of explicit
edges and implicit intent similarities. We illustrate
the propagation with topic feature, that of domain
feature is similar.

We use matrix Yt ∈ R|V |∗|T| to denote the in-
tent topic graph’s initial topic feature labels, with
element Yt

ik indicating node vi’s relevance to tk,
wherer tk ∈ T. Yt is initialized based on the
results of the feature enriching step in Section 2,
with no manually-labelled instances needed in our
model. As only part of nodes can directly map
to Freebase topics, those are initialized as labelled
nodes, then propagate t to their linked neighbors.
The number of unlabelled data is written as u,
while that of labelled data l and the total number
of nodes N .
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The transition matrix T indicates the impact of
nodes on each other. Note that here the wij can
be replaced by other similarity measures such as
ISim in Section 3.2.

Tij =
wij∑N
k=1wkj

(11)

LetD denote anN×N diagonal matrix with dii =∑
j Tij . Then we can get a normalized version of

transition matrix P = D−1T .
The normalized transition matrix can be split

into 4 sub-matrices.

P =
[
Pll Plu
Pul Puu

]
(12)

At each step, we propagate and clamp the labelled
data and repeat until Y converges, the propagation
step can be written as:

Ŷu = PuuYu + PulYl (13)

As is shown in (Zhu and Ghahramani, 2002; Zhu
et al., 2003) the solution to the propagation con-
verges to:

Ŷu = (I − Puu)−1PulYl (14)

3.4 The propagation framework for intent
features

We carry the propagation in an iterative process
illustrated in Algorithm 2.

Algorithm 2: Intent feature propagation

Input: G, Y t
l ,Y d

l

Output: Ĝ, Ŷ t
u , Ŷ

d
u

Initialize Y t
l Y

d with results of Section2
repeat

Merge similar nodes according to
Algorithm 1
Compute matrix P
repeat

Ŷ t
u = PuuY

t
u + PulY

t
l

until Convergence;
Recompute P̂ with Ŷ t

repeat
Ŷ d
u = P̂uuY

d
u + P̂ulY

d
l

until Convergence;
until no dups;

Since intent features include both domain vec-
tor and topic vector, we propagate them in an alter-
nating way. At first we label nodes as described in

Section 2, though missing refiners’ and some urls’
intent features, they are just used for initialization.
Then we propagate Freebase topic features based
on explicit edge weights, so that more nodes in
intent topic graph have topic features now. Then
fetching the learned topic features, we reinput it
into domain feature propagation, which means we
recalculate the transition matrix combining the im-
plicit learned TSim into edge weight, then prop-
agate domain vector of labelled nodes through the
graph. At each iteration, we first update Y t, then
input it to update Y d, therefore merge near dupli-
cate intent topics to update the whole graph.

4 Experiments

4.1 Data preparation

4.1.1 Search logs
We use AOL search log data for experiments. It
includes 20 million web queries collected covering
500K users over three months in 2006.

Table 1: The query set

# of sessions 35140
# of queries 271127
# of users 21378
# of urls 63019

We preprocess the query log by keeping urls oc-
curring more than 3 times and queries with 2 to
40 characters, then extract sessions considering 25
minutes duration. While user session segmenta-
tion can be improved with more sophisticated al-
gorithms, this simple low-cost heuristic performs
adequately for our purposes. We then move on to
map queries to Freebase and empirically filter ses-
sions that are less entity-centric. We use an anno-
tation tool especially for short text (Ferragina and
Scaiella, 2012) called Tagme3 to recognize entities
and observe only 16% of all the queries are ex-
actly an entity itself, which means most of queries
do have refiner words to convey information need.
To ensure the precision of recognized entities, we
set a significant threshold and bottom line thresh-
old , queries should have at least one recognized
entity with a likelihood above significant level,
and those below bottom line are ignored. They
are 0.19 and 0.05 in our work, which may vary
with entity recognition method. The normalized

3http://tagme.di.unipi.it/
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Figure 1: Unbalanced domain distributions in Freebase comparing against query set. Only domains with
top proportions are shown.

Table 2: Examples of labelled intent topic nodes with learned feature

Intent topic nodes Original in Freebase After propagation Annotation
travel.yahoo.com Yahoo! Travel

(internet, 0.87),
(projects, 0.13)

(location, 0.13),
(travel, 0.11),
(organization, 0.08),
(business, 0.08) ...

Yahoo! Travel offers
travel guides, booking
and reservation services.

map quest
www.mapquest.com

MapQuest
(organization, 0.6),
(book, 0.4)

(location, 0.13),
(organization, 0.09),
(travel, 0.09),
(automotive, 0.06)...

MapQuest is an Ameri-
can free online web map-
ping service.

likelihood is used as wq(e). Then we drop ses-
sions where tagged entity words weight less than
refiners as well as the ones with too many entity
words spotted indicating disperse intents. For each
recognized entity, only Freebase topics with rele-
vance over 0.3 are kept. The query set we finally
get is shown in Table 1.

4.1.2 Freebase

To enrich query representations, we collect a sub-
set of Freebase including more than 7 millions
facts and 4 millions topics in total which also
contain 150 thousand topical equivalent websites,
though less than 3% urls in query set are covered.

The facts and entities in Freebase is rather un-
balanced across domains especially against that of
recoginized entities in query set as shown in Fig-
ure 1. Thus the original global knowledge we use
about domain distribution may cause bias, which
makes tailoring necessary for intent understand-
ing.

For both generality and precision, we keep most
of Freebase domains except several extreme in-
complete ones, instead of retaining a small number
of representative domains like many researchers
do (Li et al., 2013; Yu et al., 2014; Lin et al.,
2012). But generality comes at a price that some
domains are confusing and mixed used which we
then choose to merge, like celebrities and people,

periodicals and books, tv and broadcast, etc. We
finally keep 50 of all 76 domains.

4.2 Intent topic graph

4.2.1 Building the graph
We leverage both Freebase and search sessions to
enrich intent topics. We set α to 0.9 in calcula-
tion of session’s intent features. After labeling
the session log, we roughly make a graph with
335206 intent topic nodes, 119364 of them have
been labelled with Freebase topic feature, others
only have domain feature. Then we conduct a
merge process with β set to 0.7, γ to 0.3 and θ to
0.75 in order to merge nodes with duplicate names
and similar contexts. We find 46659 duplicate sets
covering 140768 nodes. Then we ignore nodes
with few links and rare names to reduce sparsity.
Finally we’ve got a graph of 209351 intent topics
to initialize the propagation, including 78932 la-
belled nodes. The merge and propagation progress
get converged in less than 4 rounds.

We’ll further evaluate the graph with case study
and a session intent understanding task.

4.2.2 Case Study
We demonstrate intent features are good interpre-
tations for query intent, whether they’re labelled in
Section 2 or learned by propagation in Section 3.

We can see in Table 2 that as nodes’ original
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Table 3: Examples of unlabelled intent topic nodes with learned feature

Intent topic node intent features Annotation Similarity nodes
www.bnm.com (The Hertz Corporation, 0.25), (South-

west Florida International Airport,
0.17), (Punta Gorda Airport, 0.13),
(Supercar, 0.09), (Sports car, 0.08)...
(aviation, 0.23), (business, 0.21), (lo-
cation, 0.14), (automotive, 0.11)...

Online booking
of discount
rentals at ma-
jor airports,
worldwide.

www.arac.com
www.rentalcars.com
www.hertz.com
www.alamo.com
rent a car
cheap rental cars

www.mobtime.com (Software, 0.18), (Mobile phone,
0.11), (100% Totally Free Ringtones,
0.10), (Motorola, 0.09), (Free Cell,
0.08), (Verizon Wireless, 0.04)...
(computer, 0.23), (cvg, 0.21), (music,
0.19), (business, 0.11) ...

MobTime Cell
Phone Manager
is a PC soft-
ware to manage
or sync mobile
phones.

cellphones.about.com
cell software
cell to pc
reviews of
cellphone wallpaper

types in Freebase are not proper for describing in-
tent, the intent features they get after propagation
tend to be more explainable, such as the travel
site often co-occurs with city names, tourist attrac-
tions, hotels and so on, thus indicating its intent in
travel and location domain.

Table 3 shows examples which have no equiv-
alents in Freebase. Although some of them may
be accessible in other ontologies, we only take
them as examples to show our propagation method
makes it possible to depict intents behind urls and
words in a knowledge graph based way while be-
yond the capacity of knowledge graph.

4.3 Session intent understanding task

4.3.1 Experiment Setup
The evaluation of query understanding has long
been a challenging task. To judge whether the con-
cepts in query are successfully recognized seems
too straightforward, and it can hardly be consid-
ered understanding the intent until the big idea
about what kind of topics users emphasis is cap-
tured, which can be briefly sketched by distribu-
tion across Freebase domains. Also it is difficult to
translate results of previous log analysis methods
into knowledge graph domain information, thus
hardly fit into our evaluation schema. We take
popularity-based method as baseline.

We have few choices but to tag ground truth our-
selves for intent understanding evaluation.

We randomly select 150 sessions as test set,
the domain distribution of which agrees with the
whole query set as shown in Figure 1. As mas-
tering meanings of all Freebase domains is too
challenging, we ask 5 accessors to describe each

session’s intent broadly with a few natural lan-
guage terms, then an expert familiar with Freebase
schema translates the words into matched Free-
base domains. Each test session is tagged by 2
accessors and 1 expert, we choose to use the tags
of the cases in which the accessors reached agree-
ment as the gold stantard. For example, if acces-
sors tag session intent as pictures, then experts can
translate it into Freebase visual art domain. Each
session has 1∼4 tags and 1.6 tags in average. The
tags cover 30 domains.

For each session, we derive the local intent do-
main vector ds following the method in Section 2.
Here we simply set quality function ϕ(r) to a con-
stant λr for all refiners andϕ(c) to λc for all clicks,
we’ll dive into more specialized weighting method
in future work. λr and λc are parameters to control
impact of different kinds of intent topics. Based on
whether to exploit global intent features of non-
entity words, we compare four variations against
one baseline.

• Popularity-based (GP). We use domains’ fre-
quency in the query set as a baseline.
• Entity-based (E). We only use entity nodes’

original intent features without propagation.
• Entity+Clicks (EC). Both intent features of

entity words and clicks are used, controlled
with λc.
• Entity+Refiners (ER). Intent features of en-

tity words and refiner words are used, refin-
ers’ impact is controlled by λr.
• Entity+Clicks+Refiners (ECR). All intent

topics are combined, controlled by λc, λr.
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Figure 2: The impact of λrand λc on ECR methods in four metrics, with vertical axis indicating λr,
horizontal axis as λc. The first column on the left denotes ER method, while the bottom row the EC
method.

4.3.2 Evaluation metrics
We use each approach to rank domains accord-
ing to its derived weight, then compare it with
golden standard set. It can be evaluated using
Mean Average Precision (MAP), Geometric MAP
and Precision@K. We use GMAP because it is
more robust to outliers than the arithmetic mean.

For test set of size N , the MAP and GMAP can
be calculated as follows:

MAP@k =
1
N

N∑
i=1

APi@k (15)

GMAP@k = N

√√√√ N∏
i=1

APi@k (16)

4.3.3 Results and analysis
We first study impact of parameters λr and λc,
which is shown in Figure 2.

It roughly demonstrates different combinations
of parameters’ impact on ECR methods, perfor-
mance is evaluated in four metrics, with deeper
color indicating better result.

Best results comes with a λc larger than λr in
all four subfigures. This trend seems more obvi-

ous in (d) where right part with larger λc get better
results. Also, deeper colors around diagonal line
in (a) (c) indicate a more balanced combination
of refiners and urls are more likely to enhance in-
tent understanding. Thus we conclude clicks has a
weak advantage over refiners in improving the re-
sult, while combining both with proper parameters
can get the best result.

When comparing between MAP and GMAP, we
can see while GMAP stays a high value when am-
plifying the impact of clicks, MAP changes with
the variation of λr for better or worse. As GMAP
is a more robust metric, we can then infer that in-
creasing weight of refiners could bring more out-
liers, implying refiners’ intent features are more
susceptible to noise.

Then we use ER with λr = 0.5 as ERopt, EC
with λc = 0.5 as ECopt and ECR with λr =
0.2, λc = 0.5 as ECRopt.

Figure 3 clearly shows the superior performance
of our model, especially at top positions. Table 4
shows the detailed comparisons between different
methods. We can see our knowledge graph based
intent representations perform well in session in-
tent understanding. And refiners’ and clicks’ in-
tent features which we learn by propagation con-
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Figure 3: Precision@K results for different ap-
proaches, by varying number of k

Table 4: Comparisons among different methods
K=5 K=10

MAP GMAP MAP GMAP
GP 0.177 0.000 0.232 0.002
E 0.676 0.166 0.707 0.355
ECopt 0.708 0.412 0.739 0.579
ERopt 0.688 0.227 0.723 0.421
ECRopt 0.722 0.412 0.756 0.594

tribute a lot to improve naive entity-based method,
which do validate an complment effect of their
learned intent features.

5 Related Work

5.1 Query intent understanding
Query intent or search intent has been studied in-
tensively from various views.

A popular paradigm is to label several intents
for each query, also called facets subgoals and
subtopics in the literature, manully or by min-
ing methods and then do classification (Hu et al.,
2009; Li et al., 2008) based on that. Manually in-
tent schemas range from 3 top level (Broder, 2002)
to fine-grained subcatogories (Rose and Levinson,
2004) and taxonomy (Yin and Shah, 2010). Intent
tasks in NTCIR-10 (Sakai et al., 2013) also pro-
vide subtopic pools made by accessors.

Another view of intent is more generic, min-
ing or learning search intents without any kind of
pre-defined intent category and clustering method
is often used. Methods including (Sadikov et al.,
2010; Yamamoto et al., 2012; Cheung and Li,
2012) cast intent as represented by a pattern or
template consisting of a sequence of semantic con-
cepts or lexical items. (Tan et al., 2012) encode
intent in language models, aware of long-lasting
interests. (Ren et al., 2014) uses an unsupervised

heterogeneous clustering. (Yin and Shah, 2010)
capture generic intents around a certain named en-
tities and model their relationships in a tree tax-
onomy and (Wang et al., 2009) mine broad latent
modifiers of intent aspect , which are similar to
our motivation, while we model more than intent
phrases, but intent topics. We do not split queries
into clusters or subtopics relevant to the original
query to indicate a intent, but link them in an graph
with intent feature similarity, weakly or strongly,
in a holistical view.

On the other hand, previous research can be
categorized by what kind of resources they rely
on. Quite an amount of work leverage query logs
(Jiang et al., 2013), including query reformula-
tions (Radlinski et al., 2010), click-through data
(Li et al., 2008). There are also works using spon-
sered data (Yamamoto et al., 2012) and interactive
data (Ruotsalo et al., 2013). The new trend of in-
tegrating knowledge graph will be discussed next.

5.2 Knowledge graph on intent
understanding

Instead of summarizing queries into concepts by
clustering, recently there appears a tendency to use
concpets from knowledge graph resources. Some
researchers manage to build entity graph from
queries (Bordino et al., 2013a) (Bordino et al.,
2013b; Yu et al., 2014), some in a structure view,
interpret quries into knowledge base fit template
(Pound et al., 2012; Li et al., 2013). (Pantel et al.,
2012) models latent intent to mine entity type dis-
tributions. (Ren et al., 2014) utilizes knowledge
graph resources in a hetrogeneous view. (Lin et
al., 2012) also pays attention to refiners, but re-
stricted to limited domains, while our method is
more general.

6 Conclusion

In this paper, we tailor knowledge graph to rep-
resent query intent behind entity words, refiners
and clicked urls in a unified framework, taking
them as intent topic nodes connected in a large
graph. We manage to get a contextualized intent
depiction exploiting global knowledge in Free-
base, then propagate the feature to cover more in-
tent topics. We show in experiments the knowl-
edge graph enriched representation is reasonable
and explainable, and the intents feature of refiners
and clicks can better enhance intent understanding
than methods simply relying on entities.
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There are several directions for future work, in-
cluding using both types and domains in Free-
base schema, diving into refiners and looking for a
proper weighting method, developing a query rec-
ommendation framework based on the intent topic
graph and user interest modeling.
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Abstract

The role of Web search queries has been
demonstrated in the extraction of attributes
of instances and classes, or of sets of re-
lated instances and their class labels. This
paper explores the acquisition of open-
domain commonsense knowledge, usu-
ally available as factual knowledge, from
Web search queries. Similarly to previ-
ous work in open-domain information ex-
traction, knowledge extracted from text
- in this case, from queries - takes the
form of lexicalized assertions associated
with open-domain classes. Experimental
results indicate that facts extracted from
queries complement, and have competitive
accuracy levels relative to, facts extracted
from Web documents by previous meth-
ods.

1 Introduction

Motivation : Open-domain information extrac-
tion methods (Etzioni et al., 2005; Pennac-
chiotti and Pantel, 2009; Wang and Cohen, 2009;
Kozareva and Hovy, 2010; Wu et al., 2012) aim
at distilling text into knowledge assertions about
classes, instances and relations among them (Et-
zioni et al., 2011). Ideally, the assertions would
complement or expand upon knowledge avail-
able in popular, human-created resources such as
Wikipedia (Remy, 2002) and Freebase (Bollacker
et al., 2008), reducing costs and scalability is-
sues associated with manual editing, curation and
maintenance of knowledge.

Candidate knowledge assertions extracted from
text for various instances and classes (Banko et al.,
2007; Cafarella et al., 2008; Wu and Weld, 2010)

must satisfy several constraints in order to be use-
ful. First, their boundaries must be correctly iden-
tified within the larger context (e.g., a document
sentence) from which they are extracted. In prac-
tice, this is a challenge with arbitrary Web docu-
ments, where even instances and class labels that
are complex nouns, and thus still shorter than can-
didate assertions, are difficult to precisely detect
and pick out from surrounding text (Downey et
al., 2007). This causes the extraction of assertions
like companiesmay “be in the process”, hurri-
canesmay “run from june” , or video gamesmay
“make people” (Fader et al., 2011). Second, the
assertions must be correctly associated with their
corresponding instance or class. In practice, tag-
ging and parsing errors over documents of arbi-
trary quality may cause the extracted assertions to
be associated with the wrong instances or classes.
Examples arevideo gamesmay “watch movies”,
or video gamesmay“read a book”. Third, the as-
sertions, even if true, must refer to relevant prop-
erties or facts, rather than to statements of little
or no practical interest to anyone. In practice,
relevant properties may be difficult to distinguish
from uninteresting statements in Web documents.
Consequently, assertions extracted from Web doc-
uments include the facts thatcompaniesmay“say
in a statement”, or thathurricanesmay “be just
around the corner”or may“be in effect”.

Contributions : This paper explores the use of
Web search queries, as opposed to Web docu-
ments, as a textual source from which knowl-
edge pertaining to open-domain classes can be
extracted. Previous explorations of the role of
queries in information extraction include the ac-
quisition of attributes of instances (Alfonseca
et al., 2010) and of classes (Van Durme and
Paşca, 2008); the acquisition of sets of related
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instances (Sekine and Suzuki, 2007; Jain and
Pennacchiotti, 2010) and their class labels (Van
Durme and Paşca, 2008; Pantel et al., 2012); the
disambiguation of instances mentioned in queries
relative to entries in external knowledge reposito-
ries (Pantel and Fuxman, 2011) and its applica-
tion in query expansion (Dalton et al., 2014); and
the extraction of the most salient of the instances
mentioned in a given Web document (Gamon et
al., 2013). In comparison, this paper shows that
queries also lend themselves to the acquisition of
factual knowledge beyond attributes, like the facts
thatcompaniesmay“buy back stock”, hurricanes
may “need warm water”, andvideo gamesmay
“come out on tuesdays”.

To extract knowledge assertions for diverse
classes of interest to Web users, the method ap-
plies simple extraction patterns to queries. The
presence of the source queries, from which the as-
sertions are extracted, is in itself deemed evidence
that the Web users who submitted the queries
find the assertions to be relevant and not just ran-
dom statements. Experimental results indicate that
knowledge assertions extracted from queries com-
plement, and have competitive accuracy levels rel-
ative to, knowledge extracted from Web docu-
ments by previous methods.

2 Extraction from Queries

Queries as Knowledge: Users tend to formu-
late their Web search queries based on knowl-
edge that they already possess at the time of the
search (Paşca, 2007). Therefore, search queries
play two roles simultaneously: in addition to re-
questing new information, they indirectly convey
knowledge in the process.

A fact corresponds to a property that, together
with other properties, help define the semantics of
the class and its interaction with other classes. The
extraction of factual knowledge from queries starts
from the intuition that, if a factF is relevant for a
classC, then users are likely to ask for various
aspects of the factF , in the context of the class
C. If companiesmay“pay dividends”or “get au-
dited”, and such properties are relatively promi-
nent forcompanies, then users eventually submit
queries to inquire about the facts.

Often, queries will be simple concatenations of
keywords:“companies pay dividends”or perhaps
“company dividends”, “audit companies”. Since
there are no restrictions on the linguistic structure

Query logs

Target classes

Disease: {diseases, illnesses, medical conditions, ...}

how does an actor prepare for a role   how do actors get an agent

how do actors get paid   why do actors need to warm up

why are actors left handed   how do actors memorize their lines

Hurricane: {hurricanes, ...}

how is a disease transmitted   how are diseases inherited from parents

how is a disease treated   how is a disease diagnosed

how do diseases enter the body   how does a disease mutate

why does a hurricane weaken over land   how are hurricanes predicted

why does a hurricane lose strength over land   how is a hurricane forecasted

why does a hurricane have an eye   how does a hurricane dissipate

Extracted facts
Actor: {prepare for a role, get an agent, get paid, be left handed,

Disease: {be transmitted, be inherited from parents, be treated,

Hurricane: {weaken over land, be predicted, lose strength over land,

             need to warm up, memorize their lines, ...}

                 be diagnosed, enter the body, mutate, ...}

                    be forecasted, have an eye, dissipate, ...}

Actor: {actors, ...}

Figure 1: Overview of extraction of knowledge
from Web search queries

of keyword-based queries, extracting facts from
such queries would be difficult. But if queries are
restricted to fact-seeking questions, the expected
format of the questions makes it easier to iden-
tify the likely boundaries of the class and the fact
mentioned in the queries. Queries such as“why
does a (company)C (pay dividends)F ” and“how
do (companies)C (get audited)F ” , follow the lin-
guistic structure, even if minimal, imposed by for-
mulating the query as a question. This allows one
to approximate the location of the classC, possi-
bly towards the beginning of the query; the start of
the factF , possibly as the verb immediately fol-
lowing the class; and the end of the fact, which
possibly coincides with the end of the query.

Acquisition from Queries: The extraction
method proposed in this paper takes as input a set
of target classes, each of which is available as a
set of class descriptors, i.e., phrases that describe
the class. It also has access to a set of anonymized
queries. As illustrated in Figure 1, the method se-
lects queries that contain a class descriptor and
what is deemed to be likely a fact. It outputs
ranked lists of facts for each class. The extrac-
tion consists in several stages: 1) the selection of
a subset of queries that refer to a class in a form
that suggests the queries inquire about a fact of the
class; 2) the extraction of facts, from query frag-
ments that describe the property of interest to users
submitting the queries; and 3) the aggregation and
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ranking of facts of a class.

Extraction Patterns: In order to determine
whether a query contains a fact for a class, the
query is matched against the extraction patterns
from Table 1.

The use of targeted patterns in relation extrac-
tion has been suggested before (Hearst, 1992;
Fader et al., 2011; Mesquita et al., 2013). Specifi-
cally, in (Tokunaga et al., 2005), the patterns“ A of
D” or “what is theA ofD” extract noun-phraseA
attributes from queries and documents, for phrase
descriptorsD of the class. In our case, the pat-
terns are constructed such that they match ques-
tions that likely inquire about the reason why, or
manner in which, a relevant factF may hold for
a classC. For example, the first pattern from Ta-
ble 1 matches the queries“why does a company
pay dividends”and “why do video games come
out on tuesdays”. These queries seek explanations
for why certain properties may hold forcompanies
andvideo gamesrespectively.

A classC can be mentioned in queries through
lexicalized, phrase descriptorsD that capture its
meaning. The descriptorsD of the classC
may be available as non-disambiguated items, i.e.,
as strings (companies, firms, businesses, video
games); or as disambiguated items, that is, as
pointers to knowledge base entries with a disam-
biguated meaning (Company, Video Game). In the
first case, the matching of a query fragment, on
one hand, to the portion of an extraction pattern
corresponding to the classC, on the other hand,
consists in simple string matching with one of the
descriptorsD specified forC. In the second case,
the matching requires that the disambiguation of
the query fragment, in the context of the query,
matches the desired disambiguated meaning ofC
from the pattern. The subset of queries matching
any of the extraction patterns, for any descriptor
D of a classC, are the queries that contribute to
extracting facts of the classC.

If a pattern from Table 1 employs a form of the
auxiliary verb“be” , the extracted facts are modi-
fied by having the verb“be” inserted at their be-
ginning. For example, the fact“be stored side-
ways” is extracted from the query“why is wine
stored sideways”. In all patterns, the candidate
fact is required to start with a verb that acts as the
predicate of the query.

Ranking of Facts: Facts of a classC are aggre-
gated from facts of individual class descriptorsD.

Extraction Pattern
→ Examples of Matched Queries

why [does|did|do] [a|an|the|<nothing>] D F
→ why does a (company)D (pay dividends)F
→ why do (planes)D (take longer to fly west than east)F

→ why do (video games)D (come out on tuesdays)F

why [is|was|were] [a|an|the|<nothing>] D F
→ why are (cars)D (made of steel)F
→ why is a (newspaper)D (written in columns)F
→ why is (wine)D (stored sideways)F

how [does|did|do] [a|an|the|<nothing>] D F
→ how does a (company)D (use financial statements)F

→ how does (food)D (get absorbed)F

→ how do (stadiums)D (get cleaned)F
how [is|was|were] [a|an|the|<nothing>] D F
→ how are (hurricanes)D (predicted)F
→ how is a (treaty)D (ratified)F
→ how is a (cell phone)D (unlocked)F

Table 1: The extraction patterns match queries
likely to inquire about facts of a class (D=a phrase
acting as a class descriptor;F=a sequence of to-
kens whose first token is the head verb of the
query)

A fact F is deemed more relevant forC if the fact
is extracted for more of the descriptorsD of the
classC, and for fewer descriptorsD that do not
belong to the classC. Concretely, the score of a
fact for a class is the lower bound of the Wilson
score interval (Brown et al., 2001):

Score(F, C) = LowBound(Wilson(N+, N−))
where:

• the number of positive observationsN+ is
the number of queries for which the factA is
extracted for some descriptorD of the classC,
|{Query(D, A)}D∈C |; and

• the number of negative observationsN− is
the number of queries for which the factF is ex-
tracted for some descriptorsD outside of the class
C, |{Query(D, A)}D/∈C |.

The scores are internally computed at 95% con-
fidence. Facts of each class are ranked in decreas-
ing order of their scores. In case of ties, facts are
ranked in decreasing order of the frequency sum
of the source queries from which the facts are ex-
tracted.

3 Experimental Setting

Textual Data Sources: The experiments rely
on a random sample of around 1 billion fully-
anonymized Web search queries in English. The
sample is drawn from queries submitted to a
general-purpose Web search engine. Each query
is available independently from other queries, and
is accompanied by its frequency of occurrence in
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Target Class (class descriptors to be looked up in queries)
Actor (actors) Mountain (mountains)

Aircraft (planes) Movie (movies)
Award (awards) NationalPark (national parks)
Battle (battles) NbaTeam (nba teams)

Car (cars) Newspaper (newspapers)
CartoonChar Painter

(cartoon characters) (painters)
CellPhone ProgLanguage

(cell phones) (programming languages)
ChemicalElem (elements) Religion (religions)

City (cities) River (rivers)
Company (companies)SearchEngine (search engines)

Country (countries) SkyBody (celestial bodies)
Currency (currencies) Skyscraper (skyscrapers)

DigitalCamera SoccerClub
(digital cameras) (soccer teams)

Disease (diseases) SportEvent (sport events)
Drug (drugs) Stadium (stadiums)

Empire TerroristGroup
(empires) (terrorist groups)

Flower (flowers) Treaty (treaties)
Food (foods) University (universities)

Holiday (holidays) VideoGame (video games)
Hurricane (hurricanes) Wine (wines)

Table 2: Set of 40 target classes used in the evalu-
ation of extracted facts

the query logs.

Target Classes: Table 2 shows the set of 40 tar-
get classes for evaluating the extracted facts. Sim-
ilar evaluation strategies were followed in previ-
ous work (Paşca, 2007). As illustrated earlier in
Figure 1, a target class consists in a small set of
phrase descriptors. The phrase descriptors are se-
lected such that they best approximate the mean-
ing of the class. In general, the descriptors can be
selected and expanded with any strategy from any
source. One such possible source might be syn-
onym sets from WordNet (Fellbaum, 1998). Fol-
lowing a stricter strategy, the sets of descriptors
in our experiments contain only one phrase each,
manually selected to match the target class. Ex-
amples are the sets of phrase descriptors{actors}
for the classActorand{nba teams} for NbaTeam.
The occurrence of a descriptor (nba teams) in
a query (“how do nba teamsmake money”) is
deemed equivalent to a mention of the correspond-
ing class (NbaTeam) in that query. Each set of de-
scriptors of a class is then expanded (not shown in
Table 2), to also include the singular forms of the
descriptors (e.g.,nba teamfor nba teams). Further
inclusion of additional descriptors would increase
the coverage of the extracted facts.

Experimental Runs: The baseline run RD is
the extraction method introduced in (Fader et al.,

2011). The method produces triples of an instance
or a class, a text fragment capturing a fact, and an-
other instance or class. In these experiments, the
second and third elements of each triple are con-
catenated together, giving pairs of an instance or
a class, and a fact applying to it. The baseline
run is applied to around 500 million Web docu-
ments in English.1 In addition to the baseline run,
the method introduced in this paper constitutes the
second experimental run RQ. Facts extracted by
the two experimental runs are directly compara-
ble: both are text snippets extracted from the re-
spective sources of text - documents in the case of
RD, or queries in the case of RQ.
Parameter Settings: Queries that match any of
the extraction patterns from Table 1 are syntacti-
cally parsed (Petrov et al., 2010), in order to verify
that the first token of an extracted fact is the head
verb of the query. Extracted facts that do not sat-
isfy the constraint are discarded. A positive side
effect of doing so is to avoid extraction from some
of the particularly subjective queries. For exam-
ple, facts extracted from the queries“why is (A)
evil” or “why is (B) ugly”, where(A) and(B) are
the name of a company and actress respectively,
are discarded.

4 Evaluation Results

Accuracy: The measurement of recall requires
knowledge of the complete set of items (in our
case, facts) to be extracted. Unfortunately, this
number is often unavailable in information extrac-
tion tasks in general (Hasegawa et al., 2004), and
fact extraction in particular. Indeed, the manual
enumeration of all facts of each target class, to
measure recall, is unfeasible. Therefore, the eval-
uation focuses on the assessment of accuracy.

Following evaluation methodology from prior
work (Paşca, 2007), the top 50 facts, from a ranked
lists extracted for each target class, are manually
assigned correctness labels. A fact is marked as
vital, if it must be present among representative
facts of the class;okay, if it provides useful but
non-essential information; andwrong, if it is in-
correct (Paşca, 2007). For example, the facts“run
on kerosene”, “be delayed”and“fly wiki” are an-
notated asvital, okayandwrong respectively for
the classAircraft. To compute the precision score

1At the time when the experiments were conducted, the
facts were extracted by the baseline run from English doc-
uments in the ClueWeb collection, and were accessible at
http://reverb.cs.washington.edu.
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Target Class: Sample of Extracted Facts (with Source
Queries)

Target Class: Sample of Extracted Facts (with Source
Queries)

Actor (may): prepare for a role (how does an actor prepare
for a role), get an agent (how do actors get an agent), do love
scenes (how do actors do love scenes), get paid (how do actors
get paid), be left handed (why are actors left handed), need to
warm up (why do actors need to warm up)

Car (may): backfire (why does a car backfire), burn oil (why
do cars burn oil), pull to the right (why do cars pull to the
right), pull to the left (why does a car pull to the left), catch
on fire (how does a car catch on fire), run hot (why do cars
run hot), get repossessed (why do cars get repossessed)

Company (may): buy back stock (how does a company buy
back stock), go public (why does a company go public), buy
back shares (why do companies buy back shares), incorporate
in delaware (why do companies incorporate in delaware), pay
dividends (why does a company pay dividends), merge (how
do companies merge)

Disease (may): be transmitted (how is a disease transmitted),
be inherited from parents (how are diseases inherited from
parents), affect natural selection (how do diseases affect nat-
ural selection), be treated (how is a disease treated), affect the
conquest of the americas (how did diseases affect the conquest
of the americas), be diagnosed (how is a disease diagnosed)

Hurricane (may): weaken over land (why does a hurricane
weaken over land), be predicted (how are hurricanes pre-
dicted), lose strength over land (why does a hurricane lose
strength over land), have an eye (why does a hurricane have
an eye), be forecasted (how is a hurricane forecasted), dissi-
pate (how does a hurricane dissipate), lose strength (how do
hurricanes lose strength)

NbaTeam (may): make money (how does an nba team make
money), communicate to win (how does an nba team commu-
nicate to win), want expiring contracts (why do nba teams
want expiring contracts), make the playoffs (how do nba
teams make the playoffs), get their names (how do nba teams
get their names), do sign and trades (why do nba teams do
sign and trades), lose money (how do nba teams lose money)

Table 3: Examples of facts extracted for various classes by run RQ

Class Precision Class Precision
@10 @20 @50 @10 @20 @50

RD RQ RD RQ RD RQ RD RQ RD RQ RD RQ

Actor 0.60 0.85 0.57 0.85 0.60 0.83 Mountain 0.20 0.75 0.10 0.72 0.05 0.55
Aircraft 0.50 0.95 0.42 0.87 0.47 0.81 Movie 0.40 0.20 0.37 0.20 0.40 0.32
Award 0.50 0.25 0.45 0.25 0.52 0.23 NationalPark 0.40 0.70 0.32 0.72 0.30 0.69
Battle 0.25 0.45 0.42 0.46 0.38 0.44 NbaTeam 0.60 0.75 0.42 0.80 0.20 0.77

Car 0.55 0.80 0.62 0.82 0.52 0.75 Newspaper 0.25 0.80 0.32 0.55 0.44 0.59
CartoonChar 0.25 0.60 0.22 0.57 0.18 0.55 Painter 0.30 0.75 0.40 0.65 0.42 0.61

CellPhone 0.75 0.90 0.75 0.82 0.55 0.82 ProgLanguage 0.20 0.75 0.25 0.72 0.25 0.70
ChemicalElem 0.45 0.90 0.45 0.72 0.54 0.72 Religion 0.10 0.80 0.30 0.70 0.13 0.69

City 0.30 0.80 0.27 0.67 0.27 0.63 River 0.65 0.95 0.70 0.87 0.54 0.57
Company 0.60 0.95 0.57 0.95 0.53 0.91 SearchEngine 0.40 0.70 0.37 0.65 0.38 0.64

Country 0.30 0.85 0.25 0.90 0.20 0.83 SkyBody 0.55 0.00 0.32 0.00 0.28 0.00
Currency 0.40 0.90 0.25 0.85 0.22 0.73 Skyscraper 0.45 0.85 0.37 0.77 0.24 0.78

DigitalCamera 0.30 0.90 0.35 0.85 0.42 0.77 SoccerClub 0.35 0.15 0.37 0.33 0.41 0.31
Disease 0.55 0.90 0.60 0.70 0.64 0.60 SportEvent 0.30 0.00 0.27 0.00 0.32 0.00

Drug 0.20 0.95 0.30 0.87 0.40 0.78 Stadium 0.50 0.85 0.50 0.77 0.47 0.75
Empire 0.15 0.45 0.12 0.52 0.23 0.49 TerroristGroup 0.90 0.55 0.70 0.55 0.55 0.53
Flower 0.60 0.90 0.50 0.80 0.48 0.78 Treaty 1.00 0.75 0.90 0.75 0.77 0.59

Food 0.65 0.80 0.55 0.85 0.43 0.85 University 0.10 0.95 0.05 0.92 0.10 0.70
Holiday 0.30 0.25 0.17 0.22 0.19 0.14 VideoGame 0.20 0.90 0.25 0.85 0.28 0.77

Hurricane 0.40 0.80 0.37 0.77 0.32 0.73 Wine 0.70 1.00 0.60 0.87 0.56 0.70
Average-Class 0.43 0.71 0.40 0.67 0.38 0.63

Table 4: Relative accuracy of facts extracted from documents in run RD, vs. facts extracted from queries
in run RQ

over a set of facts, the correctness labels are con-
verted to numeric values:vital to 1.0,okayto 0.5,
andwrong to 0.0. Precision is the sum of the cor-
rectness values of the facts, divided by the number
of facts. Table 3 shows a sample of facts extracted
from queries by run RQ, which are judged to be
vital or okay.

Table 4 provides a comparison of precision at
ranks 10, 20 and 50, for each of the 40 target
classes and as an average over all target classes.
The scores vary from one class to another and be-

tween the two runs, for example 0.22 (RD) and
0.73 (RQ) for the classCurrencyat rank 50, but
0.77 (RD) and 0.59 (RQ) for Treaty. Run RQ fails
to extract any facts for two of the target classes,
SkyBodyandSportEvent. Therefore, it receives no
credit for those classes during the computation of
precision.

Over all target classes, run RQ is superior to run
RD, with relative precision boosts of 65% (0.71
vs. 0.43) at rank 10, 67% at rank 20, and 65% at
rank 50. The results show that facts extracted from

1085



Run: [Ranked Facts Extracted from Text for a Sample of Classes]
Class: Actor (may):
RD: [do a great job, get the part, play their roles, play their parts, play their characters, be on a theatre, die aged 81, be all
great, deliver their lines, portray their characters, take on a role, be best known for his role, play the role of god, be people,
give great performances, bring the characters to life, wear a mask,be the one, have chemistry, turn director, read the script, ..]
RQ: [prepare for a role, get an agent, do love scenes, get paid, be lefthanded, need to warm up, get started, get paid so much,
memorize their lines, get ripped so fast, remember their lines, make themselves cry, learn their lines, jump out of a window
in times square, lose weight so fast, play dead, be paid, kiss, rememberlines, memorize lines, get discovered, get paid for
movies, go uncredited, say break a leg, get their start, have perfect skin, become actors, ..]
Class: Car (may):
RD: [get a tax write-off, can be more competitive than airline rates, be in good condition, be first for second hand cars, be in
the shop, relocate to a usa firm, be in motion, come to a stop, hire companies, be in great shape, be for sale, hire service from
spain, ride home, be on fire, use the autos.com, come to a halt, catch fire, be on road, be on display, go on sale, hit a tree, be
available for delivery, stop in front, be a necessity, go off the road, pull out in front, hire services, run out of gas, ..]
RQ: [backfire, burn oil, save ostriches from extinction, pull to the right, pullto the left, catch on fire, run hot, sputter, get
repossessed, have a top speed, be called a car, have gears, get impounded, be called cars, go to auction, called whip, made of
steel, get hot in the sun, shake at high speed, changed america, totaled, cut out, cut off while driving, fail emissions, protect
from lightning, run rich, lose oil, become electrically charged, cut off, flip over, know tire pressure, have a maximum speed,
require premium gas, shake at high speeds, stall out, cause acid rain,fog up, get stuck in park, need an oil change, ..]
Class: Company (may):
RD: [say in a statement, specialize in local moves, be in the process, go out of business, have been in business, be in business,
do business, file for bankruptcy, make money, be on track, say in a press release, be a place, have cut back on health insurance,
state in a press release, be on the verge, save money, be in talks, have helped thousands of consumers, reduce costs, go bust,
be in the midst, say in a release, be founded in 1999, be in trouble, be founded in 2000, be losing money, ..]
RQ: [buy back stock, go public, buy back shares, incorporate in delaware, pay dividends, merge, go global, go international,
use financial statements, verify education, expand internationally, go green, verify employment, need a website, choose to
form as a corporation, do market research, go private, diversify, go into administration, get on angies list, pay dividend, struck
off, buy back their shares, get audited, need a mission statement, repurchase common stock, spin off, get listed on the nyse,
create value, distribute dividends, need a strategic plan, ..]
Class: Mountain (may):
RD: [spot fever, meet the sea, be covered with snow, be covered in snow, be the place, come into view, be on fire, be fun,
fly fishing, be volcano, be moved out of their places, enjoy the exhilaration, meet the ocean, be available for hire, keep their
secrets, win the mwc in 2010, ..]
RQ: [affect rainfall, affect the climate of an area, affect climate, be measured, be formed, be created, be made, grow, affect
weather, have snow on top, affect solar radiation, affect temperature, be formed ks2, affect the weather, be built, affect people,
look blue, tops cold, affect neighboring climates, be formed video, helpshape the development of greek civilization, be made
for kids, occur, affect the climate, be formed, be formed wikipedia, have roots, affect precipitation, exist, affect life on earth,
be formed kids, float in avatar, erode, have snow on the top, affect the political character of greece, help rain form, ..]

Table 5: Comparative top facts extracted for a sample of classes from documents (RD) or queries (RQ)

queries have higher levels of accuracy.

Facts from Documents vs. Queries: Table 5
compares the top facts extracted by the two exper-
imental runs for a sample of target classes. Most
commonly, erroneous facts are extracted by run
RD due to the extraction of relatively uninterest-
ing properties (aCompanymay “say in a state-
ment” or “be in the process”). Other errors in
RD are caused by wrong boundary detection of
facts within documents (aCompanymay “be in
the midst”), or by the association of a fact with the
wrong instance or class (aCar may “hire compa-
nies” or “hire services”).

As for facts extracted by run RQ, they are some-
times too informal, due to the more conversa-
tional nature of queries when compared to docu-
ments. Queries may suggest that aCar may“know
tire pressure”. Occasionally, similarly to facts
from documents, they have wrong boundaries (a
Mountainmay “be made for kids”or “be formed

wikipedia”); and they may correspond to less in-
teresting, or too specific, properties (aCompany
may “incorporate in delaware”). Lastly, queries
may appear to be questions, but occasionally they
really are not. An example is the query“why did
the actor jump out of the window in times square”,
which may refer to a joke. When such queries
match one of the extraction patterns, they produce
wrong facts. Overall, Table 5 corroborates the
scores from Table 4. It suggests that a) facts ex-
tracted by either RD or RQ still need refinement,
before they can capture essential characteristics
of the respective classes and nothing else; and b)
facts extracted in run RQ have higher quality than
facts extracted in run RD. Indeed, because fact-
seeking queries inquire about the value (or rea-
son, or manner) of some relations of an instance,
the facts themselves tend to be more relevant than
facts extracted from arbitrary document sentences.

An issue related to facts extracted from text

1086



is their ability to capture the kind of “obvious”
commonsense knowledge (Zang et al., 2013) that
would be essential for machine-driven reasoning.
If it is obvious that“teachers give lectures”, how
likely is it for such information to be explic-
itly stated in documents or, even more interest-
ingly, inquired about in queries? Anecdotal ev-
idence gathered during experimentation suggests
that queries do produce many commonsense facts,
perhaps even surprisingly so given that a) queries
tend to be shorter and grammatically simpler than
document sentences; and b) the patterns in Ta-
ble 1 are relatively more restrictive than the pat-
terns used in (Fader et al., 2011). Indeed, the pat-
terns in Table 1, when applied to queries like“why
do teachers give homework”, “why do teach-
ers give grades”, actually produce commonsense
knowledge thatteachersgive homework, grades
(to their students). In fact, the quality of equivalent
facts extracted from documents in (Fader et al.,
2011) may be lower. Concretely, facts extracted
in (Fader et al., 2011) state that whatteachersgive
is students, class, homeworkandfeedback, in this
order. The first two of these extractions are errors,
likely caused by the incorrect detection of com-
plex entities and their inter-dependencies in docu-
ment sentences (Downey et al., 2007).

A necessary condition for the usefulness of ex-
tracted facts is that the source text contain consis-
tent, true information. But both documents and
queries may contain contradictory or false infor-
mation, whether due to unsupported conjectures,
unintended errors or systematic campaigns that
fall under the scope of adversarial information re-
trieval (Castillo and Davison, 2011). The phenom-
ena potentially affect prior work on Web-based
open-domain extraction, and potentially affect the
quality of facts extracted from queries in this pa-
per. For example, facts extracted from queries like
“why do companies like obamacare”and“why do
companies hate obamacare”would be inconsis-
tent, if not incorrect.

Occasionally, facts extracted from the two text
sources refer to the same properties. For exam-
ple, aVideoGamemay “be good for the hand-eye
coordination”, according to documents; and may
“improve hand eye coordination”, according to
queries. Nevertheless, facts derived from queries
likely serve as a complement, rather than replace-
ment, of facts from documents. In particular, facts
extracted from queries make no attempt to iso-

late the value of the respective properties, whereas
facts extracted from documents usually do.

Stricter Comparison of Data Sources: In the
experiments described so far, distinct sets of pat-
terns are applied in the experimental runs to doc-
uments vs. queries. More precisely, run RD ap-
plies the patterns introduced in (Fader et al., 2011)
to document sentences, whereas run RQ the pat-
terns shown in Table 1 to queries. To more ac-
curately gauge the role of queries vs. documents
in extracting facts from unstructured text, addi-
tional experiments isolate the effect of extracting
facts from different types of data sources. For
this purpose, the same set of patterns from Ta-
ble 1 is matched against the sentences from around
500 million Web documents. The patterns are ap-
plied to document sentences converted to lower-
case, similarly to how they are applied to queries.
This corresponds to a new experimental run RDS ,
which employs the same patterns as the earlier run
RQ but runs over document sentences instead of
queries.

As an average over the target classes, the pre-
cision of facts extracted by run RDS is 0.50, 0.47
and 0.44 at ranks 10, 20 and 50 respectively. Two
conclusions can be drawn from comparing these
scores with the average scores from the earlier Ta-
ble 4. First, the average precision of run RDS is
higher than for run RD. In other words, when
extracting from document sentences in RDS and
RD, the patterns proposed in our method give
fewer and more accurate facts than the patterns
from (Fader et al., 2011). Second, although RDS is
more accurate than RD, it is less accurate than run
RQ. Note that, among the top 50 facts extracted
for each target class by runs RDS and RQ, an aver-
age of 13% of the facts are extracted by both runs.
There are several phenomena contributing to the
difference in precision. While inherently noisy,
queries tend to be more compact, and therefore
more focused. In comparison, document sentences
matching the patterns are often more convoluted
(e.g., “who do cities keep building stadiums de-
spite study after study showing they do not make
money”, or “how does a company go from low
associate satisfaction to #15 on the fortune 100
best list in the midst of a crippling recession”).
Furthermore, both queries and sentences may not
be useful questions from which relevant facts can
be extracted, even when they match the extraction
patterns. However, anecdotal evidence suggests
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that this happens more frequently with document
sentences than with queries. Examples include
document sentences extracted from sites aggregat-
ing jokes (“why did the cell phone ask to see the
psychologist”). The results confirm that queries
represent an intriguing resource for fact extraction,
providing a useful complement to document sen-
tences for the purpose of extracting facts.

Quantitative Results: From the set of queries
used as input in run RQ, 3.8% of all queries start
with why or how. In turn, 13.6% of them match
one of the extraction patterns from Table 1, and
therefore produce a candidate fact in RQ. In the
case of run RDS , 18.7% of the document sentences
that start withwhy or how match one of the pat-
terns from Table 1.

Choice of Extraction Patterns: The sets of pat-
terns sometimes employed in relation extraction
from documents (Hearst, 1992) occasionally ben-
efit from the addition of new patterns, or the re-
finement into more specific patterns (Kozareva et
al., 2008). Similarly, the set of patterns proposed
in Table 1, which targets the extraction of facts
from queries, is neither exhaustive nor final. Other
patterns beyondwhy andhow may prove useful,
whether they rely on relatively less frequentwhen
and where queries, or extract relations contain-
ing underspecified arguments fromwho or what
queries.

When applied to queries in run RQ, thehowpat-
terns from Table 1 match 3.3 times more queries
than thewhypatterns.

In separate experiments,why vs. how patterns
from Table 1 are temporarily disabled. The ra-
tio of facts extracted on average per target class in
run RQ diminishes from 100% (with both patterns)
to 30% (withwhy only) or 70% (withhow only).
Overall, no difference in accuracy is observed over
facts extracted bywhyvs.howpatterns.

Choice of Phrase Descriptors: A separate experi-
ment investigates the impact of expanding the sets
of phrase descriptors associated with each target
class. Among many possible strategies, each set of
phrase descriptors associated with a target class is
expanded automatically, using WordNet and dis-
tributional similarities. For this purpose, for each
target class, the set of synonyms and hyponyms of
all senses, if any, available in WordNet for each
phrase descriptor is intersected with the set of the
50 most distributionally similar phrases, if any,
available for each phrase descriptor. The origi-

nal set of phrase descriptors of each target class
is then expanded, to include the phrases from the
intersected set, if any.

A repository of distributionally similar phrases
is collected in advance following (Lin and Wu,
2009; Pantel et al., 2009), from a sample of around
200 million Web documents. Their intersection
with phrases collected from WordNet aims at re-
ducing the noise associated with expansion solely
from either source. For example, for the class
Actor, the set of phrases{player, worker, heavy,
plant, actress, comedian, film star, ..} is collected
from WordNet for the descriptoractors. The set
is intersected with the set of phrases{film stars,
performers, comedians, actresses, ..} most dis-
tributionally similar toactors. Examples of sets
of phrase descriptors after expansion are{actors,
actresses, comedians, players, film stars, ..}, for
the classActor; and{battles, naval battles, fights,
skirmishes, struggles, ..}, for Battle.

On average, the sets of phrase descriptors as-
sociated with each target class contains 2 vs. 11
phrases, before vs. after expansion. Some of the
sets of phrase descriptors, such as for the target
classesCartoonCharandDigitalCamera, remain
unchanged after expansion. As expected, expan-
sion may introduce noisy phrase descriptors, such
asplayersfor Actor, or dietsfor Food. The pres-
ence of noisy phrase descriptors lowers the preci-
sion of the extracted facts. After expansion, the
precision scores of RQ, as an average over all tar-
get classes, become smaller by 6% (0.71 vs. 0.67),
at rank 10; 6% (0.67 vs. 0.63), at rank 20; and 7%
(0.63 vs. 0.59), at rank 50. Expansion also affects
relative coverage, increasing the average number
of facts extracted by RQ per target class by more
than twice (i.e., by a factor of 2.6).

Redundant Facts: Due to lexical variation in
the source text fragments, some of the extracted
facts may be near-duplicates of one another. In
general, the phenomenon affects facts extracted
from text by previous methods (Van Durme and
Paşca, 2008; Etzioni et al., 2011; Fader et al.,
2011). In particular, it affects facts extracted from
both documents or queries in our experiments.
For example, the facts extracted from documents
for Actor include “play their roles” , “play their
parts”, “play their characters” and “portrayed
their characters”. Separately, the facts“memorize
their lines”, “remember their lines”and “learn
their lines” are extracted from queries for the class
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Actor. The automatic detection of equivalent facts
would increase the usefulness of facts extracted
from text in general, and of facts extracted by the
method presented here in particular.

5 Related Work

A variety of methods address the more general
task of acquisition of open-domain relations from
text, e.g., (Banko et al., 2007; Carlson et al., 2010;
Wu and Weld, 2010; Fader et al., 2011; Lao et
al., 2011; Mausam et al., 2012; Lopez de La-
calle and Lapata, 2013). In general, relations ex-
tracted from document sentences (e.g.,“Claude
Monet was born in Paris”) are tuples of an argu-
ment (claude monet), a text fragment acting as the
lexicalized relation (was born in), and another ar-
gument (paris) (cf. (Banko et al., 2007; Fader et
al., 2011; Mausam et al., 2012)). For convenience,
the relation and second argument may be concate-
nated into a fact applying to the first argument, as
in “was born in paris” for claude monet. Rel-
atively shallow tools like part of speech taggers,
or more complex tools like semantic taggers (Van
Durme et al., 2008; Van Durme et al., 2009) can be
employed in order to extract relations from docu-
ment sentences. The former choice scales better
to Web documents of arbitrary quality, whereas
the latter could be more accurate over high-quality
documents such as news articles (Mesquita et
al., 2013). In both cases, document sentences
mentioning an instance or a class may refer to
properties of the instance that people other than
the author of the document are less likely to in-
quire about. Consequently, even top-ranked ex-
tracted relations occasionally include less infor-
mative ones, such as“come into view” for mount
rainier, “be on the table” for madeira wine, or
“allow for features” for javascript (Fader et al.,
2011).

Data available within Web documents, from
which relations are extracted in previous work,
includes unstructured (Banko et al., 2007; Fader
et al., 2011), structured (Raju et al., 2008) and
semi-structured text (Yoshinaga and Torisawa,
2007; Pasupat and Liang, 2014), layout format-
ting tags (Wong et al., 2008), itemized lists or ta-
bles (Cafarella et al., 2008). Another source is
human-compiled resources (Wu and Weld, 2010)
including infoboxes and category labels (Nastase
and Strube, 2008; Hoffart et al., 2013; Wang et
al., 2013; Flati et al., 2014) in Wikipedia, or topics

and relations in Freebase (Weston et al., 2013; Yao
and Van Durme, 2014).

Whether Web search queries are a useful tex-
tual data source for open-domain information ex-
traction has been investigated in several tasks. Ex-
amples are collecting unlabeled sets of similar in-
stances (Jain and Pennacchiotti, 2010), extract-
ing attributes of instances (Alfonseca et al., 2010;
Paşca, 2014), identifying mentions in queries
of instances defined in a manually-created re-
source (Pantel et al., 2012), and extracting the
most salient of the instances mentioned within
Web documents (Gamon et al., 2013).

Other previous work shares the intuition that the
submission of Web search queries is influenced
by, and indicative of, various relations. Relations
are loosely defined, either by approximating them
via distributional similarities (Alfonseca et al.,
2009), or by exploring the acquisition of untyped,
similarity-based relations from query logs (Baeza-
Yates and Tiberi, 2007). In both cases, the com-
puted relations hold among full-length queries.
Untyped relations can also be identified among
query terms for the purpose of query reformula-
tion (Wang and Zhai, 2008). More generally, the
choice of query substitutions may reveal various
relations among full queries or query terms (Jones
et al., 2006), but requires individual queries to be
connected to one another via query sessions or via
search-result click-through data.

6 Conclusion

Anonymized search queries submitted by Web
users represent requests for knowledge. Collec-
tively, they can also be seen as informal, lexi-
calized knowledge assertions. By asking about a
property of some class, fact-seeking queries im-
plicitly assert the relevance of the property for the
class.

Since Web search queries refer to properties
that Web users are collectively interested in, fac-
tual knowledge extracted from queries tends to be
more relevant than facts extracted from arbitrary
documents using previous methods. Current work
explores the extraction of facts from implicit rather
than explicit fact-seeking questions, that is, from
queries that do not start with a question prefix; and
the combination of queries as a source of more ac-
curate facts, and documents as a source of more
numerous facts.
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Abstract

Question Answering over Linked Data
(QALD) aims to evaluate a question an-
swering system over structured data, the
key objective of which is to translate
questions posed using natural language
into structured queries. This technique
can help common users to directly ac-
cess open-structured knowledge on the
Web and, accordingly, has attracted much
attention. To this end, we propose a
novel method using first-order logic. We
formulate the knowledge for resolving
the ambiguities in the main three steps
of QALD (phrase detection, phrase-to-
semantic-item mapping and semantic item
grouping) as first-order logic clauses in a
Markov Logic Network. All clauses can
then produce interacted effects in a unified
framework and can jointly resolve all am-
biguities. Moreover, our method adopts a
pattern-learning strategy for semantic item
grouping. In this way, our method can
cover more text expressions and answer
more questions than previous methods us-
ing manually designed patterns. The ex-
perimental results using open benchmarks
demonstrate the effectiveness of the pro-
posed method.

1 Introduction

With the rapid development of the Web of Data,
many RDF datasets have been published as Linked
Data (Bizer et al., 2009), such as DBpedia (Auer
et al., 2007), Freebase (Bollacker et al., 2008)
and YAGO (Suchanek et al., 2007). The grow-
ing amount of Linked Data contains a wealth of
knowledge, including entities, classes and rela-
tions. Moreover, these linked data usually have

∗Shizhu He and Kang Liu have equal contribution to this
work.

complex structures and are highly heterogeneous.
As a result, there are gaps for users regarding ac-
cess. Although a few experts can write queries us-
ing structured languages (such as SPARQL) based
on their needs, this skill cannot be easily utilized
by common users (Christina and Freitas, 2014).
Thus, providing user-friendly, simple interfaces
to access these linked data becomes increasingly
more urgent.

Because of this, question answering over linked
data (QALD) (Walter et al., 2012) has recently
received much interest, and most studies on this
topic have focused on translating natural lan-
guage questions into structured queries (Freitas
and Curry, 2014; Yahya et al., 2012; Unger et al.,
2012; Shekarpour et al., 2013; Yahya et al., 2013;
Bao et al., 2014; Zou et al., 2014). For example,
with respect to the question

“Which software has been developed by organi-
zations founded in California, USA?”,

the aim is to automatically convert this utterance
into an SPARQL query that contains the follow-
ing subject-property-object (SPO) triple format:
〈?url rdf:type dbo:Software, ?url dbo:developer ?x1,
?x1 rdf:type dbo:Company, ?x1 dbo:foundationPlace
dbr:California〉1.

To fulfill this objective, existing systems (Lopez
et al., 2006; Unger et al., 2012; Yahya et al., 2012;
Zou et al., 2014) usually adopt a pipeline frame-
work that contains four major steps: 1) decompos-
ing the question and detecting phrases, 2) map-
ping the detected phrases into semantic items of
Linked Data, 3) grouping the mapped semantic
items into semantic triples, and 4) generating the
correct SPARQL query.

However, completing these four steps and con-
structing such a structured query is not easy. The
first three steps mentioned above are subject to the

1The prefixes in semantic items indicate the source of
their vocabularies.
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problem of ambiguity, which is the major chal-
lenge in QALD. Using the question mentioned
above as an example, we can choose Califor-
nia or California, USA when detecting phrases,
the phrase California can be mapped to the en-
tity California State or California Film, and the class
Software (mapped from the phrase software) can
be matched with the first argument of the rela-
tion producer or developer (these two relations can
be mapped from the phrase developed). Previ-
ous methods (Lopez et al., 2006; Lehmann et
al., 2012; Freitas and Curry, 2014) have usu-
ally performed disambiguation at each step only,
and the subsequent step was performed based on
the disambiguation results in the previous step(s).
However, we argue that the three steps men-
tioned above have mutual effects. In the previ-
ous example, the phrase founded in (verb) can
be mapped to the entities (Founding of Rome and
Founder (company)), classes (Company and Depart-
ment) or relations (foundedBy and foundationPlace).
If we know that the phrase California can refer
to the entity California State, and which can be the
second argument of the relation foundationPlace,
together with a verb phrase being more likely
to be mapped to Relation, we should map the
phrase founded in to foundationPlace in this ques-
tion. Thus, we aim to determine if joint disam-
biguation is better than individual disambigua-
tion. (Question One)

In addition, previous systems usually employed
manually designed patterns to extract predicate-
argument structures that are used to guide the dis-
ambiguation process in the three steps mentioned
above (Yahya et al., 2012; Unger et al., 2012; Zou
et al., 2014). For example, (Yahya et al., 2012)
used only three dependency patterns to group the
mapped semantic items into semantic triples. Nev-
ertheless, these three manually designed patterns
miss many cases because of the diversity of the
question expressions. We gathered statistics on
144 questions and found that the macro-average
F1 and micro-average F1 of the three patterns2

used in (Yahya et al., 2012) are only 62.8 and
66.2%, respectively. Furthermore, these specially
designed patterns may not be valid with variations
in domains or languages. Therefore, another im-
portant question arises: can we automatically
learn rules or patterns to achieve the same ob-

2They are 1) verbs and their arguments, 2) adjectives and
their arguments and 3) propositionally modified tokens and
objects of prepositions.

jective? (Question Two)
Focusing on the two problems mentioned

above, this paper proposes a novel algorithm based
on a learning framework, Markov Logic Networks
(MLNs) (Richardson and Domingos, 2006), to
learn a joint model for constructing structured
queries from natural language utterances. MLN
is a statistical relational learning framework that
combines first-order logic and Markov networks.
The appealing property of MLN is that it is read-
ily interpretable by humans and that it is a natural
framework for performing joint learning. We for-
mulate the knowledge for resolving the ambigui-
ties in the main three steps of QALD (phrase de-
tection, phrase-to-semantic-item mapping and se-
mantic item grouping) as first-order logic clauses
in an MLN. In the framework of MLN, all clauses
will produce interacted effects that jointly resolve
all problems into a unified process. In this way,
the result in each step can be globally optimized.
Moreover, in contrast to previous methods, we
adopt a learning strategy to automatically learn
the patterns for semantic item grouping. We de-
sign several meta patterns as opposed to the spe-
cific patterns. In addition, these meta patterns are
formulated as the first-order logic formulas in the
MLN. The specific patterns can be generated by
these meta patterns based on the training data. The
model will learn the weights of each clause to de-
termine the most effective patterns for semantic
triple construction. In this way, with little effort,
our approach can cover more semantic expressions
and answer more questions than previous meth-
ods, which depend on manually designed patterns.

We evaluate the proposed method using several
benchmarks (QALD-1, QALD-3, QALD-4). The
experimental results demonstrate the advantage of
the joint disambiguation process mentioned above.
They also prove that our approach, employing
MLN to automatically learn the patterns of seman-
tic triple grouping, is effective. Our system can
answer more questions and obtain better perfor-
mance than the traditional methods based on man-
ually designed heuristic rules.

2 Background

2.1 Linked Data Sources

Linked Data consist of many relational data,
which are usually inter-linked as subject-property-
object (SPO) triple statements (such as using the
owl:sameAs relation). In this paper, we mainly use
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Subject(Arg1) Relation(Property) Object(Arg2) 

ProgrammingLanguage subClassOf Software 

Java_(programming_language) type Software 

Java_(programming_language) developer Oracle_Corporation 

Oracle_Corporation foundationPlace California_(State) 

foundationPlace domain Organisation 

California_(State) label “California” 

California_(1977_film) label “California” 

Oracle_Corporation numEmployees 118119(xsd:integer) 

 

Figure 1: Sample knowledge base facts.

DBpedia3 and some classes from Yago4. These
knowledge bases (KBs) are composed of many on-
tological and instance statements, and all state-
ments are expressed by SPO triple facts. Figure
1 shows some triple fact samples from DBpedia.

Each fact is composed of three semantic items. A
semantic item can be an entity (California (State),
Oracle Corporation, etc.), a class (Software, Organ-
isation, etc.) or a relation (called a property
or predicate in some occasions). Some entities
are literals including strings, numbers and dates
(118119(xsd:integer), etc.). Relations contain stan-
dard Semantic Web relations (subClassOf, type, do-
main and label) and ontological relations (developer,
foundationPlace and numEmployees).

2.2 Task Statement

Given a knowledge base (KB), our objective is to
translate a natural language question qNL into a
formal language query qFL that targets the seman-
tic vocabularies given by the KB, and the query
qFL should capture the user information needs ex-
pressed by qNL.

Following (Yahya et al., 2012), we focus on the
factoid questions, and the answers to such ques-
tions are an entity or a set of entities. We ignore
the questions that need the aggregation5 (max/min,
etc.) and negation operations. That is, we generate
queries that consist of a plentiful number of triple
patterns, which are multiple conjunctions of SPO
search conditions.

3 Framework

Figure 2 shows the entire framework of our system
for translating a question into a formal SPARQL
query. The first three steps address the input ques-
tion through 1) Phrase Detection (detecting pos-
sible phrases), 2) Phrase Mapping (mapping all

3http://dbpedia.org/
4http://www.mpi-inf.mpg.de/yago-naga/yago/
5We can address the count query questions, which will

be explained in Section 3.

phrase candidates to the corresponding seman-
tic items), and 3) Feature Extraction (extracting
the linguistic features and semantic item features
from the question and the Linked Data, respec-
tively). As a result, a space of candidates is con-
structed, including possible phrases, mapped se-
mantic items and the possible argument match re-
lations among them. Next, the fourth step (In-
ference) formulates the joint disambiguation as a
generalized inference task. We employ rich fea-
tures and constraints (including hard and soft con-
straints) to infer a joint decision through an MLN.
Finally, with the inference results, we can con-
struct a semantic item query graph and generate
an executable SPARQL query. In the following
subsection, we demonstrate each step in detail.

1) Phrase detection. In this step, we detect
phrases (sequences of tokens) that probably indi-
cate semantic items in the KB. We do not use a
named entity recognizer (NER) because of its low
coverage. We perform testing on two commonly
used question corpora, QALD-3 and free9176, us-
ing the Stanford NER tool7. The results demon-
strate that only 51.5 and 23.8% of the NEs are
correctly recognized, respectively. To avoid miss-
ing useful phrases, we retain all n-grams as phrase
candidates, and then use some rules to filter them.
The rules include the following: the span length
must be less than 4 (accepting that all contiguous
tokens are capitalizations), the POS tag of the start
token must be jj, nn, rb and vb, all contiguous
capitalization tokens must not be split, etc. For
instance, software, developed by, organizations,
founded in and California are detected in the ex-
ample of the first section.

2) Phrase mapping. After the phrases are de-
tected, each phrase can be mapped to the corre-
sponding semantic item in KB (entity, class and
relation). For example, software is mapped to
dbo:Software, dbo:developer, etc., and California is
mapped to dbr:California, dbr:California (wine), etc.
For different types of semantic items, we use dif-
ferent techniques. For mapping phrases to en-
tities, considering that the entities in DBpedia
and Wikipedia are consistent, we employ anchor,
redirection and disambiguation information from
Wikipedia. For mapping phrases to classes, con-
sidering that classes have lexical variation, espe-
cially synonyms, e.g., dbo:Film can be mapped

6http://www.cis.temple.edu/∼yates/open-sem-
parsing/index.html

7http://nlp.stanford.edu/software/CRF-NER.shtml
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Which software has been developed by

organizations founded in California, USA? software, developed, developed by, organizations,

founded, founded in, California, USA

software

developed by

...

...

...

California
phraseIndex

phrasePosTag

resourceType

priorMatchScore

hasMeanWord

phraseDepTag

hasRelatedness

...

isTypeCompatible

hasPhrase hasResource

hasRelation

Figure 2: Framework of our system.

from film, movie and show, we compute the simi-
larity between the phrase and the class in the KB
with the word2vec tool8. The word2vec tool com-
putes fixed-length vector representations of words
with a recurrent-neural-network based language
model (Mikolov et al., 2010). The similarity scor-
ing methods are introduced in Section 4.2. Then,
the top-N most similar classes for each phrase are
returned. For mapping phrases to relations, we
employ the resources from PATTY (Nakashole et
al., 2012) and ReVerb (Fader et al., 2011). Specif-
ically, we first compute the associations between
the ontological relations in DBpedia and the re-
lation patterns in PATTY and ReVerb through in-
stance alignments as in (Berant et al., 2013). Next,
if a detected phrase is matched to some relation
pattern, the corresponding ontological relations in
DBpedia will be returned as a candidate. This step
only generates candidates for every possible map-
ping, and the decision of the best selection will be
performed in the next step.

3) Feature extraction and joint inference.
There exist ambiguities in phrase detection and in
mapping phrases to semantic items. This step fo-
cuses on addressing these ambiguities and deter-

8https://code.google.com/p/word2vec/

mining the argument match relations among the
mapped semantic items. This is the core compo-
nent of our system, and it performs disambigua-
tion in a unified manner. First, feature extraction
is performed to prepare a rich number of features
from the input question and from the KB. Next,
the disambiguation is performed in a joint fashion
with a Markov Logic Network. Detailed informa-
tion will be presented in Section 4.

4) Semantic item query graph construction.
Based on the inference results, we construct a
query graph. The vertices contain the following:
the detected phrase, the token span indexes of
the phrases, the mapped semantic items and their
types. The edge indicates the argument match re-
lation between two semantic items. For example,
we use 1 2 to indicate that the first argument of
an item matches the second argument of another
item9. The right bottom in Figure 2 shows an ex-
ample of this.

5) Query generation. The SPARQL queries
require the grouped triples of semantic items.
Thus, in this step, we convert a query graph
into multiple joined semantic triples. Three in-
terconnected semantic items, whereby it must

9The other marks will be introduced in Section 4.2.
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be ensured that the middle item is a rela-
tion, are converted into a semantic triple (mul-
tiple joined facts containing variables). For
example, the query graph Vdbo:Book[Class] 1 2←→
dbo:author[Relation] 1 1←→ dbr:Danielle Steel[Entity]W is
converted into 〈?x rdf:type dbo:Book, dbr:Danielle
dbo:author ?x〉, and Vdbo:populationTotal[Relation]
1 2←→ dbo:capital[Relation] 1 1←→ dbr:Australia[Entity]W10 is
converted into 〈?x1 dbo:populationTotal ?answer, ?x1
dbo:capital dbr:Australia〉. If the query graph only
contains one vertex that indicates a class ClassURI,
we generate 〈?x rdf:type ClassURI〉. If the query
graph only contains two connected vertexes, we
append a variable to bind the missing match argu-
ment of the semantic item.

The final SPARQL query is constructed by join-
ing the semantic item triples based on the cor-
responding SPARQL template. We divide the
questions into three types: Yes/No, Normal and
Number. Yes/No questions use the ASK WHERE
template. Normal questions use the SELECT ?url
WHERE template. Number questions first use the
normal question template, and if they cannot ob-
tain a correct answer (a valid numeric value), we
use the SELECT COUNT(?url) WHERE template to
generate a query again. For instance, we construct
the SPARQL query SELECT(?url) WHERE{ ?url
rdf:type dbo:Software. ?url dbo:developer ?x1. ?x1 rdf:type
dbo:Company. ?x1 dbo:foundationPlace dbr:California.}
for this example.

4 Joint Disambiguation with MLN

In this section, we present our method for ques-
tion answering over linked data using a Markov
Logic Network (MLN). In the following subsec-
tions, we first briefly describe the MLN. Then, we
present the predicates and the first-order logic for-
mulas used in the model.

4.1 Markov Logic Networks

Markov logic networks combine Markov networks
with first-order logic in a probabilistic framework
(Richardson and Domingos, 2006). An MLNM
consists of several weighted formulas {(φi, wi)}i,
where φi is a first order formula and wi is the
penalty (the formula’s weight). In contrast to
the first-order logic, whereby a formula repre-
sents a hard constraint, these logic formulas are
relaxed and can be violated with penalties in the

10This corresponds to the question “How many people live
in the capital of Australia?”

MLN. Each formula φi consists of a set of first-
order predicates, logical connectors and variables.
These weighted formulas define a probability dis-
tribution over a possible world. Let y denote a pos-
sible world. Then p(y) is defined as follows:

p(y) =
1
Z
exp

 ∑
(φi,wi)∈M

wi
∑

c∈Cnφi
fφic (y)

 ,

where each c is a binding of the free variables in
φi to constants; fφic is a binary feature function
that returns 1 if the ground formula that we ob-
tain through replacing the free variables in φi with
the constants in c under the given possible world
y is true and is 0 otherwise; and Cnφi is the set of
all possible bindings for the free variables in φi.
Z is a normalized constant. The Markov network
corresponds to this distribution, where nodes rep-
resent ground atoms and factors represent ground
formulas.

4.2 Predicates

In the MLN, we design several predicates to re-
solve the ambiguities in phrase detection, map-
ping phrases to semantic items and semantic item
grouping. Specifically, we design a hidden pred-
icate hasPhrase(i) to indicate that the i-th candi-
date phrase has been chosen. The predicate hasRe-
source(i,j) indicates that the i-th phrase is mapped
to the j-th semantic item. The predicate hasRe-
lation(j,k,rr) indicates that the j-th semantic item
and the k-th semantic item should be grouped to-
gether with the argument-match-type rr. Note that
we define four argument match types between two
semantic items: 1 1, 1 2, 2 1 and 2 2. Here, the
argument match type t s denotes that the t-th argu-
ment of the first semantic item corresponds to the
s-th argument of the second semantic item11. The
detailed illustration is shown in Table 1.

Type Example Question
1 1 dbo:height 1 1 dbr:Michael Jordan How tall is Michael Jor-

dan?
1 2 dbo:River 1 2 dbo:crosses Which river does the

Brooklyn Bridge cross?
2 1 dbo:creator 2 1 dbr:Walt Disney Which television shows

were created by Walt
Disney?

2 2 dbo:birthPlace 2 2 dbo:capital Which actors were born in
the capital of American?

Table 1: Examples of the argument match types.
11The 2-nd argument is corresponding to the object argu-

ment of the relation, and the 1-st argument is corresponding
with the subject argument of the relation and the entity (in-
cluding the class) itself.
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Describing the attributes of phrases and relation between two phrases
phraseIndex(p, i, j) The start and end position of phrase p in question.
phrasePosTag(p, pt) The POS tag of the head word in phrase p.
phraseDepTag(p, q, dt) The dependency path tags between phrase p and q.
phraseDepOne (p, q) If there is only one tag in the dependency path, the predicate is true.
hasMeanWord (p, q) If there is any one meaning word in the dependency path of two phrases, the predicate is true.

Describing the attributes of semantic item and the mappings between phrases and semantic items
resourceType(r, rt) The type of semantic item r. Types of semantic items include Entity, Class and Relation
priorMatchScore(p, r, s) The prior score of phrase p mapping to semantic item r.

Describing the attributes of relation between two semantic items in a knowledge base
hasRelatedness(p, q, s) The semantic coherence of semantic items.
isTypeCompatible(p, q, rr) If the semantic items p are type-compatible with the semantic items q, the predicate is true.
hasQueryResult(s, p, o, rr1, rr2) If the triple pattern consisting of semantic items s, p, o and argument-match-types rr1 and rr2 have query

results, the predicate is true.

Table 2: Descriptions of observed predicates.

Moreover, we define a set of observed predi-
cates to describe the properties of phrases, seman-
tic items, relations between phrases and relations
between semantic items. The observed predicates
and descriptions are shown in Table 2.

Previous methods usually designed some
heuristic patterns to group semantic items, which
usually employed a human-designed syntactic
path between two phrases to determine their re-
lations. In contrast, we collect all the tokens in
the dependency path between two phrases as pos-
sible patterns. The predicates phraseDepTag and
hasMeanWord are designed to indicate the possi-
ble patterns. Note that if these tokens only contain
POS tags dt|in|wdt|to|cc|ex|pos|wp or stop words,
the value of the predicate hasMeanWord is false;
otherwise, it is true. In this way, our system is ex-
pected to cover more question expressions. More-
over, the SPARQL endpoint is used to verify the
type compatibility of two semantic items and if
one triple pattern can obtain query results.

The predicate hasRelatedness needs to compute
the coherence score between two semantic items.
Following (Yahya et al., 2012), we use the Jaccard
coefficient (Jaccard, 1908) based on the inlinks be-
tween two semantic items.

The predicate priorMatchScore assigns a prior
score when mapping a phrase to a semantic item.
We use different methods to compute this score
according to different semantic item types. For
entities, we use a normalized score based on the
frequencies of a phrase referring to an entity.
For classes and relations, we use different meth-
ods. We first define the following three similar-
ity metrics: a) s1: The Levenshtein distance score
(Navarro, 2001) between the labels of the seman-
tic item and the phrase; b) s2: The word embed-
ding (Mikolov et al., 2010) score, which measures
the similarity between two phrases and is the max-
imum cosine value of the words’ word embed-

dings between two phrases; and c) s3: the instance
overlap score, which is computed using the Jac-
card coefficient of the instance overlap. All scores
are normalized to produce a comparable scores
in the interval of (0, 1). The final prior scores
for mapping phrases to classes and relations are
γs1 + (1− γ)s2 and αs1 + βs2 + (1− α− β)s3,
respectively. The parameters are set to empirical
values12.

4.3 Formulas

According to these predicates, we design several
first-order logic formulas for joint disambiguation.
As mentioned in the first section, these formulas
represent the meta patterns. The concrete pat-
terns can be generated through these meta pat-
terns with training data. Specifically, we use two
types of formulas for the joint decisions: Boolean
and Weighted formulas. Boolean formulas are
hard constraints, which must be satisfied by all
of the ground atoms in the final inference results.
Weighted formulas are soft constraints, which can
be violated with some penalties.

4.3.1 Boolean Formulas (Hard Constraints)
Table 3 lists the Boolean formulas used in this
work. The “ ” notation in the formulas indicates
an arbitrary constant. The “|f |” notation expresses
the number of true grounded atoms in the formula
f . These formulas express the following con-
straints:
hf1: If a phrase is chosen, then it must have a
mapped semantic item;
hf2: If a semantic item is chosen, then its mapped
phrase must be chosen;
hf3: A phrase can be mapped to at most one se-
mantic item;
hf4: If the phrase is not chosen, then its mapped

12Set γ to 0.6 for Class and set α and β to 0.3 and 0.3 for
Relation, respectively.
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hf1 hasPhrase(p)⇒ hasResource(p, )

hf2 hasResource(p, )⇒ hasPhrase(p)

hf3 |hasResource(p, )| ≤ 1

hf4 !hasPhrase(p)⇒!hasResource(p, r)

hf5 hasResource( , r)⇒ hasRelation(r, , ) ∨ hasRelation( , r, )

hf6 |hasRelation(r1, r2, )| ≤ 1

hf7 hasRelation(r1, r2, )⇒ hasResource( , r1) ∧ hasResource( , r2)

hf8 phraseIndex(p1, s1, e1) ∧ phraseIndex(p2, s2, e2) ∧ overlap(s1, e1, s2, e2) ∧ hasPhrase(p1)⇒!hasPhrase(p2)

hf9 resourceType(r, “Entity”)⇒!hasRelation(r, , “2 1”) ∧ !hasRelation(r, , “2 2”)

hf10 resourceType(r, “Entity”)⇒!hasRelation( , r, “2 1”) ∧ !hasRelation(r, , “2 2”)

hf11 resourceType(r, “Class”)⇒!hasRelation(r, , “2 1”) ∧ !hasRelation(r, , “2 2”)

hf12 resourceType(r, “Class”)⇒!hasRelation( , r, “2 1”) ∧ !hasRelation(r, , “2 2”)

hf13 !isTypeCompatible(r1, r2, rr)⇒!hasRelation(r1, r2, rr)

Table 3: Descriptions of Boolean formulas.

sf1 priorMatchScore(p, r, s)⇒ hasPhrase(p)

sf2 priorMatchScore(p, r, s)⇒ hasResource(p)

sf3 phrasePosTag(p, pt+) ∧ resourceType(r, rt+)⇒ hasResource(p, r)

sf4 phraseDepTag(p1, p2, dp+) ∧ hasResource(p1, r1) ∧ hasResource(p2, r2)⇒ hasRelation(r1, r2, rr+)

sf5 phraseDepTag(p1, p2, dp+) ∧ hasResource(p1, r1) ∧ hasResource(p2, r2)∧!hasMeanWord(p1, p2) ⇒
hasRelation(r1, r2, rr+)

sf6 phraseDepTag(p1, p2, dp+) ∧ hasResource(p1, r1) ∧ hasResource(p2, r2) ∧ phraseDepOne(p1, p2) ⇒
hasRelation(r1, r2, rr+)

sf7 hasRelatedness(r1, r2, s) ∧ hasResource( , r1) ∧ hasResource( , r2)⇒ hasRelation(r1, r2, )

sf8 hasQueryResult(r1, r2, r3, rr1, rr2)⇒ hasRelation(r1, r2, rr1) ∧ hasRelation(r2, r3, rr2)

Table 4: Descriptions of weighted formulas.

semantic item should not be chosen;
hf5: If a semantic item is chosen, then it should
have at least one argument match relation with
other semantic items;
hf6: Two semantic items have at most one argu-
ment match relation;
hf7: If an argument match relation for two seman-
tic items is chosen, then they must be chosen;
hf8: Each of two chosen phrases must not overlap;
hf9, hf10, hf11, hf12: The semantic item with
type Entity and Class should not have a second ar-
gument that matches with others;
hf13: The chosen argument match relation for two
sematic items must be type compatible.

4.3.2 Weighted Formulas (Soft Constraints)

Table 4 lists the weighted formulas used in this
work. The “+” notation in the formulas indicates
that each constant of the logic variable should be
weighted separately. Those formulas express the
following properties in joint decisions:
sf1, sf2: The larger the score of the phrase map-
ping to a semantic item, the more likely the cor-
responding phrase and semantic item should been
chosen;
sf3: There are some associations between the POS
tags of phase and the types of mapped semantic
items;
sf4, sf5, sf6: There are some associations be-
tween the dependency tags in the dependency pat-
tern path of two phases and the types of argument
match relations of two mapped semantic items;

sh7: The larger the relatedness of two seman-
tic items, the more likely they have an argument
match relation;
sf8: If the triple pattern has query results, these se-
mantic items should have corresponding argument
match relations.

5 Experiments

5.1 Dataset & Evaluation Metrics
We use the following three collections of questions
from the QALD13 task for question answering
over linked data: QALD-1, QALD-3 and QALD-
4. The generated SPARQL queries are evaluated
on Linked Data from DBpedia and YAGO using
a Virtuoso engine14. A typical example question
from the QALD benchmark is “Which books writ-
ten by Kerouac were published by Viking Press?”.
As mentioned in Section 2.2, our system is not de-
signed to answer questions that contain numbers,
date comparisons and aggregation operations such
as group by or order by. Therefore, we remove
these types of questions and retain 110 questions
from the QALD-4 training set for generating the
specific formulas and for training their weights in
MLN. We test our system using 37, 75 and 26
questions from the training set of QALD-115, and
the testing set of QALD-3 and QALD-4 respec-
tively. We use #T, #Q and #A to indicate the total

13www.sc.cit-ec.uni-bielefeld.de/qald/
14https://github.com/openlink/virtuoso-opensource
15We use the training set because we try to make a fair

comparison with (Yahya et al., 2012).
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number of questions in the testing set, the num-
ber of questions we could address and the number
of questions answered correct, respectively. We
select Precision (P = #A

#Q ), Recall (R = #A
#T ),

and F1-score (F1 = 2·P ·R
P+R ) as the evaluation met-

rics. To assess the effectiveness of the disambigua-
tion process in the MLN, we computed the overall
quality measures by precision and recall with the
manually obtained results.

5.2 Experimental Configurations

The Stanford dependency parser (De Marneffe et
al., 2006) is used for extracting features from the
dependency parse trees. We use the toolkit the-
beast16 to learn the weights of the formulas and
to perform the MAP inference. The inference al-
gorithm uses a cutting plane approach. In addi-
tion, for the parameter learning, we set all ini-
tial weights to zero and use an online learning
algorithm with MIRA update rules to update the
weights of the formulas. The number of iterations
for the training and testing are set to 10 and 200,
respectively.

5.3 Results and Discussion

5.3.1 The Effect of Joint Learning
To demonstrate the advantages of our joint learn-
ing, we design a pipeline system for compari-
son, which independently performs phrase detec-
tion, phrase mapping, and semantic item grouping
by removing the unrelated formulas in MLN. For
example, the formulas17 related to the predicates
hasResource and hasRelation are removed when
detecting phrases in questions.

Table 5 shows the results, where Joint de-
notes the proposed method with joint inference
and Pipeline denotes the compared method per-
forming each step independently. We perform a
comparison with the question answering results of
QALD (QA), and comparisons at each of the fol-
lowing steps: PD (phrase detection), PM (phrase
mapping) and MG (mapped semantic items group-
ing). From the results, we observe that our method
answers over half of the questions. Moreover, our
joint model based on MLN can obtain better per-
formance in question answering compared to the
pipeline system. We also observe that Joint ex-
hibits better performance than Pipeline in most
steps, except for MG in QALD-3. We believe this

16http://code.google.com/p/thebeast
17including entire formulas, excluding hf8 and sf1

is because the three tasks (phrase detection, phrase
mapping, and semantic item grouping) are con-
nected with each other. Each step can provide use-
ful information for the other two tasks. Therefore,
performing joint inference can effectively improve
the performance. Finally, we observe that the for-
mer task usually produces better results than the
subsequent tasks (phrase detection exhibits a bet-
ter performance than phrase mapping, and phrase
mapping exhibits a better performance than se-
mantic item grouping). The main reason is that
the latter subtask is more complex than the former
task. The decisions of the latter subtask strongly
rely on the former results even though they have
interacted effects.

5.3.2 The Effect of Pattern Learning
Table 6 shows a comparison of our system with
DEANNA (Yahya et al., 2012), which is based
on a joint disambiguation model but which em-
ploys hand-written patterns in its system. Because
DEANNA only reports its results of the QALD-1
dataset, we do not show the results for QALD-3
and QALD-4 for equity. From the results, we can
see that our system solved more questions and ex-
hibited a better performance than did DEANNA.
One of the greatest strengths of our system is that
the learning system can address more questions
than hand-written pattern rules.

System #T #Q #A P R F1
DEANNA (Yahya et al., 2012) 50 27 13 0.48 0.26 0.33
Ours 50 37 20 0.54 0.4 0.46

Table 6: Comparisons with DEANNA using the
QALD-1 test questions.

Compared to the ILP (Integer Linear Program-
ming) used in (Yahya et al., 2012) for joint disam-
biguation, we argue that there are two major dif-
ferences to our method. 1) Our method is a data-
driven approach that can learn effective patterns
or rules for the task. Therefore, it exhibits more
robustness and adaptability for various KBs. 2)
We design several meta rules in MLN as opposed
to specific ones. The specific rules can be gen-
erated by these meta rules based on the training
data. By contrast, the traditional approach using
ILP needs to set specific rules in advance, which
requires more intensive labor than our approach.

To further illustrate the effectiveness of our
pattern-learning strategy, we show the weights of
the learned patterns corresponding to formula sf3
in the MLN, as shown in Table 7. From the table,
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Benchmark PD PM MG QA
P R F1 P R F1 P R F1 #T #Q #A P R F1

QALD-1(Joint) 0.93 0.981 0.955 0.895 0.944 0.919 0.703 0.813 0.754 50 37 20 0.54 0.4 0.46
QALD-1(Pipeine) 0.921 0.972 0.946 0.868 0.917 0.892 0.585 0.859 0.696 50 34 17 0.5 0.34 0.41
QALD-3(Joint) 0.941 0.941 0.941 0.878 0.918 0.898 0.636 0.798 0.708 99 75 45 0.6 0.46 0.52
QALD-3(Pipeline) 0.912 0.912 0.912 0.829 0.867 0.848 0.677 0.789 0.729 99 75 42 0.56 0.42 0.48
QALD-4(Joint) 0.947 0.978 0.963 0.937 0.967 0.952 0.776 0.865 0.817 50 26 15 0.58 0.3 0.4
QALD-4(Pipeline) 0.937 0.967 0.952 0.905 0.935 0.920 0.683 0.827 0.748 50 24 13 0.54 0.26 0.35

Table 5: The performance of joint learning on three benchmark datasets.

we can see that nn18 is more likely mapped to En-
tity19 than to Class and Relation, and vb is most
likely mapped to Relation. This proves that our
model can learn effective and reasonable patterns
for QALD.

POS tag of Phrase type of mapped Item Weight
nn Entity 2.11
nn Class 0.243
nn Relation 0.335
vb Relation 0.517
wp Class 0.143
wr Class 0.025

Table 7: Sample weights of formulas, correspond-
ing with formula sf3.

5.3.3 Comparison to the state of the art
To illustrate the effectiveness of the proposed
method, we perform comparisons to the state-of-
the-art methods. Table 8 shows the results using
QALD-3 and QALD-4. These systems are the
participants in the QALD evaluation campaigns.
From the results, we can see that our system out-
performs most systems at a competitive perfor-
mance. They further prove the effectiveness of the
proposed method.

Test set System #T #Q #A P R F1

QALD-3

CASIA (He et al.,
2013)

99 52 29 0.56 0.3 0.38

Scalewelis (Joris
and Ferré, 2013)

99 70 32 0.46 0.32 0.38

RTV (Cristina et
al., 2013)

99 55 30 0.55 0.3 0.39

Intui2 (Corina,
2013)

99 99 28 0.28 28 0.28

SWIP (Pradel et al.,
2013)

99 21 15 0.71 0.15 0.25

Ours 99 75 45 0.6 0.46 0.52

QALD-420

gAnswer 50 25 16 0.64 0.32 0.43
Intui3 50 33 10 0.30 0.2 0.24
ISOFT 50 50 10 0.2 0.2 0.2
RO FII 50 50 6 0.12 0.12 0.12
Ours 50 26 15 0.58 0.3 0.4

Table 8: Comparisons with state-of-the-art sys-
tems using the QALD benchmark.

18The POS tag of the head word in the phrase
19The type of semantic item
20Because the QALD-4 conference does not start un-

til after submission, we have no citation for the state-of-

5.3.4 The Effect of Different Formulas
To determine which formulas are more useful for
QALD, we evaluate the performance of the pro-
posed method with different predicate sets. We
subtract one weighted formula from the original
sets at a time, except retaining the first two for-
mulas sf1 and sf2 for basic inference. Because of
space limitations, only the results using QALD-3
testing set are shown in Table 9.

From the results, we can observe that remov-
ing some formulas can boost the performance on
some single tasks, but employing all formulas can
produce the best performance. This illustrates that
solely resolving the steps in QALD (phrase detec-
tion, phrase mapping, semantic items grouping)
can obtain local results, and that making joint in-
ference is necessary and useful.

6 Related Work

Our proposed method is related to two lines of
work: Question Answering over Knowledge bases
and Markov Logic Networks.

Question answering over knowledge bases
has attracted a substantial amount of interest over
a long period of time. The initial attempts in-
cluded BaseBall (Green Jr et al., 1961) and Lu-
nar (Woods, 1977). However, these systems were
mostly limited to closed domains due to a lack of
knowledge resources. With the rapid development
of structured data, such as DBpedia, Freebase and
Yago, the need for providing user-friendly inter-
face to these data has become increasingly urgent.
Keyword (Elbassuoni and Blanco, 2011) and se-
mantic (Pound et al., 2010) searches are limited
to their ability to specify the relations among the
different keywords.

The open topic progress has also been pushed
by the QALD evaluation campaigns (Walter et al.,
2012). Lopez et al. (2011) gave a comprehensive
survey in this research area. The authors devel-
oped the PowerAqua system (Lopez et al., 2006) to

the-art systems in QALD-4. The results can be found at
http://greententacle.techfak.uni-bielefeld.de/ cunger/qald.
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Formulas PD PM MG Avg
P R F1 P R F1 P R F1 P R F1

All Formulas 0.941 0.941 0.941 0.878 0.918 0.898 0.636 0.798 0.708 0.839 0.901 0.869
-sf3 0.931 0.927 0.929 0.877 0.913 0.895 0.637 0.816 0.715 0.834 0.897 0.864
-sf4 0.926 0.917 0.922 0.852 0.883 0.867 0.63 0.763 0.69 0.824 0.87 0.846
-sf5 0.931 0.927 0.929 0.873 0.908 0.89 0.633 0.816 0.713 0.831 0.895 0.862
-sf6 0.922 0.922 0.922 0.844 0.883 0.863 0.702 0.746 0.723 0.842 0.868 0.855
-sf7 0.931 0.917 0.924 0.881 0.908 0.894 0.621 0.763 0.685 0.833 0.88 0.856
-sf8 0.927 0.927 0.927 0.868 0.908 0.888 0.639 0.807 0.713 0.83 0.893 0.861

Table 9: Performance comparisons of different weighted formulas evaluated using the QALD-3 question
set.

answer questions on large, heterogeneous datasets.
For questions containing quantifiers, comparatives
or superlatives, Unger et al. (2012) translated
NL to FL using several SPARQL templates and
using a set of heuristic rules mapping phrases
to semantic items. The system most similar to
ours is DEANNA (Yahya et al., 2012). However,
DEANNA extracts predicate-argument structures
from the questions using three hand-written pat-
terns. Our system jointly learns these mappings
and extractions completely from scratch.

Recently, the Semantic Parsing (SP) community
targeted this problem from limited domains (Tang
and Mooney, 2001; Liang et al., 2013) to open do-
mains (Cai and Yates, 2013; Berant et al., 2013).
The methods in semantic parsing answer questions
by first converting natural language utterances into
meaningful representations (e.g., the lambda cal-
culus) and subsequently executing the formal log-
ical forms over KBs. Compared to deriving the
complete logical representation, our method aims
to parse a question into a limited logic form with
the semantic item query, which we believe is more
appropriate for answering factoid questions.

Markov Logic Networks have been widely
used in NLP tasks. Huang (2012) applied MLN
to compress sentences by formulating the task as a
word/phrase deletion problem. Fahrni and Strube
(2012) jointly disambiguated and clustered con-
cepts using MLN. MLN has also been used in
coreference resolution (Song et al., 2012). For
the task of identifying subjective text segments
and of extracting their corresponding explanations
from product reviews, Zhang et al. (2013) mod-
eled these segments with MLN. To discover log-
ical knowledge for deep question answering, Liu
(2012) used MLN to resolve the inconsistencies
of multiple knowledge bases.

Meza-Ruiz and Riedel (2009) employed MLN
for Semantic Role Labeling (SRL). They jointly
performed the following tasks for a sentence:

predicate identification, frame disambiguation, ar-
gument identification and argument classification.
The semantic analysis of SRL solely rested on
the lexical level, but our analysis focuses on the
knowledge-base level and aims to obtain an exe-
cutable query and to support natural language in-
ference.

7 Conclusions and Future Work

For the task of QALD, we present a joint learn-
ing framework for phrase detection, phrase map-
ping and semantic item grouping. The novelty of
our method lies in the fact that we perform joint
inference and pattern learning for all subtasks in
QALD using first-order logic. Our experimental
results demonstrate the effectiveness of the pro-
posed method.

In the future, we plan to address the follow-
ing limitations that still exist in the current sys-
tem: a) numerous hand-labeled data are required
for training the MLN, and we could use a la-
tent form of semantic item query graphs (Liang et
al., 2013); b) more robust solutions can be devel-
oped to find the implicit relations in questions; c)
our system can be scaled up to large-scale open-
domain knowledge bases (Fader et al., 2013; Yao
and Van Durme, 2014); and d) the learning system
has the advantage of being easily adapted to new
settings, and we plan to extend it to other domains
and languages (Liang and Potts, 2014).
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2013. Swip at qald-3: results, criticisms and les-
son learned (working notes). In Work. Multilingual
Question Answering over Linked Data (QALD-3).

Matthew Richardson and Pedro Domingos. 2006.
Markov logic networks. Machine learning, 62(1-
2):107–136.

Saeedeh Shekarpour, Axel-Cyrille Ngonga Ngomo,
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Abstract

Much recent work focuses on formal in-
terpretation of natural question utterances,
with the goal of executing the resulting
structured queries on knowledge graphs
(KGs) such as Freebase. Here we address
two limitations of this approach when ap-
plied to open-domain, entity-oriented Web
queries. First, Web queries are rarely well-
formed questions. They are “telegraphic”,
with missing verbs, prepositions, clauses,
case and phrase clues. Second, the KG is
always incomplete, unable to directly an-
swer many queries. We propose a novel
technique to segment a telegraphic query
and assign a coarse-grained purpose to
each segment: a base entity e1, a rela-
tion type r, a target entity type t2, and
contextual words s. The query seeks en-
tity e2 ∈ t2 where r(e1, e2) holds, fur-
ther evidenced by schema-agnostic words
s. Query segmentation is integrated with
the KG and an unstructured corpus where
mentions of entities have been linked to
the KG. We do not trust the best or any
specific query segmentation. Instead, evi-
dence in favor of candidate e2s are aggre-
gated across several segmentations. Ex-
tensive experiments on the ClueWeb cor-
pus and parts of Freebase as our KG, us-
ing over a thousand telegraphic queries
adapted from TREC, INEX, and Web-
Questions, show the efficacy of our ap-
proach. For one benchmark, MAP im-
proves from 0.2–0.29 (competitive base-
lines) to 0.42 (our system). NDCG@10
improves from 0.29–0.36 to 0.54.

∗Work done as Masters student at IIT Bombay

1 Introduction

A majority of Web queries mention an entity or
type (Lin et al., 2012), as users increasingly ex-
plore the Web of objects using Web search. To
better support entity-oriented queries, commercial
Web search engines are rapidly building up large
catalogs of types, entities and relations, popu-
larly called a “knowledge graph” (KG) (Gallagher,
2012). Despite these advances, robust, Web-scale,
open-domain, entity-oriented search faces many
challenges. Here, we focus on two.

1.1 “Telegraphic” queries
First, the surface utterances of entity-oriented Web
queries are dramatically different from TREC-
or Watson-style factoid question answering (QA),
where questions are grammatically well-formed.
Web queries are usually “telegraphic”: they are
short, rarely use function words, punctuations
or clausal structure, and use relatively flexible
word orders. E.g., the natural utterance “on the
bank of which river is the Hermitage Museum lo-
cated” may be translated to the telegraphic Web
query hermitage museum river bank. Even
on well-formed question utterances, 50% of in-
terpretation failures are contributed by parsing or
structural matching failures (Kwiatkowski et al.,
2013). Telegraphic utterances will generally be
even more challenging.

Consequently, whereas TREC-QA/NLP-style
research has focused on parsing and precise in-
terpretation of a well-formed query sentence to
a strongly structured (typically graph-oriented)
query language (Kasneci et al., 2008; Pound et
al., 2012; Yahya et al., 2012; Berant et al., 2013;
Kwiatkowski et al., 2013), the Web search and in-
formation retrieval (IR) community has focused
on telegraphic queries (Guo et al., 2009; Sarkas
et al., 2010; Li et al., 2011; Pantel et al., 2012; Lin
et al., 2012; Sawant and Chakrabarti, 2013). In
terms of target schema richness, these efforts may
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appear more modest. The act of query ‘interpre-
tation’ is mainly a segmentation of query tokens
by purpose. In the example above, one may re-
port segments “Hermitage Museum” (a located ar-
tifact or named entity), and “river bank” (the target
type). This is reminiscent of record segmentation
in information extraction (IE). Over well-formed
utterances, IE baselines are quite competitive (Yao
and Van Durme, 2014). But here, we are interested
exclusively in telegraphic queries.

1.2 Incomplete knowledge graph

The second problem is that the KG is always
work in progress (Pereira, 2013), and connec-
tions found within nodes of the KG, between the
KG and the query, or the KG and unstructured
text, are often incomplete or erroneous. E.g.,
Wikipedia is considered tiny, and Freebase rather
small, compared to what is needed to answer all
but the “head” queries. Google’s Freebase an-
notations (Gabrilovich et al., 2013) on ClueWeb
(ClueWeb09, 2009) number fewer than 15 per
page to ensure precision. Fewer than 2% are to
entities in Freebase but not in Wikipedia.

It may also be difficult to harness the KG for
answering certain queries. E.g., answering the
query fastest odi century batsman, the intent of
which is to find the batsman holding the record for
the fastest century in One Day International (ODI)
cricket, may be too difficult for most KG-only sys-
tems, but may be answered quite effectively by a
system that also utilizes evidence from unstruc-
tured text.

There is a clear need for a “pay-as-you-go” ar-
chitecture that involves both the corpus and KG. A
query easily served by a curated KG should give
accurate results, but it is desirable to have a grace-
ful interpolation supported by the corpus: e.g., if
the relation r(e1, e2) is not directly evidenced in
the KG, but strongly hinted in the corpus, we still
want to use this for ranking.

1.3 Our contributions

Here, we make progress beyond the above frontier
of prior work in the following significant ways.
We present a new architecture for structural in-
terpretation of a telegraphic query into these seg-
ments (some may be empty):

• Mention/s ê1 of an entity e1,
• Mention r̂ of a relation type r,
• Mention t̂2 of a target type t2, and

• Other contextual matching words s (some-
times called selectors),

with the simultaneous intent of finding and rank-
ing entities e2 ∈ t2, such that r(e1, e2) is likely
to hold, evidenced near the matching words in un-
structured text.

Given the short, telegraphic query utterances,
we limit our scope to at most one relation mention,
unlike the complex mapping of clauses in well-
formed questions to twig and join style queries
(e.g., “find an actor whose spouse was an Italian
bookwriter”). On the other hand, we need to deal
with the unhelpful input, as well as consolidate
the KG with the corpus for ranking candidate e2s.
Despite the modest specification, our query tem-
plate is quite expressive, covering a wide range of
entity-oriented queries (Yih et al., 2014).

We present a novel discriminative graphical
model to capture the entity ranking inference task,
with query segmentation as a by-product. Ex-
tensive experiments with over a thousand entity-
seeking telegraphic queries using the ClueWeb09
corpus and a subset of Freebase show that we can
accurately predict the segmentation and intent of
telegraphic relational queries, and simultaneously
rank candidate responses with high accuracy. We
also present evidence that the KG and corpus have
synergistic salutary effects on accuracy.
§2 explores related work in more detail. §3

gives some examples fitting our query template,
explains why interpreting some of them is nontriv-
ial, and sets up notation. §4 presents our core tech-
nical contributions. §5 presents experiments. Data
can be accessed at http://bit.ly/Spva49
and http://bit.ly/WSpxvr.

2 Related work

The NLP/QA community has traditionally as-
sumed that question utterances are grammatically
well-formed, from which precise clause structure,
ground constants, variables, and connective rela-
tions can be inferred via semantic parsing (Kas-
neci et al., 2008; Pound et al., 2012; Yahya et
al., 2012; Berant et al., 2013; Kwiatkowski et
al., 2013) and translated to lambda expressions
(Liang, 2013) or SPARQL style queries (Kasneci
et al., 2008), with elaborate schema knowledge.
Such approaches are often correlated with the as-
sumption that all usable knowledge has been cu-
rated into a KG. The query is first translated to a
structured form and then “executed” on the KG. A
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Telegraphic query ê1 r̂ t̂2 s

first african american nobel prize winner
nobel prize winner african american first
nobel prize - winner first african american

- - winner first african american nobel prize

dave navarro first band
dave navarro band - first
dave navarro band band first

merril lynch headquarters
merril lynch headquarters - -
merril lynch - headquarters -

spanish poet died in civil war
spanish died in poet civil war
civil war died - spanish poet
spanish in poet died civil war

first american in space - - - first american in space
- - american first, in space

Figure 1: Example queries and some potential segmentations.

large corpus may be used to build relation expres-
sion models (Yao and Van Durme, 2014), but not
as supporting evidence for target entities.

In contrast, the Web and IR community gener-
ally assumes a free-form query that is often tele-
graphic (Guo et al., 2009; Sarkas et al., 2010; Li
et al., 2011). Queries being far more noisy, the
goal of structure discovery is more modest, and of-
ten takes the form of a segmentation of the query
regarded as a token sequence, assigning a broad
purpose (Pantel et al., 2012; Lin et al., 2012) to
each segment, mapping them probabilistically to
a relatively loose schema, and ranking responses
in conjunction with segmentations (Sawant and
Chakrabarti, 2013). To maintain quality in the face
of noisy input, these approaches often additionally
exploit clicks (Li et al., 2011) or a corpus that has
been annotated with entity mentions (Cheng and
Chang, 2010; Li et al., 2010). The corpus provides
contextual snippets for queries where the KG fails,
preventing the systems from falling off the “struc-
ture cliff” (Pereira, 2013).

Our work advances the capabilities of the lat-
ter class of approaches, bringing them closer to
the depth of the former, while handling telegraphic
queries and retaining the advantage of corpus evi-
dence over and above the KG. Very recently, (Yao
et al., 2014) have concluded that for current bench-
marks, deep parsing and shallow information ex-
traction give comparable interpretation accuracy.
The very recent work of (Yih et al., 2014) is simi-
lar in spirit to ours, but they do not unify segmen-
tation and answer inference, along with corpus ev-
idence, like we do.

3 Notation and examples

We use e1, r, t2, e2 to represent abstract nodes and
edges (MIDs in case of Freebase) from the KG,

and ê1, r̂, t̂2 to represent their textual mentions or
hints, if any, in the query. s is a set of uninterpreted
textual tokens in the query that are used to match
and collect corpus contexts that lend evidence to
candidate entities.

Figure 1 shows some telegraphic queries
with possible segmentation into the above
parts. Consider another example: dave
navarro first band. ‘Band’ is a hint for
type /music/musical group, so it com-
prises t̂2. Dave Navarro is an entity, with men-
tion words ‘dave navarro’ comprising ê1. r̂ is
made up of ‘band’, and represents the relation
/music/group member/membership. Fi-
nally, the word first cannot be mapped to any sim-
ple KG artifact, so are relegated to s (which makes
the corpus a critical part of answer inference). We
use s and ŝ interchangeably.

Generally, there will be enough noise and uncer-
tainty that the search system should try out several
of the most promising segmentations as shown in
Figure 1. The accuracy of any specific segmenta-
tion is expected to be low in such adversarial set-
tings. Therefore, support for an answer entity is
aggregated over several segmentations. The ex-
pectation is that by considering multiple interpre-
tations, the system will choose the entity with best
supporting evidence from corpus and knowledge
base.

4 Our Approach

Telegraphic queries are usually short, so we enu-
merate query token spans (with some restrictions,
similar to beam search) to propose segmentations
(§4.1). Candidate response entities are lined up
for each interpretation, and then scored in a global
model along with query segmentations (§4.2).
§4.3 describes how model parameters are trained.
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1: input: query token sequence q
2: initialize segmentations I = ∅
3: E1 = (entity, mention) pairs from linker
4: for all (e1, ê1) ∈ E1 do
5: assign label E1 to mention tokens ê1
6: for all contiguous span v ⊂ q \ ê1 do
7: label each word w ∈ v as T2R
8: label other words w ∈ q \ ê1 \ v as S
9: add segments (E1, T2R,S) to I

10: end for
11: end for
12: return candidate segmentations I

Figure 2: Generating candidate query segmenta-
tions.

4.1 Generating candidate query
segmentations

Each query token can have four labels,
E1, T2, R, S, corresponding to the mentions
of the base entity, target type, connecting relation,
and context words. We found that segments
hinting at T2 and R frequently overlapped
(e.g., ‘author’ in the query zhivago author).
In our implementation, we simplified to three
labels, E1, T2R,S, where tokens labeled T2R
are involved with both t2 and r, the proposed
structured target type and connecting relation.
Another reasonable assumption was that the base
entity mention and type/relation mentions are
contiguous token spans, whereas context words
can be scattered in multiple segments.

Figure 2 shows how candidate segmentations
are generated. For step 3, we use TagMe (Ferrag-
ina and Scaiella, 2010), an entity linker backed by
an entity gazette derived from our KG.

4.2 Graphical model

Based on the previous discussion, we assume that
an entity-seeking query q is a sequence of tokens
q1, q2, . . ., and this can be partitioned into different
kinds of subsequences, corresponding to e1, r, t2
and s, and denoted by a structured (vector) label-
ing z = z1, z2, . . .. Given sequences q and z, we
can separate out (possibly empty) token segments
ê1(q, z), t̂2(q, z), r̂(q, z), and ŝ(q, z).

A query segmentation z becomes plausible in
conjunction with proposals for e1, r, t2 and e2
from the KG. The probability Pr(z, e1, r, t2, e2|q)
is modeled as proportional to the product of sev-
eral potentials (Koller and Friedman, 2009) in a

graphical model. In subsequent subsections, we
will present the design of specific potentials.

• ΨR(q, z, r) denotes the compatibility be-
tween the relation hint segment r̂(q, z) and
a proposed relation type r in the KG (§4.2.1).
• ΨT2(q, z, t2) denotes the compatibility be-

tween the type hint segment t̂2(q, z) and a
proposed target entity type t2 in the KG
(§4.2.2).
• ΨE1,R,E2,S(q, z, e1, r, e2) is a novel corpus-

based evidence potential that measures how
strongly e1 and e2 appear in corpus snippets
in the proximity of words in ŝ(q, z), and ap-
parently related by relation type r (§4.2.3).
• ΨE1(q, z, e1) denotes the compatibility be-

tween the query segment ê1(q, z) and entity
e1 that it purportedly mentions (§4.2.4).
• ΨS(q, z) denotes selector compatibility. Se-

lectors are a fallback label, so this is pinned
arbitrarily to 1; other potentials are balanced
against this base value.
• ΨE1,R,E2(e1, r, e2) is A if the relation
r(e1, e2) exists in the KG, and is B > 0 oth-
erwise, for tuned/learnt constants A > B >
0. Note that this is a soft constraint (B > 0);
if the KG is incomplete, the corpus may be
able to supplement the required information.
• ΨE2,T2(e2, t2) is 1 if e2 belongs to t2 and

zero otherwise. In other words, candidate e2s
must be proposed to be instances of the pro-
posed t2 — this is a hard constraint, but can
be softened if desired, like ΨE1,R,E2 .

Figure 3 shows the relevant variable states as
circled nodes, and the potentials as square factor
nodes. To rank candidate entities e2, we pin the
node E2 to each entity in turn. With E2 pinned,
we perform a MAP inference over all other hidden
variables and note the score of e2 as the product of
the above potentials maximized over choices of all
other variables: score(e2) =

maxz,t2,r,e1ΨT2(q, z, t2)ΨR(q, z, r)
ΨE1(q, z, e1)ΨS(q, z)
ΨE2,T2(e2, t2)ΨE1,R,E2(e1, r, e2)
ΨE1,R,E2,S(q, z, e1, r, e2). (1)

We rank candidate e2s by decreasing score, which
is estimated by max-product message-passing
(Koller and Friedman, 2009).

As noted earlier, any of the relation/type, or
query entity partitions may be empty. To handle
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Figure 3: Graphical model for query segmentation and entity scoring. Factors/potentials are shown as
squares. A candidate e2 is observed and scored using equation (1). Query q is also observed but not
shown to reduce clutter; most potentials depend on it.

this case, we allow each of the entity, relation or
target type nodes in the graphical to take the value
⊥ or ‘null’. To support this, the value of the fac-
tor between the query segmentation node Z and
ΨE1(q, z, e1), ΨT2(q, z, t2), and ΨR(q, z, r)) are
set to suitable low values.

Next, we will describe the detailed design of
some of the key potentials introduced above.

4.2.1 Relation language model for ΨR

Potential ΨR(q, z, r) captures the compatibility
between r̂(q, z) and the proposed relation r.
E.g., if the query is steve jobs death rea-
son, and r̂ is (correctly chosen as) death rea-
son, then the correct candidate r is /people/
deceased_person/cause_of_death. An
incorrect r is /people/deceased_person/
place_of_death. An incorrect z may lead to
r̂(q, z) being jobs death.

Using corpus: Considerable variation may exist
in how r is represented textually in a query. The
relation language model needs to build a bridge
between the formal r and the textual r̂, so that
(un)likely r’s have (small) large potential. Many
approaches (Berant et al., 2013; Berant and Liang,
2014; Kwiatkowski et al., 2013; Yih et al., 2014)
to this problem have been intensely studied re-
cently. Given our need to process billions of Web
pages efficiently, we chose a pattern-based ap-
proach (Nakashole et al., 2012): with each r, dis-
cover the most strongly associated phrase patterns

from a reference corpus, then mark these patterns
into much larger payload corpus.

We started with the 2000 (out of approximately
14000) most frequent relation types in Freebase,
and the ClueWeb09 corpus annotated with Free-
base entities (Gabrilovich et al., 2013). For each
triple instance of each relation type, we located all
corpus sentences that mentioned both participat-
ing entities. We made the crude assumption that
if r(e1, e2) holds and e1, e2 co-occur in a sen-
tence then this sentence is evidence of the rela-
tionship. Each such sentence is parsed to obtain
a dependency graph using the Malt Parser (Hall
et al., 2014). Words in the path connecting the
entities are joined together and added to a candi-
date phrase dictionary, provided the path is at most
three hops. (Inspection suggested that longer de-
pendency paths mostly arise out of noisy sentences
or botched parses.) 30% of the sentences were
thus retained. Finally, we defined

ΨR(q, z, r) =
n(r, r̂(q, z))∑

p′ n(r, p′)
, (2)

where p′ ranges over all phrases that are known to
hint at r, and n(r, p) denotes the number of sen-
tences where the phrase p occurred in the depen-
dency path between the entities participating in re-
lation r.

Assuming entity co-occurrence implies evi-
dence is admittedly simplistic. However, the pri-
mary function of the relation model is to retrieve
top-k relations that are compatible with the type/s
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of e1 and the given relation hint. Moreover, the
remaining noise is further mitigated by the collec-
tive scoring in the graphical model. While we may
miss relations if they are expressed in the query
through obscure hints, allowing the relation to be
⊥ acts as a safety net.

Using Freebase relation names: As mentioned
earlier, queries may express relations differently as
compared to the corpus. A relation model based
solely on corpus annotations may not be able to
bridge that gap effectively, particularly so, because
of sparsity of corpus annotations or the rarity of
Freebase triples in ClueWeb. E.g., for the Freebase
relation /people/person/profession, we
found very few annotated sentences. One way
to address this problem is to utilize relation type
names in Freebase to map hints to relation types.
Thus, in addition to the corpus-derived relation
model, we also built a language model that used
Freebase relation type names as lemmas. E.g., the
word ‘profession’ would contribute to the relation
type /people/person/profession.

Our relation models are admittedly simple. This
is mainly because telegraphic queries may ex-
press relations very differently from natural lan-
guage text. As it is difficult to ensure precision of
query interpretation stage, our models are geared
towards recall. The system generates a large num-
ber of interpretations and relies on signals from
the corpus and KG to bring forth correct interpre-
tations.

4.2.2 Type language model for ΨT2

Similar to the relation language model, we need
a type language model to measure compatibil-
ity between t2 and t̂2(q, z). Estimating the tar-
get entity type, without over-generalizing or over-
specifying it, has always been important for QA.
E.g., when t̂2 is ‘city’, a good type language model
should prefer t2 as /location/citytown
over /location/location while avoiding
/location/es_autonomous_city.

A catalog like Freebase suggests a straight-
forward method to collect a type language model.
Each type is described by one or more phrases
through the link /common/topic/alias. We
can collect these into a micro-‘document’ and
use a standard Dirichlet-smoothed language model
from IR (Zhai, 2008). In Freebase, an entity
node (e.g., Einstein, /m/0jcx) may be linked
to a type node (e.g. /base/scientist/

physicist) using an edge with label /type/
object/type.

But relation types provide additional clues to
types of the endpoint entities. Freebase relation
types have the form /x/y/z, where x is the
domain of the relation, and y and z are string
representations of the type of the entities partic-
ipating in the relation. E.g., the (directed) re-
lation type /location/country/capital
connects from from /location/country to
/location/citytown. Therefore, “capital”
can be added to the set of descriptive phrases of
entity type /location/citytown.

It is important to note that while we use Free-
base link nomenclature for relation and type lan-
guage models, our models are not incompati-
ble with other catalogs. Indeed, most catalogs
have established ways of deriving language mod-
els that describe their various structures. For ex-
ample, most YAGO types are derived from Word-
Net synsets with associated phrasal descriptions
(lemmas). YAGO relations also have readable
names such as actedIn, isMarriedTo, etc. which
can be used to estimate language models. DB-
Pedia relations are mostly derived from (mean-
ingfully) named attributes taken from infoboxes,
hence they can be used directly. Furthermore, oth-
ers (Wu and Weld, 2007) have shown how to asso-
ciate language models with such relations.

4.2.3 Snippet scoring

The factor ΨE1,R,E2,S(q, z, e1, r, e2) should be
large if many snippets contain a mention of e1 and
e2, relation r, and many high-signal words from s.
Recall that we begin with a corpus annotated with
entity mentions. Our corpus is not directly anno-
tated with relation mentions. Therefore, we get
from relations to documents via high-confidence
phrases. Snippets are retrieved using a combined
entity + word index, and scored for a given e1, r,
e2, and selectors ŝ(q, z).

Given that relation phrases may be noisy and
that their occurrence in the snippet may not nec-
essarily mean that the given relation is being ex-
pressed, we need a scoring function that is cog-
nizant of the roles of relation phrases and enti-
ties occurring in the snippets. In a basic ver-
sion, e1, p, e2, ŝ are used to probe a combined en-
tity+word index to collect high scoring snippets,
with the score being adapted from BM25. The sec-
ond, refined scoring function used a RankSVM-
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style (Joachims, 2002) optimization.

min
λ,ξ
‖λ‖2 + C

∑
e+,e− ξe+,e− s.t.

∀e+, e− : λ · f(q,De+ , e
+) + ξe+,e− (3)

≥ λ · f(q,De− , e
−) + 1.

where e+ and e− are positive and negative enti-
ties for the query q and f(q,De, e) represents the
feature map for the set of snippets De belonging
to entity e. The assumption here is that all snip-
pets containing e+ are “positive” snippets for the
query. f consolidates various signals like the num-
ber of snippets where e occurs near query entity
e1 and a relation phrase, or the number of snippets
with high proportion of query IDF, hinting that e
is a positive entity for the given query. A partial
list of features used for snippet scoring is given in
Figure 4.

Number of snippets with distance(e2, ê1) < k1 (k1 = 5, 10)
Number of snippets with distance(e2, relation phrase) < k2

(k2 = 3, 6)
Number of snippets with relation r = ⊥
Number of snippets with relation phrases as prepositions
Number of snippets covering fraction of query IDF > k3

(k3 = 0.2, 0.4, 0.6, 0.8)

Figure 4: Sample features used for learning
weights λ to score snippets.

4.2.4 Query entity model
Potential ΨE1(q, z, e1) captures the compatibil-
ity between ê1(q, z) (i.e., the words that mention
e1) and the claimed entity e1 mentioned in the
query. We used the TagMe entity linker (Fer-
ragina and Scaiella, 2010) for annotating enti-
ties in queries. TagMe annotates the query with
Wikipedia entities, which we map to Freebase, and
use the annotation confidence scores as the poten-
tial ΨE1(q, z, e1).

4.3 Discriminative parameter training with
latent variables

We first set the potentials in (1) as explained in
§4.2 (henceforth called ‘Unoptimized’), and got
encouraging accuracy. Then we rewrote each po-
tential as

Ψ•(· · · ) = exp
(
w• · φ•(· · · )

)
(4)

or log
∏
•Ψ•(· · · ) =

∑
•w• · φ•(· · · ),

with w• being a weight vector for a specific poten-
tial •, and φ• being a corresponding feature vector.

During inference, we seek to maximize

max
q,z,e1,t2,r

w · φ(q, z, e1, t2, r, e2), (5)

for a fixed w, to find the score of each candidate
entity e2. Here all w• and φ• have been collected
into unified weight and feature vectors w, φ. Dur-
ing training of w, we are given pairs of correct and
incorrect answer entities e+2 , e

−
2 , and we wish to

satisfy constraints of the form

max
q,z,e1,t2,r

w · φ(q, z, e1, t2, r, e+2 ) + ξ (6)

≥ 1 + max
q,z,e1,t2,r

w · φ(q, z, e1, t2, r, e−2 ),

because collecting e+2 , e
−
2 pairs is less work than

supervising with values of z, e1, t2, r, e2 for each
query. Similar distant supervision problems were
posed via bundle method by (Bergeron et al.,
2008), and (Yu and Joachims, 2009), who used
CCCP (Yuille and Rangarajan, 2006). These are
equivalent in our setting. We use the CCCP style,
and augment the objective with an additional en-
tropy term as in (Sawant and Chakrabarti, 2013).
We call this LVDT (latent variable discriminative
training) in §5.

5 Experiments

5.1 Testbed

Corpus and knowledge graph: We used the
ClueWeb09B (ClueWeb09, 2009) corpus contain-
ing 50 million Web documents. This corpus
was annotated by Google with Freebase enti-
ties (Gabrilovich et al., 2013). The average page
contains 15 entity annotations from Freebase. We
used the Freebase KG and its links to Wikipedia.

Queries: We report on two sets of entity-seeking
queries. A sample of about 800 well-formed
queries from WebQuestions (Berant et al., 2013)
were converted to telegraphic utterances (such as
would be typed into commercial search engines)
by volunteers familiar with Web search. We call
this WQT (WebQuestions, telegraphic). Queries
are accompanied by ground truth entities. The
second data set, TREC-INEX, from (Sawant and
Chakrabarti, 2013) has about 700 queries sam-
pled from TREC and INEX, available at http:
//bit.ly/WSpxvr. These come with well-
formed and telegraphic utterances, as well as
ground truth entities.
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There are some notable differences between
these query sets. For WQT, queries were gener-
ated by using Google’s query suggestions inter-
face. Volunteers were asked to find answers using
single Freebase pages. Therefore, by construction,
queries retained can be answered using the Free-
base KG alone, with a simple r(e1, ?) form. In
contrast, TREC-INEX queries provide a balanced
mix of t2 and r hints in the queries, and direct an-
swers from triples is relatively less available.

5.2 Implementation details

On an average, the pseudocode in Figure 2
generated 13 segmentations per query, with
longer queries generating more segmentations
than shorter ones.

We used an MG4J (Boldi and Vigna, 2005)
based query processor, written in Java, over en-
tity and word indices on ClueWeb09B. The in-
dex supplies snippets with a specified maximum
width, containing a mention of some entity and
satisfying a WAND (Broder et al., 2003) predi-
cate over words in ŝ. In case of phrases in the
query, the WAND threshold was computed by
adding the IDF of constituent words. The index
returned about 330,000 snippets on average for
WAND threshold of 0.6.

We retained the top 200 candidate entities from
the corpus; increasing this horizon did not give
benefits. We also considered as candidates for e2
those entities that are adjacent to e1 in the KG
via top-scoring r candidates. In order to gener-
ate supporting snippets for an interpretation con-
taining entity annotation e, we need to match e
with Google’s corpus annotations. However, re-
lying solely on corpus annotations fails to retrieve
many potential evidence snippets, because entity
annotations are sparse. Therefore we probed the
token index with the textual mention of e1 in the
query; this improved recall.

We also investigated the feasibility of our pro-
posals for interactive search. There are three major
processes involved in answering a query - gener-
ating potential interpretations, collecting/scoring
snippets, and inference (MAP for Unoptimized
and wφ(·) for LVDT). For the WQT dataset, av-
erage time per query for each stage was approx-
imately - 0.2, 16.6 and 1.3 seconds respectively.
Our (Java) code did not optimize the bottleneck
at all; only 10 hosts and no clever load balancing

were used. We believe commercial search engines
can cut this down to less than a second.

5.3 Research questions

In the rest of this section we will address these
questions:

• For telegraphic queries, is our entity-relation-
type-selector segmentation better than the
type-selector segmentation of (Sawant and
Chakrabarti, 2013)?
• When semantic parsers (Berant et al., 2013;

Kwiatkowski et al., 2013) are subjected to
telegraphic queries, how do they perform
compared to our proposal?
• Are the KG and corpus really complementary

as regards their support of accurate ranking of
candidate entities?
• Is the prediction of r and t2 from our ap-

proach better than a greedy assignment based
on local language models?

We also discuss anecdotes of successes and fail-
ures of various systems.

5.4 Benefits of relation in addition to type

Figure 5 shows entity-ranking MAP, MRR, and
NDCG@10 (n@10) for two data sets and vari-
ous systems. “No interpretation” is an IR baseline
without any KG. Type+selector is our implemen-
tation of (Sawant and Chakrabarti, 2013). Unopti-
mized and LVDT both beat “no interpretation” and
“type+selector” by wide margins. (Boldface im-
plies best performing formulation.) There are two
notable differences between S&C and our work.
First, S&C do not use the knowledge graph (KG)
and rely on a noisy corpus. This means S&C fails
to answer queries whose answers are found only
in KG. This can be seen from WQT results; they
perform only slightly better than the baseline. Sec-
ond, even for queries that can be answered through
the corpus alone, S&C miss out on two important
signals that the query may provide - namely the
query entity and the relation. Our framework not
only provides a way to use a curated and high pre-
cision knowledge graph but also attempts to pro-
vide more reachability to corpus by the use of re-
lational phrases.

In case of TREC-INEX, LVDT improves upon
the unoptimized graphical model, where for WQT,
it does not. Preliminary inspection suggests this is
because WQT has noisy and incomplete ground
truth, and LVDT trains to the noise; a non-convex
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Dataset Formulation map mrr n@10
No interpretation .205 .215 .292

TREC Type+selector .292 .306 .356
-INEX Unoptimized .409 .419 .502

LVDT .419 .436 .541
No interpretation .080 .095 .131

WQT Type+selector .116 .152 .201
Unoptimized .377 .401 .474

LVDT .295 .323 .406

Figure 5: ‘Entity-relation-type-selector’ segmen-
tation yields better accuracy than ‘type-selector’
segmentation.

objective makes matters worse. The bias in our
unoptimized model circumvents training noise.

5.5 Comparison with semantic parsers

For TREC-INEX, both unoptimized and LVDT
beat SEMPRE (Berant et al., 2013) convinc-
ingly, whether it is trained with Free917 or Web-
Questions (Figure 6).

SEMPRE’s relatively poor performance, in this
case, is explained by its complete reliance on the
knowledge graph. As discussed previously, the
TREC-INEX dataset contains a sizable proportion
of queries that may be difficult to answer using
a KG alone. When SEMPRE is compared with
our systems with a telegraphic sample of Web-
Questions (WQT), results are mixed. Our Unop-
timized model still compares favorably to SEM-
PRE, but with slimmer gains. As before, LVDT
falls behind.

Dataset Formulation map mrr n@10
SEMPRE(Free917) .154 .159 .186

TREC SEMPRE(WQ) .197 .208 .247
-INEX Unoptimized .409 .419 .502

LVDT .419 .436 .541
SEMPRE(Free917) .229 .255 .285

WQT SEMPRE(WQ) .374 .406 .449
Unoptimized .377 .401 .474

Jacana .239 .256 .329
LVDT .295 .323 .406

Figure 6: Comparison with semantic parsers.

Our smaller gains over SEMPRE in case of
WebQuestions is explained by how WebQuestions
was assembled (Berant et al., 2013). Although
Google’s query suggestions gave an eclectic pool,
only those queries survived that could be answered

using a single Freebase page, which effectively re-
duced the role of a corpus. In fact, a large frac-
tion of WQT queries cannot be answered well us-
ing the corpus alone, because FACC1 annotations
are too sparse and rarely cover common nouns and
phrases such as ‘democracy’ or ‘drug overdose’
which are needed for some WQT queries.

For WQT, our system also compares favorably
with Jacana (Yao and Van Durme, 2014). Given
that they subject their input to natural langauge
parsing, their relatively poor performance is not
unsurprsing.

5.6 Complementary benefits of KG & corpus

Figure 7 shows the synergy between the corpus
and the KG. In all cases and for all metrics, using
the corpus and KG together gives superior perfor-
mance to using any of them alone. However, it
is instructive that in case of TREC-INEX, corpus-
only is better than KG-only, whereas this is re-
versed for WQT, which also supports the above
argument.

Data Formulation map mrr n@10

T
R

E
C

-I
N

E
X

Unoptimized (KG) .201 .209 .241
Unoptimized (Corpus) .381 .388 .471
Unoptimized (Both) .409 .419 .502

LVDT (KG only) .255 .264 .293
LVDT (Corpus) .267 .272 .315
LVDT (Both) .419 .436 .541

W
Q

T

Unoptimized (KG) .329 .343 .394
Unoptimized (Corpus) .188 .228 .291
Unoptimized (Both) .377 .401 .474

LVDT (KG only) .257 .281 .345
LVDT (Corpus only) .170 .210 .280

LVDT (Both) .295 .323 .406

Figure 7: Synergy between KB and corpus.

5.7 Collective vs. greedy segmentation

To judge the quality of interpretations, we asked
paid volunteers to annotate queries with an appro-
priate relation and type, and compared them with
the interpretations associated with top-ranked en-
tities. Results in Figure 8 indicate that in spite
of noisy relation and type language models, our
formulations produce high quality interpretations
through collective inference.

Figure 9 demonstrates the benefit of collective
inference over greedy segmentation followed by
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Formulation Type Relation Type/Rel
Unoptimized (top 1) 23 49 60
Unoptimized (top 5) 29 57 68
LVDT (top 1) 25 52 61
LVDT (top 5) 33 61 69

Figure 8: Fraction of queries (%) with correct in-
terpretations of t2, r, and t2 or r, on TREC-INEX.

evaluation. Collective inference boosts absolute
MAP by as much as 0.2.

Dataset Formulation map mrr n@10
Unoptimized (greedy) .343 .347 .432

TREC Unoptimized .409 .419 .502
-INEX LVDT (greedy) 205 .214 .259

LVDT .419 .436 .541
Unoptimized (greedy) .246 .271 .335

Unoptimized .377 .401 .474
WQT LVDT (greedy) .212 .246 .317

LVDT .295 .323 .406

Figure 9: Collective vs. greedy segmentation

5.8 Discussion

Closer scrutiny revealed that collective infer-
ence often overcame errors in earlier stages
to produce a correct ranking over answer en-
tities. E.g., for the query automobile com-
pany makes spider the entity disambiguation
stage fails to identify the car Alfa Romeo Spi-
der (/m/08ys39). However, the interpretation
stage recovers from the error and segments the
query with Automobile (/m/0k4j) as the query
entity e1, /organization/organization
and /business/industry/companies as
target type t2 and relation r respectively (from the
relation/type hint ‘company’), and spider as se-

Figure 10: Comparison of various approaches for
NDCG at rank 1 to 10, TREC-INEX dataset

Figure 11: Comparison of various approaches for
NDCG at rank 1 to 10, WQT dataset

lector to arrive at the correct answer Alfa Romeo
(/m/09c50). The corpus features also play a cru-
cial role for queries which may not be accurately
represented with an appropriate logical formula.
For the query meg ryan bookstore movie, the
textual patterns for the relation ActedIn in con-
junction with the selector word ‘bookstore’ cor-
rectly identifies the answer entity You’ve Got Mail
(/m/014zwb).

We also analyzed samples of queries where
our system did not perform particularly well.
We observed that one of the recurring themes
of these queries was that their answer enti-
ties had very little corpus support, and the
type/relation hint mapped to too many or no
candidate type/relations. For example, in the
query south africa political system, the rel-
evant type/relation hint ‘political system’ could
not be mapped to /government/form_of_
government and /location/country/
form_of_government respectively.

6 Conclusion and future work

We presented a technique to partition telegraphic
entity-seeking queries into functional segments
and to rank answer entities accordingly. While
our results are favorable compared to strong prior
art, further improvements may result from relax-
ing our model to recognize multiple e1s and rs. It
may also help to deploy more sophisticated para-
phrasing models (Berant and Liang, 2014) or word
embeddings (Yih et al., 2014) for relation hints.
It would also be interesting to supplement entity-
linked corpora and curated KGs with extracted
triples (Fader et al., 2014). Another possibility is
to apply the ideas presented here to well-formed
questions.
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Abstract

Estimating questions’ difficulty levels is
an important task in community question
answering (CQA) services. Previous stud-
ies propose to solve this problem based
on the question-user comparisons extract-
ed from the question answering threads.
However, they suffer from data sparseness
problem as each question only gets a lim-
ited number of comparisons. Moreover,
they cannot handle newly posted question-
s which get no comparisons. In this pa-
per, we propose a novel question difficul-
ty estimation approach called Regularized
Competition Model (RCM), which natu-
rally combines question-user comparisons
and questions’ textual descriptions into a
unified framework. By incorporating tex-
tual information, RCM can effectively deal
with data sparseness problem. We further
employ a K-Nearest Neighbor approach to
estimate difficulty levels of newly post-
ed questions, again by leveraging textu-
al similarities. Experiments on two pub-
licly available data sets show that for both
well-resolved and newly-posted question-
s, RCM performs the estimation task sig-
nificantly better than existing methods,
demonstrating the advantage of incorpo-
rating textual information. More interest-
ingly, we observe that RCM might provide
an automatic way to quantitatively mea-
sure the knowledge levels of words.

1 Introduction

Recent years have seen rapid growth in communi-
ty question answering (CQA) services. They have
been widely used in various scenarios, including
general information seeking on the web1, knowl-

1http://answers.yahoo.com/

edge exchange in professional communities2, and
question answering in massive open online cours-
es (MOOCs)3, to name a few.

An important research problem in CQA is
how to automatically estimate the difficulty lev-
els of questions, i.e., question difficulty estima-
tion (QDE). QDE can benefit many applications.
Examples include 1) Question routing. Routing
questions to appropriate answerers can help ob-
tain quick and high-quality answers (Li and K-
ing, 2010; Zhou et al., 2009). Ackerman and
McDonald (1996) have demonstrated that rout-
ing questions by matching question difficulty lev-
el with answerer expertise level will make better
use of answerers’ time and expertise. This is even
more important for enterprise question answering
and MOOCs question answering, where human
resources are expensive. 2) Incentive mechanism
design. Nam et al. (2009) have found that win-
ning point awards offered by reputation system-
s is a driving factor for user participation in C-
QA services. Assigning higher point awards to
more difficult questions will significantly improve
user participation and satisfaction. 3) Linguistics
analysis. Researchers in computational linguistics
are always interested in investigating the correla-
tion between language and knowledge, to see how
the language reflects one’s knowledge (Church,
2011). As we will show in Section 5.4, QDE pro-
vides an automatic way to quantitatively measure
the knowledge levels of words.

Liu et al. (2013) have done the pioneer work
on QDE, by leveraging question-user comparison-
s extracted from the question answering threads.
Specifically, they assumed that the difficulty lev-
el of a question is higher than the expertise level
of the asker (i.e. the user who asked the question),
but lower than that of the best answerer (i.e. the us-
er who provided the best answer). A TrueSkill al-

2http://stackoverflow.com/
3http://coursera.org/
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gorithm (Herbrich et al., 2006) was further adopt-
ed to estimate question difficulty levels as well as
user expertise levels from the pairwise compar-
isons among them. To our knowledge, it is the on-
ly existing work on QDE. Yang et al. (2008) have
proposed a similar idea, but their work focuses on
a different task, i.e., estimating difficulty levels of
tasks in crowdsourcing contest services.

There are two major drawbacks of previous
methods: 1) data sparseness problem and 2) cold-
start problem. By the former, we mean that un-
der the framework of previous work, each question
is compared only twice with the users (once with
the asker and the other with the best answerer),
which might not provide enough information and
contaminate the estimation accuracy. By the latter,
we mean that previous work only deals with well-
resolved questions which have received the best
answers, but cannot handle newly posted question-
s with no answers received. In many real-world
applications such as question routing and incentive
mechanism design, however, it is usually required
that the difficulty level of a question is known in-
stantly after it is posted.

To address the drawbacks, we propose further
exploiting questions’ textual descriptions (e.g., ti-
tle, body, and tags) to perform QDE. Preliminary
observations have shown that a question’s difficul-
ty level can be indicated by its textual descrip-
tion (Liu et al., 2013). We take advantage of the
observations, and assume that if two questions are
close in their textual descriptions, they will also
be close in their difficulty levels, i.e., the smooth-
ness assumption. We employ manifold regular-
ization (Belkin et al., 2006) to characterize the
assumption. Manifold regularization is a well-
known technique to preserve local invariance in
manifold learning algorithms, i.e., nearby points
are likely to have similar embeddings (Belkin and
Niyogi, 2001). Then, we propose a novel Reg-
ularized Competition Model (RCM), which for-
malizes QDE as minimizing a loss on question-
user comparisons with manifold regularization on
questions’ textual descriptions. As the smoothness
assumption offers extra information for inferring
question difficulty levels, incorporating it will ef-
fectively deal with data sparsity. Finally, we adopt
a K-Nearest Neighbor approach (Cover and Hart,
1967) to perform cold-start estimation, again by
leveraging the smoothness assumption.

Experiments on two publicly available data sets

collected from Stack Overflow show that 1) RCM
performs significantly better than existing meth-
ods in the QDE task for both well-resolved and
cold-start questions. 2) The performance of RCM
is insensitive to the particular choice of the term
weighting schema (determines how a question’s
textual description is represented) and the similar-
ity measure (determines how the textual similarity
between two questions is measured). The results
demonstrate the advantage of incorporating textu-
al information for QDE. Qualitative analysis fur-
ther reveals that RCM might provide an automatic
way to quantitatively measure the knowledge lev-
els of words.

The main contributions of this paper include: 1)
We take fully advantage of questions’ textual de-
scriptions to address data sparseness problem and
cold-start problem which previous QDE methods
suffer from. To our knowledge, it is the first time
that textual information is introduced in QDE. 2)
We propose a novel QDE method that natural-
ly combines question-user comparisons and ques-
tions’ textual descriptions into a unified frame-
work. The proposed method performs QDE sig-
nificantly better than existing methods. 3) We
demonstrate the practicability of estimating diffi-
culty levels of cold-start questions purely based on
their textual descriptions, making various applica-
tions feasible in practice. As far as we know, it is
the first work that considers cold-start estimation.
4) We explore how a word’s knowledge level can
be automatically measured by RCM.

The rest of the paper is structured as follows.
Section 2 describes the problem formulation and
the motivation of RCM. Section 3 presents the de-
tails of RCM. Section 4 discusses cold-start esti-
mation. Section 5 reports experiments and results.
Section 6 reviews related work. Section 7 con-
cludes the paper and discusses future work.

2 Preliminaries

2.1 Problem Formulation

A CQA service provides a platform where people
can ask questions and seek answers from others.
Given a CQA portal, consider a specific catego-
ry where questions on the same topic are asked
and answered, e.g., the “C++ programming” cat-
egory of Stack Overflow. When an asker ua posts
a question q in the category, there will be sever-
al answerers to answer the question. Among all
the received answers, a best one will be chosen
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by the asker or voted by the community. The an-
swerer who provides the best answer is called the
best answerer ub. The other answerers are denoted
by O = {

uo1 , uo2 , · · · , uoM

}
. A question answering

thread (QA thread) is represented as a quadruplet
(q, ua, ub,O). Collecting all such QA threads in the
category, we get M users and N questions, denoted
byU = {u1, u2, · · · , uM} and Q = {q1, q2, · · · , qN}
respectively. Each user um is associated with an
expertise score θm, representing his/her expertise
level. A larger θm indicates a higher expertise lev-
el of the user. Each question qn is associated with
a difficulty score βn, representing its difficulty lev-
el. A larger βn indicates a higher difficulty level
of the question. Difficulty scores (as well as ex-
pertise scores) are assumed to be comparable with
each other in the specified category. Besides, each
question qn has a textual description, and is repre-
sented as a V-dimensional term vector dn, where
V is the vocabulary size.

The question difficulty estimation (QDE) task
aims to automatically learn the question difficul-
ty scores (βn’s) by utilizing the QA threads T =
{(q, ua, ub,O) : q ∈ Q} as well as the question de-
scriptions D = {d1, d2, · · · , dN} in the specified
category. Note that in Section 2 and Section 3, we
consider estimating difficulty scores of resolved
questions, i.e., questions with the best answers se-
lected or voted. Estimating difficulty scores of un-
resolved questions, e.g., newly posted ones, will
be discussed in Section 4.

2.2 Competition-based Methods
Liu et al. (2013) have proposed a competition-
based method for QDE. The key idea is to 1) ex-
tract pairwise competitions from the QA threads
and 2) estimate question difficulty scores based on
extracted competitions.

To extract pairwise competitions, it is assumed
that question difficulty scores and user expertise
scores are expressed on the same scale. Given a
QA thread (q, ua, ub,O), it is further assumed that:

Assumption 1 (pairwise comparison assumption)
The difficulty score of question q is higher than the
expertise score of the asker ua, but lower than that
of the best answerer ub. Moreover, the expertise
score of the best answerer ub is higher than that
of the asker ua, as well as any answerer in O.4

4The difficulty score of question q is not assumed to be
lower than the expertise score of any answerer in O, since
such a user may just happen to see the question and respond
to it, rather than knowing the answer well.

Given the assumption, there are (|O| + 3) pairwise
competitions extracted from the QA thread, in-
cluding 1) one competition between the question
q and the asker ua, 2) one competition between
the question q and the best answerer ub, 3) one
competition between the best answerer ub and the
asker ua, and 4) |O| competitions between the best
answerer ub and each of the answerers in O. The
question q is the winner of the first competition,
and the best answerer ub is the winner of the re-
maining (|O| + 2) competitions. These pairwise
competitions are denoted by

Cq =
{
ua≺q, q≺ub, ua≺ub, uo1 ≺ub, · · · , uoM ≺ub

}
,

where i ≺ j means that competitor j beats com-
petitor i in a competition. Let

C =
∪
q∈Q
Cq (1)

be the set containing all the pairwise competitions
extracted from T .

Given the competition set C, Liu et al. (2013)
further adopted a TrueSkill algorithm (Herbrich
et al., 2006) to learn the competitors’ skill level-
s (i.e. the question difficulty scores and the us-
er expertise scores). TrueSkill assumes that the
practical skill level of each competitor follows a
normal distribution N

(
µ, σ2

)
, where µ is the aver-

age skill level and σ is the estimation uncertain-
ty. Then it updates the estimations in an online
mode: for a newly observed competition with its
win-loss result, 1) increase the average skill level
of the winner, 2) decrease the average skill level
of the loser, and 3) shrink the uncertainties of both
competitors as more data has been observed. Yang
et al. (2008) have proposed a similar competition-
based method to estimate tasks’ difficulty levels
in crowdsourcing contest services, by leveraging
PageRank (Page et al., 1999) algorithm.

2.3 Motivating Discussions
The methods introduced above estimate competi-
tors’ skill levels based solely on the pairwise com-
petitions among them. The more competitions a
competitor participates in, the more accurate the
estimation will be. However, according to the
pairwise comparison assumption (Assumption 1),
each question participates in only two competi-
tions, one with the asker and the other with the
best answerer. Hence, there might be no enough
information to accurately infer its difficulty score.
We call this the data sparseness problem.
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(a) Low difficulty. (b) Medium difficulty. (c) High difficulty.

Figure 1: Tag clouds of SO/Math questions with different difficulty levels.

Taking advantage of additional metadata has
been demonstrated to be an effective way of deal-
ing with data sparsity in various applications such
as collaborative filtering (Claypool et al., 1999;
Schein et al., 2002) and personalized search (Dou
et al., 2007; Sugiyama et al., 2004). The ratio-
nale behind is to bridge the gap among users/items
by leveraging their similarities based on the meta-
data. As for QDE, preliminary observations have
shown that a question’s difficulty level can be in-
dicated by its textual description (Liu et al., 2013).
As an example, consider the QA threads in the
“mathematics” category of Stack Overflow. Di-
vide the questions into three groups: 1) low dif-
ficulty, 2) medium difficulty, and 3) high difficul-
ty, according to their difficulty scores estimated by
TrueSkill. Figure 1 visualizes the frequency dis-
tribution of tags in each group, where the size of
each tag is in proportion to its frequency in the
group. The results indicate that the tags associ-
ated with the questions do have the ability to re-
flect the questions’ difficulty levels, e.g., low dif-
ficulty questions usually have tags such as “home-
work” and “calculus”, while high difficulty ones
usually have tags such as “general topology” and
“number theory”. We further calculate the Pearson
correlation coefficient (Rodgers and Nicewander,
1988) between 1) the gap between the averaged
difficulty scores in each two groups and 2) the
Euclidean distance between the aggregated textu-
al descriptions in each two groups . The result is
r = 0.6424, implying that the difficulty gap is posi-
tively correlated with the textual distance. In other
words, the more similar two questions’ textual de-
scriptions are, the more close their difficulty levels
are. Therefore, we take the textual information to
bridge the difficulty gap among questions, by as-
suming that

Assumption 2 (smoothness assumption) If two
questions qi and q j are close in their textual de-

scriptions di and d j, they will also be close in their
difficulty scores βi and β j.

The smoothness assumption brings us additional
information about question difficulty scores by in-
ferring textual similarities. It serves as a supple-
ment to the pairwise competitions, and might help
address the data sparseness problem which previ-
ous methods suffer from.

3 Modeling Text Similarities for QDE

This section presents a novel Regularized Compe-
tition Model (RCM) for QDE, which combines the
pairwise competitions and the textual descriptions
into a unified framework. RCM can alleviate the
data sparseness problem and perform more accu-
rate estimation.

3.1 Regularized Competition Model

We start with several notations. As question dif-
ficulty scores can be directly compared with user
expertise scores, we take questions as pseudo user-
s. Let θ̄ ∈ RM+N denote the skill levels (i.e. the
expertise scores and the difficulty scores) of all the
(pseudo) users:

θ̄i =

{
θi, 1 ≤ i ≤ M,
βi−M , M < i ≤ M + N,

where θ̄i is the i-th entry of θ̄. The first M entries
are the user expertise scores, denoted by θ̄u ∈ RM .
The last N entries are the question difficulty s-
cores, denoted by θ̄q ∈ RN . Let θ̄(u)

i and θ̄(q)
i denote

the i-th entries of θ̄u and θ̄q respectively.
Exploiting Pairwise Competitions. We define

a loss on each pairwise competition i ≺ j:

ℓ
(
θ̄i, θ̄ j

)
= max

(
0, δ −

(
θ̄ j − θ̄i

))p
, (2)

where p is either 1 or 2. The loss is defined on the
skill gap between the two competitors, i.e., θ̄ j − θ̄i,
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measuring the inconsistency between the expect-
ed outcome and the actual outcome. If the gap is
larger than a predefined threshold δ, competitor j
would probably beat competitor i in the compe-
tition, which coincides with the actual outcome.
Then the loss will be zero. Otherwise, there is a
higher chance that competitor j loses the competi-
tion, which goes against the actual outcome. Then
the loss will be greater than zero. The smaller the
gap is, the higher the chance of inconsistency be-
comes, and the greater the loss will be. Note that
the threshold δ can take any positive value since
we do not pose a norm constraint on θ̄.5 Without
loss of generality we take δ = 1 throughout this
paper. As we will show in Section 3.2, the loss de-
fined in Eq. (2) has some similarity with the SVM
loss (Chapelle, 2007). We name it hinge loss when
p = 1, and quadratic loss when p = 2.

Given the competition set C, estimating skil-
l levels of (pseudo) users then amounts to solving
the following optimization problem:

min
θ̄

∑
(i≺ j)∈C

ℓ
(
θ̄i, θ̄ j

)
+
λ1

2
θ̄

T
θ̄, (3)

where the first term is the empirical loss measur-
ing the total inconsistency; the second term is a
regularizer to prevent overfitting; and λ1 ≥ 0 is a
trade-off coefficient. It is also a competition-based
QDE method, called Competition Model (CM).

Exploiting Question Descriptions. Manifold
regularization is a well-known technique used in
manifold learning algorithms to preserve local in-
variance, i.e., nearby points are likely to have sim-
ilar embeddings (Belkin and Niyogi, 2001). In
QDE, the smoothness assumption expresses sim-
ilar “invariance”, i.e., nearby questions (in terms
of textual similarities) are likely to have similar
difficulty scores. Hence, we characterize the as-
sumption with the following manifold regularizer:

R = 1
2

N∑
i=1

N∑
j=1

(
θ̄

(q)
i − θ̄(q)

j

)2
wi j

= θ̄
T
q Dθ̄q − θ̄T

q Wθ̄q = θ̄
T
q Lθ̄q, (4)

where wi j is the textual similarity between ques-
tion i and question j; W ∈ RN×N is the similarity
matrix with the (i, j)-th entry being wi j; D ∈ RN×N

is a diagonal matrix with the i-th entry on the diag-
onal being dii =

∑N
j=1 wi j; and L = D−W ∈ RN×N

5Given any θ̄i, θ̄ j, and δ, there always exists a linear trans-
formation which keeps the sign of

(
δ −

(
θ̄ j − θ̄i

))
unchanged.

is the graph Laplacian (Chung, 1997). Minimizing
R results in the smoothness assumption: for any
questions i and j, if their textual similarity wi j is

high, the difficulty gap
(
θ̄

(q)
i − θ̄(q)

j

)2
will be small.

A Hybrid Method. Combining Eq. (3) and
Eq. (4), we obtain RCM, which amounts to the
following optimization problem:

min
θ̄

∑
(i≺ j)∈C

ℓ
(
θ̄i, θ̄ j

)
+
λ1

2
θ̄

T
θ̄ +
λ2

2
θ̄

T
q Lθ̄q. (5)

Here λ2 ≥ 0 is also a trade-off coefficient. The
advantages of RCM include 1) It naturally formal-
izes QDE as minimizing a manifold regularized
loss function, which seamlessly integrates both the
pairwise competitions and the textual description-
s. 2) By incorporating textual information, it can
address the data sparseness problem which previ-
ous methods suffer from, and perform significantly
better in the QDE task.

3.2 Learning Algorithm

Redefine the k-th pairwise competition (assumed
to be carried out between competitors i and j) as
(xk, yk). xk ∈ RM+N indicates the competitors:

x(k)
i = 1, x(k)

j = −1, and x(k)
l = 0 for any l , i, j,

where x(k)
l is the l-th entry of xk. yk ∈ {1,−1} is

the outcome: if competitor i beats competitor j,
yk = 1; otherwise, yk = −1. The objective in Eq.
(5) can then be rewritten as

L
(
θ̄
)
=

|C|∑
k=1

max
(
0, 1 − yk

(
θ̄

T xk
))p
+

1
2
θ̄

T Zθ̄,

where Z =
(
λ1IM 0

0 λ1IN + λ2L

)
is a block matrix; IM ∈

RM×M and IN ∈ RN×N are identity matrices; p =
1 corresponds to the hinge loss, and p = 2 the
quadratic loss. It is clear that the loss defined in
Eq. (2) has the same format as the SVM loss.

The objectiveL is differentiable for the quadrat-
ic loss but non-differentiable for the hinge loss.
We employ a subgradient method (Boyd et al.,
2003) to solve the optimization problem. The al-
gorithm starts at a point θ̄0 and, as many iterations
as needed, moves from θ̄t to θ̄t+1 in the direction
of the negative subgradient:

θ̄t+1 = θ̄t − γt∇L
(
θ̄t
)
,
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Algorithm 1 Regularized Competition Model
Require: competition set C and description setD
1: θ̄0 ← 1
2: for t = 0 : T − 1 do
3: Kt ←

{
k : 1 − yk

(
θ̄

T
t xk

)
> 0

}
4: ∇L

(
θ̄t

)
← calculated by Eq. (6)

5: θ̄t+1 ← θ̄t − γt∇L
(
θ̄t

)
6: Θt+1 ←

{
θ̄0, θ̄1, · · · , θ̄t+1

}
7: θ̄t+1 ← arg minθ̄∈Θt+1

L
(
θ̄
)

8: end for
9: return θ̄T

where γt > 0 is the learning rate. The subgradient
is calculated as

∇L
(
θ̄t

)
=


Zθ̄t − ∑

k∈Kt

yk xk, p=1,

Zθ̄t + 2
∑

k∈Kt

xk xT
k θ̄t − 2

∑
k∈Kt

yk xk, p=2, (6)

where Kt =
{
k : 1 − yk

(
θ̄

T
t xk

)
> 0

}
. As it is not

always a descent method, we keep track of the best
point found so far (Boyd et al., 2003):

θ̄t+1 = arg min
θ̄∈Θt+1

L
(
θ̄
)
,

whereΘt+1 =
{
θ̄0, θ̄1, · · · , θ̄t+1

}
. The whole proce-

dure is summarized in Algorithm 1.
Convergence. For constant learning rate (i.e.,

γt = γ), Algorithm 1 is guaranteed to converge to
within some range of the optimal value, i.e.,

lim
t→∞L

(
θ̄t
)
− L∗ < ϵ,

where L∗ denotes the minimum of L(·), and ϵ is a
constant defined by the learning rate γ. For more
details, please refer to (Boyd et al., 2003). During
our experiments, we set the iteration number as
T = 1000 and the learning rate as γt = 0.001, and
convergence was observed.

Complexity. For both the hinge loss and the
quadratic loss, the time complexity (per itera-
tion) and the space complexity of RCM are both
O

(
|C| + ηN2

)
. Here, |C| is the total number of

competitions, M and N are the numbers of user-
s and questions respectively, and η is the ratio of
non-zero entries in the graph Laplacian L.6 In the
analysis, we have assumed that M ≪ ηN2 and
N ≪ ηN2.

6Owing to the sparse nature of questions’ textual descrip-
tions, the graph Laplacian L is usually sparse, with about
70% entries being zero according to our experiments.

4 Cold-Start Estimation

Previous sections discussed estimating difficulty s-
cores of resolved questions, from which pairwise
competitions could be extracted. However, for
newly posted questions without any answers re-
ceived, no competitions could be extracted and
none of the above methods work. We call it the
cold-start problem.

We heuristically apply a K-Nearest Neighbor
(KNN) approach (Cover and Hart, 1967) to cold-
start estimation, again by leveraging the smooth-
ness assumption. The key idea is to propagate
difficulty scores from well-resolved questions to
cold-start ones according to their textual simi-
larities. Specifically, suppose that there exists
a set of well-resolved questions whose difficul-
ty scores have already been estimated by a QDE
method. Given a cold-start question q∗, we first
pick K well-resolved questions that are closest to
q∗ in textual descriptions, referred to as the near-
est neighbors. The difficulty score of question q∗
is then predicted as the averaged difficulty scores
of its nearest neighbors. The KNN method bridges
the gap between cold-start and well-resolved ques-
tions by inferring their textual similarities, and
might effectively deal with the cold-start problem.

5 Experiments

We have conducted experiments to test the effec-
tiveness of RCM in estimating difficulty scores of
both well-resolved and cold-start questions. More-
over, we have explored how a word’s difficulty lev-
el can be quantitatively measured by RCM.

5.1 Experimental Settings

Data Sets. We obtained a publicly available da-
ta set of Stack Overflow between July 31, 2008
and August 1, 20127, containing QA threads in
various categories. We considered the categories
of “C++ programming” and “mathematics”, and
randomly sampled about 10,000 QA threads from
each category, denoted by SO/CPP and SO/Math
respectively. For each question, we took the title
and body fields as its textual description. For both
data sets, stop words in a standard list8 and words
whose total frequencies are less than 10 were re-
moved. Table 1 gives the statistics of the data sets.

7http://blog.stackoverflow.com/category/cc-wiki-dump/
8http://jmlr.org/papers/volume5/lewis04a/a11-smart-

stop-list/english.stop
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# users # questions # competitions # words

SO/CPP 14,884 10,164 50,043 2,208
SO/Math 6,564 10,528 40,396 2,009

Table 1: Statistics of the data sets.

For evaluation, we randomly sampled 600 ques-
tion pairs from each data set, and asked annotators
to compare the difficulty levels of the questions
in each pair. We had two graduate students ma-
joring in computer science annotate the SO/CPP
questions, and two majoring in mathematics an-
notate the SO/Math questions. For each question,
only the title, body, and tags were exposed to the
annotators. Given a question pair (q1, q2), the an-
notators were asked to give one of the three labels:
q1 ≻ q2, q2 ≻ q1, or q1 = q2, which respective-
ly means that question q1 has a higher, lower, or
equal difficulty level compared with question q2.
We used Cohen’s kappa coefficient (Cohen, 1960)
to measure the inter-annotator agreement. The re-
sult is κ = 0.7533 on SO/CPP and κ = 0.8017
on SO/Math, indicating that the inter-annotator a-
greement is quite substantial on both data sets. Af-
ter removing the question pairs with inconsisten-
t labels, we got 521 annotated SO/CPP question
pairs and 539 annotated SO/Math question pairs.

We further randomly split the annotated ques-
tion pairs into development/test/cold-start sets,
with the ratio of 2:2:1. The first two sets were used
to evaluate the methods in estimating difficulty s-
cores of resolved questions. Specifically, the de-
velopment set was used for parameter tuning and
the test set was used for evaluation. The last set
was used to evaluate the methods in cold-start esti-
mation, and the questions in this set were excluded
from the learning process of RCM as well as any
baseline method.

Baseline Methods. We considered three base-
line methods: PageRank (PR), TrueSkill (TS), and
CM, which are based solely on the pairwise com-
petitions.

• PR first constructs a competitor graph, by
creating an edge from competitor i to com-
petitor j if j beats i in a competition. A
PageRank algorithm (Page et al., 1999) is
then utilized to estimate the relative impor-
tance of the nodes, i.e., question difficulty s-
cores and user expertise scores. The damping
factor was set from 0.1 to 0.9 in steps of 0.1.

• TS has been applied to QDE by Liu et al.

(2013). We set the model parameters in the
same way as they suggested.

• CM performs QDE by solving Eq. (3). We
set λ1 in {0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}.

We compared RCM with the above baseline meth-
ods. In RCM, both parameters λ1 and λ2 were set
in {0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}.

Evaluation Metric. We employed accuracy
(ACC) as the evaluation metric:

ACC =
# correctly judged question pairs

# all question pairs
.

A question pair is regarded as correctly judged if
the relative difficulty ranking given by an estima-
tion method is consistent with that given by the
annotators. The higher the accuracy is, the better
a method performs.

5.2 Estimation for Resolved Questions

The first experiment tested the methods in estimat-
ing difficulty scores of resolved questions.

Estimation Accuracies. We first compared the
estimation accuracies of PR, TS, CM, and RCM
on the test sets of SO/CPP and SO/Math, obtained
with the best parameter settings determined by the
development sets. Table 2 gives the results, where
“H” denotes the hinge loss and “Q” the quadratic
loss. In RCM, to calculate the graph Laplacian L,
we adopted Boolean term weighting schema and
took Jaccard coefficient as the similarity measure.
From the results, we can see that 1) RCM perform-
s significantly better than the baseline methods on
both data sets (t-test, p-value < 0.05), demonstrat-
ing the advantage of exploiting questions’ textu-
al descriptions for QDE. 2) The improvements of
RCM over the baseline methods on SO/Math are
greater than those on SO/CPP, indicating that the
textual descriptions of the SO/Math questions are
more powerful in reflecting their difficulty level-
s. The reason is that the SO/Math questions are
much more heterogeneous, belonging to various
subfields of mathematics. The difficulty gaps a-
mong different subfields are sometimes obvious
(e.g., a question in topology in general has a high-
er difficulty level than a question in linear algebra),
making the textual descriptions more powerful in
distinguishing the difficulty levels.

Graph Laplacian Variants. We further inves-
tigated the performances of different term weight-
ing schemas and similarity measures in the graph
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PR TS CM RCM

H Q H Q

SO/CPP 0.5876 0.6134 0.6340 0.6753 0.7371 0.7268
SO/Math 0.6067 0.6109 0.6527 0.6820 0.7699 0.7699

Table 2: ACC of different methods for well-
resolved questions.

Notation Definition

Boolean v(w, q) =

 1, if word w occurs in question q
0, otherwise

TF-1 v(w, q) = f (w, q), the number of occurrences
TF-2 v(w, q) = log ( f (w, q) + 1)

TF-3 v(w, q) = 0.5 +
0.5 × f (w, q)

max { f (w, q) : w ∈ q}
TFIDF-1 v(w, q) = TF-1 × log |Q|

|{q∈Q:w∈q}|
TFIDF-2 v(w, q) = TF-2 × log |Q|

|{q∈Q:w∈q}|
TFIDF-3 v(w, q) = TF-3 × log |Q|

|{q∈Q:w∈q}|

Cosine Sim (d1, d2) =
dT

1 d2
∥d1∥×∥d2∥ ∈ [0, 1]

Jaccard Sim (d1, d2) =
dT

1 d2

∥d1∥2+∥d2∥2−∥d1∥×∥d2∥ ∈ [0, 1]

Table 3: Different term weighting schemas and
similarity measures.

Laplacian. The term weighting schema deter-
mines how a question’s textual description is rep-
resented. We explored a Boolean schema, three
TF schemas, and three TFIDF schemas (Salton
and Buckley, 1988). The similarity measure de-
termines how the textual similarity between two
questions is calculated. We explored the Co-
sine similarity and the Jaccard coefficient (Huang,
2008). Detailed descriptions are given in Table 3.

Figure 2 and Figure 3 show the estimation ac-
curacies of the RCM variants on the test sets of
SO/CPP and SO/Math respectively, again obtained
with the best parameter settings determined by
the development sets. The performance of CM
is also given (the straight lines in the figures).9

From the results, we can see that 1) All the RCM
variants can improve over CM on both data sets,
and most of the improvements are significant (t-
test, p-value < 0.05). This further demonstrates
that the effectiveness of incorporating textual de-
scriptions is not affected by the particular choice
of the term weighting schema or similarity mea-
sure. 2) Boolean term weighting schema performs
the best, considering different similarity measures,
loss types, and data sets collectively. 3) Jaccard

9CM performs better than PR and TS on both data sets.
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Figure 2: ACC of RCM variants for well-resolved
questions on SO/CPP.
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Figure 3: ACC of RCM variants for well-resolved
questions on SO/Math.

coefficient performs as well as Cosine similari-
ty on SO/Math, but almost consistently better on
SO/CPP. Throughout the experiments, we adopted
Boolean term weighting schema and Jaccard coef-
ficient to calculate the graph Laplacian.

5.3 Estimation for Cold-Start Questions
The second experiment tested the methods in es-
timating difficulty scores of cold-start questions.
We employed Boolean term weighting schema to
represent a cold-start question, and utilized Jac-
card Coefficient to select its nearest neighbors.

Figure 4 and Figure 5 list the cold-start estima-
tion accuracies of different methods on SO/CPP
and SO/Math respectively, with different K val-
ues (the number of nearest neighbors). As the
accuracy oscillates drastically with a K value s-
maller than 11 on SO/CPP and smaller than 6 on
SO/Math, we report the results with K ∈ [11, 20]
on SO/CPP and K ∈ [6, 15] on SO/Math. The av-
eraged (over different K values) cold-start estima-
tion accuracies are further given in Table 4. All the
results are reported on the cold-start sets, with the
optimal parameter settings adopted in Section 5.2.
From the results, we can see that 1) Cold-start es-
timation is possible, and can achieve a consider-
ably high accuracy by choosing a proper method
(e.g. RCM), making applications such as better
question routing and better incentive mechanism
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Figure 5: ACC of different methods for cold-start
questions on SO/Math.

design feasible in practice. 2) As the value of K
varies, RCM (the red/blue solid line) performs al-
most consistently better than CM with the same
loss type (the red/blue dotted line), as well as PR
and TS (the gray dotted lines), showing the advan-
tages of RCM in the cold-start estimation. 3) The
cold-start estimation accuracies on SO/Math are
higher than those on SO/CPP, again demonstrating
that the textual descriptions of the SO/Math ques-
tions are more powerful in reflecting their difficul-
ty levels. This is consistent with the phenomenon
observed in Section 5.2.

5.4 Difficulty Levels of Words
The third experiment explored how a word’s diffi-
culty level can be measured by RCM automatical-
ly and quantitatively.

On both SO/CPP and SO/Math, we evenly split
the range of question difficulty scores (estimated
by RCM) into 10 buckets, and assigned questions
to the buckets according to their difficulty scores.
A larger bucket ID indicates a higher difficulty lev-
el. Then, given a word w, we calculated its fre-
quency in each bucket as follows:

fi(w) =
# questions in bucket i where w occurs

# all questions in bucket i
.

To make the frequency meaningful, buckets with
less than 50 questions were discarded. We picked

PR TS CM RCM

H Q H Q

SO/CPP 0.5870 0.5413 0.6120 0.6304 0.6380 0.6609
SO/Math 0.6411 0.6305 0.6653 0.7263 0.6958 0.7442

Table 4: Averaged ACC of different methods for
cold-start questions.
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Figure 6: Frequencies of different words in the
buckets on SO/CPP.

four words from each data set as examples. Their
normalized frequencies in different buckets are
shown in Figure 6 and Figure 7. On SO/CPP,
we can observe that “array” and “string” occur
most frequently in questions with lower difficul-
ty levels, “virtual” higher, and “multithread” the
highest. It coincides with the intuition: “array”
and “string” are usually related to some basic con-
cepts in programming language, while “virtual”
and “multithread” usually discuss more advanced
topics. Similar phenomena can be observed on
SO/Math. The results indicate that RCM might
provide an automatic way to measure the difficul-
ty levels of words.

6 Related Work

QDE is relevant to the problem of estimating task
difficulty levels and user expertise levels in crowd-
sourcing services (Yang et al., 2008; Whitehill et
al., 2009). Studies on this problem fall into two
categories: 1) binary response based and 2) par-
tially ordered response based. In the first cate-
gory, binary responses (i.e. whether the solution
provided by a user is correct or not) are observed,
and techniques based on item response theory are
further employed (Whitehill et al., 2009; Welin-
der et al., 2010; Zhou et al., 2012). In the second
category, partially ordered responses (i.e. which
of the two given solutions is better) are observed,
and pairwise comparison based methods are fur-
ther adopted (Yang et al., 2008; Liu et al., 2013).
QDE belongs to the latter.
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The most relevant work to ours is a pairwise
comparison based approach proposed by Liu et al.
(2013) to estimate question difficulty levels in C-
QA services. They have also demonstrated that
a similar approach can be utilized to estimate us-
er expertise levels (Liu et al., 2011). Yang et al.
(2008) and Chen et al. (2013) have also proposed
pairwise comparison based methods, for task dif-
ficulty estimation and rank aggregation in crowd-
sourcing settings. Our work differs from previous
pairwise comparison based methods in that it fur-
ther utilizes textual information, formalized as a
manifold regularizer.

Manifold regularization is a geometrically mo-
tivated framework for machine learning, enforcing
the learning model to be smooth w.r.t. the geomet-
rical structure of data (Belkin et al., 2006). Within
the framework, dimensionality reduction (Belkin
and Niyogi, 2001; Cai et al., 2008) and semi-
supervised learning (Zhou et al., 2004; Zhu and
Lafferty, 2005) algorithms have been constructed.
In dimensionality reduction, manifold regulariza-
tion is utilized to guarantee that nearby points will
have similar low-dimensional representations (Cai
et al., 2008), while in semi-supervised learning it
is utilized to ensure that nearby points will have
similar labels (Zhou et al., 2004). In our work, we
assume that nearby questions (in terms of textual
similarities) will have similar difficulty levels.

Predicting reading difficulty levels of text is
also a relevant problem (Collins-Thompson and
Callan, 2004; Schwarm and Ostendorf, 2005). It
is a key to automatically finding materials at ap-
preciate reading levels for students, and also helps
in personalized web search (Collins-Thompson et
al., 2011). In the task of predicting reading dif-
ficulty levels, documents targeting different grade
levels are taken as ground truth, which can be eas-
ily obtained from the web. However, there is no

naturally annotated data for our QDE task on the
web. Other related problems include query dif-
ficulty estimation for search engines (Carmel et
al., 2006; Yom-Tov et al., 2005) and question dif-
ficulty estimation for automatic question answer-
ing systems (Lange et al., 2004). In these tasks,
query/question difficulty is system-oriented and ir-
relevant with human knowledge, which is a differ-
ent setting from ours.

7 Conclusion and Future Work

In this paper, we have proposed a novel method for
estimating question difficulty levels in CQA ser-
vices, called Regularized Competition Model (R-
CM). It takes fully advantage of questions’ textu-
al descriptions besides question-user comparisons,
and thus can effectively deal with data sparsity and
perform more accurate estimation. A K-Nearest
Neighbor approach is further adopted to estimate
difficulty levels of cold-start questions. Experi-
ments on two publicly available data sets show
that RCM performs significantly better than exist-
ing methods in the estimation task, for both well-
resolved and cold-start questions, demonstrating
the advantage of incorporating textual informa-
tion. It is also observed that RCM might automat-
ically measure the knowledge levels of words.

As future work, we plan to 1) Enhance the ef-
ficiency and scalability of RCM. The complexity
analysis in Section 3.2 indicates that storing and
processing the graph Laplacian is a bottleneck of
RCM. We would like to investigate how to deal
with the bottleneck, e.g., via parallel or distribut-
ed computing. 2) Apply RCM to non-technical
domains. For non-technical domains such as the
“news and events” category of Yahoo! Answer-
s, there might be no strongly distinct notions of
“experts” and “non-experts”, and it might be more
difficult to distinguish between “hard questions”
and “easy questions”. It is worthy investigating
whether RCM still works on such domains.
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Abstract

A poll consists of a question and a set of
predefined answers from which voters can
select. We present the new problem of vote
prediction on comments, which involves
determining which of these answers a
voter selected given a comment she wrote
after voting. To address this task, we ex-
ploit not only the information extracted
from the comments but also extra-textual
information such as user demographic in-
formation and inter-comment constraints.
In an evaluation involving nearly one mil-
lion comments collected from the popu-
lar SodaHead social polling website, we
show that a vote prediction system that ex-
ploits only textual information can be im-
proved significantly when extended with
extra-textual information.

1 Introduction

We introduce in this paper a new opinion mining
task,vote prediction on comments in social polls.
Recall that a poll consists of a question accompa-
nied by a set of predefined answers. A user who
votes on the question will choose one of these an-
swers and will be prompted to enter a comment
giving an explanation of why she chose the an-
swer. Given a poll and a user comment written
in response to it, the task ofvote prediction seeks
to determine which predefined answer was chosen
by the author of the comment.

A solution to the vote prediction problem would
contribute significantly to our understanding of the
underlying attitudes of individual social polling
website users. This understanding could be ex-
ploited for tasks such as improving user experi-
ence or directed advertising; if we can predict how
a user will vote on a question, we can make more
accurate guesses about what kind of content/ads

related to the question the user would like to see.
Unfortunately, a major difficulty of vote predic-
tion arises from the casual nature of discussion in
social media. A comment often contains insuffi-
cient information for inferring the user’s vote, or
in some cases may even be entirely absent.

In light of this difficulty, we exploit two addi-
tional types of information in the prediction pro-
cess. First, we employ demographic features de-
rived from user profiles. Demographic features
may be broadly useful for other opinion mining
tasks such as stance classification (Somasundaran
and Wiebe, 2010), as many social media web-
sites like CreateDebate1 allow users to create pro-
files with similar demographic information. Previ-
ous work has attempted to predict such latent fea-
tures (e.g., Rao and Yarowsky (2010), Burger et
al. (2011)) rather than employing them for opin-
ion mining tasks.

Second, we exploit inter-comment constraints
to help us perform joint inference over votes on
different questions. Note that previous work on
debate stance recognition has also employed con-
straints to improve the inference process. Specif-
ically, in stance prediction, it is typical to em-
ploy so-called author constraints (e.g., Thomas
et al. (2006), Bansal et al. (2008), Walker et al.
(2012a), Hasan and Ng (2013)), which specify that
two documents written by the same author for the
same topic should have the same stance. However,
in vote prediction, author constraints are not use-
ful because a user is not permitted to cast more
than one vote per question, unlike in stance pre-
diction, where users may engage in a debate and
therefore post more than once per debate topic.
Consequently, we propose two new types of con-
straints for exploiting inter topic user voting pat-
terns. One constraint involves pairs of authors and
the other involves pairs of questions. These con-
straints are also potentially useful for other opin-

1http://www.createdebate.com/
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ion mining tasks involving social media, as social
media sites typically allow users to comment on
multiple topics. Note that enforcing constraints in-
volving two questions is by no means trivial, as the
possible class values associated with the two com-
ments may not necessarily be the same.

Another contribution of our work lies in our
adaptation of the label propagation algorithm (Zhu
and Ghahramani, 2002) to enforce constraints for
vote prediction. Recall that existing stance classi-
fication approaches enforce constraints using min-
imum cut (Thomas et al., 2006), integer linear pro-
gramming (Lu et al., 2012), and loopy belief prop-
agation (Burfoot et al., 2011). Our decision to em-
ploy label propagation stems in part from the in-
ability of loopy belief propagation and integer lin-
ear programming to efficiently process the nearly
one million comments we have, and in part from
the inability of the traditional two-way minimum
cut algorithm to handle multiclass classification.
It is worth noting, however, that other variations
of the label propagation algorithm have been pro-
posed for unrelated NLP tasks such as automati-
cally harvesting temporal facts from the web (e.g.,
Wang et al. (2011) and Wang et al. (2012)).

While we are the first to address the vote predic-
tion task, other researchers have previously used
social media to predict the outcomes of various
events, primarily by analyzing Twitter data. For
example, Tumasjan et al. (2010) and Gayo-Avello
et al. (2011) performed the related task of predict-
ing the outcomes of elections. Rather than pre-
dicting election outcomes, O’Connor et al. (2010)
focused on finding correlations between measures
derived from tweets and the outcomes of politi-
cal events like elections and polls. Finally, Asur
and Huberman (2010) predicted movies’ box of-
fice success. These tasks contrast with our task of
vote prediction in that they are concerned with ag-
gregate measures such as the fraction of the vote
each candidate or party will win in an election or
how much money a movie will make at the box
office, whereas vote prediction is concerned with
predicting how individual people will vote on a
much wider variety of news/political topics.

2 Corpus

SodaHead2 is a social polling website where users
vote on and ask questions about a wide variety of
topics ranging from the serious (e.g., “Should the

2http://www.sodahead.com

U.S. raise the minimum wage?”) to the silly (e.g
“What is your favorite kind of pie?”). Whenever a
user votes on one of these questions, choosing one
of a set of predefined answers, she is prompted to
enter a comment giving an explanation of why she
chose the answer she did. Our corpus3 consists of
all the comments4 users posted under all featured
questions in the News & Politics category of the
SodaHead website between March 12, 2008 and
August 21, 2013.

This dataset consists of a total of 997,379 com-
ments over 4,803 different questions, so an aver-
age of 208 comments are written in response to
each question. The length of an average comment
is 49 words. As Table 1 illustrates, these questions
may have more than two possible answers, with an
average question having 2.4 possible answers.

Each SodaHead user has her own profile that
contains demographic information about her. As
we can see from Table 2, many users choose to
provide only some information about themselves,
leaving many of the demographic fields blank.
108,462 users posted at least one comment in our
corpus, with an average user commenting on 9.2
of our questions.

3 Baseline Systems

To perform our experiments, we first split our
comments into three sets, a test set for evaluating
performance, a training set for training classifiers,
and a development set for tuning parameters. In
order to ensure that the comparisons of our experi-
ments are valid, we construct our test set using the
same 20% of comments in the dataset regardless
of experiment. Since our goal is to plot a learning
curve illustrating how our various vote prediction
systems perform given different amounts of train-
ing and development data, we vary the size of our
training and development sets across experiments
so that in the smallest experiment, together they
comprise 25% of the remaining (non-test) com-
ments, and in the largest experiment, they com-

3http://www.hlt.utdallas.edu/%7epersingq/SocialPolls/ is
the distribution site for our corpus. We preserve user
anonymity by replacing the original id of each user with a
random number in our corpus.

4A “comment” is the text a user posted when submitting
her vote on a question. It does not include posts not associ-
ated with a vote (such as responses to other posts) or votes
where the user chose not to enter a comment. Thus, there
is a one-to-one relationship between comments in votes in
our dataset. The vote associated with a comment is always
known.
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Question Vote Comment
Who Won Round Two of
the Presidential Debate?

Barack Obama Binders full of women. That is all.
Mitt Romney Obama is inept and a liar. We can’t survive 4 more years of his crazy crap.

What’s the Best Way to
Read a Magazine?

in print Upside down like Luna Lovegood.
online Print costs money. It also doesn’t have a Search function.
on a tablet device since sooooo many people have tablet devices why read it as print or online?
on a smartphone Clicked in print!!! Aargh

Table 1: Sample questions and comments. All of the pre-defined answers for these questions are repre-
sented by one comment.

User ID 3479864 3189372
Age 25-34
Smoker No
Drinker No
Income
Sexual Orientation Straight
Relationship Status Single
Political Views Conservative Moderate
Ethnicity
Looking For
Career Industry
Children Undecided
Education High School
Gender Female Male
Religious Views Other Christian
Employment Status
Weight Type

Table 2: Sample user profiles.

prise 100% of the remaining comments. For each
experiment, we maintain a ratio of three training
comments to one development comment.

Recall that each comment in our dataset is writ-
ten in response to a particular question. For each
test comment, our goal is to predict the user’s an-
swer to the question given the text of her comment.
One of the major inherent difficulties of our task
is that it consists not of one, but of 4,803 sep-
arate multiclass classification problems (one for
each question). As a result, our approach to the
problem necessarily has to be somewhat generic,
as it would be too time-consuming to develop an
appropriate feature set for each question.

3.1 Baseline 1

Our first baseline’s (B1) approach employs 4,803
multiclass classifiers (one for each question). Each
classifier is trained on one question’s training set,
representing each comment using only a bias fea-
ture. Each of our classifiers is trained using MAL-
LET’s (McCallum, 2002) implementation of max-
imum entropy (ME) classification. This is equiv-
alent to merely counting the number of training
set comments that voted for each possible answer,
selecting the most frequent answer, then applying

this label to all the comments in the test set. This
majority baseline serves primarily to tell us how
well our more sophisticated baseline performs.

3.2 Baseline 2

Our second baseline (B2) is constructed in exactly
the same way asB1 except that each classifier is
trained using both a bias feature and a standard set
of feature types described below.

3.2.1 Features

Since the questions in our dataset come from the
News & Politics category of the SodaHead web-
site, many of the questions’ topics are political.
For that reason, it makes sense to use features
which have been shown to work well on other
political classification problems. We therefore
base our feature set on that used by Walker et
al. (2012b) for political debate classification. Our
features are described below.

N-grams. Unigrams have been shown to per-
form well in ideological debates (Somasundaran
and Wiebe, 2010), so we therefore present our
classifiers with lemmatized unigram, bigram, and
trigram features. We normalize the n-gram feature
vector to unit length to avoid giving undue influ-
ence to longer comments.

Cue Words. Based on other work (Fox Tree
and Schrock, 1999; Fox Tree and Schrock, 2002;
Groen et al., 2010; Walker et al., 2012b), we also
present our classifiers with features representing
the first lemmatized unigram, bigram, and trigram
appearing in each comment. These may be useful
in our task when, for example, a user’s comment
begins with or entirely consists of a restatement of
the answer she chose. So if the possible answers
for a given question are “Yes” and “No”, a user
might write in her comment “Yes. Because ...”,
and this would make the “CueWord:Yes” feature
useful for classifying this comment.

Emotion Frequency. For each word in a com-
ment, we used the NRC Emotion Word Lexicon
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(Mohammad and Yang, 2011) to discover if the
word conveys any emotion. Then, for each emo-
tion or sentiment covered by the lexicon (anger,
anticipation, disgust, fear, joy, sadness, surprise,
trust, positive, or negative)ei, we construct a fea-
tureei:

C(ei)
total describing how much of the comment

consists of words conveying emotionei, where
C(ei) is the count of words in the comment bear-
ing emotionei andtotal is the number of words
in the comment. To understand why this fea-
ture may be useful, consider the question “Does
Sarah Palin deserve VP?” We suspect that users
who post comments laden with words associated
with positive emotions like joy are more likely
to vote “Yes” because the positive emotions im-
ply they are happy about a Sarah Palin vice presi-
dency. Similarly, users who post comments laden
with negative emotions like anger might be more
likely to vote “No”.

Dependencies. We use the Stanford Parser (de
Marneffe et al., 2006) to extract a set of depen-
dencies from each comment. For an example of
how dependencies might help in our task, con-
sider the second comment in Table 1. From this
comment, we can extract the dependency triple
dependency:(nsubj,inept,obama), which indicates
that the user who wrote it does not like Obama and
is therefore more likely to have voted for Romney
in the question. Dependency feature vectors are
normalized to unit length.

Emotion Dependencies. To form an emo-
tion dependency feature, we take a regular de-
pendency feature and replace each of its words
where possible with the emotion it evokes as deter-
mined by the NRC Emotion Word Lexicon. Thus
from the dependency:(nsubj,inept,obama) exam-
ple above, we would generate three features: emo-
tiondependency:(nsubj,anger,obama), emotionde-
pendency:(nsubj,disgust,obama), and emotionde-
pendency:(nsubj,negative,obama). These features
help generalize dependencies, and this is use-
ful because predictive features like emotiondepen-
dency:(nsubj,negative,obama) appear frequently
in the comments for this question, but depen-
dency:(nsubj,inept,obama) does not. Emotion De-
pendency feature vectors are normalized to unit
length.

Post Information. Features under this category
just calculate some basic statistics about a com-
ment. These features may be useful because, for
example, the question “Most Scandalous Politi-

cians of 2008− Who deserves the title?” has six
possible answers, each except the last naming a
particular well-known politician. The last choice
is “The most scandalous politician of 2008 is ...”
and the user is expected to name a politician in her
comment. It would make sense for users choos-
ing this option to have written longer responses
since they have to name and possibly explain their
choice to users who might not necessarily know
who their chosen politician is.

3.2.2 Feature Selection

Because some of the feature types (n-grams, cue
words, dependencies, and emotion dependencies)
described in the previous subsection are expected
to generate a large number of non-predictive fea-
tures, we trim some of the most irrelevant fea-
tures out of the feature set to avoid memory prob-
lems. Therefore, following Yang and Pedersen
(1997), for each question we calculate the infor-
mation gain of each feature of these types on the
training set. We then remove those features having
the lowest information gain as well as those fea-
tures occurring less than ten times in the dataset.
Early experiments showed that 1,000 was a rea-
sonable number of features to keep, so for all ex-
periments we keep only the top 1,000 features of
these types. Note that we do not apply feature se-
lection to emotion frequency or post information
features, as each of these sets consists of a small
number of real-valued features.

4 Demographic Features

As mentioned in the introduction, a major diffi-
culty inherent to our problem is that in many cases
a comment contains insufficient information for
inferring the underlying vote. Aside from being
short, the comments shown in Table 1 are typ-
ical of comments found in the dataset. Some
comments are like the first and third in the table,
requiring some obscure bit of world knowledge
to understand what the writer is saying. Others
like the fourth only explain why the user did not
choose a particular answer, which is always po-
tentially useful, but sufficient only if the comment
excludes every other possible choice.

Because it is difficult to tell how a user voted
given her comment, we exploit the demographic
information users provide in their profiles as an
additional source of information. Since many
of the questions in our dataset deal with poli-
tics, we anticipate that information about things
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such as whether a comment was written by a
conservative or progressive user would be use-
ful for predicting the answers of many comments.
For each comment, we encode demographic in-
formation as features in the following way. For
each field in the user’s profile shown in Table 2
(aside from user ID), we construct a feature of the
form Fi:Vi if the user filled in fieldFi with value
Vi. Thus, any comment made by user 3479864
would include the features Age:25−34, Politi-
calViews:Conservative, Gender:Female, and Reli-
gion:Other.

Here is an example of a comment whose
predicted vote gets corrected by adding demo-
graphic features to our system. For the ques-
tion, “LPGA Decides to Allow Transgender Com-
petitors: Good or Bad Move for Golf?”, user
2252750 writes, “LPGA ...can let monkeys play if
they wish....nobody gives a rip... bark”. Of the
three possible answers for this question, “Good
move”, “Bad move”, and “Undecided”, our base-
line system without demographics believes that
user 2252750 probably voted for the third, as
“nobody gives a rip” makes him sound apathetic
toward the issue. However, our demographic
system notices that his profile contains “Reli-
gion:Christian”, and users with this demographic
attribute choose “Bad Move” 64% of the time.
Thus, demographic features allowed our system to
correctly predict his vote for “Bad Move”.

Since demographics are also expected to gen-
erate a large number of non-predictive features,
we apply feature selection to them as described in
Section 3.2.2.

5 Enforcing Constraints

We mentioned earlier that an average SodaHead
question contains 208 comments. This implies
that there are only about 31−125 comments5 in
the average training set for one of our ME classi-
fiers. It would be difficult to train a good classi-
fier from a training set this small even if we had
feature sets tailored to work well on each of the
4,803 questions. While we have already attempted
to exploit user information (in the form of de-
mographic features) to help improve our system’s
performance, this approach still treats the task as
4,803 separate classification problems. It does not
allow for the possibility that classification on one

5At the low and high end of the learning curve respec-
tively.

question may be improved by exploiting informa-
tion gleaned from votes on other questions.

One way we might exploit such information is
by first noticing that, for any pair of questions,
there may be multiple users who commented on
both. This overlap between questions allows us to
calculate how predictive a user’s vote on one ques-
tion is of how she will vote on the other. For ex-
ample, on the question “Who Would You Rather
Have Dinner With?”, we found that users who
voted for “Mitt Romney” were much more likely
to choose “No, I’m still voting for him” on the
question “Does Mitt Romney’s ’Entitled’ Remarks
Change Your Opinion of Him?”. Similarly, users
who voted to have dinner with “Barack Obama”
were much more likely to vote “Yes, I’m not vot-
ing for him anymore” on the “entitled” question.
A system that somehow takes into account this in-
formation might correctly classify a difficult com-
ment on the “entitled” question if it notices that the
comment was written by a user who commented
on both questions and it knows how the user voted
on the “dinner” question. We call the kind of con-
straint described here aQuestionPair constraint.

We might also exploit information from other
questions by noticing that there are users who
share similar attitudes on a wide variety of top-
ics in our dataset. We can gauge how often a
pair of users agree with each other by compar-
ing their votes on every question on which they
have both voted where their comments appear in
the training set. So for example, if we see that
two users have agreed on questions about George
H.W. Bush, Bill Clinton, and George W. Bush,
we can guess that they will also agree on a ques-
tion about Barack Obama. Similarly, if they dis-
agreed on all those questions, they are likely to
disagree on the last question. A system that takes
into account this kind of information could cor-
rectly classify an otherwise difficult comment if it
knows how another user voted on this question and
also knows how often the two users agree on other
questions. We call the kind of constraint described
here aVoterPair constraint.

In order to enforce both kinds of constraints,
we introduce a variation of the label propagation
algorithm (Zhu and Ghahramani, 2002). In our
version of the label propagation algorithm, each
comment in our dataset is represented by a node
in a graph. Each node is associated with a proba-
bility distribution indicating the likelihood that the
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comment belongs to each of its question’s possible
answers. Thus, when we initialize the graph, each
training set node’s probability distribution is set to
reflect its comment’s actual label (with a proba-
bility of 1 for the comment’s actual label and 0
for each other answer), and each development or
test set node’s probability distribution is set to the
value predicted by another classifier such asB2 or
B2 + Dem since the algorithm is not permitted
to see the comment’s actual label. Lines 7−12 in
Figure 1 describe the graph’s initialization.

Now that we have set up the graph’s nodes, we
need to explain how our graph’s edges work. As
we discussed earlier in this section, the edges in
our graph will represent two kinds of soft con-
straints. Each edge allows one of a node’s neigh-
bors to cast a vote (in the form of a probability dis-
tribution over possible answers) for what it thinks
the node’s answer should be. Let us call the com-
ment node whose label we are trying to predict the
target node and the comment node which casts the
vote thesource node.

Our graph contains a QuestionPair edge be-
tween any source and target comments written by
the same user. Since a user cannot comment more
than once on any question, the source and target
comments will occur in two different questions. In
order to determine how the source node votes over
a QuestionPair edge, we need to calculate some
probabilities. In particular, we need to determine
the probability that a user will vote for possible
answerk in the target questionQI given that she
voted for answerl in the source questionQJ :

P (QIk
|QJl

) =
C(QIk

,QJl
)+γ

∑

m∈A(QI )

(C(QIm ,QJl
)+γ)

whereC(QIn , QJl
) is the number of users who

voted for answern in QI and answerl in QJ , and
A(QI) is the set of possible answers onQI . We
setγ, the smoothing factor, to 10 since this value
worked well in earlier experiments. The source
nodeS casts its vote on target nodeT for the prob-
ability distribution given by:

QPS,T (QIk ) =
∑

m∈A(QJ )

PS(QJm)P (QIk |QJm)

wherePS(QJm) is the probability currently asso-
ciated with answerm in S’s question (QJ ).

The graph contains a VoterPair edge between
any source and target nodes on the same question
if the users who posted these comments have both
voted on at least one other question together and
their comments on the other question(s) occurred

in the training set. To determine how the source
node votes over a VoterPair edge, we need to cal-
culate the probability that the source and target
users will agree on a generic issue:

Pagr(US , UT ) = Cagr(US ,UT )+1
Cagr(US ,UT )+Cdis(US ,UT )+2

whereCagr(US , UT ) is the number of questions
on which usersUS and UT voted for the same
answer and both their comments occurred in the
training set,Cdis(US , UT ) is the number of ques-
tions on whichUS and UT voted for different
answers where both their comments occurred in
the training set, and the+1 and+2 are used for
smoothing. The probability distribution that the
source nodeS votes for on target nodeT is then
given by:

V PS,T (QIk) = PS(QIk )Pagr(US , UT )

+
∑

m∈A(QI ),
m 6=k

(PS(QIm))
1− Pagr(US , UT )

|A(QI)| − 1

wherePS(QIn) is the probability currently asso-
ciated with answern in the source node’s question
(QI ), and |A(QI)| is the number of possible an-
swers onQI . We divide the second term, which
deals with disagreement, by|A(QI)| − 1 because,
even if we know that the target and source users
disagreed on the answer to a particular question
and that the source user did not vote for answer
k, there is only a 1

|A(QI)|−1 chance that the target
user voted for answerk since there are|A(QI)|−1
non-k answers to choose from.

Now that we have described how edges are
added to the graph and how source comment nodes
vote over the edges, we are ready to begin iterat-
ing over the label propagation algorithm (line 13 in
Figure 1). For each iteration of the algorithm, we
update each development or test set node’s answer
probability distribution by assigning it a weighted
sum of (1) the initial probability distribution as-
signed to the node, (2) the sum of the Question-
Pair edges’ votes, and (3) the sum of the VoterPair
edges’ votes (line 16 in Figure 1). Upon comple-
tion of the algorithm, if our soft constraints work
as expected, the new labeling of comment nodes
should be more accurate than their initial labeling.

We tune the parametersWI , WV , WQ, and
iterations jointly by an exhaustive search of the
parameter space to maximize classification accu-
racy on the development set. Each of the weight
parameters is allowed to take one of the values 0,
1, or 2, and the iteration parameter is allowed take
one of the values 0, 1, 2, 3, 4, 5.
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1: LabelPropagation(Tr, D, Te, iterations, Wi, WV , WQ, I)
2: Inputs:
3: Tr, D, Te: Comments in Training, Development, and Test set
4: iterations: The number of iterations to perform
5: Wi, WV , WQ: Weights assigned to initial, VoterPair, and QuestionPair constraints
6: I: Initial answer probability distribution for all comments. Should reflect actual labels for training set comments and

classifier predictions for development and test set comments
7: for all C ∈ Tr ∪D ∪ Te do
8: Create node representing C
9: Cp ← IC

10: //Cp: nodeC ’s current probability distribution over possible answers
11: // IC : initial answer probability distribution for comment C
12: end for
13: for j = 1 to iterations do
14: for all nodeC ∈ D ∪ Te do
15: Add all edges targeting nodeC
16: Cp ← Norm(WIIC + WV

∑
k V Pk,C + WQ

∑
k QPk,C)

17: //V Pk,C , QPk,C : kth VoterPair, andkth QuestionPair votes for node C
18: Remove all edges targeting nodeC
19: end for

20: end for

Figure 1: Our label propagation algorithm.

One may be surprised to notice how we add
edges to the graph in the algorithm only to delete
them three lines later (lines 15 and 18 in Figure 1).
Though edges can be added at any point in the al-
gorithm, one benefit of using the label propagation
algorithm is that it is simple enough that it is not
necessary store all the edges in memory at once.
The only time we need to store an edge is when its
target is being voted on. This means that the label
propagation algorithm can handle large datasets
like ours with huge numbers of nodes and edges
without being prohibitively space-expensive.

6 Evaluation

6.1 Experimental Setup

We mentioned in Section 3 that we split our
dataset of 997,379 comments into a test set com-
prising about 20% of the dataset’s comments and
a training and development set comprising some
fraction of the remaining 80% of the comments.
We actually split the data up like this five different
times so that each comment appears in an experi-
ment’s test set exactly once. In this way, through
the use of five fold cross-validation, we can report
our results on the entire dataset.

6.2 Results and Discussion

Figure 2a shows the accuracy of the predictions
made by various systems. First, let us compare
our first and second baselines. Recall that the first
baseline (B1) predicts that all test comments will
have the same label as the majority of training

comments, and the second baseline’s (B2) predic-
tions are the output of ME classifiers trained with a
generic feature set. As we can see from the graph,
at very small training set sizes, the standard set of
features supplied toB2 does little more than con-
fuse the ME learner, as it performs slightly but not
significantly worse6 than the first baseline when
the training/development set comprises only 25%
of the available data. This is understandable, as
25% of an average question’s available data is only
42 comments, an extremely small number of ex-
amples to learn from for most NLP tasks. Clearly
a better approach than the one provided by the sec-
ond baseline is needed. Though the average train-
ing set sizes at the 50%, 75%, and 100% levels are
still relatively small,B2 significantly outperforms
B1 at all these levels.

The small improvement sizes yielded byB2

may be attributable to some of the inherent dif-
ficulties of the problem, particularly that (1) it is
composed of so many (4,803) separate subprob-
lems that it is impractical for us to tailor a unique
feature set for each one, (2) the average question is
associated with a very small number of comments
(about 208), making it difficult to train a reason-
ably good classifier for any question, and (3) many
of the comments contain insufficient information
for inferring the underlying votes. Perhaps some
of our proposed extensions toB2 can help address

6All significance tests are paired t-tests, withp < 0.05.
Because we calculate a large number of significance results,
the p values we report are obtained using Holm-Bonferroni
multiple testing correction (Holm, 1979).
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(b) Arbitrary User Vote Prediction.

Figure 2: Five-fold cross-validation vote prediction learning curves.

some of these problems.

The first improvement we proposed involved
exploiting demographic features provided by users
to help with our prediction tasks. When we com-
bine Dem and B2’s feature sets, the resulting
system (B2 + Dem) performs better than any of
the systems discussed thus far at all four train-
ing/development set size levels, yielding signifi-
cant improvements overB2 at all four levels. This
demonstrates that our demographic features are a
useful complement to a standard approach like the
one used byB2.

The second improvement we proposed involved
using a variation of the label propagation algo-
rithm to enforce QuestionPair constraints. Ques-
tionPair constraints, recall, allowed us to exploit
the observed voting patterns of users who voted
in the training set on any particular pair of ques-
tions. These constraints were expected to improve
our predictions for any user who voted on both
questions when at least one of their votes appeared
in the test set. SystemB2 + QPair corresponds
to following the algorithm in Figure 1, using sys-
temB2’s ME classifiers to initialize a label prop-
agation graph, and then setting the VoterPair edge
weight (WV ) to 0, thus allowing only Question-
Pair constraints. When we compare this system to
B2, we see that the performance boost Question-
Pair constraints give us over the baseline is consis-
tently greater than the boost given by adding de-

mographic features to it (B2 + Dem) across all
training/development set sizes. The improvement
overB2 is even significant at the 75% and 100%
training/development set sizes.

The last improvement we proposed involved
adding VoterPair constraints to the label propaga-
tion graph. Recall that VoterPair constraints al-
lowed us to exploit how frequently we observed
two users agreeing with each other to predict
whether they will agree on any question they both
voted on. SystemB2 +V Pair corresponds to fol-
lowing the label propagation algorithm usingB2’s
ME classifiers to initialize the graph, then setting
the QuestionPair edge weight (WQ) to 0, thus al-
lowing only VoterPair constraints. The addition of
VoterPair constraints yields the largest significant
improvements overB2 at all four levels, indicating
that, in the absence of our other proposed improve-
ments, VoterPair edge constraints are the most im-
portant addition we can make to our baseline.

While we have now shown that each of our pro-
posed extensions yields significant improvements
overB2, this does not necessarily mean that each
one is useful in the presence of the others. For
example, it might be the case that QuestionPair
constraints and Demographic features correct the
same kinds of classification errors, and therefore it
may be sufficient to use either one or the other to
obtain good results, but using both is unnecessary.
To test how useful they are in each other’s pres-
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ence, we perform the following experiment. First,
we run the algorithm using all three improvements
(B2 +Dem+QPair +V Pair in Figure 2a). We
then run the same experiment three more times,
each time removing one of the three extensions.
By measuring how much performance decreases
when we remove each of the three improvements,
we can determine whether each improvement pro-
vides unique useful information, or whether the in-
formation it provides is already being provided by
one of the other improvements.

To see what happens when we remove demo-
graphic features from the full system, we need to
compareB2 +Dem+QPair+V Pair andB2 +
QPair+V Pair in Figure 2a. While the decrease
in performance after removing demographic fea-
tures was modest, the difference is nevertheless
significant at all four training/development set
sizes, suggesting that demographic features do
provide unique information to the system.

By comparing lineB2 + Dem + QPair +
V Pair to lineB2 +Dem+V Pair, we can deter-
mine the impact of QuestionPair constraints. Re-
moving QuestionPair constraints also had a mod-
est impact on the full system’s performance, de-
creasing accuracy at all four training/development
set sizes, significantly so at the 50%, 75%, and
100% levels. Interestingly, the impact of Ques-
tionPair constraints appears to grow with the train-
ing set, while the demographic features appear
to have a greater impact when the training set is
small. We can see this by noting that the two lines
cross at around 55%. This suggests that Question-
Pair constraints are especially useful in problems
where it is cheap to obtain a lot of training data,
but in problems where the data has to be manually
annotated, demographic features are more useful.

Finally, we can compare lineB2 + Dem +
QPair + V Pair to lineB2 + Dem + QPair to
see what happens when we remove VoterPair con-
straints from our system. This comparison illus-
trates that VoterPair constraints are by far the most
important improvement we removed from the full
system, as removing them yielded large significant
decreases at all four levels.

Though thus far we have only used it to analyze
the the contributions of different individual im-
provements, the full systemB2+Dem+QPair+
V Pair is interesting in itself. Of all the systems
we have constructed, it performs the best, yield-
ing improvements of up to 5.18% and 3.88% when

compared toB1 andB2 respectively. Its improve-
ments over both baselines are statistically signifi-
cant at all four training/development set sizes.

6.3 Arbitrary User Vote Prediction

One interesting question that we have not yet ad-
dressed is, is it possible to predict how a user
would vote on a question she has not yet seen?
This problem is interesting because an average
question receives votes from only 0.2% of the
users in our dataset, and thus a system for predict-
ing an arbitrary user’s vote would be able to pre-
dict the votes of the other 99.8% of users. A solu-
tion to this prediction problem would have practi-
cal applications in areas such as directed advertis-
ing (e.g., if we could predict how a user would vote
on the magazine question in Table 1, we would
have a better idea of what kinds of reading de-
vices/services would interest her).

We can mimic this problem with our dataset
by treating the comment text associated with test
votes as unseen since we cannot expect an arbi-
trary user to have commented on any particular
question we are interested in7. It does, however,
make sense for us to expect our arbitrary user to
have provided some personal demographic infor-
mation, and thus a system for making these types
of predictions could reasonably make use of de-
mographic features. Similarly, in this situation we
would expect to have knowledge of all users’ train-
ing set voting histories. Thus, it would also be rea-
sonable for our system to exploit the QuestionPair
and VoterPair constraints described in Section 5.
Thus, to test how well our system performs on this
task, we repeat all experiments from the previous
section while replacingB2 (which uses a ME clas-
sifier trained on comment-based features) withB1

(the most frequent baseline, which uses a ME clas-
sifier trained using only a bias feature). The results
of these experiments are shown in Figure 2b.

If we compare the results fromB1 to B1+Dem
(which complimentsB1’s bias feature with the de-
mographic feature set), we notice thatB1 + Dem
is significantly worse thanB1 at all training set
sizes. This confirms our suspicion from the pre-

7Although we are trying to mimic the situation in which
we predict how an arbitrary user would vote on an arbitrary
question, we caution that the vote data we train and evaluate
on was not obtained from a set of arbitrary SodaHead users. It
consists only of votes from users who chose which questions
they wanted to answer. For this reason, the data we train and
evaluate on for any question might not be a representative
sample of SodaHead users as a whole.
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vious section that demographic features by them-
selves serve only to confuse the learner, though we
will see in a moment that they are a helpful sup-
plement to more sophisticated systems.

We can evaluate QuestionPair constraints in this
setting by comparing the results fromB1 to B1 +
QPair. B1+QPair consistently outperformsB1

at all four training set sizes, significantly so at the
75% and 100% levels, and thus QuestionPair con-
straints are also a useful addition to our system.

VoterPair constraints can be evaluated in this
setting by comparingB1 to B1 + V Pair. B1 +
V Pair significantly outperformsB1 at all four
training set sizes, and from the graph it appears
to be our most beneficial improvement.

To evaluate whether demographic features are
useful in the presence of the other improve-
ments, we compare the full system,B1 + Dem +
QPair + V Pair, to its corresponding version
without demographic features,B1 + QPair +
V Pair. ThoughB1 + QPair + V Pair signif-
icantly outperforms the full system at the 25%
training set size, the full system significantly out-
performsB1 + QPair + V Pair at the 75% and
100% levels, indicating that in this setting, demo-
graphic features are useful in the presence of a
large training set.

We can evaluate the utility of QuestionPair con-
straints in this setting by comparing the full system
to B1 + Dem + V Pair. When we remove Ques-
tionPair constraints, accuracy is consistently low-
ered at all four training set sizes, significantly so
at 50%, 75%, and 100%. This tells us that Ques-
tionPair constraints are useful in this setting.

We can evaluate how useful VoterPair con-
straints are by checking how muchB1 + Dem +
V Pair+QPair’s performance drops when we re-
move VoterPair constraints from it, yieldingB1 +
Dem + QPair. Performance drops considerably
and significantly at all four training set sizes after
removing VoterPair constraints, suggesting that in
this setting, VoterPair constraints are still the most
important of our proposed improvements.

Finally, while we have already established that
all our proposed improvements can improve per-
formance under both settings (comments visible
and comments invisible), it may be worthwhile
to compare the two sets of experiments to deter-
mine whether the comment features used in sys-
tems withB2 are useful.

A casual inspection of the two figures shows

that, broadly, each system that uses comment-
based features in Figure 2a tends to slightly out-
perform the most comparable system in Figure 2b.
At the low end of the curves, the two systems often
differ by about 1.0% in absolute accuracy, though
at the high end, the difference tends to be much
smaller, with the full system with comment fea-
tures outperforming the full system without com-
ment features by only 0.3%. Since in this setting
it is reasonable to assume a large training set, this
last result is the one we are most interested in, and
it suggests that our full system’s performance does
not suffer much due to the absence of comment
features.

One final observation we can make is that, when
comments are not visible, demographic features
appear to actively harm the performance of sys-
tems trained on a small amount of data, though
at larger training set sizes they are mostly help-
ful. We can tell this by comparing systems with
demographic features to systems without them in
Figure 2b (e.g., by comparingB1+Dem+QPair
to B1 + QPair or B1 + Dem + V Pair to B1 +
V Pair) at the 25% training set size. This is not
the case in the setting where comments are visi-
ble, as we see that demographic features always
appear helpful in Figure 2a. This reinforces the
notion that demographic features provide useful
information in general, but that they are by them-
selves too sparsely available to do more than con-
fuse the learner. They need to be supplemented by
other information sources in order for the learner
to draw correct conclusions.

7 Conclusion

We examined the task of vote prediction on com-
ments from the SodaHead website. To address this
task, we exploited not only information extracted
from the comments but also extra-textual informa-
tion, including demographic information and two
types of inter-comment constraints, QuestionPair
constraints and VoterPair constraints. Our exper-
iments involving 997,379 comments showed that
each of these extensions significantly improved a
baseline that exploited only textual information,
with VoterPair constraints being the most effective
and demographic information being the least ef-
fective. When used in combination, they obtained
up to a 3.88% improvement in absolute accuracy
over the baseline. To stimulate research on this
task, we make our dataset publicly available.
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Abstract 

In this paper we first exploit cash-tags (“$” fol-
lowed by stocks’ ticker symbols) in Twitter to 
build a stock network, where nodes are stocks 
connected by edges when two stocks co-occur 
frequently in tweets. We then employ a labeled 
topic model to jointly model both the tweets and 
the network structure to assign each node and 
each edge a topic respectively. This Semantic 
Stock Network (SSN) summarizes discussion 
topics about stocks and stock relations. We fur-
ther show that social sentiment about stock 
(node) topics and stock relationship (edge) topics 
are predictive of each stock’s market. For predic-
tion, we propose to regress the topic-sentiment 
time-series and the stock’s price time series. Ex-
perimental results demonstrate that topic senti-
ments from close neighbors are able to help im-
prove the prediction of a stock markedly. 

1 Introduction 

Existing research has shown the usefulness of 
public sentiment in social media across a wide 
range of applications. Several works showed so-
cial media as a promising tool for stock market 
prediction (Bollen et al., 2011; Ruiz et al., 2012; 
Si et al., 2013). However, the semantic relation-
ships between stocks have not yet been explored. 
In this paper, we show that the latent semantic 
relations among stocks and the associated social 
sentiment can yield a better prediction model.  

On Twitter, cash-tags (e.g., $aapl for Apple 
Inc.) are used in a tweet to indicate that the tweet 
talks about the stocks or some other related in-
formation about the companies. For example, 
one tweet containing cash-tags: $aapl and $goog 
(Google Inc.), is “$AAPL is loosing customers. 
everybody is buying android phones! $GOOG”. 
Such joint mentions directly reflect some kind of 
latent relationship between the involved stocks, 

which motivates us to exploit such information 
for the stock prediction.  

We propose a notion of Semantic Stock Net-
work (SSN) and use it to summarize the latent 
semantics of stocks from social discussions. To 
our knowledge, this is the first work that uses 
cash-tags in Twitter for mining stock semantic 
relations. Our stock network is constructed based 
on the co-occurrences of cash-tags in tweets. 
With the SSN, we employ a labeled topic model 
to jointly model both the tweets and the network 
structure to assign each node and each edge a 
topic respectively. Then, a lexicon-based senti-
ment analysis method is used to compute a sen-
timent score for each node and each edge topic. 
To predict each stock’s performance (i.e., the 
up/down movement of the stock’s closing price), 
we use the sentiment time-series over the SSN 
and the price time series in a vector autoregres-
sion (VAR) framework.  

We will show that the neighbor relationships in 
SSN give very useful insights into the dynamics 
of the stock market. Our experimental results 
demonstrate that topic sentiments from close 
neighbors of a stock can help improve the predic-
tion of the stock market markedly. 

2 Related work 

2.1 Social Media & Economic Indices 

Many algorithms have been proposed to produce 
meaningful insights from massive social media 
data. Related works include detecting and sum-
marizing events (Weng and Lee, 2011; Weng et 
al., 2011; Baldwin et al., 2012; Gao et al., 2012) 
and analyzing sentiments about them (Pang and 
Lee, 2008; Liu, 2012), etc. Some recent literature 
also used Twitter as a sentiment source for stock 
market prediction (Bollen et al., 2011; Si et al., 
2013). This paper extends beyond the correlation 
between social media and stock market, but fur-
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ther exploits the social relations between stocks 
from the social media context. 
  Topic modeling has been widely used in social 
media. Various extensions of the traditional LDA 
model (Blei et al., 2003) has been proposed for 
modeling social media data (Wang et al., 2011, 
Jo and Oh, 2011; Liu et al., 2007; Mei et al., 
2007; Diao et al., 2012). Ramage et al. (2009; 
2011) presented a partially supervised learning 
model called Labeled LDA to utilize supervision 
signal in topic modeling. Ma et al. (2013) pre-
dicted the topic popularity based on hash-tags on 
Twitter in a classification framework. 

2.2 Financial Networks for Stock 

Financial network models study the correlations 
of stocks in a graph-based view (Tse et al., 2010; 
Mantegna, 1999; Vandewalle et al., 2001; On-
nela et al., 2003; Bonanno et al., 2001). The usu-
al approach is to measure the pairwise correla-
tion of stocks’ historical price series and then 
connect the stocks based on correlation strengths 
to build a correlation stock network (CSN). 

However, our approach leverages social media 
posts on stock tickers. The rationale behind is 
that micro-blogging activities have been shown 
to be highly correlated with the stock market 
(Ruiz et al., 2012; Mao et al., 2012). It is more 
informative, granular to incorporate latest devel-
opments of the market as reflected in social me-
dia instead of relying on stocks’ historical price.  

3 Semantic Stock Network (SSN) 

3.1 Construction of SSN 

We collected five months (Nov. 2 2012 - Apr. 3 
2013) of English tweets for a set of stocks in the 
Standard & Poor's 100 list via Twitter’s REST 
API, using cash-tags as query keywords. For 
preprocessing, we removed tweets mentioning 
more than five continuous stock tickers as such 
tweets usually do not convey much meaning for 

our task. Finally, we obtained 629,977 tweets in 
total. Table 1 shows the top five most frequent 
stocks jointly mentioned with Apple Inc. in our 
dataset. Formally, we define the stock network as 
an undirected graph 𝐺 = {𝑉 , 𝐸}. The node set 
𝑉 comprises of stocks, 𝑒𝑢,𝑣 ∈ 𝐸  stands for the 
edge between stock nodes 𝑢 and 𝑣 and the edge 
weight is the number of co-occurrences. On ex-
ploring the co-occurrence statistics in pilot stud-
ies, we set a minimum weight threshold of 400 to 
filter most non-informative edges. Figure 1 
demonstrates a segment of the stock network 
constructed from our dataset. 

3.2 Semantic Topics over the Network 

Figure 2 illustrates our annotation for each tweet. 
For a tweet, 𝑑 with three cash-tags: {𝑣1, 𝑣2, 𝑣3}, 
we annotate  with the label set, 𝐿𝑑 =
 {𝑣1, 𝑣2, 𝑣3, 𝑒1,2, 𝑒1,3, 𝑒2,3}. (𝑒1,2 is “aapl_goog” 
if 𝑣1is “aapl” and 𝑣2 is “goog”). Then, the topic 
assignments of words in 𝑑 are constrained to top-
ics indexed by its label set, 𝐿𝑑. Given the annota-
tions as labels, we use the Labeled LDA model 
(Ramage et al., 2009) to jointly learn the topics 
over nodes and edges. Labeled-LDA assumes 
that the set of topics are the distinct labels in a 
labeled set of documents, and each label corre-
sponds to a unique topic. Similar to LDA (Blei et 
al., 2003), Labeled-LDA models each document 
as an admixture of latent topics and generates 
each word from a chosen topic. Moreover, La-
beled-LDA incorporates supervision by simply 
constraining the model to use only those topics 
that correspond to a document’s observed label 
set (Ramage et al., 2009). For model inference, 
we use collapsed Gibbs sampling (Bishop, 2006) 
and the symmetric Dirichlet Priors are set to: 
𝜂 = 0.01, 𝛼 = 0.01 as suggested in (Ramage et 
al., 2010). The Gibbs Sampler is given as: 

𝑝(𝑧𝑖 = 𝑘|𝑧−𝑖)~
 𝑁(𝑑𝑖,𝑘)−1+ 𝛼

𝑁(𝑑𝑖,∗)−1+ |𝐿𝑑𝑖
|∗𝛼 ∗ 𝑁(𝑘,𝑤𝑖)−1+𝜂

𝑁(𝑘,∗)−1+ |𝑉 |∗𝜂
 (1) 

where 𝑁(𝑑𝑖, 𝑘) is the number of words in 𝑑𝑖 as-
signed to topic 𝑘, while 𝑁(𝑑𝑖,∗) is the marginal-
ized sum. |𝐿𝑑𝑖

| is the size of label subset of 𝑑𝑖. 

 
Figure 2. Tweet label design. 

$goog $amzn $ebay $msft $intc
43263 23266 14437 11891 2486

Table 1. co-occurrence statistics with $aapl. 

 

Figure 1. An example stock network. 
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𝑁(𝑘, 𝑤) is the term frequency of word 𝑤 in topic 
𝑘. |𝑉 | is the vocabulary size. The subscript -1 is 
used to exclude the count assignment of the cur-
rent word 𝑤𝑖 . The posterior on the document’s 
topic distribution {𝜃𝑑,𝑘} and topic’s word distri-
bution {𝛽𝑘,𝑤} can be estimated as follows: 

𝜃𝑑,𝑘 =  𝑁(𝑑𝑖,𝑘)+ 𝛼
𝑁(𝑑𝑖,∗)+ |𝐿𝑑𝑖

|∗𝛼
                (2) 

𝛽𝑘,𝑤 =  𝑁(𝑘,𝑤𝑖)+𝜂
𝑁(𝑘,∗)+ |𝑉 |∗𝜂

                   (3) 

Later, parameters {𝛽𝑘,𝑤} will be used to compute 
the sentiment score for topics. 

3.3 Leveraging Sentiment over SSN for 
Stock Prediction 

We define a lexicon based sentiment score in the 
form of opinion polarity for each node-indexed 
and edge-indexed topic as follows: 

𝑆(𝑘) = ∑ 𝛽𝑘,𝑤
|𝑉 |

𝑤=1
𝑙(𝑤), 𝑆(𝑘) ∈ [−1,1]  (4) 

where 𝑙(𝑤) denotes the opinion polarity of word 
𝑤. 𝛽𝑘,𝑤  is the word probability of 𝑤 in topic 𝑘 
(Eq.3). Based on an opinion lexicon 𝑂, 𝑙(𝑤) = 
+1 if 𝑤 ∈ 𝑂𝑝𝑜𝑠, 𝑙(𝑤) = -1 if 𝑤 ∈ 𝑂𝑛𝑒𝑔 and 𝑙(𝑤) 
= 0 otherwise. We use the opinion English lexi-
con contributed by Hu and Liu (2004).  

Considering the inherent dynamics of both the 
stock markets and social sentiment, we organize 
the tweets into daily based sub-sets according to 
their timestamps to construct one 𝑆𝑆𝑁𝑡  ( 𝑡 ∈
[1, 𝑇 ]) for each day. Then, we apply a Labeled 
LDA for each 𝑆𝑆𝑁𝑡 and compute the sentiment 
scores for each 𝑆𝑆𝑁𝑡 ’s nodes and edges. This 
yields a sentiment time series for the node, 𝑣 , 
{𝑆(𝑣)1, 𝑆(𝑣)2, … , 𝑆(𝑣)𝑇 } and for the edge, 𝑒𝑢,𝑣, 
{𝑆(𝑒𝑢,𝑣)1, 𝑆(𝑒𝑢,𝑣)2, … , 𝑆(𝑒𝑢,𝑣)𝑇 } . We intro-
duce a vector autoregression model (VAR) 
(Shumway and Stoffer, 2011) by regressing sen-
timent time series together with the stock price 
time series to predict the up/down movement of 
the stock’s daily closing price. 

As usual in time series analysis, the regression 
parameters are learned during a training phase 
and then are used for forecasting under sliding 
windows, i.e., to train in period [𝑡, 𝑡 + 𝑤] and to 
predict on time 𝑡 + 𝑤 + 1. Here the window size 
𝑤 refers to the number of days in series used in 
model training. A VAR model for two variables 
{𝑥𝑡} and {𝑦𝑡} can be written as: 

𝑦𝑡 =  ∑ ( 𝑖
𝑥𝑥𝑡−𝑖 + 𝑖

𝑦𝑦𝑡−𝑖)
𝑙𝑎𝑔

𝑖=1
+ 𝜀𝑡  (5) 

where {𝜀} are white noises, {𝜗} are model pa-
rameters, and  notes the time steps of histori-
cal information to use. In our experiment, {𝑦𝑡} is 
the target stock’s price time series, {𝑥𝑡} is the 
covariate sentiment/price time series, and we will 

try ∈ 2,3 . We use the “dse” library in R 
language to fit our VAR model based on least 
square regression. 

4 Experiments 

4.1 Tweets in Relation to the Stock Market 

Micro-blogging activities are well correlated 
with the stock market. Figure 3 shows us how the 
Twitter activities response to a report announce-
ment of $aapl (Jan. 23 2013). The report was 
made public soon after the market closed at 
4:00pm, while the tweets volume rose about two 
hours earlier and reached the peak at the time of 
announcement, then it arrived the second peak at 
the time near the market’s next opening (9:30am). 
By further accumulating all days’ tweet volume 
in our dataset as hourly based statistics, we plot 
the volume distribution in Figure 4. Again, we 
note that trading activities are well reflected by 
tweet activities. The volume starts to rise drasti-
cally two or three hours before the market opens, 
and then reaches a peak at 9:00pm. It drops dur-
ing the lunch time and reaches the second peak 
around 2:00pm (after lunch). Above observations 
clearly show that market dynamics are discussed 
in tweets and the content in tweets’ discussion 
very well reflects the fine-grained aspects of 
stock market trading, opening and closing. 

 

Figure 3. Tweet activity around $aapl’s earnings 
report date on Jan. 23 2013. 

 

Figure 4. Tweet volume distribution in our data 
over hours averaged across each day. 
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4.2 Stock Prediction 

This section demonstrates the effectiveness of 
our SSN based approach for stock prediction. 
We leverage the sentiment time-series on two 
kinds of topics from SSN: 1). Node topic from 
the target stock itself, 2). Neighbor node/edge 
topics. We note that the price correlation stock 
network (CSN) (e.g., Bonanno et al., 2001; Man-
tegna, 1999) also defines neighbor relationships 
based on the Pearson's correlation coefficient 
(Tse et al., 2010) between pair of past price se-
ries (We get the stock dataset from Yahoo! Fi-
nance, between Nov. 2 2012 and Apr. 3 2013).  
 We build a two variables VAR model to pre-
dict the movement of a stock’s daily closing 
price. One variable is the price time series of the 
target stock ({𝑦𝑡} in Eq.5); another is the covari-
ate sentiment/price time series ({𝑥𝑡}  in Eq.5). 
We setup two baselines according to the sources 
of the covariate time series as follows: 
1. Covariate price time series from CSN, we try 

the price time series from the target stock’s 
closest neighbor which takes the maximum 
historical price correlation in CSN. 

2. With no covariate time series, we try the tar-
get stock’s price only based on the univariate 
autoregression (AR) model. 

 To summarize, we try different covariate sen-
timent (𝑆(. )) or price (𝑃(. )) time series from 
SSN or CSN together with the target stock’s 

price time series (𝑃 ∗) to predict the movement of 
one day ahead price (𝑃∗∗). The accuracy is com-
puted based on the correctness of the predicted 
directions as follows, i.e., if the prediction ∗∗ 
takes the same direction as the actual price value, 
we increment #(𝑝𝑜𝑠𝑃𝑟𝑒𝑑) by 1, #(𝑡𝑜𝑡𝑎𝑙𝑇𝑒𝑠𝑡) is 
the total number of test.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = #(𝑝𝑜𝑠𝑃𝑟𝑒𝑑)
#(𝑡𝑜𝑡𝑎𝑙𝑇𝑒𝑠𝑡)

       (6) 

 Figure 5 details the prediction of $aapl on dif-
ferent training window sizes of [15, 60] and lags. 
{𝑆(𝑎𝑎𝑝𝑙), 𝑆(𝑔𝑜𝑜𝑔), 𝑆(𝑚𝑠𝑓𝑡), 𝑆(𝑎𝑎𝑝𝑙_𝑔𝑜𝑜𝑔)} are 
from SSN, 𝑃(𝑑𝑒𝑙𝑙)  is from CSN ($dell (Dell 
Inc.) takes the maximum price correlation score 
of 0.92 with $aapl), and 𝑃 ∗ =  𝑃(𝑎𝑎𝑝𝑙)  is the 
univariate AR model, using the target stock’s 
price time series only. Table 2 further summariz-
es the performance comparison of different ap-
proaches reporting the average (and best) predic-
tion accuracies over all time windows and dif-
ferent lag settings. Comparing to the univariate 
AR model (𝑃∗ only), we see that the sentiment 
based time-series improve performances signifi-
cantly. Among SSN sentiment based approach-
es, the 𝑆(𝑔𝑜𝑜𝑔) helps improve the performance 
mostly and gets the best accuracy of 0.78 on  
2 and training window size of 53. On average, 
𝑆(𝑔𝑜𝑜𝑔) achieves a net gain over 𝑆(𝑎𝑎𝑝𝑙) in the 
range of 29% with lag 2 (0.62 = 1.29 x 0.48) and 
14% with lag 3 (0.57 = 1.14 x 0.50). Also, 
𝑆(𝑎𝑎𝑝𝑙_𝑔𝑜𝑜𝑔)  performs better than 𝑆(𝑎𝑎𝑝𝑙) . 
The result indicates that $aapl’s stock perfor-
mance is highly influenced by its competitor. 
𝑃(𝑑𝑒𝑙𝑙) also performs well, but we will see rela-
tionships from CSN may not be so reliable. 

We further summarize some other prediction 
cases in Table 3 to show how different covariate 
sentiment sources ( 𝑆(. ) ) and price sources 
(𝑃(. )) from their closest neighbor nodes help 
predict their stocks, which gives consistent con-
clusions. We compute the 𝑡-test for SSN based 
prediction accuracies against that of CSN or 
price only based approaches among all testing 

 Source Lag = 2 Lag = 3 
∗ only self 0.49(0.57)	 0.47(0.52)

CSN: 
P(.)+ ∗	

dell	 0.55(0.64)	 0.57(0.67)	

 
SSN: 

S(.)+ ∗ 

aapl 0.48(0.56)	 0.50(0.61)
goog 0.62(0.78) 0.57(0.69) 

aapl_goog 0.55(0.65) 0.52(0.56) 
msft 0.52(0.65) 0.54(0.61) 

Table 2. Performance comparison of the average and 
best (in parentheses) prediction accuracies over all 
training window sizes for prediction on $aapl. 

 

 

Figure 5. Prediction on $aapl. (x-axis is the training 
window size, y-axis is the prediction accuracy) 
with different covariate sources. 
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window sizes ([15, 60]), and find that SSN based 
approaches are significantly (𝑝 -value < 0.001) 
better than others.  

We note that tweet volumes of most S&P100 
stocks are too small for effective model building, 
as tweets discuss only popular stocks, other 
stocks are not included due to their deficient 
tweet volume.  

We make the following observations: 
  1. CSN may find some correlated stock pairs 
like $ebay and $amzn, $wmt and $tgt, but some-
times, it also produces pairs without real-world 
relationships like $tgt and $vz, $qcom and $pfe, 
etc. In contrast, SSN is built on large statistics of 
human recognition in social media, which is like-
ly to be more reliable as shown. 
  2. Sentiment based approaches {𝑆(⋅)} consist-
ently perform better than all price based ones 
{𝑃∗, 𝑃 (⋅)}. For 𝑆(⋅)  based predictions, senti-
ment discovered from the target stock’s closest 
neighbors in SSN performs best in general. This 
empirical finding dovetails with qualitative re-
sults in the financial analysis community (Mizik 
& Jacobson, 2003; Porter, 2008), where compa-
nies’ market performances are more likely to be 
influenced by their competitors. But for Google, 
its stock market is not so much influenced by 
other companies (it gets the best prediction accu-
racy on 𝑆(𝑔𝑜𝑜𝑔), i.e., the internal factor). It can 
be explained by Google Inc.’s relatively stable 
revenue structure, which is well supported by its 

leading position in the search engine market. 
  3. The business of offline companies like Target 
Corp. ($tgt) and Wal-Mart Stores Inc. ($wmt) are 
highly affected by online companies like $amzn. 
Although competition exists between $tag and 
$wmt, their performances seem to be affected 
more by a third-party like $amzn (In Table 3, 

 predicts the best for both). Not surpris-
ingly, these offline companies have already been 
trying to establish their own online stores and 
markets. 

5 Conclusion 

This paper proposed to build a stock network 
from co-occurrences of ticker symbols in tweets. 
The properties of SSN reveal some close rela-
tionships between involved stocks, which pro-
vide good information for predicting stocks 
based on social sentiment. Our experiments show 
that SSN is more robust than CSN in capturing 
the neighbor relationships, and topic sentiments 
from close neighbors of a stock significantly im-
prove the prediction of the stock market.   
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Target  ∗ only CSN:  P(.)+ ∗ SSN:  S(.)+ ∗ 
 

goog 
  dis(0.96) goog aapl amzn 
2 0.48(0.59) 0.53(0.60) 0.59(0.65) 0.44(0.53) 0.42(0.49) 
3 0.46(0.54) 0.53(0.62) 0.56(0.67) 0.50(0.59) 0.43(0.49) 

 
amzn 

  csco(0.90) amzn goog msft 
2 0.48(0.54) 0.48(0.55) 0.47(0.54) 0.57(0.66) 0.60(0.68) 
3 0.46(0.53) 0.49(0.53) 0.43(0.50) 0.55(0.63) 0.57(0.66) 

 
ebay 

  amzn(0.81) ebay amzn goog 
2 0.49(0.55) 0.51(0.57) 0.44(0.53) 0.57(0.64) 0.56(0.62) 
3 0.48(0.58) 0.49(0.54) 0.45(0.58) 0.54(0.64) 0.54(0.61) 

 
tgt 

  vz(0.88) tgt wmt amzn 
2 0.43(0.53) 0.43(0.54) 0.46(0.55) 0.49(0.56) 0.49(0.59) 
3 0.44(0.50) 0.40(0.53) 0.44(0.48) 0.41(0.48) 0.48(0.54) 

 
wmt 

  tgt(0.86) wmt tgt amzn 
2 0.53(0.59) 0.53(0.63) 0.52(0.61) 0.52(0.60) 0.60(0.65) 
3 0.53(0.64) 0.48(0.57) 0.55(0.66) 0.48(0.58) 0.58(0.66) 

 
qcom 

  pfe(0.88) qcom aapl intc 
2 0.53(0.6) 0.55(0.63) 0.57(0.61) 0.46(0.54) 0.63(0.70) 
3 0.54(0.61) 0.48(0.55) 0.56(0.65) 0.51(0.61) 0.61(0.67) 

Table 3. Average and best (in parentheses) prediction accuracies (over window sizes of [15, 
60]) of some other cases with different covariates, cell of dis(0.96) means “$dis” takes the 
maximum price correlation strength of 0.96 with “$goog” (similar for others in column 
CSN). The best performances are highlighted in bold.  
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Abstract

Demographic lexica have potential for
widespread use in social science, economic,
and business applications. We derive predic-
tive lexica (words and weights) for age and
gender using regression and classification
models from word usage in Facebook, blog,
and Twitter data with associated demographic
labels. The lexica, made publicly available,1

achieved state-of-the-art accuracy in language
based age and gender prediction over Face-
book and Twitter, and were evaluated for
generalization across social media genres as
well as in limited message situations.

1 Introduction
Use of social media has enabled the study of psycho-
logical and social questions at an unprecedented scale
(Lazer et al., 2009). This allows more data-driven dis-
covery alongside the typical hypothesis-testing social
science process (Schwartz et al., 2013b). Social me-
dia may track disease rates (Paul and Dredze, 2011;
Google, 2014), psychological well-being (Dodds et al.,
2011; De Choudhury et al., 2013; Schwartz et al.,
2013a), and a host of other behavioral, psychological
and medical phenomena (Kosinski et al., 2013).

Unlike traditional hypothesis-driven social science,
such large-scale social media studies rarely take into
account—or have access to—age and gender informa-
tion, which can have a major impact on many ques-
tions. For example, females live almost five years
longer than males (cdc, 2014; Marengoni et al., 2011).
Men and women, on average, differ markedly in their
interests and work preferences (Su et al., 2009). With
age, personalities gradually change, typically becom-
ing less open to experiences but more agreeable and
conscientious (McCrae et al., 1999). Additionally, so-
cial media language varies by age (Kern et al., 2014;
Pennebaker and Stone, 2003) and gender (Huffaker and
Calvert, 2005). Twitter may have a male bias (Mislove
et al., 2011), while social media in general skew to-
wards being young and female (pew, 2014).

Accessible tools to predict demographic variables
can substantially enhance social media’s utility for so-

1download at http://www.wwbp.org/data.html

cial science, economic, and business applications. For
example, one can post-stratify population-level results
to reflect a representative sample, understand variation
across age and gender groups, or produce personalized
marketing, services, and sentiment recommendations;
a movie may be generally disliked, except by people in
a certain age group, whereas a product might be used
primarily by one gender.

This paper describes the creation of age and gen-
der predictive lexica from a dataset of Facebook users
who agreed to share their status updates and reported
their age and gender. The lexica, in the form of words
with associated weights, are derived from a penalized
linear regression (for continuous valued age) and sup-
port vector classification (for binary-valued gender). In
this modality, the lexica are simply a transparent and
portable means for distributing predictive models based
on words. We test generalization and adapt the lex-
ica to blogs and Twitter, plus consider situations when
limited messages are available. In addition to use in
the computational linguistics community, we believe
the lexicon format will make it easier for social sci-
entists to leverage data-driven models where manually
created lexica currently dominate2 (Dodds et al., 2011;
Tausczik and Pennebaker, 2010).

2 Related Work
Online behavior is representative of many aspects of
a user’s demographics (Pennacchiotti and Popescu,
2011; Rao et al., 2010). Many studies have used lin-
guistic cues (such as ngrams) to determine if someone
belongs to a certain age group, be it on Twitter or an-
other social media platform (Al Zamal et al., 2012;
Argamon et al., 2009; Nguyen et al., 2013; Rangel
and Rosso, 2013). Gender prediction has been studied
across blogs (Burger and Henderson, 2006; Goswami
et al., 2009), Yahoo! search queries (Jones et al., 2007),
and Twitter (Burger et al., 2011; Nguyen et al., 2013;
Liu and Ruths, 2013; Rao et al., 2010). Because Twit-
ter does not make gender or age available, such work
infers gender and age by leveraging profile informa-
tion, such as gender-discriminating names or crawling
for links to publicly available data (e.g. Burger et al.,

2The LIWC lexicon, derived manually based on psycho-
logical theory, (Pennebaker et al., 2001) had 1136 citations in
2013 alone.
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2011).
While many studies have examined prediction of age

or gender, none (to our knowledge) have released a
model to the public, much less in the form of a lexi-
con. Additionally, most works in age prediction clas-
sify users into bins rather than predicting a continuous
real-valued age as we do (exceptions: Nguyen et al.,
2013; Jones et al., 2007). People have also used online
media to infer other demographic-like attributes such
as native language (Argamon et al., 2009), origin (Rao
et al., 2010), and location (Jones et al., 2007). An ap-
proach similar to the one presented here could be used
to create lexica for any of these outcomes.

While lexica are not often used for demographics,
data-driven lexicon creation over social media has been
well studied for sentiment, in which univariate tech-
niques (e.g. point-wise mutual information) domi-
nate3. For example, Taboada et al. (2011) expanded
an initial lexicon by adding on co-occurring words.
More recently, Mohammad’s sentiment lexicon (Mo-
hammad et al., 2013) was found to be the most in-
formative feature for the top system in the SemEval-
2013 social media sentiment analysis task (Wilson et
al., 2013). Approaches like point-wise mutual infor-
mation take a univariate view on words–i.e. the weight
given to one feature (word) is not affected by other
features. Since language is highly collinear, we take
a multivariate lexicon development approach, which
takes covariance into account (e.g. someone who men-
tions ‘hair’ often is more likely to mention ‘brushing’,
‘style’, and ‘cut’; weighting these words in isolation
might “double-count” some information).

3 Method

Primary data. Our primary dataset consists of Face-
book messages from users of the MyPersonality appli-
cation (Kosinski and Stillwell, 2012). Messages were
posted between January 2009 and October 2011. We
restrict our analysis to those Facebook users meeting
certain criteria: they must indicate English as a primary
language, have written at least 1,000 words in their sta-
tus updates, be younger than 65 years old (data beyond
this age becomes very sparse), and indicate their gen-
der and age. This resulted in a dataset of N = 75,394
users, who wrote over 300 million words collectively.
We split our sample into training and test sets. Our
primary test set consists of a 1,000 randomly selected
Facebook users, while the training set that we used for
creating the lexica was a subset (N = 72,874) of the
remaining users.

Additional data To evaluate our predictive lexica in
differing situations, we utilize three additional datasets:

3Note that the point-wise information-derived sentiment
lexica are often used as features in a supervised model, essen-
tially dimensionally reducing a large set of words into posi-
tive and negative sentiment, while our lexica represent the
predictive model itself.

stratified Facebook data, blogs, and tweets. The strat-
ified Facebook data (exclusively used for testing) con-
sists of equal proportions of 1,520 males and females
across 12 4-year age bins starting at 13 and ending at
60.4 This roughly matchs the size of the main test set.

Seeking out-of-domain data, we downloaded age
and gender annotated blogs from 2004 (Schler et al.,
2006) (also used in Goswami et al., 2009) and gender
labeled tweets (Volkova et al., 2013). Limiting the sam-
ple to users who wrote at least 1000 words, the total
number of bloggers is 15,006, of which 50.6% are fe-
male and only 15% are over 27 (reflecting the younger
population standard in social media). From this we use
a randomly selected 1,000 bloggers as a blogger test set
and the remaining 14,006 bloggers for training. Sim-
ilarly for the Twitter dataset, we use 11,000 random
gender-only annotated users, in which 51.9% are fe-
male. We again randomly select 1,000 users as a test
set for gender prediction and use the remaining 10,000
for training.

3.1 Lexicon Creation
We present a method of weighted lexicon creation by
using the coefficients from linear multivariate regres-
sion and classification models. Before delving into the
creation process, consider that a weighted lexicon is of-
ten applied as the sum of all weighted word relative
frequencies over a document:

usagelex =
∑

word∈lex
wlex(word) ∗ freq(word, doc)

freq(∗, doc)

where wlex(word) is the lexicon (lex) weight for the
word, freq(word, doc) is frequency of the word in the
document (or for a given user), and freq(∗, doc) is the
total word count for that document (or user).

Further consider how one applies linear multivariate
models in which the goal is to optimize feature coeffi-
cients that best fit the continuous outcome (regression)
or separate two classes (classification):

y = (
∑

f∈features

wf ∗ xf ) + w0

where xf is the value for a feature (f ), wf is the fea-
ture coefficient, and w0 is the intercept (a constant fit
to shift the data such that it passes through the origin).
In the case of regression, y is the outcome value (e.g.
age) while in classification y is used to separate classes
(e.g. >= 0 is female, < 0 is male). If all features are
word relative frequencies ( freq(word,doc)

freq(∗,doc) ) then many
multivariate modeling techniques can simply be seen
as learning a weighted lexicon plus an intercept5.

465 females and 65 males in each of the first 11 bins:
[13,16], [17,20], . . . , [53, 56]; the last bin ([57, 60]) contained
45 males and 45 females. The [61.64] bin was excluded as it
was much smaller.

5included in the lexicon distribution
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age gender
model\corpus randFB stratFB randBG randFB stratFB randBG randT

r mae r mae r mae acc acc acc acc
baseline 0 6.14 0 11.62 0 6.11 .617 .500 .508 .518
FBlex .835 3.40 .801 6.94 .710 5.76 .917 .913 .774 .856
BGlex .664 4.26 .656 11.39 .768 3.63 .838 .803 .824 .834

FB+BGlex .831 3.42 .795 7.06 .762 3.76 .913 .909 .822 .858
Tlex .816 .820 .763 .889

FB+BG+Tlex .919 .910 .820 .900

Table 1: Prediction accuracies for age (Pearson correlation coefficient(r); mean absolute error (mae) in years)
and gender (accuracy %). Baseline for age is mean age of training sample; for gender, it is the most frequent
class (female). Lexica tested include those derived from Facebook (FBlex), blogs (BGlex), and Twitter (Tlex).
We evaluate over a random Facebook sample (randFB), a stratified Facebook sample (stratFB), a random blogger
sample (randBG), and a random twitter sample (randT). All results were a significant (p < 0.001) improvement
over the baseline.

In practice, we learn our 1gram coefficients (i.e. lex-
icon weights) from ridge regression (Hoerl and Ken-
nard, 1970) for age (continuous variable) and from sup-
port vector classification (Fan et al., 2008) for gender
(binary variable). Ridge regression uses an L2 (α||β||2)
penalization to avoid overfitting (Hoerl and Kennard,
1970). Although some words no doubt have a non-
linear relationship with age (e.g., ‘fiance’ peaks in the
20s), we still find high accuracy from a linear model
(see Table 1) and it allows for a distribution of the
model in the accessible form of a lexicon. For gender
prediction, we use an SVM with a linear kernel with
L1 penalization (α||β||1) (Tibshirani, 1996). Because
the L1 penalization zeros-out many coefficients, it has
the added advantage of effectively reducing the size of
the lexica. Using the training data, we test a variety al-
gorithms including the lasso, elastic net regression, and
L2 penalized SVMs in order to decide which learning
algorithms to use.

To extract the words (1grams) to use as features
and which make up lexica, we use the Happier Fun
Tokenizer,6 which handles social media content and
markup such as emoticons or hashtags. For our main
user-level models, word usage is aggregated as the rel-
ative frequency ( freq(word,user)

freq(∗,user) ). Due to the sparse
and large vocabulary of social media data, we limit the
1grams to those used by at least 1% of users.

4 Evaluation
We evaluate our predictive lexica across held-out user
data. First, we see how well lexica derived from Face-
book users predict a random set of additional users.
Then, we explore generalization of the models in vari-
ous other settings: on a stratified Facebook test sample,
blogs, and Twitter. Finally, we compare lexica fit to a
restricted number of messages per user.

Results of our evaluation over Facebook users are
shown in Table 1 (randFB columns). Accuracies for
age are reported as Pearson correlation coefficients (r)

6downloaded from http://www.wwbp.org/data.html

and mean absolute errors (mae), measured in years.
For gender, we use an accuracy % (number-correct over
test-size). As baselines, we use the mean for age (23.0
years old) and the most frequent class (female) for gen-
der. We see that for both age and gender, accuracies are
substantially higher than the baseline. These accuracies
were just below with no significant difference previous
state-of-the-art results (Schwartz et al., 2013; r = 0.84
for age and 91.9% accuracy for gender). 7

Because of the nature of our datasets (the Face-
book data is private) and task (user-level predictions),
comparable previous studies are nearly nonexistent.
Nonetheless, the Twitter data was a random subset of
users based on the (Burger et al., 2011) dataset exclud-
ing non-English tweets, making it somewhat compa-
rable. In this case, the lexica outperformed previous
results for gender prediction of Twitter users, which
ranged from 75.5% to 87% (Burger et al., 2011; Ciot
et al., 2013; Liu and Ruths, 2013; Al Zamal et al.,
2012). However, the lexica were unable to match the
92.0% accuracy Burger et al. (2011) achieved when
using profile information in addition to text. No other
similar studies — to the best of our knowledge — have
been conducted.

Application in other settings. While Facebook is the
ideal setting to apply our lexica, we hope that they gen-
eralize to other situations. To evaluate their utility in
other settings, we first tested them over a gender and
age stratified Facebook sample. Our random sample,
like all of Facebook, is biased toward the young; this
stratified test sample contains equal numbers of males
and females, ages 13 to 60. Next, we use the lexica to
predict data from other domains: blogs (Schler et al.,
2006) and Twitter (Volkova et al., 2013). In this case,
our goal was to account for the content and stylistic
variation that may be specific to Facebook.

7Adding 2 and 3-grams increases the performance of our
model (r = 0.85, 92.7%), just above our previous results
(Schwartz et al., 2013b). However, with the accessibility of
single word lexica in mind, this current work focuses on fea-
tures based entirely on 1grams.
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# Msgs: all 100 20 5 1
age .831 .820 .688 .454 .156

gender .919 .901 .796 .635 .554

Table 2: Prediction accuracies for age (Pearson correla-
tion) and gender (accuracy %) when reducing the num-
ber of messages from each user.

Results over these additional datasets are shown in
Table 1 (stratFB, randBG, and randT columns). The
performance decreases as expected since these datasets
have differing distributions, but it is still substantially
above mean and most frequent class baselines on the
stratified dataset. Over blogs and Twitter, both age
and gender prediction accuracies drop to a greater de-
gree (when only using the Facebook-trained models),
suggesting stylistic or content differences between the
domains. However, when using lexica created with
data from across multiple domains, the results in Face-
book, blogs, and Twitter remain in line with results
from models created specifically over their respective
domains. In light of this result, we release the FB+BG
age & FB+BG+T gender models as lexica (available at
www.wwbp.org/data.html).

Limiting messages per user. As previously noted,
some applications of demographic estimation require
predictions over more limited messages. We explore
the accuracy of user-level age and gender predictions
as the number of messages per user decreases in Ta-
ble 2. For these tests we used the FB+BG age &
FB+BG+T gender lexica. Confirming findings by Van
Durme (2012), the fewer posts one has for each user,
the less accurate the gender and age predictions. Still,
given the average user posted 205 messages, it seems
that not all messages from a user are necessary to make
a decent inference on their age and gender. Future work
may explore models developed specifically for these
limited situations.

5 Conclusion
We created publicly available lexica (words and
weights) using regression and classification models
over language usage in social media. Evaluation of the
lexica over Facebook yielded accuracies in line with
state-of-the-art age (r = 0.831) and gender (91.9% ac-
curacy) prediction. By deriving the lexica from Face-
book, blogs, and Twitter, we found the predictive power
generalized across all three domains with little sacrifice
to any one domain, suggesting the lexica may be used
in additional social media domains. We also found the
lexica maintain reasonable accuracy when writing sam-
ples were somewhat small (e.g. 20 messages) but other
approaches may be best when dealing with more lim-
ited data.

Given that manual lexica are already extensively em-
ployed in social sciences such as psychology, eco-
nomics, and business, using lexical representations of

data-driven models allows the utility of our models to
extend beyond the borders of the field of NLP.
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Abstract

Dependency parsing is a core task in NLP,
and it is widely used by many applica-
tions such as information extraction, ques-
tion answering, and machine translation.
In the era of social media, a big chal-
lenge is that parsers trained on traditional
newswire corpora typically suffer from the
domain mismatch issue, and thus perform
poorly on social media data. We present a
new GFL/FUDG-annotated Chinese tree-
bank with more than 18K tokens from Sina
Weibo (the Chinese equivalent of Twit-
ter). We formulate the dependency pars-
ing problem as many small and paralleliz-
able arc prediction tasks: for each task,
we use a programmable probabilistic first-
order logic to infer the dependency arc of a
token in the sentence. In experiments, we
show that the proposed model outperforms
an off-the-shelf Stanford Chinese parser,
as well as a strong MaltParser baseline that
is trained on the same in-domain data.

1 Introduction

Weibo, in particular Sina Weibo1, has attracted
more than 30% of Internet users (Yang et al.,
2012), making it one of the most popular social
media services in the world. While Weibo posts
are abundantly available, NLP techniques for ana-
lyzing Weibo posts have not been well-studied in
the past.

Syntactic analysis of Weibo is made difficult
for three reasons: first, in the last few decades,
Computational Linguistics researchers have pri-
marily focused on building resources and tools us-
ing standard English newswire corpora2, and thus,

1http://en.wikipedia.org/wiki/Sina Weibo
2For example, Wall Street Journal articles are used for

building the Penn Treebank (Marcus et al., 1993).

there are fewer resources in other languages in
general. Second, microblog posts are typically
short, noisy (Gimpel et al., 2011), and can be
considered as a “dialect”, which is very differ-
ent from news data. Due to the differences in
genre, part-of-speech taggers and parsers trained
on newswire corpora typically fail on social media
texts. Third, most existing parsers use language-
independent standard features (McDonald et al.,
2005), and these features may not be optimal for
Chinese (Martins, 2012). To most of the applica-
tion developers, the parser is more like a blackbox,
which is not directly programmable. Therefore,
it is non-trivial to adapt these generic parsers to
language-specific social media text.

In this paper, we present a new probabilistic de-
pendency parsing approach for Weibo, with the
following contributions:

• We present a freely available Chinese Weibo
dependency treebank3, manually annotated
with more than 18,000 tokens;

• We introduce a novel probabilistic logic
programming approach for dependency arc
prediction, making the parser directly pro-
grammable for theory engineering;

• We show that the proposed approach outper-
forms an off-the-shelf dependency parser, as
well as a strong baseline trained on the same
in-domain data.

In the next section, we describe existing work
on dependency parsing for Chinese. In Section 3,
we present the new Chinese Weibo Treebank to
the research community. In Section 4, we intro-
duce the proposed efficient probabilistic program-
ming approach for parsing Weibo. We show the
experimental results in Section 5, and conclude in
Section 6.

3http://www.cs.cmu.edu/˜yww/data/WeiboTreebank.zip
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2 Related Work

Chinese dependency parsing has attracted many
interests in the last fifteen years. Bikel and Chi-
ang (2000; 2002) are among the first to use Penn
Chinese Tree Bank for dependency parsing, where
they adapted Xia’s head rules (Xia, 1999). An im-
portant milestone for Chinese dependency pars-
ing is that, a few years later, the CoNLL shared
task launched a track for multilingual dependency
parsing, which also included Chinese (Buchholz
and Marsi, 2006; Nilsson et al., 2007). These
shared tasks soon popularized Chinese depen-
dency parsing by making datasets available, and
there has been growing amount of literature since
then (Zhang and Clark, 2008; Nivre et al., 2007;
Sagae and Tsujii, 2007; Che et al., 2010; Carreras,
2007; Duan et al., 2007).

Besides the CoNLL shared tasks, there are also
many interesting studies on Chinese dependency
parsing. For example, researchers have studied
case (Yu et al., 2008) and morphological (Li and
Zhou, 2012) structures for learning a Chinese de-
pendency parser. Another direction is to perform
joint learning and inference for POS tagging and
dependency parsing (Li et al., 2011; Hatori et al.,
2011; Li et al., 2011; Ma et al., 2012). In recent
years, there has been growing interests in depen-
dency arc prediction in Chinese (Che et al., 2014),
and researchers have also investigated character-
level Chinese dependency parsing (Zhang et al.,
2014). However, even though the above methods
all have merits, the results are reported only on
standard newswire based Chinese Treebank (e.g.
from People’s Daily (Liu et al., 2006)), and it is
unclear how they would perform on Weibo data.

To the best of our knowledge, together with the
recent study on parsing tweets (Kong et al., 2014),
we are among the first to study the problem of de-
pendency parsing for social media text.

3 The Chinese Weibo Treebank

We use the publicly available µtopia dataset (Ling
et al., 2013) for dependency annotation. An in-
teresting aspect of this Weibo dataset is that, be-
sides the Chinese posts, it also includes a copy of
the English translations. This allows us to observe
some interesting phenomena that mark the differ-
ences of the two languages. For example:

• Function words are more frequently used in
English than in Chinese. When examin-

Figure 1: An example of pro-drop phenomenon
from the Weibo data.

ing this English version of the Weibo cor-
pus for the total counts of the word “the”,
there are 2,084 occurrences in 2,003 sen-
tences. Whereas in Chinese, there are only
52 occurrences of the word “the” out of the
2,003 sentences.

• The other interesting thing is the position of
the head. In English, the head of the tree
occurs more frequent on the left-to-middle
of the sentence, while the distribution of the
head is more complicated in Chinese. This is
also verified from the parallel Weibo data.

• Another well-known issue in Chinese is that
Chinese is a pro-drop topical language. This
is extremely prominent in the short text,
which clearly creates a problem for parsing.
For example, in the Chinese Weibo data, we
have observed the sentence in Figure 1.

To facilitate the annotation process, we first
preprocess the Weibo posts using the Stanford
NLP pipeline, including a Chinese Word Seg-
menter (Tseng et al., 2005) and a Chinese Part-
of-Speech tagger (Toutanova and Manning, 2000).
Two native speakers of Chinese with strong lin-
guistic backgrounds have annotated the depen-
dency relations from 1,000 posts of the µtopia
dataset, using the FUDG (Schneider et al., 2013)
and GFL annotation tool (Mordowanec et al.,
2014). The annotators communicate regularly dur-
ing the annotation process, and a coding man-
ual that relies majorly on the Stanford Dependen-
cies (Chang et al., 2009) is designed. The anno-
tation process has two stages: in the first stage,
we rely on the word segmentation produced by
the segmenter, and produce a draft version of the
treebank; in the second stage, the annotators ac-
tively discuss the difficult cases to reach agree-
ments, manually correct the mis-segmented word
tokens, and revise the annotations of the tricky
cases. The final inter-annotator agreement rate on
a randomly-selected subset of 373 tokens in this
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treebank is 82.31%.
Fragmentary Unlabeled Dependency Grammar

(FUDG) is a newly proposed flexible framework
that offers a relative easy way to annotate the syn-
tactic structure of text. Beyond the traditional tree
view of dependency syntax in which the tokens
of a sentence form nodes in a tree, FUDG also
allows the annotation of additional lexical items
such as multiword expressions. It provides special
devices for coordination and coreference; and fa-
cilitates underspecified (partial) annotations where
producing a complete parse would be difficult.
Graph Fragment Language (GFL) is an implemen-
tation of unlabeled dependency annotations in the
FUDG framework, which fully supports Chinese,
English and other languages. The training set of
our Chinese Weibo Treebank4 includes 14,774 to-
kens, while the development and test sets include
1,846 and 1,857 tokens respectively.

4 A Programmable Parser with
Personalized PageRank Inference

A key problem in multilingual dependency parsing
is that generic feature templates may not work well
for every language. For example, Martins (2012)
shows that for Chinese dependency parsing, when
adding the generic grandparents and siblings fea-
tures, the performance was worse than using the
standard bilexical, unilexical, and part-of-speech
features. Unfortunately, for many parsers such
as Stanford Chinese Parser (Levy and Manning,
2003) and MaltParser (Nivre et al., 2007), it is
very difficult for programmers to specify the fea-
ture templates and inference rules for dependency
arc prediction.

In this work, we present a Chinese dependency
parsing method for Weibo, based on efficient prob-
abilistic first-order logic programming (Wang et
al., 2013). The advantage of probabilistic pro-
gramming for parsing is that, software engineers
can simply conduct theory engineering, and op-
timize the performance of the parser for a spe-
cific genre of the target language. Recently, proba-
bilistic programming approaches (Goodman et al.,
2012; Wang et al., 2013; Lloyd et al., 2014) have
demonstrated its efficiency and effectiveness in
many areas such as information extraction (Wang
et al., 2014), entity linking, and text classifica-
tion (Wang et al., 2013).

4The corpus is freely available for download at the URL
specified in Section 1.

Algorithm 1 A Dependency Arc Inference Algo-
rithm for Parsing Weibo

Given:
(1) a sentence with tokens Ti, where i is the in-
dex, and L is the length;
(2) a databaseD of token relations from the cor-
pus;
(3) first-order logic inference rule set R.

for i = 1→ L tokens do
S← ConstructSearchSpace(Ti, R,D);
~Pi ← InferParentUsingProPPR(Ti,S);

end for

Greedy Global Inference
for i = 1→ L tokens do
Yi = arg max ~Pi;

end for

4.1 Problem Formulation

We formulate the dependency parsing prob-
lem as many small dependency arc prediction
problems. For each token, we form the par-
ent inference problem of a token Ti as solving a
query edge(Ti, ?) using stochastic theorem prov-
ing on a search graph. Our approach relies on a
database D of inter-token relations. To construct
the database, we automatically extract the token
relations from the text data. For example, to de-
note the adjacency of two tokens T1 and T2, we
store the entry adjacent(T1, T2) in D. One can
also store the part-of-speech tag of a token in the
form haspos(T1, DT ). There is no limitations
on the arity and the types of the predicates in the
database.

Given the database of token relations, one then
needs to construct the first-order logic inference
theory R for predicting dependency arcs. For ex-
ample, to construct simple bilexical and bi-POS
inference rules to model the dependency of an ad-
jacent head and a modifier, one can write first-
order clauses such as:

edge(V1,V2) :-
adjacent(V1,V2),hasword(V1,W1),
hasword(V2,W2),keyword(W1,W2) #adjWord.

edge(V1,V2) :-
adjacent(V1,V2),haspos(V1,W1),
haspos(V2,W2),keypos(W1,W2) #adjPos.

keyword(W1,W2) :- # kw(W1,W2).
keypos(W1,W2) :- # kp(W1,W2).
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Figure 2: After mapping the database D to theory R, here is an example of search space for dependency
arc inference. The query is edge(S1T5, X), and there exists one correct and multiple incorrect solutions
(highlighted in bold).

Here, we associate a feature vector φc with each
clause, which is annotated using the # symbol af-
ter each clause in the theory set. Note that the last
two (keyword and keypos) clauses are feature tem-
plates that allow us to learn the specific bi-POS
tags and bilexical words from the data. In order
for one to solve the query edge(Ti, ?), we first
need to map the entities from D to R to construct
the search space. The details for constructing and
searching in the graph can be found in previous
studies on probabilistic first-order logic (Wang et
al., 2013) and stochastic logic programs (Cussens,
2001). An example search space is illustrated in
Figure 2. Note that now the edges in the search
graph correspond to the feature vector φc in R.

The overall dependency arc inference algorithm
can be found in Algorithm 1. For each of the par-
ent inference subtask, we use ProPPR (Wang et al.,
2013) to perform efficient personalized PageRank
inference. Note that to ensure the validity of the
dependency tree, we break the loops in the final
parse graph into a parse tree using the maximum
personalized PageRank score criteria. When mul-
tiple roots are predicted, we also select the most
likely root by comparing the personalized PageR-
ank solution scores.

To learn the more plausible theories, one needs

to upweight weights for relevant features, so
that they have higher transition probabilities on
the corresponding edges. To do this, we use
stochastic gradient descent to learn from training
queries, where the correct and incorrect solutions
are known. The details of the learning algorithm
are described in the last part of this section.

4.2 Personalized PageRank Inference

For the inference of the parent of each token, we
utilize ProPPR (Wang et al., 2013). ProPPR al-
lows a fast approximate proof procedure, in which
only a small subset of the full proof graph is
generated. In particular, if α upper-bounds the
reset probability, and d upperbounds the degree
of nodes in the graph, then one can efficiently
find a subgraph with O( 1

αε) nodes which approx-
imates the weight for every node within an er-
ror of dε (Wang et al., 2013), using a variant of
the PageRank-Nibble algorithm of Andersen et al
(2008).

4.3 Parameter Estimation

Our parameter learning algorithm is implemented
using a parallel stochastic gradient descent vari-
ant to optimize the log loss using the supervised
personalized PageRank algorithm (Backstrom and
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Method Dev. Test

Stanford Parser (Xinhua) 0.507 0.489
Stanford Parser (Chinese) 0.597 0.581
MaltParser (Full) 0.669 0.654
Our methods — ProPPR
ReLU (Bi-POS) 0.506 0.517
ReLU (Bilexical) 0.635 0.616
ReLU (Full) 0.668 0.666
Truncated tanh (Bi-POS) 0.601 0.594
Truncated tanh (Bilexical) 0.650 0.634
Truncated tanh (Full) 0.667 0.675*

Table 1: Comparing our Weibo parser to other
baselines (UAS). The off-the-shelf Stanford parser
uses its attached Xinhua and Chinese factored
models, which are trained on external Chinese
treebank of newswire data. MaltParser was trained
on the same in-domain data as our proposed ap-
proach. * indicates p < .001 comparing to the
MaltParser.

Leskovec, 2011). The idea is that, given the
training queries, we perform a random walk with
restart process, and upweight the edges that are
more likely to end up with a known correct parent.
We learn the transition probability from two nodes
(u, v) in the search graph using: Prw(v|u) =
1
Z f(w,Φc

restart), where we use two popular non-
linear parameter learning functions from the deep
learning community:

• Rectified Linear Unit (ReLU) (Nair and Hin-
ton, 2010): max(0, x);

• The Hyperbolic Function (Glorot and Ben-
gio, 2010): tanh(x).

as the f in this study. ReLU is a desirable
non-linear function, because it does not have the
vanishing gradient problem, and produces sparse
weights. For the weights learned from tanh(x),
we truncate the negative weights on the edges,
since the default weight on the feature edges is
w = 1.0 (existence), and w = 0.0 means that the
edge does not exist in the inference stage.

5 Experiments

In this experiment, we compare the proposed
parser with two well-known baselines. First,
we compare with an off-the-shelf Stanford Chi-
nese Parser (Levy and Manning, 2003). Second,

we compare with the MaltParser (Nivre et al.,
2007) that is trained on the same in-domain Weibo
dataset. The train, development, and test splits are
described in Section 3. We tune the regulariza-
tion hyperparameters of the models on the dev. set,
and report Unlabeled Attachment Score (UAS) re-
sults for both the dev. set and the hold-out test set.
We experiment with the bilexical and bi-POS first-
order logic theory separately, as well as a com-
bined full model with directional and distance fea-
tures.

The results are shown in Table 1. We see that
both of the two attached pre-trained models from
the Stanford parser do not perform very well on
this Weibo dataset, probably because of the mis-
matched training and test data. MaltParser is
widely considered as one of the most popular de-
pendency parsers, not only because of its speed,
but also the acclaimed accuracy. We see that when
using the full model, the UAS results between our
methods and MaltParser are very similar on the de-
velopment set, but both of our approaches outper-
form the Maltparser in the holdout test set. The
truncated tanh variant of ProPPR obtains the best
UAS score of 0.675.

6 Conclusion

In this paper, we present a novel Chinese de-
pendency treebank, annotated using Weibo data.
We introduce a probabilistic programming depen-
dency arc prediction approach, where theory en-
gineering is made easy. In experiments, we show
that our methods outperform an off-the-shelf Stan-
ford Chinese Parser, as well a strong MaltParser
that is trained on the same in-domain data. The
Chinese Weibo Treebank is made freely available
to the research community. In the future, we plan
to apply the proposed approaches to dependency
and semantic parsing of other languages.
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Abstract

Microblog has become a major plat-
form for information about real-world
events. Automatically discovering real-
world events from microblog has attracted
the attention of many researchers. Howev-
er, most of existing work ignore the impor-
tance of emotion information for event de-
tection. We argue that people’s emotion-
al reactions immediately reflect the occur-
ring of real-world events and should be im-
portant for event detection. In this study,
we focus on the problem of community-
related event detection by community e-
motions. To address the problem, we pro-
pose a novel framework which include
the following three key components: mi-
croblog emotion classification, community
emotion aggregation and community emo-
tion burst detection. We evaluate our ap-
proach on real microblog data sets. Exper-
imental results demonstrate the effective-
ness of the proposed framework.

1 Introduction

Microblog has become a popular and convenient
platform for people to share information about so-
cial events in real time. When an external even-
t occurs, it will be quickly propagated between
microblog users. During propagation process of
an event, sufficient amount of users will express
their emotions. Taking Sina Weibo1 as an exam-
ple, more than 12 percent of users use emoticons2

when reposting an event-related microblog mes-
sage.

The emotion information can not only help us
better understand a given event, but also be u-
tilized to discover new events. Figure 1 shows

1http://weibo.com/
2An icon to indicate user’s emotion, as shown in Table 1.
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Figure 1: The global emotion dynamics

the emotional distribution dynamics of the over-
all microblog messages in March 2011. The
sudden change of the public emotion distribu-
tion on March 12 indicates a public event: 3.11
Earthquake in Japan. We can see that emotional
changes immediately reflect the occurring of real-
world events, thus it is reasonable to use them to
perform event detection.

Most existing research on microblog event de-
tection (Weng and Lee, 2011; Sakaki et al., 2010;
Becker et al., 2010) only account for the factu-
al information (e.g., burstness of topic keyword-
s). They usually ignore the importance of emo-
tion information for event detection. Although
there have recently been a few papers (Zhao et al.,
2012a; Nguyen et al., 2013; Akcora et al., 2010)
in this direction, they have a number of disad-
vantages. Firstly, they can not detect community-
related events. Since they all aggregate emotion
at global level, they can only discover national at-
tention events, such as public holidays ( “Christ-
mas” and “Spring Festival”) or natural disasters.
In many applications, discovering events related
to a certain group of users or a certain topic is
more meaningful. Consider the following ques-
tions: “what happened in the football communi-
ty last week?” and “what are the most significant
events in the lawyer community last month?” Sec-
ondly, they assign equal weight to each microblog
message or user when aggregating them to a glob-
al emotion score. Such approaches may lead to
incorrect results when a user posts emotion spam
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in the community. Thirdly, there is a lack of quan-
titative evaluation using real-world events in exist-
ing work. For example, there is only case study in
(Zhao et al., 2012a) and (Akcora et al., 2010).

In this study, we focus on a new task of de-
tecting community-related events via community
emotion. Our intuition is inspired from the so-
cial psychology theory of group emotion. In social
psychology, group emotion refers to the moods,
emotions and dispositional affects of a group of
people 3. It can arise as a result of group-relevant
events (Smith et al., 2007). For example, people
will feel happy when their favorite football team
wins a game and feel sad when their team loses
a game. Thus we can use the community emo-
tion as signals to detect community-related events.
To achieve good performance of this new task, the
following two factors must be considered: 1) how
to measure the community emotion based on mi-
croblog message or user emotion and 2) how to
perform event detection based on the sequence of
community emotion.

To measure community emotion, we argue that
in a given community, different users have differ-
ent emotional authorities. The emotion of highly
influential people in the community may be more
important in determining the community emotion
(Barsäde and Gibson, 1998). We propose to use
the user’s emotion authority computed by the so-
cial network of the community to weight the us-
er when aggregating community emotion. Since
spam user is unlikely to have high emotion au-
thority in the community, our method can reduce
the effect of emotion spam. Based on the com-
munity emotion, we present an emotion burst de-
tection algorithm for the community emotion dis-
tribution sequence. We identify two emotional s-
tates of the community: “emotion stable” state and
“emotion burst” state. We use the Dirichlet dis-
tribution to model the generation process of the
community emotion distribution. An efficient e-
motion burst detection algorithm is presented to
detect community-related events.

We evaluate our approach on large-scale mi-
croblog data sets by using real-world event list
for each community. Experimental results demon-
strate that the community emotion is an effective
signal for community-related event detection. In
comparison with several baseline methods, our e-
motion burst detection algorithm also improves

3http://en.wikipedia.org/wiki/Group emotion

the event detection performance in terms of pre-
cision, recall and F-measure.

2 Related Work

In this section, we review the related work on sen-
timent analysis and event detection in microblog,
respectively.

Sentiment Analysis in Microblog: Sentiment
analysis (Pang and Lee, 2008; Liu, 2012) is main-
ly about analyzing people’s opinions, sentiments
and emotions towards a given event, topic, produc-
t, etc. Microblog platforms like Twitter and Wei-
bo, provide people a convenient way to post their
emotional reactions towards social events in al-
most real time. This leads to increasing number
of interests on sentiment analysis in microblog da-
ta (Davidov et al., 2010; Liu et al., 2012; Go et
al., 2009; Agarwal et al., 2011; Pak and Paroubek,
2010; Jiang et al., 2011; Speriosu et al., 2011;
Bermingham and Smeaton, 2010). The training
data for microblog sentiment analysis are usual-
ly obtained in an automatic manner by utilizing
emoticons, hashtags and smileys. Davidov et al.
(2010) propose an approach to automatically ob-
tain labeled training examples by exploiting hash-
tags and smileys. Liu et al. (2012) proposed an e-
moticon smoothed method to integrate both manu-
ally labeled data and noisy labeled data for Twitter
sentiment classification.

Different from existing microblog sentimen-
t analysis work, which aims at discovering senti-
ments and emotions for an event or topic given in
advance, we are interested in utilizing the emotion
information in microblog messages for real-world
event detection. Our work use sentiment analysis
as a tool to perform microblog emotion classifi-
cation. Then we propose an event detection algo-
rithm based on the sequence of community level
emotion distribution.

Event Detection in Microblog: Event detec-
tion from microblog data has attracted increas-
ing attention recently. We divide existing work
into the following two categories: non-emotion-
based methods and emotion-based methods. Non-
emotion-based methods try to exploit keyword or
activity patterns to discover events (Weng and Lee,
2011; Sakaki et al., 2010; Becker et al., 2010;
Mathioudakis and Koudas, 2010). Mathioudakis
and Koudas (2010) first identify “bursty” key-
words and then discover events by grouping bursty
keywords together. Zhao et al. (2012b) focuses on
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identifying event-related burst from social media
based on multiple activities. They propose a uni-
fied optimization model to integrate multiple cor-
related activity streams based on the state machine
in (Kleinberg, 2003).

Emotion-based methods try to exploit the emo-
tional reactions to discover events (Zhao et al.,
2012a; Akcora et al., 2010). Akcora et al. (2010)
model public emotion as an emotion vector com-
puted by counting emotion words and then use a
rule-based method to identify public breakpoints.
Zhao et al. (2012a) use a simple top-k method to
detect abnormal events based on sequence of sen-
timent variance.

Our method is also an emotion-based method.
However, our approach is different from existing
emotion-based methods in the following aspect-
s. Firstly, while existing work aggregates emotion
for all users, we focus on emotion for a certain
community to discover community-related events.
Secondly, existing methods assume that the emo-
tions of different users are of equal importance.
We distinguish user’s emotional authority based
on the community structure of users.

3 Preliminary Definitions

In this section, we first give some basic concepts
before formally defining our problem.

Topical Community: A group of connected
users that are interested in a specific topic. A topi-
cal community can be denoted as C = {V,E,M},
where V is the set of community users, E is
the set of relationships of between users. M =
{M1,M2, ...,MT } is the microblog message col-
lection in the community, which is segmented ac-
cording to time. Mt is the microblog message col-
lection in time interval t.

Emotion Distribution: An emotion distribu-
tion et is a real-value N -dimension vector sampled
from the emotion space, satisfying the constraint∑N

i=1 eti = 1. It indicates the emotional state of a
microblog message, a user or a community at time
t. At a given time interval t, a user emotion distri-
bution et(u) is computed by an aggregation func-
tion over the emotion distribution of the microblog
messages posted by u in time interval t. Commu-
nity emotion distribution et(c) is computed by an
aggregation function over the emotion distribution
of the community users in c at time interval t.

Community Emotion Burst: Given an emo-
tion distribution sequence et for community c, an

emotion burst is defined as period [ts, te] in which
some event relevant to c takes places. During the
time period, the emotion distribution of c is :1) sig-
nificantly different from its average emotion distri-
bution, or 2) extremely uneven distributed.

Given the above definitions, our object is then to
detect community-related events from the emotion
distribution sequence of the community.

4 The Proposed Framework

In this section, we describe our microblog event
detection framework. The framework aims to de-
tect community-related events based on the com-
munity emotion. The overview of our framework
is shown in Figure 2. In particular, we define the
following four main components:

1) Microblog emotion classification: We train
emotion classification model by automatically ac-
quiring training data using the emoticons.

2) Community emotion aggregation: We as-
sume that in a given community, different users
have different weights when aggregating commu-
nity emotion. Thus we propose a novel weighting
approach based on the user’s authority.

3) Community emotion burst detection: Giv-
en the community emotion, we propose an emo-
tion burst detection algorithm to detect community
emotion bursts.

4) Event extraction: The function of this com-
ponent is to extract event keywords for each com-
munity emotion burst. We count the document
frequency (DF) of each term contained in the mi-
croblog messages in the burst period. Then the
top-5 DF terms are used to describe the event oc-
curring during the burst period, although there ex-
ist alternative techniques (Ritter et al., 2012; Li et
al., 2010).

Since the last component is not the main focus
of this work, we only introduce the first three com-
ponents in detail in the following subsections.

4.1 Microblog Emotion Classification

We build an emotion classifier using the multino-
mial Naı̈ve Bayes classifier for each community
to classify microblog messages into different emo-
tion classes. Here we are interested in the setting
where the microblog messages arrive as stream,
thus it is not appropriate to use a constant set of
manually labeled messages. To avoid manual an-
notation cost, we adopt a distant supervision ap-
proach (Go et al., 2009; Davidov et al., 2010; Hu
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Figure 2: Overview of our community-related
event detection framework

Table 1: List of emoticons
Happy(26) good laugh love smile cute

Anger (19) anger hate curse despise crazy

Sad(13) sad disappoint cry unhappy unwell

Fear(11) fear surprise shame doubt fright

et al., 2013) to acquire labeled microblog mes-
sages automatically by using the emoticons. We
first select a set of emoticons which are most fre-
quently used to express emotion in microblog.
Then we manually map each emoticon into four
emotion classes (26 for happy, 19 for anger, 13
for sad and 11 for fear). We only show the top
five emoticons for each emotion type in Table 1.
The labeled emoticons can then be used to acquire
training data to train an emotion classifier for a
community in any time period.

We combine the features which have been
proven effective by previous work, such as punc-
tuation and emotion lexicons. Specifically, we use
the following features : 1) Words appearing in
the microblog message serve as word features, 2)
Number of “!” characters and “?” in the microblog
message, and 3) Each term in a general emotion
lexicon serves as an emotion lexicon feature.

The emotion distribution e(m) of a microblog
message m is represented by a N -dimension dis-
tribution vector. For example, if a microblog mes-
sage m is classified as happy, then its emotion dis-
tribution e(m) is [1, 0, 0, 0]. The emotion distribu-
tion of e(u) of user u at time t is average emotion
distribution of the microblog messages posted by
him during time t.

et(u) =
1

Nut

Nut∑
m=1

e(m) (1)

where Nut is the number of microblog messages

posted by user u at time t.

4.2 Community-level Emotion Aggregation
A common strategy to measure community emo-
tion is to compute the average emotion of the com-
munity users. It is based on the assumption that the
emotion of different community users are with e-
qual importance. This is implemented by employ-
ing an average aggregation function on the indi-
vidual emotion distribution et(u):

et(c) =
1

Nc

∑
u∈c

et(u) (2)

where Nc is the number of users in community c.
Intuitively, the emotion of user with higher au-

thority in community should be more important in
determining community emotion. Thus we esti-
mate community emotion by taking into account
user’s emotional authority, which is based on the
assumption that different users in a community
have different emotional authorities.

We employ HITS algorithm(Kleinberg, 1999)
to compute the user authority auth(u) based on
the user network {V, E} of the community. Then
auth(u) is used to represent the emotional author-
ity of user u. This authority-based community e-
motion aggregation approach can also reduce the
effect of spam users, since they usually have low
authorities in the community network. For sim-
plicity and computation efficiency, we assume that
auth(u) is time independent, which means that we
only need to run the HITS algorithm once for each
community. Given the user emotion distribution-
s and the user emotional authorities, the emotion
distribution for a community c in time interval t
can be measured as:

et(c) =
1

Act

∑
u∈c

auth(u)et(u) (3)

where Act =
∑

u∈ct
auth(u) is the normalization

term.

4.3 Community Emotion Burst Detection
We formulate our problem into the binary state
model framework (Kleinberg, 2003). For a giv-
en community c, there are T time intervals in
total, with community emotion distribution se-
quence e = (e1, e2, ..., eT ) and state sequence
q = (q1, q2, ..., qT ). Each qt can be one of the fol-
lowing two states: qt = 0 (“emotion stable” state)
and qt = 1 (“emotion burst” state). Our objective
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(a) “emotion stable” state (b) “emotion burst” state

Figure 3: Emotion probability density for “emo-
tion stable” state and “emotion burst” state

is to find an optimal state sequence q∗ given the
emotion distribution sequence e.

Since each et is a distribution rather than pos-
itive integer, the emotion generation process can
no longer be modeled by a Poisson distribution.
We choose to model the emotion generation pro-
cess by the Dirichlet distribution. This process is
analogous to the document-level topic generation
in the LDA topic model (Blei et al., 2003).

If community c is in an “emotion stable” state in
time interval t, its emotion distribution et should
be close to the average emotion distribution ea.
The density function is defined as f(et, ea, st =
0) = Dirichlet(α0ea), where st = 0 indicates
that the community is in an “emotion stable” s-
tate and α0 is a positive parameter. To ensure
that et closer to ea will get higher probability,
α0 should satisfy the constraint α0 · min ea > 1.
An example of the probability density function of
f(et, ea, st = 0) in a three dimension emotion s-
pace is shown in Figure 3(a).

If community c is in an “emotion burst” s-
tate in time interval t, the emotion distribution
of c is : 1) significantly different from its av-
erage emotion distribution, or 2) extremely un-
even distributed. For example, assume ea =
[0.25, 0.25, 0.25, 0.25], if community is in burst
in time interval t, its emotion distribution is more
likely to be [0.1, 0.4, 0.1, 0.4] (significantly dif-
ferent from ea) or [0.1, 0.7, 0.1, 0.1] (extremely
anger). The density function is then defined as
f(et, ea, st = 1) = Dirichlet(α1ea). st = 1
indicates that the community is in an “emotion
burst” state and α1 should satisfy the constraint:
α1 · max ea < 1. An example of the probabili-
ty density function of f(et, ea, st = 1) in a three
dimension emotion space is shown in Figure 3(b).

Based on above discussion, the cost function for

an emotion state sequence q can be defined as:

cost(q|e) =
T∑

t=1

− ln(ft(et, ea, qt)) + b ln(
1− π

π
)

(4)
where π is the probability the community will
change the emotion state in two consecutive time
intervals t and t + 1. b denotes the number of e-
motion state changes in the whole time intervals
[1, T ].

Equation 4 is exactly the objective function we
need to optimize. This optimization problem can
be efficiently solved by using a dynamic program-
ming procedure, as summarized in Algorithm 1.
Algorithm 1 mainly consists of two phases: a
forward phase (line 5 - line 10) which calculates
the minimal cost for emotion distribution sub-
sequence and a backward phase to construct the
optimal emotion state sequence (line 11 - line 14).

For convenience, we use ft(s) to denote
ft(et, ea, s). πs′s = π if s′ ̸= s, otherwise
πs′s = (1− π). ct(s) denotes the minimal cost of
generating the emotion distribution sub-sequence
{e1, ..., et} with qt = s. q′t(s) stores the state of
time interval t − 1 for the most likely state sub-
sequence so far with qt = s.

Algorithm 1 Emotion Burst Extraction
Input: The emotion distribution sequence e =
(e1, e2, ..., eT ), the state transition cost π and the
parameters α0 and α1

1: for each s ∈ {0, 1} do
2: Initialize c1(s) = − ln f1(s)
3: Initialize q′1(s) = 0
4: end for
5: for each t = 2, · · · , T do
6: for each s ∈ {0, 1} do
7: ct(s) = mins′(ct−1(s′) − ln ft(s) −

ln πs′s)
8: q′t(s) = arg mins(ct−1(s′)− ln πs′s)
9: end for

10: end for
11: q∗(T ) = arg minscT (s)
12: for each t = T − 1, · · · , 2 do
13: q∗(t) = q′t+1(q

∗(t + 1))
14: end for
Output: The optimal emotion state sequence q∗
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Table 2: Basic statistics of data sets

Community #User #Link #Microblog #Event
legal cases 4937 97639 269871 31

football 9928 105483 416631 75
economy 2657 65403 179584 46

singer 3759 79458 478265 53

5 Experimental Setup

5.1 Data Set

We use a large microblog data set crawled from
Sina Weibo, which is the most popular mi-
croblog service in China. This data set contains
212,859,466 Chinese microblog messages posted
by 916,126 users in a period of about 8 month-
s (1/12/2010∼ 20/7/2011). We also crawled the
following network, which resulted in 15,681,296
following relationships for the 916,126 users.

We choose four communities: “legal cases”,
“football”, “economy” and “singer”. To obtain the
members for each topical community, we manu-
ally selected several keywords and input them as
queries to the user search page4. After filtering out
the users whose microblog messages are not col-
lected in our corpora, we extract the sub-network
of the users from the whole following network.

We use a simple but efficient method to extract
microblog messages for each topical community:
1) If a microblog message is posted by the com-
munity members and also contains keywords of
the community, it belongs to the community; 2)
If a microblog message is posted by community
member u and it is reposting, commenting on or
replying to another microblog posted by commu-
nity member v, then it belongs to the community.
The basic statistics of our data sets are shown in
Table 2.

5.2 Ground Truth Generation

Algorithm 1 generates a list of emotion bursts
for each community. Since our goal is to identi-
fy community-related events, we need to evaluate
how well the generated emotion bursts correspond
to the ground truth real-world events. To gener-
ate the ground truth for evaluation, we utilize the
news website Sina News5. Two PhD students are
invited to manually generate a list of real events
for each community by referring to the annual top-

4http://s.weibo.com/user/&tag=keyword
5http://news.sina.com.cn

ic summary page6 of Sina News. The annotation
agreement is higher than 90%. Each event is al-
so associated with its occurred date. The number
of events for each community is shown in the last
column of Table 2. For each community, the even-
t list is then used to evaluate the performance of
different event detection models.

5.3 Evaluation Metric
We use precision, recall and F-measure as evalu-
ation metric. For each community, we compare
the event list Ec and the generated burst list Bc to
compute the above metric. Specifically, the preci-
sion, recall and F-measure for a community c are
defined as follows:

P =

∑|Ec|
j=1

∑|Bc|
k=1 I(Ec

j ∈ Bc
k)

|Bc|
(5)

R =

∑|Ec|
j=1

∑|Bc|
k=1 I(Ec

j ∈ Bc
k)

|Ec|
(6)

F =
2× P ×R

P + R
(7)

where Ec
j is the occurring time of the j-th event

in community c, Bc
k is the k-th identified burst for

community c. I(.) is the indicator function (which
equals 1 if its argument is true and 0 otherwise).

The final precision, recall and F-measure are av-
eraged over different communities.

5.4 Compared Methods
We now introduce four methods used for compar-
ison as follows:

EmoPeakFind: The method proposed in (Ak-
cora et al., 2010), which aims at discovering
breakpoints from public emotion. They use the
following simple rule to find breakpoints from e-
motion sequences:

Sim(et−1, et) < Sim(et−2, et−1) (8)

Sim(et−1, et) < Sim(et, et+1) (9)

where Sim is a similarity function. We use the
cosine similarity function in our evaluation.

TopKEmoVar: The method used in (Zhao et al.,
2012a). They first derive a sequence of relative
variation V n for each single emotion sequence en.
Then they define a sequence of emotion variation
as (

∑4
n=1 |V n

t |). This sequence is sorted in de-
scending order and the top-k t is selected as burst

6http://news.sina.com.cn/zt/
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Table 3: Event detection performance of different
methods

Method Precision Recall F-measure
EmoPeakFind 0.313 0.625 0.417
TopKEmoVari 0.423 0.423 0.423

KLB 0.575 0.702 0.632
MBurst 0.534 0.497 0.515

Our Method 0.654 0.715 0.683

state points, where k is set to be the size of the
event list for each community.

KLB: The method proposed in (Kleinberg,
2003). Note that KLB can only deal with a single
sequence en = (en

1 , ..., en
t , ...en

T ) for emotion type
n. We first apply KLB to find the optimal state se-
quences for each emotion type. Then we perform
an OR function to merge the N state sequences to
a global emotion state sequence.

MBurst: The method proposed in (Zhao et al.,
2012b) for multi-stream burst detection. MBurst
is evaluated on three activity streams in (Zhao et
al., 2012b). Here we apply MBurst to the N emo-
tion streams. Then we perform an OR function to
merge the N state sequences to a global emotion
state sequence.

6 Experimental Results

6.1 Performance Comparison Results
In this experiment, we compare our method with
different baseline methods as introduced in Sec-
tion 5.4. We use Equation (3) to aggregate com-
munity emotion for all the compared methods.
The parameter α0 and α1 are empirically set to be

5
minn en

a
and 0.5

maxn en
a

, respectively. The experimen-
tal results are shown in Table 3.

Table 3 shows that EmoPeakFind and TopKE-
moVari are less effective than other methods. The
simple rule used in EmoPeakFind produced many
noisy bursts, leading to low precision. TopKE-
moVari only considers the relative variation of t-
wo consecutive time intervals. The choose of
k is also nontrivial since it is hard to know the
number of events before the events are identi-
fied. Note that EmoPeakFind and TopKEmoVari
are both rule-based methods, while KLB, MBurst
and Our Method are state machine based method-
s. This demonstrates that for community-related
emotion burst detection, it is more appropriate to
use a state machine based model.

It looks surprising that MBurst performs worse
than KLB, since MBurst is specifically designed

Table 5: Performance of different weighting
schemes in terms of F-measure

Community
Weighting schema

equal HITS-based

legal cases 0.517 0.590
football 0.674 0.765

economy 0.642 0.712
singer 0.589 0.665

avg 0.605 0.683

for multiple streams. However, MBurst is based
on the assumption that the states of multiple
streams in the same time interval tend to be the
same (i.e., there is positive correlation between t-
wo different streams). This assumption no longer
holds in the context of different emotion stream-
s. For example, if a negative event occurs in the
community, while sad emotion is likely to be in a
burst state, happy emotion is not likely to be in a
burst state.

We can see from Table 3 that our method out-
performs the four baselines. The main reason is
that our burst detection method is based on the se-
quence of community emotion distribution. Mod-
eling community emotion as a distribution is more
suitable than modeling several different emotion
types.

We further show some example events detected
by our model in Table 4. Since the event keyword-
s are manually translated from Chinese, one key-
word may include more than one English word-
s. We can see that community emotion can help
to detect emotionally significant events for differ-
ent communities. For example, the “legal cases”
community is in a strong anger emotional state on
December 25, 2010, which indicates an important
event “Qian Yunhui’s case”.

6.2 Effect of Emotion Aggregation Functions

In this experiment, we show the importance of cor-
rectly aggregation community level emotion for
community-related event detection. We compare
the two aggregation approaches introduced in sec-
tion 4.2. The first approach assigns equal weight to
each community users, while the second approach
assigns weights to users based on their authorities
in the community.

The performance in terms of F-measure is
shown in Table 5. It is obvious that, for all commu-
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Table 4: Examples of events and the corresponding community emotions for two communities. The four
emotion types (happy, anger, sad and fear) are mapped to green, red, blue and yellow color, respectively.

Community Date Emotion Event keywords

legal cases
25/12/2010 Qian Yunhui, village head, Yueqing, run over, Zhejiang

22/4/2011
Yao Jiaxin, death penalty, first instance, Xi’an,
intentional killing

9/5/2011 Xia Junfeng, final judgment, death penalty, pedlar, Shenyang

football
2/12/2010 Qatar, 2022, world cup bid, win, FIFA
14/2/2011 Ronaldo, retire, legend, football, Brazil
29/5/2011 Barcelona, 2011, Champions League final, win, UEFA

nities, HITS-based weighting approach perform-
s better than equal weighting approach. Thus we
can conclude that user authority is important when
aggregating community emotion.

We further perform an empirically analysis of
the events that successfully identified by HITS-
based approach but failed by equal weighting ap-
proach. By manually analyzing the microblog
messages of the corresponding time intervals, we
found that most of the errors of equal weighting
approach were caused by emotion spam. Users of
low authority post many microblog messages with
extreme emotion to claim the attention of the com-
munity. Since there is no significant community-
related events at that time interval, we do not ob-
serve emotional changes of the high authority us-
es. In the equal weighting method, the existence
of emotion spam lead to wrong result of com-
munity emotion. Since the weights of users who
post emotion spam are small in the HITS-based
approach, they have little effect on the communi-
ty emotion. This is the main reason why HITS-
based weighting method is more effective than e-
qual weighting method.

6.3 Parameter Sensitivity

In this experiment, we test the sensitivity of
our model by different choices of the param-
eters α0 and α1. α0 minn en

a is set to be
[2, 3, 4, 5, 6, 7, 8] and α1 maxn en

a is set to be
[0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]. The event detec-
tion results of different parameter settings are
shown in Figure 4.

It can be seen from Figure 4 that: 1) The per-
formance is relatively good in a particular range
of the parameters. When 2

minn en
a
≤ α0 ≤ 7

minn en
a

and 0.3
maxn en

a
≤ α1 ≤ 0.7

maxn en
a

, the F-measure is
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Figure 4: F-measure of our method for event de-
tection in different parameter settings

consistently larger than 0.55. 2) In general, the
performance is more sensitive to α1 than to α0.
Note that α1 controls the generation process of
the emotion distribution when the community is in
the “emotion burst” state, thus it is relatively more
important to tune α1 than α0. The experimental
results demonstrates that when 0.3

maxn en
a
≤ α1 ≤

0.7
maxn en

a
, the performance can be relatively good.

7 Conclusion

Microblog has become a popular and convenien-
t platform for people to share information about
social events in real time. In this paper, we focus
on the problem of community-related event detec-
tion by community emotions. We propose a novel
method to compute community-level emotion by
considering the user authority in the community
network. Then we present an effective emotion
burst detection algorithm for the community emo-
tion distribution sequence.

We evaluate our approach on real microblog
data sets. Experimental results demonstrate that
it is important to take into account the user au-
thority when aggregating community emotion for
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community-related event detection. Our emotion
burst detection algorithm also achieves better per-
formance than several baseline methods.
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Abstract

Casual online forums such as Reddit,
Slashdot and Digg, are continuing to in-
crease in popularity as a means of com-
munication. Detecting disagreement in
this domain is a considerable challenge.
Many topics are unique to the conversa-
tion on the forum, and the appearance
of disagreement may be much more sub-
tle than on political blogs or social me-
dia sites such as twitter. In this analy-
sis we present a crowd-sourced annotated
corpus for topic level disagreement detec-
tion in Slashdot, showing that disagree-
ment detection in this domain is difficult
even for humans. We then proceed to
show that a new set of features determined
from the rhetorical structure of the con-
versation significantly improves the per-
formance on disagreement detection over
a baseline consisting of unigram/bigram
features, discourse markers, structural fea-
tures and meta-post features.

1 Introduction

How does disagreement arise in conversation? Be-
ing able to detect agreement and disagreement has
a range of applications. For an online educator,
dissent over a newly introduced topic may alert
the teacher to fundamental misconceptions about
the material. For a business, understanding dis-
putes over features of a product may be helpful in
future design iterations. By better understanding
how debate arises and propagates in a conversa-
tion, we may also gain insight into how authors’
opinions on a topic can be influenced over time.

The long term goal of our research is to lay
the foundations for understanding argumentative
structure in conversations, which could be applied
to NLP tasks such as summarization, information

retrieval, and text visualization. Argumentative
structure theory has been thoroughly studied in
both psychology and rhetoric, with negation and
discourse markers, as well as hedging and dis-
preferred responses, being known to be indicative
of argument (Horn, 1989; Brown and Levinson,
1987). As a starting point, in this paper we focus
on the detection of disagreement in casual con-
versations between users. This requires a gener-
alized approach that can accurately identify dis-
agreement in topics ranging from something as
mundane as whether GPS stands for galactic po-
sitioning system or global positioning system, to
more ideological debates about distrust in science.

Motivated by the widespread consensus in both
computational and theoretical linguistics on the
utility of discourse markers for signalling prag-
matic functions such as disagreement and personal
opinions (Webber and Prasad, 2008; Abbott et
al., 2011; J. E. Fox-Tree, 2010), we introduce a
new set of features based on the Discourse Tree
(DT) of a conversational text. Discourse Trees
were formalized by Mann and Thompson (1988)
as part of their Rhetorical Structure Theory (RST)
to represent the structure of discourse. Although
this theory is for monologic discourse, we propose
to treat conversational dialogue as a collection of
linked monologues, and subsequently build a rela-
tion graph describing both rhetorical connections
within user posts, as well as between different
users. Features obtained from this graph offer sig-
nificant improvements on disagreement detection
over a baseline consisting of meta-post features,
lexical features, discourse markers and conversa-
tional features. Not only do these features improve
disagreement detection, but the discovered impor-
tance of relations known to be theoretically rele-
vant to disagreement detection, such as COMPAR-
ISON (Horn, 1989), suggest that this approach may
be capturing the essential aspects of the conversa-
tional argumentative structure.
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As a second contribution of this work, we pro-
vide a new dataset consisting of 95 topics anno-
tated for disagreement. Unlike the publicly avail-
able ARGUE corpus based on the online debate
forum 4forums.com (Abbott et al., 2011), our cor-
pus is based on Slashdot, which is a general pur-
pose forum not targeted to debates. Therefore, we
expect that detecting disagreement may be a more
difficult task in our new corpus, as certain topics
(like discussing GPS systems) may be targeted to-
wards objective information sharing without any
participants expressing opinions or stances. Be-
cause of this, our corpus represents an excellent
testbed to examine methods for more subtle dis-
agreement detection, as well as the major differ-
ences between news-style and argument-style dia-
logue.

2 Related Work

In the past decade, there have been a number of
computational approaches developed for the task
of disagreement and controversy detection, partic-
ularly in synchronous conversations such as meet-
ings (Somasundaran et al., 2007; Raaijmakers et
al., 2008) and in monologic corpora such as news
collections (Awadallah et al., 2012) and reviews
(Popescu et al., 2005; Mukherjee and Liu, 2012).

In the domain of synchronous conversations,
prosodic features such as duration, speech rate and
pause have been used for spoken dialogue (Wang
et al., 2011; Galley et al., 2004). Galley et al.
(2004) found that local features, such as lexical
and structural features, as well as global contex-
tual features, were particularly useful for identify-
ing agreement/disagreement in the ICSI meeting
corpus. Germesin and Wilson (2009) also showed
accuracies of 98% in detecting agreement in the
AMI corpus using lexical, subjectivity and dia-
logue act features. However, they note that their
system could not classify disagreement accurately
due to the small number of training examples in
this category. Somasundaran et al. additionally
show that dialogue act features complement lexi-
cal features in the AMI meeting corpus (Somasun-
daran et al., 2007). These observations are taken
into account with our feature choices, and we use
contextual, discourse and lexical features in our
analysis.

In the monologic domain, Conrad et al. (2012)
recently found rhetorical relations to be useful for
argument labelling and detection in articles on the

topic of healthcare. Additionally, discourse mark-
ers and sentiment features have been found to as-
sist with disagreement detection in collections of
news documents on a particular topic, as well as
reviews (Choi et al., 2010; Awadallah et al., 2012;
Popescu et al., 2005).

In the asynchronous domain, there has been re-
cent work in disagreement detection, especially as
it pertains to stance identification. Content based
features, including sentiment, duration, and dis-
course markers have been used for this task (Yin
et al., 2012; Somasundaran and Wiebe, 2009;
Somasundaran and Wiebe, 2010). The structure
of a conversation has also been used, although
these approaches have focused on simple rules for
disagreement identification (Murakami and Ray-
mond, 2010), or have assumed that adjacent posts
always disagree (Agrawal et al., 2003). More re-
cent work has focused on identifying users’ atti-
tudes towards each other (Hassan et al., 2010), in-
fluential users and posts (Nguyen et al., 2014), as
well as identifying subgroups of users who share
viewpoints (Abu-Jbara et al., 2010). In Slashdot,
the h-index of a discussion has been used to rank
articles according to controversiality, although no
quantitative evaluation of this approach has been
given, and, unlike in our analysis, they did not
consider any other features (Gomez et al., 2008).
Content based features such as polarity and co-
sine similarity have also been used to study influ-
ence, controversy and opinion changes on micro-
blogging sites such as Twitter (Lin et al., 2013;
Popescu and Pennacchiotti, 2010).

The simplified task of detecting disagreement
between just two users (either a question/response
pair (Abbott et al., 2011) or two adjacent para-
graphs (Misra and Walker, 2013)) has also been re-
cently approached on the ARGUE corpus. Abbott
et al. (2011) use discourse markers, generalized
dependency features, punctuation and structural
features, while Misra and Walker (2013) focus on
n-grams indicative of denial, hedging and agree-
ment, as well as cue words and punctuation. Most
similar to our work is that by Mishne and Glance
(2006). They performed a general analysis of we-
blog comments, using punctuation, quotes, lexi-
con counts, subjectivity, polarity and referrals to
detect disputative and non-disputative comments.
Referrals and questions, as well as polarity mea-
sures in the first section of the post, were found to
be most useful. However, their analysis did not
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Type Num P/A S/P W/P Num Authors W/S TBP TT TP Length
Disagreement - C 19.00 1.02 3.21 65.86 15.84 20.47 4.60 50.90 16.21 49.11

Disagreement - NC 27.00 1.00 3.08 59.80 14.07 19.33 3.89 42.29 14.11 42.26
No disagreement - NC 28.00 1.03 2.85 57.25 10.29 19.94 6.83 50.12 10.50 28.00
No disagreement - C 21.00 1.00 3.69 69.66 6.29 20.22 6.14 18.22 6.29 19.81

Table 1: Characteristics of the four categories determined from the crowd-sourced annotation. All values except for the number
of topics in the category are given as the average score per topic across all topics in that category. Key: C and NC: Confident
(score ≥ 0.75) and Not confident (score < 0.75), Num: Number of topics in category, P/A: Posts per author, S/P: Sentences
per post, W/P: Words per post, Num Authors: Number of authors, W/S: Words per sentence, TBP: Time between posts
(minutes), TT: Total time in minutes, TP: Total posts, and Length: Length of topic in sentences

take into account many features that have been
subsequently shown to be relevant, such as dis-
course markers and conversational structure, and
was hampered by a severe imbalance in the test
set (with very few disputative comments).

Our method takes advantage of insights from
many of these previous studies, focusing on dis-
cussion thread structure as well as text based fea-
tures to form our basic feature set. It is unlike
Mishne and Glance’s work in that we incorporate
several new features, have a balanced testing and
training set, and only use comments from one type
of online blog. Furthermore, it is a very different
task from those so far performed on the ARGUE
corpus, as we consider topics discussed by more
than two users. We aim to compare our features to
those found to be previously useful in these related
tasks, and expect similar feature sets to be useful
for the task of disagreement detection in this new
corpus.

3 Corpus

The corpus stems from the online forum Slash-
dot.1 Slashdot is a casual internet forum, includ-
ing sections for users to ask questions, post arti-
cles, and review books and games. For the task of
disagreement detection, we focus our analysis on
the section of the site where users can post arti-
cles, and then comment either on the article or re-
spond to other users’ posts. This results in a tree-
like dialogue structure for which the posted arti-
cle is the root, and branches correspond to threads
of comments. Each comment has a timestamp at
the minute resolution as well as author information
(although it is possible to post on the forum anony-
mously). Additionally, other users can give differ-
ent posts scores (in the range -1 to 5) as well as cat-
egorizing posts under “funny”, “interesting”, “in-
formative”, “insightful”, “flamebait”, “off topic”,
or “troll”. This user moderation, as well as the

1www.slashdot.org

formalized reply-to structure between comments,
makes Slashdot attractive over other internet fo-
rums as it allows for high-quality and structured
conversations.

In a previous study, Joty et al. (2013) selected
20 articles and their associated comments to be an-
notated for topic segmentation boundaries and la-
bels by an expert Slashdot contributor. They de-
fine a topic as a subset of the utterances in a con-
versation, while a topic label describes what the
given topic is about (e.g., Physics in videogames).
Of the 98 annotated topics from their dataset, we
filtered out those with only one contributing user,
for a total of 95 topics. Next, we developed a
Human Intelligence Task (HIT) using the crowd-
sourcing platform Crowdflower.2 The objective of
this task was to both develop a corpus for testing
our disagreement detection system, as well as to
investigate how easily human annotators can de-
tect disagreement in casual online forums. For
training, users were shown 3 sample topics, la-
belling them as containing disagreement or not. In
each round, annotators were shown 5 topics, with
a set of radio buttons for participants to choose
“Yes”, “No”, or “Not sure” in response to asking
whether or not the users in the conversation dis-
agree on the topic. In order to limit the number of
spam responses, users were shown test questions,
which consisted of topics where there was obvi-
ous disagreement, as well as topics where there
was obviously no disagreement (either agreement,
or more news-style information sharing). We re-
quired that users correctly identify 4 of these test
topics before they were allowed to continue with
the task. Users were also shown test questions
throughout the task, which, if answered incor-
rectly, would reduce the amount of money they re-
ceived for the task, and ultimately disqualify them.

For each topic, five different judgements were
obtained. We consider the trust of each partici-

2www.Crowdflower.com
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(a) Discourse tree (b) Relation graph

Figure 1: Discourse tree (left) with extracted relation graph (right) for a sample conversation involving three users with three
different posts P1, P2 and P3. N1, N2 and N3 are the corresponding nodes in the relation graph.

pant as the fraction of test questions which they
answered correctly. Then, each topic is assigned
a score according to a weighted average of the re-
sponses, with the weight being the trust of each
participant:

score = A
∑
users

(
testcorrect
testtotal

)useri × (0, 0.5, 1)

(1)
where 0, 0.5 and 1 represent the answers “No”,
“Not sure” and “Yes” to the question of disagree-
ment existence, and A is a normalization factor.
If the score is less than 0.5, its confidence would
be 1−score towards “No disagreement”, whereas
greater than 0.5 would be a confidence of score
towards “Disagreement”. The average confidence
score across all topics was 0.73. Our corpus con-
sists of 49 topics without disagreement and 46 top-
ics with disagreement. Interestingly, 22 topics had
confidence scores below 55%, which suggests that
subtle disagreement detection is a subjective and
difficult task. Further statistics for the developed
corpus are given in Table 1.

4 Features for Disagreement Detection

The features we use in our experiments combine
information from conversational structure, rhetor-
ical relations, sentiment features, n-gram models,
Slashdot meta-features, structural features, and
lexicon features.

4.1 Rhetorical Relation Graphs
Discourse markers have been found to aid in
argument and disagreement detection, and for
tasks such as stance identification (Abbott et al.,
2011; Misra and Walker, 2013; Somasundaran
and Wiebe, 2009). We aim to improve over dis-
course markers by capturing the underlying dis-

course structure of the conversation in terms of
discourse relations.

In Rhetorical Structure Theory, Discourse trees
are a hierarchical representation of document
structure for monologues (Mann and Thompson,
1988). At the lowest level, Elementary Discourse
Units (EDUs) are connected by discourse rela-
tions (such as ELABORATION and COMPARISON),
which in turn form larger discourse units that are
also linked by these relations. Computational sys-
tems (discourse parsers) have been recently devel-
oped to automatically generate a discourse tree for
a given monologue (Joty et al., 2013). Although
theoretically the rhetorical relations expected in
dialogues are different from those in monologues
(Stent and Allen, 2000), no sophisticated compu-
tational tools exist yet for detecting these relations
reliably. The core idea of this work is that some
useful (although noisy) information about the dis-
course structure of a conversation can be obtained
by applying state-of-the-art document level dis-
course parsing to parts of the conversation.

More specifically, posts on a particular topic
are concatenated according to their temporal order.
This pseudo-monologic document is then fed to a
publicly available document level discourse parser
(Joty et al., 2013). A discourse tree such as that
seen in Figure 1a is output by the parser. Then,
we extract the novel relation graph (Figure 1b)
from the discourse tree. In this graph, each node
(N1, N2, N3) corresponds to a post (P1, P2, P3)
and links aim to capture the argumentative struc-
ture. There are three cases when a link is added
between two nodes in the relation graph. Firstly,
links existing between two posts directly, such as
the COMPARISON relation between P2 and P3, are
added between the corresponding nodes in the re-
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lation graph (N2 and N3). Secondly, links existing
between fractions of posts in the discourse tree are
added to the relation graph (e.g. if (S2,P2) was
connected to (S1,P3) directly, N2 and N3 would
have an additional link with that label). Finally,
when posts are connected through internal nodes
(such as P1 and I1 in Figure 1a), a labelled link is
added for each post in the internal node to the re-
lation graph (N1->N2 and N1->N3 in Figure 1b).

This relation graph allows for the extraction
of many features that may reflect argumenta-
tive structure, such as the number of connec-
tions, the frequency of each rhetorical relation
in the graph per post (diff per post), and the
frequency as a percentage of all rhetorical rela-
tions (diff percentage). For example, COMPAR-
ISON relations are known to indicate disagree-
ment (Horn, 1989), so we expect higher fre-
quencies of this relation if the conversation con-
tains argument. Features from the discourse tree
such as the average depth of each rhetorical re-
lation are also added to reflect the cohesiveness
of conversation. Moreover, features combining
the graph and tree representations, such as the ra-
tio of the frequency of a rhetorical relation occur-
ring between different posts to the average depth
(CONTRAST between different posts

Average depth of CONTRAST ), called avg ratio
are implemented. These reflect the hypothesis
that relations connecting larger chunks of text (or
whole posts) may be more important than those
connecting sentences or only partial posts.

Finally, the sub-trees corresponding to individ-
ual posts are used to extract the average frequency
of rhetorical relations within a post (same per
post) and the average frequency of a rhetorical re-
lation with respect to other rhetorical relations in
the post (same percentage). A measure of how
often a rhetorical relation connects different users
compared to how often it connects discourse units
in the same post (same to diff ), is also added.
These capture the intuition that certain rhetorical
relations such as CAUSE, EVIDENCE and EXPLA-
NATION are expected to appear more within a post
if users are trying to support their perspective in
an argument. In total, there are 18 (rhetorical
relations)×7 (avg ratio, avg depth, same per post,
same percentage, diff percentage, diff per post,
same to diff ) + 1 (number of connections) = 127
features.

4.2 Discourse Markers

Motivated by previous work, we include a fre-
quency count of 17 discourse markers which were
found to be the most common across the ARGUE
corpus (Abbott et al., 2011). Furthermore, we hy-
pothesize that individual discourse markers might
have low frequency counts in the text. Therefore,
we also include an aggregated count of all 17 dis-
course markers in each fifth of the posts in a topic
(e.g. the count of all 17 discourse markers in the
first fifth of every post in the topic). Altogether,
there are 5 aggregated discourse marker features
in addition to the 17 frequency count features.

4.3 Sentiment Features

Sentiment polarity features have been shown to be
useful in argument detection (Mishne and Glance,
2006). For this work, we use four sentiment
scoring categories: the variance, average score,
number of negative sentences, and controversiality
score (Carenini and Cheung, 2008) of sentences
in a post. These are determined using SoCAL
(Taboada et al., 2011), which gives each sentence
a polarity score and has been shown to work well
on user-generated content.

Overall, we have two main classes of sentiment
features. The first type splits all the posts in a topic
into 4 sections corresponding to the sentences in
each quarter of the post. The sentiment scores de-
scribed above are then applied to each section of
the posts (e.g. one feature is the number of neg-
ative sentences in the first quarter of each post).
As a separate feature, we also include the scores
on just the first sentence, as Mishne and Glance
(2006) previously found this to be beneficial. This
gives a total of 4×5 = 20 features. We refer to this
set as “sentiment”.

Motivated by the rhetorical features, our sec-
ond main class of sentiment features aims to iden-
tify “more important” posts for argument detec-
tion by applying the four categories of sentiment
scores to only those posts connected by each of
our 18 rhetorical relations. This is done for both
posts with an inner rhetorical connection (iden-
tified by the sub-tree for that post), as well as
for posts connected by a rhetorical relation in
the relation graph. This results in a total of (4
sentiment categories)×(2 (different + same post
connections))×(18 rhetorical relations) = 144 fea-
tures. This set is referred to as “RhetSent”.
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4.4 Fragment Quotation Graphs

As previously noted in (Murakami and Raymond,
2010; Gomez et al., 2008), the structure of dis-
cussion threads can aid in disagreement detec-
tion. In online, threaded conversations, the stan-
dard approach to extracting conversational struc-
ture is through reply-to relations usually present
in online forums. However, if users strongly dis-
agree on a topic (or sub-topic), they may choose
to quote a specific paragraph (defined as a frag-
ment) of a previous post in their reply. Being able
to determine which specific fragments are linked
by relations may then be useful for more targeted
content-based features, helping to reduce noise. In
order to address this, we use the Fragment Quo-
tation Graph (FQG), an approach previously de-
veloped by Carenini et al. (2007) for dialogue
act modelling and topic segmentation (Joty et al.,
2011; Joty et al., 2013).

For our analysis, the FQG is found over the
entire Slashdot article. We then select the sub-
graph corresponding to those fragments in the tar-
get topic. From the fragment quotation sub-graph,
we are then able to extract features for disagree-
ment detection such as the number of connections,
total number of fragments, and the average path
length between nodes which we hypothesize to
be useful. We additionally extract the h-index
(Gomez et al., 2008) and average branching ratio
per fragment of the topic from the simpler reply-to
conversational structure. In total, there are 8 FQG
features.

4.5 N-gram models

As noted previously (Somasundaran and Wiebe,
2010; Thomas et al., 2006), it is often difficult to
outperform a unigram/bigram model in the task of
disagreement and argument detection. In this anal-
ysis, because of the very small number of sam-
ples, we do not consider dependency or part-of-
speech features, but do make a comparison with
a filtered unigram/bigram model. In the filtering,
we remove stop words and any words that occur in
fewer than three topics. This helps to prevent topic
specific words from being selected, and limits the
number of possible matches slightly. Additionally,
we use a lexicon of bias-words (Recasens et al.,
2013) to extract a bias-word frequency score over
all posts in the topic as a separate feature.

4.6 Structural Features

Length features have been well documented in
the literature to provide useful information about
whether or not arguments exist, especially in on-
line conversations that may be more informative
than subjective (Biyani et al., 2014; Yin et al.,
2012). In this work, length features include the
length of the post in sentences, the average num-
ber of words per sentence, the average number of
sentences per post, the number of contributing au-
thors, the rate of posting, and the total amount of
time of the conversation. This results in a total of
9 features.

4.7 Punctuation

Like many other features already described, fre-
quency counts of ‘?’,‘!’,‘”’,‘”, and ‘.’ are found for
each fifth of the post (the first fifth, second fifth,
etc.). These counts are then aggregated across all
posts for a total of 5×5 = 25 features.

4.8 Referrals

Referrals have been found to help with the detec-
tion of disagreement (Mishne and Glance, 2006),
especially with respect to other authors. Since
there are no direct referrals to previous authors
in this corpus, references to variations of “you”,
“they”, “us”, “I”, and “he/she” in each fifth of the
post are included instead, for a total of 5×5 = 25
features.

4.9 Meta-Post Features

Slashdot allows users to rank others’ posts with the
equivalent of a “like” button, changing the “score”
of the post (to a maximum of 5). They are also
encouraged to tag posts as either “Interesting”,
“Informative”, “Insightful”, “Flamebait”, “Troll”,
“Off-topic” or “Funny”. Frequency counts of
these tags as a percentage of the total number of
comments are included as features, as well as the
overall fraction of posts which were tagged with
any category. The average score across the topic,
as well as the number of comments with a score
of 4 or 5, are also added. These are expected to
be informative features, since controversial topics
may encourage more up and down-voting on spe-
cific posts, and generally more user involvement.
This results in 9 meta-post features.
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Feature Set Random Forest SVM
P R F1 A ROC-AUC P R F1 A ROC-AUC

N-grams 0.71 0.57 0.63 0.67 0.69 0.52 0.60 0.56 0.53 0.53
Basic 0.69 0.67 0.68 0.69 0.73 0.62 0.62 0.62 0.63 0.67

Basic+N-grams 0.73 0.66 0.69 0.70 0.73 0.57 0.65 0.60 0.59 0.61
Basic+FQG 0.69 0.66 0.67 0.69 0.71 0.64 0.63 0.63 0.65 0.70

Basic+Sentiment 0.68 0.65 0.66 0.68 0.73 0.61 0.59 0.60 0.62 0.67
Basic+RhetStruct 0.71 0.70 0.70 0.71 0.73 0.73 0.70 0.71 0.73 0.78

Basic+RhetStruct+FQG 0.69 0.69 0.69 0.70 0.73 0.74 0.74 0.74 0.75 0.80
Basic+RhetAll 0.72 0.73 0.73 0.73 0.75 0.76 0.76 0.76 0.77 0.79
RhetStructOnly 0.69 0.72 0.71 0.71 0.72 0.76 0.72 0.74 0.75 0.79

RhetAllOnly 0.69 0.74 0.71 0.71 0.73 0.75 0.72 0.73 0.75 0.78
All 0.71 0.72 0.71 0.72 0.74 0.74 0.77 0.75 0.76 0.77

Table 2: Basic: Meta-post, all structural, bias words, discourse markers, referrals, punctuation RhetAll: Structural and sen-
timent based rhetorical features All: Basic, all rhetorical, sentiment and FQG features. The N-gram models include unigrams
and bi-grams. All feature sets in the bottom part of the table include rhetorical reatures.

5 Experiments

Experiments were all performed using the Weka
machine learning toolkit. Two different types of
experiments were conducted - one using all an-
notated topics in a binary classification of con-
taining disagreement or not, and one using only
those topics with confidence scores greater than
0.75 (corresponding to the more certain cases). All
results were obtained by performing 10 fold cross-
validation on a balanced test set. Additionally, in-
fold cross-validation was performed to determine
the optimal number of features to use for each fea-
ture set. Since this is done in-fold, a paired t-test
is still a valid comparison of different feature sets
to determine significant differences in F-score and
accuracy.

5.1 Classifiers

Two classifiers were used for this task: Random
Forest and SVM. Random Forest was selected be-
cause of its ability to avoid over-fitting data despite
large numbers of features for relatively few sam-
ples. For all runs, 100 trees were generated in the
Random Forest, with the number of features to use

being determined by in-fold optimization on the F-
score. For the SVM classifier, we use the normal-
ized poly-vector kernel with a maximum exponent
of 2 (the lowest possible), and a C parameter of
1.0 (Weka’s default value). This was chosen to
avoid over-fitting our data. We additionally use
a supervised in-fold feature selection algorithm,
Chi-Squared, to limit over-fitting in the SVM. The
number of features to be used is also optimized us-
ing in-fold cross-validation on the F-score. Both
the SVM classifier and the Random Forest classi-
fier were tested on the same training/testing fold
pairs, with a total of 10 iterations.

6 Results

The results of the experiments are shown in Ta-
bles 2 and 3. In order to compare to previous anal-
yses, unigram and bigram features are shown, as
well as a combination of the basic features with
the n-grams. When performing the experiments,
we noticed that the n-gram features were hurting
the performance of the classifiers when included
with most of our other feature sets (or not chang-
ing results significantly), and therefore those re-
sults are not shown here. As seen in the table,

Feature Set Random Forest SVM
P R F1 A ROC-AUC P R F1 A ROC-AUC

N-grams 0.70 0.70 0.70 0.71 0.77 0.63 0.70 0.66 0.63 0.66
Basic 0.74 0.69 0.72 0.72 0.77 0.73 0.70 0.72 0.71 0.78

Basic+FQG 0.72 0.67 0.69 0.69 0.76 0.73 0.63 0.68 0.69 0.76
Basic+Sentiment 0.71 0.65 0.68 0.68 0.76 0.73 0.67 0.70 0.70 0.76
Basic+RhetStruct 0.79 0.75 0.77 0.77 0.78 0.79 0.67 0.72 0.74 0.79

Basic+RhetStruct+FQG 0.76 0.71 0.73 0.73 0.77 0.74 0.64 0.69 0.70 0.78
Basic+RhetAll 0.77 0.75 0.76 0.76 0.78 0.72 0.69 0.71 0.70 0.76
RhetStructOnly 0.75 0.71 0.73 0.73 0.75 0.76 0.63 0.69 0.70 0.76

RhetAllOnly 0.73 0.76 0.74 0.73 0.76 0.67 0.62 0.65 0.65 0.67
All 0.73 0.69 0.71 0.70 0.76 0.71 0.70 0.70 0.69 0.74

Table 3: Precision, recall, F1, accuracy and ROC-AUC scores for the simpler task of identifying the cases deemed “high
confidence” in the crowd-sourcing task.
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the best performing feature sets are those that in-
clude rhetorical features under the SVM+χ2 clas-
sifier. In fact, these feature sets perform signifi-
cantly better than a unigram/bigram baseline ac-
cording to a paired t-test between the best clas-
sifiers for each set (p < 0.0001). The inclusion
of rhetorical structure also significantly outper-
forms the “basic” and “basic+N-grams” feature
baselines (which includes discourse markers, re-
ferrals, punctuation, bias word counts and struc-
tural features) with respect to both the F-score
and accuracy (p < 0.02 for all feature sets with
rhetorical features). Overall, the feature sets “Ba-
sic+RhetAll” and “All” under the SVM+χ2 clas-
sifier perform best. This performance is also bet-
ter than previously reported results for the ARGUE
Corpus (Abbott et al., 2011), even though the ba-
sic and unigram/bigram features perform similarly
to that reported in previous analyses.

As an additional check, we also conduct exper-
iments on the “high confidence” data (those topics
with a confidence score greater than 0.75). These
results are shown in Table 3. Clearly the basic
features perform better on this subset of the sam-
ples, although the addition of rhetorical structure
still provides significant improvement (p< 0.001).
Overall, this suggests that the rhetorical, sentiment
and FQG features help more when the disagree-
ment is more subtle.

7 Analysis and Discussion

In order to examine the quality of our features,
we report on the rhetorical features selected, and
show that these are reasonable and in many cases,
theoretically motivated. Furthermore, we check
whether the commonly selected features in each
of our feature categories are similar to those found
to be useful over the ARGUE corpus, as well as
within other argument detection tasks in online fo-
rums.

The rhetorical features that are consistently se-
lected are very well motivated in the context of ar-
gument detection. From the rhetorical structural
features, we find COMPARISON relation features
to be most commonly selected across all rhetorical
feature sets. Other highly ranked features include
the proportion of JOINT relations linking different
authors, EXPLANATION relations between differ-
ent authors, and the average depth of ELABORA-
TION relations.

The COMPARISON relations are expected to in-

Structural Length of topic in sentences, to-
tal number of authors, quotes in
first sentence, quotes in second
sentence, questions in first sen-
tence, questions in second sen-
tence, referrals to you and they
in first half of post

Meta Number of comments with la-
bels, number of comments la-
belled ’Flamebait’, number of
comments with scores of 4 or 5

FQG Number of connections, Num-
ber of fragments, Maximum
number of links from one node

RhetStruct COMPARISON (same to diff, diff
per post, diff percentage, avg
ratio, same per post, same per-
centage), EXPLANATION (avg
ratio, diff per post), JOINT
(diff percentage), ELABORA-
TION (average depth)

Discourse Markers Aggregated first sentence, Ag-
gregated middle, ’and’, ’oh’,
’but’ frequency counts

N-grams ‘don’t ?’, ‘plus’, ‘private’,
‘anti’, ‘hey’, ‘present’, ‘mak-
ing’, ‘developers’

RhetSent ELABORATION (variance in
same post), ATTRIBUTION
(variance in same post),
CONTRAST (range in same
post)

Sentiment Range of sentiment scores in
first sentence of all posts, range
of sentiment scores over all
posts

Table 4: Features found to be commonly selected over dif-
ferent iterations of the classifiers

dicate disagreement as motivated by theoretical
considerations (Horn, 1989). The importance of
other rhetorical relation features can also be ex-
plained by examining conversations in which they
appear. In particular, EXPLANATION relations of-
ten link authors who share viewpoints in a debate,
especially when one author is trying to support the
claim of another. The JOINT relations are also very
well motivated. In the extreme case, conversations
with a very high number of JOINT relations be-
tween different users are usually news based. The
high proportion of these relations indicates that
many users have added information to the conver-
sation about a specific item, such as adding new
suggested videogame features to an ongoing list.
Fewer JOINT relations seem to indicate disagree-
ment, especially when found in conjunction with
COMPARISON relations between different users.
This appears to generally indicate that users are
taking sides in a debate, and commenting specifi-
cally on evidence which supports their viewpoint.
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The average depth of ELABORATION relations
reveals how deep the perceived connections are
between users in a conversation over time. Deeper
ELABORATION connections seem to indicate that
the conversation is more cohesive. Alone, this
does not signify disagreement/agreement but does
seem to signify argument-style over news-style di-
alogues. This is particularly helpful for differ-
entiating between articles with many COMPARI-
SON relations, as COMPARISON may be present
in both news-style dialogues (e.g. comparing ci-
tation styles) as well as argument style dialogues
(e.g. arguing over which of two operating systems
is superior).

For the combined sentiment and rhetorical rela-
tions, range and variance in ELABORATION, CON-
TRAST and ATTRIBUTION within the same post
are found to be the most informative features. Ad-
ditionally, neither ATTRIBUTION nor CONTRAST

are useful features when only their structural in-
formation is considered. In the case of ATTRI-
BUTION, we hypothesize that the added sentiment
score within the post differentiates between a neu-
tral attribution (which would not signify disagree-
ment) and a negative or positive attribution (which
may signify disagreement). For CONTRAST, the
added sentiment helps to distinguish between re-
sponses such as “We will be trying the Microsoft
software. We won’t, however, be able to test the
Apple equivalent.” and “We will be trying the Mi-
crosoft software. We won’t, however, be trying the
inferior Apple equivalent.” where the second ex-
ample more likely signals, or even provokes, dis-
agreement.

Outside of the rhetorical features, the discourse
markers which are found to be the most useful in
our experiments agree with those found in the AR-
GUE corpus (Abbott et al., 2011). Namely, ‘oh’,
‘but’, ‘because’ and ‘and’ are discovered to be the
most informative features. We also find the aggre-
gated discourse marker frequency count in the first
part of each post to be useful.

Previous analysis on Slashdot as a social net-
work (Gomez et al., 2008) suggests that the h-
index of the conversation is relevant for detecting
controversy in a posted article. We include the
h-index as part of the Fragment Quotation Graph
feature set, but surprisingly do not find this to be
a useful feature. This may be due to our corpus
involving relatively shallow conversational trees -
the maximum h-index across all topics is three.

Comparing to Mishne and Glance’s work, we
also find quotations, questions and sentiment
range near the beginning of a post to be very in-
formative features. These are often selected across
all feature sets which include the “basic” set.

The topics most often misclassified across all
feature sets are those with relatively few sen-
tences. In these cases, the rhetorical structure
is not very well defined, and there is much less
content available for detecting quotes, punctuation
and referrals. Additionally, the feature sets which
only use rhetorical and sentiment features consis-
tently misclassify the same set of conversations
(those that have lower quality discourse trees with
few connections). When combined with the “ba-
sic” feature set, these errors are mitigated, and the
topics which the “basic” features miss are picked
up by the rhetorical features. This leads to the best
overall accuracy and F-score.

7.1 Discourse Parser

A major source of error in detecting disagreement
arises because of inaccuracies in our discourse
parser. In particular, document-level discourse
parsing is a challenging task, with relatively few
parsers available at the time of this analysis (Joty
et al., 2013; Hernault et al., 2010). We chose to
use the discourse parser developed by Joty et al.
which both identifies elementary discourse units in
a text, and then builds a document-level discourse
tree using Conditional Random Fields. Because
their approach uses an optimal parsing algorithm
as opposed to a greedy parsing algorithm, they are
able to achieve much higher accuracies in rela-
tion and structure identification than other avail-
able parsers. Here, results from their parser on the
standard RST-DT dataset are presented since there
is no currently available dialogic corpora to com-
pare to.

RST-DT Instructional
Metrics Joty HILDA Human Joty

Span 83.84 74.68 88.70 81.88
Nuclearity 68.90 58.99 77.72 63.13
Relation 55.87 44.32 65.75 43.60

Table 5: Joty et al. document-level parser accuracy of the
parser used in this paper. The parser was originally tested
on two corpora: RST-DT and Instructional. HILDA was the
state-of-the-art parser at that time. Span and Nuclearity met-
rics assess the quality of the structure of the resulting tree,
while the Relation metric assesses the quality of the relation
labels.

Examining the relation labels confusion matrix
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Figure 2: Confusion matrix for relation labels on RST-DT.
The X-axis represents predicted relations, while the Y-axis
corresponds to true values. The relations are Topic-Change
(T-C), Topic-Comment (T-CM), Textual Organization (T-
O), Manner-Means (M-M), Comparison (CMP), Evaluation
(EV), Summary (SU), Condition (CND), Enablement (EN),
Cause (CA), Temporal (TE), Explanation (EX), Background
(BA), Contrast (CO), Joint (JO), Same-Unit (S-U), Attribu-
tion (AT) and Elaboration (EL).

for the discourse parser in Figure 2, some of the
chosen rhetorical features make even more sense.
In particular, the confusion of ELABORATION and
EXPLANATION may account for the perceived im-
portance of ELABORATION relations in the analy-
sis. Likewise, CAUSE (which may be present when
users attribute positive or negative qualities to an
entity, signalling disagreement) is often confused
with JOINT and ELABORATION which were often
picked as important features by our classifiers.

8 Conclusions and Future Work

In this paper, we have described a new set of fea-
tures for detecting disagreement in online blog fo-
rums. By treating a written conversation as a series
of linked monologues, we can apply a document
level discourse parser to extract a discourse tree
for the conversation. We then aggregate this infor-
mation in a relation graph, which allows us to cap-
ture post-level rhetorical relations between users.
Combining this approach with sentiment features
shows significantly improved performance in both
accuracy and F-score over a baseline consisting
of structural and lexical features as well as re-
ferral counts, punctuation, and discourse markers.
In building our new crowd-sourced corpus from
Slashdot, we have also shown the challenges of
detecting subtle disagreement in a dataset that con-
tains a significant number of news-style discus-

sions.
In future work, we will improve sentiment fea-

tures by considering methods to detect opinion-
topic pairs in conversation, similar to Somasun-
daran and Wiebe (2009). Additionally, we will
incorporate generalized dependency and POS fea-
tures (Abbott et al., 2011), which were not used
in this analysis due to the very small number of
training samples in our dataset. The fragment quo-
tation graph features did not perform as well as we
expected, and in future work we would like to in-
vestigate this further. Furthermore, we will also
explore how to create a discourse tree from the
thread structure of a conversation (instead of from
its temporal structure), and verify whether this im-
proves the accuracy of the relation graphs, espe-
cially when the temporal structure is not represen-
tative of the reply-to relationships.

Finally, we plan to apply our novel feature set to
other corpora (e.g., ARGUE) in order to study the
utility of these features across genres and with re-
spect to the accuracy of the discourse parser. This
may provide insights into where discourse parsers
can be most effectively used, as well as how to
modify parsers to better capture rhetorical rela-
tions between participants in conversation.

References
Rob Abbott, Marilyn Walker, Pranav Anand, Jean

E. Fox Tree, Robeson Bowmani and Joseph King.
2011. How can you say such things?!?: Recogniz-
ing Disagreement in Informal Political Argument. In
Proceedings of LSM, pages 2-11.

Amjad Abu-Jbara, Mona Diab, Pradeep Dasigi, and
Dragomir Radev. 2012. Subgroup detection in ide-
ological discussions. In Proceedings of ACL, pages
399-409.

Rakesh Agrawal, Sridhar Rajagopalan, Ramakrishnan
Srikant, and Yirong Xu. 2003. Mining newsgroups
using networks arising from social behavior. In Pro-
ceedings of WWW, pages 529-535.

Rawia Awadallah, Maya Ramanath, Gerhard Weikum.
2012. Harmony and Dissonance: Organizing the
People’s Voices on Political Controversies. In Pro-
ceedings of WSDM, pages 523-532.

Prakhar Biyani, Sumit Bhatia, Cornelia Caragea,
Prasenjit Mitra. 2014. Using non-lexical features for
identifying factual and opinionative threads in online
forums. In Knowledge-Based Systems, in press.

Penelope Brown and Stephen Levinson. 1987. Polite-
ness: Some universals in language usage. Cam-
bridge University Press.

1178



Giuseppe Carenini and Jackie Cheung. 2008. Extrac-
tive vs. NLG-based Abstractive Summarization of
Evaluative Text: The Effect of Corpus Controver-
siality. In Proceedings of INLG, pages 33-41.

Giuseppe Carenini, Raymond Ng, Xiaodong Zhou.
2007. Summarizing Email Conversations with Clue
Words. In Proceedings of WWW, pages 91-100.

Yoonjung Choi, Yuchul Jung, and Sung-Hyon Myaeng.
2010. Identifying controversial issues and their sub-
topics in news articles. In Proceedings of PAISI,
pages 140-153.

Alexander Conrad, Janyce Wiebe and Rebecca
Hwa. 2012. Recognizing Arguing Subjectivity and
Argument Tags. In ACL Workshop on Extra-
Propositional Aspects of Meaning, pages 80-88.

Jean E. Fox Tree. 2010. Discourse markers across
speakers and settings. Language and Linguistics
Compass, 3(1):1-113.

Michel Galley, Kathleen McKeown, Julia Hirschberg,
and Elizabeth Shriberg. 2004. Identifying agreement
and disagreement in conversational speech: Use of
bayesian networks to model pragmatic dependen-
cies. In Proceedings of ACL, pages 669-es.

Sebastian Germesin and Theresa Wilson. 2009. Agree-
ment Detection in Multiparty Conversation. In Pro-
ceedings of International Conference on Multimodal
Interfaces pages 7-14.

Vicenc Gomez, Andreas Kaltenbrunner and Vicente
Lopez. 2008. Statistical Analysis of the Social Net-
work and Discussion Threads in Slashdot. In Pro-
ceedings of WWW, pages 645-654.

Ahmed Hassan, Vahed Qazvinian, and Dragomir
Radev. 2010. What’s with the attitude?: identifying
sentences with attitude in online discussions. In Pro-
ceedings of EMNLP, pages 1245-1255.

Hugo Hernault, Helmut Prendinger, David A. duVerle
and Mitsuru Ishizuka. 2010. HILDA: A Discourse
Parser Using Support Vector Machine Classification.
Dialogue and Discourse, 1(3):1-33.

Laurence R. Horn. 1989. A natural history of negation.
Chicago University Press.

Shafiq Joty, Giuseppe Carenini, and Chin-Yew Lin.
2011. Unsupervised modeling of dialog acts in asyn-
chronous conversations. In Proceedings of IJCAI,
pages 1807-1813.

Shafiq Joty, Giuseppe Carenini, Raymond Ng and
Yashar Mehdad. 2013. Combining Intra- and Multi-
sentential Rhetorical Parsing for Document-level
Discourse Analysis. In Proceedings of ACL.

Shafiq Joty, Giuseppe Carenini and Raymond Ng.
2013. Topic Segmentation and Labeling in Asyn-
chronous Conversations. Journal of AI Research,
47:521-573.

Ching-Sheng Lin, Samira Shaikh, Jennifer Stromer-
Galley, Jennifer Crowley, Tomek Strzalkowski,
Veena Ravishankar. 2013. Topical Positioning: A
New Method for Predicting Opinion Changes in
Conversation. In Proceedings of LASM, pages 41-
48.

William C. Mann and Sandra A. Thompson. 1988.
Rhetorical structure theory: Toward a functional the-
ory of text organization. Text, 8(3):243-281.

Gilad Mishne and Natalie Glance. 2006. Leave a reply:
An analysis of weblog comments. In Proceedings of
WWW.

Amita Misra and Marilyn Walker. 2013. Topic Inde-
pendent Identification of Agreement and Disagree-
ment in Social Media Dialogue. In Proceedings of
SIGDIAL, pages 41-50.

Arjun Mukherjee and Bing Liu. 2012. Modeling review
comments. In Proceedings of ACL, pages 320-329.

Akiko Murakami and Rudy Raymond. 2010. Support
or Oppose? Classifying Positions in Online De-
bates from Reply Activities and Opinion Expres-
sions. In Proceedings of the International Confer-
ence on Computational Linguistics, pages 869-875.

Viet-An Nguyen, Jordan Boyd-Graber, Philip Resnik,
Deborah Cai, Jennifer Midberry, Yuanxin Wang.
2014. Modeling topic control to detect influence
in conversations using nonparametric topic models.
Machine Learning 95:381-421.

Ana-Maria Popescu and Oren Etzioni. 2005. Extract-
ing Product Features and Opinions from Reviews.
In Proceedings of HLT/EMNLP, pages 339-346.

Ana-Maria Popescu and Marco Pennacchiotti. 2010.
Detecting controversial events from twitter. In Pro-
ceedings of CIKM, pages 1873-1876.

Stephan Raaijmakers, Khiet Truong, Theresa Wilson.
2008. Multimodal subjectivity analysis of multiparty
conversation. In Proceedings of EMNLP, pages 466-
474.

Marta Recasens, Cristian Danescu-Niculescu-Mizil,
and Dan Jurafsky. 2013. Linguistic Models for Ana-
lyzing and Detecting Biased Language. In Proceed-
ings of ACL, pages 16501659.

Swapna Somasundaran, Josef Ruppenhofer, Janyce
Wiebe. 2007. Detecting Arguing and Sentiment in
Meetings. In Proceedings of SIGDIAL Workshop on
Discourse and Dialogue.

Swapna Somasundaran and Janyce Wiebe. 2009. Rec-
ognizing stances in online debates. In Proceedings
of ACL, pages 226-234.

Swapna Somasundaran and Janyce Wiebe. 2010. Rec-
ognizing stances in ideological on-line debates. In
Proceedings of NAACL, Workshop on Computa-
tional Approaches to Analysis and Generation of
Emotion in Text, pages 116124.

1179



Amanda Stent and James Allen. 2000. Annotating Ar-
gumentation Acts in Spoken Dialog. Technical Re-
port.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kim-
berly Voll, Manfred Stede. 2011. Lexicon-based
methods for sentiment analysis. Journal of Compu-
tational Linguistics, 37(2):267-307.

Matt Thomas, Bo Pang, and Lillian Lee. 2006. Get out
the vote: Determining support or opposition from
Congressional floor-debate transcripts. In Proceed-
ings of EMNLP, pages 327-335.

Wen Wang, Sibel Yaman, Kristen Precoda, Colleen
Richey, and Geoffrey Raymond. 2011. Detection of
agreement and disagreement in broadcast conversa-
tions. In Proceedings of ACL, pages 374-378.

Bonnie Webber and Rashmi Prasad. 2008. Sentence-
initial discourse connectives, discourse structure and
semantics. In Proceedings of the Workshop on For-
mal and Experimental Approaches to Discourse Par-
ticles and Modal Adverbs.

Jie Yin, Paul Thomas, Nalin Narang, and Cecile Paris.
2012. Unifying local and global agreement and dis-
agreement classification in online debates. In Pro-
ceedings of Computational Approaches to Subjectiv-
ity and Sentiment Analysis, pages 61-69.

1180



Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1181–1191,
October 25-29, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

+/-EffectWordNet: Sense-level Lexicon Acquisition for Opinion Inference

Yoonjung Choi and Janyce Wiebe
Department of Computer Science

University of Pittsburgh
yjchoi, wiebe@cs.pitt.edu

Abstract

Recently, work in NLP was initiated on a
type of opinion inference that arises when
opinions are expressed toward events
which have positive or negative effects
on entities (+/-effect events). This paper
addresses methods for creating a lexicon
of such events, to support such work on
opinion inference. Due to significant
sense ambiguity, our goal is to develop a
sense-level rather than word-level lexicon.
To maximize the effectiveness of different
types of information, we combine a
graph-based method using WordNet1

relations and a standard classifier using
gloss information. A hybrid between the
two gives the best results. Further, we
provide evidence that the model is an
effective way to guide manual annotation
to find +/-effect senses that are not in the
seed set.

1 Introduction

Opinion mining (or sentiment analysis) identifies
positive or negative opinions in many kinds of
texts such as reviews, blogs, and news articles. It
has been exploited in many application areas such
as review mining, election analysis, and infor-
mation extraction. While most previous research
focusses on explicit opinion expressions, recent
work addresses a type of opinion inference that
arises when opinions are expressed toward events
which have positive or negative effects on enti-
ties (Deng et al., 2013; Deng and Wiebe, 2014).
We call such events +/-effect events.2 Deng and
Wiebe (2014) show how sentiments toward one

1WordNet 3.0, http://wordnet.princeton.edu/
2While the term goodFor/badFor is used in previous pa-

pers (Deng et al., 2013; Deng and Wiebe, 2014; Deng et al.,
2014), we have since decided that +/-effect is a better term.

entity may be propagated to other entities via
opinion inference rules. They give the following
example:

(1) The bill would curb skyrocketing
health care costs.

The writer expresses an explicit negative senti-
ment (by skyrocketing) toward the object (health
care costs). The event, curb, has a negative effect
on costs, since they are reduced. We can reason
that the writer is positive toward the event because
it has a negative effect on costs, toward which the
writer is negative. From there, we can reason that
the writer is positive toward the bill, since it is
the agent of the positive event. Deng and Wiebe
(2014) show that such inferences may be exploited
to significantly improve explicit sentiment analy-
sis systems.

However, to achieve its results, the system de-
veloped by Deng and Wiebe (2014) requires that
all instances of +/-effect events in the corpus be
manually provided as input. For the system to
be fully automatic, it needs to be able to recog-
nize +/-effect events automatically. This paper
addresses methods for creating lexicons of such
events, to support such work on opinion inference.
We have discovered that there is significant sense
ambiguity, meaning that words often have mix-
tures of senses among the classes +effect, -effect,
and Null. Thus, we develop a sense-level rather
than word-level lexicon.

One of our goals is to investigate whether
the +/-effect property tends to be shared among
semantically-related senses, and another is to
use a method that applies to all word senses, not
just to the senses of words in a given word-level
lexicon. Thus, we build a graph-based model in
which each node is a WordNet sense, and edges
represent semantic WordNet relations between
senses. In addition, we hypothesized that glosses
also contain useful information. Thus, we develop

1181



a supervised gloss classifier and define a hybrid
model which gives the best overall performance.
Finally, because all WordNet verb senses are
incorporated into the model, we investigate the
ability of the method to identify unlabeled senses
that are likely to be +/-effect senses. We find that
by iteratively labeling the top-weighted unlabeled
senses and rerunning the model, it may be used as
an effective method for guiding annotation efforts.

2 Background

There are many varieties of +/-effect events, in-
cluding creation/destruction (changes in states in-
volving existence), gain/loss (changes in states
involving possession), and benefit/injury (Anand
and Reschke, 2010; Deng et al., 2013). The cre-
ation, gain, and benefit classes are +effect events.
For example, baking a cake has a positive effect on
the cake because it is created;3 increasing the tax
rate has a positive effect on the tax rate; and com-
forting the child has a positive effect on the child.
The antonymous classes of each are -effect events:
destroying the building has a negative effect on the
building; demand decreasing has a negative effect
on demand; and killing Bill has a negative effect
on Bill.4

While sentiment (Esuli and Sebastiani, 2006;
Wilson et al., 2005; Su and Markert, 2009) and
connotation lexicons (Feng et al., 2011; Kang et
al., 2014) are related, sentiment, connotation, and
+/-effects are not the same; a single event may
have different sentiment and +/-effect polarities,
for example. Consider the following example:

perpetrate:
S: (v) perpetrate, commit, pull (perform
an act, usually with a negative connota-
tion) “perpetrate a crime”; “pull a bank
robbery”

This sense of perpetuate has a negative
connotation, and is an objective term in
SentiWordNet. However, it has a positive
effect on the object, a crime, since performing a
crime brings it into existence.

3Deng et al. (2013) point out that +/-effect objects are not
equivalent to benefactive/malefactive semantic roles. An ex-
ample they give is She baked a cake for me: a cake is the ob-
ject of the +effect event baked as just noted, while me is the
filler of its benefactive semantic role (Ziga and Kittil, 2010).

4Their annotation manual, which gives additional cases, is
available with the annotated data at http://mpqa.cs.pitt.edu/.

As we mentioned, the +/-effect ambiguity can-
not be avoided in a word-level lexicon. In the
+/-effect corpus of Deng et al. (2013),5 +/-effect
events and their agents and objects are annotated
at the word level. In that corpus, 1,411 +/-effect in-
stances are annotated; 196 different +effect words
and 286 different -effect words appear in these
instances. Among them, 10 words appear in
both +effect and -effect instances, accounting for
9.07% of all annotated instances. They show that
+/-effect events (and the inferences that motivate
this work) appear frequently in sentences with ex-
plicit sentiment. Further, all instances of +/-effect
words that are not identified as +/-effect events are
false hits from the perspective of a recognition sys-
tem.

The following is an example of a word with
senses of different classes:

purge:
S: (v) purge (oust politically) “Deng
Xiao Ping was purged several times
throughout his lifetime” -effect
S: (v) purge (clear of a charge) +effect
S: (v) purify, purge, sanctify (make pure
or free from sin or guilt) “he left the
monastery purified” +effect
S: (v) purge (rid of impurities) “purge
the water”; “purge your mind” +effect

This is part of the WordNet output for the word
purge. In the first sense, the polarity is -effect
since it has a negative effect on the object, Deng
Xizo Ping. However, the other cases have positive
effect on the object. Moreover, although a word
may not have both +effect and -effect senses, it
may have mixtures of ((+effect or -effect) and
Null). A purely word-based approach is blind to
these cases.

3 Related Work

Lexicons are widely used in sentiment analysis
and opinion mining. Several works such as Hatzi-
vassiloglou and McKeown (1997), Turney and
Littman (2003), Kim and Hovy (2004), Strappar-
ava and Valitutti (2004), and Peng and Park (2011)
have tackled automatic lexicon expansion or ac-
quistion. However, in most such work, the lexi-
cons are word-level rather than sense-level.

5Called the goodFor/badFor corpus in that paper.
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For the related (but different) tasks of de-
veloping subjectivity, sentiment and connota-
tion lexicons, some do take a sense-level ap-
proach. Esuli and Sebastiani (2006) construct
SentiWordNet. They assume that terms with
the same polarity tend to have similar glosses. So,
they first expand a manually selected seed set of
senses using WordNet lexical relations such as
also-see and direct antonymy and train two clas-
sifiers, one for positive and another for negative.
As features, a vectorial representation of glosses
is adopted. These classifiers were applied to all
WordNet senses to measure positive, negative, and
objective scores. In extending their work (Esuli
and Sebastiani, 2007), the PageRank algorithm is
applied to rank senses in terms of how strongly
they are positive or negative. In the graph, each
sense is one node, and two nodes are connected
when they contain the same words in their Word-
Net glosses. Moreover, a random-walk step is
adopted to refine the scores in their recent work
(Baccianella et al., 2010). In contrast, our ap-
proach uses WordNet relations and graph propa-
gation in addition to gloss classification.

Gyamfi et al. (2009) construct a classifier to la-
bel the subjectivity of word senses. The hierarchi-
cal structure and domain information in WordNet
are exploited to define features in terms of sim-
ilarity (using the LCS metric in Resnik (1995))
of target senses and a seed set of senses. Also,
the similarity of glosses in WordNet is consid-
ered. Even though they investigated the hierarchi-
cal structure by LCS values, WordNet relations are
not exploited directly.

Su and Markert (2009) adopt a semi-supervised
mincut method to recognize the subjectivity of
word senses. To construct a graph, each node cor-
responds to one WordNet sense and is connected
to two classification nodes (one for subjectivity
and another for objectivity) via a weighted edge
that is assigned by a classifier. For this classifier,
WordNet glosses, relations, and monosemous
features are considered. Also, several WordNet
relations (e.g., antonymy, similiar-to, direct
hypernym, etc.) are used to connect two nodes.
Although they make use of both WordNet glosses
and relations, and gloss information is utilized
for a classifier, this classifier is generated only
for weighting edges between sense nodes and
classification nodes, not for classifying all senses.

Kang et al. (2014) present a unified model that
assigns connotation polarities to both words and
senses. They formulate the induction process as
collective inference over pairwise-Markov Ran-
dom Fields, and apply loopy belief propagation
for inference. Their approach relies on selectional
preferences of connotative predicates; the polarity
of a connotation predicate suggests the polarity of
its arguments. We have not discovered an analo-
gous type of predicate for the problem we address.

Goyal et al. (2010) generate a lexicon of patient
polarity verbs (PPVs) that impart positive or neg-
ative states on their patients. They harvest PPVs
from a Web corpus by co-occurance with Kind and
Evil agents and by bootstrapping over conjunc-
tions of verbs. Riloff et al. (2013) learn positive
sentiment phrases and negative situation phrases
from a corpus of tweets with hashtag “sarcasm”.
However, both of these methods are word-level
rather than sense-level.

Ours is the first NLP research into developing
a sense-level lexicon for events that have negative
or positive effects on entities.

4 +/-Effect Word-Level Seed Lexicon
and Sense Annotations

To create the corpus used in this work, we devel-
oped a word-level seed lexicon, and then manually
annotated all the senses of the words in that lexi-
con.

FrameNet6 is based on a theory of meaning
called Frame Semantics. In FrameNet, a Lexical
Unit (LU) is a pairing of a word with a meaning,
i.e., it corresponds to a sense in WordNet. Each
LU of a polysemous word belongs to a different
semantic frame, which is a description of a type
of event, relation, or entity and, where appropri-
ate, its participants. For instance, in the Creating
frame, the definition is that a Cause leads to the
formation of a Created entity. It has a positive
effect on the object, Created entity. This frame
contains about 10 LUs such as assemble, create,
yield, and so on. FrameNet consists of about 1,000
semantic frames and about 10,000 LUs.

FrameNet is a useful resource to select +/-effect
words since each semantic frame covers multi-
ple LUs. We believe that using FrameNet to
find +/-effect words is easier than finding +/-effect
words without any information since words may

6FrameNet, https://framenet.icsi.berkeley.edu/fndrupal/
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be filtered by semantic frames. To select +/-effect
words, an annotator (who is not a co-author) first
identified promising frames as +/-effect and ex-
tracted all LUs from them. Then, he went through
them and picked out the LUs which he judged to
be +effect or -effect. In total, 736 +effect LUs and
601 -effect LUs were selected from 463 semantic
frames.

While Deng et al. (2013) and Deng and Wiebe
(2014) specifically focus on events affecting ob-
jects (i.e., themes), we do not want to limit the
lexicon to only that case. Sometimes, events have
positive or negative effects on agents or other en-
tities as well. Thus, in this paper, we consider
a sense to be +effect (-effect) if it has +effect
(-effect) on an entity, which may be the agent, the
theme, or some other entity.

In a previous paper (Choi et al., 2014), we con-
ducted a study of the sense-level +/-effect prop-
erty. For the evaluation, two annotators (who
are co-authors of that paper) independently anno-
tated senses of selected words, where some are
from pure +effect (-effect) words (i.e., all senses
of the words are classified into the same class)
and some are from mixed words (i.e., the words
have both +effect and -effect senses). In the agree-
ment study, we calculated percent agreement and
κ (Artstein and Poesio, 2008), and achieved 0.84
percent agreement and 0.75 κ value.

For a seed set and an evaluation set in this pa-
per, we need annotated sense-level +/-effect data.
Mappings between FrameNet and WordNet are
not perfect. Thus, we opted to manually anno-
tate the senses of the words in the word-level lexi-
con. We first extracted all words from 736 +effect
LUs and 601 -effect LUs; this extracts 606 +effect
words and 537 -effect words (the number of words
is smaller than the number of LUs because one
word can have more than one LU). Among them,
14 words (e.g., crush, order, etc.) are in both the
+effect word set and the -effect word set. That is,
these words have both +effect and -effect mean-
ings. Recall that this annotator was focusing on
frames, not on words - he did not look at all the
senses of all the words. As we will see just below,
when all the senses of all the words are annotated,
a much higher percentage of the words have both
+effect and -effect senses. We will also see that
many of the senses are revealed to be Null, show-
ing that +effect vs. Null and -effect vs. Null ambi-
guities are quite prevalent.

A different annotator (a co-author) then went
through all senses of all the words from the pre-
vious step and manually annotated each sense as
to whether it is +effect, -effect, or Null. Note that
this annotator participated in an agreement study
with positive results in Choi et al. (2014).

For the experiments in this paper, we divided
this annotated data into two equal-sized sets. One
is a fixed test set that is used to evaluate both the
graph model and the gloss classifier. The other set
is used as a seed set by the graph model, and as a
training set by the gloss classifer. Table 1 shows
the distribution of the data. In total, there are 258
+effect senses, 487 -effect senses, and 880 Null
senses. To avoid too large a bias toward the Null
class,7 we randomly chose half (i.e., the Null set
contains 440 senses). Half of each set is used as
seed and training data, and the other half is used
for evaluation.

+effect -effect Null
# annotated data 258 487 880
# Seed/TrainSet 129 243 220
# TestSet 129 244 220

Table 1: Distribution of annotated data.

5 Graph-based Semi-Supervised
Learning for WordNet Relations

WordNet (Miller et al., 1990) is organized by se-
mantic relations such as hypernymy, troponymy,
grouping, and so on. These semantic relations can
be used to build a network. Since the most fre-
quently encoded relation is the super-subordinate
relation, most verb senses are arranged into hi-
erarchies; verb senses towards the bottom of the
graph express increasingly specific manner. Thus,
by following this hierarchical information, we hy-
pothesized that +/-effect polarity tends to propa-
gate. We use a graph-based semi-supervised learn-
ing (GSSL) method to carry out the label propaga-
tion.

5.1 Graph Formulation

We formulate a graph for semi-supervised learning
as follows. Let G = {X,E,W} be the undirected
graph in which X is the set of nodes, E is the set

7As mentioned in the introduction, we want our method
to be able to identify unlabeled senses that are likely to be
+/-effect senses (see Section 8); we resize the Null class to
support this goal.
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of edges, and W represents the edge weights (i.e.,
the weight of edge Eij is Wij). The weight matrix
is a non-negative matrix.

Each data point in X = {x1, ... ,xn} is one
sense. The labeled data of X is represented as
XL = {x1, ... ,xl} and the unlabeled data is rep-
resented as XU = {xl+1, ... ,xn}). The labeled
data XL is associated with labels YL = {y1, ...
,yl}, where yi ∈ {1, ..., c} (c is the number of
classes). As is typical in such settings, l � n:
n is 13,767, i.e., the number of verb senses in
WordNet. Seed/TrainSet in Table 1 is the labeled
data.

To connect two nodes, WordNet relations are
utilized. We first connect nodes by the hierar-
chical relations. Since hypernym relations repre-
sent more general senses and troponym relations
represent more specific verb senses, we hypothe-
sized that hypernyms or troponyms of a verb sense
tends to have its same polarity. Verb groups rela-
tions that represent verb senses having a similar
meaning are also promising. Even though verb-
group coverage is not large, its relations are reli-
able since they are manually grouped. The entail-
ment relation is defined as the verb Y is entailed
by X if you must be doing Y by doing X . Since
pairs connected by this relation are co-extensive,
we can assume that both are the same type of
event. The synonym relation is not used because
it is already defined in senses (i.e., each node in
the graph is a synset), and the antonym relation is
also not applied since the weight matrix should be
non-negative. The weight value of all edges is 1.0.

5.2 Label Propagation

Given a constructed graph, the label inference (or
prediction) task is to propagate the seed labels to
the unlabeled nodes. One of the classic GSSL la-
bel propagation methods is the local and global
consistency (LGC) method suggested by Zhou et
al. (2004). The LGC method is a graph transduc-
tion algorithm which is sufficiently smooth with
respect to the intrinsic structure revealed by known
labeled and unlabeled data. The cost function typ-
ically involves a tradeoff between the smoothness
of the predicted labels over the entire graph and
the accuracy of the predicted labels in fitting the
given labeled nodes XL. LGC fits in a univariate
regularization framework, where the output ma-
trix is treated as the only variable in optimization,
and the optimal solutions can be easily obtained by

solving a linear system. Thus, we adopt the LGC
method in this paper. Although there are some ro-
bust GSSL methods for handling noisy labels, we
do not need to handle noisy labels because our in-
put is the annotated data.

Let F be a n × c matrix to save the output
values of label propagation. So, we can label
each instance xi as a label yi = argmaxj≤cFij
after the label propagation. The initial discrete la-
bel matrix Y , which is also n × c, is defined as
Yij = 1 if xi is labeled as yi = j in YL, and
Yij = 0 otherwise. The vertex degree matrix
D = diag([D11, ..., Dnn]) is defined by Dii =∑n

j=1Wij .
LGC defines the cost function Q which inte-

grates two penalty components, global smooth-
ness and local fitting (µ is the regularization pa-
rameter):

Q =
1
2

n∑
i=1

n∑
j=1

Wij‖ Fi√
Dii
− Fj√

Djj

‖
2

+µ
n∑
i=1

‖Fi − Yi‖2

The first part of the cost function is the
smoothness constraint: a good classifying func-
tion should not change too much between nearby
points. That is, if xi and xj are connected with
an edge, the difference between them should be
small. The second is the fitting constraint: a good
classifying function should not change too much
from the initial label assignment. The final label
prediction matrix F can be obtained by minimiz-
ing the cost function Q.

5.3 Experimental Results
Note that, in the rest of this paper, all tables except
the last one give results on the same fixed test set
(TestSet in Table 1).

We can apply the graph model in two ways.

• UniGraph: All three classes (+effect, -effect,
and Null) are represented in one graph.

• BiGraph: Two separate graphs are first con-
structed and then combined. One graph is for
classifying +effect and Other (i.e., -effect or
Null). This graph is called +eGraph. The
other graph, called -eGraph, is for classify-
ing -effect and Other (i.e., +effect or Null).
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UniGraph BiGraph BiGraph*
baseline-

0.411accuracy
accuracy 0.630 0.623 0.658

+effect P 0.621 0.610 0.642
R 0.655 0.647 0.680
F 0.637 0.628 0.660

-effect P 0.644 0.662 0.779
R 0.720 0.677 0.612
F 0.680 0.670 0.686

Null P 0.615 0.583 0.583
R 0.516 0.550 0.695
F 0.561 0.561 0.634

Table 2: Results of UniGraph, BiGraph, and Bi-
Graph*.

These are combined into one model as fol-
lows. Nodes that are labeled as +effect by
+eGraph and Other by -eGraph are regarded
as +effect, and nodes that are labeled as
-effect by -eGraph and Other by +eGraph are
regarded as -effect. If nodes are labeled as
+effect by +eGraph and -effect by -eGraph,
they are deemed to be Null. Nodes that are
labeled Other by both graphs are also consid-
ered as Null.

We had two motivations for experimenting
with the BiGraph model: (1) SVM, the super-
vised learning method used for gloss classifica-
tion, tends to have better performance on binary
classification tasks, and (2) the two graphs of the
combined model can “negotiate” with each other
via constraints.

In Table 2, we calculate precision (P), recall (R),
and f-measure (F) for all three classes. The base-
line shown in the top row is the accuracy of a ma-
jority class classifier. The first two columns of Ta-
ble 2 show the results of UniGraph and BiGraph
when they are built using the hypernym, troponym,
and verb group relations. UniGraph outperforms
BiGraph in this experiment.

To improve the results by performing some-
thing possible with BiGraph (but not UniGraph),
constraints are added when determining the class.
As we explained, the label of instance xi is
determined by Fi in the graph. When the label
of xi is decided to be j, we can say that its con-
fidence value is Fij . There are two constraints as
follows.

H+T +V +E
+effect P 0.653 0.642 0.651

R 0.660 0.680 0.683
F 0.656 0.660 0.667

-effect P 0.784 0.779 0.786
R 0.547 0.612 0.604
F 0.644 0.686 0.683

Null P 0.557 0.583 0.564
R 0.735 0.695 0.691
F 0.634 0.634 0.621

Table 3: Effect of each relation

• If a sense is labeled as +effect (-effect), but
the confidence value is less than a threshold,
we count it as Null.

• If a sense is labeled as both +effect and -effect
by BiGraph, we choose the label with the
higher confidence value only if the higher one
is larger than a threshold and the lower one is
less than a threshold.

The thresholds are determined on Seed/TrainSet
by running BiGraph several times with different
thresholds, and choosing the one that gives the
best performance on Seed/TrainSet. (The chosen
value is 0.025 for +effect and 0.03 for -effect).

As can be seen in Table 2, BiGraph with con-
straints (called BiGraph*) outperforms not only
BiGraph without any constraints but also Uni-
Graph. Especially, for BiGraph*, the recall of the
Null class is considerably increased, showing that
constraints not only help overall, but are particu-
larly important for detecting Null cases.

Table 3 gives ablation results, showing the con-
tribution of each WordNet relation in BiGraph*.
With only hierarchical information (i.e., hyper-
nym (H) and troponym (T) relations), it already
shows good performance for all classes. How-
ever, they cannot cover some senses. Among the
13,767 verb senses in WordNet, 1,707 (12.4%)
cannot be labeled because there are not sufficient
hierarchical links to propagate polarity informa-
tion. When adding the verb group (+V) rela-
tion, it shows improvement in both +effect and
-effect. Especially, the recall for +effect and
-effect is significantly increased. In addition, the
coverage of the 13,767 verb senses increases to
95.1%. For entailment (+E), whereas adding it
shows a slight improvement in +effect (and in-
creases coverage by 1.1 percentage points), the
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performance is decreased a little bit in the -effect
and Null classes. Since the average f-measure for
all classes is the highest with hypernym (H), tro-
ponym (T), and verb group (V) relations (not en-
tailment), we only consider these three relations
when constructing the graph.

6 Supervised Learning applied to
WordNet Glosses

In WordNet, each sense contains a gloss consist-
ing of a definition and optional example sentences.
Since a gloss consists of several words and there
are no direct links between glosses, we believe that
a word vector representation is appropriate to uti-
lize gloss information as in Esuli and Sebastiani
(2006). For that, we adopt an SVM classifier.

6.1 Features

Two different feature types are used.
Word Features (WF): The bag-of-words

model is applied. We do not ignore stop words
for several reasons. Since most definitions and ex-
amples are not long, each gloss contains a small
number of words. Also, among them, the total vo-
cabulary of WordNet glosses is not large. More-
over, some prepositions such as against are some-
times useful to determine the polarity (+effect or
-effect).

Sentiment Features (SF): Some glosses of
+effect (-effect) senses contain positive (negative)
words. For instance, the definition of {hurt#4,
injure#4} is “cause damage or affect negatively.”
It contains a negative word, negatively. Since a
given event may positively (negatively) affect enti-
ties, some definitions or examples already contain
positive (negative) words to express this. Thus, as
features, we check how many positive (negative)
words a given gloss contains. To detect sentiment
words, the subjectivity lexicon provided by Wil-
son et al. (2005)8 is utilized.

6.2 Gloss Classifier

We have three classes, +effect, -effect, and Null.
Since SVM shows better performance on binary
classification tasks, we generate two binary clas-
sifiers, one (+eClassifier) to determine whether
a given sense is +effect or Other, and another
(-eClassifier) to classify whether a given sense is
-effect or Other. Then, they are combined as in
BiGraph.

8Available at http://mpqa.cs.pitt.edu/

6.3 Experimental Results

Seed/TrainSet in Table 1 is used to train the two
classifiers, and TestSet is utilized for the evalua-
tion. So, the training set for +eClassifier consists
of 129 +effect instances and 463 Other instances,
and the training set for -eClassifier contains 243
-effect instances and 349 Other instances. As a
baseline, we adopt a majority class classifier.

Table 4 shows the results on TestSet. Perfor-
mance is better for the -effect than for the +effect
class, perhaps because the -effect class has more
instances.

When sentiment features (SF) are added,
all metric values increase, providing evidence
that sentiment features are helpful to determine
+/-effect classes.

WF WF+SF
baseline accuracy 0.411

accuracy 0.509 0.539
+effect P 0.541 0.588

R 0.354 0.393
F 0.428 0.472

-effect P 0.616 0.672
R 0.500 0.511
F 0.552 0.580

Null P 0.432 0.451
R 0.612 0.657
F 0.507 0.535

Table 4: Results of the gloss classifier.

7 Hybrid Method

To use more combined knowledge, the gloss clas-
sifier and BiGraph* can be combined. That is, for
WordNet gloss information, the gloss classifier is
utilized, and for WordNet relations, BiGraph* is
used. With the Hybrid method, we can see not
only the effect of propagation by WordNet rela-
tions but also the usefulness of gloss information
and sentiment features. Also, while BiGraph*
cannot cover all senses in WordNet, the Hybrid
method can.

The outputs of the gloss classifier and Bi-
Graph* are combined as follows. The label of
the gloss classifier is one of +effect, -effect, Null,
or Both (when a given sense is classified as both
+effect by +eClassifier and -effect by -eClassifier).
Possible labels of BiGraph* are +effect, -effect,
Null, Both, or None (when a given sense is not
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labeled by BiGraph*). There are five rules:

• If both labels are +effect (-effect), it is +effect
(-effect).

• If one of them is Both and the other is +effect
(-effect), it is +effect (-effect).

• If the label of BiGraph* is None, believe the
label of the gloss classifier

• If both labels are Both, it is Null

• Otherwise, it is Null

The results for Hybrid are given in the first
row of the lower half of Table 5; the results for
BiGraph* are in the first row of the upper half,
for comparison. Generally, the Hybrid method
shows better performance than the gloss classifier
and BiGraph*. In the Hybrid method, since more
+/-effect senses are detected than by BiGraph*,
while precision is decreased, recall is increased
by more. However, by the same token, the over-
all performance for the Null class is decreased.
Actually, that is expected since the Null class is
determined by the Other class in the gloss clas-
sifier and BiGraph*. Through this experiment, we
see that the Hybrid method is better for classifying
+/-effect senses.

7.1 Model Comparison

To provide evidence for our assumption that dif-
ferent models are needed for different information
to maximize effectiveness, we compare the hy-
brid method with the supervised learning and the
graph-based learning (GSSL) methods, each uti-
lizing both WordNet relations and gloss informa-
tion.

Supervised Learning (onlySL): The gloss clas-
sifier is trained with word features and sentiment
features for WordNet Gloss. To exploit Word-
Net relations in supervised learning, especially
the hierarchical information, we use least com-
mon subsumer (LCS) values as in Gyamfi et al.
(2009), which, recall, performs supervised learn-
ing of subjective/objective senses. The values are
calculated as follows. For a target sense t and a
seed set S, the maximum LCS value between a
target sense and a member of the seed set is found
as:

Score(t, S) = maxs∈SLCS(t, s)

With this LCS feature and the features described
in Section 6, we run SVM on the same training and
test data. For LCS values, the similarity using the
information content proposed by Resnik (1995) is
measured. WordNet Similarity9 package provides
pre-computed pairwise similarity values for that.

Table 6 shows results of onlySL. Compared to
Table 4, while +effect and Null classes show a
slight improvement, the performance is degraded
for -effect. This means that the added feature is
rather harmful to -effect. Even though the hierar-
chical feature is very helpful to expand +/-effect,
it is not helpful for onlySL since SVM cannot cap-
ture propagation according to the hierarchy.

Graph-based Learning (onlyGraph): In Sec-
tion 5, the graph is constructed by using Word-
Net relations. To apply WordNet gloss informa-
tion in onlyGraph, we calculate a cosine similarity
between glosses. If the similarity value is higher
than a threshold, two nodes are connected with this
similarity value. The threshold is determined by
training and testing on Seed/TrainSet (the chosen
value is 0.3).

Comparing Tables 2 and 6, BiGraph* generally
outperforms onlyGraph (the exception is precision
of +effect). By gloss similarity, many nodes are
connected to each other. However, since uncertain
connections can cause incorrect propagation in the
graph, this negatively affects the performance.

Through this experiment, we see that since each
type of information has a different character, we
need different models to maximize the effective-
ness of each type. Thus, the hybrid method with
different models can have better performance.

Hybrid onlySL onlyGraph
+effect P 0.610 0.584 0.701

R 0.735 0.400 0.364
F 0.667 0.475 0.480

-effect P 0.717 0.778 0.651
R 0.669 0.316 0.562
F 0.692 0.449 0.603

Null P 0.556 0.440 0.473
R 0.520 0.813 0.679
F 0.538 0.571 0.557

Table 6: Comparison to onlySL and onlyGraph.

9WordNet Similarity,
http://wn-similarity.sourceforge.net/

1188



+effect -effect Null
P R F P R F P R F

BiGraph* Initial 0.642 0.680 0.660 0.779 0.612 0.686 0.583 0.695 0.634
1st 0.636 0.684 0.663 0.770 0.632 0.694 0.591 0.672 0.629
2nd 0.642 0.701 0.670 0.748 0.656 0.699 0.605 0.655 0.629
3rd 0.636 0.708 0.670 0.779 0.652 0.710 0.599 0.669 0.632
4th 0.681 0.674 0.678 0.756 0.674 0.712 0.589 0.669 0.626

Hybrid Initial 0.610 0.735 0.667 0.717 0.669 0.692 0.556 0.520 0.538
1st 0.614 0.713 0.672 0.728 0.681 0.704 0.562 0.523 0.542
2nd 0.613 0.743 0.672 0.716 0.697 0.706 0.559 0.497 0.526
3rd 0.616 0.739 0.672 0.717 0.706 0.712 0.559 0.494 0.525
4th 0.688 0.681 0.684 0.712 0.764 0.732 0.565 0.527 0.545

Table 5: Results of an iterative approach.

8 Guided Annotation

Recall that Seed/TrainSet and TestSet, the data
used so far, are all the senses of the words in a
word-level +/-effect lexicon. This section presents
evidence that our method can guide annotation ef-
forts to find other words that have +/-effect senses.
A bonus is that the method pinpoints particular
+/-effect senses of those words.

All unlabeled data are senses of words that are
not included in the original lexicon. Since pre-
sumably the majority of verbs do not have any
+/-effect senses, a sense randomly selected from
WordNet is very likely to be Null. We explore an
iterative approach to guided annotation, using Bi-
Graph* and Hybrid as the method for assigning
labels.

The system is initially created as described
above using Seed/TrainSet as the initial seed set.
Each iteration has four steps: 1) rank all unlabeled
data (i.e., the data other than TestSet and the cur-
rent seed set) based on the Fij confidence values
(see Section 5.3); 2) choose the top 5% and manu-
ally annotate them (the same annotator as above
did this); 3) add them to the seed set; 4) rerun
the system using the expanded seed set. We per-
formed four iterations in this paper.

The upper and lower parts of Table 5 show the
intial results and the results after each iteration for
BiGraph* and Hybrid. Recall that these are results
on the fixed set, TestSet. Overall for both mod-
els, f-measure increases for both the +effect and
-effect classes as more seeds are added, mainly
due to improvements in recall. The evaluation on
the fixed set is also useful in the annotation process
because it trades off +/-effect vs. Null annotations.

If the new manual annotations were biased, in that
they incorrectly label Null senses as +/-effect, then
the f-measure results would instead degrade on the
fixed TestSet, since the system is created each time
using the increased seed set.

We now consider the accuracy of the system
on the newly labeled annotated data in Step 2.
Note that our method is similar to Active Learn-
ing (Tong and Koller, 2001), in that both auto-
matically identify which unlabeled instances the
human should annotate next. However, in active
learning, the goal is to find instances that are diffi-
cult for a supervised learning system. In our case,
the goal is to find needles in the haystack of Word-
Net senses. In Step 3, we add the newly labeled
senses to the seed set, enabling the model to find
unlabeled senses close to the new seeds when the
system is rerun for the next iteration.

We assess the system’s accuracy on the newly
labeled data by comparing the system’s labels with
the human’s new labels. Accuracy for +effect and
-effect is calculated such as:

Accuracy+effect =
# annotated +effect

# top 5% +effect data

Accuracy−effect =
# annotated -effect

# top 5% -effect data

That is, the accuracy means that out of the top 5%
of the +effect (-effect) data as scored by the sys-
tem, what percentage are correct as judged by a
human annotator. Table 7 shows the accuracy for
each iteration in the top part and the number of
senses labeled in the bottom part. As can be seen,
the accuracies range between 60% and 78%; these
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values are much higher than what would be ex-
pected if labeling senses of words randomly cho-
sen from WordNet.10 The annotator spent, on av-
erage, approximately an hour to label 100 senses.
For finding new words with +/-effect usages, it
would be much more cost-effective if a significant
percentage of the data chosen for annotation are
senses of words that in fact have +/-effect senses.

1st 2nd 3rd 4th
+effect 65.63% 62.50% 63.79% 59.83%
-effect 73.55% 73.97% 77.78% 70.30%
+effect 128 122 116 117
-effect 155 146 153 145
total 283 268 269 262

Table 7: Accuracy and frequency of the top 5% for
each iteration

9 Conclusion and Future Work

In this paper, we investigated methods for creat-
ing a sense-level +/-effect lexicon. To maximize
the effectiveness of each type of information, we
combined a graph-based method using WordNet
relations and a standard classifier using gloss in-
formation. A hybrid between the two gives the
best results. Further, we provide evidence that the
model is an effective way to guide manual anno-
tation to find +/-effect words that are not in the
seed word-level lexicon. This is important, as the
likelihood that a random WordNet sense (and thus
word) is +effect or -effect is not large.

So as not to limit the inferences that may be
drawn, our annotations include events that are
+effect or -effect either the agent or object. In fu-
ture work, we plan to exploit corpus-based meth-
ods using patterns as in Goyal et al. (2010) com-
bined with semantic role labeling to refine the lex-
icon to distinguish which is the affected entity.
Further, to actually exploit the acquired lexicon to
process corpus data, an appropriate coarse-grained
sense disambiguation process must be added, as
Akkaya et al. (2009) and Akkaya et al. (2011) did
for subjective/objective classification.

We hope the general methodology will be ef-
fective for other semantic properties. In opin-
ion mining and sentiment analysis this is partic-

10For reference, in 5th iteration, the +effect accuracy is
60.18% and the -effect accuracy is 69.93%, and in 6th itera-
tion, the +effect accuracy is 59.81% and the -effect accuracy
is 69.12%.

ularly needed, because different meanings of pos-
itive and negative are appropriate for different ap-
plications. This is a way to create lexicons that are
customized with respect to one’s own definitions.

It would be promising to combine our method
with other methods to enable it to find +effect
and -effect senses that are outside the coverage
of WordNet. However, a WordNet-based lexicon
gives a substantial base to build from.
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Abstract

Aspect-based opinion mining has attracted
lots of attention today. In this paper, we
address the problem of product aspect rat-
ing prediction, where we would like to ex-
tract the product aspects, and predict as-
pect ratings simultaneously. Topic mod-
els have been widely adapted to jointly
model aspects and sentiments, but exist-
ing models may not do the prediction task
well due to their weakness in sentiment
extraction. The sentiment topics usually
do not have clear correspondence to com-
monly used ratings, and the model may
fail to extract certain kinds of sentiments
due to skewed data. To tackle this prob-
lem, we propose a sentiment-aligned topic
model(SATM), where we incorporate two
types of external knowledge: product-
level overall rating distribution and word-
level sentiment lexicon. Experiments on
real dataset demonstrate that SATM is ef-
fective on product aspect rating prediction,
and it achieves better performance com-
pared to the existing approaches.

1 Introduction

Online reviews have become an important source
of information for consumers. People tend to read
reviews to help them compare products, and make
informed decisions. As the volume of product re-
views continues to grow, it is often impossible to
read all of them, which calls for efficient methods
for opinion mining. Nowadays, for each product,
many websites aggregate the overall rating of re-
views, and display its distribution. However, this
cannot provide detailed information. For exam-
ple, two products may have similar overall rating
distributions, while people talk about different un-
satisfactory aspects. This problem has inspired a

new line of research on aspect-level opinion min-
ing(Hu and Liu, 2004).

An aspect refers to a rateable feature, such as
staff and location in hotel reviews, or size and
battery for digital camera reviews. In this paper,
we deal with the problem of product aspect rat-
ing prediction. The input is a collection of prod-
ucts, and each product is associated with a set of
reviews. The goal is to extract the corpus-level as-
pects, and predict the aspect ratings for each prod-
uct. This kind of fine-grained sentiment analysis
will help users efficiently digest the reviews, and
gain more insight into the product quality.

The product aspect rating prediction problem
usually involves two subtasks: aspect extraction
and sentiment identification(Titov and McDonald,
2008b). Given some text, we would like to know
what aspects it talks about, and what kind of sen-
timents are expressed. For example, given a sen-
tence “the room is filthy”, we would like to know
that it talks about the aspect “room”. Also, “filthy”
is a sentiment word, and it expresses strongly neg-
ative sentiment towards the aspect “room”.

Topic models(Blei et al., 2003; Hofmann, 1999)
have been popular in aspect-based opinion min-
ing(Liu, 2012). Existing works have used topic
models to extract only aspects(Titov and McDon-
ald, 2008a; Brody and Elhadad, 2010; Chen et
al., 2013), or jointly model aspects and sentiments
(Mei et al., 2007; Lin and He, 2009; Li et al.,
2010; Jo and Oh, 2011; Moghaddam and Ester,
2011; Lakkaraju et al., 2011; Sauper et al., 2011;
Mukherjee and Liu, 2012; Lazaridou et al., 2013;
Moghaddam and Ester, 2013; Kim et al., 2013). In
the joint modelling approaches, a sentiment topic
is usually modelled as a sentiment label-word dis-
tribution, analogous to the topic-word distribution
in standard topic models. However, the difference
is that the sentiment topics need to be ordered. If
the model is to be applied for aspect rating predic-
tion, the sentiment topics should have clear cor-
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respondence to the ratings. Suppose there are 5
sentiment topics with sentiment labels from 1 to
5. The sentiment topic with label i is expected
to correspond to the rating i on the 1-5 rating
scale. For example, the sentiment topic with label
5 should have high probability over positive sen-
timent words, so it expresses highly positive sen-
timent, which matches our natural interpretation
for the rating 5. In this case, sentiment labels and
ratings are aligned. However, in a standard topic
model, the learned sentiment topics may not have
clear correspondence with different ratings. Also,
if the positive reviews are dominant in the data, the
topic model may fail to capture the negative sen-
timents with any sentiment topic, so no sentiment
labels are matched with low ratings. If the senti-
ment labels are not correctly aligned to the ratings,
we cannot use these sentiment labels to predict as-
pect ratings. Consequently, the aspect rating pre-
diction accuracy is compromised, and the method
is less practical. We call this the sentiment label
alignment problem. To tackle this problem, mod-
els in the literature usually use some seed words
for each sentiment topic to define Dirichlet priors
with asymmetric concentration parameter vectors
(Sauper et al., 2011; Kim et al., 2013), or use seed
words to initialize word assignment to sentiment
topic(Lin and He, 2009), or both(Li et al., 2010;
Jo and Oh, 2011). However, these seed words
are usually arbitrarily selected, and how to define
asymmetric priors is not clear, especially when we
would like to capture more than two (positive and
negative) kinds of sentiments.

In this paper, we propose a sentiment-aligned
topic model(SATM) for product aspect rating pre-
diction, which focuses the sentiment label align-
ment problem. We use two kinds of external
knowledge: the product overall rating distribution,
and a sentiment lexicon. For each product, the
overall rating distribution is available on most on-
line review websites. It provides the big picture of
the product-level sentiments. In SATM, for each
product and each aspect, we define a multinomial
distribution over sentiment labels, with prior pa-
rameterized by the overall rating distribution. Sen-
timent lexicon is constructed by linguistic experts,
and every word in the lexicon is associated with a
sentiment polarity score(Taboada et al., 2011). We
treat the polarity score as an extra word feature
in a semi-supervised framework. By incorporat-
ing both product-level and word-level knowledge

into the model, the sentiment labels can be aligned
with ratings, and the extracted sentiment topics
can capture different kinds of sentiments, ranging
from highly positive to highly negative. Experi-
ments on a TripAdvisor dataset demonstrate that
our method can effectively deal with the sentiment
label alignment problem, and outperforms state-
of-the-art methods in terms of product aspect rat-
ing prediction accuracy.

2 Related work

Several methods have been proposed for product
aspect rating prediction, and many of them are
based on topic models.

In (Lu et al., 2009), the authors studied the prob-
lem of generating an aspect rating summary for
short comments. The text was first preprocessed
into phrases of the format <headterm, sentiment
word>, and the headterms are clustered by Struc-
tured PLSA to find K major aspects. Then, phrase
ratings are predicted by either Local Prediction
or Global Prediction, and they are aggregated to
get aspect ratings. The method in (Brody and El-
hadad, 2010) also first uses topic models to find as-
pects. Then, for each aspect, it extracts all the rel-
evant adjectives, and builds a conjunction graph.
A label propagation algorithm(Zhu and Ghahra-
mani, 2002) is used on the graph to learn the senti-
ment polarity score of adjective words. Although
this approach is not proposed for aspect rating pre-
diction, it can be used for this task if the polar-
ity scores of adjective words are aggregated for
each aspect. All the methods above perform as-
pect extraction and sentiment identification sepa-
rately, while our approach takes a joint modelling
approach so that different subtasks can potentially
reinforce with each other. To demonstrate this, we
use these methods as baselines in our experiments.

Wang et al. worked on the Latent Aspect Rat-
ing Analysis problem(Wang et al., 2010; Wang
et al., 2011), the task of inferring aspect ratings
for each review and the relative weights review-
ers have placed on each aspect. In (Wang et al.,
2010), aspect keywords are provided as user input,
and a two-stage method, called Latent Rating Re-
gression(LRR), is proposed. The first stage uses
a bootstrapping algorithm to obtain more related
words for each aspect, and segments the document
content. In the second stage, the overall rating is
“generated” as weighted combination of the latent
aspect ratings, and LRR is used to infer both the
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weights and aspect ratings. Their follow-up work
(Wang et al., 2011) does not need keyword speci-
fication from users, and replaces the bootstrapping
method with a topic model. However, both meth-
ods implicitly require that each review talks about
all aspects, which is not always true due to the data
sparsity in online reviews.

In (Moghaddam and Ester, 2011), ILDA was
proposed for product aspect rating prediction.
Later, it was extended to FLDA (Moghaddam
and Ester, 2013) to address the cold start prob-
lem, when there are few reviews associated with
a product. Similar to (Lu et al., 2009), in ILDA
and FLDA, a preprocessing step parses the text
into phrases of the format <headterm, sentiment
word>, and a review is modelled as a bag of
phrases. We also adopt this assumption in our
model. The method in (Sauper et al., 2011; Sauper
and Barzilay, 2013) does not use phrases, but in-
stead uses “snippets”, and an snippet is a short
sentence or phrase. However, the sentiment label
alignment problem is not well addressed in these
models, which limits their practicality. ILDA
and FLDA did not deal with this problem. The
model in (Sauper et al., 2011; Sauper and Barzi-
lay, 2013) follows the most common approach of
using seed words to define asymmetric priors. It
supports only two kinds of sentiment topics: pos-
itive and negative, while how to define asymmet-
ric priors for more sentiment topics becomes un-
clear. More importantly, the prior approach may
not work well in practice(see Experiment Section).
Lakkaraju et al. try to tackle the sentiment label
alignment problem by assuming that the overall
rating is generated as response variable(Lakkaraju
et al., 2011), with the sentiment topic propor-
tions as features. However, how the sentiment la-
bels are related to ratings is still unknown until
learned, and we may not get the desired alignment.
Lazaridou et al. attempt to connect sentiment la-
bels with ratings by Kronecker symbol, but this
method only applies to three sentiment polarities:
−1(negative), 0(neutral), +1(positive), and it does
not explore the word-level lexicon, which is also
an important source of knowledge.

Another line of research on product aspect rat-
ing prediction or summarization does not use topic
models, but relies mainly on word frequency and
grammatical relations(Hu and Liu, 2004; Popescu
and Etzioni, 2005; Blair-goldensohn et al., 2008),
or specialized review selection(Long et al., 2014).

In this case, the extracted aspect words need to
be clustered manually. For example, picture and
photo may refer to the same aspect in digital cam-
era reviews. By comparison, topic modelling ap-
proaches extract aspect words and cluster them si-
multaneously.

Our method incorporates the product overall
rating distributions and sentiment lexicons into
the model, so it is also related to topic models
which use observed features or domain knowl-
edge(Mimno and McCallum, 2008; Andrzejewski
et al., 2009; Andrzejewski et al., 2011). Mimno et
al. introduces two general frameworks to integrate
observed features into the generative process:
downstream and upstream topic models(Mimno
and McCallum, 2008). In the context of aspect-
based opinion mining, MaxEnt-LDA(Zhao et al.,
2010) integrates a discriminative maximum en-
tropy component to help separate aspect words
and sentiment words. The SAS model (Mukherjee
and Liu, 2012) uses seed words to provide guid-
ance for aspect discovery, and MC-LDA (Chen et
al., 2013) uses must-links and cannot-links to ex-
tract coherent aspects. However, MaxEnt-LDA,
SAS and MC-LDA cannot be used for aspect rat-
ing prediction, since they fail to identify the senti-
ment polarity of sentiment words.

3 Method

3.1 Preliminaries

We first introduce several key concepts used in our
model.

Products: Let P = {P1, P2, . . . } be a set of
products. Each product Pi is associated with a
set of reviews Di = {d1, d2, . . . dNi}, and also an
overall rating distribution Yi. Yi is a multinomial
distribution on R ratings. It is available on most
online review websites, and usually R = 5.

Aspects: An aspect is a rateable feature of a
product, and each aspect is modelled as a distribu-
tion over aspect words. The number of aspects is
predefined as K.

Sentiment topics: A sentiment topic is mod-
elled as a distribution over sentiment words, and
each sentiment topic is associated with a sentiment
label. To make it consistent with commonly used
rating scale, we assume there are R sentiment la-
bels, corresponding to the R ratings. The chal-
lenge is that sentiment labels with higher values
are expected to be associated with sentiment top-
ics which express more positive sentiments, so that
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we can match sentiment labels with ratings.
Phrases: An opinion phrase f =< h, m > is a

pair of aspect word h and sentiment word m, such
as < room, filthy >(Lu et al., 2009; Moghad-
dam and Ester, 2011). For each product Pi, we
first parse the related reviews Di into phrases Fi,
and each product can be modelled as a bag of
phrases.

Sentiment lexicons : A sentiment lexicon L is
a list of sentiment words, and each word m ∈ L is
associated with a sentiment polarity score sm. sm

can take T values. Note that the lexicon L usually
only covers a small subset of sentiment words in
the whole vocabulary.

Sentiment association: The sentiment label
takes R values, and there are T different values for
the polarity score in the sentiment lexicon. How-
ever, the relation between sentiment labels and po-
larity scores are unknown. If we have training in-
stances where a sentiment word m is associated
with both a sentiment label rm and polarity score
sm, we can build a classifier, where the explana-
tory variable for the classifier is a sentiment label,
and outcome is the polarity score. In this case,
H(sm|rm) can be interpreted as the probability of
observing a polarity score sm, given its sentiment
label rm. We refer to this probability H as senti-
ment association. This is a key component in our
model. It naturally bridges the gap between sen-
timent labels and polarity scores, and captures the
uncertainty in their relations. Note that H can be
trained independent of the topic model part. For
each training instance, suppose the sentiment word
is m ∈ L, we need to know its sentiment label
rm and polarity score sm. sm can be retrieved di-
rectly from the sentiment lexicon, and rm can be
either manually or automatically annotated. For
example, suppose the word m appears in review
d, we can assign the overall rating of d as its sen-
timent label. In this case, each word m ∈ L can
be associated with multiple training instances that
have the same value for sm but different sentiment
labels rm. We adopt this approach to automati-
cally annotate sentiment labels, and details are de-
scribed in the Experiments section.

3.2 Problem definition

The product aspect rating prediction problem can
be defined as follows. The input is a set of prod-
ucts P . Each product Pi has a bag of phrases Fi,
and an overall rating distribution Yi over R rat-

Figure 1: Graphical model of SATM

ings. The output is the K corpus-level aspects,
and for each product, we predict its ratings on the
K aspects, also in the [1, R] rating scale. We as-
sume products in P are in the same category so
they share the same aspects.

3.3 The SATM model

We introduce the Sentiment-aligned Topic
Model(SATM) in this section, and its graphical
representation is shown in Figure 1. Note that the
sentiment association H is observed, because it is
trained independently of the topic model part.

At the word level, each observed phrase <
h,m > is associated with two latent variables:
aspect z and sentiment label r. Aspect z models
what aspect this phrase talks about, and r deter-
mines the sentiment of m. If m is in the senti-
ment lexicon, we assume r is also responsible for
generating a word feature vm, based on the senti-
ment association H , which is equal to its polarity
score sm in the lexicon. In this case, the observed
data becomes (< h, m >, vm), and the latent sen-
timent label r is responsible for generating both
word m, and word feature vm. For example, for
the phrase <room, filthy>, we observe a word fea-
ture v = −5, since the sentiment polarity score for
the word “filthy” is−5. Given H , sentiment labels
1 or 2 are more likely to generate a word feature
−5. Also, people tend to use “filthy” to express
low ratings, like 1 or 2, so the sentiment labels and
ratings can be aligned.

At the product level, for each product p and
each aspect k, we define a multinomial distribu-
tion λp,k over R sentiment labels. Since Yp already
gives us the big picture about the overall senti-
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ment expressed on this product, we assume λp,k

is drawn from a dirichlet distribution Dir(πp,k)
with asymmetric concentration parameters, where
πp,k = f(Yp, ωk, ωb). We can use a linear
parametrization, and set

f(Yp, ωk, ωb) = ω1
kYp + ω0

k + ωb (1)

ω1
k captures the influence of the product overall

rating distribution, and can favour certain sen-
timent labels in the prior. ω0

k and ωb are the
aspect-specific and corpus-level bias, respectively.
Through this linear parametrization, we build a di-
rect matching between sentiment label i and rating
i. For example, for a product p, if its overall rat-
ing distribution Yp has high probability over rat-
ing 4, for aspect k, we assume its product-aspect-
sentiment label distribution also has high probabil-
ity on sentiment label 4 in the prior. The actual as-
pect rating is affected by both the text which talks
about aspect k, and also the prior.

To sum up, we assume the generative process as
follows:

• For each aspect k = 1, 2, . . .K,

– draw an aspect-word distribution ϕa
k ∼

Dir(βa)
– For each sentiment label r = 1, 2, . . . R,

draw an aspect-sentiment label-word
distribution ϕs

k,r ∼ Dir(βs)

• For each product p ∈ P ,

– draw a product-aspect distribution θp ∼
Dir(α)

– for each aspect k, draw a product-
aspect-sentiment label distribu-
tion λp,k ∼ Dir(πp,k) where
πp,k = f(Yp, ωk, ωb)

• For each phrase f =< h, m > of product p,

1. Draw an aspect z from θp

2. Draw a sentiment label r from λp,z

3. Draw an aspect word h from ϕa
z

4. Draw a sentiment word m from ϕs
z,r.

If m ∈ L, generate a word feature vm

based on H .

By integrating out θ, ϕ and λ, the joint proba-
bility can be defined as:

P (z, r, h, m,v|α, βa, βs, π,H) =
P (z|α)P (r|z, π)P (h|z, βa)

P (m|z, r, βs)P (v|r,H) (2)

3.4 Inference

We use Gibbs Sampling(Griffiths and Steyvers,
2004) to estimate the posterior distribution given
the observed data.

We jointly sample the aspect z and sentiment
label r for the ith phrase < h,m > of product p,
given the assignments of other phrases:

P (zi = k, ri = l|z−i, r−i, h,m, v) ∝

(np,k + α)
na

k,h + βa∑
h′(na

k,h′ + βa)
np,k,l + πp,k,l∑

l′(np,k,l′ + πp,k,l′)
ns

k,l,m + βs∑
m′(ns

k,l,m′ + βs)
g(m, l)

(3)

where g(m, l) = H(vm|l) if m ∈ L. In this
case, when we sample the sentiment label r for this
phrase, the probability of generating word feature
vm from r is also considered. For example, the
word “excellent” has a word feature value vm = 5.
Based on H , the probability of generating a word
feature 5 is higher for sentiment labels with larger
values. If m /∈ L, there is no g(m, l) term, since
no word feature is associated with this phrase. In
Equation 3, np,k is the number of times aspect k
is assigned to phrases of product p, and na

k,h is
the number of times aspect word h is assigned to
aspect k. np,k,l is the number of times sentiment
label l is assigned to aspect k for product p, and
ns

k,l,m is the number of times sentiment word m
is assigned to aspect k and sentiment label l. All
these counts exclude assignments for the current
phrase < h, m >.

Based on the samples, we can estimate λp,k,r as:

λp,k,r =
np,k,r + πp,k,r∑

r′(np,k,r′ + πp,k,r′)
(4)

Since sentiment labels and atings are aligned, the
aspect rating tpk of product p on aspect k can be
simply calculated as the expectation of λp,k:

tpk =
∑

r

λp,k,r · r (5)

4 Experiments

In this section, we describe the experiments and
analyze the results.
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4.1 Dataset
We use the TripAdvisor dataset1(Wang et al.,
2010) for evaluation, since in this dataset, reviews
are not only associated with overall ratings, but
also with ground truth aspect ratings on 7 aspects:
value, room, location, cleanliness, check in/front
desk, service, business service. All the ratings in
the dataset are in the range from 1 star to 5 stars.
We first remove reviews with any missing aspect
ratings or very short reviews(less than three sen-
tences). Then we adopt the dependency parser
technique to identify opinion phrases, and collect
phrases with adjective sentiment words. The de-
pendency parser can deal with conjunctions, nega-
tions and bigram aspect words, and it results in the
best performance according to (Moghaddam and
Ester, 2012). Some sample phrases are shown in
Table 1. All words are converted into lower case,
and we remove phrases containing words that ap-
pear no more than 10 times or stop words. Since
we are only interested in product-level aspect rat-
ing prediction, for each product, we aggregate all
the review overall ratings to get the overall rating
distribution. The statistics of the dataset is shown
in Table 2. The average rating is the rating av-
eraged over all reviews and all products. As we
can see, positive reviews are dominant in the data,
which raises the challenge of discovering negative
sentiment topics.

Sentences Phrases
The room, facing the
courtyard, was large and
comfortable.

<room, large>,
<room, comfortable>

The room was not really
clean.

<room, no clean>

Internet access was
available.

<Internet access,
available>

Table 1: Sample extracted phrases

#Products #Reviews Avg rating #Phrases
1850 61306 4.03 740982

Table 2: Statistics of the dataset

4.2 Metrics
We use three evaluation metrics for comparison.

RMSE: Root-mean-square error is used to mea-
sure the difference between the predicted aspect

1http://sifaka.cs.uiuc.edu/˜wang296/
Data/index.html

ratings and ground truth aspect ratings. It is de-
fined as:

RMSE =

√∑
p

∑
k(tpk − t̂pk)2

|P | ×K
(6)

where tpk is the predicted aspect rating for product
p on aspect k, and t̂pk is the ground truth.

Precision@N: For each aspect k, we rank the
hotels based on their predicted aspect ratings, and
get the top N results. A hotel is considered rele-
vant if its ground truth aspect rating is in the top
10% of the ground truth aspect ratings of all ho-
tels. Precision@N is defined as the percentage of
the top N results that are relevant:

Precision@N =
|{relevant hotels} ∩ {top N ranked hotels}|

N
(7)

We use N = 10, and the result is averaged over K
aspects.

ρhotel: Pearson correlation across hotels(Wang
et al., 2010) is defined as:

ρhotel =
∑

k ρ(tk, t̂k)
K

(8)

where tk is the predicted aspect rating vector for
all hotels on aspect k, and t̂k is the corresponding
ground truth vector. ρ(tk, t̂k) is the Pearson cor-
relation between these two vectors. It measures
how the predicted ratings of aspect k can preserve
the order in the ground truth(Wang et al., 2010).
If we can predict an aspect-specific ranking sim-
ilar to the ground truth, we can use the predicted
aspect ratings to answer questions like “Is hotel a
better than hotel b on aspect k?”

4.3 Baselines

The first three baselines are Local Prediction,
Global Prediction and Graph Propagation.
They all separate aspect extraction and sentiment
identification. For each phrase f =< h,m > from
review d of product p, we first find the aspect as-
signment of this phrase. Then, we use three meth-
ods to get the phrase rating. Local Prediction(Lu et
al., 2009) simply uses the overall rating of d as its
phrase rating. Global Prediction(Lu et al., 2009)
trains a multi-class classifier to classify the senti-
ment word m into a rating category r ∈ 1, 2 . . . R,
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Figure 2: Method for aspect extraction in Local
Prediction, Global Prediction and Graph Propaga-
tion

then assigns r as the phrase rating. Graph Prop-
agation(Brody and Elhadad, 2010) builds a con-
junction graph for sentiment words, and uses a La-
bel Propagation algorithm on the graph to learn the
sentiment polarity score for each sentiment word.
The score of m is set as phrase rating. Finally,
we aggregate all the phrases of each aspect to pre-
dict the aspect ratings. To apply these methods in
our experiments, in the aspect extraction step, we
adapt our model to extract only aspects, as shown
in Figure 2. In this simplified model, no sentiment
labels is involved, and the latent aspect explains
both the aspect word and sentiment word.

ILDA(Moghaddam and Ester, 2011) was pro-
posed for aspect rating prediction, but it fails to
deal with the sentiment label alignment problem,
so it cannot be directly used for this task. We adopt
the common approach of providing seed words to
set priors for each sentiment topic.

LRR(Wang et al., 2010) was proposed to pre-
dict aspect ratings for each review, but it can also
be used to predict product aspect ratings by ag-
gregating all the reviews of a product into a single
“h-review”(Wang et al., 2011). First, we can run
a topic model to learn aspects, and annotate each
sentence with an aspect. Then LRR is applied on
the annotated sentences to predict aspect ratings.
This approach provided the best result, according
to (Wang et al., 2011). In the first step we use the
sentence-LDA(Jo and Oh, 2011) to annotate sen-
tences, which is slightly different from the original
method, but still provides a good analogy.

We also test two simplified version of the SATM
model. First, we remove the part which involves
sentiment lexicons, so we only use the product
overall rating distribution. We call this method
SATM-O. Second, we use only sentiment lexi-
cons, ignoring the influence of overall rating dis-

tribution. We call it SATM-L. These two baselines
can help us identify how the sentiment lexicon and
overall rating distribution can improve the results,
if used separately.

Our last baseline simply uses the overall rating
of a hotel as its aspect ratings. For each hotel, its
overall rating is defined as the average overall rat-
ing of its reviews. This method is referred to as
Overall.

4.4 Experimental Setup

For all topic modelling based approaches, the
number of aspects is set to 7. Since we can evalu-
ate aspect rating prediction only on the predefined
aspects, we need to ensure the discovered aspects
match the predefined aspects. To do this, we adopt
the common approach of providing a few seed
words for each aspect as priors, as in (Wang et al.,
2010). The seed words are listed in Table 3. There
may be better methods to use seed words for as-
pect discovery (Jagarlamudi et al., 2012; Mukher-
jee and Liu, 2012), and it would be interesting to
combine their methods with ours. However, this
is beyond the scope of this paper, and we list it as
future work.

Aspects Seed words
Value value, price, worth
Room room, rooms

Location location
Cleanliness room, dirty, smelled, clean

Check in/front desk staff
Service service, breakfast, food

Business service internet, wifi

Table 3: Seed words for aspect discovery

We use 5 sentiment labels in SATM, SATM-
L and SATM-O, as this is the number of dis-
tinct ratings. The lexicon L used in our experi-
ment is part of (Taboada et al., 2011) where words
are associated with polarity scores in the range
[−5,−1] ∪ [1, 5]. We observe that words with po-
larity score 1 and−1 express too weak sentiments,
so we discard them in our experiment. To get
training instances for sentiment association H , we
treat each appearance of word m ∈ L in the data as
one training instance. The polarity score sm is di-
rectly retrieved from L, and the sentiment label rm

is the overall rating of review d where m appears.
This approach avoids the need for manual annota-
tion of sentiment labels, and the annotation result
captures the characteristics of the dataset. How-
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ever, all training instances in a review will have
the same sentiment label, which means that we as-
sume all sentiment words in a review express the
same sentiment, no matter what aspects they talk
about. This is not true, thus will introduce noise to
the training. To reduce noise, for words with pos-
itive polarity score, we ignore their appearance in
reviews with rating 1 and 2, since we assume pos-
itive sentiment words rarely express negative sen-
timents, even if they appear in negative reviews.
Therefore, H(sm|rm) = 0 for rm = 1, 2 and sm

in the range [2, 5]. A similar method is used to deal
with words with negative polarity score.

For Global Prediction, in (Lu et al., 2009), the
prior for the multi-class classifier is uniform, while
in our experiment, for product p, we used product
overall rating distribution on r as the prior for rat-
ing category r, which achieves better results than
uniform prior.

The Graph Propagation method requires a small
set of sentiment words as seeds, from which the al-
gorithm can learn sentiment score for other words.
The method in (Brody and Elhadad, 2010) con-
structs these seed words based on morphology in
an unsupervised way, and can only support two
kinds of sentiment: positive and negative. In our
experiment, since the sentiment lexicon is avail-
able, the sentiment seed words are from the lexi-
con, and we update the polarity score for those not
in the lexicon.

For ILDA, since we need to provide seed words
as priors for sentiment topics, we have two op-
tions, and we use both for experiment. First,
we can employ the common approach of using
two sentiment labels(R=2, positive and negative).
Then, words with positive polarity scores in lexi-
con L are used as priors for the positive sentiment
topic, and similarly words with negative polarity
scores for negative sentiment topic. An alternative
approach is to use 5 sentiment labels(R=5). It pro-
vides finer grained sentiment extraction, but raises
the question of how to choose seed words for each
sentiment topic. To do this, we use the full senti-
ment lexicon in (Taboada et al., 2011), where sen-
timent words have polarity score in the range of
[−5,−1] ∪ [1, 5]. We divide the lexicon, and use
words with polarity score 4 and 5 as prior for the
sentiment topic with label 5. Then, words with po-
larity score 2 and 3 are used for the sentiment topic
with label 4, and so on.

For all topic modelling based approaches, we

set the number of iterations for Gibbs Sampling
to 3000, and take samples from the markov chain
every 50 iterations after a burn-in period of 1000
iterations. In SATM and SATM-O, for all aspects
k, we need to choose the parameters ωk and also
wb. We use a small portion of dataset with ground
truth to choose the best value, and we set ω1

k = 20,
w0

k = 0.01, wb = 0. Automatically learning these
parameters are feasible. One possible option is to
use stochastic EM sampling scheme, as in (Mimno
and McCallum, 2008). For the LRR implementa-
tion2, we use the default parameters included in
the package, and train the model with seed words
provided by the author(Wang et al., 2010).

4.5 Results

The experimental results are listed in Table 4. For
RMSE, the smaller the better, while for the other
two measures, the larger the better. Graph Prop-
agation, ILDA and SATM-L do not use the over-
all ratings(except for training sentiment associa-
tion H), so we group them together. Similarly
we group Local Prediction, Global Prediction,
SATM-O and SATM. The Overall method is a spe-
cial baseline that does not do any aspect based pre-
diction. For the LRR method, after the first step of
sentence annotation, we notice that sentence-LDA
fails to annotate the “h-review” of some hotel with
all 7 aspects, mainly because these hotels are as-
sociated with less reviews. In this case, the LRR
model will fail in the second step, so we do not
include LRR in Table 4. Instead, we compared
our method with LRR on a subset of products that
comment on all aspects based on the sentence an-
notation. There are 1533 hotels in this subset, and
the result is shown in Table 5. Note that our exper-
imental results for LRR are far worse than those
reported in the original paper(Wang et al., 2011).
We believe this maybe due to different parameter
settings, or due to the choice of different reviews.

We observe that SATM achieves the best RMSE
value, i.e., it produces the most accurate aspect rat-
ing prediction. The Overall method does better in
ranking all the hotels(ρhotel), but SATM is better
at ranking top hotels(P@10). When we compare
the results of SATM with SATM-L and SATM-
O, we find that the good performance of SATM
is mainly due to the use of the overall rating distri-
bution. On one hand, this is reasonable, since in-

2http://sifaka.cs.uiuc.edu/˜wang296/
Codes/LARA.zip
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Sentiment label Top sentiment words
1 old, dirty, worn, older, dark, stained, broken, dated, outdated, bad
2 small, tiny, little, noisy, single, double, uncomfortable, smaller, larger, narrow
3 large, double, big, mini, hard, main, huge, twin, single, jacuzzi
4 nice, comfortable, modern, clean, new, good, great, flat, big, comfy
5 large, huge, great, beautiful, big, lovely, separate, spacious, wonderful, excellent

Table 6: Top sentiment words for aspect “room” with different sentiment labels

Methods RMSE P@10 ρhotel

ILDA,R=2 1.202 0.30 0.193
ILDA,R=5 1.096 0.257 0.222

Graph Propagation 0.718 0.271 0.442
SATM-L 0.774 0.443 0.483

Local Prediction 0.572 0.486 0.761
Global Prediction 0.625 0.30 0.778

SATM-O 0.429 0.80 0.841
SATM 0.384 0.814 0.854
Overall 0.415 0.80 0.863

Table 4: Experimental results except LRR

Methods RMSE P@10 ρhotel

LRR 1.018 0.3 0.404
SATM 0.373 0.829 0.849

Table 5: Experimental comparison with LRR

tuitively aspect ratings usually do not diverge too
far from the overall rating, especially for hotels
with higher overall ratings. As we can see from
the result of Overall, the overall rating has good
correlation with aspect ratings, and using overall
rating only is already a strong predictor for as-
pect ratings. Also, in most cases, methods using
overall ratings(Overall and the four methods in the
middle of Table 4) are better than others(first four
methods). On the other hand, we should not rely
only on the overall rating distribution. By incor-
porating the sentiment lexicon, for RMSE, SATM
achieves 10% improvement over SATM-O and 7%
improvement than Overall. Also, the overall rating
may not always be a good aspect rating predictor,
depending on the dataset.

To take a closer look at cases where the over-
all rating is not a good aspect rating predictor,
we evaluate the RMSE on different subsets of ho-
tels. We divide the hotels into different overall rat-
ing ranges: [1.2), [2,3), [3,4) and [4,5]. The re-
sults are shown in Table 7. Going from the [4,5]
group to [1,2) group, the overall rating becomes
less and less reliable to predict aspect ratings, and
the gain of SATM increases compared to SATM-

Methods [1,2) [2,3) [3,4) [4-5]
Local Prediction 0.789 0.772 0.621 0.456
Global Prediction 1.013 0.884 0.584 0.567

SATM-O 0.703 0.564 0.446 0.359
SATM 0.606 0.494 0.394 0.332
Overall 0.735 0.612 0.431 0.320

Table 7: RMSE on hotels with different overall
rating ranges

O and Overall. For a hotel with higher overall
rating(good hotel), its aspect ratings are closer to
the overall rating. This matches our intuition that
good hotels are expected to be good on most as-
pects, if not on all aspects. For a hotel with av-
erage and lower overall rating, the average differ-
ence between aspect ratings and overall rating is
larger. In this case, the overall rating can not tell
us the whole story, which calls for aspect based
prediction. Our method achieves the best RMSE
gain on this group of hotels.

4.6 Qualitative analysis
To provide a qualitative analysis, we can list the
top words for the aspect-sentiment label-word dis-
tributions. In Table 6, we list them for the aspect
“room”, with 5 different sentiment labels. We ob-
serve that, as the sentiment label value increases,
the sentiment topics express more and more pos-
itive sentiments. This means the sentiment labels
and ratings are indeed aligned, so that we can use
these sentiment labels to predict ratings.

5 Conclusion and future work

In this paper, we proposed a sentiment aligned
topic model(SATM) for product aspect rating pre-
diction. By incorporating the overall rating distri-
bution and a sentiment lexicon, our SATM model
can align sentiment labels with ratings. Experi-
ments on a TripAdvisor dataset demonstrate the
effectiveness of SATM on aspect rating prediction.

In SATM, for each product and each aspect, the
multinomial distribution over sentiment labels has
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prior parameterized by product overall rating dis-
tribution. We assume linear dependency, but it will
be interesting to explore other dependencies. An-
other direction is to learn the parameters ωk auto-
matically, so that ωk can be different for different
k, capturing the influence of the overall rating on
different aspects.

Finally, we assume each phrase is associated
with one latent aspect. However, aspects may
be correlated. For example, the phrase <room,
filthy> gives us information about the aspect room
and also the aspect cleanliness. To deal with this
problem, we can relax the assumption that one
phrase talks about one aspect, or we can model
correlation among aspects.
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Hsu, Malú Castellanos, and Riddhiman Ghosh.

2013. Exploiting domain knowledge in aspect ex-
traction. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2013, 18-21 October 2013, Grand Hy-
att Seattle, Seattle, Washington, USA, A meeting of
SIGDAT, a Special Interest Group of the ACL, pages
1655–1667.

Thomas L. Griffiths and Mark Steyvers. 2004. Find-
ing scientific topics. Proceedings of the National
Academy of Sciences, 101(Suppl. 1):5228–5235,
April.

Thomas Hofmann. 1999. Probabilistic latent semantic
indexing. In Proceedings of the 22Nd Annual Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’99,
pages 50–57, New York, NY, USA. ACM.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the Tenth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’04, pages
168–177, New York, NY, USA. ACM.

Jagadeesh Jagarlamudi, Hal Daumé, III, and
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Abstract
We present a weakly supervised approach
for learning hashtags, hashtag patterns, and
phrases associated with five emotions: AFFEC-
TION, ANGER/RAGE, FEAR/ANXIETY, JOY,
and SADNESS/DISAPPOINTMENT. Starting
with seed hashtags to label an initial set of
tweets, we train emotion classifiers and use
them to learn new emotion hashtags and hash-
tag patterns. This process then repeats in a
bootstrapping framework. Emotion phrases
are also extracted from the learned hashtags
and used to create phrase-based emotion clas-
sifiers. We show that the learned set of emo-
tion indicators yields a substantial improve-
ment in F-scores, ranging from +%5 to +%18
over baseline classifiers.

1 Introduction
Identifying emotions in social media text can be benefi-
cial for many applications, for example to help compa-
nies understand how people feel about their products,
to assist governments in recognizing growing anger or
fear associated with an event, or to help media outlets
understand people’s emotional response toward contro-
versial issues or international affairs. On the Twitter
micro-blogging platform, people often use hashtags to
express an emotional state (e.g., #happyasalways, #an-
gryattheworld). While some hashtags consist of a sin-
gle word (e.g., #angry), many hashtags include multi-
ple words and creative spellings (e.g., #cantwait4tmrw,
#Youredabest), which can not be easily recognized us-
ing sentiment or emotion lexicons.

Our research learns three types of emotion in-
dicators for tweets: hashtags, hashtag patterns,
and phrases for one of five emotions: AFFEC-
TION, ANGER/RAGE, FEAR/ANXIETY, JOY, or SAD-
NESS/DISAPPOINTMENT. We present a bootstrapping
framework for learning emotion hashtags and extend
the framework to also learn more general hashtag pat-
terns. We then harvest emotion phrases from the hash-
tags and hashtag patterns for contextual emotion clas-
sification.

First, we make the observation that emotion hashtags
often share a common prefix. For example, #angry-
attheworld and #angryatlife both have the prefix “an-

gry at”, which suggests the emotion ANGER. Conse-
quently, we generalize beyond specific hashtags to cre-
ate hashtag patterns that will match all hashtags with
the same prefix, such as the pattern #angryat* which
will match both #angryattheworld and #angryatlife.

A key challenge is that a seemingly strong emotion
word or phrase can have a different meaning depending
upon the following words. For example, #angry* may
seem like an obvious pattern to identify ANGER tweets.
But #angrybirds is a popular hashtag that refers to a
game, not the writer’s emotion. Similarly, “love you”
usually expresses AFFECTION when it is followed by
a person (e.g., #loveyoumom). But it may express JOY
in other contexts (e.g., #loveyoulife). We use probabil-
ity estimates to determine which hashtag patterns are
reliable indicators for an emotion.

Our second observation is that hashtags can also be
used to harvest emotion phrases. For example, if we
learn that the hashtag #lovelife is associated with JOY,
then we can extract the phrase “love life” from the
hashtag and use it to recognize emotion in the body
of tweets. However, unlike hashtags, which are self-
contained, the words surrounding a phrase in a tweet
must also be considered. For example, negation can
toggle polarity (“don’t love life” may suggest SAD-
NESS, not JOY) and the aspectual context may indicate
that no emotion is being expressed (e.g., “I would love
life if ...”). Consequently, we train classifiers to deter-
mine if a tweet contains an emotion based on both an
emotion phrase and its context.

2 Related Work

In addition to sentiment analysis, which has been
widely studied (e.g., (Barbosa and Feng, 2010; Brody
and Diakopoulos, 2011; Kouloumpis et al., 2011;
Mitchell et al., 2013)), recognizing emotions in social
media text has also become a popular research topic in
recent years. Researchers have studied feature sets and
linguistic styles (Roberts et al., 2012), emotion influ-
encing behaviors (Kim et al., 2012), sentence contexts
(Yang et al., 2007b), hierarchical emotion classifica-
tion (Ghazi et al., 2010; Esmin et al., 2012) and emo-
tion lexicon creation (Yang et al., 2007a; Mohammad,
2012a; Staiano and Guerini, 2014). Researchers have
also started to utilize the hashtags of tweets, but pri-
marily to collect labeled data (e.g., for sarcasm (Davi-
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Figure 1: Bootstrapped Learning. (HT = hashtag; HP = hashtag pattern)

dov et al., 2010; Riloff et al., 2013) and for senti-
ment/emotion data (Wang et al., 2012; Mohammad et
al., 2013; Choudhury et al., 2012; Purver and Bat-
tersby, 2012; Mohammad, 2012a)).

Wang et al. (2011) investigated several graph based
algorithms to collectively classify hashtag sentiments,
but their work is focused on positive versus nega-
tive polarity classification. Our research extends the
preliminary work on bootstrapped learning of emo-
tion hashtags (Qadir and Riloff, 2013) to additionally
learn patterns corresponding to hashtag prefix expres-
sions and to extract emotion phrases from the hashtags,
which are used to train phrase-based emotion classi-
fiers.

3 Learning Emotion Hashtags, Hashtag
Patterns and Phrases

For our research, we collapsed Parrot’s emo-
tion taxonomy (Parrott, 2001)1 into 5 emotion
classes that frequently occur in tweets and min-
imally overlap with each other: AFFECTION,
ANGER/RAGE, FEAR/ANXIETY, JOY, and SAD-
NESS/DISAPPOINTMENT. We also used a NONE OF
THE ABOVE class for tweets that do not express any
emotion or express an emotion different from our five
classes. For each of these categories, we identified 5
common hashtags that are strongly associated with the
emotion and used them as seeds. Table 1 shows the
seed hashtags.

Compared to the Ekman emotion classes (Ekman,
1992), one of the emotion taxonomies frequently used
in NLP research (Strapparava and Mihalcea, 2007; Mo-
hammad, 2012b), JOY, ANGER, SADNESS and FEAR
are comparable to 4 of our 5 emotion classes. We do
not study Ekman’s SURPRISE and DISGUST classes,
but include AFFECTION.

3.1 Learning Hashtags

Figure 1 presents the framework of the bootstrapping
algorithm for hashtag learning. The process begins by

1There were other emotions in Parrott’s taxonomy such
as SURPRISE, NEGLECT, etc. that we did not use for this
research.

Emotion Classes Seed Hashtags
AFFECTION #loveyou, #sweetheart, #bff

#romantic, #soulmate
ANGER & RAGE #angry, #mad, #hateyou

#pissedoff, #furious
FEAR & ANXIETY #afraid, #petrified, #scared

#anxious, #worried
JOY #happy, #excited, #yay

#blessed, #thrilled
SADNESS & #sad, #depressed
DISAPPOINTMENT #disappointed, #unhappy

#foreveralone

Table 1: Emotion Classes and Seed Hashtags

collecting tweets that contain the seed hashtags and la-
beling them with the corresponding emotion. For this
purpose, we collected 323,000 tweets in total that con-
tain at least one of our seed hashtags. We also exploit a
large pool of unlabeled tweets to use during bootstrap-
ping, consisting of 2.3 million tweets with at least one
hashtag per tweet (because we want to learn hashtags),
collected using Twitter’s streaming API. We did not in-
clude retweets or tweets with URLs, to reduce duplica-
tion and focus on tweets with original content. The un-
labeled tweets dataset had 1.29 average hashtags-per-
tweet and 3.95 average tweets-per-hashtag. We prepro-
cessed the tweets with CMU’s tokenizer (Owoputi et
al., 2013) and normalized with respect to case.

The labeled tweets are then used to train a set of
emotion classifiers. We trained one logistic regression
classifier for each emotion class using the LIBLINEAR
package (Fan et al., 2008). We chose logistic regression
because it produces probabilities with its predictions,
which are used to assign scores to hashtags. As fea-
tures, we used unigrams and bigrams with frequency>
1. We removed the seed hashtags from the tweets so
the classifiers could not use them as features.

For each emotion class e ∈ E, the tweets contain-
ing a seed hashtag for e were used as positive training
instances. The negative training instances consisted of
the tweets containing seed hashtags for the competing
emotions as well as 100,000 randomly selected tweets
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Affection Anger & Fear & Joy Sadness &
Rage Anxiety Disappointment

#yourthebest #godie #hatespiders #tripleblessed #leftout
#myotherhalf #donttalktome #haunted #tgfad #foreverugly

#bestfriendforever #pieceofshit #shittingmyself #greatmood #singleprobs
#loveyoulots #irritated #worstfear #thankful #lonerlyfe

#flyhigh #fuming #scaresme #atlast #teamlonely
#comehomesoon #hateliars #nightmares #feelinggood #unloved

#wuvyou #heated #paranoid #happygirl #friendless
#alwaysandforever #getoutofmylife #hateneedles #godisgreat #heartbroken
#missyousomuch #angrytweet #frightened #superhappy #needalife

#loveyougirl #dontbothermewhen #freakedout #ecstatic #letdown

Table 2: Examples of Learned Hashtags

from our unlabeled tweets. Although some of the unla-
beled tweets may correspond to emotion e, we expect
that most will have no emotion or an emotion different
from e, giving us a slightly noisy but large, diverse set
of negative instances.

We then apply each emotion classifier to the un-
labeled tweets. For each emotion e, we collect the
tweets classified as e and extract the hashtags from
those tweets to create a candidate pool He of hashtags
for emotion e. To limit the number of candidates, we
discard hashtags that occur < 10 times, have just one
character, or have> 20 characters. Next, we score each
candidate hashtag h by computing the average proba-
bility assigned by the logistic regression classifier for
emotion e over all of the tweets containing hashtag h.
For each emotion class, we select the 10 hashtags with
the highest scores. From the unlabeled tweets, we then
add all tweets with one of the learned hashtags to the
training instances, and the bootstrapping process con-
tinues. Table 2 shows examples of the learned hashtags.

3.2 Learning Hashtag Patterns

We learn hashtag patterns in a similar but separate boot-
strapping process. We first expand each hashtag into a
sequence of words using an N-gram based word seg-
mentation algorithm2 supplied with corpus statistics
from our tweet collection. For example, #angryatlife
expands3 to the phrase “angry at life”. We use a Prefix
Tree (Trie) data structure to represent all possible pre-
fixes of the expanded hashtag phrases, but the prefixes
consist of words instead of characters.

Next, we traverse the tries and consider all possi-
ble prefix paths as candidate hashtag patterns. We
only consider prefixes that have occurred with at least
one following word. For example, #angryashell, #an-
gryasalways, #angrybird, #angryatlife, #angryatyou
would produce patterns: #angry*, #angryas*, #an-
gryat* as shown in Figure 2.

We score each pattern by applying the classifier for

2http://norvig.com/ngrams/
3On a random sample of 100 hashtags, we found expan-

sion accuracy to be 76% (+8% partially correct expansions).

Figure 2: Trie of example hashtags with prefix angry.
Dotted lines lead to non-terminal nodes where patterns
are extracted.

emotion e (trained in the same way as hashtag learn-
ing) to all tweets having hashtags that match the pat-
tern. We compute the average probability produced by
the classifier, and for each emotion class, we select the
10 hashtag patterns with the highest scores. From the
unlabeled tweets, we then add all tweets with hashtags
that match one of the learned hashtag patterns to the
training instances, and the bootstrapping process con-
tinues. Table 3 shows examples of learned hashtag pat-
terns and matched hashtags.

3.3 Creating Phrase-based Classifiers
The third type of emotion indicator that we acquire are
emotion phrases. At the end of the bootstrapping pro-
cess, we apply the word segmentation algorithm to all
of the learned hashtags and hashtag patterns to expand
them into phrases (e.g., #lovemylife→ “love my life”).
Each phrase is assumed to express the same emotion as
the original hashtag. However, as we will see in Sec-
tion 4, just the presence of a phrase yields low preci-
sion, and surrounding context must also be taken into
account.

Consequently, we train a logistic regression classi-
fier for each emotion e, which classifies a tweet with
respect to emotion e based on the presence of a learned
phrase for e as well as a context window of size 6
around the phrase (set of 3 words on its left and set of 3
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Emotion Hashtag Pattern Examples of Matching Hashtags
AFFECTION #bestie* #bestiefolyfe, #bestienight, #bestielove

#missedyou* #missedyoutoomuch, #missedyouguys, #missedyoubabies
ANGER & RAGE #godie* #godieoldman, #godieyou, #godieinahole

#pissedoff* #pissedofffather, #pissedoffnow, #pissedoffmood
FEAR & ANXIETY #tooscared* #tooscaredtogoalone, #tooscaredformama, #tooscaredtomove

#nightmares* #nightmaresfordays, #nightmaresforlife, #nightmarestonight
JOY #feelinggood* #feelinggoodnow, #feelinggoodforme, #feelinggoodabout

#goodmood* #goodmooditsgameday, #goodmoodmode, #goodmoodnight
SADNESS & #bummed* #bummedout, #bummedaf, #bummednow
DISAPPOINTMENT #singlelife* #singlelifeblows, #singlelifeforme, #singlelifesucks

Table 3: Examples of Learned Hashtag Patterns and Matching Hashtags

words on its right). Tweets containing a learned phrase
for e and a seed hashtag for e are the positive training
instances. Tweets containing a learned phrase for e and
a seed hashtag for a different emotion are used as the
negative training instances. For example, when “love
my life” is learned as an emotion phrase for JOY, the
tweet, “how can I love my life when everybody leaves
me! #sad” will have one feature each for the left words
“how”, “can”, and “I”, one feature each for the right
words “when”, “everybody” and “leaves”, and one
feature for the phrase “love my life”. The tweet will
then be considered a negative instance for JOY because
“#sad” indicates a different emotion.

4 Experimental Results
To evaluate our learned emotion indicators, we manu-
ally selected 25 topic keywords/phrases4 that we con-
sidered to be strongly associated with emotions, but
not necessarily with any specific emotions of our study.
We then searched in Twitter using Twitter Search API
for any of these topic phrases and their correspond-
ing hashtags. These 25 topic phrases are: Prom,
Exam, Graduation, Marriage, Divorce, Husband, Wife,
Boyfriend, Girlfriend, Job, Hire, Laid Off, Retirement,
Win, Lose, Accident, Failure, Success, Spider, Loud
Noise, Chest Pain, Storm, Home Alone, No Sleep and
Interview. Since the purpose is to evaluate the qual-
ity and coverage of the emotion hashtags that we learn,
we filtered out any tweet that did not have at least one
hashtag.

Two annotators were given annotation guidelines
and were instructed to label each tweet with up to
two emotions. The instructions specified that the emo-
tion must be felt by the writer. The annotators an-
notated 500 tweets with an inter-annotator agreement
level of 0.79 Kappa (κ) (Carletta, 1996). The an-
notation disagreements in these 500 tweets were then
adjudicated, and each annotator labeled an additional
2,500 tweets. Altogether this gave us an emotion an-
notated dataset of 5,500 tweets. We randomly sepa-
rated out 1,000 tweets from this collection as a tuning

4This data collection process is similar to the emotion
tweet dataset creation by Roberts et al. (2012)

set, and used the remaining 4,500 tweets as evaluation
data. The distribution of emotions in the evaluation
data was 6% for AFFECTION, 9% for ANGER/RAGE,
13% for FEAR/ANXIETY, 22% for JOY, and 12% for
SADNESS/DISAPPOINTMENT. 42% of the tweets had
none of the 5 emotions and 4% of the tweets had more
than one emotions in the same tweet.

We created two baseline systems to assess the diffi-
culty of the emotion classification task. First, we cre-
ated SVM classifiers for each emotion using N-gram
features and performed 10-fold cross-validation on the
test data. We used LIBSVM (Chang and Lin, 2011)
and set the cost and gamma parameters based on the
tuning data. Second, we acquired the NRC Emotional
Tweets Lexicon (Mohammad, 2012a), which contains
emotion unigrams and bigrams for 8 emotions, 4 that
are comparable to ours: ANGER, FEAR, JOY and SAD-
NESS. We created a hashtag from each term in the lexi-
con by appending a # symbol on the front and removing
whitespace. For each term, we chose the emotion with
the highest score in the lexicon.

Table 4 shows our experimental results. The baseline
classifiers (SVM1 uses unigrams, SVM1+2 uses uni-
grams and bigrams) have low recall but 63-78% pre-
cision. The hashtags created from the NRC Lexicon
have low precision. This could be due to possible en-
tries (e.g., “candy” or “idea”), which without context
are not much indicative of any specific emotion.

The second section of Table 4 shows the results when
we label a tweet based on the presence of a hash-
tag or hashtag pattern. First, we use just the 5 seed
hashtags to assess their coverage (as expected, high
precision but low recall). Next, we add the hashtags
learned during bootstrapping. For most emotions, the
hashtags achieve performance similar to the supervised
SVMs. The following row shows results for our learned
hashtag patterns. Recall improves by +14% for AF-
FECTION, which illustrates the benefit of more general
hashtag patterns, and at least maintains similar level of
precision for other emotions. When the hashtags and
hashtag patterns are combined (HTs+HPs), we see the
best of both worlds with improved recall as high as
+17% in AFFECTION and +10% in FEAR/ANXIETY
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AFFECTION ANGER & FEAR & JOY SADNESS &
Method RAGE ANXIETY DISAPPOINT.

P R F P R F P R F P R F P R F
Baselines

SVM1 78 40 53 66 17 27 68 33 44 66 47 55 63 26 37
SVM1+2 78 35 48 67 10 17 68 29 41 65 43 52 63 21 32
NRC Lexicon HTs n/a 26 16 20 39 12 18 36 13 19 28 18 22

Learned Hashtags (HTs) and Hashtag Patterns (HPs)
Seed HTs 94 06 11 75 01 03 100 06 11 93 04 08 81 02 05
All HTs 82 34 48 63 23 34 60 37 46 81 13 22 72 28 40
All HPs 76 48 59 60 22 32 57 42 48 84 09 16 73 16 26
All HTs+HPs 74 51 60 56 27 36 55 47 51 80 15 25 70 29 41

Learned Emotion Phrases
Emotion Phrases 32 28 30 17 46 25 28 45 35 50 23 32 26 30 28
Phrase-based Classifier (PC) 54 07 12 48 05 09 63 17 27 69 12 20 50 06 11
SVM1+PC 79 42 55 63 18 28 70 35 47 68 48 56 62 27 38

Hybrid Approach
SVM1+PC ∪ HTs+HPs 69 64 66 55 38 45 54 61 57 68 54 60 62 44 51

Table 4: Emotion Classification Results (P = Precision, R = Recall, F = F-score)

compared to All HTs, as well as improved F-scores
across the board.

The third section of Table 4 presents the results for
the emotion phrases. The first row (Emotion Phrases)
shows that labeling a tweet based solely on the pres-
ence of a phrase is not very accurate. Next, we applied
the trained models of the phrase-based classifiers (de-
scribed in Section 3.3) to each tweet of the evaluation
data. This provided us with probability of an emotion
for each of the 5 emotions. The phrase-based classifiers
(PC) yield higher precision, albeit with low recall. Fi-
nally, we use these probabilities as 5 additional features
to SVM1. The corresponding SVM1+PC row shows
a consistent 1-2 point F score gain over the original
SVM1 baseline.

The last section of Table 4 shows the best results with
a hybrid system, which labels a tweet with emotion e if
EITHER the enhanced SVM labels it as e OR the tweet
contains a hashtag or hashtag pattern associated with e.
This combined approach achieves substantially higher
performance than any individual method across all 5
emotion classes, with improved F-scores ranging from
+%5 to +%18 over the baseline classifiers, demonstrat-
ing that the different types of emotion indicators are
complementary.

5 Conclusions
We have shown that three types of emotion indicators
can be learned from tweets with weakly supervised
bootstrapping: hashtags, hashtag patterns, and phrases.
Our findings suggest that emotion hashtags are strong
indicators for recognizing writer’s emotion in tweets,
and can be further generalized into hashtag patterns by
learning prefix expressions corresponding to an emo-
tion. Phrases learned from the hashtags and patterns
are not always reliable by themselves, but training ad-

ditional classifiers with the emotion phrases and their
surrounding context provides added benefits to emotion
classification in tweets. Our results showed that com-
bining the learned emotion indicators with an N-gram
classifier in a hybrid approach substantially improves
performance across 5 emotion classes.
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Abstract

We put forward the hypothesis that high-
accuracy sentiment analysis is only pos-
sible if word senses with different polar-
ity are accurately recognized. We pro-
vide evidence for this hypothesis in a case
study for the adjective “hard” and propose
contextually enhanced sentiment lexicons
that contain the information necessary for
sentiment-relevant sense disambiguation.
An experimental evaluation demonstrates
that senses with different polarity can be
distinguished well using a combination of
standard and novel features.

1 Introduction

This paper deals with fine-grained sentiment anal-
ysis. We aim to make three contributions. First,
based on a detailed linguistic analysis of contexts
of the word “hard” (Section 3), we give evidence
that highly accurate sentiment analysis is only pos-
sible if senses with different polarity are accu-
rately recognized.

Second, based on this analysis, we propose to
return to a lexicon-based approach to sentiment
analysis that supports identifying sense distinc-
tions relevant to sentiment. Currently available
sentiment lexicons give the polarity for each word
or each sense, but this is of limited utility if senses
cannot be automatically identified in context. We
extend the lexicon-based approach by introducing
the concept of a contextually enhanced sentiment
lexicon (CESL). The lexicon entry of a word w in
CESL has three components: (i) the senses of w;
(ii) a sentiment annotation of each sense; (iii) a
data structure that, given a context in which w oc-
curs, allows to identify the sense of w used in that
context.

As we will see in Section 3, the CESL sense
inventory – (i) above – should be optimized for

sentiment analysis: closely related senses with the
same sentiment should be merged whereas subtle
semantic distinctions that give rise to different po-
larities should be distinguished.

The data structure in (iii) is a statistical classi-
fication model in the simplest case. We will give
one other example for (iii) below: it can also be a
set of centroids of context vector representations,
with a mapping of these centroids to the senses.

If sentiment-relevant sense disambiguation is
the first step in sentiment analysis, then power-
ful contextual features are necessary to support
making fine-grained distinctions. Our third con-
tribution is that we experiment with deep learn-
ing as a source of such features. We look at
two types of deep learning features: word em-
beddings and neural network language model pre-
dictions (Section 4). We show that deep learn-
ing features significantly improve the accuracy
of context-dependent polarity classification (Sec-
tion 5).

2 Related work

Initial work on sentiment analysis was either based
on sentiment lexicons that listed words as posi-
tive or negative sentiment indicators (e.g., Turney
(2002), Yu and Hatzivassiloglou (2003)), on statis-
tical classification approaches that represent doc-
uments as ngrams (e.g., Pang et al. (2002)) or on
a combination of both (e.g., Riloff et al. (2003),
Whitelaw et al. (2005)). The underlying assump-
tion of lexicon-based sentiment analysis is that
a word always has the same sentiment. This is
clearly wrong because words can have senses with
different polarity, e.g., “hard wood” (neutral) vs.
“hard memory” (negative).

Ngram approaches are also limited because
ngram representations are not a good basis for
relevant generalizations. For example, the neu-
tral adverbial sense ‘intense’ of “hard” (“laugh
hard”, “try hard”) vs. the negative adjectival mean-
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Cobuild syntax meaning example patterns sent. # train # test
1 FIRM 1 ADJ firm, stiff hard floor neu 78 5
2 DIFFICULT 2, 4, 9,

10, 11
ADJ difficult hard question hard for,

hard on,
hard to V

neg 2561 120

3 ADVERB 3a, 5,
6, 7

ADV intensely work hard neu 425 19

4 INTENSE 3b ADJ intense hard look be hard at
it

neu 24 7

5 HARD-MAN 8 ADJ unkind hard man neg 15 0
6 HARD-TRUTH 12 attributive

ADJ
definitely
true

hard truth neu 5 6

7 MUSIC ADJ hard-rock-
type music

hard beats neu 347 15

8 CONTRAST ADJ opposite of
soft transi-
tion

hard edge neu 3 1

9 NEGATIVE-P 13, 15 phrases neg 36 2
10 NEUTRAL-P 14, 16 phrases neu 375 27

Table 1: Sense inventory of “hard”.

ing ‘difficult’ (“hard life”, “hard memory”) cannot
be easily distinguished based on an ngram repre-
sentation. Moreover, although ngram approaches
could learn the polarity of these phrases they do
not generalize to new phrases.

More recent compositional approaches to senti-
ment analysis can outperform lexicon and ngram-
based methods (e.g., Socher et al. (2011), Socher
et al. (2013)). However, these approaches conflate
two different types of contextual effects: differ-
ences in sense or lexical meaning (“hard memory”
vs. “hard wood”) on the one hand and meaning
composition like negation on the other hand. From
the point of view of linguistic theory, these are dif-
ferent types of contextual effects that should not
be conflated. Recognizing that “hard” occurs in
the scope of negation is of no use if the basic po-
larity of the contextually evoked sense of “hard”
(e.g., negative in “no hard memories” vs. neutral
in “no hard wood”) is not recognized.

Wilson et al. (2009) present an approach to clas-
sify contextual polarity building on a two-step pro-
cess. First, they classify if a sentiment word is po-
lar in a phrase and if so, second, they classify its
polarity. Our approach can be seen as an exten-
sion of this approach; the main difference is that
we will show in our analysis of “hard” that the
polarity of phrases depends on the senses of the
words that are used. This is evidence that high-
accuracy polarity classification depends on sense
disambiguation.

There has been previous work on assigning po-
larity values to senses of words taken from Word-

Net (e.g., Baccianella et al. (2010), Wiebe and Mi-
halcea (2006)). However, these approaches are not
able to disambiguate the sense of a word given its
context.

Previous work on representation learning for
sentiment analysis includes (Maas and Ng, 2010)
and (Maas et al., 2011). Their models learn word
embeddings that capture semantic similarities and
word sentiment at the same time. Their approach
focuses on sentiment of entire sentences or docu-
ments and does not consider each sentiment word
instance at a local level.

We present experiments with one supervised
and one semisupervised approach to word sense
disambiguation (WSD) in this paper. Other
WSD approaches, e.g., thesaurus-based WSD
(Yarowsky, 1992), could also be used for CESL.

3 Linguistic analysis of sentiment
contexts of “hard”

We took a random sample of 5000 contexts of
“hard” in the Amazon Product Review Data (Jin-
dal and Liu, 2008). We use 200 as a test set and set
aside 200 for future use. We analyzed the remain-
ing 4600 contexts using a tool we designed for this
study, which provides functionality for selecting
and sorting contexts, including a keyword in con-
text display. If a reliable pattern has been identi-
fied (e.g., the phrase “die hard”), then all contexts
matching the pattern can be labeled automatically.

Our goal is to identify the different uses of
“hard” that are relevant for sentiment. The basis
for our inventory is the Cobuild (Sinclair, 1987)
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lexicon entry for “hard”. We use Cobuild because
it was compiled based on an empirical analysis of
corpus data and is therefore more likely to satisfy
the requirements of NLP applications than a tradi-
tional dictionary.

Cobuild lists 16 senses. One of these senses
(3) is split into two to distinguish the adverbial
(“to accelerate hard”) and adjectival (“hard accel-
eration”) uses of “hard” in the meaning ‘intense’.
We conflated five senses (2, 4, 9, 10, 11) refer-
ring to different types of difficulty: “hard ques-
tion” (2), “hard work” (4), “hard life” (11) and
two variants of “hard on”: “hard on someone”
(9), “hard on something” (10); and four differ-
ent senses (3a, 5, 6, 7) referring to different types
of intensity: “to work hard” (3a), “to look hard”
(5), “to kick hard” (6), “to laugh hard” (7). Fur-
thermore, we identified a number of noncompo-
sitional meanings or phrases (lists NEGATIVE-P
and NEUTRAL-P in the supplementary material1)
in addition to the four listed by Cobuild (13, 14,
15, 16). In addition, new senses for “hard” are in-
troduced for opposites of senses of “soft”: the op-
posite of ‘quiet/gentle voice/sound’ (7: MUSIC;
e.g., “hard beat”, “not too hard of a song”) and
the opposite of ‘smooth surface/texture’ (8: CON-
TRAST; e.g., “hard line”, “hard edge”).

Table 1 lists the 10 different uses that are the re-
sult of our analysis. For each use, we give the cor-
responding Cobuild sense numbers, syntactic in-
formation, meaning, an example, typical patterns,
polarity, and number of occurrences in training
and test sets.

7 uses are neutral and 3 are negative. As
“hard’s” polarity in most sentiment lexicons is
negative, but only 3 out of 7 senses are negative,
“hard” provides evidence for our hypothesis that
senses need to be disambiguated to allow for fine-
grained and accurate polarity recognition.

We hired two PhD students to label each of the
200 contexts in the test set with one of the 10 la-
bels in Table 1 (κ = .78). Disagreement was re-
solved by a third person.

We have published the labeled data set of
4600+200 contexts as supplementary material.

4 Deep learning features

We use two types of deep learning features to be
able to make the fine-grained distinctions neces-

1All supplementary material is available at http://
www.cis.lmu.de/ebert .

sary for sense disambiguation. First, we use word
embeddings similar to other recent work (see be-
low). Second, we use a deep learning language
model (LM) to predict the distribution of words for
the position at which the word of interest occurs.
For example, an LM will predict that words like
“granite” and “concrete” are likely in the context
“a * countertop” and that words like “serious” and
“difficult” are likely in the context “a * problem”.
This is then the basis for distinguishing contexts
in which “hard” is neutral (in the meaning ‘firm,
solid’) from contexts in which it is a sentiment in-
dicator (in the meaning ‘difficult’). We will use
the term predicted context distribution or PCD to
refer to the distribution predicted by the LM.

We use the vectorized log-bilinear language
model (vLBL) (Mnih and Kavukcuoglu, 2013)
because it has three appealing features. (i) It
learns state of the art word embeddings (Mnih and
Kavukcuoglu, 2013). (ii) The model is a language
model and can be used to calculate PCDs. (iii) As
a linear model, vLBL can be trained much faster
than other models (e.g., Bengio et al. (2003)).

The vLBL trains one set of word embeddings
for the input space (R) and one for the target space
(Q). We denote the input representation of word
w as rw and the target representation as qw. For a
given context c = w1, . . . , wn the model predicts
a target representation q̂ by linearly combining the
context word representations with position depen-
dent weights:

q̂(c) =
n∑
i=1

di � rwi

where di ∈ D is the weight vector associated
with position i in the context and � is point-
wise multiplication. Given the model parameters
θ = {R,Q,D, b} the similarity between q̂ and the
correct target word embedding is computed by the
similarity function

sθ(w, c) = q̂(c)Tqw + bw

where bw is a bias term.
We train the model with stochastic gradient

descent on mini-batches of size 100, following
the noise-contrastive estimation training proce-
dure of Mnih and Kavukcuoglu (2013). We use
AdaGrad (Duchi et al., 2011) with the initial learn-
ing rate set to η = 0.5. The embeddings size is set
to 100.
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bl 1 .62 .62 1.00 .76
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2 + .90 .91 .94 .92
3 + .90 .91 .92 .92
4 + .87 .87 .92 .90
5 + + .92 .92 .94 .93
6 + + .91 .90 .95 .92
7 + + .86 .83 .96 .89
8 + + + .92 .93 .95 .94

se
m

i

9 + .85 .87 .89 .88
10 + .85 .87 .89 .88
11 + .76 .73 .98 .83
12 + + .85 .87 .89 .88
13 + + .85 .87 .89 .88
14 + + .85 .89 .87 .88
15 + + + .86 .87 .90 .89

te
st

bl 16 .66 .66 1.00 .80
fully 17 + + + .90 .89 .96 .92
semi 18 + + + .85 .85 .91 .88

Table 2: Classification results; bl: baseline

During training we do not need to normalize the
similarity explicitly, because the normalization is
implicitly learned by the model. However, nor-
malization is still necessary for prediction. The
normalized PCD for a context c of word w is com-
puted using the softmax function:

P cθ (w) =
exp(sθ(w, c))∑
w′ exp(sθ(w′, c))

We use a window size ofws = 7 for training the
model. We found that the model did not capture
enough contextual phenomena forws = 3 and that
results for ws = 11 did not have better quality
than ws = 7, but had a negative impact on the
training time. Using a vocabulary of the 100,000
most frequent words, we train the vLBL model for
4 epochs on 1.3 billion 7-grams randomly selected
from the English Wikipedia.

5 Experiments

The lexicon entry of “hard” in CESL consists of (i)
the senses, (ii) the polarity annotations (neutral or
negative) and (iii) the sense disambiguation data
structure. Components (i) and (ii) are shown in
Table 1. In this section, we evaluate two different
options for (iii) on the task of sentiment classifica-
tion.

1 2 3 4 5 6 7 8
1
2 ‡
3 ‡
4 ‡ ‡ ·
5 ‡ ‡
6 ‡ ‡
7 ‡ ‡ * ‡ ‡
8 ‡ * * ‡ * ‡

Table 3: Significant differences of lines 1–8 in Ta-
ble 2; ‡: p=0.01, *: p=0.05, ·: p=0.1

The first approach is to use a statistical classi-
fication model as the sense disambiguation struc-
ture. We use liblinear (Fan et al., 2008) with stan-
dard parameters for classification based on three
different feature types: ngrams, embeddings (em-
bed) and PCDs. Ngram features are all n-grams
for n ∈ {1, 2, 3}. As embedding features we
use (i) the mean of the input space (R) embed-
dings and (ii) the mean of the target space (Q) em-
beddings of the words in the context (see Blacoe
and Lapata (2012) for justification of using simple
mean). As PCD features we use the PCD predicted
by vLBL for the sentiment word of interest, in our
case “hard”.

We split the set of 4600 contexts introduced in
Section 3 into a training set of 4000 and a devel-
opment set of 600.

Table 2 (lines 1–8) shows the classification re-
sults on the development set for all feature type
combinations. Significant differences between re-
sults – computed using the approximate random-
ization test (Padó, 2006) – are given in Table 3.
The majority baseline (bl), which assigns a nega-
tive label to all examples, reaches F1 = .76. The
classifier is significantly better than the baseline
for all feature combinations with F1 ranging from
.89 to .94. We obtain the best classification result
(.94) when all three feature types are combined
(significantly better than all other feature combi-
nations except for 5).

Manually labeling all occurrences of a word
is expensive. As an alternative we investigate
clustering of the contexts of the word of interest.
Therefore, we represent each of the 4000 con-
texts of “hard” in the training set as its PCD2, use

2To transform vectors into a format that is more appropri-
ate for the underlying Gaussian model of kmeans, we take the
square root of each probability in the PCD vectors.
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kmeans clustering with k = 100 and then label
each cluster. This decreases the cost of labeling
by an order of magnitude since only 100 clusters
have to be labeled instead of 4000 training set con-
texts.

Table 2 (lines 9–15) shows results for this
semisupervised approach to classification, using
the same classifier and the same feature types, but
the cluster-based labels instead of manual labels.

For most feature combinations, F1 drops com-
pared to fully supervised classification. The best
performing model for supervised classification
(ngram+PCD+embed) loses 5%.

This is not a large drop considering the savings
in manual labeling effort. All results are signifi-
cantly better than the baseline. There are no signif-
icant differences between the different feature sets
(lines 9–15) with the exception of embed, which
is significantly worse than the other 6 sets.

The centroids of the 100 clusters can serve as an
alternative sense disambiguation structure for the
lexicon entry of “hard” in CESL.3 Each sense s is
associated with the centroids of the clusters whose
majority sense is s.

As final experiment (lines 16–18 in Table 2),
we evaluate performance for the baseline and for
PCD+ngram+embed – the best feature set – on the
test set. On the test set, baseline performance is
.80 (.04 higher than .76 on line 1, Table 2); F1 of
PCD+ngram+embed is .92 (.02 less than develop-
ment set) for supervised classification and is .88
(.01 less) for semisupervised classification (com-
paring to lines 8 and 15 in Table 2). Both results
(.92 and .88) are significantly higher than the base-
line (.80).

6 Conclusion

The sentiment of a sentence or document is the
output of a causal chain that involves complex lin-
guistic processes like contextual modification and
negation. Our hypothesis in this paper was that
for high-accuracy sentiment analysis, we need to
model the root causes of this causal chain: the
meanings of individual words. This is in contrast
to other work in sentiment analysis that conflates
different linguistic phenomena (word sense ambi-
guity, contextual effects, negation) and attempts to
address all of them with a single model.

For sense disambiguation, the first step in the
causal chain of generating sentiment, we proposed

3Included in supplementary material.

CESL, a contextually enhanced sentiment lexi-
con that for each word w holds the inventory of
senses of w, polarity annotations of these senses
and a data structure for assigning contexts of w
to the senses. We introduced new features for
sentiment analysis to be able to perform the fine-
grained modeling of context needed for CESL. In
a case study for the word “hard”, we showed that
high accuracy in sentiment disambiguation can be
achieved using our approach. In future work, we
would like to show that our findings generalize
from the case of “hard” to the entire sentiment lex-
icon.
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Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
search, 3:1137–1155.

William Blacoe and Mirella Lapata. 2012. A com-
parison of vector-based representations for seman-
tic composition. In Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, pages 546–
556. Association for Computational Linguistics.

John C. Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research, 12:2121–2159.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A
library for large linear classification. Journal of Ma-
chine Learning Research, 9:1871–1874.

Nitin Jindal and Bing Liu. 2008. Opinion spam
and analysis. In International Conference on Web
Search and Web Data Mining, pages 219–230.

Andrew L. Maas and Andrew Y. Ng. 2010. A proba-
bilistic model for semantic word vectors. In Annual
Conference on Advances in Neural Information Pro-
cessing Systems: Deep Learning and Unsupervised
Feature Learning Workshop.

1214



Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Annual Meeting of the Association for Computa-
tional Linguistics, pages 142–150.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive
estimation. In Annual Conference on Advances
in Neural Information Processing Systems, pages
2265–2273.
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Abstracts 

Identifying parallel web pages from bi-

lingual web sites is a crucial step of bi-

lingual resource construction for cross-

lingual information processing. In this 

paper, we propose a link-based approach 

to distinguish parallel web pages from bi-

lingual web sites. Compared with the ex-

isting methods, which only employ the 

internal translation similarity (such as 

content-based similarity and page struc-

tural similarity), we hypothesize that the 

external translation similarity is an effec-

tive feature to identify parallel web pages. 

Within a bilingual web site, web pages 

are interconnected by hyperlinks. The 

basic idea of our method is that the trans-

lation similarity of two pages can be in-

ferred from their neighbor pages, which 

can be adopted as an important source of 

external similarity. Thus, the translation 

similarity of page pairs will influence 

each other. An iterative algorithm is de-

veloped to estimate the external transla-

tion similarity and the final translation 

similarity. Both internal and external 

similarity measures are combined in the 

iterative algorithm. Experiments on six 

bilingual websites demonstrate that our 

method is effective and obtains signifi-

cant improvement (6.2% F-Score) over 

the baseline which only utilizes internal 

translation similarity. 

1 Introduction 

Parallel corpora have played an important role in 

multilingual Natural Language Processing, espe-

cially in Machine Translation (MT) and Cross-

lingual Information Retrieval(CLIR). However, 

it’s time-consuming to build parallel corpora 

manually. Some existing parallel corpora are 

subject to subscription or license fee and thus not 

freely available, while others are domain-specific. 

Therefore, a lot of previous research has focused 

on automatically mining parallel corpora from 

the web. 

In the past decade, there have been extensive 

studies on parallel resource extraction from the 

web (e.g., Chen and Nie, 2000; Resnik 2003; 

Jiang et al., 2009) and many effective Web min-

ing systems have been developed such as 

STRAND, PTMiner, BITS and WPDE. For most 

of these mining systems, there is a typical paral-

lel resource mining strategy which involves three 

steps: (1) locate the bilingual websites (2) identi-

fy  parallel web pages from these bilingual web-

sites and (3) extract bilingual resources from the 

parallel web pages.  

In this paper, we focus on the step (2) which is 

regarded as the core of the mining system 

(Chunyu, 2007). Estimating the translation simi-

larity of two pages is the most basic and key 

problem in this step. Previous approaches have 

tried to tackle this problem by using the infor-

mation within the pages. For example, in the 

STRAND and PTMiner system, a structural fil-

tering process that relies on the analysis of the 

underlying HTML structure of pages is used to 

determine a set of pair-specific structural values, 

and then the values are used to decide whether 

the pages are translations of one another. The 

BITS system filters out bad pairs by using a large 

bilingual dictionary to compute a content-based 

similarity score and comparing the score with a 

threshold. The WPDE system combines URL 

similarity, structure similarity with content-based 

similarity to discover and verify candidate paral-

lel page pairs. Some other features or rules such 

as page size ratio, predefined hypertexts which 

link to different language versions of a web page 

are also used in most of these systems. Here, all 

of the mining systems are simply using the in-

formation within the page in the process of find-
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ing parallel web pages. In this paper, we attempt 

to explore other information to identify parallel 

web pages. 

On the Internet, most web pages are linked by 

hyperlinks. We argue that the translation similar-

ity of two pages depends on not only their inter-

nal information but also their neighbors. The 

neighbors of a web page are a set of pages, 

which link to the page. We find that the similari-

ty of neighbors can provide more reliable evi-

dence in estimating the translation similarity of 

two pages.  

The main issues are discussed in this paper as 

follows:  

 Can the neighbors of candidate page pairs 

really contribute to estimating the translation 

similarity?  

 How to estimate the translation similarity of 

candidate page pairs by using their neighbors? 

Our method has the following advantages: 

High performance 

The external and internal information is com-

bined to verify parallel page pairs in our method, 

while in previous mining systems, only internal 

information was used. Experimental results show 

that compared with existing parallel page pair 

identification technologies, our method obtains 

both higher precision and recall (6.2% and 6.3% 

improvement than the baseline, respectively). In 

addition, the external information used in our 

method is a more effective feature than internal 

features alone such as structural similarity and 

content-based similarity. 

Language independent 

In principle, our method is language inde-

pendent and can be easily ported to new lan-

guage pairs, except for the language-specific bi-

lingual lexicons. Our method takes full ad-

vantage of the link information that is language-

independent. For the bilingual lexicons in our 

experiments, compared to previous methods, our 

method does not need a big bilingual lexicon, 

which is good news to less-resource language 

pairs. 

Unsupervised and fewer parameters 

In previous work, some parameters need to be 

optimized. Due to the diversity of web page 

styles, it is not trivial to obtain the best parame-

ters. Some previous researches(Resnik, 2003; 

Zhang et al., 2006) attempt to optimize parame-

ters by employing machine learning method. In 

contrast, in our method, only two parameters 

need to be estimated. One parameter remains 

stable for different style websites. Another pa-

rameter can be easily adjusted to achieve the best 

performance. Therefore, our method can be used 

in other websites with different styles, without 

much effort to optimize these parameters.  

2 Related Work 

A large amount of literature has been published 

on parallel resource mining from the web. Ac-

cording to the existing form of the parallel re-

source on the Internet, related work can be cate-

gorized as follows: 

Mining from bilingual websites 

Most existing web mining systems aimed at 

mining bilingual resource from the bilingual 

websites, such as PTMiner (Nie et al., 1999), 

STRAND (Resnik and Smith, 2003), BITS (Ma 

and Liberman, 1999), PTI (Chen et al., 2004). 

PTMiner uses search engines to pinpoint the 

candidate sites that are likely to contain parallel 

pages, and then uses the collected URLs as seeds 

to further crawl each web site for more URLs. 

Web page pairs are extracted based on manually 

defined URL pattern matching, and further fil-

tered according to several criteria. STRAND us-

es a search engine to search for multilingual 

websites and generated candidate page pairs 

based on manually created substitution rules. 

Then, it filters some candidate pairs by analyzing 

the HTML pages. PTI crawls the web to fetch 

(potentially parallel) candidate multilingual web 

documents by using a web spider. To determine 

the parallelism between potential document pairs, 

a filename comparison module is used to check 

filename resemblance, and a content analysis 

module is used to measure the semantic similari-

ty. BITS was the first to obtain bilingual web-

sites by employing a language identification 

module, and then for each bilingual website, it 

extracts parallel pages based on their content.  

Mining from bilingual web pages 

Parallel/bilingual resources may exist not only 

in two parallel monolingual web pages, but also 

in single bilingual web pages. Jiang et al. (2009) 

used an adaptive pattern-based method to mine 

interesting bilingual data based on the observa-

tion that bilingual data usually appears collec-

tively following similar patterns. They found that 

bilingual web pages are a promising source of 

up-to-date bilingual terms/sentences which cover 

many domains and application scenarios. In ad-

dition, Feng et al. (2010) proposed a new method 
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to automatically acquire bilingual web pages 

from the result pages of a search engine.  

Mining from comparable corpus 

Several attempts have been made to extract 

parallel resources from comparable corpora. 

Zhao et al. (2002) proposed a robust, adaptive 

approach for mining parallel sentences from a 

bilingual comparable news collection. In their 

method, sentence length models and lexicon-

based models were combined under a maximum 

likelihood criterion. Smith et al. (2010) found 

that Wikipedia contains a lot of comparable doc-

uments, and adopted a ranking model to select 

parallel sentence pairs from comparable docu-

ments. Bharadwaj et al. (2011) used a SVM clas-

sifier with some new features to identify parallel 

sentences from Wikipedia.  

3 Iterative Link-based Parallel Web 

Pages Mining 

As mentioned, the basic idea of our method is 

that the similarity of two pages can be inferred 

from their neighbors. This idea is illustrated in 

Figure 1.  

A D

E

C

B

A’ D’

E’

C’

B’

?

 
Figure 1 Illustration of the link-based method 

In Figure 1, A, B, C, D and E are some pages 

in the same language; while A’, B’, C’, D’ and E’ 

are some pages in another language. The solid 

black arrows indicate the links between these 

pages. For example, page A points to C, page B’ 

points to C’ and so on. Then the page set {A, B, 

D, E} is called the neighbors of page C. Similar-

ly, the page set {A’, B’, D’, E’} contains the 

neighbors of page C’. If the page pairs : <A, A’>, 

<B, B’>, <D, D’> and <E, E’> have high transla-

tion similarities, then it can be inferred that page 

C and C’ have a high probability to be a pair of 

parallel pages. Every page has its own neighbors. 

For each web page, our method views link-in and 

link-out hyperlinks as the same. Thus, the linked 

pages will influence each other in estimating the 

translation similarity. For example, the similari-

ties of two pairs <A, A’> and <C, C’> will influ-

ence each other. It is an iterative process. We 

will elaborate the process in the following sec-

tions.  

Since our goal is to find parallel pages in a 

specific website, the key task is to evaluate the 

translation similarity of two pages (which are in 

different languages) as accurately as possible. 

The final similarity of two pages should depend 

both on their internal similarity and external sim-

ilarity. The internal similarity means the similari-

ty estimated by using the information in the page 

itself, such as the structure similarity and the 

content-based similarity of the two pages. On the 

other hand, the external similarity of two pages is 

the similarity depending on their neighbors. The 

final translation similarity is called the En-

hanced Translation Similarity (ETS). The ETS 

of two pages can be calculated as follows:  

   (   )        (   )  (   )  
                                      (   )   [   ]              (1) 

Where,    (   ) is the internal translation simi-

larity of two pages: e and c;     (   ) represents 

the external translation similarity of pages e and 

c.    (   ) indicates the final similarity of two 

pages, which combines the internal with external 

translation similarity. 

In this paper, we conduct the experiments on 

English-Chinese parallel page pair mining. How-

ever, our method is language-independent. Thus, 

it can be applied to other language pairs by only 

replacing a bilingual lexicon. The symbol e and c 

always indicate an English page and a Chinese 

page respectively in this paper. In the following 

sections, we will describe how to calculate the 

   (   ) and     (   ) step by step. 

3.1 Preprocessing 

The input of our method is a bilingual website. 

This paper aims to find English/Chinese parallel 

pages. So a 3-gram language model is used to 

identify (or classify) the language of a certain 

document. The performance of the language 

identification module achieves 99.5% accuracy 

through in-house testing. As a result, a set of 

English pages and a set of Chinese pages are ob-

tained. In order to get the neighbors of a page, 

for each bilingual website, two networks are con-

structed based on the hyperlinks, one for English 

pages and another for Chinese pages. 

3.2 The Internal Translation Similarity 

Following Resnik and Smith (2003), three fea-

tures are used to evaluate the internal translation 

similarity of two pages: 
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The size ratio of two pages 

The length ratio of two documents is the sim-

plest criterion for determining whether two doc-

uments are parallel or not. Parallel documents 

tend to be similar in length. And it is reasonable 

to assume that for text E in one language and text 

F in another language, length(E) ≈ C•length(F), 

where C is a constant that depends on the lan-

guage pair. Here, the content length of a web 

page is regarded as its length. 

The structure similarity of two pages 

The HTML tags describe and control a web 

page’s structure. Therefore, the structure similar-

ity of two pages can be calculated by their 

HTML tags. Here, the HTML tags of each page 

are extracted (except the visual tags such as “B”, 

“FONT”.) as a linear sequence. Then the struc-

ture similarity of two pages is computed by com-

paring their linearized sequences. In this paper, 

the LCS algorithm (Dan, 1997) is adopted to find 

the longest common sequences of the two HTML 

tag sequences. The ratio of LCS length and the 

average length of two HTML tag sequences are 

used as the structure similarity of the two pages.  

The content-based translation similarity of 

two pages 

The basic idea is that if two documents are 

parallel, they will contain word pairs that are mu-

tual translations (Ma, 1999). So the percentage of 

translation word pairs in the two pages can be 

considered as the content-based similarity. The 

translation words of two documents can be ex-

tracted by using a bilingual lexicon. Here, for 

each word in English document, we will try to 

find a corresponding word in Chinese document.  

Finally, the internal translation similarity of 

two pages is calculated as follows: 

   (   )       (   )  (   )  
                                          (   )   [   ]        (2) 

Where,     (   )  and        (   )  are the con-

tent-based and structural similarity of page   and 

  respectively. In addition, the size ratio of two 

pages is used to filter invalid page pairs.  

3.3 The External and Enhanced Transla-

tion Similarity 

As described above, the external translation 

similarity of two pages depends on their neigh-

bors:  

    (   )     (  ( )   ( )) (3) 

Where, PG(x), a set of pages, is the neighbors of 

page x. Obviously, the similarity of two sets re-

lies on the similarity of the elements in the two 

sets. Here, the elements are namely web pages. 

So,     (   ) equals to    (  ( )   ( )), and 

   (  ( )   ( ))  depends on    (     ) 

(       belongs to    ( )   ( ) , respectively) 

and    (   ) . According to Equation (1), 

   (   )  depends on    (   )  and     (   ) . 

Therefore, it is a process of iteration.    (   ) 
will converge after a certain number of iterations. 

Thus,     (   )  is defined as the enhanced 

similarity of page   and   after the i-th iteration, 

and the same is for     
 (   ) and     (  ( ) 

  ( )) .     (  ( )   ( ))  is computed by 

the following algorithm: 

Algorithm 1: Estimating the external transla-

tion similarity 

Input:      ( )   ( ) 
Output:     

 (   ) 

Procedure:  

    0 

        ( ) 
         ( ) 
While        and       are both not empty: 

              

                          (   
   (   ))  

         +        (   ) 
Remove   from        
Remove   from       

    
 (   )       ( ( )  ( )) 

                              (   ( )     ( ) ) 

Algorithm 2 Estimating the enhanced transla-

tion similarity 

Input:      , (the English and Chinese page set) 

Output:    (   )           
Initialization: Set ETS(e, c) random value or 

small value 

Procedure:  

LOOP: 

For each   in    : 

For each   in   : 
     (   )         

 (   ) 
                                           (   )     (   ) 

Parameters normalization 

UNTIL    (   ) is stable  

Algorithm 1 tries to find the real parallel pairs 

from   ( ) and   ( ). The similarity of   ( ) 
and   ( ) is calculated based on the similarity 
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values of these pairs. Finally,    (   ) is calcu-

lated by the following algorithm 2. 

In Algorithm 2, the input    and    are English 

and Chinese page sets in a certain bilingual web-

site. We use algorithm 2 to estimate the en-

hanced translation similarity. 

3.4 Find the Parallel Page Pairs 

At last, the enhanced translation similarity of 

every pair is obtained, and the parallel page pairs 

can be extracted in terms of these similarities: 

Algorithm 3 Finding parallel page pairs 

Input:       
    (   )              
       (or        ) 

Output:  Parallel Page Pairs List :     

Procedure:  

LOOP: 

                         (   (   )) 

Add       to     

Remove   from     

Remove   from     
UNTIL size of     >       (or    (   )  < 

       ) 

This algorithm is similar to Algorithm 1 in 

each bilingual website. The input       is an 

integer threshold which means that only top 

      page pairs will be extracted in a certain 

website. It needs to be noted that       is al-

ways less than      and     . While the input 

        is another kind of threshold that is 

used for extracting page pairs with high transla-

tion similarity.  

4 Experiments and Analysis 

4.1 Experimental setup 

Our experiments focus on six bilingual websites. 

Most of them are selected from HK government 

websites. All the web pages were retrieved by 

using a web site download tool: HTTrack
1
. We 

notice that a small amount of pages doesn’t al-

ways contain valuable contents. So, we put a 

threshold (100 bytes in our experiment) on the 

web pages' content to filter meaningless pages. In 

order to evaluate our method, the bilingual page 

pairs of each website are annotated by a human 

annotator. Finally, we got 23109 pages and 

11684 bilingual page pairs in total for testing. 

                                                 
1 http://www.httrack.com/ 

The basic information of these websites is listed 

in Table 1. 

It’s time-consuming to annotate whether two 

pages is parallel or not. Note that if a website 

contains N English pages and M Chinese pages, 

an annotator has to label N*M page pairs. To the 

best of our knowledge, there is no large scale and 

public parallel page pair dataset with human an-

notation. So we try to build a reliable and large-

scale dataset. 

In our experiments, URL similarity is used to 

reduce the workload for annotation. For a certain 

website, firstly, we obtain its URL pattern be-

tween English and Chinese pages manually. For 

example, in the website “www.gov.hk”, the URL 

pairs like: 

http://www.gov.hk/en/about/govdirectory/   (English) 

http://www.gov.hk/sc/about/govdirectory/   (Chinese) 

The URL pairs always point to a pair of paral-

lel pages. So <”/en/”,”/sc/”> is considered as a 

URL pattern that was used to find parallel pages. 

For the other URLs that can’t match the pattern, 

we have to label them by hand. The column “No 

pattern pairs” in Table 1 shows that the number 

of parallel page pairs which mismatch any pat-

terns. 

Table 1 Number of pages and bilingual page pairs of 

each websites 

Site ID En/Ch pages 
Total 

pairs 

No pat-

tern pairs 
URL 

S1 1101/1098 1092 20 www.gov.hk 

S2 501/497 487 7 www.customs.gov.hk 

S3 995/775 768 12 www.sbc.edu.sg 

S4 4085/3838 3648 4 www.swd.gov.hk 

S5 660/637 637 0 www.landsd.gov.hk 

S6 4733/4626 4615 8 www.td.gov.hk 

 total 12075/11471 11684 51  

Each website listed in Table 1 has a URL pat-

tern for most parallel web pages. Some previous 

researches used the URL similarity or patterns to 

find parallel page pairs. However, due to the di-

versity of web page styles and website mainte-

nance mechanisms, bilingual websites adopt var-

ied naming schemes for parallel documents (Shi, 

et al, 2006). The effect of URL pattern-based 

mining always depends on the style of website. 

In order to build a large dataset, the URL pattern 

is not used in our method. Our method is able to 

handle bilingual websites without URL pattern 

rules. 

In addition, an English-Chinese dictionary 

with 64K words pairs is used in our experiments. 

Algorithm 3 needs a threshold       or 
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       . It is very hard to tune the         

because it varies a lot in different websites and 

language pairs. However, Table 1 shows that the 

number of parallel pages is smaller than that of 

English and Chinese pages. Here, for each web-

site, the       is set to the number of Chinese 

pages (which is always smaller than that of Eng-

lish pages). In this way, the precision will never 

reach 100%, but it is more practical in a real ap-

plication. As a result, in some experiments, we 

only report the F-score, and the precision and 

recall can be calculated as follows:  

          
       (             )

       
                 (4) 

       
       (              )

        
                      (5) 

Where,        for each website is listed in the 

“Total  pairs” column of Table 1. 

4.2 Results and Analysis 

Performance of the Baseline 

Let’s start by presenting the performance of a 

baseline method as follows. The baseline only 

employs the internal translation similarity for 

parallel web pages mining. Algorithm 3 is also 

used to get the page pairs in baseline system. 

Here, the input    (   )  is replaced by 

   (   ) . The parameter   in Equation 2 is a 

discount factor. For different   values, the per-

formance of baseline system on six websites is 

shown in Figure 2. In the Figure 2, it shows that 

when   is set to 0.6, the baseline system achieves 

the best performance. The precision, recall and 

F-score are 85.84%, 87.55% and 86.69% respec-

tively. So in the following experiments, we al-

ways set  to 0.6.  

 
Figure 2 Performances of baseline system with differ-

ent   value 

Performance of Our Method 

As described in Section 3, our method com-

bines the internal with external translation simi-

larity in estimating the final translation similarity 

(i.e., ETS) of two pages. So, the discount factor 

  in Equation (1) is important in our method. 

Besides, as shown in Algorithm 2, the iterative 

algorithm is used to calculate the similarity. Then, 

one question is that how many iterations are re-

quired in our algorithm. Figure 3 shows the per-

formance of our method on each website. Its hor-

izontal axis represents the number of iterations 

and the vertical axis represents the F-score. And 

for each website, the F-scores with different   

(range from 0.2 to 0.8) are also reported in this 

figure. From Figure 3, it is very easy to find that 

the best iteration number is 3. For almost all the 

websites, the performance of our method 

achieves the maximal values and converges after 

the third iteration. In addition, Figure 3 also indi-

cates that our method is robust for different web-

sites. In the following experiments, the iteration 

number is set to 3. 

Next, let’s turn to the discount factor  . Figure 

4 reports the experimental results on the whole 

dataset. Here, the horizontal axis represents the 

discount factor   and the vertical axis represents 

the F-score.     means that only the internal 

similarity is used in the algorithm, so the F-score 

equals to that in Figure 2 when      . On the 

contrary,     means that only the external 

similarity is used in the method, and the F-score 

is 80.20%. The performance is lower than the 

baseline system when only the external link in-

formation is used, but it is much better than the 

performance of the content-based method and 

structure-based method whose F-scores are 64.82% 

and 64.0% respectively. Besides, it is shown 

from Figure 4, the performance is improved sig-

nificantly when the internal and external similari-

ty measures are combined together. Furthermore, 

it is somewhat surprising that the discount factor 

  is not important as we previously expected. In 

fact, if we discard the cases that   equals to 0 or 

1, the difference between the maximum and min-

imum F-score will be 0.76% which is very small. 

This finding indicates that the internal and exter-

nal similarity can easily be combined and we 

don’t need to make many efforts to tune this pa-

rameter when our method is applied to other 

websites. The reason of this phenomenon is that, 

no matter how much weight (i.e., 1-  ) was as-

signed  to the internal similarity, the internal sim-

ilarity always provides a relatively good initial 
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Figure 3 Experiment results of our method on each website

iterative direction. In the following experiments, 

the parameter  is set to 0.6. 

 

Figure 4 The F-scores of our method with different 

the value of  

The weight of pages 

The weight of the neighbor pages should also 

be considered. For example, in the most websites, 

it is very common that most of the web pages 

contain a hyperlink which points to the homep-

age of the website. While in most of the Eng-

lish/Chinese websites, almost every English page 

will link to the English homepage and each Chi-

nese page will point to Chinese homepage. The 

English and Chinese homepages are probably 

parallel, but they will be helpless to find parallel 

web pages, because they are neighbors of almost 

every page in the site. On the contrary, some-

times the parallel homepages have negative ef-

fects on finding parallel pages They will increase 

the translation similarity of two pages which are 

not indeed mutual translations. So it is necessary 

to amend the Algorithm 1.  

The weight of each page is calculated accord-

ing to its popularity: 

 ( )     
     

    ( )    
  (6) 

where  ( ) indicates the weight of page  ,   is 

the number of all pages,     ( ) is the number 

of pages pointing to page   and   is a constant 

for smoothing.  

In this paper, the weights of pages are used in 

two ways: 

Weight 1: The 9th line of Algorithm 1 is 

amended by the page weight as follows: 

                (   )  ( ( )   ( ))    

Weight 2: The pages with low weight are re-

moved from the input of Algorithm 1. 

The experiment results are shown in Table 2.  

Table 2 The effect of page weight 

Type No Weight Weight 1 Weight 2 

F-score (%) 92.91 92.78 92.75 

Surprisingly, no big differences are found after 

the introduction of the page weight. The side ef-

fect of popular pages is not so large in our meth-

od. In the neighbor pages of a certain page, the 

popular pages are the minority. Besides, the iter-

ative process makes our method more stable and 

robust. 

The impact of the size of bilingual lexicon 

The baseline system mainly combines the con-

tent-based similarity with structure similarity. 
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And two kinds of similarity measures are also 

used in our method. As Ma and Liberman (1999) 

pointed out, not all translators create translated 

pages that look like the original page which 

means that the structure similarity does not al-

ways work well. Compared to the structure simi-

larity, the content-based is more reliable and has 

wider applicability. Furthermore, the bilingual 

lexicon is the only information that relates to the 

language pairs, and other features (such as struc-

ture and link information) are all language inde-

pendent. So, it’s important to investigate the ef-

fect of lexicon size in our method. We test the 

performance of our method with different size of 

the bilingual dictionary. The experiment results 

are shown in Figure 5. In this figure, the horizon-

tal axis represents the bilingual lexicon size and 

the vertical axis represents the F-score. With the 

decline of the lexicon size, the performances of 

both the baseline method and our method are 

decreased. However, we can find that the descent 

rate of our method is smaller than that of the 

baseline. It indicates that our method does not 

need a big bilingual lexicon which is good news 

for the low-resource language pairs. 

 
Figure 5 The impact of the size of bilingual lexicon 

Error analysis  

Errors occur when the two pages are similar in 

terms of structure, content and their neighbors. 

For example, Figure 6 illustrates a typical web 

page structure. There are 5 parts in the web page: 

 ,  ,  ,   and  . Part   always contains the 

main content of this page. While part  ,  ,   and 

  always contain some hyperlinks such as “home” 

in part   and “About us” in part  . Links in   

and   sometimes relate to the content of the page. 

For such a kind of non-parallel page pairs, let’s 

assume that the two pages have the same struc-

ture (as shown in Figure 6). In addition, their 

content part   is very short and contains the 

same or related topics. As a result, the links in 

other 4 parts are likely to be similar. In this case, 

our method is likely to regard the two pages as 

parallel.  

M

U

B

L R

 
Figure 6 A typical web page structure 

There are about 920 errors when our system 

obtains its best performance. By carefully inves-

tigating the error page pairs, we find that more 

than 90% errors fall into the category discussed 

above. The websites used in our experiments 

mainly come from Hong Kong government web-

sites. Some government departments regularly 

publish quarterly or monthly work reports on one 

issue through their websites. These reports look 

very similar except the publish date and some 

data in them. The other 10% errors happen be-

cause of the particularity of the web pages, e.g. 

very short pages, broken pages and so on. 

5 Conclusions and Future Work 

Parallel corpora are valuable resources for a lot 

of NLP research problems and applications, such 

as MT and CLIR. This paper introduces an effi-

cient and effective solution to bilingual language 

processing. We first explore how to extract paral-

lel page pairs in bilingual websites with link in-

formation between web pages. Firstly, we hy-

pothesize that the translation similarity of pages 

should be based on both internal and external 

translation similarity. Secondly, a novel iterative 

method is proposed to verify parallel page pairs. 

Experimental results show that our method is 

much more effective than the baseline system 

with 6.2% improvement on F-Score. Further-

more, our method has some significant contribu-

tions. For example, compared to previous work, 

our method does not depend on bilingual lexi-

cons, and the parameters in our method have lit-

tle effect on the final performance. These fea-

tures improve the applicability of our method. 

In the future work, we will study some method 

on extracting parallel resource from existing par-

allel page pairs, which are challenging tasks due 

to the diversity of page structures and styles. Be-

sides, we will evaluate the effectiveness of our 

mined data on MT or other applications. 
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Abstract

Analyses of computer aided translation typi-
cally focus on either frontend interfaces and
human effort, or backend translation and
machine learnability of corrections. How-
ever, this distinction is artificial in prac-
tice since the frontend and backend must
work in concert. We present the first holis-
tic, quantitative evaluation of these issues
by contrasting two assistive modes: post-
editing and interactive machine translation
(MT). We describe a new translator inter-
face, extensive modifications to a phrase-
based MT system, and a novel objective
function for re-tuning to human correc-
tions. Evaluation with professional bilin-
gual translators shows that post-edit is faster
than interactive at the cost of translation
quality for French-English and English-
German. However, re-tuning the MT sys-
tem to interactive output leads to larger, sta-
tistically significant reductions in HTER
versus re-tuning to post-edit. Analysis
shows that tuning directly to HTER results
in fine-grained corrections to subsequent
machine output.

1 Introduction
The goal of machine translation has always been to
reduce human effort, whether by partial assistance
or by outright replacement. However, preoccupa-
tion with the latter—fully automatic translation—at
the exclusion of the former has been a feature of
the research community since its first nascent steps
in the 1950s. Pessimistic about progress during
that decade and future prospects, Bar-Hillel (1960,
p.3) argued that more attention should be paid to a
“machine-post-editor partnership,” whose decisive
problem is “the region of optimality in the contin-
uum of possible divisions of labor.” Today, with
human-quality, fully automatic machine translation

(MT) elusive still, that decades-old recommenda-
tion remains current.
This paper is the first to look at both sides of

the partnership in a single user study. We compare
two common flavors of machine-assisted transla-
tion: post-editing and interactive MT. We analyze
professional, bilingual translators working in both
modes, looking first at user productivity. Does the
additional machine assistance available in the inter-
active mode affect translation time and/or quality?
Then we turn to the machine side of the part-

nership. The user study results in corrections to
the baseline MT output. Do these corrections help
the MT system, and can it learn from them quickly
enough to help the user? We perform a re-tuning
experiment in which we directly optimize human
Translation Edit Rate (HTER), which correlates
highly with human judgments of fluency and ade-
quacy (Snover et al., 2006). It is also an intuitive
measure of human effort, making fine distinctions
between 0 (no editing) and 1 (complete rewrite).
We designed a new user interface (UI) for the

experiment. The interface places demands on the
MT backend—not the other way around. The most
significant new MT system features are prefix de-
coding, for translation completion based on a user
prefix; and dynamic phrase table augmentation, to
handle target out-of-vocabulary (OOV) words. Dis-
criminative re-tuning is accomplished with a novel
cross-entropy objective function.
We report three main findings: (1) post-editing

is faster than interactive MT, corroborating Koehn
(2009a); (2) interactive MT yields higher quality
translation when baseline MT quality is high; and
(3) re-tuning to interactive feedback leads to larger
held-out HTER gains relative to post-edit. Together
these results show that a human-centered approach
to computer aided translation (CAT) may involve
tradeoffs between human effort and machine
learnability. For example, if speed is the top
priority, then a design geared toward post-editing
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Figure 1: Main translation interface. The user sees the full document context, with French source inputs
(A) interleaved with suggested English translations (B). The sentence in focus is indicated by the blue
rectangle, which can be moved via two hot keys. Source coverage (C) of the user prefix—shaded in
blue—updates as the user works, as do autocomplete suggestions (D) and a full completion (E).

is appropriate. However, if reductions in HTER
ultimately correspond to lower human effort, then
investing slightly more time in the interactive mode,
which results in more learnable output, may be op-
timal. Mixed UI designs may offer a compromise.
Code and data from our experiments are available at:
http://nlp.stanford.edu/software/phrasal/

A holistic comparison with human subjects nec-
essarily involves many moving parts. Section 2
briefly describes the interface, focusing on NLP
components. Section 3 describes changes to the
backend MT system. Section 4 explains the user
study, and reports human translation time and qual-
ity results. Section 5 describes the MT re-tuning
experiment. Analysis (section 6) and related work
(section 7) round out the paper.

2 New Translator User Interface
Figure 1 shows the translator interface, which is
designed for expert, bilingual translators. Previ-
ous studies have shown that expert translators work
and type quickly (Carl, 2010), so the interface is
designed to be very responsive, and to be primar-
ily operated by the keyboard. Most aids can be
accessed via either typing or four hot keys. The
current design focuses on the point of text entry
and does not include conventional translator work-
bench features such as workflow management, spell
checking, and text formatting tools.

In the trivial post-edit mode, the interactive aids

are disabled and a 1-best translation pre-populates
the text entry box.

We have described the HCI-specific motivations
for and contributions of this new interface in Green
et al. (2014c). This section focuses on interface
elements built on NLP components.

2.1 UI Overview and Walkthrough
We categorized interactions into three groups:
source comprehension: word lookups, source cov-
erage highlighting; target gisting: 1-best transla-
tion, real-time target completion; target genera-
tion: real-time autocomplete, target reordering, in-
sert complete translation. The interaction designs
are novel; those in italic have, to our knowledge,
never appeared in a translation workbench.

Source word lookup When the user hovers over
a source word, a menu of up to four ranked trans-
lation suggestions appears (Figure 2). The menu
is populated by a phrase-table query of the word
plus one token of left context. This query usually
returns in under 50ms. The width of the horizontal
bars indicates confidence, with the most confident
suggestion ‘regularly’ placed at the bottom, near-
est to the cursor. The user can insert a translation
suggestion by clicking.

Source coverage highlighting The source cover-
age feature (Figure 1C) helps the user quickly find
untranslated words in the source. The interaction is
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Figure 2: Source word lookup and target autocom-
plete menus. The menus show different suggestions.
The word lookupmenu (top) is not dependent on the
target context Teachers, whereas the autocomplete
dropdown (bottom) is.

based on the word alignments between source and
target generated by the MT system. We found that
the raw alignments are too noisy to show users, so
the UI filters them with phrase-level heuristics.

1-best translation The most common use of MT
output is gisting (Koehn, 2010, p.21). The gray text
below each black source input shows the best MT
system output (Figure 1B).

Real-time target completion When the user ex-
tends the black prefix, the gray text will update to
the most probable completion (Figure 1E). This up-
date comes from decoding under the full translation
model. All previous systems performed inference
in a word lattice.

Real-time autocomplete The autocomplete
dropdown at the point of text entry is the main
translation aid (Figures 1D and 2). Each real-time
update actually contains a distinct 10-best list for
the full source input. The UI builds up a trie from
these 10-best lists. Up to four distinct suggestions
are then shown at the point of translation. The
suggestion length is based on a syntactic parse of
the fixed source input. As an offline, pre-processing
step, we parse each source input with Stanford
CoreNLP (Manning et al., 2014). The UI combines
those parses with word alignments from the full
translation suggestions to project syntactic con-
stituents to each item on the n-best list. Syntactic
projection is a very old idea that underlies many
MT systems (see: Hwa et al. (2002)). Here we
make novel use of it for suggestion prediction

filtering.1 Presently, we project noun phrases,
verb phrases (minus the verbal arguments), and
prepositional phrases. Crucially, these units are
natural to humans, unlike statistical target phrases.

Target Reordering Carl (2010) showed that ex-
pert translators tend to adopt local planning: they
read a few words ahead and then translate in a
roughly online fashion. However, word order differ-
ences between languages will necessarily require
longer range planning and movement. To that end,
the UI supports keyboard-based reordering. Sup-
pose that the user wants to move a span in gray
text to the insertion position for editing. Typing
the prefix of this string will update the autocom-
plete dropdown with matching strings from the gray
text. Consequently, sometimes the autocomplete
dropdown will contain suggestions from several
positions in the full suggested translation.

Insert complete translation The user can insert
the full completion via a hot key. Notice that if
the user presses this hot key immediately, all gray
text becomes black, and the interface effectively
switches to post-edit mode. This feature greatly ac-
celerates translation when the MT is mostly correct,
and the user only wants to make a few changes.

2.2 User Activity Logging
A web application serves the Javascript-based in-
terface, relays translation requests to the MT sys-
tem, and logs user records to a database. Each user
record is a tuple of the form (f, ê, h, u), where f
is the source sequence, ê is the latest 1-best ma-
chine translation of f , h is the correction of ê, and
u is the log of interaction events during the transla-
tion session. Our evaluation corpora also include
independently generated references e for each f .

3 Interactive MT Backend

Now we describe modifications to Phrasal (Green
et al., 2014b), the phrase-based MT system that sup-
ports the interface. Phrasal follows the log-linear
approach to phrase-based translation (Och and Ney,
2004) in which the decision rule has the familiar
linear form

ê = arg max
e

w>φ(e, f) (1)

1The classic TransType system included a probabilistic
prediction length component (Foster et al., 2002), but we find
that the simpler projection technique works well in practice.
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where w ∈ Rd is the model weight vector and
φ(·) ∈ Rd is a feature map.

3.1 Decoding
The default Phrasal search algorithm is cube prun-
ing (Huang and Chiang, 2007). In the post-edit con-
dition, search is executed as usual for each source
input, and the 1-best output is inserted into the tar-
get textbox. However, in interactive mode, the full
search algorithm is executed each time the user
modifies the partial translation. Machine sugges-
tions ê must match user prefix h. Define indicator
function pref(ê, h) to return true if ê begins with
h, and false otherwise. Eq. 1 becomes:

ê = arg max
e s.t.pref(e,h)

w>φ(e, f) (2)

Cube pruning can be straightforwardly modified to
satisfy this constraint by simple string matching of
candidate translations. Also, the pop limit must be
suspended until at least one legal candidate appears
on each beam, or the priority queue of candidates is
exhausted. We call this technique prefix decoding.2

There is another problem. Human translators are
likely to insert unknown target words, including
new vocabulary, misspellings, and typographical
errors. They might also reorder source text so as to
violate the phrase-based distortion limit. To solve
these problems, we perform dynamic phrase table
augmentation, adding new synthetic rules specific
to each search. Rules allowing any source word to
align with any unseen or ungeneratable (due to the
distortion limit) target word are created.3 These
synthetic rules are given rule scores lower than any
other rules in the set of queried rules for that source
input f . Then candidates are allowed to compete
on the beam. Candidates with spurious alignments
will likely be pruned in favor of those that only turn
to synthetic rules as a last resort.

3.2 Tuning
We choose BLEU (Papineni et al., 2002) for base-
line tuning to independent references, and HTER
for re-tuning to human corrections. Our rationale
is as follows: Cer et al. (2010) showed that BLEU-
tuned systems score well across automatic metrics
and also correlate with human judgment better than

2Och et al. (2003) describe a similar algorithm for word
graphs.

3Ortiz-Martínez et al. (2009) describe a related technique
in which all source and target words can align, with scores set
by smoothing.

systems tuned to other metrics. Conversely, sys-
tems tuned to edit-distance-based metrics like TER
tend to produce short translations that are heavily
penalized by other metrics.
When human corrections become available, we

switch to HTER, which correlates with human judg-
ment and is an interpretable measure of editing
effort. Whereas TER is computed as TER(e, ê),
HTER is HTER(h, ê). HBLEU is an alternative,
but since BLEU is invariant to some permutations
(Callison-Burch et al., 2006), it is less interpretable.
We find that it also does not work as well in practice.

We previously proposed a fast, online tuning al-
gorithm (Green et al., 2013b) based on AdaGrad
(Duchi et al., 2011). The default loss function is
expected error (EE) (Och, 2003; Cherry and Foster,
2012). Expected BLEU is an example of EE, which
we found to be unstable when switching metrics.
This may result from direct incorporation of the
error metric into the gradient computation.
To solve this problem, we propose a cross-

entropy loss which, to our knowledge, is new in
MT. Let Ê = {êi}ni=1 be an n-best list ranked
by a gold metric G(e, ê) ≥ 0. Assume we
have a preference of a higher G (e.g., BLEU or
1−HTER). Define the model distribution over Ê
as q(ê|f) ∝ exp[w>φ(ê, f)] normalized so that∑

ê∈Ê q(ê|f) = 1; q indicates howmuch the model
prefers each translation. Similarly, define p(ê|f)
based on any function of the gold metric so that∑

ê∈Ê p(ê|f) = 1; p indicates how much the met-
ric prefers each translation. We choose a DCG-
style4 parameterization that skews the p distribu-
tion toward higher-ranked items on the n-best list:
p(êi|f) ∝ G(e, êi)/ log(1 + i) for the ith ranked
item. The cross-entropy (CE) loss function is:

`CE(w;E) = Ep(ê|f)[− log(q(ê|f)] (3)

It turns out that if p is simply the posterior distribu-
tion of the metric, then this loss is related to the log
of the standard EE loss:5

`EE(w;E) = − log[Ep(ê|f)[q(ê|f)]] (4)

We can show that `CE ≥ `EE by applying Jensen’s
inequality to the function − log(·). So minimizing
`CE also minimizes a convex upper bound of the
log expected error. This convexity given the n-

4Discounted cumulative gain (DCG) is widely used in infor-
mation retrieval learning-to-rank settings. n-best MT learning
is standardly formulated as a ranking task.

5For expected error, p(êi) = G(e, êi) is not usually nor-
malized. Normalizing p adds a negligible constant.
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best list does not mean that the overall MT tuning
loss is convex, since the n-best list contents and
order depend on the parameters w. However, all
regret bounds and other guarantees of online con-
vex optimization would now apply in the CE case
since `CE,t(wt−1;Et) is convex for each t. This
is attractive compared to expected error, which is
non-convex even given the n-best list. We empiri-
cally observed that CE converges faster and is less
sensitive to hyperparameters than EE.

Faster decoding trick We found that online tun-
ing also permits a trick that speeds up decoding
during deployment. Whereas the Phrasal default
beam size is 1,200, we were able to reduce the beam
size to 800 and run the tuner longer to achieve the
same level of translation quality. For example, at
the default beam size for French-English, the algo-
rithm converges after 12 iterations, whereas at the
lower beam size it achieves that level after 20 itera-
tions. In our experience, batch tuning algorithms
seem to be more sensitive to the beam size.

3.3 Feature Templates
The baseline system contains 19 dense feature tem-
plates: the nine Moses (Koehn et al., 2007) baseline
features, the eight-feature hierarchical lexicalized
re-ordering model of Galley and Manning (2008),
the (log) count of each rule in the bitext, and an
indicator for unique rules. We found that sparse
features, while improving translation quality, came
at the cost of slower decoding due to feature extrac-
tion and inner products with a higher dimensional
feature map φ. During prototyping, we observed
that users found the system to be sluggish unless
it responded in approximately 300ms or less. This
budget restricted us to dense features.
When re-tuning to corrections, we extract fea-

tures from the user logs u and add them to the
baseline dense model. For each tuning input f ,
the MT system produces candidate derivations d =
(f, ê, a), where a is a word alignment. The user log
u also contains the last MT derivation6 accepted
by the user du = (f, êu, au). We extract features
by comparing d and du. The heuristic we take is
intersection: φ(d)← φ(d) ∩ φ(du).

Lexicalized and class-based alignments Con-
sider the alignment in Figure 3. We find that
user derivations often contain many unigram rules,

6Extracting features from intermediate user editing actions
is an interesting direction for future work.

tarceva
parvient

ainsi
à

stopper
la

croissance

tar
ce
va

wa
s

th
us

ab
le

to ha
lt

th
e gr
ow

th

Figure 3: User translation word alignment obtained
via prefix decoding and dynamic phrase table aug-
mentation.

which are less powerful than larger phrases, but
nonetheless provide high-precision lexical choice
information. We fire indicators for both unigram
links and multiword cliques. We also fire class-
based versions of this feature.

Source OOV blanket Source OOVs are usually
more frequent when adapting to a new domain. In
the case of European languages—our experimental
setting—many of the words simply transfer to the
target, so the issue is where to position them. In Fig-
ure 3, the proper noun tarceva is unknown, so the de-
coder OOV model generates an identity translation
rule. We add features in which the source word is
concatenated with the left, right, and left/right con-
texts in the target, e.g., {<s>-tarceva, tarceva-

was, <s>-tarceva-was}. We also add versions
with target words mapped to classes.

3.4 Differences from Previous Work

Our backend innovations support the UI and enable
feature-based learning from human corrections. In
contrast, most previous work on incremental MT
learning has focused on extracting new translation
rules, language model updating, and modifying
translation model probabilities (see: Denkowski
et al. (2014a)). We regard these features as ad-
ditive to our own work: certainly extracting new,
unseen rules should help translation in a new do-
main. Moreover, to our knowledge, all previous
work on updating the weight vector w has consid-
ered simulated post-editing, in which the indepen-
dent references e are substituted for corrections h.
Here we extract features from and re-tune to actual
corrections to the baseline MT output.
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4 Translation User Study
We conducted a human translation experiment with
a 2 (translation conditions) × n (source sentences)
mixed design, where n depended on the language
pair. Translation conditions (post-edit and interac-
tive) and source sentences were the independent
variables (factors). Experimental subjects saw all
factor levels, but not all combinations, since one
exposure to a sentence would influence another.

Subjects completed the experiment remotely on
their own hardware. They received personalized
login credentials for the translation interface, which
administered the experiment. Subjects first com-
pleted a demographic questionnaire about prior ex-
perience with CAT and language proficiency. Next,
they completed a training module that included a
4-minute tutorial video and a practice “sandbox” for
developing proficiency with the UI. Then subjects
completed the translation experiment. Finally, they
completed an exit questionnaire.
Unlike the experiment of Koehn (2009a), sub-

jects were under time pressure. An idle timer pre-
vented subjects from pausing for more than three
minutes while the translator interface was open.
This constraint eliminates a source of confound in
the timing analysis.
We randomized the order of translation condi-

tions and the assignment of sentences to conditions.
At most five sentences appeared per screen, and
those sentences appeared in the source document
order. Subjects could move among sentences within
a screen, but could not revise previous screens. Sub-
jects received untimed breaks both between trans-
lation conditions and after about every five screens
within a translation condition.

4.1 Linguistic Materials
We chose two language pairs: French-English (Fr-
En) and English-German (En-De). Anecdotally,
French-English is an easy language pair for MT,
whereas English-German is very hard due to re-
ordering and complex German morphology.
We chose three text genres: software, medical,

and informal news. The software text came from
the graphical interfaces of Autodesk AutoCAD and
Adobe Photoshop. The medical text was a drug re-
view from the European Medicines Agency. These
two data sets came from TAUS7 and included inde-
pendent reference translations. The informal news
text came from the WMT 2013 shared task test set

7http://www.tausdata.org/

(Bojar et al., 2013). The evaluation corpus was con-
structed from equal proportions of the three genres.

The Fr-En dataset contained 3,003 source tokens
(150 segments); the En-De dataset contained 3,002
(173 segments). As a rule of thumb, a human trans-
lator averages about 2,700 source tokens per day
(Ray, 2013, p.36), so the experiment was designed
to replicate a slightly demanding work day.

4.2 Selection of Subjects
For each language pair, we recruited 16 profes-
sional, freelance translators on Proz, which is the
largest online translation community.8 We posted
ads for both language pairs at a fixed rate of $0.085
per source word, an average rate in the industry. In
addition, we paid $10 to each translator for complet-
ing the training module. All subjects had significant
prior experience with a CAT workbench.

4.3 Results
We analyze the translation conditions in terms of
two response variables: time and quality. We ex-
cluded one Fr-En subject and two En-De subjects
from the models. One subject misunderstood the in-
structions of the experiment and proceeded without
clarification; another skipped the training module
entirely. The third subject had a technical problem
that prevented logging. Finally, we also filtered
segment-level sessions for which the log of transla-
tion time was greater than 2.5 standard deviations
from the mean.

4.3.1 Translation Time
We analyze time with a linear mixed effects model
(LMEM) estimated with the lme4 (Bates, 2007) R
package. When experimental factors are sampled
from larger populations—e.g., humans, sentences,
words—LMEMs are more robust to type II errors
(see: Baayen et al. (2008)). The log-transformed
time is the response variable and translation condi-
tion is the main independent variable. The maximal
random effects structure (Barr et al., 2013) contains
intercepts for subject, sentence id, and text genre,
each with random slopes for translation condition.

We found significant main effects for translation
condition (Fr-En, p < 0.05; En-De, p < 0.01).
The orientation of the coefficients indicates that
interactive is slower for both language pairs. For Fr-
En, the LMEM predicts a mean time (intercept) of
46.0 sec/sentence in post-edit vs. 54.6 sec/sentence

8http://www.proz.com
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Fr-En En-De
TER HTER TER HTER

post-edit 47.32 23.51 56.16 37.15
interactive 47.05 24.14 55.89 39.55

Table 1: Automatic assessment of translation qual-
ity. Here we change the definitions of TER and
HTER slightly. TER is the human translations com-
pared to the independent references. HTER is the
baseline MT compared to the human corrections.

in interactive, or 18.7% slower. For En-De, the
mean is 51.8 sec/sentence vs. 63.3 sec/sentence in
interactive, or 22.1% slower.

We found other predictive covariates that reveal
more about translator behavior. When subjects did
not edit the MT suggestion, they were significantly
faster. When token edit distance fromMT or source
input length increased, they were slower. Subjects
were usually faster as the experiment progressed, a
result that may indicate increased proficiency with
practice. Note that all subjects reported profes-
sional familiarity with post-edit, whereas the in-
teractive mode was entirely new to them. In the
exit survey many translators suggested that with
more practice, they could have been as fast in the
interactive mode.9

4.3.2 Translation Quality
We evaluated translation quality with both auto-
matic and manual measures. Table 1 shows that
in the interactive mode, TER is lower and HTER
is higher: subjects created translations closer to
the references (lower TER), but performed more
editing (higher HTER). This result suggests better
translations in the interactive mode.

To confirm that intuition, we elicited judgments
from professional human raters. The setup followed
the manual quality evaluation of the WMT 2014
shared task (Bojar et al., 2014). We hired six raters—
three for each language pair—who were paid be-
tween $15–20 per hour. The raters logged into Ap-
praise (Federmann, 2010) and for each source seg-
ment, ranked five randomly selected translations.
From these 5-way rankings we extracted pairwise
judgments π = {<,=}, where u1 < u2 indicates
that subject u1 provided a better translation than
subject u2 for a given source input (Table 2).

9See (Green et al., 2014c) for significance levels of the
other covariates along with analysis of subject learning rates,
subject behavior, and qualitative feedback.

Fr-En En-De
#pairwise 14,211 15,001
#ties (=) 5,528 2,964
IAA 0.419 (0.357) 0.407 (0.427)
EW (inter.) 0.512 0.491

Table 2: Pairwise judgments for the manual qual-
ity assessment. Inter-annotator agreement (IAA)
κ scores are measured with the official WMT14
script. For comparison, the WMT14 IAA scores
are given in parentheses. EW (inter.) is expected
wins of interactive according to Eq. (6).

Fr-En En-De
sign p sign p

ui (interactive) + • −
log edit distance − ••• + •••
gender (female) − + •
log session order − + •

Table 3: LMEM manual translation quality results
for each fixed effect with contrast conditions for
binary predictors in (). The signs of the coefficients
can be interpreted as in ordinary regression. edit
distance is token-level edit distance from baseline
MT. session order is the order in which the subject
translated the sentence during the experiment. Sta-
tistical significance was computed with a likelihood
ratio test: ••• p < 0.001; • p < 0.05.

In WMT the objective is to rank individual sys-
tems; here we need only compare interface condi-
tions. However, we should control for translator
variability. Therefore, we build a binomial LMEM
for quality. The model is motivated by the simple
and intuitive expected wins (EW) measure used at
WMT. Let S be the set of pairwise judgments and
wins(u1, u2) = |{(u1, u2, π) ∈ S | π = <}|. The
standard EW measure is:

e(u1) =
1
|S|

∑
u1 6=u2

wins(u1, u2)
wins(u1, u2) + wins(u2, u1)

(5)
Sakaguchi et al. (2014) showed that, despite its sim-
plicity, Eq. (5) is nearly as effective as model-based
methods given sufficient high-quality judgments.
Since we care only about the two translation condi-
tions, we reinterpret the ui as interface conditions,
i.e., u1 = int and u2 = pe. We can then disregard

1231



the normalizing term to obtain:

e(u1) =
wins(u1, u2)

wins(u1, u2) + wins(u2, u1)
(6)

which is the expected value of a Bernoulli distribu-
tion (so e(u2) = 1 − e(u1)). The intercept-term
of the binomial LMEM will be approximately this
value subject to other fixed and random effects.

To estimate the model, we convert each pairwise
judgment u1 < u2 to two examples where the re-
sponse is 1 for u1 and 0 for u2. We add the fixed
effects shown in Table 3, where the numeric effects
are centered and scaled by their standard deviations.
The maximal random effects structure contains in-
tercepts for sentence id nested within subject along
with random slopes for interface condition.

Table 3 shows the p-values and coefficient orien-
tations. The models yield probabilities that can be
interpreted like Eq. (6) but with all fixed predictors
set to 0. For Fr-En, the value for post-edit is 0.472
vs. 0.527 for interactive. For En-De, post-edit is
0.474 vs. 0.467 for interactive. The difference is
statistically significant for Fr-En, but not for En-De.

When MT quality was anecdotally high (Fr-En),
high token-level edit distance from the initial sug-
gestion decreased quality. When MT was poor (En-
De), significant editing improved quality. Female
En-De translators were better than males, possibly
due to imbalance in the subject pool (12 females vs.
4 males). En-De translators seemed to improve with
practice (positive coefficient for session order).
The Fr-En results are the first showing an inter-

active UI that improves over post-edit.

5 MT Re-tuning Experiment
The human translators corrected the output of the
BLEU-tuned, baseline MT system. No updating of
the MT system occurred during the experiment to
eliminate a confound in the time and quality analy-
ses. Now we investigate re-tuning the MT system
to the corrections by simply re-starting the online
learning algorithm from the baseline weight vector
w, this time scoring with HTER instead of BLEU.
Conventional incremental MT learning experi-

ments typically resemble domain adaptation: small-
scale baselines are trained and tuned on mostly out-
of-domain data, and then re-tuned incrementally
on in-domain data. In contrast, we start with large-
scale systems. This is more consistent with a pro-
fessional translation environment where translators
receive suggestions from state-of-the-art systems
like Google Translate.

Bilingual Monolingual
#Segments #Tokens #Tokens

En-De 4.54M 224M 1.7B
Fr-En 14.8M 842M 2.24B

Table 4: Gross statistics of MT training corpora.

En-De Fr-En
baseline-tune 9,469 8,931
baseline-dev 9,012 9,030

int-tune 680 589
int-test 457 368
pe-tune 764 709
pe-test 492 447

Table 5: Tuning, development, and test corpora
(#segments). tune and dev were used for baseline
system preparation. Re-tuning was performed on
int-tune and pe-tune, respectively. We report held-
out results on the two test data sets. All sets are
supplied with independent references.

5.1 Datasets
Table 4 shows the monolingual and parallel train-
ing corpora. Most of the data come from the con-
strained track of the WMT 2013 shared task (Bojar
et al., 2013). We also added 61k parallel segments
of TAUS data to the En-De bitext, and 26k TAUS
segments to the Fr-En bitext. We aligned the par-
allel data with the Berkeley Aligner (Liang et al.,
2006) and symmetrized the alignments with the
grow-diag heuristic. For each target language we
used lmplz (Heafield et al., 2013) to estimate unfil-
tered, 5-gram Kneser-Ney LMs from the concate-
nation of the target side of the bitext and the mono-
lingual data. For the class-based features, we esti-
mated 512-class source and target mappings with
the algorithm of Green et al. (2014a).
The upper part of Table 5 shows the baseline

tuning and development sets, which also contained
1/3 TAUS medical text, 1/3 TAUS software text,
and 1/3 WMT newswire text (see section 4).

The lower part of Table 5 shows the organization
of the human corrections for re-tuning and testing.
Recall that for each unique source input, eight hu-
man translators produced a correction in each con-
dition. First, we filtered all corrections for which a
log u was not recorded (due to technical problems).
Second, we de-duplicated the corrections so that
each h was unique. Finally, we split the unique
(f, h) tuples according to a natural division in the
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System tune BLEU↑ TER↓ HTER
baseline bleu 23.12 60.29 44.05
re-tune hter 22.18 60.85 43.99
re-tune+feat hter 21.73 59.71 42.35

(a) En-De int-test results.

System tune BLEU↑ TER↓ HTER
baseline bleu 39.33 45.29 28.28
re-tune hter 39.99 45.73 26.96
re-tune+feat hter 40.30 45.28 26.40

(b) Fr-En int-test results.

Table 6: Main re-tuning results for interactive
data. baseline is the BLEU-tuned system used
in the translation user study. re-tune is the base-
line feature set re-tuned to HTER on int-tune. re-
tune+feat adds the human feature templates de-
scribed in section 3.3. bold indicates statistical
significance relative to the baseline at p < 0.001;
italic at p < 0.05 by the permutation test of Riezler
and Maxwell (2005).

data. There were five source segments per docu-
ment, and each document was rendered as a single
screen during the translation experiment. Segment
order was not randomized, so we could split the
data as follows: assign the first three segments of
each screen to tune, and the last two to test. This is
a clean split with no overlap.
This tune/test split has two attractive properties.

First, if we can quickly re-tune on the first few sen-
tences on a screen and provide better translations
for the last few, then presumably the user experience
improves. Second, source inputs f are repeated—
eight translators translated each input in each condi-
tion. This means that a reduction in HTER means
better average suggestions for multiple human trans-
lators. Contrast this experimental design with tun-
ing to the corrections of a single human translator.
There the system might overfit to one human style,
and may not generalize to other human translators.

5.2 Results
Table 6 contains the main results for re-tuning to in-
teractive MT corrections. For both language pairs,
we observe large statistically significant reductions
inHTER.However, the results for BLEU and TER—
which are computed with respect to the independent
references—are mixed. The lower En-De BLEU
score is explained by a higher brevity penalty for
the re-tuned output (0.918 vs. 0.862). However, the
re-tuned 4-gram and 3-gram precisions are signif-

System HTER↓ System HTER↓
int pe

baseline 44.05 baseline 41.05
re-tune (int) 43.99 re-tune (pe) 40.34
re-tune+feat 42.35 – –
∆ −1.80 −0.71

Table 7: En-De test results for re-tuning to post-edit
(pe) vs. interactive (int). Features cannot be ex-
tracted from the post-edit data, so the re-tune+feat
system cannot be learned. The Fr-En results are
similar but are omitted due to space.

icantly higher. The unchanged Fr-En TER value
can be explained by the observation that no human
translators produced TER scores higher than the
baselineMT. This odd result has also been observed
for BLEU (Culy and Riehemann, 2003), although
here we do observe a slight BLEU improvement.
The additional features (854 for Fr-En; 847 for

En-De) help significantly and do not slow down
decoding. We used the same L1 regularization
strength as the baseline, but feature growth could
be further constrained by increasing this parame-
ter. Tuning is very fast at about six minutes for the
whole dataset, so tuning during a live user session
is already practical.
Table 7 compares re-tuning to interactive vs.

post-edit corrections. Recall that the int-test and
pe-test datasets are different and contain different
references. The post-edit baseline is lower because
humans performed less editing in the baseline con-
dition (see Table 1). Features account for the great-
est reduction in HTER. Of course, the features are
based mostly on word alignments, which could be
obtained for the post-edit data by running an online
word alignment tool (see: Farajian et al. (2014)).
However, the interactive logs contain much richer
user state information that we could not exploit due
to data sparsity. We also hypothesize that the fi-
nal interactive corrections might be more useful
since suggestions prime translators (Green et al.,
2013a), and the MT system was able to refine its
suggestions.

6 Re-tuning Analysis

Tables 6 and 7 raise two natural questions: what
accounts for the reduction in HTER, and why are
the TER/BLEU results mixed? Comparison of the
BLEU-tuned baseline to the HTER re-tuned sys-
tems gives some insight. For both questions, fine-

1233



grained corrections appear to make the difference.
Consider this French test example (with gloss):

(1) une
one

ligne
line

de
of

chimiothérapie
chemotherapy

antérieure
previous

The independent reference for une ligne de chimio-
thérapie is ‘previous chemotherapy treatment’, and
the baseline produces ‘previous chemotherapy line.’
The source sentence appears seven times with the
following user translations: ‘one line or more
of chemotherapy’, ‘one prior line of chemother-
apy’, ‘one previous line of chemotherapy’ (2), ‘one
line of chemotherapy before’ (2), ‘one protocol of
chemotherapy’. The re-tuned, feature-based sys-
tem produces ‘one line of chemotherapy before’,
matching two of the humans exactly, and six of the
humans in terms of idiomatic medical jargon (‘line
of chemotherapy’ vs. ‘chemotherapy treatment’).
However, the baseline output would have received
better BLEU and TER scores.
Sometimes re-tuning improves the translations

with respect to both the reference and the human
corrections. This English phrase appears in the
En-De test set:

(2) depending
abhängig

on
von

the
der

file
datei

The baseline produces exactly the gloss shown in Ex.
(2). The human translators produced: ‘je nach datei’
(6), ‘das dokument’, and ‘abhängig von der datei’.
The re-tuned system rendered the phrase ‘je nach
dokument’, which is closer to both the independent
reference ‘je nach datei’ and the human corrections.
This change improves TER, BLEU, and HTER.

7 Related Work
The process study most similar to ours is that of
Koehn (2009a), who compared scratch, post-edit,
and simple interactive modes. However, he used un-
dergraduate, non-professional subjects, and did not
consider re-tuning. Our experimental design with
professional bilingual translators follows our previ-
ous work Green et al. (2013a) comparing scratch
translation to post-edit.
Many research translation UIs have been pro-

posed including TransType (Langlais et al., 2000),
Caitra (Koehn, 2009b), Thot (Ortiz-Martínez and
Casacuberta, 2014), TransCenter (Denkowski et
al., 2014b), and CasmaCat (Alabau et al., 2013).
However, to our knowledge, none of these inter-
faces were explicitly designed according to mixed-
initiative principles from the HCI literature.

Incremental MT learning has been investigated
several times, usually starting from no data (Bar-
rachina et al., 2009; Ortiz-Martínez et al., 2010),
via simulated post-editing (Martínez-Gómez et al.,
2012; Denkowski et al., 2014a), or via re-ranking
(Wäschle et al., 2013). No previous experiments
combined large-scale baselines, full re-tuning of
the model weights, and HTER optimization.
HTER tuning can be simulated by re-

parameterizing an existing metric. Snover et
al. (2009) tuned TERp to correlate with HTER,
while Denkowski and Lavie (2010) did the same
for METEOR. Zaidan and Callison-Burch (2010)
showed how to solicit MT corrections for HTER
from Amazon Mechanical Turk.

Our learning approach is related to coactive learn-
ing (Shivaswamy and Joachims, 2012). Their basic
preference perceptron updates toward a correction,
whereas we use the correction for metric scoring
and feature extraction.

8 Conclusion
We presented a new CAT interface that supports
post-edit and interactive modes. Evaluation with
professional, bilingual translators showed post-edit
to be faster, but prior subject familiarity with post-
edit may have mattered. For French-English, the
interactive mode enabled higher quality translation.
Re-tuning the MT system to interactive corrections
also yielded large HTER gains. Technical contri-
butions that make re-tuning possible are a cross-
entropy objective, prefix decoding, and dynamic
phrase table augmentation. Larger quantities of cor-
rections should yield further gains, but our current
experiments already establish the feasibility of Bar-
Hillel’s virtuous “machine-post-editor partnership”
which benefits both humans and machines.
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Abstract

The combinatorial space of translation
derivations in phrase-based statistical ma-
chine translation is given by the intersec-
tion between a translation lattice and a tar-
get language model. We replace this in-
tractable intersection by a tractable relax-
ation which incorporates a low-order up-
perbound on the language model. Exact
optimisation is achieved through a coarse-
to-fine strategy with connections to adap-
tive rejection sampling. We perform ex-
act optimisation with unpruned language
models of order 3 to 5 and show search-
error curves for beam search and cube
pruning on standard test sets. This is the
first work to tractably tackle exact opti-
misation with language models of orders
higher than 3.

1 Introduction

In Statistical Machine Translation (SMT), the task
of producing a translation for an input string x =
〈x1, x2, . . . , xI〉 is typically associated with find-
ing the best derivation d∗ compatible with the in-
put under a linear model. In this view, a derivation
is a structured output that represents a sequence of
steps that covers the input producing a translation.
Equation 1 illustrates this decoding process.

d∗ = argmax
d∈D(x)

f(d) (1)

The set D(x) is the space of all derivations com-
patible with x and supported by a model of trans-
lational equivalences (Lopez, 2008). The func-
tion f(d) = Λ · H(d) is a linear parameteri-
sation of the model (Och, 2003). It assigns a
real-valued score (or weight) to every derivation
d ∈ D(x), where Λ ∈ Rm assigns a relative
importance to different aspects of the derivation

independently captured by m feature functions
H(d) = 〈H1(d), . . . ,Hm(d)〉 ∈ Rm.

The fully parameterised model can be seen as
a discrete weighted set such that feature func-
tions factorise over the steps in a derivation. That
is, Hk(d) =

∑
e∈d hk(e), where hk is a (local)

feature function that assesses steps independently
and d = 〈e1, e2, . . . , el〉 is a sequence of l steps.
Under this assumption, each step is assigned the
weightw(e) = Λ ·〈h1(e), h2(e), . . . , hm(e)〉. The
setD is typically finite, however, it contains a very
large number of structures — exponential (or even
factorial, see §2) with the size of x — making
exhaustive enumeration prohibitively slow. Only
in very restricted cases combinatorial optimisation
techniques are directly applicable (Tillmann et al.,
1997; Och et al., 2001), thus it is common to resort
to heuristic techniques in order to find an approxi-
mation to d∗ (Koehn et al., 2003; Chiang, 2007).

Evaluation exercises indicate that approximate
search algorithms work well in practice (Bojar
et al., 2013). The most popular algorithms pro-
vide solutions with unbounded error, thus pre-
cisely quantifying their performance requires the
development of a tractable exact decoder. To
date, most attempts were limited to short sentences
and/or somewhat toy models trained with artifi-
cially small datasets (Germann et al., 2001; Igle-
sias et al., 2009; Aziz et al., 2013). Other work
has employed less common approximations to the
model reducing its search space complexity (Ku-
mar et al., 2006; Chang and Collins, 2011; Rush
and Collins, 2011). These do not answer whether
or not current decoding algorithms perform well at
real translation tasks with state-of-the-art models.

We propose an exact decoder for phrase-based
SMT based on a coarse-to-fine search strategy
(Dymetman et al., 2012). In a nutshell, we re-
lax the decoding problem with respect to the Lan-
guage Model (LM) component. This coarse view
is incrementally refined based on evidence col-
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lected via maximisation. A refinement increases
the complexity of the model only slightly, hence
dynamic programming remains feasible through-
out the search until convergence. We test our de-
coding strategy with realistic models using stan-
dard data sets. We also contribute with optimum
derivations which can be used to assess future im-
provements to approximate decoders. In the re-
maining sections we present the general model
(§2), survey contributions to exact optimisation
(§3), formalise our novel approach (§4), present
experiments (§5) and conclude (§6).

2 Phrase-based SMT

In phrase-based SMT (Koehn et al., 2003), the
building blocks of translation are pairs of phrases
(or biphrases). A translation derivation d is an
ordered sequence of non-overlapping biphrases
which covers the input text in arbitrary order gen-
erating the output from left to right.1

f(d) = ψ(y) +
l∑

i=1

φ(ei) +
l−1∑
i=1

δ(ei, ei−1) (2)

Equation 2 illustrates a standard phrase-based
model (Koehn et al., 2003): ψ is a weighted tar-
get n-gram LM component, where y is the yield
of d; φ is a linear combination of features that
decompose over phrase pairs directly (e.g. back-
ward and forward translation probabilities, lexi-
cal smoothing, and word and phrase penalties);
and δ is an unlexicalised penalty on the num-
ber of skipped input words between two adjacent
biphrases. The weighted logic program in Figure
1 specifies the fully parameterised weighted set of
solutions, which we denote 〈D(x), f(d)〉.2

A weighted logic program starts from its ax-
ioms and follows exhaustively deducing new items
by combination of existing ones and no deduction
happens twice. In Figure 1, a nonteminal item
summarises partial derivation (or hypotheses). It is
denoted by [C, r, γ] (also known as carry), where:
C is a coverage vector, necessary to impose the
non-overlapping constraint; r is the rightmost po-
sition most recently covered, necessary for the
computation of δ; and γ is the last n − 1 words

1Preventing phrases from overlapping requires an expo-
nential number of constraints (the powerset of x) rendering
the problem NP-complete (Knight, 1999).

2Weighted logics have been extensively used to describe
weighted sets (Lopez, 2009), operations over weighted sets
(Chiang, 2007; Dyer and Resnik, 2010), and a variety of dy-
namic programming algorithms (Cohen et al., 2008).

ITEM
[{0, 1}I , [0, I + 1],∆n−1

]
GOAL

[
1I , I + 1, EOS

]
AXIOM
〈BOS→ BOS〉

[0I , 0, BOS] : ψ(BOS)
EXPAND[
C, r, yj−1

j−n+1

] 〈
xi
′
i

φr−−→ yj
′
j

〉
[
C′, i′, yj

′
j′−n+2

]
: w

⊕i′
k=i ck = 0̄

where c′k = ck if k < i or k > i′ else 1̄

w = φr ⊗ δ(r, i)⊗ ψ(yj
′
j |yj−1

j−n+1)
ACCEPT [

1I , r, γ
]

[1I , I + 1, EOS] : δ(r, I + 1)⊗ ψ(EOS|γ)
r ≤ I

Figure 1: Specification for the weighted set of
translation derivations in phrase-based SMT with
unconstrained reordering.

in the yield, necessary for the LM component. The
program expands partial derivations by concatena-
tion with a translation rule

〈
xi
′
i

φr−−→ yj
′
j

〉
, that is, an

instantiated biphrase which covers the span xi
′
i and

yields yj
′
j with weight φr. The side condition im-

poses the non-overlapping constraint (ck is the kth
bit in C). The antecedents are used to compute the
weight of the deduction, and the carry is updated
in the consequent (item below the horizontal line).
Finally, the rule ACCEPT incorporates the end-of-
sentence boundary to complete items.3

It is perhaps illustrative to understand the set of
weighted translation derivations as the intersection
between two components. One that is only locally
parameterised and contains all translation deriva-
tions (a translation lattice or forest), and one that
re-ranks the first as a function of the interactions
between translation steps. The model of transla-
tional equivalences parameterised only with φ is
an instance of the former. An n-gram LM compo-
nent is an instance of the latter.

2.1 Hypergraphs

A backward-hypergraph, or simply hypergraph,
is a generalisation of a graph where edges have
multiple origins and one destination (Gallo et al.,
1993). They can represent both finite-state and
context-free weighted sets and they have been
widely used in SMT (Huang and Chiang, 2007).
A hypergraph is defined by a set of nodes (or ver-

3Figure 1 can be seen as a specification for a weighted
acyclic finite-state automaton whose states are indexed by
[l, C, r] and transitions are labelled with biphrases. However,
for generality of representation, we opt for using acyclic hy-
pergraphs instead of automata (see §2.1).
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tices) V and a weighted set of edges 〈E,w〉. An
edge e connects a sequence of nodes in its tail
t[e] ∈ V ∗ under a head node h[e] ∈ V and has
weight w(e). A node v is a terminal node if it
has no incoming edges, otherwise it is a nontermi-
nal node. The node that has no outgoing edges,
is called root, with no loss of generality we can
assume hypergraphs to have a single root node.

Hypergraphs can be seen as instantiated logic
programs. In this view, an item is a template
for the creation of nodes, and a weighted deduc-
tion rule is a template for edges. The tail of
an edge is the sequence of nodes associated with
the antecedents, and the head is the node associ-
ated with the consequent. Even though the space
of weighted derivations in phrase-based SMT is
finite-state, using a hypergraph as opposed to a
finite-state automaton makes it natural to encode
multi-word phrases using tails. We opt for rep-
resenting the target side of the biphrase as a se-
quence of terminals nodes, each of which repre-
sents a target word.

3 Related Work

3.1 Beam filling algorithms

Beam search (Koehn et al., 2003) and cube prun-
ing (Chiang, 2007) are examples of state-of-the-art
approximate search algorithms. They approximate
the intersection between the translation forest and
the language model by expanding a limited beam
of hypotheses from each nonterminal node. Hy-
potheses are organised in priority queues accord-
ing to common traits and a fast-to-compute heuris-
tic view of outside weights (cheapest way to com-
plete a hypothesis) puts them to compete at a fairer
level. Beam search exhausts a node’s possible ex-
pansions, scores them, and discards all but the k
highest-scoring ones. This process is wasteful in
that k is typically much smaller than the number of
possible expansions. Cube pruning employs a pri-
ority queue at beam filling and computes k high-
scoring expansions directly in near best-first order.
The parameter k is known as beam size and it con-
trols the time-accuracy trade-off of the algorithm.

Heafield et al. (2013a) move away from us-
ing the language model as a black-box and build
a more involved beam filling algorithm. Even
though they target approximate search, some of
their ideas have interesting connections to ours
(see §4). They group hypotheses that share partial
language model state (Li and Khudanpur, 2008)

reasoning over multiple hypotheses at once. They
fill a beam in best-first order by iteratively vis-
iting groups using a priority queue: if the top
group contains a single hypothesis, the hypothesis
is added to the beam, otherwise the group is parti-
tioned and the parts are pushed back to the queue.
More recently, Heafield et al. (2014) applied their
beam filling algorithm to phrase-based decoding.

3.2 Exact optimisation
Exact optimisation for monotone translation has
been done using A∗ search (Tillmann et al., 1997)
and finite-state operations (Kumar et al., 2006).
Och et al. (2001) design near-admissible heuris-
tics for A∗ and decode very short sentences (6-
14 words) for a word-based model (Brown et al.,
1993) with a maximum distortion strategy (d = 3).

Zaslavskiy et al. (2009) frame phrase-based de-
coding as an instance of a generalised Travel-
ling Salesman Problem (TSP) and rely on ro-
bust solvers to perform decoding. In this view,
a salesman graph encodes the translation options,
with each node representing a biphrase. Non-
overlapping constraints are imposed by the TSP
solver, rather than encoded directly in the sales-
man graph. They decode only short sentences
(17 words on average) using a 2-gram LM due to
salesman graphs growing too large.4

Chang and Collins (2011) relax phrase-based
models w.r.t. the non-overlapping constraints,
which are replaced by soft penalties through La-
grangian multipliers, and intersect the LM com-
ponent exhaustively. They do employ a maximum
distortion limit (d = 4), thus the problem they
tackle is no longer NP-complete. Rush and Collins
(2011) relax a hierarchical phrase-based model
(Chiang, 2005)5 w.r.t. the LM component. The
translation forest and the language model trade
their weights (through Lagrangian multipliers) so
as to ensure agreement on what each component
believes to be the maximum. In both approaches,
when the dual converges to a compliant solution,
the solution is guaranteed to be optimal. Other-

4Exact decoding had been similarly addressed with Inte-
ger Linear Programming (ILP) in the context of word-based
models for very short sentences using a 2-gram LM (Ger-
mann et al., 2001). Riedel and Clarke (2009) revisit that for-
mulation and employ a cutting-plane algorithm (Dantzig et
al., 1954) reaching 30 words.

5In hierarchical translation, reordering is governed by a
synchronous context-free grammar and the underlying prob-
lem is no longer NP-complete. Exact decoding remains in-
feasible because the intersection between the translation for-
est and the target LM is prohibitively slow.
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wise, a subset of the constraints is explicitly added
and the dual optimisation is repeated. They handle
sentences above average length, however, resort-
ing to compact rulesets (10 translation options per
input segment) and using only 3-gram LMs.

In the context of hierarchical models, Aziz et
al. (2013) work with unpruned forests using up-
perbounds. Their approach is the closest to ours.
They also employ a coarse-to-fine strategy with
the OS∗ framework (Dymetman et al., 2012), and
investigate unbiased sampling in addition to op-
timisation. However, they start from a coarser
upperbound with unigram probabilities, and their
refinement strategies are based on exhaustive in-
tersections with small n-gram matching automata.
These refinements make forests grow unmanage-
able too quickly. Because of that, they only deal
with very short sentences (up to 10 words) and
even then decoding is very slow. We design bet-
ter upperbounds and a more efficient refinement
strategy. Moreover, we decode long sentences us-
ing language models of order 3 to 5.6

4 Approach

4.1 Exact optimisation with OS∗

Dymetman et al. (2012) introduced OS∗, a unified
view of optimisation and sampling which can be
seen as a cross between adaptive rejection sam-
pling (Robert and Casella, 2004) and A∗ optimisa-
tion (Hart et al., 1968). In this framework, a com-
plex goal distribution is upperbounded by a sim-
pler proposal distribution for which optimisation
(and sampling) is feasible. This proposal is incre-
mentally refined to be closer to the goal until the
maximum is found (or until the sampling perfor-
mance exceeds a certain level).

Figure 2 illustrates exact optimisation with OS∗.
Suppose f is a complex target goal distribution,
such that we cannot optimise f , but we can as-
sess f(d) for a given d. Let g(0) be an upper-
bound to f , i.e., g(0)(d) ≥ f(d) for all d ∈ D(x).
Moreover, suppose that g(0) is simple enough to
be optimised efficiently. The algorithm proceeds
by solving d0 = argmaxd g

(0)(d) and comput-

6The intuition that a full intersection is wasteful is also
present in (Petrov et al., 2008) in the context of approximate
search. They start from a coarse distribution based on au-
tomatic word clustering which is refined in multiple passes.
At each pass, hypotheses are pruned a posteriori on the basis
of their marginal probabilities, and word clusters are further
split. We work with upperbounds, rather than word clusters,
with unpruned distributions, and perform exact optimisation.

f

g(0)

d0
D(x)

g(1)

d1d
*

f1

f0

f*

Figure 2: Sequence of incrementally refined up-
perbound proposals.

ing the quantity r0 = f(d0)/g(0)(d0). If r0 were
sufficiently close to 1, then g(0)(d0) would be
sufficiently close to f(d0) and we would have
found the optimum. However, in the illustration
g(0)(d0) � f(d0), thus r0 � 1. At this point
the algorithm has concrete evidence to motivate
a refinement of g(0) that can lower its maximum,
bringing it closer to f∗ = maxd f(d) at the cost
of some small increase in complexity. The re-
fined proposal must remain an upperbound to f .
To continue with the illustration, suppose g(1) is
obtained. The process is repeated until eventually
g(t)(dt) = f(dt), where dt = argmaxd g

(t)(d),
for some finite t. At which point dt is the opti-
mum derivation d∗ from f and the sequence of
upperbounds provides a proof of optimality.7

4.2 Model

We work with phrase-based models in a standard
parameterisation (Equation 2). However, to avoid
having to deal with NP-completeness, we con-
strain reordering to happen only within a limited
window given by a notion of distortion limit. We
require that the last source word covered by any
biphrase must be within d words from the leftmost
uncovered source position (Lopez, 2009). This is
a widely used strategy and it is in use in the Moses
toolkit (Koehn et al., 2007).8

Nevertheless, the problem of finding the best

7If d is a maximum from g and g(d) = f(d), then it is
easy to show by contradiction that d is the actual maximum
from f : if there existed d′ such that f(d′) > f(d), then it
follows that g(d′) ≥ f(d′) > f(d) = g(d), and hence d
would not be a maximum for g.

8A distortion limit characterises a form of pruning that
acts directly in the generative capacity of the model leading
to induction errors (Auli et al., 2009). Limiting reordering
like that lowers complexity to a polynomial function of I and
an exponential function of the distortion limit.
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derivation under the model remains impractica-
ble due to nonlocal parameterisation (namely,
the n-gram LM component). The weighted set
〈D(x), f(d)〉, which represents the objective, is
a complex hypergraph which we cannot afford
to construct. We propose to construct instead a
simpler hypergraph for which optimisation by dy-
namic programming is feasible. This proxy rep-
resents the weighted set

〈D(x), g(0)(d)
〉
, where

g(0)(d) ≥ f(d) for every d ∈ D(x). Note that
this proposal contains exactly the same translation
options as in the original decoding problem. The
simplification happens only with respect to the pa-
rameterisation. Instead of intersecting the com-
plete n-gram LM distribution explicitly, we im-
plicitly intersect a simpler upperbound view of it,
where by simpler we mean lower-order.

g(0)(d) =

l∑
i=1

ω(y[ei]) +

l∑
i=1

φ(ei) +

l−1∑
i=1

δ(ei, ei−1) (3)

Equation 3 shows the model we use as a proxy
to perform exact optimisation over f . In compar-
ison to Equation 2, the term

∑l
i=1 ω(y[ei]) replaces

ψ(y) = λψpLM(y). While ψ weights the yield y
taking into account all n-grams (including those
crossing the boundaries of phrases), ω weights
edges in isolation. Particularly, ω(y[ei]) =
λψqLM(y[ei]), where y[ei] returns the sequence of
target words (a target phrase) associated with the
edge, and qLM(·) is an upperbound on the true LM
probability pLM(·) (see §4.3). It is obvious from
Equation 3 that our proxy model is much simpler
than the original — the only form of nonlocal pa-
rameterisation left is the distortion penalty, which
is simple enough to represent exactly.

The program in Figure 3 illustrates the con-
struction of

〈D(x), g(0)(d)
〉
. A nonterminal item

[l, C, r] stores: the leftmost uncovered position l
and a truncated coverage vector C (together they
track d input positions); and the rightmost position
r most recently translated (necessary for the com-
putation of the distortion penalty). Observe how
nonterminal items do not store the LM state.9 The
rule ADJACENT expands derivations by concate-
nation with a biphrase

〈
xi
′
i → yj

′
j

〉
starting at the

leftmost uncovered position i = l. That causes
the coverage window to move ahead to the next
leftmost uncovered position: l′ = l + α1(C) + 1,

9Drawing a parallel to (Heafield et al., 2013a), a nontermi-
nal node in our hypergraph groups derivations while exposing
only an empty LM state.

ITEM
[
[1, I + 1], {0, 1}d−1, [0, I + 1]

]
GOAL [I, ∅, I + 1]
AXIOMS
〈BOS→ BOS〉

[1, 0d−1, 0] : ω(BOS)
ADJACENT

[l, C, r]
〈
xi
′
i

φr−−→ yj
′
j

〉
[l′, C′, i′] : φr ⊗ δ(r, i′)⊗ ω(yj

′
j )

i = l⊕i′−l
k=i−l ck = 0̄

where l′ = l + α1(C) + 1
C′ � α1(C) + 1

NON-ADJACENT

[l, C, r]
〈
xi
′
i

φr−−→ yj
′
j

〉
[l, C′, i′] : φr ⊗ δ(r, i′)⊗ ω(yj

′
j )

i > l⊕i′−l
k=i−l ck = 0̄

|r − i+ 1| ≤ d
|i′ − l + 1| ≤ d

where c′k = ck if k < i− l or k > i′ − l else 1̄
ACCEPT

[I + 1, C, r]

[I + 1, ∅, I + 1] : δ(r, I + 1)⊗ ω(EOS)
r ≤ I

Figure 3: Specification of the initial proposal hy-
pergraph. This program allows the same reorder-
ings as (Lopez, 2009) (see logic WLd), however,
it does not store LM state information and it uses
the upperbound LM distribution ω(·).

where α1(C) returns the number of leading 1s in
C, and C ′ � α1(C) + 1 represents a left-shift.
The rule NON-ADJACENT handles the remaining
cases i > l provided that the expansion skips at
most d input words |r − i+ 1| ≤ d. In the conse-
quent, the window C is simply updated to record
the translation of the input span i..i′. In the non-
adjacent case, a gap constraint imposes that the
resulting item will require skipping no more than
d positions before the leftmost uncovered word is
translated |i′ − l + 1| ≤ d.10 Finally, note that
deductions incorporate the weighted upperbound
ω(·), rather than the true LM component ψ(·).11

4.3 LM upperbound and Max-ARPA

Following Carter et al. (2012) we compute an
upperbound on n-gram conditional probabilities
by precomputing max-backoff weights stored in
a “Max-ARPA” table, an extension of the ARPA
format (Jurafsky and Martin, 2000).

A standard ARPA table T stores entries

10This constraint prevents items from becoming dead-ends
where incomplete derivations require a reordering step larger
than d. This is known to prevent many search errors in beam
search (Chang and Collins, 2011).

11Unlike Aziz et al. (2013), rather than unigrams only, we
score all n-grams within a translation rule (including incom-
plete ones).
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〈Z,Z.p,Z.b〉, where Z is an n-gram equal to the
concatenation Pz of a prefix P with a word z, Z.p
is the conditional probability p(z|P), and Z.b is
a so-called “backoff” weight associated with Z.
The conditional probability of an arbitrary n-gram
p(z|P), whether listed or not, can then be recov-
ered from T by the simple recursive procedure
shown in Equation 4, where tail deletes the first
word of the string P.

p(z|P) =

 p(z| tail(P)) Pz 6∈ T and P 6∈ T
p(z| tail(P))× P.b Pz 6∈ T and P ∈ T
Pz.p Pz ∈ T

(4)

The optimistic version (or “max-backoff”) q of
p is defined as q(z|P) ≡ maxH p(z|HP), where
H varies over all possible contexts extending the
prefix P to the left. The Max-ARPA table allows to
compute q(z|P) for arbitrary values of z and P. It
is constructed on the basis of the ARPA table T by
adding two columns to T : a column Z.q that stores
the value q(z|P) and a column Z.m that stores an
optimistic version of the backoff weight.

These columns are computed offline in two
passes by first sorting T in descending order of
n-gram length.12 In the first pass (Algorithm 1),
we compute for every entry in the table an opti-
mistic backoff weight m. In the second pass (Algo-
rithm 2), we compute for every entry an optimistic
conditional probability q by maximising over 1-
word history extensions (whose .q fields are al-
ready known due to the sorting of T ).

The following Theorem holds (see proof be-
low): For an arbitrary n-gram Z = Pz, the prob-
ability q(z|P) can be recovered through the proce-
dure shown in Equation 5.

q(z|P) =

 p(z|P) Pz 6∈ T and P 6∈ T
p(z|P)× P.m Pz 6∈ T and P ∈ T
Pz.q Pz ∈ T

(5)

Note that, if Z is listed in the table, we return its
upperbound probability q directly. When the n-
gram is unknown, but its prefix is known, we take
into account the optimistic backoff weight m of the
prefix. On the other hand, if both the n-gram and
its prefix are unknown, then no additional context
could change the score of the n-gram, in which
case q(z|P) = p(z|P).

In the sequel, we will need the following defini-
tions. Suppose α = yJI is a substring of y = yM1 .

12If an n-gram is listed in T , then all its substrings must
also be listed. Certain pruning strategies may corrupt this
property, in which case we make missing substrings explicit.

Then pLM(α) ≡ ∏J
k=I p(yk|yk−1

1 ) is the contribu-
tion of α to the true LM score of y. We then ob-
tain an upperbound qLM(α) to this contribution by
defining qLM(α) ≡ q(yI |ε)

∏J
k=I+1 q(yk|yk−1

I ).

Proof of Theorem. Let us first suppose that the length
of P is strictly larger than the order n of the language
model. Then for any H, p(z|HP) = p(z|P); this is be-
cause HP /∈ T and P /∈ T , along with all intermedi-
ary strings, hence, by (4), p(z|HP) = p(z| tail(HP)) =
p(z| tail(tail(HP))) = . . . = p(z|P). Hence q(z|P) =
p(z|P), and, because Pz /∈ T and P /∈ T , the theorem
is satisfied in this case.

Having established the theorem for |P| > n, we
now assume that it is true for |P| > m and prove by
induction that it is true for |P| = m. We use the
fact that, by the definition of q, we have q(z|P) =
maxx∈∆ q(z|xP). We have three cases to consider.
First, suppose that Pz /∈ T and P /∈ T . Then
xPz /∈ T and xP /∈ T , hence by induction q(z|xP) =
p(z|xP) = p(z|P) for any x, therefore q(z|P) =
p(z|P). We have thus proven the first case.
Second, suppose that Pz /∈ T and P ∈ T . Then, for
any x, we have xPz /∈ T , and:
q(z|P) = max

x∈∆
q(z|xP)

= max( max
x∈∆, xP/∈T

q(z|xP), max
x∈∆, xP∈T

q(z|xP)).

For xP /∈ T , by induction, q(z|xP) = p(z|xP) =
p(z|P), and therefore maxx∈∆, xP/∈T q(z|xP) =
p(z|P). For xP ∈ T , we have q(z|xP) = p(z|xP) ×
xP.m = p(z|P)× xP.b× xP.m. Thus, we have:

max
x∈∆, xP∈T

q(z|xP) = p(z|P)× max
x∈∆, xP∈T

xP.b×xP.m.

But now, because of lines 3 and 4 of Algorithm
1, P.m = maxx∈∆, xP∈T xP.b × xP.m, hence
maxx∈∆, xP∈T q(z|xP) = p(z|P) × P.m. Therefore,
q(z|P) = max(p(z|P), p(z|P)×P.m) = p(z|P)×P.m,
where we have used the fact that P.m ≥ 1 due to line 1
of Algorithm 1. We have thus proven the second case.
Finally, suppose that Pz ∈ T . Then, again,

q(z|P) = max
x∈∆

q(z|xP)

= max(

max
x∈∆, xPz/∈T, xP/∈T

q(z|xP),

max
x∈∆, xPz/∈T, xP∈T

q(z|xP),

max
x∈∆, xPz∈T

q(z|xP) ).

For xPz /∈ T, xP /∈ T , we have q(z|xP) =
p(z|xP) = p(z|P) = Pz.p, where the last equality is
due to the fact that Pz ∈ T . For xPz /∈ T, xP ∈ T , we
have q(z|xP) = p(z|xP)× xP.m = p(z|P)× xP.b×
xP.m = Pz.p× xP.b× xP.m. For xPz ∈ T , we have
q(z|xP) = xPz.q. Overall, we thus have:
q(z|P) = max( Pz.p,

max
x∈∆, xPz/∈T, xP∈T

Pz.p× xP.b× xP.m,

max
x∈∆, xPz∈T

xPz.q ).

Note that xPz ∈ T ⇒ xP ∈ T , and then one can

check that Algorithm 2 exactly computes Pz.q as this

maximum over three maxima, hence Pz.q = q(z|P).
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Algorithm 1 Max-ARPA: first pass
1: for Z ∈ T do
2: Z.m← 1
3: for x ∈ ∆ s.t xZ ∈ T do
4: Z.m← max(Z.m,xZ.b× xZ.m)
5: end for
6: end for

Algorithm 2 Max-ARPA: second pass
1: for Z = Pz ∈ T do
2: Pz.q← Pz.p
3: for x ∈ ∆ s.t xP ∈ T do
4: if xPz ∈ T then
5: Pz.q← max(Pz.q,xPz.q)
6: else
7: Pz.q← max(Pz.q,Pz.p× xP.b× xP.m)
8: end if
9: end for

10: end for

4.4 Search

The search for the true optimum derivation is il-
lustrated in Algorithm 3. The algorithm takes as
input the initial proposal distribution g(0)(d) (see
§4.2, Figure 3) and a maximum error ε (which we
set to a small constant 0.001 rather than zero, to
avoid problems with floating point precision). In
line 3 we find the optimum derivation d in g(0)

(see §4.5). The variable g∗ stores the maximum
score w.r.t. the current proposal, while the vari-
able f∗ stores the maximum score observed thus
far w.r.t. the true model (note that in line 5 we as-
sess the true score of d). In line 6 we start a loop
that runs until the error falls below ε. This error is
the difference (in log-domain) between the proxy
maximum g∗ and the best true score observed thus
far f∗.13 In line 7, we refine the current proposal
using evidence from d (see §4.6). In line 9, we
update the maximum derivation searching through
the refined proposal. In line 11, we keep track of
the best score so far according to the true model,
in order to compute the updated gap in line 6.

4.5 Dynamic Programming

Finding the best derivation in a proposal hyper-
graph is straightforward with standard dynamic
programming. We can compute inside weights
in the max-times semiring in time proportional

13Because g(t) upperbounds f everywhere, in optimisation
we have a guarantee that the maximum of f must lie in the
interval [f∗, g∗) (see Figure 2) and the quantity g∗ − f∗ is
an upperbound on the error that we incur if we early-stop the
search at any given time t. This bound provides a principled
criterion in trading accuracy for performance (a direction that
we leave for future work). Note that most algorithms for ap-
proximate search produce solutions with unbounded error.

Algorithm 3 Exact decoding
1: function OPTIMISE(g(0), ε)
2: t← 0 . step
3: d← argmaxd g

(t)(d)

4: g∗ ← g(t)(d)
5: f∗ ← f(d)
6: while (q∗ − f∗ ≥ ε) do . ε is the maximum error
7: g(t+1) ← refine(g(t),d) . update proposal
8: t← t+ 1
9: d← argmaxd g

(t)(d) . update argmax

10: g∗ ← g(t)(d)
11: f∗ ← max(f∗, f(d)) . update “best so far”
12: end while
13: return g(t), d
14: end function

to O(|V | + |E|) (Goodman, 1999). Once inside
weights have been computed, finding the Viterbi-
derivation starting from the root is straightforward.
A simple, though important, optimisation con-
cerns the computation of inside weights. The in-
side algorithm (Baker, 1979) requires a bottom-up
traverse of the nodes in V . To do that, we topolog-
ically sort the nodes in V at time t = 0 and main-
tain a sorted list of nodes as we refine g throughout
the search – thus avoiding having to recompute the
partial ordering of the nodes at every iteration.

4.6 Refinement
If a derivation d = argmaxd g

(t)(d) is such that
g(t)(d)� f(d), there must be in d at least one n-
gram whose upperbound LM weight is far above
its true LM weight. We then lower g(t) locally by
refining only nonterminal nodes that participate in
d. Nonterminal nodes are refined by having their
LM states extended one word at a time.14

For an illustration, assume we are perform-
ing optimisation with a bigram LM. Suppose
that in the first iteration a derivation d0 =
argmaxd g

(0)(d) is obtained. Now consider an
edge in d0

[l, C, r, ε] αy1
w−→ [l0, C0, r0, ε]

where an empty LM state is made explicit (with an
empty string ε) and αy1 represents a target phrase.
We refine the edge’s head [l0, C0, r0, ε] by creating
a node based on it, however, with an extended LM
state, i.e., [l0, C0, r0, y1]. This motivates a split
of the set of incoming edges to the original node,
such that, if the target projection of an incoming

14The refinement operation is a special case of a general
finite-state intersection. However, keeping its effect local to
derivations going through a specific node is non-trivial using
the general mechanism and justifies a tailored operation.
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edge ends in y1, that edge is reconnected to the
new node as below.

[l, C, r, ε] αy1
w−→ [l0, C0, r0, y1]

The outgoing edges from the new node are
reweighted copies of those leaving the original
node. That is, outgoing edges such as

[l0, C0, r0, ε] y2β
w−→ [

l′, C ′, r′, γ′
]

motivate edges such as

[l0, C0, r0, y1] y2β
w⊗w′−−−→ [

l′, C ′, r′, γ′
]

where w′ = λψqLM (y1y2)/qLM (y2) is a change in LM
probability due to an extended context.

Figure 4 is the logic program that constructs the
refined hypergraph in the general case. In com-
parison to Figure 3, items are now extended to
store an LM state. The input is the original hy-
pergraph G = 〈V,E〉 and a node v0 ∈ V to be
refined by left-extending its LM state γ0 with the
word y. In the program,

〈
uσ

w−→ v
〉

with u,v ∈ V
and σ ∈ ∆∗ represents an edge in E. An item
[l, C, r, γ]v (annotated with a state v ∈ V ) rep-
resents a node (in the refined hypergraph) whose
signature is equivalent to v (in the input hyper-
graph). We start with AXIOMS by copying the
nodes in G. In COPY, edges from G are copied
unless they are headed by v0 and their target pro-
jections end in yγ0 (the extended context). Such
edges are processed by REFINE, which instead of
copying them, creates new ones headed by a re-
fined version of v0. Finally, REWEIGHT contin-
ues from the refined node with reweighted copies
of the edges leaving v0. The weight update repre-
sents a change in LM probability (w.r.t. the upper-
bound distribution) due to an extended context.

5 Experiments

We used the dataset made available by the Work-
shop on Statistical Machine Translation (WMT)
(Bojar et al., 2013) to train a German-English
phrase-based system using the Moses toolkit
(Koehn et al., 2007) in a standard setup. For
phrase extraction, we used both Europarl (Koehn,
2005) and News Commentaries (NC) totalling
about 2.2M sentences.15 For language modelling,
in addition to the monolingual parts of Europarl

15Pre-processing: tokenisation, truecasing and automatic
compound-splitting (German only). Following Durrani et al.
(2013), we set the maximum phrase length to 5.

INPUT
G = 〈V,E〉
v0 = [l0, C0, r0, γ0] ∈ V where γ0 ∈ ∆∗

y ∈ ∆
ITEM [l, C, r, γ ∈ ∆∗]
AXIOMS

[l, C, r, γ]v
v ∈ V

COPY

[l, C, r, α]u

〈
uβ

w−→ v
〉

[l′, C′, r′, α′]v : w

v 6= v0 ∨ αβ 6= σyγ0

α, α′, β, σ ∈ ∆∗

REFINE

[l, C,R, α]u

〈
uβ

w−→ v0

〉
[l0, C0, r0, yγ0] : w

αβ = σyγ0

α, β, σ ∈ ∆∗

REWEIGHT

[l0, C0, r0, yγ0]
〈
v0σ

w−→ v
〉

[l, C, r, γ]v : w ⊗ w′ σ, γ ∈ ∆∗

where w′ = λψ
qLM (yγ0)

qLM (γ0)

Figure 4: Local intersection via LM right state re-
finement. The input is a hypergraph G = 〈V,E〉,
a node v0 ∈ V singly identified by its carry
[l0, C0, r0, γ0] and a left-extension y for its LM
context γ0. The program copies most of the edges〈
uσ

w−→ v
〉
∈ E. If a derivation goes through v0

and the string under v0 ends in yγ0, the program
refines and reweights it.

and NC, we added News-2013 totalling about 25M
sentences. We performed language model interpo-
lation and batch-mira tuning (Cherry and Foster,
2012) using newstest2010 (2,849 sentence pairs).
For tuning we used cube pruning with a large beam
size (k = 5000) and a distortion limit d = 4. Un-
pruned language models were trained using lmplz
(Heafield et al., 2013b) which employs modified
Kneser-Ney smoothing (Kneser and Ney, 1995).
We report results on newstest2012.

Our exact decoder produces optimal translation
derivations for all the 3,003 sentences in the test
set. Table 1 summarises the performance of our
novel decoder for language models of order n = 3
to n = 5. For 3-gram LMs we also varied the dis-
tortion limit d (from 4 to 6). We report the average
time (in seconds) to build the initial proposal, the
total run time of the algorithm, the number of it-
erations N before convergence, and the size of the
hypergraph in the end of the search (in thousands
of nodes and thousands of edges).16

16The size of the initial proposal does not depend on LM
order, but rather on distortion limit (see Figure 3): on aver-
age (in thousands) |V0| = 0.6 and |E0| = 27 with d = 4,
|V0| = 1.3 and |E0| = 70 with d = 5, and |V0| = 2.5 and
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n d build (s) total (s) N |V | |E|
3 4 1.5 21 190 2.5 159
3 5 3.5 55 303 4.4 343
3 6 10 162 484 8 725
4 4 1.5 50 350 4 288
5 4 1.5 106 555 6.1 450

Table 1: Performance of the exact decoder in
terms of: time to build g(0), total decoding time in-
cluding build, number of iterations (N), and num-
ber of nodes and edges (in thousands) at the end of
the search.

It is insightful to understand how different as-
pects of the initial proposal impact on perfor-
mance. Increasing the translation option limit (tol)
leads to g(0) having more edges (this dependency
is linear with tol). In this case, the number of
nodes is only minimally affected — due to the pos-
sibility of a few new segmentations. The maxi-
mum phrase length (mpl) introduces in g(0) more
configurations of reordering constraints ([l, C] in
Figure 3). However, not many more, due to C
being limited by the distortion limit d. In prac-
tice, we observe little impact on time performance.
Increasing d introduces many more permutations
of the input leading to exponentially many more
nodes and edges. Increasing the order n of the LM
has no impact on g(0) and its impact on the overall
search is expressed in terms of a higher number of
nodes being locally intersected.

An increased hypergraph, be it due to addi-
tional nodes or additional edges, necessarily leads
to slower iterations because at each iteration we
must compute inside weights in timeO(|V |+|E|).
The number of nodes has the larger impact on the
number of iterations. OS∗ is very efficient in ig-
noring hypotheses (edges) that cannot compete for
an optimum. For instance, we observe that run-
ning time depends linearly on tol only through the
computation of inside weights, while the number
of iterations is only minimally affected.17 An in-

|E0| = 178 with d = 6. Observe the exponential depen-
dency on distortion limit, which also leads to exponentially
longer running times.

17It is possible to reduce the size of the hypergraph
throughout the search using the upperbound on the search
error g∗ − f∗ to prune hypotheses that surely do not stand
a chance of competing for the optimum (Graehl, 2005). An-
other direction is to group edges connecting the same nonter-
minal nodes into one partial edge (Heafield et al., 2013a) —
this is particularly convenient due to our method only visiting
the 1-best derivation from g(d) at each iteration.

n
Nodes at level m LM states at level m

0 1 2 3 4 1 2 3 4
3 0.4 1.2 0.5 - - 113 263 - -
4 0.4 1.6 1.4 0.3 - 132 544 212 -
5 0.4 2.1 2.4 0.7 0.1 142 790 479 103

Table 2: Average number of nodes (in thousands)
whose LM state encode an m-gram, and average
number of unique LM states of order m in the fi-
nal hypergraph for different n-gram LMs (d = 4
everywhere).

creased LM order, for a fixed distortion limit, im-
pacts much more on the number of iterations than
on the average running time of a single iteration.
Fixing d = 4, the average time per iteration is 0.1
(n = 3), 0.13 (n = 4) and 0.18 (n = 5). Fixing a
3-gram LM, we observe 0.1 (d = 4), 0.17 (d = 5)
and 0.31 (d = 6). Note the exponential growth
of the latter, due to a proposal encoding exponen-
tially many more permutations.

Table 2 shows the average degree of refine-
ment of the nodes in the final proposal. Nodes
are shown by level of refinement, where m indi-
cates that they store m words in their carry. The
table also shows the number of unique m-grams
ever incorporated to the proposal. This table il-
lustrates well how our decoding algorithm moves
from a coarse upperbound where every node stores
an empty string to a variable-order representation
which is sufficient to prove an optimum derivation.

In our approach a complete derivation is opti-
mised from the proxy model at each iteration. We
observe that over 99% of these derivations project
onto distinct strings. In addition, while the opti-
mum solution may be found early in the search, a
certificate of optimality requires refining the proxy
until convergence (see §4.1). It turns out that most
of the solutions are first encountered as late as in
the last 6-10% of the iterations.

We use the optimum derivations obtained with
our exact decoder to measure the number of search
errors made by beam search and cube pruning with
increasing beam sizes (see Table 3). Beam search
reaches optimum derivations with beam sizes k ≥
500 for all language models tested. Cube prun-
ing, on the other hand, still makes mistakes at
k = 1000. Table 4 shows translation quality
achieved with different beam sizes for cube prun-
ing and compares it to exact decoding. Note that
for k ≥ 104 cube pruning converges to optimum
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k
Beam search Cube pruning

3 4 5 3 4 5
10 938 1294 1475 2168 2347 2377
102 19 60 112 613 999 1126
103 0 0 0 29 102 167
104 0 0 0 0 4 7

Table 3: Beam search and cube pruning search er-
rors (out of 3,003 test samples) by beam size using
LMs of order 3 to 5 (d = 4).

order 3 4 5
k d = 4 d = 5 d = 6 d = 4 d = 4
10 20.47 20.13 19.97 20.71 20.69
102 21.14 21.18 21.08 21.73 21.76
103 21.27 21.34 21.32 21.89 21.91
104 21.29 21.37 21.37 21.92 21.93
OS∗ 21.29 21.37 21.37 21.92 21.93

Table 4: Translation quality in terms of BLEU as
a function of beam size in cube pruning with lan-
guage models of order 3 to 5. The bottom row
shows BLEU for our exact decoder.

derivations in the vast majority of the cases (100%
with a 3-gram LM) and translation quality in terms
of BLEU is no different from OS∗. However, with
k < 104 both model scores and translation quality
can be improved. Figure 5 shows a finer view on
search errors as a function of beam size for LMs
of order 3 to 5 (fixed d = 4). In Figure 6, we fix
a 3-gram LM and vary the distortion limit (from 4
to 6). Dotted lines correspond to beam search and
dashed lines correspond to cube pruning.

6 Conclusions and Future Work

We have presented an approach to decoding with
unpruned hypergraphs using upperbounds on the
language model distribution. The algorithm is an
instance of a coarse-to-fine strategy with connec-
tions to A∗ and adaptive rejection sampling known
as OS∗. We have tested our search algorithm us-
ing state-of-the-art phrase-based models employ-
ing robust language models. Our algorithm is able
to decode all sentences of a standard test set in
manageable time consuming very little memory.
We have performed an analysis of search errors
made by beam search and cube pruning and found
that both algorithms perform remarkably well for
phrase-based decoding. In the case of cube prun-
ing, we show that model score and translation
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Figure 5: Search errors made by beam search and
cube pruning as a function of beam-size.
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Figure 6: Search errors made by beam search and
cube pruning as a function of the distortion limit
(decoding with a 3-gram LM).

quality can be improved for beams k < 10, 000.

There are a number of directions that we intend
to investigate to speed up our decoder, such as: (1)
error-safe pruning based on search error bounds;
(2) use of reinforcement learning to guide the de-
coder in choosing which n-gram contexts to ex-
tend; and (3) grouping edges into partial edges,
effectively reducing the size of the hypergraph and
ultimately computing inside weights in less time.
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Abstract

Recent work by Cherry (2013) has shown
that directly optimizing phrase-based re-
ordering models towards BLEU can lead
to significant gains. Their approach is lim-
ited to small training sets of a few thou-
sand sentences and a similar number of
sparse features. We show how the ex-
pected BLEU objective allows us to train
a simple linear discriminative reordering
model with millions of sparse features on
hundreds of thousands of sentences re-
sulting in significant improvements. A
comparison to likelihood training demon-
strates that expected BLEU is vastly more
effective. Our best results improve a hi-
erarchical lexicalized reordering baseline
by up to 2.0 BLEU in a single-reference
setting on a French-English WMT 2012
setup.

1 Introduction

Modeling reordering for phrase-based machine
translation has been a long standing problem.
Contrary to synchronous context free grammar-
based translation models (Wu, 1997; Galley et al.,
2004; Galley et al., 2006; Chiang, 2007), phrase-
based models (Koehn et al., 2003; Och and Ney,
2004) have no in-built notion of reordering beyond
what is captured in a single phrase pair, and the
first phrase-based decoders simply scored inter-
phrase reorderings using a restricted linear dis-
tortion feature, which scores a phrase reordering
proportionally to the length of its displacement.
While phrase-based models allow in theory com-
pletely unrestricted reordering patterns, move-
ments are generally limited to a finite distance for
complexity reasons. To address this limitation,
extensive prior work focused on richer feature
sets, in particular on lexicalized reordering mod-

els trained with maximum likelihood-based ap-
proaches (Tillmann, 2003; Xiong et al., 2006; Gal-
ley and Manning, 2008; Nguyen et al.,2009;§2).

More recently, Cherry (2013) proposed a very
effective sparse ordering model relying on a set
of only a few thousand indicator features which
are trained towards a task-specific metric such as
BLEU (Papineni et al., 2002). These features
are simply added to the log-linear framework of
translation that is trained with the Margin Infused
Relaxed Algorithm (MIRA; Chiang et al., 2009)
on a small development set of a few thousand
sentences. While simple, the approach outper-
forms the state-of-the-art hierarchical reordering
model of Galley and Manning (2008), a maximum
likelihood-based model trained on millions of sen-
tences to fit millions of parameters.

Ideally, we would like to scale sparse reorder-
ing models to similar dimensions but recent at-
tempts to increase the amount of training data for
MIRA was met with little success (Eidelman et
al., 2013). In this paper we propose much larger
sparse ordering models that combine the scalabil-
ity of likelihood-based approaches with the higher
accuracy of maximum BLEU training (§3). We
train on the output of a hierarchical reordering
model-based system and scale to millions of fea-
tures learned on hundreds of thousands of sen-
tences (§4). Specifically, we use the expected
BLEU objective function (Rosti et al., 2010; Rosti
et al., 2011; He and Deng, 2012; Gao and He,
2013; Gao et al., 2014; Green et al., 2014) which
allows us to train models that use training data and
feature sets that are two to three orders of magni-
tudes larger than in previous work (§5).

Our models significantly outperform the
state-of-the-art hierarchical lexicalized reordering
model on two language pairs and we demonstrate
that richer feature sets result in significantly
higher accuracy than with a feature set similar
to Cherry (2013). We also demonstrate that our
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approach greatly benefits from more training
data than is typically used for maximum BLEU
training. Previous work concluded that sparse
reordering models perform better than maximum
entropy models, however, the two approaches
do not only differ in the objective function but
also the type of training data (Cherry, 2013). Our
analysis isolates the objective function and shows
that expected BLEU optimization is the most
important factor to train accurate ordering models.
Finally, we compare expected BLEU training to
pair-wise ranked optimization (PRO) on a feature
set similar to Cherry (2013; §7).

2 Reordering Models

Reordering models for phrase-based translation
are typically part of the log-linear framework
which forms the basis of many statistical machine
translation systems (Och and Ney, 2004).

Formally, we are given K training pairs D =
(f (1), e(1))...(f (K), e(K)), where each f (i) ∈ F
is drawn from a set of possible foreign sentences,
and each English sentence e(i) ∈ E(f (i)) is drawn
from a set of possible English translations of f (i).
The log-linear model is parameterized by m pa-
rameters θ where each θk ∈ θ is the weight of
an associated feature hk(f, e) such as a language
model or a reordering model. Function h(f, e)
maps foreign and English sentences to the vector
h1(f, e)...hm(f, e), and we usually choose trans-
lations ê according to the following decision rule:

ê = arg max
e∈E(f)

θTh(f, e) (1)

In practice, computing ê exactly is intractable and
we resort to an approximate but more efficient
beam search (Och and Ney, 2004).

Early phrase-based models simply relied on a
linear distortion feature, which measures the dis-
tance between the first word of the current source
phrase and the last word of the previous source
phrase (Koehn et al., 2003; Och and Ney, 2004).
Unfortunately, this approach is agnostic to the ac-
tual phrases being reordered, and does not take
into account that certain phrases are more likely
to be reordered than others. This shortcoming led
to a range of lexicalized reordering models that
capture exactly those preferences for individual
phrases (Tillmann, 2003; Koehn et al., 2007).

Reordering models generally assume a se-
quence of English phrases e = {ē1, . . . , ēn} cur-

rently hypothesized by the decoder, a phrase align-
ment a = {a1, . . . , an} that defines a foreign
phrase f̄ai for each English phrase ēi, and an ori-
entation oi which describes how a phrase pair
should be reordered with respect to the previous
phrases. There are typically three orientation types
and the exact definition depends on the specific
models which we describe below. Orientations can
be determined during decoding and from word-
aligned training corpora. Most models estimate
a probability distribution p(oi|ppi, a1, . . . , ai) for
the i-th phrase pair ppi = 〈ēi, f̄ai〉 and the align-
ments a1, . . . , ai of the previous target phrases.
Lexicalized Reordering. This model defines the
three orientation types based only on the posi-
tion of the current and previously translated source
phrase ai and ai−1, respectively (Tillmann, 2003;
Koehn et al., 2007). The orientation types gen-
erally are: monotone (M), indicating that ai−1 is
directly followed by ai. swap (S) assumes that ai
precedes ai−1, i.e., the two phrases swap places.
Finally, discontinuous (D) indicates that ai is not
adjacent to ai−1. The probability distribution over
these reordering events is based on a maximum
likelihood estimate:

p(o|pp, ai−1, ai) =
cnt(o, pp)
cnt(pp)

(2)

where o ∈ {M,S,D} and cnt returns smoothed
frequency counts over a word-aligned corpus.
Hierarchical Reordering. An extension of the
lexicalized reordering model better handles long-
distance reordering by conditioning the orientation
of the current phrase on a context larger than just
the previous phrase (Galley and Manning, 2008).
In particular, the hierarchical reordering model
does so by building a compact representations
of the preceding context using an efficient shift-
reduce parser. During translation new phrases get
moved on a stack and are then combined with any
previous phrase if they are adjacent. Figure 1
shows an illustrative example: when the decoder
shifts phrase pp8 onto the stack, this phrase is then
merged with pp7 (reduce operation), which then
can be merged with previous phrases to finally
form a hierarchical block h1. These merge opera-
tions stop once we reach a phrase (here, pp3) that
is not contiguous with the current block. Then, as
another phrase (pp9) is hypothesized, the decoder
uses the hierarchical block at the top of the stack
(h1) to determine the orientation of the current
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Figure 1: The hierarchical reordering model
(HRM) analyzes a non-local context to determine
the orientation of the current phrase. For exam-
ple, the phrase pair pp9 has a swap orientation
(o9 = S) with respect to a hierarchical block (h1)
that comprises the five preceding phrase pairs.

phrase pp9, which in this case is a swap (S) orien-
tation.1 The model has the advantage that the ori-
entations computed are more robust to derivational
ambiguity of the underlying translation model. A
given surface translation may be derived through
different phrases but the shift-reduce parser com-
bines them into a single representation which is
more consistent with the orientations observed in
the word-aligned training data.
Maximum Entropy-based models. The statis-
tics used to estimate the lexicalized and the hierar-
chical reordering models are based on very sparse
estimates, simply because certain phrases are not
very frequent. Maximum entropy models address
this problem by estimating Eq. 2 through sparse
indicator features over phrase pairs instead, but
prior work with such models still relies on word
aligned corpora for estimation (Xiong et al., 2006;
Nguyen et al., 2009). However, recent evalua-
tions of the approach show little gain over the sim-
pler frequency-based estimation method (Cherry,
2013).
Sparse Hierarchical Reordering model. All of
the models so far are trained to maximize the like-
lihood of reordering decisions observed in word
aligned corpora. Cherry (2013) argues that it
is probably too difficult to learn human reorder-
ing patterns through noisy word alignments that

1Galley and Manning (2008) provide a more formal ex-
planation.

were generated by unsupervised methods. Instead,
he proposes to learn a discriminative reordering
model based on the outputs of the actual machine
translation system, adjusting the feature weights
to maximize a task-specific objective, which is
BLEU in their case. Their model is based on a
set of sparse features derived from the hierarchi-
cal reordering model which we scale to millions
of features (§6).

3 A Simple Linear Reordering Model

Our reordering model is defined as a simple linear
model over the basic orientation types, similar to
Cherry (2013). In particular, our model defines
score sφ(o, e, f) over orientations o = {M,S,D},
and a sentence pair {e, f, a} with alignment a as a
linear combination of weighted indicator features:

sφ(o, e, f, a) = φTu(o, e, f, a)

=
I∑
i=1

φTu(o, ppi, ci)

=
I∑
i=1

sφ(o, ppi, ci) (3)

where φ is a vector of weights, {ppi}Ii=1 is a
set of phrases that decompose the sentence pair
{e, f, a}, and u(o, ppi, ci) is a function that maps
orientation o, phrase pair ppi and local context ci
to a sparse vector of indicator features. The lo-
cal context ci represents information used by the
model that is in addition to the phrase pair. For
example, the features of Cherry (2013) condition
on the top-stack of the hierarchical shift reduce
parser, information that is non-local with respect
to the phrase pair. In our experiments, we use fea-
tures that go beyond the top-stack, in order to con-
dition on various parts of the source and target side
contexts (§7).

4 Model Training

Optimization of our model is based on standard
stochastic gradient descent (SGD; Bottou, 2004)
with an expected BLEU loss l(φ) which we detail
next (§5). The update is:

φt = φt−1 − µ∂l(φt−1)
∂φt−1

(4)

where φt and φt−1 are model weights at time t and
t− 1 respectively, and µ is a learning rate.

We add the model as a small number of dense
features to the log-linear framework of translation
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(Eq. 1). Specifically, we extend the m baseline
features by a set of new features hm+1, . . . , hm+j ,
where each represents a linear combination of
sparse indicator features corresponding to one of
the orientation types. Exposing each orientation
as a separate dense feature within the log-linear
model is common practice for lexicalized reorder-
ing models (Koehn et al., 2005):

hm+j = sφ(oj , e, f, a)

where oj ∈ {M,S,D}.
The translation model is then parameterized by

both θ, the log-linear weights of the baseline fea-
tures, as well as φ, the weights of the reordering
model. The reordering model is learned as follows
(Gao and He, 2013; Gao et al., 2014):

1. We first train a baseline translation system to
learn θ, without the discriminative reordering
model, i.e., we set θm+1 = 0, . . . , θm+j = 0.

2. Using these weights, we generate n-best lists
for the foreign sentences in the training data
using the setup described in the experimental
section (§7). The n-best lists serve as an ap-
proximation to E(f), the set of possible trans-
lations of f , used in the next step for expected
BLEU training of the reordering model (§5).

3. Next, we fix θ, set θm+1 = 1, . . . θm+j = 1
and optimize φ with respect to the loss func-
tion on the training data using stochastic gra-
dient descent.2

4. Finally, we fix φ and re-optimize θ in the
presence of the discriminative reordering
model using Minimum Error Rate Training
(MERT; Och 2003; §7).

We found that re-optimizing θ after a few iter-
ations of stochastic gradient descent in step 3 did
not improve accuracy.

5 Expected BLEU Objective Function

The expected BLEU objective (Gao and He, 2013;
Gao et al., 2014) allows us to efficiently optimize
a large scale discriminative reordering model to-
wards the desired task-specific metric, which in
our setting is BLEU.

2We tuned θm+1, . . . θm+j on the development set but
found that setting them uniformly to one resulted in faster
training and equal accuracy.

Formally, we define our loss function l(φ) as
the negative expected BLEU score, denoted as
xBLEU(φ), for a given foreign sentence f and a
log-linear parameter set θ:

l(φ) =− xBLEU(φ)

=−
∑
e∈E(f)

pθ,φ(e|f) sBLEU(e, e(i)) (5)

where sBLEU(e, e(i)) is a smoothed sentence-
level BLEU score with respect to the reference
translation e(i), and E(f) is the generation set ap-
proximated by an n-best list. In our experiments
we use n-best lists with unique entries and there-
fore our definitions do not take into account mul-
tiple derivations of the same translation. Specif-
ically, our n-best lists are generated by choosing
the highest scoring derivation ê amongst string
identical translations e for f . We use a sentence-
level BLEU approximation similar to Gao et al.
(2014).3 Finally, pθ,φ(e|f) is the normalized prob-
ability of translation e given f , defined as:

pθ,φ(e|f) =
exp{γθTh(f, e)}∑

e′∈E(f) exp{γθTh(f, e′)} (6)

where θTh(f, e) includes the discriminative re-
ordering model hm+1(e, f), . . . , hm+j(e, f) pa-
rameterized by φ, and γ ∈ [0, inf) is a tuned scal-
ing factor that flattens the distribution for γ < 1
and sharpens it for γ > 1 (Tromble et al., 2008).4

Next, we define the gradient of the expected
BLEU loss function l(φ). To simplify our notation
we omit the local context c in sφ(o, pp, c) (Eq. 3)
from now on and assume it to be part of pp. Us-
ing the observation that the loss does not explicitly
depend on φ, we get:

∂l(φ)
∂φ

=
∑
o,pp

∂l(φ)
∂sφ(o, pp)

∂sφ(o, pp)
∂φ

=
∑
o,pp

−δo,ppu(o, pp)

where δo,pp is the error term for orientation o of
phrase pair pp:

δo,pp = − ∂l(φ)
∂sφ(o, pp)

3We found in early experiments that the BLEU+1 approx-
imation used by Liang et al. (2006) and Nakov et. al (2012)
worked equally well in our setting.

4γ is only used during expected BLEU training.
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The error term indicates how the expected BLEU
loss changes with the reordering score which we
derive in the next section.

Finally, the gradient of the reordering score
sφ(o, pp) with respect to φ is simply given by this:

∂sφ(o, pp)
∂φ

=
∂φTu(o, pp)

∂φ
= u(o, pp)

5.1 Derivation of the Error Term δo,pp

We rewrite the loss function (Eq. 5) using Eq. 6
and separate it into two terms G(φ) and Z(φ):

l(φ) = −xBLEU(φ) = −G(φ)
Z(φ)

(7)

= −
∑

e∈E(f) exp{γθTh(f, e)} sBLEU(e, e(i))∑
e′∈E(f) exp{γθTh(f, e′)}

Next, we apply the quotient rule of differentiation:

δo,pp =
∂xBLEU(φ)
∂sφ(o, pp)

=
∂(G(φ)/Z(φ))
∂sφ(o, pp)

=
1

Z(φ)

(
∂G(φ)

∂sφ(o, pp)
− ∂Z(φ)
∂sφ(o, pp)

xBLEU(φ)
)

The gradients for G(φ) and Z(φ) with respect to
sφ(o, pp) are:

∂G(φ)
∂sφ(o, pp)

=
∑
e∈E(f)

sBLEU(e, e(i))

∂ exp{γθTh(f, e)}
∂sφ(o, pp)

∂Z(φ)
∂sφ(o, pp)

=
∑
e∈E(f)

∂ exp{γθTh(f, e)}
∂sφ(o, pp)

By using the following definition:

U(φ, e) = sBLEU(e, e(i))− xBLEU(φ)

together with the chain rule, Eq. 6 and Eq. 7, we
can rewrite δo,pp as follows:

δo,pp =
1

Z(φ)

∑
e∈E(f)

(
∂ exp{γθTh(f, e)}

∂sφ(o, pp)
U(φ, e)

)

=
∑
e∈E(f)

(
pθ,φ(e|f)

∂γθTh(f, e)
∂sφ(o, pp)

U(φ, e)
)

Because φ is only relevant to the reordering
model, represented by hm+1, . . . , hm+j , we have:

∂γθTh(f, e)
∂sφ(o, pp)

= γλk
∂hk(e, f)
∂sφ(o, pp)

= γλkN (o, pp, e, f)

1: function TRAINSGD(D, µ)
2: t← 0
3: for all (f (i), e(i)) in D do
4: xBLEU = 0 . Compute xBLEU
5: for all e in E(f (i)) do
6: wBLEU← pθ,φt(e|f) sBLEU(e, e(i))
7: xBLEU← xBLEU + wBLEU
8: end for
9: for all e in E(f (i)) do

10: D = sBLEU(e, e(i))− xBLEU
11: for all o, pp in 〈e, f (i)〉 do
12: N = N (o, pp, e, f)
13: δo,pp = pθ,φt(e|f (i))γλkND
14: φt+1 = φt − µδo,ppu(o, pp))
15: end for
16: end for
17: t← t+ 1
18: end for
19: end function

Figure 2: Algorithm for computing the expected
BLEU loss with SGD updates (Eq. 4) based on
training data D and learning rate µ.

where m + 1 ≤ k ≤ m + j and N (o, pp, e, f) is
the number of times pp with orientation o occurs
in the current sentence pair.

This simplifies the error term to:

δo,pp =
∑
e∈E(f)

pθ,φ(e|f)γλkN (o, pp, e, f)U(φ, e)

(8)

where λk is the weight of the dense feature sum-
marizing orientation o in the log-linear model. We
use Eq. 8 in a simple algorithm to train our model
(Figure 2). Our SGD trainer uses a mini-batch size
of a single sentence (§7) which entails all hypoth-
esis in the n-best list for this sentence and the pa-
rameters are updated after each mini-batch.

6 Feature Sets

Our features are inspired by Cherry (2013)
who bases his features on the local phrase-pair
pp = 〈ē, f̄〉 as well as the top stack of the shift re-
duce parser of the baseline hierarchical ordering
model. We experiment with these variants and ex-
tensions:

• SparseHRMLocal: This feature set is exclu-
sively based on the local phrase-pair and
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consists of features over the first and last
word of both the source and target phrase.5

We use four different word representations:
The word identity itself, but only for the
80 most common source and target language
words. The three other word representations
are based on Brown clustering with either 20,
50 or 80 classes (Brown et al., 1992). There
is one feature for every orientation type.

• SparseHRM: The main feature set of Cherry
(2013). This is an extension of SparseHRM-
Local adding features based on the first and
last word of both the source and the target of
the hierarchical block at the top of the stack.
There are also features based on the source
words in-between the current phrase and the
hierarchical block at the top of the stack.

• SparseHRM+UncommonWords: This set is
identical to SparseHRM, except that word-
identity features are not restricted to the 80
most frequent words, but can be instantiated
for all words, regardless of frequency.

• SparseHRM+BiPhrases: This augments
SparseHRM by phrase-identity features re-
sulting in millions of instances compared to
only a few thousand for SparseHRM. We add
three features for each possible phrase pair:
the source phrase, the target phrase, and the
whole phrase pair.

The baseline hierarchical lexicalized reorder-
ing model is most similar to SparseHRM+BiPhrases
feature set since both have parameters for phrase,
orientation pairs.6 The feature set closest to
Cherry (2013) is SparseHRM. However, while
Cherry had to severely restrict his features for
batch lattice MIRA-based training, our maximum
expected BLEU approach can handle millions of
features.

7 Experiments

Baseline. We experiment with a phrase-based
system similar to Moses (Koehn et al., 2007),

5Phrase-local features allow pre-computation which re-
sults in significant speed-ups at run-time. Cherry (2013)
shows that local features are responsible for most of his gains.

6Although, our model is likely to learn significantly fewer
parameters since many phrase, orientation pairs will only be
seen in the word-aligned data but not in actual machine trans-
lation output.

scoring translations by a set of common fea-
tures including maximum likelihood estimates
of source given target phrases pMLE(e|f) and
vice versa, pMLE(f |e), lexically weighted esti-
mates pLW (e|f) and pLW (f |e), word and phrase-
penalties, as well as a linear distortion feature.
The baseline uses a hierarchical reordering model
with five orientation types, including monotone
and swap, described in §2, as well as two discon-
tinuous orientations, distinguishing if the previous
phrase is to the left or right of the current phrase.
Finally, monotone global indicates that all previ-
ous phrases can be combined into a single hier-
archical block. The baseline includes a modified
Kneser-Ney word-based language model trained
on the target-side of the parallel data, which is de-
scribed below. Log-linear weights are estimated
with MERT (Och, 2003). We regard the 1-best
output of the phrase-based decoder with the hierar-
chical reordering model as the baseline accuracy.
Evaluation. We use training and test data from
the WMT 2012 campaign and report results on
French-English and German-English translation
(Callison-Burch et al., 2012). Translation mod-
els are estimated on 102M words of parallel data
for French-English and 91M words for German-
English; between 7.5-8.2M words are newswire,
depending on the language pair, and the remainder
are parliamentary proceedings. All discrimina-
tive reordering models are trained on the newswire
subset since we found this portion of the data to be
most useful in initial experiments. We evaluate on
six newswire domain test sets from 2008, 2010 to
2013 as well as the 2010 system combination test
set containing between 2034 to 3003 sentences.
Log-linear weights are estimated on the 2009 data
set comprising 2525 sentences. We evaluate using
BLEU with a single reference.
Discriminative Reordering Model. We use 100-
best lists generated by the phrase-based decoder
to train the discriminative reordering model. The
n-best lists are generated by ten systems, each
trained on 90% of the available data in order to de-
code the remaining 10%. The purpose of this pro-
cedure is to avoid a bias introduced by generating
n-best lists for sentences on which the translation
model was previously trained.7 Unless otherwise

7Later, we found that the bias has only a negligible effect
on end-to-end accuracy since we obtained very similar results
when decoding with a system trained on all data. This setting
increased the training data BLEU score from 27.5 to 37.8. We
used a maximum source and target phrase length of 7 words.
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dev 2008 2010 sc2010 2011 2012 2013 AllTest FeatTypes
noRM 23.37 20.18 24.24 24.18 24.83 24.23 24.85 23.93 -
HRM (baseline) 24.11 20.85 24.92 24.83 25.68 25.11 25.76 24.72 -
SparseHRMLocal 25.24 21.26 25.99 25.93 26.98 26.34 26.77 25.77 4,407
SparseHRM 25.29 21.43 26.17 26.14 26.99 26.63 27.01 25.95 9,463
+UncommonWords 25.32 21.76 26.30 26.29 27.15 26.77 27.18 26.12 897,537
+BiPhrases 25.46 21.67 26.19 26.19 27.55 27.07 27.41 26.26 3,043,053

Table 1: French-English results of expected BLEU trained sparse reordering models compared to no
reordering model at all (noRM) and the likelihood trained baseline hierarchical reordering model (HRM)
on WMT test sets; sc2010 is the 2010 system combination test set. FeatTypes is the number of different
types and AllTest is the average BLEU score over all the test sets, weighted by corpus size. All results
for our sparse reordering models include a likelihood-trained hierarchical reordering model.

dev 2008 2010 sc2010 2011 2012 2013 AllTest FeatTypes
noRM 18.54 19.28 20.14 20.01 18.90 18.87 21.60 19.81 -
HRM (baseline) 19.35 19.96 20.87 20.66 19.60 19.80 22.48 20.58 -
SparseHRMLocal 19.89 19.86 21.11 20.84 20.04 20.21 22.93 20.88 4,410
SparseHRM 19.83 20.27 21.26 21.05 20.22 20.44 23.17 21.11 9,477
+UncommonWords 20.06 20.35 21.45 21.31 20.28 20.55 23.30 21.24 1,136,248
+BiPhrases 20.09 20.33 21.62 21.47 20.66 20.75 23.27 21.40 3,640,693

Table 2: German-English results of expected BLEU trained sparse reordering models (cf. Table 1).

mentioned, we train our reordering model on the
news portion of the parallel data, corresponding to
136K-150K sentences, depending on the language
pair. We tuned the various hyper-parameters on a
held-out set, including the learning rate, for which
we found a simple setting of 0.1 to be useful. To
prevent overfitting, we experimented with `2 regu-
larization, but found that it did not improve test ac-
curacy. We also tuned the probability scaling pa-
rameter γ (Eq. 6) but found γ = 1 to be very good
among other settings. We evaluate the perfor-
mance on a held-out validation set during training
and stop whenever the objective changes less than
a factor of 0.0003. For our PRO experiments, we
tuned three hyper-parameters controlling `2 reg-
ularization, sentence-level BLEU smoothing, and
length. The latter is important to eliminate PRO’s
tendency to produce too short translations (Nakov
et al., 2012).

7.1 Scaling the Feature Set

We first compare our baseline, a likelihood trained
hierarchical reordering model (HRM; Galley &
Manning, 2008), to various expected BLEU
trained models, starting with SparseHRMLocal,
inspired by Cherry (2013) and compare it to
SparseHRM+BiPhrases, a set that is three orders of

magnitudes larger.
Our results on French-English translation (Ta-

ble 1) and German-English translation (Table 2)
show that the expected BLEU trained models scale
to millions of features and that we outperform the
baseline by up to 2.0 BLEU on newstest2012 for
French-English and by up to 1.1 BLEU on new-
stest2011 for German-English.8 Increasing the
size of the feature set improves accuracy across
the board: The average accuracy over all test sets
improves from 1.0 BLEU for the most basic fea-
ture set to 1.5 BLEU for the largest feature set
on French-English and from 0.3 BLEU to 0.8
BLEU on German-English.9 The most compa-
rable setting to Cherry (2013) is the feature set
SparseHRM, which we outperform by up to 0.5
BLEU on French-English and by 0.3 BLEU on av-
erage on both language pairs, demonstrating the
benefit of being able to effectively train large fea-
ture sets. Furthermore, the increase in the num-
ber of features does not affect runtime, since most

8Different to the setups of Galley & Manning (2008) and
Cherry (2013) our WMT evaluation framework uses only one
instead of four references, which makes our BLEU score im-
provements not directly comparable.

9We attribute smaller improvements on German-English
to the low distortion limit of only six words of our system and
the more difficult reordering patterns when translating from
German which may require more elaborate features.
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features can be pre-computed and stored in the
phrase-table, only requiring a constant time table-
lookup, similar to traditional reordering models.

Another appeal of our approach is that train-
ing is very fast given a set of n-best lists for the
training data. The SparseHRM model with 4,407
features is trained in only 26 minutes, while the
SparseHRM+BiPhrases model with over three mil-
lion parameters can be trained in just over two
hours (136K sentences and 100 epochs in both
cases). We attribute this to the training regime
(§4), which does not iteratively re-decode the
training data for expected BLEU training.10

7.2 Varying Training Set Size
Previous work on sparse reordering models was
restricted to small data sets (Cherry, 2013) due
to the limited ability of standard machine trans-
lation optimizers to handle more than a few thou-
sand sentences. In particular, recent attempts to
scale the margin-infused relaxation algorithm, a
variation which was also used by Cherry (2013),
to larger data sets showed that more data does not
necessarily help to improve test set accuracy for
large feature sets (Eidelman et al., 2013).

In the next set of experiments, we shed light on
the advantage of training discriminative reordering
models with expected BLEU on large training sets.
Specifically, we start off by estimating a reorder-
ing model on only 2,000 sentences, similar to the
size of the development set used by Cherry (2013),
and incrementally increase the amount of training
data to nearly three hundred thousand sentences.
To avoid overfitting to small data sets we experi-
ment with our most basic feature set SparseHRM-
Local, comprising of just over 4,400 types.

For this experiment only, we measure accuracy
in a re-ranking framework for faster experimen-
tation where we use the 100-best output of the
baseline system relying on a likelihood-based hi-
erarchical reordering model. We re-estimate the
log-linear weights by running a further iteration of
MERT on the n-best list of the development set
which is augmented by scores corresponding to
the discriminative reordering model. The weights
of those features are initially set to one and we
use 20 random restarts for MERT. At test time we
rescore the 100-best list of the test set using the
new set of log-linear weights learned previously.

10We would expect better accuracy when iteratively decod-
ing the training data but did not do so in this study for effi-
ciency reasons.
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Figure 3: Effect of increasing the training set size
from 2,000 to 272,000 sentences measured on the
dev set (top) and news2011 (bottom) in an n-best
list rescoring setting.

Figure 3 confirms that more training data in-
creases accuracy and that the best model requires
a substantially larger amount of training data than
what is typically used for maximum BLEU train-
ing. We expect an even steeper curve for larger
feature sets where more parameters need to be es-
timated and where the amount of training data is
likely to have an even larger effect.

7.3 Likelihood versus BLEU Optimization

Previous research has shown that directly training
a reordering model for BLEU can vastly outper-
form a likelihood trained maximum entropy re-
ordering model (Cherry, 2013). However, the two
approaches do not only differ in the objectives
used, but also in the type of training data. The
maximum entropy reordering model is trained on
a word-aligned corpus, trying to learn human re-
ordering patterns, whereas the sparse reordering
model is trained on machine translation output,
trying to learn from the mistakes made by the ac-
tual system. It is therefore not clear how much
either one contributes to good accuracy.

Our next experiment teases those two aspects
apart and clearly shows the effect of the objec-
tive function. Specifically, we compare the tra-
ditionally used conditional log-likelihood (CLL)
objective to expected BLEU on the French-
English translation task in a small feature con-
dition (SparseHRM) of about 9K features and
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dev 2008 2010 sc2010 2011 2012 2013 AllTest
noRM 23.37 20.18 24.24 24.18 24.83 24.23 24.85 23.93
HRM (baseline) 24.11 20.85 24.92 24.83 25.68 25.11 25.76 24.72
SparseHRM (CLL) 24.28 21.02 25.11 25.10 25.92 25.24 25.76 24.88
SparseHRM (xBLEU) 25.29 21.43 26.17 26.14 26.99 26.63 27.01 25.95
SparseHRM+BiPhrases (CLL) 24.42 21.17 25.12 25.00 25.86 25.36 26.18 24.98
SparseHRM+BiPhrases (xBLEU) 25.46 21.67 26.19 26.19 27.55 27.07 27.41 26.26

Table 3: French-English results comparing the baseline hierarchical reordering model (HRM) to sparse
reordering model trained towards conditional log-likelihood (CLL) and expected BLEU (xBLEU).

dev 2008 2010 sc2010 2011 2012 2013 AllTest
PRO 24.05 20.90 25.42 25.28 25.79 25.09 26.07 24.94
xBLEU 25.24 21.26 25.99 25.93 26.98 26.34 26.77 25.77

Table 4: French-English results on the SparseHRMLocal feature set when when trained with pair-wise
ranked optimization (PRO) and expected BLEU (xBLEU).

a large feature setting of over 3M features
(SparseHRM+BiPhrases). In the CLL setting, we
maximize the likelihood of the hypothesis with the
highest BLEU score in the n-best list of each train-
ing sentence.

Our results (Table 3) show that CLL training
achieves only a fraction of the gains yielded by
the expected BLEU objective. For SparseHRM,
CLL improves the baseline by less than 0.2 BLEU
on average across all test sets, whereas expected
BLEU achieves 1.2 BLEU. Increasing the number
of features to 3M (SparseHRM+BiPhrases) results
in a slightly better average gain of 0.3 BLEU for
CLL but but expected BLEU still achieves a much
higher improvement of 1.5 BLEU. Because our
gains with likelihood training are similar to what
Cherry (2013) reported for his maximum entropy
model, we conclude that the objective function is
the most important factor to achieving good accu-
racy.

7.4 Comparison to PRO

In our final experiment we compare expected
BLEU training to pair-wise ranked optimization
(PRO), a popular off the shelf trainer for ma-
chine translation models with large feature sets
(Hopkins and May, 2011).11 Previous work has
shown that PRO does not scale to truly large fea-
ture sets with millions of types (Yu et al., 2013)
and we therefore restrict ourselves to our smallest

11MIRA is another popular optimizer but as previously
mentioned, even the best publicly available implementation
does not scale to large training sets (Eidelman et al., 2013).

set (SparseHRMLocal) of just over 4.4K features.
We train PRO on the development set compris-
ing of 2,525 sentences, a setup that is commonly
used by standard machine translation optimizers.
In this setting, PRO directly learns weights for the
baseline features (§7) as well as the 4.4K indica-
tor features corresponding to the sparse reordering
model. For expected BLEU training we use the
full 136K sentences from the training data. The
results (Table 4) demonstrate that expected BLEU
outperforms a typical setup commonly used to
train large feature sets.

8 Conclusion and Future Work

The expected BLEU objective is a simple and ef-
fective approach to train large-scale discriminative
reordering models. We have demonstrated that
it scales to millions of features, which is orders
of magnitudes larger than other modern machine
translation optimizers can currently handle.

Empirically, our sparse reordering model im-
proves machine translation accuracy across the
board, outperforming a strong hierarchical lexi-
calized reordering model by up to 2.0 BLEU on
a French to English WMT2012 setup, where the
baseline was trained on over two million sentence
pairs. We have shown that scaling to large train-
ing sets is crucial to good performance and that
the best performance is reached when hundreds
of thousands of training sentences are used. Fur-
thermore, we demonstrate that task-specific train-
ing towards expected BLEU is much more effec-
tive than optimizing conditional log-likelihood as
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is usually done. We attribute this to the fact that
likelihood is a strict zero-one loss that does not as-
sign credit to partially correct solutions, whereas
expected BLEU does.

In future work we plan to extend expected
BLEU training to lattices and to evaluate the ef-
fect of estimating weights for the dense baseline
features as well. Our current training procedure
(Gao and He, 2013; Gao et al., 2014) decodes
the training data only once. In future work, we
would like to compare this to repeated decoding
as done by conventional optimization methods as
well as other large-scale discriminative training
approaches (Yu et al., 2013). We expect this to
yield additional accuracy gains.
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Abstract

Numerous works in Statistical Machine
Translation (SMT) have attempted to iden-
tify better translation hypotheses obtained
by an initial decoding using an improved,
but more costly scoring function. In this
work, we introduce an approach that takes
the hypotheses produced by a state-of-
the-art, reranked phrase-based SMT sys-
tem, and explores new parts of the search
space by applying rewriting rules se-
lected on the basis of posterior phrase-
level confidence. In the medical do-
main, we obtain a 1.9 BLEU improve-
ment over a reranked baseline exploiting
the same scoring function, corresponding
to a 5.4 BLEU improvement over the orig-
inal Moses baseline. We show that if an
indication of which phrases require rewrit-
ing is provided, our automatic rewriting
procedure yields an additional improve-
ment of 1.5 BLEU. Various analyses, in-
cluding a manual error analysis, further il-
lustrate the good performance and poten-
tial for improvement of our approach in
spite of its simplicity.

1 Introduction

The standard configuration of modern phrase-
based Statistical Machine Translation (SMT)
(Koehn et al., 2003) systems can produce very ac-
ceptable results on some tasks. However, early
integration of better features to guide the search
for the best hypothesis can result in significant im-
provements, an expression of the complexity of
modeling translation quality. For instance, im-
provements have been obtained by integrating fea-
tures into decoding that better model semantic co-
herence at the sentence level (Hasan and Ney,
2009) or syntactic well-formedness (Schwartz et

al., 2011). However, early use of such complex
features typically comes at a high computational
cost. Moreover, some informative features require
or are better computed when complete translation
hypotheses are available. This is addressed in nu-
merous works on reranking of the highest scored
sub-space of hypotheses, on so-called n-best lists
(Och et al., 2004; Zhang et al., 2006; Carter and
Monz, 2011) or output lattices (Schwenk et al.,
2006; Blackwood et al., 2010), where many works
specifically target the inclusion of better language
modelling capabilities, a well-known weakness of
current automatic generation approaches (Knight,
2007).

Another way to improve translation a posteriori
can be done by rewriting initial hypotheses, for in-
stance in a greedy fashion by including new mod-
els (Langlais et al., 2007; Hardmeier et al., 2012),
or by specifically modeling a task of automatic
post-editing targeting a specific system (Simard et
al., 2007; Dugast et al., 2007). While such auto-
matic post-editing may seem to be too limited, no-
tably because of the limited initial diversity con-
sidered and the fact that it may be in some in-
stances agnostic to the internals of the initial sys-
tem, it has been shown to potentially improve ac-
curacy of the new translation hypotheses (Parton
et al., 2012) and to offer very high oracle perfor-
mance (Marie and Max, 2013).

However, an important issue for such ap-
proaches is their capacity to only rewrite incor-
rect parts of the translation hypotheses and to use
appropriate replacement candidates. Many works
have tackled the issue of word to n-gram confi-
dence estimation in SMT output (Zens and Ney,
2006; Ueffing and Ney, 2007; Bach et al., 2011;
de Gispert et al., 2013), and some attempts have
been made to exploit confidence estimates for lat-
tice rescoring (Blackwood et al., 2010) or n-best
reranking (Bach et al., 2011; Luong et al., 2014b).

In this work, we present an approach in which
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new complete hypotheses are produced by rewrit-
ing existing hypotheses, and are scored using com-
plex models that could not be used during the ini-
tial decoding. We will use as competitive baselines
systems that rerank the output of an initial decoder
using the complete set of available features, and
will show that we manage to improve their trans-
lation. The difference between our approach and
the reranking baseline lies in the manner in which
we expand our training data, as well as in our use
of high-confidence rewritings to obtain new trans-
lation hypotheses. Importantly, this work will only
exploit simple confidence estimates corresponding
to phrase-based posteriors, which do not require
that large sets of human-annotated data be avail-
able as in other works (Bach et al., 2011; Luong et
al., 2014b).

The remainder of this paper is organized as fol-
lows. Section 2 is devoted to the description of
our approach, with details on our rewriting ap-
proach (2.1), additional features (2.2), rewriting
phrase table (2.3), and training examples (2.4).
Section 3 presents experiments. We first describe
our experimental setup (3.1) and our baseline sys-
tems (3.2). We then report results when naive
rewriting is performed and then with confidence-
based rewriting (3.3). We next devote a significant
part of the paper in section 4 to report further re-
sults and analyses: an analysis of the performance
of our system depending on the quality of initial
hypotheses (4.1); a semi-oracle experiment where
correct phrases are known (4.2); an oracle exper-
iment where only correct rewriting decisions are
made (4.3); a manual error analysis of the main
configurations studied in this work (4.4); and, fi-
nally, a study of the performance of our approach
on a more difficult translation task (4.5). Related
work is discussed in section 5 and we conclude
and introduce our future work in section 6.

2 Description of the approach

2.1 Rewriting of translation hypotheses

Langlais et al (2007) proposed a greedy search
procedure to improve translations by reusing the
same translation table and scoring function that
were used during an initial phrase-based decoding.
In our approach, we rewrite hypotheses by using
the same greedy search algorithm, adding more
complex models and using the most-confident bi-
phrases according to the initial decoder’s search
space. To select the hypothesis to rewrite for

each sentence, we produce a n-best list of the ini-
tial decoder and rerank this list with a new, bet-
ter informed scoring function (see section 2.2).
The one-best hypothesis obtained after rerank-
ing is then rewritten by our system (denoted as
rewriter). In this way, we ensure that the hy-
pothesis that was rewritten had been so far the
best one according to the initial decoding best sub-
space and the new models used.

At each iteration, new hypotheses are obtained
from a current hypothesis by applying one rewrit-
ing operation on bi-phrases. The set of all new hy-
potheses is called the neighborhood of the current
hypothesis. Focusing in this work on local rewrit-
ing, we used the following set of operations (N de-
notes the number of bi-phrases, T the maximum
number of entries per source phrase in a rewriting
phrase table (see 2.3), and S the average number
of tokens per source phrase)1:

1. replace (O(N.T )): replaces the transla-
tion of a source phrase with another transla-
tion from the rewriting phrase table;

2. split (O(N.S.T 2)): splits a source phrase
into all possible sets of two (contiguous)
phrases, and uses replace on each of the
resulting phrases;

3. merge (O(T.N)): merges two contiguous
source phrases and uses replace on the re-
sulting new phrase.

This rewriting algorithm is described in pseudo-
code in Algorithm 1.

Algorithm 1 rewriter Algorithm
Require: source a sentence to translate

nbestList← TRANSLATE(source)
oneBest← RERANK(nbestList)
sCurrent← GET SCORE(oneBest)
loop
hypothesesSet← NEIGHBORHOOD(oneBest)
newOneBest← RANK(hypothesesSet)
s← GET SCORE(newOneBest)
if s ≤ sCurrent then

return oneBest
else
oneBest← newOneBest
sCurrent← s

end if
end loop

1Complexity is expressed in terms of the maximum num-
ber of hypotheses that will be considered given some hypoth-
esis to rewrite.
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The produced hypotheses are then ranked ac-
cording to a new, better informed scoring function
(see 2.2). At the next iteration, the hypothesis now
ranked at the top of the list is rewritten, and search
terminates when no better hypothesis is found.

Such a greedy search has several obvious lim-
itations, in particular it can only perform a lim-
ited exploration of the search space, a situation
that can be improved by using a beam (see Sec-
tion 3.3). However, associated with a small and
precise rewriting phrase table, this approach only
visits small numbers of more-confident hypothe-
ses, which is a critical property given the cost of
computing the new scoring function used.

2.2 Reranking and features
The rerankings of the hypotheses sets de-
scribe in this work are all performed with
kb-mira (Cherry and Foster, 2012) using the ini-
tial features set of the decoder in conjunction with
the following additional features:2

• SOUL models: SOUL models are structured
output layer neural network language mod-
els (LMs) which have been shown to be use-
ful in reranking tasks, for instance for WMT
evaluations (Allauzen et al., 2013; Pécheux et
al., 2014). SOUL scoring being too costly to
be integrated during decoding, it fits perfectly
the reranker scenario, which furthermore
enables to use larger contexts for n-grams.
We used both monolingual (Le et al., 2011)
and bilingual (Le et al., 2012) SOUL 10-gram
models, which were trained on the WMT’12
data.

• POS language model: part-of-speech (POS)
LMs have been shown to yield improvements
in n-best list reranking (Carter and Monz,
2011). In this work, we trained a 6-gram POS
LM using Witten-Bell smoothing.

• IBM1 : the IBM1 scores (p(e|f) and p(f |e))
of the complete hypothesis (Och et al., 2004).

• phrase-based confidence score : bi-phrases
are associated to a posterior probability, in-
spired from n-gram posterior probability esti-
mation as defined in (de Gispert et al., 2013).
Let E be the set of all hypotheses in the
space of translation hypotheses defined by

2Note that we did not try to explore the independant con-
tribution of each feature in this work.

the n-best list used for source sentence f , and
Eα be the subset of E such that word align-
ments in sentence pairs (e′, f), ∀e′ ∈ Eα,
allow us to extract bi-phrase α. Let also
H(e, f) be the score assigned by a base-
line decoder (denoted as 1-pass Moses
henceforth) to sentence pair (e, f). We use
the following posterior probability for α:

P (α|F ) =
∑
e′∈Eα exp(H(e′, f))∑
e′′∈E exp(H(e′′, f))

(1)

Then, the logarithms of each phrase’s con-
fidence score are summed to use as a confi-
dence score for the complete hypothesis.

2.3 Rewriting phrase table
Taking the whole translation table of the decoder
as a rewriting phrase table to perform the greedy
search produces very large neighborhoods that
rewriter cannot handle due to the cost of the
models that have to be computed. We tried two
different approaches to extract a rewriting phrase
table from the translation table of the system.
We first tried a naive approach where the rewrit-
ing phrase table of rewriter for the test set
uses the phrase table of 1-pass Moses, filtered
to keep the k best entries according to the direct
translation model. We denote such a configuration
rptkpef.
Our second approach consists in extracting the
rewriting phrase table containing bi-phrases that
were the most probable according to the set of all
models used in 1-pass Moses. Selection of bi-
phrases for each sentence is done in a binary fash-
ion, depending on their presence in k-best lists of
1-pass Moses for a given value of k. This con-
figuration will be denoted confk.

2.4 Training examples
We tried several sets of examples to train the
ranker of rewriter. We used the 1,000-best
list of the development set produced by 1-pass
Moses during its tuning. In other configurations
we mixed a) the neighborhood of the reranker
n-best hypotheses computed by our system on the
development set using a rewriting phrase table
containing the bi-phrases found in the k-best list
produced by 1-pass Moses; and b) the neigh-
borhood of the one-best hypotheses of reranker
using a rewriting phrase table containing the 10-
best translations from the 1-pass Moses trans-
lation table according to the direct translation
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model. Both neighborhoods are produced by a
single iteration of rewriter. We denote re-
spectively these sets of hypotheses n-bestNeigh
and 10PefNeigh. Our intuition behind the consti-
tution of these training sets is that the ranker of
rewriter needs, in order to perform well, train-
ing examples that will be similar to hypotheses
that it actually generates.

3 Experiments

3.1 Experimental setup

We used two datasets from two different domains:
the data provided for the WMT’14 medical trans-
lation task3 (Medical) and a smaller task using
the TED talks4 (TED Talks) data of the IWSLT
evaluation campaigns. For the Medical task we
used only the English to French translation di-
rection, and both translation directions, English
to French and French to English, for the TED
Talks task. In this work, the main part of our ex-
periments uses Medical, and TED Talks will
be used at a later stage to study a lower-quality
situation (cf. 4.5). For the Medical task, initial
decodings were produced using a LM trained on
all WMT’14 monolingual and bilingual medical
data, while for the TED Talks task we used a
much larger LM trained on all the data provided
for WMT’135. Both are 4-gram LMs estimated
with Kneser-Ney smoothing (Chen and Goodman,
1998). For the 6-gram POS LMs used (see 2.2),
we used the same data as used for the token-based
LM for Medical, and the concatenation of the
News Commentaries and Europarl sub-parts of the
WMT’13 data for TED Talks. Table 1 provides
relevant statistics about the data used.

Tasks Corpus Sentences Tokens (en-fr)

Medical
train 4.9M 78M - 91M
dev 500 10k - 12k
test 1,000 21k - 26k
LM - 146M

TED Talks
train 107 758 2M - 2.2M
dev 934 20k - 20k
test 1,664 31k - 34k
LM 6B - 2.5B

Table 1: Corpora used in this work.

3http://www.statmt.org/wmt14/
medical-task/

4https://wit3.fbk.eu/mt.php?release=
2013-01

5http://www.statmt.org/wmt13

We first built a state-of-the-art phrase-based
SMT system using Moses (Koehn et al., 2003)
with standard settings. We tuned its parameters to-
wards BLEU (Papineni et al., 2002) on the tuning
dataset using the kb-mira implementation avail-
able in Moses with default parameters.

Our results will be compared using BLEU
and TER (Snover et al., 2006) to a) the initial
best translation produced by the Moses decoder
(1-pass Moses) and b) the best translation ob-
tained by reranking the 1,000-best list of 1-pass
Moses (reranker). Since reranker imple-
ments a well-documented approach and uses types
of features commonly used in reranking tasks we
will consider it as our main baseline. It was trained
using kb-mira on the 1,000-best of the develop-
ment data decoded by 1-pass Moses.

In our experiments, rewriter rewrites the
one-best hypothesis6 produced by reranker
using the operators Replace, Split and
Merge as described in section 2.1.

3.2 Baseline results

Table 2 gives the results of the 1-pass Moses
decoding for the Medical task and the rerank-
ing results of reranker applied to the 1-pass
Moses 1,000-best list.
1-pass Moses obtains a score of 38.2 BLEU

on the test set, which can be considered as
a good baseline system.7 reranker outper-
forms 1-pass Moses by 3.5 BLEU, indicating
a strong performance of the features used on this
task. In particular, SOUL is known to be a use-
ful feature for reranking n-best lists on highly-
inflected languages such as French. Note also that
the SOUL models we used were trained on the
WMT’12 monolingual and bilingual data and so
were better informed than the models used dur-
ing the 1-pass Moses decoding.8 Moreover,
as can be seen on Figure 1, the 1,000-best ora-
cle reveals a large potential for improvement over
the one-best (+12.4 BLEU). We further observe
that the reranked list of reranker shows a much
faster potential for translation improvement.

6Note that we will also provide results where a beam of
k-best hypotheses are rewritten.

7Distribution of error types on a sub-part of the test set
will be provided in section 4.4.

8However, SOUL considers only a small sample of the
training data for training. For instance, the training of the
French monolingual model used roughly only 1% (895K sen-
tences) of all the WMT’12 data.
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Figure 1: n-best list oracle for 1-pass Moses
and reranker

3.3 rewriter results

Results for the different rewriting phrase tables
and training examples are given in Table 2. First,
concerning the rewriting phrase table, for the
k=5 (rpt5pef) and k=10 (rpt10pef) con-
figurations9 a decrease of 0.7-0.8 BLEU over
reranker is obtained. This illustrates that naive
rewritings applied on the test set cannot be used
with our training regime to improve translation
quality.

In the next experiments, we used a confk
rewriting table. Table 210 shows the results of
rewriter when rewriting the one-best hypothe-
sis from reranker for various values of k to de-
fine the k-best list from which the rewriting table
is built. Various training sets are also considered
in the table.

The 1-pass Moses 1,000-best configuration
reused the same set of hypotheses used to train
reranker. For this configuration, rewriter
loses 2.6 BLEU over reranker on the test set
with conf10k. Of course, this training data set
is of a quite different nature compared to the hy-
potheses built by rewriter.

In the 10pefNeigh training, the ranker is trained
with the neighborhoods produced by the first itera-
tion of rewriter on the development set with a
rewriting phrase table containing only the k-best
translations for each source phrase according to
the direct translation model. This configuration

9We did not experiment with higher values of k because of
the computationnal cost of the features used by reranker.
Indeed, adding more phrase translations increases the size of
the neighborhoods corresponding to many additional n-grams
to score by SOUL, the most expensive model.

10In Table 2 the number of unique bi-phrases for the
rpt rewriting phrase tables is computed by considering only
source phrases appearing in the test set, for the n-best Neigh-
borhood configurations we merged the phrase tables of each
sentence into one and count just as one unique entry bi-
phrases appearing several times.

improves over the previous one by 1.7 BLEU, but
is still 0.9 BLEU below reranker. Adding the
neighborhoods of the reranker n-best hypothe-
ses produced with a conf10k rewriting phrase
table to the training data does not improve over
the previous situation for n = 10, but increasing n
to 30 and then 50 produces strong improvements
on the test set (resp. +1.4 and +1.6 BLEU). Con-
sidering a larger neighborhood obtained by rewrit-
ing the best n = 90 hypotheses does not yield
further gains. We denote from now on opti
our best configuration thus far, considering the
performance on the development set and having
the largest confidence-based rewriting phrase ta-
ble considered.

Letting rewriter perform a beam search on
the 10-best hypotheses of the test set, further gains
are obtained, corresponding now to an improve-
ment of +1.9 BLEU over our reranker base-
line, or +5.4 BLEU over 1-pass Moses.11 Fur-
thermore, although taking the bi-phrases from the
10,000-best is our best configuration, it is inter-
esting to note that taking bi-phrases from the 10-
best only already yields a moderate improvement
of +0.6 BLEU over reranker. Figure 2a shows
that up to k = 10, 000 higher value of k to ex-
tract the rewriting phrase table increase the BLEU
score on the test set. 12 We did not experiment with
higher values of k, but plan to use the output lat-
tice produced by 1-pass Moses to compute ef-
ficiently posteriors for larger sets of bi-phrases (de
Gispert et al., 2013).

As illustrated on Figure 2b, rewriter mostly
improves the BLEU score during the three first
iterations and then converges at the ninth iteration.
However, it is important to note that not all
sentences are actually improved by our system.
As illustrated on Figure 3a, opti improves
40.8% of the sentences of the test set but degrades
29.2% of them according to sentence-BLEU (Lin
and Och, 2004). It is certainly the case that
more informative confidence features may help
idenfity more precisely which fragments of the
translations should really undergo rewriting. We
will investigate the exploitation of an oracle
phrase-based confidence measure in Section 4.2.

11Using a beam becomes quickly prohibitive: using
12 threads, 25 mn vs. 3h were needed for the test set for
the configurations of size 1 and 10, respectively.

12Note that even for k = 10, 000 the computed neighbor-
hoods are still quite small with an average of 116 hypotheses
for each hypothesis to rewrite per iteration, against an average
of 788 hypotheses for the rpt10pef configuration.
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(a) Results of rewriterwith rpt5pef, rpt10pef and dif-
ferent values of k for confk

(b) Iterations of rewriter on test with opti and two beam
sizes : 1 and 10.

Figure 2: Performance of rewriter depending on the type of the rewriting phrase table and the number
of iterations and beam sizes.

baseline dev test
BLEU BLEU TER GOS BLEU

1-pass Moses 40.9 38.3 44.6
reranker 44.1 41.8 41.6

training data rewriting unique beam
phrase table bi-phrases size

1-pass Moses 1 000-best conf10k 38 455 1 44.1 39.2(−2.6) 43.8(+2.2) 58.7

10pefNeigh conf10k 38 455 1 43.9 40.9(−0.9) 41.2(−0.4) 58.7
10-bestNeigh + 10pefNeigh conf10k 38 455 1 43.8 40.9(−0.9) 41.2(−0.4) 58.7
30-bestNeigh + 10pefNeigh conf10k 38 455 1 44.2 43.2(+1.4) 40.6(−1.0) 58.7
50-bestNeigh + 10pefNeigh rpt5pef 85 530 1 44.5 41.0(−0.8) 42.0(+0.4) 50.6

= rpt10pef 149 887 1 44.5 41.1(−0.7) 42.1(+0.5) 54.5
= conf10 21 398 1 44.5 42.4(+0.6) 41.0(−0.6) 45.9
= conf100 28 730 1 44.5 42.9(+1.1) 40.8(−0.8) 50.2
= conf1k 33 929 1 44.5 43.0(+1.2) 40.6(−1.0) 53.3

= (opti) conf10k 38 455 1 44.5 43.4(+1.6) 40.4(−1.2) 58.7
= conf10k 38 455 10 44.5 43.7(+1.9) 40.1(−1.5) 59.6

90-bestNeigh + 10pefNeigh conf10k 38 455 1 44.4 43.4(+1.6) 40.4(−1.2) 58.7

Table 2: Results on Medical for different training configurations, rewriting phrase tables and beam
sizes. opti denotes our optimal configuration for rewriter.

4 Analysis of confidence-based rewriting

4.1 Performance of rewriter depending on
the quality of initial hypotheses

The first question we address in our analysis of
rewriter is whether its performance depends
on the difficulty of each individual sentence. As
a proxy of sentence difficulty we used sentence-
BLEU of 1-pass Moses, and used it to di-
vide the sentences of the test set into quartiles.
Figure 4 shows that reranker improves more
over 1-pass Moses and that at the same time
rewriter improves more over reranker as
the sentences are more difficult. In particular,
rewriter obtains a 8.6 BLEU improvement
over 1-pass Moses on the more difficult quar-
tile, but only a 1.3 BLEU improvement on the least

difficult quartile. We hypothesize that better per-
formance may be achieved if adapting the training
and rewriting of rewriter to sentences of vary-
ing quality, which may, for instance, be estimated
with off-the-shelf estimators (Specia et al., 2013).

4.2 Semi-oracle experiments: rewriting only
incorrect fragments

We observed in section 3.3 that our opti con-
figuration, which obtains strong improvements in
translation quality (as given by corpus-BLEU),
in fact degrades (as given by sentence-BLEU)
a significant proportion of sentences. To fur-
ther analyze these results, we simulate a situa-
tion where oracle confidence information is avail-
able at the phrase-level: in particular, rewriter
is prevented from rewriting bi-phrases whose tar-
get phrase appears exactly in the reference transla-
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(a) automatic (b) semi-oracle

Figure 3: sBLEU delta, for each sentence, between the reranker one-best to rewrite and its auto-
matic (3a) or semi-oracle (3b) rewriting computed by rewriter with the opti configuration.

Figure 4: Source sentences were divided into
quartiles according to sBLEU of the 1-pass
Moses system. For each quartile we reported the
performance of 1-pass Moses, reranker,
rewriter, GOS.

tion.13 Furthermore, this “freezing” of bi-phrases
can be repeated after each iteration of rewriter.

Thus, we now have an oracle situation for
choosing which source phrases may be rewrit-
ten, but the rest of the rewriting procedure is
still fully automatic. Moreover, we purposefully
did not adapt the training procedure to this new
configuration, and reused opti as is. Results,
reported in Table 3, indicate that an additional
1.5 BLEU is obtained from opti, or 3.1 BLEU
from reranker and 6.6 BLEU from 1-pass
Moses. The use of a larger beam of size 10
did not improve those results any further. At

13This is obviously not an optimal solution.

the first iteration, rewriter “froze” approx-
imatively 65.6% of the bi-phrases, and 70.5%
at the last iteration, demonstrating the ability of
rewriter to find good rewritings that match the
reference translation. Looking at Figure 3b, we
now find that, as expected, only a limited num-
ber of sentences are now degraded by rewriter.
The large improvements obtained clearly under-
lines the important role that better confidence esti-
mates could play in our framework.

System test
BLEU TER

reranker 41.8 41.6

opti 43.4 40.4

semi-oracle, beam 1 44.9(+1.5) 39.2(−1.2)

semi-oracle, beam 10 44.9(+1.5) 39.0(−1.4)

Table 3: Results for the semi-oracle using opti.

4.3 Oracle experiments: making only the
correct decisions

We now turn to the situation where only rewrit-
ings that actually improve translation performance
would be made. In practice, we use a sim-
ple solution: we resort to greedy oracle search
(GOS) (Marie and Max, 2013), where sentence-
BLEU is maximized using rewritings from the
opti phrase table. At each iteration the rewrit-
ing in the neighborhood that maximizes sentence-
BLEU is selected until convergence.

Results for this greedy search oracle appear in
the last column of Table 2 and allow us to put
in perspective the individual potential of the var-
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ious tested configurations. We can first notice
that the rpt5pef phrase table allows the ora-
cle to reach 50.6 BLEU, 8.1 BLEU below the
oracle value obtained with conf10k, although
rpt5pef contains twice as many bi-phrases. The
same conclusion can be made about rpt10pef,
which is 3.9 BLEU higher than rpt5pef but con-
tains nearly twice as many bi-phrases. Finally, al-
though conf10k contains approximatively four
times fewer bi-phrases than rpt10pef, its ora-
cle value is 4.2 BLEU higher. This points out the
fact that conf10k is a lot more precise rewrit-
ing phrase table for the translations to rewrite, as
well as the fact that rpt5pef and rpt10pef
are much noisier and consequently difficult to use
efficiently by our automatic rewriting procedure.

4.4 Manual error analysis

In the previous sections, we have shown that our
automatic rewriting procedure can improve trans-
lation quality over both an initial Moses baseline,
and a reranked baseline using the same features
as our procedure. We have further shown in sec-
tion 4.3 that much larger improvements could be
obtained by using an oracle procedure.

We now focus on the four following con-
figurations: 1-pass Moses, reranker,
rewriter and GOS. Although this four configu-
rations are well separated both in terms of BLEU
and TER scores, it is informative to look more
precisely into what makes their results different.
We performed a small-scale manual error analysis
of these four configurations. A French native
speaker annotated 70 translation hypotheses using
an error typology adapted from (Vilar et al.,
2006).

Results of the manual error analysis are re-
ported in Table 4. The most significant results
are for the disamb(iguation) and form error types,
the former being more related to translation accu-
racy, and the later to fluency. In both cases, we
first observe a strong reduction of errors between
1-pass Moses and reranker, which demon-
strates the positive impact of the features used
on these levels. Then, another, similar reduction
is obtained between reranker and rewriter,
demonstrating that our reranking procedure man-
ages to identify more precise and fluent hypothe-
ses. Finally, a further reduction is found between
rewriter and GOS, indicating that our proposed
local, greedy rewriting can still be improved, no-

tably by using more informative features and bet-
ter confidence estimates.

The other types of error categories are less in-
formative. We find no clear differences in er-
ror types attributable to style issues, which seem
to be irrecoverable even for GOS. reranker
and rewriter both improve on order-related er-
rors over 1-pass Moses, but our local rewrit-
ing unsurprisingly did not fix any of these errors.
Finally, reranker and rewriter decreased
slightly the number of extra words from 1-pass
Moses, while GOS sometimes artificially intro-
duces extra words.

4.5 Lower-quality SMT experiments

We now turn to the question of how our rewrit-
ing system fares on a more difficult task, and used
TED Talks, 6 BLEU below Medical for the
English to French direction, for this purpose. In
the same way as we did for Medical, we first
tried to find the best training configuration for the
ranker of the rewriting system. For this task, mix-
ing the n-best neighborhood and 10pefNeigh with
n=10 seemed to be sufficient to have no more im-
provement on the development set by increasing n
for both language directions, so we used this train-
ing configuration. As for the rewriting phrase table
used on the test set, we simply selected conf10k
as in the Medical task. Results are reported
in Table 5 for French to English and English to
French.

We first observe that reranker performed
similarly for the two translation directions, by
improving 1-pass Moses by 0.5 BLEU. The
smaller improvements may be partly attributed to
the better LM used in 1-pass Moses, implying
a better early modeling of grammaticality, but also
by the fact that models such as SOUL and POS
LMs rely on accurate contexts and are therefore
more apt to help in choosing translations among
generally better candidates.

Finally, rewriter obtains smaller but consis-
tent improvements over reranker: +0.4 BLEU
for translation into English, and +0.9 BLEU for
translation into French. The smaller improvement
in the former situation may be attributed to the na-
ture of the target language which has a simpler
agreement system. Consequently, the form-related
errors discussed in Section 4.4 are possibly less
subject to improvement here.
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extra missing incorrect unknown

word word disamb form style order word all

1-pass Moses 11 1 57 91 13 31 10 214
reranker 5 3 47 73 11 19 10 168
rewriter 4 4 40 55 12 19 10 144

rewriter oracle 19 2 26 44 14 22 10 137

Table 4: Results for manual error analysis for the first 70 test sentences.

System fr-en en-fr
BLEU TER BLEU TER

1-pass Moses 32.5 47.7 32.3 49.9
reranker 33.0 47.3 32.8 49.4

rewriter 33.4(+0.4) 47.4(+0.1) 33.7(+0.9) 49.3(−0.1)

semi-oracle 34.1(+1.1) 46.6(−0.7) 34.2(+1.4) 48.6(−0.8)

Table 5: Results for the baselines, our best configuration and the semi-oracle for the TED Talks.

5 Related work

Reranking of translation hypotheses n-best
list reranking was extensively studied in (Och et
al., 2004), using features not used in the initial
decoder such as IBM1 scores (which also proved
useful for word-level confidence estimation (Blatz
et al., 2004)) and generative syntactic models.
While the experiments in (Och et al., 2004) did
not show any clear contribution of syntactic in-
formation used in this manner, the later work by
Carter and Monz (2011) managed to successfully
exploit syntactic features using discriminative lan-
guage modeling for n-best reranking. Gimpel et
al. (2013) outperformed n-best reranking by gen-
erating, with an expensive but simple method, di-
verse hypotheses used as training data. Recently,
Luong et al. (2014b) reranked n-best lists using
confidence scores at the hypothesis level com-
puted from word-level confidence measures learnt
from roughly 10,000 SMT system outputs anno-
tated by humans.

Rewriting of translation hypotheses Langlais
et al. (2007) described a greedy search decoder,
first introduced in (Germann et al., 2001), able to
improve translations produced by a dynamic pro-
gramming decoder using the same scoring func-
tion and translation table. However, the more re-
cent work by Arun et al. (2010) using a Gibbs
sampler for approximating maximum translation
decoding showed the adequacy of the approxima-

tions made by state-of-the-art decoders for finding
the best translation in their search space. Other
works were more directly targeted at automatic
post-editing of SMT output, and approached the
problem as one of second-pass translation be-
tween automatic predictions and correct transla-
tions (Simard et al., 2007; Dugast et al., 2007).
The recent work of Zhu et al. (2013) attempts to
repair translations by exploiting confidence esti-
mates for examples derived from the similarity
between source words in the input text and in
training examples. Luong et al. (2014a) obtained
improvements by computing word confidence es-
timation, trained on human annotated data, and
large sets of lexical, syntactic and semantic fea-
tures, for the words in the n-best list produced
during a first-pass decoding, and performing a
second-pass decoding exploiting these new scores.

Confidence estimation of Machine Translation
The Word Posterior Probability (WPP) proposed
by Ueffing and Ney (2007), derived from informa-
tion from the n-best list produced by a decoder,
proved to be useful for estimating word-level con-
fidence. Bach et al. (2011) worked on the issue
of predicting sentence-level and word-level MT
errors by using WPP and other features derived
from the source context, the source-target align-
ment, and dependency structures, but relied on a
significantly large manually annotated corpus of
MT errors. De Gispert et al. (2013) calculate k-
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gram posterior probabilities from n-best lists or
word lattices, and demonstrated that they were rea-
sonably accurate indications of whether specific k-
grams would be found or not in human reference
translations. Finally, the work of Blackwood et
al. (2010) proposed to segment translation lattices
according to confidence measures over the maxi-
mum likelihood translation hypothesis to focus on
regions with potential translation errors. Hypothe-
sis space constraints based on monolingual cover-
age are then applied to the low confidence regions
to improve translation fluency.

6 Conclusions and perspectives

In this paper, we have described an approach
that improves translations a posteriori by applying
simple local rewritings. We have shown that the
quality of phrase-level confidence estimates has
a direct impact of the amplitude of the improve-
ments that can be obtained, as well as the initial
quality of the rewritten hypotheses. We have used
a very simple definition for confidence estimates
under the form of phrase posteriors estimated from
n-best lists from an initial decoder, which obtained
good empirical performance, in spite of not requir-
ing large human-annotated datasets as in other ap-
proaches (Bach et al., 2011; Luong et al., 2014b).

Our work could be extended in several direc-
tions. First, we could use a larger set of rewrit-
ing operations (Langlais et al., 2007), including
the rewrite (sic) operation introduced in (Marie
and Max, 2013) that paraphrases source phrases
and then translates them.

We could also possibly consider any phrase seg-
mentation compatible with a specific word align-
ment rather than rely on specific phrase segmenta-
tions. This would allow us to attain faster some
rewritings that could otherwise require several
rewriting iterations and may never be attained by
the greedy procedure.

More features could also be used, for instance
to model more fine-grained syntax (Post, 2011)
or document-level lexical coherence (Hardmeier
et al., 2012). However, anticipating that some
features might be very expensive to compute, we
could adapt our procedure to work in several
passes: initial passes would tend to restrict the
search space more and more using an initial set
of features, before a more expensive pass would
concentrate on a limited number of hypotheses.
Figure 1 indeed already showed a much faster or-

acle improvement between 1-pass Moses and
reranker for n-best list of small sizes.

Another avenue for improvement lies in the pos-
sibility to perform the training of our rewriter
by providing it with more reference translations.
As these are typically not readily available, we
could resort to targeted paraphrasing (Madnani
and Dorr, 2013) to rewrite reference translations
into acceptable paraphrases that reuse n-grams
from the best hypotheses of the system so far.
Contrarily to (Madnani and Dorr, 2013), we could
bias the paraphrasing table so that it only con-
tains paraphrases that correspond to target phrases
of high confidence values, which would add new
n-grams likely of being produced by rewriter.

It is furthermore worth noticing that our work
proposes a potential answer to an original ques-
tion: contrarily to typical works on sub-sentencial
MT confidence estimation, which predict whether
a word or phrase is correct or not, our rewriter
system could be used to determine automatically
whether a rewriting system could (if asked to) at-
tempt to improve locally a translation, or whether
a human post-editor should already tackle work-
ing on improving it. As we showed in our manual
error analysis in section 4.4, there are in fact many
instances of errors that could not be recovered by
our approach, be it because of its local rewriting
strategy or of the bilingual resources or models
used, so that some knowledge would have to be
provided as hard constraints by a human transla-
tor, as hinted in (Crego et al., 2010). We could
then finally have our rewriter system work in a
turn-based fashion in collaboration with a human
translator, fixing errors or making improvements
that are being made possible by the last edits from
the translator.
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Benjamin Marie and Aurélien Max. 2013. A Study
in Greedy Oracle Improvement of Translation Hy-
potheses. In Proceedings of IWSLT, Heidelberg,
Germany.

1271



Franz Josef Och, Daniel Gildea, Sanjeev Khudanpur,
Anoop Sarkar, Kenji Yamada, Alex Fraser, Shankar
Kumar, Libin Shen, David Smith, Katherine Eng,
Viren Jain, Zhen Jin, and Dragomir Radev. 2004.
A Smorgasbord of Features for Statistical Machine
Translation. In Proceedings of NAACL, Boston,
USA.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
jing Zhu. 2002. BLEU: a Method for Automatic
Evaluation of Machine Translation. In Proceedings
of ACL, Philadelphia, USA.

Kristen Parton, Nizar Habash, Kathleen R. McKeown,
Gonzalo Iglesias, and Adrià de Gispert. 2012. Can
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Abstract

We present methods to control the lexicon
size when learning a Combinatory Cate-
gorial Grammar semantic parser. Existing
methods incrementally expand the lexicon
by greedily adding entries, considering a
single training datapoint at a time. We pro-
pose using corpus-level statistics for lexi-
con learning decisions. We introduce vot-
ing to globally consider adding entries to
the lexicon, and pruning to remove entries
no longer required to explain the training
data. Our methods result in state-of-the-art
performance on the task of executing se-
quences of natural language instructions,
achieving up to 25% error reduction, with
lexicons that are up to 70% smaller and are
qualitatively less noisy.

1 Introduction

Combinatory Categorial Grammar (Steedman,
1996, 2000, CCG, henceforth) is a commonly
used formalism for semantic parsing – the task
of mapping natural language sentences to for-
mal meaning representations (Zelle and Mooney,
1996). Recently, CCG semantic parsers have been
used for numerous language understanding tasks,
including querying databases (Zettlemoyer and
Collins, 2005), referring to physical objects (Ma-
tuszek et al., 2012), information extraction (Kr-
ishnamurthy and Mitchell, 2012), executing in-
structions (Artzi and Zettlemoyer, 2013b), gen-
erating regular expressions (Kushman and Barzi-
lay, 2013), question-answering (Cai and Yates,
2013) and textual entailment (Lewis and Steed-
man, 2013). In CCG, a lexicon is used to map
words to formal representations of their meaning,
which are then combined using bottom-up opera-
tions. In this paper we present learning techniques

∗This research was carried out at Google.

chair ` N : λx.chair(x)
chair ` N : λx.sofa(x)
chair ` AP : λa.len(a, 3)
chair ` NP : A(λx.corner(x))
chair ` ADJ : λx.hall(x)

Figure 1: Lexical entries for the word chair as learned
with no corpus-level statistics. Our approach is able to
correctly learn only the top two bolded entries.

to explicitly control the size of the CCG lexicon,
and show that this results in improved task perfor-
mance and more compact models.

In most approaches for inducing CCGs for se-
mantic parsing, lexicon learning and parameter es-
timation are performed jointly in an online algo-
rithm, as introduced by Zettlemoyer and Collins
(2007). To induce the lexicon, words extracted
from the training data are paired with CCG cat-
egories one sample at a time (for an overview of
CCG, see §2). Joint approaches have the potential
advantage that only entries participating in suc-
cessful parses are added to the lexicon. However,
new entries are added greedily and these decisions
are never revisited at later stages. In practice, this
often results in a large and noisy lexicon.

Figure 1 lists a sample of CCG lexical entries
learned for the word chair with a greedy joint al-
gorithm (Artzi and Zettlemoyer, 2013b). In the
studied navigation domain, the word chair is often
used to refer to chairs and sofas, as captured by the
first two entries. However, the system also learns
several spurious meanings: the third shows an er-
roneous usage of chair as an adverbial phrase de-
scribing action length, while the fourth treats it as
a noun phrase and the fifth as an adjective. In con-
trast, our approach is able to correctly learn only
the top two lexical entries.

We present a batch algorithm focused on con-
trolling the size of the lexicon when learning CCG
semantic parsers (§3). Because we make updates
only after processing the entire training set, we
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can take corpus-wide statistics into account be-
fore each lexicon update. To explicitly control
the size of the lexicon, we adopt two complemen-
tary strategies: voting and pruning. First, we con-
sider the lexical evidence each sample provides as
a vote towards potential entries. We describe two
voting strategies for deciding which entries to add
to the model lexicon (§4). Second, even though
we use voting to only conservatively add new lex-
icon entries, we also prune existing entries if they
are no longer necessary for parsing the training
data. These steps are incorporated into the learn-
ing framework, allowing us to apply stricter crite-
ria for lexicon expansion while maintaining a sin-
gle learning algorithm.

We evaluate our approach on the robot navi-
gation semantic parsing task (Chen and Mooney,
2011; Artzi and Zettlemoyer, 2013b). Our exper-
imental results show that we outperform previous
state of the art on executing sequences of instruc-
tions, while learning significantly more compact
lexicons (§6 and Table 3).

2 Task and Inference

To present our lexicon learning techniques, we
focus on the task of executing natural language
navigation instructions (Chen and Mooney, 2011).
This domain captures some of the fundamental
difficulties in recent semantic parsing problems.
In particular, it requires learning from weakly-
supervised data, rather than data annotated with
full logical forms, and parsing sentences in a
situated environment. Additionally, successful
task completion requires interpreting and execut-
ing multiple instructions in sequence, requiring
accurate models to avoid cascading errors. Al-
though this overview centers around the aforemen-
tioned task, our methods are generalizable to any
semantic parsing approach that relies on CCG.

We approach the navigation task as a situated
semantic parsing problem, where the meaning of
instructions is represented with lambda calculus
expressions, which are then deterministically ex-
ecuted. Both the mapping of instructions to logi-
cal forms and their execution consider the current
state of the world. This problem was recently ad-
dressed by Artzi and Zettlemoyer (2013b) and our
experimental setup mirrors theirs. In this section,
we provide a brief background on CCG and de-
scribe the task and our inference method.

walk forward twice

S/NP NP AP
λx.λa.move(a) ∧ direction(a, x) forward λa.len(a, 2)

>
S S\S

λa.move(a) ∧ direction(a, forward) λf.λa.f(a) ∧ len(a, 2)
<

S
λa.move(a) ∧ direction(a, forward) ∧ len(a, 2)

in the red hallway

PP/NP NP/N ADJ N
λx.λy.intersect(y, x) λf.ι(f) λx.brick(x) λx.hall(x)

N/N
λf.λx.f(x)∧
brick(x)

<
N

λx.hall(x) ∧ brick(x)
>

NP
ι(λx.hall(x) ∧ brick(x)

>
PP

λy.intersect(y, ι(λx.hall(x) ∧ brick(x)))

Figure 2: Two CCG parses. The top shows a complete
parse with an adverbial phrase (AP ), including unary
type shifting and forward (>) and backward (<) ap-
plication. The bottom fragment shows a prepositional
phrase (PP ) with an adjective (ADJ).

2.1 Combinatory Categorial Grammar

CCG is a linguistically-motivated categorial for-
malism for modeling a wide range of language
phenomena (Steedman, 1996; Steedman, 2000).
In CCG, parse tree nodes are categories, which are
assigned to strings (single words or n-grams) and
combined to create a complete derivation. For ex-
ample, S/NP : λx.λa.move(a)∧ direction(a, x)
is a CCG category describing an imperative verb
phrase. The syntactic type S/NP indicates the
category is expecting an argument of type NP
on its right, and the returned category will have
the syntax S. The directionality is indicated by
the forward slash /, where a backward slash \
would specify the argument is expected on the left.
The logical form in the category represents its se-
mantic meaning. For example, λx.λa.move(a) ∧
direction(a, x) in the category above is a function
expecting an argument, the variable x, and return-
ing a function from events to truth-values, the se-
mantic representation of imperatives. In this do-
main, the conjunction in the logical form specifies
conditions on events. Specifically, the event must
be a move event and have a specified direction.

A CCG is defined by a lexicon and a set of com-
binators. The lexicon provides a mapping from
strings to categories. Figure 2 shows two CCG
parses in the navigation domain. Parse trees are
read top to bottom. Parsing starts by matching cat-
egories to strings in the sentence using the lexicon.
For example, the lexical entry walk ` S/NP :
λx.λa.move(a) ∧ direction(a, x) pairs the string
walk with the example category above. Each in-
termediate parse node is constructed by applying
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one of a small set of binary CCG combinators or
unary operators. For example, in Figure 2 the cat-
egory of the span walk forward is combined with
the category of twice using backward application
(<). Parsing concludes with a logical form that
captures the meaning of the complete sentence.

We adopt a factored representation for CCG
lexicons (Kwiatkowski et al., 2011), where
entries are dynamically generated by combining
lexemes and templates. A lexeme is a pair
that consists of a natural language string and
a set of logical constants, while the template
contains the syntactic and semantic components
of a CCG category, abstracting over logical
constants. For example, consider the lexical entry
walk ` S/NP : λx.λa.move(a) ∧ direction(a, x).
Under the factored representation, this entry
can be constructed by combining the lexeme
〈walk, {move,direction}〉 and the template
λv1.λv2.[S/NP : λx.λa.v1(a) ∧ v2(a, x)]. This
representation allows for better generalization
over unseen lexical entries at inference time,
allowing for pairings of templates and lexemes
not seen during training.

2.2 Situated Log-Linear CCGs

We use a CCG to parse sentences to logical forms,
which are then executed. Let S be a set of states,
X be the set of all possible sentences, and E be
the space of executions, which are S → S func-
tions. For example, in the navigation task from
Artzi and Zettlemoyer (2013b), S is a set of po-
sitions on a map, as illustrated in Figure 3. The
map includes an agent that can perform four ac-
tions: LEFT, RIGHT, MOVE, and NULL. An execu-
tion e is a sequence of actions taken consecutively.
Given a state s ∈ S and a sentence x ∈ X , we aim
to find the execution e ∈ E described in x. Let Y
be the space of CCG parse trees and Z the space
of all possible logical forms. Given a sentence x
we generate a CCG parse y ∈ Y , which includes a
logical form z ∈ Z . An execution e is then gener-
ated from z using a deterministic process.

Parsing with a CCG requires choosing appro-
priate lexical entries from an often ambiguous lex-
icon and the order in which operations are ap-
plied. In a situated scenario such choices must
account for the current state of the world. In gen-
eral, given a CCG, there are many parses for each
sentence-state pair. To discriminate between com-
peting parses, we use a situated log-linear CCG,

facing the chair in the intersection move forward twice
λa.pre(a, front(you, ι(λx.chair(x)∧

intersect(x, ι(λy.intersection(y))))))∧
move(a) ∧ len(a, 2)
〈FORWARD, FORWARD〉
turn left
λa.turn(a) ∧ direction(a, left)
〈LEFT〉
go to the end of the hall
λx.move(a) ∧ to(a, ι(λx.end(x, ι(λy.hall(y)))))
〈FORWARD, FORWARD〉

Figure 3: Fragment of a map and instructions for the
navigation domain. The fragment includes two inter-
secting hallways (red and blue), two chairs and an agent
facing left (green pentagon), which follows instructions
such as these listed below. Each instruction is paired
with a logical form representing its meaning and its ex-
ecution in the map.

inspired by Clark and Curran (2007).
Let GEN(x, s; Λ) ⊂ Y be the set of all possi-

ble CCG parses given the sentence x, the current
state s and the lexicon Λ. In GEN(x, s; Λ), multi-
ple parse trees may have the same logical form;
let Y(z) ⊂ GEN(x, s; Λ) be the subset of such
parses with the logical form z at the root. Also,
let θ ∈ Rd be a d-dimensional parameter vector.
We define the probability of the logical form z as:

p(z|x, s; θ,Λ) =
∑

y∈Y(z)

p(y|x, s; θ,Λ) (1)

Above, we marginalize out the probabilities of all
parse trees with the same logical form z at the root.
The probability of a parse tree y is defined as:

p(y|x, s; θ,Λ) =
eθ·φ(x,s,y)∑

y′∈GEN(x,s;Λ)

eθ·φ(x,s,y′)
(2)

Where φ(x, s, y) ∈ Rd is a feature vector. Given
a logical form z, we deterministically map it to an
execution e ∈ E . At inference time, given a sen-
tence x and state s, we find the best logical form
z∗ (and its corresponding execution) by solving:

z∗ = arg max
z

p(z|x, s; θ,Λ) (3)
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The above arg max operation sums over all trees
y ∈ Y(z), as described in Equation 1. We use a
CKY chart for this computation. The chart signa-
ture in each span is a CCG category. Since ex-
act inference is prohibitively expensive, we fol-
low previous work and perform bottom-up beam
search, maintaining only the k-best categories for
each span in the chart. The logical form z∗ is taken
from the k-best categories at the root of the chart.
The partition function in Equation 2 is approxi-
mated by summing the inside scores of all cate-
gories at the root. We describe the choices of hy-
perparameters and details of our feature set in §5.

3 Learning

Learning a CCG semantic parser requires inducing
the entries of the lexicon Λ and estimating pars-
ing parameters θ. We describe a batch learning
algorithm (Figure 4), which explicitly attempts to
induce a compact lexicon, while fully explaining
the training data. At training time, we assume ac-
cess to a set of N examples D =

{
d(i)
}N

1
, where

each datapoint d(i) = 〈x(i), s(i), e(i)〉, consists of
an instruction x(i), the state s(i) where the instruc-
tion is issued and its execution demonstration e(i).
In particular, we know the correct execution for
each state and instruction, but we do not know the
correct CCG parse and logical form. We treat the
choices that determine them, including selection
of lexical entries and parsing operators, as latent.
Since there can be many logical forms z ∈ Z that
yield the same execution e(i), we marginalize over
the logical forms (using Equation 1) when maxi-
mizing the following regularized log-likelihood:

L (θ,Λ,D) = (4)∑
d(i)∈D

∑
z∈Z(e(i))

p(z|x(i), s(i); θ,Λ)− γ

2
‖θ‖22

WhereZ(e(i)) is the set of logical forms that result
in the execution e(i) and the hyperparameter γ is
a regularization constant. Due to the large number
of potential combinations,1 it is impractical to con-
sider the complete set of lexical entries, where all
strings (single words and n-grams) are associated
with all possible CCG categories. Therefore, simi-
lar to prior work, we gradually expand the lexicon
during learning. As a result, the parameter space

1For the navigation task, given the set of CCG category
templates (see §2.1) and parameters used there would be be-
tween 7.5-10.2M lexical entries to consider, depending on the
corpus used (§5).

Algorithm 1 Batch algorithm for maximizing L (θ,Λ,D).
See §3.1 for details.

Input: Training dataset D =
{
d(i)
}N

1
, number of learning

iterations T , seed lexicon Λ0, a regularization constant
γ, and a learning rate µ. VOTE is defined in §4.

Output: Lexicon Λ and model parameters θ
1: Λ← Λ0

2: for t = 1 to T do
» Generate lexical entries for all datapoints.

3: for i = 1 to N do
4: λ(i) ← GENENTRIES(d(i), θ,Λ)

» Add corpus-wide voted entries to model lexicon.
5: Λ← Λ ∪ VOTE(Λ, {λ(1), . . . , λ(N)})

» Compute gradient and entries to prune.
6: for i = 1 to N do
7: 〈λ(i)

− ,∆
(i)〉 ← COMPUTEUPDATE(d(i), θ,Λ)

» Prune lexicon.

8: Λ← Λ \
N⋂
i=1

λ
(i)
−

» Update model parameters.

9: θ ← θ + µ

N∑
i=1

∆(i) − γθ
10: return Λ and θ

Algorithm 2 GENENTRIES: Algorithm to generate lexical
entries from one training datapoint. See §3.2 for details.
Input: Single datapoint d = 〈x, s, e〉, current model param-

eters θ and lexicon Λ.
Output: Datapoint-specific lexicon entries λ.

» Augment lexicon with sentence-specific entries.
1: Λ+ ← Λ ∪ GENLEX(d,Λ, θ)

» Get max-scoring parses producing correct execution.
2: y+ ← GENMAX(x, s, e; Λ+, θ)

» Extract lexicon entries from max-scoring parses.
3: λ←

⋃
y∈y+

LEX(y)

4: return λ

Algorithm 3 COMPUTEUPDATE: Algorithm to compute the
gradient and the set of lexical entries to prune for one data-
point. See §3.3 for details.
Input: Single datapoint d = 〈x, s, e〉, current model param-

eters θ and lexicon Λ.
Output: 〈λ−,∆〉, lexical entries to prune for d and gradient.

» Get max-scoring correct parses given Λ and θ.
1: y+ ← GENMAX(x, s, e; Λ, θ)

» Create the set of entries to prune.
2: λ− ← Λ \

⋃
y∈y+

LEX(y)

» Compute gradient.
3: ∆← E(y | x, s, e; θ,Λ)− E(y | x, s; θ,Λ)
4: return 〈λ−,∆〉

Figure 4: Our learning algorithm and its subroutines.

changes throughout training whenever the lexicon
is modified. The learning problem involves jointly
finding the best set of parameters and lexicon en-
tries. In the remainder of this section, we describe
how we optimize Equation 4, while explicitly con-
trolling the lexicon size.
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3.1 Optimization Algorithm

We present a learning algorithm to optimize the
data log-likelihood, where both lexicon learning
and parameter updates are performed in batch, i.e.,
after observing all the training corpus. The batch
formulation enables us to use information from the
entire training set when updating the model lexi-
con. Algorithm 1 presents the outline of our op-
timization procedure. It takes as input a training
dataset D, number of iterations T , seed lexicon
Λ0, learning rate µ and regularization constant γ.

Learning starts with initializing the model lex-
icon Λ using Λ0 (line 1). In lines 2-9, we run T
iterations; in each, we make two passes over the
corpus, first to generate lexical entries, and second
to compute gradient updates and lexical entries to
prune. To generate lexical entries (lines 3-4) we
use the subroutine GENENTRIES to independently
generate entries for each datapoint, as described
in §3.2. Given the entries for each datapoint, we
vote on which to add to the model lexicon. The
subroutine VOTE (line 5) chooses a subset of the
proposed entries using a particular voting strategy
(see §4). Given the updated lexicon, we process
the corpus a second time (lines 6-7). The sub-
routine COMPUTEUPDATE, as described in §3.3,
computes the gradient update for each datapoint
d(i), and also generates the set of lexical entries not
included in the max-scoring parses of d(i), which
are candidates for pruning. We prune from the
model lexicon all lexical entries not used in any
correct parse (line 8). During this pruning step, we
ensure that no entries from Λ0 are removed from
Λ. Finally, the gradient updates are accumulated
to update the model parameters (line 9).

3.2 Lexical Entries Generation

For each datapoint d = 〈x, s, e〉, the subroutine
GENENTRIES, as described in Algorithm 2, gen-
erates a set of potential entries. The subroutine
uses the function GENLEX, originally proposed
by Zettlemoyer and Collins (2005), to generate
lexical entries from sentences paired with logical
forms. We use the weakly-supervised variant of
Artzi and Zettlemoyer (2013b). Briefly, GENLEX

uses the sentence and expected execution to gen-
erate new lexemes, which are then paired with a
set of templates factored from Λ0 to generate new
lexical entries. For more details, see §8 of Artzi
and Zettlemoyer (2013b).

Since GENLEX over-generates entries, we need

to determine the set of entries that participate
in max-scoring parses that lead to the correct
execution e. We therefore create a sentence-
specific lexicon Λ+ by taking the union of the
GENLEX-generated entries for the current sen-
tence and the model lexicon (line 1). We define
GENMAX(x, s, e; Λ+, θ) to be the set of all max-
scoring parses according to the parameters θ that
are in GEN(x, s; Λ+) and result in the correct ex-
ecution e (line 2). In line 3 we use the function
LEX(y), which returns the lexical entries used in
the parse y, to compute the set of all lexical en-
tries used in these parses. This final set contains
all newly generated entries for this datapoint and
is returned to the optimization algorithm.

3.3 Pruning and Gradient Computation

Algorithm 3 describes the subroutine COMPUTE-
UPDATE that, given a datapoint d, the current
model lexicon Λ and model parameters θ, returns
the gradient update and the set of lexical entries
to prune for d. First, similar to GENENTRIES we
compute the set of correct max-scoring parses us-
ing GENMAX (line 1). This time, however, we do
not use a sentence-specific lexicon, but instead use
the model lexicon that has been expanded with all
voted entries. As a result, the set of max-scoring
parses producing the correct execution may be
different compared to GENENTRIES. LEX(y) is
then used to extract the lexical entries from these
parses, and the set difference (λ−) between the
model lexicon and these entries is set to be pruned
(line 2). Finally, the partial derivative for the data-
point is computed using the difference of two ex-
pected feature vectors, according to two distribu-
tions (line 3): (a) parses conditioned on the correct
execution e, the sentence x, state s and the model,
and (b) all parses not conditioned on the execution
e. The derivatives are approximate due to the use
of beam search, as described in §2.2.

4 Global Voting for Lexicon Learning

Our goal is to learn compact and accurate CCG
lexicons. To this end, we globally reason about
adding new entries to the lexicon by voting (VOTE,
Algorithm 1, line 5), and remove entries by prun-
ing the ones no longer required for explaining the
training data (Algorithm 1, line 8). In voting, each
datapoint can be considered as attempting to in-
fluence the learning algorithm to update the model
lexicon with the entries required to parse it. In this
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Round 1 Round 2 Round 3 Round 4

d(1)
〈chair, {chair}〉
〈chair, {hatrack}〉
〈chair, {turn,direction}〉

1/3
1/3
1/3

〈chair, {chair}〉
〈chair, {hatrack}〉

1/2
1/2
〈chair, {chair}〉 1 〈chair, {chair}〉 1

d(2) 〈chair, {chair}〉
〈chair, {hatrack}〉

1/2
1/2
〈chair, {chair}〉
〈chair, {hatrack}〉

1/2
1/2
〈chair, {chair}〉 1 〈chair, {chair}〉 1

d(3) 〈chair, {chair}〉
〈chair, {easel}〉

1/2
1/2
〈chair, {chair}〉
〈chair, {easel}〉

1/2
1/2
〈chair, {chair}〉
〈chair, {easel}〉

1/2
1/2
〈chair, {chair}〉 1

d(4) 〈chair, {easel}〉 1 〈chair, {easel}〉 1 〈chair, {easel}〉 1 〈chair, {easel}〉 1

Votes

〈chair, {chair}〉
〈chair, {easel}〉
〈chair, {hatrack}〉
〈chair, {turn,direction}〉

11/3
11/2
5/6
1/3

〈chair, {chair}〉
〈chair, {easel}〉
〈chair, {hatrack}〉

11/2
11/2

1

〈chair, {chair}〉
〈chair, {easel}〉

21/2
11/2

〈chair, {chair}〉〈chair, {chair}〉〈chair, {chair}〉
〈chair, {easel}〉

3
1

Discard 〈chair, {turn, direction}〉 〈chair, {hatrack}〉 〈chair, {easel}〉

Figure 5: Four rounds of CONSENSUSVOTE for the string chair for four training datapoints. For each datapoint,
we specify the set of lexemes generated in the Round 1 column, and update this set after each round. At the end,
the highest voted new lexeme according to the final votes is returned. In this example, MAXVOTE and CONSEN-
SUSVOTE lead to different outcomes. MAXVOTE, based on the initial sets only, will select 〈chair, {easel}〉.

section we describe two alternative voting strate-
gies. Both strategies ensure that new entries are
only added when they have wide support in the
training data, but count this support in different
ways. For reproducibility, we also provide step-
by-step pseudocode for both methods in the sup-
plementary material.

Since we only have access to executions and
treat parse trees as latent, we consider as correct
all parses that produce correct executions. Fre-
quently, however, incorrect parses spuriously lead
to correct executions. Lexical entries extracted
from such spurious parses generalize poorly. The
goal of voting is to eliminate such entries.

Voting is formulated on the factored lexicon
representation, where each lexical entry is factored
into a lexeme and a template, as described in §2.1.
Each lexeme is a pair containing a natural lan-
guage string and a set of logical constants.2 A lex-
eme is combined with a template to create a lexical
entry. In our lexicon learning approach only new
lexemes are generated, while the set of templates
is fixed; hence, our voting strategies reason over
lexemes and only create complete lexicon entries
at the end. Decisions are made for each string in-
dependently of all other strings, but considering all
occurrences of that string in the training data.

In lines 3-4 of Algorithm 1 GENENTRIES is
used to propose new lexical entries for each train-
ing datapoint d(i). For each d(i) a set λ(i), that
includes all lexical entries participating in parses
that lead to the correct execution, is generated. In
these sets, the same string can appear in multiple

2Recall, for example, that in one lexeme the string walk
may be paired with the set of constants {move, direction}.

lexemes. To normalize its influence, each data-
point is given a vote of 1.0 for each string, which
is distributed uniformly among all lexemes con-
taining the same string.

For example, a specific λ(i) may consist of
the following three lexemes: 〈chair, {chair}〉,
〈chair, {hatrack}〉, 〈face, {post, front, you}〉. In
this set, the phrase chair has two possible mean-
ings, which will therefore each receive a vote of
0.5, while the third lexeme will be given a vote of
1.0. Such ambiguity is common and occurs when
the available supervision is insufficient to discrim-
inate between different parses, for example, if they
lead to identical executions.

Each of the two following strategies reasons
over these votes to globally select the best lex-
emes. To avoid polluting the model lexicon, both
strategies adopt a conservative approach and only
select at most one lexeme for each string in each
training iteration.

4.1 Strategy 1: MAXVOTE

The first strategy for selecting voted lexical entries
is straightforward. For each string it simply aggre-
gates all votes and selects the new lexeme with the
most votes. A lexeme is considered new if it is
not already in the model lexicon. If no such sin-
gle lexeme exists (e.g., no new entries were used
in correctly executing parses or in the case of a tie)
no lexeme is selected in this iteration.

A potential limitation of MAXVOTE is that the
votes for all rejected lexemes are lost. However,
it is often reasonable to re-allocate these votes to
other lexemes. For example, consider the sets of
lexemes for the word chair in the Round 1 col-
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umn of Figure 5. Using MAXVOTE on these sets
will select the lexeme 〈chair, {easel}〉, rather than
the correct lexeme 〈chair, {chair}〉. This occurs
when the datapoints supporting the correct lexeme
distribute their votes over many spurious lexemes.

4.2 Strategy 2: CONSENSUSVOTE

Our second strategy CONSENSUSVOTE aims to
capture the votes that are lost in MAXVOTE. In-
stead of discarding votes that do not go to the max-
imum scoring lexeme, voting is done in several
rounds. In each round the lowest scoring lexeme
is discarded and votes are re-assigned uniformly
to the remaining lexemes. This procedure is con-
tinued until convergence. Finally, given the sets of
lexemes in the last round, the votes are computed
and the new lexeme with most votes is selected.

Figure 5 shows a complete voting process for
four training datapoints. In each round, votes
are aggregated over the four sets of lexemes, and
the lexeme with the fewest votes is discarded.
For each set of lexemes, the discarded lexeme
is removed, unless it will lead to an empty set.3

In the example, while 〈chair, {easel}〉 is dis-
carded in Round 3, it remains in the set of d(4).
The process converges in the fourth round, when
there are no more lexemes to discard. The fi-
nal sets include two entries: 〈chair, {chair}〉 and
〈chair, {easel}〉. By avoiding wasting votes on
lexemes that have no chance of being selected, the
more widely supported lexeme 〈chair, {chair}〉
receives the most votes, in contrast to Round 1,
where 〈chair, {easel}〉 was the highest voted one.

5 Experimental Setup

To isolate the effect of our lexicon learning tech-
niques we closely follow the experimental setup of
previous work (Artzi and Zettlemoyer, 2013b, §9)
and use its publicly available code.4 This includes
the provided beam-search CKY parser, two-pass
parsing for testing, beam search for executing se-
quences of instructions and the same seed lexicon,
weight initialization and features. Finally, except

3This restriction is meant to ensure that discarding lex-
emes will not change the set of sentences that can be parsed.
In addition, it means that the total amount of votes given to a
string is invariant between rounds. Allowing for empty sets
will change the sum of votes, and therefore decrease the num-
ber of datapoints contributing to the decision.

4Their implementation, based on the University of Wash-
ington Semantic Parsing Framework (Artzi and Zettlemoyer,
2013a), is available at http://yoavartzi.com/navi.

the optimization parameters specified below, we
use the same parameter settings.

Data For evaluation we use two related cor-
pora: SAIL (Chen and Mooney, 2011) and ORA-
CLE (Artzi and Zettlemoyer, 2013b). Due to how
the original data was collected (MacMahon et al.,
2006), SAIL includes many wrong executions and
about 30% of all instruction sequences are infeasi-
ble (e.g., instructing the agent to walk into a wall).
To better understand system performance and the
effect of noise, ORACLE was created with the
subset of valid instructions from SAIL paired with
their gold executions. Following previous work,
we use a held-out set for the ORACLE corpus and
cross-validation for the SAIL corpus.

Systems We report two baselines. Our batch
baseline uses the same regularized algorithm, but
updates the lexicon by adding all entries without
voting and skips pruning. Additionally, we added
post-hoc pruning to the algorithm of Artzi and
Zettlemoyer (2013b) by discarding all learned en-
tries that are not participating in max-scoring cor-
rect parses at the end of training. For ablation,
we study the influence of the two voting strategies
and pruning, while keeping the same regulariza-
tion setting. Finally, we compare our approach to
previous published results on both corpora.

Optimization Parameters We optimized the
learning parameters using cross validation on the
training data to maximize recall of complete se-
quence execution and minimize lexicon size. We
use 10 training iterations and the learning rate
µ = 0.1. For SAIL we set the regularization pa-
rameter γ = 1.0 and for ORACLE γ = 0.5.

Full Sequence Inference To execute sequences
of instructions we use the beam search procedure
of Artzi and Zettlemoyer (2013b) with an identical
beam size of 10. The beam stores states, and is
initialized with the starting state. Instructions are
executed in order, each is attempted from all states
currently in the beam, the beam is then updated
and pruned to keep the 10-best states. At the end,
the best scoring state in the beam is returned.

Evaluation Metrics We evaluate the end-to-end
task of executing complete sequences of instruc-
tions against an oracle final state. In addition, to
better understand the results, we also measure task
completion for single instructions. We repeated
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ORACLE corpus cross-validation Single sentence Sequence Lexicon
P R F1 P R F1 size

Artzi and Zettlemoyer (2013b) 84.59 82.74 83.65 68.35 58.95 63.26 5383
w/ post-hoc pruning 84.32 82.89 83.60 66.83 61.23 63.88 3104

Batch baseline 85.14 81.91 83.52 72.64 60.13 65.76 6323
w/ MAXVOTE 84.04 82.25 83.14 72.79 64.86 68.55 2588
w/ CONSENSUSVOTE 84.51 82.23 83.36 72.99 63.45 67.84 2446
w/ pruning 85.58 83.51 84.53 75.15 65.97 70.19 2791
w/ MAXVOTE + pruning 84.50 82.89 83.69 72.91 66.40 69.47 2186
w/ CONSENSUSVOTE + pruning 85.22 83.00 84.10 75.65 66.15 70.55 2101

Table 1: Ablation study using cross-validation on the ORACLE corpus training data. We report mean precision
(P), recall (R) and harmonic mean (F1) of execution accuracy on single sentences and sequences of instructions
and mean lexicon sizes. Bold numbers represent the best performing method on a given metric.

Final results Single sentence Sequence Lexicon
P R F1 P R F1 size

SAIL

Chen and Mooney (2011) 54.40 16.18
Chen (2012) 57.28 19.18

+ additional data 57.62 20.64
Kim and Mooney (2012) 57.22 20.17
Kim and Mooney (2013) 62.81 26.57
Artzi and Zettlemoyer (2013b) 67.60 65.28 66.42 38.06 31.93 34.72 10051
Our Approach 66.67 64.36 65.49 41.30 35.44 38.14 2873

ORACLE Artzi and Zettlemoyer (2013b) 81.17 (0.68) 78.63 (0.84) 79.88 (0.76) 68.07 (2.72) 58.05 (3.12) 62.65 (2.91) 6213 (217)

Our Approach 79.86 (0.50) 77.87 (0.41) 78.85 (0.45) 76.05 (1.79) 68.53 (1.76) 72.10 (1.77) 2365 (57)

Table 2: Our final results compared to previous work on the SAIL and ORACLE corpora. We report mean precision
(P), recall (R), harmonic mean (F1) and lexicon size results and standard deviation between runs (in parenthesis)
when appropriate. Our Approach stands for batch learning with a consensus voting and pruning. Bold numbers
represent the best performing method on a given metric.

each experiment five times and report mean preci-
sion, recall,5 harmonic mean (F1) and lexicon size.
For held-out test results we also report standard
deviation. For the baseline online experiments we
shuffled the training data between runs.

6 Results

Table 1 shows ablation results for 5-fold cross-
validation on the ORACLE training data. We
evaluate against the online learning algorithm of
Artzi and Zettlemoyer (2013b), an extension of it
to include post-hoc pruning and a batch baseline.
Our best sequence execution development result
is obtained with CONSENSUSVOTE and pruning.
The results provide a few insights. First, sim-
ply switching to batch learning provides mixed re-
sults: precision increases, but recall drops and the
learned lexicon is larger. Second, adding pruning
results in a much smaller lexicon, and, especially
in batch learning, boosts performance. Adding
voting further reduces the lexicon size and pro-
vides additional gains for sequence execution. Fi-
nally, while MAXVOTE and CONSENSUSVOTE

give comparable performance on their own, CON-
SENSUSVOTE results in more precise and compact

5Recall is identical to accuracy as reported in prior work.

models when combined with pruning.

Table 2 lists our test results. We significantly
outperform previous state of the art on both cor-
pora when evaluating sequence accuracy. In both
scenarios our lexicon is 60-70% smaller. In con-
trast to the development results, single sentence
performance decreases slightly compared to Artzi
and Zettlemoyer (2013b). The discrepancy be-
tween single sentence and sequence results might
be due to the beam search performed when execut-
ing sequences of instructions. Models with more
compact lexicons generate fewer logical forms for
each sentence: we see a decrease of roughly 40%
in our models compared to Artzi and Zettlemoyer
(2013b). This is especially helpful during se-
quence execution, where we use a beam size of
10, resulting in better sequences of executions. In
general, this shows the potential benefit of using
more compact models in scenarios that incorpo-
rate reasoning about parsing uncertainty.

To illustrate the types of errors avoided with
voting and pruning, Table 3 describes common
error classes and shows example lexical entries
for batch trained models with CONSENSUSVOTE

and pruning and without. Quantitatively, the mean
number of entries per string on development folds
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String
# lexical entries

Example categoriesBatch With voting
baseline and pruning

The algorithm often treats common bigrams as multiword phrases, and later learns the more general separate entries.
Without pruning the initial entries remain in the lexicon and compete with the correct ones during inference.
octagon carpet 45 0 N : λx.wall(x) N : λx.hall(x)

N : λx.honeycomb(x)
carpet 51 5 N : λx.hall(x)

N/N : λf.λx.x == argmin(f, λy.dist(y))
octagon 21 5 N : λx.honeycomb(x) N : λx.cement(x)

ADJ : λx.honeycomb(x)

We commonly see in the lexicon a long tail of erroneous entries, which compete with correctly learned ones. With voting
and pruning we are often able to avoid such noisy entries. However, some noise still exists, e.g., the entry for “intersection”.
intersection 45 7 N : λx.intersection(x) S\N : λf.intersect(you, (f))

AP : λa.len(a, 1) N/NP : λx.λy.intersect(y, x)
twice 46 2 AP : λa.len(a, 2) AP : λa.pass(a,A(λx.empty(x)))

AP : λa.pass(a,A(λx.hall(x)))
stone 31 5 ADJ : λx.stone(x) ADJ : λx.brick(x)

ADJ : λx.honeycomb(x) NP/N : λf.A(f)

Not all concepts mentioned in the corpus are relevant to the task and some of these are not semantically modeled. However,
the baseline learner doesn’t make this distinction and induces many erroneous entries. With voting the model better handles
such cases, either by pairing such words with semantically empty entries or learning no entries for them. During inference
the system can then easily skip such words.
now 28 0 AP : λa.len(a, 3) AP : λa.direction(a, forward)
only 38 0 N/NP : λx.λy.intersect(y, x)

N/NP : λx.λy.front(y, x)
here 31 8 NP : you S/S : λx.x

S\N : λf.intersect(you,A(f))

Without pruning the learner often over-splits multiword phrases and has no way to reverse such decisions.
coat 25 0 N : λx.intersection(x) ADJ : λx.hatrack(x)
rack 45 0 N : λx.hatrack(x) N : λx.furniture(x)
coat rack 55 5 N : λx.hatrack(x) N : λx.wall(x)

N : λx.furniture(x)

Voting helps to avoid learning entries for rare words when the learning signal is highly ambiguous.
orange 20 0 N : λx.cement(x) N : λx.grass(x)
pics of towers 26 0 Nλx.intersection(x) N : λx.hall(x)

Table 3: Example entries from a learned ORACLE corpus lexicon using batch learning. For each string we
report the number of lexical entries without voting (CONSENSUSVOTE) and pruning and with, and provide a few
examples. Struck entries were successfully avoided when using voting and pruning.

decreases from 16.77 for online training to 8.11.
Finally, the total computational cost of our ap-

proach is roughly equivalent to online approaches.
In both approaches, each pass over the data makes
the same number of inference calls, and in prac-
tice, Artzi and Zettlemoyer (2013b) used 6-8 it-
erations for online learning while we used 10. A
benefit of the batch method is its insensitivity to
data ordering, as expressed by the lower standard
deviation between randomized runs in Table 2.6

7 Related Work

There has been significant work on learning for se-
mantic parsing. The majority of approaches treat
grammar induction and parameter estimation sep-
arately, e.g. Wong and Mooney (2006), Kate and
Mooney (2006), Clarke et al. (2010), Goldwasser
et al. (2011), Goldwasser and Roth (2011), Liang

6Results still vary slightly due to multi-threading.

et al. (2011), Chen and Mooney (2011), and Chen
(2012). In all these approaches the grammar struc-
ture is fixed prior to parameter estimation.

Zettlemoyer and Collins (2005) proposed the
learning regime most related to ours. Their learner
alternates between batch lexical induction and on-
line parameter estimation. Our learning algo-
rithm design combines aspects of previously stud-
ied approaches into a batch method, including
gradient updates (Kwiatkowski et al., 2010) and
using weak supervision (Artzi and Zettlemoyer,
2011). In contrast, Artzi and Zettlemoyer (2013b)
use online perceptron-style updates to optimize a
margin-based loss. Our work also focuses on CCG
lexicon induction but differs in the use of corpus-
level statistics through voting and pruning for ex-
plicitly controlling the size of the lexicon.

Our approach is also related to the grammar in-
duction algorithm introduced by Carroll and Char-
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niak (1992). Similar to our method, they process
the data using two batch steps: the first proposes
grammar rules, analogous to our step that gener-
ates lexical entries, and the second estimates pars-
ing parameters. Both methods use pruning after
each iteration, to remove unused entries in our ap-
proach, and low probability rules in theirs. How-
ever, while we use global voting to add entries
to the lexicon, they simply introduce all the rules
generated by the first step. Their approach also
relies on using disjoint subsets of the data for the
two steps, while we use the entire corpus.

Using voting to aggregate evidence has been
studied for combining decisions from an ensem-
ble of classifiers (Ho et al., 1994; Van Erp and
Schomaker, 2000). MAXVOTE is related to ap-
proval voting (Brams and Fishburn, 1978), where
voters are required to mark if they approve each
candidate or not. CONSENSUSVOTE combines
ideas from approval voting, Borda counting, and
instant-runoff voting. Van Hasselt (2011) de-
scribed all three systems and applied them to pol-
icy summation in reinforcement learning.

8 Conclusion

We considered the problem of learning for se-
mantic parsing, and presented voting and pruning
methods based on corpus-level statistics for induc-
ing compact CCG lexicons. We incorporated these
techniques into a batch modification of an exist-
ing learning approach for joint lexicon induction
and parameter estimation. Our evaluation demon-
strates that both voting and pruning contribute to-
wards learning a compact lexicon and illustrates
the effect of lexicon quality on task performance.

In the future, we wish to study various aspects
of learning more robust lexicons. For example, in
our current approach, words not appearing in the
training set are treated as unknown and ignored at
inference time. We would like to study the bene-
fit of using large amounts of unlabeled text to al-
low the model to better hypothesize the meaning
of such previously unseen words. Moreover, our
model’s performance is currently sensitive to the
set of seed lexical templates provided. While we
are able to learn the meaning of new words, the
model is unable to correctly handle syntactic and
semantic structures not covered by the seed tem-
plates. To alleviate this problem, we intend to fur-
ther explore learning novel lexical templates.

Acknowledgements

We thank Kuzman Ganchev, Emily Pitler, Luke
Zettlemoyer, Tom Kwiatkowski and Nicholas
FitzGerald for their comments on earlier drafts,
and the anonymous reviewers for their valuable
feedback. We also wish to thank Ryan McDon-
ald and Arturas Rozenas for their valuable input
about voting procedures.

References
Yoav Artzi and Luke S. Zettlemoyer. 2011. Bootstrap-

ping semantic parsers from conversations. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing.

Yoav Artzi and Luke S. Zettlemoyer. 2013a. UW
SPF: The University of Washington Semantic Pars-
ing Framework.

Yoav Artzi and Luke S. Zettlemoyer. 2013b. Weakly
supervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics, 1(1):49–62.

Steven J. Brams and Peter C. Fishburn. 1978. Ap-
proval voting. The American Political Science Re-
view, pages 831–847.

Qingqing Cai and Alexander Yates. 2013. Seman-
tic parsing freebase: Towards open-domain semantic
parsing. In Proceedings of the Joint Conference on
Lexical and Computational Semantics.

Gelnn Carroll and Eugene Charniak. 1992. Two exper-
iments on learning probabilistic dependency gram-
mars from corpora. Working Notes of the Workshop
Statistically-Based NLP Techniques.

David L. Chen and Raymond J. Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In Proceedings of the Na-
tional Conference on Artificial Intelligence.

David L. Chen. 2012. Fast online lexicon learning for
grounded language acquisition. In Proceedings of
the Annual Meeting of the Association for Computa-
tional Linguistics.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG
and log-linear models. Computational Linguistics,
33(4):493–552.

James Clarke, Dan Goldwasser, Ming-Wei Chang, and
Dan Roth. 2010. Driving semantic parsing from the
world’s response. In Proceedings of the Conference
on Computational Natural Language Learning.

Dan Goldwasser and Dan Roth. 2011. Learning from
natural instructions. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence.

1282



Dan Goldwasser, Roi Reichart, James Clarke, and Dan
Roth. 2011. Confidence driven unsupervised se-
mantic parsing. In Proceedings of the Association
of Computational Linguistics.

Tin K. Ho, Jonathan J. Hull, and Sargur N. Srihari.
1994. Decision combination in multiple classifier
systems. IEEE Transactions on Pattern Analysis
and Machine Intelligence, pages 66–75.

Rohit J. Kate and Raymond J. Mooney. 2006. Us-
ing string-kernels for learning semantic parsers. In
Proceedings of the Conference of the Association for
Computational Linguistics.

Joohyun Kim and Raymond J. Mooney. 2012. Un-
supervised pcfg induction for grounded language
learning with highly ambiguous supervision. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing.

Joohyun Kim and Raymond J. Mooney. 2013. Adapt-
ing discriminative reranking to grounded language
learning. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics.

Jayant Krishnamurthy and Tom Mitchell. 2012.
Weakly supervised training of semantic parsers. In
Proceedings of the Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning.

Nate Kushman and Regina Barzilay. 2013. Using se-
mantic unification to generate regular expressions
from natural language. In Proceedings of the Hu-
man Language Technology Conference of the North
American Association for Computational Linguis-
tics.

Tom Kwiatkowski, Luke S. Zettlemoyer, Sharon Gold-
water, and Mark Steedman. 2010. Inducing prob-
abilistic CCG grammars from logical form with
higher-order unification. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing.

Tom Kwiatkowski, Luke S. Zettlemoyer, Sharon Gold-
water, and Mark Steedman. 2011. Lexical Gener-
alization in CCG Grammar Induction for Semantic
Parsing. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing.

Mike Lewis and Mark Steedman. 2013. Combined
distributional and logical semantics. Transactions
of the Association for Computational Linguistics,
1(1):179–192.

Percy Liang, Michael I. Jordan, and Dan Klein. 2011.
Learning dependency-based compositional seman-
tics. In Proceedings of the Conference of the As-
sociation for Computational Linguistics.

Matt MacMahon, Brian Stankiewics, and Benjamin
Kuipers. 2006. Walk the talk: Connecting language,
knowledge, action in route instructions. In Proceed-
ings of the National Conference on Artificial Intelli-
gence.

Cynthia Matuszek, Nicholas FitzGerald, Luke S.
Zettlemoyer, Liefeng Bo, and Dieter Fox. 2012. A
joint model of language and perception for grounded
attribute learning. In Proceedings of the Interna-
tional Conference on Machine Learning.

Mark Steedman. 1996. Surface Structure and Inter-
pretation. The MIT Press.

Mark Steedman. 2000. The Syntactic Process. The
MIT Press.

Merijn Van Erp and Lambert Schomaker. 2000.
Variants of the borda count method for combining
ranked classifier hypotheses. In In the International
Workshop on Frontiers in Handwriting Recognition.

Hado Van Hasselt. 2011. Insights in Reinforcement
Learning: formal analysis and empirical evaluation
of temporal-difference learning algorithms. Ph.D.
thesis, University of Utrecht.

Yuk W. Wong and Raymond J. Mooney. 2006. Learn-
ing for semantic parsing with statistical machine
translation. In Proceedings of the Human Language
Technology Conference of the North American Asso-
ciation for Computational Linguistics.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the National Con-
ference on Artificial Intelligence.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial
grammars. In Proceedings of the Conference on Un-
certainty in Artificial Intelligence.

Luke S. Zettlemoyer and Michael Collins. 2007. On-
line learning of relaxed CCG grammars for parsing
to logical form. In Proceedings of the Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning.

1283



Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1284–1295,
October 25-29, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

Morpho-syntactic Lexical Generalization
for CCG Semantic Parsing

Adrienne Wang
Computer Science & Engineering

University of Washington
Seattle, WA

axwang@cs.washington.edu

Tom Kwiatkowski
Allen Institute for AI

Seattle, WA
tomk@allenai.org

Luke Zettlemoyer
Computer Science & Engineering

University of Washington
Seattle, WA

lsz@cs.washington.edu

Abstract

In this paper, we demonstrate that
significant performance gains can be
achieved in CCG semantic parsing
by introducing a linguistically moti-
vated grammar induction scheme. We
present a new morpho-syntactic fac-
tored lexicon that models systematic
variations in morphology, syntax, and
semantics across word classes. The
grammar uses domain-independent
facts about the English language to
restrict the number of incorrect parses
that must be considered, thereby
enabling effective learning from less
data. Experiments in benchmark
domains match previous models with
one quarter of the data and provide
new state-of-the-art results with all
available data, including up to 45%
relative test-error reduction.

1 Introduction

Semantic parsers map sentences to formal
representations of their meaning (Zelle and
Mooney, 1996; Zettlemoyer and Collins, 2005;
Liang et al., 2011). One common approach is
to induce a probabilistic CCG grammar, which
defines the meanings of individual words and
phrases and how to best combine them to an-
alyze complete sentences. There has been re-
cent work developing learning algorithms for
CCG semantic parsers (Kwiatkowski et al.,
2010; Artzi and Zettlemoyer, 2011) and using
them for applications ranging from question
answering (Cai and Yates, 2013b; Kwiatkowski
et al., 2013) to robot control (Matuszek et al.,
2012; Krishnamurthy and Kollar, 2013).

One key learning challenge for this style
of learning is to induce the CCG lexicon,

which lists possible meanings for each phrase
and defines a set of possible parses for
each sentence. Previous approaches have
either hand-engineered a small set of lexi-
cal templates (Zettlemoyer and Collins, 2005,
2007) or automatically learned such tem-
plates (Kwiatkowski et al., 2010, 2011). These
methods are designed to learn grammars that
overgenerate; they produce spurious parses
that can complicate parameter estimation.

In this paper, we demonstrate that signif-
icant gains can instead be achieved by using
a more constrained, linguistically motivated
grammar induction scheme. The grammar
is restricted by introducing detailed syntac-
tic modeling of a wider range of constructions
than considered in previous work, for example
introducing explicit treatments of relational
nouns, Davidsonian events, and verb tense.
We also introduce a new lexical generalization
model that abstracts over systematic morpho-
logical, syntactic, and semantic alternations
within word classes. This includes, for exam-
ple, the facts that verbs in relative clauses and
nominal constructions (e.g., “flights departing
NYC” and “departing flights”) should be in-
finitival while verbs in phrases (e.g., “What
flights depart at noon?”) should have tense.
These grammar modeling techniques use uni-
versal, domain-independent facts about the
English language to restrict word usage to ap-
propriate syntactic contexts, and as such are
potentially applicable to any semantic parsing
application.

More specifically, we introduce a new
morpho-syntactic, factored CCG lexicon that
imposes our grammar restrictions during
learning. Each lexical entry has (1) a word
stem, automatically constructed from Wik-
tionary, with part-of-speech and morpholog-
ical attributes, (2) a lexeme that is learned
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and pairs the stem with semantic content that
is invariant to syntactic usage, and (3) a lexi-
cal template that specifies the remaining syn-
tactic and semantic content. The full set of
templates is defined in terms of a small set of
base templates and template transformations
that model morphological variants such as pas-
sivization and nominalization of verbs. This
approach allows us to efficiently encode a gen-
eral grammar for semantic parsing while also
eliminating large classes of incorrect analyses
considered by previous work.

We perform experiments in two benchmark
semantic parsing datasets: GeoQuery (Zelle
and Mooney, 1996) and ATIS (Dahl et al.,
1994). In both cases, our approach
achieves state-of-the-art performance, includ-
ing a nearly 45% relative error reduction on
the ATIS test set. We also show that the gains
increase with less data, including matching
previous model’s performance with less than
25% of the training data. Such gains are par-
ticularly practical for semantic parsers; they
can greatly reduce the amount of data that is
needed for each new application domain.

2 Related Work

Grammar induction methods for CCG seman-
tic parsers have either used hand-engineered
lexical templates, e.g. (Zettlemoyer and
Collins, 2005, 2007; Artzi and Zettlemoyer,
2011), or algorithms to learn such templates
directly from data, e.g. (Kwiatkowski et al.,
2010, 2011). Here, we extend the first ap-
proach, and show that better lexical general-
ization provides significant performance gains.

Although CCG is a common choice
for semantic parsers, many other for-
malisms have been studied, including DCS
trees (Liang et al., 2011), integer linear pro-
grams (Clarke et al., 2010), and synchronous
grammars (Wong and Mooney, 2007; Jones
et al., 2012; Andreas et al., 2013). All of these
approaches build complete meaning represen-
tations for individual sentences, but the data
we use has also been studied in related work on
cross-sentence reasoning (Miller et al., 1996;
Zettlemoyer and Collins, 2009) and model-
ing semantic interpretation as a tagging prob-
lem (Tur et al., 2013; Heck et al., 2013). Al-
though we focus on full analysis with CCG,

the general idea of using linguistic constraints
to improve learning is broadly applicable.

Semantic parsers are also commonly learned
from a variety of different types of supervision,
including logical forms (Kate and Mooney,
2006; Wong and Mooney, 2007; Muresan,
2011; Kwiatkowski et al., 2012), question-
answer pairs (Clarke et al., 2010; Liang et al.,
2011), conversational logs (Artzi and Zettle-
moyer, 2011), distant supervision (Krishna-
murthy and Mitchell, 2012; Cai and Yates,
2013b), sentences paired with system behav-
ior (Goldwasser and Roth, 2011; Chen and
Mooney, 2011; Artzi and Zettlemoyer, 2013b),
and even from database constraints with no
explicit semantic supervision (Poon, 2013).
We learn from logical forms, but CCG learn-
ing algorithms have been developed for each
case above, making our techniques applicable.

There has been significant related work that
influenced the design of our morpho-syntactic
grammars. This includes linguistics stud-
ies of relational nouns (Partee and Borschev,
1998; de Bruin and Scha, 1988), Davidsonian
events (Davidson, 1967), parsing as abduc-
tion (Hobbs et al., 1988), and other more gen-
eral theories for lexicons (Pustejovsky, 1991)
and CCG (Steedman, 2011). It also includes
work on using morphology in CCG syntac-
tic parsing (Honnibal et al., 2010) and more
broad-coverage semantics in CCG (Bos, 2008;
Lewis and Steedman, 2013). However, our
work is unique in studying the use of related
ideas for semantic parsing.

Finally, there has also been recent progress
on semantic parsing against large, open do-
main databases such as Freebase (Cai and
Yates, 2013a; Kwiatkowski et al., 2013; Berant
et al., 2013). Unfortuantely, existing Freebase
datasets are not a good fit to test our approach
because the sentences they include have rela-
tively simple structure and can be interepreted
accurately using only factoid lookups with no
database joins (Yao and Van Durme, 2014).
Our work focuses on learning more syntacti-
cally rich models that support compositional
reasoning.

3 Background

Lambda Calculus We represent the mean-
ings of sentences, words and phrases with
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list one way flights from various cities

S/N N/N N PP/NP NP/N N
λf.f λfλx.oneway(x) ∧ f(x) λx.flight(x) λxλy.from(y, x) λfAx.f(x) λx.city(x)

>
NP

Ax.city(x)
>

PP
λx.from(x,Ay.city(y))

>T
N\N

λx.from(x,Ay.city(y))
<

N
λx.flight(x) ∧ from(x,Ay.city(y))

>
N

λx.flight(x) ∧ from(x,Ay.city(y)) ∧ oneway(x)
>

S
λx.flight(x) ∧ from(x,Ay.city(y)) ∧ oneway(x)

Figure 1: An example CCG parse.

lambda calculus logical expressions. We use a
version of the typed lambda calculus (Carpen-
ter, 1997), in which the basic types include en-
tities, events, truth values and numbers. Func-
tion types are assigned to lambda expressions.
The expression λx.flight(x) with type 〈e, t〉
takes an entity and returns a truth value, and
represents a set of flights.

Combinatory Categorial Grammar
CCG (Steedman, 1996, 2000) is a formalism
that tightly couples syntax and semantics,
and can be used to model a wide range of
linguistic phenomena. A traditional CCG
grammar includes a lexicon Λ with lexical
entries like the following:

flights ` N :λx.flight(x)

from ` PP/NP :λy.λx.from(x, y)

cities ` N :λx.city(x)

where a lexical item w `X : h has words w,
syntactic category X, and logical expression h.

CCG uses a small set of combinatory rules
to jointly build syntactic parses and semantic
representations. Two common combinatory
rules are forward (>) and backward (<)
application:

X/Y : f Y : g ⇒ X : f(g) (>)
Y : g X\Y : f ⇒ X : f(g) (<)

CCG also includes combinatory rules of for-
ward (> B) and backward (< B) composition:

X/Y : f Y/Z : g ⇒ X/Z : λx.f(g(x)) (> B)
Y \Z : g X\Y : f ⇒ X\Z : λx.f(g(x)) (< B)

These rules apply to build syntactic and se-
mantic derivations concurrently.

In this paper, we also implement type
raising rules for compact representation of
PP (prepositional phrase) and AP (adverbial
phrase).

PP : g ⇒ N\N : λfλx.f(x) ∧ g(x) (T)
AP : g ⇒ S\S : λfλe.f(e) ∧ g(e) (T)
AP : g ⇒ S/S : λfλe.f(e) ∧ g(e) (T)

Figure 1 shows an example CCG
parse (Steedman, 1996, 2000) where the
lexical entries are listed across the top and
the output lambda-calculus meaning repre-
sentation is at the bottom. This meaning is a
function (denoted by λx...) that defines a set
of flights with certain properties and includes
a generalized Skolem constant (Steedman,
2011) (Ay...) that performs existential quan-
tification. Following recent work (Artzi and
Zettlemoyer, 2013b), we use meaning repre-
sentations that model a variety of linguistic
constructions, for example including Skolem
constants for plurals and Davidson quantifiers
for events, which we will introduce briefly
throughout this paper as they appear.

Weighted CCGs A weighted CCG gram-
mar is defined as G = (Λ,Θ), where Λ is a
CCG lexicon and Θ ∈ Rd is a d-dimensional
parameter vector, which will be used to rank
the parses allowed under Λ.

For a sentence x, G produces a set of candi-
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date parse trees Y = Y(x;G). Given a feature
vector Φ ∈ Rd, each parse tree y for sentence
x is scored by S(y; Θ) = θ ·φ(x, y). The output
logical form ẑ is then defined to be at the root
of the highest-scoring parse ŷ:

ŷ = arg max
y∈Y(x;G)

S(y; Θ) (1)

We use existing CKY-style parsing algo-
rithms for this computation, implemented
with UW SPF (Artzi and Zettlemoyer, 2013a).
Section 7 describes the set of features we use
in the learned models.

Learning with GENLEX We will also
make use of an existing learning algo-
rithm (Zettlemoyer and Collins, 2007) (ZC07).
We first briefly review the ZC07 algorithm,
and describe our modifications in Section 7.

Given a set of training examples D =
{(xi, zi) : i = 1...n}, xi being the ith sentence
and zi being its annotated logical form, the al-
gorithm learns a set of parameters Θ for the
grammar, while also inducing the lexicon Λ.

The ZC07 learning algorithm uses a function
GENLEX(x, z) to define a set of lexical entries
that could be used to parse the sentence x to
construct the logical form z. For each training
example (x, z), GENLEX(x, z) maps all sub-
strings x to a set of potential lexical entries,
generated by exhaustively pairing the logical
constants in z using a set of hand-engineered
templates. The example is then parsed with
this much bigger lexicon and lexical entries
from the highest scoring parses are added to Λ.
The parameters Θ used to score parses are up-
dated using a perceptron learning algorithm.

4 Morpho-Syntactic Lexicon

This section defines our morpho-syntactic lex-
ical formalism. Table 1 shows examples of how
lexemes, templates, and morphological trans-
formations are used to build lexical entries for
example verbs. In this section, we formally de-
fine each of these components and show how
they are used to specify the space of possible
lexical entries that can be built for each input
word. In the following two sections, we will
provide more discussion of the complete sets
of templates (Section 5) and transformations
(Section 6).

Verb, Noun, Preposition, Pronoun, Adjective,
Adverb, Conjunction, Numeral, Symbol,
Proper Noun, Interjection, Expression

Table 2: Part-of-Speech types

POS Attribute Values
Noun Number singular, plural
Verb Person first, second, third
Verb Voice active, passive
Verb Tense present, past
Verb Aspect simple, progressive, perfect
Verb Participle present participle,

past participle
Adj, Degree of comparative, superlative
Adv, comparison
Det

Table 3: Morphological attributes and values.

We build on the factored CCG lexicon in-
troduced by Kwiatkowski et al. (2011) but (a)
further generalize lexemes to represent word
stems, (b) constrain the use of templates with
widely available syntactic information, and (c)
efficiently model common morphological vari-
ations between related words.

The first step, given an input word w, is
to do morphological and part-of-speech analy-
sis with the morpho-syntactic function F .
F maps a word to a set of possible morpho-
syntactic representations, each containing a
triple (s, p,m) of word stem s, part-of-speech
p and morphological category m. For exam-
ple, F maps the word flies to two possible
representations:

F (flies) = {(fly,Noun, (plural)),
(fly,Verb, (third, singular, simple, present))}

for the plural noun and present-tense verb
senses of the word. F is defined based on the
stems, part-of-speech types, and morpholog-
ical attributes marked for each definition in
Wiktionary. 1 The full sets of possible part-of-
speech and morphological types required for
our domains are shown in Table 2 and Table 3.

Each morpho-syntactic analysis a ∈ F (w)
is then paired with lexemes based on stem
match. A lexeme (s,~c) pairs a word stem
s with a list of logical constants ~c = [c1 . . . ck].
Table 1 shows the words ‘depart’, ‘departing’,
‘departure’, which are all assigned the lex-
eme (depart, [depart]). In general, there can

1www.wiktionary.com
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Word Lexeme : Base Template Trans Lexical entry
depart

(depart, [depart]) :
I depart `S\NP :λxλe.depart(e, x)

departing I departing `S\NP :λxλe.depart(e, x)
departing

ξ `S\NP :λxλe.v1(e, x)
fpres departing `PP :λxλe.depart(e, x)

departure fnom departure `N :λxλe.depart(e, x)
use

(use, [airline]) :
I use `S\NP/NP :λxλyλe.airline(e, y, x)

using I using `S\NP/NP :λxλyλe.airline(e, y, x)
using

ξ `S\NP/NP :λxλyλe.v1(e, y, x)
fpres using `PP/NP :λxλe.airline(e, y, x)

use fnom use `N/NP :λxλyλe.airline(e, y, x)

Trans Template Transformation
fpres ξ `S\NP/T :λx1..xnλe.v(e, xn..x1) → ξ `PP/T : λx1..xnλe.v(e, xn..x1)
fnom ξ `S\NP/T :λx1..xnλe.v(e, xn..x1) → ξ `N/T : λx1..xnλe.v(e, xn..x1)

Table 1: Lexical entries constructed by combining a lexeme, base template, and transformation
for the intransitive verb ‘depart’ and the transitive verb ‘use’.

be many different lexemes for each stem, that
vary in the selection of which logical constants
are included.

Given analysis (s, p,m) and lexeme (s,~c), we
can use a lexical template to construct a
lexical entry. Each template has the form:

λ(ξ,~v).[ξ `X : h~v]

where ξ and ~v are variables that abstract over
the words and logical constants that will be
used to define a lexical entry with syntax X
and templated logical form h~v.

To instantiate a template, ξ is filled with the
original word w and the constants in ~c replace
the variables ~v. For example, the template
λ(ξ,~v).[ξ ` S\NP : λxλe.v1(e, x)] could be
used with the word ‘departing’ and the lexeme
(depart, [depart]) to produce the lexical entry
departing ` S\NP : λxλe.depart(e, x). When
clear from context, we will omit the function
signature λp(ξ,~v). for all templates, as seen in
Table 1.

In general, there can be many applicable
templates, which we organize as follows. Each
final template is defined by applying a mor-
phological transformation to one of a small
set of possible base templates. The pairing
is found based on the morphological analysis
(s, p,m), where each base template is associ-
ated with part-of-speech p and each transfor-
mation is indexed by the morphology m. A
transformation fm is a function:

fm(λp(ξ,~v).[ξ `X : h~v]) = λp(ξ,~v).[ξ `X ′ : h′~v]

that takes the base template as input and pro-
duces a new template to model the inflected
form specified by m.

For example, both base templates in Ta-
ble 1 are for verbs. The template ξ `
S\NP : λxλe.v1(e, x) can be translated into
three other templates based on the transfor-
mations I, fpres, and fnom, depending on the
analysis of the original words. These transfor-
mations generalize across word type; they can
be used for the transitive verb ‘use’ as well as
the intransitive ‘depart.’ Each resulting tem-
plate, potentially including the original input
if the identity transformation I is available,
can then be used to make an output lexical
entry, as we described above.

5 Lexical Templates

The templates in our lexicon, as introduced
in Section 4, model the syntactic and seman-
tic aspects of lexical entries that are shared
within each word class. Previous approaches
have also used hand-engineered lexical tem-
plates, as described in Section 2, but we dif-
fer by (1) using more templates allowing for
more fine grained analysis and (2) using word
class information to restrict template use, for
example ensuring that words which cannot be
verbs are never paired with templates designed
for verbs. This section describes the templates
used during learning, first presenting those de-
signed to model grammatical sentences and
then a small second set designed for more el-
liptical spoken utterances.

Base Forms Table 4 lists the primary tem-
plate set, where each row shows an example
with a sentence illustrating its use. Templates
are also grouped by the word classes, including
adjectives, adverbs, prepositions, and several
types of nouns and verbs. While there is not
enough space to discuss each row, it is worth
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word class example usage base template

Noun phrase Boston ξ `NP : v

Noun (regular) What flight is provided by delta? ξ `N : λx.v(x)
Noun (relation) I need fares of flights ξ `N/PP : λxλy.v(x, y)

delta schedule ξ `N\(N/N) : λfλx.v(Ay.f(λz.true, y), x)
Noun (function) size of California ξ `NP/NP : λx.v(x)

Vintrans What flights depart from New York? ξ `S\NP : λxλe.v(e, x)
Vtrans Which airlines serve Seattle (active verb) ξ `S\NP/NP :λxλyλe.v(e, y, x)

What airlines have flights (passive verb) ξ `S\NP/NP :λxλyλe.v(e, x, y)
Vditrans They give him a book ξ `S\NP/NP/NP : λxλyλzλe.v(e, z, y, x)
Vimperson It costs $500 to fly to Boston ξ `S\NP/NP/NP :λxλyλzλe.v(e, y, x)
Vaux The flights have arrived at Boston ξ `S\NP/(S\NP ) :λf.f

ξ `S/NP/(S/NP ) :λf.f
Does delta provide flights from Seattle? ξ `S/S :λf.f

Vcopula The flights are from Boston ξ `S\NP/PP :λfλx.f(x)
What flight is cheap? ξ `S\NP/(N/N) :λfλx.f(λy.true, x)
Alaska is the state with the most rivers ξ `S\NP/NP :λxλy.equals(y, x)

Adjective I need a one way flight ξ `N/N :λfλx.f(x) ∧ v(x)
Boston flights round trip ξ `PP :λx.v(x)
How long is mississippi? ξ `DEG :λx.v(x)

Preposition List flights from Boston ξ `PP/NP :λxλy.v(y, x)
List flights that go to Dallas ξ `AP/NP :λxλe.v(e, x)
List flights between Dallas and Boston ξ `PP/NP/NP :λxλyλz.v1(z, x) ∧ v2(z, y)
What flights leave between 8am and 9am? ξ `AP/NP/NP :λxλyλe.v1(e, x) ∧ v2(e, y)

Adverb Which flight departs daily? ξ `AP :λe.v(e)
How early does the flight arrive? ξ `DEG :λx.v(x)

Determiner Which airline has a flight from Boston? ξ `NP/N :λfAx.f(x)

Table 4: Base templates that define different syntactic roles.

type example usage base template

telliptical flights Newark to Cleveland ξ `PP :λx.P (x, v)
flights arriving 2pm ξ `AP :λe.P (e, v)
american airline from Denver ξ `N :λx.P (x, v)

tmetonymy List airlines from Seattle ξ `N/PP :λfλx.v(x) ∧ P (Ay.f(y), x))
Shat airlines depart from Seattle? ξ `N/(S\NP ) :λfλx.v(x) ∧ P (Ay.f(y), x)
fares from miami to New York ξ `N/PP :λfλx.v(Ay.f(y), x)

Table 5: Base templates for ungrammatical linguistic phenomena

considering nouns as an illustrative example.
We model nouns as denoting a set of entities

that satisfy a given property. Regular nouns
are represented using unary predicates. Rela-
tional nouns syntactically function as regular
nouns but semantically describe sets of enti-
ties that have some relationship with a comple-
ment (Partee and Borschev, 1998). For exam-
ple, the relational noun fare describes a binary
relationship between flights and their price in-
formation, as we see in this parse:

fares of flights

N/PP PP/NP N
λxλy.fare(x, y) λx.x λx.flight(x)

>T
NP

Ax.flight(x)
>

PP
Ax.flight(x)

>
N

λx.fare(Ay.flight(y), x)

This analysis differs from previous ap-

proaches (Zettlemoyer and Collins, 2007),
where relational nouns were treated as regu-
lar nouns and prepositions introduced the bi-
nary relationship. The relational noun model
reduces lexical ambiguity for the prepositions,
which are otherwise highly polysemous.

Adjectives are nominal modifiers that take
a noun or a noun phrase as an argument and
add properties through conjunction. Preposi-
tions take nominal objects and function as ad-
jectival modifiers for nouns or adverbial modi-
fiers for verbs. Verbs can be subcategorized
by their grammatical structures into transi-
tive (Vtrans), intransitive (Vintrans), imper-
sonal (Vimperson), auxiliary (Vaux) and copula
(Vcopula). Adverbs are verb modifiers defin-
ing aspects like time, rate and duration. The
adoption of event semantics allows adverbial
modifiers to be represented by predicates and
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linked by the shared events. Determiners pre-
cede nouns or noun phrases and distinguish
a reference of the noun. Following the gen-
eralized Skolem terms, we model determiners,
including indefinite and definite articles, as a
〈〈e, t〉, e〉 function that selects a unique indi-
vidual from a 〈e, t〉-typed function defining a
singleton set.

Missing Words The templates presented so
far model grammatically correct input. How-
ever, in dialogue domains such as ATIS, speak-
ers often omit words. For example, speak-
ers can drop the preposition “from” in “flights
from Newark to Cleveland” to create the ellip-
tical utterance “flights Newark to Cleveland”.
We address this issue with the templates
telliptical illustrated in Table 5. Each of these
adds a binary relation P to a lexeme with a
single entity typed constant. For our example,
the word “Newark” could be assigned the lexi-
cal item Newark `PP : λx.from(x, newark)
by selecting the first template and P = from.

Another common problem is the use of
metonymy. In the utterance “What airlines
depart from New York?”, the word “airlines”
is used to reference flight services operated by
a specific airline. This is problematic because
the word “depart” needs to modify an event of
type flight. We solve this with the tmetonymy
templates in Table 5. These introduce a binary
predicate P that would, in the case of our ex-
ample, map airlines on to the flights that they
operate.

The templates in Table 5 handle the ma-
jor cases of missing words seen in our data
and are more efficient than the approach taken
by (Zettlemoyer and Collins, 2007) who intro-
duced complex type shifting rules and relaxed
the grammar to allow every word order.

6 Morphological Transformations

Finally, the morpho-syntactic lexicon intro-
duces morphological transformations, which
are functions from base lexical templates to
lexical templates that model the syntactic and
semantic variation as the word is inflected.
These transformations allow us to compactly
model, for example, the facts that argument
order is reversed when moving from active to
passive forms of the same verb, and that the
subject can be omitted. To the best of our

knowledge, we are the first to study such trans-
formations for semantic parsing.

Table 6 shows the transformations. Each
row groups a set of transformations by linguis-
tic category, including singular vs. plural num-
ber, active vs. passive voice, and so on, and
also includes example sentences where the out-
put templates could be used. Again, for space,
we do not detail the motivation for every class,
but it is worth looking at some of the alterna-
tions for verbs and nouns as our prototypical
example.

Some verbs can act as noun modifiers. For
example, the present participle “using” mod-
ifies “flights” in “flights using twa”. To
model this variation, we use the transforma-
tion fpresent part, a mapping that changes the
root of the verb signature S\NP to PP :

fpresent part : ξ `S\NP/T :λx1..xnλe.v(e, xn..x1)

→ ξ `PP/T : λx1..xnλe.v(e, xn..x1)

where T = [ε,NP,NP/NP ] instantiates this
rule for verbs that take different sets of argu-
ments, effectively allowing any verb that is in
its finite or -ing form to behave syntactically
like a prepositional phrase.

Intransitive present participles can also act
as prenominal adjectival modifiers as in “the
departing flight”. We add a second mapping
that maps the intransitive category S\NP to
the noun modifier N/N .

fpresent part : ξ `S\NP :λxλe.v(e, x)

→ ξ `N/N : λfλxλe.f(x) ∧ v(e, x)

Finally, verbal nouns have meanings derived
from actions typically described by verbs but
syntactically function as nouns. For example,
landing in the phrase “landing from jfk” is the
gerundive use of the verb land. We add the
following mapping to fpresent part and fnominal:

ξ `S\NP/T :λx1..xnλe.v(e, xn..x1)→
ξ `N/T : λx1..xnλe.v(e, xn..x1)

with T from above. This allows for reuse of the
same meaning across quite different syntac-
tic constructs, including for example “flights
that depart from Boston” and “departure from
Boston.”
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Template transformations fm Example usage
Plural Number (fplural)
I flight → early flights
ξ `N : λx.v(x)→ ξ `NP :Ax.v(x) city → flights to cities
Singular Number (fsingular)
I flight → flight
Possessive (fpossess)
ξ `NP : v → ξ `N/N :λfλx.f(x) ∧ P (x, v) delta → delta’s flights
ξ `N : λx.v(x)→ ξ `N/N :λfλx.f(x) ∧ P (x,Ay.v(y)) airline → airline’s flights
Passive Voice (fpassive)
ξ `Y/NP :λx1..xnλe.v(e, x1..xn)→ ξ `Y/PP : λx1..xnλe.v(e, xn..x1) serves →is served by
ξ `Y/NP :λx1..xnλe.v(e, x1, .., xn)→ ξ `Y : λx1..xn−1λe.v(e, xn−1..x1) name →city named Austin
Present Participle (fpresent)
ξ `S\NP/T :λx1..xnλe.v(e, xn..x1)→ ξ `PP/T : λx1..xnλe.v(e, xn..x1) use →flights using twa
ξ `S\NP :λxλe.v(e, x)→ ξ `N/N : λfλxλe.f(x) ∧ v(e, x) arrive →arriving flights
ξ `S\NP/T :λx1..xnλe.v(e, xn..x1)→ ξ `N/T : λx1..xnλe.v(e, xn..x1) land → landings at jfk
Past Participle (fpast)
ξ `S\NP/NP :λx1..xnλe.v(e, xn..x1)→ ξ `PP/PP : λx1..xnλe.v(e, x1..xn) use → plane used by
Nominalization (fnominal)
ξ `S\NP/T :λx1..xnλe.v(e, xn..x1)→ ξ `N/T : λx1..xnλe.v(e, xn..x1) depart → departure
Comparative (fcomp)
ξ `DEG :λx.v(x)→ ξ `PP/PP :λxλy.v(y) < v(x) short → shorter
ξ `DEG :λx.v(x)→ ξ `PP/PP :λxλy.v(y) > v(x) long → longer
Superlative (fsuper)
ξ `DEG :λx.v(x)→ ξ `NP/N :λf.argmin(λx.f(x), λx.v(x)) short → shortest
ξ `DEG :λx.v(x)→ ξ `NP/N :λf.argmax(λx.f(x), λx.v(x)) long → longest

Table 6: Morphological transformations with examples. T = [ε,NP,NP/NP ] and Y =
[S\NP,S\NP/NP ] allow a single transformation to generalize across word type.

Nouns can be inflected by number to de-
note singular and plural forms or by adding
an apostrophe to mark a possessive case. The
transformation function fsingular is an identity
transformation. Plurals may have different in-
terpretations: one is the generic 〈e, t〉 set rep-
resentation, which requires no transformation
on the base, or plurals can occur without overt
determiners (bare plurals), but semantically
imply quantification. We create a plural to
singular type shifting rule which implements
the 〈〈e, t〉, e〉 skolem function to select a unique
individual from the set. The possessive trans-
formation fpossess transfers the base template
to a noun modifier, and adds a binary predi-
cate P that encodes the relation.

There are also a number of instances of the
identity transformation function I, which does
not change the base template. Because the se-
mantics we are constructing was designed to
answer questions against a static database, it
does not need to represent certain phenomena
to return the correct answer. This includes
more advanced variants of person, tense, as-
pect, and potentially many others. Ideally,
these morphological attributes should add se-
mantic modifiers to the base meaning, for ex-
ample, tense can constrain the time at which

an event occurs. However, none of our do-
mains support such reasoning, so we assign the
identity transformation, and leave the explo-
ration of these issues to future work.

7 Learning

One advantage of our morpho-syntactic, fac-
tored lexicon is that it can be easily learned
with small modifications to existing algo-
rithms (Zettlemoyer and Collins, 2007). We
only need to modify the GENLEX proce-
dure that defines the space of possible lexi-
cal entries. For each training example (x, z),
GENLEX(x, z, F ) first maps each substring in
the sentence x into the morphological repre-
sentation (s, p, c) using F introduced in Sec-
tion 4. A candidate lexeme set L′ is then gen-
erated by exhaustively pairing the word stems
with all subsets of the logical constants from
z. Lexical templates are applied to the lexemes
in L′ to generate candidate lexical entries for
x. Finally, the lexemes that participate in the
top scoring correct parse of x are added to the
permanent lexicon.

Initialization Following standard practice,
we compile an initial lexicon Λ0, which con-
sists of a list of domain independent lexical
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items for function words, such as interrogative
words and conjunctions. These lexical items
are mostly semantically vacuous and serve par-
ticular syntactic functions that are not gener-
alizable to other word classes. We also initial-
ize the lexemes with a list of NP entities com-
plied from the database, e.g., (Boston, [bos]).

Features We use two types of features in
the model for discriminating parses. Four lex-
ical features are fired on each lexical item:
φ(s,~c) for the lexeme, φtp for the base tem-
plate, φtm for the morphologically modified
template, and φl for the complete lexical
item. We also compute the standard logical
expression features (Zettlemoyer and Collins,
2007) on the root semantics to track the pair-
wise predicate-argument relations and the co-
occuring predicate-predicate relations in con-
junctions and disjunctions.

8 Experimental Setup

Data and Metrics We evaluate perfor-
mance on two benchmark semantic pars-
ing datasets, Geo880 and ATIS. We use
the standard data splits, including 600/280
train/test for Geo880 and 4460/480/450
train/develop/test for ATIS. To support the
new representations in Section 5, we sys-
tematically convert annotations with existen-
tial quantifiers, temporal events and relational
nouns to new logical forms with equivalent
meanings. All systems are evaluated with ex-
act match accuracy, the percentage of fully
correct logical forms.

Initialization We assign positive initial
weights to the indicator features for entries in
the initial lexicon, as defined in Section 7, to
encourage their use. The elliptical template
and metonymy template features are initial-
ized with negative weights to initially discour-
age word skipping.

Comparison Systems We compare perfor-
mance with all recent CCG grammar induc-
tion algorithms that work with our datasets.
This includes methods that used a limited
set of hand-engineered templates for inducing
the lexicon, ZC05 (Zettlemoyer and Collins,
2005) and ZC07 (Zettlemoyer and Collins,
2007), and those that learned grammar struc-
ture by automatically splitting the labeled log-

System Test
ZC05 79.3
ZC07 86.1
UBL 87.9
FUBL 88.6
DCS 87.9
FULL 90.4
DCS+ 91.1

Table 7: Exact-match Geo880 test accuracy.

System Dev Test
ZC07 74.4 84.6
UBL 65.6 71.4
FUBL 81.9 82.8
GUSP - 83.5
TEMP-ONLY 85.5 87.2
FULL 87.5 91.3

Table 8: Exact-match accuracy on the ATIS
development and test sets.

ical forms, UBL (Kwiatkowski et al., 2010)
and FUBL (Kwiatkowski et al., 2011). We
also compare the state-of-the-art for Geo880
(DCS (Liang et al., 2011) and DCS+ which in-
cludes an engineered seed lexicon) and ATIS
(which is ZC07). Finally, we include results
for GUSP (Poon, 2013), a recent unsupervised
approach for ATIS.

System Variants We report results for a
complete approach (Full), and variants which
use different aspects of the morpho-syntactic
lexicon. The TEMP-ONLY variant learned
with the templates from Section 5 but, like
ZC07, does not use any word class information
to restrict their use. The TEMP-POS removes
morphology from the lexemes, but includes the
word class information from Wiktionary. Fi-
nally, we also include DCS+, which initialize a
set of words with POS tag JJ, NN, and NNS.

9 Results

Full Models Tables 7 and 8 report the
main learning results. Our approach achieves
state-of-the-art accuracies on both datasets,
demonstrating that our new grammar induc-
tion scheme provides a type of linguistically
motivated regularization; restricting the algo-
rithm to consider a much smaller hypothesis
space allows to learn better models.
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Figure 2: ATIS Learning Curve

On Geo880 the full method edges out the
best systems by 2% absolute on the test set,
as compared to other systems with no domain-
specific lexical initialization. Although DCS
requires less supervision, it also uses external
signals including a POS tagger.

We see similarly strong results for ATIS,
outperforming FUBL on the ATIS develop-
ment set by 6.8%, and improving the accu-
racy on the test set by 7.9% over the previous
best system ZC07. Unlike FUBL, which excels
at the development set but trails ZC07’s tem-
plated grammar by almost 2 points on the test
set, our approach demonstrates consistent im-
provements on both. Additionally, although
the unsupervised model (GUSP) rivals previ-
ous approaches, we are able to show that more
careful use of supervision open a much wider
performance gap.

Learning Curve with Ablations Figure 2
presents a learning curve for the ATIS domain,
demonstrating that the learning improvements
become even more dramatic for smaller train-
ing set sizes. Our model outperforms FUBL by
wide margins, matching its final accuracy with
only 22% of the total training examples. Our
full model also consistently beats the variants
with fewer word class restrictions, although
by smaller margins. Again, these results fur-
ther highlight the benefit of importing external
syntactic resources and enforcing linguistically
motivated constraints during learning.

Learned Lexicon The learned lexicon is
also more compact. Table 9 summarizes
statistics on unique lexical entries required
to parse the ATIS development set. The

System Lexical Entries Lexemes
FUBL 1019 721
Our Approach 818 495

Table 9: Lexicon size comparison on the ATIS
dev set (460 unique tokens).

morpho-syntactic model uses 80.3% of the lex-
ical entries and 63.7% of the lexemes that
FUBL needs, while increase performance by
nearly 7 points. Upon inspection, our model
achieves better lexical decomposition by learn-
ing shorter lexical units, for example, the
adoption of Davidsonian events allows us to
learn unambiguous adverbial modifiers, and
the formal modeling of nominalized nouns and
relational nouns treats prepositions as syntac-
tic modifiers, instead of being encoded in the
semantics. Such restrictions generalize to a
much wider variety of syntactic contexts.

10 Summary and Future Work

We demonstrated that significant performance
gains can be achieved in CCG semantic pars-
ing by introducing a more constrained, linguis-
tically motivated grammar induction scheme.
We introduced a morpho-syntactic factored
lexicon that uses domain-independent facts
about the English language to restrict the
number of incorrect parses that must be con-
sidered and demonstrated empirically that it
enables effective learning of complete parsers,
achieving state-of-the-art performance.

Because our methods are domain indepen-
dent they should also benefit other semantic
parsing applications and other learning algo-
rithms that use different types of supervision,
as we hope to verify in future work. We would
also like to study how to generalize these gains
to languages other than English, by inducing
more of the syntactic structure.
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Abstract

We present a model for the automatic se-
mantic analysis of requirements elicitation
documents. Our target semantic repre-
sentation employs live sequence charts, a
multi-modal visual language for scenario-
based programming, which can be directly
translated into executable code. The ar-
chitecture we propose integrates sentence-
level and discourse-level processing in a
generative probabilistic framework for the
analysis and disambiguation of individual
sentences in context. We show empiri-
cally that the discourse-based model con-
sistently outperforms the sentence-based
model when constructing a system that re-
flects all the static (entities, properties) and
dynamic (behavioral scenarios) require-
ments in the document.

1 Introduction

Requirements elicitation is a process whereby a
system analyst gathers information from a stake-
holder about a desired system (software or hard-
ware) to be implemented. The knowledge col-
lected by the analyst may be static, referring to
the conceptual model (the entities, their properties,
the possible values) or dynamic, referring to the
behavior that the system should follow (who does
what to whom, when, how, etc). A stakeholder in-
terested in the system typically has a specific static
and dynamic domain in mind, but he or she cannot
necessarily prescribe any formal models or code
artifacts. The term requirements elicitation we use
here refers to a piece of discourse in natural lan-
guage, by means of which a stakeholder commu-
nicates their desiderata to the system analyst.

The role of a system analyst is to understand
the different requirements and transform them into
formal constructs, formal diagrams or executable

code. Moreover, the analyst needs to consolidate
the different pieces of information to uncover a
single shared domain. Studies in software engi-
neering aim to develop intuitive symbolic systems
with which human agents can encode require-
ments that would then be unambiguously trans-
lated into a formal model (Fuchs and Schwitter,
1995; Bryant and Lee, 2002).

More recently, Gordon and Harel (2009) de-
fined a natural fragment of English that can be
used for specifying requirements which can be
effectively translated into live sequence charts
(LSC) (Damm and Harel, 2001; Harel and
Marelly, 2003), a formal language for specifying
the dynamic behavior of reactive systems. How-
ever, the grammar that underlies this language
fragment is highly ambiguous, and all disam-
biguation has to be conducted manually by a hu-
man agent. Indeed, it is commonly accepted that
the more natural a controlled language fragment
is, the harder it is to develop an unambiguous
translation mechanism (Kuhn, 2014).

In this paper we accept the ambiguity of re-
quirements descriptions as a premise, and aim to
answer the following question: can we automati-
cally recover a formal representation of the com-
plete system — one that best reflects the human-
perceived interpretation of the entire document?
Recent advances in natural language processing,
with an eye to semantic parsing (Zettlemoyer and
Collins, 2005; Liang et al., 2011; Artzi and Zettle-
moyer, 2013; Liang and Potts, 2014), use differ-
ent formalisms and various kinds of learning sig-
nals for statistical semantic parsing. In particu-
lar, the model of Lei et al. (2013) induces input
parsers from format descriptions. However, rarely
do these models take into account the entire docu-
ment’s context.

The key idea we promote here is that discourse
context provides substantial disambiguating infor-
mation for sentence analysis. We suggest a novel
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Figure 1: An LSC scenario: ”When the user clicks
the button, the display color must change to red.”

model for integrated sentence-level and discourse-
level processing, in a joint generative probabilistic
framework. The input for the requirements elici-
tation task is given in a simplified, yet highly am-
biguous, fragment of English, as specified in Gor-
don and Harel (2009). The output, in contrast, is
a sequence of unambiguous and well-formed live
sequence charts (LSC) (Damm and Harel, 2001;
Harel and Marelly, 2003) describing the dynamic
behavior of the system, tied to a single shared
code-base called a system model (SM).

Our solution takes the form of a hidden markov
model (HMM) where emission probabilities re-
flect the grammaticality and interpretability of tex-
tual requirements via a probabilistic grammar and
transition probabilities model the overlap between
SM snapshots of a single, shared, domain. Using
efficient viterbi decoding, we search for the best
sequence of domain snapshots that has most likely
generated the entire requirements document. We
empirically show that such an integrated model
consistently outperforms a sentence-based model
learned from the same set of data.

The remainder of this document is organized as
follows. In Section 2 we describe the task, and
spell out our formal assumptions concerning the
input and the output. In Section 3 we present
our target semantic representation and a specially
tailored notion of grounding for anchoring the
requirements in a code-base. In Section 4 we
develop our sentence-based and discourse-based
models, and in Section 5 we evaluate the models
on various case studies. In Section 6 we discuss
applications and future extensions, and in Sec-
tion 7 we summarize and conclude.

2 Parsing Requirements Elicitation
Documents: Task Description

There is an inherent discrepancy between the in-
put and the output of the software engineering pro-
cess. The input, system requirements, is specified
in a natural, informal, language. The output, the
system, is ultimately implemented in a formal un-
ambiguous programming language. Can we auto-
matically recover such a formal representation of
a complete system from a set of requirements? In
this work we explore this challenge empirically.

The Input. We assume a scenario-based pro-
gramming paradigm (a.k.a behavioral program-
ming (BP) (Harel et al., 2012)) in which system
development is seen as a process whereby humans
describe the expected behavior of the system by
means of “short-stories”, formally called scenar-
ios (Harel, 2001). We further assume that a given
requirements document describes exactly one sys-
tem, and that each sentence describes a single,
possibly complex, scenario. The requirements we
aim to parse are given in a simplified form of En-
glish (specifically, the English fragment described
in Gordon and Harel (2009)). Contrary to strictly
formal specification languages, which are closed
and unambiguous, this fragment of English em-
ploys an open-ended lexicon and exhibits exten-
sive syntactic and semantic ambiguity.1

The Output. Our target semantic representation
employs live sequence charts (LSC), a diagram-
matic formal language for scenario-based pro-
gramming (Damm and Harel, 2001). Formally,
LSCs are an extension of the well-known UML
message sequence diagrams (Harel and Maoz,
2006), and they have a direct translation into ex-
ecutable code (Harel and Marelly, 2003).2 Using
LSC diagrams for software modelling enjoys the
advantages of being easily learnable (Harel and
Gordon, 2009), intuitively interpretable (Eitan et
al., 2011) and straightforwardly amenable to exe-
cution (Harel et al., 2002) and verification (Harel
et al., 2013). The LSC language is particularly
suited for representing natural language require-
ments, since its basic formal constructs, scenar-
ios, nicely align with events, the primitive objects
of Neo-Davidsonian Semantics (Parsons, 1990).

1Formally, this variant may be viewed as a CNL of degree
P2 E3 N4 S4 with properties C,F,W,A (Kuhn, 2014, pp 6-12).

2It can be shown that the execution semantics of the LSC
language is embedded in a fragment of a branching temporal
logic called CTL* (Kugler et al., 2005).
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Live Sequence Charts and Code Artifacts. A
live sequence chart (LSC) is a diagram that de-
scribes a possible or necessary run of a specified
system. In a single LSC diagram, entities are rep-
resented as vertical lines called lifelines, and inter-
actions between entities are represented using hor-
izontal arrows between lifelines called messages,
connecting a sender to a receiver. Messages may
refer to other entities (or properties of entities) as
arguments. Time in LSCs proceeds from top to
bottom, imposing a partial order on the execution
of messages. LSC messages can be hot (red, “must
happen”) or cold (blue, “may happen”). A mes-
sage may have an execution status, which desig-
nates it as monitored (dashed arrow, “wait for”)
or executed (full arrow, “execute”). The LSC lan-
guage also encompasses conditions and control
structures, and it allows defining requirements in
terms of the negation of charts. Figure 1 illustrates
the LSC for the scenario “When the user clicks
the button, the display color must change to red.”.
The respective system model (SM) is a code-base
hierarchy containing the classes USER, BUTTON,
DISPLAY, the method BUTTON.CLICK() and the
property DISPLAY.COLOR.

3 Formal Settings

In the text-to-code generation task, we aim to im-
plement a prediction function f : D → M, such
thatD ∈ D is a piece of discourse consisting of an
ordered set of requirements D = d1, d2...dn, and
f(D) = M ∈ M is a code-base hierarchy that
grounds the semantic interpretation of D; we de-
note this by M . sem(d1, ..., dn). We now define
the objects D,M , and describe how to construct
the semantic interpretation function (sem(.)). We
then spell out the notion of grounding (.).

Surface Structures: Let Σ be a finite lexicon
and let Lreq ⊆ Σ∗ be a language for specifying
requirements. We assume the sentences in Lreq
have been generated by a context-free grammar
G = 〈N ,Σ, S ∈ N ,R〉, where N is a set of non-
terminals, Σ is the aforementioned lexicon, S ∈
N is the start symbol andR is a set of context-free
rules {A → α|A ∈ N , α ∈ (N ∪ Σ)∗}. For each
utterance u ∈ Lreq, we can find a sequential appli-
cation of rules that generates it: u = r1 ◦ ... ◦ rk;
∀i : ri ∈ R. We call such a sequence a deriva-
tion of u. These derivations may be graphically
depicted as parse trees, where the utterance u de-
fines the sequence of tree terminals in the leaves.

We define Treq to be the set of trees strongly
generated by G, and utilize an auxiliary yield
function yield : Treq → Lreq returning the leaves
of the given tree t ∈ .Lreq. Different parse-trees
can generate the same utterance, so the task of an-
alyzing the structure of an utterance u ∈ Lreq is
modeled via a function syn : Lreq → Treq that
returns the correct, human-perceived, parse of u.

Semantic Structures: Our target semantic rep-
resentation of a requirement d ∈ Lreq is a dia-
grammatic structure called a live sequence chart
(LSC). The LSC formal definition we provide here
is based on the appendix of Harel and Marelly
(2003), but rephrased in set-theoretic, event-based,
terms. We defined this alternative formalization
in order to make LSCs compatible with Neo-
Davidsonian, event-based, semantic theories. As
a result, this form of LSC formalization is well-
suited for representing the semantics of natural
language utterances.

Let us assume that L is a dictionary of entities
(lifelines), A is a dictionary of actions, P is a dic-
tionary of attribute names and V a dictionary of
attribute values. The set of simple events in the
LSC formal system is defined as follows:

Eactive ⊂ L×A× L× (L× P × V )∗

×{hot, cold} × {executed,monitored}
where e = 〈l1, a, l2, {li : pi : vi}ki=3, temp, exe〉
and li ∈ L, a ∈ A, pi ∈ P, temp ∈ {hot, cold},
exe ∈ {executed,monitored}. The event e is
called a message in which an action a is carried
over from a sender l1 to a receiver l2.3 The set
{li : pi : vi}ki=3 depicts a set of attribute:value
pairs provided as arguments to action a. The tem-
perature temp marks the modality of the action
(may, must), and the status exe distinguishes ac-
tions to be taken from actions to be waited for.

An event e can also refer to a state, where a
logical expression is being evaluated over a set of
property:value pairs. We call such an event a con-
dition, and specify the set of possible conditions
as follows:

Econd ⊂ Exp× (L× P × V )∗

×{hot, cold} × {executed,monitored}
3The LSC language also distinguishes static lifelines from

dynamically-bound lifelines. For brevity, we omit this from
the formal description of events, and simply assert that it may
be listed as one of the properties of the relevant lifeline.
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Specifically, e = 〈exp, {l : p : v}ki=0, temp, exe〉
is a condition to be evaluated, where li ∈ L, pi ∈
P, vi ∈ V, temp ∈ {hot, cold} and exe ∈
{executed,monitored} are as specified above.
The condition exp ∈ Exp is a first-order logic for-
mula using the usual operators (∨,∧,→,¬,∃,∀).
The set {l : p : v}ki=0 depicts a (possibly empty)
set of attribute:value pairs that participates as pred-
icates in exp. Executing a condition, that is, evalu-
ating the logical expression specified by exp, also
has a modality (may/must) and an execution status
(performed/waited for).

The LSC language further allows us to define
more complex events by combining partially or-
dered sets of events with control structures.

Ecomplex ⊂ N × Econd×

{〈Ec, <〉|〈Ec, <〉 is a poset }
N is a set of non-negative integers, Econd is a set
of conditions as described above, and each ele-
ment 〈Ec, <〉 is a partially ordered set of events.
This structure allows us to derive three kinds of
control structures:

• e = 〈#, ∅, 〈E,<〉〉 is a loop in which 〈E,<〉
is executed # times.

• e = 〈0, cond, 〈E,<〉〉 is a conditioned exe-
cution. If cond holds, 〈E,<〉 is executed.

• e = 〈#, {cond}#i=1, {〈Ec, <〉}#i=1〉 is a
switch: in case i, if the condition i holds,
〈Ec, <〉i is executed.

Definition 1 (LSC) An LSC c = 〈E,<〉 is a
partially ordered set of events such that

∀e ∈ E : e ∈ Eactive ∨ e ∈ Econd ∨ e ∈ Ecomplex
Grounded Semantics: The information repre-
sented in the LSC provides the recipe for a rig-
orous construction of the code-base that will im-
plement the program. This code-base is said to
ground the semantic representation. For exam-
ple, if our target programming language is an
Object-Oriented programming language such as
Java, then the code-base will include the objects,
the methods and the properties that are minimally
required for executing the scenario that is repre-
sented by the LSC. We refer to this code-base as
a system model (henceforth, SM), and define it as
follows.

Definition 2: (SM) Let Lm be a set of imple-
mented objects, Am a set of implemented meth-
ods, Pm a set of arguments and Vm argument
values. We further define the auxiliary functions
methods : Am → Lm, props : Pm → Lm and
values : Vm → Lm × Pm, for identifying the
entity l ∈ Lm that implements the method a ∈
Am, the entity l ∈ Lm that contains the property
p ∈ Pm, and the entity property 〈l, p〉 ∈ Lm×Pm
that assumes that value v ∈ Vm, respectively. A
system model (SM) is a tuple m representing the
implemented architecture.

m = 〈Lm, Am, Pm, Vm,methods, props, values〉

Analogously to interpretation functions in logic
and natural language semantics, we assume here
an implementation function, denoted [[.]], which
maps each formal entity in the LSC semantic rep-
resentation to its instantiation in the code-base.
Using this function we define a notion of ground-
ing that captures the fact that a certain code-base
permits the execution of a given LSC c.

Definition 3(a): (Grounding) LetM be the set
of system models and let C be the set of LSC
charts. We say that m grounds c = 〈E,<〉, and
write m . c, if ∀e ∈ E : m . e, where:

• if e ∈ Eactive then
m . e⇔

[[l1]], [[l2]] ∈ L &
[[a]] ∈ methods([[l2]]) &
∀i : 〈l : p : v〉i ⇒ [[l]] ∈ Lm&[[p]] ∈
props[[l]]&v ∈ values([[l]], [[p]])

• if e ∈ Econd then
m . e⇔
∀i : 〈l : p : v〉i ⇒ [[l]] ∈ Lm&[[p]] ∈
props[[l]]&v ∈ values([[l]], [[p]])
• if e = 〈#, es, 〈Ec, <〉 ∈ Ecomplex then
m . e⇔m . es & ∀e′ ∈ Ec : m . e′

We have thus far defined how the semantics of
a single LSC can be grounded in a single SM. In
the real world, however, a requirements document
typically contains multiple different requirements,
but it is interpreted as a complete whole. The de-
sired SM is then one that represents a single do-
main shared by all the specified requirements. Let
us then assume a document d = d1, ..., dn con-
taining n requirements, where ∀i : di ∈ Lreq, and
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let t be a unification operation that returns the for-
mal unification of two SMs if such exists, and an
empty SM otherwise. We define a discourse in-
terpretation function sem(d) that returns a single
SM for the entire document, where different men-
tions across sentences may share the same refer-
ence. The discourse interpretation function sem
can be as simple as unifying all individual SMs
for di, and asserting that all elements that have the
same name in different SMs refer to a single ele-
ment in the overall SM. Or, it can be as complex as
taking into account synonyms (“clicks the button”
and “presses the button”), anaphora (“when the
user clicks the button, it changes colour”), bind-
ing (“when the user clicks any button, this button
is highlighted”), and so on. We can now define the
grounding of an entire requirements document.

Definition 3(b): (Grounding) Let d = d1...dn
be a requirements document and let m = m1...mn

be a sequence of system models. M = 〈m,t〉 is
a sequence of models and a unification operation,
and M . sem(d) if and only if ∀i : mi . sem(di)
and ((m1 tm2).... tmn) . sem(d1, ...., dn).

In this work we assume that sem(d) is a simple
discourse interpretation function, where entities,
methods, properties, etc. that are referred to using
the same name in different local SMs refer to a sin-
gle element in the overall code-base. This simple
assumption already carries a substantial amount of
disambiguating information concerning individual
requirements. For example, assume that we have
seen a “click” method over a “button” object in
sentence i. This may help us disambiguate future
attachment ambiguity, favoring structures where
a “button” is attached to “click” over other at-
tachment alternatives. Our goal is then to model
discourse-level context for supporting the accurate
semantic analysis of individual requirements.

4 Probabilistic Modeling

In this section we set out to explicitly model
the requirement’s context, formally captured as a
document-level SM, in order to support the accu-
rate disambiguation of the requirements’ content.
We first specify our probabilistic content model,
a sentence-level model which is based on a prob-
abilistic grammar augmented with compositional
semantic rules. We then specify our probabilistic
context model, a document-level sequence model
that takes into account the content as well as the
relation between SMs at different time points.

4.1 Sentence-Based Modeling
The task of our sentence-based model is to learn
a function that maps each requirement sentence
to its correct LSC diagram and SM snapshot.
In a nutshell, we do this via a (partially lexi-
calized) probabilistic context-free grammar aug-
mented with a semantic interpretation function.

More formally, given a discourse D = d1...dn
we think of each di as having been generated by
a probabilistic context-free grammar (PCFG) G.
The syntactic analysis of di may be ambiguous,
so we first implement a syntactic analysis function
syn : Lreq → Treq using a probabilistic model
that selects the most likely syntax tree t of each
d individually. We can simplify syn(d), with d
constant with respect to the maximization:

syn(d) = argmaxt∈TreqP (t|d)
= argmaxt∈Treq

P (t,d)
p(d)

= argmaxt∈TreqP (t, d)
= argmaxt∈{t|t∈Treq ,yield(t)=d}P (t)

Because of the context-freeness assumption, it
holds that P (t) =

∏
r∈der(t) P (r), where der(t)

returns the rules that derive t. The resulting proba-
bility distribution P : Treq → [0, 1] defines a prob-
abilistic language model over all requirements d ∈
Lreq, i.e.,

∑
d∈Lreq

∑
t∈Treq ,yield(t)=d P (t) = 1.

We assume a function sem : T → C mapping
syntactic parse trees to semantic constructs in the
LSC language. Syntactic parse trees are complex
entities, assigning structures to the flat sequences
of words. The principle of compositionality as-
serts that the meaning of a complex syntactic en-
tity is a function of the meaning of its parts and
their mode of combination. Here, the semantics of
a tree t ∈ Treq is derived compositionally from the
interpretation of the rules in the grammar G. We
overload the sem notation to define sem : R → C
as a function assigning rules to LSC constructs
(events or parts of events),4 with ◦̂ merging the
resulting sets of events. Our sentence-based com-
positional semantics is summarized as:

sem(u) = sem(syn(u)) = sem(r1 ◦ ... ◦ rn) =

sem(r1)◦̂...◦̂sem(rn) = c1◦̂...◦̂cn = c

4Here, it suffices to say that sem maps edges in the
syntax tree to functions in the API of an existing LSC
editor. For example: sem(NP → DET NN) =
fCreateObject(DET.sem,NN.sem). We specify the
function sem in the supplementary materials. The code of
sem is available as part of PlayGo (www.playgo.co).
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For a single chart c, one can easily construct an
implementation for every entity, action and prop-
erty in the chart. Then, by design, we get an
SM m such that m . c. To construct the SM of
the entire discourse in the sentence-based model
we simply return f(d1, ..., dn) = tni=1mi where
∀i : mi . sem(syn(di)) and t unifies different
mentions of the same string to a single element.

4.2 Discourse-Based Modeling

We assume a given document D ∈ D and aim to
find the most probable system modelM ∈M that
satisfies the requirements. We assume that M re-
flects a single domain that the stakeholders have in
mind, and we are provided with an ambiguous nat-
ural language evidence, an elicited discourseD, in
which they convey it. We instantiate this view as a
noisy channel model (Shannon, 1948), which pro-
vides the foundation for many NLP applications,
such as speech recognition (Bahl et al., 1983) and
machine translation (Brown et al., 1993).

According to the noisy channel model, when a
signal is received it does not uniquely identify the
message being sent. A probabilistic model is then
used to decode the original message. In our case,
the signal is the discourse and the message is the
overall system model. In formal terms, we want to
find a model M that maximises the following:

f(D) = argmaxM∈MP (M |D)

We can simplify further, using Bayes law, where
D is constant with respect to the maximisation.

f(D) = argmaxM∈MP (M |D)
= argmaxM∈M

P (D|M)×P (M)
P (D)

= argmaxM∈MP (D|M)× P (M)

We would thus like to estimate two types of prob-
ability distributions, P (M) over the source and
P (D|M) over the channel.

BothM andD are structured objects with com-
plex internal structure. In order to assign prob-
abilities to objects involving such complex struc-
tures it is customary to break them down into sim-
pler, more basic, events. We know that D =
d1, d2, ..., dn is composed of n individual sen-
tences, each representing a certain aspect of the
model M . We assume a sequence of snapshots of
M that correspond to the timestamps 1...n, that is:
m1,m2, ...,mn ∈ M where ∀i : mi . sem(di).
The complete SM is given by the union of the

different snapshots reflected in different require-
ments, i.e., M =

⊔
imi. We then rephrase:

P (M) = P (m1, ...,mn)
P (D|M) = P (d1, ...., dn|m1, ...,mn)

These events may be seen as points in a high di-
mensional space. In actuality, they are too com-
plex and would be too hard to estimate directly.
We then define two independence assumptions.
First, we assume that a system model snapshot at
time i depends only on k previous snapshots (a
stationary distribution). Secondly, we assume that
each sentence i depends only on the SM snapshot
at time i. We now get:

P (m1...mn) ≈ ∏
i P (mi|mi−1...mi−k)

P (d1...dn|m1...mn) ≈ ∏
i P (di|mi)

Furthermore, assuming bi-gram transitions, our
objective function is now represented as follows:

f(D) = argmaxM∈M
n∏
i=1

P (mi|mi−1)P (di|mi)

Note that m0 may be empty if the system is im-
plemented from scratch, and non-empty if the re-
quirements assume an existing code-base, which
makes p(m1|m0) a non-trivial transition.

4.3 Training and Decoding
Our model is in essence a Hidden Markov Model
in which states capture SM snapshots, state-
transition probabilities model transitions between
SM snapshots, and emission probabilities model
the verbal description of each state. To implement
this, we need to implement a decoding algorithm
that searches through all possible state sequences,
and a training algorithm that can automatically
learn the values of the still rather complex param-
eters P (mi|mi−1), P (di|mi) from data.

f(D) = argmaxM∈M︸ ︷︷ ︸
decoding

n∏
i=1

P (mi|mi−1)P (di|mi)︸ ︷︷ ︸
training

Training: We assume a supervised training set-
ting in which we are given a set of examples anno-
tated by a human expert. For instance, these can
be requirements an analyst has formulated and en-
coded using an LSC editor, while manually pro-
viding disambiguating information. We are pro-
vided with a set of pairs {Di,Mi}ni=1 containing n
documents, where each of the pairs in i = 1..n is a
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tuple set {dij , tij , cij ,mij}nij=1. For all i, j, it holds
that tij = syn(dij), cij = sem(tij), and mij .
sem(syn(dij)). The union of the ni SM snapshots
yields the entire model tjmij = Mi, that satisfies
the set of requirements Mi . sem(di1, ..., dini).

(i) Emission Parameters Our emission parame-
ters P (di|mi) represent the probability of a verbal
description of a requirement given an SM snap-
shot which grounds the semantics of the descrip-
tion. A single SM may result from different syn-
tactic derivations. We calculate this probability
by marginalizing over the syntactic trees that are
grounded in the same SM snapshot.

P (d,m)
P (m)

=
∑
t∈{t|yield(t)=d,m.sem(t)} P (t)∑
t∈{t|t∈Treq ,m.sem(t)} P (t)

The probability of P (t) is estimated using a tree-
bank PCFG (Charniak, 1996), based on all pairs
〈dij , tij〉 in the annotated corpus. We estimate
rule probabilities using maximum-likelihood es-
timates, and use simple smoothing for unknown
lexical items, using rare-words distributions.

(ii) Transition Parameters Our transition pa-
rameters P (mi|mi−1) represent the amount of
overlap between the SM snapshots. We look at the
current and the previous system model, and aim
to estimate how likely the current SM is given the
previous one. There are different assumptions that
may underly this probability distribution, reflect-
ing different principles of human communication.

We first define a generic estimator as follows:

P̂ (mi|mj) =
gap(mi,mj)∑
mj gap(mi,mj)

where gap(.) quantifies the information sharing
between SM snapshots. Regardless of the im-
plementation of gap, it can be easily shown that
P̂ is a conditional probability distribution where
P̂ : M × M → [0, 1] and, for all mi,mj , :∑
mj P̂ (mi|mj) = 1. (For efficiency reasons, we

considerM to be a restricted universe that is con-
sidered be the decoder, as specified shortly.)

We define different gap implementations, re-
flecting different assumptions about the discourse.
Our first assumption here is that different SM
snapshots refer to the same conceptual world, so
there should be a large overlap between them. We
call this the max-overlap assumption. A second
assumption is that, in collaborative communica-
tion, a new requirement will only be stated if it

Transition: gap(mcurr,mprev)

max-overlap |set(mcurr)∩set(mprev)|
|set(mcurr)|

max-expansion 1− |set(mcurr)∩set(mprev)||set(mprev)∪set(mcurr)|
min-distance 1− ted(mprev ,mcurr)

|set(mprev)|+|set(mcurr)|

Table 1: Quantifying the gap between snapshots.
set(mi) is a set of nodes marked by path to root.

provides new information, akin to Grice (1975).
This is the max-expansion assumption. An addi-
tional assumption prefers “easy” transitions over
“hard” ones, this is the min-distance assumption.
The different gap calculations are listed in Table 1.

Decoding An input document contains n re-
quirements. Our decoding algorithm considers the
N-best syntactic analyses for each requirement. At
each time step i = 1...n we assume N, states rep-
resenting the semantics of the N best syntax trees,
retrieved via a CKY chart parser. Thus, setting
N = 1 is equal to a sentence-based model, in
which for each sentence we simply select the most
likely tree according to a probabilistic grammar,
and construct a semantic representation for it.

For each document of length n, we assume that
our entire universe of system models M is com-
posed of N × n SM snapshots, reflecting the N
most-likely analyses of n sentences, as provided
by the probabilistic syntactic model. (As shall be
seen shortly, even with this restricted5 universe ap-
proximating M, our discourse-based model pro-
vides substantial improvements over a sentence-
based model).

Our discourse-based model is an HMM where
each requirement is an observed signal, and each
i = 1..N is a state representing the SM that
grounds the i th best tree. Because of the
Markov independence assumption our setup satis-
fies the optimal subproblem and overlapping prob-
lem properties, and we can use efficient viterbi de-
coding to exhaustively search through the differ-
ent state sequences, and find the most probable
sequence that has generated the sequence of re-
quirements according to our discourse-based prob-
abilistic model.

5This restriction is akin to pseudo-likelihood estimation,
as in Arnold and Strauss (1991). In pseudo-likelihood estima-
tion, instead of normalizing over the entire set of elements,
one uses a subset that reflects only the possible outcomes.
Here, instead of summing SM probabilities over all possible
sentences in the language, we sum up the SM analyses of the
sentences observed in the document only. This estimation
could also be addressed via, e.g., sampling methods.
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The overall complexity decoding a document
with n sentences of which max length is l, using a
grammar G of size |G| and a fixed N , is given by:

O(n× l3 × |G|3 + l2 ×N2 × n+ n3 ×N2)

We can break this expression down as follows: (i)
In O(n × l3 × |G|3) we generate N best trees for
each one of the n requirements, using a CKY chart
(Younger, 1967). (ii) In O(l2×N2×n) we create
the universe M based on the N best trees of the
n requirements, and calculate N × N transitions.
(iii) InO((N×n)2×n) = O(N2×n3) we decode
the n×N grid using Viterbi (1967) decoding.

5 Experiments

Goal. We set out to evaluate the accuracy of a se-
mantic parser for requirements documents, in the
two modes of analysis presented above. Our eval-
uation methodology is as standardly assumed in
machine learning and NLP: given a set of anno-
tated examples — that is, given a set of require-
ments documents, where each requirement is an-
notated with its correct LSC representation and
each document is associated with a complete SM
— we partition this set into a training set and a test
set that are disjoint. We train our statistical model
on the examples in the training set and automati-
cally analyze the requirements in the test set. We
then compare the predicted semantic analyses of
the test set with the human-annotated (henceforth,
gold) semantic analyses of this test set, and empir-
ically quantify our prediction accuracy.

Metrics. Our semantic LSC objects have the
form of a tree (reflecting the sequence of nested
events in our scenarios). Therefore, we can use
standard tree evaluation metrics, such as ParseE-
val (Black et al., 1992), to evaluate the accuracy
of the prediction. Overall, we define three metrics
to evaluate the accuracy of the LSC trees:

POS: the POS metric is the percentage of
part-of-speech tags predicted correctly.
LSC-F1: F1 is the harmonic means of the
precision and recall of the predicted tree.
LSC-EM: EM is 1 if the predicted tree is an
exact match to the gold tree, and 0 otherwise.

In the case of SM trees, as opposed to the LSC
trees, we cannot assume identity of the yield be-
tween the gold and parse trees for the same sen-

System #Scenarios avg sentence length
Phone 21 24.33
WristWatch 15 29.8
Chess 18 15.83
Baby Monitor 14 20
Total 68 22.395

Table 2: Seed Gold-Annotated Requirements
N=1 POS LSC-F1 LSC-EM SM-TED SM-EM

Gen-Only 85.52 84.40 9.52 84.25 9.52
Gen+Seed 91.59 88.05 14.29 85.17 14.29

Table 3: Sentence-Based modeling: Accuracy re-
sults on the Phone development set.

tence,6 so we cannot use ParseEval. Therefore, we
implement a distance-based metrics in the spirit of
Tsarfaty et al. (2012). Then, to evaluate the accu-
racy of the SM, we use two kinds of scores:

SM-TED: TED is the normalized edit dis-
tance between the predicted and gold SM
trees, subtracted from a unity.
SM-EM: EM is 1 if the predicted SM is an
exact match with the gold SM, 0 otherwise.

Data. We have a small seed of correctly anno-
tated requirements-specification case studies that
describe simple reactive systems in the LSC lan-
guage. Each document contains a sequence of
requirements, each of which is annotated with
the correct LSC diagram. The entire program is
grounded in a java implementation. As training
data, we use the case studies provided by Gordon
and Harel (2009). Table 2 lists the case studies and
basic statistics concerning these data.

As our annotated seed is quite small, it is hard to
generalize from it to unseen examples. In particu-
lar, we are not guaranteed to have observed all pos-
sible structures that are theoretically permitted by
the assumed grammar. To cope with this, we cre-
ate a synthetic set of examples using the grammar
of Gordon and Harel (2009) in generation mode,
and randomly generate trees t ∈ Treq.

The grammar we use to generate the synthetic
examples clearly over-generates. That is to say,
it creates many trees that do not have a sound in-
terpretation. In fact, only 3000 our of 10000 gen-
erated examples turn out to have a sound seman-
tic interpretation grounded in an SM. Nonetheless,
these data allow us to smooth the syntactic distri-
butions that are observed in the seed, and increase
the coverage of the grammar learned from it.

6This is because the LSC trees are predicted bottom up
and the SM trees are predicted top-down.
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Results. Table 3 presents the results for pars-
ing the Phone document, our development set,
with the sentence-based model, varying the train-
ing data. We see that despite the small size of the
seed, adding it to our set if synthetics examples
substantially improves results over a model trained
on synthetic examples only.

In our next experiment, we provide empirical
upper-bounds and lower-bounds for the discourse-
based model. Table 4 presents the results of
the discourse-based model for N > 1 on the
Phone example. Gen-Only presents the results of
the discourse-based model with a PCFG learned
from synthetic trees only, incorporating transitions
obeying the max-overlap assumption. Already
here, we see a mild improvement for N > 1 rel-
ative to the N = 1 results, indicating that even a
weak signal such as the overlap between neighbor-
ing sentences already improves sentence disam-
biguation in context. We next present the results of
an Oracle experiment, where every requirement is
assigned the highest scoring tree in terms of LSC-
F1 with respect to the gold tree, keeping the same
transitions. Again we see that results improve with
N , indicating that the syntactic model alone does
not provide optimal disambiguation. These re-
sults provides an upper bound on the parser perfor-
mance for each N . Gen+Seed presents results of
the discourse-based model where the PCFG inter-
polates the seed set and the synthetic train set, with
max-overlap transitions. Here, we see larger im-
provements over the synthetic-only PCFG. That is,
modeling grammaticality of individual sentences
improves the interpretation of the document.

Next we compare the performance for differ-
ent implementations of the gap(mi,mj) function.
We estimate probability distributions that reflect
each of the assumptions we discussed, and add
an additional method called hybrid, in which we
interpolate the max-expansion and max-overlap
estimates (equal weights). In Table 5, the trend
from the previous experiment persists. Notably,
the hybrid model provides a larger error reduc-
tion than its components used separately, indicat-
ing that in order to capture discourse context we
may need to balance possibly conflicting factors.
In no emissions we rely solely on the probability
of state transitions, and again increasing N leads
to improvement. This result confirms that con-
text is indispensable for sentence interpretation —
even when probabilities for the sentence’s seman-

System N=2 4 8 16 32 64 128
Gen-Only

POS 85.52 86.30 87.67 88.45 88.85 88.85 88.85
LSC-F1 84.40 85.35 86.31 87.51 88.81 89.30 89.51

LSC-EM 9.52 9.52 14.29 14.29 14.29 14.29 14.29
SM-TED 84.25 85.94 89.14 91.90 92.81 93.31 92.70
SM-EM 9.52 19.05 33.33 33.33 33.33 38.10 33.33

Gen+Seed
POS 91.78 92.95 93.54 93.35 94.32 94.52 93.93

LSC-F1 88.11 90.18 91.00 90.99 91.81 92.09 91.73
LSC-EM 19.05 38.10 42.86 42.86 42.86 42.86 42.86
SM-TED 85.49 90.78 93.59 93.02 94.81 95.69 93.76
SM-EM 19.05 38.10 52.38 52.38 52.38 52.38 52.38
Oracle

POS 91.98 93.54 94.91 95.30 96.09 96.67 96.87
LSC-F1 88.73 91.33 93.19 94.39 95.11 95.91 96.70

LSC-EM 23.81 42.86 61.90 61.90 66.67 76.19 76.19
SM-TED 86.54 91.28 94.28 94.88 96.24 97.51 98.80
SM-EM 23.81 42.86 66.67 71.43 76.19 76.19 76.19

Table 4: Discourse-Based Modeling: Accuracy re-
sults on the Phone dev set. The Oracle selects the
highest scoring LSC tree among the N-candidates,
providing an upper bound on accuracy. Gen-Only
selects the most probable tree, relying on synthetic
examples only, providing a lower bound.

tics (content) are entirely absent.
We finally perform a cross-fold experiment in

which we leave one document out as a test set
and take the rest as our seed. The results are pro-
vided in Table 6. The discourse-based model out-
performs the sentence-based model N = 1 in all
cases. Moreover, the drop in N = 128 for Phone
seems incidental to this set, and the other cases
level off beforehand. Despite our small seed, the
persistent improvement on all metrics is consistent
with our hypothesis that modeling the interpreta-
tion process within the discourse has substantial
benefits for automatic understanding of the text.

6 Applications and Discussion

The statistical models we present here are ap-
plied in the context of PlayGo,7 a comprehensive
tool for behavioral, scenario-based, programming.
PlayGo now provides two modes of playing-in
natural language requirements: interactive play-in,
where a user manually disambiguates the analyses
of the requirements (Gordon and Harel, 2009), and
statistical play-in, where disambiguation decisions
are taken using our discourse-based model.

The fragment of English we use is very ex-
pressive. It covers not only entities and predi-
cates, but also temporal and aspectual information,
modalities, and program flow. Beyond that, we as-
sume an open-ended lexicon. Overall, we are not

7www.playgo.co.
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Transitions N=2 4 8 16 32 64 128
Min Dist

POS 91.98 92.76 93.54 93.35 94.32 94.52 93.93
LSC-F1 88.39 89.77 91.00 90.99 91.81 92.09 91.73

LSC-EM 23.81 42.86 47.62 47.62 47.62 47.62 47.62
SM-TED 86.54 91.71 94.38 93.81 95.57 96.43 94.53
SM-EM 23.81 42.86 57.14 57.14 57.14 57.14 57.14

Max Overlap
POS 91.78 92.95 93.54 93.35 94.32 94.52 93.93

LSC-F1 88.11 90.18 91.00 90.99 91.81 92.09 91.73
LSC-EM 19.05 38.10 42.86 42.86 42.86 42.86 42.86
SM-TED 85.49 90.78 93.59 93.02 94.81 95.69 93.76
SM-EM 19.05 38.10 52.38 52.38 52.38 52.38 52.38

Max Expand
POS 91.98 92.76 93.74 93.54 94.32 94.52 93.93

LSC-F1 88.39 89.71 91.00 90.99 91.68 91.96 91.60
LSC-EM 23.81 42.86 47.62 47.62 47.62 47.62 47.62
SM-TED 86.54 91.93 93.75 93.18 94.79 95.66 93.75
SM-EM 23.81 42.86 57.14 57.14 57.14 57.14 57.14
Hybrid

POS 91.78 92.95 93.93 93.74 94.72 94.91 94.32
LSC-F1 88.11 90.18 91.34 91.33 92.15 92.42 92.07

LSC-EM 19.05 38.10 47.62 47.62 47.62 47.62 47.62
SM-TED 85.49 90.78 93.66 93.09 94.87 95.75 93.83
SM-EM 19.05 38.10 57.14 57.14 57.14 57.14 57.14

No Emissions
POS 91.78 91.98 92.37 92.37 92.17 92.76 93.15

LSC-F1 88.11 88.79 89.12 89.12 89.39 89.67 89.89
LSC-EM 19.05 19.05 23.81 23.81 23.81 23.81 23.81
SM-TED 85.49 85.74 85.82 85.82 85.87 86.85 86.92
SM-EM 19.05 19.05 23.81 23.81 23.81 23.81 23.81

Table 5: Discourse-Based modeling: Experiments
on the Phone development set. Estimation proce-
dure for transition probabilities. All experiments
use the Gen+Seed emission probablities.

only translating English sentences into executable
LSCs — we provide a fully generative model for
translating a complete document (text) into a com-
plete system model (code).

This text-to-code problem may be thought of as
a machine translation (MT) problem, where one
aims to translate sentences in English to the formal
language of LSCs. However, standard statistical
MT techniques rely on the assumption that textual
requirements and code are aligned at a sentence
level. Creating a formal model that aligns text and
code on a sentence-by-sentence basis is precisely
our technical contribution in Section 3.

To our knowledge, modeling syntax and dis-
course processing via a fully joint generative
model, where a discourse level HMM is in-
terleaved with PCFG sentence-based emissions,
is novel. By plugging in different models for
p(d|m), different languages may be parsed. This
method may further be utilized for relating content
and context in other tasks: parsing and document-
level NER, parsing and document-level IE, etc. To
do so, one only needs to redefine the PCFG (emis-
sions) and state-overlap (transition) parameters, as
appropriate for their data.8

8Our code, annotated data, four case studies, and the LSC

Data Set N=1 32 64 128
Baby Monitor

POS 94.29 96.07 96.07 96.07
LSC-F1 91.50 94.96 94.96 94.96

LSC-EM 14.29 21.43 21.43 21.43
SM-TED 88.63 91.11 91.11 91.11
SM-EM 28.57 50.00 50.00 50.00

Chess
POS 92.63 93.68 93.68 93.68

LSC-F1 95.79 96.16 96.16 96.16
LSC-EM 5.56 11.11 11.11 11.11
SM-TED 94.90 97.10 97.10 97.10
SM-EM 61.11 66.67 66.67 66.67

Phone
POS 91.59 94.72 94.91 94.32

LSC-F1 88.05 92.15 92.42 92.07
LSC-EM 14.29 47.62 47.62 47.62
SM-TED 85.17 94.87 95.75 93.83
SM-EM 14.29 57.14 57.14 57.14

WristWatch
POS 34.23 34.45 34.45 34.45

LSC-F1 50.06 51.05 51.05 51.05
LSC-EM 26.67 26.67 26.67 26.67
SM-TED 71.15 72.73 72.73 72.73
SM-EM 26.67 33.33 33.33 33.33

Table 6: Cross-Fold Validation for N=1..128.
Seed+Generated emissions, Hybrid transitions.

7 Conclusion

The requirements understanding task presents an
exciting challenge for CL/NLP. We ought to au-
tomatically discover the entities in the discourse,
the actions they take, conditions, temporal con-
straints, and execution modalities. Furthermore, it
requires us to extract a single ontology that satis-
fies all individual requirements. The contributions
of this paper are three-fold: we formalize the text-
to-code prediction task, propose a semantic rep-
resentation with well-defined grounding, and em-
pirically evaluate models for this prediction. We
show consistent improvement of discourse-based
over sentence-based models, in all case studies.
In the future, we intend to extend this model for
interpreting requirements in un-restricted, or less-
restricted, English, endowed with a more sophisti-
cated discourse interpretation function.

Acknowledgements

We thank Shahar Maoz, Rami Marelly, Yoav
Goldberg and three anonymous reviewers for
their insightful comments on an earlier draft.
This research was supported by an Advanced
Research Grant to D. Harel from the Euro-
pean Research Council (ERC) under the Eu-
ropean Community‘s Seventh Framework Pro-
gramme (FP7/2007-2013), and by a grant to D.
Harel from the Israel Science Foundation (ISF).

visual editor are available via http://wiki.weizmann.
ac.il/playgo/index.php/Download_PlayGo.

1305



References
B. C. Arnold and D. Strauss. 1991. Pseudolikelihood

Estimation: Some Examples. Sankhyā: The Indian
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Abstract

We propose a novel model for parsing
natural language sentences into their for-
mal semantic representations. The model
is able to perform integrated lexicon ac-
quisition and semantic parsing, mapping
each atomic element in a complete seman-
tic representation to a contiguous word
sequence in the input sentence in a re-
cursive manner, where certain overlap-
pings amongst such word sequences are
allowed. It defines distributions over the
novel relaxed hybrid tree structures which
jointly represent both sentences and se-
mantics. Such structures allow tractable
dynamic programming algorithms to be
developed for efficient learning and decod-
ing. Trained under a discriminative set-
ting, our model is able to incorporate a rich
set of features where certain unbounded
long-distance dependencies can be cap-
tured in a principled manner. We demon-
strate through experiments that by exploit-
ing a large collection of simple features,
our model is shown to be competitive to
previous works and achieves state-of-the-
art performance on standard benchmark
data across four different languages. The
system and code can be downloaded from
http://statnlp.org/research/sp/.

1 Introduction

Semantic parsing, the task of transforming natu-
ral language sentences into formal representations
of their underlying semantics, is one of the clas-
sic goals for natural language processing and ar-
tificial intelligence. This area of research recently
has received a significant amount of attention. Var-
ious models have been proposed over the past few
years (Zettlemoyer and Collins, 2005; Kate and

QUERY : answer(RIVER)

RIVER : exclude(RIVER, RIVER)

RIVER : traverse(STATE)

STATE : stateid(STATENAME)

STATENAME : (′tn′)

RIVER : river(all)

What rivers do not run through Tennessee ?

Figure 1: An example tree-structured semantic
representation (above) and its corresponding nat-
ural language sentence.

Mooney, 2006; Wong and Mooney, 2006; Lu et
al., 2008; Jones et al., 2012).

Following previous research efforts, we perform
semantic parsing under a setting where the seman-
tics for complete sentences are provided as train-
ing data, but detailed word-level semantic infor-
mation is not explicitly given during the training
phase. As one example, consider the following
natural language sentence paired with its corre-
sponding semantic representation:

What rivers do not run through Tennessee ?
answer(exclude(river(all), traverse(stateid(′tn′))))

The training data consists of a set of sentences
paired with semantic representations. Our goal is
to learn from such pairs a model, which can be
effectively used for parsing novel sentences into
their semantic representations.

Certain assumptions about the semantics are
typically made. One common assumption is that
the semantics can be represented as certain re-
cursive structures such as trees, which consist of
atomic semantic units as tree nodes. For exam-
ple, the above semantics can be converted into an
equivalent tree structure as illustrated in Figure 1.
We will provide more details about such tree struc-
tured semantic representations in Section 2.1.
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Currently, most state-of-the-art approaches that
deal with such tree structured semantic represen-
tations either cast the semantic parsing problem as
a statistical string-to-string transformation prob-
lem (Wong and Mooney, 2006), which ignores
the potentially useful structural information of the
tree, or employ latent-variable models to cap-
ture the correspondences between words and tree
nodes using a generative approach (Lu et al., 2008;
Jones et al., 2012). While generative models can
be used to flexibly model the correspondences be-
tween individual words and semantic nodes of the
tree, such an approach is limited to modeling local
dependencies and is unable to flexibly incorporate
a large set of potentially useful features.

In this work, we propose a novel model for
parsing natural language into tree structured se-
mantic representations. Specifically, we propose
a novel relaxed hybrid tree representation which
jointly encodes both natural language sentences
and semantics; such representations can be effec-
tively learned with a latent-variable discriminative
model where long-distance dependencies can be
captured. We present dynamic programming al-
gorithms for efficient learning and decoding. With
a large collection of simple features, our model
reports state-of-the-art results on benchmark data
annotated with four different languages.

Furthermore, although we focus our discussions
on semantic parsing in this work, our proposed
model is a general. Essentially our model is a dis-
criminative string-to-tree model which recursively
maps overlapping contiguous word sequences to
tree nodes at different levels, where efficient dy-
namic programming algorithms can be used. Such
a model may find applications in other areas of
natural language processing, such as statistical
machine translation and information extraction.

2 Background

2.1 Semantics

Various semantic formalisms have been consid-
ered for semantic parsing. Examples include the
tree-structured semantic representations (Wong
and Mooney, 2006), the lambda calculus expres-
sions (Zettlemoyer and Collins, 2005; Wong and
Mooney, 2007), and dependency-based compo-
sitional semantic representations (Liang et al.,
2013). In this work, we specifically focus on the
tree-structured representations for semantics.

Each semantic representation consists of se-

mantic units as its tree nodes, where each semantic
unit is of the following form:

ma ≡ τa : pα(τb∗) (1)

Here ma is used to denote a complete seman-
tic unit, which consists of its semantic type τa, its
function symbol pα, as well as an argument list τb∗
(we assume there are at most two arguments for
each semantic unit). In other words, each seman-
tic unit can be regarded as a function which takes
in other semantics of specific types as arguments,
and returns new semantics of a particular type. For
example, in Figure 1, the semantic unit at the root
has a type QUERY, a function name answer, and
a single argument type RIVER.

2.2 Joint Representations

Semantic parsing models transform sentences into
their corresponding semantics. It is therefore es-
sential to make proper assumptions about joint
representations for language and semantics that
capture how individual words and atomic seman-
tic units connect to each other. Typically, differ-
ent existing models employ different assumptions
for establishing such connections, leading to very
different definitions of joint representations. We
survey in this section various representations pro-
posed by previous works.

The WASP semantic parser (Wong and Mooney,
2006) essentially casts the semantic parsing prob-
lem as a string-to-string transformation problem
by employing a statistical phrase-based machine
translation approach with synchronous gram-
mars (Chiang, 2007). Therefore, one can think of
the joint representation for both language and se-
mantics as a synchronous derivation tree consist-
ing of those derivation steps for transforming sen-
tences into target semantic representation strings.
While this joint representation is flexible, allow-
ing blocks of semantic structures to map to word
sequences, it does not fully exploit the structural
information (tree) as conveyed by the semantics.

The KRISP semantic parser (Kate and Mooney,
2006) makes use of Support Vector Machines with
string kernels (Lodhi et al., 2002) to recursively
map contiguous word sequences into semantic
units to construct a tree structure. Our relaxed
hybrid tree structures also allow input word se-
quences to map to semantic units in a recursive
manner. One key distinction, as we will see, is that
our structure distinguishes words which are imme-
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diately associated with a particular semantic unit,
from words which are remotely associated.

The SCISSOR model (Ge and Mooney, 2005)
performs integrated semantic and syntactic pars-
ing. The model parses natural language sentences
into semantically augmented parse trees whose
nodes consist of both semantic and syntactic labels
and then builds semantic representations based on
such augmented trees. Such a joint representation
conveys more information, but requires language-
specific syntactic analysis.

The hybrid tree model (Lu et al., 2008) is based
on the assumption that there exists an underlying
generative process which jointly produces both the
sentence and the semantic tree in a top-down re-
cursive manner. The generative process results in
a hybrid tree structure which consists of words as
leaves and semantic units as nodes. An example
hybrid tree structure is shown in Figure 2 (a). Such
a representation allows each semantic unit to map
to a possibly discontiguous sequence of words.
The model was shown to be effective empirically,
but it implicitly assumes that both the sentence and
semantics exhibit certain degree of structural sim-
ilarity that allows the hybrid tree structures to be
constructed.

UBL (Kwiatkowski et al., 2010) is a semantic
parser based on restricted higher-order unification
with CCG (Steedman, 1996). The model can be
used to handle both tree structured semantic rep-
resentations and lambda calculus expressions, and
assumes there exist CCG derivations as joint rep-
resentations in which each semantic unit is associ-
ated with a contiguous word sequence where over-
lappings amongst word sequences are not allowed.

Jones et al. (2012) recently proposed a frame-
work that performs semantic parsing with tree
transducers. The model learns representations that
are similar to the hybrid tree structures using a
generative process under a Bayesian setting. Thus,
their representations also potentially present simi-
lar issues as the ones mentioned above.

Besides these supervised approaches, recently
there are also several works that take alternative
learning approaches to (mostly task-dependent)
semantic parsing. Poon and Domingos (2009) pro-
posed a model for unsupervised semantic pars-
ing that transforms dependency trees into seman-
tic representations using Markov logic (Richard-
son and Domingos, 2006). Clarke et al. (2010)
proposed a model that learns a semantic parser

Symbol Description
n A complete natural language sentence
m A complete semantic representation
h A complete latent joint representation (or, a

relaxed hybrid tree for our work)
H(n,m) A complete set of latent joint representations

that contain the (n,m) pair exactly
n, na A contiguous sequence of words
w, wk A natural language word
m,ma A semantic unit
h, ha A node in the relaxed hybrid tree

Φ The feature vector
φk The k-th feature
Λ The weight vector (model parameters)
λk The weight for the k-th feature φk

Table 1: Notation Table

for answering questions without relying on seman-
tic annotations. Goldwasser et al. (2011) took
an unsupervised approach for semantic parsing
based on self-training driven by confidence esti-
mation. Liang et al. (2013) proposed a model for
learning the dependency-based compositional se-
mantics (DCS) which can be used for optimiz-
ing the end-task performance. Artzi and Zettle-
moyer (2013) proposed a model for mapping in-
structions to actions with weak supervision.

3 Approach

We discuss our approach to semantic parsing in
this section. The notation that we use in this paper
is summarized in Table 1.

3.1 Model
In standard supervised syntactic parsing, one typi-
cally has access to a complete syntactic parse tree
for each sentence in the training phase, which ex-
actly tells the correct associations between words
and syntactic labels. In our problem, however,
each sentence is only paired with a complete se-
mantic representation where the correct associa-
tions between words and semantic units are un-
available. We thus need to model such information
with latent variables.

For a given n-m pair (where n is a complete
natural language sentence, and m is a complete
semantic representation), we assume there exists a
latent joint representation h that consists of both n
and m which tells the correct associations between
words and semantic units in such a pair. We use
H(n,m)1 to denote the set of all such possible

1We will give a concrete definition of H(n,m) used for
this work, which is the complete set of all possible relaxed
hybrid tree structures for the n-m pair, when we discuss our
own joint representations later in Section 3.2.
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(a)
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mb

(w4 w5) w6 w7 (w8) w9 (w10)

md

(w9)

mc

(w6 w7)

(b)

Figure 2: Two different ways of jointly representing sentences and their semantics. The hybrid tree
representation of Lu et al. (2008) (left), and our novel relaxed hybrid tree representation (right). In
our representation, a word w can be either immediately associated with its parent m (the words which
appear inside the parenthesis), or remotely associated with m (the words that do not appear inside the
parenthesis, and will also appear under a subtree rooted by one of m’s children).

latent joint representations that contain both n and
m exactly.

Given the joint representations, to model how
the data is generated, one can either take a gener-
ative approach which models the joint probability
distribution over (n,m,h) tuples, or a discrimina-
tive approach which models the distribution over
(m,h) tuples given the observation n. Following
several previous research efforts (Zettlemoyer and
Collins, 2005; Kwiatkowski et al., 2010; Liang et
al., 2013), in this work we define a discriminative
model using a log-linear approach:

P (m,h|n; Λ) =
eΛ·Φ(n,m,h)∑

m′,h′∈H(n,m′) e
Λ·Φ(n,m′,h′) (2)

Here Φ(n,m,h) is a function defined over the
tuple (n,m,h) that returns a vector consisting of
counts of features associated with the tuple, and Λ
is a vector consisting of feature weights, which are
the parameters of the model.

In practice, we are only given the n-m pairs but
the latent structures are not observed. We there-
fore consider the following marginal probability:

P (m|n; Λ) =
∑

h∈H(n,m)

P (m,h|n; Λ)

=

∑
h∈H(n,m) e

Λ·Φ(n,m,h)∑
m′,h′∈H(n,m′) e

Λ·Φ(n,m′,h′) (3)

The above probability is defined for a particular
n-m pair. The complete log-likelihood objective

for the training set is:

L(Λ) =
∑
i

logP (mi|ni; Λ)− κ||Λ||2

=
∑
i

log
∑

h∈H(ni,mi)

P (mi,h|ni; Λ)− κ||Λ||2 (4)

where (ni,mi) refers to the i-th instance in the
training set. Note that here we introduce the ad-
ditional regularization term −κ · ||Λ||2 to control
over-fitting, where κ is a positive scalar.

Our goal is to maximize this objective function
by tuning the model parameters Λ. Let’s assume
Λ = 〈λ1, λ2, . . . , λN 〉, where N is the total num-
ber of features (or the total number of parameters).
Differentiating with respect to λk, the weight as-
sociated with the k-th feature φk, yields:

∂L(Λ)
∂λk

=
∑
i

∑
h

EP (h|ni,mi;Λ)[φk(ni,mi,h)]

−
∑
i

∑
m,h

EP (m,h|ni;Λ)[φk(ni,m,h)]− 2κλk (5)

where φk(n,m,h) refers to the number of occur-
rences for the k-th feature in the tuple (n,m,h).

Given the objective value (4) and gradients (5),
standard methods such as stochastic gradient de-
scent or L-BFGS (Liu and Nocedal, 1989) can be
employed to optimize the objective function. We
will discuss the computation of the objective func-
tion and gradients next.

3.2 Relaxed Hybrid Trees
To allow tractable computation of the values for
the objective function (4) and the gradients (5),
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. . .

NUM : count(STATE)

STATE : state(STATE)

statesSTATE : next to(CITY)

borders how many. . .

(a)

. . .

NUM : count(STATE)

. . . borders how many states (. . . )

STATE : state(STATE)

. . . borders how many (states)

STATE : next to(CITY)

. . . (borders how many)

. . .

(b)

Figure 3: An example hybrid tree and an example relaxed hybrid tree representation. When the correct
latent structure can not be found, the dependency between the words “how many” and the semantic unit
“NUM : count(STATE)” can not be captured if the hybrid tree is used, whereas with our relaxed hybrid
tree representation, such a dependency can still be captured.

certain restrictions on the latent structures (h) will
need to be imposed. We define in this section the
set of all valid latent structures H(n,m) for the
(n,m) pair so that some efficient dynamic pro-
gramming algorithms can be deployed.

We introduce our novel relaxed hybrid tree rep-
resentations which jointly encode both natural lan-
guage sentences and the tree-structured semantics.
A relaxed hybrid tree h defined over (n,m) is a
tree whose nodes are (n,m) pairs, where each n is
a contiguous sequence of words from n, and each
m is a semantic unit (a tree node) from m. For
any two nodes ha ≡ (na,ma) and hb ≡ (nb,mb)
that appear in the relaxed hybrid tree h, if ha is the
parent of hb in h, then ma must also be the parent
of mb in m, and na must contain nb. If the low-
est common ancestor of ha and hb in h is neither
ha nor hb, then na and nb do not share any com-
mon word. Note that words that appear at different
positions in n are regarded as different words, re-
gardless of their string forms.

Figure 2 (b) shows an example relaxed hybrid
tree structure that we consider. Assume we would
like to jointly represent both the natural language
sentence n ≡ w1w2 . . . w10 and its corresponding
semantic representation m ≡ ma(mb(mc,md)).
In the given example, the semantic unit ma maps
to the complete sentence,mb maps to the sequence
w4w5 . . . w10, mc maps to w6w7, and md maps to
w9. Certain words such as w4 and w10 that ap-
pear directly below the semantic unit mb but do
not map to any of mb’s child semantic units are
highlighted with parentheses “()”, indicating they

are immediately associated with mb. These words
play unique roles in the sub-tree rooted by mb and
are expected to be semantically closely related to
mb. Note that each word is immediately associ-
ated with exactly one semantic unit.

As a comparison, we also show an example hy-
brid tree representation (Lu et al., 2008) in Fig-
ure 2 (a) that has similar words-semantics cor-
respondences. Different from our representation,
the hybrid tree representation assumes each natu-
ral language word only maps to a single seman-
tic unit (which is its immediate parent), and each
semantic unit maps to a possibly discontiguous
sequence of words. We believe that such a rep-
resentation is overly restrictive, which might ex-
hibit problems in cases where natural language
sentences are highly non-isomorphic to their se-
mantic tree structures. Under our relaxed hybrid
tree representations, words that are immediately
associated with a particular semantic unit now can
also be remotely associated with all its parent se-
mantic units as well. Essentially, our representa-
tion allows us to capture certain unbounded depen-
dencies – for any word, as long as it appears be-
low a certain semantic unit (in the relaxed hybrid
tree), we can always capture the dependency be-
tween the two, regardless of which actual seman-
tic unit that word is immediately associated with.
Such an important relaxation allows some long-
distance dependencies to be captured, which can
potentially alleviate the sentence-semantics non-
isomorphism issue reported in several earlier se-
mantic parsing works (Kate and Mooney, 2006;
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Wong and Mooney, 2007).
To better illustrate the differences, we show a

concrete example in Figure 3, where the correct
latent structure showing the correspondences be-
tween words and semantic units can not be found
with the hybrid tree model. As a result, the hy-
brid tree model will fail to capture the correct de-
pendency between the words “how many” and the
semantic unit “NUM : count(STATE)”. On the
other hand, with our relaxed hybrid tree represen-
tation, such a dependency can still be captured,
since these words will still be (remotely) associ-
ated with the semantic unit.

Such a relaxed hybrid tree representation, when
further constrained with the word association pat-
terns that we will introduce next, allows both the
objective function (4) and the gradients of (5) to
be computed through the dynamic programming
algorithms to be presented in Section 4.

3.3 Word Association Patterns

As we have mentioned above, in the relaxed hy-
brid tree structures, each word w under a certain
semantic unit m can either appear directly below
m only (immediately associated with m), or can
also appear in a subtree rooted by one ofm’s child
semantic unit (remotely associated with m).

We allow several different ways for word asso-
ciations and define the allowable patterns for se-
mantic units with different number of arguments
in Table 2. Such patterns are defined so that our
model is amendable to dynamic programming al-
gorithms to be discussed in Sec 4. In this table,
w refers to a contiguous sequence of natural lan-
guage words that are immediately associated with
the current semantic unit, while X and Y refers
to a sequence of natural language words that the
first and second child semantic unit will map to,
respectively.

For example, in Figure 2 (b), the word sequence
directly below the semantic unit ma follows the
pattern wX (since the word sequence w1w2w3 is
immediately associated with ma, and the remain-
ing words are remotely associated with ma), and
the word sequence below mb follows wXwYw2.

The word association patterns are similar to
those hybrid patterns used in hybrid trees. One
key difference is that we disallow the unary pat-

2This is based on the assumption that mc and md are the
first and second child of mb in the semantic representation,
respectively. If md is the first child in the semantic represen-
tation andmc is the second, the pattern should be wYwXw.

#Args Word Association Patterns
0 w
1 wX, Xw, wXw

2

XY, YX, wXY, wYX, XwY, YwX
XYw, YXw, wXwY, wYwX

wXYw, wYXw, XwYw, YwXw
wXwYw, wYwXw

Table 2: The complete list of word association pat-
terns. Here #Args means the number of arguments
for a semantic unit.

tern X. The reason is, when computing the parti-
tion function in Equation 3, inclusion of pattern X
will result in relaxed hybrid trees consisting of an
infinite number of nodes. However, this issue does
not come up in the original hybrid tree models due
to their generative setting, where the training pro-
cess does not involve such a partition function.

3.4 Features

The features are defined over the (n,m,h) tuples.
In practice, we define features at each level of the
relaxed hybrid tree structure h. In other words,
features are defined over (n,m) tuples where n is
a contiguous sequence of natural language words
(immediately or remotely) associated with the se-
mantic unit m (recall that h contains both n and
m, and each level of h simply consists of a seman-
tic unit and a contiguous sequence of words). Each
feature over (n,m) is then further decomposed
as a product between two indicator feature func-
tions, defined over the natural language words (n)
and semantic unit (m) respectively: φ(n,m) =
φi(n) × φo(m). For each φi(n) we define two
types of features: the local features, which are de-
fined over immediately associated words only, and
the span features, which are defined over all (im-
mediately or remotely) associated words to cap-
ture long range dependencies.

The local features include word unigrams and
bigrams, the word association patterns, as well as
character-level features3 which perform implicit
morphological analysis. The span features include
word unigrams, bigrams, as well as trigrams. Al-
though our model allows certain more sophisti-
cated features to be exploited, such as word POS
features, word similarity features based on the
WordNet (Pedersen et al., 2004), we deliberately
choose to only include these simple features so

3For each word, we used all its prefixes (not necessarily
linguistically meaningful ones) whose length are greater than
2 as features, for all languages.
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as to make a fair comparison with previous works
which also did not make use of external resources.
For the features defined on m (i.e., φo(m)), we in-
clude only the string form of m, as well as m’s
function name as features.

Finally, we also define features over m only.
Such features are defined over semantic unit pairs
such as (ma,mb) where ma is the parent node of
mb as in m. They include: 1) concatenation of the
string forms ofma andmb, 2) concatenation of the
string form of ma and mb’s type, and 3) concate-
nation of the function names of ma and mb.

4 Algorithms

In this section we describe the efficient algorithms
used for learning and decoding. The algorithms
are inspired by the inside-outside style algorithms
used for the generative hybrid tree models (Lu
et al., 2008), but are different in the following
ways: 1) we need to handle features, including
long-distance features, 2) we need to additionally
handle the computation of the partition function of
Equation (3).

4.1 Learning

The training process involves the computation of
the objective function (4) as well as the gradient
terms (5).

The objective function (4) (excluding the regu-
larization term which can be trivially computed) is
equivalent to the following:

L(Λ) =
∑
i

log
∑

h∈H(ni,mi)

eΛ·Φ(ni,mi,h)

−
∑
i

log
∑

m′,h′∈H(ni,m′)

eΛ·Φ(ni,m
′,h′) (6)

In the first term,
∑

h∈H(ni,mi)
eΛ·Φ(ni,mi,h) is

in fact the sum of the scores (as defined by Φ and
Λ) associated with all such latent structures that
contain both mi and ni exactly. The second term
is the sum of the scores associated with all the la-
tent structures that contain ni exactly. We focus
our discussions on the computation of the first part
first.

We use
m(p)

wi . . . wj
to denote the combined score

of all such latent relaxed hybrid tree structures that
contain both the semantic tree rooted bym and the
natural language word sequence wi . . . wj that
forms the word association pattern p with respect

to m. For example, the score of the relaxed hybrid

tree in Figure 2 (b) is contained by
ma(wX)

w1 . . . w10
(here p = wX because only w1w2w3 are imme-
diately associated with ma).

We give an illustrative example that shows how
these scores can be computed efficiently using dy-
namic programming. Consider the following case
when m has at least one child semantic unit:

m(wXw)

wi . . . wj
=
m(w)

wi
⊗

m(wXw)

wi+1 . . . wj

+
m(w)

wi
⊗

m(Xw)

wi+1 . . . wj
Here the symbol ⊗ means extract and compute,

a process that involves 1) extraction of additional
features when the two structures on the right-hand
side are put together (for example, the local bi-
gram feature “wiwi+1” can be extracted in the
above case), and 2) computation of the score for
the new structure when the two structures from
both sides of ⊗ are combined, based on the scores
of these structures and newly extracted features.

The above equation holds because for any re-
laxed hybrid tree contained by the left-hand side,
the left-most word wi is always immediately as-

sociated with m. The term
m(wXw)

wi+1 . . . wj
is present-

ing a similar but smaller structure to the term on

the left-hand side. The other term
m(wX)

wi . . . wj
can

also be computed based on similar equations. In
other words, such terms can be computed from
even smaller similar terms in a recursive manner.
A bottom-up dynamic programming algorithm is
used for computing such terms.

When the semantic unit m has two child nodes,
similar equations can also be established. Here we
give an illustrative example:
m(wXwYw)

wi . . . wj
=
∑j−1

k=i

m(wX)

wi . . . wk
⊗

m(wYw)

wk+1 . . . wj
Finally, we have the following equation:

m

wi . . . wj
=
∑

p

m(p)

wi . . . wj
The left-hand side simply means the combined

score for all such relaxed hybrid trees that have
(n,m) as the root, where n ≡ wi . . . wj . Once the
computation for a certain (n,m) pair is done, we
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can move up to process such pairs that involvem’s
parent node.

The above process essentially computes the in-
side score associated with the (n,m) pair, which
gives the sum of the scores of all such (incomplete)
relaxed hybrid trees that can be constructed with
(n,m) as the root. Similar to (Lu et al., 2008), we
can also define and compute the outside scores for
(n,m) (the combined score of such incomplete re-
laxed hybrid trees that contain (n,m) as one of its
leave nodes) in an analogous manner, where the
computation of the gradient functions can be effi-
ciently integrated in this process.

Computation of the second part of the objective
function (6) involves dynamic programming over
a packed forest representation rather than a single
tree, which requires an extension to the algorithm
described in (Lu et al., 2008). The resulting al-
gorithm is similar to the one used in (Lu and Ng,
2011), which has been used for language gener-
ation from packed forest representations of typed
λ-calculus expressions.

4.2 Decoding
The decoding phase involves finding the optimal
semantic tree m∗ given a new input sentence n:

m∗ = arg max
m

P (m|n) (7)

This in fact is equivalent to finding the follow-
ing optimal semantic tree m∗:

m∗ = arg max
m

∑
h∈H(n,m)

eΛ·Φ(n,m,h) (8)

Unfortunately, the summation operation inside
the arg max prevents us from employing a simi-
lar version of the dynamic programming algorithm
we developed for learning in Section 4.1. To over-
come this difficulty, we instead find the optimal
semantic tree using the following equation:

m∗ = arg max
m,h∈H(n,m)

eΛ·Φ(n,m,h) (9)

We essentially replace the
∑

operation by the
max operation inside the arg max. In other words,
we first find the best latent relaxed hybrid tree h∗

that contains the input sentence n, and next we ex-
tract the optimal semantic tree m∗ from h∗.

This decoding algorithm is similar to the dy-
namic programming algorithm used for comput-
ing the inside score for a given natural language

sentence n (i.e., the algorithm for computing the
second term of Equation (6)). The difference here
is, at each intermediate step, instead of computing
the combined score for all possible relaxed hybrid
tree structures (i.e., performing sum), we find the
single-best relaxed hybrid tree structure (i.e., per-
forming max).

5 Experiments

We present evaluations on the standard GeoQuery
dataset which is publicly available. This dataset
has been used for evaluations in various seman-
tic parsing works (Wong and Mooney, 2006; Kate
and Mooney, 2006; Lu et al., 2008; Jones et al.,
2012). It consists of 880 natural language sen-
tences paired with their corresponding formal se-
mantic representations. Each semantic represen-
tation is a tree structured representation derived
from a Prolog query that can be used to interact
with a database of U.S. geography facts for retriev-
ing answers. The original dataset was fully anno-
tated in English, and recently Jones et al. (2012)
released a new version of this dataset with three
additional language annotations (German, Greek
and Thai). For all the experiments, we used the
identical experimental setup as described in Jones
et al. (2012). Specifically, we trained on 600 in-
stances, and evaluated on the remaining 280.

We note that there exist two different versions of
the GeoQuery dataset annotated with completely
different semantic representations. Besides the
version that we use in this work, which is an-
notated with tree structured semantic representa-
tions, the other version is annotated with lambda
calculus expressions (Zettlemoyer and Collins,
2005). Results obtained from these two versions
are not comparable.4 Like many previous works,
we focus on tree structured semantic representa-
tions for evaluations in this work since our model
is designed for handling the class of semantic rep-
resentations with recursive tree structures.

We used the standard evaluation criteria for
judging the correctness of the outputs. Specifi-
cally, our system constructs Prolog queries from
the output parses, and uses such queries to retrieve
answers from the GeoQuery database. An output
is considered correct if and only if it retrieves the

4Kwiatkowski et al. (2010) showed in Table 3 of their
work that the version with tree-structured representations ap-
peared to be more challenging – their semantic parser’s per-
formance on this version was substantially lower than that on
the lambda calculus version.
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System
English Thai German Greek

Acc. F1 Acc. F1 Acc. F1 Acc. F1
WASP 71.1 77.7 71.4 75.0 65.7 74.9 70.7 78.6
HYBRIDTREE+ 76.8 81.0 73.6 76.7 62.1 68.5 69.3 74.6
UBL-S 82.1 82.1 66.4 66.4 75.0 75.0 73.6 73.7
TREETRANS 79.3 79.3 78.2 78.2 74.6 74.6 75.4 75.4
RHT (all features) 83.6 83.6 79.3 79.3 74.3 74.3 78.2 78.2

Table 3: Performance on the benchmark data, using four different languages as inputs. RHT: relaxed
hybrid tree (this work).

same answers as the gold standard (Jones et al.,
2012). We report accuracy scores – the percentage
of inputs with correct answers, and F1 measures –
the harmonic mean of precision (the proportion of
correct answers out of inputs with an answer) and
recall (the proportion of correct answers out of all
inputs). By adopting such an evaluation method
we will be able to directly compare our model’s
performance against those of the previous works.

The evaluations were conducted under such a
setting in order to make comparisons to previous
works. We would like to stress that our model
is designed for general-purpose semantic parsing
that is not only natural language-independent, but
also task-independent. We thus distinguish our
work from several previous works in the literature
which focused on semantic parsing under other as-
sumptions. Specifically, for example, works such
as (Liang et al., 2013; Poon and Domingos, 2009;
Clarke et al., 2010) essentially performed seman-
tic parsing under different settings where the goal
was to optimize the performance of certain down-
stream NLP tasks such as answering questions,
and different semantic formalisms and language-
specific features were usually involved.

For all our experiments, we used the L-BFGS
algorithm for learning the feature weights, where
feature weights were all initialized to zeros and the
regularization hyper-parameter κ was set to 0.01.
We set the maximum number of L-BFGS steps to
100. When all the features are considered, our
model creates over 2 million features for each lan-
guage on the dataset (English: 2.1M, Thai: 2.3M,
German: 2.7M, Greek: 2.6M). Our model re-
quires (on average) a per-instance learning time of
0.428 seconds and a per-instance decoding time of
0.235 seconds, on an Intel machine with a 2.2 GHz
CPU. Our implementation is in Java. Here the
per-instance learning time refers to the time spent
on computing the instance-level log-likelihood as

well as the expected feature counts (needed for the
gradients).

Table 3 shows the evaluation results of our sys-
tem as well as those of several other comparable
previous works which share the same experimen-
tal setup as ours. UBL-S is the system presented
in Kwiatkowski et al. (2010) which performs se-
mantic parsing with the CCG based on mapping
between graphs, and is the only non-tree based
top-performing system. Their system, similar to
ours, also uses a discriminative log-linear model
where two types of features are defined. WASP is
a model based on statistical phrase-based machine
translation as we have described earlier. The hy-
brid tree model (HYBRIDTREE+) performs learn-
ing using a generative process which is augmented
with an additional discriminative-reranking stage,
where certain global features are incorporated (Lu
et al., 2008). The Bayesian tree transducer model
(TREETRANS) learns under a Bayesian genera-
tive framework, using hyper-parameters manually
tuned on the German training data.

We can observe from Table 3 that the semantic
parser based on relaxed hybrid tree gives compet-
itive performance when all the features (described
in Sec 3.4) are used. It significantly outperforms
the hybrid tree model that is augmented with a dis-
criminative reranking step. The model reports the
best accuracy and F1 scores on English and Thai
and best accuracy score on Greek. The scores
on German are lower than those of UBL-S and
TREETRANS, mainly because the span features
appear not to be effective for this language, as we
will discuss next.

We report in Table 4 the test set performance
when certain types of features are excluded from
our system. Such results can help us understand
the effectiveness of features of different types. As
we can see from the table, in general, all fea-
tures play essential roles, though their effective-
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System
English Thai German Greek

Acc. F1 Acc. F1 Acc. F1 Acc. F1
RHT (all features) 83.6 83.6 79.3 79.3 74.3 74.3 78.2 78.2
RHT (no local features) 81.4 81.4 78.2 78.2 74.3 74.3 75.7 75.7
RHT (no span features) 81.1 81.1 77.9 77.9 78.2 78.2 78.9 78.9
RHT (no char features) 79.6 79.6 82.1 82.1 73.6 73.6 76.1 76.1

Table 4: Results when certain types of features (local features, span features and character-level features)
are excluded.

ness vary across different languages. The local
features, which capture local dependencies, are
of particular importance. Performance on three
languages (English, Thai, and Greek) will drop
when such features are excluded. Character-level
features are very helpful for the three European
languages (English, German, and Greek), but ap-
pear to be harmful for Thai. This indicates the
character-level features that we propose do not
perform effective morphological analysis for this
Asian language.5 The span features, which are
able to capture certain long-distance dependen-
cies, also play important roles. Specifically, if
such features are excluded, our model’s perfor-
mance on three languages (Greek, English, Thai)
will drop. Such features do not appear to be help-
ful for Thai and appear to be harmful for Ger-
man. Clearly, such long-distance features are not
contributing useful information to the model when
these two languages are considered. This is espe-
cially the case for German, where we believe such
features are contributing substantial noisy infor-
mation to the model. What underlying language-
specific, syntactic properties are generally caus-
ing these gaps in the performances? We believe
this is an important question that needs to be ad-
dressed in future research. As we have mentioned,
to make an appropriate comparison with previ-
ous works, only simple features are used. We be-
lieve that our system’s performance can be further
improved when additional informative language-
specific features can be extracted from effective
language tools and incorporated into our system.

6 Conclusions

In this work, we present a new discriminative
model for semantic parsing which extends the hy-

5The character-level features that we introduced are in-
deed very general. We have conducted several additional ex-
periments, which show that our model’s performance for each
language can be further improved when certain language-
specific character-level features are introduced.

brid tree model. Such an extension is similar to the
extension of the generative syntactic parser based
on probabilistic context-free grammars (PCFG) to
the feature-based CRF parser (Finkel et al., 2008),
but is slightly more complex due to latent struc-
tures. Developed on top of our novel relaxed hy-
brid tree representations, our model allows cer-
tain long-distance dependencies to be captured.
We also present efficient algorithms for learn-
ing and decoding. Experiments on benchmark
data show that our model is competitive to previ-
ous works and achieves the state-of-the-art perfor-
mance across several different languages.

Future works include development of efficient
algorithms for feature-based semantic parsing
with alternative loss functions (Zhou et al., 2013),
development of feature-based language generation
models (Lu et al., 2009; Lu and Ng, 2011) and
multilingual semantic parsers (Jie and Lu, 2014),
as well as the development of efficient semantic
parsing algorithms for optimizing the performance
of certain downstream NLP tasks with less super-
vision (Clarke et al., 2010; Liang et al., 2013).

Being able to efficiently exploit features defined
over individual words, our model also opens up the
possibility for us to exploit alternative representa-
tions of words for learning (Turian et al., 2010), or
to perform joint learning of both distributional and
logical semantics (Lewis and Steedman, 2013).
Furthermore, as a general string-to-tree structured
prediction model, this work may find applications
in other areas within NLP.

The system and code can be downloaded from
http://statnlp.org/research/sp/.
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Abstract

The anchor words algorithm performs
provably efficient topic model inference
by finding an approximate convex hull
in a high-dimensional word co-occurrence
space. However, the existing greedy al-
gorithm often selects poor anchor words,
reducing topic quality and interpretability.
Rather than finding an approximate con-
vex hull in a high-dimensional space, we
propose to find an exact convex hull in
a visualizable 2- or 3-dimensional space.
Such low-dimensional embeddings both
improve topics and clearly show users why
the algorithm selects certain words.

1 Introduction

Statistical topic modeling is useful in exploratory
data analysis (Blei et al., 2003), but model infer-
ence is known to be NP-hard even for the sim-
plest models with only two topics (Sontag and
Roy, 2011), and training often remains a black
box to users. Likelihood-based training requires
expensive approximate inference such as varia-
tional methods (Blei et al., 2003), which are deter-
ministic but sensitive to initialization, or Markov
chain Monte Carlo (MCMC) methods (Griffiths
and Steyvers, 2004), which have no finite conver-
gence guarantees. Recently Arora et al. proposed
the Anchor Words algorithm (Arora et al., 2013),
which casts topic inference as statistical recovery
using a separability assumption: each topic has
a specific anchor word that appears only in the
context of that single topic. Each anchor word
can be used as a unique pivot to disambiguate the
corresponding topic distribution. We then recon-
struct the word co-occurrence pattern of each non-

anchor words as a convex combination of the co-
occurrence patterns of the anchor words.

burger

salad
pizza

chicken
good

told

popcorn
stadium
views

tire

movies
screen

sashimi

car
called

hotel

yoga

bagels

shoppingdog

movie

Figure 1: 2D t-SNE projection of a Yelp review
corpus and its convex hull. The words corre-
sponding to vertices are anchor words for topics,
whereas non-anchor words correspond to the inte-
rior points.

This algorithm is fast, requiring only one pass
through the training documents, and provides
provable guarantees, but results depend entirely on
selecting good anchor words. (Arora et al., 2013)
propose a greedy method that finds an approxi-
mate convex hull around a set of vectors corre-
sponding to the word co-occurrence patterns for
each vocabulary word. Although this method is
an improvement over previous work that used im-
practical linear programming methods (Arora et
al., 2012), serious problems remain. The method
greedily chooses the farthest point from the cur-
rent subspace until the given number of anchors
have been found. Particularly at the early stages
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of the algorithm, the words associated with the
farthest points are likely to be infrequent and id-
iosyncratic, and thus form poor bases for human
interpretation and topic recovery. This poor choice
of anchors noticeably affects topic quality: the an-
chor words algorithm tends to produce large num-
bers of nearly identical topics.

Besides providing a separability criterion, an-
chor words also have the potential to improve topic
interpretability. After learning topics for given text
collections, users often request a label that sum-
marizes each topic. Manually labeling topics is ar-
duous, and labels often do not carry over between
random initializations and models with differing
numbers of topics. Moreover, it is hard to con-
trol the subjectivity in labelings between annota-
tors, which is open to interpretive errors. There
has been considerable interest in automating the
labeling process (Mei et al., 2007; Lau et al., 2011;
Chuang et al., 2012). (Chuang et al., 2012) pro-
pose a measure of saliency: a good summary term
should be both distinctive specifically to one topic
and probable in that topic. Anchor words are by
definition optimally distinct, and therefore may
seem to be good candidates for topic labels, but
greedily selecting extreme words often results in
anchor words that have low probability.

In this work we explore the opposite of Arora et
al.’s method: rather than finding an approximate
convex hull for an exact set of vectors, we find an
exact convex hull for an approximate set of vec-
tors. We project the V × V word co-occurrence
matrix to visualizable 2- and 3-dimensional spaces
using methods such as t-SNE (van der Maaten and
Hinton, 2008), resulting in an input matrix up to
3600 times narrower than the original input for
our training corpora. Despite this radically low-
dimensional projection, the method not only finds
topics that are as good or better than the greedy
anchor method, it also finds highly salient, in-
terpretable anchor words and provides users with
a clear visual explanation for why the algorithm
chooses particular words, all while maintaining
the original algorithm’s computational benefits.

2 Related Work

Latent Dirichlet allocation (LDA) (Blei et al.,
2003) models D documents with a vocabulary V
using a predefined number of topics by K. LDA
views both {Ak}Kk=1, a set of K topic-word distri-
butions for each topic k, and {Wd}Dd=1, a set of D

document-topic distributions for each document d,
and {zd}Dd=1, a set of topic-assignment vectors for
word tokens in the document d, as randomly gen-
erated from known stochastic processes. Merging
{Ak} as k-th column vector of V ×K matrix A,
{Wd} as d-th column vector of K ×D matrix W ,
the learning task is to estimate the posterior dis-
tribution of latent variables A, W , and {zd} given
V × D word-document matrix M̂ , which is the
only observed variable where d-th column corre-
sponds to the empirical word frequencies in the
training documents d.

(Arora et al., 2013) recover word-topic matrix
A and topic-topic matrix R = E[WW T ] instead
of W in the spirit of nonnegative matrix factoriza-
tion. Though the true underlying word distribu-
tion for each document is unknown and could be
far from the sample observation M̂ , the empirical
word-word matrix Q̂ converges to its expectation
AE[WW T ]AT = ARAT as the number of docu-
ments increases. Thus the learning task is to ap-
proximately recover A and R pretending that the
empirical Q̂ is close to the true second-order mo-
ment matrix Q.

The critical assumption for this method is to
suppose that every topic k has a specific anchor
word sk that occurs with non-negligible probabil-
ity (> 0) only in that topic. The anchor word sk
need not always appear in every document about
the topic k, but we can be confident that the doc-
ument is at least to some degree about the topic k
if it contains sk. This assumption drastically im-
proves inference by guaranteeing the presence of
a diagonal sub-matrix inside the word-topic ma-
trix A. After constructing an estimate Q̂, the al-
gorithm in (Arora et al., 2013) first finds a set
S = {s1, ..., sK} of K anchor words (K is user-
specified), and recovers A and R subsequently
based on S. Due to this structure, overall perfor-
mance depends heavily on the quality of anchor
words.

In the matrix algebra literature this greedy
anchor finding method is called QR with row-
pivoting. Previous work classifies a matrix into
two sets of row (or column) vectors where the vec-
tors in one set can effectively reconstruct the vec-
tors in another set, called subset-selection algo-
rithms. (Gu and Eisenstat, 1996) suggest one im-
portant deterministic algorithm. A randomized al-
gorithm provided by (Boutsidis et al., 2009) is the
state-of-the art using a pre-stage that selects the
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candidates in addition to (Gu and Eisenstat, 1996).
We found no change in anchor selection using
these algorithms, verifying the difficulty of the an-
chor finding process. This difficulty is mostly be-
cause anchors must be nonnegative convex bases,
whereas the classified vectors from the subset se-
lection algorithms yield unconstrained bases.

The t-SNE model has previously been used to
display high-dimensional embeddings of words in
2D space by Turian.1 Low-dimensional embed-
dings of topic spaces have also been used to sup-
port user interaction with models: (Eisenstein et
al., 2011) use a visual display of a topic embed-
ding to create a navigator interface. Although
t-SNE has been used to visualize the results of
topic models, for example by (Lacoste-Julien et
al., 2008) and (Zhu et al., 2009), we are not aware
of any use of the method as a fundamental compo-
nent of topic inference.

3 Low-dimensional Embeddings

Real text corpora typically involve vocabularies in
the tens of thousands of distinct words. As the
input matrix Q̂ scales quadratically with V , the
Anchor Words algorithm must depend on a low-
dimensional projection of Q̂ in order to be practi-
cal. Previous work (Arora et al., 2013) uses ran-
dom projections via either Gaussian random ma-
trices (Johnson and Lindenstrauss, 1984) or sparse
random matrices (Achlioptas, 2001), reducing the
representation of each word to around 1,000 di-
mensions. Since the dimensionality of the com-
pressed word co-occurrence space is an order of
magnitude larger than K, we must still approxi-
mate the convex hull by choosing extreme points
as before.

In this work we explore two projection meth-
ods: PCA and t-SNE (van der Maaten and Hinton,
2008). Principle Component Analysis (PCA) is a
commonly-used dimensionality reduction scheme
that linearly transforms the data to new coordi-
nates where the largest variances are orthogonally
captured for each dimension. By choosing only a
few such principle axes, we can represent the data
in a lower dimensional space. In contrast, t-SNE
embedding performs a non-linear dimensionality
reduction preserving the local structures. Given a
set of points {xi} in a high-dimensional space X ,
t-SNE allocates probability mass for each pair of
points so that pairs of similar (closer) points be-

1http://metaoptimize.com/projects/wordreprs/
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Figure 2: 2D PCA projections of a Yelp review
corpus and its convex hulls.

come more likely to co-occur than dissimilar (dis-
tant) points.

pj|i =
exp(−d(xi,xj)2/2σ2

i )∑
k 6=i exp(−d(xi,xk)2/2σ2

i )
(1)

pij =
pj|i + pi|j

2N
(symmetrized) (2)

Then it generates a set of new points {yi} in
low-dimensional space Y so that probability dis-
tribution over points in Y behaves similarly to the
distribution over points in X by minimizing KL-
divergence between two distributions:

qij =
(1 + ‖yi − yj‖2)−1∑
k 6=l(1 + ‖yk − yl‖2)−1

(3)

min KL(P ||Q) =
∑
i 6=j

pij log
pij
qij

(4)

Instead of approximating a convex hull in such
a high-dimensional space, we select the exact
vertices of the convex hull formed in a low-
dimensional projected space, which can be calcu-
lated efficiently. Figures 1 and 2 show the con-
vex hulls for 2D projections of Q̂ using t-SNE and
PCA for a corpus of Yelp reviews. Figure 3 il-
lustrates the convex hulls for 3D t-SNE projection
for the same corpus. Anchor words correspond to
the vertices of these convex hulls. Note that we
present the 2D projections as illustrative examples
only; we find that three dimensional projections
perform better in practice.
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Figure 3: 3D t-SNE projection of a Yelp review
corpus and its convex hull. Vertices on the convex
hull correspond to anchor words.

In addition to the computational advantages,
this approach benefits anchor-based topic model-
ing in two aspects. First, as we now compute the
exact convex hull, the number of topics depends
on the dimensionality of the embedding, v. For
example in the figures, 2D projection has 21 ver-
tices, whereas 3D projection supports 69 vertices.
This implies users can easily tune the granularity
of topic clusters by varying v = 2, 3, 4, ... with-
out increasing the number of topics by one each
time. Second, we can effectively visualize the the-
matic relationships between topic anchors and the
rest of words in the vocabulary, enhancing both
interpretability and options for further vocabulary
curation.

4 Experimental Results

We find that radically low-dimensional t-SNE pro-
jections are effective at finding anchor words that
are much more salient than the greedy method, and
topics that are more distinctive, while maintain-
ing comparable held-out likelihood and semantic
coherence. As noted in Section 1, the previous
greedy anchor words algorithm tends to produce
many nearly identical topics. For example, 37 out
of 100 topics trained on a 2008 political blog cor-
pus have obama, mccain, bush, iraq or palin as
their most probable word, including 17 just for
obama. Only 66% of topics have a unique top
word. In contrast, the t-SNE model on the same
dataset has only one topic whose most probable
word is obama, and 86% of topics have a unique

top word (mccain is the most frequent top word,
with five topics).

We use three real datasets: business reviews
from the Yelp Academic Dataset,2 political blogs
from the 2008 US presidential election (Eisen-
stein and Xing, 2010), and New York Times ar-
ticles from 2007.3 Details are shown in Table
1. Documents with fewer than 10 word tokens
are discarded due to possible instability in con-
structing Q̂. We perform minimal vocabulary cu-
ration, eliminating a standard list of English stop-
words4 and terms that occur below frequency cut-
offs: 100 times (Yelp, Blog) and 150 times (NYT).
We further restrict possible anchor words to words
that occur in more than three documents. As our
datasets are not artificially synthesized, we reserve
5% from each set of documents for held-out like-
lihood computation.

Name Documents Vocab. Avg. length
Yelp 20,000 1,606 40.6
Blog 13,000 4,447 161.3
NYT 41,000 10,713 277.8

Table 1: Statistics for datasets used in experiments

Unlike (Arora et al., 2013), which presents
results on synthetic datasets to compare perfor-
mance across different recovery methods given in-
creasing numbers of documents, we are are inter-
ested in comparing anchor finding methods, and
are mainly concerned with semantic quality. As
a result, although we have conducted experiments
on synthetic document collections,5 we focus on
real datasets for this work. We also choose to com-
pare only anchor finding algorithms, so we do not
report comparisons to likelihood-based methods,
which can be found in (Arora et al., 2013).

For both PCA and t-SNE, we use three-
dimensional embeddings across all experiments.
This projection results in matrices that are 0.03%
as wide as the original V × V matrix for the
NYT dataset. Without low-dimensional embed-
ding, each word is represented by a V-dimensional
vector where only several terms are non-zero due
to the sparse co-occurrence patterns. Thus a ver-

2https://www.yelp.com/academic dataset
3http://catalog.ldc.upenn.edu/LDC2008T19
4We used the list of 524 stop words included in the Mallet

library.
5None of the algorithms are particularly effective at find-

ing synthetically introduced anchor words possibly because
there are other candidates around anchor vertices that approx-
imate the convex hull to almost the same degree.
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tex captured by the greedy anchor-finding method
is likely to be one of many eccentric vertices in
very high-dimensional space. In contrast, t-SNE
creates an effective dense representation where a
small number of pivotal vertices are more clearly
visible, improving both performance and inter-
pretability.

Note that since we can find an exact convex hull
in these spaces,6 there is an upper bound to the
number of topics that can be found given a partic-
ular projection. If more topics are desired, one can
simply increase the dimensionality of the projec-
tion. For the greedy algorithm we use sparse ran-
dom projections with 1,000 dimensions with 5%
negative entries and 5% positive entries. PCA and
t-SNE choose (49, 32, 47) and (69, 77, 107) an-
chors, respectively for each of three Yelp, Blog,
and NYTimes datasets.

4.1 Anchor-word Selection

We begin by comparing the behavior of low-
dimensional embeddings to the behavior of the
standard greedy algorithm. Table 2 shows ordered
lists of the first 12 anchor words selected by three
algorithms: t-SNE embedding, PCA embedding,
and the original greedy algorithm. Anchor words
selected by t-SNE (police, business, court) are
more general than anchor words selected by the
greedy algorithm (cavalry, al-sadr, yiddish). Ad-
ditional examples of anchor words and their asso-
ciated topics are shown in Table 3 and discussed
in Section 4.2.

# t-SNE PCA Greedy
1 police beloved cavalry
2 bonds york biodiesel
3 business family h/w
4 day loving kingsley
5 initial late mourners
6 million president pcl
7 article people carlisle
8 wife article al-sadr
9 site funeral kaye

10 mother million abc’s
11 court board yiddish
12 percent percent great-grandmother

Table 2: The first 12 anchor words selected by
three algorithms for the NYT corpus.

The Gram-Schimdt process used by Arora et
al. greedily selects anchors in high-dimensional
space. As each word is represented within V -

6In order to efficiently find an exact convex hull, we use
the Quickhull algorithm.

Type # HR Top Words (Yelp)
t-SNE 16 0 mexican good service great eat restaurant authentic delicious
PCA 15 0 mexican authentic eat chinese don’t restaurant fast salsa
Greedy 34 35 good great food place service restaurant it’s mexican
t-SNE 6 0 beer selection good pizza great wings tap nice
PCA 39 6 wine beer selection nice list glass wines bar
Greedy 99 11 beer selection great happy place wine good bar
t-SNE 3 0 prices great good service selection price nice quality
PCA 12 0 atmosphere prices drinks friendly selection nice beer ambiance
Greedy 34 35 good great food place service restaurant it’s mexican
t-SNE 10 0 chicken salad good lunch sauce ordered fried soup
PCA 10 0 chicken salad lunch fried pita time back sauce
Greedy 69 12 chicken rice sauce fried ordered i’m spicy soup

Type # HR Top Words (Blog)
t-SNE 10 0 hillary clinton campaign democratic bill party win race
PCA 4 0 hillary clinton campaign democratic party bill democrats vote
Greedy 45 19 obama hillary campaign clinton obama’s barack it’s democratic
t-SNE 3 0 iraq war troops iraqi mccain surge security american
PCA 9 1 iraq iraqi war troops military forces security american
Greedy 91 8 iraq mccain war bush troops withdrawal obama iraqi
t-SNE 9 0 allah muhammad qur verses unbelievers ibn muslims world
PCA 18 14 allah muhammad qur verses unbelievers story time update
Greedy 4 5 allah muhammad people qur verses unbelievers ibn sura
t-SNE 19 0 catholic abortion catholics life hagee time biden human
PCA 2 0 people it’s time don’t good make years palin
Greedy 40 1 abortion parenthood planned people time state life government

Type # HR Top Words (NYT)
t-SNE 0 0 police man yesterday officers shot officer year-old charged
PCA 6 0 people it’s police way those three back don’t
Greedy 50 198 police man yesterday officers officer people street city
t-SNE 19 0 senator republican senate democratic democrat state bill
PCA 33 2 state republican republicans senate senator house bill party
Greedy 85 33 senator republican president state campaign presidential people
t-SNE 2 0 business chief companies executive group yesterday billion
PCA 21 0 billion companies business deal group chief states united
Greedy 55 10 radio business companies percent day music article satellite
t-SNE 14 0 market sales stock companies prices billion investors price
PCA 11 0 percent market rate week state those increase high
Greedy 77 44 companies percent billion million group business chrysler people

Table 3: Example t-SNE topics and their most
similar topics across algorithms. The Greedy algo-
rithm can find similar topics, but the anchor words
are much less salient.

dimensions, finding the word that has the next
most distinctive co-occurrence pattern tends to
prefer overly eccentric words with only short, in-
tense bursts of co-occurring words. While the
bases corresponding to these anchor words could
be theoretically relevant for the original space in
high-dimension, they are less likely to be equally
important in low-dimensional space. Thus project-
ing down to low-dimensional space can rearrange
the points emphasizing not only uniqueness, but
also longevity, achieving the ability to form mea-
surably more specific topics.

Concretely, neither cavalry, al-sadr, yiddish nor
police, business, court are full representations of
New York Times articles, but the latter is a much
better basis than the former due to its greater gen-
erality. We see the effect of this difference in the
specificity of the resulting topics (for example in
17 obama topics). Most words in the vocabulary
have little connection to the word cavalry, so the
probability p(z|w) does not change much across
different w. When we convert these distributions
into P (w|z) using the Bayes’ rule, the resulting
topics are very close to the corpus distribution, a
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unigram distribution p(w).

p(w|z = kcavalry) ∝ p(z = kcavalry|w)p(w)
≈ p(w)

This lack of specificity results in the observed sim-
ilarity of topics.

4.2 Quantitative Results
In this section we compare PCA and t-SNE pro-
jections to the greedy algorithm along several
quantitative metrics. To show the effect of dif-
ferent values of K, we report results for varying
numbers of topics. As the anchor finding algo-
rithms are deterministic, the anchor words in a K-
dimensional model are identical to the first K an-
chor words in a (K + 1)-dimensional model. For
the greedy algorithm we select anchor words in
the order they are chosen. For the PCA and t-
SNE methods, which find anchors jointly, we sort
words in descending order by their distance from
their centroid.

Recovery Error. Each non-anchor word is ap-
proximated by a convex combination of the K
anchor words. The projected gradient algorithm
(Arora et al., 2013) determines these convex coef-
ficients so that the gap between the original word
vector and the approximation becomes minimized.
As choosing a good basis of K anchor words de-
creases this gap, Recovery Error (RE) is defined
by the average `2-residuals across all words.

RE =
1
V

V∑
i=1

‖Q̄i −
K∑
k=1

p(z1 = k|w1 = i)Q̄Sk‖2
(5)

Recovery error decreases with the number of top-
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Figure 4: Recovery error is similar across algo-
rithms.

ics, and improves substantially after the first 10–15
anchor words for all methods. The t-SNE method
has slightly better performance than the greedy al-
gorithm, but they are similar. Results for recovery

with the original, unprojected matrix (not shown)
are much worse than the other algorithms, sug-
gesting that the initial anchor words chosen are es-
pecially likely to be uninformative.

Normalized Entropy. As shown previously, if
the probability of topics given a word is close to
uniform, the probability of that word in topics will
be close to the corpus distribution. Normalized
Entropy (NE) measures the entropy of this distri-
bution relative to the entropy of a K-dimensional
uniform distribution:

NE =
1
V

V∑
i=1

H(z|w = i)
logK

. (6)

The normalized entropy of topics given word dis-
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Figure 5: Words have higher topic entropy in the
greedy model, especially in NYT, resulting in less
specific topics.

tributions usually decreases as we add more top-
ics, although both t-SNE and PCA show a dip in
entropy for low numbers of topics. This result in-
dicates that words become more closely associated
with particular topics as we increase the number of
topics. The low-dimensional embedding methods
(t-SNE and PCA) have consistently lower entropy.

Topic Specificity and Topic Dissimilarity. We
want topics to be both specific (that is, not overly
general) and different from each other. When there
are insufficient number of topics, p(w|z) often re-
sembles the corpus distribution p(w), where high
frequency terms become the top words contribut-
ing to most topics. Topic Specificity (TS) is de-
fined by the average KL divergence from each
topic’s conditional distribution to the corpus dis-
tribution.7

TS =
1
K

K∑
k=1

KL
(
p(w|z = k) || p(w)

)
(7)

7We prefer specificity to (AlSumait et al., 2009)’s term
vacuousness because the metric increases as we move away
from the corpus distribution.
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One way to define the distance between multiple
points is the minimum radius of a ball that cov-
ers every point. Whereas this is simply the dis-
tance form the centroid to the farthest point in
the Euclidean space, it is an itself difficult opti-
mization problem to find such centroid of distri-
butions under metrics such as KL-divergence and
Jensen-Shannon divergence. To avoid this prob-
lem, we measure Topic Dissimilarity (TD) view-
ing each conditional distribution p(w|z) as a sim-
ple V -dimensional vector in RV . Recall aik =
p(w = i|z = k),

TD = max
1≤k≤K

‖ 1
K

K∑
k′=1

a∗k′ − a∗k‖2. (8)

Specificity and dissimilarity increase with the
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Figure 6: Greedy topics look more like the corpus
distribution and more like each other.

number of topics, suggesting that with few anchor
words, the topic distributions are close to the over-
all corpus distribution and very similar to one an-
other. The t-SNE and PCA algorithms produce
consistently better specificity and dissimilarity, in-
dicating that they produce more useful topics early
with small numbers of topics. The greedy algo-
rithm produces topics that are closer to the corpus
distribution and less distinct from each other (17
obama topics).

Topic Coherence is known to correlate with the
semantic quality of topic judged by human anno-
tators (Mimno et al., 2011). LetW(T )

k be T most

probable words (i.e., top words) for the topic k.

TC =
∑

w1 6=w2∈W(T )
k

log
D(w1, w2) + ε

D(w1)
(9)

Here D(w1, w2) is the co-document frequency,
which is the number of documents inD consisting
of two words w1 and w2 simultaneously. D(w)
is the simple document frequency with the word
w. The numerator contains smoothing count ε
in order to avoid taking the logarithm of zero.
Coherence scores for t-SNE and PCA are worse
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Figure 7: The greedy algorithm creates more co-
herent topics (higher is better), but at the cost of
many overly general or repetitive topics.

than those for the greedy method, but this result
must be understood in combination with the Speci-
ficity and Dissimilarity metrics. The most frequent
terms in the overall corpus distribution p(w) often
appear together in documents. Thus a model creat-
ing many topics similar to the corpus distribution
is likely to achieve high Coherence, but low Speci-
ficity by definition.

Saliency. (Chuang et al., 2012) define saliency
for topic words as a combination of distinctive-
ness and probability within a topic. Anchor words
are distinctive by construction, so we can increase
saliency by selecting more probable anchor words.
We measure the probability of anchor words in
two ways. First, we report the zero-based rank of
anchor words within their topics. Examples of this
metric, which we call “hard” rank are shown in Ta-
ble 3. The hard rank of the anchors in the PCA and
t-SNE models are close to zero, while the anchor
words for the greedy algorithm are much lower
ranked, well below the range usually displayed to
users. Second, while hard rank measures the per-
ceived difference in rank of contributing words,
position may not fully capture the relative impor-
tance of the anchor word. “Soft” rank quantifies
the average log ratio between probabilities of the
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prominent word w∗k and the anchor word sk.

SR =
1
K

K∑
k=1

log
p(w = w∗k|z = k)
p(w = sk|z = k)

(10)
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Figure 8: Anchor words have higher probability,
and therefore greater salience, in t-SNE and PCA
models (1 ≈ one third the probability of the top
ranked word).

Lower values of soft rank (Fig. 8 indicate that
the anchor word has greater relative probability to
occur within a topic. As we increase the num-
ber of topics, anchor words become more promi-
nent in topics learned by the greedy method, but
t-SNE anchor words remain relatively more prob-
able within their topics as measured by soft rank.

Held-out Probability. Given an estimate of
the topic-word matrix A, we can compute the
marginal probability of held-out documents under
that model. We use the left-to-right estimator in-
troduced by (Wallach et al., 2009), which uses a
sequential algorithm similar to a Gibbs sampler.
This method requires a smoothing parameter for
document-topic Dirichlet distributions, which we
set to αk = 0.1. We note that the greedy algo-
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Figure 9: t-SNE topics have better held-out prob-
ability than greedy topics.

rithm run on the original, unprojected matrix has
better held-out probability values than t-SNE for
the Yelp corpus, but as this method does not scale
to realistic vocabularies we compare here to the

sparse random projection method used in (Arora
et al., 2013). The t-SNE method appears to do
best, particularly in the NYT corpus, which has a
larger vocabulary and longer training documents.
The length of individual held-out documents has
no correlation with held-out probability.

We emphasize that Held-out Probability is sen-
sitive to smoothing parameters and should only be
used in combination with a range of other topic-
quality metrics. In initial experiments, we ob-
served significantly worse held-out performance
for the t-SNE algorithm. This phenomenon was
because setting the probability of anchor words to
zero for all but their own topics led to large neg-
ative values in held-out log probability for those
words. As t-SNE tends to choose more frequent
terms as anchor words, these “spikes” significantly
affected overall probability estimates. To make the
calculation more fair, we added 10−5 to any zero
entries for anchor words in the topic-word matrix
A across all models and renormalized.

Because t-SNE is a stochastic model, different
initializations can result in different embeddings.
To evaluate how steady anchor word selection is,
we ran five random initializations for each dataset.
For the Yelp dataset, the number of anchor words
varies from 59 to 69, and 43 out of those are shared
across at least four trials. For the Blog dataset, the
number of anchor words varies from 80 to 95, with
56 shared across at least four trials. For the NYT
dataset, this number varies between 83 and 107,
with 51 shared across at least four models.

4.3 Qualitative Results

Table 3 shows topics trained by three methods (t-
SNE, PCA, and greedy) for all three datasets. For
each model, we select five topics at random from
the t-SNE model, and then find the closest topic
from each of the other models. If anchor words
present in the top eight words, they are shown in
boldface.

A fundamental difference between anchor-
based inference and traditional likelihood-based
inference is that we can give an order to top-
ics according to their contribution to word co-
occurrence convex hull. This order is intrinsic to
the original algorithm, and we heuristically give
orders to t-SNE and PCA based on their contri-
butions. This order is listed as # in the previous
table. For all but one topic, the closest topic from
the greedy model has a higher order number than
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the associated t-SNE topic. As shown above, the
standard algorithm tends to pick less useful anchor
words at the initial stage; only the later, higher or-
dered topics are specific.

The most clear distinction between models is
the rank of anchor words represented by Hard
Rank for each topic. Only one topic correspond-
ing to (initial) has the anchor word which does
not coincide with the top-ranked word. For the
greedy algorithm, anchor words are often tens of
words down the list in rank, indicating that they
are unlikely to find a connection to the topic’s se-
mantic core. In cases where the anchor word is
highly ranked (unbelievers, parenthood) the word
is a good indicator of the topic, but still less deci-
sive.
t-SNE and PCA are often consistent in their se-

lection of anchor words, which provides useful
validation that low-dimensional embeddings dis-
cern more relevant anchor words regardless of lin-
ear vs non-linear projections. Note that we are
only varying the anchor selection part of the An-
chor Words algorithm in these experiments, recov-
ering topic-word distributions in the same manner
given anchor words. As a result, any differences
between topics with the same anchor word (for ex-
ample chicken) are due to the difference in either
the number of topics or the rest of anchor words.
Since PCA suffers from a crowding problem in
lower-dimensional projection (see Figure 2) and
the problem could be severe in a dataset with a
large vocabulary, t-SNE is more likely to find the
proper number of anchors given a specified granu-
larity.

5 Conclusion

One of the main advantages of the anchor words
algorithm is that the running time is largely inde-
pendent of corpus size. Adding more documents
would not affect the size of the co-occurrence ma-
trix, requiring more times to construct the co-
occurrence matrix at the beginning. While the
inference is scalable depending only on the size
of the vocabulary, finding quality anchor words is
crucial for the performance of the inference.

(Arora et al., 2013) presents a greedy anchor
finding algorithm that improves over previous lin-
ear programming methods, but finding quality an-
chor words remains an open problem in spec-
tral topic inference. We have shown that previ-
ous approaches have several limitations. Exhaus-

tively finding anchor words by eliminating words
that are reproducible by other words (Arora et
al., 2012) is impractical. The anchor words se-
lected by the greedy algorithm are overly eccen-
tric, particularly at the early stages of the algo-
rithm, causing topics to be poorly differentiated.
We find that using low-dimensional embeddings
of word co-occurrence statistics allows us to ap-
proximate a better convex hull. The resulting
anchor words are highly salient, being both dis-
tinctive and probable. The models trained with
these words have better quantitative and qualita-
tive properties along various metrics. Most im-
portantly, using radically low-dimensional projec-
tions allows us to provide users with clear visual
explanations for the model’s anchor word selec-
tions.

An interesting property of using low-
dimensional embeddings is that the number
of topics depends only on the projecting dimen-
sion. Since we can efficiently find an exact convex
hull in low-dimensional space, users can achieve
topics with their preferred level of granularities
by changing the projection dimension. We do
not insist this is the “correct” number of topics
for a corpus, but this method, along with the
range of metrics described in this paper, provides
users with additional perspective when choosing a
dimensionality that is appropriate for their needs.

We find that the t-SNE method, besides its
well-known ability to produce high quality lay-
outs, provides the best overall anchor selection
performance. This method consistently selects
higher-frequency terms as anchor words, resulting
in greater clarity and interpretability. Embeddings
with PCA are also effective, but they result in less
well-formed spaces, being less effective in held-
out probability for sufficiently large corpora.

Anchor word finding methods based on low-
dimensional projections offer several important
advantages for topic model users. In addition to
producing more salient anchor words that can be
used effectively as topic labels, the relationship of
anchor words to a visualizable word co-occurrence
space offers significant potential. Users who can
see why the algorithm chose a particular model
will have greater confidence in the model and in
any findings that result from topic-based analy-
sis. Finally, visualizable spaces offer the poten-
tial to produce interactive environments for semi-
supervised topic reconstruction.
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Abstract

We generalize contrastive estimation in
two ways that permit adding more knowl-
edge to unsupervised learning. The first
allows the modeler to specify not only the
set of corrupted inputs for each observa-
tion, but also how bad each one is. The
second allows specifying structural prefer-
ences on the latent variable used to explain
the observations. They require setting ad-
ditional hyperparameters, which can be
problematic in unsupervised learning, so
we investigate new methods for unsuper-
vised model selection and system com-
bination. We instantiate these ideas for
part-of-speech induction without tag dic-
tionaries, improving over contrastive esti-
mation as well as strong benchmarks from
the PASCAL 2012 shared task.

1 Introduction

Unsupervised NLP aims to discover useful struc-
ture in unannotated text. This structure might
be part-of-speech (POS) tag sequences (Merialdo,
1994), morphological segmentation (Creutz and
Lagus, 2005), or syntactic structure (Klein and
Manning, 2004), among others. Unsupervised
systems typically improve when researchers incor-
porate knowledge to bias learning to capture char-
acteristics of the desired structure.1

There are many successful examples of adding
knowledge to improve learning without labeled
examples, including: sparsity in POS tag distri-
butions (Johnson, 2007; Ravi and Knight, 2009;
Ganchev et al., 2010), short attachments for
dependency parsing (Smith and Eisner, 2006),

1We note that doing so strains the definition of the term
unsupervised. Hence we will use the term weakly-supervised
to refer to methods that do not explicitly train on labeled ex-
amples for the task of interest, but do use some form of task-
specific knowledge.

agreement of word alignment models (Liang et
al., 2006), power law effects in lexical distribu-
tions (Blunsom and Cohn, 2010; Blunsom and
Cohn, 2011), multilingual constraints (Smith and
Eisner, 2009; Ganchev et al., 2009; Snyder et al.,
2009; Das and Petrov, 2011), and orthographic
cues (Spitkovsky et al., 2010c; Spitkovsky et al.,
2011b), inter alia.

Contrastive estimation (CE; Smith and Eisner,
2005) is a general approach to weakly-supervised
learning with a particular way of incorporating
knowledge. CE increases the likelihood of the ob-
servations at the expense of those in a particular
neighborhood of each observation. The neighbor-
hood typically contains corrupted versions of the
observations. The latent structure is marginalized
out for both the observations and their corruptions;
the intent is to learn latent structure that helps to
explain why the observation was generated rather
than any of the corrupted alternatives.

In this paper, we present a new objective func-
tion for weakly-supervised learning that general-
izes CE by including two types of cost functions,
one on observations and one on output structures.
The first (§4) allows us to specify not only the set
of corrupted observations, but also how bad each
corruption was. We use n-gram language models
to measure the severity of each corruption.

The second (§5) allows us to specify prefer-
ences on desired output structures, regardless of
the input sentence. For POS tagging, we attempt
to learn language-independent tag frequencies by
computing counts from treebanks for 11 languages
not used in our POS induction experiments. For
example, we encourage tag sequences that contain
adjacent nouns and penalize those that contain ad-
jacent adpositions.

We consider several unsupervised ways to set
hyperparameters for these cost functions (§7), in-
cluding the recently-proposed log-likelihood esti-
mator of Bengio et al. (2013). We also circumvent
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hyperparameter selection via system combination,
developing a novel voting scheme for POS induc-
tion that aligns tag identifiers across runs.

We evaluate our approach, which we call cost-
augmented contrastive estimation (CCE), on
POS induction without tag dictionaries for five
languages from the PASCAL shared task (Gelling
et al., 2012). We find that CCE improves over both
standard CE as well as strong baselines from the
shared task. In particular, our final average accu-
racies are better than all entries in the shared task
that use the same number of tags.

2 Related Work

Weakly-supervised techniques can be roughly cat-
egorized in terms of whether they influence the
model, the learning procedure, or explicitly target
the output structure. Examples abound in NLP;
we focus on those that have been applied to POS
tagging.

There have been many efforts at biasing
models, including features (Smith and Eisner,
2005a; Berg-Kirkpatrick et al., 2010), sparse
priors (Johnson, 2007; Goldwater and Griffiths,
2007; Toutanova and Johnson, 2007), sparsity
in tag transition distributions (Ravi and Knight,
2009), small models via minimum description
length criteria (Vaswani et al., 2010; Poon et al.,
2009), a one-tag-per-type constraint (Blunsom and
Cohn, 2011), and power law effects via Bayesian
nonparametrics (Van Gael et al., 2009; Blunsom
and Cohn, 2010; Blunsom and Cohn, 2011).

We focus below on efforts that induce bias into
the learning (§2.1) or more directly in the output
structure (§2.2), as they are more closely related
to our contributions in this paper.

2.1 Biasing Learning

Some unsupervised methods do not change the
model or attempt to impose structural bias; rather,
they change the learning. This may involve op-
timizing a different objective function for the
same model, e.g., by switching from soft to hard
EM (Spitkovsky et al., 2010b). Or it may in-
volve changing the objective during learning via
annealing (Smith and Eisner, 2004) or more gen-
eral multi-objective techniques (Spitkovsky et al.,
2011a; Spitkovsky et al., 2013).

Other learning modifications relate to automatic
data selection, e.g., choosing examples for genera-
tive learning (Spitkovsky et al., 2010a) or automat-

ically generating negative examples for discrimi-
native unsupervised learning (Li et al., 2010; Xiao
et al., 2011).

CE does both, automatically generating nega-
tive examples and changing the objective function
to include them. Our observation cost function al-
ters CE’s objective function, sharpening the effec-
tive distribution of the negative examples.

2.2 Structural Bias
Our output cost function is used to directly spec-
ify preferences on desired output structures. Sev-
eral others have had similar aims. For dependency
grammar induction, Smith and Eisner (2006) fa-
vored short attachments using a fixed-weight fea-
ture whose weight was optionally annealed during
learning. Their bias could be implemented as an
output cost function in our framework.

Posterior regularization (PR; Ganchev et al.,
2010) is a general framework for declaratively
specifying preferences on model outputs. Naseem
et al. (2010) proposed universal syntactic rules for
unsupervised dependency parsing and used them
in a PR regime; we use analogous universal tag
sequences in our cost function.

Our output cost is similar to posterior regular-
ization. The difference is that we specify pref-
erences via an arbitrary cost function on output
structures, while PR uses expectation constraints
on posteriors of the model. We compare to the PR
tag induction system of Graça et al. (2011) in our
experiments, improving over it in several settings.

2.3 Exploiting Resources
Much of the work mentioned above also benefits
from leveraging existing resources. These may be
curated or crowdsourced resources like the Wik-
tionary (Li et al., 2012), or traditional annotated
treebanks for languages other than those under in-
vestigation (Cohen et al., 2011). In this paper, we
use tag statistics from treebanks for 11 languages
to impose our structural bias for a different set of
languages used in our POS induction experiments.

Substantial recent work has improved many
NLP tasks by leveraging multilingual or paral-
lel text (Cohen and Smith, 2009; Snyder et al.,
2009; Wang and Manning, 2014), including un-
supervised POS tagging (Naseem et al., 2009; Das
and Petrov, 2011; Täckström et al., 2013; Ganchev
and Das, 2013). This sort of multilingual guidance
could also be captured by particular output cost
functions, though we leave this to future work.
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3 Unsupervised Structure Learning

We consider a structured unsupervised learning
setting. We use X to denote our set of possible
structured inputs, and for a particular x ∈ X,
we use Y(x) to denote the set of valid structured
outputs for x. We are given a dataset of inputs
{x(i)}Ni=1. To map inputs to outputs, we start by
building a model of the joint probability distribu-
tion pθ(x,y). We use a log-linear parameteriza-
tion with feature vector f and weight vector θ:

pθ(x,y) =
exp

{
θ>f(x,y)

}∑
x′∈X,y′∈Y(x′) exp

{
θ>f(x′,y′)

}
where the sum in the denominator ranges over all
possible inputs and all valid outputs for them.

In this paper, we consider ways of learning the
parameters θ. Given θ, at test time we output a y
for a new x using, e.g., Viterbi or minimum Bayes
risk decoding; we use the latter in this paper.

3.1 EM and Contrastive Estimation
We start by reviewing two ways of choosing
θ. The expectation-maximization algorithm (EM;
Dempster et al., 1977) finds a local optimum of
the marginal (log-)likelihood of the observations
{x(i)}Ni=1. The marginal log-likelihood is a sum
over all x(i) of the gain function γEM(x(i)):

γEM(x(i)) = log
∑

y∈Y(x(i))

pθ(x(i),y)

= log
∑

y∈Y(x(i))

exp
{
θ>f(x(i),y)

}
− log

∑
x′∈X,y′∈Y(x′)

exp
{
θ>f(x′,y′)

}
︸ ︷︷ ︸

Z(θ)

The difficulty is the final term, logZ(θ), which
requires summing over all possible inputs and
all valid outputs for them. This summation is
typically intractable for structured problems, and
may even diverge. For this reason, EM is typi-
cally only used to train log-linear model weights
when Z(θ) = 1, e.g., for hidden Markov models,
probabilistic context-free grammars, and models
composed of locally-normalized log-linear mod-
els (Berg-Kirkpatrick et al., 2010), among others.

There have been efforts at approximating the
summation over elements of X, whether by limit-
ing sequence length (Haghighi and Klein, 2006),
only summing over observations in the training

data (Riezler, 1999), restricting the observation
space based on the task (Dyer et al., 2011), or us-
ing Gibbs sampling to obtain an unbiased sample
of the full space (Della Pietra et al., 1997; Rosen-
feld, 1997).

Contrastive estimation (CE) addresses this chal-
lenge by using a neighborhood function N : X→
2X that generates a set of inputs that are “corrup-
tions” of an input x; N(x) always includes x. Us-
ing shorthand Ni for N(x(i)), CE corresponds to
maximizing the sum over inputs x(i) of the gain

γCE(x(i))= log Pr(x(i) | Ni)

= log

∑
y∈Y(x(i)) pθ(x(i),y)∑

x′∈Ni

∑
y′∈Y(x′) pθ(x′,y′)

= log
∑

y∈Y(x(i))

exp
{
θ>f(x(i),y)

}
−

log
∑
x′∈Ni

∑
y′∈Y(x′)

exp
{
θ>f(x′,y′)

}
Two logZ(θ) terms cancel out, leaving the sum-
mation over input/output pairs in the neighbor-
hood instead of the full summation over pairs.

Two desiderata govern the choice of N. One is
to make the summation over its elements computa-
tionally tractable. If N(x) = X for all x ∈ X, we
obtain EM, so a smaller neighborhood typically
must be used in practice. The second considera-
tion is to target learning for the task of interest. For
POS tagging and dependency parsing, Smith and
Eisner (2005a, 2005b) used neighborhood func-
tions that corrupted the observations in systematic
ways, e.g., their TRANS1 neighborhood contains
the original sentence along with those that result
from transposing a single pair of adjacent words.
The intent was to force the learner to explain why
the given sentences were observed at the expense
of the corrupted sentences.

Next we present our modifications to con-
trastive estimation. Both can be viewed as adding
specialized cost functions that penalize some part
of the structured input/output pair.

4 Modeling Corruption Costs

While CE allows us to specify a set of corrupted
x for each x(i) via the neighborhood function N,
it says nothing about how bad each corruption is.
The same type of corruption might be harmful in
one context and not harmful in another.

This fact was suggested as the reason why cer-
tain neighborhoods did not work as well for POS
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tagging as others (Smith and Eisner, 2005a). One
poorly-performing neighborhood consisted of sen-
tences in which a single word of the original
was deleted. Deleting a single word in a sen-
tence might not harm grammaticality. By contrast,
neighborhoods that transpose adjacent words led
to better results. These kinds of corruptions are ex-
pected to be more frequently harmful, at least for
languages with relatively rigid word order. How-
ever, there may still be certain transpositions that
are benign, at least for grammaticality.

To address this, we introduce an observation
cost function ∆ : X × X → R≥0 that indicates
how much two observations differ. Using ∆, we
define the following gain function γCCE1(x(i)) =

log
∑

y∈Y(x(i))

exp
{
θ>f(x(i),y)

}
−

log
∑
x′∈Ni

∑
y′∈Y(x′)

exp
{
θ>f(x′,y′) + ∆(x(i),x′)

}
The function ∆ inflates the score of neighbor-
hood entries with larger differences from the ob-
served x(i). This gain function is inspired by ideas
from structured large-margin learning (Taskar et
al., 2003; Tsochantaridis et al., 2005), specifi-
cally softmax-margin (Povey et al., 2008; Gimpel
and Smith, 2010). Softmax-margin extends con-
ditional likelihood by allowing the user to specify
a cost function to give partial credit for structures
that are partially correct. Conditional likelihood,
by contrast, treats all incorrect structures equally.

While softmax-margin uses a cost function to
specify how two output structures differ, our gain
function γCCE1 uses a cost function ∆ to specify
how two inputs differ. But the motivations are sim-
ilar: since poor structures have their scores artifi-
cially inflated by ∆, learning pays more attention
to them, choosing weights that penalize them more
than the lower-cost structures.

4.1 Observation Cost Functions
What types of cost functions should we consider?
For efficient inference, we want to ensure that
∆ decomposes additively across parts of the cor-
rupted input x′ in the same way as the features; we
assume unigram and bigram features in this paper.

In addition, the choice of the observation cost
function ∆ is tied to the choice of neighborhood
function. In our experiments, we use neighbor-
hoods that change the order of words in the obser-
vation but not the set of words. Our first cost func-

tion simply counts the number of novel bigrams
introduced when corrupting the original:

∆I(x(i),x) = α

|x|+1∑
j=1

I
[
xj−1xj /∈ 2grams(x(i))

]
where xj is the jth word of sentence x, x0 is
the start-of-sentence marker, x|x|+1 is the end-of-
sentence marker, 2grams(x) returns the set of bi-
grams in x, I[] returns 1 if its argument is true and
0 otherwise, and α is a constant to be tuned. We
call this cost function MATCH. Only x(i) (which
is always contained in Ni) is guaranteed to have
cost 0. In the TRANS1 neighborhood, corrupted
sequences will be penalized more if their transpo-
sitions occur in the middle of the sentence rather
than at the beginning or end.

We also consider a version that weights the in-
dicator by the negative log probability of the novel
bigram: ∆LM (x(i),x) =

α

|x|+1∑
j=1

−log P(xj |xj−1)I
[
xj−1xj /∈ 2grams(x(i))

]
where P(xj |xj−1) is obtained from a bigram lan-
guage model. Among novel bigrams in the cor-
ruption x, if the second word is highly surprising
conditioned on the first, the bigram will incur high
cost. We refer to ∆LM (x(i),x) as MATLM.

5 Expressing Structural Preferences

Our second modification to CE allows us to spec-
ify structural preferences for outputs y. We first
note that there exist objective functions for su-
pervised structure prediction that never require
computing the feature vector for the true output
y(i). Examples include Bayes risk (Kaiser et al.,
2000; Povey and Woodland, 2002) and structured
ramp loss (Do et al., 2008). These two objec-
tives do, however, need to compute a cost func-
tion cost(y(i),y), which requires the true output
y(i). We start with the following form of struc-
tured ramp loss from Gimpel and Smith (2012),
transformed here to a gain function:

max
y∈Y(x(i))

(
θ>f(x(i),y)− cost(y(i),y)

)
−

max
y′∈Y(x(i))

(
θ>f(x(i),y′) + cost(y(i),y′)

)
(1)

Maximizing this gain function for supervised
learning corresponds to increasing the model score
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of outputs that have both high model score (θ>f )
and low cost, while decreasing the model score of
outputs with high model score and high cost.

For unsupervised learning, we do not have y(i),
so we simply drop y(i) from the cost function. The
result is an output cost function π : Y → R≥0

which captures our a priori knowledge about de-
sired output structures. The value of π(y) should
be large for outputs y that are far from the ideal.
In this paper, we consider POS induction and use
intrinsic evaluation; however, in a real-world sce-
nario, the output cost function could use signals
derived from the downstream task in which the
tags are being used.

Given π, we convert each max to a log
∑

exp in
Eq. 1 and introduce the contrastive neighborhood
into the second term, defining our new gain func-
tion γCCE2(x(i)) =

log
∑

y∈Y(x(i))

exp
{
θ>f(x(i),y)− π(y)

}
−

log
∑
x′∈Ni

∑
y′∈Y(x′)

exp
{
θ>f(x′,y′) + π(y′)

}
Gimpel (2012) found that using such “softened”
versions of the ramp losses worked better than the
original versions (e.g., Eq. 1) when training ma-
chine translation systems.

5.1 Output Cost Functions
The output cost π should capture our desider-
ata about y for the task of interest. We con-
sider universal POS tag subsequences analogous
to the universal syntactic rules of Naseem et al.
(2010). In doing so, we use the universal tags of
Petrov et al. (2012): NOUN, VERB, ADJ (ad-
jective), ADV (adverb), PRON (pronoun), DET
(determiner), ADP (pre/postposition), NUM (nu-
meral), CONJ (conjunction), PRT (particle), ‘.’
(punctuation), and X (other).

We aimed for a set of rules that would be ro-
bust across languages. So, we used treebanks for
11 languages from the CoNLL 2006/2007 shared
tasks (Buchholz and Marsi, 2006; Nivre et al.,
2007) other than those used in our POS induc-
tion experiments. In particular, we used Arabic,
Bulgarian, Catalan, Czech, English, Spanish, Ger-
man, Hungarian, Italian, Japanese, and Turkish.
We replicated shorter treebanks a sufficient num-
ber of times until they were a similar size as the
largest treebank. Then we counted gold POS tag
unigrams and bigrams from the concatenation.

tag unigram count cost
X 50783 3.83
NUM 174613 2.59
PRT 179131 2.57
ADV 330210 1.96
CONJ 436649 1.68
PRON 461880 1.62
DET 615284 1.33
ADJ 694685 1.21
ADP 906922 0.95
VERB 1018989 0.83
. 1042662 0.81
NOUN 2337234 0
tag bigram count cost
DET PRT 109 84.41
DET CONJ 518 68.82
NUM ADV 1587 57.63
NOUN NOUN 409828 2.09
DET NOUN 454980 1.04
NOUN . 504897 0

Table 1: Counts and costs for universal tags based
on treebanks for 11 languages not used in POS in-
duction experiments.

Where #(y) is the count of tag y in the treebank
concatenation, the cost of y is

u(y) = log
(

maxy′ #(y′)
#(y)

)
and, where #(〈y1, y2〉) is the count of tag bigram
〈y1, y2〉, the cost of 〈y1, y2〉 is

u(〈y1, y2〉) = 10×log

(
max〈y′1,y′2〉#(〈y′1, y′2〉)

#(〈y1, y2〉)

)

We use a multiplier of 10 in order to exaggerate
count differences among bigrams, which gener-
ally are closer together than unigram counts. In
Table 1, we show counts and costs for all tag uni-
grams and selected tag bigrams.2

Given these costs for individual tag unigrams
and bigrams, we use the following π function,
which we call UNIV:

π(y) = β

|y|+1∑
j=1

u(yj) + u(〈yj−1, yj〉)

where β is a constant to be tuned and yj is the
jth tag of y. We define y0 to be the beginning-
of-sentence marker and y|y|+1 to be the end-of-
sentence marker (which has unigram cost 0).

Many POS induction systems use one-tag-
per-type constraints (Blunsom and Cohn, 2011;
Gelling et al., 2012), which often lead to higher

2The complete tag bigram list is provided in the supple-
mentary material.
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max
θ

N∑
i=1

log
∑

y∈Y(x(i))

exp
{
θ>f(x(i),y)

}
− log

∑
x′∈Ni

∑
y′∈Y(x′)

exp
{
θ>f(x′,y′)

}
(2)

max
θ

N∑
i=1

log
∑

y∈Y(x(i))

exp
{
θ>f(x(i),y)− π(y)

}
− log

∑
x′∈Ni

∑
y′∈Y(x′)

exp
{
θ>f(x′,y′) + ∆(x(i),x′) + π(y′)

}
(3)

Figure 1: Contrastive estimation (Eq. 2) and cost-augmented contrastive estimation (Eq. 3). L2 regular-
ization terms (C2

∑|θ|
j=1 θ

2
j ) are not shown here but were used in our experiments.

accuracies even though the gold standard is not
constrained in this way. This constraint can be en-
coded as an output cost function, though it would
require approximate inference (Poon et al., 2009).

6 Cost-Augmented CE

We extended the objective function underlying
CE by defining two new types of cost functions,
one on observations (§4) and one on outputs (§5).
We combine them into a single objective, which
we call cost-augmented contrastive estimation
(CCE), shown as Eq. 3 in Figure 1.

If the cost functions ∆ and π factor in the same
way as the features f , then it is straightforward
to implement CCE atop an existing CE implemen-
tation. The additional terms in the cost functions
can be implemented as features with fixed weights
(albeit where the weight differs depending on the
context).

7 Model Selection

Our modifications give increased flexibility, but
require setting new hyperparameters. In addition
to the choice of the cost functions, each has a
weight: α for ∆ and β for π. We need ways to
set these weights that do not require labeled data.

Smith and Eisner (2005a) chose the hyperpa-
rameter values that yielded the best CE objec-
tive on held-out development data. We use their
strategy, though we experiment with two others as
well.3 In particular, we estimate held-out data log-
likelihood via the method of Bengio et al. (2013)
and also consider ways of combining outputs from
multiple models.

7.1 Estimating Held-Out Log-Likelihood
Bengio et al. (2013) recently proposed ways to
efficiently estimate held-out data log-likelihood

3When using their strategy for CCE, we compute the CE
criterion only, omitting the costs. We do so because the
weights of the cost terms can have a large impact on the mag-
nitude of the objective, making it difficult to do a fair com-
parison of models with different cost weights.

for generative models. They showed empirically
that a simple, biased version of their conserva-
tive sampling-based log-likelihood (CSL) estima-
tor can be useful for model selection.

The biased CSL requires a Markov chain on the
variables in the model (i.e., x and y) as well as
the ability to compute pθ(x|y). It generates con-
secutive samples of y from a Markov chain ini-
tialized at each x in a development set D, with
S Markov chains run for each x. We compute
and sum pθ(x|yj) for each sampled yj , then sum
over all x in D. The result is a biased estimate for
the log-likelihood of D. Bengio et al. showed that
these biased estimates could give the same model
ranking as unbiased estimates, though more effi-
ciently. They also showed that taking the single,
initial sample from the S Markov chains resulted
in the same model ranking as using many samples
from each chain. We follow suit here.

Our Markov chain is a blocked Gibbs sam-
pler in which we alternate between sampling from
pθ(y|x) and pθ(x|y). Since we only use a sin-
gle sample from each Markov chain and initialize
each chain to x, this simply amounts to drawing S
samples from pθ(y|x). To sample from pθ(y|x),
we use the exact algorithm obtained by running
the backward algorithm and then performing left-
to-right sampling of tags using the local features
and requisite backward terms to define the local
tag distributions.

We then compute pθ(x|y) for each sampled y.
If there are no features in f that look at more than
one word (which is the case with the features used
in our experiments), then this probability factors:

pθ(x|y) =
∏|y|
k=1 pθ(xk|yk)

This is easily computable assuming that we have
normalization constants Z(y) cached for each tag
y. To compute each Z(y), we sum over all words
observed in the training data (replacing some with
a special UNK token; see below). We can then
compute likelihoods for individual words and mul-
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tiply them across the words in the sentence to com-
pute pθ(x|y).

To summarize, we get a log-likelihood estimate
for development setD = {x(i)}|D|i=1 by sampling S
times from pθ(y|x(i)) for each x(i), getting sam-
ples {{y(i),j}Sj=1}|D|i=1, then we compute

∑|D|
i=1

∑S
j=1 log pθ(x(i)|y(i),j)

We used values of S ∈ {1, 10, 100}, finding that
the ranking of models was consistent across S val-
ues. We used S = 10 in all results reported below.

We note that this estimator was originally pre-
sented for generative models, and that (C)CE is
not a generative training criterion. It seeks to max-
imize the conditional probability of an observation
given its neighborhood. Nonetheless, when imple-
menting our log-likelihood estimator, we treat the
model as a generative model, computing the Z(y)
constants by summing over all words in the vocab-
ulary.

7.2 System Combination

We can avoid choosing a single model by com-
bining the outputs of multiple models via system
combination. We decode test data by using poste-
rior decoding. To combine the outputs of multiple
models, we find the max-posterior tag under each
model, then choose the highest vote-getter, break-
ing ties arbitrarily.

However, when doing POS induction without a
tag dictionary, the tags are simply unique identi-
fiers and may not have consistent meaning across
runs. To address this, we propose a novel voting
scheme that is inspired by the widely-used 1-to-1
accuracy metric for POS induction (Haghighi and
Klein, 2006). This metric maps system tags to
gold tags to maximize accuracy with the constraint
that each gold tag is mapped to at most once. The
optimal mapping can be found by solving a maxi-
mum weighted bipartite matching problem.

We adapt this idea to map tags between two sys-
tems, rather than between system tags and gold
tags. Given k systems that we want to combine,
we choose one to be the backbone and map the re-
maining k − 1 systems’ outputs to the backbone.4

After mapping each system’s output to the back-
bone system, we perform simple majority voting
among all k systems. To choose the backbone, we

4We use the LEMON C++ toolkit (Dezs et al., 2011) to
solve the maximum weighted bipartite matching problems.

consider each of the k systems in turn as back-
bone and maximize the sum of the weights of the
weighted bipartite matching solutions found. This
is a heuristic that attempts to choose a backbone
that is similar to all other systems. We found
that highly-weighted matchings often led to high
POS tagging accuracy metrics. We call this vot-
ing scheme ALIGN. To see the benefit of ALIGN,
we also compare to a simple scheme (NAÏVE) that
performs majority voting without any tag map-
ping.

8 Experiments

Task and Datasets We consider POS induction
without tag dictionaries using five freely-available
datasets from the PASCAL shared task (Gelling
et al., 2012).5 These include Danish (DA), using
the Copenhagen Dependency Treebank v2 (Buch-
Kromann et al., 2007); Dutch (NL), using the
Alpino treebank (Bouma et al., 2001); Por-
tuguese (PT), using the Floresta Sintá(c)tica tree-
bank (Afonso et al., 2002); Slovene (SL), us-
ing the jos500k treebank (Erjavec et al., 2010);
and Swedish (SV), using the Talbanken tree-
bank (Nivre et al., 2006). We use their provided
training, development, and test sets.

Evaluation We fix the number of tags in our
models to 12, which matches the number of uni-
versal tags from Petrov et al. (2012). We use
both many-to-1 (M-1) and 1-to-1 (1-1) accuracy
as our evaluation metrics, using the universal tags
for the gold standard (which was done for the of-
ficial evaluation for the shared task).6 We note
that our π function assigns identities to tags (e.g.,
tag 1 is assumed to be NOUN), so we could use
actual tagging accuracy when training with the π
cost function. But we use M-1 and 1-1 accuracy
to enable easier comparison both among different
settings and to prior work.

Baselines From the shared task, we compare
to all entries that used 12 tags. These include

5http://wiki.cs.ox.ac.uk/
InducingLinguisticStructure/SharedTask

6It is common to use a greedy algorithm to com-
pute 1-to-1 accuracy, e.g., as in the shared task scor-
ing script (http://www.dcs.shef.ac.uk/˜tcohn/
wils/eval.tar.gz), though the optimal mapping can
be computed efficiently via the maximum weighted bipartite
matching algorithm, as stated above. We use the shared task
scorer for all results here for ease of comparison. When we
instead evaluate using the optimal mapping, we find that ac-
curacies are usually only slightly higher than those found by
the greedy algorithm.
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BROWN clusters (Brown et al., 1992), clusters ob-
tained using the mkcls tool (Och, 1995), and the
featurized HMM with sparsity constraints trained
using posterior regularization (PR), described by
Graça et al. (2011). The PR system achieved the
highest average 1-1 accuracy in the shared task.

We restrict our attention to systems that use 12
tags because the M-1 and 1-1 metrics are highly
dependent upon the number of hypothesized tags.
In general, using more tags leads to higher M-1
and lower 1-1 (Gelling et al., 2012). By keep-
ing the number of tags fixed, we hope to provide a
cleaner comparison among approaches.

We compare to two other baselines: an HMM
trained with 500 iterations of EM and an HMM
trained with 100 iterations of stepwise EM (Liang
and Klein, 2009). We used random initialization
as done by Liang and Klein: we set each param-
eter in each multinomial to exp{1 + c}, where
c ∼ U [0, 1], then normalized to get probability
distributions. For stepwise EM, we used mini-
batch size 3 and stepsize reduction power 0.7.

For all models we trained, including both base-
lines and CCE, we used only the training data
during training and used the unannotated devel-
opment data for certain model selection criteria.
No labels were used except for final evaluation on
the test data. Therefore, we need a way to handle
unknown words in test data. When running EM
and stepwise EM, while reading in the final 10%
of sentences in the training set, we replace novel
words with the special token UNK. We then re-
place unknown words in test data with UNK.

8.1 CCE Setup

Features We use standard indicator features on
tag-tag transitions and tag-word emissions, the
spelling features from Smith and Eisner (2005a),
and additional emission features based on Brown
clusters. The latter features are simply indicators
for tag-cluster pairs—analogous to tag-word emis-
sions in which the word is replaced by its Brown
cluster identifier. We run Brown clustering (Liang,
2005) on the POS training data for each language,
once with 12 clusters and once with 40, then add
tag-cluster emission features for each clustering
and one more for their conjunction.7

7To handle unknown words: for words that only appear
in the final 10% of training sentences, we replace them with
UNK when firing their tag-word emission features. We use
special Brown cluster identifiers reserved for UNK. But we
still use all spelling features derived from the actual word

Learning We solve Eq. 2 and Eq. 3 by running
LBFGS until convergence on the training data, up
to 100 iterations. We tag the test data with mini-
mum Bayes risk decoding and evaluate.

We use two neighborhood functions:

• TRANS1: the original sentence along with all
sentences that result from doing a single trans-
position of adjacent words.

• SHUFF10: the original sentence along with 10
random permutations of it.

We use L2 regularization, adding C
2

∑|θ|
j=1 θ

2
j to

the objectives shown in Figure 1. We use a fixed
(untuned) C = 0.0001 for all experiments re-
ported below.8 We initialize each CE model by
sampling weights from N(0, 1).

Cost Functions The cost functions ∆ and π
have constants α and β which balance their con-
tributions relative to the model score and must be
tuned. We consider the ways proposed in Sec-
tion 7, namely tuning based on the contrastive es-
timation criterion computed on development data
(CE), the log-likelihood estimate on development
data with S = 10 (LL), and our two system com-
bination algorithms: naı̈ve voting (NAÏVE) and
aligned voting (ALIGN), both of which use as in-
put the 4 system outputs whose hyperparameters
led to the highest values for the CE criterion on
development data.

We used α ∈ {3 × 10−4, 10−3, 3 ×
10−3, 0.01, 0.03, 0.1, 0.3} and β ∈ {3 ×
10−6, 10−5, 3 × 10−5, 10−4, 3 × 10−4}. Setting
α = β = 0 gives us CE, which we also compare
to. When using both MATLM and UNIV simul-
taneously, we first choose the best two α values
by the LL criterion and the best two β values by
the CE criterion when using only those individual
costs. This gives us 4 pairs of values; we run ex-
periments with these pairs and choose the pair to
report using each of the model selection criteria.
For system combination, we use the 4 system out-
puts resulting from these 4 pairs.

For training bigram language models for the
MATLM cost, we use the language’s POS train-
ing data concatenated with its portion of the Eu-
roparl v7 corpus (Koehn, 2005) and the text of its

type. For unknown words at test time, we use the UNK emis-
sion feature, the Brown cluster features with the special UNK
cluster identifiers, and the word’s actual spelling features.

8In subsequent experiments we tried C ∈ {0.01, 0.001}
for the baseline CE setting and found minimal differences.
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neigh- cost mod. DA NL PT SL SV avg
borhood sel. M-1 1-1 M-1 1-1 M-1 1-1 M-1 1-1 M-1 1-1 M-1 1-1

SHUFF10

none N/A 45.0 38.0 55.1 45.7 54.2 38.0 54.7 45.7 47.4 31.3 51.3 39.7

MATCH
CE 48.9 31.5 56.5 46.4 54.2 37.7 55.9 46.8 48.9 33.8 52.9 39.2
LL 49.9 34.4 56.5 46.4 54.1 38.9 57.2 48.9 48.9 33.8 53.3 40.5

MATLM CE 49.1 34.3 59.6 50.4 53.6 37.1 55.0 46.2 48.8 33.1 53.2 40.2
LL 50.2 40.0 59.6 50.4 53.1 36.0 58.0 48.4 48.8 33.1 53.9 41.6

TRANS1

none N/A 58.5 42.7 62.5 49.5 70.7 43.8 58.6 46.1 58.7 53.8 61.8 47.2

MATCH
CE 58.5 42.5 66.3 53.3 70.6 43.3 59.1 45.6 59.3 54.2 62.7 47.8
LL 58.8 42.8 66.3 53.3 70.6 43.3 60.3 43.7 59.8 54.9 63.1 47.6

MATLM CE 59.4 43.5 63.8 50.1 70.2 43.0 58.5 46.1 59.2 54.8 62.2 47.5
LL 58.7 42.8 66.5 60.4 70.5 43.6 59.1 47.7 59.2 54.8 62.8 49.9

Table 2: Results for observation cost functions. The CE baseline corresponds to rows where cost=“none”.
Other rows are CCE. Best score for each column and each neighborhood is bold.

Wikipedia. The word counts for the Wikipedias
used range from 18M for Slovene to 1.9B for
Dutch. We used modified Kneser-Ney smoothing
as implemented by SRILM (Stolcke, 2002).

8.2 Results

We present two sets of results. First we compare
our MATCH and MATLM observation cost func-
tions for our two neighborhoods and two ways of
doing model selection. Then we do a broader com-
parison, comparing both types of costs and their
combination to our full set of baselines.

Observation Cost Functions In Table 2, we
show results for observation cost functions. We
note that the TRANS1 neighborhood works much
better than the SHUFF10 neighborhood, but we
find that using cost functions can close the gap in
certain cases, particularly for Dutch and Slovene
for which the SHUFF10 MATLM scores approach
or exceed the TRANS1 scores without a cost.

Since the SHUFF10 neighborhood exhibits
more diversity than TRANS1, we expect to see
larger gains from using observation cost functions.
We do in fact see larger gains in M-1, e.g., average
improvements are 1.6-2.6 for SHUFF10 and 0.4-
1.3 for TRANS1, though 1-1 gains are closer.

For TRANS1, while MATCH does reach a
slightly higher average M-1 than MATLM, the lat-
ter does much better in 1-1 (49.9 vs. 47.6 when
using LL for model selection). For SHUFF10,
MATLM consistently does better than MATCH.
Nonetheless, we suspect MATCH works as well as
it does because it at least differentiates the obser-
vation (which is always part of the neighborhood)
from the corruptions.

We find that the LL model selection criterion
consistently works better than the CE criterion for
model selection. When using LL model selection

and fixing the neighborhood, all average scores are
better than their CE baselines. For M-1, the aver-
age improvement is 1.0 to 2.6 points, and for 1-1
the average improvement ranges from 0.4 to 2.7.

We find the best overall performance when us-
ing MATLM with LL model selection with the
TRANS1 neighborhood, and we report this setting
in our subsequent experiments.

Output Cost Function Table 3 shows results
when using our UNIV output cost function, as well
as our full set of baselines. All (C)CE experiments
used the TRANS1 neighborhood.

We find that our contrastive estimation baseline
(cost=“none”) has a higher average M-1 (61.8)
than all results from the shared task, but its average
1-1 accuracy is lower than that reached by poste-
rior regularization, the best system in the shared
task according to 1-1. Using an observation cost
function increases both M-1 and 1-1: MATLM
yields an average 1-1 of 49.9, nearing the 50.1 of
PR while exceeding it in M-1 by nearly 2 points.

When using the UNIV cost function, we see
some variation in performance across model selec-
tion criteria, but we find improvements in both M-
1 and 1-1 accuracy under most settings. When do-
ing model selection via ALIGN voting, we roughly
match the average 1-1 of PR, and when using the
CE criterion, we beat it by 1 point on average (51.3
vs. 50.1).

Combined Costs When using the UNIV cost,
we find that model selection via CE works bet-
ter than LL. So for the combined costs, we took
the two best MATLM weights (α values) accord-
ing to LL and the two best UNIV weights (β val-
ues) according to CE and ran combined cost ex-
periments (MATCHLM+UNIV) with the four pairs
of hyperparameters. Then from among these four,
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system DA NL PT SL SV avg
M-1 1-1 M-1 1-1 M-1 1-1 M-1 1-1 M-1 1-1 M-1 1-1

HMM, EM 42.5 28.1 53.0 40.6 59.4 33.7 50.3 34.7 49.3 33.9 50.9 34.2
HMM, stepwise EM 51.7 38.2 61.6 45.2 66.5 46.7 53.6 35.7 55.3 39.6 57.7 41.1
BROWN 47.1 39.2 57.3 43.1 67.6 51.6 58.3 42.3 57.6 51.3 57.6 45.5
mkcls 53.1 44.2 63.0 54.1 68.1 46.3 50.4 40.6 57.3 43.6 58.4 45.8
posterior regularization 53.8 45.6 57.6 45.4 74.4 56.1 60.0 48.5 58.8 54.9 60.9 50.1

contrastive estimation
cost model sel.
none N/A 58.5 42.7 62.5 49.5 70.7 43.8 58.6 46.1 58.7 53.8 61.8 47.2

MATCH LL 58.8 42.8 66.3 53.3 70.6 43.3 60.3 43.7 59.8 54.9 63.1 47.6
MATLM LL 58.7 42.8 66.5 60.4 70.5 43.6 59.1 47.7 59.2 54.8 62.8 49.9

UNIV

CE 59.7 45.6 60.6 51.1 70.0 62.7 60.9 44.1 57.1 52.8 61.7 51.3
LL 59.5 42.2 62.1 56.3 70.7 43.1 60.9 44.1 57.1 52.8 62.1 47.7

NAÏVE 59.2 45.6 62.2 52.8 72.7 52.7 60.0 43.8 56.2 53.0 62.2 49.6
ALIGN 61.6 47.3 63.7 54.5 74.4 53.1 59.7 42.1 56.6 53.2 63.2 50.0

MATLM CE 59.8 45.7 60.4 48.4 70.0 62.8 52.9 45.0 59.4 54.9 60.5 51.4

+ LL 59.3 42.5 61.9 56.2 70.8 43.1 59.3 41.9 60.0 55.1 62.3 47.8
NAÏVE 58.5 44.4 64.9 60.3 65.4 52.1 55.5 45.9 59.0 54.4 60.6 51.4

UNIV ALIGN 61.1 45.4 66.2 60.9 75.8 49.8 59.5 48.2 59.0 54.4 64.3 51.7

Table 3: Unsupervised POS tagging accuracies for five languages, showing results for three systems from
the PASCAL shared task as well as three other baselines (EM, stepwise EM, and contrastive estimation).
All (C)CE results use the TRANS1 neighborhood. The best score in each column is bold.

we again chose results by CE, LL, and both voting
schemes.

The results are shown in the lower part of Ta-
ble 3. We find different trends in M-1 and 1-
1 depending on whether we use CE or LL for
model selection, which may be due to our lim-
ited hyperparameter search stemming from com-
putational constraints. However, by comparing
NAÏVE to ALIGN, we see a consistent benefit
from aligning tags before voting, leading to our
highest average accuracies. In particular, using
MATCHLM+UNIV and ALIGN, we improve over
CE by 2.5 in M-1 and 4.5 in 1-1, also improving
over the best results from the shared task.

9 Conclusion

We have shown how to modify contrastive estima-
tion to use additional sources of knowledge, both
in terms of observation and output cost functions.
We adapted a recently-proposed technique for es-
timating the log-likelihood of held-out data, find-
ing it to be effective as a model selection criterion
when using observation cost functions. We im-
proved tagging accuracy by using weak supervi-
sion in the form of universal tag frequencies. We
proposed a system combination method for POS
induction systems that consistently performs bet-
ter than naı̈ve voting and circumvents hyperpa-
rameter selection. We reported results on par with
or exceeding the best systems from the PASCAL
2012 shared task.

Contrastive estimation has been shown effective
for numerous NLP tasks, including dependency
grammar induction (Smith and Eisner, 2005b),
bilingual part-of-speech induction (Chen et al.,
2011), morphological segmentation (Poon et al.,
2009), and machine translation (Xiao et al., 2011).
The hope is that our contributions can benefit these
and other applications of weakly-supervised learn-
ing.
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and D. Klein. 2010. Painless unsupervised learn-
ing with features. In Proc. of NAACL.

P. Blunsom and T. Cohn. 2010. Unsupervised induc-
tion of tree substitution grammars for dependency
parsing. In Proc. of EMNLP.

1338



P. Blunsom and T. Cohn. 2011. A hierarchical Pitman-
Yor process HMM for unsupervised part of speech
induction. In Proc. of ACL.

G. Bouma, G. Van Noord, and R. Malouf. 2001.
Alpino: Wide-coverage computational analysis of
Dutch. Language and Computers, 37(1).

P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. Della
Pietra, and J. C. Lai. 1992. Class-based N-gram
models of natural language. Computational Lin-
guistics, 18(4).

M. Buch-Kromann, J. Wedekind, and J. Elming.
2007. The Copenhagen Danish-English dependency
treebank v. 2.0. code.google.com/p/copenhagen-
dependency-treebank.

S. Buchholz and E. Marsi. 2006. CoNLL-X shared
task on multilingual dependency parsing. In Proc.
of CoNLL.

D. Chen, C. Dyer, S. B. Cohen, and N. A. Smith. 2011.
Unsupervised bilingual POS tagging with Markov
random fields. In Proc. of the First Workshop on
Unsupervised Learning in NLP.

S. Cohen and N. A. Smith. 2009. Shared logistic nor-
mal distributions for soft parameter tying in unsu-
pervised grammar induction. In Proc. of NAACL.

S. B. Cohen, D. Das, and N. A. Smith. 2011. Unsu-
pervised structure prediction with non-parallel mul-
tilingual guidance. In Proc. of EMNLP.

M. Creutz and K. Lagus. 2005. Unsupervised mor-
pheme segmentation and morphology induction from
text corpora using Morfessor 1.0. Helsinki Univer-
sity of Technology.

D. Das and S. Petrov. 2011. Unsupervised part-of-
speech tagging with bilingual graph-based projec-
tions. In Proc. of ACL.

S. Della Pietra, V. Della Pietra, and J. Lafferty. 1997.
Inducing features of random fields. IEEE Trans.
Pattern Anal. Mach. Intell., 19(4).

A. Dempster, N. Laird, and D. Rubin. 1977. Maxi-
mum likelihood estimation from incomplete data via
the EM algorithm. Journal of the Royal Statistical
Society B, 39:1–38.
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J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nils-
son, S. Riedel, and D. Yuret. 2007. The CoNLL
2007 shared task on dependency parsing. In Proc.
of CoNLL.

F. J. Och. 1995. Maximum-likelihood-schätzung
von wortkategorien mit verfahren der kombina-
torischen optimierung. Bachelor’s thesis (Studien-
arbeit), Friedrich-Alexander-Universität Erlangen-
Nürnburg, Germany.

S. Petrov, D. Das, and R. McDonald. 2012. A univer-
sal part-of-speech tagset. In Proc. of LREC.

H. Poon, C. Cherry, and K. Toutanova. 2009. Unsuper-
vised morphological segmentation with log-linear
models. In Proc. of HLT: NAACL.

D. Povey and P. C. Woodland. 2002. Minimum
phone error and I-smoothing for improved discrima-
tive training. In Proc. of ICASSP.

D. Povey, D. Kanevsky, B. Kingsbury, B. Ramabhad-
ran, G. Saon, and K. Visweswariah. 2008. Boosted
MMI for model and feature space discriminative
training. In Proc. of ICASSP.

S. Ravi and K. Knight. 2009. Minimized models for
unsupervised part-of-speech tagging. In Proc. of
ACL.

S. Riezler. 1999. Probabilistic Constraint Logic Pro-
gramming. Ph.D. thesis, Universität Tübingen.
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Abstract

We introduce a reinforcement learning-
based approach to simultaneous ma-
chine translation—producing a trans-
lation while receiving input words—
between languages with drastically dif-
ferent word orders: from verb-final lan-
guages (e.g., German) to verb-medial
languages (English). In traditional ma-
chine translation, a translator must
“wait” for source material to appear be-
fore translation begins. We remove this
bottleneck by predicting the final verb
in advance. We use reinforcement learn-
ing to learn when to trust predictions
about unseen, future portions of the
sentence. We also introduce an evalua-
tion metric to measure expeditiousness
and quality. We show that our new
translation model outperforms batch
and monotone translation strategies.

1 Introduction

We introduce a simultaneous machine transla-
tion (MT) system that predicts unseen verbs
and uses reinforcement learning to learn when
to trust these predictions and when to wait for
more input.

Simultaneous translation is producing a par-
tial translation of a sentence before the input
sentence is complete, and is often used in im-
portant diplomatic settings. One of the first
noted uses of human simultaneous interpreta-
tion was the Nuremberg trials after the Sec-
ond World War. Siegfried Ramler (2009), the
Austrian-American who organized the transla-
tion teams, describes the linguistic predictions

and circumlocutions that translators would use
to achieve a tradeoff between translation la-
tency and accuracy. The audio recording tech-
nology used by those interpreters sowed the
seeds of technology-assisted interpretation at
the United Nations (Gaiba, 1998).

Performing real-time translation is especially
difficult when information that comes early in
the target language (the language you’re trans-
lating to) comes late in the source language (the
language you’re translating from). A common
example is when translating from a verb-final
(sov) language (e.g., German or Japanese) to
a verb-medial (svo) language, (e.g., English).
In the example in Figure 1, for instance, the
main verb of the sentence (in bold) appears
at the end of the German sentence. An of-
fline (or “batch”) translation system waits until
the end of the sentence before translating any-
thing. While this is a reasonable approach, it
has obvious limitations. Real-time, interactive
scenarios—such as online multilingual video
conferences or diplomatic meetings—require
comprehensible partial interpretations before
a sentence ends. Thus, a significant goal in
interpretation is to make the translation as
expeditious as possible.

We present three components for an sov-to-
svo simultaneous mt system: a reinforcement
learning framework that uses predictions to
create expeditious translations (Section 2), a
system to predict how a sentence will end (e.g.,
predicting the main verb; Section 4), and a met-
ric that balances quality and expeditiousness
(Section 3). We combine these components in
a framework that learns when to begin trans-
lating sections of a sentence (Section 5).

Section 6 combines this framework with a
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ich bin mit dem Zug nach Ulm gefahren
I am with the train to Ulm traveled
I (. . . . . . waiting. . . . . . ) traveled by train to Ulm

Figure 1: An example of translating from a
verb-final language to English. The verb, in
bold, appears at the end of the sentence, pre-
venting coherent translations until the final
source word is revealed.

translation system that produces simultaneous
translations. We show that our data-driven
system can successfully predict unseen parts
of the sentence, learn when to trust them, and
outperform strong baselines (Section 7).

While some prior research has approached
the problem of simultaneous translation—we re-
view these systems in more detail in Section 8—
no current model learns when to definitively
begin translating chunks of an incomplete sen-
tence. Finally, in Section 9, we discuss the
limitations of our system: it only uses the most
frequent source language verbs, it only applies
to sentences with a single main verb, and it
uses an idealized translation system. However,
these limitations are not insurmountable; we
describe how a more robust system can be as-
sembled from these components.

2 Decision Process for
Simultaneous Translation

Human interpreters learn strategies for their
profession with experience and practice. As
words in the source language are observed, a
translator—human or machine—must decide
whether and how to translate, while, for cer-
tain language pairs, simultaneously predicting
future words. We would like our system to do
the same. To this end, we model simultaneous
mt as a Markov decision process (mdp) and
use reinforcement learning to effectively com-
bine predicting, waiting, and translating into
a coherent strategy.

2.1 States: What is, what is to come

The state st represents the current view of
the world given that we have seen t words of
a source language sentence.1 The state con-
tains information both about what is known
and what is predicted based on what is known.

1We use t to evoke a discrete version of time. We
only allow actions after observing a complete source
word.

To compare the system to a human transla-
tor in a decision-making process, the state is
akin to the translator’s cognitive state. At any
given time, we have knowledge (observations)
and beliefs (predictions) with varying degrees
of certainty: that is, the state contains the re-
vealed words x1:t of a sentence; the state also
contains predictions about the remainder of
the sentence: we predict the next word in the
sentence and the final verb.

More formally, we have a prediction at time
t of the next source language word that will
appear, n(t)

t+1, and for the final verb, v(t). For
example, given the partial observation “ich
bin mit dem”, the state might contain a pre-
diction that the next word, n(t)

t+1, will be “Zug”
and that the final verb v(t) will be “gefahren”.

We discuss the mechanics of next-word and
verb prediction further in Section 4; for now,
consider these black boxes which, after observ-
ing every new source word xt, make predictions
of future words in the source language. This
representation of the state allows for a richer set
of actions, described below, permitting simul-
taneous translations that outpace the source
language input2 by predicting the future.

2.2 Actions: What our system can do

Given observed and hypothesized input, our
simultaneous translation system must decide
when to translate them. This is expressed
in the form of four actions: our system can
commit to a partial translation, predict the
next word and use it to update the transla-
tion, predict the verb and use it to update the
translation, or wait for more words.

We discuss each of these actions in turn be-
fore describing how they come together to in-
crementally translate an entire sentence:

Wait Waiting is the simplest action. It pro-
duces no output and allows the system to re-
ceive more input, biding its time, so that when
it does choose to translate, the translation is
based on more information.

Commit Committing produces translation
output: given the observed source sentence,
produce the best translation possible.

2Throughout, “input” refers to source language in-
put, and “output” refers to target language translation.
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Figure 2: A simultaneous translation from source (German) to target (English). The agent
chooses to wait until after (3). At this point, it is sufficiently confident to predict the final verb
of the sentence (4). Given this additional information, it can now begin translating the sentence
into English, constraining future translations (5). As the rest of the sentence is revealed, the
system can translate the remainder of the sentence.

Next Word The next word action takes
a prediction of the next source word and pro-
duces an updated translation based on that
prediction, i.e., appending the predicted word
to the source sentence and translating the new
sentence.

Verb Our system can also predict the source
sentence’s final verb (the last word in the sen-
tence). When our system takes the verb ac-
tion, it uses its verb prediction to update the
translation using the prediction, by placing it
at the end of the source sentence.

We can recreate a traditional batch trans-
lation system (interpreted temporally) by a
sequence of wait actions until all input is ob-
served, followed by a commit to the complete
translation. Our system can commit to par-
tial translations if it is confident, but producing
a good translation early in the sentence often
depends on missing information.

2.3 Translation Process

Having described the state, its components,
and the possible actions at a state, we present
the process in its entirety. In Figure 2, after
each German word is received, the system ar-
rives at a new state, which consists of the source
input, target translation so far, and predictions
of the unseen words. The translation system

must then take an action given information
about the current state. The action will result
in receiving and translating more source words,
transitioning the system to the next state. In
the example, for the first few source-language
words, the translator lacks the confidence to
produce any output due to insufficient informa-
tion at the state. However, after State 3, the
state shows high confidence in the predicted
verb “gefahren”. Combined with the German
input it has observed, the system is sufficiently
confident to act on that prediction to produce
English translation.

2.4 Consensus Translations

Three straightforward actions—commit, next
word, and verb—all produce translations.
These rely black box access to a translation
(discussed in detail in Section 6): that is, given
a source language sentence fragment, the trans-
lation system produces a target language sen-
tence fragment.

Because these actions can happen more than
once in a sentence, we must form a single con-
sensus translation from all of the translations
that we might have seen. If we have only one
translation or if translations are identical, form-
ing the consensus translation is trivial. But
how should we resolve conflicting translations?

Any time our system chooses an action that
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produces output, the observed input (plus extra
predictions in the case of next-word or verb),
is passed into the translation system. That
system then produces a complete translation
of its input fragment.

Any new words—i.e., words whose target
index is greater than the length of any previ-
ous translation—are appended to the previous
translation.3 Table 1 shows an example of
forming these consensus translations.

Now that we have defined how states evolve
based on our system’s actions, we need to know
how to select which actions to take. Eventu-
ally, we will formalize this as a learned policy
(Section 5) that maps from states to actions.
First, however, we need to define a reward that
measures how “good” an action is.

3 Objective: What is a good
simultaneous translation?

Good simultaneous translations must optimize
two objectives that are often at odds, i.e., pro-
ducing translations that are, in the end, accu-
rate, and producing them in pieces that are
presented expeditiously. While there are exist-
ing automated metrics for assessing translation
quality (Papineni et al., 2002; Banerjee and
Lavie, 2005; Snover et al., 2006), these must
be modified to find the necessary compromise
between translation quality and expeditious-
ness. That is, a good metric for simultaneous
translation must achieve a balance between
translating chunks early and translating accu-
rately. All else being equal, maximizing either
goal in isolation is trivial: for accurate transla-
tions, use a batch system and wait until the
sentence is complete, translating it all at once;
for a maximally expeditious translation, cre-
ate monotone translations, translating each
word as it appears, as in Tillmann et al. (1997)
and Pytlik and Yarowsky (2006). The former
is not simultaneous at all; the latter is mere
word-for-word replacement and results in awk-
ward, often unintelligible translations of distant
language pairs.

Once we have predictions, we have an ex-
panded array of possibilities, however. On one
extreme, we can imagine a psychic translator—

3Using constrained decoding to enforce consistent
translation prefixes would complicate our method but
is an appealing extension.

one that can completely translate an imagined
sentence after one word is uttered—as an un-
obtainable system. On the other extreme is a
standard batch translator, which waits until
it has access to the utterer’s complete sentence
before translating anything.

Again, we argue that a system can improve
on this by predicting unseen parts of the sen-
tence to find a better tradeoff between these
conflicting goals. However, to evaluate and op-
timize such a system, we must measure where
a system falls on the continuum of accuracy
versus expeditiousness.

Consider partial translations in a two-
dimensional space, with time (quantized by
the number of source words seen) increasing
from left to right on the x axis and the bleu
score (including brevity penalty against the
reference length) on the y axis. At each point
in time, the system may add to the consensus
translation, changing the precision (Figure 3).
Like an roc curve, a good system will be high
and to the left, optimizing the area under the
curve: the ideal system would produce points
as high as possible immediately. A translation
which is, in the end, accurate, but which is less
expeditious, would accrue its score more slowly
but outperform a similarly expeditious system
which nevertheless translates poorly.

An idealized psychic system achieves this,
claiming all of the area under the curve, as it
would have a perfect translation instantly, hav-
ing no need of even waiting for future input.4

A batch system has only a narrow (but tall)
sliver to the right, since it translates nothing
until all of the words are observed.

Formally, let Q be the score function for a
partial translation, x the sequentially revealed
source words x1, x2, . . . , xT from time step 1 to
T , and y the partial translations y1, y2, . . . , yT ,
where T is the length of the source language
input. Each incremental translation yt has a
bleu-n score with respect to a reference r. We
apply the usual bleu brevity penalty to all the
incremental translations (initially empty) to

4One could reasonably argue that this is not ideal:
a fluid conversation requires the prosody and timing
between source and target to match exactly. Thus, a
psychic system would provide too much information
too quickly, making information exchange unnatural.
However, we take the information-centric approach:
more information faster is better.
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Pos Input Intermediate Consensus
1
2 Er He1 He1

3 Er wurde
gestaltet

It1 was2 designed3 He1 was2 designed3

4 It1 was2 designed3 He1 was2 designed3

5 Er wurde
gestern
renoviert

It1 was2 renovated3

yesterday4

He1 was2 designed3

yesterday4

Table 1: How intermediate translations are combined into a consensus translation. Incorrect
translations (e.g., “he” for an inanimate object in position 3) and incorrect predictions (e.g.,
incorrectly predicting the verb gestaltet in position 5) are kept in the consensus translation.
When no translation is made, the consensus translation remains static.

Er ist zum Laden gegangen

He went to 
the store

He
He to the

He to the store

Psychic

Monotone

He went 
to the 
store

Batch

Policy
Prediction He

He went He went to 
the store

He to the 
store went

He went 
to  the

Source Sentence
β

Figure 3: Comparison of lbleu (the area under
the curve given by Equation 1) for an impossi-
ble psychic system, a traditional batch system,
a monotone (German word order) system, and
our prediction-based system. By correctly pre-
dicting the verb “gegangen” (to go), we achieve
a better overall translation more quickly.

obtain latency-bleu (lbleu),

Q(x,y) =
1
T

∑
t

bleu(yt, r) (1)

+ T · bleu(yT , r)

The lbleu score is a word-by-word inte-
gral across the input source sentence. As each
source word is observed, the system receives a
reward based on the bleu score of the partial
translation. lbleu, then, represents the sum of
these T rewards at each point in the sentence.
The score of a simultaneous translation is the
sum of the scores of all individual segments
that contribute to the overall translation.

We multiply the final bleu score by T to en-
sure good final translations in learned systems

to compensate for the implicit bias toward low
latency.5

4 Predicting Verbs and Next
Words

The next and verb actions depend on predic-
tions of the sentence’s next word and final verb;
this section describes our process for predict-
ing verbs and next words given a partial source
language sentence.

The prediction of the next word in the source
language sentence is modeled with a left-to-
right language model. This is (näıvely) anal-
ogous to how a human translator might use
his own “language model” to guess upcoming
words to gain some speed by completing, for
example, collocations before they are uttered.
We use a simple bigram language model for
next-word prediction. We use Heafield et al.
(2013).

For verb prediction, we use a generative
model that combines the prior probability of
a particular verb v, p(v), with the likelihood
of the source context at time t given that
verb (namely, p(x1:t | v)), as estimated by a
smoothed Kneser-Ney language model (Kneser
and Ney, 1995). We use Pauls and Klein
(2011). The prior probability p(v) is estimated
by simple relative frequency estimation. The
context, x1:t, consists of all words observed.
We model p(x1:t | v) with verb-specific n-gram
language models. The predicted verb v(t) at
time t is then:

arg max
v
p(v)

t∏
i=1

p(xi | v, xi−n+1:i−1) (2)

5One could replace T with a parameter, β, to bias
towards different kinds of simultaneous translations. As
β →∞, we recover batch translation.
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where xi−n+1:i−1 is the n−1-gram context. To
narrow the search space, we consider only the
100 most frequent final verbs, where a “final
verb” is defined as the sentence-final sequence
of verbs and particles as detected by a German
part-of-speech tagger (Toutanova et al., 2003).6

5 Learning a Policy

We have a framework (states and actions) for
simultaneous machine translation and a metric
for assessing simultaneous translations. We
now describe the use of reinforcement learning
to learn a policy, a mapping from states to
actions, to maximize lbleu reward.

We use imitation learning (Abbeel and Ng,
2004; Syed et al., 2008): given an optimal se-
quence of actions, learn a generalized policy
that maps states to actions. This can be viewed
as a cost-sensitive classification (Langford and
Zadrozny, 2005): a state is represented as a fea-
ture vector, the loss corresponds to the quality
of the action, and the output of the classifier is
the action that should be taken in that state.

In this section, we explain each of these com-
ponents: generating an optimal policy, repre-
senting states through features, and learning a
policy that can generalize to new sentences.

5.1 Optimal Policies

Because we will eventually learn policies via
a classifier, we must provide training exam-
ples to our classifier. These training exam-
ples come from an oracle policy π∗ that
demonstrates the optimal sequence—i.e., with
maximal lbleu score—of actions for each se-
quence. Using dynamic programming, we can
determine such actions for a fixed translation
model.7 From this oracle policy, we generate
training examples for a supervised classifier.
State st is represented as a tuple of the ob-
served words x1:t, predicted verb v(t), and the
predicted word n(t)

t+1. We represent the state to

a classifier as a feature vector φ(x1:t, n
(t)
t+1, v

(t)).

6This has the obvious disadvantage of ignoring mor-
phology and occasionally creating duplicates of common
verbs that have may be associated with multiple parti-
cles; nevertheless, it provides a straightforward verb to
predict.

7This is possible for the limited class of consensus
translation schemes discussed in Section 2.4.

5.2 Feature Representation

We want a feature representation that will al-
low a classifier to generalize beyond the specific
examples on which it is trained. We use sev-
eral general classes of features: features that
describe the input, features that describe the
possible translations, and features that describe
the quality of the predictions.

Input We include both a bag of words rep-
resentation of the input sentence as well as
the most recent word and bigram to model
word-specific effects. We also use a feature
that encodes the length of the source sentence.

Prediction We include the identity of the
predicted verb and next word as well as their re-
spective probabilities under the language mod-
els that generate the predictions. If the model
is confident in the prediction, the classifier can
learn to more so trust the predictions.

Translation In addition to the state, we in-
clude features derived from the possible actions
the system might take. This includes a bag of
words representation of the target sentence, the
score of the translation (decreasing the score is
undesirable), the score of the current consen-
sus translation, and the difference between the
current and potential translation scores.

5.3 Policy Learning

Our goal is to learn a classifier that can accu-
rately mimic the oracle’s choices on previously
unseen data. However, at test time, when we
run the learned policy classifier, the learned
policy’s state distribution may deviate from
the optimal policy’s state distribution due to
imperfect imitation, arriving in states not on
the oracle’s path. To address this, we use
searn (Daumé III et al., 2009), an iterative
imitation learning algorithm. We learn from
the optimal policy in the first iteration, as in
standard supervised learning; in the following
iterations, we run an interpolated policy

πk+1 = επk + (1− ε)π∗, (3)

with k as the iteration number and ε the mixing
probability. We collect examples by asking
the policy to label states on its path. The
interpolated policy will execute the optimal
action with probability 1− ε and the learned
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policy’s action with probability ε. In the first
iteration, we have π0 = π∗.

Mixing in the learned policy allows the
learned policy to slowly change from the oracle
policy. As it trains on these no-longer-perfect
state trajectories, the state distribution at test
time will be more consistent with the states
used in training.

searn learns the policy by training a cost-
sensitive classifier. Besides providing the opti-
mal action, the oracle must also assign a cost
to an action

C(at,x) ≡ Q(x, π∗(xt))−Q(x, at(xt)), (4)

where at(xt) represents the translation outcome
of taking action at. The cost is the regret of
not taking the optimal action.

6 Translation System

The focus of this work is to show that given an
effective batch translation system and predic-
tions, we can learn a policy that will turn this
into a simultaneous translation system. Thus,
to separate translation errors from policy er-
rors, we perform experiments with a nearly
optimal translation system we call an omni-
scient translator.

More realistic translation systems will nat-
urally lower the objective function, often in
ways that make it difficult to show that we can
effectively predict the verbs in verb-final source
languages. For instance, German to English
translation systems often drop the verb; thus,
predicting a verb that will be ignored by the
translation system will not be effective.

The omniscient translator translates a source
sentence correctly once it has been fed the ap-
propriate source words as input. There are
two edge cases: empty input yields an empty
output, while a complete, correct source sen-
tence returns the correct, complete translation.
Intermediate cases—where the input is either
incomplete or incorrect—require using an align-
ment. The omniscient translator assumes as
input a reference translation r, a partial source
language input x1:t and a corresponding partial
output y. In addition, the omniscient transla-
tor assumes access to an alignment between r
and x. In practice, we use the hmm aligner (Vo-
gel et al., 1996; Och and Ney, 2003).

We first consider incomplete but correct in-
puts. Let y = τ(x1:t) be the translator’s output
given a partial source input x1:t with transla-
tion y. Then, τ(x1:t) produces all target words
yj if there is a source word xi in the input
aligned to those words—i.e., (i, j) ∈ ax,y—and
all preceding target words can be translated.
(That translations must be contiguous is a nat-
ural requirement for human recipients of trans-
lations). In the case where yj is unaligned, the
closest aligned target word to yj that has a
corresponding alignment entry is aligned to xi;
then, if xi is present in the input, yj appears in
the output. Thus, our omniscient translation
system will always produce the correct output
given the correct input.

However, our learned policy can make wrong
predictions, which can produce partial trans-
lations y that do not match the reference.
In this event, an incorrect source word x̃i
produces incorrect target words ỹj , for all
j : (i, j) ∈ ax,y. These ỹj are sampled from
the ibm Model 1 lexical probability table mul-
tiplied by the source language model ỹj ∼
Mult(θx̃i)pLM (x̃).8 Thus, even if we predict
the correct verb using a next word action, it
will be in the wrong position and thus gener-
ate a translation from the lexical probabilities.
Since translations based on Model 1 probabil-
ities are generally inaccurate, the omniscient
translator will do very well when given correct
input but will produce very poor translations
otherwise.

7 Experiments

In this section, we describe our experimental
framework and results from our experiments.
From aligned data, we derive an omniscient
translator. We use monolingual data in the
source language to train the verb predictor and
the next word predictor. From these features,
we compute an optimal policy from which we
train a learned policy.

7.1 Data sets

For translation model and policy training, we
use data from the German-English Parallel “de-
news” corpus of radio broadcast news (Koehn,
2000), which we lower-cased and stripped of

8If a policy chooses an incorrect unaligned word, it
has no effect on the output. Alignments are position-
specific, so “wrong” refers to position and type.
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punctuation. A total of 48, 601 sentence pairs
are randomly selected for building our system.
Of these, we use 70% (34, 528 pairs) for training
word alignments.

For training the translation policy, we re-
strict ourselves to sentences that end with one
of the 100 most frequent verbs (see Section 4).
This results in a data set of 4401 training sen-
tences and 1832 test sentences from the de-news
data. We did this to narrow the search space
(from thousands of possible, but mostly very
infrequent, verbs).

We used 1 million words of news text from
the Leipzig Wortschatz (Quasthoff et al., 2006)
German corpus to train 5-gram language mod-
els to predict a verb from the 100 most frequent
verbs.

For next-word prediction, we use the 18, 345
most frequent German bigrams from the train-
ing set to provide a set of candidates in a lan-
guage model trained on the same set. We use
frequent bigrams to reduce the computational
cost of finding the completion probability of
the next word.

7.2 Training Policies

In each iteration of searn, we learn a
multi-class classifier to implement the pol-
icy. The specific learning algorithm we use
is arow (Crammer et al., 2013). In the com-
plete version of searn, the cost of each action
is calculated as the highest expected reward
starting at the current state minus the actual
roll-out reward. However, computing the full
roll-out reward is computationally very expen-
sive. We thus use a surrogate binary cost: if
the predicted action is the same as the opti-
mal action, the cost is 0; otherwise, the cost
is 1. We then run searn for five iterations.
Results on the development data indicate that
continuing for more iterations yields no benefit.

7.3 Policy Rewards on Test Set

In Figure 4, we show performance of the opti-
mal policy vis-à-vis the learned policy, as well
as the two baseline policies: the batch policy
and the monotone policy. The x-axis is the
percentage of the source sentence seen by the
model, and the y-axis is a smoothed average of
the reward as a function of the percentage of
the sentence revealed. The monotone policy’s
performance is close to the optimal policy for
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man data. Our policy outperforms all baselines
by the end of the sentence.
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Figure 5: Histogram of actions taken by the
policies.

the first half of the sentence, as German and
English have similar word order, though they
diverge toward the end. Our learned policy
outperforms the monotone policy toward the
end and of course outperforms the batch policy
throughout the sentence.

Figure 5 shows counts of actions taken by
each policy. The batch policy always commits
at the end. The monotone policy commits at
each position. Our learned policy has an ac-
tion distribution similar to that of the optimal
policy, but is slightly more cautious.

7.4 What Policies Do

Figure 6 shows a policy that, predicting incor-
rectly, still produces sensible output. The pol-
icy correctly intuits that the person discussed
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VERB

federal minister of the 
environment angela merkel 

shown the draft of an 
ecopolitical program

bundesumweltministerin 
merkel hat den entwurf

bundesumweltministerin

INPUT OUTPUT

federal minister of the 
environment angela merkel

federal minister of the 
environment angela merkel 

shown the draft

Merkel

gezeigt

bundesumweltministerin 
merkel hat den entwurf 
eines umweltpolitischen 
programms vorgestellt

COMMIT

NEXT

Figure 6: An imperfect execution of a learned
policy. Despite choosing the wrong verb
“gezeigt” (showed) instead of “vorgestellt” (pre-
sented), the translation retains the meaning.

is Angela Merkel, who was the environmen-
tal minister at the time, but the policy uses
an incorrectly predicted verb. Because of our
poor translation model (Section 6), it renders
this word as “shown”, which is a poor transla-
tion. However, it is still comprehensible, and
the overall policy is similar to what a human
would do: intuit the subject of the sentence
from early clues and use a more general verb
to stand in for a more specific one.

8 Related Work

Just as mt was revolutionized by statistical
learning, we suspect that simultaneous mt will
similarly benefit from this paradigm, both from
a systematic system for simultaneous transla-
tion and from a framework for learning how to
incorporate predictions.

Simultaneous translation has been
dominated by rule and parse-based ap-
proaches (Mima et al., 1998a; Ryu et al., 2006).
In contrast, although Verbmobil (Wahlster,
2000) performs incremental translation using a
statistical mt module, its incremental decision-
making module is rule-based. Other recent
approaches in speech-based systems focus on
waiting until a pause to translate (Sakamoto
et al., 2013) or using word alignments (Ryu
et al., 2012) between languages to determine
optimal translation units.

Unlike our work, which focuses on predic-
tion and learning, previous strategies for deal-
ing with sov-to-svo translation use rule-based
methods (Mima et al., 1998b) (for instance,
passivization) to buy time for the translator to

hear more information in a spoken context—or
use phrase table and reordering probabilities to
decide where to translate with less delay (Fu-
jita et al., 2013). Oda et al. (2014) is the
most similar to our work on the translation
side. They frame word segmentation as an
optimization problem, using a greedy search
and dynamic programming to find segmenta-
tion strategies that maximize an evaluation
measure. However, unlike our work, the direc-
tion of translation was from from svo to svo,
obviating the need for verb prediction. Simul-
taneous translation is more straightforward for
languages with compatible word orders, such
as English and Spanish (Fügen, 2008).

To our knowledge, the only attempt to
specifically predict verbs or any late-occurring
terms (Matsubara et al., 2000) uses pattern
matching on what would today be considered
a small data set to predict English verbs for
Japanese to English simultaneous mt.

Incorporating verb predictions into the trans-
lation process is a significant component of
our framework, though n-gram models strongly
prefer highly frequent verbs. Verb prediction
might be improved by applying the insights
from psycholinguistics. Ferreira (2000) argues
that verb lemmas are required early in sentence
production—prior to the first noun phrase
argument—and that multiple possible syntac-
tic hypotheses are maintained in parallel as the
sentence is produced. Schriefers et al. (1998)
argues that, in simple German sentences, non-
initial verbs do not need lemma planning at
all. Momma et al. (2014), investigating these
prior claims, argues that the abstract relation-
ship between the internal arguments and verbs
triggers selective verb planning.

9 Conclusion and Future Work

Creating an effective simultaneous translation
system for sov to svo languages requires not
only translating partial sentences, but also ef-
fectively predicting a sentence’s verb. Both
elements of the system require substantial re-
finement before they are usable in a real-world
system.

Replacing our idealized translation system
is the most challenging and most important
next step. Supporting multiple translation hy-
potheses and incremental decoding (Sankaran

1350



et al., 2010) would improve both the efficiency
and effectiveness of our system. Using data
from human translators (Shimizu et al., 2014)
could also add richer strategies for simultane-
ous translation: passive constructions, reorder-
ing, etc.

Verb prediction also can be substantially im-
proved both in its scope in the system and
how we predict verbs. Verb-final languages
also often place verbs at the end of clauses,
and also predicting these verbs would improve
simultaneous translation, enabling its effective
application to a wider range of sentences. In-
stead predicting an exact verb early (which is
very difficult), predicting a semantically close
or a more general verb might yield interpretable
translations.

A natural next step is expanding this work
to other languages, such as Japanese, which not
only has sov word order but also requires tok-
enization and morphological analysis, perhaps
requiring sub-word prediction.
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Université de Nantes,

CNRS, LINA, UMR6241,
F-44000, France

cdlh@univ-nantes.fr

Abstract

The task of unsupervised induction of
probabilistic context-free grammars
(PCFGs) has attracted a lot of attention
in the field of computational linguistics.
Although it is a difficult task, work in this
area is still very much in demand since
it can contribute to the advancement of
language parsing and modelling. In this
work, we describe a new algorithm for
PCFG induction based on a principled
approach and capable of inducing accurate
yet compact artificial natural language
grammars and typical context-free gram-
mars. Moreover, this algorithm can work
on large grammars and datasets and infers
correctly even from small samples. Our
analysis shows that the type of grammars
induced by our algorithm are, in theory,
capable of modelling natural language.
One of our experiments shows that our
algorithm can potentially outperform the
state-of-the-art in unsupervised parsing on
the WSJ10 corpus.

1 Introduction

The task of unsupervised induction of PCFGs has
attracted a lot of attention in the field of compu-
tational linguistics. This task can take the form
of either parameter search or structure learning.
In parameter search, a CFG is fixed and the fo-
cus is on assigning probabilities to this grammar
using Bayesian methods (Johnson et al., 2007) or
maximum likelihood estimation (Lari and Young,
1990). In structure learning, the focus is on build-
ing the right grammar rules from scratch. We take
the latter approach.

Unsupervised structure learning of (P)CFGs is
a notoriously difficult task (de la Higuera, 2010;
Clark and Lappin, 2010), with theoretical results

showing that in general it is either impossible
to achieve (Gold, 1967; de la Higuera, 1997)
or requires impractical resources (Horning, 1969;
Yang, 2012). At the same time, it is well known
that context-free structures are needed for better
language parsing and modelling, since less expres-
sive models (such as HMMs) are not good enough
(Manning and Schütze, 2001; Jurafsky and Mar-
tin, 2008). Moreover, the trend is towards unsu-
pervised (rather than supervised) learning meth-
ods due to the lack in most languages of annotated
data and the applicability in wider domains (Merlo
et al., 2010). Thus, despite its difficulty, unsuper-
vised PCFG grammar induction (or induction of
other similarly expressive models) is still an im-
portant task in computational linguistics.

In this paper, we describe a new algorithm for
PCFG induction based on a principled approach
and capable of inducing accurate yet compact
grammars. Moreover, this algorithm can work on
large grammars and datasets and infers correctly
even from small samples. We show that our algo-
rithm is capable of achieving competitive results
in both unsupervised parsing and language mod-
elling of typical context-free languages and arti-
ficial natural language grammars. We also show
that the type of grammars we propose to learn are,
in theory, capable of modelling natural language.

2 Preliminaries

2.1 Grammars and Languages
A context-free grammar (CFG) is a 4-tuple
〈N,Σ, P, I〉, where N is the set of non-terminals,
Σ the set of terminals, P the set of production rules
and I a set of starting non-terminals (i.e. multi-
ple starting non-terminals are possible). The lan-
guage generated from a particular non-terminal A
is L(A) = {w|A ∗⇒ w} and the language gen-
erated by a grammar G is L(G) =

⋃
S∈I L(S).

A CFG is in Chomsky Normal Form (CNF) if ev-
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ery production rule is of the form N → NN or
N → Σ.

A probabilistic context-free grammar (PCFG)
is a CFG with a probability value assigned to every
rule and every starting non-terminal. The prob-
ability of a leftmost derivation from a PCFG is
the product of the starting non-terminal probabil-
ity and the production probabilities used in the
derivation. The probability of a string generated
by a PCFG is the sum of all its leftmost deriva-
tions’ probabilities. The stochastic language gen-
erated from a PCFG G is (L(G), φG), where φG
is the distribution over Σ∗ defined by the probabil-
ities assigned to the strings by G. For a PCFG to
be consistent, the probabilities of the strings in its
stochastic language must add up to 1 (Wetherell,
1980). Any PCFG mentioned from now onwards
is assumed to be consistent.

2.2 Congruence Relations
A congruence relation∼ on Σ∗ is any equivalence
relation on Σ∗ that respects the following condi-
tion: if u ∼ v and x ∼ y then ux ∼ vy. The con-
gruence classes of a congruence relation are sim-
ply its equivalence classes. The congruence class
of w ∈ Σ∗ w.r.t. a congruence relation ∼ is de-
noted by [w]∼. The set of contexts of a substringw
with respect to a language L, denoted Con(w,L),
is {(l, r) ∈ Σ∗ × Σ∗ | lwr ∈ L}. Two strings u
and v are syntactically congruent with respect to
L, written u ≡L v, if Con(u, L) = Con(v, L).
This is a congruence relation on Σ∗. The con-
text distribution of a substring w w.r.t. a stochastic
language (L, φ), denoted C(L,φ)

w , is a distribution
whose support is all the possible contexts over al-
phabet Σ (i.e. Σ∗ × Σ∗) and is defined as follows:

C
(L,φ)
w (l, r) =

φ(lwr)∑
l′,r′∈Σ∗ φ(l′wr′)

Two strings u and v are stochastically congru-
ent with respect to (L, φ), written u ∼=(L,φ) v, if

C
(L,φ)
u is equal to C

(L,φ)
v . This is a congruence

relation on Σ∗.

2.3 Congruential Grammars
Clark (2010a) defines Congruential CFGs (C-
CFGs) as being all the CFGs G which, for any
non-terminal A, if u ∈ L(A) then L(A) ⊆
[u]≡L(G)

(where [u]≡L(G)
is the syntactic congru-

ence class of u w.r.t. the language of G). This
class of grammars was defined with learnability
in mind. Since these grammars have a direct

relationship between congruence classes and the
non-terminals, their learnability is reduced to that
of finding the correct congruence classes (Clark,
2010a).

This class of grammars is closely related
to the class of NTS-grammars (Boasson and
Sénizergues, 1985). Any C-CFG is an NTS-
grammar but not vice-versa. However, it is not
known whether languages generated by C-CFGs
are all NTS-languages (Clark, 2010a). Note that
NTS-languages are a subclass of deterministic
context-free languages and contain the regular
languages, the substitutable (Clark and Eyraud,
2007) and k-l-substitutable context-free languages
(Yoshinaka, 2008), the very simple languages and
other CFLs such as the Dyck language (Boasson
and Sénizergues, 1985).

We define a slightly more restrictive class of
grammars, which we shall call Strongly Congru-
ential CFGs (SC-CFGs). A CFG G is a SC-
CFG if, for any non-terminal A, if u ∈ L(A)
then L(A) = [u]≡L(G)

. The probabilistic equiv-
alent of this is the class of Strongly Congruential
PCFGs (SC-PCFGs), defined as all the PCFGs G
which, for any non-terminal A, if u ∈ L(A) then
L(A) = [u]∼=(L(G),φ)

. In other words, the non-
terminals (i.e. syntactic categories in natural lan-
guage) of these grammars directly correspond to
classes of substitutable strings (i.e. substitutable
words and phrases in NL). One may ask whether
this is too strict a restriction for natural language
grammars. We argue that it is not, for the follow-
ing reasons.

First of all, this restriction complies with the ap-
proach taken by American structural linguists for
the identification of syntactic categories, as shown
by Rauh (2010): ”[Zellig and Fries] identified
syntactic categories as distribution classes, em-
ploying substitution tests and excluding semantic
properties of the items analysed. Both describe
syntactic categories exclusively on the basis of
their syntactic environments and independently of
any inherent properties of the members of these
categories”.

Secondly, we know that such grammars are ca-
pable of describing languages generated by gram-
mars that contain typical natural language gram-
matical structures (see Section 4.1; artificial natu-
ral language grammars NL1-NL7, taken from var-
ious sources, generate languages which can be de-
scribed by SC-PCFGs).
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3 Algorithm

COMINO (our algorithm) induces SC-PCFGs
from a positive sample S. The steps involved are:

1. Inducing the stochastically congruent classes
of all the substrings of S

2. Selecting which of the induced classes are
non-terminals and subsequently building a
CFG.

3. Assigning probabilities to the induced CFG.

The approach we take is very different from tra-
ditional grammar induction approaches, in which
grouping of substitutable substrings is done incre-
mentally as the same groups are chosen to rep-
resent non-terminals. We separate these two task
so that learning takes place in the grouping phase
whilst selection of non-terminals is done indepen-
dently by solving a combinatorial problem.

For the last step, the standard EM-algorithm for
PCFGs (Lari and Young, 1990) is used. In Sec-
tions 3.1 and 3.2, the first and second steps of the
algorithm are described in detail. We analyse our
algorithm in Section 3.3.

3.1 Inducing the Congruence Classes
We describe in Algorithm 1 how the congruence
classes are induced.

Algorithm 1: Learn Congruence Classes

Input: A multiset S; parameters: n, d, i;
distance function dist on local
contexts of size k

Output: The congruence classes CC over the
substrings of S

1 Subs← Set of all substrings of S ;
2 CC ← {{w} | w ∈ Subs} ;
3 while True do
4 Pairs← {(x, y) | x, y ∈ CC, x 6= y,

|S|x ≥ n , |S|y ≥ n} ;
5 if |Pairs| = 0 then exitloop ;
6 Order Pairs based on distk ;
7 (x, y)← Pairs[0] ;
8 init = {[w]CC | w ∈ S} ;
9 if distk(x, y) ≥ d and |init| ≤ i then

exitloop ;
10 CC ← Merge(x, y, CC) ;
11 end
12 return CC ;

At the beginning, each substring (or phrase for
natural language) in the sample is assigned its own
congruence class (line 2). Then, pairs of frequent
congruence classes are merged together depend-
ing on the distance between their empirical con-
text distribution, which is calculated on local con-
texts. The following points explain each keyword:

• The empirical context distribution of a sub-
string w is simply a probability distribution
over all the contexts of w, where the prob-
ability for a context (l, r) is the number of
occurrences of lwr in the sample divided by
the number of occurrences of w. This is ex-
tended to congruence classes by treating each
substring in the class as one substring (i.e. the
sum of occurrences of lwir, for all wi in the
class, divided by the sum of occurrences of
all wi).

• Due to the problem of sparsity with contexts
(in any reasonably sized corpus of natural
language, very few phrases will have more
than one occurrence of the same context),
only local contexts are considered. The lo-
cal contexts of w are the pairs of first k sym-
bols (or words for natural language) preced-
ing and following w. The lower k is, the less
sparsity is a problem, but the empirical con-
text distribution is less accurate. For natural
language corpora, k is normally set to 1 or 2.

• A frequent congruence class is one whose
substring occurrences in the sample add up
to more than a pre-defined threshold n. In-
frequent congruence classes are ignored due
to their unreliable empirical context dis-
tribution. However, as more merges are
made, more substrings are added to infre-
quent classes, thus increasing their frequency
and eventually they might be considered as
frequent classes.

• A distance function dist between samples
of distributions over contexts is needed by
the algorithm to decide which is the closest
pair of congruence classes, so that they are
merged together. We used L1-Distance and
Pearson’s chi-squared test for experiments in
Sections 4.1 and 4.2 respectively.

• After each merge, other merges are logically
deduced so as to ensure that the relation re-
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mains a congruence1. In practice, the vast
majority of the merges undertaken are logi-
cally deduced ones. This clearly relieves the
algorithm from taking unnecessary decisions
(thus reducing the chance of erroneous de-
cisions). On the downside, one bad merge
can have a disastrous ripple effect. Thus, to
minimize as much as possible the chance of
this happening, every merge undertaken is the
best possible one at that point in time (w.r.t.
the distance function used). The same idea is
used in DFA learning (Lang et al., 1998).

This process is repeated until either 1) no pairs
of frequent congruence classes are left to merge
(line 5) or 2) the smallest distance between the
candidate pairs is bigger or equal to a pre-defined
threshold d and the number of congruence classes
containing strings from the sample is smaller or
equal to a pre-defined threshold i (line 9).

The first condition of point 2 ensures that con-
gruence classes which are sufficiently close to
each other are merged together. The second con-
dition of point 2 ensures that the hypothesized
congruence classes are generalized enough (i.e. to
avoid undergeneralization). For natural language
examples, one would expect that a considerable
number of sentences are grouped into the same
class because of their similar structure. Obviously,
one can make use of only one of these conditions
by assigning the other a parameter value which
makes it trivially true from the outset (0 for d and
|Subs| for i).

3.2 Building the Context-Free Grammar
Deciding which substrings are constituents (in our
case, this translates into choosing which congru-
ence classes correspond to non-terminals) is a
problematic issue and is considered a harder task
than the previous step (Klein, 2004). A path fol-
lowed by a number of authors consists in using an
Ockham’s razor or Minimal Description Length
principle approach (Stolcke, 1994; Clark, 2001;
Petasis et al., 2004). This generally leads to choos-
ing as best hypothesis the one which best com-
presses the data. Applying this principle in our
case would mean that the non-terminals should be

1for example, if a congruence class contains the phrases
”the big” and ”that small”, and another class contains ”dog
barked” and ”cat meowed”, it can be logically deduced that
the phrases ”the big dog barked”,”the big cat meowed”, ”that
small dog barked” and ”that small cat meowed” should be in
the same class.

assigned in such a way that the grammar built is
the smallest possible one (in terms of the number
of non-terminals and/or production rules) consis-
tent with the congruence classes. To our knowl-
edge, only local greedy search is used by systems
in the literature which try to follow this approach.

We propose a new method for tackling this
problem. We show that all the possible SC-CFGs
in CNF consistent with the congruence classes di-
rectly correspond to all the solutions of a boolean
formula built upon the congruence classes, where
the variables of this formula correspond to non-
terminals (and, with some minor adjustments, pro-
duction rules as well). Thus, finding the smallest
possible grammar directly translates into finding a
solution which has the smallest possible amount
of true variables. Finding a minimal solution for
this type of formula is a known NP-Hard problem
(Khanna et al., 2000). However, sophisticated lin-
ear programming solvers (Berkelaar et al., 2008)
can take care of this problem. For small examples
(e.g. all the examples in Table 1), these solvers
are able to find an exact solution in a few sec-
onds. Moreover, these solvers are capable of find-
ing good approximate solutions to larger formulas
containing a few million variables.

The formula contains one variable per congru-
ence class. All variables corresponding to congru-
ence classes containing strings from the sample
are assigned the value True (since there must be a
starting non-terminal that generates these strings).
All variables corresponding to congruence classes
containing symbols from Σ are assigned the value
True (since for every a ∈ Σ, there must be a rule
A → a). Finally, and most importantly, for every
congruence class [w] and for every string w in [w]
(|w| = n), the following conditional statement is
added to the formula:
v(w) ⇒ (v(w1,1) ∧ v(w2,n)) ∨ (v(w1,2) ∧

v(w3,n)) ∨ . . . ∨ (v(w1,n−1) ∧ v(wn,n))
where v(x) is the variable corresponding to the
congruence class [x] and wi,j is the substring of w
from the ith to the jth symbol ofw. This statement
is representing the fact that if a congruence class
[w] is chosen as a non-terminal then for each string
in w ∈ [w], there must be at least one CNF rule
A → BC that generates w and thus there must
be at least one division of w into w1,kwk+1,n such
that B corresponds to [w1,k] and C corresponds to
[wk+1,n].

The grammar extracted from the solution of this
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formula is made up of all the possible CNF pro-
duction rules built from the chosen non-terminals.
The starting non-terminals are those which corre-
spond to congruence classes that contain at least
one string from the sample.

The following is a run of the whole process on
a simple example:

Sample {ab, aabb, aaabbb}
Congruence Classes
1 : [a], 2 : [b], 3 : [ab, aabb, aaabbb], 4 : [aa],
5 : [bb], 6 : [aab, aaabb], 7 : [abb, aabbb],
8 : [aaa], 9 : [bbb], 10 : [aaab], 11 : [abbb]

Boolean Formula
There is one conditional statement per sub-

string. For example,X6 ⇒ (X1∧X3)∨(X4∧
X2) represents the two possible ways aab in
congruence class 6 can be split (a|ab , aa|b).
Variables X1, X2 and X3 are true.
X3 ⇒ (X1 ∧X2)
X3 ⇒ (X1 ∧X7) ∨ (X4 ∧X5) ∨ (X6 ∧X2)
X3 ⇒ (X1∧X7)∨ (X4∧X11)∨ (X8∧X9)∨

(X10 ∧X5) ∨ (X6 ∧X2)
X4 ⇒ (X1 ∧X1)
X5 ⇒ (X2 ∧X2)
X6 ⇒ (X1 ∧X3) ∨ (X4 ∧X2)
X6 ⇒ (X1 ∧X3)∨ (X4 ∧X7)∨ (X8 ∧X5)∨

(X10 ∧X2)
X7 ⇒ (X1 ∧X5) ∨ (X3 ∧X2)
X7 ⇒ (X1∧X11)∨ (X4∧X9)∨ (X6∧X5)∨

(X3 ∧X2)
X8 ⇒ (X1 ∧X4) ∨ (X4 ∧X1)
X9 ⇒ (X2 ∧X5) ∨ (X5 ∧X2)
X10 ⇒ (X1 ∧X6)∨ (X4 ∧X3)∨ (X8 ∧X2)
X11 ⇒ (X1 ∧X9)∨ (X3 ∧X5)∨ (X7 ∧X2)

Solution
Running the solver on this formula will re-

turn the following true variables that make up
a minimal solution: X1, X2, X3 and X7.

Grammar
For every statement x⇒ . . .∨ (y∧ z)∨ . . .

where x,y and z are true, a production rule
x → yz is added. So, the following grammar
is built:

X3 is the starting non-terminal
X3 → X1X7 |X1X2 X7 → X3X2

X1 → a X2 → b

3.3 Analysis
In the first phase of the algorithm, we are group-
ing all the substrings of the sample S according to
the congruence relation∼=(L,φ), where (L, φ) is the
target stochastic language (for natural language,
this is the language model). To do so, we are as-
suming that S was i.i.d. generated from (L, φ).
In the second phase, we are representing the space
of all CFGs consistent with the classes obtained
in phase one as different solutions to a boolean
formula. Here we introduce our bias in favour of
smaller grammars by finding a minimal solution to
the formula. In the last phase, probabilities are as-
signed to the grammar obtained in phase two using
the standard MLE algorithm for PCFGs.

Unlike many other systems, in our case the hy-
pothesis space of grammars is well-defined. This
allows us to analyse our algorithm in a theoreti-
cal framework and obtain theoretical learnability
results. Moreover, this gives us an idea on the
types of syntactical features our system is capable
of learning.

Assuming our algorithm always takes correct
merge decisions, the sample required for identifi-
cation needs only to be structurally complete w.r.t.
the target grammar (i.e. every production rules is
used at least once in the generation of the sample).
This means that, in theory, our algorithm can work
with very small samples (polynomial size w.r.t. the
number of rules in the target grammar).

Some approaches in the literature assume that
whenever a particular substring is a constituent
in some sentence, then it is automatically a con-
stituent in all other sentences (whenever it does not
overlap with previously chosen constituents) (van
Zaanen, 2001; Clark, 2001; Adriaans et al., 2000).
In reality, this is clearly not the case. A simple
experiment on the WSJ10 corpus reveals that only
16 of the most frequent 1009 POS sequences (oc-
curring 10 or more times in the sample) which are
at least once constituents, are in fact always con-
stituents. This assumption does not hold for am-
biguous grammars in our class.

The approach we take to solve the smallest
grammar problem can be extended to other classes
of grammars. A similar formula can be built for
grammars whose non-terminals have a one-to-one
correspondence with congruence classes contain-
ing features of their language (Clark, 2010b).
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4 Experiments and Discussion

4.1 Experiments on Artificial Data
We tested our system on 11 typical context-free
languages and 9 artificial natural language gram-
mars taken from 4 different sources (Stolcke,
1994; Langley and Stromsten, 2000; Adriaans
et al., 2000; Solan et al., 2005). The 11 CFLs in-
clude 7 described by unambiguous grammars:

UC1: anbn UC2: anbncmdm UC3: anbm n ≥ m
UC4: apbq, p 6= q UC5: Palindromes over alpha-
bet {a, b}with a central marker UC6:Palindromes
over alphabet {a, b} without a central marker
UC7: Lukasiewicz language (S → aSS|b)
and 4 described by ambiguous grammars:

AC1: |w|a = |w|b AC2: 2|w|a = |w|b AC3: Dyck
language AC4: Regular expressions.

The 9 artificial natural language grammars are:

NL1: Grammar ’a’, Table 2 in (Langley and
Stromsten, 2000) NL2: Grammar ’b’, Table 2
in (Langley and Stromsten, 2000) NL3: Lexical
categories and constituency, pg 96 in (Stolcke,
1994) NL4:Recursive embedding of constituents,
pg 97 in (Stolcke, 1994) NL5: Agreement, pg
98 in (Stolcke, 1994) NL6: Singular/plural NPs
and number agreement, pg 99 in (Stolcke, 1994)
NL7: Experiment 3.1 grammar in (Adriaans et al.,
2000) NL8:Grammar in Table 10 (Adriaans et al.,
2000) NL9: TA1 grammar in (Solan et al., 2005).

The quality of the learned model depends on
its capacity to predict the correct structure (parse
trees) on the one hand and to predict the correct
sentence probabilities on the other (i.e. assigns
a probability distribution close to the target one).
To evaluate parse trees, we follow suggestions
given by van Zaanen and Geertzen (2008) and use
micro-precision and micro-recall over all the non-
trivial brackets. We take the harmonic mean of
these two values to obtain the Unlabelled brack-
ets F1 score (UF1). The learned distribution can
be evaluated using perplexity (when the target dis-
tribution is not known) or some similarity metric
between distributions (when the target distribution
is known). In our case, the target distribution is

Ex. |Σ| |N | |P |
UC1 2 3 4
UC2 4 7 9
UC3 2 3 5
UC4 2 5 9
UC5 2 3 5
UC6 2 3 8
UC7 2 2 3
AC1 2 4 9
AC2 2 5 11
AC3 2 3 5
AC4 7 8 13
NL1 9 8 15
NL2 8 8 13
NL3 12 10 18
NL4 13 11 22
NL5 16 12 23
NL6 19 17 32
NL7 12 3 9
NL8 30 10 35
NL9 50 45 81

Table 1: Size of the alphabet, number of non-
terminals and productions rules of the grammars.

Relative Entropy UF1

Ex. |S| COMINO ADIOS COMINO ABL
UC1 10 0.029 1.876 100 100
UC2 50 0.0 1.799 100 100
UC5 10 0.111 7.706 100 100
UC7 10 0.014 1.257 100 27.86
AC1 50 0.014 4.526 52.36 35.51
AC2 50 0.098 6.139 46.95 14.25
AC3 50 0.057 1.934 99.74 47.48
AC4 100 0.124 1.727 83.63 14.58
NL7 100 0.0 0.124 100 100
NL1 100 0.202 1.646 24.08 24.38
NL2 200 0.333 0.963 45.90 45.80
NL3 100 0.227 1.491 36.34 75.95
NL5 100 0.111 1.692 88.15 79.16
NL6 400 0.227 0.138 36.28 100
UC3 100 0.411 0.864 61.13 100
UC4 100 0.872 2.480 42.84 100
UC6 100 1.449 1.0 20.14 8.36
NL4 500 1.886 2.918 65.88 52.87
NL8 1000 1.496 1.531 57.77 50.04
NL9 800 1.701 1.227 12.49 28.53

Table 2: Relative Entropy and UF1 results of our
system COMINO vs ADIOS and ABL respec-
tively. Best results are highlighted, close results
(i.e. with a difference of at most 0.1 for relative
entropy and 1% for UF1) are both highlighted
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known. We chose relative entropy2 as a good mea-
sure of distance between distributions.

Our UF1 results over test sets of one thousand
strings were compared to results obtained by ABL
(van Zaanen, 2001), which is a system whose
primary aim is that of finding good parse trees
(rather than identifying the target language). Al-
though ABL does not obtain state-of-the-art re-
sults on natural language corpora, it proved to be
the best system (for which an implementation is
readily available) for unsupervised parsing of sen-
tences generated by artificial grammars. Results
are shown in Table 1.

We calculated the relative entropy on a test set
of one million strings generated from the target
grammar. We compared our results with ADIOS
(Solan et al., 2005), a system which obtains com-
petitive results on language modelling (Waterfall
et al., 2010) and whose primary aim is of correctly
identifying the target language (rather than finding
good parse trees). Results are shown in Table 1.

For the tests in the first section of Table 1 (i.e.
above the first dashed line), our algorithm was ca-
pable of exactly identifying the structure of the tar-
get grammar. Notwithstanding this, the bracketing
results for these tests did not always yield perfect
scores. This happened whenever the target gram-
mar was ambiguous, in which case the most prob-
able parse trees of the target and learned grammar
can be different, thus leading to incorrect bracket-
ing. For the tests in the second section of Table 1
(i.e. between the two dashed lines), our algorithm
was capable of exactly identifying the target lan-
guage (but not the grammar). In all of these cases,
the induced grammar was slightly smaller than the
target one. For the remaining tests, our algorithm
did not identify the target language. In fact, it al-
ways overgeneralised. The 3 typical CFLs UC3,
UC4 and UC6 are not identified because they are
not contained in our subclass of CFLs. Inspite of
this, the relative entropy results obtained are still
relatively good. Overall, it is fair to say that the
results obtained by our system, for both language
modelling and unsupervised parsing on artificial
data, are competitive with the results obtained by
other methods.

2The relative entropy (or Kullback-Leibler divergence)
between a target distribution D and a hypothesized distri-

bution D′ is defined as
∑
w∈Σ∗

ln
(
D(w)

D′(w)

)
D(w). Add-one

smoothing is used to solve the problem of zero probabilities.

4.2 Natural Language Experiments
We also experimented on natural language cor-
pora. For unsupervised parsing, we tested our
system on the WSJ10 corpus, using POS tagged
sentences as input. Due to time efficiency, we
changed the algorithm for finding congruence
classes. Instead of always choosing the best pos-
sible merge w.r.t. the distance function, a distance
threshold is set and all congruence classes whose
distance is smaller than the threshold are merged.
Also, we changed the distance function from L1-
Distance to Pearson’s χ2 test.

In a first experiment (vaguely similar to the one
done by Luque and López (2010)), we constructed
the best possible SC-CFG consistent with the
merges done in the first phase and assigned prob-
abilities to this grammar using Inside-Outside.
In other words, we ran the second phase of
our system in a supervised fashion by using the
treebank to decide which are the best congru-
ence classes to choose as non-terminals. The
CNF grammar we obtained from this experiment
(COMINO-UBOUND) gives very good parsing
results which outperform results from state-of-the-
art systems DMV+CCM (Klein, 2004), U-DOP
(Bod, 2006a), UML-DOP (Bod, 2006b) and In-
cremental (Seginer, 2007) as shown in Table 2.
Moreover, the results obtained are very close to
the best results one can ever hope to obtain from
any CNF grammar on WSJ10 (CNF-UBOUND)
(Klein, 2004). However, the grammar we obtain
does not generalise enough and does not describe a
good language model. In a second experiment, we
ran the complete COMINO system. The grammar
obtained from this experiment did not give com-
petitive parsing results.

The first experiment shows that the merge deci-
sions taken in the first phase do not hinder the pos-
sibility of finding a very good grammar for pars-
ing. This means that the merge decisions taken
by our system are good in general. Manual anal-
ysis on some of the merges taken confirms this.
This experiment also shows that there exists a non-
trivial PCFG in our restrictive class of grammars
that is capable of achieving very good parsing re-
sults. This is a positive sign for the question of
how adequate SC-PCFGs are for modelling natu-
ral languages. However, the real test remains that
of finding SC-PCFGs that generate good bracket-
ings and good language models. The second ex-
periment shows that the second phase of our al-
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Model UP UR UF1

State-of-the-art
DMV+CCM 69.3 88.0 77.6

U-DOP 70.8 88.2 78.5
UML-DOP - - 82.9
Incremental 75.6 76.2 75.9

Upper bounds
COMINO-UBOUND 75.8 96.9 85.1

CNF-UBOUND 78.8 100.0 88.1

Table 3: Parsing results on WSJ10. Note that In-
cremental is the only system listed as state-of-the-
art which parses from plain text and can generate
non-binary trees

gorithm is not giving good results. This means
that the smallest possible grammar might not be
the best grammar for parsing. Therefore, other cri-
teria alongside the grammar size are needed when
choosing a grammar consistent with the merges.

4.3 Discussion and Future Work
In order to improve our system, we think that our
algorithm has to take a less conservative merging
strategy in the first phase. Although the merges
being taken are mostly correct, our analysis shows
that not enough merging is being done. The prob-
lematic case is that of taking merge decisions on
(the many) infrequent long phrases. Although
many logically deduced merges involve infrequent
phrases and also help in increasing the frequency
of some long phrases, this proved to be not enough
to mitigate this problem. As for future work, we
think that clustering techniques can be used to help
solve this problem.

A problem faced by the system is that, in cer-
tain cases, the statistical evidence on which merge
decisions are taken does not point to the intuitively
expected merges. As an example, consider the two
POS sequences ”DT NN” and ”DT JJ NN” in the
WSJ corpus. Any linguist would agree that these
sequences are substitutable (in fact, they have lots
of local contexts in common). However, statisti-
cal evidence points otherwise, since their context
distributions are not close enough. This happens
because, in certain positions of a sentence, ”DT
NN” is far more likely to occur than ”DT JJ NN”
(w.r.t. the ratio of their total frequencies) and in
other positions, ”DT JJ NN” occurs more than ex-
pected. The following table shows the frequencies
of these two POS sequences over the whole WSJ

corpus and their frequencies in contexts (#,VBD)
and (IN,#) (the symbol # represents the end or
beginning of a sentence):

Totals (#,VBD) (IN,#)
”DT NN” 42,222 1,034 2,123

”DT JJ NN” 15,243 152 1,119
Ratios 3.16 6.80 1.90

It is clear that the ratios do not match, thus lead-
ing to context distributions which are not close
enough. Thus, this shows that basic sequences
such as ”DT NN” and ”DT JJ NN”, which lin-
guists would group into the same concept NP, are
statistically derived from different sub-concepts of
NP. Our algorithm is finding these sub-concepts,
but it is being evaluated on concepts (such as NP)
found in the treebank (created by linguists).

From the experiments we did on artificial nat-
ural language grammars, it resulted that the tar-
get grammar was always slightly bigger than the
learned grammar. Although in these cases we still
managed to identify the target language or have
a good relative entropy result, the bracketing re-
sults were in general not good. This and our sec-
ond experiment on the WSJ10 corpus show that
the smallest possible grammar might not be the
best grammar for bracketing. To not rely solely on
finding the smallest grammar, a bias can be added
in favour of congruence classes which, according
to constituency tests (like the Mutual Information
criterion in Clark (2001)), are more likely to con-
tain substrings that are constituents. This can be
done by giving different weights to the congruence
class variables in the formula and finding the so-
lution with the smallest sum of weights of its true
variables.

The use of POS tags as input can also have its
problems. Although we solve the lexical spar-
sity problem with POS tags, at the same time we
lose a lot of information. In certain cases, one
POS sequence can include raw phrases which ide-
ally are not grouped into the same congruence
class. To mitigate this problem, we can use POS
tags only for rare words and subdivide or ignore
POS tags for frequent words such as determinants
and prepositions. This will reduce the number of
raw phrases represented by POS sequences whilst
keeping lexical sparsity low.
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5 Conclusion

We defined a new class of PCFGs that adequately
models natural language syntax. We described a
learning algorithm for this class which scales well
to large examples and is even capable of learning
from small samples. The grammars induced by
this algorithm are compact and perform well on
unsupervised parsing and language modelling of
typical CFLs and artificial natural language gram-
mars.
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Abstract

A common approach in text mining tasks
such as text categorization, authorship
identification or plagiarism detection is to
rely on features like words, part-of-speech
tags, stems, or some other high-level lin-
guistic features. In this work, an approach
that uses character n-grams as features is
proposed for the task of native language
identification. Instead of doing standard
feature selection, the proposed approach
combines several string kernels using mul-
tiple kernel learning. Kernel Ridge Re-
gression and Kernel Discriminant Analy-
sis are independently used in the learning
stage. The empirical results obtained in all
the experiments conducted in this work in-
dicate that the proposed approach achieves
state of the art performance in native lan-
guage identification, reaching an accuracy
that is 1.7% above the top scoring system
of the 2013 NLI Shared Task. Further-
more, the proposed approach has an im-
portant advantage in that it is language in-
dependent and linguistic theory neutral. In
the cross-corpus experiment, the proposed
approach shows that it can also be topic
independent, improving the state of the art
system by 32.3%.

1 Introduction

Using words as basic units is natural in textual
analysis tasks such as text categorization, author-
ship identification or plagiarism detection. Per-
haps surprisingly, recent results indicate that meth-
ods handling the text at the character level can
also be very effective (Lodhi et al., 2002; Sander-
son and Guenter, 2006; Popescu and Dinu, 2007;

Grozea et al., 2009; Popescu, 2011; Popescu and
Grozea, 2012). By disregarding features of natu-
ral language such as words, phrases, or meaning,
an approach that works at the character level has
an important advantage in that it is language inde-
pendent and linguistic theory neutral. This paper
presents a state of the art machine learning system
for native language identification that works at the
character level. The proposed system is inspired
by the system of Popescu and Ionescu (2013), but
includes some variations and improvements. A
major improvement is that several string kernels
are combined via multiple kernel learning (Shawe-
Taylor and Cristianini, 2004). Despite the fact that
the (histogram) intersection kernel is very popular
in computer vision (Maji et al., 2008; Vedaldi and
Zisserman, 2010), it has never been used before in
text mining. In this work, the intersection kernel is
used for the first time in a text categorization task,
alone and in combination with other kernels. The
intersection kernel lies somewhere in the middle
between the kernel that takes into account only the
presence of n-grams and the kernel based on the
frequency of n-grams (p-spectrum string kernel).

Two kernel classifiers are proposed for the
learning task, namely Kernel Ridge Regression
(KRR) and Kernel Discriminant Analysis (KDA).
The KDA classifier is able to avoid the class-
masking problem (Hastie and Tibshirani, 2003),
which may often arise in the context of native
language identification. Several experiments are
conducted to evaluate the performance of the ap-
proach proposed in this work. While multiple ker-
nel learning seems to produce a more robust sys-
tem, the two kernel classifiers obtained mixed re-
sults in the experiments. Overall, the empirical re-
sults indicate that the approach proposed in this
paper achieves state of the art performance in na-
tive language identification, while being both lan-
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guage independent and linguistic theory neutral.
Furthermore, the approach based on string kernels
does not need any expert knowledge of words or
phrases in the language.

The paper is organized as follows. Related
work is presented in Section 2. Section 3 presents
several similarity measures for strings, including
string kernels and Local Rank Distance. The
learning methods used in the experiments are de-
scribed in Section 4. Section 5 presents details
about the experiments. Finally, the conclusions are
drawn in Section 6.

2 Related Work

2.1 Native Language Identification

The goal of automatic native language identifica-
tion (NLI) is to determine the native language of
a language learner, based on a piece of writing in
a foreign language. This can provide useful in-
formation in forensic linguistic tasks (Estival et
al., 2007) or could be used in an educational set-
ting to provide contrastive feedback to language
learners. Most research has focused on identify-
ing the native language of English language learn-
ers, though there have been some efforts recently
to identify the native language of writing in other
languages (Malmasi and Dras, 2014).

In general most approaches to NLI have used
multi-way classification with SVMs or similar
models along with a range of linguistic features.
The seminal paper by Koppel et al. (2005) intro-
duced some of the best-performing features: char-
acter, word and part-of-speech n-grams along with
features inspired by the work in the area of second-
language acquisition such as spelling and gram-
matical errors. In 2013, Tetreault et al. (2013) or-
ganized the first shared task in the field. This al-
lowed researchers to compare approaches for the
first time on a specifically designed NLI corpus
that was much larger than previously available
data sets. In the shared task, 29 teams submit-
ted results for the test set, and one of the most
successful aspects of the competition was that it
drew submissions from teams working in a variety
of research fields. The submitted systems utilized
a wide range of machine learning approaches,
combined with several innovative feature contri-
butions. The best performing system achieved an
overall accuracy of 83.6% on the 11-way classifi-
cation of the test set, although there was no signif-
icant difference between the top teams.

2.2 Methods that Work at the Character
Level

In recent years, methods of handling text at
the character level have demonstrated impres-
sive performance levels in various text analy-
sis tasks (Lodhi et al., 2002; Sanderson and
Guenter, 2006; Popescu and Dinu, 2007; Grozea
et al., 2009; Popescu, 2011; Popescu and Grozea,
2012). Lodhi et al. (2002) used string kernels
for document categorization with very good re-
sults. String kernels were also successfully used in
authorship identification (Sanderson and Guenter,
2006; Popescu and Dinu, 2007; Popescu and
Grozea, 2012). For example, the system described
in (Popescu and Grozea, 2012) ranked first in most
problems and overall in the PAN 2012 Traditional
Authorship Attribution tasks.

Using string kernels makes the corresponding
learning method completely language indepen-
dent, because the texts will be treated as sequences
of symbols (strings). Methods working at the
word level or above very often restrict their feature
space according to theoretical or empirical princi-
ples. For instance, they select only features that re-
flect various types of spelling errors or only some
type of words, such as function words. These fea-
tures prove to be very effective for specific tasks,
but it is possible that other good features also ex-
ist. String kernels embed the texts in a very large
feature space, given by all the substrings of length
p, and leave it to the learning algorithm to select
important features for the specific task, by highly
weighting these features. It is important to note
that this approach is also linguistic theory neutral,
since it disregards any features of natural language
such as words, phrases, or meaning. On the other
hand, a method that considers words as features
cannot be completely language independent, since
the definition of a word is necessarily language-
specific. For example, a method that uses only
function words as features is not completely lan-
guage independent because it needs a list of func-
tion words which is specific to a language. When
features such as part-of-speech tags are used, as
in the work of Jarvis et al. (2013), the method re-
lies on a part-of-speech tagger which might not be
available (yet) for some languages. Furthermore,
a way to segment a text into words is not an easy
task for some languages, such as Chinese.

Character n-grams are used by some of the sys-
tems developed for native language identification.

1364



In work where feature ablation results have been
reported, the performance with only character n-
gram features was modest compared to other types
of features (Tetreault et al., 2012). Initially, most
work limited the character features to unigrams,
bigrams and trigrams, perhaps because longer n-
grams were considered too expensive to compute
or unlikely to improve performance. However,
some of the top systems in the 2013 NLI Shared
Task were based on longer character n-grams,
up to 9-grams (Jarvis et al., 2013; Popescu and
Ionescu, 2013). The results presented in this work
are obtained using a range of 5–8 n-grams. Com-
bining all 5–8 n-grams would generate millions
of features, which are indeed expensive to com-
pute and represent. The key to avoiding the com-
putation of such a large number of features lies
in using the dual representation provided by the
string kernel. String kernel similarity matrices can
be computed much faster and are extremely useful
when the number of samples is much lower than
the number of features.

3 Similarity Measures for Strings

3.1 String Kernels
The kernel function gives kernel methods the
power to naturally handle input data that is not
in the form of numerical vectors, e.g. strings.
The kernel function captures the intuitive notion
of similarity between objects in a specific domain
and can be any function defined on the respec-
tive domain that is symmetric and positive definite.
For strings, many such kernel functions exist with
various applications in computational biology and
computational linguistics (Shawe-Taylor and Cris-
tianini, 2004).

Perhaps one of the most natural ways to mea-
sure the similarity of two strings is to count how
many substrings of length p the two strings have
in common. This gives rise to the p-spectrum ker-
nel. Formally, for two strings over an alphabet Σ,
s, t ∈ Σ∗, the p-spectrum kernel is defined as:

kp(s, t) =
∑
v∈Σp

numv(s) · numv(t),

where numv(s) is the number of occurrences of
string v as a substring in s.1 The feature map de-

1Note that the notion of substring requires contiguity.
Shawe-Taylor and Cristianini (2004) discuss the ambiguity
between the terms substring and subsequence across differ-
ent domains: biology, computer science.

fined by this kernel associates a vector of dimen-
sion |Σ|p containing the histogram of frequencies
of all its substrings of length p (p-grams) with each
string.

A variant of this kernel can be obtained if the
embedding feature map is modified to associate a
vector of dimension |Σ|p containing the presence
bits (instead of frequencies) of all its substrings of
length p with each string. Thus, the character p-
grams presence bits kernel is obtained:

k0/1
p (s, t) =

∑
v∈Σp

inv(s) · inv(t),

where inv(s) is 1 if string v occurs as a substring
in s, and 0 otherwise.

In computer vision, the (histogram) intersec-
tion kernel has successfully been used for object
class recognition from images (Maji et al., 2008;
Vedaldi and Zisserman, 2010). In this paper, the
intersection kernel is used for the first time as a
kernel for strings. The intersection string kernel is
defined as follows:

k∩p (s, t) =
∑
v∈Σp

min{numv(s), numv(t)},

where numv(s) is the number of occurrences of
string v as a substring in s.

For the p-spectrum kernel, the frequency of a p-
gram has a very significant contribution to the ker-
nel, since it considers the product of such frequen-
cies. On the other hand, the frequency of a p-gram
is completely disregarded in the p-grams presence
bits kernel. The intersection kernel lies some-
where in the middle between the p-grams presence
bits kernel and p-spectrum kernel, in the sense that
the frequency of a p-gram has a moderate contri-
bution to the intersection kernel. More precisely,
the following inequality that describes the relation
between the three kernels holds:

k0/1
p (s, t) ≤ k∩p (s, t) ≤ kp(s, t).

What is actually more interesting is that the inter-
section kernel assigns a high score to a p-gram if it
has a high frequency in both strings, since it con-
siders the minimum of the two frequencies. The
p-spectrum kernel assigns a high score even when
the p-gram has a high frequency in only one of
the two strings. Thus, the intersection kernel cap-
tures something about the correlation between the
p-gram frequencies in the two strings, which may
lead to a more sensitive similarity between strings.
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Normalized versions of these kernels ensure a
fair comparison of strings of different lengths:

k̂p(s, t) =
kp(s, t)√

kp(s, s) · kp(t, t)
,

k̂0/1
p (s, t) =

k
0/1
p (s, t)√

k
0/1
p (s, s) · k0/1

p (t, t)
,

k̂∩p (s, t) =
k∩p (s, t)√

k∩p (s, s) · k∩p (t, t)
.

Taking into account p-grams of different length
and summing up the corresponding kernels, new
kernels, termed blended spectrum kernels, can be
obtained.

The string kernel implicitly embeds the texts
in a high dimensional feature space. Then, a
kernel-based learning algorithm implicitly assigns
a weight to each feature, thus selecting the fea-
tures that are important for the discrimination task.
For example, in the case of text categorization
the learning algorithm enhances the features rep-
resenting stems of content words (Lodhi et al.,
2002), while in the case of authorship identifica-
tion the same learning algorithm enhances the fea-
tures representing function words (Popescu and
Dinu, 2007).

3.2 Local Rank Distance
A recently introduced distance measure, termed
Local Rank Distance (Ionescu, 2013), comes from
the idea of better adapting rank distance (Dinu,
2003) to string data, in order to capture a bet-
ter similarity between strings, such as DNA se-
quences or text. Local Rank Distance (LRD) has
already shown promising results in computational
biology (Ionescu, 2013) and native language iden-
tification (Popescu and Ionescu, 2013).

In order to describe LRD, the following nota-
tions are defined. Given a string x over an al-
phabet Σ, and a character a ∈ Σ, the length of
x is denoted by |x|. Strings are considered to
be indexed starting from position 1, that is x =
x[1]x[2] · · ·x[|x|]. Moreover, x[i : j] denotes its
substring x[i]x[i+ 1] · · ·x[j − 1].

Local Rank Distance is inspired by rank dis-
tance (Dinu, 2003), the main differences being
that it uses p-grams instead of single charac-
ters, and that it matches each p-gram in the first
string with the nearest equal p-gram in the second
string. Given a fixed integer p ≥ 1, a thresh-
old m ≥ 1, and two strings x and y over Σ,

the Local Rank Distance between x and y, de-
noted by ∆LRD(x, y), is defined through the fol-
lowing algorithmic process. For each position i in
x (1 ≤ i ≤ |x|−p+1), the algorithm searches for
that position j in y (1 ≤ j ≤ |y|− p+ 1) such that
x[i : i+p] = y[j : j+p] and |i− j| is minimized.
If j exists and |i − j| < m, then the offset |i − j|
is added to the Local Rank Distance. Otherwise,
the maximal offset m is added to the Local Rank
Distance. An important remark is that LRD does
not impose any mathematically developed global
constraints, such as matching the i-th occurrence
of a p-gram in x with the i-th occurrence of that
same p-gram in y. Instead, it is focused on the lo-
cal phenomenon, and tries to pair equal p-grams at
a minimum offset. To ensure that LRD is a (sym-
metric) distance function, the algorithm also has
to sum up the offsets obtained from the above pro-
cess by exchanging x and y. LRD can be formally
defined as follows.

Definition 1 Let x, y ∈ Σ∗ be two strings, and let
p ≥ 1 and m ≥ 1 be two fixed integer values. The
Local Rank Distance between x and y is defined
as:

∆LRD(x, y) = ∆left(x, y) + ∆right(x, y),

where ∆left(x, y) and ∆right(x, y) are defined as
follows:

∆left(x, y) =
|x|−p+1∑
i=1

min{|i− j| such that

1 ≤ j ≤ |y| − p+ 1 and

x[i : i+ p] = y[j : j + p]} ∪ {m},

∆right(x, y) =
|y|−p+1∑
j=1

min{|j − i| such that

1 ≤ i ≤ |x| − p+ 1 and

y[j : j + p] = x[i : i+ p]} ∪ {m}.
Interestingly, the search for matching p-grams is

limited within a window of fixed size. The size of
this window is determined by the maximum offset
parameter m. This parameter must be set a priori
and should be proportional to the size of the alpha-
bet, the p-grams, and to the lengths of the strings.

The following example offers a better under-
standing of how LRD actually works. LRD is
computed between two strings using 2-grams.

Example 1 Given two strings x = abcaa and
y = cabca, a fixed maximal offset m = 3, and
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a fixed size of p-grams p = 2, ∆left and ∆right

are computed as follows:

∆left(x, y) = |1− 2|+ |2− 3|
+ |3− 4|+ 3 = 6,

∆right(x, y) = |1− 3|+ |2− 1|
+ |3− 2|+ |4− 3| = 5.

By summing up the two partial sums, Local Rank
Distance is obtained

∆LRD(x, y) = ∆left(x, y) + ∆right(x, y) = 11.

The maximum LRD value between two strings
can be computed as the product between the max-
imum offset m and the number of pairs of com-
pared p-grams. Thus, LRD can be normalized
to a value in the [0, 1] interval. By normalizing,
LRD becomes a dissimilarity measure. LRD can
be also used as a kernel, since kernel methods are
based on similarity. The classical way to transform
a distance or dissimilarity measure into a simi-
larity measure is by using the Gaussian-like ker-
nel (Shawe-Taylor and Cristianini, 2004):

k̂LRDp (s, t) = e
−∆LRD(s, t)

2σ2
,

where s and t are two strings and p is the p-grams
length. The parameter σ is usually chosen so that
values of k̂(s, t) are well scaled. In the above
equation, ∆LRD is already normalized to a value
in the [0, 1] interval to ensure a fair comparison of
strings of different length.

4 Learning Methods

Kernel-based learning algorithms work by embed-
ding the data into a Hilbert feature space, and
searching for linear relations in that space. The
embedding is performed implicitly, that is by spec-
ifying the inner product between each pair of
points rather than by giving their coordinates ex-
plicitly. More precisely, a kernel matrix that con-
tains the pairwise similarities between every pair
of training samples is used in the learning stage
to assign a vector of weights to the training sam-
ples. Let α denote this weight vector. In the test
stage, the pairwise similarities between a test sam-
ple x and all the training samples are computed.
Then, the following binary classification function
assigns a positive or a negative label to the test

sample:

g(x) =
n∑
i=1

αi · k(x, xi),

where x is the test sample, n is the number of
training samples, X = {x1, x2, ..., xn} is the set
of training samples, k is a kernel function, and αi
is the weight assigned to the training sample xi.
In the primal form, the same binary classification
function can be expressed as:

g(x) = 〈w, x〉,

where 〈·, ·〉 denotes the scalar product, x ∈ Rm is
the test sample represented as a vector of features,
and w ∈ Rm is a vector of feature weights that can
be computed as follows:

w =
n∑
i=1

αi · xi,

given that the kernel function k can be expressed
as a scalar product between samples.

The advantage of using the dual representation
induced by the kernel function becomes clear if
the dimension of the feature space m is taken
into consideration. Since string kernels are based
on character n-grams, the feature space is indeed
very high. For instance, using 5-grams based only
on the 26 letters of the English alphabet will re-
sult in a feature space of 265 = 11, 881, 376 fea-
tures. However, in the experiments presented in
this work the feature space includes 5-grams along
with 6-grams, 7-grams and 8-grams. As long as
the number of samples n is not greater than the
number of features m, it is more efficient to use
the dual representation given by the kernel matrix.
This fact is also known as the kernel trick (Shawe-
Taylor and Cristianini, 2004).

Various kernel methods differ in the way they
learn to separate the samples. In the case of binary
classification problems, kernel-based learning al-
gorithms look for a discriminant function, a func-
tion that assigns +1 to examples belonging to one
class and −1 to examples belonging to the other
class. For the NLI experiments, two binary kernel
classifiers are used, namely the SVM (Cortes and
Vapnik, 1995), and the KRR. Support Vector Ma-
chines try to find the vector of weights that defines
the hyperplane that maximally separates the im-
ages in the Hilbert space of the training examples
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belonging to the two classes. Kernel Ridge Re-
gression selects the vector of weights that simulta-
neously has small empirical error and small norm
in the Reproducing Kernel Hilbert Space gener-
ated by the kernel function. More details about
SVM and KRR can be found in (Shawe-Taylor and
Cristianini, 2004). The important fact is that the
above optimization problems are solved in such a
way that the coordinates of the embedded points
are not needed, only their pairwise inner products
which in turn are given by the kernel function.

SVM and KRR produce binary classifiers, but
native language identification is usually a multi-
class classification problem. There are many ap-
proaches for combining binary classifiers to solve
multi-class problems. Typically, the multi-class
problem is broken down into multiple binary clas-
sification problems using common decomposing
schemes such as: one-versus-all and one-versus-
one. There are also kernel methods that take the
multi-class nature of the problem directly into ac-
count, e.g. Kernel Discriminant Analysis. The
KDA classifier is able to improve accuracy by
avoiding the masking problem (Hastie and Tib-
shirani, 2003). In the case of multi-class native
language identification, the masking problem may
appear when non-native English speakers have ac-
quired, as the second language, a different lan-
guage to English. For example, an essay written in
English produced by a French native speaker that
is also proficient in German, could be identified as
either French or German.

5 Experiments

5.1 Data Sets Description
In this paper, experiments are carried out on three
datasets: a modified version of the ICLEv2 cor-
pus (Granger et al., 2009), the ETS Corpus of
Non-Native Written English, or TOEFL11 (Blan-
chard et al., 2013), and the TOEFL11-Big corpus
as used by Tetreault et al. (2012). A summary of
the corpora is given in Table 1.

Corpus Languages Documents
ICLE 7 770
TOEFL11 11 12, 100
TOEFL11-Big 11 87, 502

Table 1: Summary of corpora used in the experi-
ments.

The ICLEv2 is a corpus of essays written by

highly-proficient non-native college-level students
of English. For many years this was the standard
corpus used in the task of native language identi-
fication. However, the corpus was originally col-
lected for the purpose of corpus linguistic inves-
tigations, and because of this contains some id-
iosyncrasies that make it problematic for the task
of NLI (Brooke and Hirst, 2012). Therefore, a
modified version of the corpus that has been nor-
malized as much as possible for topic and charac-
ter encoding (Tetreault et al., 2012) is used. This
version of the corpus contains 110 essays each for
7 native languages: Bulgarian, Chinese, Czech,
French, Japanese, Russian and Spanish.

The ETS Corpus of Non-Native Written English
(TOEFL11) was first introduced by Tetreault et al.
(2012) and extended for the 2013 Native Language
Identification Shared Task (Tetreault et al., 2013).
It was designed to overcome many of the short-
comings identified with using the ICLEv2 corpus
for this task. The TOEFL11 corpus contains a
balanced distribution of essays per prompt (topic)
per native language. It also contains information
about the language proficiency of each writer. The
corpus contains essays written by speakers of the
following 11 languages: Arabic, Chinese, French,
German, Hindi, Italian, Japanese, Korean, Span-
ish, Telugu and Turkish. For the shared task, the
12, 100 essays were split into 9, 900 for training,
1, 100 for development and 1, 100 for testing.

Tetreault et al. (2012) present a corpus,
TOEFL11-Big, to investigate the performance of
their NLI system on a very large data set. This
data set contains the same languages as TOEFL11,
but with no overlap in content. It contains a total
of over 87 thousand essays written to a total of
76 different prompts. The distribution of L1 per
prompt is not as even as for TOEFL11, though all
topics are represented for all L1s.

5.2 Parameter Tuning and Implementation
Choices

In the string kernels approach proposed in this
work, documents or essays from this corpus are
treated as strings. Therefore, the notions of string
or document is used interchangeably throughout
this work. Because the approach works at the char-
acter level, there is no need to split the texts into
words, or to do any NLP-specific preprocessing.
The only editing done to the texts was the replac-
ing of sequences of consecutive space characters

1368



(space, tab, new line, and so on) with a single
space character. This normalization was needed in
order to prevent the artificial increase or decrease
of the similarity between texts, as a result of differ-
ent spacing. All uppercase letters were converted
to the corresponding lowercase ones.

A series of preliminary experiments were con-
ducted in order to select the best-performing learn-
ing method. In these experiments the string ker-
nel was fixed to the p-spectrum normalized ker-
nel of length 5 (k̂5), because the goal was to se-
lect the best learning method, and not to find the
best kernel. The following learning methods were
evaluated: one-versus-one SVM, one-versus-all
SVM, one-versus-one KRR, one-versus-all KRR,
and KDA. A 10-fold cross-validation procedure
was carried out on the TOEFL11 training set to
evaluate the classifiers. The preliminary results in-
dicate that the one-versus-all KRR and the KDA
classifiers produce the best results. Therefore,
they are selected for the remaining experiments.

Another set of preliminary experiments were
performed to determine the range of n-grams that
gives the most accurate results on a 10-fold cross-
validation procedure carried out on the TOEFL11
training set. All the n-grams in the range 2-10
were evaluated. Furthermore, experiments with
different blended kernels were conducted to see
whether combining n-grams of different lengths
could improve the accuracy. The best results were
obtained when all the n-grams with the length in
the range 5-8 were used. Other authors (Bykh
and Meurers, 2012; Popescu and Ionescu, 2013)
also report better results by using n-grams with
the length in a range, rather than using n-grams
of fixed length. Consequently, the results reported
in this work are based on blended string kernels
based on 5-8 n-grams.

Some preliminary experiments were also per-
formed to establish the type of kernel to be used,
namely the blended p-spectrum kernel (k̂5−8), the
blended p-grams presence bits kernel (k̂0/1

5−8), the
blended p-grams intersection kernel (k̂∩5−8), or the
kernel based on LRD (k̂LRD5−8 .). These different
kernel representations are obtained from the same
data. The idea of combining all these kernels is
natural when one wants to improve the perfor-
mance of a classifier. When multiple kernels are
combined, the features are actually embedded in
a higher-dimensional space. As a consequence,
the search space of linear patterns grows, which

helps the classifier to select a better discriminant
function. The most natural way of combining two
kernels is to sum them up. Summing up kernels
or kernel matrices is equivalent to feature vector
concatenation. Another option is to combine ker-
nels by kernel alignment (Cristianini et al., 2001).
Instead of simply summing kernels, kernel align-
ment assigns weights for each of the two kernels
based on how well they are aligned with the ideal
kernel Y Y ′ obtained from training labels. The ker-
nels were evaluated alone and in various combina-
tions. The best kernels are the blended p-grams
presence bits kernel and the blended p-grams in-
tersection kernel. The best kernel combinations
include the blended p-grams presence bits kernel,
the blended p-grams intersection kernel and the
kernel based on LRD. Since the kernel based on
LRD is slightly slower than the other string ker-
nels, the kernel combinations that include it were
only evaluated on the TOEFL11 corpus and on the
ICLE corpus.

5.3 Experiment on TOEFL11 Corpus

This section describes the results on the TOEFL11
corpus. Thus, results for the 2013 Closed NLI
Shared Task are also included. In the closed shared
task the goal is to predict the native language of
testing examples, restricted to learning only from
the training and the development data. The ad-
ditional information from prompts or the English
language proficiency level were not used in the
proposed approach.

The regularization parameters were tuned on the
development set. In this case, the systems were
trained on the entire training set. A 10-fold cross-
validation (CV) procedure was done on the train-
ing and the development sets. The folds were pro-
vided along with the TOEFL11 corpus. Finally,
the results of the proposed systems are also re-
ported on the NLI Shared Task test set. For test-
ing, the systems were trained on both the training
set and the development set. The results are sum-
marized in Table 2.

The results presented in Table 2 show that string
kernels can reach state of the art accuracy levels
for this task. Overall, it seems that KDA is able
to obtain better results than KRR. The intersection
kernel alone is able to obtain slightly better results
than the presence bits kernel. The kernel based on
LRD gives significantly lower accuracy rates, but
it is able to improve the performance when it is
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Method Development 10-fold CV Test
Ensemble model (Tetreault et al., 2012) - 80.9% -
KRR and string kernels (Popescu and Ionescu, 2013) - 82.6% 82.7%
SVM and word features (Jarvis et al., 2013) - 84.5% 83.6%

KRR and k̂0/1
5−8 85.4% 82.5% 82.0%

KRR and k̂∩5−8 84.9% 82.2% 82.6%

KRR and k̂LRD5−8 78.7% 77.1% 77.5%

KRR and k̂0/1
5−8 + k̂LRD5−8 85.7% 82.6% 82.7%

KRR and k̂∩5−8 + k̂LRD5−8 84.9% 82.2% 82.0%

KRR and k̂0/1
5−8 + k̂∩5−8 85.5% 82.6% 82.5%

KRR and a1k̂
0/1
5−8 + a2k̂

∩
5−8 85.5% 82.6% 82.5%

KDA and k̂0/1
5−8 86.2% 83.6% 83.6%

KDA and k̂∩5−8 85.2% 83.5% 84.6%

KDA and k̂LRD5−8 79.7% 78.5% 79.2%

KDA and k̂0/1
5−8 + k̂LRD5−8 87.1% 84.0% 84.7%

KDA and k̂∩5−8 + k̂LRD5−8 85.8% 83.4% 83.9%

KDA and k̂0/1
5−8 + k̂∩5−8 86.4% 84.1% 85.0%

KDA and a1k̂
0/1
5−8 + a2k̂

∩
5−8 86.5% 84.1% 85.3%

KDA and k̂0/1
5−8 + k̂∩5−8 + k̂LRD5−8 87.0% 84.1% 84.8%

Table 2: Accuracy rates on TOEFL11 corpus of various classification systems based on string kernels
compared with other state of the art approaches. The best accuracy rates on each set of experiments are
highlighted in bold. The weights a1 and a2 from the weighted sums of kernels are computed by kernel
alignment.

combined with the blended p-grams presence bits
kernel. In fact, most of the kernel combinations
give better results than each of their components.
The best kernel combination is that of the pres-
ence bits kernel and the intersection kernel. Re-
sults are quite similar when they are combined ei-
ther by summing them up or by kernel alignment.
The best performance on the test set (85.3%) is ob-
tained by the system that combines these two ker-
nels via kernel alignment and learns using KDA.
This system is 1.7% better than the state of the art
system of Jarvis et al. (2013) based on SVM and
word features, this being the top scoring system in
the NLI 2013 Shared Task. It is also 2.6% better
than the state of the art system based on string ker-
nels of Popescu and Ionescu (2013). On the cross
validation procedure, there are three systems that
reach the accuracy rate of 84.1%. All of them are
based on KDA and various kernel combinations.
The greatest accuracy rate of 84.1% reported for
the cross validation procedure is 3.2% above the
state of the art system of Tetreault et al. (2012) and
0.4% below the top scoring system of Jarvis et al.
(2013). The empirical results obtained in this ex-
periment demonstrate that the approach proposed
in this paper can reach state of the art accuracy
levels. It is worth mentioning that a significance
test performed by the organizers of the NLI 2013
Shared Task showed that the top systems that par-

ticipated in the competition are not essentially dif-
ferent. Further experiments on the ICLE corpus
and on the TOEFL11-Big corpus are conducted to
determine whether the approach proposed in this
paper is significantly better than other state of the
art approaches.

5.4 Experiment on ICLE Corpus

The results on the ICLE corpus using a 5-fold
cross validation procedure are summarized in Ta-
ble 3. To adequately compare the results with a
state of the art system, the same 5-fold cross val-
idation procedure used by Tetreault et al. (2012)
was also used in this experiment. Table 3 shows
that the results obtained by the presence bits kernel
and by the intersection kernel are systematically
better than the state of the art system of Tetreault
et al. (2012). While both KRR and KDA produce
accuracy rates that are better than the state of the
art accuracy rate, it seems that KRR is slightly bet-
ter in this experiment. Again, the idea of com-
bining kernels seems to produce more robust sys-
tems. The best systems are based on combin-
ing the presence bits kernel either with the kernel
based on LRD or the intersection kernel. Over-
all, the reported accuracy rates are higher than the
state of the art accuracy rate. The best perfor-
mance (91.3%) is achieved by the KRR classifier
based on combining the presence bits kernel with
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Method 5-fold CV
Ensemble model (Tetreault et al., 2012) 90.1%

KRR and k̂0/1
5−8 91.2%

KRR and k̂∩5−8 90.5%

KRR and k̂LRD5−8 81.8%

KRR and k̂0/1
5−8 + k̂LRD5−8 91.3%

KRR and k̂∩5−8 + k̂LRD5−8 90.1%

KRR and k̂0/1
5−8 + k̂∩5−8 90.9%

KRR and k̂0/1
5−8 + k̂∩5−8 + k̂LRD5−8 90.6%

KDA and k̂0/1
5−8 90.5%

KDA and k̂∩5−8 90.5%

KDA and k̂LRD5−8 82.3%

KDA and k̂0/1
5−8 + k̂LRD5−8 90.8%

KDA and k̂∩5−8 + k̂LRD5−8 90.4%

KDA and k̂0/1
5−8 + k̂∩5−8 91.0%

KDA and k̂0/1
5−8 + k̂∩5−8 + k̂LRD5−8 90.8%

Table 3: Accuracy rates on ICLE corpus of vari-
ous classification systems based on string kernels
compared with a state of the art approach. The ac-
curacy rates are reported for the same 5-fold CV
procedure as in (Tetreault et al., 2012). The best
accuracy rate is highlighted in bold.

the kernel based on LRD. This represents an 1.2%
improvement over the state of the art accuracy rate
of Tetreault et al. (2012). Two more systems are
able to obtain accuracy rates greater than 91.0%.
These are the KRR classifier based on the presence
bits kernel (91.2%) and the KDA classifier based
on the sum of the presence bits kernel and the in-
tersection kernel (91.0%). The overall results on
the ICLE corpus show that the string kernels ap-
proach can reach state of the art accuracy levels.
It is worth mentioning the purpose of this experi-
ment was to use the same approach determined to
work well in the TOEFL11 corpus. To serve this
purpose, the range of n-grams was not tuned on
this data set. Furthermore, other classifiers were
not tested in this experiment. Nevertheless, better
results can probably be obtained by adding these
aspects into the equation.

5.5 Cross-corpus Experiment

In this experiment, various systems based on KRR
or KDA are trained on the TOEFL11 corpus and
tested on the TOEFL11-Big corpus. The kernel
based on LRD was not included in this experiment
since it is more computationally expensive. There-
fore, only the presence bits kernel and the intersec-
tion kernel were evaluated on the TOEFL11-Big
corpus. The results are summarized in Table 4.
The same regularization parameters determined to

Method Test
Ensemble model (Tetreault et al., 2012) 35.4%

KRR and k̂0/1
5−8 66.7%

KRR and k̂∩5−8 67.2%

KRR and k̂0/1
5−8 + k̂∩5−8 67.7%

KRR and a1k̂
0/1
5−8 + a2k̂

∩
5−8 67.7%

KDA and k̂0/1
5−8 65.6%

KDA and k̂∩5−8 65.7%

KDA and k̂0/1
5−8 + k̂∩5−8 66.2%

KDA and a1k̂
0/1
5−8 + a2k̂

∩
5−8 66.2%

Table 4: Accuracy rates on TOEFL11-Big corpus
of various classification systems based on string
kernels compared with a state of the art approach.
The systems are trained on the TOEFL11 corpus
and tested on the TOEFL11-Big corpus. The best
accuracy rate is highlighted in bold. The weights
a1 and a2 from the weighted sums of kernels are
computed by kernel alignment.

work well on the TOEFL11 development set were
used.

The most interesting fact is that all the proposed
systems are at least 30% better than the state of the
art system. Considering that the TOEFL11-Big
corpus contains 87 thousand samples, the 30% im-
provement is significant without any doubt. Div-
ing into details, it can be observed that the results
obtained by KRR are higher than those obtained
by KDA. However, both methods perform very
well compared to the state of the art. Again, kernel
combinations are better than each of their individ-
ual kernels alone.

It is important to mention that the significant
performance increase is not due to the learning
method (KRR or KDA), but rather due to the string
kernels that work at the character level. It is not
only the case that string kernels are language in-
dependent, but for the same reasons they can also
be topic independent. Since the topics (prompts)
from TOEFL11 are different from the topics from
TOEFL11-Big, it becomes clear that a method
that uses words as features is strongly affected,
since the distribution of words per topic can be
completely different. But mistakes that reveal the
native language can be captured by character n-
grams that can appear more often even in differ-
ent topics. The results indicate that this is also
the case of the approach based on string kernels,
which seems to be more robust to such topic vari-
ations of the data set. The best system has an ac-
curacy rate that is 32.3% better than the state of
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the art system of Tetreault et al. (2012). Overall,
the empirical results indicate that the string ker-
nels approach can achieve significantly better re-
sults than other state of the art approaches.

6 Conclusions

A language-independent approach to native lan-
guage identification was presented in this paper.
The system works at the character level, mak-
ing the approach completely language indepen-
dent and linguistic theory neutral. The results ob-
tained in all the three experiments were very good.
The best system presented in this work is based on
combining the intersection and the presence string
kernels by kernel alignment and on deciding the
class label either with KDA or KRR. The best sys-
tem is 1.7% above the top scoring system of the
2013 NLI Shared Task. Furthermore, it has an im-
pressive generalization capacity, achieving results
that are 30% higher than the state of the art method
in the cross-corpus experiment.

Despite the fact that the approach based on
string kernels performed so well, it remains to be
further investigated why this is the case and why
such a simple approach can compete with far more
complex approaches that take words, lemmas,
syntactic information, or even semantics into ac-
count. It seems that there are generalizations to the
kinds of mistakes that certain non-native English
speakers make that can be captured by n-grams
of different lengths. Interestingly, using a range
of n-grams generates a large number of features
including (but not limited to) stop words, stems
of content words, word suffixes, entire words, and
even n-grams of short words. Rather than doing
feature selection before the training step, which
is the usual NLP approach, the kernel classifier
selects the most relevant features during training.
With enough training samples, the kernel classi-
fier does a better job of selecting the right features
from a very high feature space. This may be one
reason for why the string kernel approach works
so well. To gain additional insights into why this
technique is working well, the features selected
by the classifier as being more discriminating can
be analyzed in future work. This analysis would
also offer some information about localized lan-
guage transfer effects, since the features used by
the proposed model are n-grams of lengths 5 to
8. As mentioned before, the features captured by
the model typically include stems, function words,

word prefixes and suffixes, which have the poten-
tial to generalize over purely word-based features.
These features would offer insights into two kinds
of language transfer effects, namely word choice
(lexical transfer) and morphological differences.
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Abstract

Predicting vocabulary of second language
learners is essential to support their lan-
guage learning; however, because of the
large size of language vocabularies, we
cannot collect information on the entire
vocabulary. For practical measurements,
we need to sample a small portion of
words from the entire vocabulary and pre-
dict the rest of the words. In this study, we
propose a novel framework for this sam-
pling method. Current methods rely on
simple heuristic techniques involving in-
flexible manual tuning by educational ex-
perts. We formalize these heuristic tech-
niques as a graph-based non-interactive
active learning method as applied to a spe-
cial graph. We show that by extending the
graph, we can support additional function-
ality such as incorporating domain speci-
ficity and sampling from multiple corpora.
In our experiments, we show that our ex-
tended methods outperform other methods
in terms of vocabulary prediction accuracy
when the number of samples is small.

1 Introduction

Predicting the vocabulary of second language
learners is essential to support them when they are
reading. Educational experts have been continu-
ously studying methods for measuring the size of
a learner’s vocabulary, i.e., the number of words

∗The main body of this work was done when the first
author was a Ph.D. candidate in the University of Tokyo and
the paper was later greatly revised when the first author was
a JSPS (Japan Society for the Promotion of Science) research
fellow (PD) at National Institute of Informatics. See http:
//yoehara.com/ for details.

the learner knows, over the decades (Meara and
Buxton, 1987; Laufer and Nation, 1999). Ehara
et al. (2012) formalized a more fine-grained mea-
surement task called vocabulary prediction. The
goal of this task is to predict whether a learner
knows a given word based on only a relatively
small portion of his/her vocabulary. This vocabu-
lary prediction task can be further used for predict-
ing the readability of texts. By predicting vocab-
ulary unknown to readers and showing the mean-
ing of those specific words to readers, Ehara et al.
(2013) showed that the number of documents that
learners can read increases.

Word sampling is essential for vocabulary pre-
diction. Because of the large size of language vo-
cabularies, we usually cannot collect information
on the entire vocabulary. For practical measure-
ments, we inevitably need to sample a small por-
tion of words from the entire vocabulary and then
predict the rest. We refer to this sampling tech-
nique as word sampling.

Word sampling can greatly affect the perfor-
mance of vocabulary prediction. For example, if
we consider only short everyday general domain
words such as “cat” and “dog” as samples, the rest
of the vocabulary is difficult to predict since learn-
ers likely know most of these words. To more ac-
curately measure a learner’s vocabulary, we ide-
ally must sample words that are representative of
the entire set of words. More specifically, we wish
to sample words such that if a learner knows these
words, he/she is likely to know the rest of the
words in the given vocabulary, and vice versa.

To our knowledge, however, all current studies
have relied on a simple heuristic method. In this
heuristic method, educational experts first some-
how create groups of words with the aim that the
words in a group are of similar difficulty for learn-
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ers. To create groups of words, the experts typi-
cally make use of word frequencies and sometimes
manually reclassify words based on experience.
Next, a fixed number of words are randomly sam-
pled from each group via a uniform distribution.
We call this approach heuristic word sampling.

In this study, we propose a novel framework
that formalizes word sampling as non-interactive
graph-based active learning based on weighted
graphs. In our approach, nodes of a graph corre-
spond to words, whereas the edge weights show
how similar the difficulty levels of a word pair
are. Unlike interactive active learning algorithms
used in the NLP community, which use expert an-
notators’ human labels for sampling nodes, non-
interactive active learning algorithms exclude ex-
pert annotators’ human labels from the protocol
(Ji and Han, 2012; Gu and Han, 2012). Given
a weighted graph and using only its structure,
without human labels, these algorithms sample
nodes that are important for classification with al-
gorithms called label propagation. Excluding an-
notators’ human labels from the protocol is bene-
ficial for educational purposes since learners can
share the same set of sampled words via, for ex-
ample, printed handouts.

Formalizing the current methods as non-
interactive graph-based active learning enables us
to extend the sampling methods with additional
functionality that current methods cannot han-
dle without applying burdensome manual heuris-
tics because we can flexibly design the weighted
graphs fed to the active learning algorithms. In our
framework, this extension is achieved by extend-
ing the graph, namely, our framework can handle
domain specificity and multiple corpora.

Domains are important when one wants to mea-
sure the vocabulary of learners. For example, con-
sider measuring non-native English speakers tak-
ing computer science graduate courses. We may
want to measure their English vocabulary with an
emphasis on computer science rather than their
general English vocabulary. However, such an
extension is impossible via current methods, and
thus it is desirable to sample algorithms to be able
to handle domain specificity. Our framework can
incorporate domain specificity between words in
the form of edges between such words.

Handling multiple corpora is important when
we cannot single out which corpus we should rely
on. The current technique used by educational

experts to handle multiple corpora is to heuristi-
cally integrate multiple frequency lists from mul-
tiple corpora into a single list of words; however,
such manual integration is burdensome. Thus, au-
tomatic integration is desirable. Our framework
converts multiple corpora into graphs, merges
these graphs together, and then samples from the
merged graph.

Our contributions as presented in this paper are
summarized as follows:

1. We formalize word sampling for vocabulary
prediction as graph-based active learning.

2. Based on this formalization, we can perform
more flexible word sampling that can handle
domain specificity and multiple corpora.

The remaining parts of this paper are orga-
nized as follows. In §2, we explain the problem
setting in detail. We first explain how existing
heuristic word sampling works and how it relies
on the cluster assumption from the viewpoint of
graphs. Then, we introduce existing graph-based
non-interactive active learning methods. In §3,
we show that the existing heuristic word sampling
is merely a special case of a non-interactive ac-
tive learning method (Gu and Han, 2012). Pre-
cisely, the existing sampling is identical to the case
where a special graph called a “multi-complete
graph” is fed to a non-interactive active learning
method. Since this method can take any weighted
graphs other than this special graph, this imme-
diately leads to a way of devising new sampling
methods by modifying graphs. §4 explains exactly
how we can modify graphs for improving active
learning. §5 evaluates the proposed method both
quantitatively and qualitatively, and §6 concludes
our paper.

2 Problem Setting

2.1 Heuristic Word Sampling
A simple vocabulary estimation technique intro-
duced by educational experts is to use the fre-
quency rank of words in a corpus based on the
assumption that learners using words with similar
frequency ranks have a similar vocabulary (Laufer
and Nation, 1999). In accordance with this as-
sumption, they first group words by frequency
ranks in a corpus and then assume that words in
each group have a similar vocabulary status. For
example, they sampled words as follows:
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1. Rank words by frequency in a corpus.

2. Group words with frequency ranks from 1 to
1, 000 as Level 1000, words with frequency
ranks from 1, 001 to 2, 000 as Level 2000,
and so on.

3. Take 18 samples from Level 1000, another 18
samples from Level 2000, and so on.

The rationale behind this method is to treat
high-ranked and low-ranked words separately
rather than sample words from the entire vocabu-
lary. After sampling words, this sampling method
can be used for various measurements; for exam-
ple, Laufer and Nation (1999) used this method
to estimate the size of the learners’ vocabulary
by simply adding 1, 000 ∗ Correctly answered words

18 for
each level.

2.2 Cluster Assumption
In the previous subsection, we noted that existing
word sampling methods rely on the assumption
that words with similar frequency ranks are known
to learners whose familiar words are similar each
other. This assumption is known as the cluster as-
sumption in the field of graph studies (Zhou et al.,
2004).

To further describe the cluster assumption, we
first define graphs. A graph G = (V, E) consists
of a set of nodes (vertices) V and a set of edges E .
Here, each node has a label, and each edge has a
weight. A label denotes the category of its corre-
sponding node. For example, in binary classifica-
tion, a label is taken from {+1,−1}. A weight is
a real value; when the weight of an edge is large,
we describe the edge as being heavy.

The cluster assumption is an assumption that
heavily connected nodes in a graph should have
similar labels. In other words, the cluster as-
sumption states that weights of edges and labels
of nodes should be consistent.

We explain how the cluster assumption relates
to our task. In our application, each node corre-
sponds to a word. Labels of the nodes in a graph
denote the vocabulary of a learner. If he/she knows
a word, the label of the node corresponding to the
word is +1; if not, the label is −1. The cluster
assumption in our application is that the heavier
the edge, the higher the similarity between users
familiar with the two words.

In this manner, existing word sampling meth-
ods implicitly assume cluster assumption. This

is therefore the underlying approach for reducing
the word sampling problem into graph-based ac-
tive learning. Since graphs allow for more flexible
modeling by changing the weights of edges, we
expect that more flexible word sampling will be
enabled by graph-based active learning.

2.3 Label Propagation

Since the graph-based active learning algorithms
are based on label propagation algorithms, we will
explain them first. Basically, given a weighted
graph, label propagation algorithms classify their
nodes in a weakly supervised manner. While the
graph-based active learning algorithm that we are
trying to use (Gu and Han, 2012) does not use la-
bel propagation algorithms’ outputs directly, it is
tuned to be used with a state-of-the-art label prop-
agation method called Learning with Local and
Global Consistency (LLGC) (Zhou et al., 2004).

Label propagation algorithms predict the labels
of nodes from a few manually supervised labels
and graph weights. To this end, label propaga-
tion algorithms follow the following steps. First,
humans label a small subset of the nodes in the
graph. This subset of nodes is called the set of la-
beled nodes, and the remaining nodes are called
unlabeled nodes. Second, label propagation al-
gorithms propagate labels to the unlabeled nodes
based on edge weights. The rationale behind la-
bel propagation algorithms lies in cluster assump-
tion; as label propagation algorithms assume that
two nodes connected by a heavily weighted edge
should have similar labels, more heavily weighted
edges should propagate more labels.

We formalize Learning with Local and Global
Consistency (LLGC) (Zhou et al., 2004), one
of the state-of-the-art label propagation methods.
Here, for simplicity, suppose that we want to per-
form binary classification of nodes. Let N be the
total number of nodes in a graph. Then, we de-
note labels of each node by y def= (y1, . . . , yN )>.
For unlabeled nodes, yi is set to 0. For labeled
nodes, yi is set to +1 if the learner knows a word,
−1 if not. We also introduce a label propagation
(LP) score vector f = (f1, . . . , fN )>. This LP
score vector is the output of label propagation and
is real-valued. To obtain the classification result
from this real-valued LP score vector for an un-
labeled node (word) i, the learner is predicted to
know the word i if fi > 0, and he/she is predicted
to be unfamiliar with the word if fi ≤ 0.
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Next, we formally define a normalized graph-
Laplacian matrix, which is used for penalization
based on the cluster assumption. Let an N × N
-sized square matrix W be a weighted adjacency
matrix of G. W is symmetric and non-negative
definite; its diagonal elements Wi,i = 0 and
all other elements are non-negative1. The graph
Laplacian of a normalized graph, known as a nor-
malized graph Laplacian matrix, is defined as

Lnorm
W

def= I−D
− 1

2
W WD

− 1
2

W . Here, DW is defined
as a diagonal matrix whose diagonal element is
(DW)i,i

def=
∑|V|

j=1 Wi,j , and I denotes the iden-
tity matrix of the appropriate size. Note that a
normalized graph Laplacian Lnorm

W depends on the
weighted adjacency matrix W.

Then, LLGC can be formalized as a simple op-
timization problem as shown in Equation 1.

min
f
‖f − y‖22 + µf>Lnorm

W f (1)

Equation 1 consists of two terms. Intuitively,
the first term tries to make the LP score vector, the
final output f , as close as possible to the given la-
bels y. The second term is designed to meet the
cluster assumption: it penalizes the case where
two nodes with heavy edges have very different
LP scores. µ > 0 is the only hyper-parameter of
LLGC: it determines how strong the penalization
based on the cluster assumption should be. Thus,
in total, Equation 1 outputs an LP score vector f
considering both the labeled input y and the clus-
ter assumption of the given graph W: the heav-
ier an edge, the closer the scores of the two nodes
connected by the edge becomes.

2.4 Graph-based active learning algorithms
An important categorization of graph-based active
learning for applications is whether it is interactive
or non-interactive. Here, interactive approaches
use human labels during the learning process; they
present a node for humans to label, and based on
this label, the algorithms compute the next node to
be presented to the humans. Thus, in interactive
algorithms, human labeling and computations of
the next node must run concurrently.

Non-interactive algorithms do not use human
labels during the learning process. Given the
entire graph, these algorithms sample important

1While all elements of a non-negative definite matrix are
not necessarily non-negative, we define all elements of W
as non-negative here, following the definition of Zhou et al.
(2004).

nodes for label propagation algorithms. Here, im-
portant nodes are the ones that minimize estimated
classification error of label propagation when the
nodes are labeled. Note that, unlike active learning
used in the NLP community, non-interactive active
learning algorithms exclude expert annotators’ hu-
man labels from the protocol. While they exclude
expert annotators, they are still regarded as active
learning methods in the machine learning commu-
nity since they try to choose such nodes that are
beneficial for classification (Ji and Han, 2012; Gu
and Han, 2012).

For educational purposes, non-interactive algo-
rithms are preferred over interactive algorithms.
The main drawback of interactive algorithms is
that they must run concurrently with the hu-
man labeling. For our applications, this means
that the vocabulary tests for vocabulary prediction
must always be computerized. In contrast, non-
interactive algorithms allow us to have vocabulary
tests printed in the form of handouts, so we focus
on non-interactive algorithms throughout this pa-
per.

Compared with interactive algorithm studies,
such as Zhu et al. (2003), graph-based non-
interactive active learning algorithms have been
introduced in recent years. There has been a sem-
inal paper on non-interactive algorithms (Ji and
Han, 2012). We used Gu and Han’s algorithm be-
cause it reports higher accuracy for many tasks
with competitive computation times over Ji and
Han’s algorithm (Gu and Han, 2012).

These active learning methods share two basic
rules although their objective functions are dif-
ferent. First, these methods tend to select glob-
ally important nodes, also known as hubs. A no-
table example of global importance is the num-
ber of edges. Second, these methods tend to
avoid sampling nodes that are heavily connected
to previously sampled nodes. This is due to clus-
ter assumption, the assumption that similar nodes
should have similar labels, which suggests that it is
redundant to select nodes close to previously sam-
pled nodes; the labels of such nodes should be reli-
ably predicted from the previously sampled nodes.

Gu and Han’s algorithm, which is the algorithm
we used, also follows these rules. In this algo-
rithm, when considering the k-th sample, for every
node i in the current set of not-yet-chosen nodes, a
score score(k, i) is calculated, and the node with
the highest score is chosen. First, the score is de-
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signed to be large if the i-th node is globally im-
portant. In the algorithm, the global importance
of a node is measured by an eigenvalue decompo-
sition of the normalized graph-Laplacian, Lnorm.
Transformed from the graph’s adjacency matrix,
this matrix stores the graph’s global information.
Second, the score is designed to be smaller if the
i-th node is close to one of the previously sampled
nodes.

Score score (k, i) is defined as follows. We
perform eigenvalue decomposition beforehand.
Lnorm

W = UΛU>, ui is the transpose of the i-th
row of U, and λi is its corresponding eigenvalue.

score (k, i) def=

(
H−1
k ui

)>
Λ−1

(
H−1
k ui

)
1 + u>i H−1

k ui
(2)

In Equation 2, Hk preserves information of the
previous k − 1 samples. First, H0 is a diag-
onal matrix whose i-th diagonal element is de-
fined as 1

(µλi+1)2−1
where µ is a hyper-parameter.

H0 weighs the score of globally important nodes
through the eigenvalue decomposition. Second,
Hk is updated such that the scores of the nodes
distant from the previously taken samples are
higher. The precise update formula of Hk follows.
ik+1 is the index of the node sampled at k + 1-th
round. For the derivation of this formula, see Gu
and Han (2012).

H−1
k+1 = H−1

k −
(
H−1
k uik+1

) (
H−1
k uik+1

)>
1 + u>ik+1

H−1
k uik+1

(3)

Hyper-parameter µ determines how strong the
cluster assumption should be; the larger the value,
the more strongly the algorithm avoids selecting
nodes near previously selected samples over the
graph. Note that µ is inherited from the LLGC2

algorithm (Zhou et al., 2004), i.e., the label prop-
agation algorithm that Gu and Han’s algorithm is
based on. From the optimization viewpoint, µ de-
termines the degree of penalization.

Remember that the score has nothing to do with
the LP scores described in §2.3. score is used
to choose nodes used for training in the graph-
based non-interactive active learning. LP scores
are later used for classification by label propaga-
tion algorithms that use the chosen training nodes.
Throughout this paper, when we mean LP scores,
we explicitly write “LP scores”. All the other
scores mean score.

2Learning with Local and Global Consistency.

Figure 1: Converting frequency list into multiple-
complete graph.

3 Formalizing heuristic word sampling
as graph-based active learning

Figure 1 shows how to formalize a word frequency
list into a multiple complete graph. The word fre-
quency list is split into clusters, and each cluster
forms a complete graph. Each node in a graph cor-
responds to a word. By gathering all the complete
graphs, a multiple complete graph can be formed.

Multiple complete graph GT,n is defined as a
graph of T complete graphs, each of which con-
sists of n nodes fully connected within the n
nodes. An example of a multiple complete graph
can be seen in Figure 2. We can define the
Tn × Tn adjacency matrix for multiple com-
plete graphs. Wcomplete

all is defined as follows:

Wcomplete
all

def=


Wcomplete 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 Wcomplete


(4)

Wcomplete def=


0 1 · · · 1 1
1 0 1 · · · 1
... 1

. . .
...

1
...

. . . 1
1 1 · · · 1 0

 (5)

We can see that Wcomplete
all is a block-diagonal

matrix where each block is a n × n matrix,
Wcomplete.

Heuristic word sampling can be rewritten into
non-interactive active learning on graphs. Suppose
there are T groups, each of which has n words,
and we want to sample n0 words from each. In
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Figure 2: Example of multi-complete graph, where Theorem 3.1 holds true. Here, T = 4, n = 5, and
k = 10; 10 light blue (light) nodes have already been sampled, and 10 blue (dark) nodes remain; the
11-th node is sampled uniformly randomly from the nodes within the red rectangles.

heuristic word sampling, for each group from T
groups, n0 words are sampled from the n words
in the group uniformly randomly. Thus, there are
Tn0 words in total.

Since heuristic word sampling takes a node
from each of the T groups, T concurrent sampling
processes are involved. For simplicity, we further
express the same sampling using only one sam-
pling process from the entire graph as follows:

• For every round, we sample words uniformly
randomly from the remaining words of the
groups where the number of samples selected
in previous rounds is least.

Figure 2 shows an example of this sampling
process. Here, the second and third groups from
the left are the groups in which the number of pre-
viously selected nodes is the least. This is because
they have only two previously selected nodes,
while the others have three. Thus, in the figure, the
remaining words of the groups are the nodes with
red rectangles. Randomly sampling one node from
the nodes with red rectangles means sampling a
node from the second or third group. We call the
set of nodes in a graph from which samples will be
taken in the next round a seed pool. Thus, in Fig-
ure 2, the set of nodes with red rectangles is the
seed pool. Nodes that have already been sampled
are taken out of the current seed pool.

Next, we more formally explain the seed pool
concept. We start sampling nodes from a multiple
complete graph via the algorithm presented by Gu
and Han. The initial seed pool is set to all nodes
in the graph, i.e., V . We sample one node in each
round; thus, k ≤ |V| nodes are selected by the k-
th round. Let t ≤ T be the index of the complete
graph in the multiple complete graph. Then, the
following theorem holds with ε being a small pos-
itive value that substitutes the 0 eigenvalues in the
eigen decomposition.

Theorem 3.1 Let 0 < ε < 1 and n ∈
{2, 3, 4, . . .}. Then, among T complete graphs,
k mod T complete graphs have b kT c + 1 sam-
ples, and the remaining graphs have b kT c sam-
ples3. Moreover, the (k + 1)-th sample is taken
uniformly randomly from the remaining complete
graphs.

In Theorem 3.1, ε > 0 is a substitute for the
0 eigenvalue of LW

4. Since ε is a substitute for
the 0 eigenvalue, it is rational to assume 1 > ε.
Also, remember that n is the number of nodes in
one complete graph. The algorithm stops when
k = Tn0 + 1, i.e., at the Tn0 + 1-th round when
there are no remaining nodes to sample. Figure 2
shows an example of Theorem 3.1.

A proof of this theorem is presented in the sup-
plementary material. Briefly, in a multiple com-
plete graph, the score of a node depends only on
the complete graph or the cluster that the node
belongs to. Thus, we only have to consider one
complete graph in which k is the number of nodes
that have been already chosen. Then, mathe-
matical induction proves that, within one com-
plete graph, all the not-yet-chosen nodes have the
same score(k, i). Second, we have to show that
the score always decreases by taking a sample,
i.e., score(k, i) > score(k + 1, i). By a long
but straightforward calculation, we can express
score(k, i) by using only µ, ε, n, and k. Then, by
substituting the formula to score(k, i), we obtain
score(k, i)− score(k + 1, i) > 0.

4 Extending Graphs

In the previous section, we explained how to for-
malize heuristic word sampling as active learn-
ing on multiple complete graphs. This formaliza-

3Here, both k and T are non-negative integers. Thus,
k%T denotes the remainder of the division of k by T , and
b k
T
c is the quotient of the division.
4In Gu and Han’s algorithm, they substitute the 0 eigen-

value with a small positive value ε, and they set ε = 10−6.
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Figure 3: Example of merging two graphs.

tion can lead to better active learning by extend-
ing these graphs. In this section, we describe such
graph extensions.

We extend graphs by merging graphs. Figure 3
shows how to merge graphs. We define “merging”
two weighted graphs as creating a weighted graph
whose adjacency matrix is the sum of the two ad-
jacency matrices of the two weighted graphs. This
suggests that an edge of the merged graph is sim-
ply the sum of the corresponding edges of the two
weighted graphs.

The merged graph is expected to inherit the
characteristics of its original graphs. Thus, ap-
plying graph-based active learning to the merged
graph is expected to sample nodes in accordance
with the characteristics of its original graphs.
For example, if we merge a graph representing
domain-specific relations and a multiple complete
graph representing difficulty grouping of words,
active learning from the resulting merged graph
is expected to sample words considering both do-
main specificity and difficulty grouping of words.

For another example, suppose we merge two
multiple complete graphs created from frequency
lists from two different corpora. Then, active
learning from the resulting merged graph is ex-
pected to sample words taking into account fre-
quency lists from both corpora.

5 Evaluation

We evaluate our proposed method both quantita-
tively and qualitatively. In the quantitative eval-
uation, we measure the prediction accuracy of
graphs. Note that the heuristic word sampling
method is identical to using Gu and Han’s algo-
rithm with a multiple complete graph; however,
our proposed graphs have enriched relations be-
tween words. In the qualitative evaluation, we ex-
plain in detail what words are appropriate as train-
ing examples for vocabulary prediction by pre-

senting sampled examples.

5.1 Quantitative evaluation

To evaluate the accuracy of vocabulary prediction,
we used the dataset that Ehara et al. (2010) and
Ehara et al. (2012) used. This dataset was gleaned
from questionnaires answered by 15 English as a
second language (ESL) learners. Every learner
was asked to answer how well he/she knew 11,999
English words. The data was collected in January
2009. One learner was unpaid, whereas the other
15 learners were paid. We used the data from the
15 paid learners since the data from the unpaid
learner was noisy. Most of the learners were na-
tive Japanese speakers and graduate students. Be-
cause most of the learners in this dataset were na-
tive Japanese speakers, words from SVL 12,000
(SPACE ALC Inc., 1998) were used for the learn-
ers in this dataset. Note that SVL 12,000 is a col-
lection of 12,000 words that are deemed important
for Japanese learners of English, as judged by na-
tive English teachers.

Next, we required frequency lists for the words
that appeared in the dataset. To create frequency
lists, lemmatization is important because the num-
ber of word types depends on the method used
to lemmatize the words. Note that in the field of
vocabulary measurement, lemmatization is mainly
performed by ignoring conjugation (Nation and
Beglar, 2007). Lemmatizing the dataset resulted
in a word list of 8,463 words. We adjusted the size
of the word list to a round 8,000 by removing 463
randomly chosen words. Note that all constituent
words were labeled by the 15 ESL learners.

We created the following four graphs by span-
ning edges among the 8, 000 words.

BNC multi-complete This graph corresponds to
heuristic word sampling and served as our
baseline. It is a multiple complete graph
comprising eight complete graphs, each of
which consisted of 1,000 words based on the
sorted frequency list from the British Na-
tional Corpus (BNC). We chose the BNC be-
cause the method presented by Nation and
Beglar was based on it (Nation and Beglar,
2007). Note that all edge weights are set to 1.

BNC+domain To form this graph, edges rep-
resenting domain specificity are added to
the “BNC multi-complete” graph. For do-
main specificity, we used domain information
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from WordNet 3.0.5 First, we extracted 102
domain-specific words under the “computer”
domain among the 8,000 words and created
a complete graph consisting of these domain-
specific words. The edge weights of the com-
plete graph were set to 1. Next, we simply
merged6 the complete graph consisting of the
domain-specific words with the “BNC multi-
complete” graph.

BNC+COCA In addition to the “BNC multi-
complete” graph, edges based on another cor-
pus, the Corpus of Contemporary American
English (COCA), were introduced. We first
created the COCA multi-complete graph, a
multiple complete graph consisting of eight
complete graphs, each of which consisted of
1,000 words based on the sorted frequency
list using COCA. The edge weights of the
COCA multi-complete graph were set to 1.
Next, we merged the BNC multi-complete
and COCA multi-complete graphs to form
the “BNC + COCA graph”.

BNC+domain+COCA This graph is the graph
produced by merging the “BNC + domain”
and “BNC + COCA” graphs.

Note that our experiment setting differed from
the usual label propagation setting used for semi-
supervised learning because the purpose of our
task differed. In the usual label propagation set-
ting, the “test” nodes (data) are prepared sepa-
rately from the training nodes to determine how
accurately the algorithm can classify forthcoming
or unseen nodes. However, in our setting, there
were no such forthcoming words. Of course, there
will always be words that do not emerge, even in a
large corpus; however, such rare words are too dif-
ficult for language learners to identify, and many
are proper nouns, which are not helpful for mea-
suring the vocabulary of second language learners.

Therefore, our focus here is to measure how
well the learners know a fixed set of words, that
is, the given 8,000 words. Even if an algorithm
can achieve high accuracy for words outside this
fixed set, we have no way of evaluating it using
the pooled annotations. Here, we want to measure,
from a fixed number of samples (e.g., 50), how ac-
curately an algorithm can predict a learner’s vo-

5We used the NLTK toolkit http://nltk.org/ to extract the
domain information.

6Definition of how to merge two graphs is in §4.

Figure 4: Results of our quantitative experiments.
Vertical axis denotes accuracy, and horizontal axis
shows number of samples, i.e., training words.

cabulary for the entire 8,000 words. Thus, we
define accuracy to be the number of words that
each algorithm finds correctly divided by the vo-
cabulary size. We set hyper-parameter µ to 0.01
as Gu and Han (2012) did. Note that this hyper-
parameter is reportedly not sensitive to accuracy
(Zhou et al., 2011).

Figure 4 and Table 1 show the results of the
experiment over the different datasets. The ver-
tical axis in the figure denotes accuracy, whereas
the horizontal axis denotes the number of samples,
i.e., training words. Note that the accuracy is av-
eraged over 15 learners and that LLGC is used for
classification unless otherwise specified. For ex-
ample, “BNC multi-complete” indicates that sam-
ples taken from the BNC multi-complete graph are
used for training, and LLGC is used for classifica-
tion. Note that “BNC + domain + COCA (SVM)”
uses a support vector machine (SVM) for classifi-
cation, and “BNC + domain + COCA (LR)” uses
logistic regression (LR) for classification. Among
many supervised machine learning methods, we
chose SVM and LR because SVM is widely used
in the NLP community, and LR was used for the-
oretical reasons (Ehara et al., 2012; Ehara et al.,
2013).

SVM and LR require features of a word
for classification while LLGC requires a
weighted graph of words. Since the graph
“BNC+domain+COCA” is made from three
features, namely the word frequencies of BNC
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Table 1: Results of our quantitative experiments. LLGC is used for classification unless otherwise spec-
ified. Bold letters indicate top accuracy. Asterisks (*) indicate that values are statistically significant
against baseline, heuristic sampling, i.e., “BNC multi-complete” (using sign test p < 0.01).

10 15 20 30 40 50
BNC multi-complete 64.15 (%) 67.54 73.73 73.66 74.92 74.82
BNC+domain 65.27 71.88 72.88 75.02 76.03 * 75.95
BNC+COCA 73.45 74.10 74.57 74.90 74.96 75.29
BNC+domain+COCA 75.23 * 75.71 * 75.18 * 75.35 * 75.47 76.44 *
BNC+domain+COCA (SVM) 58.99 57.74 60.44 70.79 69.29 74.46
BNC+domain+COCA (LR) 60.29 61.74 59.27 69.17 70.63 73.42

and COCA corpora and whether a word is in the
computer domain, we used these features for the
features of SVM and LR in this experiment for a
fair comparison. When using word frequencies for
features, we used the logarithm of raw frequencies
since it is reported to work well (Ehara et al.,
2013). SVM and LR are also known to heavily
depend on a hyper-parameter called C, which
determines the strength of regularization. We
tried C = 0.1, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0,
and 100.0 for each of SVM and LR where the size
of training data is 50 and chose the C value that
performs best. As a result, we set C = 5.0 for
SVM and C = 50.0 for LR. Note that this setting
is advantageous for SVM and LR compared to
LLGC because the hyper-parameters of SVM
and LR are tuned while LLGC’s hyper-parameter
remains untuned. For the implementation of SVM
and LR, we used the “scikit-learn” package in
Python 7.

We first observed that our proposed methods
constantly outperform the baseline, heuristic word
sampling, i.e., “BNC multi-complete” in Table 1.
This indicates that we successfully obtained bet-
ter accuracy by formalizing heuristic word sam-
pling as active learning and extending graphs. In
Table 1, the accuracy of the top-ranked methods
(shown using bold letters) is statistically signif-
icantly better than the accuracy of “BNC multi-
complete” (using the sign test p < 0.01).

We then observed that “BNC multi-complete”
and “BNC + domain” show competitive accuracy
with sample sizes from 10 to 20; furthermore,
“BNC + domain” is slightly better than “BNC
multi-complete” with sample sizes ranging from
30 to 50 (statistically significant p < 0.01 using
sign test). Next, we note that there is a trade-off
between domain and word frequency when choos-

7http://scikit-learn.org/stable/

ing samples. More specifically, if we select too
many words from the domain, the measurement of
the general English ability of learners can be in-
accurate; conversely, if we select too many words
from the corpus-based word frequency list, while
the general English ability of learners is accu-
rately measured, we may obtain no information
on the learner’s vocabulary for the targeted do-
main. The competitive or slightly better accuracy
of “BNC + domain” over “BNC multi-complete”
shows that “BNC + domain” could successfully
integrate domain information into the frequency-
based groups without deteriorating measurements
of general English ability.

We also observe that “BNC + COCA” greatly
outperforms “BNC multi-complete” when the
number of samples is 10. This shows that the inte-
gration of the two corpora, BNC and COCA (i.e.,
“BNC + COCA”), successfully increases the accu-
racy when there are only a small number of sam-
ples.

“BNC + domain + COCA” achieves the best ac-
curacy of all the graphs except when the number
of samples is 40. This indicates that the domain
information and the information from the COCA
corpus helped one another to improve the accuracy
because “BNC + domain” and “BNC + COCA” in-
troduce different types of domain information into
“BNC multi-complete.”

Finally, we observe that “BNC + domain +
COCA (SVM)” and “BNC + domain + COCA
(LR)” perform worse than LLGC over the same
dataset for all sample sizes, particularly when the
size of the training data is small. Since LLGC is
a semi-supervised classifier while SVM and LR
are not, SVM and LR perform poorly for small
amounts of training data. This result shows that
LLGC is appropriate for this task compared to
SVM because, in this task, an increase in the size
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Table 2: Computer-related samples in top 30 sam-
ples.

Name Num. of
Samples

Examples

BNC multi-
complete

0 -

BNC+domain 5 input, client, field,
background, regis-
ter

BNC+COCA 0 -

BNC+domain
+COCA

3 drive, client, com-
mand

of training data directly leads to an increased bur-
den on the human learners.

5.2 Qualitative evaluation

In this subsection, we qualitatively evaluate our
results to determine the types of nodes that are
sampled when domain specificity is introduced.
Specifically, we evaluate what words are selected
as samples in the “BNC + domain” graph.

As noted above, in the “BNC + domain” graph,
the computer science domain is introduced into
“BNC multi-complete” to measure learners’ vo-
cabulary with a specific emphasis on the computer
science domain. Thus, it is desirable that some
words in the computer science domain are sam-
pled from the “BNC + domain” graph; otherwise,
we need to predict the learners’ vocabulary for
the computer science domain from general words
rather than those in the computer science domain,
which is extremely difficult.

Table 2 shows the number of words in the com-
puter science domain sampled in the first 30 sam-
ples. Note that only “BNC + domain” and “BNC
+ domain + COCA” select samples from the com-
puter science domain. This indicates that in the
other two methods, to measure vocabulary with
an emphasis on the computer science domain, we
need to predict learners’ vocabulary from the gen-
eral words, which is almost impossible with only
30 samples. Furthermore, it is interesting to note
that “BNC + domain” and “BNC + domain +
COCA” select different samples from the com-
puter science domain, except for the word “client,”
although originally the same computer science do-
main wordlist was introduced to both graphs.

Since “BNC + domain” achieves competitive
or slightly better accuracy than “BNC multi-
complete” in the quantitative analysis and the

qualitative analysis, we conclude that our method
can successfully introduce domain specificity into
the sampling methodology without reducing accu-
racy.

6 Conclusion

In this study, we propose a novel sampling frame-
work that measures the vocabulary of second lan-
guage learners. We call existing sampling meth-
ods heuristic sampling. This approach to sampling
ranks words from a single corpus by frequency and
creates groups of 1,000 words. Next, tens of words
are sampled from each group. This method as-
sumes that the relative difficulty of all 1,000 words
is the same.

In this paper, we introduce a novel sampling
method by showing that the existing heuristic sam-
pling approach is simply a special case of a graph-
based active learning algorithm by Gu and Han
(2012) applied to a special graph. We also pro-
pose a method to extend this graph to enable us to
handle domain specificity of words and multiple
corpora, which are difficult or impossible to han-
dle using current methods.

We evaluate our method both quantitatively and
qualitatively. In our quantitative evaluation, the
proposed method achieves higher prediction accu-
racy compared with the current approach to vo-
cabulary prediction. This suggests that our pro-
posed method can successfully make use of do-
main specificity and multiple corpora for pre-
dicting vocabulary. In our qualitative evaluation,
we examine the words sampled by our proposed
method and observe that targeted domain-specific
words are successfully sampled.

For our future work, because the graph used
in this paper was constructed manually, we plan
to automatically create a graph suitable for active
learning and classification. There are several algo-
rithms that create graphs from feature-based rep-
resentations of words, but these have never been
used for active learning of this task.
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Abstract

Language transfer, the characteristic sec-
ond language usage patterns caused by na-
tive language interference, is investigated
by Second Language Acquisition (SLA)
researchers seeking to find overused and
underused linguistic features. In this pa-
per we develop and present a methodology
for deriving ranked lists of such features.
Using very large learner data, we show
our method’s ability to find relevant can-
didates using sophisticated linguistic fea-
tures. To illustrate its applicability to SLA
research, we formulate plausible language
transfer hypotheses supported by current
evidence. This is the first work to ex-
tend Native Language Identification to a
broader linguistic interpretation of learner
data and address the automatic extraction
of underused features on a per-native lan-
guage basis.

1 Introduction

It has been noted in the linguistics literature since
the 1950s that speakers of particular languages
have characteristic production patterns when writ-
ing in a second language. This language transfer
phenomenon has been investigated independently
in a number of fields from different perspectives,
including qualitative research in Second Language
Acquisition (SLA) and more recently though pre-
dictive computational models in NLP.

Motivated by the aim of improving foreign lan-
guage teaching and learning, such analyses are of-
ten done manually in SLA, and are difficult to
perform for large corpora. Smaller studies yield
poor results due to the sample size, leading to
extreme variability (Ellis, 2008). Recently, re-
searchers have noted that NLP has the tools to use
large amounts of data to automate this analysis,

using complex feature types. This has motivated
studies in Native Language Identification (NLI), a
subtype of text classification where the goal is to
determine the native language (L1) of an author
using texts they have written in a second language
(L2) (Tetreault et al., 2013).

Despite the good results in predicting L1s, few
attempts have been made to interpret the features
that distinguish L1s. This is partly because no
methods for an SLA-oriented feature analysis have
been proposed; most work focuses on testing fea-
ture types using standard machine learning tools.

The overarching contribution of this work is to
develop a methodology that enables the transfor-
mation of the NLI paradigm into SLA applications
that can be used to link these features to their un-
derlying linguistic causes and explanations. These
candidates can then be applied in other areas such
as remedial SLA strategies or error detection.

2 Related Work

SLA research aims to find distributional differ-
ences in language use between L1s, often referred
to as overuse, the extensive use of some linguis-
tic structures, and underuse, the underutilization
of particular structures, also known as avoidance
(Gass and Selinker, 2008). While there have been
some attempts in SLA to use computational ap-
proaches on small-scale data,1 these still use fairly
elementary techniques and have several shortcom-
ings, including in the manual approaches to an-
notation and the computational artefacts derived
from these.

Conversely, NLI work has focused on automatic
learner L1 classification using Machine Learning
with large-scale data and sophisticated linguistic
features (Tetreault et al., 2012). Here, feature
ranking could be performed with relevancy meth-
ods such as the F-score:

1E.g. Chen (2013), Lozanó and Mendikoetxea (2010) and
Diéz-Bedmar and Papp (2008).
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The F-score (Fisher score) measures the ratio
between the intraclass and interclass variance in
the values of feature j, where x represents the fea-
ture values in the negative and positive examples.2

More discriminative features have higher scores.
Another alternative method is Information Gain

(Yang and Pedersen, 1997). As defined in equation
(2), it measures the entropy gain associated with
feature t in assigning the class label c.

G(t) = − ∑m

i=1
Pr (ci) log Pr (ci)

+ Pr (t)
∑m

i=1
Pr (ci|t) log Pr (ci|t)

+ Pr (t̄)
∑m

i=1
Pr (ci|t̄) log Pr (ci|t̄)

(2)

However, these methods are limited: they do not
provide ranked lists per-L1 class, and more impor-
tantly, they do not explicitly capture underuse.

Among the efflorescence of NLI work, a new
trend explored by Swanson and Charniak (2014)
aims to extract lists of candidate language transfer
features by comparing L2 data against the writer’s
L1 to find features where the L1 use is mirrored in
L2 use. This allows the detection of obvious ef-
fects, but Jarvis and Crossley (2012) note (p. 183)
that many transfer effects are “too complex” to ob-
serve in this manner. Moreover, this method is un-
able to detect underuse, is only suitable for syn-
tactic features, and has only been applied to very
small data (4,000 sentences) over three L1s. Ad-
dressing these issues is the focus of the present
work.

3 Experimental Setup

3.1 Corpus
We use TOEFL11, the largest publicly available
corpus of English L2 texts (Blanchard et al.,
2013), containing 11 L1s with 1,100 texts each.3

3.2 Features
Adaptor grammar collocations Per Wong et al.
(2012), we utilize an adaptor grammar to discover
arbitrary length n-gram collocations. We explore
both the pure part-of-speech (POS) n-grams as

2See Chang and Lin (2008) for more details.
3Over 4 million tokens in 12,100 texts.

well as the more promising mixtures of POS and
function words. We derive two adaptor grammars
where each is associated with a different set of vo-
cabulary: either pure POS or the mixture of POS
and function words. We use the grammar pro-
posed by Johnson (2010) for capturing topical col-
locations:

Sentence→ Docj j ∈ 1, . . . ,m
Docj → j j ∈ 1, . . . ,m
Docj → Docj Topici i ∈ 1, . . . , t;

j ∈ 1, . . . ,m
Topici →Words i ∈ 1, . . . , t
Words→Word
Words→Words Word
Word→ w w ∈ Vpos;

w ∈ Vpos+fw
Vpos contains 119 distinct POS tags based on the

Brown tagset and Vpos+fw is extended with 398
function words. The number of topics t is set to
50. The inference algorithm for the adaptor gram-
mars are based on the Markov Chain Monte Carlo
technique made available by Johnson (2010).4

Stanford dependencies We use Stanford de-
pendencies as a syntactic feature: for each
text we extract all the basic dependencies re-
turned by the Stanford Parser (de Marneffe et
al., 2006). We then generate all the variations
for each of the dependencies (grammatical rela-
tions) by substituting each lemma with its cor-
responding POS tag. For instance, a gram-
matical relation of det(knowledge, the)
yields the following variations: det(NN, the),
det(knowledge, DT), and det(NN, DT).

Lexical features Content and function words
are also considered as two feature types related to
learner’s vocabulary and spelling.

3.3 Extracting Linear SVM Feature Weights

Using the extracted features, we train linear Sup-
port Vector Machine (SVM) models for each
L1. We use a one-vs-rest approach to find fea-
tures most relevant to each native language. L2-
regularization is applied to remove noisy features
and reduce the size of the candidate feature list.
More specifically, we employ the LIBLINEAR
SVM package (Fan et al., 2008)5 as it is well-
suited to text classification tasks with large num-
bers of features and texts as is the case here.

4http://web.science.mq.edu.au/%7Emjohnson/Software.htm
5http://www.csie.ntu.edu.tw/%7Ecjlin/liblinear/
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In training the models for each feature, the SVM
weight vector6 is calculated according to (3):

w =
∑
i

αiyixi (3)

After training, the positive and negative weights
are split into two lists and ranked by weight.
The positive weights represent overused features,
while features whose absence (i.e. underuse) is
indicative of an L1 class will have large negative
weights. This yields two candidate language trans-
fer feature lists per L1.

4 Results

We now turn to an analysis of the output from our
system to illustrate its applicability for SLA re-
search. Table 1 lists some elements from the un-
deruse and overuse lists for various L1s. The lists
are of different feature types. They have been cho-
sen to demonstrate all feature types and also a va-
riety of different languages. For reasons of space,
only several of the top features are analysed here.

Hindi L1 writers are distinguished by certain
function words including hence, thus, and etc, and
a much higher usage rate of male pronouns. It has
been observed in the literature (Sanyal, 2007, for
example) that the English spoken in India still re-
tains characteristics of the English that was spoken
during the time of the Raj and the East India Com-
pany that have disappeared from other English va-
rieties, so it sounds more formal to other speakers,
or retains traces of an archaic business correspon-
dence style; the features noted fit that pattern.

The second list includes content words overused
by Arabic L1 learners. Analysis of content words
here, and for other L1s in our data, reveals very
frequent misspellings which are believed to be due
to orthographic or phonetic influences (Tsur and
Rappoport, 2007; Odlin, 1989). Since Arabic does
not share orthography with English, we believe
most of these are due to phonetics. Looking at
items 1, 3 and 5 we can see a common pattern:
the English letter u which has various phonetic re-
alizations is being replaced by a vowel that more
often represents that sound. Items 2 and 5 are also
phonetically similar to the intended words.

For Spanish L1 authors we provide both under-
use and overuse lists of syntactic dependencies.
The top 3 overuse rules show the word that is very
often used as the subject of verbs. This is almost

6See Burges (1998) for a detailed explanation.

certainly a consequence of the prominent syntac-
tic role played by the Spanish word que which, de-
pending on the context, is equivalent to the English
words whom, who, which, and most commonly,
that. The fourth rule shows they often use this as a
determiner for plural nouns. A survey of the cor-
pus reveals many such errors in texts of Spanish
learners, e.g. this actions or this emissions. The
fifth rule shows that the adjectival modifier of a
plural noun is often being incorrectly pluralised to
match the noun in number as would be required in
Spanish, for example, differents subjects.

Turning to the underused features in Spanish L1
texts, we see that four related features rank highly,
showing that these is not commonly used as a de-
terminer for plural nouns and which is rarely used
as a subject. The final feature shows that no is
avoided as a determiner. This may be because
while no mostly has the same role in Spanish as it
does in English, it cannot be used as a determiner;
ningún must be used instead. We hypothesize that
this construction is being avoided as placing no be-
fore a noun in Spanish is ungrammatical. This ex-
ample demonstrates that our two list methodology
can not only help identify overused structures, but
also uncovers the related constructs that are being
underutilized at their expense.

The final list in Table 1 is of underused Adap-
tor Grammar patterns by Chinese learners. The
first three features show that these writers signif-
icantly underuse determiners, here an, other and
these before nouns. This is not unexpected since
Chinese learners’ difficulties with English articles
are well known (Robertson, 2000). More inter-
estingly, we find underuse of features like even if
and might, along with others not listed here such
as could VB7 plus many other variants related to
the subjunctive mood. One explanation is that lin-
guistic differences between Chinese and English
in expressing counterfactuals could cause them to
avoid such constructions in L2 English. Previous
research in this area has linked the absence of sub-
junctive linguistic structures in Chinese to differ-
ent cognitive representations of the world and con-
sequences for thinking counterfactually (Bloom,
2014), although this has been disputed (Au, 1983;
Garbern Liu, 1985).

Adaptor Grammars also reveal frequent use of
the “existential there”8 in German L1 data while

7e.g. could be, could have, could go and other variants
8e.g. There is/are ..., as opposed to the locative there.
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Overuse Underuse
Hindi Arabic Spanish Spanish Chinese
#2: thus #2: anderstand #1: nsubj(VBP,that) #2: det(NNS,these) #12: an NN
#4: hence #4: mony #2: nsubj(VBZ,that) #3: nsubj(VBZ,which) #16: other NN
#22: his #6: besy #3: nsubj(VB,that) #6: nsubj(VB,which) #18: these NNS
#30: etc #15: diffrent #4: det(NNS,this) #7: nsubj(VBP,which) #19: even if
#33:rather #38: seccessful #25: amod(NNS,differents) #10: det(NN,no) #68: might

Table 1: Example transfer candidates and rankings from the overuse/underuse lists for various L1s and
features types, in order: Hindi function words, Arabic content words, Spanish dependencies (2) and
Chinese Adaptor Grammars.

English Spanish English Spanish
diferent diferente conclution conclusión
consecuence consecuencia desagree Neg. affix des-
responsability responsabilidad especific especı́fico
oportunity oportunidad necesary necesario

Table 2: Highly ranked English misspellings of
Spanish learners and their Spanish cognates.

they are highly underused in French L1 data. The
literature supports our data: The German equiv-
alent es gibt is common while French use is far
more constrained (Cappelle and Loock, 2013).

Lexical analysis also revealed Spanish–English
orthographic transfer, listed in Table 2. This list
includes many cognates, in contrast with the Ara-
bic L1 data where most misspellings were pho-
netic in nature.

We also observe other patterns which remain
unexplained. For instance, Chinese, Japanese and
Korean speakers make excessive use of phrases
such as however, first and second. One possibil-
ity is that this relates to argumentation styles that
are possibly influenced by cultural norms. More
broadly, this effect could also be teaching rather
than transfer related. For example, it may be case
that a widely-used text book for learning English
in Korea happens to overuse this construction.

Some recent findings from the 2013 NLI Shared
Task found that L1 Hindi and Telugu learners of
English had similar transfer effects and their writ-
ings were difficult to distinguish. It has been
posited that this is likely due to shared culture and
teaching environments (Malmasi et al., 2013).

Despite some clearcut instances of overuse,9

more research is required to determine the causal
factors. We hope to expand on this in future work
using more data.

9More than half of the Korean scripts contained a
sentence-initial however.

5 Discussion and Conclusion

Using the proposed methodology, we generated
lists of linguistic features overused and underused
by English learners of various L1 backgrounds.
Through an analysis of the top items in these
ranked lists, we demonstrated the high applicabil-
ity of the output by formulating plausible language
transfer hypotheses supported by current evidence.
We also showcased the method’s generalizability
to numerous linguistic feature types.

Our method’s output consists of two ranked lists
of linguistic features: one for overuse and the
other for underuse, something which had not been
addressed by research to date. We also found
Adaptor Grammar collocations to be highly infor-
mative for this task.

This work, an intersection of NLP, Machine
Learning and SLA, illustrates how the various dis-
ciplines can complement each other by bringing
together theoretical, experimental and computa-
tional issues. NLP provides accurate and auto-
mated tagging of large corpora with sophisticated
features not available in corpus linguistics, e.g.
with state-of-the-art dependency parsing. Sophis-
ticated machine learning techniques then enable
the processing of large quantities of data (thou-
sands of times the size of manual studies) in a way
that will let SLA researchers explore a variety of
assumptions and theoretical analyses. And con-
versely, NLP can benefit from the long-term study
and language acquisition insights from SLA.

In terms of NLI, this work is the first attempt to
expand NLI to a broad linguistic interpretation of
the data, including feature underuse. NLI systems
achieve classification accuracies of over 80% on
this 11-class task, leading to theoretical questions
about the features that make them so effective.
This work also has a backwards link in this regard
by providing qualitative evidence about the under-
pinning linguistic theories that make NLI work.
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The work presented here has a number of ap-
plications; chief among them is the development
of tools for SLA researchers. This would enable
them to not just provide new evidence for previ-
ous findings, but to also perform semi-automated
data-driven generation of new and viable hypothe-
ses. This, in turn, can help reduce expert effort and
involvement in the process, particularly as such
studies expand to more corpora and emerging lan-
guage like Chinese (Malmasi and Dras, 2014b)
and Arabic (Malmasi and Dras, 2014a).

The brief analysis included here represents only
a tiny portion of what can be achieved with this
methodology. We included but a few of the thou-
sands of features revealed by this method; prac-
tical SLA tools based on this would have a great
impact on current research.

In addition to language transfer hypotheses,
such systems could also be applied to aid devel-
opment of pedagogical material within a needs-
based and data-driven approach. Once language
use patterns are uncovered, they can be assessed
for teachability and used to create tailored, L1-
specific exercises and teaching material.

From the examples discussed in Section 4 these
could include highly specific and targeted student
exercises to improve spelling, expand vocabulary
and enrich syntactic knowledge — all relative to
their mother tongue. Such exercises can not only
help beginners improve their fundamental skills
and redress their errors but also assist advanced
learners in moving closer to near-nativeness.

The extracted features and their weights could
also be used to build statistical models for gram-
matical error detection (Leacock et al., 2014).
Contrary to the norm of developing error checkers
for native writers, such models could be specifi-
cally targeted towards learners or even particular
L1–L2 pairs which could be useful in Computer-
Assisted Language Learning (CALL) systems.

One limitation here is that our features may
be corpus-dependent as they are all exam essays.
This can be addressed by augmenting the data with
new learner corpora, as they become available.
While a strength here is that we compared each L1
against others, a paired comparison only against
native texts can be insightful too.

There are several directions for future work.
The first relates to clustering the data within the
lists. Our intuition is that there might be coher-
ent clusters of related features, with these clusters

characterising typical errors or idiosyncrasies, that
are predictive of a particular L1. As shown in our
results, some features are highly related and may
be caused by the same underlying transfer phe-
nomena. For example, our list of overused syntac-
tic constructs by Spanish learners includes three
high ranking features related to the same transfer
effect. The use of unsupervised learning meth-
ods such as Bayesian mixture models may be ap-
propriate here. For parse features, tree kernels
could help measure similarity between the trees
and fragments (Collins and Duffy, 2001).

Another avenue is to implement weight-based
ranking methods to further refine and re-rank the
lists, potentially by incorporating the measures
mentioned in Section 2 to assign weights to fea-
tures. As the corpus we used includes learner
proficiency metadata, it may also be possible to
create proficiency-segregated models to find the
features that characterise errors at each language
proficiency level. Finally, the use of other lin-
guistic features such as Context-free Grammar
phrase structure rules or Tree Substitution Gram-
mars could provide additional insights.

In addition to these further technical investiga-
tions, we see as a particularly useful direction the
development of an SLA research tool to conduct a
large SLA study with a wide range of experts. We
believe that this study makes a contribution to this
area and hope that it will motivate future work.
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Abstract

Languages spoken by immigrants change
due to contact with the local languages.
Capturing these changes is problematic for
current language technologies, which are
typically developed for speakers of the
standard dialect only. Even when dialec-
tal variants are available for such technolo-
gies, we still need to predict which di-
alect is being used. In this study, we dis-
tinguish between the immigrant and the
standard dialect of Turkish by focusing on
Light Verb Constructions. We experiment
with a number of grammatical and contex-
tual features, achieving over 84% accuracy
(56% baseline).

1 Introduction

Human languages are in constant evolution, driven
in part by contact with other languages (Uriel,
1953; Thomason, 2008). In immigrant contexts,
bilingual and multilingual speakers act as agents
of change by transmitting borrowed words and ex-
pressions across languages (Grosjean, 2014). De-
pending on social factors such as duration and in-
tensity of contact with the local languages, large-
scale spread of borrowed elements could lead to
differences between the contact and non-contact
dialects of the same language (Winford, 2005).
For example, Spanish spoken by immigrants in
USA sounds different in comparison to Spanish
spoken in South America (Corvalán, 2003).

In this study, we focus on the immigrant di-
alect of Turkish as spoken in the Netherlands
(NL-Turkish), which differs from Turkish spo-
ken in Turkey (TR-Turkish). In contact situa-
tions, it is common for verbs to be borrowed
across languages and integrated as nominal com-
plements of Light Verb Constructions (LVCs) (Ed-
wards and Gardner-Chloros, 2007; Butt, 2010).

NL-Turkish LVCs are changing due to Dutch in-
fluence (Doğruöz and Backus, 2007; Doğruöz and
Backus, 2009; Doğruöz and Gries, 2012). How-
ever, assessing Dutch influence is not always easy
since NL-Turkish LVCs still co-exist with the TR-
Turkish LVCs. This study aims to automatically
identify the features that can distinguish between
NL-Turkish and TR-Turkish LVCs.

Our study would benefit Machine Translation
systems targeting dialectal variation. It differs
from studies concerning the well-established di-
alectal variations of Arabic, e.g., Levantine, Gulf,
Egyptian, Maghrebi (Salloum and Habash, 2012),
EU vs. Brazilian Portuguese (Marujo et al., 2011)
or Turkish vs. Tatar (Altintas and Cicekli, 2002).
In contrast, we are interested in developing lan-
guage technologies for immigrant dialects, which
are often understudied and lack written resources
due to their unofficial status. When immigrant
speakers face communication difficulties (e.g., bu-
reaucratic affairs with the local officials, teacher-
parent meetings, doctor-patient conversations) in
the local languages (e.g., Dutch) of the host coun-
try, they are often provided with translation equiv-
alents in the standard dialect (e.g., TR-Turkish)
of their native languages. However, these trans-
lations ignore the evolution of the immigrant di-
alect.1 By identifying the differences between two
dialects of the same variety, we aim to improve
Machine Translation systems targeting immigrant
speakers. Our contributions are the following:

• We are the first to predict on-going dialect
variation in immigrant contexts as opposed to
studying established dialect variations.

• We are also the first to compare bilingual
LVCs with the monolingual ones across two
dialects of the same language.

1One of the authors failed the driving test in the Nether-
lands due to the dialect variation in the Turkish translation.

1391



• Our comparison of grammatical versus con-
textual features reveals context to be much
more important.

• We experiment with LVCs extracted from
natural spoken data rather than relying on iso-
lated occurences, out of context.

2 Method

We follow Baldwin and Kim (2010) and Butt
(2010) in their definitions of LVCs, which state
that there is a unity between the nominal and the
verbal complements, but the meaning of the verb
is somewhat bleached. In this study, we focus
on Turkish LVCs with the verbal complements of
yapmak/etmek, which both can be translated as
“make/do”. LVCs with these verbal complements
are undergoing change in NL-Turkish (Doğruöz
and Backus, 2009).

We experiment with the following features to
predict NL-Turkish vs. TR-Turkish LVCs.

2.1 Nominal Features
In addition to traditional LVCs (e.g. [ütü yap-
mak] “iron do” (to iron) with both complements
of Turkish origins), there is also foreign influ-
ence on Turkish LVCs. Section 2.1.1 describes
the foreign influence on both NL-Turkish and TR-
Turkish nominal complements based on their ety-
mological origins.

2.1.1 Influence on Nominal Complements
Dutch Influence In example (1), the Dutch verb
overplaats is nominalized through the infinitive
marker (-en) and precedes the Turkish verb yap-
mak to form a Turkish-Dutch bilingual LVC.

Example 1:
O arkadaş [overplaats-en yap-ıl-acak-tı.]

That friend [replace-inf2 do-pass-fut-past].
That friend would have been replaced.

In addition to borrowing nominalized Dutch
verbs to form bilingual LVCs, Dutch LVCs are
also translated as a chunk into NL-Turkish. These
translated LVCs sound unconventional to TR-
Turkish speakers (Doğruöz and Gries, 2012). In
example (2), the LVC [sınav yapmak] “exam do”
is a literal translation of the Dutch [examen doen]
“exam-pl do”, which is used to describe how stu-
dents take high school exams to graduate.

2acc: accusative, fut:future, inf:infinitive, past:past tense,
part: participle, pres: present tense, pl: plural, poss: poss-
esive, prog:progressive tense, sg: singular

In a similar context, TR-Turkish speakers would
have used [sınav-a girmek] “exam enter” instead.
These LVCs are also classified as having their ori-
gins in another language.

Example 2:
Üç gündür [sınav yap-ıyor-uz].

Three day [exam do-prog-1pl].
We are having exams for the last three days.

Other Foreign Influences Although Dutch in-
fluence is clearly present in NL-Turkish LVCs,
TR-Turkish LVCs are also not free of foreign in-
fluence. We have come across Arabic, Persian,
French and English influences on Turkish LVCs
with nominalized foreign verbs or literally trans-
lated LVCs as chunks. Example (3) illustrates how
a borrowed Arabic verb (hitap, “address”) is in-
tegrated as a nominal complement into a Turkish
LVC [hitap etmek] “address do”.

Example 3:
Hoca-m diye [hitap edi-yo-z] biz.
Teacher-poss.1sg like [address do-prog-1pl]

we.
We address (him) as the teacher.

Example (4) illustrates how an English LVC [do
sports] is borrowed into Turkish as a chunk [spor
yapmak] “sports do”.

Example 4:
Yazın [spor yap-ıyo-z].

summer spor do-prog-1pl
We do sports in summer.

We have identified the etymological origins of
LVCs in both corpora using an online etymolog-
ical dictionary.3 Although LVCs of Dutch origin
only occur in NL-Turkish, LVCs borrowed from
other languages (e.g., Arabic, English, French) oc-
cur both in NL-Turkish and in TR-Turkish.

2.1.2 Case Marking
We also came across Turkish [N V] constructions
with “yapmak” and “etmek” where the nominal
complement acts as the object of the verb.

Turkish marks the direct objects with accusative
case marking if they are definite (Enç, 1991). In
example (5), the nominal element is the object of
the verb, and thus it has the accusative marker.

Example 5:
Ben kendi [iş-im-i yap-ıyor-um.]

I own [work-poss.1sg-acc do-prog-1sg].
I do my own work.

3http://www.nisanyansozluk.com/
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However, indefinite objects of the verb are left
unmarked for case. In example (6), yapmak takes
an indefinite object (food) as the complement. The
boundary between [N V] constructions with in-
definite nominal objects and LVCs are somewhat
blurry. In both cases, the meaning of the verbal
complement is bleached out and the nominal com-
plement weighs heavier than the verbal one. We
will not dwell further on this subtle distinction, but
we plan future work on this topic following Cook
et al. (2007) and Vincze et al. (2013).

Example 6:
Bazen [yemek yap-ar-dı-m]

Sometimes [food do-pres-past-1sg]
I used to sometimes prepare food.

Since Dutch does not mark objects of the verb
morphologically, NL-Turkish speakers have diffi-
culty (e.g., unnecessary addition or omission of
case markers) in determining the definiteness of
the nominal complements in [N V] constructions
(Doğruöz and Backus, 2009). Therefore, we ex-
pect this feature to differentiate well between NL-
Turkish and TR-Turkish [N V] constructions and
LVCs with yapmak/etmek as verbal complements.

2.2 Verbal Complements

2.2.1 Finiteness
The verbs in LVCs are assumed to be flexible for
inflection (Baldwin and Kim, 2010). However, we
know little about how fineteness contributes to the
formation of LVCs. To the best of our knowledge,
finiteness has not been tested as a feature for iden-
tifying LVCs earlier. Therefore, we encoded the
finiteness on yapmak/etmek as a binary (yes/no)
feature in both data sets. Example (7) illustrates a
non-finite LVC where the verb stem (et) is accom-
panied with an infinitive marker (-mek).

Example 7:
Misafir-ler-e [ikram et-mek] için al-dı-k

Guest-pl-dat [serve do-inf.] for buy-past-1pl
We bought (it) to serve the guests.

2.2.2 Type
NL-Turkish speakers could use other light verbs
than TR-Turkish speakers for the same LVC con-
struction. In example (8), the NL-Turkish speaker
uses [doğum etmek] “birth do” instead of [doğum
yapmak] “birth do”, which is commonly preferred
by TR-Turkish speakers. To capture this differ-
ence between the two dialects, we include the verb
type as a feature as well.

Example 8:
Orda kadın [doğum et-ti].

There lady [birth do-past].
The lady gave birth there.

2.3 Word Order in LVCs
To the best of our knowledge, the influence of
word order in LVCs has not been investigated as
a feature. Although Turkish has a relatively flexi-
ble constituent order, object-verb (OV) is the most
frequent word order for both NL-Turkish and TR-
Turkish (Doğruöz and Backus, 2007). NL-Turkish
speakers have adopted Dutch word order verb-
object (VO) for some syntactic constructions, but
we know little about the word order variation for
LVCs. Encoding the word order of LVCs as a
binary feature (OV vs. VO) could give us clues
about differences or similarities of LVC use in NL-
Turkish and in TR-Turkish. In example (9), the
nominal complement (one thing) follows the ver-
bal complement instead of preceding it as seen in
earlier examples.

Example 9:
[Yap-acak bir şey] yok.

[Do-part. one thing] exist.not
There is nothing to do.

2.4 Context
So far, most studies were carried out ignoring
the context of LVCs but focusing on their inher-
ent grammatical features (e.g., lexical, syntactic,
semantic or morphological). However, the con-
text of an utterance could potentially provide addi-
tional useful cues. Since our data comes from nat-
ural conversations, we also experimented with the
contextual information (words surrounding LVCs)
as a feature for both data sets.

3 Data
Our data comes from spoken NL-Turkish (46
speakers from the Netherlands, 74,461 words)
and TR-Turkish (22 speakers from Turkey, 28,731
words) corpora collected by one of the authors.
LVC’s are automatically extracted from the data
using their stem forms (“yap-”, “et-” without the
infinitive -mEk). Table 1 illustrates the frequency
of [N V] constructions with etmek and yapmak in
both data sets.

# etmek # yapmak # Total
NL-Turkish 449 543 992
TR-Turkish 527 755 1282

Total 976 1298

Table 1: Distribution of etmek and yapmak.
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4 Experiments
Our aim is to build a classifier that can determine
whether a particular utterance containing an LVC
(with the verbs yapmak or etmek) is uttered by an
NL-Turkish or a TR-Turkish speaker.

We make use the following features in our
classifier: (1) words from the context of the
LVCs, (2) type of the light verb (yapmak or
etmek), (3) the nominal complements, (4) finite-
ness of the verb (finite/non-finite), (5) case
marking on the nominal complement (yes/no),
(6) word order (VO/OV), and (7) etymolog-
ical origins of the nominal complement (Ara-
bic/Dutch/French/English/Persian/Turkish/mixed).

For the contextual features, we experiment with
two models: (a) we distinguish between a word
extracted from the context to the left or to the right
of the verb (yapmak or etmek) in the feature space,
and (b) we do not make a distinction in terms of
context. The reason to experiment with option
(a) is due to the potential importance of the word
order. While the word order variation is already
modeled through feature (6), we also include the
context as an additional feature to test its effect.
On the down side, adding context doubles the fea-
ture space size and could lead to data sparseness
issues. For the context words, we did not filter out
stopwords since they are part of natural speech.

For our experiments, we used an SVM classifier
as implemented in LibSVM. We used a linear ker-
nel; more complex kernels did not help. We report
results for a 5-fold cross-validation.

5 Results
Table 2 illustrates the results of our experiments.
All models outperform the majority class base-
line of always predicting TR-Turkish (which is
56.38% accuracy) by a sizable margin. Further-
more, splitting the context into left/right yields ap-
proximately 1.5% absolute drop in accuracy.

Split the Context?
Features Left vs. Right No Split
Baseline 56.38
Full model 82.81 84.30
no context 70.67
no nominal complements 82.19 83.64
no info about etymol. origin 82.10 83.99
no finiteness 83.03 84.35
no case marking info 82.76 84.43
no word order info 82.89 84.43
no verb type 82.94 84.39

Table 2: Cross-validation accuracy (5 folds).

The lower part of the table shows the results
when turning off each of the feature types. The
context seems to be the most important feature
since its exclusion leads to a drop from low-to-
mid eighties to about 70% accuracy. Except the
nominal complements and the information about
etymological origins, most other features seem to
have marginal impact on accuracy. Excluding the
two features (nominal complements and etymo-
logical origins) lead to approximately 0.5% ab-
solute drop in accuracy. The impact of the last
four features in the table is tiny; excluding some
of them even leads to a tiny improvement.

Overall, we can conclude that by far the most
important features are the context features (with-
out the left/right context split). The other use-
ful features are the nominal complements and the
information about the etymological origin of the
borrowed LVCs. The remaining four linguistic
features seem to be largely irrelevant.

6 Conclusion and Future Work
Language technologies are usually developed for
standard dialects, ignoring the linguistic differ-
ences in other dialects such as those in immigrant
contexts. One of the reasons for this is the dif-
ficulty of assessing and predicting linguistic dif-
ferences across dialects. This is similar to ef-
forts to translate well-established Arabic dialects
(Bakr et al., 2008; Sawaf, 2010), or to adapt be-
tween Brazilian and European Portuguese (Marujo
et al., 2011), Czech–Slovak (Hajič et al., 2000),
Spanish–Portuguese (Nakov and Ng, 2009; Nakov
and Ng, 2012), Turkish–Crimean Tatar (Altintas
and Cicekli, 2002), Irish–Scottish Gaelic (Scan-
nell, 2006), Bulgarian–Macedonian (Nakov and
Tiedemann, 2012), Malay–Indonesian (Wang et
al., 2012) or Mandarin–Cantonese (Zhang, 1998).

In this work, we have built a classifier that uses
LVCs to differentiate between two different Turk-
ish dialects: standard and immigrant. The results
indicate that contextual features are most useful
for this task. Although this requires further inves-
tigation, we can explain it by the thousands of fea-
tures context generates: each contextual word is a
feature. Thus, it is very hard for our grammatical
features to compete against contextual features but
they do have an impact.

We are planning to extend our study to dialects
in other immigrant settings (e.g., Turkish in Ger-
many) and to other types of multiword expressions
(e.g., [N N] compounds).
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Abstract

Readability is used to provide users with high-
quality service in text recommendation or text
visualization. With the increasing use of hand-
held devices, reading device is regarded as
an important factor for readability. There-
fore, this paper investigates the relationship
between readability and reading devices such
as a smart phone, a tablet, and paper. We sug-
gest readability factors that are strongly related
with the readability of a specific device by
showing the correlations between various fac-
tors in each device and human-rated readabil-
ity. Our experimental results show that each
device has its own readability characteristics,
and thus different weights should be imposed
on readability factors according to the device
type. In order to prove the usefulness of the
results, we apply the device-dependent read-
ability to news article recommendation.

1 Introduction

Readability is a function that maps a given text into a
readability score by considering “how easily the text is
read and understood” (Richards et al., 1992; Zamanian
and Heydari, 2012). Normally, the readability score is
formulated as a combination of various factors. These
factors reflect the easiness and understanding of the
text and include text presentation format, font size, av-
erage ratio of annotated images, and sentence length
(Hasegawa et al., 2008; Kitson, 1927; Ma et al., 2012;
Öquist, 2006). Therefore, readability can be used to
provide satisfiable services in text recommendation or
text visualization.

The study on readability has begun in the education
field to measure the level of a text. With the success
of using readability in education (François and Fairon,
2012; Heilman et al., 2008; Ma et al., 2012), read-
ability has been used in a range of domains recently.
For example, in document retrieval, readability is used
to provide documents to non-expert users so that they
can read the retrieved documents easily (Jameel et al.,
2012; Yan et al., 2006). In text mining, readability has
been employed to analyze the characteristics of text.
Especially, Hillbom showed the differences in readabil-

ity between broadsheet newspapers and tabloids that
share a similar political stance (Hillbom, 2009).

There is one important issue of readability that has
not been studied in natural language processing. It is a
reading device. That is, previous studies focused only
on text printed on paper. However, with the increasing
use of hand-held devices, people in these days use var-
ious reading devices such as a tablet and a smart phone
as well as a paper. Readability score can be different
according to the device type, because each device has
its own idiosyncrasy. For example, assume that a sys-
tem recommends the same news article to both user A
who reads it in her smart phone and user B who reads
it on paper. Although both users read the same article,
user A might believe that her article is more difficult to
read than user B because of the screen size of her smart
phone.

This paper explores the relationship between reading
devices and readability. For this purpose, we first inves-
tigate whether readability changes according to device
type or not. Then, we analyze which readability fac-
tors are affected by reading devices. To see the rela-
tionship between readability factors and devices, var-
ious well-known readability factors are computed for
news articles collected from an Internet portal. At the
same time, the readability of each article is also man-
ually rated. When the readability is rated manually, it
is done three times for different reading devices of a
smart phone, a tablet, and paper. The factors that af-
fect the readability actually in each device are found
out through the correlations between the factors and the
manually-labeled readability. Some factors are impor-
tant to the readability of smart phone, but insignificant
to that of paper. Therefore, we discover the importance
of each readability factor for each device by analyzing
the correlations.

The usefulness of the device-dependent readability
is proven by applying it to news article recommenda-
tion. That is, different importance weights for read-
ability factors are considered according to device type
when recommending news articles. Our experimental
results show that the performance of news article rec-
ommendation gets best when the device used for read-
ing news articles is identical to the device used for mea-
suring readability. Therefore, it is essential to consider
different importance weights according to device type
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in news article recommendation. It also proves that
the proposed device-dependent readability reflects the
characteristics of reading devices well.

The rest of this paper is organized as follows. We
first review related studies on readability. Next, we
introduce various readability factors and propose the
device-dependent readability. Then, the news article
recommendation using the device-dependent readabil-
ity is explained. This recommendation is prepared to
prove the usefulness of the device-dependent readabil-
ity. In the experiments, we present the experimental
results on the relationship between reading devices and
readability. We also describe the experiments on news
recommendation using the device-dependent readabil-
ity and present their results. Finally, we summarize our
research.

2 Related work

The history of readability studies began in the 1800s.
Early studies focused on the frequency of easy words,
sentence length, and word length (Huldén, 2004).
Flesch designed a formula to calculate “reading ease”
using only the average word length and sentence length
(Flesch, 1948). He adjusted the relative importance
between word length and sentence length using 100
words selected randomly from a corpus. This formula
is called the Flesch-Kincaid formula, and is generally
used in measuring the readability of a textbook (Kin-
caid et al., 1975). Dale and Chall (1949) defined a list
of 3,000 easy words. Then, they used the average sen-
tence length and the percentage of words not included
in the list. These studies simply used superficial fac-
tors, and thus do not reflect syntactic factors.

Recent studies on readability use various factors in-
cluding syntactic ones, and combine them to produce
a highly predictive model of readability. François and
Faircon (2012) proposed a readability formula with 46
textual factors for French as a foreign language. The
factors represent lexical, syntactic, and semantic char-
acteristics of sentences, and the specificities of French.
They are extracted from 28 French Foreign Language
(FFL) textbooks written for adults learning FFL. On the
other hand, Pitler and Nenkova (2008) showed the rela-
tion between readability factors and readability. They
used human ratings from the Wall Street Journal cor-
pus, and computed the correlations between the read-
ability factors and the average human ratings. Accord-
ing to their results, the average number of verb phrases
in a sentence, the number of words in an article, the
likelihood of the vocabulary, and the likelihood of the
discourse relations are highly correlated with human
ratings. However, these studies did not consider the
reading devices, but focused on how well a text is writ-
ten. Since the readability can be differentiated accord-
ing to reading device, a reading device should be con-
sidered when computing the readability of a given text.

To the best of our knowledge, there are few studies
on the readability on mobile devices that do not con-

sider language-related aspects. Most studies on mobile
devices focused on the development of new text format
and layout to help users read documents easily. Öquist
(2006) proposed a new text presentation format called
the dynamic Rapid Serial Visual Presentation. Accord-
ing to his experimental results, this format helps to re-
duce eye movements. On the other hand, Hasegawa
et al. (2008) evaluated the readability of documents
on mobile devices with regard to screen and font size.
They reported that the readability is improved when the
characters are vertically enlarged. Readability on mo-
bile devices is not reflected only by the visualization
factors, but also by textual factors. Therefore, this pa-
per explores the readability factors that reflect the lexi-
cal and grammatical complexity of text and are affected
by reading devices.

3 Readability Factors
Table 1 lists the readability factors used in this paper.
Basically, they are based on the factors proposed by
Pitler and Nenkova (2008). However, some factors are
excluded and some new factors are added. This is be-
cause some of their factors are computationally infeasi-
ble and language-dependent. As a result, we have thir-
teen readability factors. These readability factors are
divided into four types: superficial, lexical, syntactic
factors, and lexical cohesion.

3.1 Superficial Factors
Superficial factors were used in most early readability
studies (Dale and Chall, 1949; Flesch, 1948; Kincaid et
al., 1975), and reflect the construction of a text. We in-
vestigate four factors: text length (TL), sentence length
(SL), average number of words per sentence (WS), and
average number of characters per word (CW). Since
longer text is perceived as “harder-to-read” than short
one, these factors are all reciprocally related with read-
ability.

The first two factors are related to length. TL counts
the number of characters in a text, whereas SL com-
putes the number of sentences. When a writer attempts
to write many topics in a text, she tends to use many
kinds of words simultaneously. As a result, the text be-
comes longer and more complex. Such long length of
text disturbs a reader’s comprehension of the text, and
then it is more difficult for the reader to read the text
(Heilman et al., 2008).
WS counts the average number of words per sen-

tence, and CW reflects the average number of characters
per word. When they are large, the sentence is diffi-
cult to read, which leads to difficulties in understanding
the text. Especially, CW reflects compound nouns and
technical words. For instance, compound nouns in Ko-
rean are usually long, because there is no spacing be-
tween words in a compound noun. For example, let us
consider a compound noun, “Daehanmingukjungboo,”
which means the Korean government. Actually this
compound noun consists of two independent nouns.
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Type of Factors Abbr. Description

Superficial factors

TL The number of characters in a text
SL The number of sentences in a text
WS Average number of words per sentence
CW Average number of characters per word

Lexical factor LL Article likelihood estimated by language model

Syntactic factors

PTD Average parse tree depths per sentence
NP Average number of noun phrases per sentence
VP Average number of verb phrases per sentence

SBAR Average number of subordinate clauses per sentence

Lexical cohesion

COS Average cosine similarity between pairs of adjacent sentences
WO Average word overlap between pairs of adjacent sentences
NPO Average word overlap over noun and pronoun only
PRP Average number of pronouns per sentence

Table 1: Description of readability factors

One is “Daehanminguk” meaning Korea and the other
is “Jungboo” meaning a government. The two are con-
catenated to form a compound noun and become a long
single word. In addition, many difficult words such as
domain-specific terms tend to be long. Such lengthy
words make it difficult to read a text.

3.2 Lexical Factor

Lexical factor determines whether a given text con-
sists of frequent words. Texts that express a new trend
in various fields often use many newly coined words.
Such neologisms make it difficult to read and under-
stand a text. Therefore, an easily-understandable text
is composed of widely-used words rather than unusual
words.

In order to compute the use of frequent words in a
text, a unigram language model is used as in the work
of Pitler and Nenkova (2008). In this model, the log
likelihood of text t is computed by∑

w∈t

C(w) · logP (w|B). (1)

where P (w|B) is the probability of a wordw according
to a background corpus B, and C(w) is the number of
times that w appears in t.

This factor examines the familiarity of the words
used in the text. The more frequently a word appears
in the background corpus, the more familiar it is re-
garded. The frequency of a word w is then reflected
into P (w|B) computed from the independent back-
ground corpusB. Therefore, the factor LL is positively
related with readability.

3.3 Syntactic Factors

Syntactic factors reflect sentence complexity directly
that affects human processing of a sentence. We con-
sider the average parse tree depth per sentence (PTD),
the average number of noun phrases per sentence (NP),
the average number of verb phrases per sentence (VP),
and the average number of subordinate clauses per sen-

tence (SBAR) as syntactic factors. These four factors
were defined by Schwarm and Ostendorf (2005).

A reader regards a text as difficult when the sen-
tences in the text have large parse tree depths or many
subordinate clauses. Thus, PTD and SBAR are related
negatively with readability. On the other hand, the re-
lationship of NP and VP to readability are not one way.
The large number of noun phrases in a text requires
a reader to remember more items (Barzilay and Lap-
ata, 2008; Pitler and Nenkova, 2008). However, it also
makes the text more interesting. The texts written for
adults actually contain more entities than those writ-
ten for children (Barzilay and Lapata, 2008). The same
is true for VP. The large number of verb phrases in a
sentence makes the sentence more complex. However,
people feel that a text is more easier to comprehend
when related clauses are grouped together (Bailin and
Grafstein, 2001).

3.4 Lexical Cohesion
Lexical cohesion denotes how the sentences in a text
are semantically connected. People usually bring con-
tinuous sentences into their mind at the same time, and
interpret them as a single unit (Okazaki et al., 2005). In
other words, a reader prefers text whose sentences are
smoothly connected to text whose sentences are inde-
pendent of one another. Therefore, sentence continuity
plays a primary role in understanding an entire text.

In the classic study of cohesion, various uses of
cohesive elements such as pronouns, definite articles,
and topic continuity have been discussed (Halliday and
Hasan, 1976). This paper uses the average cosine sim-
ilarity (COS), word overlap (WO), word overlap over
just nouns and pronouns (NPO) between pairs of adja-
cent sentences, and the average number of pronouns per
sentence (PRP). COS, WO, and NPO are superficial mea-
sures of topic continuity, whereas PRP is an indicative
feature of sentence continuity. High values for these
factors imply that the sentences in the text are related
somehow. Therefore, these factors are believed to be
related positively with readability.
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3.5 Measurement of Readability
When a reading device d is given, the readability of
text t, represented as R(t|d), is formulated as a com-
bination of readability factors with their corresponding
weight in the device. We assume that wi|d, the weight
of a readability factor fi, is dependent on the reading
device d. Following the previous work of Pitler and
Nenkova (2008), we also assume that each readabil-
ity factor affects readability independently. Therefore,
readability is calculated as a weighted linear sum of all
readability factors. That is, R(t|d) is computed by

R(t|d) =
∑

i∈{1,2,...,M}
wi|d · fi(t) (2)

where M is the number of readability factors.
Each weight wi|d is determined from a set of news

articles T . We collected a large number of news arti-
cles from an Internet news portal. The readability of
each article was manually labeled. This is done three
times, since we have three different devices of a smart
phone, a tablet, and paper. Since human rating of each
article t ∈ T is available for each device, wi|d’s can
be estimated by linear regression. These weights are
different according to the devices.

4 News Article Recommendation by
Device-Dependent Readability

The fact that the weightswi|d in Equation (2) are differ-
ent for each device d implies that the readability mea-
surement should be different depending on the device
type. In order to see the usefulness of this device-
dependent readability, we apply it to news article rec-
ommendation. News article recommendation aims to
provide a user with news articles that interest the user.
Thus, it selects a few articles that meet user preference
from a gigantic amount of news events. Various meth-
ods have reported notable results in news article rec-
ommendation (Das et al., 2007; Li et al., 2010; Liu et
al., 2010). In addition, with the recent interest in hand-
held devices, the demand for news recommendation on
hand-held devices is increasing. However, there has
been, at least as far as we know, no study on the read-
ability of hand-held devices.

Device-dependent readability is reflected into news
article recommendation through a re-ranking frame-
work. Figure 1 depicts the overall process of suggest-
ing news articles for a specific device with the device-
dependent readability. The point of this figure is to
measure how appropriate a news article is for a spe-
cific reading device. For this, a news recommendation
system first chooses a set of news articles from a news
repository based on its own criterion. Then, we re-rank
them by the device-dependent readability to obtain the
final set of ranked news articles for the device.

Formally, a news article recommendation ranks a set
of articles, A = {a1, a2, ..., am}, where ai represents
the i-th article. The order between ranks a1 � a2 �

Min Max Average
Article length 68 610 346.5
# of sentences 1 14 6.24

# of words per sentence 8 33 16.93
# of words per article 17 178 99.34

Table 2: Statistics of the news article data

... � am should be satisfied by the criterion of the
recommendation system. That is, assuming that the
system has a score function score(ai), score(ai) >
score(aj) has to be met if ai � aj . Then, the top
k(k ≤ m) articles of A by the score function are sug-
gested as appropriate news articles. After that, the se-
lected articles are re-ranked by another criterion, the
device-dependent readability. That is, the final rank of
an article within the selected set is determined by an-
other function, rerank. Since this function has to re-
flect the device-dependent readability, it takes two pa-
rameters. One is an article, and the other is a device
type. The re-rank function is modeled as

rerank(a, d) = R(a|d)
=

∑
i∈{1,2,...,M}

wi|d · fi(a). (3)

As a result, the readability-based re-ranking module
suggests the news articles based on how easily the ar-
ticles are read on a specific reading device. Note that
even the same article would be ranked differently ac-
cording to the device type because the article is re-
ranked by the device-dependent readability. At last, the
top k∗(k∗ ≤ k) re-ranked articles among them are sug-
gested as final news articles.

5 Experiments

5.1 Experiments on Readability Factors
5.1.1 Experiment Settings
For the experiments of analyzing relationship between
readability factors and readability, we collected a Ko-
rean news corpus from Naver News1. This corpus con-
tains news articles from June 10, 2013 to June 25,
2013. We selected 74 articles randomly from the cor-
pus which were used for readability formula and show-
ing the relationships between readability factors. All
selected articles belong to one of three categories: ‘Pol-
itics’, ‘Entertainment’, and ‘Sports’. A set of these 74
news articles becomes T , and is used to compute the
weights in Equation (2). Table 2 describes a simple
statistics of the selected news articles. The shortest ar-
ticle consists of 68 characters, whereas the longest one
has 610 characters. The average length of article is
346.5. The shortest article is written in one sentence,
and the longest has 14 sentences. One article has ap-
proximately 6.24 sentences on average. In addition, the

1A Korean news portal of which web address is
http://news.naver.com.
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Figure 1: Overall process of re-ranking news articles based on device-dependent readability

number of words per sentence ranges from 8 to 33, and
the average is 16.93. The minimum number of words
in an article is 17, and the maximum number of words
is 178. An article is composed of 99.34 words on aver-
age.

In order to compute the lexical factor LL by Equa-
tion (1), a background corpus B is required. Since this
corpus should be independent from the news articles
explained above, the Naver News is adopted again to
generate B. For the background corpus B, we col-
lected news articles from January 1, 2013 to September
6, 2013, but excluded the articles from June 10 to June
25, because they are already used. This corpus consists
of 298,729 articles with 3,264,104 distinct words.

The readability score for each article was manually
labeled by three undergraduate students. To investigate
the relationship between reading devices and readabil-
ity, each article was read using three different reading
devices. The Galaxy Note 1 with a 5-inch screen is
used as the smart phone, Galaxy Tab 10.1 with a 10.1-
inch screen is used as the tablet, and A4-size paper
is used for the paper. That is, the human annotators
read and rated 74 articles per device. The order of the
devices where the annotators evaluated readability is
smart phone, tablet, and paper. This order was main-
tained for all the experiments. All aspects but content
texts were under control. For instance, font = “Gothic,
12 pt” (this is most commonly used font and size that
most Korean web pages and textbooks use), font color
= “black”, alignment = “both” were used for all three
devices. In addition, the non-content aspects were ex-
actly same for devices because the annotators of read-
ability and the recommended articles shared the read-
ing devices. Although these aspects affect readability
and many previous studies already proved it, it is not
our concern. We only attempt to capture how read-

Reading device Min Max Average
Smart phone 1.67 5 3.423 ± 0.741

Tablet 1.33 5 3.531 ± 0.837
Paper 2 5 3.360 ± 0.594

Table 3: Readability scores given by human annotators

ability is affected by the content in different types of
devices.

Human annotators can remember the content of
news articles when they read articles with three de-
vices. The human annotators were asked to read and
evaluate many articles within a relatively short period.
Therefore, before the main experiments, we performed
a pilot experiment on the memory effects of previously
read articles and verified it empirically. We hired three
undergraduate students who were not involved in our
main experiments. The students read the same 250 ar-
ticles four times, and these also come from Naver News
corpus which are not included the previous 74 articles.
After their first reading, they read the articles again in
3, 7, and 14 days later. After 3 days, two students re-
membered the articles somewhat, but one student re-
membered them vaguely. Since they almost forgot the
articles after 7 days, we placed 7 days interval between
devices.

The readability score of an article was rated by the
annotators using the questions in the work of Pitler and
Nenkova (2008). We use only two of the questions,
while they used four questions for the annotators. Their
questions are intended to measure the extent of how
well a text is written, how it fits together, how easy
it is to understand, and how interesting it is. We can
consider “well-written” and “fit-together” as a syntac-
tic perspective, whereas “easy to understand” and “in-
teresting” belong to a content perspective. For such a
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Smart phone Tablet Paper
Factor Value Factor Value Factor Value
SL -0.394 SL -0.370 NP 0.298
TL -0.293 WS 0.321 WS 0.278
WS 0.288 LL 0.253 LL 0.268
LL 0.249 NP 0.240 VP 0.244

Table 4: Pearson correlation coefficients of important
readability factors

reason, four questions can be summarized in two ques-
tions. The two questions used are

• How well-written is this article?

• How interesting is this article?

For these two questions, each annotator assigns a score
between 1 and 5 to each article. Here, 1 point means
that the article is worst and 5 point implies that it is
best. A readability score of one human annotator is
composed with the average of two questions (well-
written, interesting). We used the average of three hu-
man annotators’ readability scores in our experiments.
Table 3 shows the readability scores of the articles for
each device. According to this table, the readability
score ranges from 1.67 to 5 for the smart phone, 1.33
to 5 for the tablet, and ranges from 2 to 5 for the paper.
The average readability is 3.423 for the smart phone,
3.531 for the tablet, and 3.360 for the paper. To see
the inter-judge agreement among annotators, the Kappa
coefficient (Fleiss, 1971) is used. The Kappa values
for the ‘smart phone’, ‘tablet’, and ‘paper’ are 0.342,
0.333, and 0.361, respectively. All these values corre-
spond to fair agreement.

5.1.2 Experimental Results
In order to see the importance of each factor in a spe-
cific device, we adopt the Pearson correlation coeffi-
cients between readability factors and reading devices.
Table 4 lists the four most important factors in each
device and their Pearson correlation coefficients. Espe-
cially, p-value is smaller than 0.05 for all factors in this
table.

For the smart phone, SL, the number of sentences in
a text, is the most important readability factor. Its cor-
relation with the smart phone is -0.394. TL, the number
of characters, is the second important factor and has a
negative correlation of -0.293. These results imply that
readers are negatively sensitive to the length of an arti-
cle because of the small display size of a smart phone.
That is, in the smart phone, longer articles are recog-
nized as difficult to read compared to shorter ones. The
number of words per sentence, WS, is the third impor-
tant factor with correlation of 0.288. The log-likelihood
of an article, LL, is also positively related with the read-
ability, which proves that widely-used words make it
easy to understand an article. The top three factors are
superficial with regard to text length. Therefore, the su-
perficial factors are more important than other types of
factors for the smart phone.

SL is the most critical readability factor even for the
tablet. It affects readability with high correlation of -
0.370. The second important factor is WS with correla-
tion of 0.321. Both of these factors are superfical. The
third important factor, LL, is positively related with
readability as expected. The fourth factor that affects
readability is the number of noun phrases, NP. It is nat-
ural for NP to be positively related with the readability.

Finally, for the paper, NP is most strongly related to
readability with correlation of 0.298. The second im-
portant factor is WS, whose correlation is 0.278. LL is
the third important factor and shows a positive relation-
ship. Note that WS and LL are important readability
factors for all devices. The next important readabil-
ity factor for the paper is the average number of verb
phrases (VP). The articles with many noun phrases and
verb phrases are perceived as easier-to-read for the pa-
per. Note that the importance of superficial factors is
limited for the paper. We expected that WS is negatively
related, but, it is positively related with readability for
all three devices. The reason for this could be that the
annotators thought the articles with higher WS are more
interesting.

The important factors for the smart phone are differ-
ent from those for the paper. On the other hand, the
tablet shares many factors with both the smart phone
and the paper. Because the screen size of a tablet is
similar to the size of an A4 paper, the tablet and the pa-
per share readability factors. However, length-related
factors play a more important role than syntactic fac-
tors in the smart phone because a smart phone has a
smaller screen.

5.2 Experiments on News Recommendation
5.2.1 Experiment Settings
Experiments for news article recommendation were
performed to see the effectiveness of device-dependent
readability. The process of news recommendation with
device-dependent readability is as follows. For a spe-
cific device,

1. Select top-k news articles from a news repository
by the criterion of the recommendation system.

2. Re-rank the k articles by the readability of the de-
vice using Equation (3).

3. Select top-k∗ news articles by the new rank.

4. Human annotators read and rate the k∗ articles
with the device.

5. Compare the ranks of k∗ articles by device-
dependent readability with those by human rat-
ings.

Since we have three types of devices, this process is
performed three times with a different device.

The news articles from September 10, 2013 to
September 12, 2013 collected from Naver News were
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Min Max Average
Article length 277 6,077 990.68
# of sentences 4 199 22.85

# of words per sentence 4 100 15.73
# of words per article 71 2,034 301.61

Table 5: Statistics of news data for recommendation

Reading device Min Max Average
Smart phone 1 5 3.513 ± 0.962

Tablet 1 5 3.344 ± 0.852
Paper 1 5 3.250 ± 0.907

Table 6: Scores of news articles by human annotators
in news recommendation

used as the news repository. The number of times that
a news article was actually read by its anonymous read-
ers at the portal site is used as the criterion for the rec-
ommendation system. Since this criterion is provided
on a daily basis and news articles were collected for
three days, the process explained above is performed
three times. The top twenty articles were selected by
the criterion every day. That is, k = 20. Table 5 shows
the statistics of the total 60 articles. The shortest arti-
cle consists of 277 characters, and the longest article
has 6,077 characters. On average, an article is writ-
ten with 990.68 characters. The minimum number of
sentences in an article is 4, and the maximum number
of sentences is 199. An article is composed of 22.85
sentences on average. The average number of words in
a sentence is 15.73, whereas a sentence length ranges
from 4 to 100 words. The shortest article has 71 words,
and the longest article has 2,034 words. One article has
approximately 301.61 words on average.

Three human annotators labeled the scores of the
news articles manually. The annotators were the same
persons who labeled the readability scores. Similar to
the previous experiments, 7 days intervals was placed
among devices to reduce the memory effect. The same
two questions used in the previous section were used
again for this experiment. The annotators assigned a
score between 1 and 5 to every article for each ques-
tion. The final score of an article was obtained by aver-
aging six scores (two questions from three annotators).
Table 6 summarizes the scores of the articles by the
human annotators. As shown in this table, the article
scores vary for all reading devices. The average scores
for smart phone, tablet, and paper are 3.513, 3.344,
and 3.250 respectively. The Kappa value for the ‘smart
phone’ is 0.402, and that for both the ‘tablet’ and the
‘paper’ is 0.393. Thus, the value of ‘smart phone’ falls
into moderate agreement, whereas those of the ‘tablet’
and ‘paper’ correspond to fair agreement. The perfor-
mance of the news article recommendation is evaluated
with the Normalized Discounted Cumulative Gain at
top P (NDCG@P ) (Järvelin and Kekäläinen, 2002).

Figure 2: NDCG@k∗ scores with various k∗ for the
smart phone.

Figure 3: NDCG@k∗ scores with various k∗ for the
tablet.

5.2.2 Experimental Results
For the a baseline criterion, we use the news article
recommendation system in Naver, which recommends
news article by the number of article hits. Figures 2 to 4
show the NDCG@k∗ scores with 1 ≤ k∗ ≤ 10 for the
three devices. Each graph in these figures compares the
performance of various devices when the readability
for a specific device is used. That is, Figure 2 depicts
the NDCG@k∗ scores for the recommended news arti-
cles when the articles are shown in the smart phone, the
tablet, and the paper respectively. In computing their
NDCG@k∗ scores, the news articles are re-ranked by
readability for the smart phone. Therefore, in this fig-
ure we expect that the NDCG@k∗ score for using the
smart phone is higher than those for using the tablet and
paper. In the same way, Figure 3 and Figure 4 compare
the NDCG@k∗ scores when the readabilities for the
tablet and paper are used.

In all three graphs, the best news recommendation
performance is achieved when the device used to read
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Figure 4: NDCG@k∗ scores with various k∗ for the
paper.

news articles is the same as the device used for read-
ability. In Figure 2, the use of the smart phone outper-
forms those of other devices when k∗ ≥ 6. This proves
that the quality of highly ranked news articles is much
better for the smart phone than for other devices, when
the readability for smart phone is used.

Figure 3 shows the NDCG@k∗ scores for using var-
ious devices when the news articles are re-ranked by
readability for the tablet. In this figure, the use of
the tablet as a reading device is better than using the
smart phone or the paper. The performance difference
is largest at k∗ = 3. The difference becomes smaller
as k∗ increases up to 10, but the performance of tablet
is still higher than those of others. In Figure 2 and 3,
when k∗ = 1, the baseline outperforms other devices.
We believe this happens because the baseline chooses
news articles by user-hit. Therefore, many articles rec-
ommended by the baseline are interesting because peo-
ple tend to click more often when an article is inter-
esting. As noted, readability reflects users’ interests,
which leads to high performance of the baseline. The
performance of paper is best in Figure 4, since the ar-
ticles are re-ranked by the readability for paper. Paper
outperforms all other devices for all k∗s. Note that the
performances of the baseline are always lowest regard-
less of reading device.

From all results above, we can infer that the use of
device-dependent readability is helpful to news article
recommendation. This is because the readability fac-
tors that affect the readers of news articles are different
according to the reading device. Therefore, it is im-
portant to reflect the characteristics of a reading device
when recommending news articles.

6 Conclusion

In this paper, we have proposed a device-dependent
readability. Since a reading device is one of the most
important features of readability, different weights have

been assigned to the readability factors according to de-
vice type. We have shown that the important readabil-
ity factors are distinct according to the reading device
by investigating the correlation between the readability
factors and the reading device. Through the correlation,
we found that tablet shares many important factors with
both smart phone and paper.

The experiments on the news articles collected from
an Internet portal proved that readability is actually af-
fected by the reading device. In addition, the validity of
the device-dependent readability was shown by apply-
ing it to the news article recommendation. The news
articles were first ranked by the criterion of the recom-
mendation system. Then, they were re-ranked by the
device-dependent readability. Our experiments showed
that the recommendation performance of the re-ranked
articles gets best when the device used for readability is
the same as the reading device. These two types of ex-
periments proved the importance and effectiveness of
the device-dependent readability.
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Måns Huldén. 2004. Linguistic complexity in
two major american newspapers and the associated
press newswire, 1900–2000. Master’s thesis, Åbo
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mulated gain-based evaluation of IR techniques.
ACM Transactions on Information Systems (TOIS),
20(4):422–446.

J. Peter Kincaid, Robert Fishburne Jr., Richard Rogers,
and Brad Chissom. 1975. Derivation of new read-
ability formulas (automated readability index, fog
count and flesch reading ease formula) for navy en-
listed personnel. Technical report, DTIC Document.

Harry Kitson. 1927. The mind of the buyer. MacMil-
lan Company.

Lihong Li, Wei Chu, John Langford, and Robert E.
Schapire. 2010. A contextual-bandit approach to
personalized news article recommendation. In Pro-
ceedings of the 19th International Conference on
World Wide Web, pages 661–670.

Jiahui Liu, Peter Dolan, and Elin R. Pedersen. 2010.
Personalized news recommendation based on click
behavior. In Proceedings of the 15th International
Conference on Intelligent User Interfaces, pages 31–
40.

Yi Ma, Eric Fosler-Lussier, and Robert Lofthus. 2012.
Ranking-based readability assessment for early pri-
mary children’s literature. In Proceedings of the
2012 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 548–552.

Naoaki Okazaki, Yutaka Matsuo, and Mitsuru
Ishizuka. 2005. Improving chronological ordering
of sentences extracted from multiple newspaper ar-
ticles. ACM Transactions on Asian Language Infor-
mation Processing (TALIP), 4(3):321–339.
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Abstract

We propose a new Chinese abbreviation
prediction method which can incorporate
rich local information while generating the
abbreviation globally. Different to previ-
ous character tagging methods, we intro-
duce the minimum semantic unit, which is
more fine-grained than character but more
coarse-grained than word, to capture word
level information in the sequence labeling
framework. To solve the “character dupli-
cation” problem in Chinese abbreviation
prediction, we also use a substring tagging
strategy to generate local substring tagging
candidates. We use an integer linear pro-
gramming (ILP) formulation with various
constraints to globally decode the final ab-
breviation from the generated candidates.
Experiments show that our method outper-
forms the state-of-the-art systems, without
using any extra resource.

1 Introduction

Abbreviation is defined as a shortened description
of the original fully expanded form. For example,
“NLP” is the abbreviation for the corresponding
full form “Natural Language Processing”. The ex-
istence of abbreviations makes it difficult to iden-
tify the terms conveying the same concept in the
information retrieval (IR) systems and machine
translation (MT) systems. Therefore, it is impor-
tant to maintain a dictionary of the prevalent orig-
inal full forms and the corresponding abbrevia-
tions.

Previous works on Chinese abbreviation gen-
eration focus on the sequence labeling method,
which give each character in the full form an extra
label to indicate whether it is kept in the abbre-
viation. One drawback of the character tagging
strategy is that Chinese characters only contain

limited amount of information. Using character-
based method alone is not enough for Chinese ab-
breviation generation. Intuitively we can think of a
word as the basic tagging unit to incorporate more
information. However, if the basic tagging unit
is word, we need to design lots of tags to repre-
sent which characters are kept for each unit. For a
word with n characters, we should design at least
2n labels to cover all possible situations. This re-
duces the generalization ability of the proposed
model. Besides, the Chinese word segmentation
errors may also hurt the performance. Therefore
we propose the idea of “Minimum Semantic Unit”
(MSU) which is the minimum semantic unit in
Chinese language. Some of the MSUs are words,
while others are more fine-grained than words.
The task of selecting representative characters in
the full form can be further broken down into se-
lecting representative characters in the MSUs. We
model this using the MSU-based tagging method,
which can both utilize semantic information while
keeping the tag set small.

Meanwhile, the sequence labeling method per-
forms badly when the “character duplication” phe-
nomenon exists. Many Chinese long phrases con-
tain duplicated characters, which we refer to as
the “character duplication” phenomenon. There is
no sound criterion for the character tagging mod-
els to decide which of the duplicated character
should be kept in the abbreviation and which one
to be skipped. An example is “北京航空航天大
学”(Beijing University of Aeronautics and Astro-
nautics) whose abbreviation is “北航”. The char-
acter “航” appears twice in the full form and only
one is kept in the abbreviation. In these cases, we
can break the long phase into local substrings. We
can find the representative characters in the sub-
strings instead of the long full form and let the de-
coding phase to integrate useful information glob-
ally. We utilize this sub-string based approach and
obtain this local tagging information by labeling
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on the sub-string of the full character sequence.
Given the MSU-based and substring-based

methods mentioned above, we can get a list of
potential abbreviation candidates. Some of these
candidates may not agree on keeping or skipping
of some specific characters. To integrate their ad-
vantages while considering the consistency, we
further propose a global decoding strategy using
Integer Linear Programming(ILP). The constraints
in ILP can naturally incorporate ‘non-local’ infor-
mation in contrast to probabilistic constraints that
are estimated from training examples. We can also
use linguistic constraints like “adjacent identical
characters is not allowed” to decode the correct
abbreviation in examples like the previous “北航”
example.

Experiments show that our Chinese abbrevia-
tion prediction system outperforms the state-of-
the-art systems. In order to reduce the size of
the search space, we further propose pruning con-
straints that are learnt from the training corpus.
Experiment shows that the average number of con-
straints is reduced by about 30%, while the top-1
accuracy is not affected.

The paper is structured as follows. Section 1
gives the introduction. In section 2 we describe
our method, including the MSUs, the substring-
based tagging strategy and the ILP decoding pro-
cess. Experiments are described in section 3. We
also give a detailed analysis of the results in sec-
tion 3. In section 4 related works are introduced,
and the paper is concluded in the last section.

2 System Architecture

2.1 Chinese Abbreviation Prediction
Chinese abbreviations are generated by selecting
representative characters from the full forms. For
example, the abbreviation of “北京大学” (Peking
University) is “北大” which is generated by se-
lecting the first and third characters, see TABLE

1. This can be tackled from the sequence labeling
point of view.

Full form 北 京 大 学

Status Keep Skip Keep Skip
Result 北 大

Table 1: The abbreviation “北大” of the full form
“北京大学” (Peking University)

From TABLE 1 we can see that Chinese abbre-
viation prediction is a problem of selecting repre-

sentative characters from the original full form1.
Based on this assumption, previous works mainly
focus on this character tagging schema. In these
methods, the basic tagging unit is the Chinese
character. Each character in the full form is la-
beled as ‘K’ or ‘S’, where ‘K’ means the current
character should be kept in abbreviation and ‘S’
means the current character should be skipped.

However, a Chinese character can only contain
limited amount of information. Using character-
based method alone is not enough for Chinese
abbreviation generation. We introduce an MSU-
based method, which models the process of se-
lecting representative characters given local MSU
information.

2.2 MSU Based Tagging

2.2.1 Minimum Semantic Unit

Because using the character-based method is not
enough for Chinese abbreviation generation, we
may think of word as the basic tagging unit to in-
corporate more information intuitively. In English,
the abbreviations (similar to acronyms) are usually
formed by concatenating initial letters or parts of a
series of words. In other words, English abbrevia-
tion generation is based on words in the full form.
However, in Chinese, word is not the most suit-
able abbreviating unit. Firstly, there is no natural
boundary between Chinese words. Errors from the
Chinese word segmentation tools will accumulate
to harm the performance of abbreviation predic-
tion. Second, it is hard to design a reasonable tag
set when the length of a possible Chinese word is
very long. The second column of TABLE 2 shows
different ways of selecting representative charac-
ters of Chinese words with length 3. For a Chi-
nese compound word with 3 characters, there are 6
possible ways to select characters. In this case we
should have at least 6 kinds of tags to cover all pos-
sible situations. The case is even worse for words
with more complicated structures. A suitable ab-
breviating unit should be smaller than word.

We propose the “Minimum Semantic Unit
(MSU)” as the basic tagging unit. We define MSU
as follows:

1. A word whose length is less or equal to 2 is
an MSU.

1A small portion of Chinese abbreviations are not gener-
ated from the full form. For example, the abbreviation of “山
东”(Shan Dong Province) is “鲁”. However, we can use a
look-up table to get this kind of abbreviations.
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Full form SK Label MSUs
幼儿园(nursery) 幼/K儿/S园/S 幼儿+园
补贴费(allowance) 补/S贴/K费/S 补贴+费
信用卡(Credit card) 信/S用/S卡/K 信用+卡

水电站(Hydropower Station) 水/K电/K站/S 水+电+站
参议院(Senate) 参/K议/S院/K 参+议+院

音乐团(Music group) 音/S乐/K团/K 音乐+团

Table 2: Representing characters of Chinese words with length 3 (K for keep and S for skip) and the
corresponding MSUs

2. A word whose length is larger than 2, but
does not contain any MSUs with length equal
to 2. For example, “火车站”(Railway Sta-
tion) is not an MSU because the first two
characters “火车”(Train) can form an MSU.

By this definition, all 6 strings in TABLE 2 are
often thought as a word, but they are not MSUs
in our view. Their corresponding MSU forms are
shown in TABLE 2.

We collect all the MSUs from the benchmark
datasets provided by the second International Chi-
nese Word Segmentation Bakeoff2. We choose the
Peking University (PKU) data because it is more
fine-grained than all other corpora. Suppose we
represent the segmented data as L (In our case L
is the PKU word segmentation data), the MSU se-
lecting algorithm is shown in TABLE 3.

For a given full form, we first segment it us-
ing a standard word segmenter to get a coarse-
grained segmentation result. Here we use the Stan-
ford Chinese Word Segmenter 3. Then we use the
MSU set to segment each word using the strategy
of “Maximum Forward Matching”4 to get the fine-
grained MSU segmentation result.

2.2.2 Labeling strategy
For MSU-based tagging, we use a labeling method
which uses four tags, “KSFL”. “K” stands for
“Keep the whole unit”, “S” stands for “Skip the
whole unit”, “F” stands for “keep the First charac-
ter of the unit”, and Label “L” stands for “keep the
Last character of the unit”. An example is shown
in TABLE 4.

The “KSFL” tag set is also applicable for MSUs
whose length is greater than 2 (an example is “巧
克力/chocolate”). By examining the corpus we
find that such MSUs are either kept of skipped in

2http://www.sighan.org/bakeoff2005/
3http://nlp.stanford.edu/software/

segmenter.shtml
4In Chinese, “Forward” means from left to right.

“国家语言文字工作委员会” (The ab-
breviation is “国家语委”)
KSFL 国家/K 语言/F 文字/S 工作/S 委

员/F会/S

Table 4: The abbreviation “国家语委” of “国家语
言文字工作会” (National Linguistics Work Com-
mittee) based on MSU tagging.

the final abbreviations. Therefore, the labels of
these long MSUs are either ‘K’ or ‘S’. Empirically,
this assumption holds for MSUs, but does not hold
for words5.

2.2.3 Feature templates
The feature templates we use are as follows. See
TABLE 5.

1. Word Xi (−2 ≤ i ≤ 2)
2. POS tag of word Xi (−2 ≤ i ≤ 2)
3. Word Bigrams (Xi, Xi+1) (−2 ≤ i ≤ 1)
4. Type of word Xi (−2 ≤ i ≤ 2)
5. Length of word Xi (−2 ≤ i ≤ 2)

Table 5: Feature templates for unit tagging. X
represents the MSU sequence of the full form. Xi

represents the ith MSU in the sequence.

Templates 1, 2 and 3 express word uni-grams
and bi-grams. In MSU-based tagging, we can uti-
lize the POS information, which we get from the
Stanford Chinese POS Tagger6. In template 4, the
type of word refers to whether it is a number, an
English word or a Chinese word. Because the ba-
sic tagging unit is MSU, which carries word infor-
mation, we can use many features that are infeasi-
ble in character-based tagging.

5In table 2, all examples are partly kept.
6http://nlp.stanford.edu/software/

tagger.shtml
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Init:
Let MSUSet = empty set
For each word w in L:

If Length(w) ≤ 2
Add w to MSUSet

End if
End for
For each word w in L:

If Length(w) > 2 and no word x in MSUSet is a substring of w
Add w to MSUSet

End if
End for
Return MSUSet

Table 3: Algorithm for collecting MSUs from the PKU corpus

2.2.4 Sequence Labeling Model

The MSU-based method gives each MSU an ex-
tra indicative label. Therefore any sequence label-
ing model is appropriate for the method. Previous
works showed that Conditional Random Fields
(CRFs) can outperform other sequence labeling
models like MEMMs in abbreviation generation
tasks (Sun et al., 2009; Tsuruoka et al., 2005). For
this reason we choose CRFs model in our system.

For a given full form’s MSU list, many can-
didate abbreviations are generated by choosing
the k-best results of the CRFs. We can use the
forward-backward algorithm to calculate the prob-
ability of a specified tagging result. To reduce the
searching complexity in the ILP decoding process,
we delete those candidate tagged sequences with
low probability.

2.3 Substring Based Tagging

As mentioned in the introduction, the sequence
labeling method, no matter character-based or
MSU-based, perform badly when the “character
duplication” phenomenon exists. When the full
form contains duplicated characters, there is no
sound criterion for the sequence tagging strategy
to decide which of the duplicated character should
be kept in the abbreviation and which one to be
skipped. On the other hand, we can tag the sub-
strings of the full form to find the local represen-
tative characters in the substrings of the long full
form. Therefore, we propose the sub-string based
approach to given labeling results on sub-strings.
These results can be integrated into a more accu-
rate result using ILP constraints, which we will de-
scribe in the next section.

Another reason for using the sub-string based
methods is that long full forms contain more char-
acters and are much easier to make mistakes dur-
ing the sequence labeling phase. Zhang et al.
(2012) shows that if the full form contains less
than 5 characters, a simple tagger can reach an ac-
curacy of 70%. Zhang et al. (2012) also shows that
if the full form is longer than 10 characters, the
average accuracy is less than 30%. The numerous
potential candidates make it hard for the tagger to
choose the correct one. For the long full forms,
although the whole sequence is not correctly la-
beled, we find that if we only consider its short
substrings, we may find the correct representative
characters. This information can be integrated into
the decoding model to adjust the final result.

We use the MSU-based tagging method in the
sub-string tagging. The labeling strategy and fea-
ture templates are the same to the MSU-based tag-
ging method. In practice, enumerating all sub-
sequences of a given full form is infeasible if the
full form is very long. For a given full form,
we use the boundary MSUs to reduce the pos-
sible sub-sequence set. For example, “中国科
学院”(Chinese Academy of Science) has 5 sub-
sequences: “中国”, “中国科学”, “科学”, “科学
院” and “院”.

2.4 ILP Formulation of Decoding

Given the MSU-based and sub-sequence-based
methods mentioned above as well as the preva-
lent character-based methods, we can get a list
of potential abbreviation candidates and abbrevi-
ated substrings. We should integrate their advan-
tages while keeping the consistency between each
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candidate. Therefore we further propose a global
decoding strategy using Integer Linear Program-
ming(ILP). The constraints in ILP can naturally
incorporate ’non-local’ information in contrast to
probabilistic constraints that are estimated from
training examples. We can also use linguistic con-
straints like “adjacent identical characters is not
allowed” to decode the correct abbreviation in ex-
amples like the “北航” example in section 1.

Formally, given the character sequence of the
full form c = c1...cl, we keep Q top-ranked
MSU-based tagging results T=(T1, ..., TQ) and M
tagged substrings S=(S1, ..., SM ) using the meth-
ods described in previous sections. We also
use N top-ranked character-based tagging results
R=(R1, ..., RN ) based on the previous character-
based works. We also define the setU = S∪R∪T
as the union of all candidate sequences. Our goal
is to find an optimal binary variable vector solution
~v = ~x~y~z = (x1, ..., xM , y1, ..., yN , z1, ..., zQ) that
maximizes the object function:

λ1

M∑
i=1

score(Si) · xi + λ2

N∑
i=1

score(Ri) · yi

+λ3

Q∑
i=1

score(Ti) · zi

subject to constrains in TABLE 6. The parame-
ters λ1, λ2, λ3 controls the preference of the three
parts, and can be decided using cross-validation.

Constraint 1 indicates that xi, yi, zi are all
boolean variables. They are used as indicator vari-
ables to show whether the corresponding tagged
sequence is in accordance with the final result.

Constraint 2 is used to guarantee that at most
one candidate from the character-based tagging is
preserved. We relax the constraint to allow the
sum to be zero in case that none of the top-ranked
candidate is suitable to be the final result. If the
sum equals zero, then the sub-sequence based tag-
ging method will generate a more suitable result.
Constrain 3 has the same utility for the MSU-
based tagging.

Constraint 4, 5, 6 are inter-method constraints.
We use them to guarantee that the labels of the
preserved sequences of different tagging methods
do not conflict with each other. Constraint 7 is
used to guarantee that the labels of the preserved
sub-strings do not conflict with each other.

Constraint 8 is used to solve the “character du-
plicate” problem. When two identical characters

are kept adjacently, only one of them will be kept.
Which one will be kept depends on the global de-
coding score. This is the advantage of ILP against
traditional sequence labeling methods.

2.5 Pruning Constraints
The efficiency of solving the ILP decoding prob-
lem depends on the number of candidate tagging
sequences N and Q, as well as the number of sub-
sequences M. Usually, N and Q is less than 10 in
our experiment. Therefore, M influences the time
complexity the most. Because we use the bound-
ary of MSUs instead of enumerating all possible
subsequences, the value of M can be largely re-
duced.

Some characters are always labeled as “S” or
“K” once the context is given. We can use this
phenomenon to reduce the search space of decod-
ing. Let ci denote the ith character relative to the
current character c0 and ti denote the tag of ci. The
context templates we use are listed in TABLE 7.

Uni-gram Contexts c0, c−1, c1
Bi-gram Contexts c−1c0, c−1c1, c0c1

Table 7: Context templates used in pruning

With respect to a training corpus, if a context
C relative to c0 always assigns a certain tag t to
c0, then we can use this constraint in pruning. We
judge the degree of “always” by checking whether
count(C∧t0=t)

count(C) > threshold. The threshold is a
non-negative real number under 1.0.

3 Experiments

3.1 Data and Evaluation Metric
We use the abbreviation corpus provided by Insti-
tute of Computational Linguistics (ICL) of Peking
University in our experiments. The corpus is sim-
ilar to the corpus used in Sun et al. (2008, 2009);
Zhang et al. (2012). It contains 8, 015 Chinese ab-
breviations, including noun phrases, organization
names and some other types. Some examples are
presented in TABLE 8. We use 80% abbreviations
as training data and the rest as testing data. In
some cases, a long phrase may contain more than
one abbreviation. For these cases, the corpus just
keeps their most commonly used abbreviation for
each full form.

The evaluation metric used in our experiment
is the top-K accuracy, which is also used by
Tsuruoka et al. (2005), Sun et al. (2009) and
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1. xi ∈ {0, 1}, yi ∈ {0, 1}, zi ∈ {0, 1}
2.
∑N
i=1 yi ≤ 1

3.
∑Q
i=1 zi ≤ 1

4. ∀Ri ∈ R, Sj ∈ S, if Ri and Sj have a same position but the position gets different labels,
then yi + xj ≤ 1

5. ∀Ti ∈ T , Sj ∈ S, if Ti and Sj have a same position but the position gets different labels,
then zi + xj ≤ 1

6. ∀Ri ∈ R, Tj ∈ T , if Ri and Tj have a same position but the position gets different labels,
then xi + zj ≤ 1

7. ∀Si, Sj ∈ S if Si and Sj have a same position but the position gets different labels, then
zi + zj ≤ 1

8. ∀Si, Sj ∈ S if the last character Si keeps is the same as the first character Sj keeps, then
zi + zj ≤ 1

Table 6: Constraints for ILP

Type Full form Abbreviation
Noun Phrase 优秀稿件(Excellent articles) 优稿

Organization 作家协会(Writers’ Association) 作协

Coordinate phrase 受伤死亡(Injuries and deaths) 伤亡

Proper noun 传播媒介(Media) 传媒

Table 8: Examples of the corpus (Noun Phrase, Organization, Coordinate Phrase, Proper Noun)

Zhang et al. (2012). The top-K accuracy measures
what percentage of the reference abbreviations are
found if we take the top N candidate abbreviations
from all the results. In our experiment, top-10 can-
didates are considered in re-ranking phrase and the
measurement used is top-1 accuracy (which is the
accuracy we usually refer to) because the final aim
of the algorithm is to detect the exact abbreviation.

CRF++7 , an open source linear chain CRF tool,
is used in the sequence labeling part. For ILP part,
we use lpsolve8, which is also an open source tool.
The parameters of these tools are tuned through
cross-validation on the training data.

3.2 Results

TABLE 9 shows the top-K accuracy of the
character-based and MSU-based method. We can
see that the MSU-based tagging method can uti-
lize word information, which can get better perfor-
mance than the character-based method. We can
also figure out that the top-5 candidates include the
reference abbreviation for most full forms. There-
fore reasonable decoding by considering all possi-
ble labeling of sequences may improve the perfor-
mance. Although the MSU-based methods only
outperforms character-based methods by 0.75%

7http://crfpp.sourceforge.net/
8http://lpsolve.sourceforge.net/5.5/

for top-1 accuracy, it is much better when consid-
ering top-2 to top-5 accuracy (+2.5%). We further
select the top-ranked candidates for ILP decod-
ing. Therefore the MSU-based method can further
improve the performance in the global decoding
phase.

K char-based MSU-based
1 0.5714 0.5789
2 0.6879 0.7155
3 0.7681 0.7819
4 0.8070 0.8283
5 0.8333 0.8583

Table 9: Top-K (K ≤ 5) results of character-based
tagging and MSU-based tagging

We then use the top-5 candidates of character-
based method and MSU-based method, as well
as the top-2 results of sub-sequence labeling in
the ILP decoding phase. Then we select the top-
ranked candidate as the final abbreviation of each
instance. TABLE 10 shows the results. We can see
that the accuracy of our method is 61.0%, which
improved by +3.89% compared to the character-
based method, and +3.14% compared to the MSU-
based method.

We find that the ILP decoding phase do play
an important role in generating the right an-
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Method Top-1 Accuracy
Char-based 0.5714
MSU-based 0.5789
ILP Result 0.6103

Table 10: Top-1 Accuracy after ILP decoding

swer. Some reference abbreviations which are not
picked out by either tagging method can be found
out after decoding. TABLE 11 shows the exam-
ple of the organization name “高等学校统一招生
办公室” (Higher Education Admissions Office).
Neither the character-based method nor the MSU-
based method finds the correct answer “高招办”,
while after ILP decoding, “高招办” becomes the
final result. TABLE 12 and TABLE 13 give two
more examples.

True Result 高招办
Char-based 高办
MSU-based 高统办
ILP Decoding 高招办

Table 11: Top-1 result of “高等学校统一招生办
公室” (Higher Education Admissions Office)

True Result 超值
Char-based 物值
MSU-based 物超值
ILP Decoding 超值

Table 12: Top-1 result of “物超价值” (Articles
exceed the value)

True Result 声光视效
Char-based 声光效
MSU-based 声效果
ILP Decoding 声光视效

Table 13: Top-1 result of “声音灯光视觉效果”
(Visual effects of sound and lights)

3.3 Improvements Considering Length
Full forms that are longer than five characters are
long terms. Long terms contain more characters,
which is much easier to make mistakes. Figure
1 shows the top-1 accuracy respect to the term
length using different tagging methods and using
ILP decoding. The x-axis represents the length of
the full form. The y-axis represents top-1 accu-
racy. We find that our method works especially

better than pure character-based or MSU-based
approach when the full form is long. By decod-
ing using ILP, both local and global information
are incorporated. Therefore many of these errors
can be eliminated.

Figure 1: Top-1 accuracy of different methods
considering length

3.4 Effect of pruning

As discussed in previous sections, if we are able
to pre-determine that some characters in a certain
context should be kept or skipped, then the num-
ber of possible boolean variable x can be reduced.
TABLE 14 shows the differences. To guarantee
a high accuracy, we set the threshold to be 0.99.
When the original full form is partially tagged by
the pruning constraints, the number of boolean
variables per full form is reduced from 34.4 to
25.5. By doing this, we can improve the predic-
tion speed over taking the raw input.

From TABLE 14 we can also see that the top-
1 accuracy is not affected by these pruning con-
straints. This is obvious, because CRF itself has
a strong modeling ability. The pruning constraints
cannot improve the model accuracy. But they can
help eliminate those false candidates to make the
ILP decoding faster.

Accuracy Average length Time(s)
raw 0.6103 34.4 12.5
pruned 0.6103 25.5 7.1

Table 14: Comparison of testing time of raw input
and pruned input

3.5 Compare with the State-of-the-art
Systems

We also compare our method with previous meth-
ods, including Sun et al. (2009) and Zhang et al.
(2012). Because we use a different corpus, we
re-implement the system Sun et al. (2009), Zhang
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et al. (2012) and Sun et al. (2013), and experi-
ment on our corpus. The first two are CRF+GI
and DPLVM+GI in Sun et al. (2009), which are
reported to outperform the methods in Tsuruoka
et al. (2005) and Sun et al. (2008). For DPLVM
we use the same model in Sun et al. (2009) and
experiment on our own data. We also compare
our approach with the method in Zhang et al.
(2012). However, Zhang et al. (2012) uses dif-
ferent sources of search engine result information
to re-rank the original candidates. We do not use
any extra web resources. Because Zhang et al.
(2012) uses web information only in its second
stage, we use “BIEP”(the tag set used by Zhang
et al. (2012)) to denote the first stage of Zhang
et al. (2012), which also uses no web information.
TABLE 15 shows the results of the comparisons.
We can see that our method outperforms all other
methods which use no extra resource. Because
Zhang et al. (2012) uses extra web resource, the
top-1 accuracy of Zhang et al. (2012) is slightly
better than ours.

Method Top-1 Accuracy
CRF+GI 0.5850
DPLVM+GI 0.5990
BIEP 0.5812
Zhang et al. (2012) 0.6205
Our Result 0.6103

Table 15: Comparison with the state-of-the-art
systems

4 Related Work

Previous research mainly focuses on “abbrevia-
tion disambiguation”, and machine learning ap-
proaches are commonly used (Park and Byrd,
2001; HaCohen-Kerner et al., 2008; Yu et al.,
2006; Ao and Takagi, 2005). These ways of link-
ing abbreviation pairs are effective, however, they
cannot solve our problem directly. In many cases
the full form is definite while we don’t know the
corresponding abbreviation.

To solve this problem, some approaches main-
tain a database of abbreviations and their corre-
sponding “full form” pairs. The major problem
of pure database-building approach is obvious. It
is impossible to cover all abbreviations, and the
building process is quit laborious. To find these
pairs automatically, a powerful approach is to find
the reference for a full form given the context,

which is referred to as “abbreviation generation”.

There is research on heuristic rules for gen-
erating abbreviations Barrett and Grems (1960);
Bourne and Ford (1961); Taghva and Gilbreth
(1999); Park and Byrd (2001); Wren et al. (2002);
Hearst (2003). Most of them achieved high per-
formance. However, hand-crafted rules are time
consuming to create, and it is not easy to transfer
the knowledge of rules from one language to an-
other.

Recent studies of abbreviation generation have
focused on the use of machine learning tech-
niques. Sun et al. (2008) proposed a supervised
learning approach by using SVM model. Tsu-
ruoka et al. (2005); Sun et al. (2009) formal-
ized the process of abbreviation generation as a
sequence labeling problem. In Tsuruoka et al.
(2005) each character in the full form is associated
with a binary value label y, which takes the value
S (Skip) if the character is not in the abbreviation,
and value P (Preserve) if the character is in the ab-
breviation. Then a MEMM model is used to model
the generating process. Sun et al. (2009) followed
this schema but used DPLVM model to incor-
porate both local and global information, which
yields better results. Sun et al. (2013) also uses
machine learning based methods, but focuses on
the negative full form problem, which is a little
different from our work.

Besides these pure statistical approaches, there
are also many approaches using Web as a corpus
in machine learning approaches for generating ab-
breviations.Adar (2004) proposed methods to de-
tect such pairs from biomedical documents. Jain
et al. (2007) used web search results as well as
search logs to find and rank abbreviates full pairs,
which show good result. The disadvantage is that
search log data is only available in a search en-
gine backend. The ordinary approaches do not
have access to search engine internals. Zhang et al.
(2012) used web search engine information to re-
rank the candidate abbreviations generated by sta-
tistical approaches. Compared to their approaches,
our method uses no extra resource, but reaches
comparable results.

ILP shows good results in many NLP tasks.
Punyakanok et al. (2004); Roth and Yih (2005)
used it in semantic role labeling (SRL). Martins
et al. (2009) used it in dependency parsing. (Zhao
and Marcus, 2012) used it in Chinese word seg-
mentation. (Riedel and Clarke, 2006) used ILP
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in dependency parsing. However, previous works
mainly focus on the constraints of avoiding bound-
ary confliction. For example, in SRL, two argu-
ment of cannot overlap. In CWS, two Chinese
words cannot share a same character. Different to
their methods, we investigate on the conflict of la-
bels of character sub-sequences.

5 Conclusion and Future work

We propose a new Chinese abbreviation predic-
tion method which can incorporate rich local in-
formation while generating the abbreviation glob-
ally. We propose the MSU, which is more coarse-
grained than character but more fine-grained than
word, to capture word information in the se-
quence labeling framework. Besides the MSU-
based method, we use a substring tagging strategy
to generate local substring tagging candidates. We
use an ILP formulation with various constraints
to globally decode the final abbreviation from the
generated candidates. Experiments show that our
method outperforms the state-of-the-art systems,
without using any extra resource. This method
is not limited to Chinese abbreviation generation,
it can also be applied to similar languages like
Japanese.

The results are promising and outperform the
baseline methods. The accuracy can still be im-
proved. Potential future works may include using
semi-supervised methods to incorporate unlabeled
data and design reasonable features from large cor-
pora. We are going to study on these issues in the
future.
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Abstract

It has been shown that news events influ-
ence the trends of stock price movements.
However, previous work on news-driven
stock market prediction rely on shallow
features (such as bags-of-words, named
entities and noun phrases), which do not
capture structured entity-relation informa-
tion, and hence cannot represent complete
and exact events. Recent advances in
Open Information Extraction (Open IE)
techniques enable the extraction of struc-
tured events from web-scale data. We
propose to adapt Open IE technology for
event-based stock price movement pre-
diction, extracting structured events from
large-scale public news without manual
efforts. Both linear and nonlinear mod-
els are employed to empirically investigate
the hidden and complex relationships be-
tween events and the stock market. Large-
scale experiments show that the accuracy
of S&P 500 index prediction is 60%, and
that of individual stock prediction can be
over 70%. Our event-based system out-
performs bags-of-words-based baselines,
and previously reported systems trained on
S&P 500 stock historical data.

1 Introduction

Predicting stock price movements is of clear in-
terest to investors, public companies and govern-
ments. There has been a debate on whether the
market can be predicted. The Random Walk The-
ory (Malkiel, 1973) hypothesizes that prices are
determined randomly and hence it is impossible to
outperform the market. However, with advances
of AI, it has been shown empirically that stock

∗This work was done while the first author was visiting
Singapore University of Technology and Design

Figure 1: Example news for Apple Inc. and
Google Inc.

price movement is predictable (Bondt and Thaler,
1985; Jegadeesh, 1990; Lo and MacKinlay, 1990;
Jegadeesh and Titman, 1993). Recent work (Das
and Chen, 2007; Tetlock, 2007; Tetlock et al.,
2008; Si et al., 2013; Xie et al., 2013; Wang and
Hua, 2014) has applied Natural Language Process-
ing (NLP) techniques to help analyze the effect of
web texts on stock market prediction, finding that
events reported in financial news are important ev-
idence to stock price movement prediction.

As news events affect human decisions and the
volatility of stock prices is influenced by human
trading, it is reasonable to say that events can influ-
ence the stock market. Figure 1 shows two pieces
of financial news about Apple Inc. and Google
Inc., respectively. Shares of Apple Inc. fell as trad-
ing began in New York on Thursday morning, the
day after its former CEO Steve Jobs passed away.
Google’s stock fell after grim earnings came out.
Accurate extraction of events from financial news
may play an important role in stock market pre-
diction. However, previous work represents news
documents mainly using simple features, such as
bags-of-words, noun phrases, and named entities
(Lavrenko et al., 2000; Kogan et al., 2009; Luss
and d’Aspremont, 2012; Schumaker and Chen,
2009). With these unstructured features, it is dif-
ficult to capture key events embedded in financial
news, and even more difficult to model the impact
of events on stock market prediction. For exam-
ple, representing the event “Apple has sued Sam-
sung Electronics for copying ‘the look and feel’
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of its iPad tablet and iPhone smartphone.” using
term-level features {“Apple”, “sued”, “Samsung”,
“Electronics”, “copying”, ...} alone, it can be dif-
ficult to accurately predict the stock price move-
ments of Apple Inc. and Samsung Inc., respec-
tively, as the unstructured terms cannot indicate
the actor and object of the event.

In this paper, we propose using structured in-
formation to represent events, and develop a pre-
diction model to analyze the relationship between
events and the stock market. The problem is im-
portant because it provides insights into under-
standing the underlying mechanisms of the influ-
ence of events on the stock market. There are two
main challenges to this method. On the one hand,
how to obtain structured event information from
large-scale news streams is a challenging problem.
We propose to apply Open Information Extraction
techniques (Open IE; Banko et al. (2007); Et-
zioni et al. (2011); Fader et al. (2011)), which
do not require predefined event types or manu-
ally labeled corpora. Subsequently, two ontolo-
gies (i.e. VerbNet and WordNet) are used to gen-
eralize structured event features in order to reduce
their sparseness. On the other hand, the problem
of accurately predicting stock price movement us-
ing structured events is challenging, since events
and the stock market can have complex relations,
which can be influenced by hidden factors. In ad-
dition to the commonly used linear models, we
build a deep neural network model, which takes
structured events as input and learn the potential
relationships between events and the stock market.

Experiments on large-scale financial news
datasets from Reuters1 (106,521 documents)
and Bloomberg2 (447,145 documents) show that
events are better features for stock market predic-
tion than bags-of-words. In addition, deep neu-
ral networks achieve better performance than lin-
ear models. The accuracy of S&P 500 index pre-
diction by our approach outperforms previous sys-
tems, and the accuracy of individual stock predic-
tion can be over 70% on the large-scale data.

Our system can be regarded as one step towards
building an expert system that exploits rich knowl-
edge for stock market prediction. Our results are
helpful for automatically mining stock price re-
lated news events, and for improving the accuracy
of algorithm trading systems.

1http://www.reuters.com/
2http://www.bloomberg.com/

2 Method

2.1 Event Representation
We follow the work of Kim (1993) and design a
structured representation scheme that allows us to
extract events and generalize them. Kim defines
an event as a tuple (Oi, P , T ), where Oi ⊆ O is
a set of objects, P is a relation over the objects
and T is a time interval. We propose a representa-
tion that further structures the event to have roles
in addition to relations. Each event is composed
of an action P , an actor O1 that conducted the
action, and an object O2 on which the action was
performed. Formally, an event is represented as
E = (O1, P, O2, T ), where P is the action, O1

is the actor, O2 is the object and T is the timestamp
(T is mainly used for aligning stock data with
news data). For example, the event “Sep 3, 2013
- Microsoft agrees to buy Nokia’s mobile phone
business for $7.2 billion.” is modeled as: (Actor =
Microsoft, Action = buy, Object = Nokia’s mobile
phone business, Time = Sep 3, 2013).

Previous work on stock market prediction rep-
resents events as a set of individual terms (Fung
et al., 2002; Fung et al., 2003; Hayo and Ku-
tan, 2004; Feldman et al., 2011). For example,
“Microsoft agrees to buy Nokia’s mobile phone
business for $7.2 billion.” can be represented by
{“Microsoft”, “agrees”, “buy”, “Nokia’s”, “mo-
bile”, ...} and “Oracle has filed suit against Google
over its ever-more-popular mobile operating sys-
tem, Android.” can be represented by {“Oracle”,
“has”, “filed”, “suit”, “against”, “Google”, ...}.
However, terms alone might fail to accurately pre-
dict the stock price movement of Microsoft, Nokia,
Oracle and Google, because they cannot indicate
the actor and object of the event. To our knowl-
edge, no effort has been reported in the literature
to empirically investigate structured event repre-
sentations for stock market prediction.

2.2 Event Extraction
A main contribution of our work is to extract and
use structured events instead of bags-of-words in
prediction models. However, structured event ex-
traction can be a costly task, requiring predefined
event types and manual event templates (Ji and Gr-
ishman, 2008; Li et al., 2013). Partly due to this,
the bags-of-words-based document representation
has been the mainstream method for a long time.
To tackle this issue, we resort to Open IE, extract-
ing event tuples from wide-coverage data with-
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out requiring any human input (e.g. templates).
Our system is based on the system of Fader et al.
(2011) and the work of Ding et al. (2013); it does
not require predefined target event types and la-
beled training examples. Given a natural language
sentence obtained from news texts, the following
procedure is used to extract structured events:

1. Event Phrase Extraction. We extract the
predicate verb P of a sentence based on
the dependency parser of Zhang and Clark
(2011), and then find the longest sequence of
words Pv, such that Pv starts at P and satis-
fies the syntactic and lexical constraints pro-
posed by Fader et al. (2011). The content of
these two constraints are as follows:

• Syntactic constraint: every multi-word
event phrase must begin with a verb, end
with a preposition, and be a contiguous
sequence of words in the sentence.

• Lexical constraint: an event phrase
should appear with at least a minimal
number of distinct argument pairs in a
large corpus.

2. Argument Extraction. For each event
phrase Pv identified in the step above, we find
the nearest noun phrase O1 to the left of Pv

in the sentence, and O1 should contain the
subject of the sentence (if it does not contain
the subject of Pv, we find the second near-
est noun phrase). Analogously, we find the
nearest noun phrase O2 to the right of Pv in
the sentence, and O2 should contain the ob-
ject of the sentence (if it does not contain the
object of Pv, we find the second nearest noun
phrase).

An example of the extraction algorithm is as fol-
lows. Consider the sentence,

Instant view: Private sector adds 114,000 jobs
in July: ADP.

The predicate verb is identified as “adds”, and
its subject and object “sector” and “jobs”, respec-
tively. The structured event is extracted as (Private
sector, adds, 114,000 jobs).

2.3 Event Generalization

Our goal is to train a model that is able to make
predictions based on various expressions of the
same event. For example, “Microsoft swallows

Nokia’s phone business for $7.2 billion” and “Mi-
crosoft purchases Nokia’s phone business” report
the same event. To improve the accuracy of our
prediction model, we should endow the event ex-
traction algorithm with generalization capacity.
To this end, we leverage knowledge from two
well-known ontologies, WordNet (Miller, 1995)
and VerbNet (Kipper et al., 2006). The pro-
cess of event generalization consists of two steps.
First, we construct a morphological analysis tool
based on the WordNet stemmer to extract lemma
forms of inflected words. For example, in “In-
stant view: Private sector adds 114,000 jobs in
July.”, the words “adds” and “jobs” are trans-
formed to “add” and “job”, respectively. Second,
we generalize each verb to its class name in Verb-
Net. For example, “add” belongs to the multi-
ply class. After generalization, the event (Private
sector, adds, 114,000 jobs) becomes (private sec-
tor, multiply class, 114,000 job). Similar methods
on event generalization have been investigated in
Open IE based event causal prediction (Radinsky
and Horvitz, 2013).

2.4 Prediction Models

1. Linear model. Most previous work uses linear
models to predict the stock market (Fung et al.,
2002; Luss and d’Aspremont, 2012; Schumaker
and Chen, 2009; Kogan et al., 2009; Das and
Chen, 2007; Xie et al., 2013). To make direct com-
parisons, this paper constructs a linear prediction
model by using Support Vector Machines (SVMs),
a state-of-the-art classification model. Given a
training set (d1, y1), (d2, y2), ..., (dN , yN ),
where n ∈ [1, N ], dn is a news document and
yi ∈ {+1, −1} is the output class. dn can be
news titles, news contents or both. The output
Class +1 represents that the stock price will in-
crease the next day/week/month, and the output
Class -1 represents that the stock price will de-
crease the next day/week/month. The features
can be bag-of-words features or structured event
features. By SVMs, y = arg max{Class +
1, Class − 1} is determined by the linear func-
tion w ·Φ(dn, yn), where w is the feature weight
vector, and Φ(dn, yn) is a function that maps dn

into a M-dimensional feature space. Feature tem-
plates will be discussed in the next subsection.
2. Nonlinear model. Intuitively, the relationship
between events and the stock market may be more
complex than linear, due to hidden and indirect
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Figure 2: Structure of the deep neural network
model

relationships. We exploit a deep neural network
model, the hidden layers of which is useful for
learning such hidden relationships. The structure
of the model with two hidden layers is illustrated
in Figure 2. In all layers, the sigmoid activation
function σ is used.

Let the values of the neurons of the output layer
be ycls (cls ∈ {+1,−1}), its input be netcls, and
y2 be the value vector of the neurons of the last
hidden layer; then:

ycls = f(netcls) = σ(wcls · y2) (1)

where wcls is the weight vector between the neu-
ron cls of the output layer and the neurons of the
last hidden layer. In addition,

y2k = σ(w2k · y1) (k ∈ [1, |y2|])
y1j = σ(w1j ·Φ(dn)) (j ∈ [1, |y1|])

(2)

Here y1 is the value vector of the neu-
rons of the first hidden layer, w2k =
(w2k1, w2k2, ..., w2k|y1|), k ∈ [1, |y2|] and
w1j = (w1j1, w1j2, ..., w1jM ), j ∈ [1, |y1|].
w2kj is the weight between the kth neuron of
the last hidden layer and the jth neuron of the
first hidden layer; w1jm is the weight between
the jth neuron of the first hidden layer and the
mth neuron of the input layer m ∈ [1, M ]; dn

is a news document and Φ(dn) maps dn into a
M-dimensional features space. News documents
and features used in the nonlinear model are the
same as those in the linear model, which will be
introduced in details in the next subsection. The
standard back-propagation algorithm (Rumelhart
et al., 1985) is used for supervised training of the
neural network.

train dev test
number of
instances

1425 178 179

number of
events

54776 6457 6593

time inter-
val

02/10/2006
-
18/16/2012

19/06/2012
-
21/02/2013

22/02/2013
-
21/11/2013

Table 1: Dataset splitting

2.5 Feature Representation

In this paper, we use the same features (i.e. docu-
ment representations) in the linear and nonlinear
prediction models, including bags-of-words and
structured events.

(1) Bag-of-words features. We use the clas-
sic “TFIDF” score for bag-of-words features. Let
L be the vocabulary size derived from the train-
ing data (introduced in the next section), and
freq(tl ) denote the number of occurrences of
the lth word in the vocabulary in document d.
TFl = 1

|d| freq(tl ), ∀l ∈ [1 , L], where |d| is
the number of words in the document d (stop
words are removed). TFIDFl = 1

|d| freq(tl ) ×
log( N

|{d :freq(tl )>0}|), where N is the number of
documents in the training set. The feature vector
Φ can be represented as Φ = (ϕ1, ϕ2, ..., ϕM ) =
(TFIDF1 , TFIDF2 , ..., TFIDFM ). The TFIDF
feature representation has been used by most pre-
vious studies on stock market prediction (Kogan et
al., 2009; Luss and d’Aspremont, 2012).

(2) Event features. We represent an event
tuple (O1, P, O2, T ) by the combination of
elements (except for T) (O1, P , O2, O1 + P ,
P + O2, O1 + P + O2). For example, the
event tuple (Microsoft, buy, Nokia’s mobile phone
business) can be represented as (#arg1=Microsoft,
#action=get class, #arg2=Nokia’s mobile phone
business, #arg1 action=Microsoft get class,
#action arg2=get class Nokia’s mobile phone
business, #arg1 action arg2=Microsoft get class
Nokia’s mobile phone business). Structured
events are more sparse than words, and we reduce
sparseness by two means. First, verb classes
(Section 2.3) are used instead of verbs for P. For
example, “get class” is used instead of the verb
“buy”. Second, we use back-off features, such
as O1 + P (“Microsoft get class”) and P + O2

(“get class Nokia’s mobile phone business”), to
address the sparseness of O1 and O2. Note that the
order of O1 and O2 is important for our task since
they indicate the actor and object, respectively.
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Figure 3: Overall development experiment results

3 Experiments

Our experiments are carried out on three differ-
ent time intervals: short term (1 day), medium
term (1 week) and long term (1 month). We test
the influence of events on predicting the polarity
of stock change for each time interval, comparing
the event-based news representation with bag-of-
words-based news representations, and the deep
neural network model with the SVM model.

3.1 Data Description

We use publicly available financial news from
Reuters and Bloomberg over the period from Oc-
tober 2006 to November 2013. This time span
witnesses a severe economic downturn in 2007-
2010, followed by a modest recovery in 2011-
2013. There are 106,521 documents in total
from Reuters News and 447,145 from Bloomberg
News. News titles and contents are extracted from
HTML. The timestamps of the news are also ex-
tracted, for alignment with stock price informa-
tion. The data size is larger than most previous
work in the literature.

We mainly focus on predicting the change of the
Standard & Poor’s 500 stock (S&P 500) index3,
obtaining indices and stock price data from Yahoo
Finance. To justify the effectiveness of our predic-
tion model, we also predict price movements of
fifteen individual shares from different sectors in
S&P 500. We automatically align 1,782 instances
of daily trading data with news titles and contents
from the previous day/the day a week before the
stock price data/the day a month before the stock
price data, 4/5 of which are used as the training

3Standard & Poor’s 500 is a stock market index based
on the market capitalizations of 500 large companies having
common stock listed on the NYSE or NASDAQ.

data, 1/10 for development testing and 1/10 for
testing. As shown in Table 1, the training, devel-
opment and test set are split temporally, with the
data from 02/10/2006 to 18/16/2012 for training,
the data from 19/06/2012 to 21/02/2013 for de-
velopment testing, and the data from 22/02/2013
to 21/11/2013 for testing. There are about 54,776
events in the training set, 6,457 events in the de-
velopment set and 6,593 events in the test set.

3.2 Evaluation Metrics
We use two assessment metrics. First, a standard
and intuitive approach to measuring the perfor-
mance of classifiers is accuracy. However, this
measure is very sensitive to data skew: when a
class has an overwhelmingly high frequency, the
accuracy can be high using a classifier that makes
prediction on the majority class. Previous work
(Xie et al., 2013) uses an additional evaluation
metric, which relies on the Matthews Correlation
Cofficient (MCC) to avoid bias due to data skew
(our data are rather large and not severely skewed,
but we also use MCC for comparison with previ-
ous work). MCC is a single summary value that
incorporates all 4 cells of a 2*2 confusion matrix
(True Positive, False Positive, True Negative and
False Negative, respectively). Given TP , TN , FP
and FN :

MCC =
TP ·TN−FP ·FN√

(TP+FP)(TP+FN )(TN +FP)(TN +FN )
(3)

3.3 Overall Development Results
We evaluate our four prediction methods (i.e.
SVM with bag-of-word features (bow), deep neu-
ral network with bag-of-word features (bow),
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1 day 1 week 1 month

1 layer Accuracy 58.94% 57.73% 55.76%
MCC 0.1249 0.0916 0.0731

2 layers Accuracy 59.60% 57.73% 56.19%
MCC 0.1683 0.1215 0.0875

Table 2: Different numbers of hidden layers

title content content +
title

bloomberg
title + title

Acc 59.60% 54.65% 56.83% 59.64%
MCC 0.1683 0.0627 0.0852 0.1758

Table 3: Different amounts of data

SVM with event features and deep neural network
with event features) on three time intervals (i.e.
1 day, 1 week and 1 month, respectively) on the
development dataset, and show the results in Fig-
ure 3. We find that:

(1) Structured event is a better choice for rep-
resenting news documents. Given the same pre-
diction model (SVM or deep neural network), the
event-based method achieves consistently better
performance than the bag-of-words-based method
over all three time intervals. This is likely due
to the following two reasons. First, being an ex-
traction of predicate-argument structures, events
carry the most essential information of the docu-
ment. In contrast, bag-of-words can contain more
irrelevant information. Second, structured events
can directly give the actor and object of the action,
which is important for predicting stock market.

(2) The deep neural network model achieves
better performance than the SVM model, partly by
learning hidden relationships between structured
events and stock prices. We give analysis to these
relationships in the next section.

(3) Event information is a good indicator for
short-term volatility of stock prices. As shown in
Figure 3, the performance of daily prediction is
better than weekly and monthly prediction. Our
experimental results confirm the conclusion of
Tetlock, Saar-Tsechansky, and Macskassy (2008)
that there is a one-day delay between the price
response and the information embedded in the
news. In addition, we find that some events may
cause immediate changes of stock prices. For ex-
ample, former Microsoft CEO Steve Ballmer an-
nounced he would step down within 12 months
on 23/08/2013. Within an hour, Microsoft shares
jumped as much as 9 percent. This fact indicates
that it may be possible to predict stock price move-
ment on a shorter time interval than one day. How-

Google Inc.
Company News Sector News All News
Acc MCC Acc MCC Acc MCC

67.86% 0.4642 61.17% 0.2301 55.70% 0.1135
Boeing Company

Company News Sector News All News
Acc MCC Acc MCC Acc MCC

68.75% 0.4339 57.14% 0.1585 56.04% 0.1605
Wal-Mart Stores

Company News Sector News All News
Acc MCC Acc MCC Acc MCC

70.45% 0.4679 62.03% 0.2703 56.04% 0.1605

Table 4: Individual stock prediction results

ever, we cannot access fine-grained stock price
historical data, and this investigation will be left
as future work.

3.4 Experiments with Different Numbers of
Hidden Layers of the Deep Neural
Network Model

Cybenko (1989) states that when every processing
element utilizes the sigmoid activation function,
one hidden layer is enough to solve any discrim-
inant classification problem, and two hidden lay-
ers are capable to parse arbitrary output functions
of input pattern. Here we conduct a development
experiment by different number of hidden layers
for the deep neural network model. As shown in
Table 2, the performance of two hidden layers is
better than one hidden layer, which is consistent
with the experimental results of Sharda and De-
len (2006) on the task of movie box-office predic-
tion. It indicates that more hidden layers can ex-
plain more complex relations (Bengio, 2009). In-
tuitively, three or more hidden layers may achieve
better performance. However, three hidden lay-
ers mean that we construct a five-layer deep neu-
ral network, which is difficult to train (Bengio et
al., 1994). We did not obtain improved accuracies
using three hidden layers, due to diminishing gra-
dients. A deep investigation of this problem is out
of the scope of this paper.

3.5 Experiments with Different Amounts of
Data

We conduct a development experiment by extract-
ing news titles and contents from Reuters and
Bloomberg, respectively. While titles can give the
central information about the news, contents may
provide some background knowledge or details.
Radinsky et al. (2012) argued that news titles are
more helpful for prediction compared to news con-
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Figure 4: Individual stock prediction experiment results

tents, and this paper mainly uses titles. Here we
design a comparative experiment to analyze the ef-
fectiveness of news titles and contents. First, we
use Reuters news to compare the effectiveness of
news titles and contents, and then add Bloomberg
news titles to investigate whether the amounts of
data matters. Table 3 shows that using only news
titles achieves the best performance. A likely rea-
son is that we may extract some irrelevant events
from news contents.

With the additional Bloomberg data, the results
are not dramatically improved. This is intuitively
because most events are reported by both Reuters
news and Bloomberg news. We randomly se-
lect about 9,000 pieces of news documents from
Reuters and Bloomberg and check the daily over-
lap manually, finding that about 60% of the news
are reported by both Reuters and Bloomberg. The
overlap of important news (news related to S&P
500 companies) is 80% and the overlap of unim-
portant news is 40%.

3.6 Individual Stock Prediction

In addition to predicting the S&P 500 index, we
also investigate the effectiveness of our approach
on the problem of individual stock prediction us-
ing the development dataset. We select three well-
known companies, Google Inc., Boeing Company
and Wal-Mart Stores from three different sec-
tors (i.e. Information Technology, Industrials and
Consumer Staples, respectively) classified by the
Global Industry Classification Standard (GICS).
We use company news, sector news and all news to
predict individual stock price movement, respec-
tively. The experimental results are listed in Ta-
ble 4.

The result of individual stock prediction by us-

ing only company news dramatically outperforms
the result of S&P 500 index prediction. The main
reason is that company-related events can directly
affect the volatility of company shares. There is
a strong correlation between company events and
company shares. Table 4 also shows that the result
of individual stock prediction by using sector news
or all news does not achieve a good performance,
probably because there are many irrelevant events
in all news, which would reduce the performance
of our prediction model.

The fact that the accuracy of these well-known
stocks are higher than the index may be because
there is relatively more news events dedicated to
the relevant companies. To gain a better under-
standing of the behavior of the model on more
individual stocks, we randomly select 15 compa-
nies (i.e. Google Inc., Boeing Company, Wal-Mart
Stores, Nike Inc., QUALCOMM Inc., Apache Cor-
poration, Starbucks Corp., Avon Products, Visa
Inc., Symantec Corp., The Hershey Company,
Mattel Inc., Actavis plc, Gannett Co. and SanDisk
Corporation) from S&P 500 companies. More
specifically, according to the Fortune ranking of
S&P 500 companies4, we divide the ranked list
into five parts, and randomly select three compa-
nies from each part. The experimental results are
shown in Figure 4. We find that:

(1) All 15 individual stocks can be predicted
with accuracies above 50%, while 60% of the
stocks can be predicted with accuracies above
60%. It shows that the amount of company-related
events has strong relationship with the volatility of

4http://money.cnn.com/magazines/fortune/fortune500/.
The amount of company-related news is correlated to the
fortune ranking of companies. However, we find that the
trade volume does not have such a correlation with the
ranking.
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S&P 500 Index Prediction Individual Stock Prediction
Google Inc. Boeing Company Wal-Mart Stores

Accuracy MCC Accuracy MCC Accuracy MCC Accuracy MCC
dev 59.60% 0.1683 67.86% 0.4642 68.75% 0.4339 70.45% 0.4679
test 58.94% 0.1649 66.97% 0.4435 68.03% 0.4018 69.87% 0.4456

Table 5: Final experimental results on the test dataset

company shares.
(2) With decreasing company fortune rankings,

the accuracy and MCC decrease. This is mainly
because there is not as much daily news about low-
ranking companies, and hence one cannot extract
enough structured events to predict the volatility
of these individual stocks.

3.7 Final Results

The final experimental results on the test dataset
are shown in Table 5 (as space is limited, we show
the results on the time interval of one day only).
The experimental results on the development and
test datasets are consistent, which indicate that our
approach has good robustness. The following con-
clusions obtained from development experiments
also hold on the test dataset:

(1) Structured events are more useful represen-
tations compared to bags-of-words for the task of
stock market prediction.

(2) A deep neural network model can be more
accurate on predicting the stock market compared
to the linear model.

(3) Our approach can achieve stable experiment
results on S&P 500 index prediction and individ-
ual stock prediction over a large amount of data
(eight years of stock prices and more than 550,000
pieces of news).

(4) The quality of information is more impor-
tant than the quantity of information on the task
of stock market prediction. That is to say that the
most relevant information (i.e. news title vs news
content, individual company news vs all news) is
better than more, but less relevant information.

3.8 Analysis and Discussion

We use Figure 5 to demonstrate our analysis to
the development experimental result of Google
Inc. stock prediction, which directly shows the
relationship between structured events and the
stock market. The links between each layer show
the magnitudes of feature weights in the model
learned using the training set.

Three events, (Google, says bought stake in,
China’s XunLei), (Google, reveals stake in, Chi-

1 2 3 4 5 6 7 8 M 

1
: (Google, says bought stake in, China’s XunLei) 

4
: (Google, reveals stake in, Chinese social website) 

6
: (Capgemini, partners, Google apps software) 

 

2
: (Oracle, sues, Google) 

5
: (Google map, break, privacy law) 

8
: (Google, may pull out of, China) 

… 

… 

Figure 5: Prediction of Google Inc. (we only show
structured event features since backoff features are
less informative)

nese social website) and (Capgemini, partners,
Google apps software), have the highest link
weights to the first hidden node (from the left).
These three events indicate that Google constantly
makes new partners and expands its business area.
The first hidden node has high-weight links to
Class +1, showing that Google’s positive coopera-
tion can lead to the rise of its stock price.

Three other events, (Oracle, sues, Google),
(Google map, break, privacy law) and (Google,
may pull out of, China), have high-weight links
to the second hidden node. These three events
show that Google was suffering questions and
challenges, which could affect its reputation and
further pull down its earnings. Correspondingly,
the second hidden node has high-weight links to
Class -1. These suggest that our method can au-
tomatically and directly reveal complex relation-
ships between structured events and the stock mar-
ket, which is very useful for investors, and can fa-
cilitate the research of stock market prediction.

Note that the event features used in our predic-
tion model are generalized based on the algorithm
introduced in Section 2.5. Therefore, though a
specific event in the development test set might
have never happened, its generalized form can be
found in the training set. For example, “Google
acquired social marketing company Wildfire In-
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teractive” is not in the training data, but “Google
get class” (“get” is the class name of “acquire”
and “buy” in VerbNet) can indeed be found in the
training set, such as “Google bought stake in Xun-
Lei” on 04/01/2007. Hence although the full spe-
cific event feature does not fire, its back-offs fire
for a correct prediction. For simplicity of showing
the event, we did not include back-off features in
Figure 5.

4 Related Work

Stock market prediction has attracted a great deal
of attention across the fields of finance, computer
science and other research communities in the
past. The literature of stock market prediction
was initiated by economists (Keynes, 1937). Sub-
sequently, the influential theory of Efficient Mar-
ket Hypothesis (EMH) (Fama, 1965) was estab-
lished, which states that the price of a security re-
flects all of the information available and that ev-
eryone has a certain degree of access to the infor-
mation. EMH had a significant impact on security
investment, and can serve as the theoretical basis
of event-based stock price movement prediction.

Various studies have found that financial news
can dramatically affect the share price of a se-
curity (Chan, 2003; Tetlock et al., 2008). Cul-
ter et al. (1998) was one of the first to investi-
gate the relationship between news coverage and
stock prices, since which empirical text analysis
technology has been widely used across numerous
disciplines (Lavrenko et al., 2000; Kogan et al.,
2009; Luss and d’Aspremont, 2012). These stud-
ies primarily use bags-of-words to represent finan-
cial news documents. However, as Schumaker and
Chen (2009) and Xie et al. (2013) point out, bag-
of-words features are not the best choice for pre-
dicting stock prices. Schumaker and Chen (2009)
extract noun phrases and named entities to aug-
ment bags-of-words. Xie et al. (2013) explore a
rich feature space that relies on frame semantic
parsing. Wang et al. (2014) use the same fea-
tures as Xie et al. (2013), but they perform non-
parametric kernel density estimation to smooth out
the distribution of features. These can be regarded
as extensions to the bag-of-word method. The
drawback of these approaches, as discussed in the
introduction, is that they do not directly model
events, which have structured information.

There has been efforts to model events more di-
rectly (Fung et al., 2002; Hayo and Kutan, 2005;

Feldman et al., 2011). Fung, Yu, and Lam (2002)
use a normalized word vector-space to model
event. Feldman et al. (2011) extract 9 prede-
fined categories of events based on heuristic rules.
There are two main problems with these efforts.
First, they cannot extract structured event (e.g. the
actor of the event and the object of the event). Sec-
ond, Feldman et al. (2011) can obtain only lim-
ited categories of events, and hence the scalabil-
ity of their work is not strong. In contrast, we
extract structured events by leveraging Open In-
formation Extraction technology (Open IE; Yates
et al. (2007); Etzioni et al. (2011); Faber et al.
(2011)) without predefined event types, which can
effectively solve the two problems above.

Apart from events, sentiment analysis is another
perspective to the problem of stock prediction
(Das and Chen, 2007; Tetlock, 2007; Tetlock et
al., 2008; Bollen et al., 2011; Si et al., 2013). Tet-
lock (2007) examines how qualitative information
(i.e. the fraction of negative words in a particular
news column) is incorporated in aggregate market
valuations. Tetlock, Saar-Tsechansky, and Mac-
skassy (2008) extend that analysis to address the
impact of negative words in all Wall Street Joural
(WSJ) and Dow Jones News Services (DJNS) sto-
ries about individual S&P500 firms from 1980 to
2004. Bollen and Zeng (2011) study whether the
large-scale collective emotion on Twitter is cor-
related with the volatility of Dow Jones Indus-
trial Average (DJIA). From the experimental re-
sults, they find that changes of the public mood
match shifts in the DJIA values that occur 3 to 4
days later. Sentiment-analysis-based stock mar-
ket prediction focuses on investigating the influ-
ence of subjective emotion. However, this paper
puts emphasis on the relationship between objec-
tive events and the stock price movement, and is
orthogonal to the study of subjectivity. As a result,
our model can be combined with the sentiment-
analysis-based method.

5 Conclusion

In this paper, we have presented a framework for
event-based stock price movement prediction. We
extracted structured events from large-scale news
based on Open IE technology and employed both
linear and nonlinear models to empirically investi-
gate the complex relationships between events and
the stock market. Experimental results showed
that events-based document representations are
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better than bags-of-words-based methods, and
deep neural networks can model the hidden and in-
directed relationship between events and the stock
market. For further comparisons, we freely release
our data at http://ir.hit.edu.cn/∼xding/data.
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Abstract

Automatically identifying related special-
ist terms is a difficult and important task
required to understand the lexical struc-
ture of language. This paper develops
a corpus-based method of extracting co-
herent clusters of satellite terminology —
terms on the edge of the lexicon — us-
ing co-occurrence networks of unstruc-
tured text. Term clusters are identi-
fied by extracting communities in the co-
occurrence graph, after which the largest
is discarded and the remaining words are
ranked by centrality within a community.
The method is tractable on large corpora,
requires no document structure and min-
imal normalization. The results suggest
that the model is able to extract coher-
ent groups of satellite terms in corpora
with varying size, content and structure.
The findings also confirm that language
consists of a densely connected core (ob-
served in dictionaries) and systematic, se-
mantically coherent groups of terms at the
edges of the lexicon.

1 Introduction

Natural language consists of a number of rela-
tional structures, many of which can be obscured
by lexical idiosyncrasies, regional variation and
domain-specific conventions. Despite this, pat-
terns of word use exhibit loose semantic struc-
ture, namely that proximate words tend to be re-
lated. This distributional hypothesis has been op-
erationalized in a variety of ways, providing in-
sights and solutions into practical and theoretical
questions about meaning, intention and the use of
language. Distributional analyses rely primarily
on observing natural language to build statistical
representations of words, phrases and documents

(Turney and Pantel, 2010). By studying dictio-
naries and thesauri, lexicographic and terminolog-
ical research has proposed that a core lexicon is
used to define the remaining portions of vocabu-
lary (Itô and Mester, 1995; Massé et al., 2008).
Though many words that comprise general lan-
guage use reside in this core lexicon, even the
most general language contains specialist or so-
called “satellite” words. This paper introduces a
method of extracting this peripheral structure, with
co-occurrence networks of unstructured text.

The core-periphery structure has been observed
in dictionaries where definitions tend to use a re-
stricted vocabulary, repetitively employing a core
set of words to define others (Sinclair, 1996; Pi-
card et al., 2013). In the farther regions of the lex-
icon, it is more difficult to find systematic seman-
tic definition with corpus-based techniques due to
the overwhelming number of infrequent words.
Unfortunately, the fringe of the lexicon can be
more important than the core because this is where
domain-specific terminology resides — features
that may be more important than frequent.

Examining dictionaries, (Picard et al., 2013)
propose that the lexicon consists of four main
parts: a core set of ubiquitous words used to de-
fine other words, a kernel that makes up most of
the lexicon, a minimal grounding set that includes
most of the core and some of the kernel, leav-
ing a set of satellites in the periphery. This to-
pography, reproduced in Figure 1, has been found
in the way dictionary entries use words to define
one another. In networks of dictionary defini-
tions, the core component tends to form a strongly
connected component (SCC) leaving satellites in
smaller SCCs with relatively weak links to the
core. This paper explores whether these these
satellites form systematic, cohesive groups and
whether they are observable in natural language.
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Figure 1: Dictionary studies have proposed that
the lexicon consists of a strongly connected core,
around which there is a kernel, an asymmetric
grounding set and satellites. Adapted from (Picard
et al., 2013).

Words with relatively specific definitions within
subjects, referred to as terms in lexicographic re-
search, are apparent in nearly all domains of dis-
course. Here, the goal is to explore structure
among these peripheral terms without a dictio-
nary. To do this, a method based on commu-
nity detection in textual co-occurrence networks
is developed. Such graph-based methods have be-
come increasingly popular in a range of language-
related tasks such as word clustering, document
clustering, semantic memory, anaphora resolution
and dependency parsing (see Mihalcea and Radev,
2011 for a review).

This paper seeks to address two important ques-
tions about the observed landscape of the lexicon
in natural language: to investigate whether satel-
lite clusters found in dictionaries can be observed
in text, and more importantly, to explore whether
statistical information in co-occurrence networks
can elucidate this peripheral structure in the lexi-
con. We frame these questions as the task of ex-
tracting clusters of related terms. If satellites are
systematically organized, then we can expect to
find cohesive clusters in this region. Moreover, if
the networked structure of dictionary entries sup-
ports the landscape in Figure 1, a similar structure
may be present in co-occurrence patterns in natu-
ral text.

2 Method

Word clustering, as a means to explore underly-
ing lexical structure, should accommodate fuzzy
and potentially contradictory notions of similarity.
For example, red and green are at once similar,
being colors, but as colors, they are very differ-
ent. Alternatively, the words car, fast, wheel, ex-
port and motorists share a thematic similarity in
their relation to automobiles. One conception of
word clustering is to construct a thesaurus of syn-
onyms (Calvo et al., 2005), but clustering could
allow other lexical semantic relationships. One
such database, WordNet, defines specific seman-
tic relationships and has been used to group words
according to explicit measures of relatedness and
similarity (Miller, 1995; Pedersen et al., 2004).
Distributional, corpus-based techniques that de-
fine words as feature vectors (eg. word-document
co-occurrences), can address many limitations of
manually created lexicons (see Turney et al., 2010
for a review). Clustering nouns by argument struc-
ture can uncover naturally related objects (Hin-
dle, 1990) and spectral methods can relate dis-
tinct classes of nouns with certain kinds of verbs
to induce selectional preferences (Resnik, 1997;
Sun and Korhonen, 2009; Wilks, 1975) and assist
metaphor processing (Shutova et al., 2013).

A pervasive weakness of many existing ap-
proaches to word-clustering, is an underlying pri-
oritization of frequent words. To help address
this sparsity, many models collapse words into
stems, preclude uncommon words, or underesti-
mate the relevance of infrequent words (Dagan
et al., 1999). Probabilistic topic models have
emerged as a uniquely flexible kind of word-
clustering used in content analysis (Steyvers and
Griffiths, 2007), text classification (Wei and Croft,
2006) and provide an extensible framework to ad-
dress other tasks (Blei, 2012). Because the struc-
ture of satellite terms is not likely to rely on spe-
cific (much less consistent) lexical semantic re-
lationships, we adopt a measure of semantic co-
herence, commonly used to qualify the results of
topic models, as an indirect measure of what peo-
ple tend to view as a cohesive set of words. This
measure, which is defined in the next section, is
particularly attractive because it is corpus-based,
does not assume any specific semantic relationship
and correlates with expert evaluations (Mimno et
al., 2011; Newman et al., 2010). Using semantic
coherence provides a way of measuring the qual-

1427



ity of word-associations without appeal to a dic-
tionary or assuming rigid relationships among the
clustered words.

The first step is to construct a co-occurrence
graph from which communities are extracted.
Then the centrality of each word is computed
within a community to generate cluster-specific
rankings. The goal is not to categorize words
into classes, nor to provide partitions that sepa-
rate associated words across a corpus. Instead, the
method is designed to extract qualifiable sets of
specialist terms found in arbitrary text. Crucially,
the method is designed to require no document
structure and minimal pre-processing: stop-words
and non-words are not removed and no phrasal,
sentence or document structure is required. Al-
though stemming or lemmatization could pro-
vide more stream-lined interpretations, the mini-
mal pre-processing allows the method to operate
efficiently on large amounts of unstructured text
of any language.

Co-occurrence networks have been used in a
variety of NLP applications, the basic idea be-
ing to construct a graph where proximate words
are connected. Typically, words are connected
if they are observed in an n-word window. We
set this window to a symmetric 7 words on ei-
ther side of the target and did not use any weight-
ing1. In the resulting network, edge frequen-
cies are set to the number of times the given co-
occurrence is observed. The resulting networks
are typically quite dense and exhibit small-world
structure where most word-pairs are only a few
edges apart (Baronchelli et al., 2013; Ferror i Can-
cho and Solé, 2001). To explore the effect of
this density, different minimum node- and edge-
frequencies were tested (analogous to the word-
and co-occurrence frequencies in text). It was
found that not setting any thresholds provided the
best results (see Figure 2), supporting our minimal
pre-processing approach.

To extract clusters from the co-occurrence ma-
trix, the Infomap community detection algorithm
was used. Infomap is an information-theoretic
method that optimizes a compression dictionary
using it to describe flow through connected nodes
(Rosvall and Bergstrom, 2008). By minimizing a
description of this flow, the algorithm can also ex-
tract nested communities (Rosvall and Bergstrom,

17 was found to be the optimal window-size in terms of
coherence. These preliminary results are available at knowl-
edgelab.org/docs/coherent clusters-data.xls.

Corpus Docs Tokens Nodes Edges
TASA 38,972 10.7M 58,357 1,319,534
NIPS 3,742 5.2M 28,936 1,612,659
enTenTen 92,327 72.2M 69,745 7,721,413

Table 1: Co-occurrence networks of each corpus.

2011). In our experiments, we used the co-
occurrence frequencies as edge-weights and ran
50 trials for each run of the algorithm. Co-
occurrence networks tended to form one mono-
lithic community, corresponding to the lexicon’s
core SCC, surrounded by a number of smaller
communities. The monolithic community is dis-
carded out-right, as it represents the core of the
lexicon where few specialist terms reside. As we
will see, the community detection algorithm nat-
urally identifies this SCC, distinguishing satellite
clusters of terminology. Though we do not explore
its effect, the sensitivity of Infomap can be tuned
to vary the relative size of the core SCC compared
to the satellites, effectively allowing less modular
communities to be considered satellites.

To compare and interpret the resulting clus-
ters, various measures of centrality were tested for
ranking words within their communities. The goal
of this ranking is to find words that typify or de-
fine their community without assuming its under-
lying semantics. The results in the next section
show that a number of common centrality mea-
sures work comparably well for this task. The fi-
nal output of the system is a set of communities,
in which words are ranked by their centrality.

3 Results & Analysis

Three corpora were used for evaluation: the
TASA, NIPS and enTenTen collections. TASA
consists of paragraph-length excerpts from high-
school level, American English texts (Landauer
and Dumais, 1997). The NIPS collection contains
17 volumes of annual proceedings from the con-
ference of the same name. The enTenTen corpus
is a web-based collection of text-heavy, English
web-sites. Table 1 summarizes the collections and
their co-occurrence networks.

The extracted communities, which consist of
word-centrality pairs, are similarly structured to
the output of topic models. Because appeals to
human judgement are expensive and can introduce
issues of consistency (Chang et al., 2009; Hu et al.,
2011), a corpus-based measure of semantic coher-
ence has been proposed (Mimno et al., 2011). Co-
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herence is used as a proxy for human judgments.
A general form of semantic coherence can be de-
fined as the mean pair-wise similarity over the top
n words in a topic or cluster t

C(t) =
1
n

n∑
(wi,wj)∈t

i<j

S(wi, wj)

where S is a symmetric measure of similarity.
Newman, et al. (2010) surveyed a number of simi-
larity metrics and found that mean point-wise mu-
tual information (PMI) correlated best to human
judgements. PMI is a commonly used measure of
how much more information co-occurring words
convey together compared to their independent
contributions (Church and Hanks, 1990; Bouma,
2009). Using PMI as S, we can define a version of
coherence, known as UCI Coherence:

CUCI(t) =
1
n

n∑
(wi,wj)∈t

i<j

log
p(wi, wj)
p(wi)p(wj)

where p(w) is estimated as relative frequency in
a corpus: f(w)∑

i f(wi)
. Using coherence to optimize

topic models, Mimno et al. (2011) found that a
simplified measure, termed UMass Coherence, is
more strongly correlated to human judgments than
CUCI . For topic t, CUMass is defined as follows:

CUMass(t) =
1
n

n∑
(wi,wj)∈t

i<j

log
D(wi, wj) + 1

D(wj)

where D(w) is the number of documents con-
taining w, and D(w,w′) is the number of doc-
uments containing both w and w′. Note that D
relies crucially on document segmentation in the
reference corpus, which is not encoded in the co-
occurrence networks derived by the method de-
scribed above. Thus, though the networks be-
ing analyzed and the coherence scores are both
based on co-occurrence information, they are dis-
tinct from one another. Following convention,
we compute coherence for the top 10 words in a
given community. CUMass was used as the mea-
sure of semantic coherence. and D was computed
over the TASA corpus, which means the resulting
scores are not directly comparable to (Mimno et
al., 2011), though comparisons to other published
results are provided below.

3.1 Ranking Functions & Frequency
Thresholds

After communities are extracted from the co-
occurrence graph, words are ranked by their cen-
trality in a community. Six centrality measures
were tested as ranking functions: degree centrality,
closeness centrality, eigenvector centrality, Page-
rank, hub-score and authority-score (Friedl et al.,
2010). Degree centrality uses a node’s degree
as its centrality under the assumption that highly
connected nodes are central. Closeness centrality
measures the average distance between a node and
all other nodes, promoting nodes that are “close”
to the rest of the network. Eigenvector centrality
favors well-connected nodes that are themselves
connected to well-connected nodes. Pagerank is
similar to eigenvector centrality, but also promotes
nodes that mediate connections between strongly
connected nodes. Hub and authority scores mea-
sure interconnectedness (hubs) and connectedness
to interconnected nodes (authorities). Figure 2
shows the average coherence, across all commu-
nities extracted from the TASA corpus, for each
centrality measure. The average coherence scores
are highest using hub-score, though not signifi-
cantly better than auth-score, eigenvector central-
ity or closeness centrality. In the results that fol-
low, hub-scores were used to rank nodes within
communities.

Figure 2: Mean coherence for six centrality mea-
sures. Error-bars are ±2 SE of the mean.
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Imposing minimum node and edge frequencies
in the co-occurrence graph was also tested. How-
ever, applying no thresholds provided the high-
est average coherence. Figure 3 shows the aver-
age coherence for eight threshold configurations.
Though we used the TASA corpus for these tests,
we have no reason to believe the results would dif-
fer significantly for the other corpora.

Figure 3: Mean coherence for different mini-
mum node and edge frequencies, corresponding
to thresholds for word and co-occurrence counts.
Error-bars are ±2 SE of the mean.

3.2 Community Coherence
Table 2 shows three communities of specialist
terms extracted from each text collection, with
their normalized hub-scores. Normalizing the
scores preserves their rank-ordering and provides
an indication of relative centrality within the com-
munity itself. For example, compare the first
and last words from the top TASA and NIPS
clusters: the difference between thou and craven
(TASA) is considerably more than model and net-
work (NIPS). In general, higher ranked words ap-
pear to typify their communities, with words like
model, university and nuclear in the NIPS ex-
amples. These clusters are typical of those pro-
duced by the method, though in some cases, the
communities contain less than 10 terms and were
not included in the coherence analysis. Note that
these clusters are not systematic in any lexical se-
mantic sense, though in almost every case there
are discernible thematic relations (middle-English
words, Latin America and seafood in TASA).

TASA NIPS enTenTen
thou 1.00 model 1.00 cortex 1.00
shalt 0.72 learning 0.99 prefrontal 0.88
hast 0.49 data 0.96 anterior 0.41
thyself 0.26 neural 0.94 cingulate 0.33
dost 0.24 using 0.85 medulla 0.28
wilt 0.24 network 0.85 parietal 0.13
canst 0.12 training 0.73 insula 0.13
knowest 0.10 algorithm 0.66 cruciate 0.11
mayest 0.10 function 0.63 striatum 0.11
craven 0.01 networks 0.62 ventral 0.10
peru 1.00 university 1.00 pradesh 1.00
ecuador 0.84 science 0.85 andhra 0.67
bolivia 0.80 computer 0.83 madhya 0.56
argentina 0.67 department 0.74 uttar 0.50
paraguay 0.54 engineering 0.30 bihar 0.21
chile 0.52 report 0.30 rajasthan 0.19
venezuela 0.48 technical 0.29 maharashtra 0.16
uruguay 0.28 institute 0.26 haryana 0.12
lima 0.17 abstract 0.25 himachal 0.10
parana 0.11 california 0.23 arunachal 0.04
clams 1.00 nuclear 1.00 cilia 1.00
crabs 0.87 weapons 0.66 peristomal 0.73
oysters 0.87 race 0.57 stalk 0.62
crab 0.67 countries 0.40 trochal 0.51
lobsters 0.66 rights 0.37 vorticella 0.35
shrimp 0.62 india 0.27 campanella 0.32
hermit 0.50 russia 0.26 hairlike 0.17
mussels 0.27 philippines 0.26 swimmers 0.15
lice 0.23 brazil 0.25 epistylis 0.12
scallops 0.20 waste 0.22 telotroch 0.11

Table 2: Sample clusters from the TASA, NIPS
and enTenTen collections. Shown are the clusters’
top ten words, ranked by their normalized hub-
score within the community. Note the differences
in hub-score distributions between clusters.

Figure 4 shows the average coherence for our
method, compared to that of a 20-topic latent
Dirichlet allocation (LDA) model fit to the same
corpora. Results from an LDA model fit to our
corpora, as well as from a sample of published
topics, are provided as a baseline to calibrate read-
ers’ intuitions about coherence2. Although topics
from LDA do not necessarily consist of special-
ist terms those in the current model, the expec-
tation of coherence remains: probable or central
words should comprise a cohesive group. In every
case, coherence is calculated over the top 10 words
ranked using within-community hub-scores, for
every community of 10 or more words. The results
show that LDA provides relatively consistent co-
herence across collections, though with generally
more variance than the communities of specialist
terms. The term clusters are more coherent for the
enTenTen collection than the others, which may

2Coherence was computed for the published results with
CUMass using TASA as the reference corpus.
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be due to its larger size. This up-tick on the largest
corpus may have to do with the proportional size
of the monolithic community for the less struc-
tured documents in enTenTen. Figure 5 depicts
how the proportional size of the core would effect
the number and size of satellite clusters. It was
found that the largest community (the core SCC)
comprised 95% of TASA, 90% of NIPS and 97%
of enTenTen. It may be that specialized language
will have a proportionally smaller core and more
satellite communities, whereas more general lan-
guage will have a larger core and fewer satellites.

A critical question remains as to whether the
method is actually observing the core-periphery
structure of the lexicon or if it is an artifact. To
test this, the frequencies of words in satellite com-
munities were compared to those in the monolithic
cases. If the monolithic community does indeed
correspond to the core proposed in Figure 1, words
in the satellites should have significantly lower fre-
quencies. Indeed, the monolithic community in
every corpus contained words that were signifi-
cantly more frequent than those in the communi-
ties (Wilcoxon rank-sum test; Table 3). Taken with

Figure 4: Mean coherence (CUMass) for satellite
clusters and topics from LDA on the TASA, NIPS
and enTenTen collections (top). Also shown are
the mean coherence of topics found in published
models (LDA, a dynamic topic model, DTM and a
correlated topic model, CTM; bottom). Error-bars
are ±2 SE of the mean.

the coherence scores, these results show that there
is coherent structure in the periphery of the lexi-
con, that can be extracted from unstructured text.

Figure 5: A proportionally larger core SCC (right)
would force satellite communities to be smaller,
less numerous and more isolated. Alternatively,
with a small core (left), satellite communities
would be more numerous and prominent.

Corpus mean fc mean fs W df
TASA 112.3 7.3 39985454 40895
NIPS 211.5 10.7 28342663 25077
enTenTen 365.1 15.9 246095083 72695

Table 3: Comparison of frequency for core words,
fc, found in the monolithic community and spe-
cialist terms, fs, found in the satellite communities
(Wilcoxon rank-sum test). All differences were
significant at p < 0.001.

4 Discussion

The results of our method show that outlying
structure in the lexicon can be extracted directly
from large collections of unstructured text. The
lexicon’s topography, previously explored in dic-
tionary studies, contains modular groups of satel-
lite terms that are observable without appeal to ex-
ternal resources or document structure and with
minimal normalization. The contribution of this
method is two-fold: it confirms the structure of the
observed lexicon is similar to that apparent in the
organization of dictionaries (Picard et al., 2013).
Second, it offers a tractable, reliable means of ex-
tracting and summarizing structure in the fringes
of the lexicon.

The output of the model developed here is sim-
ilar to topic models, but with some important
differences. Topic models produce a probability
distribution over words to define a topic, which
can be summarized by the top 10 to 20 most
likely words. Instead of probabilities, the within-
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community hub-scores were used to rank words in
each cluster. This means that the actual structure
of the community (to which topics have no ana-
logue) is responsible for producing the scores that
rate words’ internal relevance. Another crucial
difference is that topic size from a single sampling
iteration tends to correlate with coherence (Mimno
et al., 2011), but in the current method, there is
no correlation between cluster size and coherence
(p = 0.98). The other important difference is that
whereas topic models produce a topic-document
mixture that can be used for posterior inference, to
perform such inference with our method, the out-
put would have to be used indirectly.

One understated strength of the community
detection method is the minimal required pre-
processing. Whereas many solutions in NLP
(including topic models) require document seg-
mentation, lexical normalization and statistical
normalizations on the co-occurrence matrix it-
self, the only variable in our method is the co-
occurrence window size. However, lemmatiza-
tion (or stemming) could help collapse morpho-
syntactic variation among terms in the results,
but stop-word removal, sentence segmentation and
TF-IDF weighting appear unnecessary. What
might be most surprising given the examples in Ta-
ble 2 is that word-document occurrence informa-
tion is not used at all. This makes the the method
particularly useful for large collections with little
to no structure.

One question overlooked in our analysis con-
cerns the effect the core has on the satellites. It
could be that the proportional size of a collection’s
core is indicative of the degree of specialist ter-
minology contained in the collection. Also, the
raw number of satellite communities might indi-
cate the level of diversity in a corpus. Addressing
these questions could yield measures of previously
vague and latent variables like specialty or topi-
cal diversity, without employing a direct semantic
analysis. By measuring a collection’s core size,
relative to its satellites, one could also use mea-
sure changes in specialization. The Infomap algo-
rithm could accommodate such an experiment: by
varying the threshold of density that constitutes a
community, the core could be made smaller, yield-
ing more satellites, the coherence of which could
be compared to those reported here. One could ex-
amine the position of individual words in the satel-
lite(s) to explore what features signal important,

emerging and dying terms or to track diachronic
movement of terms like computer or gene from the
specialized periphery to core of the lexicon.

At the level of inter-related term clusters, there
are likely important or central groups that influ-
ence other satellites. There is no agreed upon mea-
sure of “community centrality” in a network sense
(Eaton and Mansbach, 2012). One way to measure
the importance of a community would be to use
significance testing on the internal link mass com-
pared to the external (Csardi and Nepusz, 2006).
However, this approach discards some factors for
which one might want to account, such as cen-
trality in the network of communities and their
composition. Future work could seek to com-
bine graph-theoretic notions of centrality and in-
tuitions about the defining features of term clus-
ters. Another avenue for future research would
be to use mixed membership community detection
(Gopalan and Blei, 2013). Allowing terms to be
represented in more than one community would
accommodate words like nuclear, that might be
found relating to weaponry, energy production and
physics research at the same time. Using co-
occurrence networks to extract clusters of special-
ist terms, though an important task, is perhaps only
a starting point for exploring the observed lexicon.
Network-based analysis of language offers a gen-
eral and powerful potential to address a range of
questions about the lexicon, other NLP tasks and
language more generally.
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Abstract

Given the large amounts of online textual
documents available these days, e.g., news
articles, weblogs, and scientific papers, ef-
fective methods for extracting keyphrases,
which provide a high-level topic descrip-
tion of a document, are greatly needed. In
this paper, we propose a supervised model
for keyphrase extraction from research pa-
pers, which are embedded in citation net-
works. To this end, we design novel fea-
tures based on citation network informa-
tion and use them in conjunction with tra-
ditional features for keyphrase extraction
to obtain remarkable improvements in per-
formance over strong baselines.

1 Introduction

Keyphrase extraction is the problem of automat-
ically extracting important phrases or concepts
(i.e., the essence) of a document. Keyphrases
provide a high-level topic description of a docu-
ment and are shown to be rich sources of informa-
tion for many applications such as document clas-
sification, clustering, recommendation, indexing,
searching, and summarization (Jones and Stave-
ley, 1999; Zha, 2002; Hammouda et al., 2005;
Pudota et al., 2010; Turney, 2003). Despite the
fact that keyphrase extraction has been widely re-
searched in the natural language processing com-
munity, its performance is still far from being sat-
isfactory (Hasan and Ng, 2014).

Many previous approaches to keyphrase extrac-
tion generally used only the textual content of
a target document to extract keyphrases (Hulth,
2003; Mihalcea and Tarau, 2004; Liu et al., 2010).
Recently, Wan and Xiao (2008) proposed a model
that incorporates a local neighborhood of a doc-
ument. However, their neighborhood is limited
to textually-similar documents, where the cosine

similarity between the tf-idf vectors of documents
is used to compute their similarity. We posit
that, in addition to a document’s textual content
and textually-similar neighbors, other informative
neighborhoods exist that have the potential to im-
prove keyphrase extraction. For example, in a
scholarly domain, research papers are not isolated.
Rather, they are highly inter-connected in giant ci-
tation networks, in which papers cite or are cited
by other papers. In a citation network, information
flows from one paper to another via the citation re-
lation (Shi et al., 2010). This information flow and
the influence of one paper on another are specifi-
cally captured by means of citation contexts, i.e.,
short text segments surrounding a citation’s men-
tion. These contexts are not arbitrary, but they
serve as brief summaries of a cited paper. Figure
1 illustrates this idea using a small citation net-
work of a paper by Rendle et al. (2010) that cites
(Zimdars et al., 2001), (Hu et al., 2008), (Pan and
Scholz, 2009) and (Shani et al., 2005) and is cited
by (Cheng et al., 2013). The citation mentions
and citation contexts are shown with a dashed line.
Note the high overlap between the words in con-
texts and those in the title and abstract (shown in
bold) and the author-annotated keywords.

One question that can be raised is the following:
Can we effectively exploit information available
in large inter-linked document networks in order
to improve the performance of keyphrase extrac-
tion? The research that we describe in this paper
addresses specifically this question using citation
networks of research papers as a case study. Ex-
tracting keyphrases that can accurately “represent”
research papers is crucial to dealing with the large
numbers of research papers published during these
“big data” times. The importance of keyphrase ex-
traction from research papers is also emphasized
by the recent SemEval 2010 Shared Task on this
topic (Kim et al., 2010; Kim et al., 2013).

Our contributions. We present a supervised
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Figure 1: A small citation network corresponding to a paper by Rendle et al. (2010).

approach to keyphrase extraction from research
papers that, in addition to the information con-
tained in a paper itself, effectively incorporates,
in the learned models, information from the pa-
per’s local neighborhood available in citation net-
works. To this end, we design novel features for
keyphrase extraction based on citation context in-
formation and use them in conjunction with tradi-
tional features in a supervised probabilistic frame-
work. We show empirically that the proposed
models substantially outperform strong baselines
on two datasets of research papers compiled from
two machine learning conferences: the World
Wide Web and Knowledge Discovery from Data.

The rest of the paper is organized as follows:
We summarize closely related work in Section 2.
The supervised classification for keyphrase extrac-
tion is discussed in Section 3. Experiments and re-
sults are presented in Section 4, followed by con-
clusions and future directions of our work.

2 Related Work

Many approaches to keyphrase extraction have
been proposed in the literature along two lines of
research: supervised and unsupervised, using dif-
ferent types of documents including scientific ab-
stracts, newswire documents, meeting transcripts,
and webpages (Frank et al., 1999; Hulth, 2003;
Nguyen and Kan, 2007; Liu et al., 2009; Marujo
et al., 2013; Mihalcea and Tarau, 2004).

In the supervised line of research, keyphrase
extraction is formulated as a binary classification
problem, where candidate phrases are classified as

either positive (i.e., keyphrases) or negative (i.e.,
non-keyphrases) (Frank et al., 1999; Turney, 2000;
Hulth, 2003). Different feature sets and classifica-
tion algorithms gave rise to different models. For
example, Hulth (2003) used four different features
in conjunction with a bagging technique. These
features are: term frequency, collection frequency,
the relative position of the first occurrence and the
part-of-speech tag of a term. Frank et al. (1999)
developed a system called KEA that used only
two features: tf-idf (term frequency-inverse doc-
ument frequency) of a phrase and the distance of
a phrase from the beginning of a document (i.e.,
its relative position) and used them as input to
Naı̈ve Bayes. Nguyen and Kan (2007) extended
KEA to include features such as the distribution
of keyphrases among different sections of a re-
search paper, and the acronym status of a term. In
contrast to these works, we propose novel features
extracted from the local neighborhoods of docu-
ments available in interlinked document networks.
Medelyan et al. (2009) extended KEA as well to
integrate information from Wikipedia. In contrast,
we used only information intrinsic to our data. En-
hancing our models with Wikipedia information
would be an interesting future direction to pursue.

In the unsupervised line of research, keyphrase
extraction is formulated as a ranking problem,
where keyphrases are ranked using their tf (Barker
and Cornacchia, 2000), tf-idf (Zhang et al., 2007;
Lee and Kim, 2008; Liu et al., 2009; Tonella et al.,
2003), and term informativeness (Wu and Giles,
2013; Rennie and Jaakkola, 2005; Kireyev, 2009)
(among others). The ranking based on tf-idf has

1436



been shown to work well in practice (Liu et al.,
2009; Hasan and Ng, 2010) despite its simplicity.
Frantzi et al. (1998) combined linguistics and sta-
tistical information to extract technical terms from
documents in digital libraries. Graph-based al-
gorithms and centrality measures are also widely
used in unsupervised models. A word graph is
built for each document such that nodes corre-
spond to words and edges correspond to word as-
sociation patterns. Nodes are then ranked using
graph centrality measures such as PageRank and
its variants (Mihalcea and Tarau, 2004; Wan and
Xiao, 2008; Liu et al., 2010; Zhao et al., 2011),
HITS scores (Litvak and Last, 2008), as well as
node degree and betweenness (Boudin, 2013; Xie,
2005). Wan and Xiao (2008) were the first to
consider modeling a local neighborhood of a tar-
get document in addition to the document itself,
and applied this approach to news articles on the
Web. Their local neighborhood consists of textu-
ally similar documents, and did not capture infor-
mation contained in document networks.

Using terms from citation contexts of scientific
papers is not a new idea. It was used before in
various applications. For example, Ritchie et al.
(2006) used a combination of terms from citation
contexts and existing index terms of a paper to
improve indexing of cited papers. Citation con-
texts were also used to improve the performance of
citation recommendation systems (Kataria et al.,
2010; He et al., 2010) and to study author influ-
ence (Kataria et al., 2011). This idea of using
terms from citation contexts resembles the anal-
ysis of hyperlinks and the graph structure of the
Web, which are instrumental in Web search (Man-
ning et al., 2008). Many current Web search en-
gines build on the intuition that the anchor text
pointing to a page is a good descriptor of its con-
tent, and thus use anchor text terms as additional
index terms for a target webpage. The use of links
and anchor text was thoroughly researched for IR
tasks (Koolen and Kamps, 2010), broadening a
user’s search (Chakrabarti et al., 1998), query re-
finement (Kraft and Zien, 2004), and enriching
document representations (Metzler et al., 2009).

Moreover, citation contexts were used for scien-
tific paper summarization (Abu-Jbara and Radev,
2011; Qazvinian et al., 2010; Qazvinian and
Radev, 2008; Mei and Zhai, 2008; Lehnert et al.,
1990; Nakov et al., 2004). Among these, proba-
bly the most similar to our work is the work by
Qazvinian et al. (2010), where a set of important

keyphrases is extracted first from the citation con-
texts in which the paper to be summarized is cited
by other papers and then the “best” subset of sen-
tences that contain such keyphrases is returned as
the summary. However, keyphrases in (Qazvinian
et al., 2010) are extracted using frequent n-grams
in a language model framework, whereas in our
work, we propose a supervised approach to a dif-
ferent task: keyphrase extraction. Mei and Zhai
(2008) used information from citation contexts to
determine what sentences of a paper are of high
impact (as measured by the influence of a target
paper on further studies of similar or related top-
ics). These sentences constitute the impact-based
summary of the paper.

Despite the use of citation contexts and anchor
text in many IR and NLP tasks, to our knowl-
edge, we are the first to propose the incorporation
of information available in citation networks for
keyphrase extraction. In our recent work (Gol-
lapalli and Caragea, 2014), we designed a fully
unsupervised graph-based algorithm that incorpo-
rates evidence from multiple sources (citation con-
texts as well as document content) in a flexible
manner to score keywords. In the current work,
we present a supervised approach to keyphrase ex-
traction from research papers that are embedded in
large citation networks, and propose novel features
that show improvement over strong supervised and
unsupervised baselines. To our knowledge, fea-
tures extracted from citation contexts have not
been used before for keyphrase extraction in a su-
pervised learning framework.

3 Problem Characterization

In citation networks, in addition to the informa-
tion contained in a paper itself, citing and cited
papers capture different aspects (e.g., topicality,
domain of study, algorithms used) about the tar-
get paper (Teufel et al., 2006), with citation con-
texts playing an instrumental role. A citation con-
text is defined as a window of n words surround-
ing a citation mention. We conjecture that cita-
tion contexts, which act as brief summaries about a
cited paper, provide additional clues in extracting
keyphrases for a target paper. These clues give rise
to the unique design of our model, called citation-
enhanced keyphrase extraction (CeKE).

3.1 Citation-enhanced Keyphrase Extraction

Our proposed citation-enhanced keyphrase extrac-
tion (CeKE) model is a supervised binary classifi-
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Feature Name Description

Existing features for keyphrase extraction

tf-idf term frequency * inverse document
frequency, computed from a target
paper; used in KEA

relativePos the position of the first occurrence of a
phrase divided by the total number of
tokens; used in KEA and Hulth’s methods

POS the part-of-speech tag of the phrase;
used in Hulth’s methods

Novel features - Citation Network Based

inCited if the phrase occurs in cited contexts
inCiting if the phrase occurs in citing contexts
citation tf-idf the tf-idf value of the phrase, computed

from the aggregated citation contexts

Novel features - Extensions of Existing Features
first position the distance of the first occurrence of

a phrase from the beginning of a paper

tf-idf-Over tf-idf larger than a threshold θ
firstPosUnder the distance of the first occurrence of a

phrase from the beginning of a paper is
below some value β

Table 1: The list of features used in our model.

cation model, built on a combination of novel fea-
tures that capture information from citation con-
texts and existing features from previous works.
The features are described in §3.1.1. CeKE classi-
fies candidate phrases as keyphrases (i.e., positive)
or non-keyphrases (i.e., negative) using Naı̈ve
Bayes classifiers. Positive examples for train-
ing correspond to manually annotated keyphrases
from the training research papers, whereas nega-
tive examples correspond to the remaining candi-
date phrases from these papers. The generation of
candidate phrases is explained in §3.2.

Note that Naı̈ve Bayes classifies a phrase as a
keyphrase if the probability of the phrase belong-
ing to the positive class is greater than 0.5. How-
ever, the default threshold of 0.5 can be varied to
allow only high-confidence (e.g., 0.9 confidence)
phrases to be classified as keyphrases.
3.1.1 Features
We consider the following features in our model,
which are shown in Table 1. They are divided
into three categories: (1) Existing features for
keyphrase extraction include: tf-idf, i.e., the term
frequency - inverse document frequency of a can-
didate phrase, computed for each target paper;

This feature was used in KEA (Frank et al., 1999);
relative position, i.e., the position of the first oc-
currence of a phrase normalized by the length (in
the number of tokens) of the target paper; POS,
i.e., a phrase’s part-of-speech tag. If a phrase is
composed by more than one term, then the POS
will contain the tags of all terms. The relative posi-
tion was used in both KEA and Hulth (2003), and
POS was used in Hulth; (2) Novel features - Cita-
tion Network Based include: inCited and inCiting,
i.e., boolean features that are true if the candidate
phrase occurs in cited and citing contexts, respec-
tively. We differentiate between cited and citing
contexts for a paper: let d be a target paper and C
be a citation network such that d ∈ C. A cited con-
text for d is a context in which d is cited by some
paper di in C. A citing context for d is a context
in which d is citing some paper dj in C. If a paper
is cited in multiple contexts by another paper, the
contexts are aggregated into a single one; citation
tf-idf, i.e., the tf-idf score of each phrase computed
from the citation contexts; (3) Novel features - Ex-
tend Other Existing Features include: first position
of a candidate phrase, i.e., the distance of the first
occurrence of a phrase from the beginning of a pa-
per; this is similar to relative position except that
it does not consider the length of a paper; tf-idf-
Over, i.e., a boolean feature, which is true if the
tf-idf of a candidate phrase is greater than a thresh-
old θ, and firstPosUnder, also a boolean feature,
which is true if the distance of the first occurrence
of a phrase from the beginning of a target paper is
below some value β. This feature is similar to the
feature is-in-title, used previously in the literature
(Litvak and Last, 2008; Jiang et al., 2009). Both
tf-idf and citation tf-idf features showed better re-
sults when each tf was divided by the maximum tf
values from the target paper or citation contexts.

The tf-idf features have high values for phrases
that are frequent in a paper or citation contexts,
but are less frequent in collection and have low
values for phrases with high collection frequency.
We computed the idf component from each col-
lection used in experiments. Phrases that occur in
cited and citing contexts as well as early in a paper
are likely to be keyphrases since: (1) they capture
some aspect about the target paper and (2) authors
start to describe their problem upfront.

3.2 Generating Candidate Phrases

We generate candidate phrases from the textual
content of a target paper by applying parts-of-
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Dataset Num. (#) Average Average Average #uni- #bi- #tri-
Papers Cited Ctx. Citing Ctx. Keyphrases grams grams grams

WWW 425 15.45 18.78 4.87 680 1036 247
KDD 365 12.69 19.74 4.03 363 853 189

Table 2: A summary of our datasets.

speech filters. Consistent with previous works
(Hulth, 2003; Mihalcea and Tarau, 2004; Liu
et al., 2010; Wan and Xiao, 2008), only nouns
and adjectives are retained to form candidate
phrases. The generation process consists of two
steps. First, using the NLP Stanford part of speech
tagger, we preprocess each document and keep
only the nouns and adjectives corresponding to
{NN,NNS,NNP,NNPS, JJ}. We apply the
Porter stemmer on every word. The position of
each word is kept consistent with the initial state
of the document before any word removal is made.

Second, words extracted in the first step that
have contiguous positions in a document are con-
catenated into n-grams. We used unigrams, bi-
grams, and trigrams (n = 1, 2, 3) as candidate
phrases for classification. Similar to Wan and Xiao
(2008), we eliminated phrases that end with an ad-
jective and the unigrams that are adjectives.

4 Experiments and Results

In this section, we first describe our datasets and
then present experimental design and results.

4.1 Datasets
In order to test the performance of our proposed
approach, we built our own datasets since citation-
enhanced evaluation benchmarks are not available
for keyphrase extraction tasks. In particular, we
compiled two datasets consisting of research pa-
pers from two top-tier machine learning confer-
ences: World Wide Web (WWW) and Knowledge
Discovery and Data Mining (KDD). Our choice
for WWW and KDD was motivated by the avail-
ability of author-input keywords for each paper,
which we used as gold-standard for evaluation.

Using the CiteSeerx digital library1, we re-
trieved the papers published in WWW and KDD
(available in CiteSeerx), and their citation network
information, i.e., their cited and citing contexts.
Since our goal is to study the impact of citation
network information on extracting keyphrases, a
paper was considered for analysis if it had at least

1http://citeseerx.ist.psu.edu/

one cited and one citing context. For each paper,
we used: the title and abstract (referred to as the
target paper) and its citation contexts. The rea-
son for not considering the entire text of a paper
is that scientific papers contain details, e.g., dis-
cussion of results, experimental design, notation,
that do not provide additional benefits for extract-
ing keyphrases. Hence, similar to (Hulth, 2003;
Mihalcea and Tarau, 2004; Liu et al., 2009), we
did not use the entire text of a paper. However, ex-
tracting keyphrases from sections such as “intro-
duction” or “conclusion” needs further attention.

From the pdf of each paper, we extracted the
author-input keyphrases. An analysis of these
keyphrases revealed that generally authors de-
scribe their work using, almost half of the time,
bigrams, followed by unigrams and only rarely us-
ing trigrams (or higher n-grams). A summary of
our datasets that contains the number of papers,
the average number of cited and citing contexts
per paper, the average number of keyphrases per
paper, and the number of unigrams, bigrams and
trigrams, in each collection, is shown in Table 2.

Consistent with previous works (Frank et al.,
1999; Hulth, 2003), the positive and negative ex-
amples in our datasets correspond to candidate
phrases that consist of up to three tokens. The
positive examples are candidate phrases that have
a match in the author-input keyphrases, whereas
negative examples correspond to the remaining
candidate phrases.

Context lengths. In CiteSeerx, citation con-
texts have about 50 words on each side of a citation
mention. A previous study by Ritchie et al. (2008)
shows that a fixed window length of about 100
words around a citation mention is generally effec-
tive for information retrieval tasks. For this reason,
we used the contexts provided by CiteSeerx di-
rectly. However, in future, it would be interesting
to incorporate in our models more sophisticated
approaches to identifying the text that is relevant
to a target citation (Abu-Jbara and Radev, 2012;
Teufel, 1999) and study the influence of context
lengths on the quality of extracted keyphrase.
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WWW KDD
Method Precision Recall F1-score Precision Recall F1-score

Citation - Enhanced (CeKE) 0.227 0.386 0.284 0.213 0.413 0.280
Hulth - n-gram with tags 0.165 0.107 0.129 0.206 0.151 0.172
KEA 0.210 0.146 0.168 0.178 0.124 0.145

Table 3: The comparison of CeKE with supervised approaches on WWW and KDD collections.

4.2 Experimental Design
Our experiments are designed around the follow-
ing research questions:

1. How does the performance of citation-
enhanced keyphrase extraction (CeKE) com-
pare with the performance of existing super-
vised models that use only information intrin-
sic to the data and what are the most informa-
tive features for classification? We compared
CeKE’s performance with that of classifiers
trained on KEA features only and Hulth’s
features only and present a ranking of fea-
tures based on information gain.

2. How do supervised models that integrate ci-
tation network information compare with re-
cent unsupervised models? Since recent un-
supervised approaches are becoming compet-
itive with supervised approaches (Hasan and
Ng, 2014), we also compared CeKE with
unsupervised ranking of candidate phrases
by TF-IDF, TextRank (Mihalcea and Ta-
rau, 2004) and ExpandRank (Wan and Xiao,
2008). For unsupervised, we considered top
5 and top 10 ranked phrases when computing
“@5” and “@10” measures.

3. How well does our proposed model perform
in the absence of either cited or citing con-
texts? Since newly published scientific pa-
pers are not cited by many other papers, e.g.,
due to their recency, no cited contexts are
available. We studied the quality of predicted
keyphrases when either cited or citing con-
texts are missing. For this, we compared
the performance of models trained using both
cited and citing contexts with that of models
that use either cited or citing contexts.

Evaluation metrics. To evaluate the perfor-
mance of CeKE, we used the following metrics:
precision, recall and F1-score for the positive class
since correct identification of keyphrases is of
most interest. These metrics were widely used in

previous works (Hulth, 2003; Mihalcea and Tarau,
2004; Wan and Xiao, 2008; Hasan and Ng, 2010).
The reported values are averaged in 10-fold cross-
validation experiments, where folds were created
at document level and candidate phrases were ex-
tracted from the documents in each fold to form
the training and test sets. In all experiments, we
used Naı̈ve Bayes and their Weka implementa-
tion2. However, any probabilistic classifier that re-
turns a posterior probability of the class given an
example, can be used with our features.

The θ parameter was set to the (title and ab-
stract) tf-idf averaged over the entire collection,
while β was set to 20. These values were esti-
mated on a validation set sampled from training.

4.3 Results and Discussion

The impact of citation network information on the
keyphrase extraction task. Table 3 shows the re-
sults of the comparison of CeKE with two su-
pervised approaches, KEA and Hulth’s approach.
The features used in KEA are the tf-idf and the
relative position of a candidate phrase, whereas
those used in Hulth’s approach are tf, cf (i.e., col-
lection frequency), relative position and POS tags.
CeKE is trained using all features from Table 1.
Among the three methods for candidate phrase
formation proposed in Hulth (2003), i.e., n-grams,
NP-chunks, and POS Tag Patterns, our Hulth’s im-
plementation is based on n-grams since this gives
the best results among all methods (see (Hulth,
2003) for more details). In addition, the n-grams
method is the most similar to our candidate phrase
generation and that used in Frank et al. (1999).

As can be seen from Table 3, CeKE outperforms
KEA and Hulth’s approach in terms of all perfor-
mance measures on both WWW and KDD, with
a substantial improvement in recall over both ap-
proaches. For example, on WWW, CeKE achieves
a recall of 0.386 compared to 0.146 and 0.107 re-
call achieved by KEA and Hulth’s, respectively.

2http://www.cs.waikato.ac.nz/ml/weka/
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WWW KDD
Method Precision Recall F1-score Precision Recall F1-score

Citation - Enhanced (CeKE) 0.227 0.386 0.284 0.213 0.413 0.280

TF-IDF - Top 5 0.089 0.100 0.094 0.083 0.102 0.092
TF-IDF - Top 10 0.075 0.169 0.104 0.080 0.203 0.115

TextRank - Top 5 0.058 0.071 0.062 0.051 0.065 0.056
TextRank - Top 10 0.062 0.133 0.081 0.053 0.127 0.072

ExpandRank - 1 neigh. - Top 5 0.088 0.109 0.095 0.077 0.103 0.086
ExpandRank - 1 neigh. - Top 10 0.078 0.165 0.101 0.071 0.177 0.098

ExpandRank - 5 neigh. - Top 5 0.093 0.113 0.100 0.080 0.108 0.090
ExpandRank - 5 neigh. - Top 10 0.080 0.172 0.104 0.068 0.172 0.095

ExpandRank - 10 neigh. - Top 5 0.094 0.113 0.100 0.077 0.103 0.086
ExpandRank - 10 neigh. - Top 10 0.076 0.162 0.099 0.065 0.164 0.091

Table 5: The comparison of CeKE with unsupervised approaches on WWW and KDD collections.

Rank Feature IG Score
1 abstract tf-idf 0.0234
2 first position 0.0188
3 citation tf-idf 0.0177
4 relativePos 0.0154
5 firstPosUnder 0.0148
6 inCiting 0.0129
7 inCited 0.0098
8 POS 0.0085
9 tf-idf-Over 0.0078

Table 4: Feature ranking by Info Gain on WWW.

Although there are only small variations from
KEA to Hulth’s approach, KEA performs better
on WWW, but worse on KDD compared with
Hulth’s approach. In contrast, CeKE shows con-
sistent improvement over the two approaches on
both datasets, hence, effectively making use of the
information available in the citation network.

In order to understand the importance of our
features, we ranked them based on Information
Gain (IG), which determines how informative a
feature is with respect to the class variable. Table
4 shows the features ranked in decreasing order of
their IG scores for WWW. As can be seen from
the table, tf-idf and citation tf-idf are both highly
ranked, first and third, respectively, illustrating
that they contain significant information in pre-
dicting keyphrases. The first position of a phrase
is also of great impact. This is consistent with the
fact that almost half of the identified keywords and

about 20% of the annotated keyphrases appear in
title. Similar ranking is obtained on KDD.

The comparison of CeKE with unsupervised
state-of-the-art models. Table 5 shows the re-
sults of the comparison of CeKE with three unsu-
pervised ranking approaches: TF-IDF (Tonella et
al., 2003), TextRank (Mihalcea and Tarau, 2004),
and ExpandRank (Wan and Xiao, 2008). TF-IDF
and TextRank use information only from the target
paper, whereas ExpandRank uses a small textual
neighborhood in addition to the target paper. Note
that, for all unsupervised methods, we used Porter
stemmer and the same candidate phrase generation
as in CeKE, as explained in §3.2.

For TF-IDF, we first tokenized the target paper
and computed the score for each word, and then
formed phrases and summed up the score of every
word within a phrase. For TextRank, we built an
undirected graph for each paper, where the nodes
correspond to words in the target paper and edges
are drawn between two words that occur next to
each other in the text, i.e., the window size is 2.
For ExpandRank, we built an undirected graph
for each paper and its local textual neighborhood.
Again, nodes correspond to words in the target pa-
per and its textually similar papers and edges are
drawn between two words that occur within a win-
dow of 10 words from each other in the text, i.e.,
the window size is 10. We performed experiments
with 1, 5, and 10 textually-similar neighbors. For
TextRank and ExpandRank, we summed up the
scores of words within a phrase as in TF-IDF.
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WWW KDD
Method Precision Recall F1-score Precision Recall F1-score
CeKE - Both contexts 0.227 0.386 0.284 0.213 0.413 0.280
CeKE - Only cited contexts 0.222 0.286 0.247 0.192 0.300 0.233
CeKE - Only citing contexts 0.203 0.342 0.253 0.195 0.351 0.250

Table 6: Results of CeKE using both contexts and using with only cited or citing contexts.

For each unsupervised method, we computed
results for top 5 and top 10 ranked phrases. As
can be seen from Table 5, CeKE substantially out-
performs all the other methods for our domain of
study, i.e., papers from WWW and KDD, illustrat-
ing again that the citation network of a paper con-
tains important information that can show remark-
able benefits for keyphrase extraction. Among all
unsupervised methods, ExpandRank with fewer
textual similar neighbor (one or five) performs the
best. This is generally consistent with the results
shown in (Wan and Xiao, 2008) for news articles.

The effect of cited and citing contexts informa-
tion on models’ performance. Table 6 shows the
precision, recall and F-score values for some vari-
ations of our method when: (1) all the citation con-
texts for a paper are used, (2) only cited contexts
are used, (3) only citing contexts are used. The
motivation behind this experiment was to deter-
mine how well the proposed model would perform
on newly published research papers that have not
accumulated citations yet. As shown in the table,
there is no substantial difference in terms of preci-
sion between CeKE models that use only cited or
only citing contexts, although the recall is substan-
tially higher for the case when only citing contexts
are used, for both WWW and KDD. The CeKE
that uses both citing and cited contexts achieves
a substantially higher recall and only a slightly
higher precision compared with the cases when
only one context type is available. The fact that
the citing context information provides a slight im-
provement in performance over cited contexts is
consistent with the intuition that when citing a pa-
per y, an author generally summarizes the main
ideas from y using important words from a target
paper x, making the citing contexts to have higher
overlap with words from x. In turn, a paper z that
cites x may use paraphrasing to summarize ideas
from x with words more similar to those from z.

Note that the results of all above experiments
are statistically significant at p-values ≥ 0.05, us-
ing a paired t-test on F1-scores.

4.4 Anecdotal Evidence

In order to check the transferability of our pro-
posed approach to other research fields, e.g., nat-
ural language processing, it would be interesting
to use our trained classifiers on WWW and KDD
collections and evaluate them on new collections
such as NLP related collections. Since NLP col-
lections annotated with keyphrases are not avail-
able, we show anecdotal evidence for only one pa-
per. We selected for this task an award winning pa-
per published in the EMNLP conference. The pa-
per’s title is ”Unsupervised semantic parsing” and
has won the Best Paper Award in the year 2009
(Poon and Domingos, 2009). In order for our al-
gorithm to work, we gathered from the Web (using
Google Scholar) all the cited and citing contexts
that were available (49 cited contexts and 30 cit-
ing contexts). We manually annotated the target
paper with keyphrases. The title, abstract and all
the contexts were POS tagged using the NLP Stan-
ford tool. We then trained a classifier on the fea-
tures shown in Table 1, on both WWW and KDD
datasets combined. The trained classifier was used
to make predictions, which were compared against
the manually annotated keyphrases. The results
are shown in Figure 2, which displays the title and
abstract of the paper and the predicted keyphrases.
Candidate phrases that are predicted as keyphrases
are marked in red bold, those predicted as non-
keyphrases are shown in black, while the filtered
out words are shown in light gray.

We tuned our classifier trained on WWW and
KDD to return as keyphrases only those that had
an extremely high probability to be keyphrases.
Specifically, we used a threshold of 0.985. The
probability of each returned keyphrase (which is
above 0.985) is shown in the upper right corner
of a keyphrase. Human annotated keyphrases are
marked in italic, under the figure. There is a clear
match between the predictions and the human an-
notations. It is also possible to extract more or
less keyphrases simply by adjusting the threshold
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Unsupervised Semantic Parsing0.997

We present the first unsupervised approach to the problem of learning a semantic parser1.000, using
Markov logic0.991 . Our USP system0.985 transforms dependency trees into quasi-logical forms, recur-
sively induces lambda forms from these, and clusters them to abstract away syntactic variations of the
same meaning. The MAP semantic parse1.000 of a sentence is obtained by recursively assigning its
parts to lambda-form clusters and composing them. We evaluate our approach by using it to extract a
knowledge base from biomedical abstracts and answer questions. USP1.000 substantially outperforms
TextRunner, DIRT and an informed baseline on both precision and recall on this task.

Human annotated labels: unsupervised semantic parsing, Markov logic, USP system

Figure 2: The title and abstract of an EMNLP paper by Poon and Domingos (2009) and human annotated
keyphrases for the paper. Black words represent candidate phrases. Red bold words represent predicted
keyphrases. The numbers above predicted keyphrases are probabilities for the positive class assignment.

on the probability output by Naı̈ve Bayes. For ex-
ample, if we decrease the threshold to 0.920 the
following phrases would be added to the returned
set of keyphrases: dependency trees, quasi-logical
forms and unsupervised approach.

Another interesting aspect is the frequency of
occurrence of the predicted keyphrases in the cited
and citing contexts. Table 7 shows the term-
frequency of every predicted keyphrase within the
citation network. For example, the phrase seman-
tic parser appears in 29 cited contexts and 26 cit-
ing contexts. The reason for the higher cited con-
text frequency is not necessarily due to impor-
tance, but could be due to the larger number of
cited vs. citing contexts for this paper (49 vs. 30).
The high rate of keyphrases within the citation net-
work validates our assumption of the importance
of citation networks for keyphrase extraction.

Finally, we performed the same experiment
with Hulth’s and KEA methods. While the clas-
sifier trained on Hulth’s features did not identify
any keyphrases, KEA managed to identify several
good ones (e.g., USP, semantic parser), but left
out some important ones (e.g., Markov logic, un-
supervised). Moreover, the keyphrases predicted
by KEA have a lower confidence. For this reason,
lowering the probability threshold would result in
selecting other bad keyphrases.

4.5 Error analysis

We performed an error analysis and found that
candidate phrases are predicted as keyphrases
(FPs), although they do not appear in gold stan-
dard, i.e., the set of author-input keyphrases, in
cases when: 1) a more general terms is used to
describe an important concept of a document, e.g.,

Keyphrase #cited c. #citing c.
semantic parser 29 26
USP 31 10
Markov logic 15 10
unsupervised semantic parsing 12 1
USP system 3 2

Table 7: Frequency of the predicted keyphrases in
cited / citing contexts.

co-authorship prediction represented as link pre-
diction or Twitter platform represented as social
media; 2) an important concept is omitted (either
intentionally or forgetfully) from the set of author-
input keyphrases.

Hence, while we believe that authors are the
best keyphrase annotators for their own work,
there are cases when important keyphrases are
overlooked or expressed in different ways, possi-
bly due to the human subjective nature in choosing
important keyphrases that describe a document.
To this end, a limitation of our model is the use of
a single gold standard keyphrase annotation. In fu-
ture, we plan to acquire several human keyphrase
annotation sets for our datasets and test the perfor-
mance of the proposed approach on these annota-
tion sets, independently and in combination.

Keyphrases that appear in gold standard are
predicted as non-keyphrases (FNs) when: 1) a
keyphrase is infrequent in abstract; 2) its distance
from the beginning of a document is large; 3) does
not occur or occurs only rarely in a document’s
citation contexts, either citing or cited contexts.
Examples of FNs are model/algorithm/approach
names, e.g., random walks, that appear in sen-
tences such as: “In this paper, we model the prob-
lem [· · ·] by using random walks.” Although such
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a sentence may appear further away from the be-
ginning of an abstract, it contains significant in-
formation from the point of view of keyphrase
extraction. The design of patters such as <
by using $model > or < uses $model > could
lead to improved classification performance.

Further investigation of FPs and FNs will be
considered in future work. We believe that a bet-
ter understanding of errors has the potential to ad-
vance state-of-the-art for keyphrase extraction.

5 Conclusion and Future Directions
In this paper, we presented a supervised classifi-
cation model for keyphrase extraction from scien-
tific research papers that are embedded in citation
networks. More precisely, we designed novel fea-
tures that take into account citation network in-
formation for building supervised models for the
classification of candidate phrases as keyphrases
or non-keyphrases. The results of our experi-
ments show that the proposed supervised model
trained on a combination of citation-based features
and existing features for keyphrase extraction per-
forms substantially better compared with state-of-
the-art supervised and unsupervised models.

Although we illustrated the benefits of leverag-
ing inter-linked document networks for keyphrase
extraction from scientific documents, the proposed
model can be extended to other types of docu-
ments such as webpages, emails, and weblogs. For
example, the anchor text on hyperlinks in weblogs
can be seen as the “citation context”.

Another aspect of future work would be the
use of external sources to better identify candi-
date phrases. For example, the use of Wikipedia
was studied before to check if the concept behind
a phrase has its own Wikipedia page (Medelyan
et al., 2009). Furthermore, since citations occur
in all sciences, extensions of the proposed model
to other domains, e.g., Biology and Chemistry,
and other applications, e.g., document summariza-
tion, similar to Mihalcea and Tarau (2004) and
Qazvinian et al. (2010), are of particular interest.
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Abstract

We propose to use coreference chains ex-
tracted from a large corpus as a resource
for semantic tasks. We extract three mil-
lion coreference chains and train word
embeddings on them. Then, we com-
pare these embeddings to word vectors de-
rived from raw text data and show that
coreference-based word embeddings im-
prove F1 on the task of antonym classifi-
cation by up to .09.

1 Introduction

After more than a decade of work on coreference
resolution, coreference resolution systems have
reached a certain level of maturity (e.g., Recasens
et al. (2010)). While accuracy is far from perfect
and many phenomena such as bridging still pose
difficult research problems, the quality of the out-
put of these systems is high enough to be useful
for many applications.

In this paper, we propose to run coreference res-
olution systems on large corpora, to collect the
coreference chains found and to use them as a re-
source for solving semantic tasks. This amounts
to using mined coreference chains as an automat-
ically compiled resource similar to the way cooc-
currence statistics, dependency pairs and aligned
parallel corpora are used in many applications in
NLP. Coreference chains have interesting comple-
mentary properties compared to these other re-
sources. For example, it is difficult to distinguish
true semantic similarity (e.g., “cows” – “cattle”)
from mere associational relatedness (e.g., “cows”
– “milk”) based on cooccurrence statistics. In con-
trast, coreference chains should be able to make
that distinction since only “cows” and “cattle” can
occur in the same coreference chain, not “cows”
and “milk”.

As a proof of concept we compile a resource
of mined coreference chains from the Gigaword

corpus and apply it to the task of identifying
antonyms. We induce distributed representations
for words based on (i) cooccurrence statistics and
(ii) mined coreference chains and show that a com-
bination of both outperforms cooccurrence statis-
tics on antonym identification.

In summary, we make two contributions. First,
we propose to use coreference chains mined from
large corpora as a resource in NLP and publish the
first such resource. Second, in a proof of concept
study, we show that they can be used to solve a se-
mantic task – antonym identification – better than
is possible with existing resources.

We focus on the task of finding antonyms in this
paper since antonyms usually are distributionally
similar but semantically dissimilar words. Hence,
it is often not possible to distinguish them from
synonyms with distributional models only. In con-
trast, we expect that the coreference-based repre-
sentations can provide useful complementary in-
formation to this task. In general, coreference-
based similarity can however be used as an addi-
tional feature for any task that distributional simi-
larity is useful for. Thus, our coreference resource
can be applied to a variety of NLP tasks, e.g. find-
ing alternative names for entities (in a way similar
to Wikipedia anchors) for tasks in the context of
knowledge base population.

The remainder of the paper is organized as fol-
lows. In Section 2, we describe how we create
word embeddings and how our antonym classi-
fier works. The word embeddings are then eval-
uated qualitatively, quantitatively and for the task
of antonym detection (Section 3). Section 4 dis-
cusses related work and Section 5 concludes.

2 System description

2.1 Coreference-based embeddings

Standard word embeddings derived from text data
may not be able to distinguish between semantic
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text-based coref.-based
his my, their, her, your, our he, him, himself, zechariah, ancestor
woman man, girl, believer, pharisee, guy girl, prostitute, lupita, betsy, lehia

Table 1: Nearest neighbors of “his” / “woman” for text-based & coreference-based embeddings

association and true synonymy. As a result, syn-
onyms and antonyms may be mapped to similar
word vectors (Yih et al., 2012). For many NLP
tasks, however, information about true synonymy
or antonymy may be important.

In this paper, we develop two different word
embeddings: embeddings calculated on raw text
data and embeddings derived from automatically
extracted coreference chains. For the calcula-
tion of the vector representations, the word2vec
toolkit1 by Mikolov et al. (2013) is applied. We
use the skip-gram model for our experiments be-
cause its results for semantic similarity are better
according to Mikolov et al. (2013). We train a
first model on a subset of English Gigaword data.2

In the following sections, we call the resulting
embeddings text-based. To improve the seman-
tic similarities of the vectors, we prepare another
training text consisting of coreference chains. We
use CoreNLP (Lee et al., 2011) to extract coref-
erence chains from the Gigaword corpus. Then
we build a skip-gram model on these coreference
chains. The extracted coreference chains are pro-
vided as an additional resource to this paper3. Al-
though they have been developed using only a
publicly available toolkit, we expect this resource
to be helpful for other researchers since the pro-
cess to extract the coreference chains of such a
large text corpus takes several weeks on multi-core
machines. In total, we extracted 3.1M coreference
chains. 2.7M of them consist of at least two differ-
ent markables. The median (mean) length of the
chains is 3 (4.0) and the median (mean) length of
a markable is 1 (2.7). To train word embeddings,
the markables of each coreference chain are con-
catenated to one text line. These lines are used as
input sentences for word2vec. We refer to the re-
sulting embeddings as coreference-based.

2.2 Antonym detection
In the following experiments, we use word em-
beddings to discriminate antonyms from non-
antonyms. We formalize this as a supervised clas-

1https://code.google.com/p/word2vec
2LDC2012T21, Agence France-Presse 2010
3https://code.google.com/p/cistern

sification task and apply SVMs (Chang and Lin,
2011).

The following features are used to represent a
pair of two words w and v:

1. cosine similarity of the text-based embed-
dings of w and v;

2. inverse rank of v in the nearest text-based
neighbors of w;

3. cosine similarity of the coreference-based
embeddings of w and v;

4. inverse rank of v in the nearest coreference-
based neighbors of w;

5. difference of (1) and (3);

6. difference of (2) and (4).

We experiment with three different subsets of
these features: text-based (1 and 2), coreference-
based (3 and 4) and all features.

3 Experiments and results

3.1 Qualitative analysis of word vectors
Table 1 lists the five nearest neighbors based on
cosine similarity of text-based and coreference-
based word vectors for “his” and “woman”.

We see that the two types of embeddings cap-
ture different notions of similarity. Unlike the text-
based neighbors, the coreference-based neighbors
have the same gender. The text-based neighbors
are mutually substitutable words, but substitution
seems to change the meaning more than for the
coreference-based neighbors.

In Figure 1, we illustrate the vectors for some
antonyms (connected by lines).

For reducing the dimensionality of the vector
space to 2D, we applied the t-SNE toolkit4. It uses
stochastic neighbor embedding with a Student’s
t-distribution to map high dimensional vectors
into a lower dimensional space (Van der Maaten
and Hinton, 2008). The Figure shows that the
coreference-based word embeddings are able to

4http://homepage.tudelft.nl/19j49/t-SNE.html
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Figure 1: 2D-positions of words in the text-based (top) and coreference-based embeddings (bottom)

enlarge the distance between antonyms (especially
for guilt vs. innocence and toughness vs. frailty)
compared to text-based word vectors.

3.2 Quantitative analysis of word vectors
To verify that coreference-based embeddings bet-
ter represent semantic components relevant to
coreference, we split our coreference resource into
two parts (about 85% and 15% of the data), trained
embeddings on the first part and computed the co-
sine similarity – both text-based and coreference-
based – for each pair of words occurring in the
same coreference chain in the second part. The
statistics in Table 2 confirm that coreference-based
vectors have higher similarity within chains than
text-based vectors.

3.3 Experimental setup
We formalize antonym detection as a binary classi-
fication task. Given a target word w and one of its
nearest neighbors v, the classifier decides whether
v is an antonym of w. Our data set is a set of pairs,
each consisting of a target word w and a candi-
date v. For all word types of our vocabulary, we
search for antonyms using the online dictionary
Merriam Webster.5 The resulting list is provided
as an additional resource6. It contains 6225 words
with antonyms. Positive training examples are col-
lected by checking if the 500 nearest text-based
neighbors of w contain one of the antonyms listed
by Webster. Negative training examples are cre-
ated by replacing the antonym with a random word
from the 500 nearest neighbors that is not listed as

5http://www.merriam-webster.com
6https://code.google.com/p/cistern

an antonym. By selecting both the positive and
the negative examples from the nearest neighbors
of the word vectors, we intend to develop a task
which is hard to solve: The classifier has to find
the small portion of semantically dissimilar words
(i.e., antonyms) among distributionally very simi-
lar words. The total number of positive and nega-
tive examples is 2337 each. The data are split into
training (80%), development (10%) and test (10%)
sets.

In initial experiments, we found only a small
difference in antonym classification performance
between text-based and coreference-based fea-
tures. When analyzing the errors, we realized that
our rationale for using coreference-based embed-
dings only applies to nouns, not to other parts of
speech. This will be discussed in detail below. We
therefore run our experiments in two modes: all
word classification (all pairs are considered) and
noun classification (only pairs are considered for
which the target word is a noun). We use the Stan-
ford part-of-speech tagger (Toutanova et al., 2003)
to determine whether a word is a noun or not.

Our classifier is a radial basis function (rbf) sup-
port vector machine (SVM). The rbf kernel per-
formed better than a linear kernel in initial exper-
iments. The SVM parameters C and γ are opti-
mized on the development set. The representation
of target-candidate pairs consists of the features
described in Section 2.

3.4 Experimental results and discussion

We perform the experiments with the three differ-
ent feature sets described in Section 2: text-based,
coreference-based and all features. Table 3 shows
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all word classification noun classification
development set test set development set test set

feature set P R F1 P R F1 P R F1 P R F1

text-based .83 .66 .74 .74 .55 .63 .91 .61 .73 .74 .51 .60
coreference-based .67 .42 .51 .65 .43 .52 .86 .47 .61 .77 .45 .57
text+coref .79 .65 .72 .75 .58 .66 .88 .70 .78 .79 .61 .69

Table 3: Results for different feature sets. Best result in each column in bold.

minimum maximum median
text-based vectors -0.350 0.998 0.156
coref.-based vectors -0.318 0.999 0.161

Table 2: Cosine similarity of words in the same
coreference chain

results for development and test sets.
For all word classification, coreference-based

features do not improve performance on the de-
velopment set (e.g., F1 is .74 for text-based vs .72
for text+coref). On the test set, however, the com-
bination of all features (text+coref) has better per-
formance than text-based alone: .66 vs .63.

For noun classification, using coreference-
based features in addition to text-based features
improves results on development set (F1 is .78 vs
.73) and test set (.69 vs .60).

These results show that mined coreference
chains are a useful resource and provide infor-
mation that is complementary to other methods.
Even though adding coreference-based embed-
dings improves performance on antonym classi-
fication, the experiments also show that using
only coreference-based embeddings is almost al-
ways worse than using only text-based embed-
dings. This is not surprising given that the amount
of training data for the word embeddings is differ-
ent in the two cases. Coreference chains provide
only a small subset of the word-word relations that
are given to the word2vec skip-gram model when
applied to raw text. If the sizes of the training data
sets were similar in the two cases, we would ex-
pect performance to be comparable.

In the beginning, our hypothesis was that coref-
erence information should be helpful for antonym
classification in general. When we performed an
error analysis for our initial results, we realized
that this hypothesis only holds for nouns. Other
types of words cooccurring in coreference chains
are not more likely to be synonyms than words
cooccurring in text windows. Two contexts that
illustrate this point are “bright sides, but also dif-

ficult and dark ones” and “a series of black and
white shots” (elements of coreference chains in
italics). Thus, adjectives with opposite meanings
can cooccur in coreference chains just as they can
cooccur in window-based contexts. For nouns, it
is much less likely that the same coreference chain
will contain both a noun and its antonym since –
by definition – markables in a coreference chain
refer to the same identical entity.

4 Related work

Traditionally, words have been represented by
vectors of the size of the vocabulary with a one at
the word index and zeros otherwise (one-hot vec-
tors). However, this approach cannot handle un-
known words (Turian et al., 2010) and similari-
ties among words cannot be represented (Mikolov
et al., 2013). Therefore, distributed word repre-
sentations (embeddings) become more and more
popular. They are low-dimensional, real-valued
vectors. Mikolov et al. (2013) have published
word2vec, a toolkit that provides different possi-
bilities to estimate word embeddings (cbow model
and skip-gram model). They show that the re-
sulting word vectors capture semantic and syntac-
tic relationships of words. Baroni et al. (2014)
show that word embeddings are able to outper-
form count based word vectors on a variety of
NLP tasks. Recently, Levy and Goldberg (2014)
have generalized the skip-gram model to include
not only linear but arbitrary contexts like contexts
derived from dependency parse trees. Andreas and
Klein (2014) investigate the amount of additional
information continuous word embeddings could
add to a constituency parser and find that most
of their information is redundant to what can be
learned from labeled parse trees. In (Yih et al.,
2012), the vector space representation of words is
modified so that high positive similarities are as-
signed to synonyms and high negative similarities
to antonyms. For this, latent semantic analysis is
applied to a matrix of thesaurus entries. The val-
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ues representing antonyms are negated.

There has been a great deal of work on apply-
ing the vector space model and cosine similarity
to find synonyms or antonyms. Hagiwara et al.
(2006) represent each word as a vector with cooc-
currence frequencies of words and contexts as el-
ements, normalized by the inverse document fre-
quency. The authors investigate three types of con-
textual information (dependency, sentence cooc-
currence and proximity) and find that a combi-
nation of them leads to the most stable results.
Schulte im Walde and Köper (2013) build a vector
space model on lexico-syntactic patterns and ap-
ply a Rocchio classifier to distinguish synonyms
from antonyms, among other tasks. Van der Plas
and Tiedemann (2006) use automatically aligned
translations of the same text in different languages
to build context vectors. Based on these vectors,
they detect synonyms.

In contrast, there are also studies using linguis-
tic knowledge from external resources: Senellart
and Blondel (2008) propose a method for syn-
onym detection based on graph similarity in a
graph generated using the definitions of a mono-
lingual dictionary. Harabagiu et al. (2006) rec-
ognize antonymy by generating antonymy chains
based on WordNet relations. Mohammad et al.
(2008) look for the word with the highest degree of
antonymy to a given target word among five candi-
dates. For this task, they use thesaurus information
and the similarity of the contexts of two contrast-
ing words. Lin et al. (2003) use Hearst patterns
to distiguish synonyms from antonyms. Work by
Turney (2008) is similar except that the patterns
are learned.

Except for the publicly available coreference
resolution system, our approach does not need ex-
ternal resources such as dictionaries or bilingual
corpora and no human labor is required. Thus,
it can be easily applied to any corpus in any lan-
guage as long as there exists a coreference resolu-
tion system in this language. The pattern-based
approach (Lin et al., 2003; Turney, 2008) dis-
cussed above also needs few resources. In contrast
to our work, it relies on patterns and might there-
fore restrict the number of recognizable synonyms
and antonyms to those appearing in the context of
the pre-defined patterns. On the other hand, pat-
terns could explicitely distinguish contexts typical
for synonyms from contexts for antonyms. Hence,
we plan to combine our coreference-based method

with pattern-based methods in the future.

5 Conclusion

In this paper, we showed that mined corefer-
ence chains can be used for creating word em-
beddings that capture a type of semantic sim-
ilarity that is different from the one captured
by standard text-based embeddings. We showed
that coreference-based embeddings improve per-
formance of antonym classification by .09 F1

compared to using only text-based embeddings.
We achieved precision values of up to .79, recall
values of up to .61 and F1 scores of up to .69.
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Abstract

This paper proposes to apply the contin-
uous vector representations of words for
discovering keywords from a financial sen-
timent lexicon. In order to capture more
keywords, we also incorporate syntactic
information into the Continuous Bag-of-
Words (CBOW) model. Experimental re-
sults on a task of financial risk prediction
using the discovered keywords demonstrate
that the proposed approach is good at pre-
dicting financial risk.

1 Introduction

In the present environment with a great deal of
information, how to discover useful insights for
decision making is becoming increasingly impor-
tant. In finance, there are typically two kinds of
information (Petersen, 2004): soft information usu-
ally refers to text, including opinions, ideas, and
market commentary, whereas hard information is
recorded as numbers, such as financial measures
and historical prices. Most financial studies related
to risk analysis are based on hard information, es-
pecially on time series modeling (Christoffersen
and Diebold, 2000; Lee and Tong, 2011; Wu et al.,
2014; Yümlü et al., 2005). Despite of using only
hard information, some literature incorporates soft
textual information to predict financial risk (Ko-
gan et al., 2009; Leidner and Schilder, 2010; Tsai
and Wang, 2013). Moreover, sentiment analysis, a
technique to make an assessment of the sentiments
expressed in various information, has also been
applied to analyze the soft textual information in
financial news, reports, and social media data (De-
vitt and Ahmad, 2007; Loughran and McDonald,
2011; Wang et al., 2013).

Continuous vector space models (Bengio et
al., 2003; Schwenk, 2007; Mikolov et al., 2010)
are neural network language models, in which

words are represented as high dimensional real val-
ued vectors. These representations have recently
demonstrated promising results across variety of
tasks (Schwenk, 2007; Collobert and Weston, 2008;
Glorot et al., 2011; Socher et al., 2011; Weston et
al., 2011), because of their superiority of capturing
syntactic and semantic regularities in language. In
this paper, we apply the Continuous Bag-of-Words
(CBOW) model (Mikolov et al., 2013) on the soft
textual information in financial reports for discov-
ering keywords via financial sentiments. In spe-
cific, we use the continuous vector representations
of words to find out similar terms based on their
contexts. Additionally, we propose a straightfor-
ward approach to incorporate syntactic information
into the CBOW model for better locating similarly
meaningful or highly correlated words. To the best
of our knowledge, this is the first work to incorpo-
rate more syntactic information by adding Part-Of-
Speech (POS) tags to the words before training the
CBOW model.

In our experiments, the corpora are the annual
SEC1-mandated financial reports, and there are
3,911 financial sentiment keywords for expansion.
In order to verify the effectiveness of the expanded
keywords, we then conduct two prediction tasks,
including regression and ranking. Observed from
our experimental results, for the regression and
ranking tasks, the models trained on the expanded
keywords are consistently better than those trained
the original sentiment keywords only. In addition,
for comparison, we conduct experiments with ran-
dom keyword expansion as baselines. According
to the experimental results, the expansion either
with or without syntactic information outperforms
the baselines. The results suggest that the CBOW
model is effective at expanding keywords for finan-
cial risk prediction.

1Securities and Exchange Commission
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2 Keyword Expansion via Financial
Sentiment Lexicon

2.1 Financial Sentiment Lexicon

A sentiment lexicon is the most important resource
for sentiment analysis. Loughran and McDon-
ald (2011) states that a general purpose sentiment
lexicon (e.g., the Harvard Psychosociological Dic-
tionary) might misclassify common words in fi-
nancial texts. Therefore, in this paper, we use a
finance-specific lexicon that consists of the 6 word
lists provided by (Loughran and McDonald, 2011)
as seeds to expand keywords. The six lists are nega-
tive (Fin-Neg), positive (Fin-Pos), uncertainty (Fin-
Unc), litigious (Fin-Lit), strong modal words (MW-
Strong), and weak modal words (MW-Weak).2

2.2 Simple Keyword Expansion

With the financial sentiment lexicon, we first use a
collection of financial reports as the training texts
to learn continuous vector representations of words.
Then, each word in the sentiment lexicon is used as
a seed to obtain the words with the highest n cosine
distances (called the top-n words for the word) via
the learned word vector representations. Finally,
we construct an expanded keyword list from the
top-n words for each word.

2.3 Keyword Expansion with Syntactic
Information

For the expansion considering syntactic informa-
tion, we attach the POS tag to each word in the
training texts first. Then, the words in the senti-
ment lexicon with 4 major POS tags (i.e., JJ, NN,
VB, RB) are used as seeds to expand. The rest of
steps is similar to that in Section 2.2.

The reason of considering POS tags for expan-
sion is that, in general, a word with different POS
tags may result in different lists of top-n words. Ta-
ble 1 shows the top-5 words for the word “default”
with different POS tags (noun and adjective). Note
that none of the words in the two lists overlaps.

3 Financial Risk Prediction

3.1 The Risk Measure: Volatility

Volatility is a measure for variation of prices of a
stock over a period of time. Let St be the price
of a stock at time t. Holding the stock from time
t− 1 to time t would lead to a simple return: Rt =

2http://www.nd.edu/˜mcdonald/Word_
Lists.html.

default (NN) default (JJ)

Cosine Cosine
Word Distance Word Distance

default (v.) 0.63665 nonconform (v.) 0.63462
unwaiv (v.) 0.63466 subprim (v.) 0.62404

uncur (v.) 0.62285 chattel (n.) 0.61510
trigger (n.) 0.60080 foreclos (adj.) 0.61397

unmatur (v.) 0.58208 unguarante (v.) 0.60559

Table 1: Top-5 Words for the word “default.”

St/St−1− 1 (Tsay, 2005). The volatility of returns
for a stock from time t− n to t can thus be defined
as follows:

v[t−n,t] =

√∑t
i=t−n (Ri − R̄)2

n
, (1)

where R̄ =
∑t

i=t−nRi/(n+ 1).

3.2 Regression Task
Given a collection of financial reports D =
{d1,d2, . . . ,dn}, in which each di ∈ Rp and is
associated with a company ci, we aim to predict the
future risk of each company ci (which is character-
ized by its volatility vi). This prediction problem
can be defined as follows:

v̂i = f(di; w). (2)

The goal is to learn a p-dimensional vector w from
the training data T = {(di, vi)|di ∈ Rp, vi ∈ R}.
In this paper, we adopt the Support Vector Regres-
sion (SVR) (Drucker et al., 1997) for training such
a regression model. More details about SVR can
be found in (Schölkopf and Smola, 2001).

3.3 Ranking Task
Instead of predicting the volatility of each company
in the regression task, the ranking task aims to rank
companies according to their risk via the textual
information in their financial reports. We first split
the volatilities of company stock returns within a
year into different risk levels by the mechanism
provided in (Tsai and Wang, 2013). The risk levels
can be considered as the relative difference of risk
among the companies.

After obtaining the relative risk levels of the
companies, the ranking task can be defined as fol-
lows: Given a collection of financial reports D,
we aim to rank the companies via a ranking model
f : Rp → R such that the rank order of the set of
companies is specified by the real value that the
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model f takes. Specifically, f(di) > f(dj) means
that the model asserts that ci � cj , where ci � cj
means that ci is ranked higher than cj ; that is, the
company ci is more risky than cj . For this task, this
paper adopts Ranking SVM (Joachims, 2006).

4 Experiments

4.1 Dataset and Preprocessings

In the experiments, we use the 10-K corpus (Ko-
gan et al., 2009) to conduct our financial risk pre-
diction tasks. All documents and the 6 financial
sentiment word lists are stemmed by the Porter
stemmer (Porter, 1980), and some stop words are
also removed.

For financial risk prediction, the ground truth,
the twelve months after the report volatility for
each company, v+(12), (which measures the future
risk for each company) can be calculated by Equa-
tion (1), where the stock prices can be obtained
from the Center for Research in Security Prices
(CRSP) US Stocks Database. In addition, to ob-
tain the relative risks among companies used in the
ranking task, we follow (Tsai and Wang, 2013) to
split the companies of each year into 5 risk levels.

4.2 Keyword Expansion

In our experiments, Section 7 (Management Dis-
cussion and Analysis) in 10-K corpus is used as
training texts for the tool (word2vec3) to learn the
continuous vector representations of words.

For the simple expansion (denoted as EXP-SIM
hereafter), we use the total 1,667 stemmed senti-
ment words as seeds to obtain the expanded key-
words via the learned word vector representations.
For the expansion considering syntactic informa-
tion (denoted as EXP-SYN), NLTK4 is applied to
attach the POS tag5 to each word in the training
texts; we attach the POS tag to a word with an un-
derscore notation (e.g., default VB). For simplicity,
we combine some POS tags to one tag via the tag
replacement; for example, the tags JJR (adjective,
comparative) and JJS (adjective, superlative) are
replaced to JJ (adjective). The detailed replace-
ment rules are tabulated in Table 2. Words from
the sentiment lexicon with the four types of POS
tags (i.e., JJ, NN, VB, RB) are consider as the seeds
to expand the keywords. For both EXP-SIM and

3https://code.google.com/p/word2vec/
4http://www.nltk.org/
5The most common POS tag scheme, the Penn Treebank

POS Tags, is adopt in the paper.

After Replacement Before Replacement

JJ JJ, JJR, JJS
NN NN, NNS, NNP, NNPS
PRP PRP, PRP$
RB RB, RBR, RBS
VB VB, VBD, VBG, VBN, VBP, VBZ
WP WP, WP$

Table 2: Tag Replacement Rules.

Word Cosine Distance Word Cosine Distance

uncur 0.569498 event 0.466834
indentur 0.565450 lender 0.459995

waiv 0.563656 forbear 0.456556
trigger 0.559936 represent 0.450631

cure 0.539999 breach 0.446851
nonpay 0.538445 noncompli 0.431490

unmatur 0.525251 gecc 0.430712
unwaiv 0.510359 customari 0.424447
insolv 0.488534 waiver 0.419338
occurr 0.471123 prepay 0.418969

Table 3: Top-20 (Stemmed) Words for the Word
“default.”

EXP-SYN, we use the top-20 expanded words for
each word (e.g., Table 3) to construct expanded key-
word lists. In total, for EXP-SIM, the expanded
list contains 9,282 unique words and for EXP-SYN,
the list has 13,534 unique words.

4.3 Word Features

In the experiments, the bag-of-words model is
adopted and three word features are used to repre-
sent the 10-K reports in the experiments. Given a
document d, three word features (i.e., TF, TFIDF
and LOG1P) are calculated as follows:

• TF(t,d) = TC(t,d)/|d|,
• TFIDF(t,d) = TF(t,d) × IDF(t,d) =
TC(t,d)/|d| × log(|D|/|d ∈ D : t ∈ d|),

• LOG1P = log(1 + TC(t,d)),

where TC(t,d) denotes the term count of t in d,
|d| is the length of document d, and D denotes the
set of all documents in each year.

4.4 Experimental Results

Tables 4 and 5 tabulate the experimental results of
regression and ranking, respectively, in which the
training data is composed of the financial reports
in a five-year period, and the following year is the
test data. For example, the reports from year 1996
to 2000 constitute a training data, and the learned
model is tested on the reports of year 2001.
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[TFIDF] (Baseline) (Baseline)
Year SEN EXP-RAN EXP-SIM EXP-SYN SEN EXP-RAN EXP-SIM EXP-SYN

Kendall’s Tau (Kendall, 1938). Spearman’s Rho (Myers et al., 2003)

2001 0.4384 0.4574 0.4952 0.5049 0.4701 0.4889 0.5266 0.5375
2002 0.4421 0.4706 0.4881 0.4944 0.4719 0.5007 0.5187 0.5256
2003 0.4414 0.4706 0.5105 0.5006 0.4716 0.5015 0.5418 0.5318
2004 0.4051 0.4551 0.4750 0.4961 0.4335 0.4842 0.5043 0.5255
2005 0.3856 0.4482 0.5126 0.5294 0.4117 0.4757 0.5418 0.5579
2006 0.3784 0.4385 0.4588 0.4867 0.4029 0.4641 0.4847 0.5129

Table 5: Performance of Ranking.

[LOGP] (Baseline)
Year SEN EXP-RAN EXP-SIM EXP-SYN

Mean Squared Error

2001 0.2526 0.2360 0.2195 0.2148
2002 0.2858 0.2649 0.2433 0.2381
2003 0.2667 0.2512 0.2320 0.2350
2004 0.2345 0.2140 0.1902 0.1872
2005 0.2241 0.2014 0.1754 0.1682
2006 0.2256 0.2072 0.1889 0.1825

Table 4: Performance of Regression

In the tables, SEN denotes the experiments
trained on the words from the original financial sen-
timent lexicon. Despite of the experiments trained
on EXP-SIM and EXP-SYN, we also conduct ex-
periments with random keyword expansion (called
EXP-RAN); for the comparison purpose, we keep
the number of words in the randomly expanded
word list the same as that in EXP-SYN. Note that
the randomly expanded list contains all sentiment
words and the rest of words are randomly chosen
from the vocabulary of the dataset. The columns
with label EXP-RAN denote the results averaged
from 20 randomly expanded word lists. The bold
face numbers denote the best performance among
the four word lists.

As shown in Tables 4 and 5, for both regression
and ranking tasks, the models trained on expanded
keywords (i.e., EXP-*) are consistently better than
those trained on the original sentiment keywords
only.6 Additionally, we treat the experiments with
randomly expanded word list (EXP-RAN) as the
baselines.7 From the two tables, we observe that
the expansion either with or without syntactic in-
formation outperforms the baselines. Note that, for
the EXP-SIM, the number of words used for train-

6Due to the page limits, only the results trained on features
LOGP for regression and TFIDF for ranking are reported, but
the performance for models trained on features TF, TFIFG,
and LOGP is very consistent.

7The results for EXP-SYN are all significant better than
the baseline with p < 0.05.

ing the regression and ranking models is even less
than that of EXP-RAN. The results suggest that the
CBOW model is effective at expanding keywords
for financial risk prediction. Furthermore, incorpo-
rating syntactic information into the CBOW model
can even enhance the performance for the tasks of
financial risk prediction.

4.5 Discussions
Below we provide the original texts from 10-K re-
ports that contain the top 1 expanded word, “uncur”
(stemmed), for “default” in Table 3. Two pieces
of sentences are listed as follows (the company
Investment Technology Group, 1997):

· · · terminate the agreement upon cer-
tain events of bankruptcy or insolvency
or upon an uncured breach by the Com-
pany of certain covenants · · ·
· · · any termination of the license agree-
ment resulting from an uncured default
would have a material adverse effect on
the Company’s results of operations.

From the above examples, the expanded word “un-
cur” has similar meaning to “default,” which con-
firms the capability of our method of capturing
similarly meaningful or highly correlated words.

5 Conclusions

This paper applies the continuous bag-of-words
model on the textual information in financial re-
ports for expanding keywords from a financial sen-
timent lexicon. Additionally, we propose a simple
but novel approach to incorporate syntactic infor-
mation into the continuous bag-of-words model for
capturing more similarly meaningful or highly cor-
related keywords. The experimental results for the
risk prediction problem show that the expansion
either with or without syntactic information out-
performs the baselines. As a direction for further
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research, it is interesting and important to provide
more analysis on the expanded words via the con-
tinuous vector representations of words.
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Abstract 

When it is not possible to compare the suspi-

cious document to the source document(s) 

plagiarism has been committed from, the evi-

dence of plagiarism has to be looked for in-

trinsically in the document itself. In this pa-

per, we introduce a novel language-

independent intrinsic plagiarism detection 

method which is based on a new text repre-

sentation that we called n-gram classes. The 

proposed method was evaluated on three pub-

licly available standard corpora. The obtained 

results are comparable to the ones obtained 

by the best state-of-the-art methods. 

1 Introduction and Related Works 

Intrinsic plagiarism detection is an essential 

alternative in situations where the plagiarism 

source does not have a digital version, e.g. an old 

book, or the plagiarized text was directly written 

by another author without copying from any 

source, e.g. the case of a student who asked 

someone else to write for him parts of his essay 

or thesis. Hence, the task of detecting plagiarism 

intrinsically is to identify, in the given suspicious 

document, the fragments that are not consistent 

with the rest of the text in terms of writing style.  

The automatic analysis of the writing style is 

an important component of many NLP applica-

tions. For some of them, when analyzing the 

style, a document is considered as a whole, 

which is the case of the authorship identification 

(Stamatatos, 2009a) and the authorship verifica-

tion (Koppel and Seidman, 2013). For other ap-

plications, a document is perceived as a set of 

fragments, for each of them the writing style 

needs to be analyzed individually. Examples of 

such applications include: paragraph authorship 

clustering (Brooke and Hirst, 2012), authorial 

segmentation of multi-author documents (Akiva 

and Koppel, 2013), detection of stylistic incon-

sistencies between consecutive paragraphs 

(Graham et al., 2005) and plagiarism direction 

identification (Grozea and Popescu, 2010). 

For intrinsic plagiarism detection, it is crucial 

to analyze the writing style at fragments level. 

However, the majority of methods tend to ana-

lyze the whole document writing style as well. 

Indeed, intrinsic plagiarism detection puts to-

gether, in one research problem, many difficul-

ties that are not present, or present separately, in 

the aforementioned related problems.  Its main 

difficulties are listed below. 

In contrast to multi-author documents related 

problems, the number of authors in the suspi-

cious documents is unknown, i.e., it might be one 

author if the document is plagiarism-free or 

many unknown authors if it contains plagiarism.  

Unlike the authorship attribution and verifica-

tion, where the examined text and the potential 

author text are separate (and hence their writing 

styles could be readily characterized and com-

pared), these two parts are both merged in the 

same document with unknown boundaries. Fur-

thermore, the plagiarized fragments in a suspi-

cious document might stem from different au-

thors, which renders the computational characte-

rization of plagiarism difficult.  

As opposed to the problem of authorship clus-

tering, where the task is merely to attribute al-

ready defined fragments of a given document to 

different authors, the segmentation is a crucial 

and inevitable task in a real scenario of intrinsic 

plagiarism detection. Indeed, a granular segmen-

tation may lead to an undependable style analy-

sis, and a coarse segmentation may prevent the 

identification of the short plagiarized texts. 

Due to the aforementioned difficulties, intrin-

sic plagiarism detection is still a challenging 
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problem. This is evidenced by the still low per-

formance scores of the majority of methods
1
. To 

the best of our knowledge, just two methods, 

namely Stamatatos (2009b) and Oberreuter et al. 

(2011), reached an f-measure greater than 0.30 

on a standardized corpus. Other methods, for 

instance (Stein et al., 2011) and (Tschuggnall 

and Specht, 2013), obtained better performance 

scores. Nonetheless, they have been evaluated on 

only selected documents from the whole standar-

dized evaluation corpus which makes their re-

sults not comparable to the others.  

Although the writing style analysis is an old 

research area and has been applied successfully 

to solve many problems, notably authorship at-

tribution, it is obvious that its application to iden-

tify the plagiarized fragments still needs to be 

investigated further. In this paper, we address 

this research problem by proposing a novel way 

of quantifying the writing style that we called n-

gram classes. We show that our method, which is 

supervised classification-based, is able to discri-

minate between the plagiarized and the original 

text fragments with a performance comparable to 

the best state-of-the-art methods despite it uses a 

small number of features when building the clas-

sification model.  

The remainder of the paper is organized as fol-

lows. Section 2 presents our motivation. Sections 

3 and 4 present the new features and the pro-

posed method. Section 5 provides the evaluation 

results. Finally, Section 6 draws our conclusions. 

2 Motivation 

The idea of our method is inspired by the work 

of Grozea and Popescu (2010), in the context of 

plagiarism direction identification. They reported 

that the character 8-grams of a plagiarized text 

fragment are more frequent in the source docu-

ment (because the author is the same) than in the 

plagiarized document. Thus, we believe that, it is 

possible to distinguish the plagiarized fragments 

from the original ones on the basis of the fre-

quency of their character n-grams in the suspi-

cious document. That is, if many of the character 

n-grams of a fragment are infrequent in the doc-

ument, it would be probably a plagiarized frag-

ment. However, if many of them are frequent, 

then the fragment is likely to be original. 

On the other hand, according to the authorship 

attribution researches, character n-grams are a 

                                                 
1 See for instance PAN workshop (http://pan.webis.de) se-

ries, from 2007 to 2012, where several papers on intrinsic 

plagiarism detection have been published.  

powerful tool for characterizing the writing style 

(Stamatatos, 2009a). Moreover, they have been 

used in one of the best intrinsic plagiarism detec-

tion methods (Stamatatos, 2009b).  

Generally, in n-gram based methods the text is 

represented by a vector of n-grams with their 

frequencies. The shortcoming of this text repre-

sentation is the increase of its size with the in-

crease of the text or the n-gram length.  

Our method proposes a novel way of using 

character n-grams
2
 for text representation. The 

idea is to represent the fragments of the suspi-

cious document in a reduced vector where each 

feature value is the frequency of a class of n-

grams instead of a particular n-gram. Therefore, 

the dimension of any fragment vector is always 

equal to the number of classes rather than the 

number of n-grams. The class of an n-gram is 

determined according to its frequency level in 

the given document as we will show in the next 

section. 

3 N-gram  Classes 

Formally, we define an n-gram class as a 

number from 0 to m−1 such that the class labeled 

0 involves the least frequent n-grams and the 

class labeled m−1 contains the most frequent n-

grams in a document. If m > 2, classes between 0 

and m−1 will contain n-grams with intermediate 

frequency levels.  

Concretely, to assign the n-grams of a given 

document to m classes, first, the document is 

represented by a 2 × l matrix (l is the total num-

ber of n-grams), where the first row contains the 

n-grams ngi (i =1..l) and the second one contains 

their number of occurrences freqi (raw frequen-

cy). 

Let max_freq denotes the maximum frequen-

cy, so:  

max_freq = argmax   freqi ;    i=1..l (1) 

 

Then, the class of a n-gram ngi is computed as 

follows:  

 Class ngi = Log base (freq i);           (2) 

Given that: 

base =   𝑚𝑎𝑥_𝑓𝑟𝑒𝑞𝑚−1
   .               (3) 

 

By computing the base of the logarithm as 

shown in the equation (3), the most frequent n-

grams (i.e. the n-grams with the maximum num-

ber of occurrences) will be in the class m−1, and 

                                                 
2 In the rest of the paper, when not said differently, the term 

n-gram is always used to denote character n-gram. 
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the least frequent n-grams (e.g. the ones that ap-

pear only once) will be in the class 0, and the n-

grams with intermediate levels of frequency will 

be in the classes between 0 and m−1. Figure 1 

illustrates an example of computing the n-gram 

classes of a document. The chosen number of 

classes m in this example is 3.  

Figure 1. Steps for computing the n-gram classes 

of a document. The number of classes in this ex-

ample is 3 (class labels are from 0 to 2). 

Note that, what we explained above is solely 

how to compute the class of each n-gram of a 

document. However, our purpose is to represent 

the document fragments using these classes. To 

this end, for each fragment, first, its n-grams are 

extracted. Then, each n-gram is replaced by its 

class obtained from the document model built 

previously. Finally, the proportion of each class 

in the fragment is computed. So, the fragment  

can be represented by a vector of m values, 

where the first value is the proportion of the class 

0, the second value is the proportion of the class 

1 and so on.  Figure 2 illustrates these steps. For 

the sake of simplicity, we suppose that the frag-

ment contains only 5 n-grams. 

Figure 2. Steps for representing a document 

fragment by the proportion of 3 n-gram classes. 

4 The Proposed Method 

Once the suspicious document has been seg-

mented to fragments and these latter have been 

represented by a set of features, an important 

phase in the process of the intrinsic plagiarism 

detection is to decide whether a fragment is pla-

giarized or original. This phase  has been imple-

mented in the literature methods using different 

techniques, notably clustering (Akiva, 2011), 

supervised classification (Meyer zu Eissen et al., 

2007), distance functions with thresholds 

(Stamatatos, 2009b; Oberreuter et al., 2011) and 

density-based methods (Stein et al., 2011). 

In our supervised method, the classification 

model is trained with a small number of features 

which are the proportions of the n-gram classes 

described in the previous section.  

In detail, our method is composed of the fol-

lowing steps: 

1. Segment each document d into fragments si by 

using the sliding window technique.  Let S de-

notes the set of these fragments.  

2. Build the n-gram class document model (see 

Figure 1) without considering numerals.  We 

choose to consider the frequency of a n-gram 

ngi as the number of its occurrence in d such 

that it is counted once per fragment. Therefore, 

the minimum value that could take a frequency 

is 1 if ngi appears only in one fragment, and its 

maximum value is |S| (the number of fragments 

in d) if ngi occurs in each fragment si ∈ S.  

3. Represent each fragment si by a vector of m 

features fj , j ∈ {0,…, m−1}. So that, each fj is 

the proportion of the n-grams that belong to the 

class labeled j to the total number of n-grams in si.  

4. Combine into one dataset the fragment vectors 

obtained from all the training corpus docu-

ments. Then, label each vector with its authen-

ticity state, i.e. plagiarized, if the fragment pla-

giarism percentage exceeds 50% and original 

otherwise. 

5. Build a classifier using the training set pro-

duced in the previous step. For this purpose, we 

trained and tested several classification algo-

rithms implemented on  WEKA software (Hall 

et al., 2009). The best results were obtained 

with the Naïve Bayes algorithm
3
. 

The aforementioned steps represent the train-

ing phase of our method, which aims to construct 

the classifier. In practice, in order to detect the 

plagiarism in a given document, this classifier is 

                                                 
3 Consult the arff file from the archive file associated to this 

paper which contains the fragments class proportion model 

and the plagiarism prediction for each fragment.  
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directly applied to the document fragments after 

the step 3. 

5 Evaluation 

5.1 Datasets 

We evaluated our method on 3 corpora: PAN-

PC-09
4
 and PAN-PC-11

5
 which are the corpora 

used in the international competition of plagiar-

ism detection in 2009 and 2011 respectively
6
, as 

well as InAra corpus
7
, which is a publicly availa-

ble collection of artificial suspicious documents 

in Arabic (Bensalem et al., 2013).  The three 

document collections include XML annotations 

indicating the plagiarized segments positions.   

For the evaluation on English and Spanish 

documents, the classifier has been trained on 

PAN-PC-11 test corpus and evaluated on this 

same corpus using 10-fold cross validation as 

well as PAN-PC-09 test corpus. For the evalua-

tion on Arabic documents, the classifier has been 

trained and tested on InAra corpus using 10-fold 

cross validation.  

5.2 Results  

As evaluation measures we used macro-

averaged precision, recall, f-measure, granularity 

and plagdet as they were defined in (Potthast et 

al., 2010). 

In order to choose the parameters of our me-

thod, we trained the classifier using various train-

ing sets generated by using the different combi-

nations of the n-gram length n (from 1 to 10) and 

the number of classes m (from 2 to 10). We 

adopted the parameters that yielded the higher f-

measure, namely n = 6 and m = 4. 

With regard the sliding window parameters, 

we used three different options for the window 

size, which are 100, 200 and 400 words, with a 

step equal to the quarter of the window size. On-

ly one option is applied to a given document de-

pending on its length. 

We deliberately use similar sliding window 

parameters as the method of Oberreuter et al. 

                                                 
4 http://www.uni-

weimar.de/en/media/chairs/webis/research/corpora/corpus-

pan-pc-09/ 
5 http://www.uni-

weimar.de/en/media/chairs/webis/research/corpora/corpus-

pan-pc-11/ 
6 We used only the corpora parts that are dedicated to the 

evaluation of the intrinsic approach. 
7 http://sourceforge.net/projects/inaracorpus/ 

(2011)
8
 in order to compare the two methods 

without being much affected by the segmentation 

strategy.  

Table 1 compares the results of our method to 

the one of Oberreuter et al. (2011) being the 

winner in PAN 2011 competition and considered 

one of the best intrinsic plagiarism detection me-

thods. 

 

  Our method Oberreuter et al.9  

PAN-

PC-09 

Precision 0.31 0.39 

Recall 0.49 0.31 

F-measure 0.38 0.35 

Granularity 1.21 1.00 

PAN-

PC-11 

Precision 0.22 0.34 

Recall 0.50 0.31 

F-measure 0.30 0.33 

Granularity 1.13 1.00 

InAra Precision 0.24 0.29 

Recall 0.69 0.25 

F-measure 0.35 0.27 

Granularity 1.27 1.44 

 

Table 1. Performance of the n-gram frequency 

class method on 3 corpora. 

 

From Table 1 it can be appreciated that our 

method in terms of recall noticeably 

outperforms Oberreuter et al. (2011), although 

precision and granularity still needs to be further 

improved. Nonetheless, in comparison with other 

methods such as the one of Stamatatos (2009b), 

that obtained the best results in PAN 2009 com-

petition on plagiarism detection, precision is still 

very much competitive: 0.31 vs. 0.23 (PAN-PC-

09) and 0.22 vs. 0.14 (PAN-PC-11). In terms of 

f-measure, Oberreuter et al. (2011) method is 

significantly higher than our method on PAN-

PC-11 corpus, but both methods have statistical-

ly similar results on InAra
10

.  

Considering plagdet, which is a score that 

represents the overall performance of a plagiar-

                                                 
8 Oberreuter et al. (2011) used mainly 400 words as the 

window size that may change according to the document 

length.  
9 The results of Oberreuter et al. method (2011) on PAN-

PC-09 and PAN-PC-11 are taken from his paper. However, 

we re-implemented this method in order to evaluate it on 

InAra. Note that our re-implementation maybe not perfectly 

similar to the original one since the authors did not provide 

details on the parameters tuning.   
10 The Kolomogorov Smirnov test with a significance level 

of 5% has been used to compare the two methods f-

measures on PAN-PC-11 and InAra. Unfortunately, on the 

PAN-PC-09 corpora we were unable to carry out this test 

since we do not have the results of Oberreuter et al. per each 

document.     
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ism detection method, our method could be 

ranked the 2
nd

, after Oberreuter et al. (2011) and 

before Stamatatos (2009b) as it is shown in Table 

2. 

Table 2. Plagdet of our method in comparison 

with the two best methods on PAN competition 

corpora. 

6 Conclusion 

In this paper we have shown that representing 

the text fragments of a given suspicious docu-

ment  by  the proportion of character n-gram 

classes (the most frequent, the least frequent and 

intermediate levels) is a promising way for de-

tecting plagiarism intrinsically.  

The experiments described in this paper were 

performed on three corpora comprising docu-

ments in English, Spanish and for the first time 

Arabic. We obtained comparable results to the 

best performing systems.  

Our method best configuration is 6 as the n-

grams length and only 4 as the number of classes 

(i.e. 4 features). As future work, it would be in-

teresting to combine the most precise classes of 

different n-gram lengths in order to improve the 

precision. It would be important as well to try 

other segmentation strategies and post-

processing techniques in order to improve the 

granularity. Another interesting experiment we 

plan to carry out in the future is to use the n-

gram classes along with the traditional stylistic 

features such as the vocabulary richness, average 

sentence length, etc.  
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Abstract

Several recent papers on Arabic dialect identi-
fication have hinted that using a word unigram
model is sufficient and effective for the task.
However, most previous work was done on a
standard fairly homogeneous dataset of dialec-
tal user comments. In this paper, we show
that training on the standard dataset does not
generalize, because a unigram model may be
tuned to topics in the comments and does not
capture the distinguishing features of dialects.
We show that effective dialect identification
requires that we account for the distinguishing
lexical, morphological, and phonological phe-
nomena of dialects. We show that accounting
for such can improve dialect detection accu-
racy by nearly 10% absolute.

1 Introduction

Modern Standard Arabic (MSA) is the lingua franca
of the so-called Arab world, which includes north-
ern Africa, the Arabian Peninsula, and Mesopotamia.
However, Arabic speakers generally use dramatically
different languages (or dialects) in daily interactions
and in social media. These dialects may differ in vocab-
ulary, morphology, and spelling from MSA and most
do not have standard spellings. There is often large
lexical overlap between dialects and MSA. Performing
proper Arabic dialect identification may positively im-
pact many Natural Language Processing (NLP) appli-
cation. For example, transcribing dialectal speech or
automatically translating into a particular dialect would
be aided by the use of targeted language models that are
trained on texts in that dialect.

This has led to recent interest in automatic identifi-
cation of different Arabic dialects (Elfardy et al., 2013;
Cotterell et al., 2014; Zaidan et al., 2014). Though pre-
vious work (Cotterell et al., 2014) have reported high
accuracies for dialect identification using word uni-
gram model, which implies that this is a solved prob-
lem, we argue that the problem is far from being solved.
The reason for this assertion stems from the fact that the
available dialectal data is drawn from singular sources,
namely online news sites, for each dialect. This is prob-
lematic because comments on singular news site are
likely to have some homogeneity in topics and jargon.

Such homogeneity has caused fairly simple classifica-
tion techniques that use word unigrams and character n-
grams to yield very high identification accuracies. Per-
haps, this can be attributed to topical similarity and not
just differences between dialects. To showcase this, we
trained a classifier using the best reported methods, and
we tested the classifier on a new test set of 700 tweets,
with dialectal Egyptian (ARZ) and MSA tweets, which
led to a low accuracy of 83.3%. We also sorted words
in the ARZ part from our training dataset by how much
they discriminate between ARZ and MSA (using mu-
tual information) and indeed many of the top words
were in fact MSA words.
There seems to be a necessity to identify lexical and
linguistic features that discriminate between MSA and
different dialects. In this paper, we highlight some
such features that help in separating between MSA
and ARZ. We identify common ARZ words that do
not overlap with MSA and identify specific linguistic
phenomena that exist in ARZ, and not MSA, such as
morphological patterns, word concatenations, and verb
negation constructs (Section 3). We also devise meth-
ods for capturing the linguistic phenomena, and we use
the appearance of such phenomena as features (Sec-
tion 4). Further, we show the positive impact of using
the new features in identifying ARZ (Section 5).

2 Previous Work

Previous work on Arabic dialect identification uses n-
gram based features at both word-level and character-
level to identify dialectal sentences (Elfardy et al.,
2013; Cotterell et al., 2014; Zaidan et al., 2011; Zaidan
et al., 2014). Zaidan et al. (2011) created a dataset of
dialectal Arabic. They performed cross-validation ex-
periments for dialect identification using word n-gram
based features. Elfardy et al. (2013) built a system to
distinguish between ARZ and MSA. They used word
n-gram features combined with core (token-based and
perplexity-based features) and meta features for train-
ing. Their system showed a 5% improvement over
the system of Zaidan et al. (2011). Later, Zaidan et
al. (2014) used several word n-gram based and char-
acter n-gram based features for dialect identification.
The system trained on word unigram-based feature per-
formed the best with character five-gram-based feature
being second best. A similar result is shown by Cot-
terell et al. (2014) where word unigram model performs
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the best.
All of the previous work except Cotterell et al.

(2014)1 evaluate their systems using cross-validation.
These models heavily rely on the coverage of training
data to achieve better identification. This limits the ro-
bustness of identification to genres inline with the train-
ing data.

Language identification is a related area to dialect
identification. It has raised some of the issues which we
discussed in this paper in the context of dialect identi-
fication. Lui et al. (2011) showed that in-domain lan-
guage identification performs better than cross domain
language identification. Tiedemann et al. (2012) argued
that the linguistic understanding of the differences be-
tween languages can lead to a better language identi-
fication system. kilgarriff (2001) discussed the differ-
ences between datasets as a poor representation of dif-
ferences between dialects of English.

In this paper, we exploit the linguistic phenomena
that are specific to Arabic dialects to show that they
produce significant improvements in accuracy. We
show that this also helps in achieving high quality
cross-domain dialect identification system.

3 Dialectal Egyptian Phenomena
There are several phenomena in ARZ that set it apart
from MSA. Some of them are as follows:

Dialectal words: ARZ uses unique words that do
not overlap with MSA and may not overlap with other
dialects. Some of the common ARZ words are: “zy”
(like), “kdh” (like this), and “Azyk” (how are you) 2.
These dialectal terms stem from the following:
• Using proper Arabic words that are rarely used in
MSA such as “$nTp” (bag) and “n$wf” (we see).
• Fusing multiple words together by concatenating and
dropping letters such as the word “mEl$” (no worry),
which is a fusion of “mA Elyh $y’ ”.
• Using non-standard spelling of words such as
“SAbE” (finger) instead of “<sbE” in MSA. Conse-
quently, broken plurals may also be non-standard.
• using non-Arabic words such as “<y$Arb” (scarf),
which is transliterated from the French écharpe.
• altering the forms of some pronouns such as the fem-
inine second person pronoun from “k” to “ky”, the sec-
ond person plural pronoun “tm” to “tw”, and the object
pronoun “km” to “kw”.

Morphological differences: ARZ makes use of par-
ticular morphological patterns that do not exist in MSA
and often alters some morphological constructs. Some
examples include:
• Adding the letter “b” in front of verb in present tense.
Ex. MSA: “ylEb” (he plays)→ EG: “bylEb”.
• Using the letters “H” or “h”, instead of “s”, to indi-
cate future tense. Ex. MSA: “sylEb” (he will play)→
EG: “hylEb” or “HylEb”.

1Zaidan et al. (2014) applied their classifier to a different
genre but did not evaluate it’s performance.

2Buckwalter encoding is used throughout the paper.

• Adding the letters “At” to passive past tense verbs.
Ex. MSA: “luEiba” (was played)→ “AtlaEab”.
• Adding the letters “m” or “mA” before the verb and
“$” or “$y” after the verb to express negation. Ex.
MSA: “lm ylEb” (he did not play)→ “mlEb$”.
• the merging of verbs and prepositional phrases of the
form (to-pronoun) that follow it. Ex. MSA: “ylEb lh”
(he plays for/to him)→ “bylEblh”.
• Replacing a short vowel with a long vowel in im-
perative verbs that are derived from hollow roots. Ex.
MSA: “qul” (say)→ “qwl”.

Letter substitution: in ARZ the following letter
substitutions are common:
• “v”→ “t”. Ex. MSA: “kvyr” (a lot)→ EG: “ktyr”.
• “}”→ “y”. Ex. MSA: “b}r” (well)→ “byr”.
• Trailing “y”→ “Y”. Ex. MSA: “Hqy” (my right)→
“HqY”.
• “*”→ “d”. Ex. MSA: “xu*” (take)→ “xud”.
• middle or trailing “>” → “A”. Ex. MSA: “f>r”
(mouse)→ “fAr”.
• “D”→ “Z”. Ex. MSA: “DAbT” (officer)→ “ZAbT”.
• “Z”→ “D”. Ex. MSA: “Zhr” (back)→ “Dhr”.
• Middle “|” → “yA”. Ex. MSA: “ml|n” (full) →
“mlyAn”.
• Removal of trailing “ ’ ”. Ex. MSA: “AlsmA’ ” (the
sky)→ “AlsmA”.

Syntactic differences: some of the following phe-
nomena are generally observed:
• Common use of masculine plural or singular noun
forms instead dual and feminine plural. Ex. MSA “jny-
hyn” (two pounds)→ EG: “Atnyn jnyh”.
• Dropping some articles and preposition in some syn-
tactic constructs. For example, the preposition “<lY”
(to) in “>nA rAyH <lY Al$gl” (I am going to work)
is typically dropped. Also, the particle “>n” (to) is
dropped in the sentence “>nA mHtAj >n >nAm” (I
need to sleep).
• Using only one form of noun and verb suffixes such
as “yn” instead of “wn” and “wA” instead of “wn” re-
spectively. Also, so-called “five nouns”, are used in
only one form (ex. “>bw” (father of) instead of “>bA”
or “>by”).

4 Detecting Dialectal Peculiarities

ARZ is different from MSA lexically, morphologically,
phonetically, and syntactically. Here, we present meth-
ods to handle such peculiarities. We chose not to han-
dle syntactic differences, because they may be captured
using word n-gram models.

To capture lexical variations, we extracted and sorted
by frequency all the unigrams from the Egyptian side of
the LDC2012T09 corpus (Zbib et al., 2012), which has
≈ 38k Egyptian-English parallel sentences. A linguist
was tasked with manually reviewing the words from the
top until 1,300 dialectal words were found. Some of the
words on the list included dialectal words, commonly
used foreign words, words that exhibit morphological
variations, and others with letter substitution.
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For morphological phenomenon, we employed three
methods, namely:
• Unsupervised Morphology Induction: We em-
ployed the unsupervised morpheme segmentation tool,
Morfessor (Virpioja et al., 2013). It is a data driven
tool that automatically learns morphemes from data in
an unsupervised fashion. We used the trained model to
segment the training and test sets.
• Morphological Rules: In contrast to Morfessor, we
developed only 15 morphological rules (based on the
analysis proposed in Section 3) to segment ARZ text.
These rules would separate prefixes and suffixes like a
light stemmer. Example rules would segment a leading
“b” and segment a combination of a leading “m” and
trailing “$”.
•Morphological Generator: For morphological gen-
eration, we enumerated a list of ≈ 200 morphological
patterns that derive dialectal verbs from Arabic roots.
One such pattern is ytCCC that would generate the di-
alectal verb-form ytktb (to be written) from the root
“ktb”. We used the root list that is distributed with Se-
bawai (Darwish, 2002). We also expanded the list by
attaching negation affixes and pronouns. We retained
generated word forms that: a) exist in a large corpus of
63 million Arabic tweets from 2012 with more than 1
billion tokens; and b) don’t appear in a large MSA cor-
pus of 10 years worth of Aljazeera articles containing
114 million tokens 3. The resulting list included 94k
verb surface forms such as “mbyEmlhA$” (he does not
do it).

For phonological differences, we used a morpholog-
ical generator that makes use of the aforementioned
root list and an inventory of ≈ 605 morphological pat-
terns (with diacritization) to generate possible Arabic
stems. The generated stems with their diacritics were
checked against a large diacritized Arabic corpus con-
taining more than 200 million diacritized words 4. If
generated words contained the letters “v”, “}”, “*”, and
“D”, we used the aforementioned letter substitutions.
We retained words that exist in the large tweet corpus
but not in the Aljazeera corpus. The list contained 8k
surface forms.

5 Evaluation Setup
Dataset: We performed dialect identification exper-
iment for ARZ and MSA. For ARZ, we used the
Egyptian side of the LDC2012T09 corpus (Zbib et
al., 2012) 5. For MSA, we used the Arabic side
of the English/Arabic parallel corpus from the Inter-
national Workshop on Arabic Language Translation6

which consists of ≈ 150k sentences. For testing, we
constructed an evaluation set that is markedly different

3http://aljazeera.net
4http://www.sh.rewayat2.com
5We did not use the Arabic Online Commentary data

(Zaidan et al., 2011) as annotations were often not reliable.
6https://wit3.fbk.eu/mt.php?release=

2013-01

from the training set. We crawled Arabic tweets from
Twitter during March 2014 and selected those where
user location was set to Egypt or a geographic location
within Egypt, leading to 880k tweets. We randomly
selected 2k tweets, and we manually annotated them
as ARZ, MSA, or neither until we obtained 350 ARZ
and 350 MSA tweets. We used these tweets for testing.
We plan to release the tweet ID’s and our annotations.
We preprocessed the training and test sets using the
method described by Darwish et al. (2012), which in-
cludes performing letter and word normalizations, and
segmented all data using an open-source MSA word
segmentor (Darwish et al., 2012). We also removed
punctuations, hashtags, and name mentions from the
test set. We used a Random Forest (RF) ensemble clas-
sifier that generates many decision trees, each of which
is trained on a subset of the features.7 We used the RF
implementation in Weka (Breiman, 2001).

5.1 Classification Runs

Baseline BL: In our baseline experiments, we used
word unigram, bigram, and trigram models and charac-
ter unigram to 5-gram models as features. We first per-
formed a cross-validation experiment using ARZ and
MSA training sets. The classifier achieved fairly high
results (+95%) which are much higher than the results
mentioned in the literature. This could be due in part
to the fact that we were doing ARZ-MSA classification
instead of multi-dialect classification and MSA data is
fairly different in genre from ARZ data. We did not fur-
ther discuss these results. This experiment was a sanity
check to see how does in-domain dialect identification
perform.

Later, we trained the RF classifier on the complete
training set using word n-gram features (WRD), char-
acter n-gram features (CHAR), or both (BOTH) and
tested it on the tweets test set. We referred to this sys-
tem as BL later on.
Dialectal Egyptian Lexicon Slex: As mentioned ear-
lier, we constructed three word lists containing 1,300
manually reviewed ARZ words (MAN), 94k dialectal
verbs (VERB), and 8k words with letter substitutions
(SUBT). Using the lists, we counted the number of
words in a tweet that exist in the word lists and used it
as a standalone feature for classifications. LEX refers
to concatenation of all three lists.
Morphological Features: For Smrph, we trained Mor-
fessor separately on the MSA and Egyptian training
data and applied to the same training data for segmen-
tation. For Srule, we segmented Egyptian part of the
training data using the morphological rules mentioned
in Section 4. For both, word and character n-gram fea-
tures were calculated from the segmented data and the

7We tried also the multi-class Bayesian classifier and
SVM classifier. SVM classifier had comparable results with
Random Forest classifier. However, it was very slow. So, we
decided to go with Random Forest classifier for the rest of the
experiments.
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SYS WRD CHR BOTH BEST+LEX

BL 53.0 74.0 83.3 84.7

Smrph 72.0 88.0 62.1 89.3
Srule 53.9 85.9 85.9 90.1

Table 1: Dialect identification accuracy using
various classification settings: only word-based
(WRD), character-based (CHAR), and both features.
BEST+LEX is built on the best feature of that system
plus a feature built on the concatenation of all lists

SYS MAN +VERB +SUBT

Slex 93.6 94.6 94.4

Table 2: Accuracy of the dialect identification system
with the addition of various types of lexicon

classifier was trained on them and tested on the tweet
test set.

5.2 Results
Table 1 summarizes the results. Unlike results in the lit-
erature, character-based n-gram features outperformed
word-based n-gram features, as they seemed to better
generalize to the new test set, where lexical overlap be-
tween the training and test sets was low. Except for
Smrph, adding both character and word n-gram fea-
tures led to improved results. We observed that Mor-
fessor over-segmented the text, which in turns created
small character segments and enabled the character-
based language model to learn the phenomenon inherit
in a word. The baseline system achieved an accuracy
of 84.7% when combined with the Slex feature. Com-
bining Smrph and Srule features with the Slex feature
led to further improvement. However, as shown in Ta-
ble 2, using the Slex feature alone with the MAN and
VERB lists led to the best results (94.6%), outperform-
ing using all other features either alone or in combina-
tion. This suggests that having a clean list of dialectal
words that cover common dialectal phenomena is more
effective than using word and character n-grams. It also
highlights the shortcomings of using a homogeneous
training set where word unigrams could be capturing
topical cues along with dialectal ones.

6 Conclusion
In this paper, we identified lexical, morphological,
phonological, and syntactic features that help distin-
guish between dialectal Egyptian and MSA. Given the
substantial lexical overlap between dialectal Egyptian
and MSA, targeting words that exhibit distinguishing
traits is essential to proper dialect identification. We
used some of these features for dialect detection lead-
ing to nearly 10% (absolute) improvement in classifi-
cation accuracy. We plan to extend our work to other
dialects.
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Abstract
In this paper, we explore the use of keyboard
strokes as a means to access the real-time writ-
ing process of online authors, analogously to
prosody in speech analysis, in the context of
deception detection. We show that differences
in keystroke patterns like editing maneuvers
and duration of pauses can help distinguish be-
tween truthful and deceptive writing. Empiri-
cal results show that incorporating keystroke-
based features lead to improved performance
in deception detection in two different do-
mains: online reviews and essays.

1 Introduction
Due to the practical importance of detecting deceit, in-
terest in it is ancient, appearing in papyrus dated back
to 900 B.C. (Trovillo, 1939). In more recent years, sev-
eral studies have shown that the deceiver often exhibits
behavior that belies the content of communication, thus
providing cues of deception to an observer. These in-
clude linguistic (e.g., Newman et al. (2003), Hancock
et al. (2004)) as well as paralinguistic (e.g., Ekman et
al. (1991), DePaulo et al. (2003)) cues. Recognizing
deception, however, remains a hard task for humans,
who perform only marginally better than chance (Bond
and DePaulo, 2006; Ott et al., 2011).

Recent studies suggest that computers can be sur-
prisingly effective in this task, albeit in limited domains
such as product reviews. Prior research has employed
lexico-syntactic patterns (Ott et al., 2011; Feng et al.,
2012) as well as online user behavior (Fei et al., 2013;
Mukherjee et al., 2013). In this paper, we study the
effect of keystroke patterns for deception detection in
digital communications, which might be helpful in un-
derstanding the psychology of deception and help to-
ward trustful online communities. This allows us to in-
vestigate differences in the writing and revisional pro-
cesses of truthful and fake writers. Our work thus
shares intuition with HCI research linking keystroke
analysis to cognitive processes (Vizer et al., 2009; Epp
et al., 2011) and psychology research connecting cog-
nitive differences to deception (Ekman, 2003; Vrij et
al., 2006).

Recent research has shown that lying generally im-
poses a cognitive burden (e.g., McCornack (1997), Vrij

et al. (2006)) which increases in real-time scenar-
ios (Ekman, 2003). Cognitive burden has been known
to produce differences in keytroke features (Vizer et
al., 2009; Epp et al., 2011). Previous research has not,
however, directly investigated any quantitative connec-
tion between keystroke patterns and deceptive writing.

In this paper, we posit that cognitive burdens in
deception may lead to measurable characteristics in
keystroke patterns. Our contributions are as follows:
(1) introducing keystroke logs as an extended linguis-
tic signal capturing the real-time writing process (anal-
ogous to prosody in speech analysis) by measuring the
writing rate, pauses and revision rate. (2) showing
their empirical value in deception detection, (3) provid-
ing novel domain-specific insights into deceptive writ-
ing, and (4) releasing a new corpus of deception writ-
ings in new domains.1

2 Related Work
Prior research has focused mainly on using keystroke
traits as a behvioral biometric. Forsen et al. (1977)
first demonstrated that users can be distinguished by the
way they type their names. Subsequent work showed
that typing patterns are unique to individuals (Leggett
and Williams, 1988), and can be used for authentica-
tion (Cho et al., 2000; Bergadano et al., 2002) and in-
trusion detection (Killourhy and Maxion, 2009).

Keystroke pauses have been linked to linguistic pat-
terns in discourse (e.g. Matsuhashi (1981), van Hell et
al. (2008)) and regarded as indications of cognitive bur-
den (e.g., Johansson (2009), Zulkifli (2013)). In this pa-
per, we present the first empirical study that quantita-
tively measures the deception cues in real-time writing
process as manifested in keystroke logs.

3 Data Collection
As discussed by Gokhman et al. (2012), the crowd-
sourcing approach to soliciting deceptive content sim-
ulates the real world of online deceptive content cre-
ators. We collected the data via Amazon Mechanical
Turk.2 Turkers were led to a separate website where
keylogging was enabled, and asked to write truthful
and deceptive texts (≥ 100 words) on one of three top-

1Available at http://www3.cs.stonybrook.
edu/˜junkang/keystroke/

2https://www.mturk.com/mturk
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Figure 1: Number of keystrokes corresponding to the three
types of edit patterns (E3): (a) use of arrow keys, (b) deletion
(Delete and Backspace) and (c) text selection with mouse.

ics: restaurant review, gay marriage and gun control.
Each Turker was required to agree to their typing be-
ing logged. Since copy/paste operations defeat our pur-
pose of studying keystrokes in the typing process, they
were disabled. This restriction also acts as a hindrance
to plagiarism. All texts were reviewed manually, and
those not meeting the requirements (due to the being
too short, plagiarized content, etc.) were disregarded.
Writing task design: The task was designed such
that each Turker wrote a pair of texts, one truthful and
one deceptive, on the same topic. For restaurant re-
views, they were asked to write a truthful review of
a restaurant they liked, and a deceptive review of a
restaurant they have never been to or did not like. For
the other two topics – ‘gun control’ and ‘gay marriage’
– we asked their opinion: support, neutral, or against.
Then, they were asked to write a truthful and a decep-
tive essay articulating, respectively, their actual opin-
ion and its opposite.3 The tasks further were divided
into two ‘flows’: writing the truthful text before the de-
ceptive one, and vice versa. Each Turker was assigned
only one flow, and was not allowed to participate in the
other. After completing this, each Turker was asked to
copy their own typing, i.e., re-type the two texts.

Finally, in order to get an idea of the cognitive bur-
den associated with truthful and deceptive writing, we
asked the Turkers which task was easier for them. Of
the 196 participants, 152 answered “truthful”, 40 an-
swered “deceptive” and only 4 opted for “not sure”.
What are logged: We deployed a keylogger to cap-
ture the mouse and keyboard events in the “text area”.
The events KeyUp, KeyDown and MouseUp, along with
the keycode and timestamp were logged.4 For the three
topics restaurant review, gay marriage and gun control
we obtained 1000, 800 and 800 texts, respectively.

In the remainder of this paper, kdn and kup denote
the KeyDown and KeyUp events for a key k. For any

3To prevent a change in opinion depending on task avail-
ability, Turkers were redirected to other tasks if their opinion
was neutral, or if we had enough essays of their opinion.

4Printable (e.g., alphanumeric characters) as well as non-
printable keystrokes like (e.g., ‘Backspace’), are logged.
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Figure 2: Average normalized timespan δ̂(e) for documents,
sentences, words and key presses. The top row considers only
the first text, while the bottom row considers both flows.

event e, its timespan, i.e., the time interval between the
beginning and end of e, is denoted by δ(e).

4 Feature Design
Keystroke logging enables the study of two types of in-
formation that go beyond conventional linguistic anal-
ysis. First, it captures editing processes (e.g., deletions,
insertions made by changing cursor position, etc.).
Second, it reveals the temporal aspect of text generation
(e.g., duration, latency). Our exploration of these fea-
tures and their application in deception detection is mo-
tivated by the similarities between text and speech gen-
eration. Editing patterns, for instance, can be viewed as
attempts to veil incoherence in deceptive writing and
temporal patterns like latency or pause can be treated
as analogous to disfluency.

Different people, of course, have varying typing
skills, and some may type faster than others. In or-
der to control for this variation, we normalize all event
timespans δ(e) with respect to the corresponding event
timespan in the copy task: δ̂(e) = δ(e)/δ(ecopy).

4.1 Editing Patterns
In this work, we treat keys that are used only for edit-
ing as different from others. Text editing is done by
employing a small subset of available keys: deletion
keys (‘Backspace’ and ‘Delete’), arrow keys (←, →,
↑ and ↓) and by using the mouse for text selection
(i.e., the ‘MouseUp’ event). The three types of editing
keystrokes are collectively denoted by

E3 = 〈|DEL| , |MSELECT| , |ARROW|〉
where

(i) |DEL| = number of deletion keystrokes
(ii) |MSELECT| = number of ‘MouseUp’ events, and

(iii) |ARROW| = number of arrow keystrokes
The editing differences between truthful and deceptive
writing across all three topics are shown in Fig. 1.

4.2 Temporal Aspects
Each event is logged with a keycode and a timestamp.
In order to study the temporal aspects of digital writ-
ing, we calculate the timespan of different linguistic
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Topic Features Flow
First + Second First-only

Restaurants
BoW 73.9 78.8
BoW + T6 74.3 79.1
BoW + T6 + E3 74.6 80.3∗

Gun Control
(Support)

BoW 86.5 80.0
BoW + T6 86.8 82.5∗

BoW + T6 + E3 88.0 § 83.5∗

Gun Control
(Oppose)

BoW 88.5 88.0
BoW + T6 89.8 87.5
BoW + T6 + E3 90.8∗ 89.1

Gay Marriage
(Support)

BoW 92.5 92.0
BoW + T6 93.8 92.5
BoW + T6 + E3 94.3∗ 92.0

Gay Marriage
(Oppose)

BoW 84.5 86.5
BoW + T6 85.0 87.0
BoW + T6 + E3 85.3 86.8

Table 1: SVM classifier performance for truthful vs. de-
ceptive writing. Statistically significant improvements over
the baseline are marked * (p < 0.05) and § (p < 0.1).
E3 = 〈|DEL| , |MSELECT| , |ARROW|〉 denotes the editing
keystrokes, and T6 is the set of normalized timespans of
documents, words (plus preceding keystroke), all keystrokes,
spaces, non-whitespace keystrokes and inter-word intervals:
T6 = {δ̂(D), δ̂(k), δ̂(SP), δ̂(¬SP), δ̂(¬W), δ̂(kprv + W)}

units such as words, sentences and even entire docu-
ments. Further, we separately inspect the timespans
of different parts of speech, function words and con-
tent words. In addition to event timespans, intervals
between successive events (e.g., inter-word and inter-
sentence pauses) and pauses preceding or succeeding
and event (e.g., time interval before and after a function
word) are measured as well.

5 Experimental Results
This section describes our experimental setup and
presents insights based on the obtained results. All
classification experiments use 5-fold cross validation
with 80/20 division for training and testing. In addition
to experimenting on the entire dataset, we also sepa-
rately analyze the texts written first (of the two texts in
each ‘flow’). This additional step is taken in order to
eliminate the possibility of a text being primed by its
preceding text.

Deception cues in keystroke patterns: To empiri-
cally check whether keystroke features can help distin-
guish between truthful and deceptive writing, we de-
sign binary SVM classifiers.5 Unigrams with tf-idf
encoding is used as the baseline. The average baseline
accuracy across all topics is 82.58% when considering
both texts of a flow, and 83.62% when considering only
the first text of each flow. The better performance in the
latter possibly indicates that the second text of a flow
exhibits some amount of lexical priming with the first.

The high accuracy of the baseline is not surprising.
Previous work by Ott et al. (2011) reported similar per-

5We use the LIBLINEAR (Fan et al., 2008) package.

δ̂(W) δ̂(kprv + W)

D > T T > D D > T T > D
our best when one
if get quality other

when well even get
were your on service
it’s fresh by been

quality not me their
dishes my has not

the one also with
i’ve had go friendly
on hat we great

they of had an
we other is our

friendly very at are
has love which really
at service from but

wait great dishes favorite
an really or very
go you re about
is but would will

which been just here

Table 2: Top 20 words in restaurant reviews with greatest
timespan difference between deceptive and truthful writing.

formance of unigram models. The focus of our work
is to explore the completely new feature space of ty-
pographic patterns in deception detection. We draw
motivation from parallels between the text generation
and speech generation processes. Prosodic concepts
such as speed, disfluency and coherence can be real-
ized in typographic behavior by analyzing timestamp
of keystrokes, pauses and editing patterns, respectively.

Based on the differences in the temporal aspects of
keystrokes, we extract six timespan features to improve
this baseline. This set, denoted by T6, comprises of

(i) δ̂(D) = timespan of entire document
(ii) δ̂(kprv+W) = average timespan of word plus pre-

ceding keystroke
(iii) δ̂(k) = average keystroke timespan
(iv) δ̂(SP) = average timespan of spaces
(v) δ̂(¬SP) = average timespan of non whitesp-

ace keystrokes
(vi) δ̂(¬W) = average interval between words.
The improvements attained by adding T6 to the base-
line are shown in Table 1. Adding the edit patterns (E3)
(cf. § 4.1) further improves the performance (with the
exception of two cases) by 0.7–3.5%.

Writing speed, pauses and revisions: To study the
temporal aspect of language units across all topics,
we first consider all texts, and then restrict to only
the first of each ‘flow’. The timespan measurements
are presented in Fig. 2, showing the average duration
of typing documents, sentences, words and individual
keystrokes. The timespans are measured as the inter-
val between the first and the last keystrokes. The sen-
tence timespan, for instance, does not include the gap
between a sentence end and the first keystroke marking
the beginning of the next.

The sentence timespans for “gay marriage” and “gun
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Figure 3: Event timespans in restaurant reviews: (a) language units, and (b) language units including their preceding kdn.

control” are lower in truthful writing, even though the
document timespans are higher. This difference implies
that the writer is spending a longer period of time to
think before commencing the next sentence, but once
started, the actual typing proceeds rapidly.

Apart from restaurant reviews, truthful writers have
typed slower. This may be due to exercising better care
while expressing their honest opinion.

For restaurant reviews, the document, sentence and
word timespans are significantly higher in deceptive
writing. This, however, is not the case for documents
and words in the other two topics. We conjecture that
this is because deception is harder to write for prod-
uct reviews, due to their dependence on factual details.
Gun control and gay marriage, on the other hand, are
topics well discussed in media, and it is possible that
the writers are aware of the arguments that go against
their personal belief. The frequency of revisional oc-
currences (i.e., keys used for editing) shown in Fig. 1,
too, supports the thought that writing fake reviews may
be harder than adopting a fake stance on well-known
issues. Deceptive reviews exhibit a higher number of
revisions than truthful ones, but essays show the oppo-
site trend. Our findings align with previous studies (Ott
et al., 2011) which showed that deception cues are do-
main dependent.
Writing speed variations over word categories:
Next, we investigate whether there is any quantitative
difference in the writing rate over different words with
respect to the deceptive and truthful intent of the author.
In an attempt to understand this, we analyze words
which show the highest timespan difference between
deceptive and truthful writings.

Table 2 presents words in the restaurant review
topic for which deceptive writers took a lot longer
than truthful writers, and vice versa. Some word cat-
egories exhibit common trends across all three top-
ics. Highly subjective words, for instance (e.g., “love”,
“best”, “great”) are words over which truthful writers
spent more time.

Deceptive and truthful texts differ in the typing rate
of first- and second-person pronouns. Deceptive re-
views reveal more time spent in using 2nd-person pro-
nouns, as shown by “you” and “your”. This finding
throws some light on how people perceive text cues.
Toma and Hancock (2012) showed that readers per-

form poorly at deception detection because they rely on
unrelated text cues such as 2nd-person pronouns. Our
analysis indicates that people associate the use of 2nd-
person pronouns more with deception not only while
reading, but while writing as well.

Deceptive reviews also exhibit longer time spans for
1st-person pronouns (e.g., “we”, “me”), which have
been known to be useful in deception detection (New-
man et al., 2003; Ott et al., 2011). Newman et al.
(2003) attributed the less frequent usage of 1st-person
pronouns to psychological distancing. The longer time
taken by deceptive writers in our data is a possible sign
of increased cognitive burden when the writer is unable
to maintain the psychological distance. Deceptive re-
viewers also paused a lot more around relative clauses,
e.g., “if”, “when”, and “which”.

In essays, however, the difference in timespans of
1st-person and 2nd-person pronouns as well as the
timespan difference in relative clauses were insignifi-
cant (< 50ms).

A broader picture of the temporal difference in using
different types of words is presented in Fig. 3, which
shows deceptive reviewers spending less time on ad-
verbs as compared to truthful writers, but more time on
nouns, verbs, adjectives, function words and content
words. They also exhibited significantly longer pauses
before nouns, verbs and function words.

6 Conclusion
In this paper, we investigated the use of typographic
style in deception detection and presented distinct tem-
poral and revisional aspects of keystroke patterns that
improve the characterization of deceptive writing. Our
study provides novel empirically supported insights
into the writing and editing processes of truthful and
deceptive writers. It also presents the first application
of keylogger data used to distinguish between true and
fake texts, and opens up a new range of questions to
better understand what affects these different keystroke
patterns and what they exhibit. It also suggests new
possibilities for making use of keystroke information
as an extended linguistic signal to accompany writings.
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Abstract 

Statistical language modeling (LM) that 
purports to quantify the acceptability of a 
given piece of text has long been an in-
teresting yet challenging research area. In 
particular, language modeling for infor-
mation retrieval (IR) has enjoyed re-
markable empirical success; one emerg-
ing stream of the LM approach for IR is 
to employ the pseudo-relevance feedback 
process to enhance the representation of 
an input query so as to improve retrieval 
effectiveness. This paper presents a con-
tinuation of such a general line of re-
search and the main contribution is three-
fold. First, we propose a principled 
framework which can unify the relation-
ships among several widely-used query 
modeling formulations. Second, on top of 
the successfully developed framework, 
we propose an extended query modeling 
formulation by incorporating critical que-
ry-specific information cues to guide the 
model estimation. Third, we further adopt 
and formalize such a framework to the 
speech recognition and summarization 
tasks. A series of empirical experiments 
reveal the feasibility of such an LM 
framework and the performance merits of 
the deduced models on these two tasks. 

1 Introduction 

Along with the rapidly growing popularity of the 
Internet and the ubiquity of social web commu-
nications, tremendous volumes of multimedia 
contents, such as broadcast radio and television 
programs, digital libraries and so on, are made 
available to the public. Research on multimedia 
content understanding and organization has wit-
nessed a booming interest over the past decade. 
By virtue of the developed techniques, a variety 
of functionalities were created to help distill im-
portant content from multimedia collections, or 
provide locations of important speech segments 

in a video accompanied with their corresponding 
transcripts, for users to listen to or to digest. Sta-
tistical language modeling (LM) (Jelinek, 1999; 
Jurafsky and Martin, 2008; Zhai, 2008), which 
manages to quantify the acceptability of a given 
word sequence in a natural language or capture 
the statistical characteristics of a given piece of 
text, has been proved to offer both efficient and 
effective modeling abilities in many practical 
applications of natural language processing and 
speech recognition (Ponte and Croft, 1998; Jelin-
ek, 1999; Huang, et al., 2001; Zhai and Lafferty, 
2001

a
; Jurafsky and Martin, 2008; Furui et al., 

2012; Liu and Hakkani-Tur, 2011). 

The LM approach was first introduced for the 
information retrieval (IR) problems in the late 
1990s, indicating very good potential, and was 
subsequently extended in a wide array of follow-
up studies. One typical realization of the LM ap-
proach for IR is to access the degree of relevance 
between a query and a document by computing 
the likelihood of the query generated by the doc-
ument (usually referred to as the query-
likelihood approach) (Zhai, 2008; Baeza-Yates 
and Ribeiro-Neto, 2011). A document is deemed 
to be relevant to a given query if the correspond-
ing document model is more likely to generate 
the query. On the other hand, the Kullback-
Leibler divergence measure (denoted by KLM 
for short hereafter), which quantifies the degree 
of relevance between a document and a query 
from a more rigorous information-theoretic per-
spective, has been proposed (Lafferty and Zhai, 
2001; Zhai and Lafferty, 2001

b
; Baeza-Yates and 

Ribeiro-Neto, 2011). KLM not only can be 
thought as a natural generalization of the query-
likelihood approach, but also has the additional 
merit of being able to accommodate extra infor-
mation cues to improve the performance of doc-
ument ranking. For example, a main challenge 
facing such a measure is that since a given query 
usually consists of few words, the true infor-
mation need is hard to be inferred from the sur-
face statistics of a query. As such, one emerging 
stream of thought for KLM is to employ the 
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pseudo-relevance feedback process to construct 
an enhanced query model (or representation) so 
as to achieve better retrieval effectiveness (Hi-
emstra et al., 2004; Lv and Zhai, 2009; Carpineto 
and Romano, 2012; Lee and Croft, 2013). 

Following this line of research, the major con-
tribution of this paper is three-fold: 1) we ana-
lyze several widely-used query models and then 
propose a principled framework to unify the rela-
tionships among them; 2) on top of the success-
fully developed query models, we propose an 
extended modeling formulation by incorporating 
additional query-specific information cues to 
guide the model estimation; 3) we explore a nov-
el use of these query models by adapting them to 
the speech recognition and summarization tasks. 
As we will see, a series of experiments indeed 
demonstrate the effectiveness of the proposed 
models on these two tasks. 

2 Language Modeling Framework 

2.1 Kullback-Leibler Divergence Measure 

A promising realization of the LM approach to 
IR is the Kullback-Leibler divergence measure 
(KLM), which determines the degree of rele-
vance between a document and a query from a 
rigorous information-theoretic perspective. Two 
different language models are involved in KLM: 
one for the document and the other for the query. 
The divergence of the document model with re-
spect to the query model is defined by  

.
)|(

)|(
log)|()||(KL   Vw

DwP

QwP
QwPDQ

  (1)  

KLM not only can be thought as a natural gener-
alization of the traditional query-likelihood ap-
proach (Yi and Allan, 2009; Baeza-Yates and 
Ribeiro-Neto, 2011), but also has the additional 
merit of being able to accommodate extra infor-
mation cues to improve the estimation of its 
component models in a systematic way for better 
document ranking (Zhai, 2008).  

Due to that a query usually consists of only a 
few words, the true query model P(w|Q)

 
might 

not be accurately estimated by the simple ML 
estimator (Jelinek, 1991). There are several stud-
ies devoted to estimating a more accurate query 
modeling, saying that it can be approached with 
the pseudo-relevance feedback process (Lavren-
ko and Croft, 2001; Zhai and Lafferty, 2001

b
). 

However, the success depends largely on the as-
sumption that the set of top-ranked documents, 
DTop={D1,D2,...,Dr,...}, obtained from an initial 
round of retrieval, are relevant and can be used to 
estimate a more accurate query language model. 

2.2 Relevance Modeling  

Under the notion of relevance modeling (RM, 
often referred to as RM-1), each query Q is as-

sumed to be associated with an unknown rele-
vance class RQ, and documents that are relevant 
to the semantic content expressed in query are 
samples drawn from the relevance class RQ. 
Since there is no prior knowledge about RQ, we 
may use the top-ranked documents DTop to ap-
proximate the relevance class RQ. The corre-
sponding relevance model can be estimated using 
the following equation (Lavrenko and Croft, 
2001; Lavrenko, 2004): 

.
)|()(

)|()|()(
  )|(RM

  

  











ToprD

ToprD

Qw rr

Qw rrr

DwPDP

DwPDwPDP
QwP

D

D (2) 

2.3 Simple Mixture Model 

Another perspective of estimating an accurate 
query model with the top-ranked documents is 
the simple mixture model (SMM), which as-
sumes that words in DTop are drawn from a two-
component mixture model: 1) One component is 
the query-specific topic model PSMM(w|Q), and 2) 
the other is a generic background model 
P(w|BG). By doing so, the SMM model 
PSMM(w|Q) can be estimated by maximizing the 
likelihood over all the top-ranked documents 
(Zhai and Lafferty, 2001

b
; Tao and Zhai, 2006): 
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where   is a pre-defined weighting parameter 
used to control the degree of reliance between 
PSMM(w|Q) and P(w|BG). This estimation will 
enable more specific words to receive more 
probability mass, thereby leading to a more dis-
criminative query model PSMM(w|Q). 

Although the SMM modeling aims to extract 
extra word usage cues for enhanced query mod-
eling, it may confront two intrinsic problems. 
One is the extraction of word usage cues from 
DTop is not guided by the original query. The oth-
er is that the mixing coefficient   is fixed across 
all top-ranked documents albeit that different 
documents would potentially contribute different 
amounts of word usage cues to the enhanced 
query model. To mitigate these two problems, 
the regularized simple mixture model has been 
proposed and can be estimated by maximizing 
the likelihood function (Tao and Zhai, 2006; Dil-
lon and Collins-Thompson, 2010) 
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where   is a weighting factor indicating the con-
fidence on the prior information. 

3 The Proposed Modeling Framework 

3.1 Fundamentals 

It is obvious that the major difference among the 
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representative query models mentioned above is 
how to capitalize on the set of top-ranked docu-
ments and the original query. Several subtle rela-
tionships can be deduced through the following 
in-depth analysis. First, a direct inspiration of the 
LM-based query reformulation framework can 
be drawn from the celebrated Rocchio’s formula-
tion, while the former can be viewed as a proba-
bilistic counterpart of the latter (Robertson, 1990; 
Ponte and Croft, 1998; Baeza-Yates and Ribeiro-
Neto, 2011). Second, after some mathematical 
manipulation, the formulation of the RM model 
(c.f. Eq. (2)) can be rewritten as 
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It becomes evident that the RM model is com-
posed by mixing a set of document models 
P(w|Dr). As such, the RM model bears a close 
resemblance to the Rocchio’s formulation. Fur-
thermore, based on Eq. (5), we can recast the 
estimation of the RM model as an optimization 
problem, and the likelihood (or objective) func-
tion is formulated as 
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where the document models P(w|Dr) are known 
in advance; the conditional probability P(Dr|Q) 
of each document Dr is unknown and leave to be 
estimated. Finally, a principled framework can 
be obtained to unify all of these query models, 
including RM (c.f. Eq. (6)), SMM (c.f. Eq. (3)) 
and RSMM (c.f. Eq. (4))), by using a generalized 
objective likelihood function: 

1)( ..

,)()|(

),(






























M

E M

r

i

i

r

M
r

Vw E

Ewc

M
rr

MPts

MPMwPL  (7) 

where E represents a set of observations which 
we want to maximize their likelihood, and M 
denotes a set of mixture components.  

3.2 Query-specific Mixture Modeling 

The SMM model and the RSMM model are in-
tended to extract useful word usage cues from 
DTop, which are not only relevant to the original 
query Q but also external to those already cap-
tured by the generic background model. Howev-
er, we argue in this paper that the “generic in-
formation” should be carefully crafted for each 
query due mainly to the fact that users’ infor-
mation needs may be very diverse from one an-
other. To crystallize the idea, a query-specific 
background model PQ(w|BG) for each query Q 
can be derived from DTop directly. Another con-
sideration is that since the original query model 

P(w|Q) cannot be accurately estimated, it thus 
may not necessarily be the best choice for use in 
defining a conjugate Dirichlet prior for the en-
hanced query model to be estimated. We propose 
to use the RM model as a prior to guide the esti-
mation of the enhanced query model. The en-
hanced query model is termed query-specific 
mixture model (QMM), and its corresponding 
training objective function can be expressed as 
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4 Applications 

4.1 Speech Recognition 

Language modeling is a critical and integral 
component in any large vocabulary continuous 
speech recognition (LVCSR) system (Huang et 
al., 2001; Jurafsky and Martin, 2008; Furui et al., 
2012). More concretely, the role of language 
modeling in LVCSR can be interpreted as calcu-
lating the conditional probability P(w|H), in 
which H is a search history, usually expressed as 
a sequence of words H=h1, h2,…, hL, and w is 
one of its possible immediately succeeding 
words. Once the various aforementioned query 
modeling methods are applied to speech recogni-
tion, for a search history H, we can conceptually 
regard it as a query and each of its immediately 
succeeding words w as a (single-word) document. 
Then, we may leverage an IR procedure that 
takes H as a query and poses it to a retrieval sys-
tem to obtain a set of top-ranked documents from 
a contemporaneous (or in-domain) corpus. Final-
ly, the enhanced query model (that is P(w|H) in 
speech recognition) can be estimated by RM, 
SMM, RSMM or QMM, and further combined 
with the background n-gram (e.g., trigram) lan-
guage model to form an adaptive language model 
to guide the speech recognition process. 

4.2 Speech Summarization 

On the other hand, extractive speech summariza-
tion aims at producing a concise summary by 
selecting salient sentences or paragraphs from 
the original spoken document according to a pre-
defined target summarization ratio (Carbonell 
and Goldstein, 1998; Mani and Maybury, 1999; 
Nenkova and McKeown, 2011; Liu and 
Hakkani-Tur, 2011). Intuitively, this task could 
be framed as an ad-hoc IR problem, where the 
spoken document is treated as an information 
need and each sentence of the document is re-
garded as a candidate information unit to be re-
trieved according to its relevance to the infor-
mation need. Therefore, KLM can be used to 
quantify how close the document D and one of 
its sentences S are: the closer the sentence model 
P(w|S) to the document model P(w|D), the more 
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likely the sentence would be part of the summary. 
Due to that each sentence S of a spoken docu-
ment D to be summarized usually consists of 
only a few words, the corresponding sentence 
model P(w|S) might not be appropriately esti-
mated by the ML estimation. To alleviate the 
deficiency, we can leverage the merit of the 
above query modeling techniques to estimate an 
accurate sentence model for each sentence to 
enhance the summarization performance. 

5 Experimental Setup 

The speech corpus consists of about 196 hours of 
Mandarin broadcast news collected by the Aca-
demia Sinica and the Public Television Service 
Foundation of Taiwan between November 2001 
and April 2003 (Wang et al., 2005), which is 
publicly available and has been segmented into 
separate stories and transcribed manually. Each 
story contains the speech of one studio anchor, as 
well as several field reporters and interviewees. 
A subset of 25-hour speech data compiled during 
November 2001 to December 2002 was used to 
bootstrap the acoustic model training. The vo-
cabulary size is about 72 thousand words. The 
background language model was estimated from 
a background text corpus consisting of 170 mil-
lion Chinese characters collected from the Chi-
nese Gigaword Corpus released by LDC. 

The dataset for use in the speech recognition 
experiments is compiled by a subset of 3-hour 
speech data from the corpus within 2003 (1.5 
hours for development and 1.5 hours for test). 
The contemporaneous (in-domain) text corpus 
used for training the various LM adaptation 
methods was collected between 2001 and 2003 
from the corpus (excluding the test set), which 
consists of one million Chinese characters of the 
orthographic broadcast news transcripts. In this 
paper, all the LM adaptation experiments were 
performed in word graph rescoring. The associ-
ated word graphs of the speech data were built 
beforehand with a typical LVCSR system (Ort-
manns et al., 1997; Young et al., 2006). 

In addition, the summarization task also em-
ploys the same broadcast news corpus as well. A 
subset of 205 broadcast news documents com-
piled between November 2001 and August 2002 
was reserved for the summarization experiments 
(185 for development and 20 for test). A subset 
of about 100,000 text news documents, compiled 
during the same period as the documents to be 
summarized, was employed to estimate the relat-
ed summarization models compared in this paper. 
We adopted three variants of the widely-used 
ROUGE metric (i.e., ROUGE-1, ROGUE-2 and 
ROUGE-L) for the assessment of summarization 
performance (Lin, 2003). The summarization 
ratio, defined as the ratio of the number of words 
in the automatic (or manual) summary to that in 

the reference transcript of a spoken document, 
was set to 10% in this research. 

6 Experimental Results 

In the first part of experiments, we evaluate the 
effectiveness of the various query models applied 
to the speech recognition task. The correspond-
ing results with respect to different numbers of 
top-ranked documents being used for estimating 
their component models are shown in Table 1. 
Also worth mentioning is that the baseline sys-
tem with the background trigram language model, 
which was trained with the SRILM toolkit 
(Stolcke, 2005) and Good-Turing smoothing 
(Jelinek, 1999), results in a Chinese character 
error rate (CER) of 20.08% on the test set. Con-
sulting Table 1 we notice two particularities. One 
is that there is more fluctuation in the CER re-
sults of SMM than in those of RM. The reason 
might be that, for SMM, the extraction of rele-
vance information from the top-ranked docu-
ments is conducted with no involvement of the 
test utterance (i.e., the query; or its correspond-
ing search histories), as elaborated earlier in Sec-
tion 2. When too many feedback documents are 
being used, there would be a concern for SMM 
to be distracted from being able to appropriate 
model the test utterance, which is probably 
caused by some dominant distracting (or irrele-
vant) feedback documents. The other interesting 
observation is that RSMM only achieves a com-
parable (even worse) result when compared to 
SMM. A possible reason is that the prior con-
straint of the RSMM may contain too much 
noisy information so as to bias the model estima-
tion. Furthermore, it is evident that the proposed 
QMM is the best-performing method among all 
the query models compared in the paper. Alt-
hough the improvements made by QMM are not 
as pronounced as expected, we believe that 
QMM has demonstrated its potential to be ap-
plied to other related applications. On the other 
hand, we compare the various query models with 
two well-practiced language models, namely the 
cache model (Cache) (Kuhn and Mori, 1990; 
Jelinek et al., 1991) and the latent Dirichlet allo-
cation (LDA) (Liu and Liu, 2007; Tam and 
Schultz, 2005). The CER results of these two 
models are also shown in Table 1, respectively. 
For the cache model, bigram cache was used 
since it can yield better results than the unigram 
and trigram cache models in our experiments. It 
is worthy to notice that the LDA model was 
trained with the entire set of contemporaneous 
text document collection (c.f. Section 4), while 
all of the query models explored in the paper 
were estimated based on a subset of the corpus 
selected by an initial round of retrieval. The re-
sults reveal that most of these query models can 
achieve superior performance over the two con-
ventional language models. 
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In the second part of experiments, we evaluate 
the utilities of the various query models as ap-
plied to the speech summarization task. At the 
outset, we assess the performance level of the 
baseline KLM method by comparison with two 
well-practiced unsupervised methods, viz. the 
vector space model (VSM) (Gong and Liu, 2001), 
and its extension, maximal marginal relevance 
(MMR) (Carbonell and Goldstein, 1998). The 
corresponding results are shown in Table 2 and 
can be aligned with several related literature re-
views. By looking at the results, we find that 
KLM outperforms VSM by a large margin, con-
firming the applicability of the language model-
ing framework for speech summarization. Fur-
thermore, MMR that presents an extension of 
VSM performs on par with KLM for the text 
summarization task (TD) and exhibits superior 
performance over KLM for the speech summari-
zation task (SD). We now turn to evaluate the 
effectiveness of the various query models (viz. 
RM, SMM, RSMM and QMM) in conjunction 
with the pseudo-relevance feedback process for 
enhancing the sentence model involved in the 
KLM method. The corresponding results are also 
shown in Table 2. Two noteworthy observations 
can be drawn from Table 2. One is that all these 
query models can considerably improve the 
summarization performance of the KLM method, 
which corroborates the advantage of using them 
for enhanced sentence representations. The other 
is that QMM is the best-performing one among 
all the formulations studied in this paper for both 
the TD and SD cases.  

Going one step further, we explore to use extra 
prosodic features that are deemed complemen-
tary to the LM cue provided by QMM for speech 
summarization. To this end, a support vector ma-
chine (SVM) based summarization model is 
trained to integrate a set of 28 commonly-used 
prosodic features (Liu and Hakkani-Tur, 2011) 
for representing each spoken sentence, since 
SVM is arguably one of the state-of-the-art su-
pervised methods that can make use of a diversi-
ty of indicative features for text or speech sum-
marization (Xie and Liu, 2010; Chen et al., 
2013). The sentence ranking scores derived by 
QMM and SVM are in turn integrated through a 
simple log-linear combination. The correspond-
ing results are shown in Table 2, demonstrating 
consistent improvements with respect to all the 
three variants of the ROUGE metric as compared 
to that using either QMM or SVM in isolation. 
We also investigate using SVM to additionally 
integrate a richer set of lexical and relevance fea-
tures to complement QMM and further enhance 
the summarization effectiveness. However, due 
to space limitation, we omit the details here. As a 
side note, there is a sizable gap between the TD 
and SD cases, indicating room for further im-

provements. We may seek remedies, such as ro-
bust indexing schemes, to compensate for imper-
fect speech recognition. 

7 Conclusion and Outlook 

In this paper, we have presented a systematic and 
thorough analysis of a few well-practiced query 
models for IR and extended their novel applica-
bility to speech recognition and summarization in 
a principled way. Furthermore, we have pro-
posed an extension of this research line by intro-
ducing query-specific mixture modeling; the util-
ities of the deduced model have been extensively 
compared with several existing query models. As 
to future work, we would like to investigate 
jointly integrating proximity and other different 
kinds of relevance and lexical/semantic infor-
mation cues into the process of feedback docu-
ment selection so as to improve the empirical 
effectiveness of such query modeling.  
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Table 1. The speech recognition results (in CER 
(%)) achieved by various language models along 
with different numbers of latent topics/pseudo-

relevance feedback documents. 

 16 32 64 128 

Baseline 20.08 

Cache 19.86 

LDA 19.29 19.30 19.28 19.15 

RM 19.26 19.26 19.26 19.26 

SMM 19.19 19.00 19.14 19.10 

RSMM 19.18 19.14 19.15 19.19 

QMM 19.05 18.97 19.00 18.99 

Table 2. The summarization results (in F-scores) 
achieved by various language models along with 

text and spoken documents. 

 
Text Documents (TD) Spoken Documents (SD) 

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L 

VSM 0.347 0.228 0.290 0.342 0.189 0.287 

MMR 0.407 0.294 0.358 0.381 0.226 0.331 

KLM 0.411 0.298 0.361 0.364 0.210 0.307 

RM 0.453 0.335 0.403 0.382 0.239 0.331 

SMM 0.439 0.320 0.388 0.383 0.229 0.327 

RSMM 0.472 0.365 0.423 0.381 0.235 0.329 

QMM 0.486 0.382 0.435 0.395 0.256 0.349 

SVM 0.441 0.334 0.396 0.370 0.222 0.326 

QMM+

SVM 
0.492 0.395 0.448 0.398 0.261 0.358 
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Abstract

We study the topic dynamics of interac-
tions in political debates using the 2012
Republican presidential primary debates
as data. We show that the tendency of
candidates to shift topics changes over the
course of the election campaign, and that it
is correlated with their relative power. We
also show that our topic shift features help
predict candidates’ relative rankings.

1 Introduction

The field of computational social sciences has cre-
ated many interesting applications for natural lan-
guage processing in recent years. One of the areas
where NLP techniques have shown great promise
is in the analysis of political speech. For example,
researchers have applied NLP techniques to polit-
ical texts for a variety of tasks such as predicting
voting patterns (Thomas et al., 2006), identifying
markers of persuasion (Guerini et al., 2008), cap-
turing cues that signal charisma (Rosenberg and
Hirschberg, 2009), and detecting ideological po-
sitions (Sim et al., 2013). Our work also analyzes
political speech, more specifically, presidential de-
bates. The contribution of this paper is to show
that the topic shifting tendency of a presidential
candidate changes over the course of the election
campaign, and that it is correlated with his or her
relative power. We also show that this insight can
help computational systems that predict the candi-
dates’ relative rankings based on their interactions
in the debates.

2 Motivation

The motivation for this paper stems from prior
work done by the first author in collaboration
with other researchers (Prabhakaran et al., 2013a;
Prabhakaran et al., 2013b). Prabhakaran et al.

(2013a) introduced the notion of power in the do-
main of presidential debates, and Prabhakaran et
al. (2013b) followed it up with an automatic power
ranker system based on interactions within the de-
bates. The power that a candidate had at a cer-
tain point in the election campaign was modeled
based on his or her recent poll standings: in elec-
tions, popularity is power. Those studies analyzed
the 2012 Republican presidential primary debates
and found that a candidate’s power at the time of
a debate correlates with the structure of interac-
tions within the debate (e.g., turn frequency and
interruption patterns). Another finding was that
the candidates’ power correlates with the distribu-
tion of topics they speak about in the debates: can-
didates with more power spoke significantly more
about certain topics (e.g., economy) and less about
certain other topics (e.g., energy). However, these
findings relate to the specific election cycle that
was analyzed and will not carry over to political
debates in general.

A further dimension with relevance beyond a
specific election campaign is how topics evolve
during the course of an interaction (e.g., who at-
tempts to shift topics). In (Prabhakaran et al.,
2014), we explored this dimension and found that
candidates with higher power introduce signifi-
cantly more topics in the debates, but attempt to
shift topics significantly less often while respond-
ing to a moderator. We used the basic LDA topic
modeling method (with a filter for substantivity of
turns) to assign topics to turns, which were then
used to detect shifts in topics. However, segment-
ing interactions into coherent topic segments is an
active area of research and a variety of topic mod-
eling approaches have been proposed for that pur-
pose. In this paper, we explore the utility of one
such topic modeling approach to tackle this prob-
lem.

While most of the early approaches for topic
segmenting in interactions have focused on the
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content of the contribution, Nguyen et al. (2012)
introduced a system called Speaker Identity for
Topic Segmentation (SITS) which also takes into
account the topic shifting tendencies of the partic-
ipants of the conversation. In later work, Nguyen
et al. (2013) demonstrated the SITS system’s util-
ity in detecting influencers in Crossfire debates
and Wikipedia discussions. They also applied the
SITS system to the domain of political debates.
However they were able to perform only a qual-
itative analysis of its utility in the debates domain
since the debates data did not have influence an-
notations. In this paper, we use the SITS system
to assign topics to turns and perform a quantita-
tive analysis of how the topic shift features calcu-
lated using the SITS system relate to the notion of
power as captured by (Prabhakaran et al., 2013a).

The SITS system associates each debate partic-
ipant with a constant scalar value that captures his
or her tendency to shift topics. However, since
we want to investigate how each candidate’s topic
shifting tendency relates to his or her changing
power over the course of the campaign, we intro-
duce a variation of the SITS analysis in which we
represent a different “persona” for each candidate
in each debate. Once equipped with this notion
of “persona”, we find that the topic shifting ten-
dency of a candidate does indeed show a great deal
of fluctuation during the election campaign period.
We also find that this fluctuation in topic shifting
tendencies is significantly correlated with the can-
didates’ power.

As an additional contribution of this paper, we
demonstrate the utility of our topic shift features
extracted using both types of SITS-based anal-
yses in improving the performance of the auto-
matic power ranker system presented in (Prab-
hakaran et al., 2013b). We also investigated the
utility of topic shifting features described in (Prab-
hakaran et al., 2014) extracted using LDA based
topic modeling. However, they did not improve
the performance of the ranker, and hence we do
not discuss them in detail in this paper.

3 Data

We use the presidential debates corpus released by
Prabhakaran et al. (2013a), which contains manual
transcripts of 20 debates held between May 2011
and February 2012 as part of the 2012 Republican
presidential primaries. The corpus also captures
each candidate’s power at the time of each debate,

computed based on their relative standing in re-
cent public polls. The poll numbers capture how
successful candidates are in convincing the elec-
torate of their candidature, which in turn affects
their confidence within the debates. These debates
serve as a rich domain to explore manifestations
of power since they are a medium through which
candidates pursue and maintain power over other
candidates. Prabhakaran et al. (2013b) offers a de-
tailed description of how the relative standings in
national and state-level polls from various sources
are aggregated to obtain candidates’ power.

The transcripts are originally obtained from The
American Presidency Project, where each turn of
the conversation is manually demarcated and their
speakers identified. The turns in the corpus are
preprocessed using the Stanford CoreNLP pack-
age to perform basic NLP steps such as tokeniza-
tion, sentence segmentation, parts-of-speech tag-
ging and lemmatization.

4 Modeling Topic Shifts

Topic segmentation, the task of segmenting inter-
actions into coherent topic segments, is an impor-
tant step in analyzing interactions. In addition
to its primary purpose, topic segmentation also
identifies the speaker turn where the conversation
changed from one topic to another, i.e., where the
topic shifted, which may shed light on the char-
acteristics of the speaker who changed the topic.
We use the SITS approach proposed by (Nguyen
et al., 2012) to detect topic shifts. We also propose
a different way of using SITS to obtain an analysis
of our corpus, which we call SITSvar. We discuss
both in turn, and then provide a discussion.

4.1 Segmentation using SITS

Most computational approaches towards auto-
matic topic segmentation have focused mainly on
the content of the contribution without taking into
account the social aspects or speaker character-
istics. Different discourse participants may have
different tendencies to introduce or shift topics in
interactions. In order to address this shortcom-
ing, Nguyen et al. (2012) proposed a new topic
segmentation model called Speaker Identity for
Topic Segmentation (SITS), in which they explic-
itly model the individual’s tendency to introduce
new topics.

Like traditional topic modeling approaches, the
SITS system also considers each turn to be a
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Figure 1: SITSvar Topic shift tendency values across debates

bag of words generated from a mixture of top-
ics. These topics themselves are multinomial dis-
tributions over terms. In order to account for the
topic shifts that happen during the course of an in-
teraction, they introduce a binary latent variable
ld;t called the topic shift to indicate whether the
speaker changed the topic or not in conversation
d at turn t. To capture the individual speaker’s
topic shifting tendency, they introduced another
latent variable called topic shift tendency (πx) of
speaker x. The πx value represents the propensity
of speaker x to perform a topic shift.

4.2 Segmentation using SITSvar

Within the SITS formulation, the topic shifting
tendency of an individual (πx) is considered a con-
stant across conversations. While an individual
may have an inherent propensity to shift topics or
not, we argue that the topic shifting tendency he
or she displays can vary based on the social set-
tings in which he or she interacts and his or her
status within those settings. In other words, the
same discourse participant may behave differently
in different social situations and at different points
in time. This is especially relevant in the context
of our dataset, where the debates happen over a
period of 10 months, and the power and status
of each candidate in the election campaign vary
greatly within that time period.

We propose a variant of SITS which takes this
issue into account. We consider each candi-
date to have a different “persona” in each debate.
To accomplish this, we create new identities for
each candidate x for each debate d, denoted by
x d. For example, ‘ROMNEY 08-11-2011’ de-

notes the persona of the candidate ROMNEY in
the debate held on 08-11-2011. Running the SITS
system using this formulation, we obtain different
πx d values for candidate x for different debates,
capturing different topic shift tendencies of x.

4.3 Execution

We perform both the SITS and SITSvar analyses
on the 20 debates in our corpus. We used the non-
parametric version of SITS for both runs, since it
systemically estimates the number of topics in the
data. We set the maximum number of iterations
at 5000, sample lag at 100 and initial number of
topics at 25. We refer the reader to (Nguyen et al.,
2013) for details on these parameters.

For each candidate, we calculate the mean and
standard deviation of the topic shift tendency
(πx d) of his or her personas across all debates
he or she participated in. We then average these
means and standard deviations, and obtain an av-
erage mean of 0.14 and an average standard devia-
tion of 0.09. This shows that the topic shift tenden-
cies of candidates vary by a considerable amount
across debates. Figure 1 shows the πx d value fluc-
tuating across different debates.

5 Analysis of Topic Shift Features

Nguyen et al. (2013) used the SITS analysis as a
means to model influence in multi party conver-
sations. They propose two features to detect in-
fluencers: Total Topic Shifts (TTS) and Weighted
Topic Shifts (WTS). TTS(x, d) captures the ex-
pected number of topic shifts the individual x
makes in conversation d. This expectation is cal-
culated through the empirical average of samples
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Feature Set Feature Correlation

TopSh
Total Topic Shifts (TTS) 0.12

Weighted Topic Shifts (WTS) 0.16

TopShvar

Total Topic Shifts (TTSvar) 0.12

Weighted Topic Shifts (WTSvar) 0.15

Topic Shift Tendency (PIvar) -0.27

Table 1: Pearson Correlations for Topical Features
boldface denotes statistical significance (p < 0.05)

from the Gibbs sampler, after a burn-in period. We
refer the reader to (Nguyen et al., 2013) for more
details on how this value is computed. WTS(x, d)
is the value of TTS(x, d) weighted by 1− πx. The
intuition here is that a topic shift by a speaker with
low topic shift tendency must be weighted higher
than that by a speaker with a high topic shift ten-
dency. We use these two features as well, and de-
note the set of these two features as TopSh.

We also extract the TTS and WTS features us-
ing our SITSvar variation of topic segmentation
analysis and denote them as TTSvar and WTSvar

respectively. In addition, we also use a feature
PIvar(x, d) which is the πx d value obtained by the
SITSvar for candidate x in debate d. It captures the
topic shifting tendency of candidate x in debate d.
(We do not include the SITS πx value in our corre-
lation analysis since it is constant across debates.)
We denote the set of these three features obtained
from the SITSvar run as TopShvar.

Table 1 shows the Pearson’s product correla-
tion between each topical feature and candidate’s
power. We obtain a highly significant (p = 0.002)
negative correlation between topic shift tendency
of a candidate (PI) and his/her power. In other
words, the variation in the topic shifting tenden-
cies is significantly correlated with the candidates’
recent poll standings. Candidates who are higher
up in the polls tend to stay on topic while the
candidates with less power attempt to shift top-
ics more often. This is in line with our previous
findings from (Prabhakaran et al., 2014) that can-
didates with higher power attempt to shift topics
less often than others when responding to moder-
ators. It is also in line with the findings by Prab-
hakaran et al. (2013a) that candidates with higher
power tend not to interrupt others. On the other
hand, we did not obtain any significant correlation
for the features proposed by Nguyen et al. (2013).

6 Topic Shift Features in Power Ranker

In this section, we investigate the utility of the
SITS and SITSvar based topic shift features de-
scribed above in the problem of automatically
ranking the participants of debates based on their
power. Prabhakaran et al. (2013b) define the prob-
lem as follows: given a debate d with a set of par-
ticipants Cd = {x1, x2, ...xn} and corresponding
power indices P (xi) for 1 < i < n, find a ranking
function r : Cd → {1...n} such that for all 1 <
i, j < n, r(xi) > r(xj) ⇐⇒ P (xi) > P (xj).
For our experiments, we use the SVMrank based
supervised learned power ranker presented in that
work to estimate this ranking function.

As we do in (Prabhakaran et al., 2013b), we
here report Kendall’s Tau and Normalized Dis-
counted Cumulative Gain values (NDCG and
NDCG@3) on 5-fold cross validation (at the de-
bate level). All three metrics are based on the
number of rank inversions between original and
predicted ranking. While Tau treats all rank in-
versions equal, NDCG and NDCG@3 penalize
the inversions happening in the top of the ranked
list more than those happening in the bottom.
NDCG@3 focuses only on the top 3 positions in
the ranked list.

We use the best performing feature set of (Prab-
hakaran et al., 2013b) as the baseline (BL), which
contains three features: Words Deviation (WD),
Question Deviation (QD) and Mention Percent-
age (MP). WD and QD capture the deviation of
percentage of words spoken by the candidate and
questions addressed to the candidate from the ex-
pected fair share of those measures in the particu-
lar debate. The fair share for debate d is 1/|Cd|—
the percentage each candidate would have gotten
for each feature if it was equally distributed. This
deviation measure is used instead of the raw per-
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Kendall’s Tau NDCG NDCG@3

BL 0.55 0.962 0.932
TopSh 0.36 0.907 0.830
TopShvar 0.39 0.919 0.847
BL + TopSh 0.59 0.967 0.929
BL + TopShvar 0.60 0.970 0.937
BL + TopSh + TopShvar 0.59 0.968 0.934

Table 2: Power Ranker results using topic shift features on 5-fold cross validation
BL: Baseline system (Prabhakaran et al., 2013b)

NDCG: Normalized Discounted Cumulative Gain

centage in order to handle the fact that the percent-
age values are dependent on the number of partic-
ipants in a debate, which varied from 9 to 4. MP
captures the percentage of mentions of the candi-
date within a debate.

Table 2 shows the results obtained using the
baseline features (BL) as well as combinations of
TopSh and TopShvar features. The baseline sys-
tem obtained a Kendall Tau of 0.55, NDCG of
0.962 and NDCG@3 of 0.932. The topic shift
features by themselves performed much worse,
with TopShvar posting marginally better results
than TopSh. Combining the topic shift and base-
line features increases performance considerably.
TopShvar obtained better performance than TopSh
across the board. BL + TopShvar posted the over-
all best system obtaining a Tau of 0.60, NDCG
of 0.970, and NDCG@3 of 0.937. These results
demonstrates the utility of topic shift features in
the power ranking problem, especially using the
SITSvar formulation. We also experimented with
all subsets of TopSh and TopShvar; the best results
were obtained using all features in each set.

7 Related Work

Studies in sociolinguistics (e.g., (Ng et al., 1993;
Ng et al., 1995; Reid and Ng, 2000)) have long
established that dialog structure in interactions re-
lates to power and influence. Researchers in the
NLP community have studied power and influence
in various genres of interactions, such as organiza-
tional email threads (Bramsen et al., 2011; Gilbert,
2012; Prabhakaran and Rambow, 2013; Prab-
hakaran and Rambow, 2014), online discussion fo-
rums (Danescu-Niculescu-Mizil et al., 2012; Bi-
ran et al., 2012) and online chat dialogs (Strza-
lkowski et al., 2012). The correlates analyzed in
these studies range from word and phrase patterns,

to derivatives of such patterns such as linguistic
coordination, to deeper dialogic features such as
argumentation and dialog acts. Our work differs
from these studies in that we study the correlates
of power in topic dynamics. Furthermore, we an-
alyze spoken interactions.

8 Conclusion

In this paper, we studied how topic shift patterns
in the 2012 Republican presidential debates corre-
late with the power of candidates. We proposed an
alternate formulation of the SITS topic segmenta-
tion system that captures fluctuations in each can-
didate’s topic shifting tendencies, which we found
to be correlated with their power. We also showed
that features based on topic shift improve the pre-
diction of the relative rankings of candidates. In
future work, we will explore a model that cap-
tures individuals’ inherent topic shift propensities,
while also capturing their fluctuations due to so-
cial factors.
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Abstract

We present power low rank ensembles
(PLRE), a flexible framework for n-gram
language modeling where ensembles of
low rank matrices and tensors are used
to obtain smoothed probability estimates
of words in context. Our method can
be understood as a generalization of n-
gram modeling to non-integer n, and in-
cludes standard techniques such as abso-
lute discounting and Kneser-Ney smooth-
ing as special cases. PLRE training is effi-
cient and our approach outperforms state-
of-the-art modified Kneser Ney baselines
in terms of perplexity on large corpora as
well as on BLEU score in a downstream
machine translation task.

1 Introduction

Language modeling is the task of estimating the
probability of sequences of words in a language
and is an important component in, among other
applications, automatic speech recognition (Ra-
biner and Juang, 1993) and machine translation
(Koehn, 2010). The predominant approach to lan-
guage modeling is the n-gram model, wherein
the probability of a word sequence P (w1, . . . , w`)
is decomposed using the chain rule, and then a
Markov assumption is made: P (w1, . . . , w`) ≈∏`
i=1 P (wi|wi−1

i−n+1). While this assumption sub-
stantially reduces the modeling complexity, pa-
rameter estimation remains a major challenge.
Due to the power-law nature of language (Zipf,
1949), the maximum likelihood estimator mas-
sively overestimates the probability of rare events
and assigns zero probability to legitimate word se-
quences that happen not to have been observed in
the training data (Manning and Schütze, 1999).

Many smoothing techniques have been pro-
posed to address the estimation challenge. These
reassign probability mass (generally from over-
estimated events) to unseen word sequences,
whose probabilities are estimated by interpolating
with or backing off to lower order n-gram models
(Chen and Goodman, 1999).

Somewhat surprisingly, these widely used
smoothing techniques differ substantially from
techniques for coping with data sparsity in other
domains, such as collaborative filtering (Koren et
al., 2009; Su and Khoshgoftaar, 2009) or matrix
completion (Candès and Recht, 2009; Cai et al.,
2010). In these areas, low rank approaches based
on matrix factorization play a central role (Lee
and Seung, 2001; Salakhutdinov and Mnih, 2008;
Mackey et al., 2011). For example, in recom-
mender systems, a key challenge is dealing with
the sparsity of ratings from a single user, since
typical users will have rated only a few items. By
projecting the low rank representation of a user’s
(sparse) preferences into the original space, an es-
timate of ratings for new items is obtained. These
methods are attractive due to their computational
efficiency and mathematical well-foundedness.

In this paper, we introduce power low rank en-
sembles (PLRE), in which low rank tensors are
used to produce smoothed estimates for n-gram
probabilities. Ideally, we would like the low rank
structures to discover semantic and syntactic relat-
edness among words and n-grams, which are used
to produce smoothed estimates for word sequence
probabilities. In contrast to the few previous low
rank language modeling approaches, PLRE is not
orthogonal to n-gram models, but rather a gen-
eral framework where existing n-gram smoothing
methods such as Kneser-Ney smoothing are spe-
cial cases. A key insight is that PLRE does not
compute low rank approximations of the original
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joint count matrices (in the case of bigrams) or ten-
sors i.e. multi-way arrays (in the case of 3-grams
and above), but instead altered quantities of these
counts based on an element-wise power operation,
similar to how some smoothing methods modify
their lower order distributions.

Moreover, PLRE has two key aspects that lead
to easy scalability for large corpora and vocabu-
laries. First, since it utilizes the original n-grams,
the ranks required for the low rank matrices and
tensors tend to be remain tractable (e.g. around
100 for a vocabulary size V ≈ 1 × 106) leading
to fast training times. This differentiates our ap-
proach over other methods that leverage an under-
lying latent space such as neural networks (Bengio
et al., 2003; Mnih and Hinton, 2007; Mikolov et
al., 2010) or soft-class models (Saul and Pereira,
1997) where the underlying dimension is required
to be quite large to obtain good performance.
Moreover, at test time, the probability of a se-
quence can be queried in time O(κmax) where
κmax is the maximum rank of the low rank matri-
ces/tensors used. While this is larger than Kneser
Ney’s virtually constant query time, it is substan-
tially faster than conditional exponential family
models (Chen and Rosenfeld, 2000; Chen, 2009;
Nelakanti et al., 2013) and neural networks which
require O(V ) for exact computation of the nor-
malization constant. See Section 7 for a more de-
tailed discussion of related work.

Outline: We first review existing n-gram
smoothing methods (§2) and then present the in-
tuition behind the key components of our tech-
nique: rank (§3.1) and power (§3.2). We then
show how these can be interpolated into an ensem-
ble (§4). In the experimental evaluation on English
and Russian corpora (§5), we find that PLRE out-
performs Kneser-Ney smoothing and all its vari-
ants, as well as class-based language models. We
also include a comparison to the log-bilinear neu-
ral language model (Mnih and Hinton, 2007) and
evaluate performance on a downstream machine
translation task (§6) where our method achieves
consistent improvements in BLEU.

2 Discount-based Smoothing

We first provide background on absolute discount-
ing (Ney et al., 1994) and Kneser-Ney smooth-
ing (Kneser and Ney, 1995), two common n-gram
smoothing methods. Both methods can be formu-
lated as back-off or interpolated models; we de-
scribe the latter here since that is the basis of our

low rank approach.

2.1 Notation

Let c(w) be the count of word w, and similarly
c(w,wi−1) for the joint count of words w and
wi−1. For shorthand we will define wji to denote
the word sequence {wi, wi+1, ..., wj−1, wj}. Let
P̂ (wi) refer to the maximum likelihood estimate
(MLE) of the probability of word wi, and simi-
larly P̂ (wi|wi−1) for the probability conditioned
on a history, or more generally, P̂ (wi|wi−1

i−n+1).
Let N−(wi) := |{w : c(wi, w) > 0}| be

the number of distinct words that appear be-
fore wi. More generally, let N−(wii−n+1) =
|{w : c(wii−n+1, w) > 0}|. Similarly, let
N+(wi−1

i−n+1) = |{w : c(w,wi−1
i−n+1) > 0}|. V

denotes the vocabulary size.

2.2 Absolute Discounting

Absolute discounting works on the idea of inter-
polating higher order n-gram models with lower-
order n-gram models. However, first some prob-
ability mass must be “subtracted” from the higher
order n-grams so that the leftover probability can
be allocated to the lower order n-grams. More
specifically, define the following discounted con-
ditional probability:

P̂D(wi|wi−1
i−n+1) =

max{c(wi, wi−1
i−n+1)−D, 0}

c(wi−1
i−n+1)

Then absolute discounting Pabs(·) uses the follow-
ing (recursive) equation:

Pabs(wi|wi−1
i−n+1) = P̂D(wi|wi−1

i−n+1)

+ γ(wi−1
i−n+1)Pabs(wi|wi−1

i−n+2)

where γ(wi−1
i−n+1) is the leftover weight (due to

the discounting) that is chosen so that the con-
ditional distribution sums to one: γ(wi−1

i−n+1) =
D

c(wi−1
i−n+1)

N+(wi−1
i−n+1). For the base case, we set

Pabs(wi) = P̂ (wi).
Discontinuity: Note that if c(wi−1

i−n+1) = 0, then
γ(wi−1

i−n+1) = 0
0 , in which case γ(wi−1

i−n+1) is set
to 1. We will see that this discontinuity appears in
PLRE as well.
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2.3 Kneser Ney Smoothing
Ideally, the smoothed probability should preserve
the observed unigram distribution:

P̂ (wi) =
∑

wi−1
i−n+1

Psm(wi|wi−1
i−n+1)P̂ (wi−1

i−n+1) (1)

where Psm(wi|wi−1
i−n+1) is the smoothed condi-

tional probability that a model outputs. Unfortu-
nately, absolute discounting does not satisfy this
property, since it exclusively uses the unaltered
MLE unigram model as its lower order model. In
practice, the lower order distribution is only uti-
lized when we are unsure about the higher order
distribution (i.e., when γ(·) is large). Therefore,
the unigram model should be altered to condition
on this fact.

This is the inspiration behind Kneser-Ney (KN)
smoothing, an elegant algorithm with robust per-
formance in n-gram language modeling. KN
smoothing defines alternate probabilities P alt(·):

P alt
D (wi|wi−1

i−n′+1) =


P̂D(wi|wi−1

i−n′+1), if n′ = n

max{N−(wi
i−n′+1

)−D,0}∑
wi
N−(wi

i−n′+1
)

, if n′ < n

The base case for unigrams reduces to
P alt(wi) = N−(wi)∑

wi
N−(wi)

. Intuitively P alt(wi) is

proportional to the number of unique words that
precede wi. Thus, words that appear in many dif-
ferent contexts will be given higher weight than
words that consistently appear after only a few
contexts. These alternate distributions are then
used with absolute discounting:

Pkn(wi|wi−1
i−n+1) = P alt

D (wi|wi−1
i−n+1)

+ γ(wi−1
i−n+1)Pkn(wi|wi−1

i−n+2) (2)

where we set Pkn(wi) = P alt(wi). By definition,
KN smoothing satisfies the marginal constraint in
Eq. 1 (Kneser and Ney, 1995).

3 Power Low Rank Ensembles

In n-gram smoothing methods, if a bigram count
c(wi, wi−1) is zero, the unigram probabilities are
used, which is equivalent to assuming that wi and
wi−1 are independent ( and similarly for general
n). However, in this situation, instead of back-
ing off to a 1-gram, we may like to back off to a
“1.5-gram” or more generally an order between 1
and 2 that captures a coarser level of dependence

between wi and wi−1 and does not assume full in-
dependence.

Inspired by this intuition, our strategy is to con-
struct an ensemble of matrices and tensors that
not only consists of MLE-based count informa-
tion, but also contains quantities that represent lev-
els of dependence in-between the various orders in
the model. We call these combinations power low
rank ensembles (PLRE), and they can be thought
of as n-gram models with non-integer n. Our ap-
proach can be recursively formulated as:

Pplre(wi|wi−1
i−n+1) = P alt

D0
(wi|wi−1

i−n+1)

+ γ0(wi−1
i−n+1)

(
ZD1(wi|wi−1

i−n+1) + .....

+ γη−1(wi−1
i−n+1)

(
ZDη(wi|wi−1

i−n+1)

+ γη(wi−1
i−n+1)

(
Pplre(wi|wi−1

i−n+2)
))

...

)
(3)

where Z1, ...,Zη are conditional probability ma-
trices that represent the intermediate n-gram or-
ders1 and D is a discount function (specified in
§4).

This formulation begs answers to a few crit-
ical questions. How to construct matrices that
represent conditional probabilities for intermedi-
ate n? How to transform them in a way that
generalizes the altered lower order distributions
in KN smoothing? How to combine these matri-
ces such that the marginal constraint in Eq. 1 still
holds? The following propose solutions to these
three queries:

1. Rank (Section 3.1): Rank gives us a concrete
measurement of the dependence between wi
and wi−1. By constructing low rank ap-
proximations of the bigram count matrix and
higher-order count tensors, we obtain matri-
ces that represent coarser dependencies, with
a rank one approximation implying that the
variables are independent.

2. Power (Section 3.2): In KN smoothing, the
lower order distributions are not the original
counts but rather altered estimates. We pro-
pose a continuous generalization of this alter-
ation by taking the element-wise power of the
counts.

1with a slight abuse of notation, let ZDj be shorthand
for Zj,Dj

1489



3. Creating the Ensemble (Section 4): Lastly,
PLRE also defines a way to interpolate the
specifically constructed intermediate n-gram
matrices. Unfortunately a constant discount,
as presented in Section 2, will not in general
preserve the lower order marginal constraint
(Eq. 1). We propose a generalized discount-
ing scheme to ensure the constraint holds.

3.1 Rank

We first show how rank can be utilized to construct
quantities between an n-gram and an n− 1-gram.
In general, we think of an n-gram as an nth or-
der tensor i.e. a multi-way array with n indices
{i1, ..., in}. (A vector is a tensor of order 1, a ma-
trix is a tensor of order 2 etc.) Computing a spe-
cial rank one approximation of slices of this tensor
produces the n− 1-gram. Thus, taking rank κ ap-
proximations in this fashion allows us to represent
dependencies between an n-gram and n−1-gram.

Consider the bigram count matrix B with
N counts which has rank V . Note that
P̂ (wi|wi−1) = B(wi,wi−1)∑

wB(w,wi−1) . Additionally, B

can be considered a random variable that is the re-
sult of sampling N tuples of (wi, wi−1) and ag-
glomerating them into a count matrix. Assum-
ing wi and wi−1 are independent, the expected
value (with respect to the empirical distribution)
E[B] = NP (wi)P (wi−1), which can be rewrit-
ten as being proportional to the outer product of
the unigram probability vector with itself, and is
thus rank one.

This observation extends to higher order
n-grams as well. Let Cn be the nth order tensor
where Cn(wi, ...., wi−n+1) = c(wi, ..., wi−n+1).
Furthermore denote Cn(:, w̃i−1

i−n+2, :) to
be the V × V matrix slice of Cn where
wi−n+2, ..., wi−1 are held fixed to a particular
sequence w̃i−n+2, ..., w̃i−1. Then if wi is con-
ditionally independent of wi−n+1 given wi−1

i−n+2,
then E[Cn(:, w̃i−1

i−n+2, :)] is rank one ∀w̃i−1
i−n+2.

However, it is rare that these matrices are ac-
tually rank one, either due to sampling vari-
ance or the fact that wi and wi−1 are not in-
dependent. What we would really like to say
is that the best rank one approximation B(1)

(under some norm) of B is ∝ P̂ (wi)P̂ (wi−1).
While this statement is not true under the `2
norm, it is true under generalized KL diver-
gence (Lee and Seung, 2001): gKL(A||B) =∑

ij

(
Aij log(Aij

Bij
)−Aij + Bij)

)
.

In particular, generalized KL divergence pre-
serves row and column sums: if M (κ) is the best
rank κ approximation of M under gKL then the
row sums and column sums of M (κ) and M are
equal (Ho and Van Dooren, 2008). Leveraging
this property, it is straightforward to prove the fol-
lowing lemma:

Lemma 1. Let B(κ) be the best rank κ ap-
proximation of B under gKL. Then B(1) ∝
P̂ (wi)P̂ (wi−1) and ∀wi−1 s.t. c(wi−1) 6= 0:

P̂ (wi) =
B(1)(wi, wi−1)∑
w B(1)(w,wi−1)

For more general n, let C
n,(κ)
i−1,...,i−n+2 be the

best rank κ approximation of Cn(:, w̃i−1
i−n+2, :

) under gKL. Then similarly, ∀wi−1
i−n+1 s.t.

c(wi−1
i−n+1) > 0:

P̂ (wi|wi−1, ..., wi−n+2)

=
C
n,(1)
i−1,...,i−n+2(wi, w

i−1
i−n+1)∑

w C
n,(1)
i−1,...,i−n+2(w,w

i−1
i−n+1)

(4)

Thus, by selecting 1 < κ < V , we obtain count
matrices and tensors between n and n − 1-grams.
The condition that c(wi−1

i−n+1) > 0 corresponds to
the discontinuity discussed in §2.2.

3.2 Power
Since KN smoothing alters the lower order distri-
butions instead of simply using the MLE, vary-
ing the rank is not sufficient in order to generalize
this suite of techniques. Thus, PLRE computes
low rank approximations of altered count matri-
ces. Consider taking the elementwise power ρ of
the bigram count matrix, which is denoted by B·ρ.
For example, the observed bigram count matrix
and associated row sum:

B·1 =

(
1.0 2.0 1.0
0 5.0 0

2.0 0 0

)
row sum→

(
4.0
5.0
2.0

)
As expected the row sum is equal to the uni-

gram counts (which we denote as u). Now con-
sider B·0.5:

B·0.5 =

(
1.0 1.4 1.0
0 2.2 0

1.4 0 0

)
row sum→

(
3.4
2.2
1.4

)
Note how the row sum vector has been altered.
In particular since w1 (corresponding to the first
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row) has a more diverse history than w2, it has
a higher row sum (compared to in u where w2

has the higher row sum). Lastly, consider the case
when p = 0:

B·0 =

(
1.0 1.0 1.0
0 1.0 0

1.0 0 0

)
row sum→

(
3.0
1.0
1.0

)

The row sum is now the number of unique words
that precede wi (since B0 is binary) and is thus
equal to the (unnormalized) Kneser Ney unigram.
This idea also generalizes to higher order n-grams
and leads us to the following lemma:

Lemma 2. Let B(ρ,κ) be the best rank κ ap-
proximation of B·ρ under gKL. Then ∀wi−1 s.t.
c(wi−1) 6= 0:

P alt(wi) =
B(0,1)(wi, wi−1)∑
w B(0,1)(w,wi−1)

For more general n, let C
n,(ρ,κ)
i−1,...,i−n+2 be the best

rank κ approximation of Cn,(ρ)(:, w̃i−1
i−n+2, :) un-

der gKL. Similarly, ∀wi−1
i−n+1 s.t. c(wi−1

i−n+1) > 0:

P alt(wi|wi−1, ..., wi−n+2)

=
C
n,(0,1)
i−1,...,i−n+2(wi, w

i−1
i−n+1)∑

w C
n,(0,1)
i−1,...,i−n+2(w,w

i−1
i−n+1)

(5)

4 Creating the Ensemble

Recall our overall formulation in Eq. 3; a naive
solution would be to set Z1, ...,Zη to low rank
approximations of the count matrices/tensors un-
der varying powers, and then interpolate through
constant absolute discounting. Unfortunately, the
marginal constraint in Eq. 1 will generally not hold
if this strategy is used. Therefore, we propose a
generalized discounting scheme where each non-
zero n-gram count is associated with a different
discount Dj(wi, wi−1

i−n′+1). The low rank approxi-
mations are then computed on the discounted ma-
trices, leaving the marginal constraint intact.

For clarity of exposition, we focus on the spe-
cial case where n = 2 with only one low rank
matrix before stating our general algorithm:

Pplre(wi|wi−1) = P̂D0(wi|wi−1)

+ γ0(wi−1)
(

ZD1(wi|wi−1) + γ1(wi−1)P alt(wi)
)

(6)

Our goal is to compute D0,D1 and Z1 so
that the following lower order marginal constraint
holds:

P̂ (wi) =
∑
wi−1

Pplre(wi|wi−1)P̂ (wi−1) (7)

Our solution can be thought of as a two-
step procedure where we compute the discounts
D0,D1 (and the γ(wi−1) weights as a by-
product), followed by the low rank quantity Z1.
First, we construct the following intermediate en-
semble of powered, but full rank terms. Let
Y ρj be the matrix such that Y ρj (wi, wi−1) :=
c(wi, wi−1)ρj . Then define

Ppwr(wi|wi−1) := Y
(ρ0=1)
D0

(wi|wi−1)

+ γ0(wi−1)
(

Y
(ρ1)
D1

(wi|wi−1)

+ γ1(wi−1)Y (ρ2=0)(wi|wi−1)
)

(8)

where with a little abuse of notation:

Y
ρj

Dj
(wi|wi−1) =

c(wi, wi−1)
ρj −Dj(wi, wi−1)∑

wi
c(wi, wi−1)ρj

Note that P alt(wi) has been replaced with
Y (ρ2=0)(wi|wi−1), based on Lemma 2, and will
equal P alt(wi) once the low rank approximation is
taken as discussed in § 4.2).

Since we have only combined terms of differ-
ent power (but all full rank), it is natural choose
the discounts so that the result remains unchanged
i.e., Ppwr(wi|wi−1) = P̂ (wi|wi−1), since the low
rank approximation (not the power) will imple-
ment smoothing. Enforcing this constraint gives
rise to a set of linear equations that can be solved
(in closed form) to obtain the discounts as we now
show below.

4.1 Step 1: Computing the Discounts
To ensure the constraint that Ppwr(wi|wi−1) =
P̂ (wi|wi−1), it is sufficient to enforce the follow-
ing two local constraints:

Y (ρj)(wi|wi−1) = Y
(ρj)
Dj

(wi|wi−1)

+ γj(wi−1)Y (ρj+1)(wi|wi−1) for j = 0, 1
(9)

This allows each Dj to be solved for indepen-
dently of the other {Dj′}j′ 6=j . Let ci,i−1 =
c(wi, wi−1), c

j
i,i−1 = c(wi, wi−1)ρj , and dji,i−1 =

1491



Dj(wi, wi−1). Expanding Eq. 9 yields that
∀wi, wi−1:

cji,i−1∑
i c
j
i,i−1

=

cji,i−1 − dji,i−1∑
i c
j
i,i−1

+

(∑
i d
j
i,i−1∑

i c
j
i,i−1

)
cj+1
i,i−1∑
i c
j+1
i,i−1

(10)

which can be rewritten as:

−dji,i−1 +

(∑
i

dji,i−1

)
cj+1
i,i−1∑
i c
j+1
i,i−1

= 0 (11)

Note that Eq. 11 decouples across wi−1 since the
only dji,i−1 terms that are dependent are the ones
that share the preceding context wi−1.

It is straightforward to see that setting dji,i−1

proportional to cj+1
i,i−1 satisfies Eq. 11. Furthermore

it can be shown that all solutions are of this form
(i.e., the linear system has a null space of exactly
one). Moreover, we are interested in a particular
subset of solutions where a single parameter d∗
(independent of wi−1) controls the scaling as in-
dicated by the following lemma:

Lemma 3. Assume that ρj ≥ ρj+1. Choose any
0 ≤ d∗ ≤ 1. Set dji,i−1 = d∗c

j+1
i,i−1 ∀i, j. The

resulting discounts satisfy Eq. 11 as well as the
inequality constraints 0 ≤ dji,i−1 ≤ cji,i−1. Fur-
thermore, the leftover weight γj takes the form:

γj(wi−1) =

∑
i d
j
i,i−1∑

i c
j
i,i−1

=
d∗
∑

i c
j+1
i,i−1∑

i c
j
i,i−1

Proof. Clearly this choice of dji,i−1 satisfies
Eq. 11. The largest possible value of dji,i−1 is
cj+1
i,i−1. ρj ≥ ρj+1, implies cji,i−1 ≥ cj+1

i,i−1. Thus
the inequality constraints are met. It is then easy
to verify that γ takes the above form.

The above lemma generalizes to longer contexts
(i.e. n > 2) as shown in Algorithm 1. Note that if
ρj = ρj+1 then Algorithm 1 is equivalent to scal-
ing the counts e.g. deleted-interpolation/Jelinek
Mercer smoothing (Jelinek and Mercer, 1980). On
the other hand, when ρj+1 = 0, Algorithm 1
is equal to the absolute discounting that is used
in Kneser-Ney. Thus, depending on ρj+1, our
method generalizes different types of interpola-
tion schemes to construct an ensemble so that the
marginal constraint is satisfied.

Algorithm 1 Compute D

In: Count tensor Cn, powers ρj , ρj+1 such that
ρj ≥ ρj+1, and parameter d∗.
Out: Discount Dj for powered counts Cn,(ρj)

and associated leftover weight γj
1: Set Dj(wi, wi−1

i−n+1) = d∗c(wi, wi−1
i−n+1)

ρj+1 .
2:

γj(wi, wi−1
i−n+1) =

d∗
∑

wi
c(wi, wi−1

i−n+1)
ρj+1∑

wi
c(wi, wi−1

i−n+1)
ρj

Algorithm 2 Compute Z

In: Count tensor Cn, power ρ, discounts D, rank
κ
Out: Discounted low rank conditional probability
table Z

(ρ,κ)
D (wi|wi−1

i−n+1) (represented implicitly)

1: Compute powered counts Cn,(·ρ).
2: Compute denominators

∑
wi
c(wi, wi−1

i−n+1)
ρ

∀wi−1
i−n+1 s.t. c(wi−1

i−n+1) > 0.
3: Compute discounted powered counts

C
n,(·ρ)
D = Cn,(·ρ) −D.

4: For each slice Mw̃i−1
i−n+2

:= C
n,(·ρ)
D (:

, w̃i−1
i−n+2, :) compute

M (κ) := min
A≥0:rank(A)=κ

‖Mw̃i−1
i−n+2

−A‖KL
(stored implicitly as M (κ) = LR)

Set Z
(ρ,κ)
D (:, w̃i−1

i−n+2, :) = M (κ)

5: Note that

Z
(ρ,κ)
D (wi|wi−1

i−n+1) =
Z

(ρ,κ)
D (wi, wi−1

i−n+1)∑
wi
c(wi, wi−1

i−n+1)ρ

4.2 Step 2: Computing Low Rank Quantities
The next step is to compute low rank approxi-

mations of Y
(ρj)
Dj

to obtain ZDj such that the inter-
mediate marginal constraint in Eq. 7 is preserved.
This constraint trivially holds for the intermediate
ensemble Ppwr(wi|wi−1) due to how the discounts
were derived in § 4.1. For our running bigram ex-
ample, define Z

(ρj ,κj)
Dj

to be the best rank κj ap-

proximation to Y
(ρj ,κj)
Dj

according to gKL and let

Z
ρj ,κj
Dj

(wi|wi−1) =
Z
ρj ,κj
Dj

(wi, wi−1)∑
wi
c(wi, wi−1)ρj

Note that Z
ρj ,κj
Dj

(wi|wi−1) is a valid (discounted)
conditional probability since gKL preserves
row/column sums so the denominator remains un-
changed under the low rank approximation. Then
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using the fact that Z(0,1)(wi|wi−1) = P alt(wi)
(Lemma 2) we can embellish Eq. 6 as

Pplre(wi|wi−1) = PD0(wi|wi−1)+

γ0(wi−1)
(

Z
(ρ1,κ1)
D1

(wi|wi−1) + γ1(wi−1)Palt(wi)
)

Leveraging the form of the discounts and
row/column sum preserving property of gKL, we
then have the following lemma (the proof is in the
supplementary material):

Lemma 4. Let Pplre(wi|wi−1) indicate the PLRE
smoothed conditional probability as computed by
Eq. 6 and Algorithms 1 and 2. Then, the marginal
constraint in Eq. 7 holds.

4.3 More general algorithm

In general, the principles outlined in the previ-
ous sections hold for higher order n-grams. As-
sume that the discounts are computed according
to Algorithm 1 with parameter d∗ and Z

(ρj ,κj)
Dj

is
computed according to Algorithm 2. Note that, as
shown in Algorithm 2, for higher order n-grams,
the Z

(ρj ,κj)
Dj

are created by taking low rank approx-
imations of slices of the (powered) count tensors
(see Lemma 2 for intuition). Eq. 3 can now be
embellished:

Pplre(wi|wi−1
i−n+1) = P alt

D0
(wi|wi−1

i−n+1)

+ γ0(wi−1
i−n+1)

(
Z

(ρ1,κ1)
D1

(wi|wi−1
i−n+1) + .....

+ γη−1(wi−1
i−n+1)

(
Z

(ρη ,κη)
Dη

(wi|wi−1
i−n+1)

+ γη(wi−1
i−n+1)

(
Pplre(wi|wi−1

i−n+2)
))

...

)
(12)

Lemma 4 also applies in this case and is given in
Theorem 1 in the supplementary material.

4.4 Links with KN Smoothing

In this section, we explicitly show the relation-
ship between PLRE and KN smoothing. Rewrit-
ing Eq. 12 in the following form:

Pplre(wi|wi−1
i−n+1) = P terms

plre (wi|wi−1
i−n+1)

+γ0:η(wi−1
i−n+1)Pplre(wi|wi−1

i−n+2) (13)

where P terms
plre (wi|wi−1

i−n+1) contains the terms in
Eq. 12 except the last, and γ0:η(wi−1

i−n+1) =∏η
h=0 γh(w

i−1
i−n+1), we can leverage the form of

the discount, and using the fact that ρη+1 = 02:

γ0:η(wi−1
i−n−1) =

d∗η+1N+(wi−1
i−n+1)

c(wi−1
i−n+1)

With this form of γ(·), Eq. 13 is remarkably sim-
ilar to KN smoothing (Eq. 2) if KN’s discount pa-
rameter D is chosen to equal (d∗)η+1.

The difference is that P alt(·) has been replaced
with the alternate estimate P terms

plre (wi|wi−1
i−n+1),

which have been enriched via the low rank struc-
ture. Since these alternate estimates were con-
structed via our ensemble strategy they contain
both very fine-grained dependencies (the origi-
nal n-grams) as well as coarser dependencies (the
lower rank n-grams) and is thus fundamentally
different than simply taking a single matrix/tensor
decomposition of the trigram/bigram matrices.

Moreover, it provides a natural way of setting
d∗ based on the Good-Turing (GT) estimates em-
ployed by KN smoothing. In particular, we can set
d∗ to be the (η + 1)th root of the KN discount D
that can be estimated via the GT estimates.

4.5 Computational Considerations
PLRE scales well even as the order n increases.
To compute a low rank bigram, one low rank ap-
proximation of a V × V matrix is required. For
the low rank trigram, we need to compute a low
rank approximation of each slice C

n,(·p)
D (:, w̃i−1, :

) ∀w̃i−1. While this may seem daunting at first, in
practice the size of each slice (number of non-zero
rows/columns) is usually much, much smaller than
V , keeping the computation tractable.

Similarly, PLRE also evaluates conditional
probabilities at evaluation time efficiently. As
shown in Algorithm 2, the normalizer can be pre-
computed on the sparse powered matrix/tensor. As
a result our test complexity is O(

∑ηtotal
i=1 κi) where

ηtotal is the total number of matrices/tensors in
the ensemble. While this is larger than Kneser
Ney’s practically constant complexity of O(n),
it is much faster than other recent methods for
language modeling such as neural networks and
conditional exponential family models where ex-
act computation of the normalizing constant costs
O(V ).

5 Experiments

To evaluate PLRE, we compared its performance
on English and Russian corpora with several vari-

2for derivation see proof of Lemma 4 in the supplemen-
tary material
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ants of KN smoothing, class-based models, and
the log-bilinear neural language model (Mnih and
Hinton, 2007). We evaluated with perplexity in
most of our experiments, but also provide results
evaluated with BLEU (Papineni et al., 2002) on a
downstream machine translation (MT) task. We
have made the code for our approach publicly
available 3.

To build the hard class-based LMs, we utilized
mkcls4, a tool to train word classes that uses
the maximum likelihood criterion (Och, 1995) for
classing. We subsequently trained trigram class
language models on these classes (correspond-
ing to 2nd-order HMMs) using SRILM (Stolcke,
2002), with KN-smoothing for the class transition
probabilities. SRILM was also used for the base-
line KN-smoothed models.

For our MT evaluation, we built a hierarchi-
cal phrase translation (Chiang, 2007) system us-
ing cdec (Dyer et al., 2010). The KN-smoothed
models in the MT experiments were compiled us-
ing KenLM (Heafield, 2011).

5.1 Datasets
For the perplexity experiments, we evaluated our
proposed approach on 4 datasets, 2 in English and
2 in Russian. In all cases, the singletons were re-
placed with “<unk>” tokens in the training cor-
pus, and any word not in the vocabulary was re-
placed with this token during evaluation. There is
a general dearth of evaluation on large-scale cor-
pora in morphologically rich languages such as
Russian, and thus we have made the processed
Large-Russian corpus available for comparison 3.

• Small-English: APNews corpus (Bengio et al.,
2003): Train - 14 million words, Dev - 963,000,
Test - 963,000. Vocabulary- 18,000 types.
• Small-Russian: Subset of Russian news com-

mentary data from 2013 WMT translation task5:
Train- 3.5 million words, Dev - 400,000 Test -
400,000. Vocabulary - 77,000 types.
• Large-English: English Gigaword, Training -

837 million words, Dev - 8.7 million, Test - 8.7
million. Vocabulary- 836,980 types.
• Large-Russian: Monolingual data from WMT

2013 task. Training - 521 million words, Vali-
dation - 50,000, Test - 50,000. Vocabulary- 1.3
million types.

3http://www.cs.cmu.edu/∼apparikh/plre.html
4http://code.google.com/p/giza-pp/
5http://www.statmt.org/wmt13/training-monolingual-

nc-v8.tgz

For the MT evaluation, we used the parallel data
from the WMT 2013 shared task, excluding the
Common Crawl corpus data. The newstest2012
and newstest2013 evaluation sets were used as the
development and test sets respectively.

5.2 Small Corpora
For the class-based baseline LMs, the
number of classes was selected from
{32, 64, 128, 256, 512, 1024} (Small-English)
and {512, 1024} (Small-Russian). We could not
go higher due to the computationally laborious
process of hard clustering. For Kneser-Ney, we
explore four different variants: back-off (BO-KN)
interpolated (int-KN), modified back-off (BO-
MKN), and modified interpolated (int-MKN).
Good-Turing estimates were used for discounts.
All models trained on the small corpora are of
order 3 (trigrams).

For PLRE, we used one low rank bigram and
one low rank trigram in addition to the MLE n-
gram estimates. The powers of the intermediate
matrices/tensors were fixed to be 0.5 and the dis-
counts were set to be square roots of the Good Tur-
ing estimates (as explained in § 4.4). The ranks
were tuned on the development set. For Small-
English, the ranges were {1e − 3, 5e − 3} (as a
fraction of the vocabulary size) for both the low
rank bigram and low rank trigram models. For
Small-Russian the ranges were {5e − 4, 1e − 3}
for both the low rank bigram and the low rank tri-
gram models.

The results are shown in Table 1. The best class-
based LM is reported, but is not competitive with
the KN baselines. PLRE outperforms all of the
baselines comfortably. Moreover, PLRE’s perfor-
mance over the baselines is highlighted in Russian.
With larger vocabulary sizes, the low rank ap-
proach is more effective as it can capture linguistic
similarities between rare and common words.

Next we discuss how the maximum n-gram or-
der affects performance. Figure 1 shows the rela-
tive percentage improvement of our approach over
int-MKN as the order is increased from 2 to 4 for
both methods. The Small-English dataset has a
rather small vocabulary compared to the number
of tokens, leading to lower data sparsity in the bi-
gram. Thus the PLRE improvement is small for
order = 2, but more substantial for order = 3. On
the other hand, for the Small-Russian dataset, the
vocabulary size is much larger and consequently
the bigram counts are sparser. This leads to sim-
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Dataset class-1024(3) BO-KN(3) int-KN(3) BO-MKN(3) int-MKN(3) PLRE(3)
Small-English Dev 115.64 99.20 99.73 99.95 95.63 91.18
Small-English Test 119.70 103.86 104.56 104.55 100.07 95.15
Small-Russian Dev 286.38 281.29 265.71 287.19 263.25 241.66
Small-Russian Test 284.09 277.74 262.02 283.70 260.19 238.96

Table 1: Perplexity results on small corpora for all methods.

Small-Russian

Small-English

Figure 1: Relative percentage improvement of
PLRE over int-MKN as the maximum n-gram or-
der for both methods is increased.

ilar improvements for all orders (which are larger
than that for Small-English).

On both these datasets, we also experimented
with tuning the discounts for int-MKN to see if
the baseline could be improved with more careful
choices of discounts. However, this achieved only
marginal gains (reducing the perplexity to 98.94
on the Small-English test set and 259.0 on the
Small-Russian test set).

Comparison to LBL (Mnih and Hinton,
2007): Mnih and Hinton (2007) evaluate on the
Small-English dataset (but remove end markers
and concatenate the sentences). They obtain per-
plexities 117.0 and 107.8 using contexts of size 5
and 10 respectively. With this preprocessing, a 4-
gram (context 3) PLRE achieves 108.4 perplexity.

5.3 Large Corpora
Results on the larger corpora for the top 2 per-
forming methods “PLRE” and “int-MKN” are pre-
sented in Table 2. Due to the larger training size,
we use 4-gram models in these experiments. How-
ever, including the low rank 4-gram tensor pro-
vided little gain and therefore, the 4-gram PLRE
only has additional low rank bigram and low rank
trigram matrices/tensors. As above, ranks were
tuned on the development set. For Large-English,
the ranges were {1e−4, 5e−4, 1e−3} (as a frac-
tion of the vocabulary size) for both the low rank

Dataset int-MKN(4) PLRE(4)
Large-English Dev 73.21 71.21
Large-English Test 77.90 ± 0.203 75.66 ± 0.189
Large-Russian Dev 326.9 297.11
Large-Russian Test 289.63 ± 6.82 264.59 ± 5.839

Table 2: Mean perplexity results on large corpora,
with standard deviation.

Dataset PLRE Training Time
Small-English 3.96 min ( order 3) / 8.3 min (order 4)
Small-Russian 4.0 min (order 3) / 4.75 min (order 4)
Large-English 3.2 hrs (order 4)
Large-Russian 8.3 hrs (order 4)

Table 3: PLRE training times for a fixed parameter
setting6. 8 Intel Xeon CPUs were used.

Method BLEU
int-MKN(4) 17.63 ± 0.11

PLRE(4) 17.79 ± 0.07
Smallest Diff PLRE+0.05
Largest Diff PLRE+0.29

Table 4: Results on English-Russian translation
task (mean ± stdev). See text for details.

bigram and low rank trigram models. For Small-
Russian the ranges were {1e−5, 5e−5, 1e−4} for
both the low rank bigram and the low rank trigram
models. For statistical validity, 10 test sets of size
equal to the original test set were generated by ran-
domly sampling sentences with replacement from
the original test set. Our method outperforms “int-
MKN” with gains similar to that on the smaller
datasets. As shown in Table 3, our method obtains
fast training times even for large datasets.

6 Machine Translation Task

Table 4 presents results for the MT task, trans-
lating from English to Russian7. We used
MIRA (Chiang et al., 2008) to learn the feature
weights. To control for the randomness in MIRA,
we avoid retuning when switching LMs - the set
of feature weights obtained using int-MKN is the
same, only the language model changes. The

6As described earlier, only the ranks need to be tuned, so
only 2-3 low rank bigrams and 2-3 low rank trigrams need to
be computed (and combined depending on the setting).

7the best score at WMT 2013 was 19.9 (Bojar et al.,
2013)
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procedure is repeated 10 times to control for op-
timizer instability (Clark et al., 2011). Unlike
other recent approaches where an additional fea-
ture weight is tuned for the proposed model and
used in conjunction with KN smoothing (Vaswani
et al., 2013), our aim is to show the improvements
that PLRE provides as a substitute for KN. On av-
erage, PLRE outperforms the KN baseline by 0.16
BLEU, and this improvement is consistent in that
PLRE never gets a worse BLEU score.

7 Related Work
Recent attempts to revisit the language model-
ing problem have largely come from two direc-
tions: Bayesian nonparametrics and neural net-
works. Teh (2006) and Goldwater et al. (2006)
discovered the connection between interpolated
Kneser Ney and the hierarchical Pitman-Yor pro-
cess. These have led to generalizations that ac-
count for domain effects (Wood and Teh, 2009)
and unbounded contexts (Wood et al., 2009).

The idea of using neural networks for language
modeling is not new (Miikkulainen and Dyer,
1991), but recent efforts (Mnih and Hinton, 2007;
Mikolov et al., 2010) have achieved impressive
performance. These methods can be quite expen-
sive to train and query (especially as the vocab-
ulary size increases). Techniques such as noise
contrastive estimation (Gutmann and Hyvärinen,
2012; Mnih and Teh, 2012; Vaswani et al., 2013),
subsampling (Xu et al., 2011), or careful engi-
neering approaches for maximum entropy LMs
(which can also be applied to neural networks)
(Wu and Khudanpur, 2000) have improved train-
ing of these models, but querying the probabil-
ity of the next word given still requires explicitly
normalizing over the vocabulary, which is expen-
sive for big corpora or in languages with a large
number of word types. Mnih and Teh (2012) and
Vaswani et al. (2013) propose setting the normal-
ization constant to 1, but this is approximate and
thus can only be used for downstream evaluation,
not for perplexity computation. An alternate tech-
nique is to use word-classing (Goodman, 2001;
Mikolov et al., 2011), which can reduce the cost
of exact normalization to O(

√
V ). In contrast, our

approach is much more scalable, since it is triv-
ially parallelized in training and does not require
explicit normalization during evaluation.

There are a few low rank approaches (Saul and
Pereira, 1997; Bellegarda, 2000; Hutchinson et al.,
2011), but they are only effective in restricted set-

tings (e.g. small training sets, or corpora divided
into documents) and do not generally perform
comparably to state-of-the-art models. Roark et
al. (2013) also use the idea of marginal constraints
for re-estimating back-off parameters for heavily-
pruned language models, whereas we use this con-
cept to estimate n-gram specific discounts.

8 Conclusion
We presented power low rank ensembles, a tech-
nique that generalizes existing n-gram smoothing
techniques to non-integer n. By using ensembles
of sparse as well as low rank matrices and ten-
sors, our method captures both the fine-grained
and coarse structures in word sequences. Our
discounting strategy preserves the marginal con-
straint and thus generalizes Kneser Ney, and un-
der slight changes can also extend other smooth-
ing methods such as deleted-interpolation/Jelinek-
Mercer smoothing. Experimentally, PLRE con-
vincingly outperforms Kneser-Ney smoothing as
well as class-based baselines.
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Abstract

Machine reading calls for programs that
read and understand text, but most current
work only attempts to extract facts from
redundant web-scale corpora. In this pa-
per, we focus on a new reading compre-
hension task that requires complex reason-
ing over a single document. The input is
a paragraph describing a biological pro-
cess, and the goal is to answer questions
that require an understanding of the re-
lations between entities and events in the
process. To answer the questions, we first
predict a rich structure representing the
process in the paragraph. Then, we map
the question to a formal query, which is
executed against the predicted structure.
We demonstrate that answering questions
via predicted structures substantially im-
proves accuracy over baselines that use
shallower representations.

1 Introduction

The goal of machine reading is to develop pro-
grams that read text to learn about the world
and make decisions based on accumulated knowl-
edge. Work in this field has focused mostly on
macro-reading, i.e., processing large text collec-
tions and extracting knowledge bases of facts (Et-
zioni et al., 2006; Carlson et al., 2010; Fader et al.,
2011). Such methods rely on redundancy, and are
thus suitable for answering common factoid ques-
tions which have ample evidence in text (Fader et
al., 2013). However, reading a single document
(micro-reading) to answer comprehension ques-
tions that require deep reasoning is currently be-
yond the scope of state-of-the-art systems.

In this paper, we introduce a task where given
a paragraph describing a process, the goal is to

∗Both authors equally contributed to the paper.

answer reading comprehension questions that test
understanding of the underlying structure. In par-
ticular, we consider processes in biology text-
books such as this excerpt and the question that
follows:

“. . . Water is split, providing a source of elec-

trons and protons (hydrogen ions, H+) and giv-

ing off O2 as a by-product. Light absorbed by

chlorophyll drives a transfer of the electrons
and hydrogen ions from water to an acceptor

called NADP+ . . . ”

Q What can the splitting of water lead to?

a Light absorption

b Transfer of ions

This excerpt describes a process in which a com-
plex set of events and entities are related to one
another. A system trying to answer this ques-
tion must extract a rich structure spanning multi-
ple sentences and reason that water splitting com-
bined with light absorption leads to transfer of
ions. Note that shallow methods, which rely on
lexical overlap or text proximity, will fail. Indeed,
both answers are covered by the paragraph and the
wrong answer is closer in the text to the question.

We propose a novel method that tackles this
challenging problem (see Figure 1). First, we train
a supervised structure predictor that learns to ex-
tract entities, events and their relations describing
the biological process. This is a difficult prob-
lem because events have complex interactions that
span multiple sentences. Then, treating this struc-
ture as a small knowledge-base, we map ques-
tions to formal queries that are executed against
the structure to provide the answer.

Micro-reading is an important aspect of natural
language understanding (Richardson et al., 2013;
Kushman et al., 2014). In this work, we focus
specifically on modeling processes, where events
and entities relate to one another through com-
plex interactions. While we work in the biology
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“. . . Water is split, providing a source of elec-

trons and protons (hydrogen ions, H+) and

giving off O2 as a by-product. Light ab-
sorbed by chlorophyll drives a transfer of
the electrons and hydrogen ions from water

to an acceptor called NADP+ . . . ”

Q What can the splitting of water lead to?
a Light absorption

b Transfer of ions

water split
THEME

absorb light
THEME

transfer ions
THEME

ENABLE CAUSE

water split absorb light
THEME (CAUSE|ENABLE)+ THEME

water split transfer ions
THEME (CAUSE|ENABLE)+ THEME

Step 1

Step 2

Step 3: Answer = b

Figure 1: An overview of our reading comprehension system. First, we predict a structure from the input paragraph (the
top right portion shows a partial structure skipping some arguments for brevity). Circles denote events, squares denote argu-
ments, solid arrows represent event-event relations, and dashed arrows represent event-argument relations. Second, we map
the question paired with each answer into a query that will be answered using the structure. The bottom right shows the query
representation. Last, the two queries are executed against the structure, and a final answer is returned.

domain, processes are abundant in domains such
as chemistry, economics, manufacturing, and even
everyday events like shopping or cooking, and our
model can be applied to these domains as well.

The contributions of this paper are:
1. We propose a reading comprehension task

which requires deep reasoning over struc-
tures that represent complex relations be-
tween multiple events and entities.

2. We present PROCESSBANK, a new dataset
consisting of descriptions of biological pro-
cesses, fully-annotated with rich process
structures, and accompanied by multiple-
choice questions.

3. We present a novel method for answer-
ing questions, by predicting process struc-
tures and mapping questions to queries. We
demonstrate that by predicting structures we
can improve reading comprehension accu-
racy over baselines that do not exploit the un-
derlying structure.

The data and code for this paper are avail-
able at http://www-nlp.stanford.edu/
software/bioprocess.

2 Task Definition and Setup

This section describes the reading comprehension
task we address and the accompanying dataset.
We will use the example in Figure 1 as our run-
ning example throughout the paper.

Our goal is to tackle a complex reading com-
prehension setting that centers on understanding

the underlying meaning of a process description.
We target a multiple-choice setting in which each
input consists of a paragraph of text describing a
biological process, a question, and two possible
answers. The goal is to identify the correct answer
using the text (Figure 1, left). We used the 148
paragraphs from the textbook Biology (Campbell
and Reece, 2005) that were manually identified by
Scaria et al. (2013). We extended this set to 200
paragraphs by including additional paragraphs that
describe biological processes. Each paragraph in
the collection represents a single biological pro-
cess and describes a set of events, their partici-
pants and their interactions.

Because we target understanding of paragraph
meaning, we use the following desiderata for
building the corpus of questions and answers:

1. The questions should focus on the events and
entities participating in the process described
in the paragraph, and answering the questions
should require reasoning about the relations
between those events and entities.

2. Both answers should have similar lexical
overlap with the paragraph. Moreover, names
of entities and events in the question and an-
swers should appear as in the paragraph and
not using synonyms. This is to ensure that the
task revolves around reading comprehension
rather than lexical variability.1

A biologist created the question-answer part of

1Lexical variability is an important problem in NLP, but
is not the focus of this task.
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the corpus comprising of 585 questions spread
over the 200 paragraphs. A second annotator val-
idated 326 randomly chosen questions and agreed
on the correct answer with the first annotator in
98.1% of cases. We provide the annotation guide-
lines in the supplementary material.

Figure 1 (left) shows an excerpt of a paragraph
describing a process and an example of a ques-
tion based on it. In general, questions test an un-
derstanding of the interactions between multiple
events (such as causality, inhibition, temporal or-
dering), or between events and entities (i.e., roles
of entities in events), and require complex reason-
ing about chains of event-event and event-entity
relations.

3 The Structure of Processes

A natural first step for answering reading compre-
hension questions is to identify a structured rep-
resentation of the text. In this section, we define
this structure. We broadly follow the definition of
Scaria et al. (2013), but modify important aspects,
highlighted at the end of this section.

A paragraph describing a process is a sequence
of tokens that describes events, entities and their
relations (see Figure 1, top right). A process is
a directed graph (T ,A, Ett, Eta), where the nodes
T are labeled event triggers, the nodes A are ar-
guments, Ett are labeled edges describing event-
event relations, and Eta are labeled edges from
triggers to arguments denoting semantic roles (see
Figure 1 top right for a partial structure of the run-
ning example). The goal of process extraction is
to generate the process graph given the input para-
graph.

Triggers and arguments A trigger is a token
span denoting the occurrence of an event. In Fig-
ure 1, split, absorbed and transfer are event trig-
gers. In rare cases, a trigger denotes the non-
occurrence of an event. For example, in “sym-
patric speciation can occur when gene flow is
blocked”, sympatric speciation occurs if gene flow
does not happen. Thus, nodes in T are labeled as
either a T-YES or T-NO to distinguish triggers of
events that occur from triggers of events that do
not occur. Arguments are token spans denoting
entities that participate in the process (such as wa-
ter, light and ions in Figure 1).

Semantic roles The edges Eta from triggers
to arguments are labeled by the semantic roles

AGENT, THEME, SOURCE, DESTINATION, LO-
CATION, RESULT, and OTHER for all other roles.
Our running example shows three THEME seman-
tic roles for the three triggers. For brevity, the fig-
ure does not show the RESULT of the event split,
namely, both source of electrons and protons (hy-
drogen ions, H+) and O2.

Event-event relations The directed edges Ett
between triggers are labeled by one of eight pos-
sible event-event relations. These relations are
central to answering reading comprehension ques-
tions, which test understanding of the depen-
dencies and causal relations between the process
events. We first define three relations that express
a dependency between two event triggers u and v.

1. CAUSE denotes that u starts before v, and if
u happens then v happens (Figure 1).

2. ENABLE denotes that u creates conditions
necessary for the occurrence of v. This
means that u starts before v and v can only
happen if u happens (Figure 1).2

3. PREVENT denotes that u starts before v and
if u happens, then v does not happen.

In processes, events sometimes depend on more
than one other event. For example, in Figure 1
(right top) transfer of ions depends on both water
splitting as well as light absorption. Conversely,
in Figure 2, the shifting event results in either one
of two events but not both. To express both con-
junctions and disjunctions of related events we
add the relations CAUSE-OR, ENABLE-OR and
PREVENT-OR, which express disjunctions, while
the default CAUSE, ENABLE, and PREVENT ex-
press conjunction (Compare the CAUSE-OR rela-
tions in Figure 2 with the relations in Figure 1).

We define the SUPER relation to denote that
event u is part of event v. (In Figure 2, slip-
page is a sub-event of replication.) Last, we use
the event coreference relation SAME to denote two
event mentions referring to the same event.

Notice that the assignments of relation labels in-
teract across different pairs of events. As an ex-
ample, if event u causes event v, then v can not
cause u. Our inference algorithm uses such struc-
tural constraints when predicting process structure
(Section 4).

2In this work, we do not distinguish causation from facil-
itation, where u can help v but is not absolutely required. We
instructed the annotators to ignore the inherent uncertainty in
these cases and use CAUSE.
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Figure 2: Partial example of a process, as annotated in our dataset.

Avg Min Max
# of triggers 7.0 2 18

# of arguments 11.3 1 36
# of relation 7.9 1 37

Table 1: Statistics of triggers, arguments and rela-
tions over the 200 annotated paragraphs.

Three biologists annotated the same 200 para-
graphs described in Section 2 using the brat anno-
tation tool (Stenetorp et al., 2012). For each para-
graph, one annotator annotated the process, and
a second validated its correctness. Importantly,
the questions and answers were authored sepa-
rately by a different annotator, thus ensuring that
the questions and answers are independent from
the annotated structures. Table 1 gives statistics
over the dataset. The annotation guidelines are in-
cluded in the supplementary material.

Relation to Scaria et al. (2013) Scaria et al.
(2013) also defined processes as graphs where
nodes are events and edges describe event-event
relations. Our definition differs in a few important
aspects.

First, the set of event-event relations in that
work included temporal relations in addition to
causal ones. In this work, we posit that because
events in a process are inter-related, causal depen-
dencies are sufficient to capture the relevant tem-
poral ordering between them. Figure 1 illustrates
this phenomenon, where the temporal ordering be-
tween the events of water splitting and light ab-
sorption is unspecified. It does not matter whether
one happens before, during, or after the other. Fur-
thermore, the incoming causal links to transfer im-
ply that the event should happen after splitting and
absorption.

A second difference is that Scaria et al. (2013)
do not include disjunctions and conjunctions of
events in their formulation. Last, Scaria et al.

(2013) predict only relations given input triggers,
while we predict a full process structure.

4 Predicting Process Structures

We now describe the first step of our algorithm.
Given an input paragraph we predict events, their
arguments and event-event relations (Figure 1,
top). We decompose this into three sub-problems:

1. Labeling trigger candidates using a multi-
class classifier (Section 4.1).

2. For each trigger, identifying an over-
complete set of possible arguments, using a
classifier tuned for high recall (Section 4.2).

3. Jointly assigning argument labels and rela-
tion labels for all trigger pairs (Section 4.3).

The event-event relations CAUSE, ENABLE,
CAUSE-OR and ENABLE-OR, form a semantic
cluster: If (u, v) is labeled by one of these, then
the occurrence of v depends on the occurrence of
u. Since our dataset is small, we share statistics by
collapsing all four labels to a single ENABLE la-
bel. Similarly, we collapse the PREVENT and
PREVENT-OR labels, overall reducing the number
of relations to four.

For brevity, in what follows we only provide
a flavor of the features we extract, and refer the
reader to the supplementary material for details.

4.1 Predicting Event Triggers

The first step is to identify the events in the pro-
cess. We model the trigger detector as a multi-
class classifier that labels all content words in
the paragraph as one of T-YES, T-NO or NOT-
TRIGGER (Recall that a word can trigger an event
that occurred, an event that did not occur, or not
be a trigger at all). For simplicity, we model trig-
gers as single words, but in the gold annotation
about 14% are phrases (such as gene flow). Thus,
we evaluate trigger prediction by taking heads of
gold phrases. To train the classifier, we extract
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the lemma and POS tag of the word and adja-
cent words, dependency path to the root, POS
tag of children and parent in the dependency tree,
and clustering features from WordNet (Fellbaum,
1998), Nomlex (Macleod et al., 1998), Levin verb
classes (Levin, 1993), and a list of biological pro-
cesses compiled from Wikipedia.

4.2 Filtering Argument Candidates

Labeling trigger-argument edges is similar to se-
mantic role labeling. Following the standard ap-
proach (Punyakanok et al., 2008), for each trigger
we collect all constituents in the same sentence to
build an over-complete set of plausible candidate
arguments. This set is pruned with a binary classi-
fier that is tuned for high recall (akin to the argu-
ment identifier in SRL systems). On the develop-
ment set we filter more than half of the argument
candidates, while achieving more than 99% recall.
This classifier is trained using argument identifica-
tion features from Punyakanok et al. (2008).

At the end of this step, each trigger has a set of
candidate arguments which will be labeled during
joint inference. In further discussion, the argument
candidates for trigger t are denoted by At.

4.3 Predicting Arguments and Relations

Given the output of the trigger classifier, our goal
is to jointly predict event-argument and event-
event relations. We model this as an integer linear
program (ILP) instance described below. We first
describe the inference setup assuming a model that
scores inference decisions and defer description of
learning to Section 4.4. The ILP has two types of
decision variables: arguments and relations.

Argument variables These variables capture
the decision that a candidate argument a, belong-
ing to the set At of argument candidates, takes a
label A (from Section 3). We denote the Boolean
variables by yt,a,A, which are assigned a score
bt,a,A by the model. We include an additional label
NULL-ARG, indicating that the candidate is not an
argument for the trigger.

Event-event relation variables These variables
capture the decision that a pair of triggers t1 and
t2 are connected by a directed edge (t1, t2) labeled
by the relation R. We denote these variables by
zt1,t2,R, which are associated with a score ct1,t2,R.
Again, we introduce a label NULL-REL to indicate
triggers that are not connected by an edge.

Name Description
Unique labels Every argument candidate and trigger pair has ex-

actly one label.
Argument overlap Two arguments of the same trigger cannot overlap.
Relation symmetry The SAME relation is symmetric. All other rela-

tions are anti-symmetric, i.e., for any relation la-
bel other than SAME, at most one of (ti, tj) or
(tj , ti) can take that label and the other is assigned
the label NULL-REL.

Max arguments per
trigger

Every trigger can have no more than two arguments
with the same label.

Max triggers per ar-
gument

The same span of text can not be an argument for
more than two triggers.

Connectivity The triggers must form a connected graph, framed
as flow constraints as in Magnanti and Wolsey
(1995) and Martins et al. (2009).

Shared arguments If the same span of text is an argument of two trig-
gers, then the triggers must be connected by a rela-
tion that is not NULL-REL. This ensures that trig-
gers that share arguments are related.

Unique parent For any trigger, at most one outgoing edge can be
labeled SUPER.

Table 2: Constraints for joint inference.

Formulation Given the two sets of variables,
the objective of inference is to find a global as-
signment that maximizes the score. That is, the
objective can be stated as follows:

max
y,z

∑
t,a∈At,A

bt,a,A · yt,a,A +
∑
t1,t2,R

ct1,t2,R · zt1,t2,R

Here, y and z refer to all the argument and rela-
tion variables respectively.

Clearly, all possible assignments to the infer-
ence variables are not feasible and there are both
structural as well as prior knowledge constraints
over the output space. Table 2 states the con-
straints we include, which are expressed as linear
inequalities over output variables using standard
techniques (e.g., (Roth and Yih, 2004)).

4.4 Learning in the Joint Model

We train both the trigger classifier and the argu-
ment identifier using L2-regularized logistic re-
gression. For the joint model, we use a linear
model for the scoring functions, and train jointly
using the structured averaged perceptron algo-
rithm (Collins, 2002).

Since argument labeling is similar to semantic
role labeling (SRL), we extract standard SRL fea-
tures given the trigger and argument from the syn-
tactic tree for the corresponding sentence. In ad-
dition, we add features extracted from an off-the-
shelf SRL system. We also include all feature con-
junctions. For event relations, we include the fea-
tures described in Scaria et al. (2013), as well as
context features for both triggers, and the depen-
dency path between them, if one exists.
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5 Question Answering via Structures

This section describes our question answering sys-
tem that, given a process structure, a question and
two answers, chooses the correct answer (steps 2
and 3 in Figure 1).

Our strategy is to treat the process structure as
a small knowledge-base. We map each answer
along with the question into a structured query that
we compare against the structure. The query can
prove either the correctness or incorrectness of the
answer being considered. That is, either we get a
valid match for an answer (proving that the cor-
responding answer is correct), or we get a refu-
tation in the form of a contradicted causal chain
(thus proving that the other answer is correct).
This is similar to theorem proving approaches sug-
gested in the past for factoid question answering
(Moldovan et al., 2003).

The rest of this section is divided into three
parts: Section 5.1 defines the queries we use, Sec-
tion 5.2 describes a rule-based algorithm for con-
verting a question and an answer into a query and
finally, 5.3 describes the overall algorithm.

5.1 Queries over Processes

We model a query as a directed graph path with
regular expressions over edge labels. The bot-
tom right portion of Figure 1 shows examples of
queries for our running example. In general, given
a question and one of the answer candidates, one
end of the path is populated by a trigger/argument
found in the question and the other is populated
with a trigger/ argument from the answer.

We define a query to consist of three parts:
1. A regular expression over relation labels, de-

scribing permissible paths,
2. A source trigger/argument node, and
3. A target trigger/argument node.

For example, the bottom query in Figure 1 looks
for paths labeled with CAUSE or ENABLE edges
from the event split to the event transfer.

Note that the representation of questions as di-
rected paths is a modeling choice and did not influ-
ence the authoring of the questions. Indeed, while
most questions do fit this model, there are rare
cases that require a more complex query structure.

5.2 Query Generation

Mapping a question and an answer into a query
involves identifying the components of the query
listed above. We do this in two phases: (1) In the

alignment phase, we align triggers and arguments
in the question and answer to the process structure
to give us candidate source and target nodes. (2)
In the query construction phase, we identify the
regular expression and the direction of the query
using the question, the answer and the alignment.

We identify three broad categories of QA pairs
(see Table 3) that can be identified using simple
lexical rules: (a) Dependency questions ask which
event or argument depends on another event or ar-
gument, (b) Temporal questions ask about tempo-
ral ordering of events, and (c) True-false questions
ask whether some fact is true. Below, we describe
the two phases of query generation primarily in the
context of dependency questions with a brief dis-
cussion about temporal and true-false questions at
the end of the section.

Alignment Phase We align triggers in the struc-
ture to the question and the answer by matching
lemmas or nominalizations. In case of multiple
matches, we use the context to disambiguate and
resolve ties using the highest matching candidate
in the syntactic dependency tree.

We align arguments in the question and the an-
swer in a similar manner. Since arguments are
typically several words long, we prefer maximal
spans. Additionally, if a question (or an answer)
contains an aligned trigger, we prefer to align
words to its arguments.

Query Construction Phase We construct a
query using the aligned question and answer trig-
gers/arguments. We will explain query construc-
tion using our running example (reproduced as the
dependency question in Table 3).

First, we identify the source and the target of
the query. We select either the source or the tar-
get to be a question node and populate the other
end of the query path with an answer node. To
make the choice between source or target for the
question node, we use the main verb in the ques-
tion, its voice and relative position of the question
word with respect to the main verb. In our exam-
ple, the main verb lead to is in active voice and the
question word what is not in subject position. This
places the trigger from the question as the source
of the query path (see both queries in the bottom
right portion of the running example). In contrast,
had the verb been require, the trigger would be the
target of the query. We construct two verb clusters
that indicate query direction using a small seed set
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Type Example # (%)
Dependency Q: What can the splitting of water lead to? 407 (69.57%)

a: Light absorption
b: Transfer of ions

Temporal Q: What is the correct order of events? 57 (9.74%)
a: PDGF binds to tyrosine kinases, then cells divide, then wound healing
b: Cells divide, then PDGF binds to tyrosine kinases, then wound healing

True-False Q: Cdk associates with MPF to become cyclin 121 (20.68%)
a: True
b: False

Table 3: Examples and statistics for each of the three coarse types of questions.

Is main verb trigger?

Condition Regular Exp.
Wh- word subjective? AGENT
Wh- word object? THEME

Condition Regular Exp.
default (ENABLE|SUPER)+

DIRECT (ENABLE|SUPER)
PREVENT (ENABLE|SUPER)∗PREVENT(ENABLE|SUPER)∗

Yes No

Figure 3: Rules for determining the regular expressions for queries concerning two triggers. In each table, the condition
column decides the regular expression to be chosen. In the left table, we make the choice based on the path from the root to
the Wh- word in the question. In the right table, if the word directly modifies the main trigger, the DIRECT regular expression
is chosen. If the main verb in the question is in the synset of prevent, inhibit, stop or prohibit, we select the PREVENT regular
expression. Otherwise, the default one is chosen. We omit the relation label SAME from the expressions, but allow going
through any number of edges labeled by SAME when matching expressions to the structure.

that we expand using WordNet.

The final step in constructing the query is to
identify the regular expression for the path con-
necting the source and the target. Due to paucity
of data, we do not map a question and an answer
to arbitrary regular expressions. Instead, we con-
struct a small set of regular expressions, and build
a rule-based system that selects one. We used the
training set to construct the regular expressions
and we found that they answer most questions (see
Section 6.4). We determine the regular expression
based on whether the main verb in the sentence is
a trigger and whether the source and target of the
path are triggers or arguments. Figure 3 shows the
possible regular expressions and the procedure for
choosing one when both the source and target are
triggers. If either of them are argument nodes, we
append the appropriate semantic role to the regu-
lar expression, based on whether the argument is
the source or the target of the path (or both).

True-false questions are treated similarly, ex-
cept that both source and target are chosen from
the question. For temporal questions, we seek to
identify the ordering of events in the answers. We
use the keywords first, then, or simultaneously to
identify the implied order in the answer. We use
the regular expression SUPER+ for questions ask-
ing about simultaneous events and ENABLE+ for
those asking about sequential events.

5.3 Answering Questions

We match the query of an answer to the process
structure to identify the answer. In case of a match,
the corresponding answer is chosen. The matching
path can be thought of as a proof for the answer.

If neither query matches the graph (or both do),
we check if either answer contradicts the struc-
ture. To do so, we find an undirected path from
the source to the target. In the event of a match, if
the matching path traverses any ENABLE edge in
the incorrect direction, we treat this as a refutation
for the corresponding answer and select the other
one. In our running example, in addition to the
valid path for the second query, for the first query
we see that there is an undirected path from split
to absorb through transfer that matches the first
query. This tells us that light absorption cannot
be the answer because it is not along a causal path
from split.

Finally, if none of the queries results in a match,
we look for any unlabeled path between the source
and the target, before backing off to a dependency-
based proximity baseline described in Section 6.
When there are multiple aligning nodes in the
question and answer, we look for any proof or
refutation before backing off to the baselines.
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6 Empirical Evaluation

In this section we aim to empirically evaluate
whether we can improve reading comprehension
accuracy by predicting process structures. We first
provide details of the experimental setup.

6.1 Experimental setup
We used 150 processes (435 questions) for train-
ing and 50 processes (150 questions) as the test
set. For development, we randomly split the train-
ing set 10 times (80%/20%), and tuned hyper-
parameters by maximizing average accuracy on
question answering. We preprocessed the para-
graphs with the Stanford CoreNLP pipeline ver-
sion 3.4 (Manning et al., 2014) and Illinois SRL
(Punyakanok et al., 2008; Clarke et al., 2012). We
used the Gurobi optimization package3 for infer-
ence.

We compare our system PROREAD to baselines
that do not have access to the process structure:

1. BOW: For each answer, we compute the
proportion of content word lemmas covered
by the paragraph and choose the one with
higher coverage. For true-false questions, we
compute the coverage of the question state-
ment, and answer “True” if it is higher than a
threshold tuned on the development set.

2. TEXTPROX: For dependency questions, we
align content word lemmas in both the ques-
tion and answer against the text and select the
answer whose aligned tokens are closer to the
aligned tokens of the question. For tempo-
ral questions, we return the answer for which
the order of events is identical to their order
in the paragraph. For true-false questions, we
return “True” if the number of bigrams from
the question covered in the text is higher than
a threshold tuned on the development set.

3. SYNTPROX: For dependency questions, we
use proximity as in TEXTPROX, except that
distance is measured using dependency tree
edges. To support multiple sentences we con-
nect roots of adjacent sentences with bidi-
rectional edges. For temporal questions this
baseline is identical to TEXTPROX. For true-
false questions, we compute the number of
dependency tree edges in the question state-
ment covered by edges in the paragraph (an
edge has a source lemma, relation, and target
lemma), and answer “True” if the coverage is

3http://www.gurobi.com/

Method Depen. Temp. True-
false

All

PROREAD 68.1 80.0 55.6 66.7
SYNTPROX 61.9 70.0 48.1 60.0
TEXTPROX 58.4 70.0 33.3 54.7
BOW 47.8 40.0 44.4 46.7
GOLD 77.9 80.0 70.4 76.7

Table 4: Reading comprehension test set accuracy. The All
column shows overall accuracy across all questions. The first
three columns show accuracy for each coarse type.

higher than a threshold tuned on the training
set.

To separate the contribution of process struc-
tures from the performance of our structure pre-
dictor, we also run our QA system given manually
annotated gold standard structures (GOLD).4

6.2 Reading Comprehension Task

We evaluate our system using accuracy, i.e., the
proportion of questions answered correctly. Ta-
ble 4 presents test set results, where we break
down questions by their coarse-type.

PROREAD improves accuracy compared to the
best baseline by 6.7 absolute points (last column).
Most of the gain is due to improvement on de-
pendency questions, which are the most common
question type. The performance of BOW indicates
that lexical coverage alone does not distinguish the
correct answer from the wrong answer. In fact,
guessing the answer with higher lexical overlap
results in performance that is slightly lower than
random. Text proximity and syntactic proximity
provide a stronger cue, but exploiting predicted
process structures substantially outperforms these
baselines.

Examining results using gold information high-
lights the importance of process structures inde-
pendently of the structure predictor. Results of
GOLD demonstrate that given gold structures we
can obtain a dramatic improvement of almost 17
points compared to the baselines, using our sim-
ple deterministic QA system.

Results on true-false questions are low for
PROREAD and all the baselines. True-false ques-
tions are harder for two main reasons. First, in
dependency and temporal questions, we create a
query for both answers, and can find a proof or
a refutation for either one of them. In true-false

4We also ran an experiment where gold triggers are
given and arguments and relations are predicted. We found
that this results in slightly higher performance compared to
PROREAD.
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Precision Recall F1

Triggers 75.4 73.9 74.6
Arguments 43.4 34.4 38.3
Relations 27.0 22.5 24.6

Table 5: Structured prediction test set results.

questions we must determine given a single state-
ment whether it holds. Second, an analysis of true-
false questions reveals that they focus less on re-
lations between events and entities in the process,
and require modeling lexical variability.5

6.3 Structure Prediction Task

Our evaluation demonstrates that gold structures
improve accuracy substantially more than pre-
dicted structures. To examine this, we now di-
rectly evaluate the structure predictor by com-
paring micro-average precision, recall and F1 be-
tween predicted and gold structures (Table 5).

While performance for trigger identification is
reasonable, performance on argument and relation
prediction is low. This explains the higher perfor-
mance obtained in reading comprehension given
gold structures. Note that errors in trigger predic-
tion propagate to argument and relation prediction
– a relation cannot be predicted correctly if either
one of the related triggers is not previously identi-
fied. One reason for low performance is the small
size of the dataset. Thus, training process predic-
tors with less supervision is an important direction
for future work. Furthermore, the task of process
prediction is inherently difficult, because often re-
lations are expressed only indirectly in text. For
example, in Figure 1 the relation between water
splitting and transfer of ions is only recoverable
by understanding that water provides the ions that
need to be transferred.

Nevertheless, we find that questions can often
be answered correctly even if the structure con-
tains some errors. For example, the gold structure
for the sentence “Some . . . radioisotopes have
long half-lives, allowing . . . ”, contains the trigger
long half-lives, while we predict have as a trigger
and long half-lives as an argument. This is good
enough to answer questions related to this part of
the structure correctly, and overall, to improve per-
formance using predicted structures.

5The low performance of TEXTPROX and SYNTPROX on
true-false questions can also be attributed to the fact that we
tuned a threshold parameter on the training set, and this did
not generalize well to the test set.

Reason GOLD PROREAD
Alignment 35% 15%
Missing from annotation 25% 10%
Entity coreference 20% 10%
Missing regular expression 10%
Lexical variability 5% 10%
Error in predicted structure 55%
Other 5%

Table 6: Error analysis results. An explanation of the vari-
ous categories are in the body of the paper.

6.4 Error Analysis

This section presents the results of an analysis of
20 sampled errors of GOLD (gold structures), and
20 errors of PROREAD (predicted structures). We
have categorized the primary reason for error in
Table 6.

As expected, the main problem when using pre-
dicted structures, is structure errors which account
for more than half of the errors.

Errors in GOLD are distributed across various
categories, which we briefly describe. Alignment
errors occur due to multiple words aligning to mul-
tiple triggers and arguments. For example, in the
question “What is the result of gases being pro-
duced in the lysosome?”, the answer “engulfed
pathogens are poisoned” is incorrectly aligned to
the trigger engulfed rather than to poisoned.

Another reason for errors are cases where ques-
tions are asked about parts of the paragraph that
are missing from annotation. This is possible since
questions were authored independently of struc-
ture annotation. Two other causes for errors are
entity coreference errors, where a referent for an
entity is missing from the structure, and lexical
variability, where the author of questions uses
names for triggers or arguments that are missing
from the paragraph, and so alignment fails.

Last, in 10% of the cases in GOLD we found
that the answer could not be retrieved using the set
of regular expressions that are currently used by
our QA system.

7 Discussion

This work touches on several strands of work in
NLP including information extraction, semantic
role labeling, semantic parsing and reading com-
prehension.

Event and relation extraction have been studied
via the ACE data (Doddington et al., 2004) and
related work. The BioNLP shared tasks (Kim et
al., 2009; Kim et al., 2011; Riedel and McCal-
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lum, 2011) focused on biomedical data to extract
events and their arguments. Event-event relations
have been mostly studied from the perspective of
temporal ordering; e.g., (Chambers and Jurafsky,
2008; Yoshikawa et al., 2009; Do et al., 2012; Mc-
Closky and Manning, 2012). The process struc-
ture predicted in this work differs from these lines
of work in two important ways: First, we predict
events, arguments and their interactions from mul-
tiple sentences, while most earlier work focused
on one or two of these components. Second, we
model processes, and thus target causal relations
between events, rather than temporal order only.

Our semantic role annotation is similar to ex-
isting SRL schemes such as PropBank (Palmer et
al., 2005), FrameNet (Ruppenhofer et al., 2006)
and BioProp (Chou et al., 2006). However, in con-
trast to PropBank and FrameNet, we do not allow
all verbs to trigger events and instead let the an-
notators decide on biologically important triggers,
which are not restricted to verbs (unlike BioProp,
where 30 pre-specified verbs were selected for an-
notation). Like PropBank and BioProp, the argu-
ment labels are not trigger specific.

Mapping questions to queries is effectively a se-
mantic parsing task. In recent years, several lines
of work addressed semantic parsing using vari-
ous formalisms and levels of supervision (Zettle-
moyer and Collins, 2005; Wong and Mooney,
2006; Clarke et al., 2010; Berant et al., 2013).
In particular, Krishnamurthy and Kollar (2013)
learned to map natural language utterances to ref-
erents in an image by constructing a KB from the
image and then mapping the utterance to a query
over the KB. This is analogous to our process of
constructing a process structure and performing
QA by querying that structure. In our work, we
parse questions into graph-based queries, suitable
for modeling processes, using a rule-based heuris-
tic. Training a statistical semantic parser that will
replace the QA system is an interesting direction
for future research.

Multiple choice reading comprehension tests
are a natural choice for evaluating machine read-
ing. Hirschman et al. (1999) presented a bag-of-
words approach to retrieving sentences for read-
ing comprehension. Richardson et al. (2013) re-
cently released the MCTest reading comprehen-
sion dataset that examines understanding of fic-
tional stories. Their work shares our goal of ad-
vancing micro-reading, but they do not focus on

process understanding.
Developing programs that perform deep reason-

ing over complex descriptions of processes is an
important step on the road to fulfilling the higher
goals of machine reading. In this paper, we present
an end-to-end system for reading comprehen-
sion of paragraphs which describe biological pro-
cesses. This is, to the best of our knowledge, the
first system to both predict a rich structured rep-
resentation that includes entities, events and their
relations, and utilize this structure for answering
reading comprehension questions. We also created
a new dataset, PROCESSBANK, which contains
200 paragraphs that are both fully-annotated with
process structure, as well as accompanied by ques-
tions. We empirically demonstrated that model-
ing biological processes can substantially improve
reading comprehension accuracy in this domain.
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Abstract

Connecting words with senses, namely,
sight, hearing, taste, smell and touch, to
comprehend the sensorial information in
language is a straightforward task for hu-
mans by using commonsense knowledge.
With this in mind, a lexicon associating
words with senses would be crucial for the
computational tasks aiming at interpreta-
tion of language. However, to the best of
our knowledge, there is no systematic at-
tempt in the literature to build such a re-
source. In this paper, we present a senso-
rial lexicon that associates English words
with senses. To obtain this resource, we
apply a computational method based on
bootstrapping and corpus statistics. The
quality of the resulting lexicon is evaluated
with a gold standard created via crowd-
sourcing. The results show that a sim-
ple classifier relying on the lexicon out-
performs two baselines on a sensory clas-
sification task, both at word and sentence
level, and confirm the soundness of the
proposed approach for the construction of
the lexicon and the usefulness of the re-
source for computational applications.

1 Introduction

Sensorial information interpenetrates languages
with various semantic roles in different levels since
the main interaction instrument of humans with the
outside world is the sensory organs. The trans-
formation of the raw sensations that we receive
through the sensory organs into our understand-
ing of the world has been an important philo-
sophical topic for centuries. According to a clas-
sification that dates back to Aristotle (Johansen,
1997), senses can be categorized into five modali-
ties, namely, sight, hearing, taste, smell and touch.
With the help of perception, we can process the

data coming from our sensory receptors and be-
come aware of our environment. While interpret-
ing sensory data, we unconsciously use our exist-
ing knowledge and experience about the world to
create a private experience (Bernstein, 2010).
Language has a significant role as our main

communication device to convert our private ex-
periences to shared representations of the environ-
ment that we perceive (Majid and Levinson, 2011).
As a basic example, onomatopoeic words, such as
knock or woof, are acquired by direct imitation of
the sounds allowing us to share the experience of
what we hear. As another example, where an im-
itation is not possible, is that giving a name to a
color, such as blue, provides a tool to describe a
visual feature of an object. In addition to the words
that describe the direct sensorial features of ob-
jects, languages include many other lexical items
that are connected to sensory modalities in various
semantic roles. For instance, while some words
can be used to describe a perception activity (e.g.,
to sniff, to watch, to feel), others can simply be
physical phenomena that can be perceived by sen-
sory receptors (e.g., light, song, salt, smoke).
Common usage of language, either written or

spoken, can be very dense in terms of sensorial
words. As an example, the sentence “I felt the cold
breeze.” contains three sensorial words: to feel as
a perception activity, cold as a perceived sensorial
feature and breeze as a physical phenomenon. The
connection to the sense modalities of the words
might not be mutually exclusive, that is to say a
word can be associated with more than one senses.
For instance, the adjective sweet could be associ-
ated with both the senses of taste and smell. While
we, as humans, have the ability to connect words
with senses intuitively by using our commonsense
knowledge, it is not straightforward for machines
to interpret sensorial information.
Making use of a lexicon containing sensorial

words could be beneficial for many computa-
tional scenarios. Rodriguez-Esteban and Rzhetsky
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(2008) report that using words related to senses
in a text could clarify the meaning of an abstract
concept by facilitating a more concrete imagina-
tion. To this respect, an existing text could be au-
tomatically modified with sensory words for vari-
ous purposes such as attracting attention or biasing
the audience towards a specific concept. Addition-
ally, sensory words can be utilized to affect private
psychology by inducing a positive or negative sen-
timent (Majid and Levinson, 2011). For instance,
de Araujo et al. (2005) show that the pleasantness
level of the same odor can be altered by labeling it
as body odor or cheddar cheese. As another moti-
vation, the readability and understandability of text
could also be enhanced by using sensory words
(Rodriguez-Esteban and Rzhetsky, 2008). A com-
pelling use case of a sensorial lexicon is that auto-
matic text modification to change the density of a
specific sense could help people with sensory dis-
abilities. For instance, while teaching a concept to
a congenitally blind child, an application that elim-
inates color-related descriptions would be benefi-
cial. A sensorial lexicon could also be exploited by
search engines to personalize the results according
to user needs.
Advertising is another broad area which would

benefit from such a resource especially by using
synaesthesia1, as it strengthens creative thinking
and it is commonly exploited as an imagination
boosting tool in advertisement slogans (Pricken,
2008). As an example, we can consider the slogans
“The taste of a paradise” where the sense of sight
is combined with the sense of taste or “Hear the
big picture” where sight and hearing are merged.
Various studies have been conducted both

in computational linguistics and cognitive sci-
ence that build resources associating words with
several cognitive features such as abstractness-
concreteness (Coltheart, 1981; Turney et al.,
2011), emotions (Strapparava and Valitutti, 2004;
Mohammad and Turney, 2010), colors (Özbal et
al., 2011; Mohammad, 2011) and imageability
(Coltheart, 1981). However, to the best of our
knowledge, there is no attempt in the literature to
build a resource that associates words with senses.
In this paper, we propose a computational method
to automatically generate a sensorial lexicon that
associates words in English with senses. Our
method consists of two main steps. First, we gen-

1American Heritage Dictionary (http://
ahdictionary.com/) defines synaesthesia in linguis-
tics as the description of one kind of sense impression by
using words that normally describe another.

erate a set of seed words for each sense category
with the help of a bootstrapping approach. In the
second step, we exploit a corpus based probabilis-
tic technique to create the final lexicon. We eval-
uate this lexicon with the help of a gold standard
that we obtain by using the crowdsourcing service
of CrowdFlower2.
The sensorial lexicon, which we named Sen-

sicon, embodies 22,684 English lemmas together
with their part-of-speech (POS) information that
have been linked to one or more of the five senses.
Each entry in this lexicon consists of a lemma-POS
pair and a score for each sensory modality that in-
dicates the degree of association. For instance, the
verb stink has the highest score for smell as ex-
pected while the scores for the other four senses
are very low. The noun tree, which is a concrete
object and might be perceived by multiple senses,
has high scores for sight, touch and smell.
The rest of the paper is organized as follows.

We first review previous work relevant to this task
in Section 2. Then in Section 3, we describe the
proposed approach in detail. In Section 4, we ex-
plain the annotation process that we conducted and
the evaluation strategy that we employed. Finally,
in Section 5, we draw our conclusions and outline
possible future directions.

2 Related Work

Since to the best of our knowledge there is no at-
tempt in the literature to automatically associate
words with human senses, in this section we will
summarize the most relevant studies that focused
on linking words with various other cognitive fea-
tures.
There are several studies focusing on word-

emotion associations. WordNet Affect Lexicon
(Strapparava and Valitutti, 2004) maps WordNet
(Fellbaum, 1998) synsets to various cognitive fea-
tures (e.g., emotion, mood, behaviour). This re-
source is created by using a small set of synsets
as seeds and expanding them with the help of se-
mantic and lexical relations among these synsets.
Yang et al. (2007) propose a collocation model
with emoticons instead of seed words while creat-
ing an emotion lexicon from a corpus. Perrie et al.
(2013) build a word-emotion association lexicon
by using subsets of a human-annotated lexicon as
seed sets. The authors use frequencies, counts, or
unique seed words extracted from an n-gram cor-
pus to create lexicons in different sizes. They pro-

2http://www.crowdflower.com/
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pose that larger lexicons with less accurate genera-
tion method perform better than the smaller human
annotated lexicons. While a major drawback of
manually generated lexicons is that they require a
great deal of human labor, crowdsourcing services
provide an easier procedure for manual annota-
tions. Mohammad and Turney (2010) generate an
emotion lexicon by using the crowdsourcing ser-
vice provided by Amazon Mechanical Turk3 and
it covers 14,200 term-emotion associations.

Regarding the sentiment orientations and sub-
jectivity levels of words, Sentiwordnet (Esuli and
Sebastiani, 2006) is constructed as an extension
to WordNet and it provides sentiments in synset
level. Positive, negative and neutral values are as-
signed to synsets by using ternary classifiers and
synset glosses. Another study that has been inspi-
rational for the design of our approach is Banea
et al. (2008). The authors generate a subjectivity
lexicon starting with a set of seed words and then
using a similarity measure among the seeds and the
candidate words.

Another cognitive feature relevant to sensorial
load of the words is the association between col-
ors and words. Mohammad (2011) builds a color-
word association lexicon by organizing a crowd-
sourcing task on Amazon Mechanical Turk. In-
stead, Özbal et al. (2011) aim to automate this
process and propose three computational methods
based on image analysis, language models and la-
tent semantic analysis (LSA) (Landauer and Du-
mais, 1997). The authors compare these meth-
ods against a gold standard obtained by the crowd-
sourcing service of Amazon Mechanical Turk.
The best performance is obtained by using image
features while LSA performs slightly better than
the baseline.

Finally, there have been efforts in the liter-
ature about the association of words with their
abstractness-concreteness and imageability levels.
MRC Psycholinguistic Database (Coltheart, 1981)
includes abstractness-concreteness and imageabil-
ity ratings of a small set of words determined
according to psycholinguistic experiments. Tur-
ney et al. (2011) propose to use LSA similarities
of words with a set of seed words to automati-
cally calculate the abstractness and concreteness
degrees of words.

3http://www.mturk.com/mturk

3 Automatic Association of Senses with
Words

We adopt a two phased computational approach to
construct a large sensorial lexicon. First, we em-
ploy a bootstrapping strategy to generate a suffi-
cient number of sensory seed words from a small
set of manually selected seed words. In the sec-
ond phase, we perform a corpus based probabilistic
method to estimate the association scores to build
a larger lexicon.

3.1 Selecting Seed Words
The first phase of the lexicon construction pro-
cess aims to collect sensorial seed words, which
are directly related to senses (e.g., sound, tasty
and sightedness). To achieve that, we utilized
a lexical database called FrameNet (Baker et al.,
1998), which is built upon semantic frames of con-
cepts in English and lexical units (i.e., words) that
evoke these frames. The basic idea behind this
resource is that meanings of words can be under-
stood on the basis of a semantic frame. A semantic
frame consists of semantic roles called frame ele-
ments, which are manually annotated in more than
170,000 sentences. We have considered FrameNet
to be especially suitable for the collection of sen-
sorial seed words since it includes semantic roles
and syntactic features of sensational and percep-
tional concepts.
In order to determine the seed lemma-POS pairs

in FrameNet, we first manually determined 31
frames that we found to be highly connected to
senses such as Hear, Color, Temperature and Per-
ception_experience. Then, we conducted an an-
notation task and asked 3 annotators to determine
which senses the lemma-POS pairs evoking the
collected frames are associated with. At the end of
this task, we collected all the pairs (i.e. 277) with
100% agreement to constitute our initial seed set.
This set contains 277 lemma-POS pairs associated
with a specific sense such as the verb click with
hearing, the noun glitter with sight and aromatic
with smell.

3.2 Seed Expansion via Bootstrapping
In this step, we aim to extend the seed list that we
obtained from FrameNet with the help of a boot-
strapping approach. To achieve that, we adopt a
similar approach to Dias et al. (2014), who pro-
pose a repetitive semantic expansion model to au-
tomatically build temporal associations of synsets
in WordNet. Figure 1 provides an overview of
the bootstrapping process. At each iteration, we
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Figure 1: Bootstrapping procedure to expand the
seed list.

first expand the seed list by using semantic rela-
tions provided by WordNet. We then evaluate the
accuracy of the new seed list for sense classifica-
tion by means of cross-validation against WordNet
glosses. For each sense, we continue iterating un-
til the cross-validation accuracy becomes stable or
starts to decrease. The following sections explain
the whole process in detail.

3.2.1 Extending the Seed List with WordNet
While the initial sensory seed list obtained from
FrameNet contains only 277 lemma-POS pairs,
we extend this list by utilizing the semantic re-
lations provided by WordNet. To achieve that,
we first map each lemma-POS pair in the seed
list to WordNet synsets with the help of Map-
Net (Tonelli and Pighin, 2009), which is a re-
source providing direct mapping between Word-
Net synsets and FrameNet lexical units. Then, we
add to the list the synsets that have WordNet re-
lations direct antonymy, similarity, derived-from,
derivationally-related, pertains-to, attribute and
also-see with the already existing seeds. For in-
stance, we add the synset containing the verb laugh
for the synset of the verb cry with the relation di-
rect antonymy, or the synset containing the ad-
jective chilly for the synset of the adjective cold
with the relation similarity. We prefer to use these
relations as they might allow us to preserve the
semantic information as much as possible during
the extension process. It is worth mentioning that
these relations were also found to be appropriate
for preserving the affective connotation by Vali-
tutti et al. (2004). Additionally, we use the rela-
tions hyponym and hyponym-instance to enrich the
seed set with semantically more specific synsets.
For instance, for the noun seed smell, we expand
the list with the hyponyms of its synset such as the
nouns bouquet, fragrance, fragrancy, redolence

and sweetness.

3.2.2 Cross-validation of Sensorial Model
After obtaining new synsets with the help ofWord-
Net relations in each bootstrapping cycle, we build
a five-class sense classifier over the seed synsets
defined by their glosses provided in WordNet.
Similarly to Dias et al. (2014), we assume that
the sense information of sensorial synsets is pre-
served in their definitions. Accordingly, we em-
ploy a support vector machine (SVM) (Boser et
al., 1992; Vapnik, 1998) model with second de-
gree polynomial kernel by representing the gloss
of each synset as a vector of lemmas weighted by
their counts. For each synset, its gloss is lemma-
tized by using Stanford Core NLP4 and cleaned
from the stop words. After each iteration cycle, we
perform a 10-fold cross-validation in the updated
seed list to detect the accuracy of the new sensorial
model. For each sense class, we continue iterating
and thereby expanding the seed list until the clas-
sifier accuracy steadily drops.
Table 1 lists the precision (P), recall (R) and

F1 values obtained for each sense after each it-
eration until the bootstrapping mechanism stops.
While the iteration number is provided in the first
column, the values under the last column group
present the micro-average of the resulting multi-
class classifier. The change in the performance
values of each class in each iteration reveals that
the number of iterations required to obtain the seed
lists varies for each sense. For instance, the F1
value of touch continues to increase until the fourth
cycle whereas hearing records a sharp decrease af-
ter the first iteration.
After the bootstrapping process, we create the

final lexicon by repeating the expansion for each
class until the optimal number of iterations is
reached. The last row of Table 1, labeled as Final,
demonstrates the accuracy of the classifier trained
and tested on the final lexicon, i.e., using the seeds
selected after iteration 2 for Sight, iteration 1 for
Hearing, iteration 3 for Taste and Smell and it-
eration 4 for Touch. According to F1 measure-
ments of each iteration, while hearing and taste
have a lower value for the final model, sight, smell
and touch have higher results. It should also be
noted that the micro-average of the F1 values of
the final model shows an increase when compared
to the third iteration, which has the highest av-
erage F1 value among the iterations. At the end

4http://nlp.stanford.edu/software/corenlp.
shtml
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of this step we have a seed synset list consisting
of 2572 synsets yielding the highest performance
when used to learn a sensorial model.

3.3 Sensorial Lexicon Construction Using
Corpus Statistics

After generating the seed lists consisting of synsets
for each sense category with the help of a set of
WordNet relations and a bootstrapping process, we
use corpus statistics to create our final sensorial
lexicon. More specifically, we exploit a proba-
bilistic approach based on the co-occurrence of
the seeds and the candidate lexical entries. Since
working on the synset level would raise the data
sparsity problem in synset tagged corpora such as
SemCor (Miller et al., 1993) and we need a cor-
pus that provides sufficient statistical information,
we migrate from synset level to lexical level. Ac-
cordingly, we treat each POS role of the same lem-
mas as a distinct seed and extract 4287 lemma-POS
pairs from 2572 synsets. In this section, we explain
the steps to construct our final sensorial lexicon in
detail.

3.3.1 Corpus and Candidate Words
As a corpus, we use a subset of English Giga-
Word 5th Edition released by Linguistic Data Con-
sortium (LDC)5. This resource is a collection of
almost 10 million English newswire documents
collected in recent years, whose content sums up
to nearly 5 billion words. The richly annotated
GigaWord data comprises automatic parses ob-
tained with the Stanford parser (Klein and Man-
ning, 2003) so that we easily have access to the
lemma and POS information of each word in the
resource. For the scope of this study, we work
on a randomly chosen subset that contains 79800
sentences and we define a co-occurrence event as
the co-existence of a candidate word and a seed
word within a window of 9 words(the candidate
word, 4 words to its left and 4 words to its right).
In this manner, we analyze the co-occurrence of
each unique lemma-POS pair in the corpuswith the
sense seeds. We eliminate the candidates which
have less than 5 co-occurrences with the sense cat-
egories.

3.3.2 Normalized Pointwise Mutual
Information

For the co-occurrence analysis of the candidate
words and seeds, we use pointwise mutual in-
formation (PMI), which is simply a measure of

5http://www.ldc.upenn.edu/Catalog/
catalogEntry.jsp?catalogId=LDC2011T07

association between the probability of the co-
occurrence of two events and their individual prob-
abilities when they are assumed to be independent
(Church and Hanks, 1990). PMI can be exploited
as a semantic similarity measure (Han et al., 2013)
and it is calculated as:

PMI(x, y) = log
[

p(x, y)
p(x)p(y)

]
(1)

To calculate the PMI value of a candidate word
and a specific sense, we consider p(x) as the proba-
bility of the candidate word to occur in the corpus.
Therefore, p(x) is calculated as p(x) = c(x)/N ,
where c(x) is the total count of the occurrences of
the candidate word x in the corpus and N is the to-
tal co-occurrence count of all words in the corpus.
Similarly, we calculate p(y) as the total occurrence
count of all the seeds for the sense considered (y).
p(y) can thus be formulated as c(y)/N . p(x,y) is
the probability of the co-occurrence of a candidate
word x with a sense event y.
Amajor shortcoming of PMI is its sensitivity for

low frequency data (Bouma, 2009). As one pos-
sible solution, the author introduces Normalized
PointwiseMutual Information (NPMI), which nor-
malizes the PMI values to the range (-1, +1) with
the following formula:

NPMI(x, y) =
PMI(x, y)
− log p(x, y)

(2)

We adopt the proposed solution and calculate
NPMI values for each candidate word and five
sense events in the corpus. Sensicon covers 22,684
lemma-POS pairs and a score for each sense class
that denotes their association degrees.

4 Evaluation

To evaluate the performance of the sensorial clas-
sification and the quality of Sensicon, we first cre-
ated a gold standard with the help of a crowdsourc-
ing task. Then, we compared the decisions com-
ing from Sensicon against the gold standard. In
this section, we explain the annotation process that
we conducted and the evaluation technique that we
adopted in detail. We also provide a brief discus-
sion about the obtained results.

4.1 Crowdsourcing to Build a Gold Standard
The evaluation phase of Sensicon requires a gold
standard data to be able to conduct a meaningful
assessment. Since to our best knowledge there is
no resource with sensory associations of words or
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Sight Hearing Taste Smell Touch Micro-average
It# P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

1 .873 .506 .640 .893 .607 .723 .716 .983 .828 .900 .273 .419 .759 .320 .451 .780 .754 .729
2 .666 .890 .762 .829 .414 .552 .869 .929 .898 .746 .473 .579 .714 .439 .543 .791 .787 .772
3 .643 .878 .742 .863 .390 .538 .891 .909 .900 .667 .525 .588 .720 .482 .578 .796 .786 .776
4 .641 .869 .738 .832 .400 .540 .866 .888 .877 .704 .500 .585 .736 .477 .579 .784 .774 .765
5 .640 .869 .737 .832 .400 .540 .866 .888 .877 .704 .500 .585 .738 .474 .578 .784 .774 .764

Final .805 .827 .816 .840 .408 .549 .814 .942 .873 .685 .534 .600 .760 .582 .659 .800 .802 .790

Table 1: Bootstrapping cycles with validation results.

majority class 3 4 5 6 7 8 9 10

word 0 0.98 3.84 9.96 11.63 16.66 34.41 12.42
sentence 0.58 2.35 7.07 10.91 13.27 15.63 21.23 16.51

Table 2: Percentage of words and sentences in each majority class.

sentences, we designed our own annotation task
using the crowdsourcing service of CrowdFlower.
For the annotation task, we first compiled a col-
lection of sentences to be annotated. Then, we de-
signed two questions that the annotators were ex-
pected to answer for a given sentence. While the
first question is related to the sense association of a
whole sentence, the second asks the annotators to
collect a fine-grained gold standard for word-sense
associations.
We collected a dataset of 340 sentences consist-

ing of 300 advertisement slogans from 11 adver-
tisement categories (e.g., fashion, food, electron-
ics) and 40 story sentences from a story corpus. We
collected the slogans from various online resources
such as http://slogans.wikia.com/wiki and
http://www.adslogans.co.uk/. The story
corpus is generated as part of a dissertation re-
search (Alm, 2008) and it provides stories as a col-
lection of sentences.
In both resources, we first determined the can-

didate sentences that had at least five tokens and
contained at least one adjective, verb or noun. In
addition, we replaced the brand names in the ad-
vertisement slogans with X to prevent any bias.
For instance, the name of a well-known restaurant
in a slogan might cause a bias towards taste. Fi-
nally, the slogans used in the annotation task were
chosen randomly among the candidate sentences
by considering a balanced number of slogans from
each category. Similarly, 40 story sentences were
selected randomly among the candidate story sen-
tences. To give a more concrete idea, for our
dataset we obtained an advertisement slogan such
as “X’s Sugar Frosted Flakes They’re Great!” or a
story sentence such as “The ground is frozen, and
besides the snow has covered everything.”

In the crowdsourcing task we designed, the an-
notators were required to answer 2 questions for
a given sentence. In the first question, they were
asked to detect the human senses conveyed or di-
rectly described by a given sentence. To exemplify
these cases, we provided two examples such as “I
saw the cat” that directly mentions the action of
seeing and “The sun was shining on the blue wa-
ter.” that conveys the sense of sight by using vi-
sual descriptions or elements like “blue” or “shine”
which are notable for their visual properties. The
annotators were able to select more than one sense
for each sentence and together with the five senses
we provided another option as None which should
be selected when an annotator could not associate
a sentence with any sense. The second question
was devoted do determining word-sense associa-
tions. Here, the annotators were expected to asso-
ciate the words in each sentence with at least one
sense. Again, annotators could choose None for
every word that they could not confidently asso-
ciate with a sense.
The reliability of the annotators was evaluated

on the basis of 20 control sentences which were
highly associated with a specific sense and which
included at least one sensorial word. For instance,
for the control sentence “The skin you love to
touch”, we only considered as reliable the anno-
tators who associated the sentence with touch and
the word touch with the sense touch6. Similarly,
for the slogan “The most colourful name in cos-
metics.”, an annotator was expected to associate
the sentence with at least the sense sight and the
word colorful to at least the sense sight. The raters
who scored at least 70% accuracy on average on

6If the annotators gave additional answers to the expected
ones, we considered their answers as correct.
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the control questions for the two tasks were con-
sidered to be reliable. Each unit was annotated by
at least 10 reliable raters.
Similarly to Mohammad (2011) and Özbal et al.

(2011), we calculated the majority class of each
annotated item to measure the agreement among
the annotators. Table 2 demonstrates the observed
agreement at both word and sentence level. Since
10 annotators participated in the task, the annota-
tions with a majority class greater than 5 can be
considered as reliable (Özbal et al., 2011). In-
deed, for 85.10% of the word annotations the ab-
solute majority agreed on the same decision, while
77.58% of the annotations in the sentence level
have majority class greater than 5. The high agree-
ment observed among the annotators in both cases
confirms the quality of the resulting gold standard
data.
In Table 3, we present the results of the anno-

tation task by providing the association percent-
age of each category with each sense, namely sight
(Si), hear (He), taste (Ta), smell (Sm) and touch
(To). As demonstrated in the table, while the sense
of sight can be observed in almost every advertise-
ment category and in story, smell and taste are very
rare. We observe that the story sentences invoke all
sensory modalities except taste, although the per-
centage of sentences annotated with smell is rela-
tively low. Similarly, personal care category has
an association with four of the senses while the
other categories have either very low or no asso-
ciation with some of the sense classes. Indeed, the
perceived sensorial effects in the sentences vary
according to the category such that the slogans in
the travel category are highly associated with sight
whereas the communication category is highly as-
sociated with hearing. While the connection of the
food and beverages categories with taste is very
high as expected, they have no association with the
sense of smell. This kind of analysis could be use-
ful for copywriters to decide which sensorymodal-
ities to invoke while creating a slogan for a specific
product category.

4.2 Evaluation Measures

Based on the annotation results of our crowdsourc-
ing task, we propose an evaluation technique con-
sidering that a lemma-POS or a sentence might be
associated with more than one sensory modalities.
Similar to the evaluation framework defined by
Özbal et al. (2011), we adapt the evaluation mea-
sures of SemEval-2007 English Lexical Substitu-
tion Task (McCarthy and Navigli, 2007), where

Category Si He Ta Sm To

personal care 49.36 10.75 0.00 13.29 26.58
travel 58.18 0.00 29.09 0.00 12.72
fashion 43.47 0.00 0.00 26.08 30.43
beauty 84.56 0.00 0.00 0.00 15.43
computing 32.25 59.13 0.00 0.00 8.60
food 0.00 5.46 94.53 0.00 0.00
beverages 22.68 0.00 59.79 0.00 17.52
communications 25.00 67.50 0.00 0.00 0.075
electronics 45.94 54.05 0.00 0.00 0.00
education 28.57 42.85 0.00 0.00 28.57
transport 61.81 38.18 0.00 0.00 0.00

story 58.37 20.81 0.00 7.23 13.57

Table 3: The categories of the annotated data and
their sense association percentages.

a system generates one or more possible substitu-
tions for a target word in a sentence preserving its
meaning.

For a given lemma-POS or a sentence, which
we will name as item in the rest of the section, we
allow our system to provide as many sensorial as-
sociations as it determines by using a specific lex-
icon. While evaluating a sense-item association of
a method, a best and an oot score are calculated by
considering the number of the annotators who as-
sociate that sense with the given item, the number
of the annotators who associate any sense with the
given item and the number of the senses the sys-
tem gives as an answer for that item. More specif-
ically, best scoring provides a credit for the best
answer for a given item by dividing it to the num-
ber of the answers of the system. oot scoring, on
the other hand, considers only a certain number of
system answers for a given item and does not di-
vide the credit to the total number of the answers.
Unlike the lexical substitution task, a limited set
of labels (i.e., 5 sense labels and none) are allowed
for the sensorial annotation of sentences or lemma-
POS pairs. For this reason, we reformulate out-of-
ten (oot) scoring used by McCarthy and Navigli
(2007) as out-of-two.

In Equation 3, best score for a given item i from
the set of items I, which consists of the items an-
notated with a specific sense by a majority of 5
annotators, is formulated where Hi is the multiset
of gold standard sense associations for item i and
Si is the set of sense associations provided by the
system. oot scoring, as formulated in Equation 4,
accepts up to 2 sense associations s from the an-
swers of system Si for a given item i and the credit
is not divided by the number of the answers of the
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system.

best (i) =

∑
s∈Si

freq (s ∈ Hi)
|Hi| · |Si| (3)

oot (i) =

∑
s∈Si

freq (s ∈ Hi)
|Hi| (4)

As formulated in Equation 5, to calculate the
precision of an item-sense association task with a
specific method, the sum of the scores (i.e., best
or oot) for each item is divided by the number of
items A, for which the method can provide an an-
swer. In recall, the denominator is the number of
the items in the gold standard for which an answer
is given by the annotators.

P =
∑

i∈A scorei

|A| R =
∑

i∈I scorei

|I| (5)

4.3 Evaluation Method
For the evaluation, we compare the accuracy of
a simple classifier based on Sensicon against two
baselines on a sense classification task both at
word and sentence level. To achieve that, we use
the gold standard that we obtain from the crowd-
sourcing task and the evaluation measures best and
oot. The lexicon-based classifier simply assigns
to each word in a sentence the sense values found
in the lexicon. The first baseline assigns the most
frequently annotated sensory modality, which is
sight, via crowdsourcing task with a float value of
1.0 to each lemma-POS pair in the sensorial lexi-
con. The second baseline instead builds the associ-
ations by using a Latent Semantic Analysis space
generated from the same subset of LDC that we ex-
ploit for constructing Sensicon. More specifically,
this baseline calculates the LSA similarities be-
tween each candidate lemma-POS pair and sense
class by taking the cosine similarity between the
vector of the target lemma-POS pair and the aver-
age of the vectors of the related sensory word (i.e.,
see, hear, touch, taste, and smell) for each possi-
ble POS tag. For instance, to get the association
score of a lemma-POS pair with the sense sight,
we first average the vectors of see (noun) and see
(verb) before calculating its cosine similarity with
the target lemma-POS pair.
For the first experiment, i.e., word-sense as-

sociation, we automatically associate the lemma-
POS pairs obtained from the annotated dataset with
senses by using i) Sensicon, ii) the most-frequent-
sense baseline (MFS), iii) the LSA baseline. To

achieve that, we lemmatize and POS tag each sen-
tence in the dataset by using Stanford Core NLP.
In the end, for each method and target word, we
obtain a list of senses sorted according to their
sensorial association values in decreasing order.
It is worth noting that we only consider the non-
negative sensorial associations for Sensicon and
both baselines. For instance, Sensicon associates
the noun wine with [smell, taste, sight]. In this
experiment, best scoring considers the associated
senses as the best answer, smell, taste, sight ac-
cording to the previous example, and calculates a
score with respect to the best answer in the gold
standard and the number of the senses in this an-
swer. Instead, oot scoring takes the first two an-
swers, smell and taste according to the previous
example, and assigns the score accordingly.
To determine the senses associated with a sen-

tence for the second experiment, we use a method
similar to the one proposed by Turney (2002). For
each sense, we simply calculate the average score
of the lemma-POS pairs in a sentence. We set a
threshold value of 0 to decide whether a sentence
is associated with a given sense. In this manner,
we obtain a sorted list of average sensory scores
for each sentence according to the three methods.
For instance, the classifier based on Sensicon as-
sociates the sentence Smash it to pieces, love it to
bits. with [touch, taste]. For the best score, only
touch would be considered, whereas oot would
consider both touch and taste.

4.4 Evaluation Results

In Table 4, we list the F1 values that we obtained
with the classifier using Sensicon and the two base-
lines (MFS and LSA) according to both best and
oot measures. In addition, we provide the perfor-
mance of Sensicon in two preliminary steps, before
bootstrapping (BB) and after bootstrapping (AB)
to observe the incremental progress of the lexicon
construction method. As can be observed from the
table, the best performance for both experiments is
achieved by Sensicon when compared against the
baselines.
While in the first experiment the lexicon gen-

erated after the bootstrapping step (AB) provides
a very similar performance to the final lexicon
according to the best measure, it can only build
sense associations for 69 lemmas out of 153 ap-
pearing in the gold standard. Instead, the final lex-
icon attempts to resolve 129 lemma-sense associa-
tions and results in a better recall value. Addition-
ally, AB yields a very high precision as expected,
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since it is created by a controlled semantical ex-
pansion from manually annotated sensorial words.
BB lexicon includes only 573 lemmas which are
collected from 277 synsets and we can not ob-
tain 2 sense association scores for oot in this lexi-
con since each lemma is associated with only one
sense with a value of 1. The LSA baseline yields
a very low performance in the best measure due to
its tendency to derive positive values for all sen-
sorial associations of a given lemma-POS tuple.
Another observed shortcoming of LSA is its fail-
ure to correlate the names of the colors with sight
while this association is explicit for the annotators.
On the other hand, LSA baseline significantly im-
proves the MFS baseline with a p-value of 0.0009
in oot measures. This result points out that even
though LSA provides very similar positive asso-
ciation values for almost all the sensory modali-
ties for a given item, the first two sensorial asso-
ciations with the highest values yield a better per-
formance on guessing the sensorial characteristics
of a lemma-POS. Nevertheless, Sensicon signifi-
cantly outperforms the LSA baseline in both best
and oot measures with the p-values of 0.0009 and
0.0189 respectively. The statistical significance
tests are conducted using one-sided bootstrap re-
sampling (Efron and Tibshirani, 1994).
Concerning the sentence classification experi-

ment, the classifier using Sensicon yields the high-
est performance in both measures. The very high
F1 value obtained with the oot scoring indicates
that the right answer for a sentence is included
in the first two decisions in many cases. Sensi-
con significantly outperforms the LSA baseline on
the best measure (p-value = 0.0069). On the other
hand, when systems are allowed to provide two an-
swers (oot), the performance of LSA comes close
to Sensicon in terms of F1 measure.
After the manual analysis of Sensicon and gold

standard data, we observe that the sensorial clas-
sification task could be nontrivial. For instance, a
story sentence “He went to sleep again and snored
until the windows shook.” has been most fre-
quently annotated as hearing. While the sensorial-
lexicon classifier associates this sentence with
touch as the best answer, it can provide the cor-
rect association hearing as the second best answer.
To find out the best sensorial association for a sen-
tence, a classification method which exploits var-
ious aspects of sensorial elements in a sentence,
such as the number of sensorial words or their de-
pendencies, could be a better approach than using
only the average sensorial values.

Lemma Sentence
Model best oot best oot
Most-Frequent-Sense 33.33 33.33 38.90 38.90
LSA 18.80 70.38 53.44 76.51

Lexicon-BB 45.22 45.22 49.60 51.12
Lexicon-AB 55.85 55.85 59.89 63.21
Sensicon 55.86 80.13 69.76 80.73

Table 4: Evaluation results.

Based on our observations of the error cases,
we believe that synaesthesia, which is one of the
most common metaphoric transfers in language
(Williams, 1976), should be further explored for
sense classification. As an example observation,
the advertisement slogan “100% pure squeezed
sunshine” is associated with touch as the best an-
swer by Sensicon and taste by LSA baseline while
it is most frequently annotated as sight in the
gold standard. This slogan is an example usage
of synaesthesia and metaphors in advertising lan-
guage. To clarify, a product from the category of
beverages, which might be assumed to have a taste
association, is described by a metaphorical substi-
tution of a taste-related noun, most probably the
name of a fruit, with a sight-related noun; sun-
shine. This metaphorical substitution, then used
as the object of a touch-related verb, to squeeze,
produces a synaesthetic expression with touch and
sight.

5 Conclusion

In this paper we have presented the construction
of Sensicon, a sensorial lexicon, which associates
words with sensory modalities. This novel aspect
of word semantics is captured by employing a two-
step strategy. First, we collected seed words by
using a bootstrapping approach based on a set of
WordNet relations. Then, we performed a cor-
pus based statistical analysis to produce the final
lexicon. Sensicon consists of 22,684 lemma-POS
pairs and their association degrees with five sen-
sory modalities. To the best of our knowledge,
this is the first systematic attempt to build a sen-
sorial lexicon and we believe that our contribution
constitutes a valid starting point for the commu-
nity to consider sensorial information conveyed by
text as a feature for various tasks and applications.
The results that we obtain by comparing our lexi-
con against the gold standard and two baselines are
promising even though not conclusive. The results
confirm the soundness of the proposed approach
for the construction of the lexicon and the useful-
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ness of the resource for text classification and pos-
sibly other computational applications.
Sensicon is publicly available upon request to

the authors so that the community can benefit from
it for relevant tasks. From a resource point of
view, we would like to explore the effect of us-
ing different kinds of WordNet relations during
the bootstrapping phase. It would also be interest-
ing to experiment with relations provided by other
resources such as ConceptNet (Liu and Singh,
2004), which is a semantic network containing
common sense, cultural and scientific knowledge.
We would also like to use the sensorial lexicon for
various applicative scenarios such as slanting ex-
isting text towards a specific sense with text modi-
fication. We believe that our resource could be ex-
tremely useful for automatic content personaliza-
tion according to user profiles. As an example, one
can imagine a system that automatically replaces
hearing based expressions with sight based ones in
pieces of texts for a hearing-impaired person. Au-
tomating the task of building sensorial associations
could also be beneficial for various tasks that need
linguistic creativity. For instance, copywriters can
take advantage of a system detecting the sensorial
load of a piece of text to generate more appropri-
ate advertisement slogans for specific product cat-
egories. Finally, we plan to investigate the impact
of using sensory information for metaphor detec-
tion and interpretation based on our observations
during the evaluation. For instance, the synaes-
thetic metaphor bittersweet symphony could be de-
tected by determining the sensorial characteriza-
tions of its components.
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Abstract

Many forms of word relatedness have been
developed, providing different perspec-
tives on word similarity. We introduce
a Bayesian probabilistic tensor factoriza-
tion model for synthesizing a single word
vector representation and per-perspective
linear transformations from any number
of word similarity matrices. The result-
ing word vectors, when combined with the
per-perspective linear transformation, ap-
proximately recreate while also regulariz-
ing and generalizing, each word similarity
perspective.

Our method can combine manually cre-
ated semantic resources with neural word
embeddings to separate synonyms and
antonyms, and is capable of generaliz-
ing to words outside the vocabulary of
any particular perspective. We evaluated
the word embeddings with GRE antonym
questions, the result achieves the state-of-
the-art performance.

1 Introduction

In recent years, vector space models (VSMs)
have been proved successful in solving various
NLP tasks including named entity recognition,
part-of-speech tagging, parsing, semantic role-
labeling and answering synonym or analogy ques-
tions (Turney et al., 2010; Collobert et al., 2011).
Also, VSMs are reported performing well on
tasks involving the measurement of word related-
ness (Turney et al., 2010). Many existing works
are distributional models, based on the Distribu-
tional Hypothesis, that words occurring in simi-
lar contexts tend to have similar meanings (Har-
ris, 1954). The limitation is that word vectors de-
veloped from distributional models cannot reveal
word relatedness if its information does not lie in

word distributions. For instance, they are believed
to have difficulty distinguishing antonyms from
synonyms, because the distribution of antonymous
words are close, since the context of antonymous
words are always similar to each other (Moham-
mad et al., 2013). Although some research claims
that in certain conditions there do exist differ-
ences between the contexts of different antony-
mous words (Scheible et al., 2013), the differences
are subtle enough that it can hardly be detected by
such language models, especially for rare words.

Another important class of lexical resource for
word relatedness is a lexicon, such as Word-
Net (Miller, 1995) or Roget’s Thesaurus (Kipfer,
2009). Manually producing or extending lexi-
cons is much more labor intensive than generat-
ing VSM word vectors using a corpus. Thus, lex-
icons are sparse with missing words and multi-
word terms as well as missing relationships be-
tween words. Considering the synonym / antonym
perspective as an example, WordNet answers less
than 40% percent of the the GRE antonym ques-
tions provided by Mohammad et al. (2008) di-
rectly. Moreover, binary entries in lexicons do not
indicate the degree of relatedness, such as the de-
gree of lexical contrast between happy and sad or
happy and depressed. The lack of such informa-
tion makes it less fruitful when adopted in NLP
applications.

In this work, we propose a Bayesian tensor fac-
torization model (BPTF) for synthesizing a com-
posite word vector representation by combining
multiple different sources of word relatedness.
The input is a set of word by word matrices, which
may be sparse, providing a number indicating the
presence or degree of relatedness. We treat word
relatedness matrices from different perspectives as
slices, forming a word relatedness tensor. Then the
composite word vectors can be efficiently obtained
by performing BPTF. Furthermore, given any two
words and any trained relatedness perspective, we
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can create or recreate the pair-wise word related-
ness with regularization via per-perspective linear
transformation.

This method allows one set of word vectors to
represent word relatednesses from many different
perspectives (e.g. LSA for topic relatedness / cor-
pus occurrences, ISA relation and YAGO type) It
is able to bring the advantages from both word re-
latedness calculated by distributional models, and
manually created lexicons, since the former have
much more vocabulary coverage and many varia-
tions, while the latter covers word relatedness that
is hard to detect by distributional models. We can
use information from distributional perspectives to
create (if does not exist) or re-create (with regular-
ization) word relatedness from the lexicon’s per-
spective.

We evaluate our model on distinguishing syn-
onyms and antonyms. There are a number of re-
lated works (Lin and Zhao, 2003; Turney, 2008;
Mohammad et al., 2008; Mohammad et al., 2013;
Yih et al., 2012; Chang et al., 2013). A number of
sophisticated methods have been applied, produc-
ing competitive results using diverse approaches.
We use the GRE antonym questions (Mohammad
et al., 2008) as a benchmark, and answer these
questions by finding the most contrasting choice
according to the created or recreated synonym /
antonym word relatedness. The result achieves
state-of-the-art performance.

The rest of this paper is organized as fol-
lows. Section 2 describes the related work of
word vector representations, the BPTF model and
antonymy detection. Section 3 presents our BPTF
model and the sampling method. Section 4 shows
the experimental evaluation and results with Sec-
tion 5 providing conclusion and future work.

2 Related Work

2.1 Word Vector Representations

Vector space models of semantics have a long his-
tory as part of NLP technologies. One widely-
used method is deriving word vectors using la-
tent semantic analysis (LSA) (Deerwester et al.,
1990), for measuring word similarities. This pro-
vides a topic based perspective on word simi-
larity. In recent years, neural word embeddings
have proved very effective in improving various
NLP tasks (e.g. part-of-speech tagging, chunking,
named entity recognition and semantic role label-
ing) (Collobert et al., 2011). The proposed neural

models have a large number of variations, such as
feed-forward networks (Bengio et al., 2003), hi-
erarchical models (Mnih and Hinton, 2008), re-
current neural networks (Mikolov, 2012), and re-
cursive neural networks (Socher et al., 2011).
Mikolov et al. (2013) reported their vector-space
word representation is able to reveal linguistic
regularities and composite semantics using sim-
ple vector addition and subtraction. For example,
“King−Man+Woman” results in a vector very
close to “Queen”. Luong et al. (2013) proposed
a recursive neural networks model incorporating
morphological structure, and has better perfor-
mance for rare words.

Some non-VSM models1 also generate word
vector representations. Yih et al. (2012) apply po-
larity inducing latent semantic analysis (PILSA)
to a thesaurus to derive the embedding of words.
They treat each entry of a thesaurus as a docu-
ment giving synonyms positive term counts, and
antonyms negative term counts, and preform LSA
on the signed TF-IDF matrix In this way, syn-
onyms will have cosine similarities close to one
and antonyms close to minus one.

Chang et al. (2013) further introduced Multi-
Relational LSA (MRLSA), as as extension of
LSA, that performs Tucker decomposition over a
three-way tensor consisting of multiple relations
(document-term like matrix) between words as
slices, to capture lexical semantics. The purposes
of MRLSA and our model are similar, but the dif-
ferent factorization techniques offer different ad-
vantages. In MRLSA, the k-th slice of tensor W
is approximated by

W:,:,k ≈ X:,:,k = US:,:,kVT ,

where U and V are both for the same word list
but are not guaranteed (or necessarily desired) to
be the same. Thus, this model has the ability to
capture asymmetric relations, but this flexibility is
a detriment for symmetric relatedness. In order to
expand word relatedness coverage, MRLSA needs
to choose a pivot slice (e.g. the synonym slice),
thus there always must existence such a slice, and
the model performance depends on the quality of
this pivot slice. Also, while non-completeness is
a pervasive issue in manually created lexicons,
MRLSA is not flexible enough to treat the un-
known entries as missing. Instead it just sets them

1As defined by Turney et al. (2010), VSM must be derived
from event frequencies.
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to zero at the beginning and uses the pivot slice
to re-calculate them. In contrast, our method of
BPTF is well suited to symmetric relations with
many unknown relatedness entries.

2.2 BPTF Model
Salakhutdinov and Mnih (2008) introduced a
Bayesian Probabilistic Matrix Factorization
(BPMF) model as a collaborative filtering algo-
rithm. Xiong et al. (2010) proposed a Bayesian
Probabilistic Tensor Factorization (BPTF) model
which further extended the original model to
incorporate temporal factors. They modeled latent
feature vector for users and items, both can be
trained efficiently using Markov chain Monte
Carlo methods, and they obtained competitive
results when applying their models on real-world
recommendation data sets.

2.3 Antonomy Detection
There are a number of previous works in detect-
ing antonymy. Lin and Zhao (2003) identifies
antonyms by looking for pre-identified phrases in
corpus datasets. Turney (2008) proposed a su-
pervised classification method for handling analo-
gies, then apply it to antonyms by transforming
antonym pairs into analogy relations. Mohammad
et al. (Mohammad et al., 2008; Mohammad et
al., 2013) proposed empirical approaches consid-
ering corpus co-occurrence statistics and the struc-
ture of a published thesaurus. Based on the as-
sumption that the strongly related words of two
words in a contrasting pair are also often antony-
mous, they use affix patterns (e.g. “un-”, “in-” and
“im-”) and a thesaurus as seed sets to add con-
trast links between word categories. Their best
performance is achieved by further manually an-
notating contrasting adjacent categories. This ap-
proach relies on the Contrast Hypothesis, which
will increase false positives even with a carefully
designed methodology. Furthermore, while this
approach can expand contrast relationships in a
lexicon, out-of-vocabulary words still pose a sub-
stancial challenge.

Yih et al. (2012) and Chang et al. (2013) also
applied their vectors on antonymy detection, and
Yih et al. achieves the state-of-the-art performance
in answering GRE antonym questions. In addition
to the word vectors generated from PILSA, they
use morphology and k-nearest neighbors from dis-
tributional word vector spaces to derive the em-
beddings for out-of-vocabulary words. The latter

is problematic since both synonyms and antonyms
are distributionally similar. Their approach is two
stage: polarity inducing LSA from a manually
created thesaurus, then falling back to morphol-
ogy and distributional similarity when the lexicon
lacks coverage. In contrast, we focus on fusing
the information from thesauruses and automati-
cally induced word relatedness measures during
the word vector space creation. Then prediction
is done in a single stage, from the latent vectors
capturing all word relatedness perspectives and the
appropriate per-perspective transformation vector.

3 Methods

3.1 The Bayesian Probabilistic Tensor
Factorization Model

Our model is a variation of the BPMF model
(Salakhutdinov and Mnih, 2008), and is similar
to the temporal BPTF model (Xiong et al., 2010).
To model word relatedness from multiple perspec-
tives, we denote the relatedness between word i
and word j from perspective k as Rkij . Then we
can organize these similarities to form a three-way
tensor R ∈ RN×N×K .

Table 1 shows an example, the first slice of the
tensor is a N × N matrix consists of 1/-1 corre-
sponding to the synonym/antonym entries in the
Roget’s thesaurus, and the second slice is aN×N
matrix consists of the cosine similarity from neural
word embeddings created by Luong et al. (2013),
where N is the number of words in the vocabu-
lary. Note that in our model the entries missing
in Table 1a do not necessarily need to be treated
as zero. Here we use the indicator variable Ikij
to denote if the entry Rkij exists (Ikij = 1) or not
(Ikij = 0). If K = 1, the BPTF model becomes to
BPMF. Hence the key difference between BPTF
and BPMF is that the former combines multi-
ple complementary word relatedness perspectives,
while the later only smooths and generalizes over
one.

We assume the relatedness Rkij to be Gaussian,
and can be expressed as the inner-product of three
D-dimensional latent vectors:

Rkij |Vi, Vj , Pk ∼ N (< Vi, Vj , Pk >,α
−1),

where< ·, ·, · > is a generalization of dot product:

< Vi, Vj , Pk >≡
D∑
d=1

V
(d)
i V

(d)
j P

(d)
k ,
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happy joyful lucky sad depressed
happy 1 1 -1 -1
joyful 1 -1
lucky 1 -1
sad -1 -1 -1 1

depressed -1 1

(a) The first slice: synonym & antonym relatedness

happy joyful lucky sad depressed
happy .03 .61 .65 .13
joyful .03 .25 .18 .23
lucky .61 .25 .56 .31
sad .65 .18 .56 -.01

depressed .13 .23 .31 -.01

(b) The second slice: distributional similarity

Table 1: Word Relatedness Tensor

and α is the precision, the reciprocal of the vari-
ance. Vi and Vj are the latent vectors of word i and
word j, and Pk is the latent vector for perspective
k.

We follow a Bayesian approach, adding Gaus-
sian priors to the variables:

Vi ∼ N (µV ,Λ−1
V ),

Pi ∼ N (µP ,Λ−1
P ),

where µV and µP are D dimensional vectors and
ΛV and ΛP are D-by-D precision matrices.

Furthermore, we model the prior distribution of
hyper-parameters as conjugate priors (following
the model by (Xiong et al., 2010)):

p(α) =W(α|Ŵ0, ν0),

p(µV ,ΛV ) = N (µV |µ0, (β0ΛV )−1)W(ΛV |W0, ν0),

p(µP ,ΛP ) = N (µP |µ0, (β0ΛP )−1)W(ΛP |W0, ν0),

where W(W0, ν0) is the Wishart distribution of
degree of freedom ν and a D-by-D scale matrix
W , and Ŵ0 is a 1-by-1 scale matrix for α. The
graphical model is shown in Figure 1 (with β0 set
to 1). After choosing the hyper-priors, the only re-
maining parameter to tune is the dimension of the
latent vectors.

Due to the existence of prior distributions, our
model can capture the correlation between dif-
ferent perspectives during the factorization stage,
then create or re-create word relatedness using this
correlation for regularization and generalization.
This advantage is especially useful when such cor-
relation is too subtle to be captured by other meth-
ods. On the other hand, if perspectives (let’s say k
and l) are actually unrelated, our model can handle
it as well by making Pk and Pl orthogonal to each
other.

3.2 Inference
To avoid calculating intractable distributions, we
use a numerical method to approximate the re-
sults. Here we use the Gibbs sampling algorithm

Rk
ij

PkµP

ΛP

µ0

W0, ν0

α

Vi Vj

ΛV µVW0, ν0 µ0

· · · · · ·· · ·

k = 1, ..., K

Ik
i,j = 1

i 6= j

i, j = 1, ..., N

Figure 1: The graphical model for BPTF.

to perform the Markov chain Monte Carlo method.
When sampling a block of parameters, all other
parameters are fixed, and this procedure is re-
peated many times until convergence. The sam-
pling algorithm is shown in Algorithm 1.

With conjugate priors, and assuming Iki,i =
0, ∀i, k (we do not consider a word’s relatedness
to itself), the posterior distributions for each block
of parameters are:

p(α|R,V,P) =W(Ŵ0
∗
, ν̂0
∗) (1)

Where:

ν̂∗0 = ν̂0 +
2∑
k=1

N∑
i,j=1

Ikij ,

(Ŵ ∗0 )−1 = Ŵ−1
0 +

2∑
k=1

N∑
i,j=1

Ikij(R
k
ij− < Vi, Vj , Pk >)2
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p(µV ,ΛV |V) = N (µV |µ∗0, (β∗0ΛV )−1)W(ΛV |W ∗0 , ν∗0 )
(2)

Where:

µ∗0 =
β0µ0 +NV̄

β0 +N
, β∗0 = β0 +N, ν∗0 = ν0 +N,

(W ∗0 )−1 = W−1
0 +NS̄ +

β0N

β0 +N
(µ0 − V̄ )(µ0 − V̄ )T ,

V̄ =
1

N

N∑
i=1

Vi, S̄ =
1

N

N∑
i=1

(Vi − V̄ )(Vi − V̄ )T

p(µP ,ΛP |P) = N (µP |µ∗0, (β∗0ΛP )−1)W(ΛP |W ∗0 , ν∗0 )
(3)

Which has the same form as p(µV ,ΛV |V).

p(Vi|R,V¬i,P, µV ,ΛV , α) = N (µ∗i , (Λ
∗
i )
−1) (4)

Where:

µ∗i = (Λ∗i )
−1(ΛV µV + α

2∑
k=1

N∑
j=1

IkijR
k
ijQjk),

Λ∗i = ΛV + α

2∑
k=1

N∑
j=1

IkijQjkQ
T
jk,

Qjk = Vj � Pk
� is the element-wise product.

p(Pi|R,V,P¬i, µP ,ΛP , α) = N (µ∗i , (Λ
∗
i )
−1) (5)

Where:

µ∗k = (Λ∗k)−1(ΛPµP + α

N∑
i,j=1

IkijR
k
ijXij),

Λ∗k = ΛP + α

N∑
i,j=1

IkijXijX
T
ij ,

Xij = Vi � Vj

The influence each perspective k has on the la-
tent word vectors is roughly propotional to the
number of non-empty entries nk =

∑
i,j I

k
i,j . If

one wants to adjust the weight of each slices, this
can easily achieved by adjusting (e.g. down sam-
pling) the number of entries of each slice sampled
at each iteration.

3.2.1 Out-of-Vocabulary words
It often occurs that some of the perspectives have
greater word coverage than the others. For ex-
ample, hand-labeled word relatedness usually has
much less coverage than automatically acquired
similarities. Of course, it is typically for the hand-
labeled perspectives that the generalization is most

Algorithm 1 Gibbs Sampling for BPTF
Initialize the parameters.
repeat

Sample the hyper-parameters α, µV , ΛV , µP ,
ΛP (Equation 1, 2, 3)
for i = 1 to N do

Sample Vi (Equation 4)
end for
for k = 1 to 2 do

Sample Pk (Equation 5)
end for

until convergence

desired. In this situation, our model can generalize
word relatedness for the sparse perspective. For
example, assume perspective k has larger vocabu-
lary coverageNk, while perspective l has a smaller
coverage Nl.

There are two options for using the high vocab-
ulary word relation matrix to generalize over the
perspective with lower coverage. The most direct
way simply considers the larger vocabulary in the
BPTF R ∈ RNk×Nk×K directly. A more efficient
method trains on a tensor using the smaller vocab-
ulary R ∈ RNl×Nl×K , then samples the Nk −Nl

word vectors using Equation 4.

3.3 Predictions
With MCMC method, we can approximate the
word relatedness distribution easily by averaging
over a number of samples (instead of calculating
intractable marginal distribution):

p(R̂kij |R) ≈ 1
M

M∑
m=1

p(R̂kij |V m
i , V m

j , Pmk , α
m),

wherem indicate parameters sampled from differ-
ent sampling iterations.

3.4 Scalability
The time complexity of training our model is
roughly O(n×D2), where n is the number of ob-
served entries in the tensor. If one is only inter-
ested in creating and re-creating word relatedness
of one single slice rather than synthesizing word
vectors, then entries in other slices can be down-
sampled at every iteration to reduce the training
time. In our model, the vector length D is not
sensitive and does not necessarily need to be very
long. Xiong et al. (2010) reported in their collab-
orative filtering experiment D = 10 usually gives
satisfactory performance.
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4 Experimental Evaluation

In this section, we evaluate our model by answer-
ing antonym questions. This task is especially
suitable for evaluating our model since the perfor-
mance of straight-forward look-up from the the-
sauruses we considered is poor. There are two ma-
jor limitations:

1. The thesaurus usually only contains antonym
information for word pairs with a strong con-
trast.

2. The vocabulary of the antonym entries in the
thesaurus is limited, and does not contain
many words in the antonym questions.

On the other hand, distributional similarities can
be trained from large corpora and hence have a
large coverage for words. This implies that we can
treat the thesaurus data as the first slice, and the
distributional similarities as the second slice, then
use our model to create / recreate word relatedness
on the first slice to answer antonym questions.

4.1 The GRE Antonym Questions

There are several publicly available test datasets
to measure the correctness of our word embed-
dings. In order to be able to compare with pre-
vious works, we follow the widely-used GRE test
dataset provided by (Mohammad et al., 2008),
which has a development set (consisting of 162
questions) and a test set (consisting of 950 ques-
tions). The GRE test is a good benchmark because
the words are relatively rare (19% of the words in
Mohammad’s test are not in the top 50,000 most
frequent words from Google Books (Goldberg and
Orwant, 2013)), thus it is hard to lookup answers
from a thesaurus directly with high recall. Below
is an example of the GRE antonym question:

adulterate: a. renounce b. forbid
c. purify d. criticize e. correct

The goal is to choose the most opposite word from
the target, here the correct answer is purify.

4.2 Data Resources

In our tensor model, the first slice (k = 1) con-
sists of synonyms and antonyms from public the-
sauruses, and the second slice (k = 2) consists of
cosine similarities from neural word embeddings
(example in Table 1)

4.2.1 Thesaurus
Two popular thesauruses used in other research are
the Macquarie Thesaurus and the Encarta The-
saurus. Unfortunately, their electronic versions
are not publicly available. In this work we use two
alternatives:

WordNet Words in WordNet (version 3.0) are
grouped into sense-disambiguated synonym sets
(synsets), and synsets have links between each
other to express conceptual relations. Previ-
ous works reported very different look-up perfor-
mance using WordNet (Mohammad et al., 2008;
Yih et al., 2012), we consider this difference
as different understanding of the WordNet struc-
ture. By extending “indirect antonyms” defined in
WordNet to nouns, verbs and adverbs that similar
words share the antonyms,we achieve a look-up
performance close to Yih et al. (2012). Using this
interpretation of WordNet synonym and antonym
structure we obtain a thesaurus containing 54,239
single-token words. Antonym entries are present
for 21,319 of them with 16.5 words per entry on
average, and 52,750 of them have synonym entries
with 11.7 words per entry on average.

Roget’s Only considering single-token words,
the Roget’s Thesaurus (Kipfer, 2009) contains
47,282 words. Antonym entries are present for
8,802 of them with 4.2 words per entry on av-
erage, and 22,575 of them have synonym entries
with 20.7 words per entry on average. Although
the Roget’s Thesaurus has a less coverage on both
vocabulary and antonym pairs, it has better look-
up precision in the GRE antonym questions.

4.2.2 Distributional Similarities
We use cosine similarity of the morphRNN word
representations2 provided by Luong et al. (2013)
as a distributional word relatedness perspective.
They used morphological structure in training re-
cursive neural networks and the learned mod-
els outperform previous works on word similarity
tasks, especially a task focused on rare words. The
vector space models were initialized from exist-
ing word embeddings trained on Wikipedia. We
use word embeddings adapted from Collobert et
al. (2011). This advantage complements the weak-
ness of the thesaurus perspective – that it has less
coverage on rare words. The word vector data con-
tains 138,218 words, and it covers 86.9% of the
words in the GRE antonym questions. Combining
the two perspectives, we can cover 99.8% of the
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Dev. Set Test Set
Prec. Rec. F1 Prec. Rec. F1

WordNet lookup 0.40 0.40 0.40 0.42 0.41 0.42
WordNet PILSA 0.63 0.62 0.62 0.60 0.60 0.60
WordNet MRLSA 0.66 0.65 0.65 0.61 0.59 0.60
Encarta lookup 0.65 0.61 0.63 0.61 0.56 0.59
Encarta PILSA 0.86 0.81 0.84 0.81 0.74 0.77
Encarta MRLSA 0.87 0.82 0.84 0.82 0.74 0.78
Encarta PILSA + S2Net + Emebed 0.88 0.87 0.87 0.81 0.80 0.81
W&E MRLSA 0.88 0.85 0.87 0.81 0.77 0.79
WordNet lookup* 0.93 0.32 0.48 0.95 0.33 0.49
WordNet lookup 0.48 0.44 0.46 0.46 0.43 0.44
WordNet BPTF 0.63 0.63 0.63 0.63 0.62 0.62
Roget lookup* 1.00 0.35 0.52 0.99 0.31 0.47
Roget lookup 0.61 0.44 0.51 0.55 0.39 0.45
Roget BPTF 0.80 0.80 0.80 0.76 0.75 0.76
W&R lookup* 1.00 0.48 0.64 0.98 0.45 0.62
W&R lookup 0.62 0.54 0.58 0.59 0.51 0.55
W&R BPMF 0.59 0.59 0.59 0.52 0.52 0.52
W&R BPTF 0.88 0.88 0.88 0.82 0.82 0.82

Table 2: Development and test results on the GRE antonym questions. *Note: to allow comparison, in
look-up we follow the approach used by (Yih et al., 2012): randomly guess an answer if the target word
is in the vocabulary while none of the choices are. Asterisk indicates the look-up results without random
guessing.

GRE antonym question words. Further using mor-
phology information from WordNet, the coverage
achieves 99.9%.

4.3 Tests

To answer the GRE questions, we calculateR1
ij for

word pair (i, j), where i is the target word and j
is one of the question’s candidates. The candidate
with the smallest similarity is then the predicted
answer. If a target word is missing in the vocabu-
lary, that question will not be answered, while if a
choice is missing, that choice will be ignored.

We first train on a tensor from a subset consist-
ing of words with antonym entries, then add all
other words using the out-of-vocabulary method
described in Section 3. During each iteration, ze-
ros are randomly added into the first slice to keep
the model from overfitting. In the meantime, the
second slice entries is randomly downsampled to
match the number of non-empty entries in the first
slice. This ensures each perspective has approxi-
mately equal influence on the latent word vectors.

We sample the parameters iteratively, and
choose the burn-in period and vector length D ac-

cording to the development set. We choose the
vector length D = 40, the burn-in period starting
from the 30th iterations, then averaging the relat-
edness over 200 runs. The hyper-priors used are
µ0 = 0, ν0 = ν̂0 = D, β0 = 1 and W0 = Ŵ0 = I
(not tuned). Note that Yih et al. (2012) use a vec-
tor length of 300, which means our embeddings
save considerable storage space and running time.
Our model usually takes less than 30 minutes to
meet the convergence criteria (on a machine with
an Intel Xeon E3-1230V2 @ 3.3GHz CPU ). In
contrast, the MRLSA requires about 3 hours for
tensor decomposition (Chang et al., 2013).

4.4 Results

The results are summarized in Table 2. We list the
results of previous works (Yih et al., 2012; Chang
et al., 2013) at the top of the table, where the
best performance is achieved by PILSA on Encarta
with further discriminative training and embed-
ding. For comparison, we adopt the standard first
used by (Mohammad et al., 2008), where preci-
sion is the number of questions answered correctly

2http://www-nlp.stanford.edu/ lmthang/morphoNLM/
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Figure 2: Convergence curves of BPMF and BPTF
in training the W&R dataset. MAE is the mean
absolute error over the synonym & antonym slice
in the training tensor.

divided by the number of questions answered. Re-
call is the number of questions answered correctly
divided by the total number of questions. BPMF
(Bayesian Probabilistic Matrix Factorization) re-
sult is derived by only keeping the synonym &
antonym slice in our BPTF model.

By using Roget’s and WordNet together, our
method increases the baseline look-up recall from
51% to 82% on the test set, while Yih’s method
increases the recall of Encarta from 56% to 80%.
This state-of-the-art performance is achieved with
the help of a neural network for fine tuning and
multiple schemes of out-of-vocabulary embed-
ding, while our method has inherent and straight-
forward “out-of-vocabulary embedding”. While
MRLSA, which has this character as well, only
has a recall 77% when combining WordNet and
Encarta together.

WordNet records less antonym relations for
nouns, verbs and adverbs, while the GRE antonym
questions has a large coverage of them. Al-
though by extending these antonym relations us-
ing the “indirect antonym” concept achieves better
look-up performance than Roget’s, in contrast, the
BPTF performance is actually much lower. This
implies Roget’s has better recording of antonym
relations. Mohammad et al. (2008) reproted a 23%
F-score look-up performance of WordNet which
support this claim as well. Combining WordNet
and Roget’s together can improve the look-up per-
formance further to 59% precision and 51% recall
(still not as good as Encarta look-up).

Notably, if we strictly follow our BPTF ap-
proach but only use the synonym & antonym slice
(i.e. a matrix factorization model instead of ten-

sor factorization model), this single-slice model
BPMF has performance that is only slightly bet-
ter than look-up. Meanwhile Figure 1 shows the
convergence curves of BPMF and BPTF. BPMF
actually has lower MAE after convergence. Such
behavior is caused by overfitting of BPMF on the
training data. While known entries were recreated
well, empty entries were not filled correctly. On
the other hand, note that although our BPTF model
has a higher MAE, it has much better performance
in answering the GRE antonym questions. We in-
terpret this as the regularization and generalization
effect from other slice(s). Instead of focusing on
one-slice training data, our model fills the missing
entries with the help of inter-slice relations.

We also experimented with a linear metric
learning method over the generated word vectors
(to learn a metric matrix A to measure the word
relatedness via V T

i AVj ) using L-BFGS. By op-
timizing the mean square error on the synonym
& antonym slice, we can reduce 8% of the mean
square error on a held out test set, and improve
the F-score by roughly 0.5% (of a single iteration).
Although this method doesn’t give a significant
improvement, it is general and has the potential
to boost the performance in other scenarios.

5 Conclusion

In this work, we propose a method to map words
into a metric space automatically using thesaurus
data, previous vector space models, or other word
relatedness matrices as input, which is capable
of handling out-of-vocabulary words of any par-
ticular perspective. This allows us to derive the
relatedness of any given word pair and any per-
spective by the embedded word vectors with per-
perspective linear transformation. We evaluated
the word embeddings with GRE antonym ques-
tions, and the result achieves the state-of-the-art
performance.

For future works, we will extend the model and
its applications in three main directions. First, in
this model we only use a three-way tensor with
two slices, while more relations may be able to
add into it directly. Possible additional perspec-
tive slices include LSA for topic relatedness, and
corpus occurrences in engineered or induced se-
mantic patterns.

Second, we will apply the method to other tasks
that require completing a word relatedness matrix.
We evaluated the performance of our model on
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creating / recreating one perspective of word re-
latedness: antonymy. Perhaps using vectors gen-
erated from many kinds of perspectives would im-
prove the performance on other NLP tasks, such
as term matching employed by textual entailment
and machine translation metrics.

Third, if our model does learn the relation be-
tween semantic similarities and distributional sim-
ilarities, there may be fruitful information con-
tained in the vectors Vi and Pk that can be ex-
plored. One straight-forward idea is that the dot
product of perspective vectors Pk · Pl should be a
measurement of correlation between perspectives.

Also, a straightforward adaptation of our model
has the potential ability to capture asymmet-
ric word relatedness as well, by using a per-
perspective matrix instead of vector for the asym-
metric slices (i.e. use V T

i AkVj instead of∑D
d=1 V

(d)
i P

(d)
k V

(d)
j for calculating word related-

ness, where Ak is a square matrix).
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Abstract

Recent methods for learning vector space
representations of words have succeeded
in capturing fine-grained semantic and
syntactic regularities using vector arith-
metic, but the origin of these regularities
has remained opaque. We analyze and
make explicit the model properties needed
for such regularities to emerge in word
vectors. The result is a new global log-
bilinear regression model that combines
the advantages of the two major model
families in the literature: global matrix
factorization and local context window
methods. Our model efficiently leverages
statistical information by training only on
the nonzero elements in a word-word co-
occurrence matrix, rather than on the en-
tire sparse matrix or on individual context
windows in a large corpus. The model pro-
duces a vector space with meaningful sub-
structure, as evidenced by its performance
of 75% on a recent word analogy task. It
also outperforms related models on simi-
larity tasks and named entity recognition.

1 Introduction

Semantic vector space models of language repre-
sent each word with a real-valued vector. These
vectors can be used as features in a variety of ap-
plications, such as information retrieval (Manning
et al., 2008), document classification (Sebastiani,
2002), question answering (Tellex et al., 2003),
named entity recognition (Turian et al., 2010), and
parsing (Socher et al., 2013).

Most word vector methods rely on the distance
or angle between pairs of word vectors as the pri-
mary method for evaluating the intrinsic quality
of such a set of word representations. Recently,
Mikolov et al. (2013c) introduced a new evalua-
tion scheme based on word analogies that probes

the finer structure of the word vector space by ex-
amining not the scalar distance between word vec-
tors, but rather their various dimensions of dif-
ference. For example, the analogy “king is to
queen as man is to woman” should be encoded
in the vector space by the vector equation king −
queen = man − woman. This evaluation scheme
favors models that produce dimensions of mean-
ing, thereby capturing the multi-clustering idea of
distributed representations (Bengio, 2009).

The two main model families for learning word
vectors are: 1) global matrix factorization meth-
ods, such as latent semantic analysis (LSA) (Deer-
wester et al., 1990) and 2) local context window
methods, such as the skip-gram model of Mikolov
et al. (2013c). Currently, both families suffer sig-
nificant drawbacks. While methods like LSA ef-
ficiently leverage statistical information, they do
relatively poorly on the word analogy task, indi-
cating a sub-optimal vector space structure. Meth-
ods like skip-gram may do better on the analogy
task, but they poorly utilize the statistics of the cor-
pus since they train on separate local context win-
dows instead of on global co-occurrence counts.

In this work, we analyze the model properties
necessary to produce linear directions of meaning
and argue that global log-bilinear regression mod-
els are appropriate for doing so. We propose a spe-
cific weighted least squares model that trains on
global word-word co-occurrence counts and thus
makes efficient use of statistics. The model pro-
duces a word vector space with meaningful sub-
structure, as evidenced by its state-of-the-art per-
formance of 75% accuracy on the word analogy
dataset. We also demonstrate that our methods
outperform other current methods on several word
similarity tasks, and also on a common named en-
tity recognition (NER) benchmark.

We provide the source code for the model as
well as trained word vectors at http://nlp.
stanford.edu/projects/glove/.
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2 Related Work

Matrix Factorization Methods. Matrix factor-
ization methods for generating low-dimensional
word representations have roots stretching as far
back as LSA. These methods utilize low-rank ap-
proximations to decompose large matrices that
capture statistical information about a corpus. The
particular type of information captured by such
matrices varies by application. In LSA, the ma-
trices are of “term-document” type, i.e., the rows
correspond to words or terms, and the columns
correspond to different documents in the corpus.
In contrast, the Hyperspace Analogue to Language
(HAL) (Lund and Burgess, 1996), for example,
utilizes matrices of “term-term” type, i.e., the rows
and columns correspond to words and the entries
correspond to the number of times a given word
occurs in the context of another given word.

A main problem with HAL and related meth-
ods is that the most frequent words contribute a
disproportionate amount to the similarity measure:
the number of times two words co-occur with the
or and, for example, will have a large effect on
their similarity despite conveying relatively little
about their semantic relatedness. A number of
techniques exist that addresses this shortcoming of
HAL, such as the COALS method (Rohde et al.,
2006), in which the co-occurrence matrix is first
transformed by an entropy- or correlation-based
normalization. An advantage of this type of trans-
formation is that the raw co-occurrence counts,
which for a reasonably sized corpus might span
8 or 9 orders of magnitude, are compressed so as
to be distributed more evenly in a smaller inter-
val. A variety of newer models also pursue this
approach, including a study (Bullinaria and Levy,
2007) that indicates that positive pointwise mu-
tual information (PPMI) is a good transformation.
More recently, a square root type transformation
in the form of Hellinger PCA (HPCA) (Lebret and
Collobert, 2014) has been suggested as an effec-
tive way of learning word representations.

Shallow Window-Based Methods. Another
approach is to learn word representations that aid
in making predictions within local context win-
dows. For example, Bengio et al. (2003) intro-
duced a model that learns word vector representa-
tions as part of a simple neural network architec-
ture for language modeling. Collobert and Weston
(2008) decoupled the word vector training from
the downstream training objectives, which paved

the way for Collobert et al. (2011) to use the full
context of a word for learning the word represen-
tations, rather than just the preceding context as is
the case with language models.

Recently, the importance of the full neural net-
work structure for learning useful word repre-
sentations has been called into question. The
skip-gram and continuous bag-of-words (CBOW)
models of Mikolov et al. (2013a) propose a sim-
ple single-layer architecture based on the inner
product between two word vectors. Mnih and
Kavukcuoglu (2013) also proposed closely-related
vector log-bilinear models, vLBL and ivLBL, and
Levy et al. (2014) proposed explicit word embed-
dings based on a PPMI metric.

In the skip-gram and ivLBL models, the objec-
tive is to predict a word’s context given the word
itself, whereas the objective in the CBOW and
vLBL models is to predict a word given its con-
text. Through evaluation on a word analogy task,
these models demonstrated the capacity to learn
linguistic patterns as linear relationships between
the word vectors.

Unlike the matrix factorization methods, the
shallow window-based methods suffer from the
disadvantage that they do not operate directly on
the co-occurrence statistics of the corpus. Instead,
these models scan context windows across the en-
tire corpus, which fails to take advantage of the
vast amount of repetition in the data.

3 The GloVe Model

The statistics of word occurrences in a corpus is
the primary source of information available to all
unsupervised methods for learning word represen-
tations, and although many such methods now ex-
ist, the question still remains as to how meaning
is generated from these statistics, and how the re-
sulting word vectors might represent that meaning.
In this section, we shed some light on this ques-
tion. We use our insights to construct a new model
for word representation which we call GloVe, for
Global Vectors, because the global corpus statis-
tics are captured directly by the model.

First we establish some notation. Let the matrix
of word-word co-occurrence counts be denoted by
X , whose entries Xi j tabulate the number of times
word j occurs in the context of word i. Let Xi =∑

k Xik be the number of times any word appears
in the context of word i. Finally, let Pi j = P( j |i) =
Xi j/Xi be the probability that word j appear in the
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Table 1: Co-occurrence probabilities for target words ice and steam with selected context words from a 6
billion token corpus. Only in the ratio does noise from non-discriminative words like water and fashion
cancel out, so that large values (much greater than 1) correlate well with properties specific to ice, and
small values (much less than 1) correlate well with properties specific of steam.

Probability and Ratio k = solid k = gas k = water k = fashion

P(k |ice) 1.9 × 10−4 6.6 × 10−5 3.0 × 10−3 1.7 × 10−5

P(k |steam) 2.2 × 10−5 7.8 × 10−4 2.2 × 10−3 1.8 × 10−5

P(k |ice)/P(k |steam) 8.9 8.5 × 10−2 1.36 0.96

context of word i.
We begin with a simple example that showcases

how certain aspects of meaning can be extracted
directly from co-occurrence probabilities. Con-
sider two words i and j that exhibit a particular as-
pect of interest; for concreteness, suppose we are
interested in the concept of thermodynamic phase,
for which we might take i = ice and j = steam.
The relationship of these words can be examined
by studying the ratio of their co-occurrence prob-
abilities with various probe words, k. For words
k related to ice but not steam, say k = solid, we
expect the ratio Pik/Pjk will be large. Similarly,
for words k related to steam but not ice, say k =
gas, the ratio should be small. For words k like
water or fashion, that are either related to both ice
and steam, or to neither, the ratio should be close
to one. Table 1 shows these probabilities and their
ratios for a large corpus, and the numbers confirm
these expectations. Compared to the raw probabil-
ities, the ratio is better able to distinguish relevant
words (solid and gas) from irrelevant words (water
and fashion) and it is also better able to discrimi-
nate between the two relevant words.

The above argument suggests that the appropri-
ate starting point for word vector learning should
be with ratios of co-occurrence probabilities rather
than the probabilities themselves. Noting that the
ratio Pik/Pjk depends on three words i, j, and k,
the most general model takes the form,

F (wi ,w j , w̃k ) =
Pik

Pjk
, (1)

where w ∈ Rd are word vectors and w̃ ∈ Rd
are separate context word vectors whose role will
be discussed in Section 4.2. In this equation, the
right-hand side is extracted from the corpus, and
F may depend on some as-of-yet unspecified pa-
rameters. The number of possibilities for F is vast,
but by enforcing a few desiderata we can select a
unique choice. First, we would like F to encode

the information present the ratio Pik/Pjk in the
word vector space. Since vector spaces are inher-
ently linear structures, the most natural way to do
this is with vector differences. With this aim, we
can restrict our consideration to those functions F
that depend only on the difference of the two target
words, modifying Eqn. (1) to,

F (wi − w j , w̃k ) =
Pik

Pjk
. (2)

Next, we note that the arguments of F in Eqn. (2)
are vectors while the right-hand side is a scalar.
While F could be taken to be a complicated func-
tion parameterized by, e.g., a neural network, do-
ing so would obfuscate the linear structure we are
trying to capture. To avoid this issue, we can first
take the dot product of the arguments,

F
(
(wi − w j )T w̃k

)
=

Pik

Pjk
, (3)

which prevents F from mixing the vector dimen-
sions in undesirable ways. Next, note that for
word-word co-occurrence matrices, the distinction
between a word and a context word is arbitrary and
that we are free to exchange the two roles. To do so
consistently, we must not only exchange w ↔ w̃

but also X ↔ XT . Our final model should be in-
variant under this relabeling, but Eqn. (3) is not.
However, the symmetry can be restored in two
steps. First, we require that F be a homomorphism
between the groups (R,+) and (R>0,× ), i.e.,

F
(
(wi − w j )T w̃k

)
=

F (wT
i w̃k )

F (wT
j w̃k )

, (4)

which, by Eqn. (3), is solved by,

F (wT
i w̃k ) = Pik =

Xik

Xi
. (5)

The solution to Eqn. (4) is F = exp, or,

wT
i w̃k = log(Pik ) = log(Xik ) − log(Xi ) . (6)
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Next, we note that Eqn. (6) would exhibit the ex-
change symmetry if not for the log(Xi ) on the
right-hand side. However, this term is indepen-
dent of k so it can be absorbed into a bias bi for
wi . Finally, adding an additional bias b̃k for w̃k

restores the symmetry,

wT
i w̃k + bi + b̃k = log(Xik ) . (7)

Eqn. (7) is a drastic simplification over Eqn. (1),
but it is actually ill-defined since the logarithm di-
verges whenever its argument is zero. One reso-
lution to this issue is to include an additive shift
in the logarithm, log(Xik ) → log(1 + Xik ), which
maintains the sparsity of X while avoiding the di-
vergences. The idea of factorizing the log of the
co-occurrence matrix is closely related to LSA and
we will use the resulting model as a baseline in
our experiments. A main drawback to this model
is that it weighs all co-occurrences equally, even
those that happen rarely or never. Such rare co-
occurrences are noisy and carry less information
than the more frequent ones — yet even just the
zero entries account for 75–95% of the data in X ,
depending on the vocabulary size and corpus.

We propose a new weighted least squares re-
gression model that addresses these problems.
Casting Eqn. (7) as a least squares problem and
introducing a weighting function f (Xi j ) into the
cost function gives us the model

J =
V∑

i, j=1

f
(
Xi j

) (
wT
i w̃ j + bi + b̃j − log Xi j

)2
,

(8)
where V is the size of the vocabulary. The weight-
ing function should obey the following properties:

1. f (0) = 0. If f is viewed as a continuous
function, it should vanish as x → 0 fast
enough that the limx→0 f (x) log2 x is finite.

2. f (x) should be non-decreasing so that rare
co-occurrences are not overweighted.

3. f (x) should be relatively small for large val-
ues of x, so that frequent co-occurrences are
not overweighted.

Of course a large number of functions satisfy these
properties, but one class of functions that we found
to work well can be parameterized as,

f (x) =
{

(x/xmax)α if x < xmax
1 otherwise .

(9)

0.2

0.4

0.6

0.8

1.0

0.0

Figure 1: Weighting function f with α = 3/4.

The performance of the model depends weakly on
the cutoff, which we fix to xmax = 100 for all our
experiments. We found that α = 3/4 gives a mod-
est improvement over a linear version with α = 1.
Although we offer only empirical motivation for
choosing the value 3/4, it is interesting that a sim-
ilar fractional power scaling was found to give the
best performance in (Mikolov et al., 2013a).

3.1 Relationship to Other Models

Because all unsupervised methods for learning
word vectors are ultimately based on the occur-
rence statistics of a corpus, there should be com-
monalities between the models. Nevertheless, cer-
tain models remain somewhat opaque in this re-
gard, particularly the recent window-based meth-
ods like skip-gram and ivLBL. Therefore, in this
subsection we show how these models are related
to our proposed model, as defined in Eqn. (8).

The starting point for the skip-gram or ivLBL
methods is a model Qi j for the probability that
word j appears in the context of word i. For con-
creteness, let us assume that Qi j is a softmax,

Qi j =
exp(wT

i w̃ j )∑V
k=1 exp(wT

i w̃k )
. (10)

Most of the details of these models are irrelevant
for our purposes, aside from the the fact that they
attempt to maximize the log probability as a con-
text window scans over the corpus. Training pro-
ceeds in an on-line, stochastic fashion, but the im-
plied global objective function can be written as,

J = −
∑

i∈corpus
j∈context(i)

log Qi j . (11)

Evaluating the normalization factor of the soft-
max for each term in this sum is costly. To al-
low for efficient training, the skip-gram and ivLBL
models introduce approximations to Qi j . How-
ever, the sum in Eqn. (11) can be evaluated much
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more efficiently if we first group together those
terms that have the same values for i and j,

J = −
V∑
i=1

V∑
j=1

Xi j log Qi j , (12)

where we have used the fact that the number of
like terms is given by the co-occurrence matrix X .

Recalling our notation for Xi =
∑

k Xik and
Pi j = Xi j/Xi , we can rewrite J as,

J = −
V∑
i=1

Xi

V∑
j=1

Pi j log Qi j =

V∑
i=1

XiH (Pi ,Qi ) ,

(13)
where H (Pi ,Qi ) is the cross entropy of the dis-
tributions Pi and Qi , which we define in analogy
to Xi . As a weighted sum of cross-entropy error,
this objective bears some formal resemblance to
the weighted least squares objective of Eqn. (8).
In fact, it is possible to optimize Eqn. (13) directly
as opposed to the on-line training methods used in
the skip-gram and ivLBL models. One could inter-
pret this objective as a “global skip-gram” model,
and it might be interesting to investigate further.
On the other hand, Eqn. (13) exhibits a number of
undesirable properties that ought to be addressed
before adopting it as a model for learning word
vectors.

To begin, cross entropy error is just one among
many possible distance measures between prob-
ability distributions, and it has the unfortunate
property that distributions with long tails are of-
ten modeled poorly with too much weight given
to the unlikely events. Furthermore, for the mea-
sure to be bounded it requires that the model dis-
tribution Q be properly normalized. This presents
a computational bottleneck owing to the sum over
the whole vocabulary in Eqn. (10), and it would be
desirable to consider a different distance measure
that did not require this property of Q. A natural
choice would be a least squares objective in which
normalization factors in Q and P are discarded,

Ĵ =
∑
i, j

Xi
(
P̂i j − Q̂i j

)2 (14)

where P̂i j = Xi j and Q̂i j = exp(wT
i w̃ j ) are the

unnormalized distributions. At this stage another
problem emerges, namely that Xi j often takes very
large values, which can complicate the optimiza-
tion. An effective remedy is to minimize the

squared error of the logarithms of P̂ and Q̂ instead,

Ĵ =
∑
i, j

Xi
(

log P̂i j − log Q̂i j
)2

=
∑
i, j

Xi
(
wT
i w̃ j − log Xi j

)2 . (15)

Finally, we observe that while the weighting factor
Xi is preordained by the on-line training method
inherent to the skip-gram and ivLBL models, it is
by no means guaranteed to be optimal. In fact,
Mikolov et al. (2013a) observe that performance
can be increased by filtering the data so as to re-
duce the effective value of the weighting factor for
frequent words. With this in mind, we introduce
a more general weighting function, which we are
free to take to depend on the context word as well.
The result is,

Ĵ =
∑
i, j

f (Xi j )
(
wT
i w̃ j − log Xi j

)2 , (16)

which is equivalent1 to the cost function of
Eqn. (8), which we derived previously.

3.2 Complexity of the model
As can be seen from Eqn. (8) and the explicit form
of the weighting function f (X ), the computational
complexity of the model depends on the number of
nonzero elements in the matrix X . As this num-
ber is always less than the total number of en-
tries of the matrix, the model scales no worse than
O( |V |2). At first glance this might seem like a sub-
stantial improvement over the shallow window-
based approaches, which scale with the corpus
size, |C |. However, typical vocabularies have hun-
dreds of thousands of words, so that |V |2 can be in
the hundreds of billions, which is actually much
larger than most corpora. For this reason it is im-
portant to determine whether a tighter bound can
be placed on the number of nonzero elements of
X .

In order to make any concrete statements about
the number of nonzero elements in X , it is neces-
sary to make some assumptions about the distribu-
tion of word co-occurrences. In particular, we will
assume that the number of co-occurrences of word
i with word j, Xi j , can be modeled as a power-law
function of the frequency rank of that word pair,
ri j :

Xi j =
k

(ri j )α
. (17)

1We could also include bias terms in Eqn. (16).
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The total number of words in the corpus is pro-
portional to the sum over all elements of the co-
occurrence matrix X ,

|C | ∼
∑
i j

Xi j =

|X |∑
r=1

k
rα
= kH|X |,α , (18)

where we have rewritten the last sum in terms of
the generalized harmonic number Hn,m . The up-
per limit of the sum, |X |, is the maximum fre-
quency rank, which coincides with the number of
nonzero elements in the matrix X . This number is
also equal to the maximum value of r in Eqn. (17)
such that Xi j ≥ 1, i.e., |X | = k1/α . Therefore we
can write Eqn. (18) as,

|C | ∼ |X |α H|X |,α . (19)

We are interested in how |X | is related to |C | when
both numbers are large; therefore we are free to
expand the right hand side of the equation for large
|X |. For this purpose we use the expansion of gen-
eralized harmonic numbers (Apostol, 1976),

Hx,s =
x1−s

1 − s
+ ζ (s) + O(x−s ) if s > 0, s , 1 ,

(20)
giving,

|C | ∼ |X |
1 − α + ζ (α) |X |α + O(1) , (21)

where ζ (s) is the Riemann zeta function. In the
limit that X is large, only one of the two terms on
the right hand side of Eqn. (21) will be relevant,
and which term that is depends on whether α > 1,

|X | =
{ O(|C |) if α < 1,
O(|C |1/α ) if α > 1.

(22)

For the corpora studied in this article, we observe
that Xi j is well-modeled by Eqn. (17) with α =

1.25. In this case we have that |X | = O(|C |0.8).
Therefore we conclude that the complexity of the
model is much better than the worst case O(V 2),
and in fact it does somewhat better than the on-line
window-based methods which scale like O(|C |).
4 Experiments

4.1 Evaluation methods
We conduct experiments on the word analogy
task of Mikolov et al. (2013a), a variety of word
similarity tasks, as described in (Luong et al.,
2013), and on the CoNLL-2003 shared benchmark

Table 2: Results on the word analogy task, given
as percent accuracy. Underlined scores are best
within groups of similarly-sized models; bold
scores are best overall. HPCA vectors are publicly
available2; (i)vLBL results are from (Mnih et al.,
2013); skip-gram (SG) and CBOW results are
from (Mikolov et al., 2013a,b); we trained SG†

and CBOW† using the word2vec tool3. See text
for details and a description of the SVD models.

Model Dim. Size Sem. Syn. Tot.
ivLBL 100 1.5B 55.9 50.1 53.2
HPCA 100 1.6B 4.2 16.4 10.8
GloVe 100 1.6B 67.5 54.3 60.3

SG 300 1B 61 61 61
CBOW 300 1.6B 16.1 52.6 36.1
vLBL 300 1.5B 54.2 64.8 60.0
ivLBL 300 1.5B 65.2 63.0 64.0
GloVe 300 1.6B 80.8 61.5 70.3
SVD 300 6B 6.3 8.1 7.3

SVD-S 300 6B 36.7 46.6 42.1
SVD-L 300 6B 56.6 63.0 60.1
CBOW† 300 6B 63.6 67.4 65.7

SG† 300 6B 73.0 66.0 69.1
GloVe 300 6B 77.4 67.0 71.7
CBOW 1000 6B 57.3 68.9 63.7

SG 1000 6B 66.1 65.1 65.6
SVD-L 300 42B 38.4 58.2 49.2
GloVe 300 42B 81.9 69.3 75.0

dataset for NER (Tjong Kim Sang and De Meul-
der, 2003).

Word analogies. The word analogy task con-
sists of questions like, “a is to b as c is to ?”
The dataset contains 19,544 such questions, di-
vided into a semantic subset and a syntactic sub-
set. The semantic questions are typically analogies
about people or places, like “Athens is to Greece
as Berlin is to ?”. The syntactic questions are
typically analogies about verb tenses or forms of
adjectives, for example “dance is to dancing as fly
is to ?”. To correctly answer the question, the
model should uniquely identify the missing term,
with only an exact correspondence counted as a
correct match. We answer the question “a is to b
as c is to ?” by finding the word d whose repre-
sentation wd is closest to wb − wa + wc according
to the cosine similarity.4

2http://lebret.ch/words/
3http://code.google.com/p/word2vec/
4Levy et al. (2014) introduce a multiplicative analogy

evaluation, 3COSMUL, and report an accuracy of 68.24% on
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Figure 2: Accuracy on the analogy task as function of vector size and window size/type. All models are
trained on the 6 billion token corpus. In (a), the window size is 10. In (b) and (c), the vector size is 100.

Word similarity. While the analogy task is our
primary focus since it tests for interesting vector
space substructures, we also evaluate our model on
a variety of word similarity tasks in Table 3. These
include WordSim-353 (Finkelstein et al., 2001),
MC (Miller and Charles, 1991), RG (Rubenstein
and Goodenough, 1965), SCWS (Huang et al.,
2012), and RW (Luong et al., 2013).
Named entity recognition. The CoNLL-2003
English benchmark dataset for NER is a collec-
tion of documents from Reuters newswire articles,
annotated with four entity types: person, location,
organization, and miscellaneous. We train mod-
els on CoNLL-03 training data on test on three
datasets: 1) ConLL-03 testing data, 2) ACE Phase
2 (2001-02) and ACE-2003 data, and 3) MUC7
Formal Run test set. We adopt the BIO2 annota-
tion standard, as well as all the preprocessing steps
described in (Wang and Manning, 2013). We use a
comprehensive set of discrete features that comes
with the standard distribution of the Stanford NER
model (Finkel et al., 2005). A total of 437,905
discrete features were generated for the CoNLL-
2003 training dataset. In addition, 50-dimensional
vectors for each word of a five-word context are
added and used as continuous features. With these
features as input, we trained a conditional random
field (CRF) with exactly the same setup as the
CRFjoin model of (Wang and Manning, 2013).

4.2 Corpora and training details

We trained our model on five corpora of varying
sizes: a 2010 Wikipedia dump with 1 billion to-
kens; a 2014 Wikipedia dump with 1.6 billion to-
kens; Gigaword 5 which has 4.3 billion tokens; the
combination Gigaword5 + Wikipedia2014, which

the analogy task. This number is evaluated on a subset of the
dataset so it is not included in Table 2. 3COSMUL performed
worse than cosine similarity in almost all of our experiments.

has 6 billion tokens; and on 42 billion tokens of
web data, from Common Crawl5. We tokenize
and lowercase each corpus with the Stanford to-
kenizer, build a vocabulary of the 400,000 most
frequent words6, and then construct a matrix of co-
occurrence counts X . In constructing X , we must
choose how large the context window should be
and whether to distinguish left context from right
context. We explore the effect of these choices be-
low. In all cases we use a decreasing weighting
function, so that word pairs that are d words apart
contribute 1/d to the total count. This is one way
to account for the fact that very distant word pairs
are expected to contain less relevant information
about the words’ relationship to one another.

For all our experiments, we set xmax = 100,
α = 3/4, and train the model using AdaGrad
(Duchi et al., 2011), stochastically sampling non-
zero elements from X , with initial learning rate of
0.05. We run 50 iterations for vectors smaller than
300 dimensions, and 100 iterations otherwise (see
Section 4.6 for more details about the convergence
rate). Unless otherwise noted, we use a context of
ten words to the left and ten words to the right.

The model generates two sets of word vectors,
W and W̃ . When X is symmetric, W and W̃ are
equivalent and differ only as a result of their ran-
dom initializations; the two sets of vectors should
perform equivalently. On the other hand, there is
evidence that for certain types of neural networks,
training multiple instances of the network and then
combining the results can help reduce overfitting
and noise and generally improve results (Ciresan
et al., 2012). With this in mind, we choose to use

5To demonstrate the scalability of the model, we also
trained it on a much larger sixth corpus, containing 840 bil-
lion tokens of web data, but in this case we did not lowercase
the vocabulary, so the results are not directly comparable.

6For the model trained on Common Crawl data, we use a
larger vocabulary of about 2 million words.
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the sum W +W̃ as our word vectors. Doing so typ-
ically gives a small boost in performance, with the
biggest increase in the semantic analogy task.

We compare with the published results of a va-
riety of state-of-the-art models, as well as with
our own results produced using the word2vec
tool and with several baselines using SVDs. With
word2vec, we train the skip-gram (SG†) and
continuous bag-of-words (CBOW†) models on the
6 billion token corpus (Wikipedia 2014 + Giga-
word 5) with a vocabulary of the top 400,000 most
frequent words and a context window size of 10.
We used 10 negative samples, which we show in
Section 4.6 to be a good choice for this corpus.

For the SVD baselines, we generate a truncated
matrix Xtrunc which retains the information of how
frequently each word occurs with only the top
10,000 most frequent words. This step is typi-
cal of many matrix-factorization-based methods as
the extra columns can contribute a disproportion-
ate number of zero entries and the methods are
otherwise computationally expensive.

The singular vectors of this matrix constitute
the baseline “SVD”. We also evaluate two related
baselines: “SVD-S” in which we take the SVD of√

Xtrunc, and “SVD-L” in which we take the SVD
of log(1+ Xtrunc). Both methods help compress the
otherwise large range of values in X .7

4.3 Results
We present results on the word analogy task in Ta-
ble 2. The GloVe model performs significantly
better than the other baselines, often with smaller
vector sizes and smaller corpora. Our results us-
ing the word2vec tool are somewhat better than
most of the previously published results. This is
due to a number of factors, including our choice to
use negative sampling (which typically works bet-
ter than the hierarchical softmax), the number of
negative samples, and the choice of the corpus.

We demonstrate that the model can easily be
trained on a large 42 billion token corpus, with a
substantial corresponding performance boost. We
note that increasing the corpus size does not guar-
antee improved results for other models, as can be
seen by the decreased performance of the SVD-

7We also investigated several other weighting schemes for
transforming X ; what we report here performed best. Many
weighting schemes like PPMI destroy the sparsity of X and
therefore cannot feasibly be used with large vocabularies.
With smaller vocabularies, these information-theoretic trans-
formations do indeed work well on word similarity measures,
but they perform very poorly on the word analogy task.

Table 3: Spearman rank correlation on word simi-
larity tasks. All vectors are 300-dimensional. The
CBOW∗ vectors are from the word2vec website
and differ in that they contain phrase vectors.

Model Size WS353 MC RG SCWS RW
SVD 6B 35.3 35.1 42.5 38.3 25.6

SVD-S 6B 56.5 71.5 71.0 53.6 34.7
SVD-L 6B 65.7 72.7 75.1 56.5 37.0
CBOW† 6B 57.2 65.6 68.2 57.0 32.5

SG† 6B 62.8 65.2 69.7 58.1 37.2
GloVe 6B 65.8 72.7 77.8 53.9 38.1
SVD-L 42B 74.0 76.4 74.1 58.3 39.9
GloVe 42B 75.9 83.6 82.9 59.6 47.8

CBOW∗ 100B 68.4 79.6 75.4 59.4 45.5

L model on this larger corpus. The fact that this
basic SVD model does not scale well to large cor-
pora lends further evidence to the necessity of the
type of weighting scheme proposed in our model.

Table 3 shows results on five different word
similarity datasets. A similarity score is obtained
from the word vectors by first normalizing each
feature across the vocabulary and then calculat-
ing the cosine similarity. We compute Spearman’s
rank correlation coefficient between this score and
the human judgments. CBOW∗ denotes the vec-
tors available on the word2vec website that are
trained with word and phrase vectors on 100B
words of news data. GloVe outperforms it while
using a corpus less than half the size.

Table 4 shows results on the NER task with the
CRF-based model. The L-BFGS training termi-
nates when no improvement has been achieved on
the dev set for 25 iterations. Otherwise all config-
urations are identical to those used by Wang and
Manning (2013). The model labeled Discrete is
the baseline using a comprehensive set of discrete
features that comes with the standard distribution
of the Stanford NER model, but with no word vec-
tor features. In addition to the HPCA and SVD
models discussed previously, we also compare to
the models of Huang et al. (2012) (HSMN) and
Collobert and Weston (2008) (CW). We trained
the CBOW model using the word2vec tool8.
The GloVe model outperforms all other methods
on all evaluation metrics, except for the CoNLL
test set, on which the HPCA method does slightly
better. We conclude that the GloVe vectors are
useful in downstream NLP tasks, as was first

8We use the same parameters as above, except in this case
we found 5 negative samples to work slightly better than 10.
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Table 4: F1 score on NER task with 50d vectors.
Discrete is the baseline without word vectors. We
use publicly-available vectors for HPCA, HSMN,
and CW. See text for details.

Model Dev Test ACE MUC7
Discrete 91.0 85.4 77.4 73.4

SVD 90.8 85.7 77.3 73.7
SVD-S 91.0 85.5 77.6 74.3
SVD-L 90.5 84.8 73.6 71.5
HPCA 92.6 88.7 81.7 80.7
HSMN 90.5 85.7 78.7 74.7

CW 92.2 87.4 81.7 80.2
CBOW 93.1 88.2 82.2 81.1
GloVe 93.2 88.3 82.9 82.2

shown for neural vectors in (Turian et al., 2010).

4.4 Model Analysis: Vector Length and
Context Size

In Fig. 2, we show the results of experiments that
vary vector length and context window. A context
window that extends to the left and right of a tar-
get word will be called symmetric, and one which
extends only to the left will be called asymmet-
ric. In (a), we observe diminishing returns for vec-
tors larger than about 200 dimensions. In (b) and
(c), we examine the effect of varying the window
size for symmetric and asymmetric context win-
dows. Performance is better on the syntactic sub-
task for small and asymmetric context windows,
which aligns with the intuition that syntactic infor-
mation is mostly drawn from the immediate con-
text and can depend strongly on word order. Se-
mantic information, on the other hand, is more fre-
quently non-local, and more of it is captured with
larger window sizes.

4.5 Model Analysis: Corpus Size
In Fig. 3, we show performance on the word anal-
ogy task for 300-dimensional vectors trained on
different corpora. On the syntactic subtask, there
is a monotonic increase in performance as the cor-
pus size increases. This is to be expected since
larger corpora typically produce better statistics.
Interestingly, the same trend is not true for the se-
mantic subtask, where the models trained on the
smaller Wikipedia corpora do better than those
trained on the larger Gigaword corpus. This is
likely due to the large number of city- and country-
based analogies in the analogy dataset and the fact
that Wikipedia has fairly comprehensive articles
for most such locations. Moreover, Wikipedia’s
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Figure 3: Accuracy on the analogy task for 300-
dimensional vectors trained on different corpora.

entries are updated to assimilate new knowledge,
whereas Gigaword is a fixed news repository with
outdated and possibly incorrect information.

4.6 Model Analysis: Run-time

The total run-time is split between populating X
and training the model. The former depends on
many factors, including window size, vocabulary
size, and corpus size. Though we did not do so,
this step could easily be parallelized across mul-
tiple machines (see, e.g., Lebret and Collobert
(2014) for some benchmarks). Using a single
thread of a dual 2.1GHz Intel Xeon E5-2658 ma-
chine, populating X with a 10 word symmetric
context window, a 400,000 word vocabulary, and
a 6 billion token corpus takes about 85 minutes.
Given X , the time it takes to train the model de-
pends on the vector size and the number of itera-
tions. For 300-dimensional vectors with the above
settings (and using all 32 cores of the above ma-
chine), a single iteration takes 14 minutes. See
Fig. 4 for a plot of the learning curve.

4.7 Model Analysis: Comparison with
word2vec

A rigorous quantitative comparison of GloVe with
word2vec is complicated by the existence of
many parameters that have a strong effect on per-
formance. We control for the main sources of vari-
ation that we identified in Sections 4.4 and 4.5 by
setting the vector length, context window size, cor-
pus, and vocabulary size to the configuration men-
tioned in the previous subsection.

The most important remaining variable to con-
trol for is training time. For GloVe, the rele-
vant parameter is the number of training iterations.
For word2vec, the obvious choice would be the
number of training epochs. Unfortunately, the
code is currently designed for only a single epoch:
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Figure 4: Overall accuracy on the word analogy task as a function of training time, which is governed by
the number of iterations for GloVe and by the number of negative samples for CBOW (a) and skip-gram
(b). In all cases, we train 300-dimensional vectors on the same 6B token corpus (Wikipedia 2014 +
Gigaword 5) with the same 400,000 word vocabulary, and use a symmetric context window of size 10.

it specifies a learning schedule specific to a single
pass through the data, making a modification for
multiple passes a non-trivial task. Another choice
is to vary the number of negative samples. Adding
negative samples effectively increases the number
of training words seen by the model, so in some
ways it is analogous to extra epochs.

We set any unspecified parameters to their de-
fault values, assuming that they are close to opti-
mal, though we acknowledge that this simplifica-
tion should be relaxed in a more thorough analysis.

In Fig. 4, we plot the overall performance on
the analogy task as a function of training time.
The two x-axes at the bottom indicate the corre-
sponding number of training iterations for GloVe
and negative samples for word2vec. We note
that word2vec’s performance actually decreases
if the number of negative samples increases be-
yond about 10. Presumably this is because the
negative sampling method does not approximate
the target probability distribution well.9

For the same corpus, vocabulary, window size,
and training time, GloVe consistently outperforms
word2vec. It achieves better results faster, and
also obtains the best results irrespective of speed.

5 Conclusion

Recently, considerable attention has been focused
on the question of whether distributional word
representations are best learned from count-based

9In contrast, noise-contrastive estimation is an approxi-
mation which improves with more negative samples. In Ta-
ble 1 of (Mnih et al., 2013), accuracy on the analogy task is a
non-decreasing function of the number of negative samples.

methods or from prediction-based methods. Cur-
rently, prediction-based models garner substantial
support; for example, Baroni et al. (2014) argue
that these models perform better across a range of
tasks. In this work we argue that the two classes
of methods are not dramatically different at a fun-
damental level since they both probe the under-
lying co-occurrence statistics of the corpus, but
the efficiency with which the count-based meth-
ods capture global statistics can be advantageous.
We construct a model that utilizes this main ben-
efit of count data while simultaneously capturing
the meaningful linear substructures prevalent in
recent log-bilinear prediction-based methods like
word2vec. The result, GloVe, is a new global
log-bilinear regression model for the unsupervised
learning of word representations that outperforms
other models on word analogy, word similarity,
and named entity recognition tasks.
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Yoshua Bengio, Réjean Ducharme, Pascal Vin-
cent, and Christian Janvin. 2003. A neural prob-
abilistic language model. JMLR, 3:1137–1155.

John A. Bullinaria and Joseph P. Levy. 2007. Ex-
tracting semantic representations from word co-
occurrence statistics: A computational study.
Behavior Research Methods, 39(3):510–526.

Dan C. Ciresan, Alessandro Giusti, Luca M. Gam-
bardella, and Jürgen Schmidhuber. 2012. Deep
neural networks segment neuronal membranes
in electron microscopy images. In NIPS, pages
2852–2860.

Ronan Collobert and Jason Weston. 2008. A uni-
fied architecture for natural language process-
ing: deep neural networks with multitask learn-
ing. In Proceedings of ICML, pages 160–167.

Ronan Collobert, Jason Weston, Léon Bottou,
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Abstract

We introduce a novel compositional lan-
guage model that works on Predicate-
Argument Structures (PASs). Our model
jointly learns word representations and
their composition functions using bag-
of-words and dependency-based con-
texts. Unlike previous word-sequence-
based models, our PAS-based model com-
poses arguments into predicates by using
the category information from the PAS.
This enables our model to capture long-
range dependencies between words and
to better handle constructs such as verb-
object and subject-verb-object relations.
We verify this experimentally using two
phrase similarity datasets and achieve re-
sults comparable to or higher than the pre-
vious best results. Our system achieves
these results without the need for pre-
trained word vectors and using a much
smaller training corpus; despite this, for
the subject-verb-object dataset our model
improves upon the state of the art by as
much as∼10% in relative performance.

1 Introduction

Studies on embedding single words in a vector
space have made notable successes in capturing
their syntactic and semantic properties (Turney
and Pantel, 2010). These embeddings have also
been found to be a useful component for Natural
Language Processing (NLP) systems; for exam-
ple, Turian et al. (2010) and Collobert et al. (2011)
demonstrated how low-dimensional word vectors
learned by Neural Network Language Models
(NNLMs) are beneficial for a wide range of NLP
tasks.

Recently, the main focus of research on vector
space representation is shifting from word repre-
sentations to phrase representations (Baroni and
Zamparelli, 2010; Grefenstette and Sadrzadeh,
2011; Mitchell and Lapata, 2010; Socher et al.,
2012). Combining the ideas of NNLMs and se-
mantic composition, Tsubaki et al. (2013) intro-
duced a novel NNLM incorporating verb-object
dependencies. More recently, Levy and Goldberg
(2014) presented a NNLM that integrated syntac-
tic dependencies. However, to the best of our
knowledge, there is no previous work on integrat-
ing a variety of syntactic and semantic dependen-
cies into NNLMs in order to learncomposition
functionsas well as word representations. The fol-
lowing question thus arises naturally:

Can a variety of dependencies be used to
jointly learn both stand-alone word vectors
and their compositions, embedding them in
the same vector space?

In this work, we bridge the gap between
purely context-based (Levy and Goldberg, 2014;
Mikolov et al., 2013b; Mnih and Kavukcuoglu,
2013) and compositional (Tsubaki et al., 2013)
NNLMs by using the flexible set of categories
from Predicate-Argument-Structures (PASs).
More specifically, we propose a Compositional
Log-Bilinear Language Model using PASs (PAS-
CLBLM), an overview of which is shown in
Figure 1. The model is trained by maximizing
the accuracy of predicting target words from their
bag-of-words and dependency-based context,
which provides information about selectional
preference. As shown in Figure 1 (b), one of the
advantages of the PAS-CLBLM is that the model
can treat not only word vectors but also composed
vectors as contexts. Since the composed vectors
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Figure 1: An overview of the proposed model: PAS-CLBLM. (a) The PAS-LBLM predicts target words
from their bag-of-words and dependency-based context words. (b) The PAS-CLBLM predicts target
words using not only context words but also composed vector representations derived from another level
of predicate-argument structures. Underlined words are target words and we only depict the bag-of-
words vector for the PAS-CLBLM.

are treated as input to the language model in
the same way as word vectors, these composed
vectors are expected to become similar to word
vectors for words with similar meanings.

Our empirical results demonstrate that the pro-
posed model has the ability to learn meaning-
ful representations for adjective-noun, noun-noun,
and (subject-) verb-object dependencies. On three
tasks of measuring the semantic similarity be-
tween short phrases (adjective-noun, noun-noun,
and verb-object), the learned composed vectors
achieve scores (Spearman’s rank correlationρ)
comparable to or higher than those of previ-
ous models. On a task involving more complex
phrases (subject-verb-object), our learned com-
posed vectors achieve state-of-the-art performance
(ρ = 0.50) with a training corpus that is an order
of magnitude smaller than that used by previous
work (Tsubaki et al., 2013; Van de Cruys et al.,
2013). Moreover, the proposed model does not
require any pre-trained word vectors produced by
external models, but rather induces word vectors
jointly while training.

2 Related Work

There is a large body of work on how to represent
the meaning of a word in a vector space. Distri-
butional approaches assume that the meaning of
a word is determined by the contexts in which it
appears (Firth, 1957). The context of a word is of-
ten defined as the words appearing in a window
of fixed-length (bag-of-words) and a simple ap-
proach is to treat the co-occurrence statistics of a
word w as a vector representation forw (Mitchell

and Lapata, 2008; Mitchell and Lapata, 2010); al-
ternatively, dependencies between words can be
used to define contexts (Goyal et al., 2013; Erk
and Pad́o, 2008; Thater et al., 2010).

In contrast to distributional representations,
NNLMs represent words in a low-dimensional
vector space (Bengio et al., 2003; Collobert et al.,
2011). Recently, Mikolov et al. (2013b) and Mnih
and Kavukcuoglu (2013) proposed highly scalable
models to learn high-dimensional word vectors.
Levy and Goldberg (2014) extended the model of
Mikolov et al. (2013b) by treating syntactic depen-
dencies as contexts.

Mitchell and Lapata (2008) investigated a vari-
ety of compositional operators to combine word
vectors into phrasal representations. Among these
operators, simple element-wise addition and mul-
tiplication are now widely used to represent short
phrases (Mitchell and Lapata, 2010; Blacoe and
Lapata, 2012). The obvious limitation with these
simple approaches is that information about word
order and syntactic relations is lost.

To incorporate syntactic information into com-
position functions, a variety of compositional
models have been proposed. These include recur-
sive neural networks using phrase-structure trees
(Socher et al., 2012; Socher et al., 2013b) and
models in which words have a specific form of
parameters according to their syntactic roles and
composition functions are syntactically dependent
on the relations of input words (Baroni and Zam-
parelli, 2010; Grefenstette and Sadrzadeh, 2011;
Hashimoto et al., 2013; Hermann and Blunsom,
2013; Socher et al., 2013a).

More recently, syntactic dependency-based
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compositional models have been proposed (Pa-
perno et al., 2014; Socher et al., 2014; Tsub-
aki et al., 2013). One of the advantages of these
models is that they are less restricted by word or-
der. Among these, Tsubaki et al. (2013) intro-
duced a novel compositional NNLM mainly fo-
cusing on verb-object dependencies and achieved
state-of-the-art performance for the task of mea-
suring the semantic similarity between subject-
verb-object phrases.

3 PAS-CLBLM: A Compositional
Log-Bilinear Language Model Using
Predicate-Argument Structures

In some recent studies on representing words as
vectors, word vectors are learned by solving word
prediction tasks (Mikolov et al., 2013a; Mnih and
Kavukcuoglu, 2013). More specifically, given tar-
get words and their context words, the basic idea
is to train classifiers to discriminate between each
target word and artificially induced negative tar-
get words. The feature vector of the classifiers are
calculated using the context word vectors whose
values are optimized during training. As a result,
vectors of words in similar contexts become simi-
lar to each other.

Following these studies, we propose a novel
model to jointly learn representations for words
and their compositions by training word predic-
tion classifiers using PASs. In this section, we
first describe the predicate-argument structures as
they serve as the basis of our model. We then
introduce a Log-Bilinear Language Model us-
ing Predicate-Argument Structures (PAS-LBLM)
to learn word representations using both bag-of-
words and dependency-based contexts. Finally,
we propose integrating compositions of words into
the model. Figure 1 (b) shows the overview of the
proposed model.

3.1 Predicate-Argument Structures

Due to advances in deep parsing technologies,
syntactic parsers that can produce predicate-
argument structures are becoming accurate and
fast enough to be used for practical applications.
In this work, we use the probabilistic HPSG
parserEnju (Miyao and Tsujii, 2008) to obtain the
predicate-argument structures of individual sen-
tences. In its grammar, each word in a sentence
is treated as a predicate of a certain category with
zero or more arguments. Table 1 shows some ex-

Category predicate arg1 arg2

adj arg1 heavy rain
nounarg1 car accident
verb arg12 cause rain accident
preparg12 at eat restaurant

Table 1: Examples of predicates of different cate-
gories from the grammar of the Enju parser.arg1
andarg2denote the first and second arguments.

amples of predicates of different categories.1 For
example, a predicate of the categoryverb arg12
expresses a verb with two arguments. A graph can
be constructed by connecting words in predicate-
argument structures in a sentence; in general, these
graphs are acyclic.

One of the merits of using predicate-argument
structures is that they can capture dependencies
between more than two words, while standard syn-
tactic dependency structures are limited to depen-
dencies between two words. For example, one of
the predicates in the phrase “heavy rain caused car
accidents” is the verb “cause”, and it has two ar-
guments (“rain” and “accident”). Furthermore, ex-
actly the same predicate-argument structure (pred-
icate: cause, first argument: rain, second argu-
ment: accident) is extracted from the passive form
of the above phrase: “car accidents were caused
by heavy rain”. This is helpful when capturing
semantic dependencies between predicates and ar-
guments, and in extracting facts or relations de-
scribed in a sentence, such aswho did what to
whom.

3.2 A Log-Bilinear Language Model Using
Predicate-Argument Structures

3.2.1 PAS-based Word Prediction

The PAS-LBLM predicts a target word given its
PAS-based context. We assume that each word
w in the vocabularyV is represented with ad-
dimensional vectorv(w). When a predicate of
categoryc is extracted from a sentence, the PAS-
LBLM computes the predictedd-dimensional vec-
tor p(wt) for the target wordwt from its context
wordsw1, w2, . . . , wm:

p(wt) = f

(
m∑

i=1

hc
i ⊙ v(wi)

)
, (1)

1The categories of the predicates in the Enju parser are
summarized athttp://kmcs.nii.ac.jp/ ˜ yusuke/
enju/enju-manual/enju-output-spec.html .

1546



where hc
i ∈ Rd×1 are category-specific weight

vectors and⊙ denotes element-wise multiplica-
tion. f is a non-linearity function; in this work
we definef astanh.

As an example following Figure 1 (a), when
the predicate “cause” is extracted with its first
and second arguments “rain” and “accident”, the
PAS-LBLM computesp(cause) ∈ Rd following
Eq. (1):

p(cause) = f(hverb arg12
arg1 ⊙ v(rain)+

hverb arg12
arg2 ⊙ v(accident)).

(2)

In Eq. (2), the predicate is treated as the target
word, and its arguments are treated as the con-
text words. In the same way, an argument can be
treated as a target word:

p(rain) = f(hverb arg12
verb ⊙ v(cause)+

hverb arg12
arg2 ⊙ v(accident)).

(3)

Relationship to previous work. If we omit the
the category-specific weight vectorshc

i in Eq. (1),
our model is similar to the CBOW model in
Mikolov et al. (2013a). CBOW predicts a tar-
get word given its surrounding bag-of-words con-
text, while our model uses its PAS-based context.
To incorporate the PAS information in our model
more efficiently, we use category-specific weight
vectors. Similarly, the vLBL model of Mnih and
Kavukcuoglu (2013) uses different weight vec-
tors depending on the position relative to the tar-
get word. As with previous neural network lan-
guage models (Collobert et al., 2011; Huang et al.,
2012), our model and vLBL can use weight ma-
trices rather than weight vectors. However, as dis-
cussed by Mnih and Teh (2012), using weight vec-
tors makes the training significantly faster than us-
ing weight matrices. Despite the simple formula-
tion of the element-wise operations, the category-
specific weight vectors efficiently propagate PAS-
based context information as explained next.

3.2.2 Training Word Vectors

To train the PAS-LBLM, we use a scoring function
to evaluate how well the target wordwt fits the
given context:

s(wt, p(wt)) = ṽ(wt)
Tp(wt), (4)

whereṽ(wt) ∈ Rd×1 is the scoring weight vector
for wt. Thus, the model parameters in the PAS-
LBLM are (V, Ṽ , H). V is the set of word vec-

torsv(w), andṼ is the set of scoring weight vec-
tors ṽ(w). H is the set of the predicate-category-
specific weight vectorshc

i .
Based on the objective in the model of Collobert

et al. (2011), the model parameters are learned by
minimizing the following hinge loss:

N∑
n=1

max(1− s(wt, p(wt)) + s(wn, p(wt)), 0),

(5)
where the negative samplewn is a randomly sam-
pled word other thanwt, and N is the number
of negative samples. In our experiments we set
N = 1. Following Mikolov et al. (2013b), nega-
tive samples were drawn from the distribution over
unigrams that we raise to the power0.75 and then
normalize to once again attain a probability distri-
bution. We minimize the loss function in Eq. (5)
using AdaGrad (Duchi et al., 2011). For further
training details, see Section 4.5.

Relationship to softmax regression models.
The model parameters can be learned by maximiz-
ing the log probability of the target wordwt based
on the softmax function:

p(wt|context) =
exp(s(wt, p(wt)))∑|V|
i=1 exp(s(wi, p(wt)))

. (6)

This is equivalent to a softmax regression model.
However, when the vocabularyV is large, com-
puting the softmax function in Eq. (6) is compu-
tationally expensive. If we do not need probabil-
ity distributions over words, we are not necessar-
ily restricted to using the probabilistic expressions.
Recently, several methods have been proposed to
efficiently learn word representations rather than
accurate language models (Collobert et al., 2011;
Mikolov et al., 2013b; Mnih and Kavukcuoglu,
2013), and our objective follows the work of Col-
lobert et al. (2011). Mikolov et al. (2013b) and
Mnih and Kavukcuoglu (2013) trained their mod-
els using word-dependent scoring weight vectors
which are the arguments of our scoring function
in Eq. (4). During development we also trained
our model using the negative sampling technique
of Mikolov et al. (2013b); however, we did not ob-
serve any significant performance difference.

Intuition behind the PAS-LBLM. Here we
briefly explain how each class of the model pa-
rameters of the PAS-LBLM contributes to learning
word representations at each stochastic gradient
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decent step. The category-specific weight vectors
provide the PAS information for context word vec-
tors which we would like to learn. During train-
ing, context word vectors having the same PAS-
based syntactic roles are updated similarly. The
word-dependent scoring weight vectors propagate
the information on which words should, or should
not, be predicted. In effect, context word vectors
making similar contributions to word predictions
are updated similarly. The non-linear functionf
provides context words with information on the
other context words in the same PAS. In this way,
word vectors are expected to be learned efficiently
by the PAS-LBLM.

3.3 Learning Composition Functions

As explained in Section 3.1, predicate-argument
structures inherently form graphs whose nodes are
words in a sentence. Using the graphs, we can in-
tegrate relationships between multiple predicate-
argument structures into our model.

When the context wordwi in Eq. (1), excluding
predicate words, has another predicate-argument
of categoryc′ as a dependency, we replacev(wi)
with the vector produced by the composition func-
tion for the predicate categoryc′. For example,
as shown in Figure 1 (b), when the first argument
“rain” of the predicate “cause” is also the argu-
ment of the predicate “heavy”, we first compute
thed-dimensional composed vector representation
for “heavy” and “rain”:

gc′(v(heavy), v(rain)), (7)

wherec′ is the categoryadj arg1, andgc′ is a func-
tion to combine input vectors for the predicate-
categoryc′. We can use any composition func-
tion that produces a representation of the same
dimensionality as its inputs, such as element-
wise addition/multiplication (Mitchell and Lap-
ata, 2008) or neural networks (Socher et al.,
2012). We then replacev(rain) in Eq. (2) with
gc′(v(heavy), v(rain)). When the second argu-
ment “accident” in Eq. (2) is also the argument
of the predicate “car”,v(accident) is replaced
with gc′′(v(car), v(accident)). c′′ is the predi-
cate categorynounarg1. These multiple relation-
ships of predicate-argument structures should pro-
vide richer context information. We refer to the
PAS-LBLM with composition functions as PAS-
CLBLM.

3.4 Bag-of-Words Sensitive PAS-CLBLM

Both the PAS-LBLM and PAS-CLBLM can take
meaningful relationships between words into ac-
count. However, at times, the number of context
words can be limited and the ability of other mod-
els to take ten or more words from a fixed con-
text in a bag-of-words (BoW) fashion could com-
pensate for this sparseness. Huang et al. (2012)
combined local and global contexts in their neural
network language models, and motivated by their
work, we integrate bag-of-words vectors into our
models. Concretely, we add an additional input
term to Eq. (1):

p(wt) = f

(
m∑

i=1

hc
i ⊙ v(wi) + hc

BoW ⊙ v(BoW)

)
,

(8)
wherehc

BoW ∈ Rd×1 are additional weight vec-
tors, andv(BoW) ∈ Rd×1 is the average of the
word vectors in the same sentence. To construct
the v(BoW) for each sentence, we average the
word vectors of nouns and verbs in the same sen-
tence, excluding the target and context words.

4 Experimental Settings

4.1 Training Corpus

We used the British National Corpus (BNC) as our
training corpus, extracted 6 million sentences from
the original BNC files, and parsed them using the
Enju parser described in Section 3.1.

4.2 Word Sense Disambiguation Using
Part-of-Speech Tags

In general, words can have multiple syntactic us-
ages. For example, the wordcausecan be a
noun or a verb depending on its context. Most
of the previous work on learning word vectors
ignores this ambiguity since word sense disam-
biguation could potentially be performed after the
word vectors have been trained (Huang et al.,
2012; Kartsaklis and Sadrzadeh, 2013). Some re-
cent work explicitly assigns an independent vec-
tor for each word usage according to its part-of-
speech (POS) tag (Hashimoto et al., 2013; Kart-
saklis and Sadrzadeh, 2013). Alternatively, Baroni
and Zamparelli (2010) assigned different forms of
parameters to adjectives and nouns.

In our experiments, we combined each word
with its corresponding POS tags. We used the
base-forms provided by the Enju parser rather than
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Figure 2: Two PAS-CLBLM training samples.

the surface-forms, and used the first two charac-
ters of the POS tags. For example,VB, VBP,
VBZ, VBG, VBD, VBN were all mapped toVB.
This resulted in two kinds ofcause: causeNNand
causeVB and we used the 100,000 most frequent
lowercased word-POS pairs in the BNC.

4.3 Selection of Training Samples Based on
Categories of Predicates

To train the PAS-LBLM and PAS-CLBLM, we
could use all predicate categories. However, our
preliminary experiments showed that these cate-
gories covered many training samples which are
not directly relevant to our experimental setting,
such as determiner-noun dependencies. We thus
manually selected the categories used in our ex-
periments. The selected predicates are listed in
Table 1: adj arg1, nounarg1, prep arg12, and
verb arg12. These categories should provide
meaningful information on selectional preference.
For example, theprep arg12denotes prepositions
with two arguments, such as “eat at restaurant”
which means that the verb “eat” is related to the
noun “restaurant” by the preposition “at”. Prepo-
sitions are one of the predicates whose arguments
can be verbs, and thus prepositions are important
in training the composition functions for (subject-)
verb-object dependencies as described in the next
paragraph.

Another point we had to consider was how
to construct the training samples for the PAS-
CLBLM. We constructed compositional training
samples as explained in Section 3.3 whenc′ was
adj arg1, nounarg1, or verb arg12. Figure 2
shows two examples in addition to the example
in Figure 1 (b). Using such training samples, the
PAS-CLBLM could, for example, recognize from
the two predicate-argument structures, “eat food”
and “eat at restaurant”, that eating foods is an ac-
tion that occurs at restaurants.

Model Composition Function

Addl v(w1) + v(w2)
Addnl tanh(v(w1) + v(w2))
Waddl mc

adj ⊙ v(w1) + mc
arg1 ⊙ v(w2)

Waddnl tanh(mc
adj⊙v(w1)+mc

arg1⊙v(w2))

Table 2: Composition functions used in this work.
The examples are shown as theadjective-nounde-
pendency betweenw1 =“heavy” andw2 =“rain”.

4.4 Selection of Composition Functions

As described in Section 3.3, we are free to se-
lect any composition functions in Eq. (7). To
maintain the fast training speed of the PAS-
LBLM, we avoid dense matrix-vector multiplica-
tion in our composition functions. In Table 2,
we list the composition functions used for the
PAS-CLBLM. Addl is element-wise addition and
Addnl is element-wise addition with the non-
linear functiontanh. The subscriptsl andnl de-
note the wordslinear andnon-linear. Similarly,
Waddl is element-wise weighted addition and
Waddnl is element-wise weighted addition with
the non-linear functiontanh. The weight vec-
torsmc

i ∈ Rd×1 in Table 2 are predicate-category-
specific parameters which are learned during train-
ing. We investigate the effects of the non-linear
function tanh for these composition functions.
In the formulations of the backpropagation algo-
rithm, non-linear functions allow the input vectors
to weakly interact with each other.

4.5 Initialization and Optimization of Model
Parameters

We assigned a 50-dimensional vector for each
word-POS pair described in Section 4.2 and ini-
tialized the vectors and the scoring weight vec-
tors using small random values. In part inspired
by the initialization method of the weight matrices
in Socher et al. (2013a), we initialized all values
in the compositional weight vectors of the Waddl

and Waddnl as 1.0. The context weight vectors
were initialized using small random values.

We minimized the loss function in Eq. (5) us-
ing mini-batch SGD and AdaGrad (Duchi et al.,
2011). Using AdaGrad, the SGD’s learning rate
is adapted independently for each model parame-
ter. This is helpful in training the PAS-LBLM and
PAS-CLBLM, as they have conditionally depen-
dent model parameters with varying frequencies.
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The mini-batch size was32 and the learning rate
was0.05 for each experiment, and no regulariza-
tion was used. To verify the semantics captured by
the proposed models during training and to tune
the hyperparameters, we used theWordSim-3532

word similarity data set (Finkelstein et al., 2001).

5 Evaluation on Phrase Similarity Tasks

5.1 Evaluation Settings

The learned models were evaluated on four tasks
of measuring the semantic similarity between
short phrases. We performed evaluation using the
three tasks (AN, NN, and VO) in the dataset3 pro-
vided by Mitchell and Lapata (2010), and the SVO
task in the dataset4 provided by Grefenstette and
Sadrzadeh (2011).

The datasets include pairs of short phrases ex-
tracted from the BNC. AN, NN, and VO con-
tain 108 phrase pairs of adjective-noun, noun-
noun, and verb-object. SVO contains 200 pairs of
subject-verb-object phrases. Each phrase pair has
multiple human-ratings: the higher the rating is,
the more semantically similar the phrases. For ex-
ample, the subject-verb-object phrase pair of “stu-
dent write name” and “student spell name” has a
high rating. The pair “people try door” and “peo-
ple judge door” has a low rating.

For evaluation we used the Spearman’s rank
correlationρ between the human-ratings and the
cosine similarity between the composed vector
pairs. We mainly usednon-averagedhuman-
ratings for each pair, and as described in Section
5.3, we also usedaveragedhuman-ratings for the
SVO task. Each phrase pair in the datasets was an-
notated by more than two annotators. In the case
of averaged human ratings, we averaged multiple
human-ratings for each phrase pair, and in the case
of non-averaged human-ratings, we treated each
human-rating as a separate annotation.

With the PAS-CLBLM, we represented each
phrase using the composition functions listed in
Table 2. When there was no composition present,
we represented the phrase using element-wise ad-
dition. For example, when we trained the PAS-
CLBLM with the composition function Waddnl,

2http://www.cs.technion.ac.il/ ˜ gabr/
resources/data/wordsim353/

3http://homepages.inf.ed.ac.uk/
s0453356/share

4http://www.cs.ox.ac.uk/activities/
compdistmeaning/GS2011data.txt

Model AN NN VO

PAS-CLBLM (Addl) 0.52 0.44 0.35
PAS-CLBLM (Addnl) 0.52 0.46 0.45
PAS-CLBLM (Waddl) 0.48 0.39 0.34
PAS-CLBLM (Waddnl) 0.48 0.40 0.39
PAS-LBLM 0.41 0.44 0.39
word2vec 0.52 0.48 0.42
BL w/ BNC 0.48 0.50 0.35
HB w/ BNC 0.41 0.44 0.34
KS w/ ukWaC n/a n/a 0.45
K w/ BNC n/a n/a 0.41

Human agreement 0.52 0.49 0.55

Table 3: Spearman’s rank correlation scoresρ for
the three tasks: AN, NN, and VO.

the composed vector for each phrase was com-
puted using the Waddnl function, and when we
trained the PAS-LBLM, we used the element-wise
addition function. To compute the composed vec-
tors using the Waddl and Waddnl functions, we
used the categories of the predicatesadj arg1,
nounarg1, andverb arg12 listed in Table 1.

As a strong baseline, we trained theSkip-gram
model of Mikolov et al. (2013b) using the pub-
licly available word2vec5 software. We fed the
POS-tagged BNC into word2vec since our models
utilize POS tags and trained 50-dimensional word
vectors using word2vec. For each phrase we then
computed the representation using vector addition.

5.2 AN, NN, and VO Tasks

Table 3 shows the correlation scoresρ for the AN,
NN, and VO tasks.Human agreementdenotes the
inter-annotator agreement. The word2vec baseline
achieves unexpectedly high scores for these three
tasks. Previously these kinds of models (Mikolov
et al., 2013b; Mnih and Kavukcuoglu, 2013) have
mainly been evaluated for word analogy tasks and,
to date, there has been no work using these word
vectors for the task of measuring the semantic sim-
ilarity between phrases. However, this experimen-
tal result suggests that word2vec can serve as a
strong baseline for these kinds of tasks, in addi-
tion to word analogy tasks.

In Table 3,BL , HB, KS, andK denote the work
of Blacoe and Lapata (2012), Hermann and Blun-
som (2013), Kartsaklis and Sadrzadeh (2013), and
Kartsaklis et al. (2013) respectively. Among these,

5https://code.google.com/p/word2vec/
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Averaged Non-averaged
Model Corpus SVO-SVO SVO-V SVO-SVO SVO-V

PAS-CLBLM (Addl) 0.29 0.34 0.24 0.28
PAS-CLBLM (Addnl) 0.27 0.32 0.24 0.28
PAS-CLBLM (Waddl) BNC 0.25 0.26 0.21 0.23
PAS-CLBLM (Waddnl) 0.42 0.50 0.34 0.41
PAS-LBLM 0.21 0.06 0.18 0.08
word2vec BNC 0.12 0.32 0.12 0.28
Grefenstette and Sadrzadeh (2011)BNC n/a n/a 0.21 n/a
Tsubaki et al. (2013) ukWaC n/a 0.47 n/a n/a
Van de Cruys et al. (2013) ukWaC n/a n/a 0.32 0.37

Human agreement 0.75 0.62

Table 4: Spearman’s rank correlation scoresρ for the SVO task.Averageddenotes theρ calculated by
averaged human ratings, andNon-averageddenotes theρ calculated by non-averaged human ratings.

only Kartsaklis and Sadrzadeh (2013) used the
ukWaC corpus (Baroni et al., 2009) which is an or-
der of magnitude larger than the BNC. As we can
see in Table 3, the PAS-CLBLM (Addnl) achieves
scores comparable to and higher than those of the
baseline and the previous state-of-the-art results.
In relation to these results, the Waddl and Waddnl

variants of the PAS-CLBLM do not achieve great
improvements in performance. This indicates that
simple word vector addition can be sufficient to
compose representations for phrases consisting of
word pairs.

5.3 SVO Task

Table 4 shows the correlation scoresρ for the SVO
task. The scoresρ for this task are reported for
both averagedand non-averagedhuman ratings.
This is due to a disagreement in previous work
regarding which metric to use when reporting re-
sults. Hence, we report the scores for both settings
in Table 4. Another point we should consider is
that some previous work reported scores based on
the similarity between composed representations
(Grefenstette and Sadrzadeh, 2011; Van de Cruys
et al., 2013), and others reported scores based on
the similarity between composed representations
and word representations of landmark verbs from
the dataset (Tsubaki et al., 2013; Van de Cruys et
al., 2013). For completeness, we report the scores
for both settings:SVO-SVOandSVO-Vin Table 4.

The results show that the weighted addition
model with the non-linear functiontanh (PAS-
CLBLM (Waddnl)) is effective for the more com-
plex phrase task. While simple vector addition is
sufficient for phrases consisting of word pairs, it is

clear from our experimental results that they fall
short for more complex structures such as those
involved in the SVO task.

Our PAS-CLBLM (Waddnl) model outperforms
the previous state-of-the-art scores for the SVO
task as reported by Tsubaki et al. (2013) and
Van de Cruys et al. (2013). As such, there are three
key points that we would like to emphasize:

(1) the difference of the training corpus size,

(2) the necessity of the pre-trained word vectors,

(3) the modularity of deep learning models.

Tsubaki et al. (2013) and Van de Cruys et al.
(2013) used the ukWaC corpus. This means our
model works better, despite using a considerably
smaller corpora. It should also be noted that, like
us, Grefenstette and Sadrzadeh (2011) used the
BNC corpus.

The model of Tsubaki et al. (2013) is based on
neural network language models which use syn-
tactic dependencies between verbs and their ob-
jects. While their novel model, which incorpo-
rates the idea ofco-compositionality, works well
with pre-trained word vectors produced by exter-
nal models, it is not clear whether the pre-trained
vectors are required to achieve high scores. In
contrast, we have achieved state-of-the-art results
without the use of pre-trained word vectors.

Despite our model’s scalability, we trained 50-
dimensional vector representations for words and
their composition functions and achieved high
scores using this low dimensional vector space.
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model d AN NN VO SVO

Addl 50 0.52 0.44 0.35 0.24
1000 0.51 0.51 0.43 0.31

Addnl 50 0.52 0.46 0.45 0.24
1000 0.51 0.50 0.45 0.31

Waddl 50 0.48 0.39 0.34 0.21
1000 0.50 0.49 0.43 0.32

Waddnl 50 0.48 0.40 0.39 0.34
1000 0.51 0.48 0.48 0.34

Table 5: Comparison of the PAS-CLBLM between
d = 50 andd = 1000.

This maintains the possibility to incorporate re-
cently developed deep learning composition func-
tions into our models, such as recursive neural
tensor networks (Socher et al., 2013b) and co-
compositional neural networks (Tsubaki et al.,
2013). While such complex composition functions
slow down the training of compositional models,
richer information could be captured during train-
ing.

5.4 Effects of the Dimensionality

To see how the dimensionality of the word vectors
affects the scores, we trained the PAS-CLBLM for
each setting using 1,000-dimensional word vectors
and set the learning rate to0.01. Table 5 shows
the scores for all four tasks. Note that we only re-
port the scores for the settingnon-averaged SVO-
SVOhere. As shown in Table 5, the scores consis-
tently improved with a few exceptions. The scores
ρ = 0.51 for the NN task andρ = 0.48 for the
VO task are the best results to date. However, the
scoreρ = 0.34 for the SVO task did not improve
by increasing the dimensionality. This means that
simply increasing the dimensionality of the word
vectors does not necessarily lead to better results
for complex phrases.

5.5 Effects of Bag-of-Words Contexts

Lastly, we trained the PAS-CLBLM without the
bag-of-words contexts described in Section 3.4
and used 50-dimensional word vectors. As can be
seen in Table 6, large score improvements were
observed only for the VO and SVO tasks by in-
cluding the bag-of-words contexts and the non-
linearity function. It is likely that the results de-
pend on how the bag-of-words contexts are con-
structed. However, we leave this line of analysis
as future work. Both adjective-noun and noun-

model BoW AN NN VO SVO

Addl w/ 0.52 0.44 0.35 0.24
w/o 0.48 0.46 0.38 0.23

Addnl w/ 0.52 0.46 0.45 0.24
w/o 0.50 0.47 0.41 0.15

Waddl w/ 0.48 0.39 0.34 0.21
w/o 0.47 0.39 0.38 0.21

Waddnl w/ 0.48 0.40 0.39 0.34
w/o 0.52 0.42 0.33 0.26

Table 6: Scores of the PAS-CLBLM with and
without BoW contexts.

noun phrase are noun phrases, and (subject-) verb-
object phrases can be regarded as complete sen-
tences. Therefore, different kinds of context infor-
mation might be required for both groups.

6 Qualitative Analysis on Composed
Vectors

An open question that remains is to what ex-
tent composition affects the representations pro-
duced by our PAS-CLBLM model. To evalu-
ate this we assigned a vector for each composed
representation. For example, the adjective-noun
dependency “heavy rain” would be assigned an
independent vector. We added the most fre-
quent 100,000 adjective-noun, noun-noun, and
(subject-) verb-object tuples to the vocabulary and
the resulting vocabulary contained 400,000 to-
kens (100,000+3×100,000). A similar method
for treating frequent neighboring words as single
words was introduced by Mikolov et al. (2013b).
However, some dependencies, such as (subject-)
verb-object phrases, are not always captured when
considering only neighboring words.

Table 7 (No composition) shows some examples
of predicate-argument dependencies with their
closest neighbors in the vector space according
to the cosine similarity. The table shows that the
learned vectors of multiple words capture seman-
tic similarity. For example, the vector of “heavy
rain” is close to the vectors of words which ex-
press the phenomenaheavily raining. The vector
of “new york” captures the concept of amajor city.
The vectors of (subject-) verb-object dependencies
also capture the semantic similarity, which is the
main difference to previous approaches, such as
that of Mikolov et al. (2013b), which only consider
neighboring words. These results suggest that the
PAS-CLBLM can learn meaningful composition
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Query No composition Composition
rain rain

(AN) thunderstorm sunshine
heavy downpour storm
rain blizzard drizzle

much rain chill
general manager executive

(AN) vice president director
chief executive director representative
executive project manager officer

managing director administrator
second war war

(NN) plane crash world
world riot race
war last war holocaust

great war warfare
oslo york

(NN) paris toronto
new birmingham paris
york moscow edinburgh

madrid glasgow
make order make

(VO) carry survey allow
make pay tax demand
payment pay produce

impose tax bring
achieve objective solve

(VO) bridge gap alleviate
solve improve quality overcome
problem deliver information resolve

encourage development circumvent
hold meeting take

(SVO) event take place get
meeting end season win
take discussion take place put
place do work gain

Table 7: Nearest neighbor vectors for multiple
words. POS-tags are not shown for simplicity.

category predicate arg1 arg2

adj arg1 2.38 6.55 -
nounarg1 3.37 5.60 -
verb arg12 6.78 2.57 2.18

Table 8: L2-norms of the 50-dimensional weight
vectors of the composition function Waddnl.

functions since the composition layers receive the
same error signal via backpropagation.

We then trained the PAS-CLBLM using Waddnl

to learn composition functions. Table 7 (Compo-
sition) shows the nearest neighbor words for each
composed vector, and as we can see, the learned
composition function emphasizes the head words
and captures some sort of semantic similarity. We
then inspected the L2-norms of the weight vectors
of the composition function. As shown in Table 8,
head words are strongly emphasized. Emphasiz-
ing head words is helpful in representing com-
posed meanings, but in the case of verbs it may

not always be sufficient. This can be observed in
Table 3 and Table 4, which demonstrates that verb-
related tasks are more difficult than noun-phrase
tasks.

While No compositioncaptures the seman-
tic similarity well using independent parameters,
there is the issue of data sparseness. As the size of
the vocabulary increases, the number of tuples of
word dependencies increases rapidly. In this ex-
periment, we used only the 300,000 most frequent
tuples. In contrast to this, the learned composi-
tion functions can capture similar information us-
ing only word vectors and a small set of predicate
categories.

7 Conclusion and Future Work

We have presented a compositional log-bilinear
language model using predicate-argument struc-
tures that incorporates both bag-of-words and
dependency-based contexts. In our experiments
the learned composed vectors achieve state-of-the-
art scores for the task of measuring the semantic
similarity between short phrases. For the subject-
verb-object phrase task, the result is achieved
without any pre-trained word vectors using a cor-
pus an order of magnitude smaller than that of the
previous state of the art. For future work, we will
investigate how our models and the resulting vec-
tor representations can be helpful for other unsu-
pervised and/or supervised tasks.
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Vector Space Model for Word Meaning in Context.
In Proceedings of the 2008 Conference on Empiri-
cal Methods in Natural Language Processing, pages
897–906.

Lev Finkelstein, Gabrilovich Evgenly, Matias Yossi,
Rivlin Ehud, Solan Zach, Wolfman Gadi, and Rup-
pin Eytan. 2001. Placing Search in Context: The
Concept Revisited. InProceedings of the Tenth In-
ternational World Wide Web Conference.

John Rupert Firth. 1957. A synopsis of linguistic
theory 1930-55. InStudies in Linguistic Analysis,
pages 1–32.

Kartik Goyal, Sujay Kumar Jauhar, Huiying Li, Mrin-
maya Sachan, Shashank Srivastava, and Eduard
Hovy. 2013. A Structured Distributional Seman-
tic Model : Integrating Structure with Semantics. In
Proceedings of the Workshop on Continuous Vector
Space Models and their Compositionality, pages 20–
29.

Edward Grefenstette and Mehrnoosh Sadrzadeh. 2011.
Experimental Support for a Categorical Composi-
tional Distributional Model of Meaning. InPro-
ceedings of the 2011 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1394–
1404.

Kazuma Hashimoto, Makoto Miwa, Yoshimasa Tsu-
ruoka, and Takashi Chikayama. 2013. Simple Cus-
tomization of Recursive Neural Networks for Se-
mantic Relation Classification. InProceedings of
the 2013 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1372–1376.

Karl Moritz Hermann and Phil Blunsom. 2013. The
Role of Syntax in Vector Space Models of Composi-
tional Semantics. InProceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 894–904.

Eric Huang, Richard Socher, Christopher Manning,
and Andrew Ng. 2012. Improving Word Represen-
tations via Global Context and Multiple Word Proto-
types. InProceedings of the 50th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 873–882.

Dimitri Kartsaklis and Mehrnoosh Sadrzadeh. 2013.
Prior Disambiguation of Word Tensors for Con-
structing Sentence Vectors. InProceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, pages 1590–1601.

Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, and Stephen
Pulman. 2013. Separating Disambiguation from
Composition in Distributional Semantics. InPro-
ceedings of 17th Conference on Natural Language
Learning (CoNLL), pages 114–123.

Omer Levy and Yoav Goldberg. 2014. Dependency-
Based Word Embeddings. InProceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
302–308.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient Estimation of Word Repre-
sentations in Vector Space. InProceedings of Work-
shop at the International Conference on Learning
Representations.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed Represen-
tations of Words and Phrases and their Composition-
ality. In Advances in Neural Information Processing
Systems 26, pages 3111–3119.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. InProceedings of
46th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 236–244.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in Distributional Models of Semantics.Cognitive
Science, 34(8):1388–1439.

Yusuke Miyao and Jun’ichi Tsujii. 2008. Feature for-
est models for probabilistic HPSG parsing.Compu-
tational Linguistics, 34(1):35–80.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive
estimation. InAdvances in Neural Information Pro-
cessing Systems 26, pages 2265–2273.

Andriy Mnih and Yee Whye Teh. 2012. A fast
and simple algorithm for training neural probabilis-
tic language models. In John Langford and Joelle
Pineau, editors,Proceedings of the 29th Interna-
tional Conference on Machine Learning (ICML-12),
ICML ’12, pages 1751–1758.

Denis Paperno, Nghia The Pham, and Marco Baroni.
2014. A practical and linguistically-motivated ap-
proach to compositional distributional semantics. In

1554



Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 90–99.

Richard Socher, Brody Huval, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Semantic Compo-
sitionality through Recursive Matrix-Vector Spaces.
In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 1201–1211.

Richard Socher, John Bauer, Christopher D. Manning,
and Ng Andrew Y. 2013a. Parsing with Compo-
sitional Vector Grammars. InProceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
455–465.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013b. Recursive Deep Mod-
els for Semantic Compositionality Over a Sentiment
Treebank. InProceedings of the 2013 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 1631–1642.

Richard Socher, Quoc V. Le, Christopher D. Manning,
and Andrew Y. Ng. 2014. Grounded Compositional
Semantics for Finding and Describing Images with
Sentences.Transactions of the Association for Com-
putational Linguistics, 2:207–218.

Stefan Thater, Hagen Fürstenau, and Manfred Pinkal.
2010. Contextualizing Semantic Representations
Using Syntactically Enriched Vector Models. In
Proceedings of the 48th Annual Meeting of the As-
sociation for Computational Linguistics, pages 948–
957.

Masashi Tsubaki, Kevin Duh, Masashi Shimbo, and
Yuji Matsumoto. 2013. Modeling and Learning Se-
mantic Co-Compositionality through Prototype Pro-
jections and Neural Networks. InProceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, pages 130–140.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word Representations: A Simple and General
Method for Semi-Supervised Learning. InProceed-
ings of the 48th Annual Meeting of the Association
for Computational Linguistics, pages 384–394.

Peter D. Turney and Patrick Pantel. 2010. From Fre-
quency to Meaning: Vector Space Models of Se-
mantics.Journal of Artificial Intelligence Research,
37(1):141–188.

Tim Van de Cruys, Thierry Poibeau, and Anna Korho-
nen. 2013. A Tensor-based Factorization Model of
Semantic Compositionality. InProceedings of the
2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1142–1151.

1555



Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1556–1567,
October 25-29, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

Combining Distant and Partial Supervision for Relation Extraction

Gabor Angeli, Julie Tibshirani, Jean Y. Wu, Christopher D. Manning
Stanford University
Stanford, CA 94305

{angeli, jtibs, jeaneis, manning}@stanford.edu

Abstract

Broad-coverage relation extraction either
requires expensive supervised training
data, or suffers from drawbacks inherent
to distant supervision. We present an ap-
proach for providing partial supervision
to a distantly supervised relation extrac-
tor using a small number of carefully se-
lected examples. We compare against es-
tablished active learning criteria and pro-
pose a novel criterion to sample examples
which are both uncertain and representa-
tive. In this way, we combine the ben-
efits of fine-grained supervision for diffi-
cult examples with the coverage of a large
distantly supervised corpus. Our approach
gives a substantial increase of 3.9% end-
to-end F1 on the 2013 KBP Slot Filling
evaluation, yielding a net F1 of 37.7%.

1 Introduction

Fully supervised relation extractors are limited to
relatively small training sets. While able to make
use of much more data, distantly supervised ap-
proaches either make dubious assumptions in or-
der to simulate fully supervised data, or make use
of latent-variable methods which get stuck in local
optima easily. We hope to combine the benefits
of supervised and distantly supervised methods by
annotating a small subset of the available data us-
ing selection criteria inspired by active learning.

To illustrate, our training corpus contains
1 208 524 relation mentions; annotating all of
these mentions for a fully supervised classifier, at
an average of $0.13 per annotation, would cost ap-
proximately $160 000. Distant supervision allows
us to make use of this large corpus without requir-
ing costly annotation. The traditional approach is
based on the assumption that every mention of an
entity pair (e.g., Obama and USA) participates in

the known relation between the two (i.e., born in).
However, this introduces noise, as not every men-
tion expresses the relation we are assigning to it.

We show that by providing annotations for only
10 000 informative examples, combined with a
large corpus of distantly labeled data, we can yield
notable improvements in performance over the
distantly supervised data alone. We report results
on three criteria for selecting examples to anno-
tate: a baseline of sampling examples uniformly
at random, an established active learning criterion,
and a new metric incorporating both the uncer-
tainty and the representativeness of an example.
We show that the choice of metric is important
– yielding as much as a 3% F1 difference – and
that our new proposed criterion outperforms the
standard method in many cases. Lastly, we train
a supervised classifier on these collected exam-
ples, and report performance comparable to dis-
tantly supervised methods. Furthermore, we no-
tice that initializing the distantly supervised model
using this supervised classifier is critical for ob-
taining performance improvements.

This work makes a number of concrete contri-
butions. We propose a novel application of active
learning techniques to distantly supervised rela-
tion extraction. To the best of the authors knowl-
edge, we are the first to apply active learning to the
class of latent-variable distantly supervised mod-
els presented in this paper. We show that anno-
tating a proportionally small number of examples
yields improvements in end-to-end accuracy. We
compare various selection criteria, and show that
this decision has a notable impact on the gain in
performance. In many ways this reconciles our
results with the negative results of Zhang et al.
(2012), who show limited gains from naı̈vely an-
notating examples. Lastly, we make our annota-
tions available to the research community.1

1http://nlp.stanford.edu/software/
mimlre.shtml
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2 Background

2.1 Relation Extraction

We are interested in extracting a set of relations
y1 . . . yk from a fixed set of possible relations R,
given two entities e1 and e2. For example, we
would like to extract that Barack Obama was born
in Hawaii. The task is decomposed into two steps:
First, sentences containing mentions of both e1
and e2 are collected. The set of these sentences
x, marked with the entity mentions for e1 and e2,
becomes the input to the relation extractor, which
then produces a set of relations which hold be-
tween the mentions. We are predominantly in-
terested in the second step – classifying a set of
pairs of entity mentions into the relations they ex-
press. Figure 1 gives the general setting for re-
lation extraction, with entity pairs Barack Obama
and Hawaii, and Barack Obama and president.

Traditionally, relation extraction has fallen into
one of four broad approaches: supervised classi-
fication, as in the ACE task (Doddington et al.,
2004; GuoDong et al., 2005; Surdeanu and Cia-
ramita, 2007), distant supervision (Craven and
Kumlien, 1999; Wu and Weld, 2007; Mintz et
al., 2009; Sun et al., 2011; Roth and Klakow,
2013) deterministic rule-based systems (Soder-
land, 1997; Grishman and Min, 2010; Chen et al.,
2010), and translation from open domain informa-
tion extraction schema (Riedel et al., 2013). We
focus on the first two of these approaches.

2.2 Supervised Relation Extraction

Relation extraction can be naturally cast as a su-
pervised classification problem. A corpus of rela-
tion mentions is collected, and each mention x is
annotated with the relation y, if any, it expresses.
The classifier’s output is then aggregated to decide
the relations between the two entities.

However, annotating supervised training data
is generally expensive to perform at large scale.
Although resources such as Freebase or the TAC
KBP knowledge base have on the order of millions
of training tuples over entities it is not feasible to
manually annotate the corresponding mentions in
the text. This has led to the rise of distantly su-
pervised methods, which make use of this indirect
supervision, but do not necessitate mention-level
supervision.

Barack Obama was born in Hawaii.

Barack Obama visited Hawaii.

The president grew up in Hawaii.

state of birth

state of residence

Barack Obama met former president Clinton.

Obama became president in 2008.
title

Figure 1: The relation extraction setup. For a
pair of entities, we collect sentences which men-
tion both entities. These sentences are then used
to predict one or more relations between those
entities. For instance, the sentences containing
both Barack Obama and Hawaii should support
the state of birth and state of residence relation.

2.3 Distant Supervision
Traditional distant supervision makes the assump-
tion that for every triple (e1, y, e2) in a knowledge
base, every sentence containing mentions for e1
and e2 express the relation y. For instance, tak-
ing Figure 1, we would create a datum for each
of the three sentences containing BARACK OBAMA

and HAWAII labeled with state of birth, and like-
wise with state of residence, creating 6 training
examples overall. Similarly, both sentences in-
volving Barack Obama and president would be
marked as expressing the title relation.

While this allows us to leverage a large database
effectively, it nonetheless makes a number of naı̈ve
assumptions. First – explicit in the formulation of
the approach – it assumes that every mention ex-
presses some relation, and furthermore expresses
the known relation(s). For instance, the sen-
tence Obama visited Hawaii would be erroneously
treated as a positive example of the born in rela-
tion. Second, it implicitly assumes that our knowl-
edge base is complete: entity mentions with no
known relation are treated as negative examples.

The first of these assumptions is addressed by
multi-instance multi-label (MIML) learning, de-
scribed in Section 2.4. Min et al. (2013) address
the second assumption by extending the MIML
model with additional latent variables, while Xu
et al. (2013) allow feedback from a coarse relation
extractor to augment labels from the knowledge
base. These latter two approaches are compatible
with but are not implemented in this work.

2.4 Multi-Instance Multi-Label Learning
The multi-instance multi-label (MIML-RE) model
of Surdeanu et al. (2012), which builds upon work
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Figure 2: The MIML-RE model, as shown in Sur-
deanu et al. (2012). The outer plate corresponds to
each of the n entity pairs in our knowledge base.
Each entity pair has a set of mention pairs Mi, and
a corresponding plate in the diagram for each men-
tion pair in Mi. The variable x represents the in-
put mention pair, whereas y represents the positive
and negative relations for the given pair of entities.
The latent variable z denotes a mention-level pre-
diction for each input. The weight vector for the
multinomial z classifier is given by wz , and there
is a weight vector wj for each binary y classifier.

by Hoffmann et al. (2011) and Riedel et al. (2010),
addresses the assumptions of distantly supervised
relations extractors in a principled way by positing
a latent mention-level annotation.

The model groups mentions according to their
entity pair – for instance, every mention pair with
Obama and Hawaii would be grouped together. A
latent variable zi is created for every mention i,
where zi ∈ R ∪ {None} takes a single relation
label, or a no relation marker. We create |R| bi-
nary variables y representing the known positive
and negative relations for the entity pair. A set of
binary classifiers (log-linear factors in the graphi-
cal model) links the latent predictions z1 . . . z|Mi|
and each yj . These classifiers include two classes
of features: first, a binary feature which fires if at
least one of the mentions expresses a known rela-
tion between the entity pair, and second, a feature
for each co-occurrence of relations for a given en-
tity pair. Figure 2 describes the model.

2.5 Background on Active Learning

We describe preliminaries and prior work on ac-
tive learning; we use this framework to propose
two sampling schemes in Section 3 which we use
to annotate mention-level labels for MIML-RE.

One way of expressing the generalization error
of a hypothesis ĥ is through its mean-squared error
with the true hypothesis h:

E[(h(x)− ĥ(x))2]
= E[E[(h(x)− ĥ(x))2|x]]
=
∫
x
E[(h(x)− ĥ(x))2|x]p(x)dx.

The integrand can be further broken into bias
and variance terms:

E[(h(x)− ĥ(x))2] = (E[ĥ(x)]− h(x))2
+ E[(ĥ(x)− E[ĥ(x)])2]

where for simplicity we’ve dropped the condition-
ing on x.

Many traditional sampling strategies, such as
query-by-committee (QBC) (Freund et al., 1992;
Freund et al., 1997) and uncertainty sampling
(Lewis and Gale, 1994), work by decreasing the
variance of the learned model. In QBC, we
first create a ‘committee’ of classifiers by ran-
domly sampling their parameters from a distribu-
tion based on the training data. These classifiers
then make predictions on the unlabeled examples,
and the examples on which there is the most dis-
agreement are selected for labeling. This strat-
egy can be seen as an attempt to decrease the ver-
sion space – the set of classifiers that are consis-
tent with the labeled data. Decreasing the version
space should lower variance, since variance is in-
versely related to the size of the hypothesis space.

In most scenarios, active learning does not con-
cern itself with the bias term. If a model is fun-
damentally misspecified, then no amount of ad-
ditional training data can lower its bias. How-
ever, our paradigm differs from the traditional set-
ting, in that we are annotating latent variables in
a model with a non-convex objective. These an-
notations may help increase the convexity of our
objective, leading us to a more accurate optimum
and thereby lowering bias.

The other component to consider is∫
x · · · p(x)dx. This suggests that it is impor-

tant to choose examples that are representative
of the underlying distribution p(x), as we want
to label points that will improve the classifier’s
predictions on as many and as high-probability
examples as possible. Incorporating a repre-
sentativeness metric has been shown to provide
a significant improvement over plain QBC or
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uncertainty sampling (McCallum and Nigam,
1998; Settles, 2010).

2.6 Active Learning for Relation Extraction

Several papers have explored active learning for
relation extraction. Fu and Grishman (2013) em-
ploy active learning to create a classifier quickly
for new relations, simulated from the ACE corpus.
Finn and Kushmerick (2003) compare a number
of selection criteria – including QBC – for a su-
pervised classifier. To the best of our knowledge,
we are the first to apply active learning to distantly
supervised relation extraction. Furthermore, we
evaluate our selection criteria live in a real-world
setting, collecting new sentences and evaluating
on an end-to-end task.

For latent variable models, McCallum and
Nigam (1998) apply active learning to semi-
supervised document classification. We take in-
spiration from their use of QBC and the choice of
metric for classifier disagreement. However their
model assumes a fully Bayesian set-up, whereas
ours does not require strong assumptions about the
parameter distributions.

Settles et al. (2008) use active learning to im-
prove a multiple-instance classifier. Their model
is simpler in that it does not allow for unobserved
variables or multiple labels, and the authors only
evaluate on image retrieval and synthetic text clas-
sification datasets.

3 Example Selection

We describe three criteria for selection examples
to annotate. The first – sampling uniformly – is
a baseline for our hypothesis that intelligently se-
lecting examples is important. For this criterion,
we select mentions uniformly at random from the
training set to annotate. This is the approach used
in Zhang et al. (2012). The other two criteria rely
on a metric for disagreement provided by QBC;
we describe our adaptation of QBC for MIML-RE
as a preliminary to introducing these criteria.

3.1 QBC For MIML-RE

We use a version of QBC based on bootstrap-
ping (Saar-Tsechansky and Provost, 2004). To
create the committee of classifiers, we re-sample
the training set with replacement 7 times and train
a model over each sampled dataset. We mea-
sure disagreement on z-labels among the classi-
fiers using a generalized Jensen-Shannon diver-

gence (McCallum and Nigam, 1998), taking the
average KL divergence of all classifier judgments.

We first calculate the mention-level confi-
dences. Note that z(m)

i ∈ Mi denotes the latent
variable in entity pair i with index m; z(−m)

i de-
notes the set of all latent variables except z(m)

i :

p(z(m)
i |yi,xi) =

p(yi, z
(m)
i |xi)

p(yi|xi)

=

∑
z
(−m)
i

p(yi, zi|xi)∑
z
(m)
i

p(yi, z
(m)
i |xi)

.

Notice that the denominator just serves to nor-
malize the probability within a sentence group.
We can rewrite the numerator as follows:∑

z
(−m)
i

p(yi, zi|xi)

=
∑

z
(−m)
i

p(yi|zi)p(zi|xi)

= p(z(m)
i |xi)

∑
z
(−m)
i

p(yi|zi)p(z
(−m)
i |xi).

For computational efficiency, we approximate
p(z(−m)

i |xi) with a point mass at its maximum.
Next, we calculate the Jensen-Shannon (JS) diver-
gence from the k bootstrapped classifiers:

1
k

k∑
c=1

KL(pc(z
(m)
i |yi,xi)||pmean(z

(m)
i |yi,xi)) (1)

where pc is the probability assigned by each of the
k classifiers to the latent z(m)

i , and pmean is the av-
erage of these probabilities. We use this metric
to capture the disagreement of our model with re-
spect to a particular latent variable. This is then
used to inform our selection criteria.

We note that QBC may be especially useful in
our situation as our objective is highly nonconvex.
If two committee members disagree on a latent
variable, it is likely because they converged to dif-
ferent local optima; annotating that example could
help bring the classifiers into agreement.

The second selection criterion we consider is
the most straightforward application of QBC – se-
lecting the examples with the highest JS disagree-
ment. This allows us to compare our criterion, de-
scribed next, against an established criterion from
the active learning literature.
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3.2 Sample by JS Disagreement
We propose a novel active learning sampling cri-
terion that incorporates not only disagreement but
also representativeness in selecting examples to
annotate. Prior work has taken a weighted combi-
nation of an example’s disagreement and a score
corresponding to whether the example is drawn
from a dense portion of the feature space (e.g.,
McCallum and Nigam (1998)). However, this re-
quires both selecting a criterion for defining den-
sity (e.g., distance metric in feature space), and
tuning a parameter for the relative weight of dis-
agreement versus representativeness.

Instead, we account for choosing representa-
tive examples by sampling without replacement
proportional to the example’s disagreement. For-
mally, we define the probability of selecting an
example z

(m)
i to be proportional to the Jensen-

Shannon divergence in (1). Since the training set is
an approximation to the prior distribution over ex-
amples, sampling uniformly over the training set is
an approximation to sampling from the prior prob-
ability of seeing an input x. We can view our crite-
rion as an approximation to sampling proportional
to the product of two densities: a prior over exam-
ples x, and the JS divergence mentioned above.

4 Incorporating Sentence-Level
Annotations

Following Surdeanu et al. (2012), MIML-RE is
trained through hard discriminative Expectation
Maximization, inferring the latent z values in the
E-step and updating the weights for both the z and
y classifiers in the M-step. During the E-step, we
constrain the latent z to match our sentence-level
annotations when available.

It is worth noting that even in the hard-EM
regime, we can in principle incorporate annotator
uncertainty elegantly into the model. At each E
step, each zi is set according to

zi
(m)∗ ≈ arg max

z∈R

[
p(z | x(m)

i ,wz) ×∏
r

p(y(r)
i | z′i,w(r)

y )
]

where z′i contains the inferred labels from the
previous iteration, but with its mth component re-
placed by z(m)

i .
By setting the distribution p(z | x(m)

i ,wz) to re-
flect uncertainty among annotators, we can leave

open the possibility for the model to choose a re-
lation which annotators deemed unlikely, but the
model nonetheless prefers. For simplicity, how-
ever, we treat our annotations as a hard assign-
ment.

In addition to incorporating annotations during
training, we can also use this data to intelligently
initialize the model. Since the MIML-RE objec-
tive is non-convex, the initialization of the classi-
fier weights wy and wz is important. The y clas-
sifiers are initialized with the “at-least-once” as-
sumption of Hoffmann et al. (2011); wz can be ini-
tialized either using traditional distant supervision
or from a supervised classifier trained on the an-
notated sentences. If initialized with a supervised
classifier, the model can be viewed as augment-
ing this supervised model with a large distantly
labeled corpus, providing both additional entity
pairs to train from, and additional mentions for an
annotated entity pair.

5 Crowdsourced Example Annotation

Most prior work on active learning is done by sim-
ulation on a fully labeled dataset; such a dataset
doesn’t exist for our case. Furthermore, a key aim
of this paper is to practically improve state-of-the-
art performance in relation extraction in addition
to evaluating active learning criteria. Therefore,
we develop and execute an annotation task for col-
lecting labels for our selected examples.

We utilize Amazon Mechanical Turk to crowd-
source annotations. For each task, the annotator
(Turker) is presented with the task description, fol-
lowed by 15 questions, 2 of which are randomly
placed controls. For each question, we present
Turkers with a relation mention and the top 5 re-
lation predictions from our classifier. The Turker
also has an option to freely specify a relation not
presented in the first five options, or mark that
there is no relation. We attempt to heuristically
match common free-form answers to official rela-
tions.

To maintain the quality of the results, we dis-
card all submissions in which both controls were
answered incorrectly, and additionally discard all
submissions from Turkers who failed the controls
on more than 1

3 of their submissions. Rejected
tasks were republished for other workers to com-
plete. We collect 5 annotations for each example,
and use the most commonly agreed answer as the
ground truth. Ties are broken arbitrarily, except in
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Figure 3: The task shown to Amazon Mechanical
Turk workers. A sentence along with the top 5 re-
lation predictions from our classifier are shown to
Turkers, as well as an option to specify a custom
relation or manually enter “no relation.” The cor-
rect response for this example should be either no
relation or a custom relation.

the case of deciding between a relation and no re-
lation, in which case the relation was always cho-
sen.

A total of 23 725 examples were annotated, cov-
ering 10 000 examples for each of the three selec-
tion criteria. Note that there is overlap between
the examples selected for the three criteria. In ad-
dition, 10 023 examples were annotated during de-
velopment; these are included in the set of all an-
notated examples, but excluded from any of the
three criteria. The compensation per task was 23
cents; the total cost of annotating examples was
$3156, in addition to $204 spent on developing the
task. Informally, Turkers achieved an accuracy of
around 75%, as evaluated by a paper author, per-
forming disproportionately well on identifying the
no relation label.

6 Experiments

We evaluate the three high-level research contri-
butions of this work: we show that we improve
the accuracy of MIML-RE, we validate the effec-
tiveness of our selection criteria, and we provide a
corpus of annotated examples, evaluating a super-
vised classifier trained on this corpus. The train-
ing and testing methodology for evaluating these
contributions is given in Sections 6.1 and 6.2; ex-
periments are given in Section 6.3.

6.1 Training Setup
We adopt the setup of Surdeanu et al. (2012) for
training the MIML-RE model, with minor modifi-
cations. We use both the 2010 and 2013 KBP of-

ficial document collections, as well as a July 2013
dump of Wikipedia as our text corpus. We sub-
sample negatives such that 1

3 of our dataset con-
sists of entity pairs with no known relations. In all
experiments, MIML-RE is trained for 7 iterations
of EM; for efficiency, the z classifier is optimized
using stochastic gradient descent;2 the y classifiers
are optimized using L-BFGS.

Similarly to Surdeanu et al. (2011), we as-
sign negative relations which are either incompat-
ible with the known positive relations (e.g., re-
lations whose co-occurrence would violate type
constraints); or, are actually functional relations
in which another entity already participates. For
example, if we know that Obama was born in the
United States, we could add born in as a negative
relation to the pair Obama and Kenya.

Our dataset consists of 325 891 entity pairs with
at least one positive relation, and 158 091 entity
pairs with no positive relations. Pairs with at least
one known relation have an average of 4.56 men-
tions per group; groups with no known relations
have an average of 1.55 mentions per group. In to-
tal, 1 208 524 distinct mentions are considered; the
annotated examples are selected from this pool.

6.2 Testing Methodology
We compare against the original MIML-RE model
using the same dataset and evaluation methodol-
ogy as Surdeanu et al. (2012). This allows for an
evaluation where the only free variable between
this and prior work is the predictions of the rela-
tion extractor.

Additionally, we evaluate the relation extractors
in the context of Stanford’s end-to-end KBP sys-
tem (Angeli et al., 2014) using the NIST TAC-
KBP 2013 English Slotfilling evaluation. In the
end-to-end framework, the input to the system is a
query entity and a set of articles, and the output is
a set of slot fills – each slot fill is a candidate triple
in the knowledge base, the first element of which
is the query entity. This amounts to roughly pop-
ulating a data structure like Wikipedia infoboxes
automatically from a large corpus of text.

Importantly, an end-to-end evaluation in a top-
performing full system gives a more accurate idea
of the expected real-world gain from each model.
Both the information retrieval component provid-
ing candidates to the relation extractor, as well as

2For the sake of consistency, the supervised classifiers and
those in Mintz++ are trained identically to the z classifiers in
MIML-RE.
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Method Init
Active Learning Criterion

Not Used Uniform High JS Sample JS All Available
P R F1 P R F1 P R F1 P R F1 P R F1

Mintz++ — 41.3 28.2 33.5 — — — —

MIML-RE
Dist 38.0 30.5 33.8 39.2 30.4 34.2 41.7 28.9 34.1 36.6 31.1 33.6 37.5 30.6 33.7

Sup 35.1 35.6 35.4 34.4 35.0 34.7 46.2 30.8 37.0 39.4 36.2 37.7 36.0 37.1 36.5

Supervised — — 35.5 28.9 31.9 31.3 33.2 32.2 33.5 35.0 34.2 32.9 33.4 33.2

Table 1: A summary of results on the end-to-end KBP 2013 evaluation for various experiments. The
first column denotes the algorithm used: either traditional distant supervision (Mintz++), MIML-RE, or
a supervised classifier. In the case of MIML-RE, the model may be initialized either using Mintz++, or
the corresponding supervised classifier (the “Not Used” column is initialized with the “All” supervised
classifier). One of five active learning scenarios are evaluated: no annotated examples provided, the three
active learning criteria, and all available examples used. The entry in blue denotes the basic MIML-RE
model; entries in gray perform worse than this model. The bold items denote the best performance
among selection criteria.

the consistency and inference performed on the
classifier output introduce bias in this evaluation’s
sensitivity to particular types of errors. Mistakes
which are easy to filter, or are difficult to retrieve
using IR are less important in this evaluation; in
contrast, factors such as providing good confi-
dence scores for consistency become more impor-
tant.

For the end-to-end evaluation, we use the offi-
cial evaluation script with two changes: First, all
systems are evaluated with provenance ignored, so
as not to penalize any system for finding a new
provenance not validated in the official evaluation
key. Second, each system reports its optimal F1

along its P/R curve, yielding results which are
optimistic when compared against other systems
entered into the competition. However, this also
yields results which are invariant to threshold tun-
ing, and is therefore more appropriate for compar-
ing between systems in this paper.

Development was done on the KBP 2010–2012
queries, and results are reported using the 2013
queries as a simulated test set. Our best system
achieves an F1 of 37.7; the top two teams at KBP
2013 (of 18 entered) achieved F1 scores of 40.2
and 37.1 respectively, ignoring provenance.

6.3 Results

Table 1 summarizes all results for the end-to-end
task; relevant features of the table are copied in
subsequent sections to illustrate key trends. Mod-
els which perform worse than the original MIML-
RE model (MIML-RE, initialized with “Dist,” un-
der “Not Used”) are denoted in gray. The best per-

System P R F1

Mintz++ 41.3 28.2 33.5
MIML + Dist 38.0 30.5 33.8
MIML + Sup 35.1 35.6 35.4
MIML + Dist + SampleJS 36.6 31.1 33.6
MIML + Sup + SampleJS 39.4 36.2 37.7

Table 2: A summary of improvements to MIML-
RE on the end-to-end slotfilling task, copied from
Table 1. Mintz++ is the traditional distantly su-
pervised model. The second row corresponds to
the unmodified MIML-RE model. The third row
corresponds to MIML-RE initialized with a su-
pervised classifier (trained on all examples). The
fourth row is MIML-RE with annotated exam-
ples incorporated during training (but not initial-
ization). The last row shows the best results ob-
tained by our model.

forming model improves on the base model by 3.9
F1 points on the end-to-end task.

We evaluate each of the individual contribu-
tions of the paper: improving the accuracy of
the MIML-RE relation extractor, evaluating our
example selection criteria, and demonstrating the
annotated examples’ effectiveness for a fully-
supervised relation extractor.

Improve MIML-RE Accuracy A key goal of
this work is to improve the accuracy of the MIML-
RE model; we show that we improve the model
both on the end-to-end slotfilling task (Table 2) as
well as on a standard evaluation (Figure 5). Sim-
ilar to our work, recent work by Pershina et al.
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System P R F1

MIML + Sup 35.1 35.6 35.4
MIML + Sup + Uniform 34.4 35.0 34.7
MIML + Sup + HighJS 46.2 30.8 37.0
MIML + Sup + SampleJS 39.4 36.2 37.7
MIML + Sup + All 36.0 37.1 36.5

Table 3: A summary of the performance of each
example selection criterion. In each case, the
model was initialized with a supervised classifier.
The first row corresponds to the MIML-RE model
initialized with a supervised classifier. The middle
three rows show performance for the three selec-
tion criteria, used both for initialization and during
training. The last row shows results if all available
annotations are used, independent of their source.

System P R F1

Mintz++ 41.3 28.2 33.5
MIML + Dist 38.0 30.5 33.8
Supervised + SampleJS 33.5 35.0 34.2
MIML + Sup 35.1 35.6 35.5
MIML + Sup + SampleJS 39.4 36.2 37.7

Table 4: A comparison of the best performing su-
pervised classifier with other systems. The top
section compares the supervised classifier with
prior work. The lower section highlights the im-
provements gained from initializing MIML-RE
with a supervised classifier.

(2014) incorporates labeled data to guide MIML-
RE during training. They make use of labeled data
to extract training guidelines, which are intended
to generalize across many examples. We show that
we can match or outperform their improvements
with our best criterion.

A few interesting trends emerge from the end-
to-end results in Table 2. Using annotated sen-
tences during training alone did not improve per-
formance consistently, even hurting performance
when the SampleJS criterion was used. This
supports an intuition that the initialization of the
model is important, and that it is relatively difficult
to coax the model out of a local optimum if it is
initialized poorly. This is further supported by the
improvement in performance when the model is
initialized with a supervised classifier, even when
no examples are used during training. Similar
trends are reported in prior work, e.g., Smith and
Eisner (2007) Section 4.4.6.
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Figure 4: MIML-RE and Mintz++ evaluated ac-
cording to Surdeanu et al. (2012). The original
model from the paper is plotted for comparison, as
our training methodology is somewhat different.
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Figure 5: Our best active learning criterion evalu-
ated against our version of MIML-RE, alongside
the best system of Pershina et al. (2014).

Also interesting is the relatively small gain
MIML-RE provides over traditional distant super-
vision (Mintz++) in this setting. We conjecture
that the mistakes made by Mintz++ are often rel-
atively easily filtered by the downstream consis-
tency component. This is supported by Figure 4;
we evaluate our trained MIML-RE model against
Mintz++ and the results reported in Surdeanu et
al. (2012). We show that our model performs as
well or better than the original implementation,
and consistently outperforms Mintz++.

Evaluate Selection Criteria A key objective of
this work is to evaluate how much of an impact
careful selection of annotated examples has on the
overall performance of the system. We evaluate
the three selection criteria from Section 3.2, show-
ing the results for MIML-RE in Table 3; results
for the supervised classifier are given in Table 1.
In both cases, we show that the sampled JS cri-
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terion performs comparably to or better than the
other criteria.

At least two interesting trends can be noted from
these results: First, the uniformly sampled crite-
rion performed worse than MIML-RE initialized
with a supervised classifier. This may be due to
noise in the annotation: a small number of an-
notation errors on entity pairs with only a single
corresponding mention could introduce dangerous
noise into training. These singleton mentions will
rarely have disagreement between the committee
of classifiers, and therefore will generally only be
selected in the uniform criterion.

Second, adding in the full set of examples did
not improve performance – in fact, performance
generally dropped in this scenario. We conjecture
that this is due to the inclusion of the uniformly
sampled examples, with performance dropping for
the same reasons as above.

Both of these results can be reconciled with
the results of Zhang et al. (2012); like this work,
they annotated examples to analyze the trade-off
between adding more data to a distantly super-
vised system, and adding more direct supervi-
sion. They conclude that annotations provide only
a relatively small improvement in performance.
However, their examples were uniformly selected
from the training corpus, and did not make use
of the structure provided by MIML-RE. Our re-
sults agree in that neither the uniform selection
criterion nor the supervised classifier significantly
outperformed the unmodified MIML-RE model;
nonetheless, we show that if care is taken in se-
lecting these labeled examples we can achieve no-
ticeable improvements in accuracy.

We also evaluate our selection criteria on the
evaluation of Surdeanu et al. (2012), both initial-
ized with Mintz++ (Figure 7) and with the super-
vised classifier (Figure 6). These results mirror
those in the end-to-end evaluation; when initial-
ized with the supervised classifier the high dis-
agreement (High JS) and sampling proportional to
disagreement (Sample JS) criteria clearly outper-
form both the base MIML-RE model as well as
the uniformly sampling criterion. Using the an-
notated examples only during training yielded no
perceivable benefit over the base model (Figure 7).

Supervised Relation Extractor The examples
collected can be used to directly train a supervised
classifier, with results summarized in Table 4. The
most salient insight is that the performance of the
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Figure 6: A comparison of models trained with
various selection criteria on the evaluation of Sur-
deanu et al. (2012), all initialized with the corre-
sponding supervised classifier.
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Figure 7: A comparison of models trained with
various selection criteria on the evaluation of Sur-
deanu et al. (2012), all initialized with Mintz++.

best supervised classifier is similar to that of the
MIML-RE model, despite being trained on nearly
two orders of magnitude less training data.

More interestingly, however, the supervised
classifier provides a noticeably better initializa-
tion for MIML-RE than Mintz++, yielding better
results even without enforcing the labels during
EM. These results suggest that the power gained
from the the more sophisticated MIML-RE model
is best used in conjunction with a small amount of
training data. That is, using MIML-RE as a princi-
pled model for combining a large distantly labeled
corpus and a small number of careful annotations
yields significant improvement over using either
of the two data sources alone.
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Relation # P R F1

no relation 3073
employee of 1978 29 32 33 46 31 38
countries of res. 1061 30 42 7 40 11 41
states of residence 427 57 33 14 7 23 12
cities of residence 356 31 52 9 30 14 38
(org:)member of 290 0 0 0 0 0 0
country of hq 280 63 62 65 62 64 62
top members 221 36 26 50 60 42 36
country of birth 205 22 0 40 0 29 0
parents 196 10 26 31 54 15 35
city of hq 194 46 52 57 61 51 56
(org:)alt names 184 52 48 39 39 45 43
founded by 180 100 89 29 38 44 53
city of birth 145 17 50 8 17 11 25
state of hq 132 50 64 30 35 38 45
title 121 20 26 28 35 23 30
subsidiaries 105 33 25 6 3 10 5
founded 90 62 82 62 69 62 75
spouse 88 37 54 85 85 51 66
origin 86 42 43 68 70 51 53
state of birth 83 0 50 0 10 0 17
charges 69 54 54 16 16 24 24
cause of death 69 93 93 39 39 55 55
(per:)alt names 69 9 20 2 3 3 6
country of death 65 100 100 10 10 18 18
members 54 0 0 0 0 0 0
children 52 53 62 14 18 22 27
parents 50 64 64 28 28 39 39
city of death 38 42 75 16 19 23 30
dissolved 38 0 0 0 0 0 0
date of death 33 64 64 44 39 52 48
political affiliation 23 7 25 100 100 13 40
state of death 19 0 0 0 0 0 0
shareholders 19 0 0 0 0 0 0
siblings 16 50 50 33 33 40 40
schools attended 14 80 78 41 48 54 60
date of birth 11 100 100 85 85 92 92
other family 9 0 0 0 0 0 0
age 4 94 97 94 90 94 93
# of employees 3 0 0 0 0 0 0
religion 2 100 100 29 29 44 44
website 0 25 0 3 0 6 0

Table 5: A summary of relations annotated, and
end-to-end slotfilling performance by relation.
The first column gives the relation; the second
shows the number of examples annotated. The
subsequent columns show the performance of the
unmodified MIML-RE model and our best per-
forming model (SampleJS). Changes in values are
bolded; positive changes are shown in green and
negative changes in red. The most frequent 10 re-
lations in the evaluation are likewise bolded.

6.4 Analysis By Relation
In this section, we explore which of the KBP rela-
tions were shown to Turkers, and whether the im-
provements in accuracy correspond to these rela-
tions. We compare only the unmodified MIML-
RE model, and our best model (MIML-RE initial-
ized with the supervised classifier, under the Sam-
pleJS criterion). Results are shown in Table 5.

A few interesting trends emerge from this anal-
ysis. We note that annotating even 80+ examples
for a relation seems to provide a consistent boost
in accuracy, whereas relations with fewer anno-
tated examples tended to show little or no change.
However, the gains of our model are not univer-
sal across relation types, even dropping noticeably
on some – for instance, F1 drops on both state of
residence and country of birth. This could suggest
systematic noise from Turker judgments; e.g., for
foreign geography (state of residence) or ambigu-
ous relations (top members).

An additional insight from the table is the mis-
match between examples chosen to be annotated,
and the most popular relations in the KBP evalu-
ation. For instance, by far the most popular KBP
relation (title) had only 121 examples annotated.

7 Conclusion

We have shown that providing a relatively small
number of mention-level annotations can improve
the accuracy of MIML-RE, yielding an end-to-end
improvement of 3.9 F1 on the KBP task. Further-
more, we have introduced a new active learning
criterion, and shown both that the choice of crite-
rion is important, and that our new criterion per-
forms well. Lastly, we make available a dataset of
mention-level annotations for constructing a tradi-
tional supervised relation extractor.
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Abstract

While relation extraction has traditionally
been viewed as a task relying solely on
textual data, recent work has shown that
by taking as input existing facts in the form
of entity-relation triples from both knowl-
edge bases and textual data, the perfor-
mance of relation extraction can be im-
proved significantly. Following this new
paradigm, we propose a tensor decompo-
sition approach for knowledge base em-
bedding that is highly scalable, and is es-
pecially suitable for relation extraction.
By leveraging relational domain knowl-
edge about entity type information, our
learning algorithm is significantly faster
than previous approaches and is better
able to discover new relations missing
from the database. In addition, when ap-
plied to a relation extraction task, our ap-
proach alone is comparable to several ex-
isting systems, and improves the weighted
mean average precision of a state-of-the-
art method by 10 points when used as a
subcomponent.

1 Introduction

Identifying the relationship between entities from
free text, relation extraction is a key task for ac-
quiring new facts to increase the coverage of a
structured knowledge base. Given a pre-defined
database schema, traditional relation extraction
approaches focus on learning a classifier using tex-
tual data alone, such as patterns between the oc-
currences of two entities in documents, to deter-
mine whether the entities have a particular rela-
tion. Other than using the existing known facts
to label the text corpora in a distant supervision
setting (Bunescu and Mooney, 2007; Mintz et al.,

∗Work conducted while interning at Microsoft Research.

2009; Riedel et al., 2010; Ritter et al., 2013), an
existing knowledge base is typically not involved
in the process of relation extraction.

However, this paradigm has started to shift re-
cently, as researchers showed that by taking exist-
ing facts of a knowledge base as an integral part of
relation extraction, the model can leverage richer
information and thus yields better performance.
For instance, Riedel et al. (2013) borrowed the
idea of collective filtering and constructed a ma-
trix where each row is a pair of entities and each
column is a particular relation. For a true entity-
relation triple (e1, r, e2), either from the text cor-
pus or from the knowledge base, the correspond-
ing entry in the matrix is 1. A previously unknown
fact (i.e., triple) can be discovered through ma-
trix decomposition. This approach can be viewed
as creating vector representations of each relation
and candidate pair of entities. Because each entity
does not have its own representation, relationships
of any unpaired entities cannot be discovered. Al-
ternatively, Weston et al. (2013) created two types
of embedding – one based on textual similarity and
the other based on knowledge base, where the lat-
ter maps each entity and relation to the same d-
dimensional vector space using a model proposed
by Bordes et al. (2013a). They also showed that
combining these two models results in a signif-
icant improvement over the model trained using
only textual data.

To make such an integrated strategy work, it is
important to capture all existing entities and rela-
tions, as well as the known facts, from both tex-
tual data and large databases. In this paper, we
propose a new knowledge base embedding model,
TRESCAL, that is highly efficient and scalable,
with relation extraction as our target application.
Our work is built on top of RESCAL (Nickel
et al., 2011), which is a tensor decomposition
method that has proven its scalability by factoring
YAGO (Biega et al., 2013) with 3 million entities
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and 41 million triples (Nickel et al., 2012). We
improve the tensor decomposition model with two
technical innovations. First, we exclude the triples
that do not satisfy the relational constraints (e.g.,
both arguments of the relation spouse-of need to
be person entities) from the loss, which is done
by selecting sub-matrices of each slice of the ten-
sor during training. Second, we introduce a math-
ematical technique that significantly reduces the
computational complexity in both time and space
when the loss function contains a regularization
term. As a consequence, our method is more than
four times faster than RESCAL, and is also more
accurate in discovering unseen triples.

Our contributions are twofold. First, compared
to other knowledge base embedding methods de-
veloped more recently, it is much more efficient
to train our model. As will be seen in Sec. 5,
when applied to a large knowledge base created
using NELL (Carlson et al., 2010) that has 1.8M
entity-relation triples, our method finishes training
in 4 to 5 hours, while an alternative method (Bor-
des et al., 2013a) needs almost 3 days. Moreover,
the prediction accuracy of our model is competi-
tive to others, if not higher. Second, to validate its
value to relation extraction, we apply TRESCAL to
extracting relations from a free text corpus along
with a knowledge base, using the data provided
in (Riedel et al., 2013). We show that TRESCAL

is complementary to existing systems and signif-
icantly improves their performance when using it
as a subcomponent. For instance, this strategy im-
proves the weighted mean average precision of the
best approach in (Riedel et al., 2013) by 10 points
(47% to 57%).

The remainder of this paper is organized as fol-
lows. We survey most related work in Sec. 2 and
provide the technical background of our approach
in Sec. 3. Our approach is detailed in Sec. 4, fol-
lowed by the experimental validation in Sec. 5. Fi-
nally, Sec. 6 concludes the paper.

2 Related Work

Our approach of creating knowledge base em-
bedding is based on tensor decomposition, which
is a well-developed mathematical tool for data
analysis. Existing tensor decomposition models
can be categorized into two main families: the
CP and Tucker decompositions. The CP (CAN-
DECOMP/PARAFAC) decomposition (Kruskal,
1977; Kiers, 2000) approximates a tensor by a sum

of rank-one tensors, while the Tucker decompo-
sition (Tucker, 1966), also known as high-order
SVD (De Lathauwer et al., 2000), factorizes a ten-
sor into a core tensor multiplied by a matrix along
each dimension. A highly scalable distributional
algorithm using the Map-Reduce architecture has
been proposed recently for computing CP (Kang et
al., 2012), but not for the Tucker decomposition,
probably due to its inherently more complicated
model form.

Matrix and tensor decomposition methods have
been applied to modeling multi-relational data.
For instance, Speer et al. (2008) aimed to cre-
ate vectors of latent components for representing
concepts in a common sense knowledge base us-
ing SVD. Franz et al. (2009) proposed TripleRank
to model the subject-predicate-object
RDF triples in a tensor, and then applied the CP
decomposition to identify hidden triples. Fol-
lowing the same tensor encoding, Nickel et al.
(2011) proposed RESCAL, a restricted form of
Tucker decomposition for discovering previously
unknown triples in a knowledge base, and later
demonstrated its scalability by applying it to
YAGO, which was encoded in a 3M × 3M × 38
tensor with 41M triples (Nickel et al., 2012).

Methods that revise the objective function
based on additional domain information have been
proposed, such as MrWTD, a multi-relational
weighted tensor decomposition method (London
et al., 2013), coupled matrix and tensor fac-
torization (Papalexakis et al., 2014), and col-
lective matrix factorization (Singh and Gordon,
2008). Alternatively, instead of optimizing for the
least-squares reconduction loss, a non-parametric
Bayesian approach for 3-way tensor decomposi-
tion for modeling relational data has also been pro-
posed (Sutskever et al., 2009). Despite the exis-
tence of a wide variety of tensor decomposition
models, most methods do not scale well and have
only been tested on datasets that are much smaller
than the size of real-world knowledge bases.

Multi-relational data can be modeled by neural-
network methods as well. For instance, Bordes et
al. (2013b) proposed the Semantic Matching En-
ergy model (SME), which aims to have the same
d-dimensional vector representations for both en-
tities and relations. Given the vectors of entities
e1, e2 and relation r. They first learn the latent
representations of (e1, r) and (e2, r). The score
of (e1, r, e2) is determined by the inner product
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of the vectors of (e1, r) and (e2, r). Later, they
proposed a more scalable method called translat-
ing embeddings (TransE) (Bordes et al., 2013a).
While both entities and relations are still repre-
sented by vectors, the score of (e1, r, e2) becomes
the negative dissimilarity measure of the corre-
sponding vectors −‖ei + rk − ej‖, motivated by
the work in (Mikolov et al., 2013b; Mikolov et al.,
2013a). Alternatively, Socher et al. (2013) pro-
posed a Neural Tensor Network (NTN) that repre-
sents entities in d-dimensional vectors created sep-
arately by averaging pre-trained word vectors, and
then learns a d×d×m tensor describing the inter-
actions between these latent components in each
of the m relations. All these methods optimize
for loss functions that are more directly related to
the true objective – the prediction accuracy of cor-
rect entity-relation triples, compared to the mean-
squared reconstruction error in our method. Nev-
ertheless, they typically require much longer train-
ing time.

3 Background

In this section, we first describe how entity-
relation triples are encoded in a tensor. We then
introduce the recently proposed tensor decompo-
sition method, RESCAL (Nickel et al., 2011) and
explain how it adopts an alternating least-squares
method, ASALSAN (Bader et al., 2007), to com-
pute the factorization.

3.1 Encoding Binary Relations in a Tensor

Suppose we are given a knowledge base with
n entities and m relation types, and the facts
in the knowledge base are denoted as a set of
entity-relation triples T = {(ei, rk, ej)}, where
i, j ∈ {1, 2, · · ·n} and k ∈ {1, 2, · · ·m}. A
triple (ei, rk, ej) simply means that the i-th en-
tity and the j-th entity have the k-th relation.
Following (Franz et al., 2009), these triples can
naturally be encoded in a 3-way tensor X ∈
{0, 1}n×n×m, such that Xi,j,k = 1 if and only if
the triple (ei, rk, ej) ∈ T 1. The tensor can be
viewed as consisting of m slices, where each slice
is an n×n square matrix, denoting the interactions
of the entities of a particular relation type. In the
remainder of this paper, we will use Xk to refer to
the k-th slice of the tensor X . Fig. 1 illustrates this
representation.

1This representation can easily be extended for a proba-
bilistic knowledge base by allowing nonnegative real values.

e1   en

e 1
  
 e

n

χ

χ
k

Figure 1: A tensor encoding of m binary relation
types and n entities. A sliceXk denotes the entities
having the k-th relation.

3.2 RESCAL

In order to identify latent components in a ten-
sor for collective learning, Nickel et al. (2011)
proposed RESCAL, which is a tensor decomposi-
tion approach specifically designed for the multi-
relational data described in Sec. 3.1. Given a ten-
sor Xn×n×m, RESCAL aims to have a rank-r ap-
proximation, where each slice Xk is factorized as

Xk ≈ ARkAT . (1)

A is an n × r matrix, where the i-th row denotes
the r latent components of the i-th entity. Rk is an
asymmetric r × r matrix that describes the inter-
actions of the latent components according to the
k-th relation. Notice that while Rk differs in each
slice, A remains the same.

A and Rk are derived by minimizing the loss
function below.

min
A,Rk

f(A,Rk) + λ · g(A,Rk), (2)

where f(A,Rk) = 1
2

(∑
k ‖Xk −ARkAT ‖2F

)
is the mean-squared reconstruction error and
g(A,Rk) = 1

2

(‖A‖2F +
∑

k ‖Rk‖2F
)

is the regu-
larization term.

RESCAL is a special form of Tucker decom-
position (Tucker, 1966) operating on a 3-way ten-
sor. Its model form (Eq. (1)) can also be regarded
as a relaxed form of DEDICOM (Bader et al.,
2007), which derives the low-rank approximation
as: Xk ≈ ADkRDkAT . To compare RESCAL
to other tensor decomposition methods, interested
readers can refer to (Kolda and Bader, 2009).
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The optimization problem in Eq. (2) can be
solved using the efficient alternating least-squares
(ALS) method. This approach alternatively fixes
Rk to solve for A and then fixes A to solve
Rk. The whole procedure stops until f(A,Rk)

‖X‖2F
con-

verges to some small threshold ε or the maximum
number of iterations has been reached.

By finding the solutions where the gradients are
0, we can derive the update rules of A and Rk as
below.

A←
[∑
k

XkARTk +X Tk ARk
][∑

k

Bk+Ck+λI

]−1

,

where Bk = RkATARTk and Ck = RTkATARk.

vec(Rk)←
(
ZTZ + λI

)−1
ZT vec(Xk), (3)

where vec(Rk) is the vectorization of Rk, Z =
A⊗A and the operator ⊗ is the Kronecker prod-
uct.

Complexity Analysis Following the analysis in
(Nickel et al., 2012), we assume that each Xk is a
sparse matrix, and let p be the number of non-zero
entries2. The complexity of computing XkARTk
and X Tk ARk is O(pr + nr2). Evaluating Bk and
Ck requires O(nr2) and the matrix inversion re-
quires O(r3). Therefore, the complexity of updat-
ing A isO(pr+nr2) assuming n� r. The updat-
ing rule of Rk involves inverting an r2 × r2 ma-
trix. Therefore, directly computing the inversion
requires time complexity O(r6) and space com-
plexity O(r4). Although Nickel et al. (2012) con-
sidered using QR decomposition to simplify the
updates, it is still time consuming with the time
complexity O(r6 + pr2). Therefore, the total time
complexity isO(r6+pr2) and the step of updating
Rk is the bottleneck in the optimization process.
We will describe how to reduce the time complex-
ity of this step to O(nr2 + pr) in Section 4.2.

4 Approach

We describe how we leverage the relational do-
main knowledge in this section. By removing the
incompatible entity-relation triples from the loss

2Notice that we use a slightly different definition of p
from the one in (Nickel et al., 2012). The time complexity
of multiplying an n × n sparse matrix Xk with p non-zero
entries by an n× r dense matrix is O(pr) assuming n� r.

function, training can be done much more effi-
ciently and results in a model with higher pre-
diction accuracy. In addition, we also introduce
a mathematical technique to reduce the compu-
tational complexity of the tensor decomposition
methods when taking into account the regulariza-
tion term.

4.1 Applying Relational Domain Knowledge

In the domain of knowledge bases, the notion of
entity types is the side information that commonly
exists and dictates whether some entities can be
legitimate arguments of a given predicate. For
instance, suppose the relation of interest is born-
in, which denotes the birth location of a person.
When asked whether an incompatible pair of en-
tities, such as two person entities like Abraham
Lincoln and John Henry, having this rela-
tion, we can immediately reject the possibility. Al-
though the type information and the constraints
are readily available, it is overlooked in the pre-
vious work on matrix and tensor decomposition
models for knowledge bases (Riedel et al., 2013;
Nickel et al., 2012). Ignoring the type information
has two implications. Incompatible entity-relation
triples still participate in the loss function of the
optimization problem, which incurs unnecessary
computation. Moreover, by choosing values for
these incompatible entries we introduce errors in
training the model that can reduce the quality of
the model.

Based on this observation, we propose Typed-
RESCAL, or TRESCAL, which leverages the en-
tity type information to improve both the effi-
ciency of model training and the quality of the
model in term of prediction accuracy. We em-
ploy a direct and simple approach by excluding
the triples of the incompatible entity types from
the loss in Eq. (2). For each relation, let Lk and
Rk be the set of entities with a compatible type to
the k-th relation. That is, (ei, rk, ej) is a feasible
triple if and only if ei ∈ Lk and ej ∈ Rk. For no-
tational convenience, we use Akl ,Akr to denote
the sub-matrices of A that consists of rows asso-
ciated with Lk and Rk, respectively. Analogously,
let Xklr be the sub-matrix of Xk that consists of
only the entity pairs compatible to the k-th rela-
tion. The rows and columns of Xklr map to the en-
tities in Akl and Akr , respectively. In other words,
entries of Xk but not in Xklr do not satisfy the type
constraint and are ignored from the computation.
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Figure 2: The construction of TRESCAL. Suppose
the k-th relation is born-in. Lk is then a set of
person entities and Rk is a set of location entities.
Only the sub-matrix corresponds to the compati-
ble entity pairs (i.e., Xklr ) and the sub-matrices of
the associated entities (i.e., Akl and AT

kr
) will be

included in the loss.

Fig. 2 illustrates this construction.
TRESCAL solves the following optimization

problem:

min
A,Rk

f ′(A,Rk) + λ · g(A,Rk), (4)

where f ′(A,Rk) = 1
2

∑
k ‖Xklr −AklRkAT

kr
‖2F

and g(A,Rk) = 1
2

(‖A‖2F +
∑

k ‖Rk‖2F
)
.

Similarly, A and Rk can be solved using the
alternating least-squares method. The update rule
of A is

A←
[∑

k

(XklrAkrRTk + X TklrAklRk
)]×

[∑
k

Bkr + Ckl + λI

]−1

,

where Bkr = RkAT
kr

AkrRTk and Ckl =
RTkAT

kl
AklRk.

The update ofRk becomes:

vec(Rk)←
(
AT
krAkr ⊗AT

kl
Akl + λI

)−1×
vec(Akl

TXklrAkr),
(5)

Complexity Analysis Let n̄ be the average
number of entities with a compatible type to a
relation. Follow a similar derivation in Sec. 3.2,
the time complexity of updating A isO(pr+ n̄r2)
and the time complexity of updating Rk remains
to be O(r6 + pr2).

4.2 Handling Regularization Efficiently
Examining the update rules of both RESCAL
and TRESCAL, we can see that the most time-
consuming part is the matrix inversions. For
RESCAL, this is the term (ZTZ+λI)−1 in Eq. (3),
where Z = A⊗A. Nickel et al. (2011) made the
observation that if λ = 0, the matrix inversion can
be calculated by

(ZTZ)−1 = (ATA)−1A⊗ (ATA)−1A.

Then, it only involves an inversion of an r× r ma-
trix, namely ATA. However, if λ > 0, directly
calculating Eq. (3) requires to invert an r2 × r2

matrix and thus becomes a bottleneck in solving
Eq. (2).

To reduce the computational complexity of
the update rules of Rk, we compute the inver-
sion

(
ZTZ + λI

)−1 by applying singular value
decomposition (SVD) to A, such that A =
UΣVT , where U and V are orthogonal matrices
and Σ is a diagonal matrix. Then by using proper-
ties of the Kronecker product we have:(

ZTZ + λI
)−1

=
(
λI + VΣ2VT ⊗VΣ2VT

)−1

=
(
λI + (V ⊗V)(Σ2 ⊗Σ2)(V ⊗V)T

)−1

= (V ⊗V)
(
λI + Σ2 ⊗Σ2

)−1 (V ⊗V)T .

The last equality holds because V ⊗ V is
also an orthogonal matrix. We leave the de-
tailed derivations in Appendix A. Notice that(
λI + Σ2 ⊗Σ2

)−1 is a diagonal matrix. There-
fore, the inversion calculation is trivial.

This technique can be applied to TRESCAL

as well. By applying SVD to both Akl

and Akr , we have Akl = UklΣklV
T
kl

and
Akr = UkrΣkrV

T
kr

, respectively. The computa-

tion of
(
AT
kr

Akr ⊗AT
kl

Akl + λI
)−1

of Eq. (5)
thus becomes:

(Vkl⊗Vkr)
(
λI + Σ2

kl
⊗Σ2

kr

)−1 (Vkl⊗Vkr)
T .

The procedure of updating R is depicted in Al-
gorithm 1.

Complexity Analysis For RESCAL, V and Σ
can be computed by finding eigenvectors of ATA.
Therefore, computing SVD of A costs O(nr2 +
r3) = O(nr2). Computing Step 4 in Algorithm 1
takes O(nr2 + pr). Step 5 and Step 6 require
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Algorithm 1 UpdatingR in TRESCAL

Require: X , A, and entity sets Rk,Lk,∀k
Ensure: Rk,∀k.

1: for k = 1 . . .m do
2: [Ukl ,Σ

2
kl
,Vkl ]← SVD(AT

kl
Akl).

3: [Ukr ,Σ
2
kr
,Vkr ]← SVD(AT

kr
Akr).

4: M1 ← VT
kl

AT
kl
XklrAkrVkr .

5: M2 ← diag(Σ2
kl

) diag(Σ2
kr

)T + λ1.
(1 is a matrix of all ones. Function diag
converts the diagonal entries of a matrix to
a vector. )

6: Rk ← Vkl(M1./M2)VT
kr

.
(The operator “./” is element-wise divi-
sion.)

7: end for

O(r2) and O(r3), respectively. The overall time
complexity of updatingRk becomesO(nr2 +pr).

Using a similar derivation, the time complex-
ity of updating Rk in TRESCAL is O(n̄r2 + pr).
Therefore, the total complexity of each iteration is
O(n̄r2 + pr).

5 Experiments

We conduct two sets of experiments. The first
evaluates the proposed TRESCAL algorithm on
inferring unknown facts using existing relation–
entity triples, while the second demonstrates its
application to relation extraction when a text cor-
pus is available.

5.1 Knowledge Base Completion

We evaluate our approach on a knowledge base
generated by the CMU Never Ending Language
Learning (NELL) project (Carlson et al., 2010).
NELL collects human knowledge from the web
and has generated millions of entity-relation
triples. We use the data generated from version
165 for training3, and collect the new triples gen-
erated between NELL versions 166 and 533 as the
development set and those generated between ver-
sion 534 and 745 as the test set4. The data statistics
of the training set are summarized in Table 1. The
numbers of triples in the development and test sets
are 19,665 and 117,889, respectively. Notice that
this dataset is substantially larger than the datasets
used in recent work. For example, the Freebase
data used in (Socher et al., 2013) and (Bordes et

3http://www.cs.cmu.edu/˜nlao/
4http://bit.ly/trescal

NELL
# entities 753k
# relation types 229
# entity types 300
# entity-relation triples 1.8M

Table 1: Data statistics of the training set from
NELL in our experiments.

al., 2013a) have 316k and 483k5 triples, respec-
tively, compared to 1.8M in this dataset.

In the NELL dataset, the entity type informa-
tion is encoded in a specific relation, called Gen-
eralization. Each entity in the knowledge base is
assigned to at least one category presented by the
Generalization relationship. Based on this infor-
mation, the compatible entity type constraint of
each relation can be easily identified. Specifically,
we examined the entities and relations that occur
in the triples of the training data, and counted all
the types appearing in these instances of a given
relation legitimate.

We implement RESCAL and TRESCAL in
MATLAB with the Matlab tensor Toolbox (Bader
et al., 2012). With the efficient implementation
described in Section 4.2, all experiments can be
conducted on a commodity PC with 16 GB mem-
ory. We set the maximal number of iterations of
both RESCAL and TRESCAL to be 10, which we
found empirically to be enough to generate a sta-
ble model. Note that Eq. (4) is non-convex, and the
optimization process does not guarantee to con-
verge to a global minimum. Therefore, initial-
izing the model properly might be important for
the performance. Following the implementation of
RESCAL, we initialize A by performing singular
value decomposition over X̄ =

∑
k(Xk + X Tk ),

such that X̄ = UΣVT and set A = U. Then,
we apply the update rule ofRk to initialize {Rk}.
RESCAL and TRESCAL have two types of param-
eters: (1) the rank r of the decomposed tensor and
(2) the regularization parameter λ. We tune the
rank parameter on development set in a range of
{100, 200, 300, 400} and the regularization pa-
rameter in a range of {0.01, 0.05, 0.1, 0.5, 1}.

For comparison, we also use the code released
by Bordes et al. (2013a), which is implemented
using Python and the Theano library (Bergstra
et al., 2010), to train a TransE model using the

5In (Bordes et al., 2013a), there is a much larger dataset,
FB1M, that has 17.5M triples used for evaluation. However,
this dataset has not been released.
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Entity Retrieval Relation Retrieval
TransE RESCAL TRESCAL TransE RESCAL TRESCAL

w/o type checking 51.41%‡ 51.59% 54.79% 75.88% 73.15%† 76.12%
w/ type checking 67.56% 62.91%‡ 69.26% 70.71%‡ 73.08%† 75.70%

Table 2: Model performance in mean average precision (MAP) on entity retrieval and relation retrieval.
† and ‡ indicate the comparison to TRESCAL in the same setting is statistically significant using a paired-
t test on average precision of each query, with p < 0.01 and p < 0.05, respectively. Enforcing type
constraints during test time improves entity retrieval substantially, but does not help in relation retrieval.

same NELL dataset. We reserved randomly 1%
of the training triples for the code to evaluate the
model performance in each iteration. As sug-
gested in their paper, we experiment with sev-
eral hyper-parameters, including learning rate of
{0.01, 0.001}, the latent dimension of {50, 100}
and the similarity measure of {L1, L2}. In addi-
tion, we also adjust the number of batches of {50,
100, 1000}. Of all the configurations, we keep the
models picked by the method, as well as the fi-
nal model after 500 training iterations. The final
model is chosen by the performance on our devel-
opment set.

5.1.1 Training Time Reduction
We first present experimental results demonstrat-
ing that TRESCAL indeed reduces the time re-
quired to factorize a knowledge database, com-
pared to RESCAL. The experiment is conducted
on NELL with r = 300 and λ = 0.1. When
λ 6= 0, the original RESCAL algorithm described
in (Nickel et al., 2011; Nickel et al., 2012) cannot
handle a large r, because updating matrices {Rk}
requires O(r4) memory. Later in this section, we
will show that in some situation a large rank r is
necessary for achieving good testing performance.

Comparing TRESCAL with RESCAL, each it-
eration of TRESCAL takes 1,608 seconds, while
that of RESCAL takes 7,415 seconds. In other
words, by inducing the entity type information
and constraints, TRESCAL enjoys around 4.6 times
speed-up, compared to an improved regularized
version of RESCAL. When updating A and {Rk}
TRESCAL only requires operating on sub-matrices
of A, {Rk} and {Xk}, which reduces the compu-
tation substantially. In average, TRESCAL filters
96% of entity triples that have incompatible types.

In contrast, it takes TransE at least 2 days and 19
hours to finish training the model (the default 500
iterations)6, while TRESCAL finishes the training

6It took almost 4 days to train the best TransE model that

in roughly 4 to 5 hours7.

5.1.2 Test Performance Improvement
We consider two different types of tasks to evalu-
ate the prediction accuracy of different models –
entity retrieval and relation retrieval.

Entity Retrieval In the first task, we collect a
set of entity-relation pairs {(ei, rk)} and aim at
predicting ej such that the tuple (ei, rk, ej) is a
recorded triple in the NELL knowledge base. For
each pair (ei, rk), we collect triples {(ei, rk, e∗j )}
from the NELL test corpus as positive samples
and randomly pick 100 entries e′j to form negative
samples {ei, rk, e′j}. Given A and Rk from the
factorization generated by RESCAL or TRESCAL,
the score assigned to a triple {ei, rk, e′j} is com-
puted by aTi Rkaj where ai and aj are the i-th
and j-th rows of A. In TransE, the score is de-
termined by the negative dissimilarity measures of
the learned embeddings: −d(ei, rk, e′j) = −‖ei +
rk − e′j‖22.

We evaluate the performance using mean aver-
age precision (MAP), which is a robust and sta-
ble metric (Manning et al., 2008). As can be
observed in Table 2 (left), TRESCAL achieves
54.79%, which outperforms 51.59% of RESCAL
and 51.41% of TransE. Adding constraints during
test time by assigning the lowest score to the en-
tity triples with incompatible types improves re-
sults of all models – TRESCAL still performs the
best (69.26%), compared to TransE (67.56%) and
RESCAL (62.91%).

Relation Retrieval In the second task, given a
relation type rk, we are looking for the entity pairs
(ei, ej) that have this specific relationship. To gen-
erate test data, for each relation type, we collect

is included in Table 2.
7We also tested the released code from (Socher et al.,

2013) for training a neural tensor network model. However,
we are not able to finish the experiments as each iteration of
this method takes almost 5 hours.
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gold entity pairs from the NELL knowledge base
as positive samples and randomly pick a set of en-
tity pairs as negative samples such that the number
of positive samples are the same as negative ones.

Results presented in Table 2 (right) show that
TRESCAL achieves 76.12%, while RESCAL and
TransE are 73.15% and 75.88%, respectively.
Therefore, incorporating the type information in
training seems to help in this task as well. Enforc-
ing the type constraints during test time does not
help as in entity retrieval. By removing incom-
patible entity pairs, the performance of TRESCAL,
RESCAL and TransE drop slightly to 75.70%,
73.08% and 70.71% respectively. One possible
explanation is that the task of relation retrieval is
easier than entity retrieval. The incorrect type in-
formation of some entities ends up filtering out a
small number of entity pairs that were retrieved
correctly by the model.

Notice that TRESCAL achieves different levels
of performance on various relations. For example,
it performs well on predicting AthletePlaysSport
(81%) and CoachesInLeague (88%), but achieves
suboptimal performance on predicting Works-
For (49%) and BuildingLocatedInCity (35%).
We hypothesize that it is easier to gener-
alize entity-relation triples when the relation
has several related relations. For examples,
AthletePlaysForTeam and TeamPlaysSport may
help discover entity-relation triples of Ath-
letePlaysSport.

5.1.3 Sensitivity to Parameters
We also study if TRESCAL is sensitive to the rank
parameter r and the regularization parameter λ,
where the detailed results can be found in Ap-
pendix B. In short, we found that increasing the
rank r generally leads to better models. Also,
while the model is not very sensitive to the value
of the regularization parameter λ, tuning λ is still
necessary for achieving the best performance.

5.2 Relation Extraction

Next, we apply TRESCAL to the task of extract-
ing relations between entities, jointly from a text
corpus and a structured knowledge base. We use
a corpus from (Riedel et al., 2013) that is cre-
ated by aligning the entities in NYTimes and Free-
base. The corpus consists of a training set and a
test set. In the training set, a list of entity pairs
are provided, along with surface patterns extracted
from NYTimes and known relations obtained from

Freebase. In the test set, only the surface patterns
are given. By jointly factoring a matrix consist-
ing of the surface patterns and relations, Riedel et
al. (2013) show that their model is able to capture
the mapping between the surface patterns and the
structured relations and hence is able to extract the
entity relations from free text. In the following, we
show that TRESCAL can be applied to this task.

We focus on the 19 relations listed in Table 1
of (Riedel et al., 2013) and only consider the
surface patterns that co-occur with these 19 re-
lations. We prune the surface patterns that oc-
cur less than 5 times and remove the entities that
are not involved in any relation and surface pat-
tern. Based on the training and test sets, we
build a 80,698×80,698×1,652 tensor, where each
slice captures a particular structured relation or a
surface pattern between two entities. There are
72 fine types extracted from Freebase assigned
to 53,836 entities that are recorded in Freebase.
In addition, special types, PER, LOC, ORG and
MISC, are assigned to the remaining 26,862 enti-
ties based on the predicted NER tags provided by
the corpus. A type is considered incompatible to a
relation or a surface pattern if in the training data,
none of the argument entities of the relation be-
longs to the type. We use r = 400 and λ = 0.1 in
TRESCAL to factorize the tensor.

We compare the proposed TRESCAL model to
RI13 (Riedel et al., 2013), YA11 (Yao et al., 2011),
MI09 (Mintz et al., 2009) and SU12 (Surdeanu et
al., 2012)8. We follow the protocol used in (Riedel
et al., 2013) to evaluate the results. Given a re-
lation as query, the top 1,000 entity pairs output
by each system are collected and the top 100 ones
are judged manually. Besides comparing individ-
ual models, we also report the results of combined
models. To combine the scores from two models,
we simply normalize the scores of entity-relation
tuples to zero mean and unit variance and take the
average. The results are summarized in Table 3.

As can been seen in the table, using TRESCAL

alone is not very effective and its performance is
only compatible to MI09 and YA11, and is sig-
nificantly inferior to RI13. This is understandable
because the problem setting favors RI13 as only
entity pairs that have occurred in the text or the
database will be considered in RI13, both during
model training and testing. In contrast, TRESCAL

8The corpus and the system outputs are from http://
www.riedelcastro.org/uschema
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Relation # MI09 YA11 SU12 RI13 TR TR+SU12 TR+RI13
person/company 171 0.41 0.40 0.43 0.49 0.43 0.53 0.64
location/containedby 90 0.39 0.43 0.44 0.56 0.23 0.46 0.58
parent/child 47 0.05 0.10 0.25 0.31 0.19 0.24 0.35
person/place of birth 43 0.32 0.31 0.34 0.37 0.50 0.61 0.66
person/nationality 38 0.10 0.30 0.09 0.16 0.13 0.16 0.22
author/works written 28 0.52 0.53 0.54 0.71 0.00 0.39 0.62
person/place of death 26 0.58 0.58 0.63 0.63 0.54 0.72 0.89
neighborhood/neighborhood of 13 0.00 0.00 0.08 0.67 0.08 0.13 0.73
person/parents 8 0.21 0.24 0.51 0.34 0.01 0.16 0.38
company/founders 7 0.14 0.14 0.30 0.39 0.06 0.17 0.44
film/directed by 4 0.06 0.15 0.25 0.30 0.03 0.13 0.35
sports team/league 4 0.00 0.43 0.18 0.63 0.50 0.29 0.63
team/arena stadium 3 0.00 0.06 0.06 0.08 0.00 0.04 0.09
team owner/teams owned 2 0.00 0.50 0.70 0.75 0.00 0.00 0.75
roadcast/area served 2 1.00 0.50 1.00 1.00 0.50 0.83 1.00
structure/architect 2 0.00 0.00 1.00 1.00 0.00 0.02 1.00
composer/compositions 2 0.00 0.00 0.00 0.12 0.00 0.00 0.12
person/religion 1 0.00 1.00 1.00 1.00 0.00 1.00 1.00
film/produced by 1 1.00 1.00 1.00 0.33 0.00 1.00 0.25
Weighted MAP 0.33 0.36 0.39 0.47 0.30 0.44 0.57

Table 3: Weighted Mean Average Precisions. The # column shows the number of true facts in the pool.
Bold faced are winners per relation, italics indicate ties based on a sign test.

predicts all the possible combinations between en-
tities and relations, which makes the model less fit
to the task. However, when combining TRESCAL

with a pure text-based method, such as SU12,
we can clearly see TRESCAL is complementary
to SU12 (0.39 to 0.44 in weighted MAP score),
which makes the results competitive to RI13.

Interestingly, although both TRESCAL and RI13
leverage information from the knowledge base, we
find that by combining them, the performance is
improved quite substantially (0.47 to 0.57). We
suspect that the reason is that in our construc-
tion, each entity has its own vector representa-
tion, which is lacked in RI13. As a result, the
new triples that TRESCAL finds are very different
from those found by RI13. Nevertheless, com-
bining more methods do not always yield an im-
provement. For example, combining TR, RI13 and
SU12 together (not included in Table 3) achieves
almost the same performance as TR+RI13.

6 Conclusions

In this paper we developed TRESCAL, a tensor
decomposition method that leverages relational
domain knowledge. We use relational domain
knowledge to capture which triples are potentially
valid and found that, by excluding the triples that
are incompatible when performing tensor decom-
position, we can significantly reduce the train-
ing time and improve the prediction performance
as compared with RESCAL and TransE. More-

over, we demonstrated its effectiveness in the ap-
plication of relation extraction. Evaluated on the
dataset provided in (Riedel et al., 2013), the per-
formance of TRESCAL alone is comparable to sev-
eral existing systems that leverage the idea of dis-
tant supervision. When combined with the state-
of-the-art systems, we found that the results can
be further improved. For instance, the weighted
mean average precision of the previous best ap-
proach in (Riedel et al., 2013) has been increased
by 10 points (47% to 57%).

There are a number of interesting potential ex-
tensions of our work. First, while the experiments
in this paper are on traditional knowledge bases
and textual data, the idea of leveraging relational
domain knowledge is likely to be of value to other
linguistic databases as well. For instance, part-of-
speech tags can be viewed as the “types” of words.
Incorporating such information in other tensor de-
composition methods (e.g., (Chang et al., 2013))
may help lexical semantic representations. Sec-
ond, relational domain knowledge goes beyond
entity types and their compatibility with specific
relations. For instance, the entity-relation triple
(e1, child-of, e2) can be valid only if e1.type =
person ∧ e2.type = person ∧ e1.age < e2.age.
It would be interesting to explore the possibility
of developing efficient methods to leverage other
types of relational domain knowledge. Finally, we
would like to create more sophisticated models of
knowledge base embedding, targeting complex in-
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ference tasks to better support semantic parsing
and question answering.
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Appendix A Detailed Derivation

We first introduce some lemmas that will be useful
for our derivation. Lemmas 2, 3 and 4 are the basic
properties of the Kronecker product. Their proofs
can be found at (Laub, 2005).

Lemma 1. Let V be an orthogonal matrix and
Σ a diagonal matrix. Then (I + VΣVT )−1 =
V(I + Σ)−1VT .
Proof.

(I + VΣVT )−1 = (VIVT + VΣVT )−1

= V(I + Σ)−1VT

Lemma 2. (A⊗B)(C⊗D) = AC⊗BD.

Lemma 3. (A⊗B)T = AT ⊗BT .

Lemma 4. If A and B are orthogonal matrices,
then A⊗B will also be an orthogonal matrix.

Let Z = A ⊗ A and apply singular value
decomposition to A = UΣVT . The term(
ZTZ + λI

)−1 can be rewritten as:

(
ZTZ + λI

)−1

=
(
λI + (AT ⊗AT )(A⊗A)

)−1
(6)

=
(
λI + ATA⊗ATA

)−1
(7)

=
(
λI + VΣ2VT ⊗VΣ2VT

)−1
(8)

=
(
λI + (V ⊗V)(Σ2 ⊗Σ2)(V ⊗V)T

)−1

(9)

= (V ⊗V)
(
λI + Σ2 ⊗Σ2

)−1 (V ⊗V)T

(10)

Eq. (6) is from replacing Z with A ⊗ A and
Lemma 3. Eq. (7) is from Lemma 2. Eq. (8) is
from the properties of SVD, where U and V are
orthonormal matrices. Eq. (9) is from Lemma 2
and Lemma 3. Finally, Eq. (10) comes from
Lemma 1.
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Figure 3: Prediction performance of TRESCAL

and RESCAL with different rank (r).

Figure 4: Prediction performance of TRESCAL

with different regularization parameter (λ).

Appendix B Hyper-parameter Sensitivity

We study if TRESCAL is sensitive to the rank
parameter r and the regularization parameter λ.
We use the task of relation retrieval and present
the model performance on the development set.
Fig. 3 shows the performance of TRESCAL and
RESCAL with different rank (r) values while fix-
ing λ = 0.01. Results show that both TRESCAL

and RESCAL achieve better performance when r
is reasonably large. TRESCAL obtains a bet-
ter model with smaller r than RESCAL, because
TRESCAL only needs to fit the triples of the com-
patible entity types. Therefore, it allows to use
smaller number of latent variables to fit the train-
ing data.

Fixing r = 400, Fig. 4 shows the performance
of TRESCAL at different values of the regulariza-
tion parameter λ, including no regularization at
all (λ = 0). While the results suggest that the
method is not very sensitive to λ, tuning λ is still
necessary for achieving the best performance.
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Abstract

A promising approach to relation extrac-
tion, called weak or distant supervision,
exploits an existing database of facts as
training data, by aligning it to an unla-
beled collection of text documents. Using
this approach, the task of relation extrac-
tion can easily be scaled to hundreds of
different relationships. However, distant
supervision leads to a challenging multi-
ple instance, multiple label learning prob-
lem. Most of the proposed solutions to this
problem are based on non-convex formu-
lations, and are thus prone to local min-
ima. In this article, we propose a new
approach to the problem of weakly su-
pervised relation extraction, based on dis-
criminative clustering and leading to a
convex formulation. We demonstrate that
our approach outperforms state-of-the-art
methods on the challenging dataset intro-
duced by Riedel et al. (2010).

1 Introduction

Information extraction refers to the broad task
of automatically extracting structured information
from unstructured documents. An example is the
extraction of named entities and the relations be-
tween those entities from natural language texts.
In the age of the world wide web and big data,
information extraction is quickly becoming perva-
sive. For example, in 2013, more than 130, 000
scientific articles were published about cancer.
Keeping track with that quantity of information
is almost impossible, and it is thus of utmost im-
portance to transform the knowledge contained in
this massive amount of documents into structured
databases.

Traditional approaches to information extrac-
tion relies on supervised learning, yielding high

Knowledge base

r e1 e2

BornIn Lichtenstein New York City
DiedIn Lichtenstein New York City

Sentences Latent labels

Roy Lichtenstein was born in
New York City, into an upper-
middle-class family.

BornIn

In 1961, Leo Castelli started
displaying Lichtenstein’s work
at his gallery in New York.

None

Lichtenstein died of pneumonia
in 1997 in New York City.

DiedIn

Figure 1: An example of a knowledge database
comprising two facts and training sentences ob-
tained by aligning this database to unlabeled text.

precision and recall results (Zelenko et al.,
2003). Unfortunately, these approaches need large
amount of labeled data, and thus do not scale well
to the great number of different types of fact found
on the Web or in scientific articles. A promising
approach, called distant or weak supervision, is
to exploit an existing database of facts as training
data, by aligning it to an unlabeled collection of
text documents (Craven and Kumlien, 1999).

In this article, we are interested in weakly super-
vised extraction of binary relations. A challenge
pertaining to weak supervision is that the obtained
training data is noisy and ambiguous (Riedel et
al., 2010). Let us start with an example: if the
fact Attended(Turing, King′s College) exists
in the knowledge database and we observe the sen-
tence

Turing studied as an undergraduate from
1931 to 1934 at King’s College, Cambridge.

which contains mentions of both entities Turing
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and King′s College, then this sentence might ex-
press the fact that Alan Turing attended King’s
College, and thus, might be a useful example for
learning to extract the relation Attended. How-
ever, the sentence

Celebrations for the centenary of Alan Tur-
ing are being planned at King’s College.

also contains mentions of Turing and
King′s College, but do not express the re-
lation Attended. Thus, weak supervision lead
to noisy examples. As noted by Riedel et al.
(2010), such negative extracted sentences for
existing facts can represent more than 30% of
the data. Moreover, a given pair of entities,
such as (Roy Lichtenstein, New York City),
car verify multiple relations, such as BornIn
and DiedIn. Weak supervision thus lead to
ambiguous examples.

This challenge is illustrated in Fig. 1. A solution
to address it is to formulate the task of weakly su-
pervised relation extraction as a multiple instance,
multiple label learning problem (Hoffmann et al.,
2011; Surdeanu et al., 2012). However, these for-
mulations are often non-convex and thus suffer
from local minimum.

In this article, we make the following contribu-
tions:

• We propose a new convex relaxation for the
problem of weakly supervised relation ex-
traction, based on discriminative clustering,

• We propose an efficient algorithm to solve the
associated convex program,

• We demonstrate that our approach obtains
state-of-the-art results on the dataset intro-
duced by Riedel et al. (2010).

To our knowledge, this paper is the first to propose
a convex formulation for solving the problem of
weakly supervised relation extraction.

2 Related work

Supervised learning. Many approaches based
on supervised learning have been proposed to
solve the problem of relation extraction, and the
corresponding literature is to large to be summa-
rized here. One of the first supervised method for
relation extraction was inspired by syntactic pars-
ing: the system described by Miller et al. (1998)
combines syntactic and semantic knowledge, and

thus, part-of-speech tagging, parsing, named en-
tity recognition and relation extraction all happen
at the same time. The problem of relation ex-
traction was later formulated as a classification
problem: Kambhatla (2004) proposed to solve this
problem using maximum entropy models using
lexical, syntactic and semantic features. Kernel
methods for relation extraction, based on shallow
parse trees or dependency trees were introduced
by Zelenko et al. (2003), Culotta and Sorensen
(2004) and Bunescu and Mooney (2005).

Unsupervised learning. The open information
extraction paradigm, simultaneously proposed by
Shinyama and Sekine (2006) and Banko et al.
(2007), does not rely on any labeled data or even
existing relations. Instead, open information ex-
traction systems only use an unlabeled corpus, and
output a set of extracted relations. Such systems
are based on clustering (Shinyama and Sekine,
2006) or self-supervision (Banko et al., 2007).
One of the limitations of these systems is the fact
that they extract uncanonicalized relations.

Weakly supervised learning. Weakly super-
vised learning refers to a broad class of meth-
ods, in which the learning system only have ac-
cess to partial, ambiguous and noisy labeling.
Craven and Kumlien (1999) were the first to pro-
pose a weakly supervised relation extractor. They
aligned a knowledge database (the Yeast Protein
Database) with scientific articles mentioning a par-
ticular relation, and then used the extracted sen-
tences to learn a classifier for extracting that rela-
tion.

Later, many different sources of weak label-
ings have been considered. Bellare and McCallum
(2007) proposed a method to extract bibliographic
relations based on conditional random fields and
used a database of BibTex entries as weak super-
vision. Wu and Weld (2007) described a method
to learn relations based on Wikipedia infoboxes.
Knowledge databases, such as Freebase1 (Mintz et
al., 2009; Sun et al., 2011) and YAGO2 (Nguyen
and Moschitti, 2011) were also considered as a
source of weak supervision.

Multiple instance learning. The methods we
previously mentionned transform the weakly su-
pervised problem into a fully supervised one, lead-
ing to noisy training datasets (see Fig. 1). Mul-

1www.freebase.com
2www.mpi-inf.mpg.de/yago-naga/yago
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tiple instance learning (Dietterich et al., 1997) is
a paradigm in which the learner receives bags of
examples instead of individual examples. A pos-
itively labeled bag contains at least one positive
example, but might also contains negative exam-
ples. In the context of relation extraction, Bunescu
and Mooney (2007) introduced a kernel method
for multiple instance learning, while Riedel et al.
(2010) proposed a solution based on a graphical
model.

Both these methods allow only one label per
bag, which is an asumption that is not true for
relation extraction (see Fig. 1). Thus, Hoffmann
et al. (2011) proposed a multiple instance, multi-
ple label method, based on an undirected graphical
model, to solve the problem of weakly supervised
relation extraction. Finally, Surdeanu et al. (2012)
also proposed a graphical model to solve this prob-
lem. One of their main contributions is to cap-
ture dependencies between relation labels, such as
the fact that two labels cannot be generated jointly
(e.g. the relations SpouseOf and BornIn).

Discriminative clustering. Our approach is
based on the discriminative clustering framework,
introduced by Xu et al. (2004). The goal of dis-
criminative clustering is to find a labeling of the
data points leading to a classifier with low classifi-
cation error. Different formulations of discrimina-
tive clustering have been proposed, based on sup-
port vector machines (Xu et al., 2004), the squared
loss (Bach and Harchaoui, 2007) or the logistic
loss (Joulin et al., 2010). A big advantage of dis-
criminative clustering is that weak supervision or
prior information can easily be incorporated. Our
work is closely related to the method proposed by
Bojanowski et al. (2013) for learning the names of
characters in movies.

3 Weakly supervised relation extraction

In this article, our goal is to extract binary
relations between entities from natural lan-
guage text. Given a set of entities, a binary
relation r is a collection of ordered pairs of
entities. The statement that a pair of entities
(e1, e2) belongs to the relation r is denoted by
r(e1, e2) and this triple is called a fact or relation
instance. For example, the fact that Ernest
Hemingway was born in Oak Park is denoted
by BornIn(Ernest Hemingway, Oak Park).
A given pair of entities, such as
(Edouard Manet, Paris), can belong to

different relations, such as BornIn and DiedIn.
An entity mention is a contiguous sequence of

tokens refering to an entity, while a pair mention
or relation mention candidate is a sequence of text
in which a pair of entities is mentioned. In the
following, relation mention candidates will be re-
stricted to pair of entities that are mentioned in the
same sentence. For example, the sentence:

Ernest Hemingway was born in Oak Park.

contains two entity mentions, corresponding
to two relation mention candidates. In-
deed, the pairs (Hemingway, Oak Park) and
(Oak Park, Hemingway) are two distinct pairs of
entities, where only the first one verifies the rela-
tion BornIn.

Given a text corpus, aggregate extraction corre-
sponds to the task of extracting a set of facts, such
that each extracted fact is expressed at least once in
the corpus. On the other hand, the task of senten-
tial extraction corresponds to labeling each rela-
tion mention candidate by the relation it expresses,
or by a None label if it does not express any rela-
tion. Given a solution to the sentential extraction
problem, it is possible to construct a solution for
the aggregate extraction problem by returning all
the facts that were detected. We will follow this
approach, by building an instance level classifier,
and aggregating the results by extracting the facts
that were detected at least once in the corpus.

In the following, we will describe a method to
learn such a classifier using a database of facts in-
stead of a set of labeled sentences. This setting
is known as distant supervision or weak supervi-
sion, since we do not have access to labeled data
on which we could directly train a sentence level
relation extractor.

4 General approach

In this section, we propose a two step procedure to
solve the problem of weakly supervised relation
extraction:

1. First, we describe a method to infer the re-
lation labels corresponding to each relation
mention candidate of our training set,

2. Second, we train a supervised instance level
relation extractor, using the labels infered
during step 1.

In the second step of our approach, we will simply
use a multinomial logistic regression model. We
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Roy Lichtenstein was
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Lichtenstein left New
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BornIn
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N relation mention candidates
represented by vectors xn

I pairs of entities pi K relations

Ein Rik

Figure 2: Instance of the weakly supervised relation extraction problem, with notations used in the text.

now describe the approach we propose for the first
step.

4.1 Notations
Let (pi)1≤i≤I be a collection of I pairs of entities.
We suppose that we have N relation mention can-
didates, represented by the vectors (xn)1≤n≤N .
Let E ∈ RI×N be a matrix such thatEin = 1 if the
relation mention candidate n corresponds to the
pair of entities i, and Ein = 0 otherwise. The ma-
trix E thus indicates which relation mention can-
didate corresponds to which pair of entities. We
suppose that we have K relations, indexed by the
integers {1, ...,K}. Let R ∈ RI×K be a matrix
such that Rik = 1 if the pair of entities i verifies
the relation k, and Rik = 0 otherwise. The matrix
R thus represents the knowledge database. See
Fig. 2 for an illustration of these notations.

4.2 Problem formulation
Our goal is to infer a binary matrix
Y ∈ {0, 1}N×(K+1), such that Ynk = 1 if
the relation mention candidate n express the
relation k and Ynk = 0 otherwise (and thus, the
integer K + 1 represents the relation None).

We take an approach inspired by the discrimi-
native clustering framework of Xu et al. (2004).
We are thus looking for a (K + 1)-class indicator
matrix Y, such that the classification error of an
optimal multiclass classifier f is minimum. Given
a multiclass loss function ` and a regularizer Ω,
this problem can be formulated as:

min
Y

min
f

N∑
n=1

`(yn, f(xn)) + Ω(f),

s.t. Y ∈ Y
where yn is the nth line of Y. The constraints
Y ∈ Y are added in order to take into account
the information from the weak supervision. We
will describe in the next section what kind of con-
straints are considered.

4.3 Weak supervision by constraining Y

In this section, we show how the information
from the knowledge base can be expressed as con-
straints on the matrix Y.

First, we suppose that each relation mention
candidate express exactly one relation (including
the None relation). This means that the matrix Y
contains exactly one 1 per line, which is equivalent
to the constraint:

∀n ∈ {1, ..., N},
K∑
k=1

Ynk = 1.

Second, if the pair i of entities verifies the rela-
tion k we suppose that at least one relation men-
tion candidate indeed express that relation. Thus
we want to impose that for at least one relation
mention candidate n such that Ein = 1, we have
Ynk = 1. This is equivalent to the constraint:

∀(i, k) such that Rik = 1,
N∑
n=1

EinYnk ≥ 1.

Third, if the pair i of entities does not verify the re-
lation k, we suppose that no relation mention can-
didate express that relation. Thus, we impose that
for all mention candidate n such that Ein = 1, we
have Ynk = 0. This is equivalent to the constraint:

∀(i, k) such that Rik = 0,
N∑
n=1

EinYnk = 0.

Finally, we do not want too many relation men-
tion candidates to be classified as None. We thus
impose

∀i ∈ {1, ..., I},
N∑
n=1

EinYn(K+1) ≤ c
N∑
n=1

Ein,

where c is the proportion of relation mention can-
didates that do not express a relation, for entity
pairs that appears in the knowledge database.
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We can rewrite these constraints using only ma-
trix operations in the following way:

Y1 = 1

(EY) ◦ S ≥ R̃, (1)

where ◦ is the Hadamard product (a.k.a. the ele-
mentwise product), the matrix S ∈ RI×(K+1) is
defined by

Sik =
{

1 if Rik = 1
−1 if Rik = 0 or k = K + 1,

and the matrix R̃ ∈ RI×(K+1) is defined by

R̃ = [R,−cE1].

The set Y is thus defined as the set of matrices
Y ∈ {0, 1}N×(K+1) that verifies those two linear
constraints. It is important to note that besides the
boolean constraints, the two other constraints are
convex.

5 Squared loss and convex relaxation

In this section, we describe the problem we ob-
tain when using the squared loss, and its associated
convex relaxation. We then introduce an efficient
algorithm to solve this problem, by computing its
dual.

5.1 Primal problem
Following Bach and Harchaoui (2007), we use lin-
ear classifiers W ∈ RD×(K+1), the squared loss
and the squared `2-norm as the regularizer. In that
case, our formulation becomes:

min
Y,W

1
2
‖Y −XW‖2F +

λ

2
‖W‖2F ,

s.t. Y ∈ {0, 1}N×(K+1)

Y1 = 1,

(EY) ◦ S ≥ R.

where ‖ · ‖F is the Frobenius norm and the ma-
trix X = [x1, ...,xN ]> ∈ RN×D represents the
relation mention candidates. Thanks to using the
squared loss, we have a closed form solution for
the matrix W:

W = (X>X + λID)−1X>Y.

Replacing the matrix W by its optimal solution,
we obtain the following cost function:

min
Y

1
2
Y>(IN −X(X>X + λID)−1X>)Y.

Then, by applying the Woodbury matrix identity
and relaxing the constraint Y ∈ {0, 1}N×(K+1)

into Y ∈ [0, 1]N×(K+1), we obtain the following
convex quadratic problem in Y:

min
Y

1
2

tr
(
Y>(XX> + λIN )−1Y

)
,

s.t. Y ≥ 0,

Y1 = 1,

(EY) ◦ S ≥ R.

Since the inequality constraints might be in-
feasible, we add the penalized slack variables
ξ ∈ RI×(K+1), finally obtaining:

min
Y,ξ

1
2

tr
(
Y>(XX> + λIN )−1Y

)
+ µ‖ξ‖1

s.t. Y ≥ 0, ξ ≥ 0,
Y1 = 1,

(EY) ◦ S ≥ R− ξ.

This convex problem is a quadratic program. In
the following section, we will describe how to
solve this problem efficiently, by exploiting the
structure of its dual problem.

5.2 Dual problem
The matrix Q = (XX> + λIN ) appearing in the
quadratic program is an N by N matrix, where
N is the number of mention relation candidates.
Computing its inverse is thus expensive, since N
can be large. Instead, we propose to solve the
dual of this problem. Introducing dual variables
Λ ∈ RI×(K+1), Σ ∈ RN×(K+1) and ν ∈ RN ,
the dual problem is equal to

min
Λ,Σ,ν

1
2

tr
(
Z>QZ

)
− tr

(
Λ>R

)
− ν>1

s.t. 0 ≤ Λik ≤ µ, 0 ≤ Σnk,

where

Z = E>(S ◦ Λ) + Σ + ν1>.

The derivation of this dual problem is given in Ap-
pendix A.

Solving the dual problem instead of the primal
has two main advantages. First, the dual does not
depend on the inverse of the matrix Q, while the
primal does. Since traditional features used for re-
lation extraction are indicators of lexical, syntactic
and named entities properties of the relation men-
tion candidates, the matrix X is extremely sparse.
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Using the dual problem, we can thus exploit the
sparsity of the matrix X in the optimization pro-
cedure. Second, the constraints imposed on dual
variables are simpler than constraints imposed on
primal variables. Again, we will exploit this struc-
ture in the proposed optimization procedure.

Given a solution of the dual problem, the asso-
ciated primal variable Y is equal to:

Y = (XX> + λIN )Z.

Thus, we do not need to compute the inverse of the
matrix (XX> + λIN ) to obtain a solution to the
primal problem once we have solved the dual.

5.3 Optimization of the dual problem

We propose to solve the dual problem using
the accelerated projected gradient descent algo-
rithm (Nesterov, 2007; Beck and Teboulle, 2009).
Indeed, computing the gradient of the dual cost
function is efficient, since the matrix X is sparse.
Moreover, the constraints on the dual variables are
simple and it is thus efficient to project onto this
set of constraints. See Appendix B for more de-
tails.

Complexity. The overall complexity of one step
of the accelerated projected gradient descent al-
gorithm is O(NFK), where F is the average
number of features per relation mention candi-
date. This means that the complexity of solving
the quadratic problem corresponding to our ap-
proach is linear with respect to the number N of
relation mention candidates, and thus our algo-
rithm can scale to large datasets.

5.4 Discussion

Before moving to the experimental sections of this
article, we would like to discuss some properties
of our approach.

Kernels. First of all, one should note that our
proposed formulation only depends on the (lin-
ear) kernel matrix XXT . It is thus possible to re-
place this matrix by any other kernel. However,
in the case of a general kernel, the optimization
algorithm presented in the previous section has a
quadratic complexity O(KN2) with respect to the
number N of relation mention candidates, and it
is thus not applicable as is. We plan to explore the
use of kernels in future work.

Rounding. Given a continuous solution Y ∈
[0, 1]N×(K+1) of the relaxed problem, a very sim-
ple way to obtain a relation label for each relation
mention candidate of the training set is to com-
pute the orthogonal projection of the matrix Y on
the set of indicator matrices{

M ∈ {0, 1}N×(K+1) |M1 = 1
}
.

This projection consists in taking the maximum
value along the rows of the matrix Y. It should
be noted that the obtained matrix does not neces-
sarily verify the inequality constraints defined in
Eq. 1. In the following, we will use this rounding,
refered to as argmax rounding, to obtain relation
labels for each relation mention candidate.

6 Dataset and features

In this section, we describe the dataset used in the
experimental section and the features used to rep-
resent the data.

6.1 Dataset
We consider the dataset introduced by Riedel et
al. (2010). This dataset consists of articles from
the New York Times corpus (Sandhaus, 2008),
from which named entities where extracted and
tagged using the Stanford named entity recog-
nizer (Finkel et al., 2005). Consecutive tokens
with the same category were treated as a single
mention. These named entity mentions were then
aligned with the Freebase knowledge database, by
using a string match between the mentions and the
canonical names of entities in Freebase.

6.2 Features
We use the features extracted by Riedel et al.
(2010), which were first introduced by Mintz et
al. (2009). These features capture how two en-
tity mentions are related in a given sentence, based
on syntactic and lexical properties. Lexical fea-
tures include: the sequence of words between the
two entities, a window of k words before the first
entity and after the second entity, the correspond-
ing part-of-speech tags, etc.. Syntactic features are
based on the dependency tree of the sentence, and
include: the path between the two entities, neigh-
bors of the two entities that do not belong to the
path. The OpenNLP3 part-of-speech tagger and
the Malt parser (Nivre et al., 2007) were used to
extract those features.

3opennlp.apache.org
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Figure 3: Precision/recall curves for different methods on the Riedel et al. (2010) dataset, for the task of
aggregate extraction.

6.3 Implementation details

In this section, we discuss some important imple-
mentation details.

Kernel normalization. We normalized the ker-
nel matrix XX>, so that its diagonal coefficients
are equal to 1. This corresponds to normalizing
the vectors xn so that they have a unit `2-norm.

Choice of parameters. We kept 20% of the ex-
amples from the training set as a validation set, in
order to choose the parameters of our method. We
then re-train a model on the whole training set, us-
ing the chosen parameters.

7 Experimental evaluation

In this section, we evaluate our approach to weakly
supervised relation extraction by comparing it to
state-of-the art methods.

7.1 Baselines

We now briefly present the different methods we
compare to.

Mintz et al. This baseline corresponds to the
method described by Mintz et al. (2009). We
use the implementation of Surdeanu et al. (2012),
which slightly differs from the original method:
each relation mention candidate is treated inde-
pendently (and not collapsed across mentions for
a given entity pair). This strategy allows to predict
multiple labels for a given entity pair, by OR-ing
the predictions for the different mentions.

Hoffmann et al. This method, introduced by
Hoffmann et al. (2011), is based on probabilis-
tic graphical model of multi-instance multi-label
learning. They proposed a learning method
for this model, based on the perceptron algo-
rithm (Collins, 2002) and a greedy search for the
inference. We use the publicly available code of
Hoffmann et al.4.

Surdeanu et al. Finally, we compare our
method to the one described by Surdeanu et al.
(2012). This method is based on a two-layer
graphical model, the first layer corresponding to

4www.cs.washington.edu/ai/raphaelh/mr/
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Figure 4: Precision/recall curves per relation for our method, on the Riedel et al. (2010) dataset, for the
task of aggregate extraction.

a relation classifier at the mention level, while the
second layer is aggregating the different predic-
tion for a given entity pair. In particular, this sec-
ond layer capture dependencies between relation
labels, such as the fact that two labels cannot be
generated jointly (e.g. the relations SpouseOf and
BornIn). This model is trained by using hard
discriminative Expectation-Maximization. We use
the publicly available code of Surdeanu et al.5.

7.2 Precision / recall curves

Following standard practices in relation extrac-
tion, we report precision/recall curves for the dif-
ferent models. In order to rank aggregate extrac-
tions for our model, the score of an extracted fact
r(e1, e2) is set to the maximal score of the differ-
ent extractions of that fact. This is sometimes ref-
ered to as the soft-OR function.

7.3 Discussion

Comparison with the state-of-the-art. We re-
port results for the different methods on the dataset

5nlp.stanford.edu/software/mimlre.shtml

introduced by Riedel et al. (2010) in Fig. 3. We
observe that our approach generally outperforms
the state of the art. Indeed, at equivalent recall,
our method achieves better (or similar) precision
than the other methods, except for very low re-
call (smaller than 0.05). The improvement over
the methods proposed by Hoffmann et al. (2011)
and Surdeanu et al. (2012), which are currently
the best published results on this dataset, can be
as high as 5 points in precision for the same recall
point. Moreover, our method achieves a higher re-
call (0.30) than these two methods (0.25).

Performance per relation. The dataset in-
troduced by Riedel et al. (2010) is highly
unbalanced: for example, the most common
relation, /location/location/contains, rep-
resents almost half of the positive relations, while
some relations are mentioned less than ten times.
We thus decided to also report precision/recall
curves for the five most common relations of
that dataset in Fig. 4. First, we observe that the
perfomances vary a lot from a relation to another.
The frequence of the different relations is not the
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Figure 5: Precision/recall curves for the task
of sentential extraction, on the manually labeled
dataset of Hoffmann et al. (2011).

only factor in those discrepancies. Indeed, the
relation /people/person/place lived and the
relation /people/person/place of birth
are more frequent than the relation
/business/person/company, but the ex-
traction of the later works much better than the
extraction of the two first.

Upon examination of the data, this can
partly be explained by the fact that al-
most no sentences extracted for the relation
/people/person/place of birth in fact
express this relation. In other words, many
facts present in Freebase are not expressed in
the corpus, and are thus impossible to extract.
On the other hand, most facts for the relation
/people/person/place lived are missing in
Freebase. Therefore, many extractions produced
by our system are considered false, but are in
fact true positives. The problem of incomplete
knowledge base was studied by Min et al. (2013).

Sentential extraction. We finally report preci-
sion/recall curves for the task of sentential extrac-
tion, in Fig. 5, using the manually labeled dataset
of Hoffmann et al. (2011). We observe that for
most values of recall, our method achieves simi-
lar precision that the one proposed by Hoffmann
et al. (2011), while extending the highest recall
from 0.52 to 0.68. Thanks to this higher recall, our
method achieves a highest F1 score of 0.66, com-
pared to 0.61 obtained by the method proposed by
Hoffmann et al. (2011).

Method Runtime

Mintz et al. (2009) 7 min
Hoffmann et al. (2011) 2 min
Surdeanu et al. (2012) 3 hours
This work 3 hours

Table 1: Comparison of running times for the dif-
ferent methods compared in the experimental sec-
tion.

8 Conclusion

In this article, we introduced a new formulation
for weakly supervised relation extraction. Our
method is based on a constrained discriminative
formulation of the multiple instance, multiple la-
bel learning problem. Using the squared loss,
we obtained a convex relaxation of this formula-
tion, allowing us to obtain an approximate solu-
tion to the initial integer quadratic program. Thus,
our method is not sensitive to initialization. We
demonstrated the competitiveness of our approach
on the dataset introduced by Riedel et al. (2010),
on which our method outperforms the state of the
art methods for weakly supervised relation extrac-
tion, on both aggregate and sentential extraction.

As noted earlier, another advantage of our
method is the fact that it is easily kernelizable.
We would like to explore the use of kernels, such
as the ones introduced by Zelenko et al. (2003),
Culotta and Sorensen (2004) and Bunescu and
Mooney (2005), in future work. We believe that
such kernels could improve the relatively low re-
call obtained so far by weakly supervised method
for relation extraction.
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Appendix A Derivation of the dual

In this section, we derive the dual problem of the
quadratic program of section 5. We introduce dual
variables Λ ∈ RI×(K+1), Σ ∈ RN×(K+1),
Ω ∈ RI×(K+1) and ν ∈ RN , such that Λ ≥ 0,
Σ ≥ 0 and Ω ≥ 0.

The Lagrangian of the problem is

1
2

tr
(
Y>(XX> + λIN )−1Y

)
+ µ

∑
i,k

ξik

− tr
(

Λ>((EY) ◦ S−R + ξ)
)

− tr(Σ>Y)− tr(Ω>ξ)− ν>(Y1− 1).

To find the dual function g we minimize the La-
grangian over Y and ξ. Minimizing over ξ, we
find that the dual function is equal to −∞ unless
µ−Λik−Ωik = 0, in which case, we are left with

1
2

tr
(
Y>(XX> + λIN )−1Y

)
− tr((Λ ◦ S)>EY)− tr(Σ>Y)− tr(1ν>Y)

+ tr(Λ>R) + ν>1.

Minimizing over Y, we then obtain

Y = (XX> + λIN )(E>(S ◦ Λ) + Σ + ν1>).

Replacing Y by its optimal value, we then obtain
the dual function

−1
2

tr
(
Z>QZ

)
+ tr

(
Λ>R

)
+ ν>1.

where

Q = (XX> + λIN ),

Z = E>(S ◦ Λ) + Σ + ν1>.

Thus, the dual problem is

max
Λ,Σ,ν

− 1
2

tr
(
Z>QZ

)
+ tr

(
Λ>R

)
+ ν>1

s.t. 0 ≤ Λik, 0 ≤ Σnk, 0 ≤ Ωik,

µ− Λik − Ωik = 0.

We can then eliminate the dual variable Ω, since
the constraints Ωik = µ − Λik and Ωik ≥ 0 are
equivalent to µ ≥ Λik. We finally obtain

max
Λ,Σ,ν

− 1
2

tr
(
Z>QZ

)
+ tr

(
Λ>R

)
+ ν>1

s.t. 0 ≤ Λik ≤ µ, 0 ≤ Σnk.

Appendix B Optimization details

Gradient of the dual cost function. The gradi-
ent of the dual cost function f with respect to the
dual variables Σ, Λ and ν is equal to

∇Σf = (XX> + λIN )Z,

∇Λf =
(

(XX> + λIN )ZE>
)
◦ S−R,

∇νf = (XX> + λIN )Z1− 1.

The most expensive step to compute those gra-
dients is to compute the matrix product XX>Z.
Since the matrix X is sparse, we efficiently com-
pute this product by first computing the product
X>Z, and then by left multiplying the result by
X. The complexity of these two operations is
O(NFK), where F is the average number of fea-
tures per relation mention candidate.

Projecting Σ and Λ. The componentwise pro-
jection operators associated to the constraints on
Σ and Λ are defined by:

projΣ(Σnk) = max(0,Σnk),
projΛ(Λik) = max(0,min(µ,Λik)).

The complexity of projecting Σ and Λ is O(NK).
Thus, the cost of those operations is ne gligible
compared to the cost of computing the gradients
of the dual cost function.
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Abstract

We examine the embedding approach to
reason new relational facts from a large-
scale knowledge graph and a text corpus.
We propose a novel method of jointly em-
bedding entities and words into the same
continuous vector space. The embedding
process attempts to preserve the relations
between entities in the knowledge graph
and the concurrences of words in the text
corpus. Entity names and Wikipedia an-
chors are utilized to align the embeddings
of entities and words in the same space.
Large scale experiments on Freebase
and a Wikipedia/NY Times corpus show
that jointly embedding brings promising
improvement in the accuracy of predicting
facts, compared to separately embedding
knowledge graphs and text. Particularly,
jointly embedding enables the prediction
of facts containing entities out of the
knowledge graph, which cannot be han-
dled by previous embedding methods. At
the same time, concerning the quality of
the word embeddings, experiments on the
analogical reasoning task show that jointly
embedding is comparable to or slightly
better than word2vec (Skip-Gram).

1 Introduction

Knowledge graphs such as Freebase (Bollacker et
al., 2008) and WordNet (Miller, 1995) have be-
come important resources for many AI & NLP ap-
plications such as Q & A. Generally, a knowledge
graph is a collection of relational facts that are of-
ten represented in the form of a triplet (head en-
tity, relation, tail entity), e.g., “(Obama, Born-in,
Honolulu)”. An urgent issue for knowledge graph-
s is the coverage, e.g., even the largest knowledge
graph of Freebase is still far from complete.

Recently, targeting knowledge graph comple-
tion, a promising paradigm of embedding was pro-
posed, which is able to reason new facts only from
the knowledge graph (Bordes et al., 2011; Bor-
des et al., 2013; Socher et al., 2013; Wang et al.,
2014). Generally, in this series of methods, each
entity is represented as a k-dimensional vector and
each relation is characterized by an operation in
<k so that a candidate fact can be asserted by sim-
ple vector operations. The embeddings are usually
learnt by minimizing a global loss function of all
the entities and relations in the knowledge graph.
Thus, the vector of an entity may encode global
information from the entire graph, and hence scor-
ing a candidate fact by designed vector operations
plays a similar role to long range “reasoning” in
the graph. However, since this requires the vectors
of both entities to score a candidate fact, this type
of methods can only complete missing facts for
which both entities exist in the knowledge graph.
However, a missing fact often contains entities out
of the knowledge graph (called out-of-kb for short
in this paper), e.g., one or both entities are phras-
es appearing in web text but not included in the
knowledge graph yet. How to deal with these fact-
s is a significant obstacle to widely applying the
embedding paradigm.

In addition to knowledge embedding, anoth-
er interesting approach is the word embedding
method word2vec (Mikolov et al., 2013b), which
shows that learning word embeddings from an
unlabeled text corpus can make the vectors con-
necting the pairs of words of some certain
relation almost parallel, e.g., vec(“China”) −
vec(“Beijing”) ≈ vec(“Japan”) − vec(“Tokyo”).
However, it does not know the exact relation be-
tween the pairs. Thus, it cannot be directly applied
to complete knowledge graphs.

The capabilities and limitations of knowledge
embedding and word embedding have inspired us
to design a mechanism to mosaic the knowledge
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graph and the “word graph” together in a vector
space so that we can score any candidate relation-
al facts between entities and words1. Therefore,
we propose a novel method to jointly embed enti-
ties and words into the same vector space. In our
solution, we define a coherent probabilistic model
for both knowledge and text, which is composed
of three components: the knowledge model, text
model, and alignment model. Both the knowledge
model and text model use the same core transla-
tion assumption for the fact modeling: a candidate
fact (h, r, t) is scored based on ‖h + r − t‖. The
only difference is, in the knowledge model the re-
lation r is explicitly supervised and the goal is to
fit the fact triplets, while in the text model we as-
sume any pair of words h and t that concur in some
text windows are of certain relation r but r is a hid-
den variable, and the goal is to fit the concurring
pairs of words. The alignment model guarantees
the embeddings of entities and words/phrases lie
in the same space and impels the two models to en-
hance each other. Two mechanisms of alignment
are introduced in this paper: utilizing names of en-
tities and utilizing Wikipedia anchors. This way of
jointly embedding knowledge and text can be con-
sidered to be semi-supervised knowledge embed-
ding: the knowledge graph provides explicit su-
pervision of facts while the text corpus provides
much more “relation-unlabeled” pairs of words.

We conduct extensive large scale experiments
on Freebase and Wikipedia corpus, which show
jointly embedding brings promising improve-
ments to the accuracy of predicting facts, com-
pared to separately embedding the knowledge
graph and the text corpus, respectively. Particu-
larly, jointly embedding enables the prediction of
a candidate fact with out-of-kb entities, which can
not be handled by any existing embedding meth-
ods. We also use embeddings to provide a prior
score to help fact extraction on the benchmark da-
ta set of Freebase+NYTimes and also observe very
promising improvements. Meanwhile, concerning
the quality of word embeddings, experiments on
the analogical reasoning task show that jointly em-
bedding is comparable to or slightly better than
word2vec (Skip-Gram).

1We do not distinguish between “words” and “phrases”,
i.e., “words” means “words/phrases”.

2 Related Work

Knowledge Embedding. A knowledge graph is
embedded into a low-dimensional continuous vec-
tor space while certain properties of it are pre-
served (Bordes et al., 2011; Bordes et al., 2013;
Socher et al., 2013; Chang et al., 2013; Wang et
al., 2014). Generally, each entity is represented
as a point in that space while each relation is inter-
preted as an operation over entity embeddings. For
instance, TransE (Bordes et al., 2013) interprets a
relation as a translation from the head entity to the
tail entity. The embedding representations are usu-
ally learnt by minimizing a global loss function in-
volving all entities and relations so that each entity
embedding encodes both local and global connec-
tivity patterns of the original graph. Thus, we can
reason new facts from learnt embeddings.
Word Embedding. Generally, word embeddings
are learned from a given text corpus without su-
pervision by predicting the context of each word
or predicting the current word given its contex-
t (Bengio et al., 2003; Collobert et al., 2011;
Mikolov et al., 2013a; Mikolov et al., 2013b). Al-
though relations between words are not explicitly
modeled, continuous bag-of-words (CBOW) and
Skip-gram (Mikolov et al., 2013a; Mikolov et al.,
2013b) learn word embeddings capturing many
syntactic and semantic relations between words
where a relation is also represented as the trans-
lation between word embeddings.
Relational Facts Extraction. Another pivotal
channel for knowledge graph completion is ex-
tracting relational facts from external sources such
as free text (Mintz et al., 2009; Riedel et al., 2010;
Hoffmann et al., 2011; Surdeanu et al., 2012;
Zhang et al., 2013; Fan et al., 2014). This se-
ries of methods focuses on identifying local text
patterns that express a certain relation and making
predictions based on them. However, they have
not fully utilized the evidences from a knowledge
graph, e.g., knowledge embedding is able to rea-
son new facts without any external sources. Ac-
tually, knowledge embedding is very complemen-
tary to traditional extraction methods, which was
first confirmed by (Weston et al., 2013). To es-
timate the plausibility of a candidate fact, they
added scores from embeddings to scores from an
extractor, which showed significant improvemen-
t. However, as pointed out in the introduction,
their knowledge embedding method cannot pre-
dict facts involving out-of-kb entities.
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3 Jointly Embedding Knowledge and
Text

We will first describe the notation used in this pa-
per. A knowledge graph ∆ is a set of triplets in
the form (h, r, t), h, t ∈ E and r ∈ R where E is
the entity vocabulary and R is a collection of pre-
defined relations. We use bold letters h, r, t to de-
note the corresponding embedding representation-
s of h, r, t. A text corpus is a sequence of words
drawn from the word vocabulary V . Note that we
perform some preprocessing to detect phrases in
the text and the vocabulary here already includes
the phrases. For simplicity’s sake, without spe-
cial explanation, when we say “word(s)”, it means
“word(s)/phrase(s)”. Since we consider triplets in-
volving not only entities but also words, we denote
I = E ∪V . Additionally, we denote anchors byA.

3.1 Modeling

Our model is composed of three components:
the knowledge model, text model, and alignment
model.

Before defining the component models, we first
define the element model for a fact triplet. In-
spired by TransE, we also represent a relation r
as a vector r ∈ <k and score a fact triplet (h, r, t)
by z(h, r, t) = b − 1

2‖h + r − t‖2 where b is a
constant for bias designated for adjusting the scale
for better numerical stability and b = 7 is a sensi-
ble choice. z(h, r, t) is expected to be large if the
triplet is true. Based on the same element model of
fact, we define the component models as follows.

3.1.1 Knowledge Model
We define the following conditional probability of
a fact (h, r, t) in a knowledge graph:

Pr(h|r, t) =
exp{z(h, r, t)}∑
h̃∈I exp{z(h̃, r, t)} (1)

and we have named our model pTransE (Proba-
bilistic TransE) to show respect to TransE. We also
define Pr(r|h, t) and Pr(t|h, r) in the same way
by choosing corresponding normalization terms
respectively. We define the likelihood of observ-
ing a fact triplet as:

Lf (h, r, t) = log Pr(h|r, t)+ log Pr(t|h, r)
+ log Pr(r|h, t) (2)

The goal of the knowledge model is to maximize
the conditional likelihoods of existing fact triplets

in the knowledge graph:

LK =
∑

(h,r,t)∈∆

Lf (h, r, t) (3)

3.1.2 Text Model
We propose the following key assumption for
modeling text, which connects word embedding
and knowledge embedding: there are relations
between words although we do not know what
they are.
Relational Concurrence Assumption. If two
words w and v concur in some context, e.g., a win-
dow of text, then there is a relation rwv between
the two words. That is, we can state the triplet of
(w, rwv, v) is a fact.

We define the conditional probability
Pr(w|rwv, v) following the same formulation
of Eq.(1) to model why two words concur in some
context. In contrast to knowledge embedding,
here rwv is a hidden variable rather than explicitly
supervised.

The challenge is to deal with the hidden variable
rwv. Obviously, without any more assumption-
s, the number of distinct rwv is around |V| × N̄ ,
where N̄ is the average number of unique word-
s concurred with each word. This number is ex-
tremely large. Thus it is almost impossible to esti-
mate a vector for each rwv. And the problem is ac-
tually ill-posed. We need to constrain the freedom
degree of rwv. Here we use auxiliary variables to
reduce the size of variables we need to estimate:
let w′ = w + rwv, then

z(w, rwv,v) , z(w′,v) = b− 1
2
‖w′−v‖2 (4)

and

Pr(w|rwv, v) , Pr(w|v) =
exp{z(w′,v)}∑
w̃∈V exp{z(w̃′,v)}

(5)
In this way we need to estimate vectors w and w′

for each word w, and a total of 2× |V| vectors.
The goal of the text model is to maximize the

likelihood of the concurrences of pairs of words in
text windows:

LT =
∑

(w,v)∈C
nwv log Pr(w|v). (6)

In the above equation, C is all the distinct pairs of
words concurring in text windows of a fixed size.
And nwv is the number of concurrences of the pair
(w, v). Interestingly, as explained in Sec.(3.3),
this text model is almost equivalent to Skip-Gram.
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3.1.3 Alignment Model
If we only have the knowledge model and text
model, the entity embeddings and word embed-
dings will be in different spaces and any comput-
ing between them is meaningless. Thus we need
mechanisms to align the two spaces into the same
one. We propose two mechanisms in this paper: u-
tilizing Wikipedia anchors, and utilizing names of
entities.

Alignment by Wikipedia Anchors. This mod-
el is based on the connection between Wikipedia
and Freebase: for most Wikipedia (English) pages,
there is an unique corresponding entity in Free-
base. As a result, for most of the anchors in
Wikipedia, each of which refers to a Wikipedi-
a page, we know that the surface phrase v of an
anchor actually refers to the Freebase entity ev.
Thus, we define a likelihood for this part of an-
chors as Eq.(6) but replace the word pair (w, v)
with the word-entity pair (w, ev), i.e., using the
corresponding entity ev rather than the surface
word v in Eq.(5):

LAA =
∑

(w,v)∈C,v∈A
log Pr(w|ev) (7)

where A denotes the set of anchors.
In addition to Wikipedia anchors, we can also

use an entity linking system with satisfactory per-
formance to produce the pseudo anchors.

Alignment by Names of Entities. Another way
is to use the names of entities. For a fact triplet
(h, r, t) ∈ ∆, if h has a namewh andwh ∈ V , then
we will generate a new triplet of (wh, r, t) and add
it to the graph. Similarly, we also add (h, r, wt)
and (wh, r, wt) into the graph if the names exist
and belong to the word vocabulary. We call this
sub-graph containing names the name graph and
define a likelihood for the name graph by observ-
ing its triplets:

LAN =
∑

(h,r,t)∈∆

I[wh∈V ∧wt∈V]·Lf (wh, r, wt)+

I[wh∈V] · Lf (wh, r, t) + I[wt∈V] · Lf (h, r, wt)
(8)

Both alignment models have advantages and
disadvantages. Alignment by names of entities is
straightforward and does not rely on additional da-
ta sources. The number of triplets generated by the
names is also large and can significantly change
the results. However, this model is risky. On the

one hand, the name of an entity is ambiguous be-
cause different entities sometimes have the same
name so that the name graph may contaminate the
knowledge embedding. On the other hand, an en-
tity often has several different aliases when men-
tioned in the text but we do not have the complete
set, which will break the semantic balance of word
embedding. For example, for the entity Apple In-
c., suppose we only have the standard name “Ap-
ple Inc.” but do not have the alias “apple”. And for
the entity Apple that is fruit, suppose we have the
name ”apple” included in the name graph. Then
the vector of the word “apple” will be biased to
the concept of fruit rather than the company. But if
no name graph intervenes, the unsupervised word
embedding is able to learn a vector that is closer to
the concept of the company due to the polarities.
Alignment by anchors relies on the additional data
source of Wikipedia anchors. Moreover, the num-
ber of matched Wikipedia anchors (∼40M) is rela-
tively small compared to the total number of word
pairs (∼2.0B in Wikipedia) and hence the contri-
bution is limited. However, the advantage is that
the quality of the data is very high and there are no
ambiguity/completeness issues.

Considering the above three component models
together, the likelihood we maximize is:

L = LK + LT + LA (9)

where LA could be LAA or LAN or LAA + LAN .

3.2 Training
3.2.1 Approximation to the Normalizers
It is difficult to directly compute the normalizers in
Pr(h|r, t) (or Pr(t|h, r), Pr(r|h, t)) and Pr(w|v)
as the normalizers sum over |I| or |V| terms where
both |I| and |V| reach tens of millions. To pre-
vent having to exactly calculate the normalizer-
s, we use negative sampling (NEG) (Mikolov et
al., 2013b) to transform the original objective, i.e.,
Eq.(9) to a simple objective of the binary classifi-
cation problem—differentiating the observed data
from noise.

First, we define: (i) the probability of a given
triplet (h, r, t) to be true (D = 1); and (ii) the
probability of a given word pair (w, v) to co-occur
(D = 1):

Pr(D = 1|h, r, t) = σ(z(h, r, t)) (10)

Pr(D = 1|w, v) = σ(z(w′,v)) (11)

where σ(x) = 1
1+exp{−x} and D ∈ {0, 1}.
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Instead of maximizing log Pr(h|r, t) in Eq.(2),
we maximize:

log Pr(1|h, r, t)

+
c∑
i=1

Eh̃i∼Prneg(h̃i)
[Pr(0|h̃i, r, t)]

(12)

where c is the number of negative examples to
be discriminated for each positive example. NEG
guarantees that maximizing Eq.(12) can approxi-
mately maximize log Pr(h|r, t). Thus, we also re-
place log Pr(r|h, t), log Pr(t|r, h) in Eq.(2), and
log Pr(w|v) in Eq.(6) in the same way by choosing
corresponding negative distributions respectively.
As a result, the objectives of both the knowledge
model LK (Eq.(3)) and text model LT (Eq.(6)) are
free from cumbersome normalizers.

3.2.2 Optimization
We use stochastic gradient descent (SGD) to max-
imize the simplified objectives.

Knowledge model. ∆ is randomly tra-
versed multiple times. When a positive example
(h, r, t) ∈ ∆ is considered, to maximize (12), we
construct c negative triplets by sampling elements
from an uniform distribution over I and replacing
the head of (h, r, t). The transformed objective of
log Pr(r|h, t) is maximized in the same manner,
but by sampling from a uniform distribution over
R and corrupting the relation of (h, r, t). After a
mini-batch, computed gradients are used to update
the involved embeddings.

Text model. The text corpus is traversed one or
more times. When current word v and a context
word w are considered, c words are sampled from
the unigram distribution raised to the 3/4rd power
and regarded as negative examples (w̃, v) that are
never concurrent. Then we compute and update
the related gradients.

Alignment model. LAA and LAN are absorbed
by the text model and knowledge model respec-
tively, since anchors are considered to predict con-
text given an entity and the name graph are homo-
geneous to the original knowledge graph.

Joint. All three component objectives are si-
multaneously optimized. To deal with large-scale
data, we implement a multi-thread version with
shared memory. Each thread is in charge of a por-
tion of the data (either knowledge or text corpus),
and traverses through them, calculates gradients
and commits the update to the global model and
is stored in a block of shared memory. For the

Table 1: Data: triplets used in our experiments.
#R #E #Triplet (Train/Valid/Test)

4,490 43,793,608 123,062,855 40,528,963 40,528,963

sake of efficiency, no lock is used on the shared
memory.

3.3 Connections to Related Models
TransE. (Bordes et al., 2013) proposed to mod-
el a relation r as a translation vector r ∈ <k
which is expected to connect h and t with low
error if (h, r, t) ∈ ∆. We also follow it. How-
ever, TransE uses a margin based ranking loss
{‖h+r−t‖2+γ−‖h̃+r−t̃‖2}+. It is not a proba-
bilistic model and hence it needs to restrict the nor-
m of either entity embedding and/or relation em-
bedding. Bordes et al. (2013) intuitively addresses
this problem by simply normalizing the entity em-
beddings to the unit sphere before computing gra-
dients at each iteration. We define pTransE as a
probabilistic model, which doesn’t need addition-
al constraints on the norms of embeddings of en-
tities/words/relations, and thus eliminates the nor-
malization operations.
Skip-gram. (Mikolov et al., 2013a; Mikolov et al.,
2013b) defines the probability of the concurrence
of two words in a window as:

Pr(w|v) =
exp{w′Tv}∑
w̃∈V exp{w̃′Tv} (13)

which is based on the inner product, while our text
model (Eqs. (4), (5)) is based on distance. If we
constrain ‖w‖ = 1 for each w, then w′Tv =
1 − 1

2‖w′ − v‖2. It is easy to see that our text
model is equivalent to Skip-gram in this case. Our
distance-based text model is directly derived from
the triplet fact model, which clearly explains why
it is able to make the pairs of entities of a certain
relation parallel in the vector space.

4 Experiments

We empirically evaluate and compare related mod-
els with regards to three tasks: triplet classifica-
tion (Socher et al., 2013), improving relation ex-
traction (Weston et al., 2013), and the analogi-
cal reasoning task (Mikolov et al., 2013a). The
related models include: for knowledge embed-
ding alone, TransE (Bordes et al., 2013), pTransE
(proposed in this paper); for word embedding
alone, Skip-gram (Mikolov et al., 2013b); for both
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Table 2: Data: the number of e − e, w − e, e −
w, w − w triplets/analogies where w represents
the out-of-kb entity, which is regarded as word and
replaced by its corresponding entity name.

Type #Triplet (Valid/Test) #Analogy

e− e 12,305,200 12,305,200 71,441
w − e 3,655,164 3,654,404 70,878
e− w 3,643,914 3,642,978 70,442
w − w 460,762 451,381 40,980

knowledge and text, we use “respectively” to re-
fer to the embeddings learnt by TransE/pTransE
and Skip-gram, respectively, “jointly” to refer to
our jointly embedding method, in which “anchor”
and “name” refer to “Alignment by Wikipedia An-
chors” and “Alignment by Names of Entities”, re-
spectively.

4.1 Data

To learn the embedding representations of entities
and words, we use a knowledge graph, a text cor-
pus, and some connections between them.

Knowledge. We adopt Freebase as our knowl-
edge graph. First, we remove the user profiles,
version control, and meta data, leaving 52,124,755
entities, 4,490 relations, and 204,120,782 triplet-
s. We call this graph main facts. Then we held
out 8,331,147 entities from main facts and regard
them as out-of-kb entities. Under such a setting,
from main facts, we held out all the triplets in-
volving out-of-kb entities, as well as 24,610,400
triplets that don’t contain out-of-kb entities. Held-
out triplets are used for validation and testing; the
remaining triplets are used for training. See Table
1 for the statistics.

We regard out-of-kb entities as words/phrases
and thus divide the held-out triplets into four type-
s: no out-of-kb entity (e−e), the head is out-of-kb
entity but the tail is not (w − e), the tail is out-of-
kb entity but the head is not (e− w), and both the
head and tail are out-of-kb entities (w − w). Then
we replace the out-of-kb entities among the held-
out triplets by their corresponding entity names.
The mapping from a Freebase entity identifier to
its name is done through the Freebase predicate—
“/type/object/name”. Since some entity names
are not present in our vocabulary V , we remove
triplets involving these names (see Table 2). In
such a way, besides the missing edges between ex-
isting entities, the related models can be evaluated
on triplets involving words/phrases as their head

Table 3: Triplet Classification: comparison be-
tween TransE and pTransE over e− e triplets.

Method Accuracy (%) Area under PR curve

TransE 93.1 0.86
pTransE 93.4 0.97

and/or tail.
Text. We adopt the Wikipedia (English) cor-

pus. After removing pages designated for nav-
igation, disambiguation, or discussion purpos-
es, there are 3,469,024 articles left. We ap-
ply sentence segmentation, tokenization, Part-of-
Speech (POS) tagging, and named entity recog-
nition (NER) to these articles using Apache
OpenNLP package2. Then we conduct some sim-
ple chunking to acquire phrases: if several con-
secutive tokens are identically tagged as ”Loca-
tion”/”Person”/”Organization”, or covered by an
anchor, we combine them as a chunk. After the
preprocessing, our text corpus contain 73,675,188
sentences consisting of 1,522,291,723 chunks. A-
mong them, there are around 20 millions distinct
chunks, including words and phrases. We filter out
punctuation and rare words/phrases that occur less
than three times in the text corpus, reducing |V| to
5,240,003.

Alignment. One of our alignment models need-
s Wikipedia anchors. There are around 45 million
such anchors in our text corpus and 41,970,548 of
them refer to entities in E . Another mechanism u-
tilizes the name graph constructed through names
of entities. Specifically, for each training triplet
(h, r, t), suppose h and t have entity names wh
and wt, respectively and wh, wt ∈ V , the train-
ing triplet contributes (wh, r, wt), (wh, r, t), and
(h, r, wt) to the name graph. There are 81,753,310
triplets in our name graphs. Note that there is no
overlapping between the name graph and held-out
triplets of e− w, w − e, and w − w types.

4.2 Triplet Classification

This task judges whether a triplet (h, r, t) is true
or false, i.e., binary classification of a triplet.

Evaluation protocol. Following the same pro-
tocol in NTN (Socher et al., 2013), for each true
triplet, we construct a false triplet for it by ran-
domly sampling an element from I to corrupt its
head or tail. Since |E| is significantly larger than
|V| in our data, sampling from a uniform distri-

2https://opennlp.apache.org
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Table 4: Triplet classification: accuracy (%) over various types of triplets.
Type e− e w − e e− w w−w all

respectively 93.4 52.1 51.4 71.0 77.5
jointly (anchor) 94.4 67.0 66.7 79.8 81.9
jointly (name) 94.5 80.5 80.0 89.0 87.7

jointly (anchor+name) 95.0 82.0 81.5 90.0 88.8

bution over I will let triplets involving no word
dominate the false triplets. To avoid that, when we
corrupt the head of (h, r, t), if h ∈ E , h′ is sam-
pled from E while if h ∈ V , h′ is sampled from V .
The same rule is applied when we corrupt the tail
of (h, r, t). In this way, for each of the four types
of triplets, we ensure the number of true triplets is
equal to that of false ones.

To classify a triplet (h, r, t), we first use the con-
sidered methods to score it. TransE scores it by
−|h + r − t|. Our models score it by Pr(D =
1|h, r, t) (see Eq.(10)). Then the considered meth-
ods label a triplet (h, r, t) as true if its score is
larger than the relation-specific threshold of r, as
false otherwise. The relation-specific thresholds
are chosen to maximize the classification accura-
cy over the validation set.

We report the classification accuracy. Addition-
ally, we rank all the testing triplets by their scores
in descending order. Then we draw a precision-
recall (PR) curve based on this ranking and report
the area under the PR curve.

Implementation. We implement TransE (Bor-
des et al., 2013), Skip-gram (Mikolov et al.,
2013a), and our models.

First, we train TransE and pTransE over our
training triplets with embedding dimension k
in {50, 100, 150}. Adhering to (Bordes et al.,
2013), we use the fixed learning rate α in
{0.005, 0.01, 0.05} for TransE during its 300 e-
pochs. For pTransE, we use the number of neg-
ative examples per positive example c among
{5, 10}, the learning rate α among {0.01, 0.025}
where α decreases along with its 40 epochs. The
optimal configurations of TransE are: k = 100,
α = 0.01. The optimal configurations of pTransE
are: k = 100, c = 10, and α = 0.025.

Then we train Skip-gram with the embedding
dimension k in {50, 100, 150}, the max skip-range
s in {5, 10}, the number of negative examples per
positive example c in {5, 10}, and learning rate
α = 0.025 linearly decreasing along with the 6
epochs over our text corpus. Popular words whose
frequencies are larger than 10−5 are subsampled

according to the trick proposed in (Mikolov et al.,
2013b). The optimal configurations of Skip-gram
are: k = 150, s = 5, and c = 10.

Combining entity embeddings and word em-
beddings learnt by pTransE and Skip-gram respec-
tively, “respectively” model can score all types of
held-out triplets. For our jointly embedding mod-
el, we consider various alignment mechanisms and
use equal numbers of threads for knowledge mod-
el and text model. The best configurations of
“jointly” model are: k = 150, s = 5, c = 10, and
α = 0.025 which linearly decreases along with the
6 epochs of traversing text corpus.

Results. We first illustrate the comparison be-
tween TransE and pTransE over e− e type triplet-
s in Table 3. Observing the scores assigned to
true triplets by TransE, we notice that triplets of
popular relations generally have larger scores than
those of rare relations. In contrast, pTransE, as
a probabilistic model, assigns comparable scores
to true triplets of both popular and rare relations.
When we use a threshold to separate true triplets
from false triplets of the same relation, there is no
obvious difference between the two models. How-
ever, when all triplets are ranked together, assign-
ing scores in a more uniform scale is definitely an
advantage. Thus, the contradiction stems from the
different training strategies of the two models and
the consideration of relation-specific thresholds.

Classification accuracies over various types of
held-out triplets are presented in Table 4. The
“jointly” model outperforms the “respectively”
model no matter which alignment mechanism(s)
are used. Actually, for the “respectively” model,
there is no interaction between entity embeddings
and word embeddings during training and thus it-
s predictions, over triplets that involve both enti-
ty and word at the same time, are not much bet-
ter than random guessing. It is also a natural re-
sult that alignment by names is more effective than
alignment by anchors. The number of anchors is
much smaller than the number of overall chunks
in our text corpus. In addition, the number of en-
tities mentioned by anchors is very limited com-
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Figure 1: Improving Relation Extraction: PR curves of Mintz alone or combined with knowledge
(pTransE) / jointly model over (a) e− e, (b) w − e, (c) e− w, (d) w − w, and (e) all triplets.

pared with |E|. Thus, interactions brought in by
anchors are not as significant as that of the name
graph.

4.3 Improving Relation Extraction

It has been shown that embedding models are very
complementary to extractors (Weston et al., 2013).
However, some entities detected from text are out-
of-kb entities. In such a case, triplets involving
these entities cannot be handled by any existing
knowledge embedding method, but our jointly em-
bedding model can score them. As our model can
cover more candidate triplets provided by extrac-
tors, it is expected to provide more significant im-
provements to extractors than any other embed-
ding model. We confirm this point as follow.

Evaluation protocol. For relation extraction,
we use a public dataset—NYT+FB (Riedel et al.,
2010)3, which distantly labels the NYT corpus by
Freebase facts. We consider (Mintz et al., 2009)
and Sm2r (Weston et al., 2013) as our extractors
to provide candidate triplets as well as their plau-
sibilities estimated according to text features.

For embedding, we first held out triplets from
our training set that appear in the test set of
NYT+FB. Then we train TransE, pTransE and the
“jointly” model on the remaining training triplets
as well as on our text corpus. Then we use these
models to score each candidate triplet in the same

3http://iesl.cs.umass.edu/riedel/ecml/

way as the previous triplet classification experi-
ment.

For combination, we first divide each candidate
triplet into one of these categories: e − e, e − w,
w − e, w − w, and “out-of-vocabulary”. Be-
cause there is no embedding model that can score
triplets involving out-of-vocabulary word/phrase,
we just ignore these triplets.Please note that, for
our jointly embedding model, there are no “out-
of-vocabulary” triplets if we include the NYT cor-
pus for training. We use the embedding models
to score candidate triplets and combine the scores
given by the embedding model with scores given
by the extractors. For each type e−e, e−w, w−e,
w−w and their union (i.e. all), we rank the candi-
date triplets by their revisited scores and draw PR
curve to observe which embedding method pro-
vides the most significant improvements to the ex-
tractors.

Implementation. For (Mintz et al., 2009), we
use the implementation in (Surdeanu et al., 2012)4.
We implement Sm2r by ourselves with the best hy-
perparameters introduced in (Weston et al., 2013).
For TransE, pTransE, and the “jointly” model, we
use the same implementations, scoring schemes,
and optimal configurations as the triplet classifica-
tion experiment.

To combine extractors with embedding mod-

4http://nlp.stanford.edu/software/
mimlre.shtml
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Figure 2: Improving Relation Extraction: PR curves of Sm2r alone or combined with knowledge
(TransE) / jointly model over (a) e− e, (b) w − e, (c) e− w, (d) w − w, and (e) all triplets.

els, we consider two schemes. Since Mintz s-
cores candidate triplets in a probabilistic man-
ner, we linearly combine its scores with the s-
cores given by pTransE or the “jointly” mod-
el: β PrMintz +(1 − β) PrpTransE/Jointly where β is
enumerated from 0 to 1 with 0.025 as a search
step. On the other hand, neither Sm2r nor TransE
is a probabilistic model. Thus, we combine
Sm2r with TransE or the “jointly” model ac-
cording to the scheme proposed in (Weston et
al., 2013) where for each candidate (h, r, t), if∑

r′ 6=r δ(Score(h, r, t) < Score(h, r′, t)) is less
than τ , we increase ScoreSm2r(h, r, t) by p. We
search for the best β, τ , and p on another dataset—
Wikipedia corpus distantly labeled by Freebase.

Result. We present the PR curves in Fig. (1,
2). Over candidate triplets provided by either
Mintz or Sm2r, the “jointly” model is consis-
tently comparable with the “knowledge” model
(TransE/pTransE) over e − e triplets while it out-
performs the “knowledge” model by a consider-
able margin over triplets of other types. These
results confirm the advantage of jointly embed-
ding and are actually straightforward results of our
triplet classification experiment because the only
difference is that the triplets here are provided by
the extractor.

Table 6: Phrases Analogical Reasoning Task.
Method Accuracy (%) Hits@10 (%)

Skip-gram 18.0 56.1
Jointly (anchor) 27.6 65.0
Jointly (name) 11.3 40.6

Jointly (anchor+name) 18.3 54.0

Table 7: Constructed Analogical Reasoning
Task.

Method Accuracy (%) Hits@10 (%)

Skip-gram 10.5 14.1
Jointly (anchor) 10.5 14.3
Jointly (name) 11.5 16.2

Jointly (anchor+name) 11.6 16.5

4.4 Analogical Reasoning Task

We compare our method with Skip-gram on this
task to observe and study the influences of both
knowledge embedding and alignment mechanisms
on the quality of word embeddings.

Evaluation protocol. We use the same pub-
lic datasets as in (Mikolov et al., 2013b): 19,544
word analogies5; 3,218 phrase analogies6. We al-
so construct analogies from our held-out triplet-
s (see Table 2) by first concatenating two entity
pairs of the same relation to form an analogy and

5code.google.com/p/word2vec/source/
browse/trunk/questions-words.txt

6code.google.com/p/word2vec/source/
browse/trunk/questions-phrases.txt
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Table 5: Words Analogical Reasoning Task.
Method Accuracy (%) Hits@10 (%)

Semantic Syntactic Total Semantic Syntactic Total

Skip-gram 71.4 69.0 70.0 90.4 89.3 89.8
Jointly (anchor) 75.3 68.3 71.2 91.5 88.9 89.9
Jointly (name) 54.5 54.2 59.0 75.8 86.5 82.1

Jointly (anchor+name) 56.5 65.7 61.9 78.1 87.6 83.6

then replacing the entities by corresponding entity
names, e.g., “(Obama, Honolulu, David Beckham,
London)” where the relation is “Born-in”.

Following (Mikolov et al., 2013b), we only con-
sider analogies that consist of the top-K most fre-
quent words/phrases in the vocabulary. For each
analogy denoted by (h1, t1, h2, t2), we enumer-
ate all the top-K most frequent words/phrases w
except for h1, t1, h2, and calculate the distance
(Cosine/Euclidean according to specific model)
between h2 + (t1 − h1) and w. Ordering all
these words/phrases by their distances in ascend-
ing order, we obtain the rank of the correct an-
swer t2. Finally, we report Hits@10 (i.e., the pro-
portion of correct answers whose ranks are not
larger than 10) and accuracy (i.e., Hits@1). For
word analogies and constructed analogies, we set
K = 200, 000; while for phrase analogies, we set
K = 1, 000, 000 to recall sufficient analogies.

Implementation. For Skip-gram and the
“Jointly” (anchor/name/anchor+name) model, we
use the same implementations and optimal config-
urations as the triplet classification experiment.

Results. Jointly embedding using Wikipedi-
a anchors for alignment consistently outperforms
Skip-gram (Table 5, 6, 7) showing that the influ-
ence of knowledge embedding, injected into word
embedding through Wikipedia anchors, is benefi-
cial. The vector of an ambiguous word is often a
mixture of its several meanings but, in a specific
context, the word is disambiguated and refers to
a specific meaning. Using global word embedding
to predict words within a specific context may pol-
lute the embeddings of surrounding words. Align-
ment by anchors enables entity embeddings to al-
leviate the propagation of ambiguities and thus im-
proves the quality of word embeddings.

Using entity names for alignment hurts the per-
formance of analogies of words and phrases (Ta-
ble 5, 6). The main reason is that these analo-
gies are popular facts frequently mentioned in tex-
t while a name graph forces word embeddings to
satisfy both popular and rare facts. Another rea-

son stems from the versatility of mentioning an
entity. Consider “(Japan, yen, Europe, euro)” for
example. Knowledge embedding is supposed to
give significant help to completing this analogy as
“/location/country/currency”∈ R. However, the
entity of Japanese currency is named “Japanese
yen” rather than “yen” and thus the explicit trans-
lation learnt from knowledge embedding is not di-
rectly imposed on the word embedding of “yen”.
In contrast, using entity names for alignment im-
proves the performances on constructed analogies
(Table 7). Since there is a relation r ∈ R for
each constructed analogy (wh1 , wt1 , wh2 , wt2), al-
though neither (wh1 , r, wt1) nor (wh2 , r, wt2) is
present in the name graph, other facts involving
these words act on the vectors of these words, in
the same manner of traditional knowledge embed-
ding.

Overall, any high-quality entity linking system
can be used to further improve the performance.

5 Conclusions

In this paper, we introduced a novel method of
jointly embedding knowledge graphs and a text
corpus so that entities and words/phrases are rep-
resented in the same vector space. In such a way,
our method can perform prediction on any can-
didate facts between entities/words/phrases, going
beyond previous knowledge embedding methods,
which can only predict facts whose entities exist
in knowledge graph. Extensive, large-scale exper-
iments show that the proposed method is very ef-
fective at reasoning new facts. In addition, we also
provides insights into word embedding, especially
on the capability of analogical reasoning. In this
aspect, we empirically observed some hints that
jointly embedding also helps word embedding.
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Abstract

We propose a novel abstractive summa-
rization system for product reviews by tak-
ing advantage of their discourse structure.
First, we apply a discourse parser to each
review and obtain a discourse tree repre-
sentation for every review. We then mod-
ify the discourse trees such that every leaf
node only contains the aspect words. Sec-
ond, we aggregate the aspect discourse
trees and generate a graph. We then select
a subgraph representing the most impor-
tant aspects and the rhetorical relations be-
tween them using a PageRank algorithm,
and transform the selected subgraph into
an aspect tree. Finally, we generate a
natural language summary by applying a
template-based NLG framework. Quan-
titative and qualitative analysis of the re-
sults, based on two user studies, show that
our approach significantly outperforms ex-
tractive and abstractive baselines.

1 Introduction

Most existing works on sentiment summarization
focus on predicting the overall rating on an en-
tity (Pang et al., 2002; Pang and Lee, 2004) or
estimating ratings for product features (Lu et al.,
2009; Lerman et al., 2009; Snyder and Barzilay,
2007; Titov and McDonald, 2008)). However, the
opinion summaries in such systems are extractive,
meaning that they generate a summary by concate-
nating extracts that are representative of opinion
on the entity or its aspects.

Comparing extractive and abstractive sum-
maries for evaluative texts has shown that an ab-
stractive approach is more appropriate for sum-
marizing evaluative text (Carenini et al., 2013;

∗The contribution of the first two authors to this paper

was equal.

Di Fabbrizio et al., 2014). This finding is also
supported by a previous study in the context of
summarizing news articles (Barzilay et al., 1999).
To the best of our knowledge, there are only three
previous works on abstractive opinion summariza-
tion (Ganesan et al., 2010; Carenini et al., 2013;
Di Fabbrizio et al., 2014). The first work (Gane-
san et al., 2010) proposes a graph-based method
for generating ultra concise opinion summaries
that are more suitable for viewing on devices with
small screens. This method does not provide a
well-formed grammatical abstract and the gener-
ated summary only contains words that occur in
the original texts. Therefore, this approach is more
extractive than abstractive. Another limitation is
that the generated summaries do not contain any
information about the distribution of opinions.

In the second work, (Carenini et al., 2013) ad-
dresses some of the aforementioned problems and
generates well-formed grammatical abstracts that
describe the distribution of opinion over the en-
tity and its features. However, for each product,
this approach requires a feature taxonomy hand-
crafted by humans as an input, which is not scal-
able. To partially address this problem (Mukherjee
and Joshi, 2013) has proposed a method for the au-
tomatic generation of a product attribute hierarchy
that leverages ConceptNet (Liu and Singh, 2004).
However, the resulting ontology tree has been used
only for sentiment classification and not for clas-
sification.

In the third and most recent study, (Di Fabbrizio
et al., 2014) proposed Starlet-H as a hybrid ab-
stractive/extractive sentiment summarizer. Starlet-
H uses extractive summarization techniques to se-
lect salient quotes from the input reviews and em-
beds them into the abstractive summary to exem-
plify, justify or provide evidence for the aggregate
positive or negative opinions. However, Starlet-H
assumes a limited number of aspects as input and
needs a large amount of training data to learn the
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ordering of aspects for summary generation.

Highlighting the reasons behind opinions in re-
views was also previously proposed in (Kim et al.,
2013). However, their approach is extractive and
similar to (Ganesan et al., 2010) does not cover the
distribution of opinions. Furthermore, it aims to
explain the opinion on only one aspect, rather than
explaining the overall opinion on the product, its
aspects and how they affect each other.

To address some of the above mentioned limita-
tions , in this paper we propose a novel abstrac-
tive summarization framework that generates an
aspect-based abstract from multiple reviews of a
product. In our framework, anything that is eval-
uated in the review is considered an aspect, in-
cluding the product itself. We propose a natural
language generation (NLG) framework that takes
aspects and their structured relation as input and
generates an abstractive summary. However, un-
like (Carenini et al., 2013), our method assumes no
domain knowledge about the entity in terms of a
user-defined feature taxonomy. On the other hand,
in contrast with Starlet-H, we do not limit the in-
put reviews to a small number of aspects and our
aspect ordering method takes advantage of rhetor-
ical information and does not require any training
data. Our method relies on the discourse struc-
ture and discourse relations of reviews to infer the
importance of aspects as well as the association
between them (e.g., which aspects relate to each
other).

Researchers have recently started using the dis-
course structure of text in sentiment analysis and
have shown its advantage in improving sentiment
classification accuracy (e.g., (Lazaridou et al.,
2013; Trivedi and Eisenstein, 2013; Somasun-
daran et al., 2009; Asher et al., 2008)). However,
to the best of our knowledge, none of the existing
works have looked into exploiting discourse struc-
ture in abstractive review summarization.

In our work, importance of aspects, derived
from the reviews’ discourse structure and rela-
tions, is used to rank and select aspects to be in-
cluded in the summary. More specifically, we start
with the most important (highest ranked) aspects
to generate a summary and add more aspects to
the system until a summary of desired length is
obtained. Aspect association is considered to bet-
ter explain how the opinions on aspects affect each
other (e.g., opinion over specific aspects affect the
opinion over the more general ones). Consider

the following sentence as an example summary
generated by our system for the entity Camera
Canon G3: “All reviewers who commented on the
camera, thought that it was really good mainly be-
cause of the photo quality.” This summary encap-
sulates all the following key pieces of information:
1) camera and photo quality are the most impor-
tant aspects, 2) People have positive opinion on
camera in general and on photo quality as one of
its features, and finally 3) photo quality is the main
reason behind users satisfaction on camera. Such
summary helps users understand the reason behind
a rating of a product or its aspects without going
through all reviews or reading scattered opinions
on different aspects in multiple sentences of an ex-
tractive summary.

This paper makes the following contributions:
1. We propose a novel content selection and struc-
turing strategy for review summarization, that as-
sumes no prior domain knowledge, by taking ad-
vantage of the discourse structure of reviews.
2. We propose a novel product-independent
template-based NLG framework to generate an ab-
stract based on the selected content, without re-
lying on deep syntactic knowledge or sophisti-
cated NLG methods. Our framework, similarly to
(Carenini et al., 2013), can effectively convey the
distribution of opinions.
3. We present the first study that investigates the
use of discourse structure information in both con-
tent selection and abstract generation for multi-
document summarization.

Quantitative and qualitative analysis over eval-
uation results of two user studies on a set of user
reviews on twelve different products show that our
system is an effective abstractive system for re-
view summarization.

2 Summarization Framework

At a high-level, our summarization framework in-
volves generating a summary from multiple in-
put reviews based on an Aspect Hierarchy Tree
(AHT) that reflects the importance of aspects as
well as the relationships between them. In our
framework, an AHT is generated automatically
from the set of input reviews, where each sen-
tence of every review is marked by the aspects pre-
sented in that sentence and the polarity of opin-
ions over them. There are various methods for
extracting the aspects and predicting the polar-
ity of opinion (Hu and Liu, 2004b; Hu and Liu,

1603



2006; Kim et al., 2011). In this paper we do not
focus on aspect extraction and sentiment predic-
tion but rather consider the aspect and their po-
larity/strength (P/S) information given as input to
the system. P/S scores are integer values in the
range [-3, +3], where +3 is the most positive and
-3 is the most negative polarity value. We also
do not attempt to automatically resolve corefer-
ences between aspects. For example, the aspect
“g3”, “canon g3” and “canon” were manually
collapsed as into “camera”. This preprocessing
step helps to reduce the noise generated by inac-
curate aspect labeling in our reviews. Figure 1
shows two sample input reviews where the aspects
and their P/S scores are identified. For example, in
R1, aspects camera, photo quality and auto mode
are mentioned. The P/S values for the three as-
pects are [+2], [+3] and [+2] respectively which
indicate positive opinion on all aspects.

The first component of our system applies a dis-
course parser to each review and obtains a dis-
course tree representation for every review (e.g.
Figure 1 (a) and (b)). The discourse trees are then
modified such that every leaf node only contains
the aspect words. The output of the first compo-
nent is an aspect-based discourse tree (ADT) for
every review (e.g. Figure 1 (c) and (d)). In the
second component, we aggregate the ADTs and
generate a graph called Aggregated Rhetorical Re-
lation Graph (ARRG) (e.g. Figure 1 (f)). The
third component of our framework, is responsi-
ble for content selection and structuring. It takes
ARRG as input, runs Weighted PageRank, and se-
lects a subgraph (e.g. Figure 1 (g)) representing
the most important aspects. Finally it transforms
the selected subgraph into a tree and provides an
AHT as output (e.g. Figure 1 (h)). The gener-
ated AHT is the input of the last component which
generates a natural language summary by apply-
ing micro planning and sentence realization. We
now describe each component of our framework
in more detail.

3 Discourse Parsing

Any coherent text is structured so that we can
derive and interpret the information. This struc-
ture shows how discourse units (text spans such
as sentences or clauses) are connected and relate
to each other. Discourse analysis aims to reveal
this structure. Several theories have been pro-
posed in the past to describe the discourse struc-

ture, among which the Rhetorical Structure The-
ory (RST) (Mann and Thompson, 1988) is one of
the most popular. RST divides a text into min-
imal atomic units, called Elementary Discourse
Units (EDUs). It then forms a tree representa-
tion of a discourse called a Discourse Tree (DT)
using rhetorical relations (e.g., Elaboration, Ex-
planation, etc) as edges, and EDUs as leaves.
EDUs linked by a rhetorical relation are also dis-
tinguished based on their relative importance in
conveying the author’s message: nucleus is the
central part, whereas satellite is the peripheral
part.

We use a publicly available state-of-the-art dis-
course parser (Joty et al., 2013)1 to generate a
DT for each product review. Figure 1 (a) and (b)
show DTs for two sample reviews where dotted
edges identify the satellite spans. DT1 in Figure 1
(a) shows that review R1 consists of three EDUs
with two relations Elaboration and Background
between them. It also shows that the first EDU
(i.e. I love camera) is the nucleus (shown by solid
line) of the relation Elaboration and so the rest of
the document (EDUs 2 and 3) is less important and
aims at elaborating on what the author meant in
the first EDU. Similarly, the structure shows that
the third EDU is mentioned as background infor-
mation for EDU2 and so is less important for real-
izing the core meaning of the document.

After obtaining the DTs, we remove all words
from the text spans of each EDU, except the aspect
words. Thus, for each review, we have a DT where
a leaf node represents the aspects occurring in the
corresponding EDU. Note that there may be EDUs
containing no aspects in a review. In such cases,
we keep the corresponding node and mark it with
no aspect. We call the resulting tree an Aspect-
based Discourse Tree (ADT) which will be used
in the next components. Figure 1 (c) and (d) show
ADTs generated from DTs.

4 Aspect Rhetorical Relation Graph
(ARRG)

In the second component, we aim at generat-
ing an ARRG for a product, based on the ADTs
which are the output from the previous compo-
nent. There are two motivations behind aggregat-
ing the ADTs and building the ARRG: i) while
each ADT can be rather noisy because of the infor-
mal language of the reviews and inaccuracies from

1http://alt.qcri.org/discourse/Discourse Parser Dist.tar.gz
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R1: camera[+2], photo quality[+3], auto mode[+2]##I love this camera, I am amazed at the quality of photos that I have took simply using the auto mode
R2: camera[+2], control[+2], auto mode [+1]#great camera! It gives tons of control for photo buffs but still has an auto mode for the novice to use
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Figure 1: A simple example illustrating different components of our summarization framework.

automatic discourse parsing, aggregating all the
ADTs can reveal more reliable information; and
ii) the aggregated information highlights the most
important aspects overall as well as the strongest
connection between the aspects. This information
can effectively drive the content selection and ab-
stract generation phases.
ARRG is a directed graph in which we allow

multiple edges between two vertices. In ARRG,
vertices represent aspects. We associate to each
aspect/node an importance measure that aggre-
gates all the P/S values that the aspect receives
in all the reviews. By following (Carenini et al.,
2013), let PS(a) be the set of P/S values that an
aspect a receives. The direct measure of impor-
tance of the aspect is defined as:

dir-moi(a) =
∑

ps∈PS(a)

ps2 (1)

In ARRG, edges indicate existence of a
rhetorical relation between text spans of a re-
view in which the aspects occurred. Edges are
labeled with the type of the relation as well
as a weight indicating our confidence in the
presence of the relation between the two aspects.
In ARRG, an edge with label r, w from node
u to node v, u

r, w−−−→ v, indicates the existance
of a relation r with confidence w between two
aspects u and v. Also, the direction of the arrow
indicates that u and v occurred in the satellite

and nucleus spans respectively. For example,

photo quality
elaboration, 0.8−−−−−−−−−−−→ camera indicates

that there is a high confidence (0.8) that aspect
photo quality was used in a text span to elaborate
aspect camera. Moreover, camera is a more
important aspect compared to photo quality.

To build ARRG, we use all the ADTs that are
output of the previous component (one for each
review). From each ADTj , we extract all tuples
of the form (u, r, v, w) in which u is an aspect oc-
curring in a satellite span, v is an aspect occurring
in a nucleus span, r is a relation type and w is the
weight of the tuple computed as follows:

w = 1−0.5
|EDUs between u and v|
|total EDUs in ADTj | −0.5

dr
d

(2)

where, |.| indicates cardinality of a set. d indi-
cates the depth of the ADTj and dr indicates the
depth of the sub-tree of ADTj rooted at relation
r. Equation 2 weighs a tuple based on two factors:
(i) the relative distance of the EDUs in which the
two aspects u and v participating in relation r oc-
cur. The intuition is that aspects occurring in close
proximity to each other are more related; and (ii)
the depth of the sub-tree at the point of the rela-
tion relative to the depth of the whole ADTj . This
is because as we move from leaves to the root of
a DT, the accuracy of the rhetorical structure has
been shown to decrease. Also, at higher levels
of an ADT (intra-sentential relations), it is more
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likely that aspects are related through non adjacent
EDUs and so are less strongly related. Figure 1 (e)
shows tuples extracted from sample ADTs.

Notice that every two aspects u and v may be
related by the same relation more than once in an
ADT for a review. Thus, we might have i tuples
with the same u,r, and v but confidence weights
which are not necessarily the same. From every
ADTj , we extract all (u, r, v, wij) and select the
one with maximum confidence. We then aggre-
gate the selected tuples extracted from different
reviews. Putting these two steps together, for ev-
ery two aspects u and v related by relation r, we
obtain a single tuple (u, r, v, ŵ) where

ŵ =
∑
j

max
i
wij (3)

Figure 1 (f) shows an example ARRG built for the
sample reviews.

5 Content Selection and Structuring

The content of the summary is selected by extract-
ing from ARRG a subgraph containing the most
important aspects. Such content is then structured
by transforming the subgraph into an aspect hier-
archy.

5.1 Subgraph Extraction
In ARRG aspects/nodes are weighted by how fre-
quently and strongly they are evaluated in the re-
views (i.e, dir-moi) and edges are weighted by
how frequently and strongly the corresponding as-
pects are rhetorically related in the discourse trees
(Equation 3). In content selection, we want to
extract aspects that not only have high weight,
but that are also linked with heavy edges to other
heavy aspects. This problem can be effectively
addressed by Weighted Page Rank (WPR) (Xing
and Ghorbani, 2004). WPR takes the importance
of both the in-links and out-links of the aspects
into account and distributes rank scores based on
the weights of relations between aspects. In this
way, the heavier aspect nodes, that are either in
the nuclei of many relations or in the satellites of
relations with other heavy aspects, are promoted.
We then update the weight of nodes (aspects) with
the new score from WPR. Finally, we rank nodes
based on their updated score moi and select the
top N aspects.

moi(a) = αdir-moi(a) + (1−α)WPR(a) (4)

Here α is a coefficient that can be tuned on a de-
velopment set or can be set to 0.5 without tuning.
Figure 1 (g) shows an example subgraph selected
from the sample ARRG.

5.2 Aspects Subgraph to Aspects Hierarchy
Transformation

In this step, we generate a hierarchical tree struc-
ture for aspects. Such a tree structure helps to
navigate over aspects and can be easily traversed
to find certain aspects and their relation to their
parent or children. The hierarchy of aspects also
matches the intuition that the root node is the most
frequent and general aspect (often the product) and
as the depth increases, nodes represent more spe-
cific aspects of the product with less frequency and
weight.

To obtain a hierarchical tree structure from the
extracted subgraph, we first build an undirected
graph as follows: we merge the edges connecting
two nodes and consider the sum of their weights
as the weight of the merged graph. We also ignore
the relation direction for the purpose of generat-
ing the tree. We then find the Maximum Span-
ning Tree of the undirected subgraph and set the
highest weighted aspect as the root of the tree.
This process results in a useful knowledge struc-
ture of aspects with their associated weight and
sentiment polarity connected with the rhetorical
relations called Aspect Hierarchical Tree (AHT).
Figure 1 (h) shows the generated AHT from the
sub-graph.

6 Abstract Generation

The automatic generation of a natural language
summary in our system involves the following
tasks (Reiter and Dale, 2000): (i) microplanning,
which covers lexical selection; and (ii) sentence
realization, which produces english text from the
output of the microplanner.

6.1 Microplanning
Once the content is selected and structured, it is
passed to the microplanning module which per-
forms lexical choice. Lexical choice is an impor-
tant component of microplanning. Lexical choice
is formulated in our system based on a “formal”
style, language “variability” and “fluent” connec-
tivity among other lexical units. Table 1 demon-
strates our lexical choice strategy.
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Quantifiers:
if (relative-number == 1) : [“All users (x people) who commented about the aspect”, “All costumers (x people) that reviewed the aspect”, ...]
if (relative-number >= 0.8) : [“Almost all users commented about the aspect and they”, “Almost all costumers mentioned the aspect and they”, ...]
if (relative-number >= 0.6) : [“Most users commented about the aspect and they mainly”, “Most shoppers mentioned aspect and they”, ...]
if (relative-number >= 0.45) : [“Almost half of the users commented about the aspect and they”, ’Almost 50% of the shoppers mentioned the aspect and they”, ...]
if (relative-number >= 0.2) : [“About y% of the reviewers commented about the aspect and they”, “Around y% of the shoppers mentioned the aspect and they”, ...]
if (relative-number >= 0.0) : [“z reviewers commented about the aspect and in overall they”, “z shoppers mentioned about the aspect and they”, ...]

Polarity verbs:
if (controversial(aspect)) : [“had controversial opinions about it”, “expressed controversial opinions about this feature”, ...]
else: if (average <= −2) : [“hated it”, “felt that it was very poor’, ’thought that it was very poor”, ...]

if (average <= −1) : [“disliked it”, “felt that it was poor”, “thought that it was poor”, ...]
if (average < 0) : [“did not like it”, “felt that it was weak”, “thought that it was weak”, ...]
if (average == 0) : [“did not express any strong positive or negative opinion about it”, ...]
if (average <= +1) : [“liked it”, “felt that it was fine”, “thought that it was satisfactory”, ...]
if (average <= +2) : [“absolutely liked it”, “really liked this feature”, “felt that it was a really good feature”, “thought that it was really good”, ...]
if (average <= +3) : [“loved it”, “felt that it was great”, “thought that it was great”, ...]

Connectives
[“Also, related to the aspect”, “Accordingly, ”, “Moreover, regarding the aspect, ” ,“In relation to the aspect, ”, “Talking about the aspect, ”, ...]

Table 1: Microplanning strategy for lexical choice. The selected lexical items will fill the template in the
realization step.

Sentence realization templates:
First sentence templates:
if (polarity-agreement(root,highest-weighted-child) & connecting-relation == [elaboration, explain, cause, summary, same-unit, background, evidence, justify]):
“quantifier + polarity-verb + ‘mainly because of the’ + highest-weighted-child”
else: “quantifier + polarity-verb”
First level children (aspects) sentences templates:
“connective + ‘, ’ + quantifier + ’ ’ + polarity-verb”
Supporting sentences templates:
if (#children(aspect)==1): “connective + quantifier + verb ”
elseif (#children(aspect)>1 & polarity-agreement(children)): “connective + quantifier + verb + [and, similarly, while, ...] + quantifier + verb”
elseif (#children(aspect)>1 & !polarity-agreement(children)): “connective + quantifier + verb + [but, in contrast, on contrary, ...] + quantifier + verb”

Table 2: Sentence realization templates.

Quantifiers: for each aspect, a quantifier is se-
lected based on both the absolute and relative
number of users whose opinions contributed to the
evaluation of the aspect.

Polarity verbs: for each aspect, a polarity verb is
selected based on the average sentiment polarity
strength for that aspect. Although the average, in
most cases, can be a good metric to evaluate the
polarity of an aspect, it fails when the distribution
of evaluations is centered on zero, for instance, if
there are equal numbers of positive and negative
evaluations (i.e., controversial). To partially solve
this problem, we first check whether the aspect
evaluation is controversial by applying the formula
proposed by (Carenini and Cheung, 2008). In the
case of controversiality, our microplanner selects
a lexical item to express the controversiality of the
aspect. In other cases, we use the average and se-
lect the polarity verb based on that.

Connectives: in order to form more fluent and
readable sentences and to increase the language
variability, we randomly select our connectives
from the list shown in Table 1. Moreover, when
a parent aspect (excluding the root in AHT) has
two children, they are connected by one of the co-
ordinating conjunction “[and, similarly]” if they

agree on polarity, and they will be connected by
a choice of “[on the contrary, in contrast]” other-
wise (see Supporting sentences templates in Table
2). As an alternative we could have selected con-
nectives based on the discourse relations specified
in the aspects tree. However, this is left as future
work.

6.2 Sentence Realization
The realization of our abstract generation is per-
formed by applying a rather simple and compre-
hensive template-based strategy. Depending on
the specific lexical choice in microplanning step,
an appropriate template and corresponding fillers
are selected as shown in Table 2. We develop three
different templates: i) generates the first abstract
sentence; ii) generates the abstract sentence for the
aspects with no children; and iii) generates sup-
porting sentences for aspects with children.

For illustration, assuming that we apply this
strategy to a 5-node variation of the AHT in Figure
1 (h), where the aspect “control” has two children
“auto mode” and “setting”, we obtain “All review-
ers (45 people) who commented on the camera,
thought that it was really good mainly because of
the photo quality. Accordingly, about 24% of the
reviewers commented about the control and they
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thought it was fine. Also, related to the control, 7
users expressed their opinion about the auto mode
and they liked it, similarly, 6 shoppers commented
about the setting and they thought that it was sat-
isfactory.”

7 Experimental Setup

7.1 Dataset and Baselines

We conduct our experiments using the customer
reviews of twelve products obtained from (Hu and
Liu, 2004a): 4 digital cameras, 1 DVD player, 1
MP3 player, 2 routers, 2 phones, 1 diaper and 1
antivirus. The reviews were collected from Ama-
zon.com and Cnet.com. We use manually anno-
tated aspects and their associated sentiment from
the same dataset.

We compare the summaries generated by our
system with two state-of-the-art extractive base-
lines and a simpler version of our abstractive sys-
tem, as follows:

1) MEAD-LexRank (LR): we use the LexRank
(Erkan and Radev, 2004) implementation inside
the MEAD summarization framework (Radev et
al., 2004), which outperforms other algorithms
implemented in the MEAD framework.

2) MEADStar (MEAD*): a state-of-the-art ex-
tractive opinion summarization system (Carenini
et al., 2013), which is adapted from the
open source summarization framework MEAD.
MEAD* orders aspects by the number of sen-
tences evaluating that aspect, and selects a sen-
tence from each aspect until it reaches the word
limit. The sentence that is selected for each aspect
is the one with the highest sum of polarity/strength
evaluations for any aspect.

3) Simple Abstractive (SA): we sort the aspects
of each product based on dir-moi (Equation 1).
Then, for each aspect, we generate a sentence
based on a simple template “quantifier + polarity-
verb” until the summary reaches the word limit.

We limit the length of our summaries to 150
words. In our experiment we use the default pa-
rameter in Equation 4 without tuning (i.e. α =
0.5). Our system starts the content selection pro-
cess with 10 aspects and generates a summary
based on a AHT with 10 aspects. We add one as-
pect, reproduce the AHT and regenerate the sum-
mary. We repeat this process until the word limit
is reached.

7.2 Evaluation Framework

On one hand, the lack of product reviews datasets
with human written summaries, and on the other
hand, the difficulty of generating human-written
summaries for reviews, makes review summary
evaluation a very challenging task.

We evaluate the summaries generated by our
system by performing two user studies based on
pairwise preferences using a popular crowdsourc-
ing service.2 The user preference evaluation is an
effective method for opinion summarization (e.g.,
(Lerman et al., 2009)). The main motivations be-
hind pairwise preferences evaluation is two-fold:
i) raters can make a preference decision more ef-
ficiently than a scoring judgment; and ii) rater
agreement is higher in preference decisions than
in scoring judgments (Ariely et al., 2003).

In both user studies, for each product, we run
six pairwise comparisons for four summaries. In
each rating assignment, two summaries of the
same product were placed in random order. Raters
were shown the name of each product along with
the relevant summaries and were asked to express
their preference for one summary over the other
using a simple set of criteria. For two summaries
S1 and S2 raters should choose one of the follow-
ing three options: 1) Prefer S1, 2) Prefer S2, 3) No
preference.

Raters were specifically instructed that their rat-
ing should express “overall satisfaction with the
information provided by the summary”. Raters
were also asked to provide a brief comment jus-
tifying their choice. Over 48 raters participated in
each study, and each comparison was evaluated by
at least five raters generating more than 360 judg-
ments for each user study. We pre-select the high
skilled raters to ensure a higher quality results.

The main difference between the two user stud-
ies is that in “user study 1”, we show two sum-
maries to the raters and ask them to choose the one
they prefer without showing them the original re-
views. In contrast, in “user study 2”, we show two
summaries with links to the full text of the reviews
for the raters to explore. In order to make sure that
the raters read the reviews, we ask them to write
a short summary of the reviews before rating the
automatic summaries. We ran two different user
studies because: i) for each product there might be
many reviews to be included; ii) there is no guar-
anty that raters, in various evaluation settings, read

2www.crowdflower.com

1608



System I vs System II Agreement No preference Preferred Sys I Preferred Sys II
User Studies 1 2 1 2 1 2 1 2
LR vs MEAD* 0.33 0.75 7% 6% 35% 20% 58% 74%
LR vs SA 0.42 0.83 0% 0% 38% 21% 62% 79%
LR vs Our System 0.50 1.00 0% 3% 26% 13% 74% 84%
MEAD* vs SA 0.58 0.83 0% 0% 38% 20% 62% 80%
MEAD* vs Our System 0.67 0.50 0% 3% 25% 30% 75% 67%
SA vs Our System 0.42 0.50 12% 11% 23% 32% 65% 57%

Table 3: Results of pairwise preference user studies. Statistically significant improvements (p < 0.01)
over the baselines are demonstrated by bold fonts. Italic fonts indicate statistical significance (p < 0.01)
of abstractive methods (SA and Our System) over extractive approaches (LR and MEAD*).

Systems LR MEAD* SA Our System
User Studies 1 2 1 2 1 2 1 2
Preference 33% 18% 41% 41% 49% 63% 71% 69%

Table 4: System preference results. Statistically significant improvements (p < 0.01) over the baselines
are demonstrated by bold fonts.

the reviews (partially or completely); and iii) there
is no evidence regarding the depth that each rater
would look into the reviews. Therefore, choosing
between user study 1 and 2 is not a straightforward
decision. In other words, designing the two user
studies in this way helps us to answer the ques-
tion: “Does the fact that raters can read all the
reviews affect their ratings?”.

8 Results

This section provides a quantitative and qualitative
analysis of the evaluation results3.

8.1 Quantitative Analysis
Quantitative results for both user studies are
shown in Table 3. The second column indicates
the percentage of judgments for which the raters
were in agreement. Agreement here is a weak
agreement, where four (out of five) raters are de-
fined to be in agreement if they all gave the same
rating. The next three columns indicate the per-
centage of judgments for each preference cate-
gory, grouped into two user studies. In addi-
tion, we measure the preference for each system
in both user studies (Table 4). For each system,
the preference is the number of times raters prefer
the system, divided by the total number of judg-
ments for that system (e.g., if A is preferred over

3The evaluation results and summaries obtained
from CrowdFlower are publicly available and can
be downloaded from: https://www.cs.ubc.
ca/cs-research/lci/research-groups/
natural-language-processing/reviews/
user_study_results.zip

B 10 out of 30 times, and A is preferred over C
15 out of 20 times, the overall preference of A is
(10+15)/(30+20)=50%)
Abstractive vs. Extractive: the results of our sys-
tem and SA in Table 3 show statistically signifi-
cant improvements in pairwise preference over ex-
tractive baselines (LR and MEAD*) in both user
studies.4 Moreover, the results of overall prefer-
ence in Table 4 demonstrates that two abstractive
systems are preferred over the extractive ones in
both studies. This further supports the findings in
the previous studies (e.g., (Carenini et al., 2013))
that users prefer abstractive summarization. We
can observe that, in both user studies, raters prefer
our system over other abstractive and extractive
baselines. Also, the highest pairwise preference
percentages occur comparing an extractive and an
abstractive system (e.g., LR vs Our System).
Abstractive Systems: the raters prefer our system
over SA in both user studies (65% and 57%), and
our system ranks first in our pairwise preference
user studies. Knowing that both systems are ab-
stractive and the differences between them comes
from using the rhetorical structure in the content
selection and abstract generation phases, proves
the effectiveness of using rhetorical structure and
relations in abstractive summarization of reviews.
Extractive Systems: the result in Table 3 and 4
demonstrate that raters prefer MEAD* over LR.
Although both systems are extractive, the MEAD*
system has been proposed for extractive opinion

4The statistical significance tests was calculated by ap-
proximate randomization, as described in (Yeh, 2000).
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Preference Sys 1 to Sys 2 Reasons Examples of preference justification taken from the raters comments

Our System to LR and MEAD* Readability, coverage of aspects,
aggregation of opinions

better wording, more objective, more depth, I like the stats, more detail about
people opinion, less personal experience, detail comparison from different
reviews, a summary in a summary, mentions more features, ...

LR and MEAD* to Our System Descriptiveness, personal point of
views, product capabilities

explain how the product is positive, good characteristics about the product,
has lot more to tell, more descriptive about features, personal perspective,
not only characteristics but also ability, more true to the product itself, ...

Our System to SA The relations between the aspects,
more language variability

provides a bit more information, is very complete, not repetitive, more ele-
gant, coherent, .....

SA to Our System Simpler structure, more aspects written better, has touched variety of features, ...

Table 5: System preference results. The reasons are classified based on raters justifications preferring
the underlined systems.

summarization. In contrast, LR is a generic ex-
tractive summarization system which is not opti-
mized for opinion summarization. This also fur-
ther demonstrates the need for opinion and reviews
summarization systems.
User Study 1 vs. User Study 2: the first in-
teresting observation is that, although the over-
all ranking of systems in both user studies does
not change, there are some changes in the re-
sults. This indicates that reading the reviews ef-
fects preference decisions. We can observe that
in all cases except one (MEAD* vs Our System)
the agreement between the raters increases sig-
nificantly when they are given the reviews. This
can be interpreted as reading the reviews helps
the rater to choose a better summary easier and
more effectively. Moreover, we calculate the over-
all agreement for both user studies.5 Case study 2
reports a higher overall agreement (70%) in com-
parison with the user study 1 (65%). This further
proves our finding that showing the reviews can
help the raters with their preference judgment.

In Table 3, the preference of sys 2 (last col-
umn) significantly rises for all cases when com-
pared with the LR system. This proves that raters
strongly prefer the summaries that cover opinion-
ated sentences, specifically when they are exposed
to the reviews. The same result is reflected in Ta-
ble 4, where the overall preference of LR drops
when the raters are given the reviews. We also ob-
serve a significant rise in preference of sys 2 when
MEAD* is compared with SA (Table 3) and in the
overall preference of SA (Table 4) in user study
2. This proves that raters become more confident
in preferring an abstractive summary over an ex-
tractive one when the reviews are given to them.
In contrast, we notice that the preference of sys
2 drops comparing “MEAD* vs Our System” and
“SA vs Our System”. Knowing that the drop is

5The agreement is calculated based on 100 randomly sam-
pled units selected from our crowdsourcing job.

not significant and the the overall ranking of sys-
tems remains unchanged, this case is less straight
forward to interpret.

8.2 Qualitative Analysis

We collect and group the rater justifications in the
results we obtain by crowdsourcing our evaluation
framework, when preferring a summary over an-
other, in Table 5. To make the comparison more
clear, Example 1 shows the summaries generated
by MEAD* and our system.

Comparing our system with the extractive base-
lines, raters’ justifications are classified in three
main categories. Although the language of the ex-
tractive summaries is less formal, raters often pre-
fer our system in terms of presentation and lan-
guage. They justify their selections by expressing
phrases such as “better grammar” or “fewer er-
rors”. They also comment about the coverage of
aspects in the summaries generated by our system
and they realize that our system was capable of
aggregating the opinions for each aspect. In con-
trast, when they prefer the extractive summaries,
they like the descriptive language of the summary
and the technical details of the products that were
missing in our system summaries.

We also notice that raters realize the usage of
structure (AHT) in our system (both of content se-
lection and summary generation) and they appre-
ciate it by expressing phrases such as “very com-
plete”, “more elegant” or “related features”. In
contrast, they sometimes appreciate a simpler lan-
guage in summaries generated by SA. Moreover,
few raters prefer the higher coverage in SA sum-
maries. This is mainly because not using connec-
tives and structure in SA leaves more space to in-
clude more aspects.
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Product: Nikon Coolpix 4300
MEAD*: it is very compact but the controls are so well designed that
they ’re still easy to use . It ’s easy for beginners to use , but has features
that more serious photographers will love , so it ’s an excellent camera
to grow into . But overall this is a good camera with a ’ really good ’
picture clarity ; an exceptional close-up shooting capability .The battery
life is very good , i got about 90 minutes with the lcd turned on all
the time , the first time around , and i have been using it with the lcd
off every now and then , and have yet needed to recharge it . Yes ,
the picture quality and features which are too numerous to mention are
unmatched for any camera in this price range.
Our System: All reviewers (34 people), who commented on the cam-
era, felt that it was really good mainly because of the picture. Around
26% of the reviewers expressed their opinion about the picture quality
and they really liked it. Around 24% of the reviewers noted the use
and they thought that it was satisfactory. Talking about the use, around
24% of the reviewers expressed their opinion about the size and they
felt that it was fine. Only 6 reviewers commented about the scene mode
and in overall they thought that it was satisfactory. Moreover, regarding
the scene mode, 4 shoppers mentioned about the manual mode and they
thought that it was satisfactory, and similarly only 4 reviewers com-
mented about the auto mode and in overall they did not express any
strong positive or negative opinion about it. Only 4 costumers men-
tioned the software and they felt that it was really good.

Example 1. Summaries generated by our system
and MEAD* baseline for the Nikon Coolpix 4300
camera. For brevity we exclude other baselines.

9 Conclusions

We have presented a framework for abstractive
summarization of product reviews based on dis-
course structure. For content selection, we pro-
pose a graph model based on the importance
and association relations between aspects, that as-
sumes no prior domain knowledge, by taking ad-
vantage of the discourse structure of reviews. For
abstract generation, we propose a product inde-
pendent template-based natural language genera-
tion (NLG) framework that takes aspects and their
structured relation as input and generates an ab-
stractive summary. Quantitative evaluation results,
based on two pairwise preference user studies,
show substantial improvement over extractive and
abstractive baselines, including MEAD*, which
is considered a state-of-the-art opinion extractive
summarization system, and a simpler version of
our abstractive system. In future work, we plan
to extend the microplanning phase by taking ad-
vantage of the highly weighted rhetorical relations
between the aspects and select connective phrases
based on the discourse relations specified in the
aspects tree. In addition, we plan to develop and
evaluate an end-to-end system, in which the aspect
extraction and polarity estimation of aspects are
automated. In this way, we can achieve an end-to-
end automatic summarizaion system for product
reviews.
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Abstract

Clustering aspect-related phrases in terms
of product’s property is a precursor pro-
cess to aspect-level sentiment analysis
which is a central task in sentiment analy-
sis. Most of existing methods for address-
ing this problem are context-based models
which assume that domain synonymous
phrases share similar co-occurrence con-
texts. In this paper, we explore a novel
idea, sentiment distribution consistency,
which states that different phrases (e.g.
“price”, “money”, “worth”, and “cost”) of
the same aspect tend to have consistent
sentiment distribution. Through formal-
izing sentiment distribution consistency as
soft constraint, we propose a novel unsu-
pervised model in the framework of Poste-
rior Regularization (PR) to cluster aspect-
related phrases. Experiments demonstrate
that our approach outperforms baselines
remarkably.

1 Introduction

Aspect-level sentiment analysis has become a cen-
tral task in sentiment analysis because it can ag-
gregate various opinions according to a product’s
properties, and provide much detailed, complete,
and in-depth summaries of a large number of re-
views. Aspect finding and clustering, a precursor
process of aspect-level sentiment analysis, has at-
tracted more and more attentions (Mukherjee and
Liu, 2012; Chen et al., 2013; Zhai et al., 2011a;
Zhai et al., 2010).

Aspect finding and clustering has never been a
trivial task. People often use different words or
phrases to refer to the same product property (also
called product aspect or feature in the literature).
Some terms are lexically dissimilar while seman-
tically close, which makes the task more challeng-
ing. For example, “price”, “money” , “worth” and

“cost” all refer to the aspect “price” in reviews.
In order to present aspect-specific summaries of
opinions, we first of all, have to cluster different
aspect-related phrases. It is expensive and time-
consuming to manually group hundreds of aspect-
related phrases. In this paper, we assume that the
aspect phrases have been extracted in advance and
we keep focused on clustering domain synony-
mous aspect-related phrases.

Existing studies addressing this problem are
mainly based on the assumption that different
phrases of the same aspect should have similar co-
occurrence contexts. In addition to the traditional
assumption, we develop a new angle to address the
problem, which is based on sentiment distribution
consistency assumption that different phrases of
the same aspect should have consistent sentiment
distribution, which will be detailed soon later.

Figure 1: A semi-structured Review.

This new angle is inspired by this simple obser-
vation (as illustrated in Fig. 1): two phrases within
the same cluster are not likely to be simultaneously
placed in Pros and Cons of the same review. A
straightforward way to use this information is to
formulate cannot-link knowledge in clustering al-
gorithms (Chen et al., 2013; Zhai et al., 2011b).
However, we have a particularly different manner
to leverage the knowledge.

Due to the availability of large-scale semi-
structured customer reviews (as exemplified in
Fig. 1) that are supported by many web sites,
we can easily get the estimation of sentiment dis-
tribution for each aspect phrase by simply count-
ing how many times a phrase appears in Pros and
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Cons respectively. As illustrated in Fig. 2, we
can see that the estimated sentiment distribution
of a phrase is close to that of its aspect. The
above observation suggests the sentiment distri-
bution consistency assumption: different phrases
of the same aspect tend to have the same senti-
ment distribution, or to have statistically close
distributions. This assumption is also verified by
our data: for most (above 91.3%) phrase with rela-
tively reliable estimation (whose occurrence≥50),
the KL-divergence between the sentiment distri-
bution of a phrase and that of its corresponding
aspect is less than 0.05.

Figure 2: The sentiment distribution of aspect
“battery” and its related-phrases on nokia 5130
with a large amount of reviews.

It is worth noting that, the sentiment distribution
of a phrase can be estimated accurately only when
we obtain a sufficient number of reviews. When
the number of reviews is limited, however, the es-
timated sentiment distribution for each phrase is
unreliable (as shown in Fig. 3). A key issue,
arisen here, is how to formulate this assumption in
a statistically robust manner. The proposed model
should be robust when only a limited number of
reviews are available.

Figure 3: The sentiment distribution of aspect
“battery” and its related-phrases on nokia 3110c
with a small mumber of reviews.

To deal with this issue, we model sentiment dis-
tribution consistency as soft constraint, integrated
into a probabilistic model that maximizes the data
likelihood. We design the constraint to work in
the following way: when we have sufficient ob-
servations, the constraint becomes tighter, which

plays a more important role in the learning pro-
cess; when we have limited observations, the con-
straint becomes very loose so that it will have less
effect on the model.

In this paper, we propose a novel unsupervised
model, Sentiment Distribution Consistency Reg-
ularized Multinomial Naive Bayes (SDC-MNB).
The context part is modeled by Multinomial Naive
Bayes in which aspect is treated as latent variable,
and Sentiment distribution consistency is encoded
as soft constraint within the framework of Poste-
rior Regularization (PR) (Graca et al., 2008). The
main contributions of this paper are summarized
as follows:

• We study the problem of clustering phrases
by integrating both context information
and sentiment distribution of aspect-related
phrases.

• We explore a novel concept, sentiment distri-
bution consistency(SDC), and model it as soft
constraint to guide the clustering process.

• Experiments show that our model outper-
forms the state-of-art approaches for aspect
clustering.

The rest of this paper is organized as follows.
We introduce the SDC-MNB model in Section 2.
We present experiment results in Section 3. In
Section 4, we survey related work. We summarize
the work in Section 5.

2 Sentiment Distribution Consistency
Regularized Multinomial Naive Bayes

In this section, we firstly introduce our assumption
sentiment distribution consistency formally and
show how to model the above assumption as soft
constraint , which we term SDC-constraint. Sec-
ondly, we show how to combine SDC-constraint
with the probabilistic context model. Finally, we
present the details for context and sentiment ex-
traction.

2.1 Sentiment Distribution Consistency

We define aspect as a set of phrases that refer to
the same property of a product and each phrase is
termed aspect-related phrase (or aspect phrase in
short). For example, the aspect “battery” contains
aspect phrases such as “battery”, “battery life”,
“power”, and so on.
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F the aspect phrase set
fj the jth aspect phrase
yj the aspect for aspect phrase fj

A the aspect set
ai the ith aspect
D the set of context documents
dj the context document of fj

V the word vocabulary
wt the tth word in vocabulary V

wdj ,k the kth word in dj

Ntj the number of times word wt occurs in dj

P the product set
pk the kth product

uik
the sentiment distribution parameter
of aspect ai on pk

ŝjk
the estimated sentiment distribution parameter
of phrase fj on pk

njk the occurrence times of aspect phrase fj on pk

σ̂jk the sample standard deviation
θ the model parameters

pθ(ai|dj) the posterior distribution of ai given dj

q(yj = ai)
the projected posterior distribution
of ai given dj

Table 1: Notations

Let us consider the sentiment distribution on a
certain aspect ai. In a large review dataset, as-
pect ai could receive many comments from differ-
ent reviewers. For each comment, we assume that
people either praise or complain about the aspect.
So each comment on the aspect can be seen as a
Bernoulli trial, where the aspect receives positive
comments with probability pai

1. We introduce a
random variable Xai to denote the sentiment on
aspect ai, where Xai = 1 means that aspect ai

receives positive comments, Xai = 0 means that
aspect ai receives negative comments. Obviously,
the sentiment on aspect ai follows the Bernoulli
distribution,

Pr(Xai) = p
Xai
ai ∗ (1− pai)

1−Xai , Xai ∈ {0, 1}. (1)

Or in short,

Xai ∼ Bernoulli(pai)

Let us see the case for aspect phrase fj , where
fj ∈ aspect ai. Similarly, each comment on an as-
pect phrase fj can also be seen as a Bernoulli trial.
We introduce a random variable Xfj

to denote the
sentiment on aspect phrase fj , where Xfj

= 1
means that aspect fj receives positive comments,
Xfj

= 0 means that aspect fj receives negative
comments. As just discussed, we assume that each
aspect phrase follows the same distribution with

1positive comment means that an aspect term is observed
in Pros of a review.

the corresponding aspect. This leads to the fol-
lowing formal description:

• Sentiment Distribution Consistency : The
sentiment distribution of aspect phrase is the
same as that of the corresponding aspect.
Formally, for all aspect phrase fj ∈ aspect
ai, Xfj

∼ Bernoulli(pai).

2.2 Sentiment Distribution Consistency
Constraint

Assuming the sentiment distribution of aspect ai is
given in advance, we need to judge whether an as-
pect phrase fj belongs to the aspect ai with limited
observations for fj . Let’s consider the example in
Fig. 4. For aspect phrase 3, we have no definite
answer due to the limited number of observations.
For aspect phrase 1, it seems that the sentiment
distribution is consistent with that of the left as-
pect. However, we can not say that the phrase be-
longs to the aspect because the distribution may
be the same for two different aspects. For aspect
phrase 2, we are confident that its sentiment dis-
tribution is different from that of the left aspect,
given sufficient observations.

Figure 4: Sentiment distribution of an aspect, and
observations on aspect phrases.

To be concise, we judge an aspect phrase
doesn’t belong to certain aspect only when we are
confident that they follow different sentiment dis-
tributions.

Inspired by the intuition, we conduct interval
parameter estimation for parameter pfj

(sentiment
distribution for phrase fj) with limited observa-
tions, and thus get a confidence interval for pfj

.
If pai(sentiment distribution for aspect ai) is not
in the confidence interval of pfj

, we then are con-
fident that they follow different distributions. In
other words, if aspect phrase fj ∈ aspect ai, we
are confident that pai is in the confidence interval
of pfj

.
More formally, we use uik to denote the senti-

ment distribution parameter of aspect ai on prod-
uct pk, and assume that uik is given in advance.
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We want to know whether the sentiment distribu-
tion on aspect phrase fj is the same as that of as-
pect ai on product pk given a limited number of
observations (samples). It’s straightforward to cal-
culate the confidence interval for parameter sjk in
the Bernoulli distribution function. Let the sam-
ple mean of njk samples be ŝjk, and the sample
standard deviation be σ̂jk. Since the sample size
is small here, we use the Student-t distribution to
calculate the confidence interval. According to our
assumption, we are confident that uik is in the con-
fidence interval if fj ∈ ai.

ŝjk −C
σ̂jk√
njk

≤ uik ≤ ŝjk + C
σ̂jk√
njk

, ∀fj ∈ ai,∀k. (2)

where we look for t-table to find C corresponding
to a certain confidence level(such as 95%) with the
freedom of njk − 1. For simplicity, we represent
the above confidence interval by [ŝjk − djk, ŝjk +
djk], where djk = C

σ̂jk√
njk

.
We introduce an indicator variable zij to repre-

sent whether the aspect phrase fj belongs to aspect
ai, as follows:

zji =

{
1 ; if fj ∈ ai

0 ; otherwise
(3)

This leads to our SDC-constraint function.

ϕ = zji|uik − ŝjk| ≤ djk,∀i, j, k (4)

SDC-constraint are flexible for modeling Senti-
ment Distribution Consistency. The more obser-
vations we have, the smaller djk is. For frequent
aspect phrase, the constraint can be very informa-
tive because it can filter unrelated aspects for as-
pect phrase fj . The less observations we have,
the larger djk is. For rare aspect phrases, the con-
straint can be very loose, and will not have much
effect on the clustering process for aspect phrase
fj . In this way, the model can work very robustly.

SDC-constraints are data-driven constraints.
Usually we have many reviews about hundreds of
products in our dataset. For each aspect phrase,
there are |A| ∗ |P | constraints (the number of as-
pects times the number of product). With thou-
sands of constraints about which aspect it is not
likely to belong to, the model learns to which as-
pect a phrase fj should be assigned. Although
most constraints may be loose because of the lim-
ited observations, SDC-constraint can still play an
important role in the learning process.

2.3 Sentiment Distribution Consistency
Regularized Multinomial Naive Bayes
(SDC-MNB)

In this section, we present our probabilistic model
which employs both context information and sen-
timent distribution.

First of all, we extract a context document d
for each aspect phrase, which will be described in
Section 2.5. In other word, a phrase is represented
by its context document. Assuming that the doc-
uments in D are independent and identically dis-
tributed, the probability of generating D is then
given by:

pθ(D) =

|D|∏
j=1

pθ(dj) =

|D|∏
j=1

∑
yj∈A

pθ(dj , yj) (5)

where yj is a latent variable indicating the aspect
label for aspect phrase fj , and θ is the model pa-
rameter.

In our problem, we are actually more inter-
ested in the posterior distribution over aspect,
i.e., pθ(yj |dj). Once the learned parameter θ is
obtained, we can get our clustering result from
pθ(yj |dj), by assigning aspect ai with the largest
posterior to phrase fj . We can also enforce SDC-
constraint in expectation(on posterior pθ). We use
q(Y ) to denote the valid posterior distribution that
satisfy our SDC-constraint, and Q to denote the
valid posterior distribution space, as follows:

Q = {q(Y ) : Eq[zji|uik − ŝjk|] ≤ djk, ∀i, j, k}. (6)

Since posterior plays such an important role in
joining the context model and SDC-constraint, we
formulate our problem in the framework of Poste-
rior Regularization (PR). PR is an efficient frame-
work to inject constraints on the posteriors of la-
tent variables. Instead of restricting pθ directly,
which might not be feasible, PR penalizes the dis-
tance of pθ to the constraint set Q. The posterior-
regularized objective is termed as follows:

max
θ
{log pθ(D)−min

q∈Q
KL(q(Y )||pθ(Y |D))} (7)

By trading off the data likelihood of the ob-
served context documents (as defined in the first
term), and the KL divergence of the posteriors
to the valid posterior subspace defined by SDC-
constraint (as defined in the second term), the ob-
jective encourages models with both desired pos-
terior distribution and data likelihood. In essence,
the model attempts to maximize data likelihood of
context subject (softly) to SDC-constraint.
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2.3.1 Multinomial Naive Bayes
In spirit to (Zhai et al., 2011a), we use Multino-
mial Naive Bayes (MNB) to model the context
document. Let wdj ,k denotes the kth word in doc-
ument dj , where each word is from the vocabulary
V = {w1, w2, ..., w|V |}. For each aspect phrase
fj , the probability of its latent aspect being ai and
generating context document di is

pθ(dj , yj = ai) = p(ai)
|dj |∏
k=1

p(wdj ,k|ai) (8)

where p(ai) and p(wdj ,k|ai) are parameters of this
model. Each word wdj ,k is conditionally indepen-
dent of all other words given the aspect ai.

Although MNB has been used in existing work
for aspect clustering, all of the studies used it in
a semi-supervised manner, with labeled data or
pseudo-labeled data. In contrast, MNB proposed
here is used in an unsupervised manner for aspect-
related phrases clustering.

2.3.2 SDC-constraint
As mentioned above, the constraint posterior set Q
is defined by

Q = {q(Y ) : q(yj = ai)|uik − ŝjk| ≤ djk,∀i, j, k}. (9)

We can see that Q denotes a set of linear con-
straints on the projected posterior distribution q.
Note that we do not directly observe uik, the sen-
timent distribution of aspect ai on product pk. For
aspect phrase fj that belongs to aspect ai, we es-
timate uik by counting all sentiment samples. We
use the posterior pθ(ai|dj) to approximately rep-
resent how likely phrase fj belongs to aspect ai.

uik =
1∑|D|

j=1 njkpθ(ai|dj)

|D|∑
j=1

njkpθ(ai|dj)ŝjk (10)

where pθ(ai|dj) is short for pθ(yj = ai|dj), the
probability that aspect phrase fj belongs to ai

given the context document dj . We estimate uik in
this way because observations for aspect are rela-
tively sufficient for a reliable estimation since ob-
servations for an aspect are aggregated from those
for all phrases belonging to that aspect.

2.4 The Optimization Algorithm
The optimization algorithm for the objective (see
Eq. 7) is an EM-like two-stage iterative algorithm.

In E-step, we first calculate the posterior distri-
bution pθ(ai|dj), then project it onto the valid pos-
terior distribution space Q. Given the parameters

θ, the posterior distribution can be calculated by
Eq. 11.

pθ(ai|dj) =
p(ai)

∏|dj |
k=1 p(wdj ,k|ai)∑|A|

r=1 p(ar)
∏|dj |

k=1 p(wdj ,k|ar)
(11)

We use the above posterior distribution to update
the sentiment parameter for each aspect by Eq. 10.
The projected posterior distribution q is calculated
by

q = argmin
q∈Q

KL(q(Y )||pθ(Y |D)) (12)

For each instance, there are |A| ∗ |P | constraints.
However, we can prune a large number of useless
constraints derived from limited observations. All
constraints with djk > 1 can be pruned, due to
the fact that the parameter uik, ŝjk is within [0,1],
and the difference can not be larger than 1. This
optimization problem in Eq. 12 is easily solved via
the dual form by the projected gradient algorithm
(Boyd and Vandenberghe, 2004):

max
λ≥0

(
−

|A|∑
i=1

|P |∑
k=1

λikdjk−

log

|A|∑
i=1

pθ(ai|dj)exp{−
|P |∑
k=1

λik|uik − ŝjk|} − ϵ∥λ∥
)
(13)

where ϵ controls the slack size for constraint. After
solving the above optimization problem and ob-
taining the optimal λ, we can calculate the pro-
jected posterior distribution q by

q(yj = ai) =
1

Z
pθ(ai|dj)exp{−

|P |∑
k=1

λik|uik−ŝjk|} (14)

where Z is the normalization factor. Note that sen-
timent distribution consistency is actually modeled
as instance-level constraint here, which makes it
very efficient to solve.

In M-step, the projected posteriors q(Y ) are
then used to compute sufficient statistics and up-
date the models parameters θ. Given the projected
posteriors q(Y ), the parameters can be updated by
Eq. 15,16.

p(ai) =
1 +

∑|D|
j=1 q(yj = ai)

|A|+ |D| (15)

p(wt|ai) =
1 +

∑|D|
j=1 Ntiq(yj = ai)

|V |+ ∑|V |
m=1

∑|D|
j=1 Nmjq(yj = ai)

(16)

where Ntj is the number of times that the word wt

occurs in document dj .
The parameters are initialized randomly, and we

repeat E-step and M-step until convergence.
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2.5 Data Extraction
2.5.1 Context Extraction
In order to extract the context document d for each
aspect phrase, we follow the approach in Zhai et
al. (2011a). For each aspect phrase, we generate
its context document by aggregating the surround-
ing texts of the phrase in all reviews. The preced-
ing and following t words of a phrase are taken as
the context where we set t = 3 in this paper. Stop-
words and other aspect phrases are removed. For
example, the following review contains two aspect
phrases, ”screen” and ”picture”,

The LCD screen gives clear picture.

For ”screen”, the surrounding texts are {the,
LCD, gives, clear, picture}. We remove stop-
words ”the”, and the aspect term ”picture”, and
the resultant context of ”screen” in this review is

context(screen) ={LCD, screen, gives, clear}.

Similarly, the context of ”picture” in this review is

context(picture) ={gives, clear}.

By aggregating the contexts of all the reviews
that contain aspect phrase fj , we obtain the cor-
responding context document dj .

2.5.2 Sentiment Extraction
Since we use semi-structured reviews, we ob-
tain the estimated sentiment distribution by sim-
ply counting how many times each aspect phrase
appears in Pros and Cons reviews for each prod-
uct respectively. So for each aspect phrase fj , let
n+

jk denotes the times that fj appears in Pros of
all reviews for product pk, and let n−jk denotes the
times that fj appears in Cons of all reviews for
product pk. So the total number of occurrence of a
phrase is njk = n+

jk + n−jk. We have samples like
(1,1,1,0,0) where 1 means a phrase occurs in Pros
of a review, and 0 in Cons. Given a sequence of
such observations, the sample mean is easily com-

puted as ŝjk =
n+

jk

n+
jk+n−jk

. And the sample standard

deviation is σ̂jk =

√
(1−ŝjk)2∗n+

jk+(ŝjk)2∗n−jk

njk−1 .

3 Experiments

3.1 Data Preparation
The details of our review corpus are given
in Table 2. This corpus contains semi-
structured customer reviews from four do-
mains: Camera, Cellphone, Laptop, and MP3.

These reviews were crawled from the following
web sites: www.amazon.cn, www.360buy.com,
www.newegg.com.cn, and www.zol.com. The as-
pect label of each aspect phrases is annotated by
human curators.

Camera Cellphone Laptop MP3
#Products 449 694 702 329
#Reviews 101,235 579,402 102,439 129,471

#Aspect Phrases 236 230 238 166
#Aspect 12 10 14 8

Table 2: Statistics of the review corpus. # denotes
the size.

3.2 Evaluation Measures
We adapt three measures Purity, Entropy, and
Rand Index for performance evaluation. These
measures have been commonly used to evaluate
clustering algorithms.

Given a data set DS, suppose its gold-standard
partition is G = {g1, ..., gj , ..., gk}, where k
is the number of clusters. A clustering algo-
rithm partitions DS into k disjoint subsets, say
DS1, DS2, ..., DSk.
Entropy: For each resulting cluster, we can mea-
sure its entropy using Eq. 17, where Pi(gj) is the
proportion of data points of class gj in DSi. The
entropy of the entire clustering result is calculated
by Eq. 18.

entropy(DSi) = −
k∑

j=1

Pi(gj)log2Pi(gj) (17)

entropy(DS) =

k∑
i=1

|DSi|
|DS| entropy(DSi) (18)

Purity: Purity measures the extent that a cluster
contains only data from one gold-standard parti-
tion. The cluster purity is computed with Eq. 19.
The total purity of the whole clustering result (all
clusters) is computed with Eq. 20.

purity(DSi) = max
j

Pi(gj) (19)

purity(DS) =

k∑
i=1

|DSi|
|DS| purity(DSi) (20)

RI: The Rand Index(RI) penalizes both false posi-
tive and false negative decisions during clustering.
Let TP (True Positive) denotes the number of pairs
of elements that are in the same set in DS and in
the same set in G. TN (True Negative) denotes
number of pairs of elements that are in different
sets in DS and in different sets in G. FP (False
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Camera Cellphone Laptop MP3
P RI E P RI E P RI E P RI E

Kmeans 43.48% 83.52% 2.098 48.91% 84.80% 1.792 43.46% 87.11% 2.211 40.00% 70.98% 2.047
L-EM 54.89% 87.07% 1.690 51.96% 86.64% 1.456 48.94% 84.53% 2.039 44.24% 75.37% 1.990
LDA 36.84% 83.28% 2.426 48.65% 85.33% 1.833 35.02% 83.53% 2.660 36.12% 76.08% 2.296
Constraint-LDA 43.30% 86.01% 2.216 47.89% 86.04% 1.974 32.35% 84.86% 2.676 50.70% 81.42% 1.924
SDC-MNB 56.42% 88.16% 1.725 67.95% 90.62% 1.266 55.52% 90.72% 1.780 58.06% 83.57% 1.578

Table 3: Comparison to unsupervised baselines. (P is short for purity, E for entropy, and RI for random
index.)

Positive) denotes number of pairs of elements in
S that are in the same set in DS and in different
sets in G. FN (False Negative) denotes number of
pairs of elements that are in different sets in DS
and in the same set in G. The Rand Index(RI) is
computed with Eq. 21.

RI(DS) =
TP + TN

TP + TN + FP + FN
(21)

3.3 Evaluation Results

3.3.1 Comparison to unsupervised baselines
We compared our approach with several existing
unsupervised methods. Some of the methods aug-
mented unsupervised models by incorporating lex-
ical similarity and other domain knowledge. All
of them are context-based models.2 We list these
models as follows.

• Kmeans: Kmeans is the most popular cluster-
ing algorithm. Here we use the context distri-
butional similarity (cosine similarity) as the
similarity measure.

• L-EM: This is a state-of-the-art unsupervised
method for clustering aspect phrases (Zhai et
al., 2011a). L-EM employed lexical knowl-
edge to provide a better initialization for EM.

• LDA: LDA is a popular topic model(Blei et
al., 2003). Given a set of documents, it out-
puts groups of terms of different topics. In
our case, each aspect phrase is processed as a
term. 3 Each sentence in a review is consid-
ered as a document. Each aspect is consid-
ered as a topic. In LDA, a term may belong
to more than one topic/group, but we take the
topic/group with the maximum probability.

2In our method, we collect context document for each
aspect phrase. This process is conducted for L-EM and K-
means. But for LDA and Constraint-LDA, we take each sen-
tence of reviews as a document. This setting for the LDA
baselines is adapted from previous work.

3Each aspect phrase is pre-processed as a single word
(e.g., “battery life” is treated as battery-life). Other words
are normally used in LDA.

• Constraint-LDA: Constraint-LDA (Zhai et
al., 2011b) is a state-of-the-art LDA-based
method that incorporates must-link and
cannot-link constraints for this task. We set
the damping factor λ = 0.3 and relaxation
factor η = 0.9, as suggested in the original
reference.

For all methods that depend on the random ini-
tiation, we use the average results of 10 runs as the
final result. For all LDA-based models, we choose
α = 50/T , β = 0.1, and run 1000 iterations.

Experiment results are shown in Table 3. We
can see that our approach almost outperforms all
unsupervised baseline methods by a large margin
on all domains. In addition, we have the following
observations:

• LDA and Kmeans perform poorly due to the
fact that the two methods do not use any prior
knowledge. It is also shown that only using
the context distributional information is not
sufficient for clustering aspect phrases.

• Constraint-LDA and L-EM that utilize prior
knowledge perform better. We can see that
Constraint-LDA outperforms LDA in terms
of RI (Rand Index) on all domains. L-EM
achieves the best results against the baselines.
This demonstrates the effectiveness to incor-
porate prior knowledge.

• SDC-MNB produces the optimal results
among all models for clustering. Methods
that use must-links and cannot-links may suf-
fer from noisy links. For L-EM, we find
that it is sensitive to noisy must-links. As
L-EM assumes that must-link is transitive,
several noisy must-links may totally misla-
bel the softly annotated data. For Constraint-
LDA, it is more robust than L-EM, because
it doesn’t assume the transitivity of must-
link. However, it only promotes the RI (Rand
Index) consistently by leveraging pair-wise
prior knowledge, but sometimes it hurts the
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performance with respect to purity or en-
tropy. Our method is consistently better on
almost all domains, which shows the advan-
tages of the proposed model.

• SDC-MNB is remarkably better than base-
lines, particularly for the cellphone domain.
We argue that this is because we have the
largest number of reviews for each product
in the cellphone domain. The larger dataset
gives us more observations on each phrase,
so that we obtain more reliable estimation of
model parameters.

3.3.2 Comparison to supervised baselines

We further compare our methods with two super-
vised models. For each supervised model, we
provide a proportion of manually labeled data for
training, which is randomly selected from gold-
standard annotations. However, we didn’t use any
labeled data for our approach.

• MNB: The labeled seeds are used to train a
MNB classifier to classify all unlabeled as-
pect phrases into different classes.

• L-Kmeans: In L-Kmeans, the clusters of the
labeled seeds are fixed at the initiation and
remain unchanged during iteration.

Purity RI Entropy
MNB-5% 53.21% 85.77% 1.854
MNB-10% 59.55% 86.70% 1.656
MNB-15% 66.06% 88.39% 1.449

L-Kmeans-10% 53.54% 86.15% 1.745
L-Kmeans-15% 57.00% 86.89% 1.643
L-Kmeans-20% 60.97% 87.63% 1.528

SDC-MNB 59.49% 88.26% 1.580

Table 4: Comparison to supervised baselines.
MNB-5% means MNB with 5% labeled data.

We experiment with several settings: taking
5%, 10% and 15% of the manually labeled aspect
phrases for training, and the remainder as unla-
beled data. Experiment results is shown in Table
4 (the results are averaged over 4 domains). We
can see that our unsupervised approach is roughly
as good as the supervised MNB with 10% labeled
data. Our unsupervised approach is also slightly
better than L-Kmeans with 15% labeled data. This
result further demonstrates the effectiveness of our
model.

3.3.3 Influence of parameters
We vary the confidence level from 90% to 99.9%
to see how it impacts on the performance of SDC-
MNB. The results are presented in Fig. 5 (the re-
sults are averaged over 4 domains). We can see
that the performance of clustering is fairly stable
when changing the confidence level, which im-
plies the robustness of our model.

Figure 5: Influence of the confidence level on
SDC-MNB.

3.3.4 Analysis of SDC-constraint
As mentioned in Section 2.2, SDC-constraint is
dependent on the number of observations. More
observations we get, more informative the con-
straint is, which means the constraint is tighter and
djk (see Eq.4) is smaller. For all k, we count how
many djk is less than 0.2 (and 1) on average for
each aspect phrase fj . djk is calculated with a
confidence level of 99%. The statistics of con-
straints is given in Table 5. We can see that the
cellphone domain has the most informative and
largest constraint set, that may explain why SDC-
MNB achieves the largest purity gain(over L-EM)
in cellphone domain.

#(djk < 0.2) #(0.2 < djk < 1) purity gain
Camera 3.02 8.78 1.53%

Cellphone 17.29 30.5 15.99%
Laptop 4.6 13.22 6.58%

MP3MP4 6.1 10.7 13.82%

Table 5: Constraint statistics on different domains.

4 Related Work

Our work is related to two important research
topics: aspect-level sentiment analysis, and
constraint-driven learning. For aspect-level senti-
ment analysis, aspect extraction and clustering are
key tasks. For constraint-driven learning, a variety
of frameworks and models for sentiment analysis
have been studied extensively.

There have been many studies on clustering
aspect-related phrases. Most existing studies are
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based on context information. Some works also
encoded lexical similarity and synonyms as prior
knowledge. Carenini et al. (2005) proposed a
method that was based on several similarity met-
rics involving string similarity, synonyms, and lex-
ical distances defined with WordNet. Guo et al.
(2009) proposed a multi-level latent semantic as-
sociation model to capture expression-level and
context-level topic structure. Zhai et al. (2010)
proposed an EM-based semi-supervised learning
method to group aspect expressions into user-
specified aspects. They employed lexical knowl-
edge to provide a better initialization for EM. In
Zhai et al. (2011a), an EM-based unsupervised
version was proposed. The so-called L-EM model
first generated softly labeled data by grouping fea-
ture expressions that share words in common, and
then merged the groups by lexical similarity. Zhai
et al. (2011b) proposed a LDA-based method
that incorporates must-link and cannot-link con-
straints.

Another line of work aimed to extract and clus-
ter aspect words simultaneously using topic mod-
eling. Titov and McDonald (2008) proposed the
multi-grain topic models to discover global and
local aspects. Branavan et al. (2008) proposed
a method which first clustered the key-phrases
in Pros and Cons into some aspect categories
based on distributional similarity, then built a topic
model modeling the topics or aspects. Zhao et al.
(2010) proposed the MaxEnt-LDA (a Maximum
Entropy and LDA combination) hybrid model to
jointly discover both aspect words and aspect-
specific opinion words, which can leverage syn-
tactic features to separate aspects and sentiment
words. Mukherjee and Liu (2012) proposed a
semi-supervised topic model which used user-
provided seeds to discover aspects. Chen et al.
(2013) proposed a knowledge-based topic model
to incorporate must-link and cannot-link informa-
tion. Their model can adjust topic numbers auto-
matically by leveraging cannot-link.

Our work is also related to general constraint-
driven(or knowledge-driven) learning models.
Several general frameworks have been proposed to
fully utilize various prior knowledge in learning.
Constraint-driven learning (Chang et al., 2008)
(CODL) is an EM-like algorithm that incorpo-
rates per-instance constraints into semi-supervised
learning. Posterior regularization (Graca et al.,
2007) (PR) is a modified EM algorithm in which

the E-step is replaced by the projection of the
model posterior distribution onto the set of dis-
tributions that satisfy auxiliary expectation con-
straints. Generalized expectation criteria (Druck
et al., 2008) (GE) is a framework for incorporating
preferences about model expectations into param-
eter estimation objective functions. Liang et al.
(2009) developed a Bayesian decision-theoretic
framework to learn an exponential family model
using general measurements on the unlabeled data.
In this paper, we model our problem in the frame-
work of posterior regularization.

Many works promoted the performance of sen-
timent analysis by incorporating prior knowledge
as weak supervision. Li and Zhang (2009) in-
jected lexical prior knowledge to non-negative ma-
trix tri-factorization. Shen and Li (2011) further
extended the matrix factorization framework to
model dual supervision from both document and
word labels. Vikas Sindhwani (2008) proposed a
general framework for incorporating lexical infor-
mation as well as unlabeled data within standard
regularized least squares for sentiment prediction
tasks. Fang (2013)proposed a structural learning
model with a handful set of aspect signature terms
that are encoded as weak supervision to extract la-
tent sentiment explanations.

5 Conclusions

Aspect finding and clustering is an important task
for aspect-level sentiment analysis. In order to
cluster aspect-related phrases, this paper has ex-
plored a novel concept, sentiment distribution con-
sistency. We formalize the concept as soft con-
straint, integrate the constraint with a context-
based probabilistic model, and solve the problem
in the posterior regularization framework. The
proposed model is also designed to be robust with
both sufficient and insufficient observations. Ex-
periments show that our approach outperforms
state-of-the-art baselines consistently.
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Abstract 

In this paper, we investigate a challeng-

ing task of automatic related work gener-

ation. Given multiple reference papers as 

input, the task aims to generate a related 

work section for a target paper. The gen-

erated related work section can be used 

as a draft for the author to complete his 

or her final related work section. We 

propose our Automatic Related Work 

Generation system called ARWG to ad-

dress this task. It first exploits a PLSA 

model to split the sentence set of the giv-

en papers into different topic-biased parts, 

and then applies regression models to 

learn the importance of the sentences. At 

last it employs an optimization frame-

work to generate the related work section. 

Our evaluation results on a test set of 150 

target papers along with their reference 

papers show that our proposed ARWG 

system can generate related work sec-

tions with better quality. A user study is 

also performed to show ARWG can 

achieve an improvement over generic 

multi-document summarization baselines. 

1 Introduction 

The related work section is an important part of a 

paper. An author often needs to help readers to 

understand the context of his or her research 

problem and compare his or her current work 

with previous works. A related work section is 

often used for this purpose to show the differ-

ences and advantages of his or her work, com-

pared with related research works. In this study, 

we attempt to automatically generate a related 

work section for a target academic paper with its 

reference papers. This kind of related work sec-

tions can be used as a basis to reduce the author’s 

time and effort when he or she wants to complete 

his or her final related work section. 

Automatic related work section generation is a 

very challenging task. It can be considered a top-

ic-biased, multiple-document summarization 

problem. The input is a target academic paper, 

which has no related work section, along with its 

reference papers. The goal is to create a related 

work section that describes the related works and 

addresses the relationship between the target pa-

per and the reference papers. Here we assume 

that the set of reference papers has been given as 

part of the input. Existing works in the NLP and 

recommendation systems communities have al-

ready focused on the task of finding reference 

papers. For example, citation prediction (Nal-

lapati et al., 2008) aims at finding individual pa-

per citation patterns. 

Generally speaking, automatic related work 

section generation is a strikingly different prob-

lem and it is much more difficult in comparison 

with general multi-document summarization 

tasks. For example, multi-document summariza-

tion of news articles aims at synthesizing con-

tents of similar news and removing the redundant 

information contained by the different news arti-

cles. However, each scientific paper has much 

specific content to state its own work and contri-

bution. Even for the papers that investigate the 

same research topic, their contributions and con-

tents can be totally different. The related work 

section generation task needs to find the specific 

contributions of individual papers and arrange 

them into one or several paragraphs. 

In this study, we focus on the problem of au-

tomatic related work section generation and pro-

pose a novel system called ARWG to address the 
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problem. For the target paper, we assume that the 

abstract and introduction sections have already 

been written by the author and they can be used 

to help generate the related work section. For the 

reference papers, we only consider and extract 

the abstract, introduction, related work and con-

clusion sections, because other sections like the 

method and evaluation sections always describe 

the extreme details of the specific work and they 

are not suitable for this task. Then we generate 

the related work section using both sentence sets 

which are extracted from the target paper and 

reference papers, respectively. 

Firstly, we use a PLSA model to group both 

sentence sets of the target paper and its reference 

papers into different topic-biased clusters. Sec-

ondly, the importance of each sentence in the 

target paper and the reference papers is learned 

by using two different Support Vector Regres-

sion (SVR) models. At last, a global optimization 

framework is proposed to generate the related 

work section by selecting sentences from both 

the target paper and the reference papers. Mean-

while, the framework selects sentences from dif-

ferent topic-biased clusters globally. 

Experimental results on a test set of 150 target 

papers show our method can generate related 

work sections with better quality than those of 

several baseline methods. With the ROUGE 

toolkit, the results indicate the related work sec-

tions generated by our system can get higher 

ROUGE scores. Moreover, our related work sec-

tions can get higher rating scores based on a user 

study. Therefore, our related work sections can 

be much more suitable for the authors to prepare 

their final related work sections. 

2 Related Work 

There are few studies to directly address auto-

matic related work generation. Hoang and Kan 

(2010) proposed a related work summarization 

system given the set of keywords arranged in a 

hierarchical fashion that describes the paper’s 

topic. They used two different rule-based strate-

gies to extract sentences for general topics as 

well as detailed ones. 

A few studies focus on multi-document scien-

tific article summarization. Agarwal et al., (2011) 

introduced an unsupervised approach to the prob-

lem of multi-document summarization. The input 

is a list of papers cited together within the same 

source article. The key point of this approach is a 

topic based clustering of fragments extracted 

from each co-cited article. They rank all the clus-

ters using a query generated from the context 

surrounding the co-cited list of papers. Yeloglu 

et al., (2011) compared four different approaches 

for multi-document scientific articles summariza-

tion: MEAD, MEAD with corpus specific vo-

cabulary, LexRank and W3SS. 

Other studies investigate mainly on the single-

document scientific article summarization. Early 

works including (Luhn 1958; Baxendale 1958; 

Edumundson 1969) tried to use various features 

specific to scientific text (e.g., sentence position, 

or rhetorical clues features). They have proved 

that these features are effective for the scientific 

article summarization. Citation information has 

been already shown effective in summarize the 

scientific articles. Works including (Mei and 

Zhai 2008; Qazvinian and Radev 2008; Schwartz 

and Hearst 2006; Mohammad et al., 2009) em-

ployed citation information for the single scien-

tific article summarization. Earlier work (Nakov 

et al., 2004) indicated that citation sentences may 

contain important concepts that can give useful 

descriptions of a paper. 

Various methods have been proposed for news 

document summarization, including rule-based 

methods (Barzilay and Elhadad 1997; Marcu and 

Daniel 1997), graph-based methods (Mani and 

Bloedorn 2000; Erkan and Radev 2004; Michal-

cea and Tarau 2005), learning-based methods 

(Conroy et al., 2001; Shen et al., 2007; Ouyang 

et al., 2007; Galanis et al., 2008), optimization-

based methods (McDonald 2007; Gillick et al., 

2009; Xie et al., 2009; Berg-Kirkpatrick et al., 

2011; Lei Huang et al., 2011; Woodsend et al., 

2012; Galanis 2012), etc. 

The most relevant work is (Hoang and Kan, 

2010) as mentioned above. They also assumed 

the set of reference papers was given as part of 

the input. They also adopt the hierarchical topic 

tree that describes the topic structure in the target 

paper as an essential input for their system. 

However, it is non-trivial to build the hierar-

chical topic tree. Moreover, they do not consider 

the content of the target paper to construct the 

related work section, which is actually crucial in   

the related work section. To the best of our 

knowledge, no previous works have used super-

vised learning and optimization framework to 

deal with the multiple scientific article summari-

zation tasks. 

3 Problem Analysis and Corpus 

3.1 Problem Analysis 
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We firstly analyze the structure of related work 

sections briefly. By using examples for illustra-

tion, we can gain insight on how to generate re-

lated work sections. A specific related work ex-

ample is shown in Figure 1. 

This related work section introduces previous 

related works for a paper on Automatic Taxono-

my Induction. From Figure 1, we can have a 

glance at the structure of related work sections. 

Related work sections usually discuss several 

different topics, such as “pattern-based” and 

“cluster-based” approaches shown in the Figure 

1. Besides the knowledge of previous works, the 

author often compares his own work with the 

previous works. The differences and advantages 

are generally mentioned. The example in Figure 

1 also indicates this phenomenon. 

Therefore, we design our system to generate 

related work sections according to the related 

work section structure mentioned above. Our 

system takes the target paper for which a related 

work section needs to be drafted besides its ref-

erence papers as input. The goal of our system is 

to generate a related work section with the above 

structure. The generated related work section 

should have several topic-biased parts. The au-

thor's own work is also needed to be described 

and its difference with other works is needed to 

be emphasized on. 

3.2 Corpus and Preprocessing 

We build a corpus that contains academic papers 

and their corresponding reference papers. The 

academic papers are selected from the ACL An-

thology 1 . The ACL Anthology currently hosts 

                                                 
1 http://aclweb.org/anthology/ 

over 24,500 papers from major conferences such 

as ACL, EMNLP, COLING in the fields of com-

putational linguistics and natural language pro-

cessing. We remove the papers that contain relat-

ed work sections with very short length, and ran-

domly select 1050 target papers to construct our 

whole corpus. 

The papers are all in PDF format. We extract 

their texts by using PDFlib 2  and detect their 

physical structures of paragraphs, subsections 

and sections by using ParsCit3 . For the target 

papers, the related work sections are directly ex-

tracted as the gold summaries. The references are 

also extracted. For the references that can be 

found in the ACL Anthology, we download them 

from the ACL Anthology. The other reference 

papers are searched and downloaded by using 

Google Scholar. References to books and PhD 

theses are discarded, for their verbosity may 

change the problem drastically (Mihalcea and 

Ceylan, 2007). 

The input of our system includes the abstract 

and introduction sections of the target paper, and 

the abstract, introduction, related work and con-

clusion sections of the reference papers. As men-

tioned above, the method and evaluation sections 

in the reference papers are not used as input be-

cause these sections usually describe extreme 

details of the methods and evaluation results and 

they are not suitable for related work generation. 

Note that it is reasonable to make use of the ab-

stract and introduction sections of the target pa-

per to help generate the related work section, 

because an author usually has already written the 

abstract and introduction sections before he or 

she wants to write the related work section for 

the target paper.  Otherwise, we cannot get any 

information about the author’s own work. All 

other sections in the target paper are not used.  

4 Our Proposed System 

4.1 Overview 

In this paper, we propose a system called ARWG 

to automatically generate a related work section 

for a given target paper. The architecture of our 

system is shown in Figure 2. We take both the 

target paper and its reference papers as input and 

they are represented by several sections men-

tioned in Section 3.2. After preprocessing, we 

extract the feature vectors for sentences in the 

target paper and the reference papers, respective-

                                                 
2 http://www.pdflib.com/ 
3 http://aye.comp.nus.edu.sg/parsCit/ 

 

 

Figure 1: A sample related work section (Yang and 

Callan 2009) 

There has been a substantial amount of research on automatic 
taxonomy induction. As we mentioned earlier, two main 
approaches are pattern-based and clustering-based.
Pattern-based approaches are the main trend for automatic 
taxonomy induction. …
Pattern-based approaches started from and still pay a great deal 
of attention to the most common is-a relations. …

Clustering-based approaches usually represent word contexts as 
vectors and cluster words based on similarities of the vectors 
(Brown et al., 1992; Lin, 1998). …

Many clustering-based approaches face the challenge of 
appropriately labeling non-leaf clusters. … In this paper, we take 
an incremental clustering approach,... The advantage of the 
incremental approach is that it eliminates the trouble of 
inventing cluster labels and concentrates on placing terms in the 
correct positions in a taxonomy hierarchy.
The work by Snow et al. (2006) is the most similar to ours … 
Moreover, our approach employs heterogeneous features from a 
wide range; while their approach only used syntactic dependency.

Two different 
topics

Comparison 
with the 

author’s work
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ly. The importance scores for sentences in the 

target paper and the reference papers are as-

signed by using two SVR based sentence scoring 

models. The two SVR models are trained for 

sentences in the target paper and the reference 

papers, respectively. Meanwhile, a topic model is 

applied to the whole set of sentences in both the 

target paper and reference papers. The sentences 

are grouped into several different topic-biased 

clusters. The sentences with importance scores 

and topic cluster information are taken as the 

input for the global optimization framework. The 

optimization framework extracts sentences to 

describe both the author’s own work and back-

ground knowledge. More details of each part will 

be discussed in the following sections. 

4.2 Topic Model Learning 

As mentioned in the previous section, the related 

work section usually addresses several different 

topics. The topics may be different research 

themes or different aspects of a broad research 

theme. The related work section should describe 

the specific details for each topic, respectively. 

Therefore, we aim to discover the hidden top-

ics of the input papers, and we use the Probabil-

istic latent semantic analysis (PLSA) (Hofmann, 

1999) to solve this problem.  

The PLSA approach models each word in a 

document as a sample from a mixture model. 

The mixture components are multinomial ran-

dom variables that can be viewed as representa-

tions of “topics”. Different words in a document 

may be generated from different topics. Each 

document is represented a list of mixing propor-

tions for these mixture components and can be 

reduced to a probability distribution on a fixed 

set of topics. 

Considering that the sentences in one paper 

may relate to different topics, we treat each sen-

tence as a “document” d. We treat the noun 

phases in the sentences as the “words” w. In or-

der to extract the noun phrases, chunking imple-

mented by the OpenNLP toolkit 4 is applied to 

the sentences. Noun phrases that contain words 

such as “paper” and “data” are discarded.  

Then the sentences with their corresponding 

noun phrases are taken as input into the PLSA 

model. Here both the sentences in the target pa-

per and the sentences in the reference papers are 

treated the same in the model. Finally, we can 

get the sentence set with topic information and 

use it in the subsequent steps. Each sentence has 

a topic weight t in each topic. 

4.3 Sentence Important Assessment 

In our proposed system, sentence importance 

assessment aims to assign an importance score to 

each sentence in the target paper and reference 

papers. The score of each sentence will be used 

in the subsequent optimization framework. We 

propose to use the support vector regression 

model to achieve this goal. In the above topic 

model learning process, we do not distinguish the 

sentences in the target paper and reference pa-

pers. In contrast, we train two different support 

vector regression models separately for the sen-

tences in the target paper and the sentences in the 

reference papers. In the related work section, the 

sentences that describe the author’s own work 

usually address the differences from the related 

works, while the sentences that describe the re-

lated works often focus on the specific details. 

We think the two kinds of sentences should be 

treated differently. 

Scoring Method 

To construct training data based on the papers 

collected, we apply a similarity scoring method 

to assign the importance scores to the sentences 

in the papers. The main hypothesis is that the 

sentences in the gold related work sections 

should summarize the target paper and reference 

papers as well. Thus the sentences in the papers 

which are more similar to the sentences in the 

gold related work sections should be considered 

more important and suitable to be selected. Our 

scoring method should assign higher scores to 

them. 

                                                 
4 http://opennlp.apache.org/ 

 

 

Figure 2: System Architecture 

Target paper Reference papers

Preprocessing

Topic ModelSentence Score 
Assessment(target)

Sentence Score 
Assessment(reference)

Optimization 
Framework

Postprocessing
Related Work 

Section
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We define the importance score of a sentence 

in the papers as below: 

𝑠𝑐𝑜𝑟𝑒(𝑠) =  𝑚𝑎𝑥
𝑠𝑖

∗∈𝑆∗
(𝑠𝑖𝑚(𝑠, 𝑠𝑖

∗))      (1) 

where s is a sentence in the papers,  𝑆∗ is the set 

of the sentences in the corresponding gold relat-

ed work section. The standard cosine measure is 

employed as the similarity function. 

Considering the difference between the sen-

tences that describe the author’s work and the 

sentences that describe the related works, we 

split the set of sentences in the gold related work 

section into two parts: one discusses the author’s 

own work and the other introduces the related 

works. We observe that sentences related to the 

author’s own work often feature specific words 

or phrases (such as “we”, “our work”, “in this 

paper” etc.) in the related work section.  So we 

check the sentences about whether they contain 

clue words or phrases (i.e., “in this paper”, “our 

work” and 18 other phrases). If the clue phrase 

check fails, the sentence belongs to the related 

work part. If not, it belongs the own work part. 

Thus for the sentences in the target paper,  𝑆∗ 

is the set of sentences in the own work part of the 

gold related work section, while for the sentences 

in the reference papers,  𝑆∗ is the set of sentences 

in the related work part of the gold related work 

section. Then we can use the scoring method to 

compute the target scores of the sentences in the 

training set. It is noteworthy that two SVR mod-

els can be trained on the two parts of the training 

data, respectively.  

Feature 

Each sentence is represented by a set of features. 

The common features used for the sentences of 

the target paper and reference papers are shown 

in Table 1. The additional features applied to the 

sentences of the target paper are introduced in 

Table 2. 

Here, s is a sentence that needs to extract fea-

tures. th is paper title, section headings and sub-

section headings set of the reference papers or 

target paper for the two SVR models, respective-

ly. Each feature with “*” represent a feature set 

that contains similar features. 

All the features are scaled into [0, 1]. Thus we 

can learn SVR models based on the features and 

importance scores of the sentences, and then use 

the models to predict an importance score for 

each sentence in the test set. The SVR models 

are trained and applied for the target paper and 

reference papers, respectively. 

Table 1: Common features employed in the SVR 

models 

Feature Description 

𝑆𝑖𝑚(𝑠, 𝑡ℎ)∗ The similarity between s and each 

title in th; Stop words are removed 

and stemming is employed. 

WS(s,th) Number of words shared by s and 

th. 

𝑆𝑃(𝑠)∗ The position of s in its section or 

subsection 

𝑃𝑇𝐼(𝑠)∗ The parse tree information of s, 

including the number of noun 

phrase and verb phrases, the depth 

of the parse tree, etc. 

𝐼𝑠𝐻𝑒𝑎𝑑(𝑠)∗ Indicates whether s is the first sen-

tence of the section or subsection 

𝐼𝑠𝐸𝑛𝑑(𝑠)∗ Indicates whether s is the last sen-

tence of the section or subsection 

SWP(s) The percentage of the stop words  

Length(s) The length of sentence s 

Length_rw(s) The length of s after removing stop 

words 

SI(s) The section index of s that indi-

cates which section s is from. 

𝐶𝑙𝑢𝑒𝑃ℎ𝑟𝑎𝑠𝑒(𝑠)∗ Indicates whether a clue phrase 

appears in s. the clue phrases in-

clude “our work”, “propose” and 

other 20 words. Each clue phrase 

corresponds to one feature. 

 

Table 2: Additional features for sentences in the 

target paper 

Feature Description 

HasCitation(s) Indicates whether s contains a 

citation 

𝑃h𝑟𝑎𝑠𝑒𝐹𝑜𝑟𝐶𝑚𝑝(𝑠)∗ Indicates whether s contains 

words or phrases used for com-

parison such as “in contrast”, 

“instead” and other 26 words. 

Each word or phrase corre-

sponds to one feature. 

 

4.4 A Global Optimization Framework 

In the above steps, we can get the predicted im-

portance score and topic information for each 

sentence in the target paper and reference papers. 

Here, we introduce a global optimization frame-

work to generate the related work section. 

According to the structure of the related work 

section mentioned above, the related work sec-

tion usually discusses several topics. In each top-

ic, the related works and their details are intro-

duced. Besides, the author often compares his 

own work with these previous works. 

Therefore, we propose to formulate the genera-

tion as an optimization problem. Basically, we 

will be searching for a set of sentences to opti-

mize the objective function. 
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Table 3: Notations used in this section 

Symbol Description 

𝑠𝑟𝑖/𝑠𝑡𝑖 the sentence in the reference/target paper 

𝑙𝑟𝑖/𝑙𝑡𝑖 the length of sentence 𝑠𝑟𝑖/ 𝑠𝑡𝑖 

𝑤𝑟𝑖/𝑤𝑡𝑖 the importance score of 𝑠𝑟𝑖/𝑠𝑡𝑖 

𝑥𝑟𝑖𝑗/𝑥𝑡𝑖𝑗 indicates whether 𝑠𝑟𝑖/𝑠𝑡𝑖 is selected into 

the part of topic j in the generated related 

work section 

nr/nt the number of sentences in the refer-

ence/target papers 

m the topic count 

𝑡𝑖𝑗 the topic weight of  𝑠𝑟𝑖/𝑠𝑡𝑖  in topic j from 

the PLSA model 

B the set of unique bigrams 

𝑦𝑖 indicates whether bigram 𝑏𝑖  is included 

in the result 

𝑐𝑏𝑖
 the count of the occurrences of bigram 𝑏𝑖 

in the both target paper and reference 

papers 

𝐿𝑚𝑎𝑥 the maximum word count of the related 

work section 

𝐿𝑗  the maximum word count of the part of 

topic j which depends on the percentage 

of sentences belong to topic j 

𝐵∗ the total set of bigrams in the whole pa-

per set 

𝐵𝑖 the set of bigrams that sentence  𝑠𝑟𝑖/𝑠𝑡𝑖 

contains 

𝑆𝑟𝑚/𝑆𝑡𝑚 the set of sentences that include bigram 

𝑏𝑚 in the reference/target papers 

 𝜆1,  𝜆2, 𝜆3 parameters for tuning 

 

To design the objective function, three aspects 

should be considered: 

1) First, the related work section we generate 

should introduce the previous works well. In 

our assumption, sentences with higher im-

portance scores are better to be selected. In 

addition, very short sentences should be pe-

nalized. So we introduce the first part of our 

objective function below: 

∑ (𝑙𝑟𝑖𝑤𝑟𝑖 ∑ 𝑡𝑖𝑗𝑥𝑟𝑖𝑗)𝑚
𝑗=1

𝑛𝑟
𝑖=1                    (2) 

We add the sentence length as a multipli-

cation factor in order to penalize the very 

short sentences, or the objective function 

tends to select more and shorter sentences. 

At the same time, the objective function does 

not tend to select the very long sentences. 

The total length of the sentences selected is 

fixed. So if the objective function tends to 

select the longer sentences, the fewer sen-

tences can be selected. A tradeoff needs to be 

made between the number and the average 

length of the sentences selected. 

 The constraints introduced below ensure 

that the sentence can only be selected into 

one topic and the topic weight is used to 

measure the degree that the sentence is rele-

vant to the specific topic. 

2) Second, similar to the first part, we should 

consider the own work part of the related 

work section. Thus the second part of our ob-

jective function is shown as follows: 

∑ (𝑙𝑡𝑖𝑤𝑡𝑖 ∑ 𝑡𝑖𝑗𝑥𝑡𝑖𝑗)𝑚
𝑗=1

𝑛𝑡
𝑖=1                    (3) 

3) At last, redundancy reduction should be con-

sidered in the objective function. The last 

part of the objective function is shown below: 

∑ 𝑐𝑏𝑖
𝑦𝑖

|𝐵|
𝑖=1                               (4) 

The intuition is that the more unique bi-

grams the related work section contains, the 

less redundancy the related work section has. 

We add  𝑐𝑏𝑖
 as the weight of the bigram in or-

der to include more important bigrams. 

By combing all the parts defined above, we 

have the following full objective function: 

max
𝑥𝑟,𝑥𝑡

𝜆1 ∑ (
𝑙𝑟𝑖

𝛼𝐿𝑚𝑎𝑥
𝑤𝑟𝑖 ∑ 𝑡𝑖𝑗𝑥𝑟𝑖𝑗)𝑚

𝑗=1 +𝑛𝑟
𝑖=1

𝜆2 ∑ (
𝑙𝑡𝑖

(1−𝛼)𝐿𝑚𝑎𝑥
𝑤𝑡𝑖 ∑ 𝑡𝑖𝑗𝑥𝑡𝑖𝑗)𝑚

𝑗=1
𝑛𝑡
𝑖=1 +

𝜆3 ∑
𝑐𝑏𝑖

𝑦𝑖

|𝐵∗|

|𝐵|
𝑖=1                                                       (5) 

Subject to: 

∑ 𝑙𝑟𝑖𝑥𝑟𝑖𝑗
𝑛𝑟
𝑖=1 + ∑ 𝑙𝑡𝑖𝑥𝑡𝑖𝑗

𝑛𝑡
𝑖=1 <  𝐿𝑗, 𝑓𝑜𝑟 𝑗 = 1, … ,

𝑚                        (6) 

∑ ∑ 𝑙𝑟𝑖𝑥𝑟𝑖𝑗
𝑚
𝑗=1

𝑛𝑟
𝑖=1 <  𝛼𝐿𝑚𝑎𝑥         (7) 

∑ ∑ 𝑙𝑡𝑖𝑥𝑡𝑖𝑗
𝑚
𝑗=1

𝑛𝑡
𝑖=1 <  (1 − 𝛼)𝐿𝑚𝑎𝑥         (8) 

 ∑ 𝑥𝑟𝑖𝑗
𝑚
𝑗=1 ≤ 1, 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛𝑟           (9) 

∑ 𝑥𝑡𝑖𝑗
𝑚
𝑗=1 ≤ 1, 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛𝑡          (10) 

∑ 𝑦𝑘𝑏𝑘∈𝐵𝑖
 ≥ |𝐵𝑖| ∑ 𝑥𝑟𝑖𝑗

𝑚
𝑗=1 , 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛𝑟 (11) 

∑ 𝑦𝑘𝑏𝑘∈𝐵𝑖
 ≥ |𝐵𝑖| ∑ 𝑥𝑡𝑖𝑗

𝑚
𝑗=1 , 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛𝑡 (12) 

∑ ∑ 𝑥𝑟𝑖𝑗
𝑚
𝑗=1 + ∑ ∑ 𝑥𝑡𝑖𝑗

𝑚
𝑗=1𝑠𝑡𝑖∈𝑆𝑡𝑘𝑠𝑟𝑖∈𝑆𝑟𝑘

≥ 𝑦𝑘 ,

𝑘 = 1, … |𝐵|                                                    (13) 

𝑥𝑟𝑖𝑗, 𝑥𝑡𝑖𝑗, 𝑦𝑖 ∈ {0,1}                  (14) 

All the three parts in the objective function are 

normalized to [0, 1] by using the maximum 

length 𝐿𝑚𝑎𝑥 and the total number of bigrams |𝐵∗|. 

 𝜆1, 𝜆2 and 𝜆3 are parameters for tuning the three 

parts and we set  𝜆1+𝜆2+𝜆3 = 1. 

We explain the constraints as follows: 

Constraint (6): It ensures that the total word 

count of the part of topic j does not exceed  𝐿𝑗. 

Constraints (7), (8): The two constraints try to 

balance the lengths of the previous works part 

and the own work part, respectively. 𝛼 is set to 

2/3. 

Constraints (9), (10): These two constraints 

guarantee that the sentence can only be included 

into one topic. 
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Constraints (11), (12): When these two con-

straints hold, all bigrams that 𝑠𝑖 has are selected 

if 𝑠𝑖 is selected.  

Constraint (13): This constraint makes sure 

that at least one sentence in 𝑆𝑟𝑚 or 𝑆𝑡𝑚 is select-

ed if bigram 𝑏𝑚 is selected. 

Therefore, we transform our optimization 

problem into a linear programing problem. We 

solve this linear programming problem by using 

the IBM CPLEX optimizer5. It generally takes 

tens of seconds to solve the problem and it is 

very efficient. 

Finally, ARWG post-processes sentences to 

improve readability, including replacing agentive 

forms with a citation to the specific article (e.g., 

“our work” → “(Hoang and Kan, 2010)”) for the 

sentences extracted from reference papers. The 

sentences belonging to different topics are placed 

separately.  

5 Evaluation 

5.1 Evaluation Setup 

To set up our experiments, we divide our dataset 

which contains 1050 target papers and their ref-

erence papers into two parts: 700 target papers 

for training, 150 papers for test and the other 200 

papers for validation. The PLSA topic model is 

applied to the whole dataset. We train two SVR 

regression models based on the own work part 

and the previous work part of the training data 

and apply the models to the test data. The global 

optimization framework is used to generate the 

related work sections. We set the maximum word 

count of the generated related work section to be 

equal to that of the gold related work section. 

The parameter values of  𝜆1, 𝜆2 and 𝜆3 are set to 

0.3, 0.1 and 0.6, respectively. The parameter val-

ues are tuned on the validation data.  

We compare our system with five baseline sys-

tems: MEAD-WT, LexRank-WT, ARWG-WT, 

MEAD and LexRank. MEAD 6  (Radev et al., 

2004) is an open-source extractive multi-

document summarizer. LexRank 7  (Eran and 

Radev, 2004) is a multi-document summarization 

system which is based on a random walk on the 

similarity graph of sentences. We also implement 

the MEAD, LexRank baselines and our method 

                                                 
5 www-01.ibm.com/software/integration/optimization/cplex-
optimizer/ 
6 http://www.summarization.com/mead/ 
7 In our experiments, LexRank performs much better than 
the more complex variant - C-LexRank (Qazvinian and 
Radev, 2008), and thus we choose LexRank, rather than C-
LexRank, to represent graph-based summarization methods 
for comparison in this paper.  

with only the reference papers (i.e. the target pa-

per’s content is not considered). Those methods 

are signed by “-WT”.  

To evaluate the effectiveness of the SVR mod-

els we employ, we implement a baseline system 

RWGOF that uses the random walk scores as the 

important scores of the sentences and take the 

scores as inputs for the same global optimization 

framework as our system to generate the related 

work section. The random walk scores are com-

puted for the sentences in the reference papers 

and the target paper, respectively. 

We use the ROUGE toolkit to evaluate the 

content quality of the generated related work sec-

tions. ROUGE (Lin, 2004) is a widely used au-

tomatic summarization evaluation method based 

on n-gram comparison. Here, we use the F-

Measure scores of ROUGE-1, ROUGE-2 and 

ROUGE-SU4. The model texts are set as the 

gold related work sections extracted from the 

target papers, and word stemming is utilized. 

ROUGE-N is an n-gram based measure between 

a candidate text and a reference text. The recall 

oriented score, the precision oriented score and 

the F-measure score for ROUGE-N are comput-

ed as follows: 
     𝑅𝑂𝑈𝐺𝐸 − 𝑁𝑅𝑒𝑐𝑎𝑙𝑙  

= ∑ ∑ 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑛)𝑔𝑟𝑎𝑚𝑛𝑆∈{𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑇𝑒𝑥𝑡}  / 

   ∑ ∑ 𝐶𝑜𝑢𝑛𝑡(𝑔𝑟𝑎𝑚𝑛)𝑔𝑟𝑎𝑚𝑛𝑆∈{𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑇𝑒𝑥𝑡}        (15) 

     𝑅𝑂𝑈𝐺𝐸 − 𝑁𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  

= ∑ ∑ 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑛)𝑔𝑟𝑎𝑚𝑛𝑆∈{𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑇𝑒𝑥𝑡}  / 

   ∑ ∑ 𝐶𝑜𝑢𝑛𝑡(𝑔𝑟𝑎𝑚𝑛)𝑔𝑟𝑎𝑚𝑛𝑆∈{𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑇𝑒𝑥𝑡}       (16) 

     𝑅𝑂𝑈𝐺𝐸 − 𝑁𝐹−𝑚𝑒𝑎𝑠𝑢𝑟𝑒 

= 2 ∗ 𝑅𝑂𝑈𝐺𝐸 − 𝑁𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑅𝑂𝑈𝐺𝐸 − 𝑁𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 / 

   𝑅𝑂𝑈𝐺𝐸 − 𝑁𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑅𝑂𝑈𝐺𝐸 − 𝑁𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛       (17) 

where n stands for the length of the n-gram 

𝑔𝑟𝑎𝑚𝑛 , and 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑛) is the maxi-

mum number of n-grams co-occurring in a can-

didate text and a reference text. 

In addition, we conducted a user study to sub-

jectively evaluate the related work sections to get 

more evidences. We selected the related work 

sections generated by different methods for 15 

random target papers in the test set. We asked 

three human judges to follow an evaluation 

guideline we design and evaluate these related 

work sections. The human judges are graduate 

students in the computer science field and they 

did not know the identities of the evaluated relat-

ed work sections. They were asked to give a rat-

ing on a scale of 1 (very poor) to 5 (very good) 

for the correctness, readability and usefulness of 

the related work sections, respectively: 
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1) Correctness: Is the related work section ac-

tually related to the target paper? 

2) Readability: Is the related work section 

easy for the readers to read and grasp the 

key content? 

3) Usefulness: Is the related work section 

useful for the author to prepare their final 

related work section? 

Paired T-Tests are applied to both the ROUGE 

scores and rating scores for comparing ARWG 

and baselines and comparing the systems with 

WT and without WT. 

5.2 Results and Discussion 

Table 4: ROUGE F-measure comparison results 
Method ROUGE-1 ROUGE-2 ROUGE-

SU4 
Mead-

WT 

0.39720 0.08785 0.14694 

LexRank-
WT 

0.43267 0.09228 0.16312 

ARWG-

WT 
0.45077∗{1,2} 0.09987∗{1,2} 0.16731∗{1}#{2} 

Mead 0.41012∗{1} 0.09642∗{1} 0.15441∗{1} 

LexRank 0.44235∗{2} 0.10090∗{2} 0.17067∗{2} 

ARWG 𝟎. 𝟒𝟕𝟗𝟒𝟎∗{𝟏−𝟓} 𝟎. 𝟏𝟐𝟏𝟕𝟔∗{𝟏−𝟓} 𝟎. 𝟏𝟖𝟔𝟏𝟖∗{𝟏−𝟓} 

(* represents pairwise t-test value p < 0.01; # rep-

resents p < 0.05; the numbers in the brackets rep-

resent the indices of the methods compared, e.g. 

1 for MEAD-WT, 2 for LexRank-WT, etc.) 

 

Table 5: Average rating scores of judges 
Method Correctness Readability Usefulness 

Mead 2.971 2.664 2.716 

LexRank 2.958 2.847 2.784 

ARWG 3.433∗# 3.420∗# 3.382∗# 

(*# represents pairwise t-test value p < 0.01, 

compared with Mead and LexRank, respectively.)  

 

Table 6: ROUGE F-measure comparison of dif-

ferent sentence importance scores 
Method ROUGE-1 ROUGE-2 ROUGE-SU4 

RWGOF 0.46932 0.11791 0.18426 

ARWG 0.47940 0.12176 0.18618 

 

The evaluation results over ROUGE metrics are 

presented in Table 4. It shows that our proposed 

system can get higher ROUGE scores, i.e., better 

content quality. In our system, we split the sen-

tence set into different topic-biased parts, and the 

importance scores of sentences in the target pa-

per and reference papers are learned differently. 

So the obtained importance scores of the sen-

tences are more reliable.  

The global optimization framework considers 

the extraction of both the previous work part and 

the own work part. We can see the importance of 

the own work part by comparing the results of 

the methods with or without considering the own 

work part. MEAD, LexRank and our method all 

get a significant improvement after considering 

the own work part by extracting sentences from 

the target paper. The results also prove our as-

sumption about the related work section structure. 

Figure 3 presents the fluctuation of ROUGE 

scores when tuning the parameters λ1, λ2 and λ3. 

We can see our method generally performs better 

than the baselines. All the three parts in the ob-

jective function are useful to generate related 

work sections with good quality. 

The average scores rated by human judges for 

each method are showed in Table 5. We can see 

that the related work sections generated by our 

system are more related to the target papers. 

Moreover, because of the good structure of our 

generated related work sections, our generated 

related work sections are considered more reada-

ble and more useful for the author to prepare the 

final related work sections. 

T-test results show that the performance im-

provements of our method over baselines are 

statistically significant on both automatic and 

manual evaluations. Most of p-values for t-test 

are far smaller than 0.01. 

Overall, the results indicate that our method 

can generate much better related work sections 
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than the baselines on both automatic and human 

evaluations. 

Table 6 shows the comparison results between 

ARWG and RWGOF. We can see ARWG per-

forms better than RWGOF. It proves that the 

SVR models can better estimate the importance 

scores of the sentences. For the SVR models are 

trained from the large dataset, the sentence 

scores predicted by the SVR models can be more 

reliable to be used in the global optimization 

framework. 

6 Conclusion and Future Work 

This paper proposes a novel system called 

ARWG to generate related work sections for ac-

ademic papers. It first exploits a PLSA model to 

split the sentence set of the given papers into dif-

ferent topic-biased parts, and then applies regres-

sion models to learn the importance scores of the 

sentences. At last an optimization framework is 

proposed to generate the related work section. 

Evaluation results show that our system can gen-

erate much better related work sections than the 

baseline methods. 

In future work, we will make use of citation 

sentences to improve our system. Citation sen-

tences are the sentences that contains an explicit 

reference to another paper and they usually high-

light the most important aspects of the cited pa-

pers. So citation sentences are likely to contain 

important and rich information for generating 

related work sections. 
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Abstract

There are several NLP systems whose ac-
curacy depends crucially on finding mis-
spellings fast. However, the classical ap-
proach is based on a quadratic time algo-
rithm with 80% coverage. We present a
novel algorithm for misspelling detection,
which runs in constant time and improves
the coverage to more than 96%. We use
this algorithm together with a cross docu-
ment coreference system in order to find
proper name misspellings. The experi-
ments confirmed significant improvement
over the state of the art.

1 Introduction

The problem of finding the misspelled words in a
corpus is an important issue for many NLP sys-
tems which have to process large collections of
text documents, like news or tweets corpora, dig-
italized libraries etc. Any accurate systems, such
as the ones developed for cross document corefer-
ence, text similarity, semantic search or digital hu-
manities, should be able to handle the misspellings
in corpora. However, the issue is not easy and
the required processing time, memory or the de-
pendence on external resources grow fast with the
size of the analyzed corpus; consequently, most of
the existing algorithms are inefficient. In this pa-
per, we present a novel algorithm for misspelling
detection which overcomes the drawbacks of the
previous approaches and we show that this algo-
rithm is instrumental in improving the state of the
art of a cross document coreference system.

Many spelling errors in a corpus are acciden-
tal and usually just one or two letters in a word
are affected, like existnece vs. the dictionary form
existence. Such misspellings are rather a unique

phenomenon occurring randomly in a text. For an
automatic speller which has access to a dictionary,
finding and compiling a list of correct candidates
for the misspelled words like the one above is not
very difficult. However, not all misspellings are in
this category. To begin with, proper nouns, espe-
cially foreign proper names, are not present in the
dictionary and their misspelling may affect more
than one or two characters. Moreover, the mis-
spelling of proper names may not be random, for
example there might be different spellings of the
same Chinese or Russian name in English, the in-
correct ones occurring with some frequency. Also,
especially if the corpus contains documents writ-
ten by non native speakers, the number of char-
acters varying between the correct and the actual
written form may be more than two. In this case,
finding and compiling the list of correct candidates
is computationally challenging for traditional al-
gorithms, as the distance between the source string
and the words in the candidates list is high.

The Levenshtein distance has been used to com-
pile a list of correct form candidates for a mis-
spelled word. The Levenshtein distance between
two strings counts the number of changes needed
to transform one string into the other, where a
change is one of the basic edit operations: dele-
tion, insertion, substitution of a character and the
transposition of two characters. The Edit Dis-
tance algorithm, (ED) computes the similarity be-
tween two strings according to the Levenshtein
distance. Most of the random misspellings which
are produced by a native speaker are within one
or maximum two basic edit operations (Damerau,
1964). For this reason the ED algorithm is the
most common way to detect and correct the mis-
spellings. However, there is a major inconve-
nience associated with the use of ED, namely, ED
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runs in quadratic time considering the length of
the strings, O(n2). The computation time for more
than a few thousands pairs is up to several tens of
seconds, which is impracticably large for most of
large scale applications. By comparison, the num-
ber of proper names occurring in a medium sized
English news corpus is around 200, 000, which
means that there are some 200, 000, 000 pairs.

In order to cope with the need for a lower com-
putation time, on the basis of ED, a series of algo-
rithms have been developed that run in linear time
(Navaro 2001). Unfortunately, this improvement
is not enough for practical applications which in-
volve a large amount of data coming from large
corpora. The reason is two-fold: firstly, the linear
time is still too slow (Mihov and Schulz, 2004)
and secondly, the required memory depends both
on the strings’ length and on the number of differ-
ent characters between the source string and the
correct word, and may well exceed several GBs.
Another solution is to index the corpus using struc-
tures like trie trees, or large finite state automata.
However, this solution may require large amounts
of memory and is inefficient when the number of
characters that differ between the source string and
the candidate words is more than two characters
(Boytsov, 2011).

We focus specifically on misspellings for which
there is no dictionary containing the correct form
and/or for which the Levenshtein distance to the
correct word may be higher than two characters.
For this purpose, we developed a novel approach
to misspelling correction based on a non indexing
algorithm, which we call the prime mapping algo-
rithm, PM. PM runs in constant time, O(1), with
insignificant memory consumption. The running
time of the PM algorithm does not depend either
on the strings’ length or on the number of different
characters between the source string and the can-
didate word. It requires a static amount of mem-
ory, ranging from a few KBs to a maximum of a
few MBs, irrespective of the size of the corpus or
the number of pairs for which the misspelling rela-
tionship is tested. We run a series of experiments
using PM on various corpora in English and Ital-
ian. The results confirm that PM is practical for
large corpora. It successfully finds the candidate
words for misspellings even for large Levenshtein
distances, being more than 30 times faster than a
linear algorithm, and several hundred times faster
than ED. The running time difference is due to the
fact that PM maps the strings into numbers and

performs only one arithmetic operation in order to
decide whether the two strings may be in a mis-
spelling relationship. Instead of a quadratic num-
ber of characters comparisons, PM executes only
one arithmetic operation with integers.

We also report here the results obtained when
using PM inside a cross document coreference
system for proper nouns. Correcting a proper
name misspelling is actually a more complex task
than correcting a misspelled common word. Some
misspellings may not be random and in order to
cope with repetitive misspellings, as the ones re-
sulting from the transliteration of foreign names,
the PM is combined with a statistical learning al-
gorithm which estimates the probability of a cer-
tain type of misspelling considering the surround-
ing characters in the source string. Unlike with
common words, where a misspelling is obvious,
in the case of proper names, John vs. Jon for ex-
ample, it is unclear whether we are looking at two
different names or a misspelling. The string sim-
ilarity evidence is combined with contextual evi-
dence provided by a CDC system to disambiguate.

To evaluate the PM algorithm we use publicly
available misspelling annotated corpora contain-
ing documents created by both native and non-
native speakers. The PM within a CDC system for
proper names is evaluated using CRIPCO (Ben-
tivogli et al., 2008). The experiments confirm that
PM is a competitive algorithm and that the CDC
system gains in accuracy by using a module of
misspelling correction.

The rest of the paper is organized as follows. In
Section 2 we review the relevant literature. In Sec-
tion 3 we introduce the PM algorithm and com-
pare it against other algorithms. In Section 4 we
present the CDC system with misspelling correc-
tion for proper names. In Section 5 we present the
results obtained on English and Italian corpora.

2 Related Work

In a seminal paper (Damerau, 1964) introduced
the ED algorithm. The rationale for this algorithm
was the empirical observation that about 80% of
the misspelled words produced by native speakers
have distance 1 to the correct word. ED cannot be
extended to increase the accuracy, because for k =
2, k being the maximal admissible distance to the
correct word, the running time is too high. Most of
the techniques developed further use ED together
with indexing methods and/or parallel processing.

In (San Segundo et al., 2001) an M-best can-
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didate HMM recognizer for 10,000 Spanish city
names is built for speech documents. An N-gram
language model is incorporated to minimize the
search spaces. A 90% recognition rate is reported.
The model is not easily generalizable to the situ-
ation in which the names are unknown - as it is
the case with the personal proper names in a large
corpus. The N-gram model is memory demanding
and for 200,000 different names the dimension of
the requested memory is impracticably big.

The problem related to personal proper names
was discussed in (Allan and Raghavan, 2002).
However, the paper addresses only the problem of
clustering together the names which ”sound alike”
and no cross document coreference check was car-
ried out. The technique to find similar names
is based on a noisy channel model. The condi-
tional probabilities for each two names to be sim-
ilarly spelled are computed. The time complex-
ity is quadratic, which renders this technique un-
feasible for big data. In fact, the results are re-
ported for a 100 word set. A different approach
comes from considering search queries databases
(Bassil and Alwani, 2012). These techniques are
similar to the model based on the noisy channel,
as they compute the conditional probabilities of
misspellings based on their frequencies in similar
queries. Unfortunately, large numbers of queries
for proper names are not available. A similar tech-
nique, but using morphological features, was pre-
sented in (Veronis, 1988). The method can man-
age complex combinations of typographical and
phonographic errors.

It has been noted in many works dedicated to
error correction, see among others (Mihov and
Schulz, 2004), that the ED algorithm is imprac-
ticably slow when the number of pairs is large. A
solution is to build a large tries tree. While this
solution improves the searching time drastically,
the memory consumption may be large. Automata
indexing was used in (Oflazer, 1996). While the
memory consumption is much less than for the
tries tree approaches, it is still high. For Turk-
ish, the author reported 28,825 states and 118,352
transitions labeled with surface symbols. The re-
covery error rate is 80%. In (Boytsov, 2011) a
review of indexing methods is given. Testing on
5,000 strings for k=1,2,3 is reported and the paper
shows the problem the systems run into for bigger
values of k. In (Huldén, 2009) a solution employ-
ing approximations via an A* strategy with finite
automata is presented. The method is much faster

for k bigger than the one presented in (Chodorow
and Leacock, 2000). However, the usage of A*
for proper names may be less accurate than the
one reported in the paper, because unlike the com-
mon words in a given language, the names may
have unpredictable forms, especially the foreign
names. The results reported show how the time
and memory vary for indexing methods according
to the length of the words for k=1,2,3.

A method that uses mapping from strings to
numbers is presented in (Reynaert, 2004). This
method uses sum of exponentials. The value of
the exponential was empirically found. However,
the mapping is only approximative. Our mapping
is precise and does not use exponential operations
which are time consuming.

The study in (Navarro, 2001) is focused on non
indexing approximate string search methods, in
particular on the simple ED distance. The non-
indexing methods may reach linear running time,
but it is not always the case that they are scalable
to big data. In (Nagata et al., 2006) a study on the
type of errors produced by non-native speakers of
English is carried out, but the long distance mis-
spellings are not considered.

3 Prime Mapping Misspeling Algorithm

The algorithms based on the Levenshtein dis-
tance use the dynamic programming technique to
build a table of character to character comparisons.
We present here a novel approach to misspelling
which does not build this table, skipping the need
to compare characters. In a nutshell, the prime
mapping algorithm, PM, replaces the characters
compare operations to a unique arithmetic oper-
ation.This can be done by associating to any letter
of the alphabet a unique prime number. For ex-
ample we can associate 2 to a, 3 to b, 5 to c ...
97 to z. Any string will be mapped into a unique
number which is the product of the prime numbers
corresponding to its letters. For example the name
abba is mapped to 2 · 3 · 3 · 2 = 36. By computing
the ratio between any two words we can detect the
different letters with just one operation. For exam-
ple, the difference between abba and aba is 36/12
= 3, which corresponds uniquely to b because the
product/ratio of prime numbers is unique.

Unlike the ED algorithm, the prime mapping
does not find the number of edit operations needed
to transform one string into another. In fact, two
words that have just one letter in the mutual dif-
ference set may be quite distinct: all the strings
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aba, aab, baa differ by one letter when compared
with abba. In order to be in a misspelling relation-
ship, the two strings should also have a common
part, like prefix or middle, or suffix. The com-
plete Prime Mapping (PM) algorithm consists of
two successive steps: (1) find all the candidate
words that differ from the target word by at most
k characters and (2) check weather the target word
and the candidate word have a common part, suf-
fix, prefix or middle part. Both steps above are
executed in constant time, therefore they do not
depend either on the length of the strings or on k,
the maximal number of different characters. Nor-
mally, k = 3, because the probability of a mis-
spelled word having more than three distinct let-
ters is insignificant, but unlike in the case of ED,
the choice of k has no influence on the running
time. The first step takes an integer ratio and a
hash table key check, both being O(1). The sec-
ond step checks if the first k letters at the begin-
ning or at the end of the word are the same, and it
requires 2k character comparisons, which is also
an O(1) process, as k is fixed. The pseudo code
and detailed description of the PM algorithm are
given below.

Algorithm 1 Prime Mapping
Require: charList wordsList, primeList, k
Ensure: misspList
1: misspList← ∅
2: foreach α in charList: p(α)← pi, pi in primeList
3: foreach w in wordsList: p(w)←∏ p(α) , α in w
4: primeKTable←

(
n
k

)
of prime arithmetics

5: for w in wordsList do
6: for w’ in wordsList, w 6= w’ do
7: r← p(w)

p(w′)
8: if r in primeKTable then
9: if commonPart (w, w’) 6= ∅ then

10: misspList←misspList + (w, w’)
11: end if
12: end if
13: end for
14: end for

map letters to prime numbers. A helpful way
to assign primes to letters is according to their fre-
quency; on average, the numbers corresponding to
names are smaller and the operation gets less time.

compute a hash table with prime arithmetics
of K primes. In the hash table primeKTable we
record all the combinations that can result from di-
viding two products which have less than k primes:
1/pi, pi, pi/pj etc. If the ratio between two map-
pings is in the hash table, then the corresponding
words have all the letters in common, except for
at most k. The number of all the combination is

k letter difference #combination Memory
1 60 480B
2 435 8K
5 142,506 0.9MB
6 593, 775 3.8MB
10 30, 045, 015 180MB

Table 1: The PM algorithm memory needs

(n
k

)
. The memory consumption for different val-

ues for k is given in Table 1. The figures compare
extremely favorably with the ones of ED based ap-
proaches (gigs magnitude) . (line 7-8)

find misspelling candidates by ratio. By com-
puting the ratio and by checking the hash table, we
found the pairs which use the same letters, except
for at most k. The procedure commonpart checks
whether the two strings also have a common part
by looking at the start and end k. If this is the case,
the pair is in a misspelling relationship.

Figure 1: PM vs. the fastest ED type algorithm

The PM is much faster than ED. The fastest
variant of ED, which does not compare strings
having length difference bigger than 1, theoret-
ically finds only 80% of the misspellings. In
practice, only around 60% of the misspellings are
found because of proper names and words mis-
spelled by non-native speakers. The PM algorithm
considers all possible pairs, finds more than 99%
of misspellings and is 35 times faster. To obtain
the same coverage, the ED algorithm must run for
more than 100 days. The time comparison for mil-
lions of pairs is plotted in Figure 1. The experi-
ments were performed on an i5, 2.8 GHz proces-
sor.

There is an immediate improvement we can
bring to the basic variant of PM. The figures re-
ported above are obtained by doing the whole set
of possible pairs. By taking into account the fact
that two words differing by k+ 1 letters cannot be
k similar, we can organize the number represent-
ing the names into an array which reduced drasti-
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cally the number of comparisons. For example, all
the words containing the letters x, y, z cannot be
k = 2 similar with the words not containing any of
these letters. By dividing the mapping of a word to
the primes associated with the letters of an k-gram,
we know if the words containing the k-gram can
be misspelling candidates with at most k differ-
ence, and there is no more need to carry out all the
ratios. We arrange the mappings of all words into
an array such that on the first indexes we have the
words containing the less frequent k + 1 gram, on
the next indexes we have the words containing the
second less frequent k+1 gram and do not contain
the first k+ 1 gram, on the next indexes the words
containing the third less frequent k + 1 gram and
do not contain the first two k+1 gram, etc. In this
way, even the most frequent k + 1 gram has only
a few words assigned and consequently the num-
ber of direct comparisons is reduced to the mini-
mum. The mapping corresponding to a k+1 gram
are ordered in this array according to the length of
the words. The number of trigrams is theoretically
large, the k + 1 power of the size of the alpha-
bet. However, the number of actually occurring
k-trigrams is only a small fraction of it. For exam-
ple, for k = 2, the number of trigrams is a few hun-
dred, out of the 2, 700 possible ones. PM2gram
runs in almost a quarter of the time needed by the
basic PM. For the same set of names we obtained
the results reported in Table 2. The last column
indicates how many times the algorithm is slower
than the PM in its basic form.

algorithm time coverage times slower
basicED 132 days 99% 310
ED1 14 days 80% 35
PM 9 hours 99% 1
PM2gram 2 hours 42min 96% 0.26

Table 2: ED variants versus MP

4 Correcting Proper Names Misspellings

In this section we focus on a class of words which
do not occur in a priorly given dictionary and for
which the misspelled variants may not be random.
Proper names are representative for this class. For
example, the same Russian name occurs in corpus
as Berezovski, Berezovsky or Berezovschi because
of inaccurate transliteration. By convention, we
consider the most frequent form as the canonical
one, and all the other forms as misspelled variants.

Many times, the difference between a canonical
form and a misspelled variant follows a pattern: a

Pattern Context Example
dj→dji ovic djiukanovic djukanovic
k→kh aler kaler khaler, taler thaler
ki→ky ovsk berezovski berezovsky
n→ng chan chan-hee chang-hee
dl→del abd abdelkarim abdlkrim

Table 3: Name misspellings patterns

particular group of letters substitutes another one
in the context created by the other characters in
the name. A misspelling pattern specifies the con-
text, as prefix or suffix of a string, where a particu-
lar group of characters is a misspelling of another.
See Table 3 for examples of such patterns.

Finding and learning such patterns, along with
their probability of indicating a true misspelling,
bring an important gain to CDC systems both in
running time and in alleviating the data-sparseness
problem. The CDC system computes the prob-
ability of coreference for two mentions t and t’
using a similarity metrics into a vectorial space,
where vectors are made out of contextual features
occurring with t and t’ respectively (Grishman,
1994). However, the information extracted from
documents is often too sparse to decide on coref-
erence (Popescu, 2009). Coreference has a global
effect, as the CDC systems generally improve the
coverage creating new vectors by interpolating the
information resulting from the documents which
were coreferred (Hastie et al., 2005). This infor-
mation is used to find further coreferences that no
single pair of documents would allow. Thus, miss-
ing a coreference pair may result in losing the pos-
sibility of realizing further coreferences. However,
for two mentions matching a misspelling pattern
which is highly accurate, the threshold for contex-
tual evidence is lowered. Thus, correcting a mis-
spelling is not beneficial for a single mention only,
but for the accuracy of the whole.

The strategy we adopt for finding patterns is
to work in a bootstrapping manner, enlarging the
valid patterns list while maintaining a high accu-
racy of the coreference, over 90%. Initially, we
start with an empty base of patterns. Considering
only the very high precision threshold for coref-
erence, above 98% certainty, we obtain a set of
misspelling pairs. This set is used to extract pat-
terns of misspellings via a parameter estimation
found using the EM-algorithm. The pattern is con-
sidered valid only if it also has more than a given
number of occurrences. The recursion of the pre-
vious steps is carried out by lowering with an ε
the threshold for accuracy of coreference for pat-
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tern candidates. The details and the pseudo code
are given below.

Algorithm 2 Misspelling Pattern Extraction
Require: thCoref , ε, minO, thAcc
Require: thCDC
Ensure: pattList
1: pattList, candPattList← ∅
2: while there is a pair (t, t’) to test for coreference do
3: if (t, t’) matches p, p in pattList then
4: prob← corefProb(p)
5: else
6: use PM algorithm on pair (t, t’)
7: prob← thCoref
8: end if
9: if pair (t, t’) coref with prob then

10: candPattList← candPattList + (t, t’)
11: end if
12: extractPatterns from candPattList
13: for cp in new extracted patterns do
14: if #cp>minO and corefProb(cp)>thAcc then
15: pattList← pattList + (t, t’)
16: end if
17: end for
18: if prob>thCDC then
19: corefer (t, t’)
20: end if
21: end while
22: thCoref ← thCoref - ε
23: goto line 2

1. Compile a list of misspelling candidates
For each source string, t, try to match t against the
list of patterns (initially empty). If there is a pat-
tern matching (t, t’) then their prior probability of
coreference is the probability associated with that
pattern (line 4).

2. CDC coreference evidence For each pair (t
,t’) in the canonical candidates list use the CDC
system to compute the probability of coreference
between t and t’. If the probability of coreference
of t and t’ is higher than thCoref , the default
value is 98%, then consider t as a misspelling of t’
and put (t, t’) in a candidate pattern list (line 10).

3. Extract misspelling patterns Find patterns
in the candidate pattern list. Consider only pat-
terns with more than minO occurrences, whose
default value is 10, and which have the probability
of coreference higher than thAcc, whose default
value is 90% (line 15).

4. CDC and pattern evidence For each (t,t’)
pair matching a pattern and the CDC probabil-
ity of coreference more then thCDC, whose de-
fault value is 80%, then corefer t and t’ (line
21). The fact that the pair (t,t’) matches a pattern
of misspelling is considered supporting evidence
for coreference and in this way it plays a direct
role in enhancing the system coverage. Decrease

thCoref by ε,whose default is value 0.5, and re-
peat the process of finding patterns (goto line 2).

To extract the pattern from a given list of pairs,
procedure extractPatterns at line 12 above, we
generate all the suffixes and prefixes of the strings.
We compute the probability that a group of char-
acters represents a spelling error, given a certain
suffix and/or prefix. We use the EM algorithm to
compute these probabilities. For a pair (P, S) of
a prefix and a suffix, the tuples (p(P)=p, p(S)=s,
π) are the quantities to be estimated via EM, with
π being the coreference probability. A corefer-
ence event is directly observable, without know-
ing, however, which prefix or suffix contribute to
the coreference. The EM equations are given be-
low, where X is the observed data; Z are the hid-
den variable, p and s respectively; θ the parame-
ters (p,s, π); Q(θ,θ(t)) the expected log likelihood
at iteration t.

E− step µ
(t)
i

µ
(t)
i = E[zi|xi, θ(t)]

= p(xi|zi,θ
(t)) p(zi=P |θ(t))

p(xi|θ(t))

= π(t)[p(t)]xi [(1−p(t)](1−xi)

π(t)[p(t)]xi [(1−p(t)](1−xi)+(1−π(t))[s(t)]xi [(1−s(t)](1−xi)

(1)
M− step θ(t+1)

∂Q(θ|θt)

∂π
= 0 π(t+1) =

∑
i
µ
(t)
i

n

∂Q(θ|θt)

∂p
= 0 p(t+1) =

∑
i
µ
(t)
i
xi∑

i
µ
(t)
i

∂Q(θ|θt)

∂s
= 0 s(t+1) =

∑
i
(1−µ(t)

i
)xi∑

i
(1−µ(t)

i
)

(2)

5 Experiments

We performed a set of experiments on different
corpora in order to evaluate: (1) the performances
of the PM algorithm for misspelling detection, (2)
the accuracy of proper name misspelling pattern
acquisition from large corpora, and (3) the im-
provements of a CDC system, employing a cor-
rection module for proper name misspellings.

In Section 5.1 the accuracy of the PM algorithm
is tested on various corpora containing annotated
misspellings of English words. In particular, we
were interested to see the results when the edit dis-
tance between the misspelled pair is bigger than 3,
because handling bigger values for k is crucial for
finding misspelling errors produced by non-native
speakers. The evaluation is directly relevant for
the correction of the spelling of foreign names.
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In Section 5.2 the proper name misspelling pat-
terns were extracted from two large news cor-
pora. One corpus is part of the English Gigawords,
LDC2009T13 (Parker et al., 2009) and the sec-
ond corpus is Adige500k in Italian (Magnini et al.,
2006). We use a Named Entity Recognizer which
has an accuracy above 90% for proper names. We
evaluated the accuracy of the patterns by random
sampling.

In Section 5.3 the accuracy of the CDC system
with the correction module for proper name mis-
spellings was tested against a gold standard.

5.1 PM Evaluation

We consider the following publicly available En-
glish corpora containing the annotation of the mis-
spelled words: Birkbeck, Aspell, Holbrook, Wiki-
pidia. Birkbeck is a heterogeneous collection of
documents, so in the experiments below we re-
fer to each document separately. In particular we
distinguish between misspellings of native speak-
ers vs. misspelling of non-native speakers. Fig-
ure 2 shows that there are two types of corpora.
For the first type, the misspellings found within
two characters are between 80% and 100% of
the whole number of misspellings. For the sec-
ond type, less than 50% of the misspellings are
within two characters.The second category is rep-
resented by the misspellings of non native speak-
ers. The misspellings are far from the correct
forms and they represent chunks of phonetically
similar phonemes, like boiz vs. boys. The situa-
tion of the foreign name misspellings is likely to
be similar to the misspellings found in the sec-
ond type of corpora. For those cases, handling
a k value bigger than 2 is crucial. Not only the

Figure 2: k = 1, 2

non-indexing methods, but also indexing ones are
rather inefficient for k values bigger than 2 for
large corpora. The PM algorithm does not have
this drawback, and we tested the coverage of the
errors we found for values of k ranging from 3 to
10. In Figure 3 we plot the distributions for the

Figure 3: Foreign Misspellings

corpora which are problematic for k=2. Values of
k are plotted on the OX axis, and the percentage of
the misspellings within the respective k on the OY
axis. The results showed PM is also able to find
the phonemically similar misspellings. We can see
that for k bigger than 9 the number of misspellings
is not significant.

The PM algorithm performed very well, being
able to find the misspellings even for large k val-
ues. There were 47, 837 words in Aspell, Holbrrok
and Wikipedia, and 30, 671 in Birkbeck, and PM
found all the misspelling pairs in a running time of
25 minutes. This is a very competitive time, even
for indexing methods. For k above 8 the access to
the hash table containing the prime combinations
was slower, but not significantly so.

5.2 Pattern Extraction Evaluation

We extracted the set of names using a NER from
the two corpora, LDC2009T13 and Adige500k.
The set of proper names is rather large in both cor-
pora - 160, 869 names from the English corpus and
185, 508 from the Italian corpus. Apparently, the
quasi-similar names, which are considered as mis-
spelled name candidates, is very high. In Figure
4 we plot this data. The English Cand and Italian
Cand are absolute values, while the English True
and Italian True represent percentages. For exam-
ple, a name of length 5 is likely to have around 23
misspelling candidates, but only 17% of them are
likely to be true misspellings, the rest being differ-
ent names.

Figure 4: Candidates vs. True Misspellings
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The numbers are estimated considering samples
having the size between 30 and 50, for each name
length. The percentages change rapidly with the
length of the string. For names with the length
bigger than 11, the probability that a misspelling
candidate is a true misspelling is more than 98%.
This fact suggests a strategy for pattern extrac-
tion: start from the higher name length towards the
lower length names. The patterns found by the al-
gorithm described in Section 4 have between 900
and 20 occurrences. There are 12 patterns having
more than 400 occurrences, 20 having between 20
and 50 occurrences, see Fig. 5.

Figure 5: Distribution of the patterns:

5.3 CDC and Misspelling correction

The CRIPCO corpus (Bentivogli et al., 2008)
is a gold standard for CDC in Italian, contain-
ing pieces of news extracted from Adige500k.
There are 107 names, the majority being Ital-
ian names. We scrambled the names to cre-
ate misspelling candidates. For example the
name leonardo was scrambled like teonardo,
lionaldo, loenarod etc. We considered the top 15
frequency letters and maximum 4 letters for each
scrambling. We randomly selected 70% of the
original CRIPCO making no modifications, and
called this corpus CRwCR. 30% of the original
documents were assigned to the invented pseudo-
names, and we called this corpus CRwSC (cor-
rect documents with scrambled names). From
Adige500k we randomly chose 20, 000 documents
and assigned them to the scrambled names as
well, calling this corpus NCRwSC. From these
pieces we created a new corpus: 70% of the initial
CRIPCO documents with the original names, 30%
of the CRIPCO documents with scrambled names
and 20, 000 documents with the same scrambled
names. For the names occurring in CRwCR, the
scrambled names are valid name misspellings in
the CRwSC corpus, and invalid in NCRwSC.

As expected, the PM algorithm found all the

Figure 6: Proper Names CRIPCO Evaluation

misspelling candidates and some others as well.
We let the threshold confidence of coreference to
vary from 90% to 98%. The number in Figure
6 refers to the precision and recall for the name
misspellings in the CRIPCO corpus created via
random scrambling. We were also interested to
see how the pattern finding procedure works, but
scrambling randomly produced too many contexts.
Therefore, we chose to modify the names in a non
random way, by replacing the final o to ino, ex.
paolo goes to paolino, and modifying one letter in
the word for half of the occurrences, ex. paorino.
The idea is that ino is a very common suffix for
names in Italian. The system was able to learn the
pseudo alternatives created in the context ino. The
noise introduced was relatively low, see Fig. 6.

6 Conclusion and Further Research

In this paper we described a system able to correct
misspellings, including proper name misspellings,
fast and accurately. The algorithm introduced,
PM, overcomes the time/memory limitations of
the approaches based on the edit distance.

The system is built on a novel string compare
algorithm which runs in constant time indepen-
dently of the length of the names or the number of
different letters allowed, with no auxiliary mem-
ory request. As such, the algorithm is much faster
than any other non-indexing algorithms. Because
it is independent of k, it can be used even for large
k, where even the indexing methods have limita-
tions. We also used an EM based technique to find
misspelling patterns. The results obtained are very
accurate.

The system makes a first selection of the docu-
ments, drastically reducing the human work load.
Another line of future research is to use the PM
algorithm in other NLP tasks, where finding the
pairs having some particular elements in common
is necessary: for example, comparing parsing trees
or dependency trees. We think that PM can be
used in other NLP tasks as well and we hope the
community can take advantage of it.
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Abstract

Learning from errors is a crucial aspect of
improving expertise. Based on this no-
tion, we discuss a robust statistical frame-
work for analysing the impact of different
error types on machine translation (MT)
output quality. Our approach is based on
linear mixed-effects models, which allow
the analysis of error-annotated MT out-
put taking into account the variability in-
herent to the specific experimental setting
from which the empirical observations are
drawn. Our experiments are carried out
on different language pairs involving Chi-
nese, Arabic and Russian as target lan-
guages. Interesting findings are reported,
concerning the impact of different error
types both at the level of human perception
of quality and with respect to performance
results measured with automatic metrics.

1 Introduction

The dominant statistical approach to machine
translation (MT) is based on learning from large
amounts of parallel data and tuning the result-
ing models on reference-based metrics that can
be computed automatically, such as BLEU (Pap-
ineni et al., 2001), METEOR (Banerjee and Lavie,
2005), TER (Snover et al., 2006), GTM (Turian
et al., 2003). Despite the steady progress in the
last two decades, especially for few well resourced
translation directions having English as target lan-
guage, this way to approach the problem is quickly
reaching a performance plateau. One reason is
that parallel data are a source of reliable informa-
tion but, alone, limit systems knowledge to ob-
served positive examples (i.e. how a sentence
should be translated) without explicitly modelling
any notion of error (i.e. how a sentence should
not be translated). Another reason is that, as a

development and evaluation criterion, automatic
metrics provide a holistic view of systems’ be-
haviour without identifying the specific issues of a
translation. Indeed, the global scores returned by
MT evaluation metrics depend on comparisons be-
tween translation hypotheses and reference trans-
lations, where the causes and the nature of the dif-
ferences between them are not identified.

To cope with these issues and define system
improvement priorities, the focus of MT evalua-
tion research is gradually shifting towards profil-
ing systems’ behaviour with respect to various ty-
pologies of errors (Vilar et al., 2006; Popović and
Ney, 2011; Farrús et al., 2012, inter alia). This
shift has enriched the traditional MT evaluation
framework with a new element, that is the actual
errors done by a system. Until now, most of the
research has focused on the relationship (i.e. the
correlation) between two elements of the frame-
work: humans and automatic evaluation metrics.
As a new element of the framework, which be-
comes a sort of “evaluation triangle”, the analy-
sis of error annotations opens interesting research
problems related to the relationships between: i)
error types and human perception of MT quality
and ii) error types and the sensitivity of automatic
metrics.

Besides motivating further investigation on met-
rics featuring high correlation with human judge-
ments (a well-established MT research sub-field,
which is out of the scope of this paper), connecting
the vertices of this triangle raises new challenging
questions such as:
(1) Which types of MT errors have the high-
est impact on human perception of translation
quality? Surprisingly, little prior work focused
on this side of the triangle. Error annotations
have been considered to highlight strengths and
weaknesses of MT engines or to investigate the
influence of different error types on post-editors’
work. However, the direct connection between er-
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rors and users’ preferences has been only partially
understood, mainly from a descriptive standpoint
and through rudimentary techniques unsuitable to
draw clear-cut conclusions or reliable inferences.
(2) To which types of errors are different MT
evaluation metrics more sensitive? This side of
the triangle has been even less explored. For in-
stance, little has been done to understand which
automatic metric is more suitable to assess sys-
tem improvements with respect to a specific issue
(e.g. word order or morphology) or to shed light
on the joint impact of different error types on per-
formance results calculated with different metrics.

To answer these questions, we propose a ro-
bust statistical framework to analyse the im-
pact of different error types, alone and in com-
bination, both on human perception of quality and
on MT evaluation metrics’ results. Our analysis
is carried out by employing linear mixed-effects
models, a generalization of linear regression mod-
els suited to model responses with fixed and ran-
dom effects. Experiments are performed on data
covering three translation directions (English to
Chinese, Arabic and Russian). For each direc-
tion, two automatic translations were collected for
around 400 sentences and were manually evalu-
ated by expert translators through absolute quality
judgements and error annotation.

Building on the advantages offered by linear
mixed-effects models, our main contributions in-
clude:

• A rigorous method, novel to MT error anal-
ysis research, to relate MT issues to human
preferences and MT metrics’ results;

• The application of such method to three
translation directions having English as
source and different languages as target;

• A number of findings, specific to each lan-
guage direction, which are out of the reach of
the few simpler methods proposed so far.

Overall, our study has clear practical implica-
tions for MT systems’ development and evalu-
ation. Indeed, the proposed statistical analysis
framework represents an ideal instrument to: i)
identify translation issues having the highest im-
pact on human perception of quality and ii) choose
the most appropriate evaluation metric to measure
progress towards their solution.

2 Related Work

Error analysis, as a way to identify systems’ weak-
nesses and define priorities for their improvement,
is gaining increasing interest in the MT com-
munity (Popović and Ney, 2011; Popovic et al.,
2013). Along this direction, the initial efforts to
develop error taxonomies covering different levels
of granularity (Flanagan, 1994; Vilar et al., 2006;
Farrús Cabeceran et al., 2010; Stymne and Ahren-
berg, 2012; Lommel et al., 2014) have been re-
cently complemented by investigations on how to
exploit error annotations for diagnostic purposes.
Error annotations of sentences produced by differ-
ent MT systems, in different target languages and
domains, have been used to determine the qual-
ity of translations according to the amount of er-
rors encountered (Popovic et al., 2013), to design
new automatic metrics that take into considera-
tion human annotations (Popovic, 2012; Bojar et
al., 2013), and to train classifiers that can auto-
matic identify fine-grained errors in the MT output
(Popović and Ney, 2011). The impact of edit op-
erations on post-editors’ productivity, which im-
plicitly connects the severity of different errors to
human activity, has also been studied (Temnikova,
2010; O’Brien, 2011; Blain et al., 2011), but
few attempts have been made to explicitly model
how fine-grained errors impact on human quality
judgements and automatic metrics.

Recently, the relation between different error
types, their frequency, and human quality judge-
ments has been investigated from a descriptive
standpoint in (Lommel et al., 2014; Popović et al.,
2014). In both works, however, the underlying as-
sumption that the most frequent error has also the
largest impact on quality perception is not verified
(in general and, least of all, across language pairs,
domains, MT systems and post-editors). Another
limitation of the proposed (univariate) analysis lies
in the fact that it exclusively focuses on error types
taken in isolation. This simplification excludes the
possibility that humans, when assigning a global
quality score to a translation, may be influenced
not only by the error types but also by their inter-
action. The implications of such possibility call
for a multivariate analysis capable to model also
error interactions.

In (Kirchhoff et al., 2013), a statistically-
grounded approach based on conjoint analysis has
been used to investigate users’ reactions to dif-
ferent types of translation errors. According to
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their results, word order is the most dispreferred
error type, and the count of the errors in a sen-
tence is not a good predictor of users’ prefer-
ences. Though more sophisticated than methods
based on rough error counts, the conjoint model
is bound to several constraints that limit its us-
ability. In particular, the application of conjoint
analysis in this context requires to: i) operate with
semi-automatically created (hence artificial) data
instead of real MT output, ii) manually define dif-
ferent levels of severity for each error type (e.g.
high/medium/low), and iii) limit the number of er-
ror types considered to avoid the explosion of all
possible combinations. Finally, the conjoint anal-
ysis framework is not able to explicitly model vari-
ance in the translated sentences, the human anno-
tators, and the SMT systems used to translate the
source sentences. Our claim is that avoiding any
possible bias introduced by these factors should be
a priority in the analysis of empirical observations
in a given experimental setting.

So far, the relation between errors and auto-
matic metrics has been analysed by measuring the
correlation between single or total error frequen-
cies and automatic scores (Popović and Ney, 2011;
Farrús et al., 2012). Using two different error tax-
onomies, both works show that the sum of the er-
rors has a high correlation with BLEU and TER
scores. Similar to the aforementioned works ad-
dressing the impact of MT errors on human per-
ception, these studies disregard error interactions,
and their possible impact on automatic scores.

To overcome these issues, we propose a ro-
bust statistic analysis framework based on mixed-
effects models, which have been successfully ap-
plied to several NLP problems such as sentiment
analysis (Greene and Resnik, 2009), automatic
speech recognition (Goldwater et al., 2010), and
spoken language translation (Ruiz and Federico,
2014). Despite their effectiveness, the use of
mixed-effects models in the MT field is rather re-
cent and limited to the analysis of human post-
editions (Green et al., 2013; Läubli et al., 2013).
In both studies, the goal was to evaluate the im-
pact of post-editing on the quality and productivity
of human translation assuming an ANOVA mixed
model for a between-subject design, in which hu-
man translators either post-edited or translated the
same texts. Our scenario is rather different as we
employ mixed models to measure the influence of
different MT error types - expressed as continu-

ous fixed effects - on quality judgements and auto-
matic quality metrics. Mixed models, having the
capability to absorb random variability due to the
specific experimental set-up, provide a robust mul-
tivariate method to efficiently analyse the impor-
tance of error types.

Finally, differently from all previous works, our
analysis is run on language pairs having English
as source and languages distant from English (in
term of morphology and word-order) as target.

3 Mixed-effects Models

Mixed-effects models - or simply mixed models
- like any regression model, express the relation-
ship between a response variable and some co-
variates and/or contrast factors. They enhance
conventional models by complementing fixed ef-
fects with so-called random effects. Random ef-
fects are introduced to absorb random variability
inherent to the specific experimental setting from
which the observations are drawn. In general, ran-
dom effects correspond to covariates that are not -
or cannot be - exhaustively observed in an experi-
ment, e.g. the human annotators and the evaluated
systems. Hence, mixed models permit to elegantly
cope with experimental design aspects that hinder
the applicability of conventional regression mod-
els. These are, in particular, the use of repeated
and/or clustered observations that introduce corre-
lations in the response variable that clearly violate
the independence and homoscedasticity assump-
tions of conventional linear, ANOVA, and logis-
tic regression models. Significance testing with
mixed models is in general more powerful, i.e. less
prone to Type II Errors, and also permits to reduce
the chance of Type I Errors in within-subject de-
signs, which are prone to the “fallacy of language-
as-a-fixed-effect” (Clark, 1973).

Random effects can be directly associated to
the regression model parameters, as random in-
tercepts and random slopes, and have the same
form of the generic error component of the model,
i.e. normally distributed with zero mean and un-
known variance. As random effects introduce hid-
den variables, mixed models are trained with Ex-
pectation Maximization, while significance testing
is performed via likelihood-ratio (LR) tests.

In this work we employ mixed linear models to
measure the influence of different MT error types,
expressed as continuous fixed effects, on quality
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judgements or on automatic quality metrics.1

We illustrate mixed linear models (Baayen et
al., 2008) by referring to our analysis, which ad-
dresses the relationships between a quality metric
(y) and different types of errors (e.g. A, B, and
C)2 observed at the sentence level. For the sake of
simplicity, we assume to have balanced repeated
observations for one single crossed effect. That is,
we have i ∈ {1, . . . , I} MT systems (our groups)
each of which translated the same j ∈ {1, . . . , J}
test sentences. Our response variable yij - a nu-
meric quality score - is computed on each (sen-
tence, system) pair, and we aim to investigate its
relationship with error statistics available for each
MT output, namely Aij , Bij and Cij . A (possible)
linear mixed model for our study would be:

yij = β0 + β1 Aij + β2 Bij + β3 Cij + (1)

b0,i + b1,iAij + b2,iBij + b3,iCi + εij

The model is split into two lines on purpose. The
first line shows the fixed effect component, that is
intercept (β0) and slopes (β1, β2, β3) for each error
type. The second line specifies the random struc-
ture of the model, which includes random inter-
cept and slopes for each MT system and the resid-
ual error. Borrowing the notation from (Green
et al., 2013), we conveniently rewrite (1) in the
group-wise arranged matrix notation:

yi = xTi β + zTi bi + εi (2)

where yi is the J × 1 vector of responses, xi is the
J×p design matrix of covariates (including the in-
tercept) with fixed coefficients β ∈ Rp×1, z is the
random structure matrix defined by J × q covari-
ates with random coefficients bi ∈ Rq×1, and εi is
the vector of residuals (in our example, p = 4 and
q = 4). By packing together vectors and matrices
indexed over groups i, we can rewrite the model
in a general form (Baayen et al., 2008), which can
represent any possible crossed-effects and random
structures defined over them allowing, at the same
time, for a compact model specification:

y = XTβ + ZT b+ ε (3)

ε ∼ N (0, σ2I), b ∼ N (0, σ2Σ), b ⊥ ε
1Although mixed ordinal models (Tutz and Hennevogl,

1996) are in principle more appropriate to target quality
judgements, in our preliminary investigations mixed linear
models showed a significantly higher predictive power.

2Here, A, B and C represent three generic error classes.
Their actual number in a given experimental setting will de-
pend on the granularity of the reference error taxonomy.

where Σ is the relative variance-covariance q × q
matrix of the random effects (now q = 4I), σ2

is the variance of the per-observation term ε, the
symbol ⊥ denotes independence of random vari-
ables, andN indicates the multivariate normal dis-
tribution. While b, σ, and Σ are estimated via max-
imum likelihood, the single random intercept and
slope values for each group are calculated subse-
quently. They are referred to as Best Linear Un-
biased Predictors (BLUPS) and, formally, are not
parameters of the model.

The significance of the contribution of each sin-
gle parameter (e.g. single entries of Σ) to the
goodness of fit can be tested via likelihood ratio.
In this way, both the fixed and random effect struc-
ture of the model can be investigated with respect
to its actual necessity to the model.

4 Dataset

For our analysis we used a dataset that covers
three translation directions, corresponding to En-
glish to Chinese, Arabic, and Russian. An inter-
national organization provided us a set of English
sentences together with their translation produced
by two anonymous MT systems. For each evalu-
ation item (source sentence and two MT outputs)
three experts were asked to assign quality scores to
the MT outputs, and a fourth expert was asked to
annotate translation errors. The four experts, who
were all professional translators native in the ex-
amined target languages, were carefully trained to
get acquainted with the evaluation guidelines and
the annotation tool specifically developed for these
evaluation tasks (Girardi et al., 2014). The anno-
tation process was carried out in parallel by all an-
notators over one week, resulting in a final dataset
composed of 312 evaluation items for the ENZH
direction, 393 for ENAR, and 437 for ENRU.

4.1 Quality Judgements

Quality judgements were collected by asking the
three experts to rate each automatic translation
according to a 1-5 Likert scale, where 1 means
“incomprehensible translation” and 5 means “per-
fect translation”. The distribution of the collected
annotations with respect to each quality score is
shown in Figure 1. As we can see, this distri-
bution reflects different levels of perceived qual-
ity across languages. ENZH, for instance, has the
highest number of low quality scores (1 and 2),
while ENRU has the highest number of high qual-
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Figure 1: Distribution of quality scores.

ity scores (4 and 5).
Table 1 shows the average of all the qual-

ity scores assigned by each annototator as well
as the average score obtained for each MT sys-
tem. These values demonstrate the variability
of annotators and systems. A particularly high
variability among human judges is observed for
the ENAR language direction (also reflected by
the inter-annotator agreement scores discussed be-
low), while ENZH shows the highest variability
between systems. As we will see in §5.1, we suc-
cessfully cope with this variability by considering
systems and annotators as random effects, which
allow the regression models to abstract from these
differences.

Ann1 Ann2 Ann3 Sys1 Sys2
ENZH 2.38 2.69 2.21 2.29 2.56
ENAR 2.76 2.77 1.84 2.39 2.53
ENRU 2.82 2.72 2.96 2.87 2.79

Table 1: Average quality scores per annotator and
per system.

Inter-annotator agreement was computed using
the Fleiss’ kappa coefficient (Fleiss, 1971), and re-
sulted in 22.70% for ENZH, 5.24% for ENAR, and
21.80% for ENRU. While for ENZH and ENRU
the results fall in the range of “fair” agreement
(Landis and Koch, 1977), for ENAR only “slight”
agreement is reached, reflecting the higher anno-
tators’ variability evidenced in Table 1.

A more fine-grained agreement analysis is pre-
sented in Figure 2, where the kappa values are
given for each score class. In general we no-
tice a lower agreement on the intermediate quality
scores, while annotators tend to agree on very bad
and, even more, on good translations. In partic-
ular, we see that the agreement for ENAR is sys-
tematically lower than the values measured for the
other languages on all the score classes.
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Figure 2: Class specific inter-annotator agreement.

4.2 Error Annotation

This evaluation task was carried out by one ex-
pert for each language direction, who was asked to
identify the type of errors present in the MT output
and to mark their position in the text. Since the fo-
cus of our work is the analysis method rather than
the definition of an ideal error taxonomy, for the
difficult language directions addressed we opted
for the following general error classes, partially
overlapping with (Vilar et al., 2006): i) reordering
errors, ii) lexicon errors (including wrong lexical
choices and extra words), iii) missing words, iv)
morphology errors.

Figure 3 shows the distribution of the errors in
terms of affected tokens (words) for each error
type. Since token counts for Chinese are not word-
based but character-based, for readability purposes
the number of errors counted for Chinese trans-
lations have been divided by 2.5. Note also that
morphological errors annotated for ENZH involve
only 13 characters and thus are not visible in the
plot. The total number of errors amounts to 16,320
characters for ENZH, 4,926 words for ENAR, and
5,965 words for ENRU.

This distribution highlights some differences
between languages directions. For example, trans-
lations into Arabic and Russian present several
morphology errors, while word reordering is the
most frequent issue for translations into Chinese.
As we will see in §5.1, error frequency does not
give a direct indication of their impact on trasla-
tion quality judgements.

4.3 Automatic Metrics

In our investigation we consider three popular au-
tomatic metrics: sentence-level BLEU (Lin and
Och, 2004), TER (Snover et al., 2006), and GTM
(Turian et al., 2003). We compute all automatic
scores by relying on a single reference and by
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means of standard packages. In particular, auto-
matic scores on Chinese are computed at the char-
acter level. Moreover, as we use metrics as re-
sponse variables for our regression models, we
compute all metrics at the sentence level. The
overall mean scores for all systems and languages
are reported in Table 2. Differences in systems’
performance can be observed for all language
pairs; as we will observe in §5.2 such variability
explains the effectiveness of considering the MT
systems as a random effect.

BLEU TER GTM
Sys1 Sys2 Sys1 Sys2 Sy1 Sys2

ENZH 27.95 44.11 64.52 48.13 62.15 72.30
ENAR 19.63 25.25 68.83 63.99 47.20 52.33
ENRU 27.10 31.07 60.89 54.41 53.74 56.41

Table 2: Overall automatic scores per system.

5 Experiments

To assess the impact of translation errors on MT
quality we perform two sets of experiments. The
first set (§5.1) addresses the relation between er-
rors and human quality judgements. The sec-
ond set (§5.2) focuses on the relation between er-
rors and automatic metrics. In both cases, be-
fore measuring the impact of different errors on
the response variable (respectively quality judge-
ments and metrics), we validate the effectiveness
of mixed linear models by comparing their predic-
tion capability with other methods.

In all experiments, error counts of each category
were normalized into percentages with respect to
the sentence length and mapped in a logarithmic
scale. In this way, we basically assume that the
impact of errors tends to saturate above a given
threshold, hypothesis that also results in better fits
by our models.3 Notice that while the chosen log-

3In other words, we assume that human sensitivity to er-

10 base is easy to interpret, linear models can im-
plicitly adjust it. Our analysis makes use of mixed
linear models incorporating, as fixed effects, the
four types of errors (lex, miss, morph and reo) and
their pairwise interactions (the product of the sin-
gle error log counts), while their random struc-
ture depends on each specific experiment. For
the experiments we rely on the R language (R
Core Team, 2013) implementation of linear mixed
model in the lme4 library (Bates et al., 2014).

We assess the quality of our mixed linear mod-
els (MLM) by comparing their prediction capabil-
ity with a sequence of simpler linear models in-
cluding only fixed effects. In particular, we built
five univariate models and two multivariate mod-
els. The univariate models use as covariates, re-
spectively, the sum of all error types (baseline),
and each of the four types of errors (lex, miss,
morph and reo). The two multivariate models in-
clude all the four error types, considering them
without interactions (FLM w/o Interact.) and with
interactions (FLM).

Prediction performance is computed in terms of
Mean Absolute Error (MAE),4 which we estimate
by averaging over 1,000 random splits of the data
in 90% training and 10% test. In particular, for the
human quality classes we pick the integer between
1-5 that is closest to the predicted value.

5.1 Errors vs. Quality Judgements

The response variable we target in this experiment
is the quality score produced by human annotators.
Our measurements follow a typical within-subject
design in which all the 3 annotators are exposed
to the same conditions (levels of the independent
variables), corresponding in our case to perfectly
balanced observations from 2 MT systems and N
sentences. This setting results in repeated or clus-
tered observations (thus violating independence)
corresponding to groups which naturally identify
possible random effects,5 namely the annotators
(3 levels with 2xN observations each), the systems
(2 levels and 3xN observations each), and the sen-

rors follows a log-scale law: e.g. more sensitive to variations
in the interval [1-10] that in the interval [30-40].

4MAE is calculated as the average of the absolute errors
|fi − yi|, where fi is the prediction of the model and yi the
true value for the ith instance. As it is a measure of error,
lower MAE scores indicate that our predictions are closer to
the true values of each test instance.

5In all our experiments, random effects are limited to ran-
dom shifts since preliminary experiments also including ran-
dom slopes did not provide consistent results.
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Model ENZH ENAR ENRU
baseline 0.58 0.73 0.67
lex 0.67 0.78 0.72
miss 0.72 0.89 0.74
morph 0.72 0.89 0.74
reo 0.70 0.82 0.76
FLM w/o Interact. 0.59 0.77 0.65
FLM 0.57 0.72 0.63
MLM 0.53 0.61 0.61

Table 3: Prediction capability of human judge-
ments (MAE).

tences (N levels with 6 observations each). In prin-
ciple, such random effects permit to remove sys-
tematic biases of individual annotators, single sys-
tems and even single sentences, which are mod-
elled as random variables sampled from distinct
populations.

Table 3 shows a comparison of the prediction
capability of the mixed model6 with simpler ap-
proaches. While the good performance achieved
by our strong baseline cannot be outperformed
by separately counting the number of errors of a
single type, lower MAE results are obtained by
methods based on multivariate analysis. Among
them, FLM brings the first consistent improve-
ments over the baseline by considering error in-
teractions, while MLM leads to the lowest MAE
due to the addition of random effects. The impor-
tance of random effects is particularly evidenced
by ENAR (12 points below the baseline). Indeed,
as discussed in §4.1, for this language combina-
tion human annotators show the lowest agreement
score. This variability, which hides the smaller
differences in systems’ behaviour, demonstrates
the importance of accounting for the erratic fac-
tors that might influence empirical observations in
a given setting. The good performance achieved
by MLM, combined with their high descriptive
power,7 motivates their adoption in our study.

Concerning the analysis of error impact, Ta-
ble 4 shows the statistically significant coefficients
for the full-fledged MLM models for each trans-
lation direction. By default, all reported coeffi-
cients have p-values ≤ 10−4, while those marked
with • and ◦ have respectively p-values ≤ 10−3

and ≤ 10−2. Slope coefficients basically show
6Note that the mixed model used in prediction does not in-

clude the random effect on sentences since the training sam-
ples do not guarantee sufficient observations for each test sen-
tence.

7Note that the strong baseline used for comparison is not
capable to describe the contribution of the different error
types.

Error ENZH ENAR ENRU
Intercept 4.29 3.79• 4.21
lex -1.27 -0.96 -1.12
miss -1.76 -0.90 -1.30
morph -0.48◦ -0.83 -0.51
reo -1.01 -0.75 -0.18
lex:miss 1.00 0.39 0.68
lex:morph - 0.29 0.32
lex:reo 0.50 0.21 -
miss:morph - 0.35 -
miss:reo 0.54 0.33 -
morph:reo - 0.37 -

Table 4: Effect of translation errors on MT qual-
ity perception on all judged sentences. Reported
coefficients (β) are all statistically significant with
p ≤ 10−4, except those marked with • (p ≤ 10−3),
and ◦ (p ≤ 10−2).

the impact of different error types (alone and in
combination) on human quality scores. Those that
are not statistically significant are omitted as they
do not increase the fitting capability of our model.
As can be seen from the table, such impact varies
across the different language combinations. While
for ENZH and ENRU miss is the error having
the highest impact (highest decrement with respect
to the intercept), the most problematic error for
ENAR is lex. It is interesting to observe that pos-
itive values for error combinations indicate that
their combined impact is lower that the sum of the
impact of the single errors. For instance, while for
ENZH a one-step increment in lex and miss errors
would respectively cause a reduction in the human
judgement of 1.27 and 1.76, their occurrence in
the same sentence would be discounted by 1.00.
This would result in a global judgement of 2.26
(4.29 -1.27 -1.76 +1.00) instead of 1.26. While
for ENAR this phenomenon can be observed for
all error combinations, such discount effects are
not always significant for the other two language
pairs. The existence of discount effects of various
magnitude associated to the different error com-
binations is a novel finding made possible by the
adoption of mixed-effect models.

Another interesting observation is that, in con-
trast with the common belief that the most fre-
quent errors have the highest impact on human
quality judgements, our experiments do not re-
veal such strict correlation (at least for the exam-
ined language pairs). For instance, for ENZH and
ENRU the impact of miss errors is higher than the
impact of other more frequent issues.
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BLEU score TER GTM
Model ENZH ENAR ENRU ENZH ENAR ENRU ENZH ENAR ENRU
baseline 12.4 9.8 12.2 15.7 13.4 14.4 9.8 10.6 11.5
lex 12.9 10.4 13.0 16.3 13.8 14.9 9.7 10.9 12.1
miss 13.8 10.5 14.1 17.3 14.2 16.4 10.5 11.1 13.2
morph 13.9 10.3 13.6 17.5 13.8 16.3 10.5 10.9 13.1
reo 13.7 10.5 14.0 17.4 14.1 16.3 10.4 11.1 13.1
FLM w/o Interact. 12.9 9.9 12.2 16.3 13.5 14.4 9.7 10.7 11.7
FLM 12.3 9.7 12.1 15.6 13.4 14.3 9.4 10.6 11.6
MLM 10.8 9.5 12.0 14.7 13.0 14.2 8.9 10.5 11.6

Table 5: Prediction capability of BLEU score, TER and GTM (MAE).

5.2 Errors vs. Automatic Metrics

In this experiment, the response variable is an au-
tomatic metric which is computed on a sample of
MT outputs (which are again perfectly balanced
over systems and sentences) and a set of reference
translations. As no subjects are involved in the ex-
periment, random variability is assumed to come
from the involved systems, the tested sentences,
and the unknown missing link between the covari-
ates (error types) and the response variable which
is modelled by the residual noise. Notice that,
in this case, the random effect on the sentences
also incorporates in some sense the randomness
of the corresponding reference translations, which
are themselves representatives of larger samples.

The prediction capability of the mixed model,
in comparison with the simpler ones, is reported
in Table 5. Also in this case, the low MAE
achieved by the baseline is out of the reach of uni-
variate methods. Again, small improvements are
brought by FLM when considering error interac-
tions, whereas the most visible gains are achieved
by MLM due to their control of random effects.
This is more evident for some language combina-
tions and can be explained by the differences in
systems’ performance, a variability factor easily
absorbed by random effects. Indeed, the largest
MAE decrements over the baseline are always ob-
served for ENZH (for which the overall mean re-
sults reported in Table 2 show the largest dif-
ferences) and the smallest decrements relate to
language/metric combinations where systems’ be-
haviour is more similar (e.g. ENRU/GTM).

Concerning the analysis of error impact, Table
6 shows how different error types (alone and in
combination) influence performance results mea-
sured with automatic metrics. To ease interpre-
tation of the reported figures we also show Pear-
son and Spearman correlations of each set of coef-
ficients (excluding intercept estimates) with their

corresponding coefficients reported in Table 4. In
fact, our primary interest in this experiment is to
see which metrics show a sensitivity to specific er-
ror types similar to human perception. As we can
see, the coefficients for each metric significantly
vary depending on the language, for the simple
reason that also the distribution and co-occurrence
of errors vary significantly across the different lan-
guages and MT systems. Remarkably, for some
translation directions, some of the metrics show
a sensitivity to errors that is very similar to that
of human judges. In particular, BLEU for ENZH
and ENAR, and GTM for ENZH show a very high
correlation with the human sensitivity to transla-
tion errors, with Pearson correlation coefficient ≥
0.97. For ENRU, the best Pearson correlation is
instead achieved by TER (-0.78).

Besides these general observations, a closer
look at the reported scores brings additional find-
ings. In three cases (BLEU for ENZH, GTM for
ENZH and ENAR) the analysed metrics are most
sensitive to the same error type that has the high-
est influence on human judgements (according to
Table 4, these are miss for ENZH and ENRU, lex
for ENAR). On the contrary, in one case (TER for
ENZH) the analysed metric is insensitive to the er-
ror type (miss) which has the highest impact on hu-
man quality scores. From a practical point of view,
these remarks provide useful indications about the
appropriateness of each metric to highlight the de-
ficiencies of a specific system and to measure im-
provements targeting specific issues. As a rule of
thumb, for instance, to measure improvements of
an ENZH system with respect to missing words,
it would be more advisable to use BLEU or GTM
instead of TER.8

8Note that this conclusion holds for our data sample, in
which different types of errors co-occur and only one refer-
ence translation is available. In such conditions, our regres-
sion model shows that TER is not influenced by miss errors in
a statistically significant way. This does not mean that TER
is insensitive to missing words when occurring in isolation,
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BLEU score TER GTM
Error ENZH ENAR ENRU ENZH ENAR ENRU ENZH ENAR ENRU
Intercept 60.552 38.45◦ 51.73 32.412 52.25• 33.4• 83.57◦ 60.11• 75.38
lex -18.78 -9.25 -16.57 16.87 9.66 18.45 -13.63 -7.60 -16.13
miss -23.20 -10.41 -6.75 - - 8.24 -14.87 - -5.98
morph - -9.97 -12.65 - 8.90 11.41 - -6.60 -10.42
reo -13.27 -7.62 -10.57 14.44 9.81 6.39 -7.29 -5.50 -7.03
lex:miss 14.37 4.97◦ - - - - 8.24• - -
lex:morph - - 5.27• - - -5.22◦ - - 4.92
lex:reo 8.57 3.57◦ 5.40• -7.24◦ -4.35◦ - 5.46 3.22◦ 3.652

miss:morph - 4.44◦ - - - - - - -
miss:reo 6.74◦ - 4.30 - - -6.38◦ 5.07◦ - 4.71◦
morph:reo - 3.81• - - -4.97• - - 2.57◦ -
Pearson 0.98 0.97 0.70 -0.58 -0.78 -0.78 0.98 0.78 0.74
Spearman 0.97 0.91 0.73 -0.57 -0.59 -0.80 0.97 0.59 0.76

Table 6: Effect of translation errors on BLEU score, TER and GTM on all judged sentences and correla-
tion with their corresponding effects on human quality scores (from Table 4). Reported coefficients (β)
are statistically significant with p ≤ 10−4, except those marked with • (p ≤ 10−3), ◦ (p ≤ 10−2) and
2(p ≤ 10−1).

Similar considerations also apply to the analysis
of the impact of error combinations. The same dis-
count effects that we noticed when analysing the
impact of errors’ co-occurrence on human percep-
tion (§5.1) are evidenced, with different degrees of
sensitivity, by the automatic metrics. While some
of them substantially reflect human response (e.g.
BLEU and GTM for ENZH), in some cases we
observe either the insensitivity to specific combi-
nations (mostly for ENAR), or a higher sensitivity
compared to the values measured for human as-
sessors (mostly for ENRU, where the impact of
miss:reo combinations is discounted - hence un-
derestimated - by all the metrics).

Despite such small differences, the coherence of
our results with previous findings (§5.1) suggests
the reliability of the applied method. Complet-
ing the picture along the side of the MT evalua-
tion triangle which connects error annotations and
automatic metrics, our findings contribute to shed
light on the existing relationships between transla-
tion errors, their interaction, and the sensitivity of
widely used automatic metrics.

6 Conclusion

We investigated the MT evaluation triangle (hav-
ing as corners automatic metrics, human quality
judgements and error annotations) along the two
less explored sides, namely: i) the relation be-
tween MT errors and human quality judgements

but that TER becomes less sensitive to such errors when they
co-occur with other types of errors. Overall, our experiments
show that when MT outputs contain more than one error type,
automatic metrics show different levels of sensitivity to each
specific error type.

and ii) the relation between MT errors and auto-
matic metrics. To this aim we employed a ro-
bust statistical analysis framework based on lin-
ear mixed-effects models (the first contribution of
the paper), which have a higher descriptive power
than simpler methods based on the raw count of
translation errors and are less artificial compared
to previous statistically-grounded approaches.

Working on three translation directions having
Chinese, Arabic and Russian as target (our second
contribution), we analysed error-annotated trans-
lations considering the impact of specific errors
(alone and in combination) and accounting for the
variability of the experimental set-up that origi-
nated our empirical observations. This led us to
interesting findings specific to each language pair
(third contribution). Concerning the relation be-
tween MT errors and quality judgements, we have
shown that: i) the frequency of errors of a given
type does not correlate with human preferences,
ii) errors having the highest impact can be pre-
cisely isolated and iii) the impact of error inter-
actions is often subject to measurable and previ-
ously unknown “discount” effects. Concerning the
relation between MT errors and automatic met-
rics (BLEU, TER and GTM), our analysis evi-
denced significant differences in the sensitivity of
each metric to different error types. Such differ-
ences provide useful indications about the most
appropriate metric to assess system improvements
with respect to specific weaknesses. If learning
from errors is a crucial aspect of improving exper-
tise, our method and the resulting empirical find-
ings represent a significant contribution towards a
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more informed approach to system development,
improvement and evaluation.
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Abstract

Languages that have no explicit word de-
limiters often have to be segmented for sta-
tistical machine translation (SMT). This is
commonly performed by automated seg-
menters trained on manually annotated
corpora. However, the word segmentation
(WS) schemes of these annotated corpora
are handcrafted for general usage, and
may not be suitable for SMT. An analysis
was performed to test this hypothesis us-
ing a manually annotated word alignment
(WA) corpus for Chinese-English SMT.
An analysis revealed that 74.60% of the
sentences in the WA corpus if segmented
using an automated segmenter trained on
the Penn Chinese Treebank (CTB) will
contain conflicts with the gold WA an-
notations. We formulated an approach
based on word splitting with reference to
the annotated WA to alleviate these con-
flicts. Experimental results show that the
refined WS reduced word alignment error
rate by 6.82% and achieved the highest
BLEU improvement (0.63 on average) on
the Chinese-English open machine trans-
lation (OpenMT) corpora compared to re-
lated work.

1 Introduction

Word segmentation is a prerequisite for many
natural language processing (NLP) applications
on those languages that have no explicit space
between words, such as Arabic, Chinese and
Japanese. As the first processing step, WS affects
all successive steps, thus it has a large potential
impact on the final performance. For SMT, the
unsupervised WA, building translation models and
reordering models, and decoding are all based on
segmented words.

Automated word segmenters built through
supervised-learning methods, after decades of in-
tensive research, have emerged as effective so-
lutions to WS tasks and become widely used in
many NLP applications. For example, the Stan-
ford word segmenter (Xue et al., 2002)1 which is
based on conditional random field (CRF) is em-
ployed to prepare the official corpus for NTCIR-
9 Chinese-English patent translation task (Goto et
al., 2011).

However, one problem with applying these
supervised-learning word segmenters to SMT is
that the WS scheme of annotating the training cor-
pus may not be optimal for SMT. (Chang et al.,
2008) noticed that the words in CTB are often too
long for SMT. For example, a full Chinese per-
sonal name which consists of a family name and a
given name is always taken as a single word, but
its counterpart in English is usually two words.

Manually WA corpora are precious resources
for SMT research, but they used to be only avail-
able in small volumes due to the production cost.
For example, (Och and Ney, 2000) initially an-
notated 447 English-French sentence pairs, which
later became the test data set in ACL 2003 shared
task on word alignment (Mihalcea and Pedersen,
2003), and was used frequently thereafter (Liang
et al., 2006; DeNero and Klein, 2007; Haghighi et
al., 2009)

For Chinese and English, the shortage of man-
ually WA corpora has recently been relieved
by the linguistic data consortium (LDC) 2

GALE Chinese-English word alignment and tag-
ging training corpus (the GALE WA corpus)3.
The corpus is considerably large, containing 4,735
documents, 18,507 sentence pairs, 620,189 Chi-
nese tokens, 518,137 English words, and 421,763

1http://nlp.stanford.edu/software/
segmenter.shtml

2http://catalog.ldc.upenn.edu
3Catalog numbers: LDC2012T16, LDC2012T20,

LDC2012T24 and LDC2013T05.
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alignment annotations. The corpus carries no Chi-
nese WS annotation, and the WA annotation was
performed between Chinese characters and En-
glish words. The alignment identifies minimum
translation units and relations4, referred as atomic
blocks and atomic edges, respectively, in this pa-
per. Figure 1 shows an example that contains six
atomic edges.

Visual inspection of the segmentation of an au-
tomatic segmenter with reference to a WA cor-
pus revealed a number of inconsistencies. For ex-
ample, consider the word “bao fa” in Figure 1.
Empirically we observed that this word is seg-
mented as a single token by an automatic seg-
menter trained on the CTB, however, this segmen-
tation differs with the alignment in the WA cor-
pus, since its two components are aligned to two
different English words. Our hypothesis was that
the removal of these inconsistencies would benefit
machine translation performance (this is explained
further in Section 2.3), and we explored this idea
in this work.

This paper focuses on optimizing Chinese WS
for Chinese-English SMT, but both the research
method and the proposed solution are language-
independent. They can be applied to other lan-
guage pairs.

The major contributions of this paper include,

• analyze the CTB WS scheme for Chinese-
English SMT;

• propose a lexical word splitter to refine the
WS;

• achieve a BLEU improvement over a baseline
Stanford word segmenter, and a state-of-the-
art extension, on Chinese-English OpenMT
corpora.

The rest of this paper is organized as follows:
first, Section 2 analyzes WS using a WA corpus;
next, Section 3 proposes a lexical word splitter
to refine WS; then, Section 4 evaluates the pro-
posed method on end-to-end SMT as well as word
segmentation and alignment; after that, Section 5
compares this work to related work; finally, Sec-
tion 6 concludes this paper.

4Guidelines for Chinese-English Word Align-
ment(Version 4.0)

2 Analysis of a General-purpose
Automatic Word Segmenter

This section first briefly describes the GALE WA
corpus, then presents an analysis of the WS arising
from a CTB-standard word segmenter with refer-
ence to the segmentation of the atomic blocks in
the GALE WA corpus, finally the impact of the
findings on SMT is discussed.

2.1 GALE WA corpus

The GALE WA corpus was developed by the
LDC, and was used as training data in the DARPA
GALE global autonomous language exploitation
program 5. The corpus incorporates linguistic
knowledge into word aligned text to help improve
automatic WA and translation quality. It em-
ploys two annotation schemes: alignment and tag-
ging (Li et al., 2010). Alignment identifies min-
imum translation units and translation relations;
tagging adds contextual, syntactic and language-
specific features to the alignment annotation. For
example, the sample shown in Figure 1 carries tags
on both alignment edges and tokens.

The GALE WA corpus contains 18,057 man-
ually word aligned Chinese and English parallel
sentences which are extracted from newswire and
web blogs. Table 1 presents the statistics on the
corpus. One third of the sentences are approxi-
mately newswire text, and the remainder consists
of web blogs.

2.2 Analysis of WS

In order to produce a Chinese word segmenta-
tion consistent with the CTB standard we used the
Stanford Chinese word segmenter with a model
trained on the CTB corpus. We will refer to this
as the ‘CTB segmenter’ in the rest of this paper.

The Chinese sentences in the GALE WA cor-
pus were first segmented by the CTB segmenter,
and the predicted words were compared against
the atomic blocks with respect to the granularity of
segmentation. The analysis falls into the following
three categories, two of which may be potentially
harmful to SMT:

• Fully consistent: the word locates within the
block of one atomic alignment edge. For ex-
ample, in Figure 2(a), the Chinese text has

5https://catalog.ldc.upenn.edu/
LDC2012T16
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Figure 1: Example from the GALE WA corpus. Each line arrow representsan atomic edge, and each box
represents an atomic block. SEM (semantic), GIS (grammatically inferred semantic) and FUN (function)
are tags of edges. INC (not translated), TOI (to-infinitive) and DET (determiner) are tags of tokens.

Genre # Files # Sentences† # CN tokens # EN tokens # Alignment edges
Newswire 2,175 6,218 246,371 205,281 164,033
Web blog 2,560 11,839 373,818 312,856 257,730
Total 4,735 18,057 620,189 518,137 421,763

Table 1: GALE WA corpus.† Sentences rejected by the annotators are excluded.

four atomic blocks; the CTB segmenter pro-
duces five words which all locate within the
blocks, so they are all small enough.

• Alignment inconsistent: the word aligns to
more than one atomic block, but the target
expression is contiguous, allowing for cor-
rect phrase pair extraction (Zens et al., 2002).
For example, in Figure 2(b), the characters in
the word “shuang fang”, which is produced
by the CTB segmenter, contains two atomic
blocks, but the span of the target “to both
side” is continuous, therefore the phrase pair
“shuang fang||| to both sides” can be ex-
tracted.

• Alignment inconsistent and extraction hin-
dered: the word aligned to more than one
atomic block, and the target expression is not
contiguous, which hinders correct phrase pair
extractions. For example, in Figure 2(c), the
word “zeng chan” has to be split in order to
match the target language.

Table 2 shows the statistics of the three cat-
egories of CTB WS on the GALE WA corpus.
90.74% of the words are fully consistent, while the
remaining 9.26% of the words have inconsistent
alignments. 74.60% of the sentences contain this
problem. The category with inconsistent align-
ment and extraction hindered only accounts for
0.46% of the words, affecting 9.06% of the sen-
tences.

2.3 Impact of WS on SMT

The word alignment has a direct impact on the na-
ture of both the translation model, and lexical re-
ordering model in a phrase-base SMT system. The
words in last two categories are all longer than an
atomic block, which might lead to problems in the
word alignment in two ways:

• First, longer words tend to be more sparse in
the training corpus, thus the estimated distri-
bution of their target phrases are less accu-
rate.

• Second, the alignment from them to target
sides are one-to-many, which is much more
complicated and requires fertilized alignment
models such as IBM model 4 – 6 (Och and
Ney, 2000).

The words in the category of “fully consistent”
can be aligned using simple models, because the
alignment from them to the target side are one-to-
one or many-to-one, and simple alignment models
such as IBM model 1, IBM model 2 and HMM
model are sufficient (Och and Ney, 2000).

3 Refining the Word Segmentation

In the last subsection, it was shown that 74.60% of
parallel sentences were affected by issues related
to under-segmentation of the corpus. Our hypoth-
esis is that if these words are split into pieces that
match English words, the accuracy of the unsuper-
vised WA as well as the translation quality will be
improved. To achieve this, we adopt a splitting
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Figure 2: Examples of automated WS on manually WA corpus: (a) Fully consistent; (b) Alignment
inconsistent; (c) Alignment inconsistent and extraction hindered. The Chinese words separated by white
space are the output of the CTB segmenter. Arrows represent the alignment of atomic blocks. Note that
“shuang fang” and “zeng chan” are words produced by the CTB segmenter, but consist of two atomic
blocks.

Category Count Word Ratio Sentence Ratio
Fully consistent 355,702 90.74% 25.40%†

Alignment inconsistent 34,464 8.81% 65.54%
Alignment inconsistent & extraction hindered 1,830 0.46% 9.06%
Sum of conflict‡ 36,294 9.26% 74.60%

Table 2: CTB WS on GALE WA corpus:† All words are fully consistent;‡ Alignment inconsistent plus
alignment inconsistent & extraction hindered

strategy, based on a supervised learning approach,
to re-segment the corpus. This subsection first for-
malizes the task, and then presents the approach.

3.1 Word splitting task

The word splitting task is formalized as a sequence
labeling task as follows: each word (represented
by a sequence of charactersx = x1 . . . xT where
T is the length of sample) produced by the CTB
segmenter is a sample, and a corresponding se-
quence of binary boundary labelsy = y1 . . . yT

is the learning target,

yt =


1 if there is a split point

betweenct andct−1;
0 otherwise.

(1)

The sequence of boundary labels is derived
from the gold WA annotation as follows: for a
sequence of two atomic blocks, where the first
character of the second block isxt, then the la-
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Figure 3: Samples of word splitting task

bel yt = 1. Figure 3 presents several samples ex-
tracted from the examples in Figure 2.

Each word sample may have no split point, one
split point or multiple split points, depending on
the gold WA annotation. Table 3 shows the statis-
tics of the word splitting data set which is built
from the GALE manual WA corpus and the CTB
segmenter’s output, where 2000 randomly sam-
pled sentences are taken as a held-out test set.
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Set # Sentences # Samples # Split points # Split points per sample
Train. 16,057 348,086 32,337 0.0929
Test 2,000 43,910 3,929 0.0895

Table 3: Data set for learning the word splitting

3.2 CRF approach

This paper employs a condition random field
(CRF) to solve this sequence labeling task (Laf-
ferty et al., 2001). A linear-chain CRF defines the
conditional probability ofy givenx as,

PΛ(y|x) =
1

Zx
(

T∑
t=1

∑
k

λkfk(yt−1, yt,x, t)),

(2)
whereΛ = {λ1, . . .} are parameters,Zx is a per-
input normalization that makes the probability of
all state sequences sum to one;fk(yt−1, yt,x, t) is
a feature function which is often a binary-valued
sparse feature. The training of CRF model is to
maximize the likelihood of training data together
with a regularization penalty to avoid over-fitting
as (Peng et al., 2004; Peng and McCallum, 2006),

Λ∗ = argmax
Λ

(
∑

i

logPΛ(yi|xi)−
∑

k

λ2
k

2δ2
k

),

(3)
where (x,y) are training samples; the hyperparam-
eter δk can be understood as the variance of the
prior distribution ofλk. When predicting the la-
bels of test samples, the CRF decoder searches for
the optimal label sequencey∗ that maximizes the
conditional probability,

y∗ = argmax
y

PΛ(y|x). (4)

In (Chang et al., 2008) a method is proposed to
select an appropriate level of segmentation gran-
ularity (in practical terms, to encourage smaller
segments). We call their method “length tuner”.
The following artificial feature is introduced into
the learned CRF model:

f0(x, yt−1, yt, 1) =
{

1 if yt = +1
0 otherwise

(5)

The weightλ0 of this feature is set by hand to
bias the output of CRF model. By way of expla-
nation, a very large positiveλ0 will cause every
character to be segmented, or conversely a very
large negativeλ0 will inhibit the output of segmen-
tation boundaries. In their experiments,λ0 = 2

was used to force a CRF segmenter to adopt an in-
termediate granularity between character and the
CTB WS scheme. Compared to the length tuner,
our proposed method exploits lexical knowledge
about word splitting, and we will therefore refer to
it as the “lexical word splitter” or “lexical splitter”
for short.

3.3 Feature Set

The featuresfk(yt−1, yt,x, t) we used include the
WS features from the Chinese Stanford word seg-
menter and a set of extended features described
below. The WS features are included because the
target split points may share some common char-
acteristics with the boundaries in the CTB WS
scheme.

The extended features consists of four types –
named entities, word frequency, word length and
character-level unsupervised WA. For each type of
the feature, the value and value concatenated with
previous or current character are taken as sparse
features (see Table 4 for details). The real val-
ues of word frequency, word length and character-
level unsupervised WA are converted into sparse
features due to the routine of CRF model.

The character-level unsupervised alignment
feature is inspired by the related works of unsu-
pervised bilingual WS (Xu et al., 2008; Chung and
Gildea, 2009; Nguyen et al., 2010; Michael et al.,
2011). The idea is that the character-level WA can
approximately capture the counterpart English ex-
pression of each Chinese token, and source tokens
aligned to different target expressions should be
split into different words (see Figure 4 for an illus-
tration).

The values of the character-level alignment fea-
tures are obtained through building a dictionary.
First, unsupervised WA is performed on the SMT
training corpus where the Chinese sentences are
treated as sequences of characters; then, the Chi-
nese sentences are segmented by CTB segmenter
and a dictionary of segmented words are built; fi-
nally, for each word in the dictionary, the relative
frequency of being split at a certain position is cal-
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Feature Definition Example
NE NE tag of current word Geography:NE
NE-C−1 NE concatenated with previous character Geo.-ding:NE-C−1

NE-C0 NE concatenated with current character Geo.-mei:NE-C0

Frequency Nearest integer of negative logarithm of word frequency5†:Freq
Freq.-C−1 Frequency concatenated with previous character 5-ding:Freq-C−1

Freq.-C0 Frequency concatenated with current character 5-mei:Freq-C0

Length Length of current word (1,2,3,4,5,6,7 or>7) 4:Len
Len.-Position Length concatenated with the position 4-2:Len-Pos
Len.-C−1 Length concatenated with previous character 4-ding:Len-C−1

Len.-C0 Length concatenated with current character 4-mei:Len-C0

Char. Align. Five-level relative frequency of being split 0.4‡:CA
C.A.-C−1 C.A. concatenated with previous character 0.4-ding:CA-C−1

C.A.-C0 C.A. concatenated with current character 0.4-mei:CA-C0

Table 4: Extended features used in the CRF model for word splitting. The example shows the features
used in the decision whether to split the Chinese word “la ding mei zhou” (LatinAmerica, the first
four Chinese characters in Figure 4) after the second Chinese character. † Round(-log10(0.00019));‡

Round(0.43× 5 ) / 5
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Figure 4: Illustration of character-level unsuper-
vised alignment features. The dotted lines are
word boundaries suggested by the alignment.

culated as,
fCA(w, i) =

ni

nw
(6)

wherew is a word,i is a splitting position (from
1 to the length ofw minus 1);ni is the number of
times the words as split at positioni according to
the character-level alignment, that is, the character
before and afteri are aligned to different English
expressions;nw is occurrence count of wordw in
the training corpus.

4 Experiments

In the last section we found that 9.26% of words
produced by the CTB segmenter have the poten-
tial to cause problems for SMT, and propose a
lexical word splitter to address this issue through
segmentation refinement. This section contains
experiments designed to empirically evaluate the
proposed lexical word splitter in three aspects:
first, whether the WS accuracy is improved; sec-

ond, whether the accuracy of the unsupervised WA
during training SMT systems is improved; third,
whether the end-to-end translation quality is im-
proved.

This section first describes the experimental
methodology, then presents the experimental re-
sults, and finally illustrates the operation of our
proposed method using a real example.

4.1 Experimental Methodology

4.1.1 Experimental Corpora

The GALE manual WA corpus and the Chinese to
English corpus from the shared task of the NIST
open machine translation (OpenMT) 2006 evalua-
tion 6 were employed as the experimental corpus
(Table 5).

The experimental corpus for WS was con-
structed by first segmenting 2000 held out sen-
tences from the GALE manual WA corpus with
the Stanford segmenter, and then refining the seg-
mentation with the gold alignment annotation. For
example, the gold segmentation for the examples
in Figure 2 is presented in Figure 5. Note that
this test corpus is intended to represent an oracle
segmentation for our proposed method, and serves
primarily to gauge the improvement of our method
over the baseline Stanford segmenter, relative to
an upper bound.

6http://www.itl.nist.gov/iad/mig/
tests/mt/2006/
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Figure 5: Examples of gold WS for evaluation

Set # sent. pairs # CN tokens # EN tokens
Train. 442,967 19,755,573 13,444,927
Eval02 878† 38,204 105,944
Eval03 919† 40,900 113,970
Eval04 1,597† 71,890 207,279
Eval05 1,082† 50,461 138,952
Eval06 1,664† 62,422 189,059

Table 5: NIST Open machine translation 2006
Corpora. † Number of sentence samples which
contain one Chinese sentence and four English ref-
erence sentences.

The experimental corpus for unsupervised WA
was the union set of the NIST OpenMT training
set and the 2000 test sentence pairs from GALE
WA corpus. We removed the United Nations cor-
pus from the NIST OpenMT constraint training re-
sources because it is out of domain.

The main result of this paper is the evaluation
of the end-to-end performance of an SMT sys-
tem. The experimental corpus for this task was
the NIST OpenMT corpus. The data set of the
NIST evaluation 2002 was used as a development
set for MERT tuning (Och, 2003), and the remain-
ing data sets of the NIST evaluation from 2003 to
2006 were used as test sets. The English sentences
were tokenized by Stanford toolkit7 and converted
to lowercase.

4.1.2 Evaluation

The performance of WS was measured by pre-
cision, recall and F1 of gold words (Sproat and
Emerson, 2003),

The performance of unsupervised WA in the
SMT training procedure was measured through
alignment error rate (AER)(Och and Ney, 2000;
Liang et al., 2006). Sure alignment edges and
possible alignment edges were not distinguished
in this paper as no such tags are found in GALE
manual WA corpus.

The performance of SMT was measured using
BLEU (Papineni et al., 2002).

7http://nlp.stanford.edu/software/
corenlp.shtml

4.1.3 Baseline Methods

Two Chinese WS methods were taken as the base-
line methods in this paper. One method was the
CTB segmenter, that is, Stanford Chinese word
segmenter with the model trained on CTB corpus.
The other method was the length tuner in (Chang
et al., 2008), which added a constant into the con-
fidence scores of a trained CRF word segmenter to
encourage it to output more word boundaries (see
Section 3.2 for details).

4.1.4 Implementation and Parameter settings

The proposed lexical word splitter was imple-
mented on the CRF model toolkit released with
the Stanford segmenter (Tseng et al., 2005). The
regularity parametersδk are set to be 3, the same
as the Stanford segmenter, because no significant
performance improvements were observed by tun-
ing that parameter.

To extract features for the word splitter, the
Stanford named entity recognizer (Finkel et al.,
2005)8 was employed to obtain the tags of named
entities. Word frequencies were caculated from
the source side of SMT training corpus. The
character-level unsupervised alignment was con-
ducted using GIZA++ (Och and Ney, 2003)9.

The length tuner reused the CRF model of CTB
segmenter. The parameterλ0 was tuned through
the grid search in (Chang et al., 2008), that is, ob-
serving the BLEU score on the SMT development
set varing fromλ0 = 0 to λ0 = 32. The grid
search showed thatλ0 = 2 was optimal, agreeing
with the value in (Chang et al., 2008).

Moses (Koehn et al., 2007)10, a state-of-the-art
phrase-based SMT system, was employed to per-
form end-to-end SMT experiments. GIZA++ was
employed to perform unsupervised WA.

4.2 Experimental Results

4.2.1 Word Segmentation

The WS performance of CTB segmenter, length
tuner and the proposed lexical splitter are pre-
sented in Table 6. The proposed method achieves
the highest scores on all the criterion ofF1, preci-
sion and recall. The length tuner outperforms the
CTB segmenter in terms of recall, but with lower
precision.

8http://nlp.stanford.edu/software/
CRF-NER.shtml

9http://www.statmt.org/moses/giza/
GIZA++.html

10http://www.statmt.org/moses/
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WS F1 Prec. Recall
CTB segmenter 0.878 0.917 0.842
Length tuner 0.873 0.894 0.852
Lexical splitter 0.915 0.922 0.908

Table 6: Performance of WS

WS AER Prec. Recall
CTB segmenter 0.425 0.622 0.534
Length tuner 0.417 0.642 0.535
Lexical splitter 0.396 0.674 0.547

Table 7: Performance of unsupervised WA using
different WS strategies

4.2.2 Word Alignment

The WA performance of the CTB segmenter,
length tuner and the proposed lexical spliter is pre-
sented in Table 7. Both lexical splitter and length
tuner outperform the CTB segmenter, indicating
the splitting words into smaller pieces can improve
the accuracy of unsupervised WA. This result sup-
ports the finding in (Chang et al., 2008) that the
segment size from CTB WS is too large for SMT.
In addition, the proposed lexical splitter signifi-
cantly outperforms the length tuner.

4.2.3 Machine Translation

The end-to-end SMT performance of CTB seg-
menter, length tuner and the proposed lexical
spliter are presented in Table 8. Each experiment
was performed three times, and the average BLEU
and standard derivation were calculated, because
there is randomness in the results from MERT.
The proposed lexical splitter outperformed the two
baselines on all the test sets, and achieves an
average improvement of0.63 BLEU percentage
points, indicating that the proposed method can
effectively improve the translation quality. The
length tuner also outperforms the CTB segmenter,
but the average improvement is0.15 BLEU per-
centage points, much less than the proposed meth-
ods.

4.3 Analysis

Figure 6 presents an example from the test cor-
pus, which demonstrates how the proposed lexical
splitter splits words more accurately than the base-
line length tuner method. Two words in the seg-
mentation result of the CTB segmenter are wor-
thy of attention. The first one is “yang nian”(the
year of goat), the lexical splitter split this word and

got the right translation, while the length tuner did
not split it. The second is “rong jing”(booming or
prosperity), the length tuner split this word, which
resulted in wrong translations, while the lexical
splitter avoided this mistake.

5 Comparison to Related Work

The most similar work in the literature to the pro-
posed method is the the length tuner method pro-
posed by (Chang et al., 2008). This method also
encourages the generation of more words during
segmentation by using a single parameter that can
be use to control segment length. Our method dif-
fers from theirs in that it is able to acquire vocabu-
lary knowledge from word alignments that can be
used to more accurately split words into segments
suitable for machine translation.

There is large volume of research using bilin-
gual unsupervised and semi-supervised WS to ad-
dress the problem of optimizing WS for SMT (Xu
et al., 2008; Chung and Gildea, 2009; Nguyen et
al., 2010; Michael et al., 2011). The main differ-
ence with our approach is that they use automatic
WA results, most often obtained using the same
tools as are used in training SMT systems. One of
the main problems of using unsupervised WA is
that it is noisy, and therefore, employing iterative
optimization methods to refine the results of unsu-
pervised WA is a key issue in their research, for
example boosting (Ma and Way, 2009; Michael et
al., 2011), expectation maximization (Chung and
Gildea, 2009), Bayesian sampling (Xu et al., 2008;
Nguyen et al., 2010), or heuristic search (Zhao et
al., 2013). Nevertheless, noisy WA makes both
analyzing WS and improving SMT quality quite
hard. In contrast, by using manual WA, we can
clearly analyze the segmentation problems (Sec-
tion 2), and train supervised models to solve the
problem (Section 3).

As far as we are aware, among related work
on WS, our method achieves the highest BLEU
improvement relative to the start-of-the-art WS –
the Stanford Chinese word segmenter – on the
Chinese-English OpenMT corpora. The meth-
ods proposed in (Ma and Way, 2009; Chung
and Gildea, 2009) fail to outperform the Stan-
ford Chinese word segmenter on Chinese-English
OpenMT corpora. The length tuner method pro-
posed in (Chang et al., 2008) is less effective to
ours according to the experimental results in this
paper.
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WS eval03 eval04 eval05 eval06 improve
CTB segmenter 31.89± 0.09 32.73± 0.19 31.03± 0.16 31.38± 0.23
Length tuner 32.06± 0.07 32.74± 0.10 31.34± 0.11 31.50± 0.11 0.15± 0.12
Lexical splitter 32.55± 0.18 32.94± 0.11 31.87± 0.15 32.17± 0.35 0.63± 0.29

Table 8: Performance (BLEU) of SMT
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(d)

Figure 6: Example of SMT from test sets. (a) source; (b) CTB segmenter; (c) length tuner; (d) lexical
splitter. The four gold references are: “ethnic chinese in asia celebrateyear of goat and hope for economic
prosperity in new year”, “ asian chinese celebrate the arrival of the year of sheep and wish a prosperous
new year”, “ asian chinese happily welcome the year of goat , expecting economic prosperity in new
year”,“asian chinese happily welcomed year of the goat , praying for prosperity in the new year”

6 Conclusion

This paper is concerned with the role of word
segmentation in Chinese-to-English SMT. We ex-
plored the use of a manually annotated word align-
ment corpus to refine word segmentation for ma-
chine translation. Based on an initial finding that
74.60% of running sentences in the WA corpus
have segmentation inconsistent with a gold WA
annotation, we proposed a supervised lexical re-
segmentation model to modify the WS in order to
relieve these issues.

Our main experimental results show that the
proposed approach is capable of improving both
alignment quality and end-to-end translation qual-

ity. The proposed method achieved the highest
BLEU score relative to a number of respectable
baseline systems that included the Stanford word
segmenter, and an improved Stanford word seg-
menter that could be tuned for segment length. No
language-specific techniques other than a manu-
ally aligned corpus were employed in this paper,
thus the approach can applied to other SMT lan-
guage pairs that require WS.

In the future, we plan to explore combining
multiple source words which are aligned to the
same target words. This is the symmetric topic
of the post word splitting which is studied in this
paper. The effect of this word combination oper-
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ation on SMT is non-trivial. On one hand, it can
reduce the ambiguity in the source side. On the
other hand, it may cause sparseness problems.
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Abstract 

To overcome the scarceness of bilingual 
corpora for some language pairs in ma-
chine translation, pivot-based SMT uses 
pivot language as a "bridge" to generate 
source-target translation from source-
pivot and pivot-target translation. One of 
the key issues is to estimate the probabili-
ties for the generated phrase pairs. In this 
paper, we present a novel approach to 
calculate the translation probability by 
pivoting the co-occurrence count of 
source-pivot and pivot-target phrase pairs. 
Experimental results on Europarl data 
and web data show that our method leads 
to significant improvements over the 
baseline systems. 

1 Introduction 

Statistical Machine Translation (SMT) relies on 
large bilingual parallel data to produce high qual-
ity translation results. Unfortunately, for some 
language pairs, large bilingual corpora are not 
readily available. To alleviate the parallel data 
scarceness, a conventional solution is to intro-
duce a “bridge” language (named pivot language) 
to connect the source and target language (de 
Gispert and Marino, 2006; Utiyama and Isahara, 
2007; Wu and Wang, 2007; Bertoldi et al., 2008; 
Paul et al., 2011; El Kholy et al., 2013; Zahabi et 
al., 2013), where there are large amounts of 
source-pivot and pivot-target parallel corpora. 

Among various pivot-based approaches, the 
triangulation method (Cohn and Lapata, 2007; 
Wu and Wang, 2007) is a representative work in 

pivot-based machine translation. The approach 
proposes to build a source-target phrase table by 
merging the source-pivot and pivot-target phrase 
table. One of the key issues in this method is to 
estimate the translation probabilities for the gen-
erated source-target phrase pairs. Conventionally, 
the probabilities are estimated by multiplying the 
posterior probabilities of source-pivot and pivot-
target phrase pairs. However, it has been shown 
that the generated probabilities are not accurate 
enough (Cui et al., 2013). One possible reason 
may lie in the non-uniformity of the probability 
space. Through Figure 1. (a), we can see that the 
probability distributions of source-pivot and piv-
ot-target language are calculated separately, and 
the source-target probability distributions are 
induced from the source-pivot and pivot-target 
probability distributions. Because of the absence 
of the pivot language (e.g., p2 is in source-pivot 
probability space but not in pivot-target one), the 
induced source-target probability distribution is 
not complete, which will result in inaccurate 
probabilities.  

To solve this problem, we propose a novel ap-
proach that utilizes the co-occurrence count of 
source-target phrase pairs to estimate phrase 
translation probabilities more precisely. Different 
from the triangulation method, which merges the 
source-pivot and pivot-target phrase pairs after 
training the translation model, we propose to 
merge the source-pivot and pivot-target phrase 
pairs immediately after the phrase extraction step, 
and estimate the co-occurrence count of the 
source-pivot-target phrase pairs. Finally, we 
compute the translation probabilities according 
to the estimated co-occurrence counts, using the 
standard training method in phrase-based SMT 
(Koehn et al., 2003). As Figure 1. (b) shows, the 
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source-target probability distributions are calcu-
lated in a complete probability space. Thus, it 
will be more accurate than the traditional trian-
gulation method. Figure 2. (a) and (b) show the 
difference between the triangulation method and 
our co-occurrence count method. 

Furthermore, it is common that a small stand-
ard bilingual corpus can be available between the 
source and target language. The direct translation 
model trained with the standard bilingual corpus 
exceeds in translation performance, but its weak-
ness lies in low phrase coverage. However, the 

pivot model has characteristics characters. Thus, 
it is important to combine the direct and pivot 
translation model to compensate mutually and 
further improve the translation performance. To 
deal with this problem, we propose a mixed 
model by merging the phrase pairs extracted by 
pivot-based method and the phrase pairs extract-
ed from the standard bilingual corpus. Note that, 
this is different from the conventional interpola-
tion method, which interpolates the direct and 
pivot translation model. See Figure 2. (b) and (c) 
for further illustration. 

(a) the triangulation method                         (b) the co-occurrence count method 
 

Figure 1: An example of probability space evolution in pivot translation. 
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Figure 2: Framework of the triangulation method, the co-occurrence count method and the mixed 
model. The shaded box in (b) denotes difference between the co-occurrence count method and the 
triangulation method. The shaded box in (c) denotes the difference between the interpolation model 
and the mixed model. 
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The remainder of this paper is organized as 
follows. In Section 2, we describe the related 
work. We introduce the co-occurrence count 
method in Section 3, and the mixed model in 
Section 4. In Section 5 and Section 6, we de-
scribe and analyze the experiments. Section 7 
gives a conclusion of the paper. 

2 Related Work 

Several methods have been proposed for pivot-
based translation. Typically, they can be classi-
fied into 3 kinds as follows: 

Transfer Method: The transfer method 
(Utiyama and Isahara, 2007; Wang et al., 2008; 
Costa-jussà et al., 2011) connects two translation 
systems: a source-pivot MT system and a pivot-
target MT system. Given a source sentence, (1) 
the source-pivot MT system translates it into the 
pivot language, (2) and the pivot-target MT sys-
tem translates the pivot sentence into the target 
sentence. During each step (source to pivot and 
pivot to target), multiple translation outputs will 
be generated, thus a minimum Bayes-risk system 
combination method is often used to select the 
optimal sentence (González-Rubio et al., 2011; 
Duh et al., 2011). The problem with the transfer 
method is that it needs to decode twice. On one 
hand, the time cost is doubled; on the other hand, 
the translation error of the source-pivot transla-
tion system will be transferred to the pivot-target 
translation. 

Synthetic Method: It aims to create a synthet-
ic source-target corpus by: (1) translate the pivot 
part in source-pivot corpus into target language 
with a pivot-target model; (2) translate the pivot 
part in pivot-target corpus into source language 
with a pivot-source model; (3) combine the 
source sentences with translated target sentences 
or/and combine the target sentences with trans-
lated source sentences (Utiyama et al., 2008; Wu 
and Wang, 2009). However, it is difficult to 
build a high quality translation system with a 
corpus created by a machine translation system. 

Triangulation Method: The triangulation 
method obtains source-target phrase table by 
merging source-pivot and pivot-target phrase 
table entries with identical pivot language 
phrases and multiplying corresponding posterior 
probabilities (Wu and Wang, 2007; Cohn and 
Lapata, 2007), which has been shown to work 
better than the other pivot approaches (Utiyama 
and Isahara, 2007). A problem of this approach is 
that the probability space of the source-target 

phrase pairs is non-uniformity due to the mis-
matching of the pivot phrase.  

3 Our Approach 

In this section, we will introduce our method for 
learning a source-target phrase translation model 
with a pivot language as a bridge. We extract the 
co-occurrence count of phrase pairs for each lan-
guage pair with a source-pivot and a pivot-target 
corpus. Then we generate the source-target 
phrase pairs with induced co-occurrence infor-
mation. Finally, we compute translation proba-
bilities using the standard phrase-based SMT 
training method. 

3.1 Phrase Translation Probabilities 

Following the standard phrase extraction method 
(Koehn et al., 2003), we can extract phrase pairs ̅ , ̅  and ̅ , ̅  from the corresponding word-
aligned source-pivot and pivot-target training 
corpus, where ̅ , ̅  and ̅  denotes the phrase in 
source, pivot and target language respectively. 

Formally, given the co-occurrence count ̅ , ̅  and ̅ , ̅ , we can estimate  ̅ , ̅  by 
Equation 1: ̅ , ̅ ̅, ̅ , ̅, ̅̅  (1) 

where ∙  is a function to merge the co-
occurrences count ̅ , ̅  and ̅ , ̅ . We pro-
pose four calculation methods for function ∙ . 

Given the co-occurrence count ̅ , ̅  and ̅ , ̅ , we first need to induce the co-occurrence 
count ̅ , , ̅ . The ̅ , , ̅  is counted when 
the source phrase, pivot phrase and target phrase 
occurred together, thus we can infer that ̅ , , ̅  is smaller than ̅ , ̅  and ̅ , ̅ . In 
this circumstance, we consider that ̅ , , ̅  is 
approximately equal to the minimum value of ̅ , ̅  and ̅ , ̅ , as shown in Equation 2. ̅ , ̅, ̅ min ̅, ̅ , ̅, ̅̅  (2) 

Because the co-occurrence count of source-
target phrase pairs needs the existence of pivot 
phrase ̅ , we intuitively believe that the co-
occurrence count ̅ , ̅  is equal to the co-
occurrence count ̅ , , ̅ . Under this assump-
tion, we can obtain the co-occurrence count ̅ , ̅  as shown in Equation 3. Furthermore, to 
testify our assumption, we also try the maximum 
value (Equation 4) to infer the co-occurrence 
count of ̅ , ̅   phrase pair. 
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̅ , ̅ min ̅, ̅ , ̅, ̅̅  (3) 

̅ , ̅ max ̅, ̅ , ̅, ̅̅  (4) 

In addition, if source-pivot and pivot-target 
parallel corpus greatly differ in quantities, then 
the minimum function would likely just take the 
counts from the smaller corpus. To deal with the 
problem of the imbalance of the parallel corpora, 
we also try the arithmetic mean (Equation 5) and 
geometric mean (Equation 6) function to infer 
the co-occurrence count of source-target phrase 
pairs. ̅ , ̅ ̅, ̅ ̅ , ̅ /2̅  (5) 

̅ , ̅ ̅, ̅ ̅ , ̅̅  (6) 

When the co-occurrence count of source-target 
language is calculated, we can estimate the 
phrase translation probabilities with the follow-
ing Equation 7 and Equation 8. ̅| ̅ ̅, ̅∑ ̅, ̅̅  (7) 

̅| ̅ ̅, ̅∑ ̅, ̅̅  (8) 

3.2 Lexical Weight 

Given a phrase pair ̅ , ̅  and a word alignment 
a between the source word positions 1,⋯ ,  
and the target word positions 0,⋯ , , the 
lexical weight of phrase pair ̅ , ̅  can be calcu-
lated by the following Equation 9 (Koehn et al., 
2003). 

̅| ̅, 1| | , ∈ | |∀ , ∈ (9) 

The lexical translation probability distribution |  between source word s and target word t 
can be estimated with Equation 10. | ,∑ ,  (10)

To compute the lexical weight for a phrase 
pair ̅ , ̅  generated by ̅ , ̅  and ̅ , ̅ , we need 
the alignment information , which can be ob-
tained as Equation 11 shows. 

, |∃ : , ∈ & , ∈  (11)

where  and  indicate the word alignment 
information in the phrase pair ̅ , ̅  and ̅ , ̅  
respectively. 

4 Integrate with Direct Translation 

If a standard source-target bilingual corpus is 
available, we can train a direct translation model. 
Thus we can integrate the direct model and the 
pivot model to obtain further improvements. We 
propose a mixed model by merging the co-
occurrence count in direct translation and pivot 
translation. Besides, we also employ an interpo-
lated model (Wu and Wang, 2007) by merging 
the direct translation model and pivot translation 
model using a linear interpolation. 

4.1 Mixed Model 

Given  pivot languages, the co-occurrence 
count can be estimated using the method de-
scribed in Section 3.1. Then the co-occurrence 
count and the lexical weight of the mixed model 
can be estimated with the following Equation 12 
and 13. , ,  (12)

̅| ̅, , ̅| ̅,  (13)

where ,  and , ̅| ̅,  are the co-
occurrence count and lexical weight in the direct 
translation model respectively. ,  and , ̅| ̅,  denote the co-occurrence count and 
lexical weight in the pivot translation model.  
is the interpolation coefficient, requiring ∑ 1. 

4.2 Interpolated Model 

Following Wu and Wang (2007), the interpolated 
model can be modelled with Equation 14. ̅| ̅ ̅| ̅  (14)

where ̅| ̅  is the phrase translation probabil-
ity in direct translation model; ̅| ̅  is the 
phrase translation probability in pivot translation 
model. The lexical weight is obtained with Equa-
tion 13.  is the interpolation coefficient, requir-
ing ∑ 1. 
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5 Experiments on Europarl Corpus 

Our first experiment is carried out on Europarl1 
corpus, which is a multi-lingual corpus including 
21 European languages (Koehn, 2005). In our 
work, we perform translations among French (fr), 
German (de) and Spanish (es). Due to the rich-
ness of available language resources, we choose 
English (en) as the pivot language. Table 1 
summarized the statistics of training data. For the 
language model, the same monolingual data ex-
tracted from the Europarl are used. 

The word alignment is obtained by GIZA++ 
(Och and Ney, 2000) and the heuristics “grow-
diag-final” refinement rule (Koehn et al., 2003). 
Our translation system is an in-house phrase-
based system analogous to Moses (Koehn et al., 
2007). The baseline system is the triangulation 
method (Wu and Wang, 2007), including an in-
terpolated model which linearly interpolate the 
direct and pivot translation model. 

                                                 
1 http://www.statmt.org/europarl 

We use WMT082  as our test data, which con-
tains 2000 in-domain sentences and 2051 out-of-
domain sentences with single reference. The 
translation results are evaluated by case-
insensitive BLEU-4 metric (Papineni et al., 
2002). The statistical significance tests using 
95% confidence interval are measured with 
paired bootstrap resampling (Koehn, 2004). 

5.1 Results 

We compare 4 merging methods with the base-
line system. The results are shown in Table 2 and 
Table 3. We find that the minimum method out-
performs the others, achieving significant im-
provements over the baseline on all translation 
directions. The absolute improvements range 
from 0.61 (fr-de) to 1.54 (es-fr) in BLEU% score 
on in-domain test data, and range from 0.36 (fr-
de) to 2.05 (fr-es) in BLEU% score on out-of-
domain test data. This indicates that our method 
is effective and robust in general. 

                                                 
2 http://www.statmt.org/wmt08/shared-task.html 

Language 
Pairs 

Sentence 
Pairs 

Source 
Words

Target 
Words

de-en 1.9M 48.5M 50.9M
es-en 1.9M 54M 51.7M
fr-en 2M 58.1M 52.4M

 
Table 1: Training data of Europarl corpus 

 

System BLEU% 
de-es de-fr es-de es-fr fr-de fr-es 

Baseline 27.04 23.01 20.65 33.84 20.87 38.31 
Minimum 27.93* 23.94* 21.52* 35.38* 21.48* 39.62* 
Maximum 25.70 21.59 20.26 32.58 20.50 37.30 

Arithmetic mean 26.01 22.24 20.13 33.38 20.37 37.37 
Geometric mean 27.31 23.49* 21.10* 34.76* 21.15* 39.19* 

 
Table 2: Comparison of different merging methods on in-domain test set. * indicates the results are 
significantly better than the baseline (p<0.05). 

 

System BLEU% 
de-es de-fr es-de es-fr fr-de fr-es 

Baseline 15.34 13.52 11.47 21.99 12.19 25.00 
Minimum 15.77* 14.08* 11.99* 23.90* 12.55* 27.05* 
Maximum 13.41 11.83 10.17 20.48 10.83 22.75 

Arithmetic mean 13.96 12.10 10.57 21.07 11.30 23.70 
Geometric mean 15.09 13.30 11.52 23.32* 12.46* 26.22* 

 
Table 3: Comparison of different merging methods on out-of-domain test set. 
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The geometric mean method also achieves im-
provement, but not as significant as the minimum 
method. However, the maximum and the arith-
metic mean methods show a decrement in BLEU 
scores. This reminds us that how to choose a 
proper merging function for the co-occurrence 
count is a key problem.  In the future, we will 
explore more sophisticated method to merge co-
occurrence count. 

5.2 Analysis 

The pivot-based translation is suitable for the 
scenario that there exists large amount of source-

pivot and pivot-target bilingual corpora and only 
a little source-target bilingual data. Thus, we 
randomly select 10K, 50K, 100K, 200K, 500K, 
1M, 1.5M sentence pairs from the source-target 
bilingual corpora to simulate the lack of source-
target data. With these corpora, we train several 
direct translation models with different scales of 
bilingual data. We interpolate each direct transla-
tion model with the pivot model (both triangula-
tion method and co-occurrence count method) to 
obtain the interpolated model respectively. We 
also mix the direct model and pivot model using 
the method described in Section 4.1.  Following 

 
(a) German-English-Spanish                                        (b) German-English-French 

 

 
(c) Spanish-English-German                                        (d) Spanish-English-French 

 

 
(e) French-English-German                                         (f) French-English-Spanish 
 

Figure 3: Comparisons of pivot-based methods on different scales of source-target standard corpora. 
(direct: direct model; tri: triangulation model; co: co-occurrence count model; tri+inter: triangulation 
model interpolated with direct model ; co+inter: co-occurrence count model interpolated with direct 
model; co+mix: mixed model). X-axis represents the scale of the standard training data. 
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Wu and Wang (2007), we set α 0.9, α 0.1, β 0.9  and β 0.1  empirically. The experi-
ments are carried out on 6 translation directions: 
German-Spanish, German-French, Spanish-
German, Spanish-French, French-German and 
French-Spanish. The results are shown in Figure 
3. We only list the results on in-domain test sets. 
The trend of the results on out-of domain test 
sets is similar with in-domain test sets. 

The results are explained as follows: 
(1) Comparison of Pivot Translation and Di-

rect Translation 
The pivot translation models are better than 

the direct translation models trained on a small 
source-target bilingual corpus. With the incre-
ment of source-target corpus, the direct model 
first outperforms the triangulation model and 
then outperforms the co-occurrence count model 
consecutively. 

Taking Spanish-English-French translation as 
an example, the co-occurrence count model 
achieves BLEU% scores of 35.38, which is close 
to the direct translation model trained with 200K 
source-target bilingual data. Compared with the 
co-occurrence count model, the triangulation 
model only achieves BLEU% scores of 33.84, 
which is close to the direct translation model 
trained with 50K source-target bilingual data. 
(2) Comparison of Different Interpolated 

Models 
For the pivot model trained by triangulation 

method and co-occurrence count method, we 
interpolate them with the direct translation model 
trained with different scales of bilingual data. 
Figure 3 shows the translation results of the dif-
ferent interpolated models. For all the translation 
directions, our co-occurrence count method in-
terpolated with the direct model is better than the 
triangulation model interpolated with the direct 
model.  

The two interpolated model are all better than 
the direct translation model. With the increment 
of the source-target training corpus, the gap be-
comes smaller. This indicates that the pivot mod-
el and its affiliated interpolated model are suita-
ble for language pairs with small bilingual data. 
Even if the scale of source-pivot and pivot-target 
corpora is close to the scale of source-target bi-
lingual corpora, the pivot translation model can 
help the direct translation model to improve the 
translation performance. Take Spanish-English-
French translation as an issue, when the scale of 
Spanish-French parallel data is 1.5M sentences 
pairs, which is close to the Spanish-English and 

English-French parallel data, the performance of 
co+mix model is still outperforms the direct 
translation model. 
(3) Comparison of Interpolated Model and 

Mixed Model 
When only a small source-target bilingual 

corpus is available, the mix model outperforms 
the interpolated model. With the increasing of 
source-target corpus, the mix model is close to 
the interpolated model or worse than the interpo-
lated model. This indicates that the mix model 
has a better performance when the source-target 
corpus is small which is close to the realistic sce-
nario. 

5.3 Integrate the Co-occurrence Count 
Model and Triangulation Model 

Experimental results in the previous section 
show that, our co-occurrence count models gen-
erally outperform the baseline system. In this 
section, we carry out experiments that integrates 
co-occurrence count model into the triangulation 
model. 

For French-English-German translation, we 
apply a linear interpolation method to integrate 
the co-occurrence count model into triangulation 
model following the method described in Section 
4.2.  We set α as the interpolation coefficient of 
triangulation model and 1 α as the interpola-
tion coefficient of co-occurrence count model 
respectively. The experiments take 9 values for 
interpolation coefficient, from 0.1 to 0.9. The 
results are shown in Figure 4. 

 

 
Figure 4: Results of integrating the co-
occurrence count model and the triangulation 
model. 
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grated models perform slightly lower than the 
co-occurrence count model, but still show better 
results than the triangulation model. The trend of 
the curve infers that the integrated model synthe-
sizes the contributions of co-occurrence count 
model and triangulation model. Additionally, it 
also indicates that, the choice of the interpolation 
coefficient affects the translation performances. 

6 Experiments on Web Data 

The experimental on Europarl is artificial, as the 
training data for directly translating between 
source and target language actually exists in the 
original data sets. Thus, we conducted several 
experiments on a more realistic scenario: trans-
lating Chinese (zh) to Japanese (jp) via English 
(en) with web crawled data. 

As mentioned in Section 3.1, the source-pivot 
and pivot-target parallel corpora can be imbal-
anced in quantities. If one parallel corpus was 
much larger than another, then minimum heuris-
tic function would likely just take the counts 
from the smaller corpus.  

In order to analyze this issue, we manually set 
up imbalanced corpora. For source-pivot parallel 
corpora, we randomly select 1M, 2M, 3M, 4M 
and 5M Chinese-English sentence pairs. On the 
other hand, we randomly select 1M English-
Japanese sentence pairs as pivot-target parallel 
corpora. The training data of Chinese-English 

and English-Japanese language pairs are summa-
rized in Table 4. For the Chinese-Japanese direct 
corpus, we randomly select 5K, 10K, 20K, 30K, 
40K, 50K, 60K, 70K, 80K, 90K and 100K sen-
tence pairs to simulate the lack of bilingual data. 
We built a 1K in-house test set with four refer-
ences. For Japanese language model training, we 
used the monolingual part of English-Japanese 
corpus. 

Table 5 shows the results of different co-
occurrence count merging methods. First, the 
minimum method and the geometric mean meth-
od outperform the other two merging methods 
and the baseline system with different training 
corpus. When the scale of source-pivot and piv-
ot-target corpus is roughly balanced (zh-en-jp-1), 
the minimum method achieves an absolute im-
provement of 2.06 percentages points on BLEU 
over the baseline, which is also better than the 
other merging methods. While, with the growth 
of source-pivot corpus, the gap between source-
pivot corpus and pivot-target corpus becomes 
bigger. In this circumstance, the geometric mean 
method becomes better than the minimum meth-
od. Compared to the minimum method, the geo-
metric mean method considers both the source-
pivot and the pivot-target corpus, which may 
lead to a better result in the case of imbalanced 
training corpus. 

Language 
Pairs 

Sentence 
Pairs 

Source 
Words

Target 
Words

zh-en-1 1M 18.1M 17.7M
zh-en-2 2M 36.2M 35.5M
zh-en-3 3M 54.2M 53.2M
zh-en-4 4M 72.3M 70.9M
zh-en-5 5M 90.4M 88.6M
en-jp 1M 9.2M 11.1M

 
Table 4: Training data of web corpus 

 

System BLEU% 
zh-en-jp-1* zh-en-jp-2 zh-en-jp-3 zh-en-jp-4 zh-en-jp-5

Baseline 29.07 29.39 29.44 29.67 29.80 
Minimum 31.13* 31.28* 31.43* 31.62* 32.02* 
Maximum 28.88 29.01 29.12 29.37 29.59 

Arithmetic mean 29.08 29.36 29.51 29.79 30.01 
Geometric mean 30.77* 31.30* 31.75* 32.07* 32.34* 

 
Table 5: Comparison of different merging methods on the imbalanced web data. ( zh-en-jp-1 means 
the translation system is trained with zh-en-1 as source-pivot corpus and en-jp as pivot-target corpus, 
and so on. ) 
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Furthermore, with the imbalanced corpus zh-
en-jp-5, we compared the translation perfor-
mance of our co-occurrence count model (with 
geometric mean merging method), triangulation 
model, interpolated model, mixed model and the 
direct translation models. Figure 5 summarized 
the results. 

The co-occurrence count model can achieve an 
absolute improvement of 2.54 percentages points 
on BLEU over the baseline. The triangulation 
method outperforms the direct translation when 
only 5K sentence pairs are available. Meanwhile, 
the number is 10K when using the co-occurrence 
count method. The co-occurrence count models 
interpolated with the direct model significantly 
outperform the other models. 

 

 
Figure 5: Results on Chinese-Japanese Web Data. 
X-axis represents the scale of the standard train-
ing data. 

 
In this experiment, the training data contains 

parallel sentences on various domains. And the 
training corpora (Chinese-English and English-
Japanese) are typically very different, since they 
are obtained on the web. It indicates that our co-
occurrence count method is robust in the realistic 
scenario. 

7 Conclusion 

This paper proposed a novel approach for pivot-
based SMT by pivoting the co-occurrence count 
of phrase pairs. Different from the triangulation 
method merging the source-pivot and pivot-
target language after training the translation 
model, our method merges the source-pivot and 
pivot-target language after extracting the phrase 
pairs, thus the computing for phrase translation 
probabilities is under the uniform probability 
space. The experimental results on Europarl data 
and web data show significant improvements 
over the baseline systems. We also proposed a 
mixed model to combine the direct translation 
and pivot translation, and the experimental re-
sults show that the mixed model has a better per-

formance when the source-target corpus is small 
which is close to the realistic scenario. 

A key problem in the approach is how to learn 
the co-occurrence count. In this paper, we use the 
minimum function on balanced corpora and the 
geometric mean function on imbalanced corpora 
to estimate the co-occurrence count intuitively. 
In the future, we plan to explore more effective 
approaches. 
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Abstract

Translating into morphologically rich lan-
guages is a particularly difficult problem
in machine translation due to the high de-
gree of inflectional ambiguity in the tar-
get language, often only poorly captured
by existing word translation models. We
present a general approach that exploits
source-side contexts of foreign words to
improve translation prediction accuracy.
Our approach is based on a probabilistic
neural network which does not require lin-
guistic annotation nor manual feature en-
gineering. We report significant improve-
ments in word translation prediction accu-
racy for three morphologically rich target
languages. In addition, preliminary results
for integrating our approach into a large-
scale English-Russian statistical machine
translation system show small but statisti-
cally significant improvements in transla-
tion quality.

1 Introduction

The ability to make context-sensitive translation
decisions is one of the major strengths of phrase-
based SMT (PSMT). However, the way PSMT ex-
ploits source-language context has several limita-
tions as pointed out, for instance, by Quirk and
Menezes (2006) and Durrani et al. (2013). First,
the amount of context used to translate a given
input word depends on the phrase segmentation,
with hypotheses resulting from different segmen-
tations competing with one another. Another issue
is that, given a phrase segmentation, each source
phrase is translated independently from the oth-
ers, which can be problematic especially for short

phrases. As a result, the predictive translation of
a source phrase does not access useful linguistic
clues in the source sentence that are outside of the
scope of the phrase.

Lexical weighting tackles the problem of un-
reliable phrase probabilities, typically associated
with long phrases, but does not alleviate the prob-
lem of context segmentation. An important share
of the translation selection task is then left to the
language model (LM), which is certainly very ef-
fective but can only leverage target language con-
text. Moreover, decisions that are taken at early
decoding stages—such as the common practice
of retaining only top n translation options for
each source span—depend only on the translation
models and on the target context available in the
phrase.

Source context based translation models (Gim-
pel and Smith, 2008; Mauser et al., 2009; Jeong
et al., 2010; Haque et al., 2011) naturally ad-
dress these limitations. These models can ex-
ploit a boundless context of the input text, but
they assume that target words can be predicted in-
dependently from each other, which makes them
easy to integrate into state-of-the-art PSMT sys-
tems. Even though the independence assump-
tion is made on the target side, these models have
shown the benefits of utilizing source context, es-
pecially in translating into morphologically rich
languages. One drawback of previous research
on this topic, though, is that it relied on rich
sets of manually designed features, which in turn
required the availability of linguistic annotation
tools like POS taggers and syntactic parsers.

In this paper, we specifically focus on im-
proving the prediction accuracy for word transla-
tions. Achieving high levels of word translation
accuracy is particularly challenging for language
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pairs where the source language is morphologi-
cally poor, such as English, and the target lan-
guage is morphologically rich, such as Russian,
i.e., language pairs with a high degree of surface
realization ambiguity (Minkov et al., 2007). To
address this problem we propose a general ap-
proach based on bilingual neural networks (BNN)
exploiting source-side contextual information.

This paper makes a number of contributions:
Unlike previous approaches our models do not re-
quire any form of linguistic annotation (Minkov
et al., 2007; Kholy and Habash, 2012; Chahuneau
et al., 2013), nor do they require any feature en-
gineering (Gimpel and Smith, 2008). Moreover,
besides directly predicting fully inflected forms
as Jeong et al. (2010), our approach can also
model stem and suffix prediction explicitly. Pre-
diction accuracy is evaluated with respect to three
morphologically rich target languages (Bulgarian,
Czech, and Russian) showing that our approach
consistently yields substantial improvements over
a competitive baseline. We also show that these
improvements in prediction accuracy can be ben-
eficial in an end-to-end machine translation sce-
nario by integrating into a large-scale English-
Russian PSMT system. Finally, a detailed analysis
shows that our approach induces a positive bias on
phrase translation probabilities leading to a better
ranking of the translation options employed by the
decoder.

2 Lexical coverage of SMT models

The first question we ask is whether translation
can be improved by a more accurate selection of
the translation options already existing in the SMT
models, as opposed to generating new options.
To answer this question we measure the lexical
coverage of a baseline PSMT system trained on
English-Russian.1 We choose this language pair
because of the morphological richness on the tar-
get side: Russian is characterized by a highly in-
flectional morphology with a particularly complex
nominal declension (six core cases, three genders
and two number categories). As suggested by
Green and DeNero (2012), we compute the re-
call of reference tokens in the set of target to-
kens that the decoder could produce in a trans-
lation of the source, that is the target tokens of
all phrase pairs that matched the input sentence

1Training data and SMT setup are described in Section 6.

and that were actually used for decoding.2 We
call this the decoder’s lexical search space. Then,
we compare the reference/space recall against the
reference/MT-output recall: that is, the percent-
age of reference tokens that also appeared in the
1-best translation output by the SMT system. Re-
sults for the WMT12 benchmark are presented in
Table 1. From the first two rows, we see that only a
rather small part of the correct target tokens avail-
able to the decoder are actually produced in the
1-best MT output (50% against 86%). Although
our word-level analysis does not directly estimate
phrase-level coverage, these numbers suggest that
a large potential for translation improvement lies
in better lexical selection during decoding.

Token recall:
reference/MT-search-space 86.0%
reference/MT-output 50.0%
stem-only reference/MT-output 12.3%
of which reachable 11.2%

Table 1: Lexical coverage analysis of the baseline
SMT system (English-Russian wmt12).

To quantify the importance of morphology, we
count how many reference tokens matched the
MT output only at the stem level3 and for how
many of those the correct surface form existed
in the search space (reachable matches). These
two numbers represent the upper bound of the im-
provement achievable by a model only predicting
suffixes given the target stems. As shown in Ta-
ble 1, such a model could potentially increase the
reference/MT-output recall by 12.3% with genera-
tion of new inflected forms, and by 11.2% without.
Thus, also when it comes to morphology, gener-
ation seems to be of secondary importance com-
pared to better selection in our experimental setup.

3 Predicting word translations in context

It is standard practice in PSMT to use word-
to-word translation probabilities as an additional
phrase score. More specifically, state-of-the-art
PSMT systems employ the maximum-likelihood
estimate of the context-independent probability
of a target word given its aligned source word
P (tj |si) for each word alignment link aij .

2This corresponds to the top 30 phrases sorted by
weighted phrase, lexical and LM probabilities, for each
source span. Koehn (2004) and our own experience suggest
that using more phrases has little or no impact on MT quality.

3Word segmentation for this analysis is performed by the
Russian Snowball stemmer, see also Section 5.3.
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[конституционность] [индиана закон]

constitutionality of the] [indiana law] [.]

[.]

[the

Figure 1: Fragment of English sentence and its in-
correct Russian translation produced by the base-
line SMT system. Square brackets indicate phrase
boundaries.

The main goal of our work is to improve the
estimation of such probabilities by exploiting the
context of si, which in turn we expect will re-
sult in better phrase translation selection. Figure
1 illustrates this idea: the translation of “law” in
this example has a wrong case—nominative in-
stead of genitive. Due to the rare word “Indi-
ana/индиана”, the target LM must backoff to the
bigram history and does not penalize this choice
sufficiently. However, a model that has access to
the word “of” in the near source context could bias
the translation of “law” to the correct case.

We then model P (tj |csi) with source context
csi defined as a fixed-length word sequence cen-
tered around si:

csi = si−k, ..., si, ..., si+k

Our definition of context is similar to the n − 1
word history used in n-gram LMs. Similarly to
previous work in source context-sensitive trans-
lation modeling (Jeong et al., 2010; Chahuneau
et al., 2013), target words are predicted indepen-
dently from each other, which allows for an ef-
ficient decoding integration. We are particularly
interested in translating into morphologically rich
languages where source context can provide useful
information for the prediction of target translation,
for example, the gender of the subject in a source
sentence constrains the morphology of the transla-
tion of the source verb. Therefore, we integrate the
notions of stem and suffix directly into the model.
We assume the availability of a word segmenta-
tion function g that takes a target word t as in-
put and returns its stem and suffix: g(t) = (σ, µ).
Then, the conditional probability p(tj |csi) can be
decomposed into stem probability and suffix prob-
ability:

p(tj |csi) = p(σj |csi)p(µj |csi , σj) (1)

These two probabilities can be estimated sepa-
rately, which yields the two subtasks:

1. predict target stem σ given source context cs;
2. predict target suffix µ given source context cs

and target stem σ.

Based on the results of our analysis, we focus
on the selection of existing translation candidates.
We then restrict our prediction on a set of pos-
sible target candidates depending on the task in-
stead of considering all target words in the vocab-
ulary. More specifically, for each source word si,
our candidate generation function returns the set of
target words Ts = {t1, . . . , tm} that were aligned
to si in the parallel training corpus, which in turn
corresponds to the set of target words that the SMT
system can produce for a given source. In practice,
we use a pruned version of Ts to speed up training
and reduce noise (see details in Section 5).

As for the morphological models, given Ts and
g, we can obtain Ls = {σ1, . . . , σk}, the set of
possible target stem translations of s, and Mσ =
{µ1, . . . , µl}, the set of possible suffixes for a tar-
get stem σ. The use of Ls, and Mσ is similar to
stemming and inflection operations in (Toutanova
et al., 2008) while the set Ts is similar to the GEN
function in (Jeong et al., 2010).4

Our approach differs crucially from previous
work (Minkov et al., 2007; Chahuneau et al.,
2013) in that it does not require linguistic fea-
tures such as part-of-speech and syntactic tree on
the source side. The proposed models automati-
cally learn features that are relevant for each of the
modeled tasks, directly from word-aligned data.
To make the approach completely language inde-
pendent, the word segmentation function g can be
trained with an unsupervised segmentation tool.
The effects of using different word segmentation
techniques are discussed in Section 5.

4 Bilingual neural networks for
translation prediction

Probabilistic neural network (NN), or continuous
space, language models have received increas-
ing attention over the last few years and have
been applied to several natural language process-
ing tasks (Bengio et al., 2003; Collobert and We-
ston, 2008; Socher et al., 2011; Socher et al.,
2012). Within statistical machine translation, they

4Note that our suffix generation function Mσ is restricted
to the forms observed in the target monolingual data, but not
to those aligned to a source word s, which opens the possi-
bility of generating inflected forms that are missing from the
translation models. We leave this possibility to future work.
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have been used for monolingual target language
modeling (Schwenk et al., 2006; Le et al., 2011;
Duh et al., 2013; Vaswani et al., 2013), n-gram
translation modeling (Son et al., 2012), phrase
translation modeling (Schwenk, 2012; Zou et al.,
2013; Gao et al., 2014) and minimal translation
modeling (Hu et al., 2014). The recurrent neural
network LMs of Auli et al. (2013) are primarily
trained to predict target word sequences. However,
they also experiment with an additional input layer
representing source side context.

Our models differ from most previous work in
neural language modeling in that we predict a tar-
get translation given a source context while pre-
vious models predict the next word given a tar-
get word history. Unlike previous work in phrase
translation modeling with NNs, our models have
the advantage of accessing source context that can
fall outside the phrase boundaries.

We now describe our models in a general set-
ting, predicting target translations given a source
context, where target translations can be either
words, stems or suffixes.5

4.1 Neural network architecture
Following a common approach in deep learning
for NLP (Bengio et al., 2003; Collobert and We-
ston, 2008), we represent each source word si by
a column vector rsi ∈ Rd. Given a source con-
text csi = si−k, ..., si, ..., si+k of k words on the
left and k words on the right of si, the context rep-
resentation rcsi

∈ R(2k+1)×d is obtained by con-
catenating the vector representations of all words
in csi :

rcsi
= rsi−k � ...� rsi+k

Our main BNN architecture for word or stem
prediction (Figure 2a) is a feed-forward neural
network (FFNN) with one hidden layer, a matrix
W1 ∈ Rn×(2k+1)d connecting the input layer to
the hidden layer, a matrix W2 ∈ R|Vt|×n connect-
ing the hidden layer to the output layer, and a bias
vector b2 ∈ R|Vt| where |Vt| is the size of target
translations vocabulary. The target translation dis-
tribution PBNN(t|csi) for a given source context
csi is computed by a forward pass:

softmax
(
W2 φ(W1rcsi

) + b2

)
(2)

where φ is a nonlinearity (tanh, sigmoid or rec-
tified linear units). The parameters of the neural

5The source code of our models is available at https:
//bitbucket.org/ketran

network are θ = {rsi ,W1,W2,b2}.
The suffix prediction BNN is obtained by

adding the target stem representation rσ to the in-
put layer (see Figure 2b).

4.2 Model variants

We encounter two major issues with FFNNs: (i)
They do not provide a natural mechanism to com-
pute word surface conditional probability p(t|cs)
given individual stem probability p(σ|cs) and suf-
fix probability p(µ|cs, σ), and (ii) FFNNs do not
provide the flexibility to capture long dependen-
cies among words if they lie outside the source
context window. Hence, we consider two BNN
variants: a log-bilinear model (LBL) and a con-
volutional neural network model (ConvNet). LBL
could potentially address (i) by factorizing target
representations into target stem and suffix repre-
sentations whereas ConvNets offer the advantage
of modeling variable input length (ii) (Kalchbren-
ner et al., 2014).

Log-bilinear model. The FFNN models stem
and suffix probabilities separately. A log-bilinear
model instead could directly model word predic-
tion through a factored representation of target
words, similarly to Botha and Blunsom (2014).
Thus, no probability mass would be wasted over
stem-suffix combinations that are not in the candi-
date generation function. The LBL model speci-
fies the conditional distribution for the word trans-
lation tj ∈ Tsi given a source context csi :

Pθ(tj |csi) =
exp(sθ(tj , csi))∑

t′j∈Tsi
exp(sθ(t′j , csi))

(3)

We use an additional set of word representations
qtj ∈ Rn for target translations tj . The LBL
model computes a predictive representation q̂ of a
source context csi by taking a linear combination
of the source word representations rsi+m with the
position-dependent weight matrices Cm ∈ Rn×d:

q̂ =
k∑

m=−k
Cmrsi+m (4)

The score function sθ(tj , csi) measures the simi-
larity between the predictive representation q̂ and
the target representation qtj :

sθ(tj , csi) = q̂Tqtj + bT
hqtj + btj (5)
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P✓(t|csi)

rsi�k rsi
rsi+k

W1

W2

�(x)

(a) BNN for word prediction.

P✓(µ|�, csi)

rsi�k rsi
rsi+k

W1

W2

�(x)

r�

(b) BNN for suffix prediction.

Figure 2: Feed-forward BNN architectures for predicting target translations: (a) word model (similar to
stem model), and (b) suffix model with an additional vector representation rσ for target stems σ.

Here btj is the bias term associated with target
word tj . bh ∈ Rn are the representation bi-
ases. sθ(tj , csi) can be seen as the negative en-
ergy function of the target translation tj and its
context csi . The parameters of the model thus
are θ = {rsi ,Cm,qtj ,bh, btj}. Our log-bilinear
model is a modification of the log-bilinear model
proposed for n-gram language modeling in (Mnih
and Hinton, 2007).

Convolutional neural network model. This
model (Figure 3) computes the predictive repre-
sentation q̂ by applying a sequence of 2k convo-
lutional layers {L1, . . . ,L2k}. The source context
csi is represented as a matrix mcsi

∈ Rd×(2k+1):

mcsi
=
[
rsi−k ; . . . ; rsi+k

]
(6)

q̂

rs1 rs2
rs3 rs4

rs5 rs6rs0

Figure 3: Convolutional neural network model.
Edges with the same color indicate the same ker-
nel weight matrix.

Each convolutional layer Li consists of a one-
dimensional filter mi ∈ Rd×2. Each row of mi

is convolved with the corresponding row in the
previous layer resulting in a weight matrix whose
number of columns decreases by one. Thus after
2k convolutional layers, the network transforms
the source context matrix mcsi

to a feature vec-
tor q̂ ∈ Rd. A fully connected layer with weight
matrix W followed by a softmax layer are placed
after the last convolutional layer L2k to perform
classification. The parameters of the convolutional

neural network model are θ = {rsi ,mj ,W}.
Here, we focus on a fixed length input, how-
ever convolutional neural networks may be used to
model variable length input (Kalchbrenner et al.,
2014; Kalchbrenner and Blunsom, 2013).

4.3 Training

In training, for each example (t, cs), we maximize
the conditional probability Pθ(t|cs) of a correct
target label t. The contribution of the training ex-
ample (t, cs) to the gradient of the log conditional
probability is given by:

∂

∂θ
logPθ(t|cs) =

∂

∂θ
sθ(t|cs)

−
∑
t′∈Ts

Pθ(t′|cs) ∂
∂θ
sθ(t′, cs)

Note that in the gradient, we do not sum over all
target translations T but a set of possible candi-
dates Ts of a source word s. In practice |Ts| ≤ 200
with our pruning settings (see Section 5.1), thus
training time for one example does not depend on
the vocabulary size. Our training criterion can be
seen as a form of contrastive estimation (Smith
and Eisner, 2005), however we explicitly move the
probability mass from competing candidates to the
correct translation candidate, thus obtaining more
reliable estimates of the conditional probabilities.

The BNN parameters are initialized randomly
according to a zero-mean Gaussian. We regularize
the models with L2. As an alternative to the L2

regularizer, we also experiment with dropout (Hin-
ton et al., 2012), where the neurons are randomly
zeroed out with dropout rate p. This technique is
known to be useful in computer vision tasks but
has been rarely used in NLP tasks. In FFNN, we
use dropout after the hidden layer, while in Con-
vNet, dropout applies after the last convolutional
layer. The dropout rate p is set to 0.3 in our exper-
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iments. We use rectified nonlinearities6 in FFNN
and after each convolutional layer in ConvNet. We
train our BNN models with the standard stochastic
gradient descent.

5 Evaluating word translation prediction

In this section, we assess the ability of our BNN
models to predict the correct translation of a word
in context. In addition to English-Russian, we also
consider translation prediction for Czech and Bul-
garian. As members of the Slavic language fam-
ily, Czech and Bulgarian are also characterized by
highly inflectional morphology. Czech, like Rus-
sian, displays a very rich nominal inflection with
as many as 14 declension paradigms. Bulgarian,
unlike Russian, is not affected by case distinctions
but is characterized by a definiteness suffix.

5.1 Experimental setup

The following parallel corpora are used to train the
BNN models:

• English-Russian: WMT13 data (News Com-
mentary and Yandex corpora);
• English-Czech: CzEng 1.0 corpus (Bojar et

al., 2012) (Web Pages and News sections);
• English-Bulgarian: a mix of crawled news

data, TED talks and Europarl proceedings.

Detailed corpus statistics are given in Table 2. For
each language pair, accuracies are measured on a
held-out set of 10K parallel sentences.

To prepare the candidate generation function,
each dataset is first word-aligned with GIZA++,
then a bilingual lexicon with maximum-likelihood
probabilities (Pmle) is built from the symmetrized
alignment. After some frequency and signifi-
cance pruning,7 the top 200 translations sorted by
Pmle(t|s) · Pmle(s|t) are kept as candidate word
translations for each source word in the vocabu-
lary. Word alignments are also used to train the
BNN models: each alignment link constitutes a
training sample, with no special treatment of un-
aligned words and 1-to-many alignments.

The context window size k is set to 3 (cor-
responding to 7-gram) and the dimensionality of

6We find that using rectified linear units gives better re-
sults than sigmoid and tanh.

7Each lexicon is pruned with minimum word frequency 5,
minimum source-target word pair frequency 2, minimum log
odds ratio 10.

source word representations to 100 in all experi-
ments. The number of hidden units in our feed-
forward neural networks and the target translation
embedding size in LBL models are set to 200. All
models are trained for 10 iterations with learning
rate set to 0.001.

En-Ru En-Cs En-Bg
Sentences 1M 1M 0.8M
Src. tokens 26.5M 19.2M 19.3M
Trg. tokens 24.7M 16.7M 18.9M
Src. T/T .0109 .0105 .0051
Trg. T/T .0247 .0163 .0104

Table 2: BNN training corpora statistics: number
of sentences, tokens, and type/token ratio (T/T).

5.2 Word, stem and suffix prediction
accuracy

We measure accuracy at top-n, i. e. the number
of times the correct translation was in the top n
candidates sorted by a model. For each subtask—
word, stem and suffix prediction—the BNN
model is compared to the context-independent
maximum-likelihood baseline Pmle(t|s) on which
the PSMT lexical weighting score is based. Note
that this is a more realistic baseline than the uni-
form models sometimes reported in the litera-
ture. The oracle corresponds to the percentage of
aligned source-target word pairs in the held-out set
that are covered by the candidate generation func-
tion. Out of the missing links, about 4% is due
to lexicon pruning. Results for all three language
pairs are presented in Table 3. In this series of
experiments, the morphological BNNs utilize un-
supervised segmentation models trained on each
target language following Lee et al. (2011).8

As shown in Table 3, the BNN models outper-
form the baseline by a large margin in all tasks and
languages. In particular, word prediction accuracy
at top-1 increases by +6.4%, +24.6% and +9.0%
absolute in English-Russian, English-Czech and
English-Bulgarian respectively, without the use of
any features based on linguistic annotation. While
the baseline and oracle differences among lan-
guages can be explained by different levels of
overlap between training and held-out set, we can-
not easily explain why the Czech BNN perfor-
mance is so much higher. When comparing the

8We use the C++ implementation available at http://
groups.csail.mit.edu/rbg/code/morphsyn
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Model En-Ru En-Cs En-Bg
Word prediction (%):

Baseline 33.0 / 50.1 42.0 / 59.9 47.9 / 66.0

Word BNN
39.4 / 56.6 66.6 / 81.4 56.9 / 74.0
+6.4 / +6.5 +24.6/+21.5 +9.0 / +8.0

Oracle 79.5 / 0.00 90.2 / 0.00 86.9 / 0.00
Stem prediction (%):

Baseline 40.7 / 58.2 46.1 / 64.3 51.9 / 70.1

Stem BNN
45.1 / 62.5 66.1 / 81.6 56.7 / 74.4
+4.4 / +4.3 +20.0/+17.3 +4.8 / +4.3
Suffix prediction (%):

Baseline 71.2 / 85.6 78.8 / 93.2 81.5 / 92.4

Suffix BNN
77.0 / 89.7 91.9 / 97.4 87.7 / 94.9
+5.8 / +4.1 +13.1 /+4.2 +6.2 / +2.5

Table 3: BNN prediction accuracy (top-1/top-3)
compared to a context-independent maximum-
likelihood baseline.

three prediction subtasks, we find that word pre-
diction is the hardest task as expected. Stem pre-
diction accuracies are considerably higher than
word prediction accuracies in Russian, but almost
equal in the other two languages. Finally, base-
line accuracies for suffix prediction are by far
the highest, ranging between 71.2% and 81.5%,
which is primarily explained by a smaller num-
ber of candidates to choose from. Also on this
task, the BNN model achieves considerable gains
of +5.8%, +13.1% and +6.2% at top-1, without the
need of manual feature engineering.

From these figures, it is hard to predict whether
word BNNs or morphological BNNs will have a
better effect on SMT performance. On one hand,
the word-level BNN achieves the highest gain over
the MLE baseline. On the other, the stem- and
suffix-level BNNs provide two separate scoring
functions, whose weights can be directly tuned for
translation quality. A preliminary answer to this
question is given by the SMT experiments pre-
sented in Section 6.

5.3 Effect of word segmentation

This section analyzes the effect of using different
segmentation techniques. We consider two super-
vised tagging methods that produce lemma and in-
flection tag for each token in a context-sensitive
manner: TreeTagger (Sharoff et al., 2008) for Rus-
sian and the Morce tagger (Spoustová et al., 2007)
for Czech.9 Finally, we employ the Russian Snow-
ball rule-based stemmer as a light-weight context-

9Annotation included in the CzEng 1.0 corpus release.

Figure 4: Effect of different word segmentation
techniques (U: unsupervised, S: supervised, R:
rule-based stemmer) on stem and suffix prediction
accuracy. The dark part of each bar stands for top-
1, the light one for top-3 accuracy.

insensitive segmentation technique.10

As shown in Figure 4, accuracies for both stem
and suffix prediction vary noticeably with the seg-
mentation used. However, higher stem accuracies
corresponds to lower suffix accuracies and vice
versa, which can be mainly due to a general pref-
erence of a tool to segment more or less than an-
other. In summary, the unsupervised segmentation
methods and the light-weight stemmer appear to
perform comparably to the supervised methods.

5.4 Effect of training data size

We examine the predictive power of our models
with respect to the size of training data. Table 4
shows the accuracies of stem and suffix models
trained on 200K and 1M English-Russian sentence
pairs with unsupervised word segmentation. Sur-
prisingly, we observe only a minor loss when we
decrease the training data size, which suggests that
our models are robust even on a small data set.

# Train sent. Stem Acc. Suffix Acc.

1M 45.1 / 62.5 77.0 / 89.7
200K 44.6 / 61.8 75.7 / 88.6

Table 4: Accuracy at top-1/top-3 (%) of stem and
suffix BNNs with different training data sizes.

5.5 Fine-grained evaluation

We evaluate the suffix BNN model at the part-of-
speech (POS) level. Table 5 provides suffix pre-
diction accuracy per POS for En-Ru. For this
analysis, Russian data is segmented by TreeTag-

10http://snowball.tartarus.org/
algorithms/russian/stemmer.html
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ger. Additionally, we report the average number
of suffixes per stem given the part-of-speech.

Our results are consistent with the findings of
Chahuneau et al. (2013):11 the prediction of ad-
jectives is more difficult than that of other POS
while Russian verb prediction is relatively easier
in spite of the higher number of suffixes per stem.
These differences reflect the importance of source
versus target context features in the prediction of
the target inflection: For instance, adjectives agree
in gender with the nouns they modify, but this may
be only inferred from the target context.

POS A V N M P

Acc. (%) 49.6 61.9 62.8 84.5 64.4
|Mσ| 18.2 18.4 9.2 7.1 13.3

Table 5: Suffix prediction accuracy at top-1 (%),
breakdown by category (A: adjectives, V: verbs,
N: nouns, M: numerals and P: pronouns). |Mσ|
denotes the average number of suffixes per stem.

5.6 Neural Network variants

Table 6 shows the stem and suffix accuracies of
BNN variants on English-Czech. Although none
of the variants outperform our main FFNN archi-
tecture, we observe similar performances by the
LBL on stem prediction, and by the ConvNet on
suffix prediction. This suggests that future work
could exploit their additional flexibilities (see Sec-
tion 4.2) to improve the BNN predictive power.
As for the low suffix accuracy by the LBL, it
can be explained by the absence of nonlinearity
transformation. Nonlinearity is important for the
suffix model where the prediction of target suf-
fix µj often does not depend linearly on si and
σj . The predictive representation of target stem
in the LBL stem model, however, mainly depends
on the source representation rsi through a position
dependent weight matrix C0. Thus, we observe a
smaller accuracy drop in the stem model than in
the suffix model. Conversely, the ConvNet per-
forms poorly on stem prediction because it cap-
tures the meaning of the whole source context in-
stead of emphasizing the importance of the source
word si as the main predictor of the target transla-
tion tj .

11Chahuneau et al. (2013) report an average accuracy of
63.1% for the prediction of A, V, N, M suffixes. When we
train our model on the same dataset (news-commentary) we
obtain a comparable result (64.7% vs 63.1%).

Unexpectedly, no improvement is obtained by
the use of dropout regularizer (see Section 4.3).

Model Stem Acc Suffix Acc

FFNN 66.1 / 81.6 91.9 / 97.4
FFNN+do 64.6 / 81.1 91.5 / 97.5

LBL 63.6 / 79.6 86.4 / 96.4
ConvNet+do 58.6 / 75.6 90.3 / 96.9

Table 6: Accuracies at top-1/top-3 (%) of stem and
suffix models. +do indicates dropout instead of L2

regularizer. FFNN is our main architecture.

6 SMT experiments

While the main objective of this paper is to im-
prove prediction accuracy of word translations,
see Section 5, we are also interested in know-
ing to which extent these improvements carry over
within an end-to-end machine translation task. To
this end, we integrate our translation prediction
models described in Section 4 into our existing
English-Russian SMT system.

For each phrase pair matching the input, the
phrase BNN score PBNN-p is computed as follows:

PBNN-p(s̃, t̃, a) =

|s̃|∏
i=1


1
|{ai}|

∑
j∈{ai}

PBNN(tj |csi) if |{ai}| > 0

Pmle(NULL|si) otherwise

where a is the word-level alignment of the phrase
pair (s̃, t̃) and {ai} is the set of target positions
aligned to si. If a source-target link cannot be
scored by the BNN model, we give it a PBNN
probability of 1 and increment a separate count
feature ε. Note that the same phrase pair can get
different BNN scores if used in different source
side contexts.

Our baseline is an in-house phrase-based
(Koehn et al., 2003) statistical machine transla-
tion system very similar to Moses (Koehn et al.,
2007). All system runs use hierarchical lexicalized
reordering (Galley and Manning, 2008; Cherry
et al., 2012), distinguishing between monotone,
swap, and discontinuous reordering, all with re-
spect to left-to-right and right-to-left decoding.
Other features include linear distortion, bidirec-
tional lexical weighting (Koehn et al., 2003), word
and phrase penalties, and finally a word-level 5-
gram target LM trained on all available mono-
lingual data with modified Kneser-Ney smooth-
ing (Chen and Goodman, 1999). The distortion
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Corpus Lang. #Sent. #Tok.

paral.train
EN

1.9M
48.9M

RU 45.9M
Wiki dict. EN/RU 508K –
mono.train RU 21.0M 390M
WMT2012

EN
3K 64K

WMT2013 3K 56K

Table 7: SMT training and test data statistics. All
numbers refer to tokenized, lowercased data.

limit is set to 6 and for each source phrase the top
30 translation candidates are considered. When
translating into a morphologically rich language,
data sparsity issues in the target language become
particularly apparent. To compensate for this we
also experiment with a 5-gram suffix-based LM in
addition to the surface-based LM (Müller et al.,
2012; Bisazza and Monz, 2014).

The BNN models are integrated as additional
log-probability feature functions (logPBNN-p):
one feature for the word prediction model or two
features for the stem and suffix models respec-
tively, plus the penalty feature ε.

Table 7 shows the data used to train our English-
Russian SMT system. The feature weights for all
approaches were tuned by using pairwise rank-
ing optimization (Hopkins and May, 2011) on the
wmt12 benchmark (Callison-Burch et al., 2012).
During tuning, 14 PRO parameter estimation runs
are performed in parallel on different samples of
the n-best list after each decoder iteration. The
weights of the individual PRO runs are then av-
eraged and passed on to the next decoding itera-
tion. Performing weight estimation independently
for a number of samples corrects for some of the
instability that can be caused by individual sam-
ples. The wmt13 set (Bojar et al., 2013) was used
for testing. We use approximate randomization
(Noreen, 1989) to test for statistically significant
differences between runs (Riezler and Maxwell,
2005).

Translation quality is measured with case-
insensitive BLEU[%] using one reference trans-
lation. As shown in Table 8, statistically signif-
icant improvements over the respective baseline
(Baseline and Base+suffLM) are marked N at the
p < .01 level. Integrating our bilingual neural net-
work approach into our SMT system yields small
but statistically significant improvements of 0.4
BLEU over a competitive baseline. We can also

SMT system wmt12 (dev) wmt13 (test)
Baseline 24.7 18.9
+ stem/suff. BNN 25.1 19.3N

Base+suffLM 24.5 19.2
+ word BNN 24.5 19.3
+ stem/suff. BNN 24.7 19.6N

Table 8: Effect of our BNN models on English-
Russian translation quality (BLEU[%]).

see that it is beneficial to add a suffix-based lan-
guage model to the baseline system. The biggest
improvement is obtained by combining the suffix-
based language model and our BNN approach,
yielding 0.7 BLEU over a competitive, state-of-
the-art baseline, of which 0.4 BLEU are due to our
BNNs. Finally, one can see that the BNNs mod-
eling stems and suffixes separately perform bet-
ter than a BNN directly predicting fully inflected
forms.

To better understand the BNN effect on the
SMT system, we analyze the set of phrase pairs
that are employed by the decoder to translate each
sentence. This set is ranked by the weighted com-
bination of phrase translation and lexical weight-
ing scores, target language model score and, if
available, phrase BNN scores. As shown in Ta-
ble 9, the morphological BNN models have a pos-
itive effect on the decoder’s lexical search space
increasing the recall of reference tokens among
the top 1 and 3 phrase translation candidates. The
mean reciprocal rank (MRR) also improves from
0.655 to 0.662. Looking at the 1-best SMT output,
we observe a slight increase of reference/output
recall (50.0% to 50.7%), which is less than the in-
crease we observe for the top 1 translation candi-
dates (57.6% to 59.0%). One possible explanation
is that the new, more accurate translation distribu-
tions are overruled by other SMT model scores,

Token recall (wmt12): Baseline +BNN
reference/MT-search-space [top-1] 57.6% 59.0%
reference/MT-search-space [top-3] 70.7% 70.9%
reference/MT-search-space [top-30] 86.0% 85.0%
reference/MT-search-space [MRR] 0.655 0.662
reference/MT-output 50.0% 50.7%
stem-only reference/MT-output 12.3% 11.5%
of which reachable 11.2% 10.3%

Table 9: Target word coverage analysis of the
English-Russian SMT system before and after
adding the morphological BNN models.

1684



like the target LM, that are based on traditional
maximum-likelihood estimates. While the suffix-
based LMs proved beneficial in our experiments,
we speculate that higher gains could be obtained
by coupling our approach with a morphology-
aware neural LM like the one recently presented
by Botha and Blunsom (2014).

7 Related work

While most relevant literature has been discussed
in earlier sections, the following approaches are
particularly related to ours: Minkov et al. (2007)
and Toutanova et al. (2008) address target inflec-
tion prediction with a log-linear model based on
rich morphological and syntactic features. Their
model exploits target context and is applied to
inflect the output of a stem-based SMT system,
whereas our models predict target words (or pairs
of stem-suffix) independently and are integrated
into decoding. Chahuneau et al. (2013) address
the same problem with another feature-rich dis-
criminative model that can be integrated in decod-
ing, like ours, but they also use it to inflect on-
the-fly stemmed phrases. It is not clear what part
of their SMT improvements is due to the gener-
ation of new phrases or to better scoring. Jeong
et al. (2010) predict surface word forms in con-
text, similarly to our word BNN, and integrate the
scores into the SMT system. Unlike us, they rely
on linguistic feature-rich log-linear models to do
that. Gimpel and Smith (2008) propose a similar
approach to directly predict phrases in context, in-
stead of words.

All those approaches employed features that
capture the global structure of source sentences,
like dependency relations. By contrast, our mod-
els access only local context in the source sen-
tence but they achieve accuracy gains comparably
to models that also use global sentence structure.

8 Conclusions

We have proposed a general approach to predict
word translations in context using bilingual neu-
ral network architectures. Unlike previous NN ap-
proaches, we model word, stem and suffix dis-
tributions in the target language given context in
the source language. Instead of relying on man-
ually engineered features, our models automati-
cally learn abstract word representations and fea-
tures that are relevant for the modeled task directly
from word-aligned parallel data. Our preliminary

results with LBL and ConvNet architectures sug-
gest that potential improvement may be achieved
by factorizing target representations or by dynam-
ically modeling source context size. Evaluated
on three morphologically rich languages, our ap-
proach achieves considerable gains in word, stem
and suffix accuracy over a context-independent
maximum-likelihood baseline. Finally, we have
shown that the proposed BNN models can be
tightly integrated into a phrase-based SMT sys-
tem, resulting in small but statistically significant
BLEU improvement over a competitive, large-
scale English-Russian baseline.

Our analysis shows that the number of correct
target words occurring in highly scored phrase
translation candidates increases after integrating
the morphological BNNs. However, only few of
these end up in the 1-best translation output. Fu-
ture work will investigate the benefits of coupling
our BNN models with target language models that
also exploit abstract word representations, such as
Botha and Blunsom (2014) and Auli et al. (2013).
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tra Galuščáková, Martin Majliš, David Mareček, Jiří
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Abstract

This paper presents a novel approach to
improve reordering in phrase-based ma-
chine translation by using richer, syntac-
tic representations of units of bilingual
language models (BiLMs). Our method
to include syntactic information is simple
in implementation and requires minimal
changes in the decoding algorithm. The
approach is evaluated in a series of Arabic-
English and Chinese-English translation
experiments. The best models demon-
strate significant improvements in BLEU
and TER over the phrase-based baseline,
as well as over the lexicalized BiLM by
Niehues et al. (2011). Further improve-
ments of up to 0.45 BLEU for Arabic-
English and up to 0.59 BLEU for Chinese-
English are obtained by combining our de-
pendency BiLM with a lexicalized BiLM.
An improvement of 0.98 BLEU is ob-
tained for Chinese-English in the setting of
an increased distortion limit.

1 Introduction

In statistical machine translation (SMT) reorder-
ing (also called distortion) refers to the order in
which source words are translated to generate the
translation in the target language. Word orders
can differ significantly across languages. For in-
stance, Arabic declarative sentences can be verb-
initial, while the corresponding English translation
should realize the verb after the subject, hence re-
quiring a reordering. Determining the correct re-
ordering during decoding is a major challenge for
SMT. This problem has received a lot of attention
in the literature (see, e.g., Tillmann (2004), Zens
and Ney (2003), Al-Onaizan and Papineni (2006)),
as choosing the correct reordering improves read-
ability of the translation and can have a substan-
tial impact on translation quality (Birch, 2011). In

this paper, we only consider those approaches that
include a reordering feature function into the log-
linear interpolation used during decoding.

The simplest reordering model is linear distor-
tion (Koehn et al., 2003) which scores the distance
between phrases translated at steps t and t + 1 of
the derivation. This model ignores any contex-
tual information, as the distance between trans-
lated phrases is its only parameter. Lexical dis-
tortion modeling (Tillmann, 2004) conditions re-
ordering probabilities on the phrase pairs trans-
lated at the current and previous steps. Unlike
linear distortion, it characterizes reordering not in
terms of distance but type: monotone, swap, or
discontinuous.

In this paper, we base our approach to reorder-
ing on bilingual language models (Marino et al.,
2006; Niehues et al., 2011). Instead of directly
characterizing reordering, they model sequences
of elementary translation events as a Markov pro-
cess.1 Originally, Marino et al. (2006) used this
kind of model as the translation model, while more
recently it has been used as an additional model
in PBSMT systems (Niehues et al., 2011). We
adopt and generalize the approach of Niehues et al.
(2011) to investigate several variations of bilingual
language models. Our method consists of labeling
elementary translation events (tokens of bilingual
LMs) with their different contextual properties.

What kind of contextual information should be
incorporated in a reordering model? Lexical in-
formation has been used by Tillmann (2004) but
is known to suffer from data sparsity (Galley and
Manning, 2008). Also previous contributions to
bilingual language modeling (Marino et al., 2006;
Niehues et al., 2011) have mostly used lexical
information, although Crego and Yvon (2010a)
and Crego and Yvon (2010b) label bilingual to-

1Note that the standard PBSMT translation model as-
sumes that events of translating separate phrases in a sentence
are independent.
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kens with a rich set of POS tags. But in gen-
eral, reordering is considered to be a syntactic phe-
nomenon and thus the relevant features are syn-
tactic (Fox, 2002; Cherry, 2008). Syntactic in-
formation is incorporated in tree-based approaches
in SMT, allowing one to provide a more detailed
definition of translation events and to redefine de-
coding as parsing of a source string (Liu et al.,
2006; Huang et al., 2006; Marton and Resnik,
2008), of a target string (Shen et al., 2008), or
both (Chiang, 2007; Chiang, 2010). Reordering
is a result of a given derivation, and CYK-based
decoding used in tree-based approaches is more
syntax-aware than the simple PBSMT decoding
algorithm. Although tree-based approaches poten-
tially offer a more accurate model of translation,
they are also a lot more complex and requiring
more intricate optimization and estimation tech-
niques (Huang and Mi, 2010).

Our idea is to keep the simplicity of PBSMT but
move towards the expressiveness typical of tree-
based models. We incrementally build up the syn-
tactic representation of a translation during decod-
ing by adding precomputed fragments from the
source parse tree. The idea to combine the mer-
its of the two SMT paradigms has been proposed
before, where Huang and Mi (2010) introduce in-
cremental decoding for a tree-based model. On a
very general level, our approach is similar to theirs
in that it keeps track of a sequence of source syn-
tactic subtrees that are being translated at consec-
utive decoding steps. An important difference is
that they keep track of whether the visited subtrees
have been fully translated, while in our approach,
once a syntactic structural unit has been added to
the history, it is not updated anymore.

In this paper, we focus on source syntactic in-
formation. During decoding we have full access
to the source sentence, which allows us to obtain
a better syntactic analysis (than for a partial sen-
tence) and to precompute the units that the model
operates with. We investigate the following re-
search questions: How well can we capture re-
ordering regularities of a language pair by incor-
porating source syntactic parameters into the units
of a bilingual language model? What kind of
source syntactic parameters are necessary and suf-
ficient?

Our contributions can be summarized as fol-
lows: We argue that the contextual information
used in the original bilingual models (Niehues et

al., 2011) is insufficient and introduce a simple
model that exploits source-side syntax to improve
reordering (Sections 2 and 3). We perform a thor-
ough comparison between different variants of our
general model and compare them to the original
approach. We carry out translation experiments
on multiple test sets, two language pairs (Arabic-
English and Chinese-English), and with respect to
two metrics (BLEU and TER). Finally, we present
a preliminary analysis of the reorderings resulting
from the proposed models (Section 4).

2 Motivation

In this section, we elaborate on our research ques-
tions and provide background for our approach.
We also discuss existing bilingual n-gram mod-
els and argue that they are often not expressive
enough to differentiate between alternative re-
orderings. We should first note that the most com-
monly used n-gram model to distinguish between
reorderings is a target language model, which does
not take translation correspondence into account
and just models target-side fluency. Al-Onaizan
and Papineni (2006) show that target language
models by themselves are not sufficient to cor-
rectly characterize reordering. In what follows we
only discuss bilingual models.

The word-aligned sentence pair in Figure 1.a2

demonstrates a common Arabic-English reorder-
ing. As stated in the introduction, bilingual lan-
guage models capture reordering regularities as a
sequence of elementary translation events3. In the
given example, one could decompose the sequen-
tial process of translation as follows: First trans-
late the first word Alwzyr as the minister, then ArjE
as attributed, then ArtfAE as the increase and so
on. The sequence of elementary translation events
is modeled as an n-gram model (Equation 1, where
ti is a translation event). There are numerous ways
in which ti can be defined. Below we first discuss
how they have been defined within previous ap-
proaches, and then introduce our definition.

p(t1, . . . , tm) =
m∏
i=1

p(ti|ti−n+1 . . . ti−1) (1)

2.1 Lexicalized bilingual LMs
By including both source and target information
into the representation of translation events we ob-

2We used Buckwalter transliteration for Arabic words.
3By an elementary translation event we mean a translation

of some substructure of a sentence.

1690



the minister attributed the increase of oil prices

w ArjE Alwzyr ArtfAE AsEAr Albtrwl

(a) The original word alignment.

the

Alwzyr

minister

Alwzyr

attributed

ArjE

the

ArtfAE

increase 

ArtfAE

of 

empty

oil

Albtrwl

prices

AsEAr

(b) BiLM tokens extracted from sentence (a).

empty

w

of oil

Albtrwl

prices

AsEAr

the minister

Alwzyr ArjE

the the increase 

ArtfAE

(c) MTU tokens extracted from sentence (a).

Figure 1: Arabic-English parallel sentence, automatically word-aligned. The bilingual token sequences
are produced according to two alternative definitions (BiLM and MTU).

tain a bilingual LM. The richer representation al-
lows for a finer distinction between reorderings.
For example, Arabic has a morphological marker
of definiteness on both nouns and adjectives. If
we first translate a definite adjective and then an
indefinite noun, it will probably not be a likely se-
quence according to the translation model. This
kind of intuition underlies the model of Niehues et
al. (2011), a bilingual LM (BiLM), which defines
elementary translation events t1, ..., tn as follows:

ti = 〈ei, {f |f ∈ A(ei)}〉, (2)

where ei is the i-th target word and A : E →
P(F ) is an alignment function, E and F refer-
ring to target and source sentences, and P(·) is the
powerset function. In other words, the i-th trans-
lation event consists of the i-th target word and all
source words aligned to it. Niehues et al. (2011)
refer to the defined translation events ti as bilin-
gual tokens and we adopt this terminology.

There are alternative definitions of bilingual
language models. Our choice of the above defi-
nition is supported by the fact that it produces an
unambiguous segmentation of a parallel sentence
into tokens. Ambiguous segmentation is unde-
sirable because it increases the token vocabulary,
and thus the model sparsity. Another disadvan-
tage comes from the fact that we want to compare
permutations of the same set of elements. For ex-
ample, the two different segmentations of ba into
[ba] and [b][a] still represent the same permuta-
tion of the sequence ab. In Figure 1 one can pro-
duce a segmentation of (AsEAr Albtrwl, oil prices)
into (Albtrwl, oil) and (AsEAr, prices) or leave
it as is. If we allow for both segmentations, the
learnt probability parameters may be different for
the sum of (Albtrwl, oil) and (AsEAr, prices) and
for the unsegmented phrase.

Durrani et al. (2011) introduce an alternative
method for unambiguous bilingual segmentation
where tokens are defined as minimal phrases,
called minimal translation units (MTUs). Figure 1
compares the BiLM and MTU tokenization for a
specific example. Since Niehues et al. (2011) have
shown their model to work successfully as an addi-
tional feature in combination with commonly used
standard phrase-based features, we use their ap-
proach as the main point of reference and base our
approach on their segmentation method. In the
rest of the text we refer to Niehues et al. (2011)
as the original BiLM.4 At the same time, we do
not see any specific obstacles for combining our
work with MTUs.

2.2 Suitability of lexicalized BiLM to model
reordering

As mentioned in the introduction, lexical informa-
tion is not very well-suited to capture reordering
regularities. Consider Figure 2.a. The extracted
sequence of bilingual tokens is produced by align-
ing source words with respect to target words (so
that they are in the same order), as demonstrated
by the shaded part of the picture. If we substituted
the Arabic translation of Egyptian for the Arabic
translation of Israeli, the reordering should remain
the same. What matters for reordering is the syn-
tactic role or context of a word. By using unneces-
sarily fine-grained categories we risk running into
sparsity issues.

Niehues et al. (2011) also described an alterna-
tive variant of the original BiLM, where words are
substituted by their POS tags (Figure 2.a, shaded
part). Also, however, POS information by itself
may be insufficiently expressive to separate cor-

4Although, strictly speaking, it is not the original ap-
proach (see the references in Section 1).
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Egyptian exports to

trAjEt SAdrAt mSr l Aldwl AlErbyp
VBD NNS NNP IN DTNN DTJJ

JJ NNS TO
Arabic countries declined …

…

JJ NNS VBD

trAjEtSAdrAtmSr l AldwlAlErbyp
NNSNNP IN DTJJ

…

DTNN VBD

(a)

trAjEt SAdrAt mSr l Aldwl AlErbyp
VBD NNS NNP IN DTNN DTJJ

Arabic
JJ

AlErbyp
DTJJ

countries
NNS

Aldwl
DTNN

declined
VBD

trAjEt
VBD

Egyptian exports to
JJ NNS TO

SAdrAtmSr l
NNSNNP IN

(b)

Figure 2: Arabic-English parallel sentence, automatically parsed and word-aligned, with corresponding
sequences of bilingual tokens (in the shaded part). Comparison between translations produced via correct
(a) and incorrect (b) reorderings.

JJ NNS TO JJ NNS VBD

NNS!NNP VBD!NNS NNS!IN DTNN!DTJJ IN!DTNN ROOT!VBD

(a)

JJ NNS TOJJ NNS VBD

NNS!NNP VBD!NNS NNS!INDTNN!DTJJ IN!DTNN ROOT!VBD

(b)

Figure 3: Sequences of bilingual tokens with
source words substituted with their and their par-
ents’ POS tags: correct (a) and incorrect (b) re-
orderings.

rect and incorrect reorderings, see Figure 2.b. Al-
though the corresponding sequence of POS-tag-
substituted bilingual tokens is different from the
correct sequence (Figure 2.b, shaded part), it still
is a likely sequence. Indeed, the log-probabilities
of the two sequences with respect to a 4-gram
BiLM model5 result in a higher probability of
−10.25 for the incorrect reordering than for the
correct one (−10.39).

Since fully lexicalized bilingual tokens suffer
from data sparsity and POS-based bilingual tokens
are insufficiently expressive, the question is which
level of syntactic information strikes the right bal-
ance between expressiveness and generality.

5Section 4 contains details about data and software setup.

2.3 BiLM with dependency information

Dependency grammar is commonly used in NLP
to formalize role-based relations between words.
The intuitive notion of syntactic modification is
captured by the primitive binary relation of depen-
dence. Dependency relations do not change with
the linear order of words (Figure 2) and therefore
can provide a characterization of a word’s syntac-
tic class that invariant under reordering.

If we incorporate dependency relations into the
representation of bilingual tokens, the incorrect re-
ordering in Figure 2.b will produce a highly un-
likely sequence. For example, we can substitute
each source word with its POS tag and its par-
ent’s POS tag (Figure 3). Again, we computed
4-gram log-probabilities for the corresponding se-
quences: the correct reordering results in a sub-
stantially higher probability of−10.58 than the in-
correct one (−13.48). We may consider situations
where more fine-grained distinctions are required.
In the next section, we explore different represen-
tations based on source dependency trees.

3 Dependency-based BiLM

In this section, we introduce our model which
combines the BiLM from Niehues et al. (2011)
with source dependency information. We fur-
ther give details on how the proposed models are
trained and integrated into a phrase-based decoder.
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3.1 The general framework
In the previous section we outlined our framework
as composed of two steps: First, a parallel sen-
tence is tokenized according to the BiLM model
(Niehues et al., 2011). Next, words in the bilingual
tokens are substituted with their contextual prop-
erties. It is thus convenient to use the following
generalized definition for a token sequence t1...tn
in our framework:

ti = 〈ContE (ei), {ContF (f)|f ∈ A(ei)}〉, (3)

where ei is the i-th target word, A : E → P(F )
is an alignment function, F and E are source and
target sentences, and ContE and ContF are tar-
get and source contextual functions, respectively.
A contextual function returns a word’s contextual
property, based on its sentential context (source or
target). See Figure 4 for an example of a sequence
of BiLM tokens with a ContF defined as return-
ing the POS tag of the source word combined with
the POS tags of its parent, grandparent and sib-
lings, and ContE defined as an identity function
(see Section 3.2 for a detailed explanation of the
functions and notation).

In this work we focus on source contextual
functions (ContF ). We also exploit some very
simple target contextual functions, but do not go
into an in-depth exploration.

3.2 Dependency-based contextual functions
In NLP approaches exploiting dependency struc-
ture, two kinds of relations are of special impor-
tance: the parent-child relation and the sibling re-
lation. Shen et al. (2008) work with two well-
formed dependency structures, both of which are
defined in such a way that there is one common
parent and a set of siblings. Li et al. (2012) charac-
terize rules in hierarchical SMT by labeling them
with the POS tags of the parents of the words in-
side the rule. Lerner and Petrov (2013) model re-
ordering as a sequence of classification steps based
on a dependency parse of a sentence. Their model
first decides how a word is reordered with respect
to its parent and then how it is reordered with re-
spect to its siblings.

Based on these previous approaches, we pro-
pose to characterize contextual syntactic roles of
a word in terms of POS tags of the words them-
selves and their relatives in a dependency tree. It
is straightforward to incorporate parent informa-
tion since each node has a unique parent. As for

siblings information, we incorporate POS tags of
the closest sibling to the left and the closest to the
right. We do not include all of the siblings to avoid
overfitting. In addition to these basic syntactic re-
lations, we consider the grandparent relation.

The following list is a summary of the source
contextual functions that we use. We describe
a function with respect to the kind of contextual
property of a word it returns: (i) the word itself
(Lex); (ii) POS label of the word (Pos); (iii) POS
label of the word’s parent; (iv) POS of the word’s
closest sibling to the left, concatenated with the
POS tag of the closest sibling to the right; (v)
the POS label of the word’s grandparent. We use
target-side contextual functions returning: (i) an
empty string, (ii) POS of the word, (iii) the word
itself.

Notation. We do not use the above functions
separately to define individual BiLM models, but
use combinations of these functions. We use the
following notation for function combinations: “•”
horizontally connects source (on the left) and tar-
get (on the right) contextual functions for a given
model. For example, Lex•Lex refers to the original
(lexicalized) BiLM. We use arrows (→) to des-
ignate parental information (the arrow goes from
parent to child). Pos→Pos refers to a combination
of a function returning the POS of a word and the
POS of its parent (as in Figure 3). Pos→Pos→Pos

is a combination of the previous with the func-
tion returning the grandparent’s POS. Finally, we
use +sibl to indicate the use of the sibling func-
tion described above: For example, Pos→Pos+sibl

is a source function that returns the word’s POS,
its parent’s POS and the POS labels of the closest
siblings to left and right.6 Pos+sibl→Pos is a source
function returning the word’s own POS, the POS
of a word’s parent, and the POS tags of the par-
ent’s siblings (left- and right-adjacent).

Figure 4 represents the sentence from Figure 2
during decoding in a system with an integrated
Pos→Pos→Pos+sibl•Lex feature. It shows the se-
quence of produced bilingual tokens and corre-
sponding labels in the introduced notation.

3.3 Training

Training of dependency-based BiLMs consists of
a sequence of extraction steps: After having pro-
duced word-alignments for a bitext (Section 4),

6In case there is no sibling on one of the sides, ε (empty
word) is returned.

1693



Egyptian exports

trAjEt SAdrAt mSr l Aldwl AlErbyp

VBD NNS NNP IN DTNN DTJJ

JJ NNS TO

to

Egyptian

VBD NNS NNP IN

to

VBD NNS NNP IN

exports

VBD NNS

…

Figure 4: Sequence of bilingual tokens pro-
duced by a Pos→Pos→Pos+sibl•Lex after
translating three words of the source sentence:
VBD→NNS→ε+NNS+IN•Egyptian, ROOT→VBD→
ε+NNS+ε•exports, VBD→NNS→NNP+IN+ε•to (if there
is no sibling on either of the sides, ε is returned).

sentences are segmented according to Equation 3.
We produce a dependency parse of a source sen-
tence and a POS-tag labeling of a target sen-
tence. For Chinese, we use the Stanford depen-
dency parser (Chang et al., 2009). For Arabic a
dependency parser is not available for public use,
so we produce a constituency parse with the Stan-
ford parser (Green and Manning, 2010) and ex-
tract dependencies based on the rules in Collins
(1999). For English POS-tagging, we use the
Stanford POS-tagger (Toutanova et al., 2003). Af-
ter having produced a labeled sequence of tokens,
we learn a 5-gram model using SRILM (Stolcke
et al., 2011). Kneyser-Ney smoothing is used
for all model variations except for Pos•Pos where
Witten-Bell smoothing is used due to zero count-
of-counts.

3.4 Decoder integration

Dependency-based BiLMs are integrated into our
phrase-based SMT decoder as follows: Before
translating a sentence, we produce its dependency
parse. Phrase-internal word-alignments, needed
to segment the translation hypothesis into tokens,
are stored in the phrase table, based on the most
frequent internal alignment observed during train-
ing. Likewise, we store the most likely target-side
POS-labeling for each phrase pair.

The decoding algorithm is augmented with one
additional feature function and one additional, cor-
responding feature weight. At each step of the
derivation, as a new phrase pair is added to the

Training set N. of lines N. of tokens
Source side of Ar-En set 4,376,320 148M
Target side of Ar-En set 4,376,320 146M
Source side of Ch-En set 2,104,652 20M
Target side of Ch-En set 2,104,652 28M

Table 1: Training data for Arabic-English and
Chinese-English experiments.

partial translation hypothesis, this function seg-
ments the new phrase into bilingual tokens (given
the internal alignment information) and substitutes
the words in the phrase pair with syntactic labels
(given the source parse and the target POS labeling
associated with the phrase). The new syntactified
bilingual tokens are added to the stack of preced-
ing n−1 tokens, and the feature function computes
the weighted updated model probability. During
decoding, the probabilities of the BiLMs are com-
puted in a stream-based fashion, with bilingual
tokens as string tokens, and not in a class-based
fashion, with syntactic source-side representations
emitting the corresponding target words (Bisazza
and Monz, 2014).

4 Experiments

4.1 Setup
We conduct translation experiments with a base-
line PBSMT system with additionally one of the
dependency-based BiLM feature functions speci-
fied in Section 3. We compare the translation per-
formance to a baseline PBSMT system and to a
baseline augmented with the original BiLMs from
(Niehues et al., 2011).

Word-alignment is produced with GIZA++
(Och and Ney, 2003). We use an in-house imple-
mentation of a PBSMT system similar to Moses
(Koehn et al., 2007). Our baseline contains
all standard PBSMT features including language
model, lexical weighting, and lexicalized reorder-
ing. The distortion limit is set to 5. A 5-gram LM
is trained on the English Gigaword corpus (1.6B
tokens) using SRILM with modified Kneyser-Ney
smoothing and interpolation. The BiLMs were
trained as described in Section 3.3. Informa-
tion about the parallel data used for training the
Arabic-English7 and Chinese-English systems8 is

7The following Arabic-English parallel corpora were
used: LDC2006E25, LDC2004T18, several gale corpora,
LDC2004T17, LDC2005E46, LDC2007T08, LDC2004E13.

8The following Chinese-English parallel corpora
were used: LDC2002E18, LDC2002L27, LDC2003E07,
LDC2003E14, LDC2005T06, LDC2005T10, LDC2005T34,
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Configuration MT08 MT09 MT08+MT09
BLEU TER BLEU TER BLEU TER

a PBSMT baseline 45.12 47.94 48.16 44.30 46.57 46.21
b Lex•Lex 45.27 47.79 48.85N 43.96M 46.98N 45.96M

Pos•Pos 44.80 47.84 48.22 44.14M,− 46.44 46.07
c Pos→Pos•Pos 45.66N,M 47.17N,N 49.00N,− 43.45N,N 47.25N,M 45.40N,N

d Pos→Pos−sibl•Pos 45.46M,− 47.45N,M 48.69N,− 43.64N,M 47.00N,− 45.64N,−

e Pos→Pos→Pos•Pos 45.68N,M 47.42N,M 49.09N,− 43.59N,N 47.30N,M 45.60N,N

f Lex•Lex + Pos→Pos→Pos•Pos 45.63N,M 47.48N,M 49.30N,N 43.60N,M 47.38N,N 45.63N,N

Table 2: BLEU and TER scores for Arabic-English experiments. Statistically significant improvements
over the baseline (a) are marked N at the p < .01 level and M at the p < .05 level. Additionally, ·,N and
·,M indicate significant improvements with respect to BiLM Lex•Lex (b). Since TER is an error rate, lower
scores are better.

Configuration MT08 MT09 MT08+MT09
BLEU TER BLEU TER BLEU TER

Pos→Pos• ε 45.66N,M 47.44N,M 48.78N,− 43.94N,− 47.15N,− 45.77N,M

Pos→Pos•Pos 45.66N,M 47.17N,N 49.00N,− 43.45N,N 47.25N,M 45.40N,N

Pos→Pos•Lex 45.48M,− 47.34N,N 48.90N,− 43.87N,M 47.12N,− 45.69N,N

Table 3: Different combinations of a target contextual function with the Pos→Pos source contextual
function for Arabic-English. See Table 2 for the notation regarding statistical significance.

shown in Table 1.
The feature weights were tuned by using pair-

wise ranking optimization (Hopkins and May,
2011) on the MT04 benchmark (for both language
pairs). During tuning, 14 PRO parameter estima-
tion runs are performed in parallel on different
samples of the n-best list after each decoder itera-
tion. The weights of the individual PRO runs are
then averaged and passed on to the next decoding
iteration. Performing weight estimation indepen-
dently for a number of samples corrects for some
of the instability that can be caused by individual
samples. For testing, we used MT08 and MT09 for
Arabic, and MT06 and MT08 for Chinese. We use
approximate randomization (Noreen, 1989; Rie-
zler and Maxwell, 2005) to test for statistically sig-
nificant differences.

In the next two subsections we discuss the gen-
eral results for Arabic and Chinese, where we use
case-insensitive BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006) as evaluation metrics.
This is followed by a preliminary analysis of ob-
served reorderings where we compare 4-gram pre-
cision results and conduct experiments with an in-
creased distortion limit.

4.2 Arabic-English translation experiments

We are interested in how a translation system
with an integrated dependency-based BiLM fea-

and several gale corpora.

ture performs as compared to the standard PB-
SMT baseline and, more importantly, to the orig-
inal BiLM model. We consider two variants of
BiLM discussed by Niehues et al. (2011): the stan-
dard one, Lex•Lex, and the simplest syntactic one,
Pos•Pos. Results for the experiments can be found
in Table 2. In the discussion below we mostly fo-
cus on the experimental results for the large, com-
bined test set MT08+MT09.

Table 2.a–b compares the performance of the
baseline and original BiLM systems. Lex•Lex

yields strongly significant improvements over the
baseline for BLEU and weakly significant im-
provements for TER. Therefore, for the rest of the
experiments we are interested in obtaining further
improvements over Lex•Lex.

Pos→Pos•Pos (Table 2.c) demonstrates the effect
of adding minimal dependency information to a
BiLM.9 It results in strongly significant improve-
ments over the baseline and weak improvements
over Lex•Lex in terms of BLEU. We additionally
ran experiments with the different target functions
(Table 3). •Pos shows the highest results, and •ε the
lowest ones: this implies that a rather expressive
source syntactic representation alone still benefits
from target-side syntactic information. Below, our
dependency-based systems only use •Pos.

Next, we tested the effect of adding more source
9Additional significance testing, which is not shown in

Table 2, shows a strongly significant improvement over the
original syntactic BiLM Pos•Pos.
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Configuration MT06 MT08 MT06+MT08
BLEU TER BLEU TER BLEU TER

a PBSMT baseline 31.89 57.79 25.53 60.71 28.99 59.14
b Lex•Lex 32.84N 57.40N 25.91M 60.23N 29.69N 58.72N

Pos•Pos 32.31N 57.89 25.66 60.79 29.28 59.24
c Pos→Pos•Pos 32.86N,− 57.05N,M 26.09N,− 59.87N,M 29.78N,− 58.36N,N

d Pos→Pos−sibl•Pos 32.27M,− 56.63N,M 25.75 59.47N,N 29.30M,− 57.95N,N

e Pos→Pos→Pos•Pos 33.09N,− 57.54 26.35N,M 59.70N,N 30.05N,N 58.54N,−

f Lex•Lex + Pos→Pos→Pos•Pos 33.43N,N 57.00N,N 26.50N,N 59.79N,N 30.28N,N 58.30N,N

Table 4: BLEU and TER scores for Chinese-English PBSMT baseline and BiLM pipelines. See Table 2
for the notation regarding statistical significance.

Configuration MT06 MT08 MT06+MT08
BLEU TER BLEU TER BLEU TER

Pos→Pos• ε 32.43N,− 57.42N,− 25.84 60.51 29.43N,− 58.86N,−

Pos→Pos•Pos 32.86N,− 57.05N,M 26.09N,− 59.87N,M 29.78N,− 58.36N,N

Pos→Pos•Lex 32.69N,− 57.03N,M 25.72 60.17N,− 29.52N,− 58.49N,M

Table 5: Different combinations of a target contextual function with the Pos→Pos source contextual func-
tion for Chinese-English. See Table 2 for the notation regarding statistical significance.

dependency information. Pos→Pos+sibl•Pos (Ta-
ble 2.d) only improves over the PBSMT baseline
(but also shows weak improvements over Lex•Lex

for TER). It significantly degrades the perfor-
mance with respect to the Pos→Pos•Pos system (Ta-
ble 2.c). Pos→Pos→Pos•Pos (Table 2.e) shows the
best results overall for BLEU, although it must be
pointed out that the difference with Pos→Pos•Pos is
very small. With respect to TER, Pos→Pos•Pos out-
performs the grandparent variant.

So far, we can conclude that source par-
ent information helps improve translation perfor-
mance. Increased specificity of a parent (par-
ent specified by a grandparent) tends to further
improve performance. Up to now, we have
only used syntactic information and obtained con-
siderable improvements over Pos•Pos, surpass-
ing the improvement provided by Lex•Lex. Can
we gain further improvements by also adding
lexical information? To this end, we con-
duct experiments combining the best performing
dependency-based BiLM (Pos→Pos→Pos•Pos) and
the lexicalized BiLM (Lex•Lex). We hypothesize
that the two models improve different aspects of
translation: Lex•Lex is biased towards improving
lexical choice and Pos→Pos→Pos•Pos towards im-
proving reordering. Combining these two models,
we may improve both aspects. The metric results
for the combined set indeed support this hypothe-
sis (Table 2.f).

4.3 Chinese-English translation experiments

The results of the Chinese-English experiments
are shown in Table 4. In the discussion below
we mostly focus on the experimental results for
the large, combined test set MT06+MT08. We
observe the same general pattern for the Pos→Pos

source function (Table 4.c) as for Arabic-English:
the system with the •Pos target function has the
highest scores (Table 5). All of the Pos→Pos• con-
figurations show statistically significant improve-
ments over the PBSMT baseline. For TER, two
of the three Pos→Pos• variants significantly out-
perform Lex•Lex. The system with sibling in-
formation (Table 4.d) obtains quite low BLEU
results, just as in the Arabic experiments. On
the other hand, its TER results are the highest
overall. The system with the Pos→Pos→Pos•Pos

function (Table 4.e) achieves the best results
among dependency-based BiLMs for BLEU. Fi-
nally, combining Pos→Pos→Pos•Pos and Lex•Lex re-
sults in the largest and significant improvements
over all competing systems for BLEU.

4.4 Preliminary analysis of reordering in
translation experiments

In general, the experimental results show that us-
ing source dependency information yields consis-
tent improvements for translating from Arabic and
Chinese into English. On the other hand, we have
pointed out some discrepancies between the two
metrics employed, suggesting that different sys-
tem configurations may improve different aspects
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Configuration Ar-En Ch-En
MT08 MT09 MT08+MT09 MT06 MT08 MT06+MT08

a PBSMT baseline 26.14 29.81 27.88 14.48 10.96 12.89
b Lex•Lex 26.33 30.55 28.32 15.43 11.45 13.65

Pos•Pos 25.95 30.06 27.89 14.76 11.01 13.07
c Pos→Pos•Pos 26.91 31.08 28.87 15.29 11.52 13.60
e Pos→Pos−sibl•Pos 26.71 30.73 28.60 15.27 11.67 13.66
d Pos→Pos→Pos•Pos 26.78 31.09 28.80 15.42 11.70 13.77
f Lex•Lex + Pos→Pos→Pos•Pos 26.80 31.27 28.90 15.87 11.85 14.07

Table 6: 4-gram precision scores for Arabic-English and Chinese-English baseline and BiLM systems.

Configuration MT08 MT09 MT08+MT09
BLEU TER 4gram BLEU TER 4gram BLEU TER 4gram

Lex•Lex 45.19 47.06 26.41 48.39 44.11 30.23 46.72 45.97 28.21
Pos→Pos→Pos•Pos 45.49 47.31M 26.66 48.90N 43.57N 30.92 47.12N 45.52N 28.66

Table 7: BLEU, TER and 4-gram precision scores for Arabic-English Lex•Lex and Pos→Pos→Pos•Pos
with a distortion limit of 10.

Configuration MT06 MT08 MT06+MT08
BLEU TER 4gram BLEU TER 4gram BLEU TER 4gram

Lex•Lex 33.26 56.81 16.06 25.67 60.19 11.42 29.79 58.38 13.96
Pos→Pos→Pos•Pos 33.92N 56.29N 16.26 27.00N 59.58N 12.26 30.77N 57.82N 14.46

Table 8: BLEU, TER and 4-gram precision scores for Chinese-English Lex•Lex and
Pos→Pos→Pos•Pos with a distortion limit of 10.

of translation. To this end, we conducted some ad-
ditional evaluations to understand how reordering
is affected by the proposed features.

We use 4-gram precision as a metric of how
much of the reference set word order is preserved.
Table 6 shows the corresponding results for both
languages. Just as in the previous two sections,
configurations with parental information produce
the best results. For Arabic, all of the depen-
dency configurations outperform Lex•Lex. But the
system with two feature functions, one of which
is Lex•Lex, still obtains the best results, which
may suggest that the lexicalized BiLM also helps
to differentiate between word orders. For Chi-
nese, Pos→Pos→Pos•Pos and the system combining
the latter and Lex•Lex also obtain the best results.
However, other dependency-based configurations
do not outperform Lex•Lex.

All the experiments so far were run with a dis-
tortion limit of 5. But both of the languages, es-
pecially Chinese, often require reorderings over a
longer distance. We performed additional experi-
ments with a distortion limit of 10 for the Lex•Lex

and Pos→Pos→Pos•Pos systems (Tables 7 and 8). It
is more difficult to translate with a higher distor-
tion limit (Green et al., 2010) as the set of permu-
tations grows larger thereby making it more diffi-
cult to differentiate between correct and incorrect

continuations of the current hypothesis. It has also
been noted that higher distortion limits are more
likely to result in improvements for Chinese rather
than Arabic to English translation (Chiang, 2007;
Green et al., 2010).

We compared performance of fixed BiLM mod-
els at distortion lengths of 5 and 10. Arabic-
English results did not reveal statistically signif-
icant differences between the two distortion lim-
its for Pos→Pos→Pos•Pos. On the other hand, for
Lex•Lex BLEU decreases when using a distor-
tion limit of 10 compared to a limit of 5. This
implies that the dependency BiLM is more ro-
bust in the more challenging reordering setting
than the lexicalized BiLM. Chinese-English re-
sults for Pos→Pos→Pos•Pos do show significant im-
provements over the distortion limit of 5 (up to
0.49 BLEU higher than the best result in Table 4).
This indicates that the dependency-based BiLM is
better capable to take advantage of the increased
distortion limit and discriminate between correct
and incorrect reordering choices.

Comparing the results for Pos→Pos→Pos•Pos and
Lex•Lex at a distortion limit of 10, we obtain
strongly significant improvements for all metrics.
For Chinese, a larger distortion limit helps for both
configurations, but more so for our dependency
BiLM, yielding an improvement of 0.98 BLEU
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over the original, lexicalized BiLM (Table 8).

5 Conclusions

In this paper, we have introduced a simple, yet ef-
fective way to include syntactic information into
phrase-based SMT. Our method consists of en-
riching the representation of units of a bilingual
language model (BiLM). We argued that the very
limited contextual information used in the original
bilingual models (Niehues et al., 2011) can capture
reorderings only to a limited degree and proposed
a method to incorporate information from a source
dependency tree in bilingual units. In a series
of translation experiments we performed a thor-
ough comparison between various syntactically-
enriched BiLMs and competing models. The re-
sults demonstrated that adding syntactic informa-
tion from a source dependency tree to the repre-
sentations of bilingual tokens in an n-gram model
can yield statistically significant improvements
over the competing systems.

A number of additional evaluations provided an
indication for better modeling of reordering phe-
nomena. The proposed dependency-based BiLMs
resulted in an increase in 4-gram precision and
provided further significant improvements over
all considered metrics in experiments with an in-
creased distortion limit.

In this paper, we have focused on rather elemen-
tary dependency relations, which we are planning
to expand on in future work. Our current approach
is still strictly tied to the number of target tokens.
In particular, we are interested in exploring ways
to better capture the notion of syntactic cohesion
in translation (Fox, 2002; Cherry, 2008) within our
framework.
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Abstract

Automatically compiling bilingual dictio-
naries of technical terms from comparable
corpora is a challenging problem, yet with
many potential applications. In this paper,
we exploit two independent observations
about term translations: (a) terms are of-
ten formed by corresponding sub-lexical
units across languages and (b) a term and
its translation tend to appear in similar lex-
ical context. Based on the first observa-
tion, we develop a new character n-gram
compositional method, a logistic regres-
sion classifier, for learning a string similar-
ity measure of term translations. Accord-
ing to the second observation, we use an
existing context-based approach. For eval-
uation, we investigate the performance of
compositional and context-based methods
on: (a) similar and unrelated languages,
(b) corpora of different degree of compa-
rability and (c) the translation of frequent
and rare terms. Finally, we combine the
two translation clues, namely string and
contextual similarity, in a linear model and
we show substantial improvements over
the two translation signals.

1 Introduction

Bilingual dictionaries of technical terms are re-
sources useful for various tasks, such as computer-
aided human translation (Dagan and Church,
1994; Fung and McKeown, 1997), Statistical Ma-
chine Translation (Och and Ney, 2003) and Cross-
Language Information Retrieval (Ballesteros and
Croft, 1997). In the last two decades, researchers
have focused on automatically compiling bilingual
term dictionaries either from parallel (Smadja et
al., 1996; Van der Eijk, 1993) or comparable cor-
pora (Rapp, 1999; Fung and Yee, 1998). While

parallel corpora contain the same sentences in two
languages, comparable corpora consist of bilin-
gual pieces of text that share some features, only,
such as topic, domain, or time period. Comparable
corpora can be constructed more easily than paral-
lel corpora. Freely available, up-to-date, on-line
resources (e.g., Wikipedia) can be employed.

In this paper, we exploit two different sources
of information to extract bilingual terminology
from comparable corpora: the compositional and
the contextual clue. The compositional clue is
the hypothesis that the representations of a term
in any pair of languages tend to consist of cor-
responding lexical or sub-lexical units, e.g., pre-
fixes, suffices and morphemes. In order to cap-
ture associations of textual units across languages,
we investigate three different character n-gram ap-
proaches, namely a Random Forest (RF) classifier
(Kontonatsios et al., 2014), Support Vector Ma-
chines with an RBF kernel (SVM-RBF) and a Lo-
gistic Regression (LogReg) classifier. Whilst the
previous approaches take as an input monolingual
features and then try to find cross-lingual map-
pings, our proposed method (LogReg classifier)
considers multilingual features, i.e., tuples of co-
occurring n-grams.

The contextual clue is the hypothesis that mu-
tual translations of a term tend to occur in similar
lexical context. Context-based approaches are un-
supervised methods that compare the context dis-
tributions of a source and a target term. A bilin-
gual seed dictionary is used to map context vec-
tor dimensions of two languages. Li and Gaussier
(2010) suggested that the seed dictionary can be
used to estimate the degree of comparability of a
bilingual corpus. Given a seed dictionary, the cor-
pus comparability is the expectation of finding for
each word of the source corpus, its translation in
the target part of the corpus. The performance of
context-based methods has been shown to depend
on the frequency of terms to be translated and the
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corpus comparability. In this work, we use an ex-
isting distributional semantics approach to locate
term translations.

Furthermore, we hypothesise that the compo-
sitional and contextual clue are orthogonal, since
the former considers the internal structure of terms
while the latter exploits the surrounding lexical
context. Based on the above hypothesis, we com-
bine the two translation clues in a linear model.

For experimentation, we construct compara-
ble corpora for four language pairs (English-
Spanish, English-French, English-Greek and
English-Japanese) of the biomedical domain.

We choose this domain because a large propor-
tion of the medical terms tends to composition-
ally translate across languages (Lovis et al., 1997;
Namer and Baud, 2007). Additionally, given the
vast amount of newly introduced terms (neolo-
gisms) in the medical domain (Pustejovsky et al.,
2001), term alignment methods are needed in or-
der to automatically update existing resources.

We investigate the following aspects of term
alignment: (a) the performance of compositional
methods on closely related and on distant lan-
guages, (b) the performance of context vectors and
compositional methods when translating frequent
or rare terms, (c) the degree to which the corpus
comparability affects the performance of context-
based and compositional methods (d) the improve-
ments that we can achieve when we combine the
compositional and context clue.

Our experiments show that the performance of
compositional methods largely depends on the dis-
tance between the two languages. The perfor-
mance of the context-based approach is greatly
affected by corpus-specific parameters (the fre-
quency of occurrence of the terms to be translated
and the degree of corpora comparability). It is also
shown that the combination of compositional and
contextual methods performs better than each of
the clues, separately. Combined systems can be
deployed in application environments with differ-
ent language pairs, comparable corpora and seeds
dictionaries.

The LogReg, dictionary extraction method de-
scribed in this paper is freely available 1.

1http://personalpages.manchester.
ac.uk/postgrad/georgios.kontonatsios/
Software/LogReg-TermAlign.tar.gz

2 Related Work

Context-based methods (Fung and Yee, 1998;
Rapp, 1999) adapt the Distributional Hypothesis
(Harris, 1954), i.e., words that occur in similar
lexical context tend to have the same meaning, in
a multilingual environment. They represent the
context of each term t as a context vector, usu-
ally following the bag-of-words model. Each di-
mension of the vector corresponds to a context
word occurring within a predefined window, while
the corresponding value is computed by a corre-
lation metric, e.g., Log-Likelihood Ratio (Morin
et al., 2007; Chiao and Zweigenbaum, 2002) or
Point-wise Mutual Information (Andrade et al.,
2010). A general bilingual dictionary is then used
to translate/project the target context vectors into
the source language. As a result, the source and
target context vectors become directly compara-
ble. In a final step, candidate translations are being
ranked according to a distance metric, e.g., cosine
similarity (Tamura et al., 2012) or Jaccard index
(Zanzotto et al., 2010; Apidianaki et al., 2012).

Whilst context-based methods have become a
common practise for bilingual dictionary extrac-
tion from comparable corpora, nonetheless, their
performance is subject to various factors, one of
which is the quality of the comparable corpus. Li
and Gaussier (2010) introduced the corpus com-
parability metric and showed that it is related to
the performance of context vectors. The higher
the corpus comparability is, the higher the perfor-
mance of context vectors is. Furthermore, context
vector approaches are sensitive to the frequency of
terms. For frequent terms, distributional seman-
tics methods exhibit robust performance since the
corresponding context is more informative. Chiao
and Zweigenbaum (2002) reported an accuracy of
91% for the top 20 candidates when translating
terms that occur 100 times or more. However,
the performance of context vectors drastically de-
creases for lower frequency terms (Kontonatsios et
al., 2014; Morin and Daille, 2010).

Our work is more closely related to a second
class of term alignment methods that exploits the
internal structure of terms between a source and
a target language. Compositional translation al-
gorithms are based on the principal of composi-
tionality (Keenan and Faltz, 1985), which claims
that the translation of the whole is a function of
the translation of its parts. Lexical (Morin and
Daille, 2010; Daille, 2012; Robitaille et al., 2006;
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Tanaka, 2002) and sub-lexical (Delpech et al.,
2012) compositional algorithms are knowledge-
rich approaches that proceed in two steps, namely
generation and selection. In the generation step,
an input source term is segmented into basic trans-
lation units: words (lexical compositional meth-
ods) or morphemes (sub-lexical methods). Then
a pre-compiled, seed dictionary of words or mor-
phemes is used to translate the components of the
source term. Finally, a permutation function gen-
erates candidate translations using the list of the
translated segments. In the selection step, candi-
date translations are ranked according to their fre-
quency (Morin and Daille, 2010; Robitaille et al.,
2006) or their context similarity with the source
term (Tanaka, 2002). The performance of the
compositional translation algorithms is bound to
the coverage of the seed dictionary (Daille, 2012).
Delpech et al. (2012) noted that 30% of untrans-
lated terms were due to the low coverage of the
seed dictionary.

Kontonatsios et al. (2014) introduced a Random
Forest (RF) classifier that learns correspondences
of character n-grams between a source and target
language. Unlike lexical and sub-lexical compo-
sitional methods, a RF classifier does not require
a bilingual dictionary of translation units. The
model is able to automatically build correlation
paths between source and target sub-lexical seg-
ments that best discriminate translation from non-
translation pairs. However, being a supervised
method, it still requires a seed bilingual dictio-
nary of technical terms for training. The RF classi-
fier was previously applied on an English-Spanish
comparable corpus and it was shown to signifi-
cantly outperform context-based approaches.

3 Methods

In this section we describe the character n-gram
models, the context vector method and the hybrid
system. The lexicon induction task is formalised
as a two-class classification problem. Given a pair
of terms in a source and a target language, the out-
put is a prediction of whether the terms are mutual
translations are not. Furthermore, each term align-
ment method implements a ranking function that
calculates a similarity score between a source and
a target term. The methods rank target terms ac-
cording to the similarity score and select the topN
ranked terms as candidate translations. The rank-
ing functions will be discussed in the following

subsections.

3.1 Character n-gram models

Let s be a source term containing p character n-
grams (s={s1, s2, ..., sp} si ∈ S, ∀i ∈ [1, p])
and t a target term of q n-grams (t={t1, t2, ..., tq}
ti ∈ T , ∀i ∈ [1, q]). We extract charac-
ter n-grams by considering any contiguous, non-
linguistically motivated sequence of characters
that occurs within a window size of [2 − 5] 2) for
English, French and Greek. For Japanese, uni-
grams are included (window size of [1 − 5] be-
cause Japanese terms often contain Kanji (Chi-
nese) characters.

Given the two lists of source and target n-grams,
our objective is to find an underlying relationship
between S and T that best discriminates trans-
lation from non-translation pairs. The RF clas-
sifier was previously shown to exhibit such be-
haviour (Kontonatsios et al., 2014). An RF clas-
sifier (Breiman, 2001) is a collection of decision
trees voting for the most popular class. For a pair
of source and target terms 〈s, t〉, the RF method
creates feature vectors of a fixed size 2r, i.e., first
order feature space. The first r features are ex-
tracted from the source term, while the last r fea-
tures from the target term. Each feature has a
boolean value (0 or 1) that designates the pres-
ence/absence of the corresponding n-gram in the
input instance.

The ability of the RF to detect latent associa-
tions between S and T relies on the decision trees.
The internal nodes of a decision tree represent the
n-gram features that are linked together in the tree-
hierarchy. Each leaf node of the trees is labelled as
translation or non-translation indicating whether
the parent path of n-gram features is positively or
negatively associated. The classification margin
that we use to rank the candidate translations is
given by a margin function (Breiman, 2001):

mg(X,Y ) = av(I(x) = 1)−av(I(x)) = 0) (1)

where x is an instance 〈s, t〉, y ∈ Y = {0, 1} the
class label, I(·) : (s, t) −→ {0, 1} is the indicator
function of a decision tree and av(I(·)) the aver-
age number of trees voting for the same class la-
bel. In our experiments, we used the same settings
as the ones reported in Kontonatsios et al. (2014).

2we have experiments with larger and narrower window
sizes but this setting resulted in better translation accuracy
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We used 140 decision trees and log2 |2q| + 1 ran-
dom features. For training an RF model, we used
the WEKA platform (Hall et al., 2009).

The second class of machine learning algo-
rithms that we investigate is Support Vector Ma-
chines (SVMs). The simplest version of SVMs
is a linear classifier (linear-SVM) that tries to
place a hyperplane, a decision boundary, that sepa-
rates translation from non-translation instances. A
linear-SVM is a feature agnostic method since the
model only exploits the position of the vectors in
the hyperspace to achieve class separation (Hastie
et al., 2009).

The first order feature representation used with
the RF classifier does not model associations be-
tween S and T . Hence, intuitively, a first or-
der feature space is not linearly separable, i.e.,
there exists no decision boundary that divides the
data points into translations and non-translations.
3. To solve non-linear classification problems,
SVMs employ non-linear kernels. A kernel func-
tion projects input instances into a higher dimen-
sional space to discover non-linear associations
between the initial features. In this new, projected
feature space, the SVM attempts to define a sep-
arating plane. For training an non-linear SVM on
the first order feature space, we used the LIBSVM
package (Chang and Lin, 2011) with a radial ba-
sis function (RBF) kernel. For ranking candidate
translations, we used the decision value given by
LIBSVM which represents the distance between
an instance and the hyperplane. To translate a
source term, the method ranks candidate transla-
tions by decision value and suggests as best trans-
lation the candidate with the maximum distance
(maximum margin).

While the first order models try to find cross-
lingual mappings between monolingual features,
our proposed method follows a different approach.
It models cross-lingual links between the source
and target character n-grams and uses them as
second order features to train a linear classifier.
A second order feature is a tuple of n-grams in
S and T , respectively, that co-occur in a train-
ing, translation instance. Second order feature

3We applied a linear-SVM with the first order feature
representation on the four comparable corpora for English-
French, English-Spanish, English-Greek and English-
Japanese. In all cases, the best accuracies achieved were close
to zero. Additionally, the ranked list of candidate translations
was the same for all source terms. Hence, we can empiri-
cally suggest that the linear-SVM cannot exploit a first order
feature space.

values are boolean. Given a translation instance
〈s, t〉 of p source and q target n-grams, there are
p×q second order features. For dimensionality re-
duction, we consider as second order features the
most frequent out of all possible first order feature
combinations, only. Experiments indicate that a
large number of features needs to be considered
to achieve robust performance. To cope with the
high dimensional second order space, we use LI-
BLINEAR (Fan et al., 2008), which is designed
to solve large-scale, linear classifications prob-
lems. LIBLINEAR implements two linear clas-
sification algorithms: LogReg and linear-SVM.
Both models solve the same optimisation problem,
i.e., determine the optimal separating plane, but
they adopt different loss functions. Since LIBLIN-
EAR does not support decision value estimations
for the linear-SVM, we only experimented with
LogReg. Similarly to SVM-RBF, LogReg ranks
candidate translations by classification margin.

3.2 Context vectors

We follow a standard approach to calculate context
similarity of source and target terms (Rapp, 1999;
Morin and Daille, 2010; Morin and Prochasson,
2011a; Delpech et al., 2012). Context vectors
of candidate terms in the source and target lan-
guage are populated after normalising each bilin-
gual corpus, separately. Normalisation consists
of stop-word filtering, tokenisation, lemmatisa-
tion and Part-of-Speech (PoS) tagging. For En-
glish, Spanish and French we used the TreeTagger
(Schmid, 1994) while for Greek we used the ILSP
toolkit (Papageorgiou et al., 2000). The Japanese
corpus was segmented and PoS-tagged using Ju-
man (Kurohashi and Kawahara, 2005).

In succession, monolingual context vectors are
compiled by considering all lexical units that oc-
cur within a window of 3 words before or af-
ter a term (a seven-word window). Only lexical
units (seeds) that occur in a bilingual dictionary
are retained The values in context vectors are Log-
Likelihood Ratio associations (Dunning, 1993) of
the term and a seed lexical unit occurring in it. In
a second step, we use the translations in the seed
dictionary to map target context vectors into the
source vector space. If there are several transla-
tions for a term, they are all considered with equal
weights. Finally, candidate translations are ranked
in descending order of the cosine of the angle be-
tween the mapped target vectors and the source
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Figure 1: Architecture of the hybrid term align-
ment system.

vector.

3.3 Hybrid term alignment system

Figure 1 illustrates a block diagram of our term
alignment system. We use two bilingual seed dic-
tionaries: (a) a dictionary of term translation pairs
to train the n-gram models and (b) a dictionary of
word-to-word correspondences to translate target
context vectors. The n-gram and context vector
methods are used separately to score term pairs.
The n-gram model computes the value of the com-
positional clue while the context vector estimates
the score of the contextual clue. The hybrid model
combines both methods by using the correspond-
ing scores as features to train a linear classifier.
For this, we used a linear-SVM of the LIBSVM
package with default values for all parameters.

4 Data

Following previous research (Prochasson and
Fung, 2011; Irvine and Callison-Burch, 2013;
Klementiev et al., 2012), we construct compara-
ble biomedical corpora using Wikipedia as a freely
available resource.

Starting with a list of 4K biomedical English
terms (query-terms), we collected 4K English
Wikipedia articles, by matching query-terms to the
topic signatures of articles. Then, we followed

the Wikipedia interlingual links to retrieve the-
matically related articles in each target language.
Since not all English articles contain links for all
four target languages (Spanish, French, Greek and
Japanese), we used a different list of query-terms
for each language pair. Corpora were randomly
divided into training and testing parts. For train-
ing we used 3K documents and for testing the re-
maining 1K. Table 1 shows the size of corpora in
terms of numbers of source (SW) and target words
(TW).

4.1 Seed dictionaries

As shown in Figure 1, the term alignment methods
require two seed bilingual dictionaries: a term and
a word dictionary. The character n-gram models
rely on a bilingual term dictionary to learn asso-
ciations of n-grams that appear often in technical
terms. The dictionary may contain both single-
word and multi-word terms. For English-Spanish
and English-French we used UMLS (Bodenreider,
2004) while for English-Japanese we used an elec-
tronic dictionary of medical terms (Denshika and
Kenkyukai, 1991).

An English-Greek biomedical dictionary was
not available at the time of conducting these ex-
periments, thus we automatically compiled a dic-
tionary from a parallel corpus. For this, we trained
a standard Statistical Machine Translation system
(Koehn et al., 2007) on EMEA (Tiedemann, 2009),
a biomedical parallel corpus containing sentence-
aligned documents from the European Medicines
Agency. Then, we extracted all English-Greek
pairs for which: (a) the English sequence was
listed in UMLS and (b) the translation probability
was equal or higher to 0.7.

The sizes of the seed term dictionaries vary sig-
nificantly, e.g., 500K entries for English-French
but only 20K entries for English-Greek. How-
ever, the character n-gram models require a rela-
tively small portion of the corresponding dictio-
nary to converge. In the reported experiments,
we used 10K translation pairs as positive, train-
ing instances. In addition, we generated an equal
number of pseudo-negative instances by randomly
matching non-translation terms.

Morin and Prochasson (2011b) showed that the
translation accuracy of context vectors is higher
when using bilingual dictionaries that contain both
general language entries and technical terms rather
than general or domain-specific dictionaries, sep-
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Training corpus Test Corpus
# SW # TW # SW # TW

en-fr 4.8M 2.2M 1.9M 1.1M
en-es 4.9M 2.5M 1.8M 0.9M
en-el 10.2M 2.4M 3.3M 1.3M
en-jpn 5.3M 2.4M 2.3M 1.2M

Table 1: Statistics of the English-French (en-
fr), Engish-Spanish (en-es), English-Greek (en-
el) and English-Japanese (en-jpn) Wikipedia com-
parable corpora. SW: source words, TW: target
words

Corpus Seed words
Comparability in dictionary

en-fr 0.71 66K
en-es 0.75 40K
en-el 0.68 22K
en-jpn 0.49 57K

Table 2: Corpus comparability and number of fea-
tures of the seed word dictionaries

arately. In a mixed dictionary, lexical units are
either single-word technical terms, such as “dis-
ease” and “patient”, or general language words,
such as “occur” and “high”. Note that we have
already compiled a seed term dictionary for each
pair of languages. Following the suggestion of
Morin and Prochasson (2011b), we attempt to en-
rich the seed term dictionaries with general lan-
guage entries. For this, we extracted bilingual
word dictionaries for English-Spanish, English-
French and English-Greek by applying GIZA++
(Och and Ney, 2003) on the EMEA corpus. We
then concatenated the word with the term dictio-
naries to obtain enhanced seeds for the three lan-
guage pairs. For English-Japanese, we only used
the term dictionary to translate the target context
vectors.

Once the word dictionaries have been compiled,
we compute the corpus comparability measure. Li
and Gaussier (2010) define corpus comparability
as the percentage of words that can be translated
bi-directionally, given a seed dictionary.

Table 2 shows corpus comparability scores of
the four corpora accompanied with the number
of English, single words in the seed dictionar-
ies. It can be observed that seed dictionary sizes
are not necessarily proportional to the correspond-
ing corpus comparability scores. As expected, for

English-Japanese, corpus comparability is low be-
cause the dictionary contains single-word terms,
only. The English-Spanish dictionary is smaller
than the English-French but achieved higher cor-
pus comparability, i.e., a higher percentage of
words can be bi-directionally translated using the
corresponding seed dictionary. A possible ex-
planation is that the comparable corpora were
constructed using different lists of query-terms.
Hence, the query-terms used for English-Spanish
retrieved a more coherent corpus. The resulting
values of corpus comparability indicate that the
context vectors will perform the best for English-
Spanish while for English-Japanese the perfor-
mance is expected to be substantially lower.

4.2 Training and evaluation datasets

For evaluation, we construct a test dataset of
single-word terms, in particular nouns or adjec-
tives. The dataset contains 1K terms that occur
more frequently than 20 but not more than 200
times and are listed in the English part of the
UMLS. In order to extract candidate translations,
we considered all nouns or adjectives that occur
at least 5 times in the target part of the corpus.
Furthermore, we do not constraint the evaluation
datasets only to those terms whose corresponding
translation occurs in the corpus.

The hybrid model that combines the composi-
tional and context clue, is based on a two-feature
model. Therefore, the model converges using only
a few hundred instances. For training a hybrid
model, we used 1K translation instances that oc-
curred in the training comparable corpora. Sim-
ilarly, to the character n-gram models, pseudo-
negative instances were generated by randomly
coupling non-translation terms. The ratio of posi-
tive to negative instances is 1 : 1.

5 Experiments

In this section, we present three experiments con-
ducted to evaluate the character n-gram, con-
text vector and hybrid methods. Firstly, we
examine the performance of the n-gram mod-
els on closely related language pairs (English-
French, English-Spanish), on a distant language
pair (English-Greek) and on an unrelated language
pair (English-Japanese). English and Greek are
not unrelated because they are members of the
same language family, but also not closely re-
lated because they use different scripts. Secondly,
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we compare the character n-gram methods against
context vectors when translating frequent or rare
terms and on comparable corpora of similar lan-
guage pairs (English-French, English-Spanish) but
of different corpus comparability scores. Thirdly,
we evaluate the hybrid method on all four com-
parable corpora and investigate the improvement
margin of combining the contextual with the com-
positional clue.

As evaluation metrics, we adopt the top-N
translation accuracy, following most previous ap-
proaches (Rapp, 1999; Chiao and Zweigenbaum,
2002; Morin et al., 2007; Tamura et al., 2012). The
top-N translation accuracy is defined as the per-
centage of source terms for which a given method
has output the correct translation among the top N
candidate translations.

5.1 Character n-gram models

In the first experiment, we investigate the perfor-
mance of the character n-gram models consider-
ing an increasing number of features. The features
were sorted in order of decreasing frequency of oc-
currence. Starting from the top of the list, more
features were incrementally added and translation
accuracy was recorded.

Figure 2 shows the top-20 translation accu-
racy of single-word terms on an increasing num-
ber of first and second order features. With re-
gards to the first order models (Subfigure 2a),
the Random Forest (RF) classifier outperforms
our baseline method (SVM-RBF) for all four lan-
guage pairs. The largest margin between RF and
SVM-RBF can be observed for the English-Greek
dataset while for closely related language pairs,
i.e., English-French and English-Spanish, the mar-
gin is smaller. Furthermore, it can be noted that
using only a small number of first order features,
1K features (500 for the source and 500 for the
target language, both n-gram models reach a sta-
ble performance.

In contrast to the first order models, the Lo-
gReg classifier requires a large number of sec-
ond order features to achieve a robust performance
(Subfigure 2b). Starting from 100K features, the
translation accuracy continuously increases. The
best performance is observed for a total number
of 4M second order features when considering
the English-French, English-Spanish and English-
Greek datasets. For English-Japanese, the best
performance is achieved for 2M features. Beyond

this point, translation accuracy decreases slightly.
After feature selection is performed, we directly

compare all the character n-gram models. Table 3
summarises performance achieved by the LogReg,
RF and SVM-RBF models. It can be noted that
LogReg and RF performed similarly for closely
related languages (no statistically significant dif-
ferences were observed) while both methods out-
performed the SVM-RBF. However, for English-
Greek and English-Japanese, LogReg achieved
a statistically significant improvement over the
translation accuracy of RF and SVM-RBF. Lo-
gReg outperformed RF by 7% for English-Greek,
while for English-Japanese the improvement was
10% and 17% percent for top-1 and top-20 accu-
racy, respectively. Finally, it can be observed that
the more distant the language pair is, the lower the
performance.

5.2 N-gram methods and context vectors

In this experiment, we compare the n-gram meth-
ods against context vectors with regards to two pa-
rameters: (a) the frequency of source terms to be
translated and (b) corpus comparability. English-
French and English-Spanish are similar language
pairs but the corresponding corpora are of dif-
ferent corpus comparability scores. To investi-
gate how performance is affected by term occur-
rence frequency, we compiled an additional test
dataset of 1K rare English terms in the frequency
range [10, 20]. Our intuition is, that character n-
gram methods will perform similarly for all set-
tings since character n-grams are corpus indepen-
dent features.

We compare (a) the character n-gram models
(LogReg, RF and SVM-RBF) with (b) the con-
text vector method (context) and (c) an upper
bound. The latter represents the percentage of
source terms for which a reference translation ac-
tually occurs in the target corpus. Hence, the up-
per bound is the maximum performance achiev-
able according to the reference evaluation.

Figure 3a shows the top-20 translation accu-
racy for high and medium frequency terms, within
the frequency range [20, 200]. Context vectors
achieved a robust performance of 52% and 45%
for English-Spanish and English-French, respec-
tively. The difference in corpus comparability
can explain this 7% margin between these perfor-
mances. As shown in Table 2, the corpus com-
parability scores for English-Spanish and English-
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Figure 2: Top-20 translation accuracy of models trained on (a) first and (b) second order features

English-French English-Spanish English-Greek English-Japanese
acc@1 acc@20 acc@1 acc@20 acc@1 acc@20 acc@1 acc@20

LogReg 0.45 0.61 0.42 0.62 0.3 0.48 0.25 0.41
RF 0.47 0.58 0.43 0.59 0.23 0.41 0.15 0.24
SVM-RBF 0.38 0.51 0.33 0.53 0.1 0.25 0.06 0.16

Table 3: Top-1 (acc@1) and top-20 (acc@20) translation accuracy of LogReg, RF and SVM-RBF
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 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

en-fr en-es

%
 t

o
p

-2
0

 t
ra

n
sl

a
ti

o
n
 a

cc
u
ra

cy

LogReg
RF

SVM-RBF

Context
upper bound

(b) Test terms with frequency [10, 20]

Figure 3: Top-20 translation accuracy of terms in the frequency range of [10, 200] and [10, 20]

French are 0.75 and 0.71, respectively. In contrast
to context vectors, the character n-gram methods
performed comparably.

A second factor that affects the performance of
context vectors, is the frequency of the terms to
be translated. The translation of rare terms has
been shown to be a challenging case for context
vectors. For example, Morin and Daille (2010)
reported low accuracy (21% for the top-20 can-
didates) of context vectors for terms occurring 20
times or less. In our experiments, Figure 3b illus-
trates accuracies achieved for less frequent terms

([10, 20]). The performance of context vectors is
significantly lower, 26% for English-Spanish and
21% for English-French. Furthermore, the trans-
lation accuracy of the n-gram methods decreases
slightly (∼ 5% to 8%). This can be explained
by the decrease of the upper bound for lower fre-
quency terms (∼ 3% to 6%).

5.3 Combining internal and contextual
similarity

We have hypothesised that the compositional and
contextual clue are orthogonal, i.e., they convey
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Figure 4: Overall performance. Top-20 and top-1 translation accuracy

different and possibly complimentary information.
To investigate this intuition, we evaluate the hybrid
model on all four comparable corpora, for term oc-
currence frequencies in [20, 200].

Figure 4a illustrates top-20 translation accu-
racy scores for (a) the character n-gram models,
(b) the context vector method and (c) the hy-
brid models, i.e., LogReg+Context, RF+Context,
SVM-RBF+Context. We observe that the com-
bination of the compositional and contextual clue
improved the performance of all methods. The hy-
brid model largely improved the performance of
the SVM-RBF (∼ 14% to 20%). With regards
to the combined signals the translation accuracy
of LogReg and RF increased by ∼ 4% for the
English-Japanese corpus and ∼ 8% for all other
corpora.

For the top 1 candidate translation, we observe
in Figure 4 smaller improvements achieved by the
hybrid model in comparison to the top-20 accu-
racy. Interestingly, the RF classifier performed
slightly better on its own for English-French,
English-Spanish and English-Japanese. This in-
dicates that the hybrid method ranks more correct
translations in the top 20 candidates but it does not
always assign the best score to the correct answer.

6 Discusion and Future work

In this paper, we investigated a compositional
and a context-based approach useful for compil-
ing bilingual dictionaries of terms automatically
from comparable corpora. Compositional transla-
tion methods exploit the internal structure of terms
across languages while context-based approaches
investigate the surrounding lexical context.

We proposed a character n-gram composi-
tional method, i.e., a Logistic Regression clas-

sifier, which uses a multilingual representation,
i.e., source and target terms. Experimental evi-
dence showed that the LogReg classifier signifi-
cantly outperformed the baseline methods on dis-
tant languages. For closely related languages, Lo-
gReg performed comparably to an existing n-gram
method based on a Random Forest classifier.

Furthermore, we compared the n-gram models
against a context-based approach under different
corpus-specific parameters: (a) corpus compara-
bility, which is relevant to the seed dictionary, and
(b) the occurrence frequency of the terms to be
translated. It was shown that the performance of
n-gram methods was not affected by different pa-
rameter settings. Only small fluctuations were ob-
served, since the n-gram methods are based on
corpus-independent features, only. In contrast,
the context-based method was affected by corpus
comparability scores. The corresponding transla-
tion accuracy declined significantly for rare terms.

Finally, we hypothesised that the n-gram and
context-based methods provide complimentary in-
formation. To test this hypothesis, we developed a
hybrid method that combines compositional and
contextual similarity scores as features in a lin-
ear classifier. The hybrid model achieved signif-
icantly better top-20 translation accuracy than the
two methods separately but minor improvements
were observed in terms of top-1 accuracy.

As future work, we plan to improve the qual-
ity of the extracted dictionary further by exploiting
additional translation signals. For example, previ-
ous works (Schafer and Yarowsky, 2002; Klemen-
tiev et al., 2012) have reported that the temporal
and topic similarity are clues that indicate transla-
tion equivalence. It would be interesting to investi-
gate the contribution of different clues for various
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experimental parameters, e.g., domain, distance of
languages, types of comparable corpora.
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Abstract

Vector space models (VSMs) are math-
ematically well-defined frameworks that
have been widely used in the distributional
approaches to semantics. In VSMs, high-
dimensional vectors represent linguistic
entities. In an application, the similar-
ity of vectors—and thus the entities that
they represent—is computed by a distance
formula. The high dimensionality of vec-
tors, however, is a barrier to the perfor-
mance of methods that employ VSMs.
Consequently, a dimensionality reduction
technique is employed to alleviate this
problem. This paper introduces a novel
technique called Random Manhattan In-
dexing (RMI) for the construction of `1
normed VSMs at reduced dimensionality.
RMI combines the construction of a VSM
and dimension reduction into an incre-
mental and thus scalable two-step proce-
dure. In order to attain its goal, RMI em-
ploys the sparse Cauchy random projec-
tions. We further introduce Random Man-
hattan Integer Indexing (RMII): a compu-
tationally enhanced version of RMI. As
shown in the reported experiments, RMI
and RMII can be used reliably to estimate
the `1 distances between vectors in a vec-
tor space of low dimensionality.

1 Introduction

Distributional semantics embraces a set of meth-
ods that decipher the meaning of linguistic en-
tities using their usages in large corpora (Lenci,
2008). In these methods, the distributional proper-
ties of linguistic entities in various contexts, which
are collected from their observations in corpora,
are compared to quantify their meaning. Vector
spaces are intuitive, mathematically well-defined

frameworks to represent and process such infor-
mation.1 In a vector space model (VSM), linguis-
tic entities are represented by vectors and a dis-
tance formula is employed to measure their distri-
butional similarities (Turney and Pantel, 2010).

In a VSM, each element ~si of the standard basis
of the vector space (informally, each dimension of
the VSM) represents a context element. Given n
context elements, an entity whose meaning is be-
ing analyzed is expressed by a vector ~v as a linear
combination of ~si and scalars αi ∈ R such that
~v = α1~s1 + · · ·+αn~sn. The value of αi is derived
from the frequency of the occurrences of the entity
that ~v represents in/with the context element that
~si represents. As a result, the values assigned to
the coordinates of a vector (i.e. αi) exhibit the cor-
relation of entities and context elements in an n-
dimensional real vector space Rn. Each vector can
be written as a 1×n row matrix, e.g. (α1, · · · , αn).
Therefore, a group of m vectors in a vector space
is often represented by a matrix Mm×n.

Latent semantic analysis (LSA) is a famil-
iar technique that employs a word-by-document
VSM (Deerwester et al., 1990).2 In this word-
by-document model, the meaning of words (i.e.
the linguistic entities) is described by their occur-
rences in documents (i.e. the context elements).
Given m words and n distinct documents, each
word is represented by an n-dimensional vector
~vi = (αi1, · · · , αin), where αij is a numeric value
that associates the word ~vi represents to the doc-
ument dj , for 1 < j < n. For instance, the
value of αij may correspond to the frequency of
the word in the document. It is hypothesized that
the relevance of words can be assessed by count-
ing the documents in which they co-occur. There-
fore, words with similar vectors are assumed to
have the same meaning (Figure 1).

1Amongst other representation frameworks.
2See Martin and Berry (2007) for an overview of the

mathematical foundation of LSA.
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~s1 ↔ d1

~s2 ↔ d2

~s3 ↔ d3

~v1~v2

α12
α11

α13

α22

α21

α23

Figure 1: Illustration of a word-by-document
model consisting of 2 words and 3 documents.
The words are represented in a 3-dimensional vec-
tor space, in which each ~si (each dimension) rep-
resents each of the 3 documents in the model.
~v1 = (α11, α12, α13) and ~v2 = (α21, α22, α23)
represent the two words in the model. The dashed
line shows the Euclidean distance between the two
vectors that represent words, while the sum of
dash-dotted lines is the Manhattan distance be-
tween them.

In order to assess the similarity between vectors,
a vector space V is endowed with a norm struc-
ture. A norm ‖.‖ is a function that maps vectors
from V to the set of non-negative real numbers,
i.e. V 7→ [0,∞). The pair of (V, ‖.‖) is then called
a normed space. In a normed space, the similar-
ity between vectors is assessed by their distances.
The distance between vectors is defined by a func-
tion that satisfies certain axioms and assigns a real
value to each pair of vectors, i.e.

dist : V × V 7→ R, d(~v,~t) = ‖~v − ~u‖. (1)

The smaller the distance between two vectors, the
more similar they are.

Euclidean space is the most familiar example
of a normed space. It is a vector space that is en-
dowed by the `2 norm. In Euclidean space, the `2
norm—which is also called the Euclidean norm—
of a vector ~v = (v1, · · · , vn) is defined as

‖~v‖2 =

√√√√ n∑
i=1

v2
i . (2)

Using the definition of distance given in Equa-
tion 1 and the `2 norm, the Euclidean distance is
measured as

dist2(~v, ~u) = ‖~v − ~u‖2 =

√√√√ n∑
i=1

(vi − ui)2. (3)

In Figure 1, the dashed line shows the Euclidean
distance between the two vectors. In `2 normed
vector spaces, various similarity metrics are de-
fined using different normalization of the Eu-
clidean distance between vectors, e.g. the cosine
similarity.

The similarity between vectors, however, can
also be computed in `1 normed spaces.3 The `1
norm for ~v is given by

‖~v‖1 =
n∑
i=1

|vi|, (4)

where |.| signifies the modulus. The distance in an
`1 normed vector space is often called the Man-
hattan or the city block distance. According to the
definition given in Equation 1, the Manhattan dis-
tance between two vectors ~v and ~u is given by

dist1(~v, ~u) = ‖~v − ~u‖1 =
n∑
k=1

|vi − uj |. (5)

In Figure 1, the collection of the dash-dotted lines
is the `1 distance between the two vectors. Similar
to the `2 spaces, various normalizations of the `1
distance4 define a family of `1 normed similarity
metrics.

As the number of text units that are being mod-
elled in a VSM increases, the number of context
elements that are required to be utilized to capture
their meaning escalates. This phenomenon is ex-
plained using power-law distributions of text units
in context elements (e.g. the familiar Zipfian dis-
tribution of words). As a result, extremely high-
dimensional vectors, which are also sparse—i.e.
most of the elements of the vectors are zero—
represent text units. The high dimensionality of
the vectors results in setbacks, which are colloqui-
ally known as the curse of dimensionality. For in-
stance, in a word-by-document model that consists
of a large number of documents, a word appears
only in a few documents, and the rest of the doc-
uments are irrelevant to the meaning of the word.
Few common documents between words results in
sparsity of the vectors; and the presence of irrele-
vant documents introduces noise.

Dimension reduction, which usually follows the
construction of a VSM, alleviates the problems

3The definition of the norm is generalized to `p spaces
with ‖~v‖p =

(∑
i |vi|p

)1/p, which is beyond the scope of
this paper.

4As long as the axioms in the distance definition hold.

1714



listed above by reducing the number of context el-
ements that are employed for the construction of
the VSM. In its simple form, dimensionality re-
duction can be performed using a selection pro-
cess: choose a subset of contexts and eliminate
the rest using a heuristic. Alternatively, transfor-
mation methods can be employed. A transforma-
tion method maps a vector space Vn onto a Vm of
lowered dimension, i.e. τ : Vn 7→ Vm,m � n.
The vector space at reduced dimension, i.e. Vm,
is often the best approximation of the original Vn
in a sense. LSA employs a dimension reduction
technique called truncated singular value decom-
position (SVD). In a standard truncated SVD, the
transformation guarantees the least distortion in
the `2 distances.5

Besides the problem of high computational
complexity of SVD computation,6 which can be
addressed by incremental techniques (see e.g.
Brand (2006)), matrix factorization methods such
as truncated SVD are data-sensitive: if the struc-
ture of the data being analyzed changes, i.e. when
either the linguistic entities or context elements
are updated, e.g. some are removed or new ones
are added, the transformation should be recom-
puted and reapplied to the whole VSM to reflect
the updates. In addition, a VSM at the original
high dimension must be first constructed. Follow-
ing the construction of the VSM, the dimension
of the VSM is reduced in an independent process.
Therefore, the VSM at reduced dimension is avail-
able for processing only after the whole sequence
of these processes. Construction of the VSM at
its original dimension is computationally expen-
sive and a delay in access to the VSM at reduced
dimension is not desirable. Hence, the application
of truncated SVD is not suitable in several appli-
cations, particularly when dealing with frequently
updated big text–data such as applications in the
web context.

Random indexing (RI) is an alternative method
that solves the problems stated above by combin-
ing the construction of a vector space and the di-
mensionality reduction process. RI, which is in-
troduced in Kanerva et al. (2000), constructs a
VSM directly at reduced dimension. Unlike meth-
ods that first construct a VSM at its original high
dimension and conduct a dimensionality reduction

5Please note that there are matrix factorization techniques
that guarantee the least distortion in the `1 distances, see e.g.
Kwak (2008).

6Matrix factorization techniques, in general.

afterwards, the RI method avoids the construction
of the original high-dimensional VSM. Instead, it
merges the vector space construction and the di-
mensionality reduction process. RI, thus, signifi-
cantly enhances the computational complexity of
deriving a VSM from text. However, the appli-
cation of the RI technique (likewise the standard
truncated SVD in LSA) is limited to `2 normed
spaces, i.e. when similarities are assessed using a
measure based on the `2 distance. It can be verified
that using RI causes large distortions in the `1 dis-
tances between vectors (Brinkman and Charikar,
2005). Hence, if the similarities are computed us-
ing the `1 distance, then the RI technique is not
suitable for the VSM construction.

Depending on the distribution of vectors in
a VSM, the performance of similarity measures
based on the `1 and the `2 norms varies from one
task to another. For instance, it is known that
the `1 distance is more robust to the presence of
outliers and non-Gaussian noise than the `2 dis-
tance (e.g. see the problem description in Ke and
Kanade (2003)). Hence, the `1 distance can be
more reliable than the `2 distance in certain appli-
cations. For instance, Weeds et al. (2005) suggest
that the `1 distance outperforms other similarity
metrics in a term classification task. In another
experiment, Lee (1999) observed that the `1 dis-
tance gives more desirable results than the Cosine
and the `2 measures.

In this paper, we introduce a novel method
called Random Manhattan Indexing (RMI). RMI
constructs a vector space model directly at re-
duced dimension while it preserves the pairwise
`1 distances between vectors in the original high-
dimensional VSM. We then introduced a compu-
tationally enhanced version of RMI called Ran-
dom Manhattan Integer Indexing (RMII). RMI
and RMII, similar to RI, merge the construction
of a VSM and dimension reduction into an incre-
mental and thus efficient and scalable process.

In Section 2, we explain and evaluate the RMI
method. In Section 3, the RMII method is ex-
plained. We compare the proposed method with
RI in Section 4. We conclude in Section 5.

2 Random Manhattan Indexing

We propose the RMI method: a novel technique
that adapts an incremental procedure for the con-
struction of `1 normed vector spaces at a reduced
dimension. The RMI method employs a two-step
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procedure: (a) the creation of index vectors and (b)
the construction of context vectors .

In the first step, each context element is as-
signed exactly to one index vector ~ri. Index vec-
tors are high-dimensional and generated randomly
such that entries rj of index vectors have the fol-
lowing distribution:

ri =


−1
U1

with probability s
2

0 with probability 1− s
1
U2

with probability s
2

, (6)

where U1 and U2 are independent uniform ran-
dom variables in (0, 1). In the second step, each
target linguistic entity that is being analyzed in
the model is assigned to a context vector ~vc in
which all the elements are initially set to 0. For
each encountered occurrence of a linguistic entity
and a context element—e.g. through a sequential
scan of an input text collection—~vc that represents
the linguistic entity is accumulated by the index
vector ~ri that represents the context element, i.e.
~vc = ~vc + ~ri. This process results in a VSM
of a reduced dimensionality that can be used to
estimate the `1 distances between linguistic enti-
ties. In the constructed VSM by RMI, the `1 dis-
tance between vectors is given by the sample me-
dian (Indyk, 2000). For given vectors ~v and ~u, the
approximate `1 distance between vectors is esti-
mated by

L̂1(~u,~v) = median{|vi − ui|, i = 1, · · · ,m}, (7)

wherem is the dimension of the VSM constructed
by RMI, and |.| denotes the modulus.

RMI is based on the random projection (RP)
technique for dimensionality reduction. In RP, a
high-dimensional vector space is mapped onto a
random subspace of lowered dimension expecting
that—with a high probability—relative distances
between vectors are approximately preserved. Us-
ing the matrix notation, this projection is given by

M′
p×m = Mp×nRn×m, m� p, n, (8)

where R is often called the random projection ma-
trix, and M and M′ denote p vectors in the orig-
inal n-dimensional and reduced m-dimensional
vector spaces, respectively.

In RMI, the stated mapping in Equation 8
is given by Cauchy random projections. Indyk
(2000) suggests that vectors in a high-dimensional
space Rn can be mapped onto a vector space of

lowered dimension Rm while the relative pairwise
`1 distances between vectors are preserved with a
high probability. In Indyk (2000, Theorem 3) and
Indyk (2006, Theorem 5), it is shown that for an
m ≥ m0 = log(1/δ)O(1/ε), where δ > 0 and
ε ≤ 1/2, there exists a mapping from Rn onto
Rm that guarantees the `1 distances between any
pair of vectors ~u and ~v in Rn after the mapping
does not increase by a factor more than 1 + ε with
constant probability δ, and it does not decrease by
more than 1− ε with probability 1− δ.

In Indyk (2000), this projection is proved to
be obtained using a random projection matrix R
that has Cauchy distribution—i.e. for rij in R,
rij ∼ C(0, 1). Since R has a Cauchy distribu-
tion, for every two vectors ~u and ~v in the high-
dimensional space Rn, the projected differences
x = ~̂u − ~̂v also have Cauchy distribution, with
the scale parameter being the `1 distances, i.e.
x ∼ C(0,

∑n
i=1 |ui − vi|). As a result, in Cauchy

random projections, estimating the `1 distances
boils down to the estimation of the Cauchy scale
parameter from independent and identically dis-
tributed (i.i.d.) samples x. Because the expectation
value of x is infinite,7 the sample mean cannot be
employed to estimate the Cauchy scale parameter.
Instead, using the 1-stability of Cauchy distribu-
tion, Indyk (2000) proves that the median can be
employed to estimate the Cauchy scale parame-
ter, and thus the `1 distances at the projected space
Rm.

Subsequent studies simplified the method pro-
posed by Indyk (2000). Li (2007) shows that R
with Cauchy distribution can be substituted by a
sparse R that has a mixture of symmetric 1-Pareto
distribution. A 1-Pareto distribution can be sam-
pled by 1/U , where U is an independent uniform
random variable in (0, 1). This results in a ran-
dom matrix R that has the same distribution as
described by Equation 6.

The RMI’s two-step procedure is explained us-
ing the basic properties of matrix arithmetic and
the descriptions given above. Given the projection
in Equation 8, the first step of RMI refers to the
construction of R: index vectors are the row vec-
tors of R. The second step of the process refers
to the construction of M′: context vectors are the
row vectors of M′. Using the distributive prop-
erty of multiplication over addition in matrices,8

7That is E(x) =∞, since x has a Cauchy distribution.
8That is, (A + B)C = AC + BC.
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it can be verified that the explicit construction of
M and its multiplication to R can be substituted
by a number of summation operations. M can be
represented by the sum of unit vectors in which a
unit vector corresponds to the co-occurrence of a
linguistic entity and a context element. The result
of the multiplication of each unit vector and R is
the row vector that represents the context element
in R—i.e. the index vector. Therefore, M′ can be
computed by the accumulation of the row vectors
of R that represent encountered context elements,
as stated in the second step of the RMI procedure.

2.1 Alternative Distance Estimators

As stated above, Indyk (2000) suggests using the
sample median for the estimation of the `1 dis-
tances. However, Li (2008) argues that sam-
ple median estimator can be biased and inaccu-
rate, specifically if m—i.e. the targeted (reduced)
dimensionality—is small. Hence, Li (2008) sug-
gests using the geometric mean estimator instead
of the median sample:9

L̂1(~u,~v) =
( m∏
i=1

|ui − vi|
) 1
m . (9)

We suggest computing the L̂1(~u,~v) in Equation
9 using arithmetic mean of logarithm-transformed
values of |ui − vi|. Therefore, using the logarith-
mic identities, the multiplications and the power in
Equation 9 are, respectively, transformed to a sum
and a multiplication:

L̂1(~u,~v) = exp
( 1
m

m∑
i=1

ln(|ui − vi|)
)
. (10)

Equation 10 for computing L̂1 is more plausible
for computational implementation than Equation
9 (e.g. the overflow is less likely to happen dur-
ing the process). Moreover, calculating the median
involves sorting an array of real numbers. Thus,
computation of the geometric mean in logarithmic
scales can be faster than computation of the me-
dian sample, especially when the value of m is
large.

2.2 RMI’s Parameters

In order to employ the RMI method for the con-
struction of a VSM at reduced dimension and the
estimation of the `1 distance between vectors, two

9See also Li et al. (2007, Lemma 5–9).

model parameters should be decided: (a) the tar-
geted (reduced) dimensionality of the VSM, which
is indicated by m in Equation 8 and (b) the num-
ber of non-zero elements in index vectors, which
is determined by s in Equation 6. In contrast to the
classic one-dimension-per-context-element meth-
ods of VSM construction,10 the value of m in RPs
and thus in RMI is chosen independently of the
number of context elements in the model (n in
Equation 8).

In RMI, m determines the probability and the
maximum expected amount of distortions ε in the
pairwise distance between vectors. Based on the
proposed refinements of Indyk (2000, Theorem 3)
by Li et al. (2007), it is verified that the pairwise
`1 distance between any p vectors is approximated
within a factor 1 ± ε, if m = O(log p/ε2), with a
constant probability. Therefore, the value of ε in
RMI is subject to the number of vectors p in the
model. For a fixed p, a larger m yields to lower
bounds on the distortion with a higher probabil-
ity. Because a small m is desirable from the com-
putational complexity outlook, the choice of m is
often a trade-off between accuracy and efficiency.
According to our experiment, m > 400 is suitable
for most applications.

The number of non-zero elements in index vec-
tors, however, is decided by the number of context
elements n and the sparseness of the VSM β at
its original dimension. Li (2007) suggests 1

O(
√
βn)

as the value of s in Equation 6. VSMs employed
in distributional semantics are highly sparse. The
sparsity of a VSM in its original dimension β is
often considered to be around 0.0001–0.01. As
the original dimension of VSM n is very large—
otherwise there would be no need for dimension-
ality reduction—the index vectors are often very
sparse. Similar to m, larger s produces smaller er-
rors; however, it imposes more processes during
the construction of a VSM.

2.3 Experimental Evaluation of RMI

We report the performance of the RMI method
with respect to its ability to preserve the rela-
tive `1 distance between linguistic entities in a
VSM. Therefore, instead of a task-specific evalua-
tion, we show that the relative `1 distance between
a set of words in a high-dimensional word-by-
document model remains intact when the model

10That is, n context elements are modelled in an n-
dimensional VSM.
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is constructed at reduced dimensionality using the
RMI technique. We further explore the effect of
the RMI’s parameter setting in the observed re-
sults.

Depending on the structure of the data that is
being analyzed and the objective of the task in
hand, the performance of the `1 distance for sim-
ilarity measurement varies from one application
to another.11 The purpose of our reported evalu-
ation, thus, is not to show the superiority of the `1
distance (thus RMI) to another similarity measure
(e.g. the `2 distance or the cosine similarity) and
employed techniques for dimensionality reduction
(e.g. RI or truncated SVD) in a specific task. If, in
a task, the `1 distance shows higher performance
than the `2 distance, then the RMI technique is
preferable to the RI technique or truncated SVD.
Contrariwise, if the `2 norm shows higher perfor-
mance than the `1, then RI or truncated SVD are
more desirable than the RMI method.

In our experiment, a word-by-document model
is first constructed from the UKWaC corpus at its
original high dimension. UKWaC is a freely avail-
able corpus of 2,692,692 web documents, nearly
2 billion tokens and 4 million types (Baroni et al.,
2009).12 Therefore, a word-by-document model
constructed from this corpus using the classic one-
dimension-per-context-element method has a di-
mension of 2.69 million. In order to keep the ex-
periments computationally tractable, the reported
results are limited to 31 words from this model,
which are listed in Table 1.

In the designed experiment, a word from the list
is taken as the reference and its `1 distance to the
remaining 30 words is calculated using the vec-
tor representations in the high-dimensional VSM.
These 30 words are then sorted in ascending or-
der by the calculated `1 distance. The procedure
is repeated for all the 31 words in the list, one by
one. Therefore, the procedure results in 31 sorted
lists, each containing 30 words. Figure 2 shows an
example of the obtained sorted list, in which the
reference is the word ‘research’.13

The procedure described above is replicated to
obtain the lists of sorted words from VSMs that
are constructed by the RMI method at reduced

11E.g. see the experiments in Bullinaria and Levy (2007).
12UkWaC can be obtained from http://goo.gl/

3isfIE.
13Please note that the number of possible arrangements of

30 words without repetition in a list in which the order is
important (i.e. all permutations of 30 words) is 30!.

PoS Words

N
ou

n website email support software
students skills project research
nhs link services organisations

A
dj

online digital mobile sustainable
global unique excellent disabled
new current fantastic innovative

V
er

b use visit improve provided
help ensure develop

Table 1: Words employed in the experiments.

nhs innovative

sustainable

fantastic
global

disabled
mobile

digital
improve

develop
unique

organisations
excellent

link software
current

skills
ensure

email
visit

provided
online

project
website

students
services

support
help

use new

Figure 2: List of words sorted by their `1 distance
to the word ‘research’. The distance increases
from left to right and top to bottom.

dimensionality, when the method’s parameters—
i.e. the dimensionality of VSM and the number of
non-zero elements in index vectors—are set dif-
ferently. We expect the obtained relative `1 dis-
tances between each reference word and the 30
other words in an RMI-constructed VSM to be the
same as the obtained relative distances in the orig-
inal high-dimensional VSM. Therefore, for each
VSM that is constructed by the RMI technique,
the resulting sorted lists of words are compared by
the sorted lists that are obtained from the original
high-dimensional VSM.

We employ the Spearman’s rank correlation co-
efficient (ρ) to compare the sorted lists of words
and thus the degree of distance preservation in the
RMI-constructed VSMs at reduced dimensional-
ity. The Spearman’s rank correlation measures the
strength of association between two ranked vari-
ables, i.e. two lists of sorted words in our experi-
ments. Given a list of sorted words obtained from
the original high-dimensional VSM (listo) and its
corresponding list obtained from a VSM of re-
duced dimensionality (listRMI ), the Spearman’s
rank correlation for the two lists is calculated by

ρ = 1− 6
∑
d2
i

n(n2 − 1)
, (11)

where di is the difference in paired ranks of words
in listo and listRMI , and n = 30 is the number
of words in each list. We report the average of ρ
over the 31 lists of sorted words, denoted by ρ̄, to
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Figure 3: The ρ̄ axis shows the observed average
Spearman’ rank correlation between the order of
the words in the lists that are sorted by the `1 dis-
tance obtained from the original high-dimensional
VSM and the VSMs that are constructed by RMI
at reduced dimensionality using index vectors of
various numbers of non-zero elements.

indicate the performance of RMI with respect to
its ability for distance preservation. The closer ρ̄
is to 1, the better the performance of RMI.

Figure 3 shows the observed results at a glance
when the distances are estimated using the median
(Equation 7). As shown in the figure, when the di-
mension of the VSM is above 400 and the number
of non-zero elements is more than 12, the obtained
relative distances from the VSMs constructed by
the RMI technique start to be analogous to the rel-
ative distances that are obtained from the origi-
nal high-dimensional VSM, i.e. a high correlation
(ρ̄ > 0.90). For the baseline, we report the av-
erage correlation of ρ̄random = −0.004 between
the sorted lists of words obtained from the high-
dimensional VSM and 31 × 1000 lists of sorted
words that are obtained by randomly assigned dis-
tances.

Figure 4 shows the same results as Figure 3,
however, in minute detail and only for VSMs of
dimension m ∈ {100, 400, 800, 3200}. In these
plots, squares ( ) indicate the ρ̄while the error bars
show the best and the worst observed ρ amongst
all the sorted lists of words. The minimum value
of ρ-axis is set to 0.611, which is the worst ob-
served correlation in the baseline (i.e. randomly
generated distances). The dotted line (ρ = .591)
shows the best observed correlation in the baseline
and the dashed-dotted line shows the average cor-
relation in the baseline (ρ = −0.004). As sug-
gested in Section 2.2, it can be verified that an

increase in the dimension of VSMs (i.e. m) in-
creases the stability of the obtained results (i.e.
the probability of preserving distances increases).
Therefore, for large values of m (i.e. m > 400),
the difference between the best and the worst ob-
served ρ decreases; average correlation ρ̄→ 1 and
the observed relative distances in RMI-constructed
VSMs tend to be identical to those in the original
high-dimensional VSM.

Figure 5 represents the obtained results in the
same setting as above, however, when the dis-
tances are approximated using the geometric mean
(Equation 10). The obtained average correlations
ρ̄ from the geometric mean estimations are al-
most identical to the median estimations. How-
ever, as expected, the geometric mean estimations
are more reliable for small values of m; particu-
larly, the worst observed correlations when using
the geometric mean are higher than those observed
when using the median estimator.

−0.5

0

0.5

1
0.8
0.9

ρ

m = 100 m = 400

20 40 60

−0.5

0

0.5

1

2 12 70

0.8
0.9

|non-zero elements|

ρ

m = 800

20 40 602 12 70

|non-zero elements|

m = 3200

Figure 4: Detailed observation of the ob-
tained correlation between relative distances in
RMI-constructed VSMs and the original high-
dimensional VSM. The `1 distance is estimated
using the median. The squares denote ρ̄ and the er-
ror bars show the best and the worst observed cor-
relations. The dashed-dotted line shows the ran-
dom baseline.
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Figure 5: The observed results when the `1 dis-
tance in RMI-constructed VSMs is estimated us-
ing the geometric mean.

3 Random Manhattan Integer Indexing

The application of the RMI method is hindered by
two obstacles: float arithmetic operations required
for the construction and processing of the RMI-
constructed VSMs and the calculation of the prod-
uct of large numbers when `1 distances are esti-
mated using the geometric mean.

The proposed method for the generation of in-
dex vectors in RMI results in index vectors of
non-zero elements that are real numbers. Conse-
quently, index vectors and thus context vectors are
arrays of floating point numbers. These vectors
must be stored and accessed efficiently when using
the RMI technique. However, resources that are
required for the storage and processing of floating
numbers is high. Even if the requirement for the
storage of index vectors is alleviated, e.g., using
a derandomization technique for their generation,
context vectors that are derived from these index
vectors are still arrays of float numbers. To tackle
this problem, we suggest substituting the value of
non-zero elements of RMI’s index vectors (given
in Equation 6) from 1

U to integer values of b 1
U c,

where b 1
U c 6= 0. We argue that the resulting ran-

dom projection matrix still has a Cauchy distribu-
tion. Therefore, the proposed methodology to esti-
mate the `1 distance between vectors is also valid.

The `1 distance between context vectors must
be estimated using either the median or the geo-
metric mean. The use of the median estimator—
for the reasons stated in Section 2.1—is not plau-
sible. On the other hand, the computation of the
geometric mean can be laborious as the overflow
is highly likely to happen during its computation.
Using the value of b 1

U c for non-zero elements of
index vectors, we know that for any pair of context
vectors ~u = (u1, · · · , um) and ~v = (v1, · · · , vm),
if ui 6= vi then |ui − vi| ≥ 1. Therefore, for ui 6=
vi, ln |ui−vi| ≥ 0 and thus

∑m
i=1 ln(|ui−vi|) ≥ 0.

In this case, the exponent in Equation 10 is a scale
factor that can be discarded without a change in
the relative distances between vectors.14 Based on
the intuition that the distance between a vector and
itself is zero and the explanation given above, in-
spired by smoothing techniques and without being
able to provide mathematical proofs, we suggest
estimating the relative distances between vectors
using

L̂1(~u,~v) =
m∑
i=1
ui 6=vi

ln(|ui − vi|). (12)

In order to distinguish the above changes in RMI,
we name the resulting technique random Manhat-
tan integer indexing (RMII). The experiment de-
scribed in Section 2.2 is repeated using the RMII
method. As shown in Figure 6, the obtained results
are almost identical to the observed results when
using the RMI technique. While RMI performs
slightly better than RMII in lower dimensions, e.g.
m = 400, RMII shows more stable behaviour than
RMI at higher dimensions, e.g. m = 800.

4 Comparison of RMI and RI

RMI and RI utilize a similar two-step procedure
consisting of the creation of index vectors and the
construction of context vectors. Both methods are
incremental techniques that construct a VSM at
reduced dimensionality directly, without requiring
the VSM to be constructed at its original high di-
mension. Despite these similarities, RMI and RI
are motivated by different applications and math-

14Please note that according to the axioms in the distance
definition, the distance between two numbers is always a non-
negative value. When index vectors consist of non-zero ele-
ments of real numbers, the value of |ui − vi| can be between
0 and 1, i.e. 0 < |ui − vi| < 1. Therefore, ln(|ui − vi|) can
be a negative number and thus the exponent scale is required
to make sure that the result is a non-negative number.
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Figure 6: The observed results when using the
RMII method for the construction and estimation
of the `1 distances between vectors. The method is
evaluated in the same setup as the RMI technique.

ematical theorems. As described above, RMI ap-
proximates the `1 distance using a non-linear esti-
mator, which has not yet been employed for the
construction of VSMs and the calculation of `1
distances in distributional approaches to seman-
tics. Moreover, RMI is justified using Cauchy ran-
dom projections.

In contrast, RI approximates the `2 distance us-
ing a linear estimator. RI has initially been justi-
fied using the mathematical model of the sparse
distributed memory (SDM)15. Later, Sahlgren
(2005) delineates the RI method using the lemma
proposed by Johnson and Lindenstrauss (1984)—
which elucidates random projections in Euclidean
spaces—and the reported refinement in Achlioptas
(2001) for the projections employed in the lemma.
Although both the RMI and RI methods can
be established as α-stable random projections—
respectively for α = 1 and α = 2—the meth-
ods cannot be compared as they address different
goals. If, for a given task, the `1 norm outperforms
the `2 norm, then RMI is preferable to RI. Con-
trariwise, if the `2 norm outperforms the `1 norm,
then RI is preferable to RMI.

To support the earlier claim that RI-constructed

15See Kanerva (1993) for an overview of the SDM model.
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Figure 7: Evaluation of RI for the `1 distance esti-
mation for m = 400 and m = 800 when the dis-
tances are calculated using the standard definition
of distance in `1 normed spaces and the median es-
timator. The obtained results using RI do not show
correlation to the `1 distances in the original high-
dimensional VSM.

VSMs cannot be used for the `1 distance estima-
tion, we evaluate the RI method in the experimen-
tal setup that has been used for the evaluation of
RMI and RMII. In these experiments, however,
we use RI to construct vector spaces at reduced
dimensionality and estimate the `1 distance us-
ing Equation 5 (the standard `1 distance defini-
tion) and Equation 7 (the median estimator) for
m ∈ 400, 800. As shown in Figure 7, the experi-
ments support the theoretical claims.

5 Conclusion

In this paper, we introduce a novel technique,
named Random Manhattan Indexing (RMI), for
the construction of `1 normed VSMs directly at
reduced dimensionality. We further suggest the
Random Manhattan Integer Indexing (RMII) tech-
nique, a computationally enhanced version of the
RMI technique. We demonstrated the `1 distance
preservation ability of the proposed technique in
an experimental setup using a word-by-document
model. In these experiments, we showed how the
variable parameters of the methods, i.e. the num-
ber of non-zero elements in index vectors and the
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dimensionality of the VSM, influence the obtained
results. The proposed incremental (and thus effi-
cient and scalable) methods significantly enhance
the computation of the `1 distances in VSMs.
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Université de Montréal, CIFAR Senior Fellow

find.me@on.the.web

Abstract

In this paper, we propose a novel neu-
ral network model called RNN Encoder–
Decoder that consists of two recurrent
neural networks (RNN). One RNN en-
codes a sequence of symbols into a fixed-
length vector representation, and the other
decodes the representation into another se-
quence of symbols. The encoder and de-
coder of the proposed model are jointly
trained to maximize the conditional prob-
ability of a target sequence given a source
sequence. The performance of a statisti-
cal machine translation system is empiri-
cally found to improve by using the con-
ditional probabilities of phrase pairs com-
puted by the RNN Encoder–Decoder as an
additional feature in the existing log-linear
model. Qualitatively, we show that the
proposed model learns a semantically and
syntactically meaningful representation of
linguistic phrases.

1 Introduction

Deep neural networks have shown great success in
various applications such as objection recognition
(see, e.g., (Krizhevsky et al., 2012)) and speech
recognition (see, e.g., (Dahl et al., 2012)). Fur-
thermore, many recent works showed that neu-
ral networks can be successfully used in a num-
ber of tasks in natural language processing (NLP).
These include, but are not limited to, language
modeling (Bengio et al., 2003), paraphrase detec-
tion (Socher et al., 2011) and word embedding ex-
traction (Mikolov et al., 2013). In the field of sta-
tistical machine translation (SMT), deep neural
networks have begun to show promising results.
(Schwenk, 2012) summarizes a successful usage
of feedforward neural networks in the framework
of phrase-based SMT system.

Along this line of research on using neural net-
works for SMT, this paper focuses on a novel neu-
ral network architecture that can be used as a part
of the conventional phrase-based SMT system.
The proposed neural network architecture, which
we will refer to as an RNN Encoder–Decoder, con-
sists of two recurrent neural networks (RNN) that
act as an encoder and a decoder pair. The en-
coder maps a variable-length source sequence to a
fixed-length vector, and the decoder maps the vec-
tor representation back to a variable-length target
sequence. The two networks are trained jointly to
maximize the conditional probability of the target
sequence given a source sequence. Additionally,
we propose to use a rather sophisticated hidden
unit in order to improve both the memory capacity
and the ease of training.

The proposed RNN Encoder–Decoder with a
novel hidden unit is empirically evaluated on the
task of translating from English to French. We
train the model to learn the translation probabil-
ity of an English phrase to a corresponding French
phrase. The model is then used as a part of a stan-
dard phrase-based SMT system by scoring each
phrase pair in the phrase table. The empirical eval-
uation reveals that this approach of scoring phrase
pairs with an RNN Encoder–Decoder improves
the translation performance.

We qualitatively analyze the trained RNN
Encoder–Decoder by comparing its phrase scores
with those given by the existing translation model.
The qualitative analysis shows that the RNN
Encoder–Decoder is better at capturing the lin-
guistic regularities in the phrase table, indirectly
explaining the quantitative improvements in the
overall translation performance. The further anal-
ysis of the model reveals that the RNN Encoder–
Decoder learns a continuous space representation
of a phrase that preserves both the semantic and
syntactic structure of the phrase.
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2 RNN Encoder–Decoder

2.1 Preliminary: Recurrent Neural Networks
A recurrent neural network (RNN) is a neural net-
work that consists of a hidden state h and an
optional output y which operates on a variable-
length sequence x = (x1, . . . , xT ). At each time
step t, the hidden state h〈t〉 of the RNN is updated
by

h〈t〉 = f
(
h〈t−1〉, xt

)
, (1)

where f is a non-linear activation func-
tion. f may be as simple as an element-
wise logistic sigmoid function and as com-
plex as a long short-term memory (LSTM)
unit (Hochreiter and Schmidhuber, 1997).

An RNN can learn a probability distribution
over a sequence by being trained to predict the
next symbol in a sequence. In that case, the output
at each timestep t is the conditional distribution
p(xt | xt−1, . . . , x1). For example, a multinomial
distribution (1-of-K coding) can be output using a
softmax activation function

p(xt,j = 1 | xt−1, . . . , x1) =
exp

(
wjh〈t〉

)∑K
j′=1 exp

(
wj′h〈t〉

) ,
(2)

for all possible symbols j = 1, . . . ,K, where wj

are the rows of a weight matrix W. By combining
these probabilities, we can compute the probabil-
ity of the sequence x using

p(x) =
T∏
t=1

p(xt | xt−1, . . . , x1). (3)

From this learned distribution, it is straightfor-
ward to sample a new sequence by iteratively sam-
pling a symbol at each time step.

2.2 RNN Encoder–Decoder
In this paper, we propose a novel neural network
architecture that learns to encode a variable-length
sequence into a fixed-length vector representation
and to decode a given fixed-length vector rep-
resentation back into a variable-length sequence.
From a probabilistic perspective, this new model
is a general method to learn the conditional dis-
tribution over a variable-length sequence condi-
tioned on yet another variable-length sequence,
e.g. p(y1, . . . , yT ′ | x1, . . . , xT ), where one

x1 x2 xT

yT' y2 y1

c

Decoder

Encoder

Figure 1: An illustration of the proposed RNN
Encoder–Decoder.

should note that the input and output sequence
lengths T and T ′ may differ.

The encoder is an RNN that reads each symbol
of an input sequence x sequentially. As it reads
each symbol, the hidden state of the RNN changes
according to Eq. (1). After reading the end of
the sequence (marked by an end-of-sequence sym-
bol), the hidden state of the RNN is a summary c
of the whole input sequence.

The decoder of the proposed model is another
RNN which is trained to generate the output se-
quence by predicting the next symbol yt given the
hidden state h〈t〉. However, unlike the RNN de-
scribed in Sec. 2.1, both yt and h〈t〉 are also con-
ditioned on yt−1 and on the summary c of the input
sequence. Hence, the hidden state of the decoder
at time t is computed by,

h〈t〉 = f
(
h〈t−1〉, yt−1, c

)
,

and similarly, the conditional distribution of the
next symbol is

P (yt|yt−1, yt−2, . . . , y1, c) = g
(
h〈t〉, yt−1, c

)
.

for given activation functions f and g (the latter
must produce valid probabilities, e.g. with a soft-
max).

See Fig. 1 for a graphical depiction of the pro-
posed model architecture.

The two components of the proposed RNN
Encoder–Decoder are jointly trained to maximize
the conditional log-likelihood

max
θ

1
N

N∑
n=1

log pθ(yn | xn), (4)
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where θ is the set of the model parameters and
each (xn,yn) is an (input sequence, output se-
quence) pair from the training set. In our case,
as the output of the decoder, starting from the in-
put, is differentiable, we can use a gradient-based
algorithm to estimate the model parameters.

Once the RNN Encoder–Decoder is trained, the
model can be used in two ways. One way is to use
the model to generate a target sequence given an
input sequence. On the other hand, the model can
be used to score a given pair of input and output
sequences, where the score is simply a probability
pθ(y | x) from Eqs. (3) and (4).

2.3 Hidden Unit that Adaptively Remembers
and Forgets

In addition to a novel model architecture, we also
propose a new type of hidden unit (f in Eq. (1))
that has been motivated by the LSTM unit but is
much simpler to compute and implement.1 Fig. 2
shows the graphical depiction of the proposed hid-
den unit.

Let us describe how the activation of the j-th
hidden unit is computed. First, the reset gate rj is
computed by

rj = σ
(
[Wrx]j +

[
Urh〈t−1〉

]
j

)
, (5)

where σ is the logistic sigmoid function, and [.]j
denotes the j-th element of a vector. x and ht−1

are the input and the previous hidden state, respec-
tively. Wr and Ur are weight matrices which are
learned.

Similarly, the update gate zj is computed by

zj = σ
(
[Wzx]j +

[
Uzh〈t−1〉

]
j

)
. (6)

The actual activation of the proposed unit hj is
then computed by

h
〈t〉
j = zjh

〈t−1〉
j + (1− zj)h̃〈t〉j , (7)

where

h̃
〈t〉
j = φ

(
[Wx]j +

[
U
(
r� h〈t−1〉

)]
j

)
. (8)

In this formulation, when the reset gate is close
to 0, the hidden state is forced to ignore the pre-
vious hidden state and reset with the current input

1 The LSTM unit, which has shown impressive results in
several applications such as speech recognition, has a mem-
ory cell and four gating units that adaptively control the in-
formation flow inside the unit, compared to only two gating
units in the proposed hidden unit. For details on LSTM net-
works, see, e.g., (Graves, 2012).

z

rh h
~ x

Figure 2: An illustration of the proposed hidden
activation function. The update gate z selects
whether the hidden state is to be updated with
a new hidden state h̃. The reset gate r decides
whether the previous hidden state is ignored. See
Eqs. (5)–(8) for the detailed equations of r, z, h
and h̃.

only. This effectively allows the hidden state to
drop any information that is found to be irrelevant
later in the future, thus, allowing a more compact
representation.

On the other hand, the update gate controls how
much information from the previous hidden state
will carry over to the current hidden state. This
acts similarly to the memory cell in the LSTM
network and helps the RNN to remember long-
term information. Furthermore, this may be con-
sidered an adaptive variant of a leaky-integration
unit (Bengio et al., 2013).

As each hidden unit has separate reset and up-
date gates, each hidden unit will learn to capture
dependencies over different time scales. Those
units that learn to capture short-term dependencies
will tend to have reset gates that are frequently ac-
tive, but those that capture longer-term dependen-
cies will have update gates that are mostly active.

In our preliminary experiments, we found that
it is crucial to use this new unit with gating units.
We were not able to get meaningful result with an
oft-used tanh unit without any gating.

3 Statistical Machine Translation

In a commonly used statistical machine translation
system (SMT), the goal of the system (decoder,
specifically) is to find a translation f given a source
sentence e, which maximizes

p(f | e) ∝ p(e | f)p(f),

where the first term at the right hand side is called
translation model and the latter language model
(see, e.g., (Koehn, 2005)). In practice, however,
most SMT systems model log p(f | e) as a log-
linear model with additional features and corre-
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sponding weights:

log p(f | e) =
N∑
n=1

wnfn(f , e) + logZ(e), (9)

where fn and wn are the n-th feature and weight,
respectively. Z(e) is a normalization constant that
does not depend on the weights. The weights are
often optimized to maximize the BLEU score on a
development set.

In the phrase-based SMT framework
introduced in (Koehn et al., 2003) and
(Marcu and Wong, 2002), the translation model
log p(e | f) is factorized into the translation
probabilities of matching phrases in the source
and target sentences.2 These probabilities are
once again considered additional features in the
log-linear model (see Eq. (9)) and are weighted
accordingly to maximize the BLEU score.

Since the neural net language model was pro-
posed in (Bengio et al., 2003), neural networks
have been used widely in SMT systems. In
many cases, neural networks have been used to
rescore translation hypotheses (n-best lists) (see,
e.g., (Schwenk et al., 2006)). Recently, however,
there has been interest in training neural networks
to score the translated sentence (or phrase pairs)
using a representation of the source sentence as
an additional input. See, e.g., (Schwenk, 2012),
(Son et al., 2012) and (Zou et al., 2013).

3.1 Scoring Phrase Pairs with RNN
Encoder–Decoder

Here we propose to train the RNN Encoder–
Decoder (see Sec. 2.2) on a table of phrase pairs
and use its scores as additional features in the log-
linear model in Eq. (9) when tuning the SMT de-
coder.

When we train the RNN Encoder–Decoder, we
ignore the (normalized) frequencies of each phrase
pair in the original corpora. This measure was
taken in order (1) to reduce the computational ex-
pense of randomly selecting phrase pairs from a
large phrase table according to the normalized fre-
quencies and (2) to ensure that the RNN Encoder–
Decoder does not simply learn to rank the phrase
pairs according to their numbers of occurrences.
One underlying reason for this choice was that the
existing translation probability in the phrase ta-
ble already reflects the frequencies of the phrase

2 Without loss of generality, from here on, we refer to
p(e | f) for each phrase pair as a translation model as well

pairs in the original corpus. With a fixed capacity
of the RNN Encoder–Decoder, we try to ensure
that most of the capacity of the model is focused
toward learning linguistic regularities, i.e., distin-
guishing between plausible and implausible trans-
lations, or learning the “manifold” (region of prob-
ability concentration) of plausible translations.

Once the RNN Encoder–Decoder is trained, we
add a new score for each phrase pair to the exist-
ing phrase table. This allows the new scores to en-
ter into the existing tuning algorithm with minimal
additional overhead in computation.

As Schwenk pointed out in (Schwenk, 2012),
it is possible to completely replace the existing
phrase table with the proposed RNN Encoder–
Decoder. In that case, for a given source phrase,
the RNN Encoder–Decoder will need to generate
a list of (good) target phrases. This requires, how-
ever, an expensive sampling procedure to be per-
formed repeatedly. In this paper, thus, we only
consider rescoring the phrase pairs in the phrase
table.

3.2 Related Approaches: Neural Networks in
Machine Translation

Before presenting the empirical results, we discuss
a number of recent works that have proposed to
use neural networks in the context of SMT.

Schwenk in (Schwenk, 2012) proposed a simi-
lar approach of scoring phrase pairs. Instead of the
RNN-based neural network, he used a feedforward
neural network that has fixed-size inputs (7 words
in his case, with zero-padding for shorter phrases)
and fixed-size outputs (7 words in the target lan-
guage). When it is used specifically for scoring
phrases for the SMT system, the maximum phrase
length is often chosen to be small. However, as the
length of phrases increases or as we apply neural
networks to other variable-length sequence data,
it is important that the neural network can han-
dle variable-length input and output. The pro-
posed RNN Encoder–Decoder is well-suited for
these applications.

Similar to (Schwenk, 2012), Devlin et al.
(Devlin et al., 2014) proposed to use a feedfor-
ward neural network to model a translation model,
however, by predicting one word in a target phrase
at a time. They reported an impressive improve-
ment, but their approach still requires the maxi-
mum length of the input phrase (or context words)
to be fixed a priori.
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Although it is not exactly a neural network they
train, the authors of (Zou et al., 2013) proposed
to learn a bilingual embedding of words/phrases.
They use the learned embedding to compute the
distance between a pair of phrases which is used
as an additional score of the phrase pair in an SMT
system.

In (Chandar et al., 2014), a feedforward neural
network was trained to learn a mapping from a
bag-of-words representation of an input phrase to
an output phrase. This is closely related to both the
proposed RNN Encoder–Decoder and the model
proposed in (Schwenk, 2012), except that their in-
put representation of a phrase is a bag-of-words.
A similar approach of using bag-of-words repre-
sentations was proposed in (Gao et al., 2013) as
well. Earlier, a similar encoder–decoder model us-
ing two recursive neural networks was proposed
in (Socher et al., 2011), but their model was re-
stricted to a monolingual setting, i.e. the model
reconstructs an input sentence. More recently, an-
other encoder–decoder model using an RNN was
proposed in (Auli et al., 2013), where the de-
coder is conditioned on a representation of either
a source sentence or a source context.

One important difference between the pro-
posed RNN Encoder–Decoder and the approaches
in (Zou et al., 2013) and (Chandar et al., 2014) is
that the order of the words in source and tar-
get phrases is taken into account. The RNN
Encoder–Decoder naturally distinguishes between
sequences that have the same words but in a differ-
ent order, whereas the aforementioned approaches
effectively ignore order information.

The closest approach related to the proposed
RNN Encoder–Decoder is the Recurrent Contin-
uous Translation Model (Model 2) proposed in
(Kalchbrenner and Blunsom, 2013). In their pa-
per, they proposed a similar model that consists
of an encoder and decoder. The difference with
our model is that they used a convolutional n-gram
model (CGM) for the encoder and the hybrid of
an inverse CGM and a recurrent neural network
for the decoder. They, however, evaluated their
model on rescoring the n-best list proposed by the
conventional SMT system and computing the per-
plexity of the gold standard translations.

4 Experiments

We evaluate our approach on the English/French
translation task of the WMT’14 workshop.

4.1 Data and Baseline System

Large amounts of resources are available to build
an English/French SMT system in the framework
of the WMT’14 translation task. The bilingual
corpora include Europarl (61M words), news com-
mentary (5.5M), UN (421M), and two crawled
corpora of 90M and 780M words respectively.
The last two corpora are quite noisy. To train
the French language model, about 712M words of
crawled newspaper material is available in addi-
tion to the target side of the bitexts. All the word
counts refer to French words after tokenization.

It is commonly acknowledged that training sta-
tistical models on the concatenation of all this
data does not necessarily lead to optimal per-
formance, and results in extremely large mod-
els which are difficult to handle. Instead, one
should focus on the most relevant subset of the
data for a given task. We have done so by
applying the data selection method proposed in
(Moore and Lewis, 2010), and its extension to bi-
texts (Axelrod et al., 2011). By these means we
selected a subset of 418M words out of more
than 2G words for language modeling and a
subset of 348M out of 850M words for train-
ing the RNN Encoder–Decoder. We used the
test set newstest2012 and 2013 for data
selection and weight tuning with MERT, and
newstest2014 as our test set. Each set has
more than 70 thousand words and a single refer-
ence translation.

For training the neural networks, including the
proposed RNN Encoder–Decoder, we limited the
source and target vocabulary to the most frequent
15,000 words for both English and French. This
covers approximately 93% of the dataset. All the
out-of-vocabulary words were mapped to a special
token ([UNK]).

The baseline phrase-based SMT system was
built using Moses with default settings. This sys-
tem achieves a BLEU score of 30.64 and 33.3 on
the development and test sets, respectively (see Ta-
ble 1).

4.1.1 RNN Encoder–Decoder

The RNN Encoder–Decoder used in the experi-
ment had 1000 hidden units with the proposed
gates at the encoder and at the decoder. The in-
put matrix between each input symbol x〈t〉 and the
hidden unit is approximated with two lower-rank
matrices, and the output matrix is approximated
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Models
BLEU

dev test
Baseline 30.64 33.30
RNN 31.20 33.87
CSLM + RNN 31.48 34.64
CSLM + RNN + WP 31.50 34.54

Table 1: BLEU scores computed on the develop-
ment and test sets using different combinations of
approaches. WP denotes a word penalty, where
we penalizes the number of unknown words to
neural networks.

similarly. We used rank-100 matrices, equivalent
to learning an embedding of dimension 100 for
each word. The activation function used for h̃ in
Eq. (8) is a hyperbolic tangent function. The com-
putation from the hidden state in the decoder to
the output is implemented as a deep neural net-
work (Pascanu et al., 2014) with a single interme-
diate layer having 500 maxout units each pooling
2 inputs (Goodfellow et al., 2013).

All the weight parameters in the RNN Encoder–
Decoder were initialized by sampling from an
isotropic zero-mean (white) Gaussian distribution
with its standard deviation fixed to 0.01, except
for the recurrent weight parameters. For the re-
current weight matrices, we first sampled from a
white Gaussian distribution and used its left singu-
lar vectors matrix, following (Saxe et al., 2014).

We used Adadelta and stochastic gradient
descent to train the RNN Encoder–Decoder
with hyperparameters ε = 10−6 and ρ =
0.95 (Zeiler, 2012). At each update, we used 64
randomly selected phrase pairs from a phrase ta-
ble (which was created from 348M words). The
model was trained for approximately three days.

Details of the architecture used in the experi-
ments are explained in more depth in the supple-
mentary material.

4.1.2 Neural Language Model
In order to assess the effectiveness of scoring
phrase pairs with the proposed RNN Encoder–
Decoder, we also tried a more traditional approach
of using a neural network for learning a target
language model (CSLM) (Schwenk, 2007). Espe-
cially, the comparison between the SMT system
using CSLM and that using the proposed approach
of phrase scoring by RNN Encoder–Decoder will
clarify whether the contributions from multiple
neural networks in different parts of the SMT sys-

tem add up or are redundant.
We trained the CSLM model on 7-grams

from the target corpus. Each input word
was projected into the embedding space R512,
and they were concatenated to form a 3072-
dimensional vector. The concatenated vector was
fed through two rectified layers (of size 1536 and
1024) (Glorot et al., 2011). The output layer was
a simple softmax layer (see Eq. (2)). All the
weight parameters were initialized uniformly be-
tween −0.01 and 0.01, and the model was trained
until the validation perplexity did not improve for
10 epochs. After training, the language model
achieved a perplexity of 45.80. The validation set
was a random selection of 0.1% of the corpus. The
model was used to score partial translations dur-
ing the decoding process, which generally leads to
higher gains in BLEU score than n-best list rescor-
ing (Vaswani et al., 2013).

To address the computational complexity of
using a CSLM in the decoder a buffer was
used to aggregate n-grams during the stack-
search performed by the decoder. Only when
the buffer is full, or a stack is about to
be pruned, the n-grams are scored by the
CSLM. This allows us to perform fast matrix-
matrix multiplication on GPU using Theano
(Bergstra et al., 2010; Bastien et al., 2012).
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Figure 3: The visualization of phrase pairs ac-
cording to their scores (log-probabilities) by the
RNN Encoder–Decoder and the translation model.

4.2 Quantitative Analysis

We tried the following combinations:

1. Baseline configuration
2. Baseline + RNN
3. Baseline + CSLM + RNN
4. Baseline + CSLM + RNN + Word penalty
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Source Translation Model RNN Encoder–Decoder
at the end of the [a la fin de la] [ŕ la fin des années] [être sup-

primés à la fin de la]
[à la fin du] [à la fin des] [à la fin de la]

for the first time [r c© pour la premirëre fois] [été donnés pour
la première fois] [été commémorée pour la
première fois]

[pour la première fois] [pour la première fois ,]
[pour la première fois que]

in the United States
and

[? aux ?tats-Unis et] [été ouvertes aux États-
Unis et] [été constatées aux États-Unis et]

[aux Etats-Unis et] [des Etats-Unis et] [des
États-Unis et]

, as well as [?s , qu’] [?s , ainsi que] [?re aussi bien que] [, ainsi qu’] [, ainsi que] [, ainsi que les]
one of the most [?t ?l’ un des plus] [?l’ un des plus] [être retenue

comme un de ses plus]
[l’ un des] [le] [un des]

(a) Long, frequent source phrases

Source Translation Model RNN Encoder–Decoder
, Minister of Commu-
nications and Trans-
port

[Secrétaire aux communications et aux trans-
ports :] [Secrétaire aux communications et aux
transports]

[Secrétaire aux communications et aux trans-
ports] [Secrétaire aux communications et aux
transports :]

did not comply with
the

[vestimentaire , ne correspondaient pas à des]
[susmentionnée n’ était pas conforme aux]
[présentées n’ étaient pas conformes à la]

[n’ ont pas respecté les] [n’ était pas conforme
aux] [n’ ont pas respecté la]

parts of the world . [ c© gions du monde .] [régions du monde con-
sidérées .] [région du monde considérée .]

[parties du monde .] [les parties du monde .]
[des parties du monde .]

the past few days . [le petit texte .] [cours des tout derniers jours .]
[les tout derniers jours .]

[ces derniers jours .] [les derniers jours .] [cours
des derniers jours .]

on Friday and Satur-
day

[vendredi et samedi à la] [vendredi et samedi à]
[se déroulera vendredi et samedi ,]

[le vendredi et le samedi] [le vendredi et samedi]
[vendredi et samedi]

(b) Long, rare source phrases

Table 2: The top scoring target phrases for a small set of source phrases according to the translation
model (direct translation probability) and by the RNN Encoder–Decoder. Source phrases were randomly
selected from phrases with 4 or more words. ? denotes an incomplete (partial) character. r is a Cyrillic
letter ghe.

The results are presented in Table 1. As ex-
pected, adding features computed by neural net-
works consistently improves the performance over
the baseline performance.

The best performance was achieved when we
used both CSLM and the phrase scores from the
RNN Encoder–Decoder. This suggests that the
contributions of the CSLM and the RNN Encoder–
Decoder are not too correlated and that one can
expect better results by improving each method in-
dependently. Furthermore, we tried penalizing the
number of words that are unknown to the neural
networks (i.e. words which are not in the short-
list). We do so by simply adding the number of
unknown words as an additional feature the log-
linear model in Eq. (9).3 However, in this case we

3 To understand the effect of the penalty, consider the set
of all words in the 15,000 large shortlist, SL. All words xi /∈
SL are replaced by a special token [UNK] before being scored
by the neural networks. Hence, the conditional probability of
any xit /∈ SL is actually given by the model as

p (xt = [UNK] | x<t) = p (xt /∈ SL | x<t)
=
X
x

j
t /∈SL

p
“
xjt | x<t

”
≥ p

“
xit | x<t

”
,

where x<t is a shorthand notation for xt−1, . . . , x1.

were not able to achieve better performance on the
test set, but only on the development set.

4.3 Qualitative Analysis

In order to understand where the performance im-
provement comes from, we analyze the phrase pair
scores computed by the RNN Encoder–Decoder
against the corresponding p(f | e) from the trans-
lation model. Since the existing translation model
relies solely on the statistics of the phrase pairs in
the corpus, we expect its scores to be better esti-
mated for the frequent phrases but badly estimated
for rare phrases. Also, as we mentioned earlier
in Sec. 3.1, we further expect the RNN Encoder–
Decoder which was trained without any frequency
information to score the phrase pairs based rather
on the linguistic regularities than on the statistics
of their occurrences in the corpus.

We focus on those pairs whose source phrase is
long (more than 3 words per source phrase) and

As a result, the probability of words not in the shortlist is
always overestimated. It is possible to address this issue by
backing off to an existing model that contain non-shortlisted
words (see (Schwenk, 2007)) In this paper, however, we opt
for introducing a word penalty instead, which counteracts the
word probability overestimation.
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Source Samples from RNN Encoder–Decoder
at the end of the [à la fin de la] (×11)
for the first time [pour la première fois] (×24) [pour la première fois que] (×2)
in the United States and [aux États-Unis et] (×6) [dans les États-Unis et] (×4)
, as well as [, ainsi que] [,] [ainsi que] [, ainsi qu’] [et UNK]
one of the most [l’ un des plus] (×9) [l’ un des] (×5) [l’ une des plus] (×2)

(a) Long, frequent source phrases

Source Samples from RNN Encoder–Decoder
, Minister of Communica-
tions and Transport

[ , ministre des communications et le transport] (×13)

did not comply with the [n’ tait pas conforme aux] [n’ a pas respect l’] (×2) [n’ a pas respect la] (×3)
parts of the world . [arts du monde .] (×11) [des arts du monde .] (×7)
the past few days . [quelques jours .] (×5) [les derniers jours .] (×5) [ces derniers jours .] (×2)
on Friday and Saturday [vendredi et samedi] (×5) [le vendredi et samedi] (×7) [le vendredi et le samedi] (×4)

(b) Long, rare source phrases

Table 3: Samples generated from the RNN Encoder–Decoder for each source phrase used in Table 2. We
show the top-5 target phrases out of 50 samples. They are sorted by the RNN Encoder–Decoder scores.

Figure 4: 2–D embedding of the learned word representation. The left one shows the full embedding
space, while the right one shows a zoomed-in view of one region (color–coded). For more plots, see the
supplementary material.

frequent. For each such source phrase, we look
at the target phrases that have been scored high
either by the translation probability p(f | e) or
by the RNN Encoder–Decoder. Similarly, we per-
form the same procedure with those pairs whose
source phrase is long but rare in the corpus.

Table 2 lists the top-3 target phrases per source
phrase favored either by the translation model
or by the RNN Encoder–Decoder. The source
phrases were randomly chosen among long ones
having more than 4 or 5 words.

In most cases, the choices of the target phrases
by the RNN Encoder–Decoder are closer to ac-
tual or literal translations. We can observe that the
RNN Encoder–Decoder prefers shorter phrases in
general.

Interestingly, many phrase pairs were scored
similarly by both the translation model and the
RNN Encoder–Decoder, but there were as many

other phrase pairs that were scored radically dif-
ferent (see Fig. 3). This could arise from the
proposed approach of training the RNN Encoder–
Decoder on a set of unique phrase pairs, discour-
aging the RNN Encoder–Decoder from learning
simply the frequencies of the phrase pairs from the
corpus, as explained earlier.

Furthermore, in Table 3, we show for each of
the source phrases in Table 2, the generated sam-
ples from the RNN Encoder–Decoder. For each
source phrase, we generated 50 samples and show
the top-five phrases accordingly to their scores.
We can see that the RNN Encoder–Decoder is
able to propose well-formed target phrases with-
out looking at the actual phrase table. Importantly,
the generated phrases do not overlap completely
with the target phrases from the phrase table. This
encourages us to further investigate the possibility
of replacing the whole or a part of the phrase table
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Figure 5: 2–D embedding of the learned phrase representation. The top left one shows the full represen-
tation space (5000 randomly selected points), while the other three figures show the zoomed-in view of
specific regions (color–coded).

with the proposed RNN Encoder–Decoder in the
future.

4.4 Word and Phrase Representations

Since the proposed RNN Encoder–Decoder is not
specifically designed only for the task of machine
translation, here we briefly look at the properties
of the trained model.

It has been known for some time that
continuous space language models using
neural networks are able to learn seman-
tically meaningful embeddings (See, e.g.,
(Bengio et al., 2003; Mikolov et al., 2013)). Since
the proposed RNN Encoder–Decoder also projects
to and maps back from a sequence of words into
a continuous space vector, we expect to see a
similar property with the proposed model as well.

The left plot in Fig. 4 shows the 2–D embedding
of the words using the word embedding matrix
learned by the RNN Encoder–Decoder. The pro-
jection was done by the recently proposed Barnes-
Hut-SNE (van der Maaten, 2013). We can clearly
see that semantically similar words are clustered

with each other (see the zoomed-in plots in Fig. 4).
The proposed RNN Encoder–Decoder naturally

generates a continuous-space representation of a
phrase. The representation (c in Fig. 1) in this
case is a 1000-dimensional vector. Similarly to the
word representations, we visualize the representa-
tions of the phrases that consists of four or more
words using the Barnes-Hut-SNE in Fig. 5.

From the visualization, it is clear that the RNN
Encoder–Decoder captures both semantic and syn-
tactic structures of the phrases. For instance, in
the bottom-left plot, most of the phrases are about
the duration of time, while those phrases that are
syntactically similar are clustered together. The
bottom-right plot shows the cluster of phrases that
are semantically similar (countries or regions). On
the other hand, the top-right plot shows the phrases
that are syntactically similar.

5 Conclusion

In this paper, we proposed a new neural network
architecture, called an RNN Encoder–Decoder
that is able to learn the mapping from a sequence
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of an arbitrary length to another sequence, possi-
bly from a different set, of an arbitrary length. The
proposed RNN Encoder–Decoder is able to either
score a pair of sequences (in terms of a conditional
probability) or generate a target sequence given a
source sequence. Along with the new architecture,
we proposed a novel hidden unit that includes a re-
set gate and an update gate that adaptively control
how much each hidden unit remembers or forgets
while reading/generating a sequence.

We evaluated the proposed model with the task
of statistical machine translation, where we used
the RNN Encoder–Decoder to score each phrase
pair in the phrase table. Qualitatively, we were
able to show that the new model is able to cap-
ture linguistic regularities in the phrase pairs well
and also that the RNN Encoder–Decoder is able to
propose well-formed target phrases.

The scores by the RNN Encoder–Decoder were
found to improve the overall translation perfor-
mance in terms of BLEU scores. Also, we
found that the contribution by the RNN Encoder–
Decoder is rather orthogonal to the existing ap-
proach of using neural networks in the SMT sys-
tem, so that we can improve further the perfor-
mance by using, for instance, the RNN Encoder–
Decoder and the neural net language model to-
gether.

Our qualitative analysis of the trained model
shows that it indeed captures the linguistic regu-
larities in multiple levels i.e. at the word level as
well as phrase level. This suggests that there may
be more natural language related applications that
may benefit from the proposed RNN Encoder–
Decoder.

The proposed architecture has large potential
for further improvement and analysis. One ap-
proach that was not investigated here is to re-
place the whole, or a part of the phrase table by
letting the RNN Encoder–Decoder propose target
phrases. Also, noting that the proposed model is
not limited to being used with written language,
it will be an important future research to apply the
proposed architecture to other applications such as
speech transcription.
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Abstract

This paper applies type-based Markov
Chain Monte Carlo (MCMC) algorithms
to the problem of learning Synchronous
Context-Free Grammar (SCFG) rules
from a forest that represents all possible
rules consistent with a fixed word align-
ment. While type-based MCMC has been
shown to be effective in a number of NLP
applications, our setting, where the tree
structure of the sentence is itself a hid-
den variable, presents a number of chal-
lenges to type-based inference. We de-
scribe methods for defining variable types
and efficiently indexing variables in or-
der to overcome these challenges. These
methods lead to improvements in both log
likelihood and BLEU score in our experi-
ments.

1 Introduction

In previous work, sampling methods have been
used to learn Tree Substitution Grammar (TSG)
rules from derivation trees (Post and Gildea, 2009;
Cohn et al., 2009) for TSG learning. Here, at each
node in the derivation tree, there is a binary vari-
able indicating whether the node is internal to a
TSG rule or is a split point, which we refer to as
a cut, between two rules. The problem of extract-
ing machine translation rules from word-aligned
bitext is a similar problem in that we wish to au-
tomatically learn the best granularity for the rules
with which to analyze each sentence. The prob-
lem of rule extraction is more complex, however,
because the tree structure of the sentence is also
unknown.

In machine translation applications, most pre-
vious work on joint alignment and rule extrac-
tion models uses heuristic methods to extract rules
from learned word alignment or bracketing struc-
tures (Zhang et al., 2008; Blunsom et al., 2009;

DeNero et al., 2008; Levenberg et al., 2012).
Chung et al. (2014) present a MCMC algorithm
schedule to learn Hiero-style SCFG rules (Chiang,
2007) by sampling tree fragments from phrase de-
composition forests, which represent all possible
rules that are consistent with a set of fixed word
alignments. Assuming fixed word alignments re-
duces the complexity of the sampling problem,
and has generally been effective in most state-
of-the-art machine translation systems. The al-
gorithm for sampling rules from a forest is as
follows: from the root of the phrase decomposi-
tion forest, one samples a cut variable, denoting
whether the current node is a cut, and an edge vari-
able, denoting which incoming hyperedge is cho-
sen, at each node of the current tree in a top-down
manner. This sampling schedule is efficient in that
it only samples the current tree and will not waste
time on updating variables that are unlikely to be
used in any tree.

As with many other token-based Gibbs Sam-
pling applications, sampling one node at a time
can result in slow mixing due to the strong cou-
pling between variables. One general remedy is
to sample blocks of coupled variables. Cohn and
Blunsom (2010) and Yamangil and Shieber (2013)
used blocked sampling algorithms that sample the
whole tree structure associated with one sentence
at a time for TSG and TAG learning. However, this
kind of blocking does not deal with the coupling of
variables correlated with the same type of struc-
ture across sentences. Liang et al. (2010) intro-
duced a type-based sampling schedule which up-
dates a block of variables of the same type jointly.
The type of a variable is defined as the combina-
tion of new structural choices added when assign-
ing different values to the variable. Type-based
MCMC tackles the coupling issue by assigning the
same type to variables that are strongly coupled.

In this paper, we follow the phrase decompo-
sition forest construction procedures of Chung et
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al. (2014) and present a type-based MCMC algo-
rithm for sampling tree fragments from phrase de-
composition forests which samples the variables
of the same type jointly. We define the type of the
cut variable for each node in our sampling sched-
ule. While type-based MCMC has been proven
to be effective in a number of NLP applications,
our sample-edge, sample-cut setting is more com-
plicated as our tree structure is unknown. We
need additional steps to maintain the cut type in-
formation when the tree structure is changed as
we sample the edge variable. Like other type-
based MCMC applications, we need bookkeep-
ing of node sites to be sampled in order to loop
through sites of the same type efficiently. As noted
by Liang et al. (2010), indexing by the complete
type information is too expensive in some appli-
cations like TSG learning. Our setting is different
from TSG learning in that the internal structure of
each SCFG rule is abstracted away when deriving
the rule type from the tree fragment sampled.

We make the following contributions:

1. We apply type-based MCMC to the setting of
SCFG learning and have achieved better log
likelihood and BLEU score result.

2. We present an innovative way of storing the
type information by indexing on partial type
information and then filtering the retrieved
nodes according to the full type information,
which enables efficient updates to maintain
the type information while the amount of
bookkeeping is reduced significantly.

3. We replace the two-stage sampling schedule
of Liang et al. (2010) with a simpler and
faster one-stage method.

4. We use parallel programming to do inexact
type-based MCMC, which leads to a speed
up of four times in comparison with non-
parallel type-based MCMC, while the like-
lihood result of the Markov Chain does not
change. This strategy should also work with
other type-based MCMC applications.

2 MCMC for Sampling Tree Fragments
from Forests

2.1 Phrase Decomposition Forest

The phrase decomposition forest provides a com-
pact representation of all machine translation rules

我

I

今天

have

和

a

她

date

有

with

约会

her

today

1

Figure 1: Example word alignment, with boxes
showing valid phrase pairs. In this example, all
individual alignment points are also valid phrase
pairs.

that are consistent with our fixed input word align-
ment (Chung et al., 2014), and our sampling algo-
rithm selects trees from this forest.

As in Hiero, our grammars will make use of a
single nonterminal X , and will contain rules with
a mixture of nonterminals and terminals on the
righthand side (r.h.s.), with at most two nontermi-
nal occurrences on the r.h.s. Under this restric-
tion, the maximum number of rules that can be
extracted from an input sentence pair is O(n12)
with respect to the length of the sentence pair,
as the left and right boundaries of the lefthand
side (l.h.s.) nonterminal and each of the two r.h.s.
nonterminals can take O(n) positions in each of
the two languages. This complexity leads us to
explore sampling algorithms instead of using dy-
namic programming.

A span [i, j] is a set of contiguous word in-
dices {i, i + 1, . . . , j − 1}. Given an aligned
Chinese-English sentence pair, a phrase n is a pair
of spans n = ([i1, j1], [i2, j2]) such that Chinese
words in positions [i1, j1] are aligned only to En-
glish words in positions [i2, j2], and vice versa. A
phrase forest H = 〈V,E〉 is a hypergraph made
of a set of hypernodes V and a set of hyperedges
E. Each node n = ([i1, j1], [i2, j2]) ∈ V is a
tight phrase as defined by Koehn et al. (2003),
i.e., a phrase containing no unaligned words at its
boundaries. A phrase n = ([i1, j1], [i2, j2]) covers
n′ = ([i′1, j′1], [i′2, j′2]) if

i1 ≤ i′1 ∧ j′1 ≤ j1 ∧ i2 ≤ i′2 ∧ j′2 ≤ j2
Each edge in E, written as T → n, is made of a
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([0 1], [0 1])

X ���, I

([4 5], [1 2])

X ��� , have

([5 6], [3 4])

X ����, date

([2 3], [4 5])

X ��� , with

([3 4], [5 6])

X ���, her

([2 4], [4 6])

X ��X��X�, X��X�

([4 6], [1 4])

X ��X��X�, X��a X�

([1 4], [4 7])

X ��X��X�, X��X�

([2 6], [1 6])

X ��X��X�, X��X�

([1 6], [1 7])

X ��X��X�, X��X� X ��X��X�, X��X�

([0 6], [0 7])

X ��X��X�, X��X�

([1 2], [6 7])

X ����, today

Figure 2: A phrase decomposition forest extracted
from the sentence pair 〈我今天和她有约会, I
have a date with her today〉. Each edge is a min-
imal SCFG rule, and the rules at the bottom level
are phrase pairs. Unaligned word “a” shows up
in the rule X → X1X2, X1aX2 after unaligned
words are put back into the alignment matrix. The
highlighted portion of the forest shows an SCFG
rule built by composing minimal rules.

set of non-intersecting tail nodes T ⊂ V , and a
single head node n ∈ V that covers each tail node.
We say an edge T → n is minimal if there does
not exist another edge T ′ → n such that T ′ covers
T . A minimal edge is an SCFG rule that cannot
be decomposed by factoring out some part of its
r.h.s. as a separate rule. We define a phrase de-
composition forest to be made of all phrases from
a sentence pair, connected by all minimal SCFG
rules. A phrase decomposition forest compactly
represents all possible SCFG rules that are consis-
tent with word alignments. For the example word
alignment shown in Figure 1, the phrase decom-
position forest is shown in Figure 2. Each boxed
phrase in Figure 1 corresponds to a node in the
forest of Figure 2, while hyperedges in Figure 2
represent ways of building phrases out of shorter
phrases.

A phrase decomposition forest has the impor-
tant property that any SCFG rule consistent with
the word alignment corresponds to a contiguous
fragment of some complete tree found in the for-
est. For example, the highlighted tree fragment
of the forest in Figure 2 corresponds to the SCFG

rule:

X → 和 X2有 X1, have a X1 with X2

Thus any valid SCFG rule can be formed by se-
lecting a set of adjacent hyperedges from the for-
est and composing the minimal SCFG rules speci-
fied by each hyperedge. Therefore, the problem of
SCFG rules extraction can be solved by sampling
tree fragments from the phrase decomposition for-
est. We use a bottom-up algorithm to construct the
phrase decomposition forest from the word align-
ments.

2.2 Sampling Tree Fragments From Forest

We formulate the rule sampling procedure into
two phases: first we select a tree from a forest,
then we select the cuts in the tree to denote the split
points between fragments, with each fragment cor-
responding to a SCFG rule. A tree can be speci-
fied by attaching a variable en to each node n in
the forest, indicating which hyperedge is turned
on at the current node. Thus each assignment will
specify a unique tree by tracing the edge variables
from the root down to the leaves. We also attach
a cut variable zn to each node, indicating whether
the node is a split point between two adjacent frag-
ments.

Let all the edge variables form the random vec-
tor Y and all the cut variables form the random
vector Z. Given an assignment y to the edge vari-
ables and assignment z to the cut variables, our de-
sired distribution is proportional to the product of
weights of the rules specified by the assignment:

Pt(Y = y, Z = z) ∝
∏

r∈τ(y,z)
w(r) (1)

where τ(y, z) is the set of rules identified by the
assignment. We use a generative model based on
a Dirichlet Process (DP) defined over composed
rules. We draw a distribution G over rules from a
DP, and then rules from G.

G | α, P0 ∼Dir(α, P0)
r | G ∼G

For the base distribution P0, we use a uniform
distribution where all rules of the same size have
equal probability:

P0(r) = V
−|rf |
f V −|re|e (2)
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where Vf and Ve are the vocabulary sizes of the
source language and the target language, and |rf |
and |re| are the lengths of the source side and tar-
get side of rule r. By marginalizing outGwe get a
simple posterior distribution over rules which can
be described using the Chinese Restaurant Process
(CRP). For this analogy, we imagine a restaurant
has infinite number of tables that represent rule
types and customers that represent translation rule
instances. Each customer enters the restaurant and
chooses a table to sit at. Let zi be the table chosen
by the i-th customer, then the customer chooses a
table k either having been seated or a new table
with probability:

P (zi = k|z−i) =

{
nk

i−1+α 1 ≤ k ≤ K
α

i−1+α k = K + 1
(3)

where z−i is the current seating arrangement, nk is
the number of customers at the table k,K is the to-
tal number of occupied tables. If the customer sits
at a new table, the new table will be assigned a rule
label r with probability P0(r). We can see from
Equation 3 that the only history related to the cur-
rent table assignment is the counts in z−i. There-
fore, we define a table of counts N = {NC}C∈I
which memorizes different categories of counts in
z−i. I is an index set for different categories of
counts. EachNC is a vector of counts for category
C. We have P (ri = r|z−i) = P (ri = r|N). If
we marginalize over tables labeled with the same
rule, we get the following probability over rule r
given the previous count table N :

P (ri = r|N) =
NR(r) + αP0(r)

n+ α
(4)

here in the case of DP, I = {R}, where R is the
index for the category of rule counts. NR(r) is the
number of times that rule r has been observed in
z−i, n =

∑
rNR(r) is the total number of rules

observed.
We also define a Pitman-Yor Process (PYP)

(Pitman and Yor, 1997) over rules of each length l.
We draw the rule distribution G from a PYP, and
then rules of length l are drawn from G.

G|α, d, P0 ∼ PY (α, d, P0)

r|G ∼ G
The first two parameters, a concentration parame-
ter α and a discount parameter d, control the shape
of distribution G by controlling the size and the

Algorithm 1 Top-down Sampling Algorithm
1: queue.push(root)
2: while queue is not empty do
3: n = queue.pop()
4: SAMPLEEDGE(n)
5: SAMPLECUT(n)
6: for each child c of node n do
7: queue.push(c)
8: end for
9: end while

number of clusters. Integrating over G, we have
the following PYP posterior probability:

P (ri = r|N) =
NR(r)− Trd+ (Tld+ α)P0(r)

NL(l) + α
(5)

here for the case of PYP, I = {R,L}. We have an
additional index L for the category of rule length
counts, and NL(l) is the total number of rules of
length l observed in z−i. Tr is the number of ta-
bles labeled with r in z−i. The length of the rule is
drawn from a Poisson distribution, so a rule length
probability P (l;λ) = λle−λ

l! is multiplied by this
probability to calculate the real posterior probabil-
ity for each rule. In order to simplify the tedious
book-keeping, we estimate the number of tables
using the following equations (Huang and Renals,
2010):

Tr = NR(r)d (6)

Tl =
∑
r:|r|=l

NR(r)d (7)

We use the top-down sampling algorithm of
Chung et al. (2014) (see Algorithm 1). Starting
from the root of the forest, we sample a value for
the edge variable denoting which incoming hyper-
edge of the node is turned on in the current tree,
and then we sample a cut value for the node de-
noting whether the node is a split point between
two fragments in the tree. For each node n, we de-
note the composed rule type that we get when we
set the cut of node n to 0 as r1 and the two split
rule types that we get when we set the cut to 1 as
r2, r3. We sample the cut value zi of the current
node according to the posterior probability:

P (zi = z|N) =

{
P (r1|N)

P (r1|N)+P (r2|N)P (r3|N ′) if z = 0
P (r2|N)P (r3|N ′)

P (r1|N)+P (r2|N)P (r3|N ′) otherwise
(8)

where the posterior probability P (ri|N) is accord-
ing to either a DP or a PYP, andN,N ′ are tables of
counts. In the case of DP, N,N ′ differ only in the
rule counts of r2, where N ′R(r2) = NR(r2) + 1.
In the case of PYP, there is an extra difference that
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X ��X��X�, X��X�

([1 2], [6 7])

X ����, today

Figure 3: An example of cut type: Consider
the two nodes marked in bold, ([2 6], [1 6]),
([1 4], [4 7]). These two non-split nodes are
internal to the same composed rule: X →
X1X2X3, X3X2X1. We keep these two sites with
the same index. However, when we set the cut
value of these two nodes to 1, as the rules imme-
diately above and immediately below are different
for these two sites, they are not of the same type.

N ′L(l) = NL(l) + 1, where l is the rule length of
r2.

As for edge variables ei, we refer to the set of
composed rules turned on below n including the
composed rule fragments having n as an internal
or root node as {r1, . . . , rm}. We have the follow-
ing posterior probability over the edge variable ei:

P (ei = e|N) ∝
m∏
i=1

P (ri|N i−1)
∏

v∈τ(e)∩in(n)

deg(v) (9)

where deg(v) is the number of incoming edges for
node v, in(n) is the set of nodes in all subtrees
under n, and τ(e) is the tree specified when we
set ei = e. N0 to Nm are tables of counts where
N0 = N , N i

R(ri) = N i−1
R (ri) + 1 in the case of

DP and additionally N i
L(li) = N i−1

L (li) + 1 in the
case of PYP, where li is the rule length of ri.

3 Type-based MCMC Sampling

Our goal in this paper is to organize blocks of vari-
ables that are strongly coupled into types and sam-
ple variables of each type jointly. One major prop-
erty of type-based MCMC is that the joint proba-
bility of variables of the same type should be ex-
changeable so that the order of the variables does

not matter. Also, the choices of the variables to
be sampled jointly should not interfere with each
other, which we define as a conflict. In this section,
we define the type of cut variables in our sampling
schedule and explain that with the two priors we
introduced before, the joint probability of the vari-
ables will satisfy the exchangeability property. We
will also discuss how to check conflict sites in our
application.

In type-based MCMC, we need bookkeeping of
sites as we need to loop through them to search for
sites having the same type efficiently. In our two-
stage sample-edge, sample-cut schedule, updating
the edge variable would change the tree structure
and trigger updates for the cut variable types in
both the old and the new subtree. We come up with
an efficient bookkeeping strategy to index on par-
tial type information which significantly reduces
the bookkeeping size, while updates are quite effi-
cient when the tree structure is changed. The detail
will become clear below.

3.1 Type-based MCMC
We refer to each node site to be sampled as a pair
(t, n), indicating node n of forest t. For each site
(t, n) and the corresponding composed rule types
r1 obtained when we set n’s cut value to 0 and
r2, r3 obtained when we set the cut value to 1, the
cut variable type of site (t, n) is:

type(t, n) def= (r1, r2, r3)

We say that the cut variables of two sites are of
the same type if the composed rule types r1, r2 and
r3 are exactly the same. For example, in Figure 3,
assume that all the nodes in the hypergraph are
currently set to be split points except for the two
nodes marked in bold, ([2 6], [1 6]), ([1 4], [4 7]).
Considering these two non-split nodes, the com-
posed rule types they are internal to (r1) are ex-
actly the same. However, the situation changes if
we set the cut variables of these two nodes to be 1,
i.e., all of the nodes in the hypergraph are now split
points. As the rule type immediately above and
the rule type immediately below the two nodes (r2
and r3) are now different, they are not of the same
type.

We sample the cut value zi according to Equa-
tion 8. As each rule is sampled according to
a DP or PYP posterior and the joint probabili-
ties according to both posteriors are exchangeable,
we can see from Equation 8 that the joint prob-

1739



ability of a sequence of cut variables is also ex-
changeable. Consider a set of sites S containing
n cut variables zS = (z1, ..., zn) of the same type.
This exchangeability property leads to the fact that
any sequence containing same number of cuts (cut
value of 1) would have same probability. We have
the following probability distribution:

P (zS |N) ∝
n−m∏
i=1

P (r1|N i−1)

m∏
i=1

P (r2|N̄ i−1)P (r3|N̂ i−1) def= g(m) (10)

where N is the count table for all the other vari-
ables except for S. m =

∑n
i=1 zi is the number of

cut sites. The variablesN, N̄ , and N̂ keep track of
the counts as the derivation proceeds step by step:

N0 = N

N i
R(r1) = N i−1

R (r1) + 1

N̄0 = Nn−m

N̂ i−1
R (r2) = N̄ i−1

R (r2) + 1

N̄ i
R(r3) = N̂ i−1

R (r3) + 1

For PYP, we add extra count indices for rule length
counts similarly.

Given the exchangeability property of the cut
variables, we can calculate the posterior probabil-
ity of m =

∑n
i=1 zi by summing over all

(
n
m

)
combinations of the cut sites:

p(m|N) ∝
∑

zS :m=
∑
i zi

p(zS |N) =
(
n

m

)
g(m) (11)

3.2 Sampling Cut-types
Given Equation 11 and the exchangeability prop-
erty, our sampling strategy falls out naturally: first
we sample m according to Equation 11, then con-
ditioned on m, we pick m sites of zS as cut sites
out of the

(
n
m

)
combinations with uniform proba-

bility.
Now we proceed to define conflict sites. In ad-

dition to exchangeability, another important prop-
erty of type-based MCMC is that the type of each
site to be sampled should be independent of the
assignment of the other sites sampled at the same
time. That is, in our case, setting the cut value of
each site should not change the (r1, r2, r3) triple
of another site. We can see that the cut value of
the current site would have effect on and only on

Algorithm 2 Type-based MCMC Algorithm for
Sampling One Site

1: sample one type of sites, currently sample site
(node, parent)

2: if parent is None or node is sampled then
3: return
4: end if
5: old = node.cut
6: node.cut = 0
7: r1 = composed rule(parent)
8: node.cut = 1
9: r2 = composed rule(parent)

10: r3 = composed rule(node)
11: node.cut = old
12: sites =
13: for sites s ∈ index[r1] do
14: for sites s′ in rule rooted at s do
15: if s′ of type (r1, r2, r3) and no conflict

then
16: add s′ to sites
17: end if
18: end for
19: end for
20: for sites s ∈ index[r3] do
21: if s of type (r1, r2, r3) and no conflict then
22: add s to sites
23: end if
24: end for
25: sample m according to Equation 11
26: remove sites from index
27: uniformly choose m in sites to be cut sites.
28: add new cut sites to index
29: mark all nodes in sites as sampled

the nodes in the r1 fragment. We denote nodes(r)
as the node set for all nodes within fragment r.
Then for ∀z, z′ ∈ S, z is not in conflict with z′ if
and only if nodes(r1) ∩ nodes(r′1) = ∅, where r1
and r′1 are the corresponding composed rule types
when we set z, z′ to 0.

Another crucial issue in type-based sampling is
the bookkeeping of sampling sites, as we need to
loop through all sites having the same type with
the current node. We only maintain the type in-
formation of nodes that are currently turned on in
the chosen tree of the forest, as we only sample
these nodes. It is common practice to directly use
the type value of each variable as an index and
maintain a set of sites for each type. However,
maintaining a (r1, r2, r3) triple for each node in
the chosen tree is too memory heavy in our appli-
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cation.
In our two-stage sample-edge, sample-cut

schedule, there is an additional issue that we must
deal with efficiently: when we have chosen a new
incoming edge for the current node, we also have
to update the bookkeeping index as the current tree
structure is changed. Cut variable types in the old
subtree will be turned off and a new subtree of
variable types will be turned on. In the extreme
case, when we have chosen a new incoming edge
at the root node, we have chosen a new tree in the
forest. So, we need to remove appearances of cut
variable types in the old tree and add all cut vari-
able types in the newly chosen tree.

Our strategy to deal with these two issues is to
build a small, simple index, at the cost of some
additional computation when retrieving nodes of a
specified type. To be precise, we build an index
from (single) rule types r to all occurrences of r in
the data, where each occurrence is represented as
a pointer to the root of r in the forest. Our strategy
has two important differences from the standard
strategy of building an index having the complete
type (r1, r2, r3) as the key and having every node
as an entry. Specifically:

1. We index only the roots of the current rules,
rather than every node, and

2. We key on a single rule type, rather than a
triple of rule types.

Differences (1) and (2) both serve to keep the in-
dex small, and the dramatic savings in memory is
essential to making our algorithm practical. Fur-
thermore, difference (1) reduces the amount of
work that needs to be done when an edge variable
is resampled. While we must still re-index the en-
tire subtree under the changed edge variable, we
need only to re-index the roots of the current tree
fragments, rather than all nodes in the subtree.

Given this indexing strategy, we now proceed
to describe the process for retrieving nodes of a
specified type (r1, r2, r3). These nodes fall into
one of two cases:

1. Internal nodes, i.e., nodes whose cut variable
is currently set to 0. These nodes must be
contained in a fragment of rule type r1, and
must furthermore have r2 above them, and r3
below them. We retrieve these nodes by look-
ing up r1 in the index, iterating over all nodes
in each fragment retrieved, and retaining only

those with r2 above and r3 below. (Lines 13–
19 in Algorithm 2.)

2. Boundary nodes, i.e., nodes whose cut vari-
able is currently set to 1. These nodes must
form the root of a fragment r3, and have a
fragment r2 above them. We retrieve these
nodes by looking up r3 in the index, and then
checking each node retrieved to retain only
those nodes with r2 above them in the current
tree. (Lines 20–24 in Algorithm 2.)

This process of winnowing down the nodes re-
trieved by the index adds some computational
overhead to our algorithm, but we find that it is
minimal in practice.

We still use the top-down sampling schedule of
Algorithm 1, except that in the sample-edge step,
when we choose a new incoming edge, we add
additional steps to update the bookkeeping index.
Furthermore, in the sample-cut step, we sample
all non-conflict sites having the same type with n
jointly. Our full algorithm for sampling one cut-
type is shown in Algorithm 2. When sampling
each site, we record a parent node of the near-
est cut ancestor of the current node so that we
can build r1 and r2 more quickly, as they are both
rooted at parent. We first identify the type of the
current site. Then we search the bookkeeping in-
dex to find possible candidate sites of the same
type, as described above. As for conflict check-
ing, we keep a set of nodes that includes all nodes
in the r1 fragment of previous non-conflict sites. If
the r1 fragment of the current site has any node in
common with this node set, we arrive at a conflict
site.

4 Methods of Further Optimization

4.1 One-stage Sampling Schedule
Instead of calculating the posterior of each m ac-
cording to Equation 11 and then sampling m, we
can build our real m more greedily.

P (zS |N) =
n∏
i=1

P (zi|N i−1) (12)

where N,N0, . . . , Nn are count tables, and N0 =
N . N i is the new count table after we updateN i−1

according to the assignment of zi. This equation
gives us a hint to sample each zi according to
P (zi|N i−1) and then update the count table N i−1

according to the assignment of zi. This greedy
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sampling saves us the effort to calculate each m
by multiplying over each posterior of cut variables
but directly samples the real m. In our exper-
iment, this one-stage sampling strategy gives us
a 1.5 times overall speed up in comparison with
the two-stage sampling schedule of Liang et al.
(2010).

4.2 Parallel Implementation
As our type-based sampler involves tedious book-
keeping and frequent conflict checking and mis-
match of cut types, one iteration of the type-based
sampler is slower than an iteration of the token-
based sampler when run on a single processor.
In order to speed up our sampling procedure, we
used a parallel sampling strategy similar to that of
Blunsom et al. (2009) and Feng and Cohn (2013),
who use multiple processors to perform inexact
Gibbs Sampling, and find equivalent performance
in comparison with an exact Gibbs Sampler with
significant speed up. In our application, we split
the data into several subsets and assign each sub-
set to a processor. Each processor performs type-
based sampling on its subset using local counts
and local bookkeeping, and communicates the up-
date of the local counts after each iteration. All
the updates are then aggregated to generate global
counts and then we refresh the local counts of
each processor. We do not communicate the up-
date on the bookkeeping of each processor. In this
implementation, we have a slightly “out-of-date”
counts at each processor and a smaller bookkeep-
ing of sites of the same type, but we can perform
type-based sampling independently on each pro-
cessor. Our experiments show that, with proper
division of the dataset, the final performance does
not change, while the speed up is significant.

5 Experiments

We used the same LDC Chinese-English parallel
corpus as Chung et al. (2014),1 which is composed
of newswire text. The corpus consists of 41K sen-
tence pairs, which has 1M words on the English
side. The corpus has a 392-sentence development
set with four references for parameter tuning, and

1The data are randomly sampled from various differ-
ent sources (LDC2006E86, LDC2006E93, LDC2002E18,
LDC2002L27, LDC2003E07, LDC2003E14, LDC2004T08,
LDC2005T06, LDC2005T10, LDC2005T34, LDC2006E26,
LDC2005E83, LDC2006E34, LDC2006E85, LDC2006E92,
LDC2006E24, LDC2006E92, LDC2006E24) The language
model is trained on the English side of entire data (1.65M
sentences, which is 39.3M words.)

a 428-sentence test set with four references for
testing.2 The development set and the test set have
sentences with less than 30 words. A trigram lan-
guage model was used for all experiments. We
plotted the log likelihood graph to compare the
convergence property of each sampling schedule
and calculated BLEU (Papineni et al., 2002) for
evaluation.

5.1 Experiment Settings
We use the top-down token-based sampling al-
gorithm of Chung et al. (2014) as our baseline.
We use the same SCFG decoder for translation
with both the baseline and the grammars sam-
pled using our type-based MCMC sampler. The
features included in our experiments are differ-
ently normalized rule counts and lexical weight-
ings (Koehn et al., 2003) of each rule. Weights are
tuned using Pairwise Ranking Optimization (Hop-
kins and May, 2011) using a grammar extracted by
the standard heuristic method (Chiang, 2007) and
the development set. The same weights are used
throughout our experiments.

First we want to compare the DP likelihood
of the baseline with our type-based MCMC sam-
pler to see if type-based sampling would converge
to a better sampling result. In order to verify if
type-based MCMC really converges to a good op-
timum point, we use simulated annealing (Kirk-
patrick et al., 1983) to search possible better opti-
mum points. We sample from the real distribution
modified by an annealing parameter β:

z ∼ P (z)β

We increase our β from 0.1 to 1.3, and then de-
crease from 1.3 to 1.0, changing by 0.1 every 3
iterations. We also run an inexact parallel ap-
proximation of type-based MCMC in comparison
with the non-parallel sampling to find out if par-
allel programming is feasible to speed up type-
based MCMC sampling without affecting the per-
formance greatly. We do not compare the PYP
likelihood because the approximation renders it
impossible to calculate the real PYP likelihood.
We also calculate the BLEU score to compare the
grammars extracted using each sampling sched-
ule. We just report the BLEU result of grammars
sampled using PYP as for all our schedules, since
PYP always performs better than DP.

2They are from newswire portion of NIST MT evaluation
data from 2004, 2005, and 2006.
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As for parameter settings, we used d = 0.5 for
the Pitman-Yor discount parameter. Though we
have a separate PYP for each rule length, we used
same α = 5 for all rule sizes in all experiments,
including experiments using DP. For rule length
probability, a Poisson distribution where λ = 2
was used for all experiments.3

For each sentence sample, we initialize all the
nodes in the forest to be cut sites and choose an
incoming edge for each node uniformly. For each
experiment, we run for 160 iterations. For each
DP experiment, we draw the log likelihood graph
for each sampling schedule before it finally con-
verges. For each PYP experiment, we tried aver-
aging the grammars from every 10th iteration to
construct a single grammar and use this grammar
for decoding. We tune the number of grammars
included for averaging by comparing the BLEU
score on the dev set and report the BLEU score
result on the test with the same averaging of gram-
mars.

As each tree fragment sampled from the for-
est represents a unique translation rule, we do not
need to explicitly extract the rules; we merely
need to collect them and count them. However,
the fragments sampled include purely non-lexical
rules that do not conform to the rule constraints
of Hiero, and rules that are not useful for trans-
lation. In order to get rid of this type of rule,
we prune every rule that has scope (Hopkins and
Langmead, 2010) greater than two. Whereas Hi-
ero does not allow two adjacent nonterminals in
the source side, our pruning criterion allows some
rules of scope two that are not allowed by Hiero.
For example, the following rule (only source side
shown) has scope two but is not allowed by Hiero:

X → w1X1X2w2X3

5.2 Experiment Results
Figure 4 shows the log likelihood result of our
type-based MCMC sampling schedule and the
baseline top-down sampling. We can see that type-
based sampling converges to a much better re-
sult than non-type-based top-down sampling. This
shows that type-based MCMC escapes some local
optima that are hard for token-based methods to
escape. This further strengthens the idea that sam-
pling a block of strongly coupled variables jointly

3The priors are the same as the work of Chung et al.
(2014). The priors are set to be the same because other priors
turn out not to affect much of the final performance and add
additional difficulty for tuning.
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Figure 4: Log likelihood result of type-based
MCMC sampling against non-type-based MCMC
sampling, simulated annealing is used to verify if
type-based MCMC converges to a good likelihood
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Figure 5: parallelization result for type-based
MCMC

helps solve the slow mixing problem of token-
based sampling methods. Another interesting ob-
servation is that, even though theoretically these
two sampling methods should finally converge to
the same point, in practice a worse sampling al-
gorithm is prone to get trapped at local optima,
and it will be hard for its Markov chain to es-
cape it. We can also see from Figure 4 that the
log likelihood result only improves slightly using
simulated annealing. One possible explanation is
that the Markov chain has already converged to
a very good optimum point with type-based sam-
pling and it is hard to search for a better optimum.

Figure 5 shows the parallelization result of type-
based MCMC sampling when we run the program
on five processors. We can see from the graph that
when running on five processors, the likelihood fi-
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Sampling Schedule iteration dev test
Non-type-based averaged (0-90) 25.62 24.98
Type-based averaged (0-100) 25.88 25.20
Parallel Type-based averaged (0-90) 25.75 25.04

Table 1: Comparisons of BLEU score results

nally converges to the same likelihood result as
non-parallel type-based MCMC sampling. How-
ever, when we use more processors, the likelihood
eventually becomes lower than with non-parallel
sampling. This is because when we increase the
number of processors, we split the dataset into
very small subsets. As we maintain the bookkeep-
ing for each subset separately and do not com-
municate the updates to each subset, the power of
type-based sampling is weakened with bookkeep-
ing for very few sites of each type. In the extreme
case, when we use too many processors in parallel,
the bookkeeping would have a singleton site for
each type. In this case, the approximation would
degrade to the scenario of approximating token-
based sampling. By choosing a proper size of divi-
sion of the dataset and by maintaining local book-
keeping for each subset, the parallel approxima-
tion can converge to almost the same point as non-
parallel sampling. As shown in our experimental
results, the speed up is very significant with the
running time decreasing from thirty minutes per
iteration to just seven minutes when running on
five processors. Part of the speed up comes from
the smaller bookkeeping since with fewer sites for
each index, there is less mismatch or conflict of
sites.

Table 1 shows the BLEU score results for type-
based MCMC and the baseline. For non-type-
based top-down sampling, the best BLEU score re-
sult on dev is achieved when averaging the gram-
mars of every 10th iteration from the 0th to the
90th iteration, while our type-based method gets
the best result by averaging over every 10th itera-
tion from the 0th to the 100th iteration. We can see
that the BLEU score on dev for type-based MCMC
and the corresponding BLEU score on test are
both better than the result for the non-type-based
method, though not significantly. This shows that
the better likelihood of our Markov Chain using
type-based MCMC does result in better transla-
tion.

We have also done experiments calculating the
BLEU score result of the inexact parallel imple-
mentation. We can see from Table 1 that, while the

likelihood of the approximation does not change
in comparison with the exact type-based MCMC,
there is a gap between the BLEU score results. We
think this difference might come from the incon-
sistency of the grammars sampled by each proces-
sor within each iteration, as they do not communi-
cate the update within each iteration.

6 Conclusion

We presented a novel type-based MCMC algo-
rithm for sampling tree fragments from phrase de-
composition forests. While the hidden tree struc-
ture in our settings makes it difficult to maintain
the constantly changing type information, we have
come up with a compact way to store the type in-
formation of variables and proposed efficient ways
to update the bookkeeping index. Under the addi-
tional hidden structure limitation, we have shown
that type-based MCMC sampling still works and
results in both better likelihood and BLEU score.
We also came with techniques to speed up the
type-based MCMC sampling schedule while not
affecting the final sampling likelihood result. A re-
maining issue with parallelization is the inconsis-
tency of the grammar within an iteration between
processors. One possible solution would be using
better averaging methods instead of simply aver-
aging over every few iterations. Another interest-
ing extension for our methods would be to also de-
fine types for the edge variables, and then sample
both cut and edge types jointly.
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Abstract

We report on a series of experiments with
convolutional neural networks (CNN)
trained on top of pre-trained word vec-
tors for sentence-level classification tasks.
We show that a simple CNN with lit-
tle hyperparameter tuning and static vec-
tors achieves excellent results on multi-
ple benchmarks. Learning task-specific
vectors through fine-tuning offers further
gains in performance. We additionally
propose a simple modification to the ar-
chitecture to allow for the use of both
task-specific and static vectors. The CNN
models discussed herein improve upon the
state of the art on 4 out of 7 tasks, which
include sentiment analysis and question
classification.

1 Introduction

Deep learning models have achieved remarkable
results in computer vision (Krizhevsky et al.,
2012) and speech recognition (Graves et al., 2013)
in recent years. Within natural language process-
ing, much of the work with deep learning meth-
ods has involved learning word vector representa-
tions through neural language models (Bengio et
al., 2003; Yih et al., 2011; Mikolov et al., 2013)
and performing composition over the learned word
vectors for classification (Collobert et al., 2011).
Word vectors, wherein words are projected from a
sparse, 1-of-V encoding (here V is the vocabulary
size) onto a lower dimensional vector space via a
hidden layer, are essentially feature extractors that
encode semantic features of words in their dimen-
sions. In such dense representations, semantically
close words are likewise close—in euclidean or
cosine distance—in the lower dimensional vector
space.

Convolutional neural networks (CNN) utilize
layers with convolving filters that are applied to

local features (LeCun et al., 1998). Originally
invented for computer vision, CNN models have
subsequently been shown to be effective for NLP
and have achieved excellent results in semantic
parsing (Yih et al., 2014), search query retrieval
(Shen et al., 2014), sentence modeling (Kalch-
brenner et al., 2014), and other traditional NLP
tasks (Collobert et al., 2011).

In the present work, we train a simple CNN with
one layer of convolution on top of word vectors
obtained from an unsupervised neural language
model. These vectors were trained by Mikolov et
al. (2013) on 100 billion words of Google News,
and are publicly available.1 We initially keep the
word vectors static and learn only the other param-
eters of the model. Despite little tuning of hyper-
parameters, this simple model achieves excellent
results on multiple benchmarks, suggesting that
the pre-trained vectors are ‘universal’ feature ex-
tractors that can be utilized for various classifica-
tion tasks. Learning task-specific vectors through
fine-tuning results in further improvements. We
finally describe a simple modification to the archi-
tecture to allow for the use of both pre-trained and
task-specific vectors by having multiple channels.

Our work is philosophically similar to Razavian
et al. (2014) which showed that for image clas-
sification, feature extractors obtained from a pre-
trained deep learning model perform well on a va-
riety of tasks—including tasks that are very dif-
ferent from the original task for which the feature
extractors were trained.

2 Model

The model architecture, shown in figure 1, is a
slight variant of the CNN architecture of Collobert
et al. (2011). Let xi ∈ Rk be the k-dimensional
word vector corresponding to the i-th word in the
sentence. A sentence of length n (padded where

1https://code.google.com/p/word2vec/
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Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 ⊕ x2 ⊕ . . .⊕ xn, (1)

where ⊕ is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w ∈ Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h−1 by

ci = f(w · xi:i+h−1 + b). (2)

Here b ∈ R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn−h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn−h+1], (3)

with c ∈ Rn−h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z ◦ r) + b, (5)

where ◦ is the element-wise multiplication opera-
tor and r ∈ Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.
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Data c l N |V | |Vpre| Test
MR 2 20 10662 18765 16448 CV

SST-1 5 18 11855 17836 16262 2210
SST-2 2 19 9613 16185 14838 1821
Subj 2 23 10000 21323 17913 CV

TREC 6 10 5952 9592 9125 500
CR 2 19 3775 5340 5046 CV

MPQA 2 3 10606 6246 6083 CV

Table 1: Summary statistics for the datasets after tokeniza-
tion. c: Number of target classes. l: Average sentence length.
N : Dataset size. |V |: Vocabulary size. |Vpre|: Number of
words present in the set of pre-trained word vectors. Test:
Test set size (CV means there was no standard train/test split
and thus 10-fold CV was used).

3 Datasets and Experimental Setup

We test our model on various benchmarks. Sum-
mary statistics of the datasets are in table 1.

• MR: Movie reviews with one sentence per re-
view. Classification involves detecting posi-
tive/negative reviews (Pang and Lee, 2005).3

• SST-1: Stanford Sentiment Treebank—an
extension of MR but with train/dev/test splits
provided and fine-grained labels (very pos-
itive, positive, neutral, negative, very nega-
tive), re-labeled by Socher et al. (2013).4

• SST-2: Same as SST-1 but with neutral re-
views removed and binary labels.

• Subj: Subjectivity dataset where the task is
to classify a sentence as being subjective or
objective (Pang and Lee, 2004).

• TREC: TREC question dataset—task in-
volves classifying a question into 6 question
types (whether the question is about person,
location, numeric information, etc.) (Li and
Roth, 2002).5

• CR: Customer reviews of various products
(cameras, MP3s etc.). Task is to predict pos-
itive/negative reviews (Hu and Liu, 2004).6

3https://www.cs.cornell.edu/people/pabo/movie-review-data/
4http://nlp.stanford.edu/sentiment/ Data is actually provided
at the phrase-level and hence we train the model on both
phrases and sentences but only score on sentences at test
time, as in Socher et al. (2013), Kalchbrenner et al. (2014),
and Le and Mikolov (2014). Thus the training set is an order
of magnitude larger than listed in table 1.

5http://cogcomp.cs.illinois.edu/Data/QA/QC/
6http://www.cs.uic.edu/∼liub/FBS/sentiment-analysis.html

• MPQA: Opinion polarity detection subtask
of the MPQA dataset (Wiebe et al., 2005).7

3.1 Hyperparameters and Training

For all datasets we use: rectified linear units, filter
windows (h) of 3, 4, 5 with 100 feature maps each,
dropout rate (p) of 0.5, l2 constraint (s) of 3, and
mini-batch size of 50. These values were chosen
via a grid search on the SST-2 dev set.

We do not otherwise perform any dataset-
specific tuning other than early stopping on dev
sets. For datasets without a standard dev set we
randomly select 10% of the training data as the
dev set. Training is done through stochastic gra-
dient descent over shuffled mini-batches with the
Adadelta update rule (Zeiler, 2012).

3.2 Pre-trained Word Vectors

Initializing word vectors with those obtained from
an unsupervised neural language model is a popu-
lar method to improve performance in the absence
of a large supervised training set (Collobert et al.,
2011; Socher et al., 2011; Iyyer et al., 2014). We
use the publicly available word2vec vectors that
were trained on 100 billion words from Google
News. The vectors have dimensionality of 300 and
were trained using the continuous bag-of-words
architecture (Mikolov et al., 2013). Words not
present in the set of pre-trained words are initial-
ized randomly.

3.3 Model Variations

We experiment with several variants of the model.

• CNN-rand: Our baseline model where all
words are randomly initialized and then mod-
ified during training.

• CNN-static: A model with pre-trained
vectors from word2vec. All words—
including the unknown ones that are ran-
domly initialized—are kept static and only
the other parameters of the model are learned.

• CNN-non-static: Same as above but the pre-
trained vectors are fine-tuned for each task.

• CNN-multichannel: A model with two sets
of word vectors. Each set of vectors is treated
as a ‘channel’ and each filter is applied

7http://www.cs.pitt.edu/mpqa/
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Model MR SST-1 SST-2 Subj TREC CR MPQA
CNN-rand 76.1 45.0 82.7 89.6 91.2 79.8 83.4
CNN-static 81.0 45.5 86.8 93.0 92.8 84.7 89.6
CNN-non-static 81.5 48.0 87.2 93.4 93.6 84.3 89.5
CNN-multichannel 81.1 47.4 88.1 93.2 92.2 85.0 89.4
RAE (Socher et al., 2011) 77.7 43.2 82.4 − − − 86.4
MV-RNN (Socher et al., 2012) 79.0 44.4 82.9 − − − −
RNTN (Socher et al., 2013) − 45.7 85.4 − − − −
DCNN (Kalchbrenner et al., 2014) − 48.5 86.8 − 93.0 − −
Paragraph-Vec (Le and Mikolov, 2014) − 48.7 87.8 − − − −
CCAE (Hermann and Blunsom, 2013) 77.8 − − − − − 87.2
Sent-Parser (Dong et al., 2014) 79.5 − − − − − 86.3
NBSVM (Wang and Manning, 2012) 79.4 − − 93.2 − 81.8 86.3
MNB (Wang and Manning, 2012) 79.0 − − 93.6 − 80.0 86.3
G-Dropout (Wang and Manning, 2013) 79.0 − − 93.4 − 82.1 86.1
F-Dropout (Wang and Manning, 2013) 79.1 − − 93.6 − 81.9 86.3
Tree-CRF (Nakagawa et al., 2010) 77.3 − − − − 81.4 86.1
CRF-PR (Yang and Cardie, 2014) − − − − − 82.7 −
SVMS (Silva et al., 2011) − − − − 95.0 − −

Table 2: Results of our CNN models against other methods. RAE: Recursive Autoencoders with pre-trained word vectors from
Wikipedia (Socher et al., 2011). MV-RNN: Matrix-Vector Recursive Neural Network with parse trees (Socher et al., 2012).
RNTN: Recursive Neural Tensor Network with tensor-based feature function and parse trees (Socher et al., 2013). DCNN:
Dynamic Convolutional Neural Network with k-max pooling (Kalchbrenner et al., 2014). Paragraph-Vec: Logistic regres-
sion on top of paragraph vectors (Le and Mikolov, 2014). CCAE: Combinatorial Category Autoencoders with combinatorial
category grammar operators (Hermann and Blunsom, 2013). Sent-Parser: Sentiment analysis-specific parser (Dong et al.,
2014). NBSVM, MNB: Naive Bayes SVM and Multinomial Naive Bayes with uni-bigrams from Wang and Manning (2012).
G-Dropout, F-Dropout: Gaussian Dropout and Fast Dropout from Wang and Manning (2013). Tree-CRF: Dependency tree
with Conditional Random Fields (Nakagawa et al., 2010). CRF-PR: Conditional Random Fields with Posterior Regularization
(Yang and Cardie, 2014). SVMS : SVM with uni-bi-trigrams, wh word, head word, POS, parser, hypernyms, and 60 hand-coded
rules as features from Silva et al. (2011).

to both channels, but gradients are back-
propagated only through one of the chan-
nels. Hence the model is able to fine-tune
one set of vectors while keeping the other
static. Both channels are initialized with
word2vec.

In order to disentangle the effect of the above
variations versus other random factors, we elim-
inate other sources of randomness—CV-fold as-
signment, initialization of unknown word vec-
tors, initialization of CNN parameters—by keep-
ing them uniform within each dataset.

4 Results and Discussion

Results of our models against other methods are
listed in table 2. Our baseline model with all ran-
domly initialized words (CNN-rand) does not per-
form well on its own. While we had expected per-
formance gains through the use of pre-trained vec-
tors, we were surprised at the magnitude of the
gains. Even a simple model with static vectors
(CNN-static) performs remarkably well, giving

competitive results against the more sophisticated
deep learning models that utilize complex pool-
ing schemes (Kalchbrenner et al., 2014) or require
parse trees to be computed beforehand (Socher
et al., 2013). These results suggest that the pre-
trained vectors are good, ‘universal’ feature ex-
tractors and can be utilized across datasets. Fine-
tuning the pre-trained vectors for each task gives
still further improvements (CNN-non-static).

4.1 Multichannel vs. Single Channel Models

We had initially hoped that the multichannel ar-
chitecture would prevent overfitting (by ensuring
that the learned vectors do not deviate too far
from the original values) and thus work better than
the single channel model, especially on smaller
datasets. The results, however, are mixed, and fur-
ther work on regularizing the fine-tuning process
is warranted. For instance, instead of using an
additional channel for the non-static portion, one
could maintain a single channel but employ extra
dimensions that are allowed to be modified during
training.
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Most Similar Words for
Static Channel Non-static Channel

bad

good terrible
terrible horrible
horrible lousy

lousy stupid

good

great nice
bad decent

terrific solid
decent terrific

n’t

os not
ca never

ireland nothing
wo neither

!

2,500 2,500
entire lush

jez beautiful
changer terrific

,

decasia but
abysmally dragon

demise a
valiant and

Table 3: Top 4 neighboring words—based on cosine
similarity—for vectors in the static channel (left) and fine-
tuned vectors in the non-static channel (right) from the mul-
tichannel model on the SST-2 dataset after training.

4.2 Static vs. Non-static Representations

As is the case with the single channel non-static
model, the multichannel model is able to fine-tune
the non-static channel to make it more specific to
the task-at-hand. For example, good is most sim-
ilar to bad in word2vec, presumably because
they are (almost) syntactically equivalent. But for
vectors in the non-static channel that were fine-
tuned on the SST-2 dataset, this is no longer the
case (table 3). Similarly, good is arguably closer
to nice than it is to great for expressing sentiment,
and this is indeed reflected in the learned vectors.

For (randomly initialized) tokens not in the set
of pre-trained vectors, fine-tuning allows them to
learn more meaningful representations: the net-
work learns that exclamation marks are associ-
ated with effusive expressions and that commas
are conjunctive (table 3).

4.3 Further Observations

We report on some further experiments and obser-
vations:

• Kalchbrenner et al. (2014) report much
worse results with a CNN that has essentially

the same architecture as our single channel
model. For example, their Max-TDNN (Time
Delay Neural Network) with randomly ini-
tialized words obtains 37.4% on the SST-1
dataset, compared to 45.0% for our model.
We attribute such discrepancy to our CNN
having much more capacity (multiple filter
widths and feature maps).

• Dropout proved to be such a good regularizer
that it was fine to use a larger than necessary
network and simply let dropout regularize it.
Dropout consistently added 2%–4% relative
performance.

• When randomly initializing words not in
word2vec, we obtained slight improve-
ments by sampling each dimension from
U [−a, a] where a was chosen such that the
randomly initialized vectors have the same
variance as the pre-trained ones. It would be
interesting to see if employing more sophis-
ticated methods to mirror the distribution of
pre-trained vectors in the initialization pro-
cess gives further improvements.

• We briefly experimented with another set of
publicly available word vectors trained by
Collobert et al. (2011) on Wikipedia,8 and
found that word2vec gave far superior per-
formance. It is not clear whether this is due
to Mikolov et al. (2013)’s architecture or the
100 billion word Google News dataset.

• Adadelta (Zeiler, 2012) gave similar results
to Adagrad (Duchi et al., 2011) but required
fewer epochs.

5 Conclusion

In the present work we have described a series of
experiments with convolutional neural networks
built on top of word2vec. Despite little tuning
of hyperparameters, a simple CNN with one layer
of convolution performs remarkably well. Our re-
sults add to the well-established evidence that un-
supervised pre-training of word vectors is an im-
portant ingredient in deep learning for NLP.
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Abstract
Markov chain Monte Carlo (MCMC) approxi-
mates the posterior distribution of latent vari-
able models by generating many samples and
averaging over them. In practice, however, it
is often more convenient to cut corners, using
only a single sample or following a suboptimal
averaging strategy. We systematically study dif-
ferent strategies for averaging MCMC samples
and show empirically that averaging properly
leads to significant improvements in prediction.

1 Introduction
Probabilistic topic models are powerful methods to un-
cover hidden thematic structures in text by projecting
each document into a low dimensional space spanned
by a set of topics, each of which is a distribution over
words. Topic models such as latent Dirichlet alloca-
tion (Blei et al., 2003, LDA) and its extensions discover
these topics from text, which allows for effective ex-
ploration, analysis, and summarization of the otherwise
unstructured corpora (Blei, 2012; Blei, 2014).

In addition to exploratory data analysis, a typical goal
of topic models is prediction. Given a set of unanno-
tated training data, unsupervised topic models try to
learn good topics that can generalize to unseen text.
Supervised topic models jointly capture both the text
and associated metadata such as a continuous response
variable (Blei and McAuliffe, 2007; Zhu et al., 2009;
Nguyen et al., 2013), single label (Rosen-Zvi et al.,
2004; Lacoste-Julien et al., 2008; Wang et al., 2009)
or multiple labels (Ramage et al., 2009; Ramage et al.,
2011) to predict metadata from text.

Probabilistic topic modeling requires estimating the
posterior distribution. Exact computation of the poste-
rior is often intractable, which motivates approximate
inference techniques (Asuncion et al., 2009). One popu-
lar approach is Markov chain Monte Carlo (MCMC), a
class of inference algorithms to approximate the target
posterior distribution. To make prediction, MCMC al-
gorithms generate samples on training data to estimate
corpus-level latent variables, and use them to generate
samples to estimate document-level latent variables for
test data. The underlying theory requires averaging on
both training and test samples, but in practice it is often
convenient to cut corners: either skip averaging entirely
by using just the values of the last sample or use a single
training sample and average over test samples.

We systematically study non-averaging and averaging
strategies when performing predictions using MCMC in
topic modeling (Section 2). Using popular unsupervised
(LDA in Section 3) and supervised (SLDA in Section 4)
topic models via thorough experimentation, we show
empirically that cutting corners on averaging leads to
consistently poorer prediction.

2 Learning and Predicting with MCMC
While reviewing all of MCMC is beyond the scope of
this paper, we need to briefly review key concepts.1 To
estimate a target density p(x) in a high-dimensional
space X , MCMC generates samples {xt}Tt=1 while ex-
ploring X using the Markov assumption. Under this
assumption, sample xt+1 depends on sample xt only,
forming a Markov chain, which allows the sampler to
spend more time in the most important regions of the
density. Two concepts control sample collection:

Burn-in B: Depending on the initial value of the
Markov chain, MCMC algorithms take time to reach
the target distribution. Thus, in practice, samples before
a burn-in period B are often discarded.

Sample-lag L: Averaging over samples to estimate
the target distribution requires i.i.d. samples. However,
future samples depend on the current samples (i.e., the
Markov assumption). To avoid autocorrelation, we dis-
card all but every L samples.

2.1 MCMC in Topic Modeling
As generative probabilistic models, topic models define
a joint distribution over latent variables and observable
evidence. In our setting, the latent variables consist of
corpus-level global variables g and document-level lo-
cal variables l; while the evidence consists of words w
and additional metadata y—the latter omitted in unsu-
pervised models.

During training, MCMC estimates the posterior
p(g, lTR |wTR,yTR) by generating a training Markov
chain of TTR samples.2 Each training sample i pro-
vides a set of fully realized global latent variables ĝ(i),
which can generate test data. During test time, given a

1For more details please refer to Neal (1993), Andrieu et
al. (2003), Resnik and Hardisty (2010).

2We omit hyperparameters for clarity. We split data into
training (TR) and testing (TE) folds, and denote the training
iteration i and the testing iteration j within the corresponding
Markov chains.
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Figure 1: Illustration of training and test chains in MCMC, showing samples used in four prediction strategies studied
in this paper: Single Final (SF), Single Average (SA), Multiple Final (MF), and Multiple Average (MA).

learned model from training sample i, we generate a test
Markov chain of TTE samples to estimate the local latent
variables p(lTE |wTE, ĝ(i)) of test data. Each sample
j of test chain i provides a fully estimated local latent
variables l̂TE(i, j) to make a prediction.

Figure 1 shows an overview. To reduce the ef-
fects of unconverged and autocorrelated samples, dur-
ing training we use a burn-in period of BTR and a
sample-lag of LTR iterations. We use TTR = {i | i ∈
(BTR, TTR] ∧ (i − BTR) mod LTR = 0} to denote the
set of indices of the selected models. Similarly, BTE

and LTE are the test burn-in and sample-lag. The
set of indices of selected samples in test chains is
TTE = {j | j ∈ (BTE, TTE] ∧ (j −BTE) mod LTE = 0}.
2.2 Averaging Strategies
We use S(i, j) to denote the prediction obtained from
sample j of the test chain i. We now discuss different
strategies to obtain the final prediction:

• Single Final (SF) uses the last sample of last test
chain to obtain the predicted value,

SSF = S(TTR, TTE). (1)

• Single Average (SA) averages over multiple sam-
ples in the last test chain

SSA =
1

|TTE|
∑
j∈TTE

S(TTR, j). (2)

This is a common averaging strategy in which we
obtain a point estimate of the global latent variables
at the end of the training chain. Then, a single test
chain is generated on the test data and multiple sam-
ples of this test chain are averaged to obtain the final
prediction (Chang, 2012; Singh et al., 2012; Jiang et
al., 2012; Zhu et al., 2014).

• Multiple Final (MF) averages over the last sam-
ples of multiple test chains from multiple models

SMF =
1

|TTR|
∑
i∈TTR

S(i, TTE). (3)

• Multiple Average (MA) averages over all samples
of multiple test chains for distinct models,

SMA =
1

|TTR|
1

|TTE|
∑
i∈TTR

∑
j∈TTE

S(i, j), (4)

3 Unsupervised Topic Models
We evaluate the predictive performance of the unsu-
pervised topic model LDA using different averaging
strategies in Section 2.

LDA: Proposed by Blei et al. in 2003, LDA posits that
each document d is a multinomial distribution θd over
K topics, each of which is a multinomial distribution
φk over the vocabulary. LDA’s generative process is:

1. For each topic k ∈ [1,K]
(a) Draw word distribution φk ∼ Dir(β)

2. For each document d ∈ [1, D]
(a) Draw topic distribution θd ∼ Dir(α)
(b) For each word n ∈ [1, Nd]

i. Draw topic zd,n ∼ Mult(θd)
ii. Draw word wd,n ∼ Mult(φzd,n

)

In LDA, the global latent variables are topics {φk}Kk=1

and the local latent variables for each document d are
topic proportions θd.

Train: During training, we use collapsed Gibbs sam-
pling to assign each token in the training data with a
topic (Steyvers and Griffiths, 2006). The probability of
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assigning token n of training document d to topic k is
p(zTR

d,n = k | zTR
−d,n,w

TR
−d,n, w

TR
d,n = v) ∝

N−d,n
TR,d,k + α

N−d,n
TR,d,· +Kα

· N
−d,n
TR,k,v + β

N−d,n
TR,k,· + V β

, (5)

where NTR,d,k is the number of tokens in the training
document d assigned to topic k, and NTR,k,v is the num-
ber of times word type v assigned to topic k. Marginal
counts are denoted by ·, and −d,n denotes the count
excluding the assignment of token n in document d.

At each training iteration i, we estimate the distribu-
tion over words φ̂k(i) of topic k as

φ̂k,v(i) =
NTR,k,v(i) + β

NTR,k,·(i) + V β
(6)

where the counts NTR,k,v(i) and NTR,k,·(i) are taken at
training iteration i.

Test: Because we lack explicit topic annotations for
these data (c.f. Nguyen et al. (2012)), we use perplexity–
a widely-used metric to measure the predictive power
of topic models on held-old documents. To compute
perplexity, we follow the estimating θ method (Wal-
lach et al., 2009, Section 5.1) and evenly split each test
document d into wTE1

d and wTE2
d . We first run Gibbs

sampling on wTE1
d to estimate the topic proportion θ̂TE

d

of test document d. The probability of assigning topic k
to token n inwTE1

d is p(zTE1
d,n = k | zTE1

−d,n,w
TE1 , φ̂(i)) ∝

N−d,n
TE1,d,k + α

N−d,n
TE1,d,· +Kα

· φ̂
k,w

TE1
d,n(i)

(7)

whereNTE1,d,k is the number of tokens inwTE1
d assigned

to topic k. At each iteration j in test chain i, we can
estimate the topic proportion vector θ̂TE

d (i, j) for test
document d as

θ̂TE
d,k(i, j) =

NTE1,d,k(i, j) + α

NTE1,d,·(i, j) +Kα
(8)

where both the counts NTE1,d,k(i, j) and NTE1,d,·(i, j)
are taken using sample j of test chain i.

Prediction: Given θ̂TE
d (i, j) and φ̂(i) at sample j

of test chain i, we compute the predicted likeli-
hood for each unseen token wTE2

d,n as S(i, j) ≡
p(wTE2

d,n | θ̂TE
d (i, j), φ̂(i)) =

∑K
k=1 θ̂

TE
d,k(i, j) · φ̂k,w

TE2
d,n

(i).
Using different strategies described in Section 2,

we obtain the final predicted likelihood for each un-
seen token p(wTE2

d,n | θ̂TE
d , φ̂) and compute the perplex-

ity as exp
(
−(
∑

d

∑
n log(p(wTE2

d,n | θ̂TE
d , φ̂)))/N TE2

)
where N TE2 is the number of tokens in wTE2 .

Setup: We use three Internet review datasets in our
experiment. For all datasets, we preprocess by tokeniz-
ing, removing stopwords, stemming, adding bigrams to
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Figure 2: Perplexity of LDA using different averaging
strategies with different number of training iterations
TTR. Perplexity generally decreases with additional
training iterations, but the drop is more pronounced
with multiple test chains.

the vocabulary, and we filter using TF-IDF to obtain a
vocabulary of 10,000 words.3 The three datasets are:

• HOTEL: 240,060 reviews of hotels from TripAdvi-
sor (Wang et al., 2010).
• RESTAURANT: 25,459 reviews of restaurants from
Yelp (Jo and Oh, 2011).
• MOVIE: 5,006 reviews of movies from Rotten
Tomatoes (Pang and Lee, 2005)

We report cross-validated average performance over
five folds, and use K = 50 topics for all datasets. To
update the hyperparameters, we use slice sampling (Wal-
lach, 2008, p. 62).4

Results: Figure 2 shows the perplexity of the four
averaging methods, computed with different number
of training iterations TTR. SA outperforms SF, showing
the benefits of averaging over multiple test samples
from a single test chain. However, both multiple chain
methods (MF and MA) significantly outperform these
two methods.

This result is consistent with Asuncion et al. (2009),
who run multiple training chains but a single test chain
for each training chain and average over them. This
is more costly since training chains are usually signif-
icantly longer than test chains. In addition, multiple
training chains are sensitive to their initialization.

3To find bigrams, we begin with bigram candidates that
occur at least 10 times in the corpus and use a χ2 test to filter
out those having a χ2 value less than 5. We then treat selected
bigrams as single word types and add them to the vocabulary.

4MCMC setup: TTR = 1, 000, BTR = 500, LTR = 50,
TTE = 100, BTE = 50 and LTE = 5.
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Figure 3: Performance of SLDA using different averaging strategies computed at each training iteration.

4 Supervised Topic Models
We evaluate the performance of different prediction
methods using supervised latent Dirichlet allocation
(SLDA) (Blei and McAuliffe, 2007) for sentiment anal-
ysis: predicting review ratings given review text. Each
review text is the document wd and the metadata yd is
the associated rating.

SLDA: Going beyond LDA, SLDA captures the rela-
tionship between latent topics and metadata by mod-
eling each document’s continuous response variable
using a normal linear model, whose covariates are
the document’s empirical distribution of topics: yd ∼
N (ηT z̄d, ρ) where η is the regression parameter vec-
tor and z̄d is the empirical distribution over topics of
document d. The generative process of SLDA is:

1. For each topic k ∈ [1,K]
(a) Draw word distribution φk ∼ Dir(β)
(b) Draw parameter ηk ∼ N (µ, σ)

2. For each document d ∈ [1, D]
(a) Draw topic distribution θd ∼ Dir(α)
(b) For each word n ∈ [1, Nd]

i. Draw topic zd,n ∼ Mult(θd)
ii. Draw word wd,n ∼ Mult(φzd,n

)
(c) Draw response yd ∼ N (ηT z̄d, ρ) where

z̄d,k = 1
Nd

∑Nd

n=1 I [zd,n = k]

where I [x] = 1 if x is true, and 0 otherwise.
In SLDA, in addition to the K multinomials {φk}Kk=1,

the global latent variables also contain the regression
parameter ηk for each topic k. The local latent variables
of SLDA resembles LDA’s: the topic proportion vector
θd for each document d.

Train: For posterior inference during training, follow-
ing Boyd-Graber and Resnik (2010), we use stochastic
EM, which alternates between (1) a Gibbs sampling

step to assign a topic to each token, and (2) optimizing
the regression parameters. The probability of assigning
topic k to token n in the training document d is
p(zTR

d,n = k | zTR
−d,n,w

TR
−d,n, w

TR
d,n = v) ∝

N (yd;µd,n, ρ) · N
−d,n
TR,d,k + α

N−d,nTR,d,· +Kα
· N

−d,n
TR,k,v + β

N−d,nTR,k,· + V β
(9)

where µd,n = (
∑K

k′=1 ηk′N
−d,n
TR,d,k′ + ηk)/NTR,d is the

mean of the Gaussian generating yd if zTR
d,n = k. Here,

NTR,d,k is the number of times topic k is assigned to
tokens in the training document d;NTR,k,v is the number
of times word type v is assigned to topic k; · represents
marginal counts and −d,n indicates counts excluding the
assignment of token n in document d.

We optimize the regression parameters η using L-
BFGS (Liu and Nocedal, 1989) via the likelihood

L(η) = − 1

2ρ

D∑
d=1

(yTR
d −ηT z̄TR

d )2− 1

2σ

K∑
k=1

(ηk−µ)2 (10)

At each iteration i in the training chain, the estimated
global latent variables include the a multinomial φ̂k(i)
and a regression parameter η̂k(i) for each topic k.

Test: Like LDA, at test time we sample the topic as-
signments for all tokens in the test data

p(zTE
d,n = k | zTE

−d,n,w
TE) ∝ N−d,n

TE,d,k + α

N−d,n
TE,d,· +Kα

· φ̂k,wTE
d,n

(11)

Prediction: The predicted value S(i, j) in this case is
the estimated value of the metadata review rating

S(i, j) ≡ ŷTE
d (i, j) = η̂(i)T z̄TE

d (i, j), (12)

where the empirical topic distribution of test document d
is z̄TE

d,k(i, j) ≡ 1
NTE,d

∑NTE,d

n=1 I
[
zTE
d,n(i, j) = k

]
.
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Figure 4: Performance of SLDA using different averaging strategies computed at the final training iteration TTR,
compared with two baselines MLR and SVR. Methods using multiple test chains (MF and MA) perform as well as or
better than the two baselines, whereas methods using a single test chain (SF and SA) perform significantly worse.

Experimental setup: We use the same data as in Sec-
tion 3. For all datasets, the metadata are the review
rating, ranging from 1 to 5 stars, which is standard-
ized using z-normalization. We use two evaluation
metrics: mean squared error (MSE) and predictive R-
squared (Blei and McAuliffe, 2007).

For comparison, we consider two baselines: (1) multi-
ple linear regression (MLR), which models the metadata
as a linear function of the features, and (2) support vec-
tor regression (Joachims, 1999, SVR). Both baselines
use the normalized frequencies of unigrams and bigrams
as features. As in the unsupervised case, we report av-
erage performance over five cross-validated folds. For
all models, we use a development set to tune their pa-
rameter(s) and use the set of parameters that gives best
results on the development data at test.5

Results: Figure 3 shows SLDA prediction results with
different averaging strategies, computed at different
training iterations.6 Consistent with the unsupervised
results in Section 3, SA outperforms SF, but both are
outperformed significantly by the two methods using
multiple test chains (MF and MA).

We also compare the performance of the four pre-
diction methods obtained at the final iteration TTR of
the training chain with the two baselines. The results in
Figure 4 show that the two baselines (MLR and SVR) out-
perform significantly the SLDA using only a single test

5For MLR we use a Gaussian prior N (0, 1/λ) with λ =
a · 10b where a ∈ [1, 9] and b ∈ [1, 4]; for SVR, we use
SVMlight (Joachims, 1999) and vary C ∈ [1, 50], which
trades off between training error and margin; for SLDA, we fix
σ = 10 and vary ρ ∈ {0.1, 0.5, 1.0, 1.5, 2.0}, which trades
off between the likelihood of words and response variable.

6MCMC setup: TTR = 5, 000 for RESTAURANT and
MOVIE and 1, 000 for HOTEL; for all datasets BTR = 500,
LTR = 50, TTE = 100, BTE = 20 and LTE = 5.

chains (SF and SA). Methods using multiple test chains
(MF and MA), on the other hand, match the baseline 7

(HOTEL) or do better (RESTAURANT and MOVIE).

5 Discussion and Conclusion
MCMC relies on averaging multiple samples to approxi-
mate target densities. When used for prediction, MCMC
needs to generate and average over both training sam-
ples to learn from training data and test samples to make
prediction. We have shown that simple averaging—not
more aggressive, ad hoc approximations like taking the
final sample (either training or test)—is not just a ques-
tion of theoretical aesthetics, but an important factor in
obtaining good prediction performance.

Compared with SVR and MLR baselines, SLDA using
multiple test chains (MF and MA) performs as well as
or better, while SLDA using a single test chain (SF and
SA) falters. This simple experimental setup choice can
determine whether a model improves over reasonable
baselines. In addition, better prediction with shorter
training is possible with multiple test chains. Thus, we
conclude that averaging using multiple chains produces
above-average results.

Acknowledgments
We thank Jonathan Chang, Ke Zhai and Mohit Iyyer for
helpful discussions, and thank the anonymous reviewers
for insightful comments. This research was supported
in part by NSF under grant #1211153 (Resnik) and
#1018625 (Boyd-Graber and Resnik). Any opinions,
findings, conclusions, or recommendations expressed
here are those of the authors and do not necessarily
reflect the view of the sponsor.

7This gap is because SLDA has not converged after 1,000
training iterations (Figure 3).

1756



References
Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and

Michael I. Jordan. 2003. An introduction to MCMC for
machine learning. Machine Learning, 50(1-2):5–43.

Arthur Asuncion, Max Welling, Padhraic Smyth, and
Yee Whye Teh. 2009. On smoothing and inference for
topic models. In UAI.

David M. Blei and Jon D. McAuliffe. 2007. Supervised topic
models. In NIPS.

David M. Blei, Andrew Ng, and Michael Jordan. 2003. Latent
Dirichlet allocation. JMLR, 3.

David M. Blei. 2012. Probabilistic topic models. Commun.
ACM, 55(4):77–84, April.

David M. Blei. 2014. Build, compute, critique, repeat: Data
analysis with latent variable models. Annual Review of
Statistics and Its Application, 1(1):203–232.

Jordan Boyd-Graber and Philip Resnik. 2010. Holistic sen-
timent analysis across languages: Multilingual supervised
latent Dirichlet allocation. In EMNLP.

Jonathan Chang. 2012. lda: Collapsed Gibbs sampling meth-
ods for topic models. http://cran.r-project.
org/web/packages/lda/index.html. [Online;
accessed 02-June-2014].

Qixia Jiang, Jun Zhu, Maosong Sun, and Eric P. Xing. 2012.
Monte Carlo methods for maximum margin supervised
topic models. In NIPS.

Yohan Jo and Alice H. Oh. 2011. Aspect and sentiment
unification model for online review analysis. In WSDM.

Thorsten Joachims. 1999. Making large-scale SVM learning
practical. In Advances in Kernel Methods - Support Vector
Learning, chapter 11. Cambridge, MA.

Simon Lacoste-Julien, Fei Sha, and Michael I. Jordan. 2008.
DiscLDA: Discriminative learning for dimensionality re-
duction and classification. In NIPS.

D. Liu and J. Nocedal. 1989. On the limited memory BFGS
method for large scale optimization. Math. Prog.

Radford M. Neal. 1993. Probabilistic inference using Markov
chain Monte Carlo methods. Technical Report CRG-TR-
93-1, University of Toronto.

Viet-An Nguyen, Jordan Boyd-Graber, and Philip Resnik.
2012. SITS: A hierarchical nonparametric model using
speaker identity for topic segmentation in multiparty con-
versations. In ACL.

Viet-An Nguyen, Jordan Boyd-Graber, and Philip Resnik.
2013. Lexical and hierarchical topic regression. In Neural
Information Processing Systems.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting class
relationships for sentiment categorization with respect to
rating scales. In ACL.

Daniel Ramage, David Hall, Ramesh Nallapati, and Christo-
pher Manning. 2009. Labeled LDA: A supervised topic
model for credit attribution in multi-labeled corpora. In
EMNLP.

Daniel Ramage, Christopher D. Manning, and Susan Dumais.
2011. Partially labeled topic models for interpretable text
mining. In KDD, pages 457–465.

Philip Resnik and Eric Hardisty. 2010. Gibbs
sampling for the uninitiated. Technical Report
UMIACS-TR-2010-04, University of Maryland.
http://drum.lib.umd.edu//handle/1903/10058.

Michal Rosen-Zvi, Thomas L. Griffiths, Mark Steyvers, and
Padhraic Smyth. 2004. The author-topic model for authors
and documents. In UAI.

Sameer Singh, Michael Wick, and Andrew McCallum. 2012.
Monte Carlo MCMC: Efficient inference by approximate
sampling. In EMNLP, pages 1104–1113.

Mark Steyvers and Tom Griffiths. 2006. Probabilistic topic
models. In T. Landauer, D. Mcnamara, S. Dennis, and
W. Kintsch, editors, Latent Semantic Analysis: A Road to
Meaning. Laurence Erlbaum.

Hanna M. Wallach, Iain Murray, Ruslan Salakhutdinov, and
David Mimno. 2009. Evaluation methods for topic models.
In Leon Bottou and Michael Littman, editors, ICML.

Hanna M Wallach. 2008. Structured Topic Models for Lan-
guage. Ph.D. thesis, University of Cambridge.

Chong Wang, David Blei, and Li Fei-Fei. 2009. Simultaneous
image classification and annotation. In CVPR.

Hongning Wang, Yue Lu, and Chengxiang Zhai. 2010. La-
tent aspect rating analysis on review text data: A rating
regression approach. In SIGKDD, pages 783–792.

Jun Zhu, Amr Ahmed, and Eric P. Xing. 2009. MedLDA:
maximum margin supervised topic models for regression
and classification. In ICML.

Jun Zhu, Ning Chen, Hugh Perkins, and Bo Zhang. 2014.
Gibbs max-margin topic models with data augmentation.
Journal of Machine Learning Research, 15:1073–1110.

1757



Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1758–1763,
October 25-29, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

Large-scale Reordering Model for Statistical Machine Translation
using Dual Multinomial Logistic Regression

Abdullah Alrajehab and Mahesan Niranjanb

aComputer Research Institute, King Abdulaziz City for Science and Technology (KACST)
Riyadh, Saudi Arabia, asrajeh@kacst.edu.sa

bSchool of Electronics and Computer Science, University of Southampton
Southampton, United Kingdom, {asar1a10, mn}@ecs.soton.ac.uk

Abstract

Phrase reordering is a challenge for statis-
tical machine translation systems. Posing
phrase movements as a prediction prob-
lem using contextual features modeled by
maximum entropy-based classifier is su-
perior to the commonly used lexicalized
reordering model. However, Training
this discriminative model using large-scale
parallel corpus might be computationally
expensive. In this paper, we explore recent
advancements in solving large-scale clas-
sification problems. Using the dual prob-
lem to multinomial logistic regression, we
managed to shrink the training data while
iterating and produce significant saving in
computation and memory while preserv-
ing the accuracy.

1 Introduction

Phrase reordering is a common problem when
translating between two grammatically different
languages. Analogous to speech recognition sys-
tems, statistical machine translation (SMT) sys-
tems relied on language models to produce more
fluent output. While early work penalized phrase
movements without considering reorderings aris-
ing from vastly differing grammatical structures
across language pairs like Arabic-English (Koehn,
2004a), many researchers considered lexicalized
reordering models that attempted to learn orienta-
tion based on the training corpus (Tillmann, 2004;
Kumar and Byrne, 2005; Koehn et al., 2005).

Building on this, some researchers have bor-
rowed powerful ideas from the machine learning
literature, to pose the phrase movement problem
as a prediction problem using contextual input fea-
tures whose importance is modeled as weights of
a linear classifier trained by entropic criteria. The
approach (so called maximum entropy classifier

or simply MaxEnt) is a popular choice (Zens and
Ney, 2006; Xiong et al., 2006; Nguyen et al.,
2009; Xiang et al., 2011). Max-margin structure
classifiers were also proposed (Ni et al., 2011).
Alternatively, Cherry (2013) proposed recently us-
ing sparse features optimize the translation quality
with the decoder instead of training a classifier in-
dependently.

While large-scale parallel corpus is advanta-
geous for improving such reordering model, this
improvement comes at a price of computational
complexity. This issue is particularly pronounced
when discriminative models are considered such
as maximum entropy-based model due to the re-
quired iterative learning.

Advancements in solving large-scale classifica-
tion problems have been shown to be effective
such as dual coordinate descent method for linear
support vector machines (Hsieh et al., 2008). Sim-
ilarly, Yu et al. (2011) proposed a two-level dual
coordinate descent method for maximum entropy
classifier.

In this work we explore the dual problem to
multinomial logistic regression for building large-
scale reordering model (section 3). One of the
main advantages of solving the dual problem is
providing a mechanism to shrink the training data
which is a serious issue in building such large-
scale system. We present empirical results com-
paring between the primal and the dual problems
(section 4). Our approach is shown to be fast and
memory-efficient.

2 Baseline System

In statistical machine translation, the most likely
translation ebest of an input sentence f can be
found by maximizing the probability p(e|f), as
follows:

ebest = arg max
e
p(e|f). (1)

1758



A log-linear combination of different models
(features) is used for direct modeling of the poste-
rior probability p(e|f) (Papineni et al., 1998; Och
and Ney, 2002):

ebest = arg max
e

n∑
i=1

λihi(f , e) (2)

where the feature hi(f , e) is a score function
over sentence pairs. The translation model and the
language model are the main features in any sys-
tem although additional features h(.) can be inte-
grated easily (such as word penalty). State-of-the-
art systems usually have around ten features.

The language model, which ensures fluent
translation, plays an important role in reordering;
however, it has a bias towards short translations
(Koehn, 2010). Therefore, a need for developing a
specific model for the reordering problem.

2.1 Lexicalized Reordering Model

Adding a lexicalized reordering model consis-
tently improved the translation quality for sev-
eral language pairs (Koehn et al., 2005). Re-
ordering modeling involves formulating phrase
movements as a classification problem where each
phrase position considered as a class (Tillmann,
2004). Some researchers classified phrase move-
ments into three categories (monotone, swap, and
discontinuous) but the classes can be extended to
any arbitrary number (Koehn and Monz, 2005). In
general, the distribution of phrase orientation is:

p(ok|f̄i, ēi) =
1
Z
h(f̄i, ēi, ok) . (3)

This lexicalized reordering model is estimated
by relative frequency where each phrase pair
(f̄i, ēi) with such an orientation (ok) is counted
and then normalized to yield the probability as fol-
lows:

p(ok|f̄i, ēi) =
count(f̄i, ēi, ok)∑
o count(f̄i, ēi, o)

. (4)

The orientation of a current phrase pair is de-
fined with respect to the previous target phrase.
Galley and Manning (2008) extended the model to
tackle long-distance reorderings. Their hierarchi-
cal model enables phrase movements that are more
complex than swaps between adjacent phrases.

3 Multinomial Logistic Regression

Multinomial logistic regression (MLR), also
known as maximum entropy classifier (Zens and
Ney, 2006), is a probabilistic model for the multi-
class problem. The class probability is given by:

p(ok|f̄i, ēi) =
exp(w>k φ(f̄i, ēi))∑
k′ exp(w>k′φ(f̄i, ēi))

, (5)

where φ(f̄i, ēi) is the feature vector of the i-th
phrase pair. An equivalent notation to w>k φ(f̄i, ēi)
is w>f(φ(f̄i, ēi), ok) where w is a long vector
composed of all classes parameters (i.e. w> =
[w>1 . . .w>K ] ) and f(., .) is a joint feature vec-
tor decomposed via the orthogonal feature rep-
resentation (Rousu et al., 2006). This repre-
sentation simply means there is no crosstalk be-
tween two different feature vectors. For example,
f(φ(f̄i, ēi), o1)> = [φ(f̄i, ēi)> 0 . . . 0].

The model’s parameters can be estimated by
minimizing the following regularized negative
log-likelihood P(w) as follows (Bishop, 2006):

min
w

1
2σ2

K∑
k=1

‖wk‖2−
N∑
i=1

K∑
k=1

p̃ik log p(ok|f̄i, ēi)
(6)

Here σ is a penalty parameter and p̃ is the em-
pirical distribution where p̃ik equals zero for all
ok 6= oi.

Solving the primal optimization problem (6) us-
ing the gradient:

∂P(w)
∂wk

=
wk

σ2
−

N∑
i=1

(
p̃ik − p(ok|f̄i, ēi)

)
φ(f̄i, ēi),

(7)
do not constitute a closed-form solution. In our

experiments, we used stochastic gradient decent
method (i.e. online learning) to estimate w which
is shown to be fast and effictive for large-scale
problems (Bottou, 2010). The method approxi-
mates (7) by a gradient at a single randomly picked
phrase pair. The update rule is:

w′k = wk − ηi∇kPi(w), (8)

where ηi is a positive learning rate.
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3.1 The Dual Problem
Lebanon and Lafferty (2002) derived an equiva-
lent dual problem to (6). Introducing Lagrange
multipliers α, the dual becomes

min
w

1
2σ2

K∑
k=1

‖wk(α)‖2 +
N∑
i=1

K∑
k=1

αik logαik,

s.t.
K∑
k=1

αik = 1 and αik ≥ 0 ,∀i, k, (9)

where

wk(α) = σ2
N∑
i=1

(p̃ik − αik)φ(f̄i, ēi) (10)

As mentioned in the introduction, Yu et al.
(2011) proposed a two-level dual coordinate de-
scent method to minimize D(α) in (9) but it has
some numerical difficulties. Collins et al. (2008)
proposed simple exponentiated gradient (EG) al-
gorithm for Conditional Random Feild (CRF). The
algorithm is applicable to our problem, a special
case of CRF. The rule update is:

α′ik =
αik exp(−ηi∇ikD(α))∑
k′ αik′ exp(−ηi∇ik′D(α))

(11)

where

∇ikD(α) ≡ ∂D(α)
∂αik

= 1 + logαik

+
(
wy(α)>φ(f̄i, ēi)−wk(α)>φ(f̄i, ēi)

)
.

(12)

Here y represents the true class (i.e. oy = oi).
To improve the convergence, ηi is adaptively ad-
justed for each example. If the objective function
(9) did not decrease, ηi is halved for number of tri-
als (Collins et al., 2008). Calculating the function
difference below is the main cost in EG algorithm,

D(α′)−D(α) =
K∑
k=1

(
α′ik logα′ik − αik logαik

)
−

K∑
k=1

(α′ik − αik)wk(α)>φ(f̄i, ēi)

+
σ2

2
‖φ(f̄i, ēi)‖2

K∑
k=1

(α′ik − αik)2. (13)

Clearly, the cost is affordable because wk(α) is
maintained throughout the algorithm as follows:

wk(α′) = wk(α)−σ2(α′ik−αik)φ(f̄i, ēi) (14)

Following Yu et al. (2011), we initialize αik as
follows:

αik =
{

(1− ε) if ok = oi;
ε

K−1 else. (15)

where ε is a small positive value. This is because
the objective function (9) is not well defined at
αik = 0 due to the logarithm appearance.

Finally, the optimal dual variables are achieved
when the following condition is satisfied for all ex-
amples (Yu et al., 2011):

max
k
∇ikD(α) = min

k
∇ikD(α) (16)

This condition is the key to accelerate EG al-
gorithm. Unlike the primal problem (6), the dual
variables αik are associated with each example
(i.e. phrase pair) therefore a training example can
be disregarded once its optimal dual variables ob-
tained. More data shrinking can be achieved by
tolerating a small difference between the two val-
ues in (16). Algorithm 1 presents the overall pro-
cedure (shrinking step is from line 6 to 9).

Algorithm 1 Shrinking stochastic exponentiated
gradient method for training the dual problem
Require: training set S = {φ(f̄i, ēi), oi}Ni=1

1: Given α and the corresponding w(α)
2: repeat
3: Randomly pick i from S
4: Claculate∇ikD(α) ∀k by (12)
5: vi = maxk∇ikD(α)−mink∇ikD(α)
6: if vi ≤ ε then
7: Remove i from S
8: Continue from line 3
9: end if

10: η = 0.5
11: for t = 1 to maxTrial do
12: Calculate α′ik ∀k by (11)
13: if D(α′)−D(α) ≤ 0 then
14: Update α and w(α) by (14)
15: Break
16: end if
17: η = 0.5 η
18: end for
19: until vi ≤ ε ∀i
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4 Experiments

We used MultiUN which is a large-scale parallel
corpus extracted from the United Nations website
(Eisele and Chen, 2010). We have used Arabic
and English portion of MultiUN where the English
side is about 300 million words.

We simplify the problem by classifying phrase
movements into three categories (monotone,
swap, discontinuous). To train the reordering
models, we used GIZA++ to produce word align-
ments (Och and Ney, 2000). Then, we used the
extract tool that comes with the Moses toolkit
(Koehn et al., 2007) in order to extract phrase pairs
along with their orientation classes.

As shown in Table 1, each extracted phrase pair
is represented by linguistic features as follows:

• Aligned source and target words in a phrase
pair. Each word alignment is a feature.

• Words within a window around the source
phrase to capture the context. We choose ad-
jacent words of the phrase boundary.

The extracted phrase pairs after filtering are
47,227,789. The features that occur more than 10
times are 670,154.

Sentence pair:
f : f1 f2

1
f3 f4 f5

2
f6

3
.

e : e1
1

e2 e3
3

e4 e5
2
.

Extracted phrase pairs (f̄ , ē) :
f̄i ||| ēi ||| oi ||| alignment ||| context

f1 f2 ||| e1 ||| mono ||| 0-0 1-0 ||| f3

f3 f4 f5 ||| e4 e5 ||| swap ||| 0-1 2-0 ||| f2 f6

f6 ||| e2 e3 ||| other ||| 0-0 0-1 ||| f5

All linguistic features:

1. f1&e1 2. f2&e1 3. f3 4. f3&e5 5. f5&e4
6. f2 7. f6 8. f6&e2 9. f6&e3 10. f5

Bag-of-words representation:
a phrase pair is represented as a vector where each feature
is a discrete number (0=not exist).

φ(f̄i, ēi) 1 2 3 4 5 6 7 8 9 10
φ(f̄1, ē1) = 1 1 1 0 0 0 0 0 0 0
φ(f̄2, ē2) = 0 0 0 1 1 1 1 0 0 0
φ(f̄3, ē3) = 0 0 0 0 0 0 1 1 1 1

Table 1: A generic example of the process of
phrase pair extraction and representation.

4.1 Classification

We trained our reordering models by both primal
and dual classifiers for 100 iterations. For the dual
MLR, different shrinking levels have been tried by
varying the parameter (ε) in Algorithm 1. Table 2
reports the training time and classification error
rate of these models.

Training the dual MLR with moderate shrinking
level (i.e. ε = 0.1) is almost four times faster than
training the primal one. Choosing larger value for
(ε) leads to faster training but might harm the per-
formance as shown below.

Classifier Training Time Error Rate
Primal MLR 1 hour 9 mins 17.81%
Dual MLR ε:0.1 18 minutes 17.95%
Dual MLR ε:1.0 13 minutes 21.13%
Dual MLR ε:0.01 22 minutes 17.89%

Table 2: Performance of the primal and dual MLR
based on held-out data.

Figure 1 shows the percentage of active set dur-
ing training dual MLR with various shrinking lev-
els. Interestingly, the dual MLR could disregard
more than 99% of the data after a couple of iter-
ations. For very large corpus, the data might not
fit in memory and training primal MLR will take
long time due to severe disk-swapping. In this sit-
uation, using dual MLR is very beneficial.
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Figure 1: Percentage of active set in dual MLR.
As the data size decreases, each iteration takes far
less computation time (see Table 2 for total time).
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4.2 Translation

We used the Moses toolkit (Koehn et al., 2007)
with its default settings to build three phrase-based
translation systems. They differ in how their re-
ordering models were estimated. The language
model is a 5-gram with interpolation and Kneser-
Ney smoothing (Kneser and Ney, 1995). We tuned
the system by using MERT technique (Och, 2003).

As commonly used in statistical machine trans-
lation, we evaluated the translation performance
by BLEU score (Papineni et al., 2002). The test
sets are NIST MT06 and MT08 where the En-
glish sides are 35,481 words (1056 sentences) and
116,840 words (3252 sentences), respectively. Ta-
ble 3 shows the BLEU scores for the translation
systems. We also computed statistical significance
for the models using the paired bootstrap resam-
pling method (Koehn, 2004b).

Translation System MT06 MT08
Baseline + Lexical. model 30.86 34.22
Baseline + Primal MLR 31.37* 34.85*
Baseline + Dual MLR ε:0.1 31.36* 34.87*

Table 3: BLEU scores for Arabic-English transla-
tion systems with different reordering models (*:
better than the lexicalized model with at least 95%
statistical significance).

5 Conclusion

In training such system with large data sizes and
big dimensionality, computational complexity be-
come a serious issue. In SMT, maximum entropy-
based reordering model is often introduced as a
better alternative to the commonly used lexical-
ized one. However, training this discriminative
model using large-scale corpus might be compu-
tationally expensive due to the iterative learning.

In this paper, we propose training the model
using the dual MLR with shrinking method. It
is almost four times faster than the primal MLR
(also know as MaxEnt) and much more memory-
efficient. For very large corpus, the data might not
fit in memory and training primal MLR will take
long time due to severe disk-swapping. In this sit-
uation, using dual MLR is very beneficial. The
proposed method is also useful for many classi-
fication problems in natural language processing
that require large-scale data.
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Abstract
In this paper, we present two improve-
ments to the beam search approach for
solving homophonic substitution ciphers
presented in Nuhn et al. (2013): An im-
proved rest cost estimation together with
an optimized strategy for obtaining the or-
der in which the symbols of the cipher are
deciphered reduces the beam size needed
to successfully decipher the Zodiac-408
cipher from several million down to less
than one hundred: The search effort is re-
duced from several hours of computation
time to just a few seconds on a single CPU.
These improvements allow us to success-
fully decipher the second part of the fa-
mous Beale cipher (see (Ward et al., 1885)
and e.g. (King, 1993)): Having 182 differ-
ent cipher symbols while having a length
of just 762 symbols, the decipherment is
way more challenging than the decipher-
ment of the previously deciphered Zodiac-
408 cipher (length 408, 54 different sym-
bols). To the best of our knowledge, this
cipher has not been deciphered automati-
cally before.

1 Introduction

State-of-the-art statistical machine translation sys-
tems use large amounts of parallel data to estimate
translation models. However, parallel corpora are
expensive and not available for every domain.

Decipherment uses only monolingual data to
train a translation model: Improving the core deci-
pherment algorithms is an important step for mak-
ing decipherment techniques useful for training
practical machine translation systems.

In this paper we present improvements to the
beam search algorithm for deciphering homo-
phonic substitution ciphers as presented in Nuhn

et al. (2013). We show significant improvements
in computation time on the Zodiac-408 cipher and
show the first decipherment of part two of the
Beale ciphers.

2 Related Work

Regarding the decipherment of 1:1 substitution ci-
phers, various works have been published: Most
older papers do not use a statistical approach and
instead define some heuristic measures for scoring
candidate decipherments. Approaches like Hart
(1994) and Olson (2007) use a dictionary to check
if a decipherment is useful. Clark (1998) defines
other suitability measures based on n-gram counts
and presents a variety of optimization techniques
like simulated annealing, genetic algorithms and
tabu search. On the other hand, statistical ap-
proaches for 1:1 substitution ciphers are published
in the natural language processing community:
Ravi and Knight (2008) solve 1:1 substitution ci-
phers optimally by formulating the decipherment
problem as an integer linear program (ILP) while
Corlett and Penn (2010) solve the problem using
A∗ search. Ravi and Knight (2011) report the
first automatic decipherment of the Zodiac-408 ci-
pher. They use a combination of a 3-gram lan-
guage model and a word dictionary. As stated in
the previous section, this work can be seen as an
extension of Nuhn et al. (2013). We will there-
fore make heavy use of their definitions and ap-
proaches, which we will summarize in Section 3.

3 General Framework

In this Section we recap the beam search frame-
work introduced in Nuhn et al. (2013).

3.1 Notation

We denote the ciphertext with fN1 =
f1 . . . fj . . . fN which consists of cipher
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tokens fj ∈ Vf . We denote the plain-
text with eN1 = e1 . . . ei . . . eN (and its
vocabulary Ve respectively). We define
e0 = f0 = eN+1 = fN+1 = $ with “$”
being a special sentence boundary token. Homo-
phonic substitutions are formalized with a general
function φ : Vf → Ve. Following (Corlett and
Penn, 2010), cipher functions φ, for which not all
φ(f)’s are fixed, are called partial cipher func-
tions. Further, φ′ is said to extend φ, if for all
f ∈ Vf that are fixed in φ, it holds that f is also
fixed in φ′ with φ′(f) = φ(f). The cardinality
of φ counts the number of fixed f ’s in φ. When
talking about partial cipher functions we use the
notation for relations, in which φ ⊆ Vf × Ve.

3.2 Beam Search

The main idea of (Nuhn et al., 2013) is to struc-
ture all partial φ’s into a search tree: If a cipher
containsN unique symbols, then the search tree is
of height N . At each level a decision about the n-
th symbol is made. The leaves of the tree form full
hypotheses. Instead of traversing the whole search
tree, beam search descents the tree top to bottom
and only keeps the most promising candidates at
each level. Practically, this is done by keeping
track of all partial hypotheses in two arraysHs and
Ht. During search all allowed extensions of the
partial hypotheses in Hs are generated, scored and
put into Ht. Here, the function EXT ORDER (see
Section 5) chooses which cipher symbol is used
next for extension, EXT LIMITS decides which ex-
tensions are allowed, and SCORE (see Section 4)
scores the new partial hypotheses. PRUNE then
selects a subset of these hypotheses. Afterwards
the array Ht is copied to Hs and the search pro-
cess continues with the updated arrayHs. Figure 1
shows the general algorithm.

4 Score Estimation

The score estimation function is crucial to the
search procedure: It predicts how good or bad a
partial cipher function φmight become, and there-
fore, whether it’s worth to keep it or not.

To illustrate how we can calculate these scores,
we will use the following example with vocabular-
ies Vf = {A,B,C,D}, Ve = {a, b, c, d}, exten-
sion order (B,C,A,D), and cipher text1

φ(fN1 ) = $ ABDD CABC DADC ABDC $

1We include blanks only for clarity reasons.

1: function BEAM SEARCH(EXT ORDER)
2: init sets Hs, Ht

3: CARDINALITY = 0
4: Hs.ADD((∅, 0))
5: while CARDINALITY < |Vf | do
6: f = EXT ORDER[CARDINALITY]
7: for all φ ∈ Hs do
8: for all e ∈ Ve do
9: φ′ := φ ∪ {(e, f)}

10: if EXT LIMITS(φ′) then
11: Ht.ADD(φ′,SCORE (φ′))
12: end if
13: end for
14: end for
15: PRUNE(Ht)
16: CARDINALITY = CARDINALITY + 1
17: Hs = Ht

18: Ht.CLEAR()
19: end while
20: return best scoring cipher function in Hs

21: end function

Figure 1: The general structure of the beam search
algorithm for decipherment of substitution ciphers
as presented in Nuhn et al. (2013). This paper im-
proves the functions SCORE and EXT ORDER.

and partial hypothesis φ = {(A, a), (B, b)}. This
yields the following partial decipherment

φ(fN1 ) = $ ab.. .ab. .a.. ab.. $

The score estimation function can only use this
partial decipherment to calculate the hypothesis’
score, since there are not yet any decisions made
about the other positions.

4.1 Baseline

Nuhn et al. (2013) present a very simple rest
cost estimator, which calculates the hypothesis’
score based only on fully deciphered n-grams, i.e.
those parts of the partial decipherment that form a
contiguous chunk of n deciphered symbols. For
all other n-grams containing not yet deciphered
symbols, a trivial estimate of probability 1 is as-
sumed, making it an admissible heuristic. For the
above example, this baseline yields the probability
p(a|$) · p(b|a) · 14 · p(b|a) · 16 · p(b|a) · 12. The
more symbols are fixed, the more contiguous n-
grams become available. While being easy and ef-
ficient to compute, it can be seen that for example
the single ”a” is not involved in the computation of
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the score at all. In practical decipherment, like e.g.
the Zodiac-408 cipher, this forms a real problem:
While making the first decisions—i.e. traversing
the first levels of the search tree—only very few
terms actually contribute to the score estimation,
and thus only give a very coarse score. This makes
the beam search ”blind” when not many symbols
are deciphered yet. This is the reason, why Nuhn
et al. (2013) need a large beam size of several mil-
lion hypotheses in order to not lose the right hy-
pothesis during the first steps of the search.

4.2 Improved Rest Cost Estimation

The rest cost estimator we present in this paper
solves the problem mentioned in the previous sec-
tion by also including lower order n-grams: In the
example mentioned before, we would also include
unigram scores into the rest cost estimate, yielding
a score of p(a|$)·p(b|a)·13·p(a)·p(b|a)·12·p(a)12·
p(a) · p(b|a) · 12. Note that this is not a simple lin-
ear interpolation of different n-gram trivial scores:
Each symbol is scored only using the maximum
amount of context available. This heuristic is non-
admissible, since an increased amount of context
can always lower the probabilty of some symbols.
However, experiments show that this score estima-
tion function works great.

5 Extension Order

Besides having a generally good scoring function,
also the order in which decisions about the cipher
symbols are made is important for obtaining reli-
able cost estimates. Generally speaking we want
an extension order that produces partial decipher-
ments that contain useful information to decide
whether a hypothesis is worth being kept or not
as early as possible.

It is also clear that the choice of a good ex-
tension order is dependent on the score estima-
tion function SCORE. After presenting the previ-
ous state of the art, we introduce a new extension
order optimized to work together with our previ-
ously introduced rest cost estimator.

5.1 Baseline

In (Nuhn et al., 2013), two strategies are pre-
sented: One which at each step chooses the most
frequent remaining cipher symbol, and another,
which greedily chooses the next symbol to max-
imize the number of contiguously fixed n-grams
in the ciphertext.

LM order
Perplexity

Zodiac-408 Beale Pt. 2

1 19.49 18.35
2 14.09 13.96
3 12.62 11.81
4 11.38 10.76
5 11.19 9.33
6 10.13 8.49
7 10.15 8.27
8 9.98 8.27

Table 1: Perplexities of the correct decipherment
of Zodiac-408 and part two of the Beale ciphers
using the character based language model used in
beam search. The language model was trained on
the English Gigaword corpus.

5.2 Improved Extension Order
Each partial mapping φ defines a partial decipher-
ment. We want to choose an extension order such
that all possible partial decipherments following
this extension order are as informative as possible:
Due to that, we can only use information about
which symbols will be deciphered, not their actual
decipherment. Since our heuristic is based on n-
grams of different orders, it seems natural to evalu-
ate an extension order by counting how many con-
tiguously deciphered n-grams are available: Our
new strategy tries to find an extension order op-
timizing the weighted sum of contiguously deci-
phered n-gram counts2

N∑
n=1

wn ·#n.

Here n is the n-gram order, wn the weight for or-
der n, and #n the number of positions whose max-
imum context is of size n.

We perform a beam search over all possible
enumerations of the cipher vocabulary: We start
with fixing only the first symbol to decipher. We
then continue with the second symbol and evalu-
ate all resulting extension orders of length 2. In
our experiments, we prune these candidates to the
100 best ones and continue with length 3, and so
on.

Suitable values for the weights wn have to be
chosen. We try different weights for the different

2If two partial extension orders have the same score after
fixing n symbols, we fall back to comparing the scores of
the partial extension orders after fixing only the first n − 1
symbols.
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i02 h08 a03 v01 e05 d09 e07 p03 o07 s10 i11 t03 e14 d03 i03 n05 t06 h01 e13 c04 o10 u01 n01 t04 y01

o12 f 04 b04 e15 d09 f 03 o04 r06 d04 a07 b07 o09 u03 t13 f 01 o01 u08 r05 m03 i08 l09 e14 s06 f 01 r05

o07 m04 b06 u02 f 04 o10 r07 d01 s11 i03 n02 a06 n03 e05 x01 c03 a01 v01 a03 t10 i13 o03 n05 o08 r06

v01 a08 u03 l01 t11 s12 i04 x01 f 01 e01 e03 t02 b06 e07 l02 o11 w06 t08 h08 e15 s06 u04 r06 f 04 a10

...
p04 a14 p01 e07 r05 n02 u02 m02 b01 e14 r05 o03 n05 e15 d10 e01 s01 c01 r01 i03 b05 e06 s08 t01 h08

c04 e10 x01 a14 c07 t02 l09 o12 c02 a04 l09 i13 t02 y01 o02 f 03 t07 h02 e11 v01 a10 r07 l07 t11 s09

o04 t01 h03 a06 t04 n03 o06 d05 i13 f 02 f 03 i03 c04 u07 l09 t02 y01 w04 i12 l01 l02 b03 e01 h02 a09

d10 i07 n06 f 01 i13 n01 d10 i03 n05 g04 i03 t05

Table 2: Beginning and end of part two of the Beale cipher. Here we show a relabeled version of the ci-
pher, which encodes knowledge of the gold decipherment to assign reasonable names to all homophones.
The original cipher just consists of numbers.

orders on the Zodiac-408 cipher with just a beam
size of 26. With such a small beam size, the exten-
sion order plays a crucial role for a successful de-
cipherment: Depending on the choice of the differ-
ent weights wn we can observe decipherment runs
with 3 out of 54 correct mappings, up to 52 out
of 54 mappings correct. Even though the choice
of weights is somewhat arbitrary, we can see that
generally giving higher weights to higher n-gram
orders yields better results.

We use the weights w8
1 =

(0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 3.0) for the
following experiments. It is interesting to com-
pare these weights to the perplexities of the
correct decipherment measured using different
n-gram orders (Table 5). However, at this point
we do not see any obvious connection between
perplexities and weights wn, and leave this as a
further research direction.

6 Experimental Evaluation

6.1 Zodiac Cipher

Using our new algorithm we are able to decipher
the Zodiac-408 with just a beam size of 26 and a
language model order of size 8. By keeping track
of the gold hypothesis while performing the beam
search, we can see that the gold decipherment in-
deed always remains within the top 26 scoring hy-
potheses. Our new algorithm is able to decipher
the Zodiac-408 cipher in less than 10s on a sin-
gle CPU, as compared to 48h of CPU time using
the previously published heuristic, which required
a beam size of several million. Solving a cipher
with such a small beam size can be seen as “read-
ing off the solution”.

6.2 Beale Cipher

We apply our algorithm to the second part of the
Beale ciphers with a 8-gram language model.

Compared to the Zodiac-408, which has length
408 while having 54 different symbols (7.55 ob-
servations per symbol), part two of the Beale ci-
phers has length 762 while having 182 different
symbols (4.18 observations per symbol). Com-
pared to the Zodiac-408, this is both, in terms of
redundancy, as well as in size of search space, a
way more difficult cipher to break.

Here we run our algorithm with a beam size of
10M and achieve a decipherment accuracy of 157
out of 185 symbols correct yielding a symbol error
rate of less than 5.4%. The gold decipherment is
pruned out of the beam after 35 symbols have been
fixed.

We also ran our algorithm on the other parts
of the Beale ciphers: The first part has a length
520 and contains 299 different cipher symbols
(1.74 observations per symbol), while part three
has length 618 and has 264 symbols which is
2.34 observations per mapping. However, our al-
gorithm does not yield any reasonable decipher-
ments. Since length and number of symbols indi-
cate that deciphering these ciphers is again more
difficult than for part two, it is not clear whether
the other parts are not a homophonic substitution
cipher at all, or whether our algorithm is still not
good enough to find the correct decipherment.

7 Conclusion

We presented two extensions to the beam search
method presented in (Nuhn et al., 2012), that re-
duce the search effort to decipher the Zodiac-408
enormously. These improvements allow us to au-
tomatically decipher part two of the Beale ciphers.
To the best of our knowledge, this has not been
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done before. This algorithm might prove useful
when applied to word substitution ciphers and to
learning translations from monolingual data.
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Abstract

Manual analysis and decryption of enci-
phered documents is a tedious and error
prone work. Often—even after spend-
ing large amounts of time on a par-
ticular cipher—no decipherment can be
found. Automating the decryption of var-
ious types of ciphers makes it possible
to sift through the large number of en-
crypted messages found in libraries and
archives, and to focus human effort only
on a small but potentially interesting sub-
set of them. In this work, we train a clas-
sifier that is able to predict which enci-
pherment method has been used to gener-
ate a given ciphertext. We are able to dis-
tinguish 50 different cipher types (speci-
fied by the American Cryptogram Associ-
ation) with an accuracy of 58.5%. This is a
11.2% absolute improvement over the best
previously published classifier.

1 Introduction

Libraries and archives contain a large number of
encrypted messages created throughout the cen-
turies using various encryption methods. For the
great majority of the ciphers an analysis has not
yet been conducted, simply because it takes too
much time to analyze each cipher individually, or
because it is too hard to decipher them. Automatic
methods for analyzing and classifying given ci-
phers makes it possible to sift interesting messages
and by that focus the limited amount of human re-
sources to a promising subset of ciphers.

For specific types of ciphers, there exist au-
tomated tools to decipher encrypted messages.
However, the publicly available tools often de-
pend on a more or less educated guess which
type of encipherment has been used. Furthermore,

they often still need human interaction and are
only restricted to analyzing very few types of ci-
phers. In practice however, there are many differ-
ent types of ciphers which we would like to an-
alyze in a fully automatic fashion: Bauer (2010)
gives a good overview over historical methods that
have been used to encipher messages in the past.
Similarly, the American Cryptogram Association
(ACA) specifies a set of 56 different methods for
enciphering a given plaintext:

Each encipherment method Mi can be seen as
a function that transforms a given plaintext into a
ciphertext using a given key, or short:

cipher = Mi(plain, key)

When analyzing an unknown ciphertext, we are
interested in the original plaintext that was used to
generate the ciphertext, i.e. the opposite direction:

plain = M−1
i (cipher, key)

Obtaining the plaintext from an enciphered mes-
sage is a difficult problem. We assume that the
decipherment of a message can be separated into
solving three different subproblems:

1. Find the encipherment method Mi that was
used to create the cipher

cipher → Mi

.
2. Find the key that was used together with the

methodMi to encipher the plaintext to obtain
cipher = Mi(plain, key).

3. Decode the message using Mi and key
cipher → M−1

i (cipher, key)
Thus, an intermediate step to deciphering an un-
known ciphertext is to find out which encryption
method was used. In this paper, we present a clas-
sifier that is able to predict just that: Given an un-
known ciphertext, it can predict what kind of en-
cryption method was most likely used to generate
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• Type: CMBIFID
• Plaintext:
WOMEN NSFOO TBALL ISGAI
NINGI NPOPU LARIT YANDT
HETOU RNAME
• Key:
LEFTKEY=’IACERATIONS’
RIGHTKEY=’KNORKOPPING’
PERIOD=3, LROUTE=1
RROUTE=1, USE6X6=0
• Ciphertext:
WTQNG GEEBQ BPNQP VANEN
KDAOD GAHQS PKNVI PTAAP
DGMGR PCSGN

Figure 1: Example “CMBIFID” cipher: Text is
grouped in five character chunks for readability.

it. The results of our classifier are a valuable input
to human decipherers to make a first categoriza-
tion of an unknown ciphertext.

2 Related Work

Central to this work is the list of encryption meth-
ods provided by the American Cipher Associa-
tion1. This list contains detailed descriptions and
examples of each of the cipher types, allowing us
to implement them. Figure 3 lists these methods.

We compare our work to the only previously
published cipher type classifier for classical ci-
phers2. This classifier is trained on 16, 800 cipher-
texts and is implemented in javascript to run in the
web browser: The user can provide the ciphertext
as input to a web page that returns the classifier’s
predictions. The source code of the classifier is
available online. Our work includes a reimple-
mentation of the features used in that classifier.

As examples for work that deals with the auto-
mated decipherment of cipher texts, we point to
(Ravi and Knight, 2011), and (Nuhn et al., 2013).
These publications develop specialized algorithms
for solving simple and homophonic substitution
ciphers, which are just two out of the 56 cipher
types defined by the ACA. We also want to men-
tion (de Souza et al., 2013), which presents a ci-
pher type classifier for the finalist algorithms of
the Advanced Encryption Standard (AES) contest.

1
http://cryptogram.org/cipher_types.html

2See http://bionsgadgets.appspot.com/gadget_forms/

refscore_extended.html and https://sites.google.com/site/

bionspot/cipher-id-tests

plaintext key

encipher

ciphertext

classifier training

type

Figure 2: Overview over the data generation and
training of the classifier presented in this work.

3 General Approach

Given a ciphertext, the task is to find the right en-
cryption method. Our test set covers 50 out of 56
cipher types specified by ACA, as listed in Fig-
ure 3. We are going to take a machine learning ap-
proach which is based on the observation that we
can generate an infinite amount of training data.

3.1 Data Flow

The training procedure is depicted in Figure 2:
Based upon a large English corpus, we first choose
possible plaintext messages. Then, for each enci-
pherment method, we choose a random key and
encipher each of the plaintext messages using the
encipherment method and key. By doing this, we
can obtain (a theoretically infinite) amount of la-
beled data of the form (type, ciphertext). We can
then train a classifier on this data and evaluate it
on some held out data.

Figure 1 shows that in general the key can con-
sist of more than just a codeword: In this case,
the method uses two codewords, a period length,
two different permutation parameters, and a gen-
eral decision whether to use a special “6×6” vari-
ant of the cipher or not. If not defined otherwise,
we choose random settings for these parameters.
If the parameters are integers, we choose random
values from a uniform distribution (in a sensible
range). In case of codewords, we choose the 450k
most frequent words from an English dictionary.
We train on cipher texts of random length.

3.2 Classifiers

The previous state-of-the-art classifier by BION

uses a random forest classifier (Breiman, 2001).
The version that is available online, uses 50 ran-
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• 6x6bifid
• 6x6playfair
• amsco
• bazeries
• beaufort
• bifid6
• bifid7
• (cadenus)
• cmbifid
• columnar
• digrafid
• dbl chckrbrd

• four square
• fracmorse
• grandpre
• (grille)
• gromark
• gronsfeld
• homophonic
• mnmedinome
• morbit
• myszkowski
• nicodemus
• nihilistsub

• (nihilisttransp)
• patristocrat
• period 7 vig.
• periodic gro-

mark
• phillips
• plaintext
• playfair
• pollux
• porta
• portax
• progkey beau-

fort
• progressivekey
• quagmire2
• quagmire3
• quagmire4
• ragbaby
• randomdigit
• randomtext
• redefence
• (route transp)
• runningkey
• seriatedpfair

• swagman
• tridigital
• trifid
• trisquare
• trisquare hr
• two square
• two sq. spiral
• vigautokey
• (vigenere)
• (vigslidefair)

Figure 3: Cipher types specified by ACA. Our classifier is able to recognize 50 out of these 56 ciphers.
The braced cipher types are not covered in this work.

dom decision trees. The features used by this clas-
sifier are described in Section 4.

Further, we train a support vector machine using
the libSVM toolkit (Chang and Lin, 2011). This
is feasible for up to 100k training examples. Be-
yond this point, training times become too large.
We perform multi class classification using ν-SVC
and a polynomial kernel. Multi class classification
is performed using one-against-one binary classifi-
cation. We select the SVM’s free parameters using
a small development set of 1k training examples.

We also use Vowpal Wabbit (Langford et al.,
2007) to train a linear classifier using stochastic
gradient descent. Compared to training SVMs,
Vowpal Wabbit is extremely fast and allows using
a lot of training examples. We use a squared loss
function, adaptive learning rates and don’t employ
any regularization. We train our classifier with up
to 1M training examples. The best performing set-
tings use one-against-all classification, 20 passes
over the training data and the default learning rate.
Quadratic features resulted in much slower train-
ing, while not providing any gains in accuracy.

4 Features

We reimplemented all of the features used in the
BION classifier, and add three newly developed
sets of features, resulting in a total of 58 features.

In order to further structure these features, we
group these features as follows: We call the set
of features that relate to the length of the cipher
LEN. This set contains binary features firing when
the cipher length is a multiple of 2, 3, 5, 25, any
of 4-15, and any of 4-30. We call the set of fea-
tures that are based on the fact that the cipher-
text contains a specific symbol HAS. This set con-
tains binary features firing when the cipher con-

tains a digit, a letter (A-Z), the “#” symbol, the
letter “j”, the digit “0”. We also introduce an-
other set of features called DGT that contains two
features, firing when the cipher is starting or end-
ing with a digit. The set VIG contains 5 features:
The feature score is based on the best possible bi-
gram LM perplexity of a decipherment compatible
with the decipherment process of the cipher types
Autokey, Beaufort, Porta, Slidefair and Vigenere.
Further, we also include the features IC, MIC,
MKA, DIC, EDI, LR, ROD and LDI, DBL, NOMOR,
RDI, PTX, NIC, PHIC, BDI, CDD, SSTD, MPIC,
SERP, which were introduced in the BION classi-
fier3. Thus, the first 22 data points in Figure 4 are
based on previously known features by BION. We
further present the following additional features.

4.1 Repetition Feature (REP)

This set of features is based on how often the ci-
phertext contains symbols that are repeated ex-
actly n times in a row: For example the cipher-
text shown in Figure 1 contains two positions with
repetitions of length n = 2, because the cipher-
text contains EE, as well as AA. Beyond length
2, there are no repeats. These numbers are then
normalized by dividing them by the total number
of repeats of length 2 ≤ n ≤ 5.

4.2 Amsco Feature (AMSC)

The idea of the AMSCO cipher is to fill consec-
utive chunks of one and two plaintext characters
into n columns of a grid (see Table 1). Then a
permutation of the columns is performed, and the
resulting permuted plaintext is read of line by line
and forms the final ciphertext. This feature reads
the ciphertext into a similar grid of up to 5 columns

3See http://home.comcast.net/˜acabion/acarefstats.html
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Plaintext w om e ns f
oo t ba l li

Permutation 3 5 1 4 2

Table 1: Example grid used for AMSCO ciphers.

and then tries all possible permutations to retain
the original plaintext. The result of this opera-
tion is then scored with a bigram language model.
Depending on whether the difference in perplexity
between ciphertext and deciphered text exceeds a
given threshold, this binary feature fires.

4.3 Variant Feature (VAR)
In the variant cipher, the plaintext is written into
a block under a key word. All letters in the first
column are enciphered by shifting them using the
first key letter of the key word, the second column
uses the second key letter, etc. For different pe-
riods (i.e. lengths of key words), the ciphertext
is structured into n columns and unigram statis-
tics for each column are calculated. The frequency
profile of each column is compared to the unigram
frequency profile using a perplexity measure. This
binary feature fires when the resulting perplexities
are lower than a specific threshold.

5 Results

Figure 4 shows the classification accuracy for the
BION baseline, as well as our SVM and VW based
classifiers for a test set of 305 ciphers that have
been published in the ACA. The classifiers shown
in this figure are trained on cipher texts of ran-

dom length. We show the contribution of all the
features we used in the classifier on the x-axis.
Furthermore we also vary the amount of training
data we use to train the classifiers from 10k to 1M
training examples. It can be seen that when using
the same features as BION, our prediction accu-
racy is compatible with the BION classifier. The
main improvement of our classifier stems from the
REP, AMSC and VAR features. Our best classi-
fier is more than 11% more accurate than previous
state-of-the-art BION classifier.

We identified the best classifier on a held-out
set of 1000 ciphers, i.e. 20 ciphers for each ci-
pher type. Here the three new features improve the
VW-1M classifier from 50.9% accuracy to 56.0%
accuracy, and the VW-100k classifier from 48.9%
to 54.6%. Note that this held-out set is based on
the exact same generator that we used to create the
training data with. However, we also report the
results of our method on the completely indepen-
dently created ACA test set in Figure 4.

6 Conclusion

We presented a state-of-the art classifier for cipher
type detection. The approach we present is easily
extensible to cover more cipher types and allows
incorporating new features.
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Mason, Beáta Megyesi, Julian Schamper, and
Megha Srivastava for their support and ideas. This
work was supported by ARL/ARO (W911NF-10-
1-0533) and DARPA (HR0011-12-C-0014).

10

20

30

40

50

60

HAS
LEN

VIG IC
M

IC
M

KA
DIC EDI

LR
ROD

LDI
DBL

NM
OR

RDI
PTX

NIC
PHIC BDI

CDD
SSTD

M
PIC

SERP
REP

AM
SC

VAR

Features

A
cc

ur
ac

y
(%

)

BION

SVM 10k
SVM100k
VW 100k
VW 1M

Figure 4: Classifier accuracy vs. training data and set of features used. From left to right more and
more features are used, the x-axis shows which features are added. The feature names are described in
Section 4. The features right of the vertical line are presented in this paper. The horizontal line shows
the previous state-of-the art accuracy (BION) of 47.3%, we achieve 58.49%.

1772



References
F.L. Bauer. 2010. Decrypted Secrets: Methods and

Maxims of Cryptology. Springer.

Leo Breiman. 2001. Random forests. Machine Learn-
ing, 45(1):5–32, October.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIB-
SVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technol-
ogy, 2:27:1–27:27. Software available at http://
www.csie.ntu.edu.tw/˜cjlin/libsvm.

William AR de Souza, Allan Tomlinson, and Luiz MS
de Figueiredo. 2013. Cipher identification with a
neural network.

John Langford, Lihong Li, and Alex Strehl. 2007.
Vowpal Wabbit. https://github.com/
JohnLangford/vowpal_wabbit/wiki.

Malte Nuhn, Julian Schamper, and Hermann Ney.
2013. Beam search for solving substitution ciphers.
In ACL (1), pages 1568–1576.

Sujith Ravi and Kevin Knight. 2011. Bayesian Infer-
ence for Zodiac and Other Homophonic Ciphers. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
239–247, Stroudsburg, PA, USA, June. Association
for Computational Linguistics.

1773



Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1774–1778,
October 25-29, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

Joint Learning of Chinese Words, Terms and Keywords

Ziqiang Cao1 Sujian Li1 Heng Ji2
1Key Laboratory of Computational Linguistics, Peking University, MOE, China

2Computer Science Department, Rensselaer Polytechnic Institute, USA
{ziqiangyeah, lisujian}@pku.edu.cn jih@rpi.edu

Abstract

Previous work often used a pipelined
framework where Chinese word segmen-
tation is followed by term extraction and
keyword extraction. Such framework suf-
fers from error propagation and is un-
able to leverage information in later mod-
ules for prior components. In this paper,
we propose a four-level Dirichlet Process
based model (DP-4) to jointly learn the
word distributions from the corpus, do-
main and document levels simultaneously.
Based on the DP-4 model, a sentence-wise
Gibbs sampler is adopted to obtain proper
segmentation results. Meanwhile, terms
and keywords are acquired in the sampling
process. Experimental results have shown
the effectiveness of our method.

1 Introduction

For Chinese language which does not contain ex-
plicitly marked word boundaries, word segmenta-
tion (WS) is usually the first important step for
many Natural Language Processing (NLP) tasks
including term extraction (TE) and keyword ex-
traction (KE). Generally, Chinese terms and key-
words can be regarded as words which are repre-
sentative of one domain or one document respec-
tively. Previous work of TE and KE normally used
the pipelined approaches which first conducted
WS and then extracted important word sequences
as terms or keywords.

It is obvious that the pipelined approaches are
prone to suffer from error propagation and fail to
leverage information for word segmentation from
later stages. Here, we provide one example in the
disease domain, to demonstrate the common prob-
lems in current pipelined approaches and propose
the basic idea of our joint learning of words, terms
and keywords.

Example: @��Ï�Ç(thrombocytopenia) �(with)

{� (heparinoid) 	(have) sû(relation).

This is a correctly segmented Chinese sen-
tence. The document containing the example sen-
tence mainly talks about the property of ”{�

 (heparinoid)” which can be regarded as one key-
word of the document. At the same time, the
word@��Ï�Ç(thrombocytopenia) appears fre-
quently in the disease domain and can be treated
as a domain-specific term.

However, for such a simple sentence, current
segmentation tools perform poorly. The segmen-
tation result with the state-of-the-art Conditional
Random Fields (CRFs) approach (Zhao et al.,
2006) is as follows:

@��(blood platelet) Ï�(reduction) Ç(symptom)

�{(of same kind) �(liver) 	(always)sû(relation)

where @��Ï�Ç is segmented into three com-
mon Chinese words and {� is mixed with its
neighbors.

In a text processing pipeline of WS, TE and
KE, it is obvious that imprecise WS results will
make the overall system performance unsatisfy-
ing. At the same time, we can hardly make use of
domain-level and document-level information col-
lected in TE and KE to promote the performance
of WS. Thus, one question comes to our minds:
can words, terms and keywords be jointly learned
with consideration of all the information from the
corpus, domain, and document levels?

Recently, the hierarchical Dirichlet process
(HDP) model has been used as a smoothed bigram
model to conduct word segmentation (Goldwater
et al., 2006; Goldwater et al., 2009). Meanwhile,
one strong point of the HDP based models is that
they can model the diversity and commonality in
multiple correlated corpora (Ren et al., 2008; Xu
et al., 2008; Zhang et al., 2010; Li et al., 2012;
Chang et al., 2014). Inspired by such existing
work, we propose a four-level DP based model,
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Figure 1: DP-4 Model

named DP-4, to adapt to three levels: corpus, do-
main and document. In our model, various DPs
are designed to reflect the smoothed word distri-
butions in the whole corpus, different domains and
different documents. Same as the DP based seg-
mentation models, our model can be easily used
as a semi-supervised framework, through exerting
on the corpus level the word distributions learned
from the available segmentation results. Refer-
ring to the work of Mochihashi et al. (2009), we
conduct word segmentation using a sentence-wise
Gibbs sampler, which combines the Gibbs sam-
pling techniques with the dynamic programming
strategy. During the sampling process, the impor-
tance values of segmented words are measured in
domains and documents respectively, and words,
terms and keywords are jointly learned.

2 DP-4 Model

Goldwater et al. (2006) applied the HDP model on
the word segmentation task. In essence, Goldwa-
ter’s model can be viewed as a bigram language
model with a unigram back-off. With the lan-
guage model, word segmentation is implemented
by a character-based Gibbs sampler which repeat-
edly samples the possible word boundary posi-
tions between two neighboring words, conditioned
on the current values of all other words. How-
ever, Goldwater’s model can be deemed as mod-
eling the whole corpus only, and does not distin-
guish between domains and documents. To jointly
learn the word information from the corpus, do-
main and document levels, we extend Goldwater’s
model by adding two levels (domain level and doc-
ument level) of DPs, as illustrated in Figure 1.

2.1 Model Description

M DPs (Hm
w ;1 ≤ m ≤ M ) are designed specif-

ically to word w to model the bigram distribu-
tions in each domain and these DPs share an
overall base measure Hw, which is drawn from
DP (α0, G1) and gives the bigram distribution for
the whole corpus. Assuming the mth domain in-
cludes Nm documents, we use Hmj

w (1 ≤ j ≤
Nm) to model the bigram distribution of the ith

document in the domain. Usually, given a do-
main, the bigram distributions of different docu-
ments are not conditionally independent and simi-
lar documents exhibit similar bigram distributions.
Thus, the bigram distribution of one document is
generated according to both the bigram distribu-
tion of the domain and the bigram distributions
of other documents in the same domain. That is,
H
mj
w ∼ g(α3, H

m
w , H

m−j
w ) where Hm−j

w repre-
sents the bigram distributions of the documents in
the mth domain except the jth document. Assum-
ing the jth document in the mth domain contains
N j
m words, each word is drawn according toHmj

w .
That is, wmji ∼ H

mj
w (1 ≤ i ≤ N j

m). Thus, our
four-level DP model can be summarized formally
as follows:

G1 ∼ DP (α0, G0) ;Hw ∼ DP (α1, G1)

Hm
w ∼ DP (α2, Hw) ;Hmj

w ∼ g (α3, H
m
w , H

m−j
w

)
w
mj
i |wi−1 = w ∼ Hd

w

Here, we provide for our model the Chinese
Restaurant Process (CRP) metaphor, which can
create a partition of items into groups. In our
model, the word type of the previous word wi−1

corresponds to a restaurant and the current word
wi corresponds to a customer. Each domain is
analogous to a floor in a restaurant and a room de-
notes a document. Now, we can see that there are
|V | restaurants and each restaurant consists of M
floors. Themth floor containsNm rooms and each
room has an infinite number of tables with infinite
seating capacity. Customers enter a specific room
on a specific floor of one restaurant and seat them-
selves at a table with the label of a word type. Dif-
ferent from the standard HDP, each customer sits
at an occupied table with probability proportional
to both the numbers of customers already seated
there and the numbers of customers with the same
word type seated in the neighboring rooms, and at
an unoccupied table with probability proportional
to both the constant α3 and the probability that the

1775



customers with the same word type are seated on
the same floor.

2.2 Model Inference
It is important to build an accurate G0 which de-
termines the prior word distribution p0(w). Sim-
ilar to the work of Mochihashi et al. (2009), we
consider the dependence between characters and
calculate the prior distribution of a word wi using
the string frequency statistics (Krug, 1998):

p0(wi) =
ns(wi)∑
ns(.)

(1)

where ns(wi) counts the character string com-
posed of wi and the symbol “.” represents any
word in the vocabulary V .

Then, with the CRP metaphor, we can obtain the
expected word unigram and bigram distributions
on the corpus level according to G1 and Hw:

p1 (wi) =
n (wi) + α0p0 (wi)∑

n (.) + α0
(2)

p2 (wi|wi−1 = w) =
nw (wi) + α1p1 (wi)∑

nw (.) + α1
(3)

where the subscript numbers indicate the corre-
sponding DP levels. n(wi) denotes the number of
wi and nw(wi) denotes the number of the bigram
< w,wi > occurring in the corpus. Next, we can
easily get the bigram distribution on the domain
level by extending to the third DP.

pm3 (wi|wi−1 = w) =
nmw (wi) + α2p2(wi|wi−1)∑

nmw (.) + α2

(4)

where nmw (wi) is the number of the bigram <
w,wi > occurring in the mth domain.

To model the bigram distributions on the docu-
ment level, it is beneficial to consider the influence
of related documents in the same domain (Wan
and Xiao, 2008). Here, we only consider the in-
fluence from theK most similar documents with a
simple similarity metric s(d1, d2) which calculates
the Chinese character overlap ratio of two docu-
ments d1 and d2. Let djm denote the jth document
in the mth domain and djm[k](1 ≤ k ≤ K) the K
most similar documents. djm can be deemed to be
“lengthened” by djm[k](1 ≤ k ≤ K). Therefore,
we estimate the count of wi in djm as:

td
j
m
w (wi) = nd

j
m
w (wi)+

∑
k

s(djm[k], djm)nd
j
m[k]
w (wi)

(5)

where nd
j
m[k]
w (wi) denotes the count of the bigram

< w,wi > occurring in djm[k]. Next, we model
the bigram distribution in djm as a DP with the base
measure Hm

w :

pd
j
m

4 (wi|wi−1 = w) =
td
j
m
w (wi) + α3p

m
3 (wi|wi−1)∑

td
j
m
w (.) + α3

(6)
With CRP, we can also easily estimate the un-

igram probabilities pm3 (wi) and pd
j
m

4 (wi) respec-
tively on the domain and document levels, through
combining all the restaurants.

To measure whether a word is eligible to be a
term, the score function THm(·) is defined as:

THm(wi) =
pm3 (wi)
p1(wi)

(7)

This equation is inspired by the work of Nazar
(2011), which extracts terms with consideration of
both the frequency in the domain corpus and the
frequency in the general reference corpus. Similar
to Eq. 7, we define the functionKHdjm(·) to judge
whether wi is an appropriate keyword.

KHdjm(wi) =
pd

j
m

4 (wi)
p1(wi)

(8)

During each sampling, we make use of Eqs. (7)
and (8) to identify the most possible terms and
keywords. Once a word is identified as a term
or keyword, it will drop out of the sampling pro-
cess in the following iterations. Its CRP explana-
tion is that some customers (terms and keywords)
find their proper tables and keep sitting there after-
wards.

2.3 Sentence-wise Gibbs Sampler

The character-based Gibbs sampler for word seg-
mentation (Goldwater et al., 2006) is extremely
slow to converge, since there exists high correla-
tion between neighboring words. Here, we intro-
duce the sentence-wise Gibbs sampling technique
as well as efficient dynamic programming strat-
egy proposed by Mochihashi et al. (2009). The
basic idea is that we randomly select a sentence
in each sampling process and use the Viterbi al-
gorithm (Viterbi, 1967) to find the optimal seg-
mentation results according to the word distribu-
tions derived from other sentences. Different from
Mochihashi’s work, once terms or keywords are
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identified, we do not consider them in the segmen-
tation process. Due to space limitation, the algo-
rithm is not detailed here and can be referred in
(Mochihashi et al., 2009).

3 Experiment

3.1 Data and Setting
It is indeed difficult to find a standard evaluation
corpus for our joint tasks, especially in different
domains. As a result, we spent a lot of time to col-
lect and annotate a new corpus 1 composed of ten
domains (including Physics, Computer, Agricul-
ture, Sports, Disease, Environment, History, Art,
Politics and Economy) and each domain is com-
posed of 200 documents. On average each doc-
ument consists of about 4800 Chinese characters.
For these 2000 documents, three annotators have
manually checked the segmented words, terms and
keywords as the gold standard results for evalu-
ation. As we know, there exists a large amount
of manually-checked segmented text for the gen-
eral domain, which can be used as the training data
for further segmentation. As with other nonpara-
metric Bayesian models (Goldwater et al., 2006;
Mochihashi et al., 2009), our DP-4 model can be
easily amenable to semi-supervised learning by
imposing the word distributions of the segmented
text on the corpus level. The news texts pro-
vided by Peking University (named PKU corpus)2

is used as the training data. This corpus contains
about 1,870,000 Chinese characters and has been
manually segmented into words.

In our experiments, the concentration coeffi-
cient (α0) is finally set to 20 and the other three
(α1∼3) are set to 15. The parameter K which con-
trols the number of similar documents is set to 3.

3.2 Performance Evaluation
The following baselines are implemented for com-
parison of segmentation results: (1) Forward max-
imum matching (FMM) algorithm with a vocab-
ulary compiled from the PKU corpus; (2) Re-
verse maximum matching (RMM) algorithm with
the compiled vocabulary; (3) Conditional Random
Fields (CRFs)3 based supervised algorithm trained
from the PKU corpus; (4) HDP based semi-
supervised algorithm (Goldwater et al., 2006) us-

1Nine domains are from http://www.datatang.
com/data/44139 and we add an extra Disease domain.

2http://icl.pku.edu.cn
3We adopt CRF++(http://crfpp.googlecode.

com/svn/trunk/doc/index.html)

ing the PKU corpus. The strength of Mochi-
hashi et al. (2009)’s NPYLM based segmentation
model is its speed due to the sentence-wise sam-
pling technique, and its performance is similar to
Goldwater et al. (2006)’s model. Thus, we do not
consider the NPYLM based model for compari-
son here. Then, the segmentation results of FMM,
RMM, CRF, and HDP methods are used respec-
tively for further extracting terms and keywords.
We use the mutual information to identify the can-
didate terms or keywords composed of more than
two segmented words. As for DP-4, this recogni-
tion process has been done implicitly during sam-
pling. To measure the candidate terms or key-
words, we refer to the metric in Nazar (2011) to
calculate their importance in some specific domain
or document.

The metrics of F1 and the out-of-vocabulary
Recall (OOV-R) are used to evaluate the segmenta-
tion results, referring to the gold standard results.
The second and third columns of Table 1 show the
F1 and OOV-R scores averaged on the 10 domains
for all the compared methods. Our method sig-
nificantly outperforms FMM, RMM and HDP ac-
cording to t-test (p-value ≤ 0.05). From the seg-
mentation results, we can see that the FMM and
RMM methods are highly dependent on the com-
piled vocabulary and their identified OOV words
are mainly the ones composed of a single Chinese
character. The HDP method is heavily influenced
by the segmented text, but it also exhibits the abil-
ity of learning new words. Our method only shows
a slight advantage over the CRF approach. We
check our segmentation results and find that the
performance of the DP-4 model is depressed by
the identified terms and keywords which may be
composed of more than two words in the gold
standard results, because the DP-4 model always
treats the term or keyword as a single word. For
example, in the gold standard, ”W��((Lingnan
Culture)” is segmented into two words ”W” and
”��”, ”pn¥ã(data interface)” is segmented
into ”pn” and ”¥ã” and so on. In fact, our seg-
mentation results correctly treat ”W��” and ”p
n¥ã” as words.

To evaluate the TE and KE performance, the top
50 (TE-50) and 100 (TE-100) accuracy are mea-
sured for the identified terms of one domain, while
the top 5 (KE-5) and 10 (KE-10) accuracy for the
keywords in one document, are shown in the right
four columns of Table 1. We can see that DP-
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4 performs significantly better than all the other
methods in TE and KE results.

As for the ten domains, we find our approach
behaves much better than the other approaches on
the following three domains: Disease, Physics and
Computer. It is because the language of these
three domains is much different from that of the
general domain (PKU corpus), while the rest do-
mains are more similar to the general domain.

Method F1 OOV-R TE-50 TE-100 KE-5 KE-10
FMM 0.796 0.136 0.420 0.360 0.476 0.413
RMM 0.794 0.136 0.424 0.352 0.478 0.414
HDP 0.808 0.356 0.672 0.592 0.552 0.506
CRF 0.817 0.330 0.624 0.560 0.543 0.511
DP-4 0.821 0.374 0.704 0.640 0.571 0.545

Table 1: Comparison of WS, TE and KE Perfor-
mance (averaged on the 10 domains).

4 Conclusion

This paper proposes a four-level DP based model
to construct the word distributions from the cor-
pus, domain and document levels simultaneously,
through which Chinese words, terms and key-
words can be learned jointly and effectively. In
the future, we plan to explore how to combine
more features such as part-of-speech tags into our
model.
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Abstract

When Part-of-Speech annotated data is
scarce, e.g. for under-resourced lan-
guages, one can turn to cross-lingual trans-
fer and crawled dictionaries to collect par-
tially supervised data. We cast this prob-
lem in the framework of ambiguous learn-
ing and show how to learn an accurate
history-based model. Experiments on ten
languages show significant improvements
over prior state of the art performance.

1 Introduction

In the past two decades, supervised Machine
Learning techniques have established new perfor-
mance standards for many NLP tasks. Their suc-
cess however crucially depends on the availability
of annotated in-domain data, a not so common sit-
uation. This means that for many application do-
mains and/or less-resourced languages, alternative
ML techniques need to be designed to accommo-
date unannotated or partially annotated data.

Several attempts have recently been made to
mitigate the lack of annotated corpora using par-
allel data pairing a (source) text in a resource-rich
language with its counterpart in a less-resourced
language. By transferring labels from the source
to the target, it becomes possible to obtain noisy,
yet useful, annotations that can be used to train a
model for the target language in a weakly super-
vised manner. This research trend was initiated
by Yarowsky et al. (2001), who consider the trans-
fer of POS and other syntactic information, and
further developed in (Hwa et al., 2005; Ganchev
et al., 2009) for syntactic dependencies, in (Padó
and Lapata, 2009; Kozhevnikov and Titov, 2013;
van der Plas et al., 2014) for semantic role la-
beling and in (Kim et al., 2012) for named-entity
recognition, to name a few.

Assuming that labels can actually be projected
across languages, these techniques face the issue

of extending standard supervised techniques with
partial and/or uncertain labels in the presence of
alignment noise. In comparison to the early ap-
proach of Yarowsky et al. (2001) in which POS
are directly transferred, subject to heuristic fil-
tering rules, recent works consider the integra-
tion of softer constraints using expectation regu-
larization techniques (Wang and Manning, 2014),
the combination of alignment-based POS transfer
with additional information sources such as dic-
tionaries (Li et al., 2012; Täckström et al., 2013)
(Section 2), or even the simultaneous use of both
techniques (Ganchev and Das, 2013).

In this paper, we reproduce the weakly super-
vised setting of Täckström et al. (2013). By re-
casting this setting in the framework of ambiguous
learning (Bordes et al., 2010; Cour et al., 2011)
(Section 3), we propose an alternative learning
methodology and show that it improves the state of
the art performance on a large array of languages
(Section 4). Our analysis of the remaining errors
suggests that in cross-lingual settings, improve-
ments of error rates can have multiple causes and
should be looked at with great care (Section 4.2).

All tools and resources used in this study
are available at http://perso.limsi.fr/
wisniews/ambiguous.

2 Projecting Labels across Aligned
Corpora

Projecting POS information across languages re-
lies on a rather strong assumption that morpho-
syntactic categories in the source language can
be directly related to the categories in the tar-
get language, which might not always be war-
ranted (Evans and Levinson, 2009; Broschart,
2009). The universal reduced POS tagset pro-
posed by Petrov et al. (2012) defines an opera-
tional, albeit rather empirical, ground to perform
this mapping. It is made of the following 12 cat-
egories: NOUN (nouns), VERB (verbs), ADJ (ad-
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% of test covered tokens (type) 83.2 93.2 95.6 97.4 96.7 83.0 98.3 90.5 95.8 95.3
% of test correctly covered token (type) 72.9 94.2 93.7 92.9 93.8 93.6 92.1 89.6 93.6 94.1

avg. number of labels per token (type) 2.1 1.3 1.3 1.3 1.3 1.4 1.3 1.2 1.3 1.3
avg. number of labels per token (type+token) 1.7 1.1 1.1 1.1 1.1 1.2 1.2 1.1 1.1 1.1

% of aligned tokens 53.0 77.8 66.7 69.3 74.0 73.1 64.7 81.6 72.2 79.9
% of token const. violating type const. 2.5 16.0 15.8 21.4 16.9 14.3 16.1 19.3 17.5 13.6
% informative token const. 79.7 27.5 15.7 29.8 21.3 36.0 25.5 16.2 28.2 26.4

Table 1: Interplay between token and type constraints on our training parallel corpora. ‘Informative’
token constraints correspond to tokens for which (a) a POS is actually transfered and (b) type constraints
do not disambiguate the label, but type+token constraints do.

jectives), ADV (adverbs), PRON (pronouns), DET

(determiners and articles), ADP (prepositions and
postpositions), NUM (numerals), CONJ (conjunc-
tions), PRT (particles), ‘.’ (punctuation marks)
and X (a catch-all for other categories). These
labels have been chosen for their stability across
languages and for their usefulness in various mul-
tilingual applications. In the rest of this work, all
annotations are mapped to this universal tagset.

Transfer-based methods have shown to be very
effective, even if projected labels only deliver a
noisy supervision, due to tagging (of the source
language) and other alignment errors (Yarowsky
et al., 2001). While this uncertainty can be ad-
dressed in several ways, recent works have pro-
posed to combine projected labels with monolin-
gual information in order to filter out invalid la-
bel sequences (Das and Petrov, 2011; Täckström
et al., 2013). In this work we follow Täckström et
al. (2013) and use two families of constraints:

Token constraints rely on word alignments to
project labels of source words to target words
through alignment links. Table 1 shows that, de-
pendening on the language, only 50−80% of the
target tokens would benefit from label transfer.

Type constraints rely on a tag dictionary to
define the set of possible tags for each word
type. Type constraints reduce the possible la-
bels for a given word and help filtering out cross-
lingual transfer errors (up to 20%, as shown in Ta-
ble 1). As in (Täckström et al., 2013), we con-
sider two different dictionaries. The first one is
extracted automatically from Wiktionary,1 us-
ing the method of (Li et al., 2012). The second
tag dictionary is built by using for each word the
two most frequently projected POS labels from
the training data.2 In contrast to Täckström et al.

1http://www.wiktionary.org/
2This heuristic is similar to the way Täckström et al.

(2013) we use the intersection3 of the two type
constraints instead of their union. Table 1 shows
the precision and recall of the resulting constraints
on the test data.

These two information sources are merged ac-
cording to the rules of Täckström et al. (2013).
These rules assume that type constraints are more
reliable than token constraints and should take
precedence: by default, a given word is associated
to the set of possible tags licensed type constraints;
additionally, when a POS tag can be projected
through alignment and also satisfies the type con-
straints, then it is actually projected, thereby pro-
viding a full (yet noisy) supervision.

As shown in Table 1, token and type con-
straints complement each other effectively and
greatly reduce label ambiguity. However, the
transfer method sketched above associates each
target word with a set of possible labels, of which
only one is true. This situation is less favorable
than standard supervised learning in which one
unique gold label is available for each occurrence.
We describe in the following section how to learn
from this ambiguous supervision information.

3 Modeling Sequences under Ambiguous
Supervision

We use a history-based model (Black et al., 1992)
with a LaSO-like training method (Daumé and
Marcu, 2005). History-based models reduce struc-
tured prediction to a sequence of multi-class clas-
sification problems. The prediction of a complex
structure (here, a sequence of POS tags) is thus
modeled as a sequential decision problem: at each

(2013) filter the tag distribution with a threshold to build the
projected type constraints.

3If the intersection is empty we use the constraints
from Wiktionary first, if also empty, the projected con-
straints then, and by default the whole tag set.
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position in the sequence, a multiclass classifier
is used to make a decision, using features that
describe both the input structure and the history
of past decisions (i.e. the partially annotated se-
quence).

Let x = (xi)
n
i=1 denote the observed sequence

and Y be the set of possible labels (in our case
the 12 universal POS tags). Inference consists in
predicting labels one after the other using, for in-
stance, a linear model:

y∗i = arg max
y∈Y

〈w|φ(x, i, y, hi)〉 (1)

where 〈·|·〉 is the standard dot product operation,
y∗i the predicted label for position i, w the weight
vector, hi = y∗1, ..., y∗i−1 the history of past de-
cisions and φ a joint feature map. Inference can
therefore be seen as a greedy search in the space
of the # {Y}n possible labelings of the input se-
quence. Trading off the global optimality of in-
ference for additional flexibility in the design of
features and long range dependencies between la-
bels has proved useful for many sequence labeling
tasks in NLP (Tsuruoka et al., 2011).

The training procedure, sketched in Algo-
rithm 1, consists in performing inference on each
input sentence and correcting the weight vector
each time a wrong decision is made. Impor-
tantly (Ross and Bagnell, 2010), the history used
during training has to be made of the previous pre-
dicted labels so that the training samples reflect the
fact that the history will be imperfectly known at
test time.

This reduction of sequence labeling to multi-
class classification allows us to learn a sequence
model in an ambiguous setting by building on the
theoretical results of Bordes et al. (2010) and Cour
et al. (2011). The decision about the correctness of
a prediction and the weight updates can be adapted
to the amount of supervision information that is
available.

Full Supervision In a fully supervised setting,
the correct label is known for each word token: a
decision is thus considered wrong when this gold
label is not predicted. In this case, a standard per-
ceptron update is performed:

wt+1 ← wt−φ (x, i, y∗i , hi)+φ (x, i, ŷi, hi) (2)

where y∗i and ŷi are the predicted and the gold la-
bel, respectively. This update is a stochastic gra-
dient step that increases the score of the gold label
while decreasing the score of the predicted label.

Ambiguous Supervision During training, each
observation i is now associated with a set of possi-
ble labels, denoted by Ŷi. In this case, a decision is
considered wrong when the predicted label is not
in Ŷi and the weight vector is updated as follows:

wt+1 ← wt−φ (x, i, y∗i , hi)+
∑
ŷi∈Ŷi

φ (x, i, ŷi, hi)

(3)
Compared to (2), this rule uniformly increases the
scores of all the labels in Ŷi.

It can be shown (Bordes et al., 2010; Cour et
al., 2011), under mild assumptions (namely that
two labels never systematically co-occur in the
supervision information), that the update rule (3)
enables to learn a classifier in an ambiguous set-
ting, as if the gold labels were known. Intuitively,
as long as two labels are not systematically co-
occurring in Ŷ , updates will reinforce the correct
labels more often than the spurious ones; at the
end of training, the highest scoring label should
therefore be the correct one.

Algorithm 1 Training algorithm. In the ambigu-
ous setting, Ŷi contains all possible labels; in the
supervised setting, it only contains the gold label.

w0 ← 0
for t ∈ J1, T K do

Randomly pick example x, ŷ
h← empty list
for i ∈ J1, nK do
y∗i = arg maxy∈Y 〈wt|φ(x, i, y, hi)〉
if y∗i /∈ Ŷi then

wt+1 ← update(wt,x, i, Ŷi, y∗i , hi)
end if
push(y∗i , h)

end for
end for
return 1

T

∑T
t=1 wt

4 Empirical Study

Datasets Our approach is evaluated on 10 lan-
guages that present very different characteristics
and cover several language families.4 In all our ex-
periments we use English as the source language.
Parallel sentences5 are aligned with the standard

4Resources considered in the related works are not freely
available, which prevents us from presenting a more complete
comparison.

5All resources and features used in our experiments are
thoroughly documented in the supplementary material.
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ar cs de el es fi fr id it sv

HBAL 27.9 10.4 8.8 8.1 8.2 13.3 10.2 11.3 9.1 10.1
Partially observed CRF 33.9 11.6 12.2 10.9 10.7 12.9 11.6 16.3 10.4 11.6

HBSL — 1.5 5.0 — 2.4 5.9 3.5 4.8 2.8 3.8
HBAL + matched POS 24.1 7.6 8.0 7.3 7.4 12.2 7.4 9.8 8.3 8.8

(Ganchev and Das, 2013) 49.9 19.3 9.6 9.4 12.8 — 12.5 — 10.1 10.8
(Täckström et al., 2013) — 18.9 9.5 10.5 10.9 — 11.6 — 10.2 11.1
(Li et al., 2012) — — 14.2 20.8 13.6 — — — 13.5 13.9

Table 2: Error rate (in %) achieved by the method described in Sec. 3 trained in an ambiguous (HBAL)
or in a supervised setting (HBSL), a partially observed CRF and different state-of-the-art results.

MOSES pipeline, using the intersection heuristic
that only retains the most reliable alignment links.

The English side of the bitext is tagged using a
standard linear CRF trained on the Penn Treebank.
Tags are then transferred to the target language us-
ing the procedure described in Section 2. For each
language, we train a tagger using the method de-
scribed in Section 3 with T = 100 000 iterations6

using a feature set similar to the one of Li et al.
(2012) and Täckström et al. (2013). The baseline
system is our reimplementation of the partially
observed CRF model of Täckström et al. (2013).
Evaluation is carried out on the test sets of tree-
banks for which manual gold tags are known. For
Czech and Greek, we use the CoNLL’07 Shared
Task on Dependency Parsing; for Arabic, the Ara-
bic Treebank; and otherwise the data of the Uni-
versal Dependency Treebank Project (McDonald
et al., 2013). Tagging performance is evaluated
with the standard error rate.

4.1 Results

Table 2 summarizes the performance achieved
by our method trained in the ambiguous setting
(HBAL) and by our re-implementation of the
partially supervised CRF baseline. As an upper
bound, we also report the score of our method
when trained in a supervised (HBSL) settings
considering the training part of the various tree-
banks, when it is available.7 For the sake of com-
parison, we also list the best scores of previous
studies. Note, however, that a direct comparison
with these results is not completely fair as these

6Preliminary experiments showed that increasing the
number of iterations T in Algorithm 1 has no significant
impact.

7In this setting, HBSL implements an averaged percep-
tron, and achieves results that are similar to those obtained
with standard linear CRF.

systems were not trained and evaluated with the
same exact resources (corpora,8 type constraints,
alignments, etc). Also note that the state-of-the-
art scores have been achieved by different models,
which have been selected based on their scores on
the test set and not on a validation set.9

Experimental results show that HBAL signif-
icantly outperforms, on all considered languages
but one, the partially observed CRF that was
trained and tested in the same setting.

4.2 Discussion

The performance of our new method still falls
short of the performance of a fully supervised POS
tagger: for instance, in Spanish, full supervision
reduces the error rate by a factor of 4. A fine-
grained error analysis shows that many errors of
HBAL directly result from the fact that, contrary
to the fully supervised learner HBSL, our am-
biguous setting suffers from a train/test mismatch,
which has two main consequences. First, the train
and test sets do not follow exactly the same nor-
malization and tokenization conventions, which is
an obvious source of mistakes. Second, and more
importantly, many errors are caused by systematic
differences between the test tags and the super-
vised tags (i.e. the English side of the bitext and
Wiktionary). While some of these differences
are linguistically well-justified and reflect funda-
mental differences in the language structure and
usage, others seem to be merely due to arbitrary
annotation conventions.

For instance, in Greek, proper names are labeled
8The test sets are only the same for Czech, Greek and

Swedish.
9The partially observed CRF is the best model in (Täck-

ström et al., 2013) only for German (de), Greek (el) and
Swedish (sv), and uses only type constraints extracted from
Wiktionary.
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either as X (when they refer to a foreigner and are
not transliterated) or as NOUN (in all other cases),
while they are always labeled as NOUN in English.
In French and in Greek, contractions of a prepo-
sition and a determiner such as ‘στο’ (‘σε το’,
meaning ‘to the’) or ‘aux’ (‘à les’ also meaning
‘to the’) are labeled as ADP in the Universal De-
pendency Treebank but as DET in Wiktionary
and are usually aligned with a determiner in the
parallel corpora. In the Penn Treebank, quanti-
fiers like ‘few’ or ‘little’ are generally used in con-
junction with a determiner (‘a few years’, ‘a little
parable’, ...) and labeled as ADJ; the correspond-
ing Spanish constructions lack an article (‘mucho
tempio’, ‘pocos años’, ...) and the quantifiers are
therefore labeled as DET. Capturing such subtle
differences is hardly possible without prior knowl-
edge and specifically tailored features.

This annotation mismatch problem is all the
more important in settings like ours, that rely
on several, independently designed, information
sources, which follow contradictory annotation
conventions and for which the mapping to the uni-
versal tagset is actually error-prone (Zhang et al.,
2012). To illustrate this point, we ran three ad-
ditional experiments to assess the impact of the
train/test mismatch.

We first designed a control experiment in which
the type constraints were manually completed
with the gold labels of the most frequent errors of
HBAL. These errors generally concern function
words and can be assumed to result from system-
atic differences in the annotations rather than pre-
diction errors. For instance, for French the type
constraints for ‘du’, ‘des’, ‘au’ and ‘aux’ were cor-
rected from DET to ADP. The resulting model,
denoted ‘HBAL + matched POS’ in Table 2, sig-
nificantly outperforms HBAL, stressing the diver-
gence in the different annotation conventions.

Additionally, in order to approximate the am-
biguous setting train/test mismatch, we learn two
fully supervised Spanish taggers on the same train-
ing data as HBAL, using two different strategies
to obtain labeled data. We first use HBSL (which
was trained on the treebank) to automatically la-
bel the target side of the parallel corpus. In this
setting, the POS tagger is trained with data from
a different domain, but labeled with the same an-
notation scheme as a the test set. Learning with
this fully supervised data yields an error rate of
4.2% for Spanish, almost twice as much as HBSL,

bringing into light the impact of domain shift. We
then use a generic tagger, FREELING,10 to label
the training data, this time with possible addi-
tional inconsistent annotations. The correspond-
ing error rate for Spanish was 6.1%, to be com-
pared with the 8.2% achieved by HBAL. The last
two control experiments show that many of the re-
maining labeling errors seem to be due to domain
and convention mismatches rather to the trans-
fer/ambiguous setting, as supervised models also
suffer from very similar conditions.

These observations show that the evaluation of
transfer-based methods suffer from several biases.
Their results must therefore be interpreted with
great care.

5 Conclusion

In this paper, we have presented a novel learning
methodology to learn from ambiguous supervision
information, and used it to train several POS tag-
gers. Using this method, we have been able to
achieve performance that surpasses the best re-
ported results, sometimes by a wide margin. Fur-
ther work will attempt to better analyse these re-
sults, which could be caused by several subtle
differences between HBAL and the baseline sys-
tem. Nonetheless, these experiments confirm that
cross-lingual projection of annotations have the
potential to help in building very efficient POS
taggers with very little monolingual supervision
data. Our analysis of these results also suggests
that, for this task, additional gains might be more
easily obtained by fixing systematic biases intro-
duced by conflicting mappings between tags or
by train/test domain mismatch than by designing
more sophisticated weakly supervised learners.
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Abstract

We introduce new features for incorpo-
rating semantic predicate-argument struc-
tures in machine translation (MT). The
methods focus on the completeness of the
semantic structures of the translations, as
well as the order of the translated seman-
tic roles. We experiment with translation
rules which contain the core arguments
for the predicates in the source side of a
MT system, and observe that using these
rules significantly improves the translation
quality. We also present a new semantic
feature that resembles a language model.
Our results show that the language model
feature can also significantly improve MT
results.

1 Introduction

In recent years, there have been increasing ef-
forts to incorporate semantics in statistical ma-
chine translation (SMT), and the use of predicate-
argument structures has provided promising im-
provements in translation quality. Wu and Fung
(2009) showed that shallow semantic parsing can
improve the translation quality in a machine trans-
lation system. They introduced a two step model,
in which they used a semantic parser to rerank
the translation hypotheses of a phrase-based sys-
tem. Liu and Gildea (2010) used semantic fea-
tures for a tree-to-string syntax based SMT sys-
tem. Their features modeled deletion and reorder-
ing for source side semantic roles, and they im-
proved the translation quality. Xiong et al. (2012)
incorporated the semantic structures into phrase-
based SMT by adding syntactic and semantic fea-
tures to their translation model. They proposed
two discriminative models which included fea-
tures for predicate translation and argument re-
ordering from source to target side. Bazrafshan

and Gildea (2013) used semantic structures in
a string-to-tree translation system by extracting
translation rules enriched with semantic informa-
tion, and showed that this can improve the trans-
lation quality. Li et al. (2013) used predicate-
argument structure reordering models for hierar-
chical phrase-based translation, and they used lin-
guistically motivated constraints for phrase trans-
lation.

In this paper, we experiment with methods for
incorporating semantics in a string-to-tree MT
system. These methods are designed to model the
order of translation, as well as the completeness
of the semantic structures. We extract translation
rules that include the complete semantic structure
in the source side, and compare that with using
semantic rules for the target side predicates. We
present a method for modeling the order of seman-
tic role sequences that appear spread across multi-
ple syntax-based translation rules, in order to over-
come the problem that a rule representing the en-
tire semantic structure of a predicate is often too
large and too specific to apply to new sentences
during decoding. For this method, we compare the
verb-specific roles of PropBank and the more gen-
eral thematic roles of VerbNet.

These essential arguments of a verbal predicate
are called the core arguments. Standard syntax-
based MT is incapable of ensuring that the tar-
get translation includes all of the core arguments
of a predicate that appear in the source sentence.
To encourage the translation of the likely core ar-
guments, we follow the work of Bazrafshan and
Gildea (2013), who use special translation rules
with complete semantic structures of the predi-
cates in the target side of their MT system. Each
of these rules includes a predicate and all of its
core arguments. Instead of incorporating only the
target side semantic rules, we extract the special
rules for both the source and the target sides, and
compare the effectiveness of adding these rules to
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S-8

NP-7-ARG1 1 victimized by NP-7-ARG0 2

NP-7-ARG1 1
受 NP-7-ARG0 2

Figure 1: A complete semantic rule (Bazrafshan
and Gildea (2013)).

the system separately and simultaneously.
Besides the completeness of the arguments, it is

also important for the arguments to appear in the
correct order. Our second method is designed to
encourage correct order of translation for both the
core and the non-core roles in the target sentence.
We designed a new feature that resembles the lan-
guage model feature in a standard MT system. We
train a n-gram language model on sequences of se-
mantic roles, by treating the semantic roles as the
words in what we call the semantic language. Our
experimental results show that the language model
feature significantly improves translation quality.

Semantic Role Labeling (SRL): We use se-
mantic role labelers to annotate the training data
that we use to extract the translation rules. For tar-
get side SRL, the role labels are attached to the
nonterminal nodes in the syntactic parse of each
sentence. For source side SRL, the labels annotate
the spans from the source sentence that they cover.
We train our semantic role labeler using two differ-
ent standards: Propbank (Palmer et al., 2005) and
VerbNet (Kipper Schuler, 2005).

PropBank annotates the Penn Treebank with
predicate-argument structures.It use generic labels
(such as Arg0, Arg1, etc.) which are defined
specifically for each verb. We trained a semantic
role labeler on the annotated Penn Treebank data
and used the classifier to tag our training data.

VerbNet is a verb lexicon that categorizes En-
glish verbs into hierarchical classes, and annotates
them with thematic roles for the arguments that
they accept. Since the thematic roles use more
meaningful labels (e.g. Agent, Patient, etc.), a lan-
guage model trained on VerbNet labels may be
more likely to generalize across verbs than one
trained on PropBank labels. It may also provide
more information, since VerbNet has a larger set
of labels than PropBank. To train the semantic
role labeler on VerbNet, we used the mappings

A→ BC c0

[B, i, j] c1

[C, j, k] c2

[A, i, k] c0 + c1 + c2

Figure 2: A deduction step in our baseline decoder

provided by the SemLink project (Palmer, 2009)
to annotate the Penn Treebank with the VerbNet
roles. These mappings map the roles in PropBank
to the thematic roles of VerbNet. When there is no
mapping for a role, we keep the role from Prop-
bank.

2 Using Semantics in Machine
Translation

In this section, we present our techniques for in-
corporating semantics in MT: source side semantic
rules, and the semantic language model.

2.1 Source Side Semantic Rules

Bazrafshan and Gildea (2013) extracted transla-
tion rules that included a predicate and all of its
arguments from the target side, and added those
rules to the baseline rules of their string-to-tree
MT system. Figure 1 shows an example of such
rules, which we refer to as complete semantic
rules. The new rules encourage the decoder to
generate translations that include all of the seman-
tic roles that appear in the source sentence.

In this paper, we use the same idea to extract
rules from the semantic structures of the source
side. The complete semantic rules consist of the
smallest fragments of the combination of GHKM
(Galley et al., 2004) rules that include one pred-
icate and all of its core arguments that appear in
the sentence. Rather than keeping the predicate
and argument labels attached to the non-terminals,
we remove those labels from our extracted seman-
tic rules, to keep the non-terminals in the semantic
rules consistent with the non-terminals of the base-
line GHKM rules. This is also important when us-
ing both the source and the target semantic rules
(i.e. Chinese and English rules), as it has been
shown that there are cross lingual mismatches be-
tween Chinese and English semantic roles in bilin-
gual sentences (Fung et al., 2007).

We extract a complete semantic rule for each
verbal predicate of each sentence pair in the train-
ing data. To extract the target side complete se-
mantic rules, using the target side SRL anno-
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A→ BC to space c0 (x1 x2 Destination)

[B, i, j, (Agent, )] c1

[C, j, k, (PRED bring, Theme, )] c2

[A, i, k, (Agent, PRED bring,-*-, Theme, Destination)] c0 + c1 + c+

+ LMcost(Agent, PRED bring,-*-, Theme, Destination)

Figure 3: A deduction step in the semantic language model method.

tated training data, we follow the general GHKM
method, and modify it to ensure that each fron-
tier node (Galley et al., 2004) in a rule includes ei-
ther all or none of the semantic role labels (i.e. the
predicate and all of its present core arguments) in
its descendants in the target side tree. The result-
ing rule then includes the predicate and all of its
arguments. We use the source side SRL annotated
training data to extract the source side semantic
rules. Since the annotations specify the spans of
the semantic roles, we extract the semantic rules
by ensuring that the span of the root (in the target
side) of the extracted rule covers all of the spans
of the roles in the predicate-argument structure.

The semantic rules are then used together with
the original GHKM rules. We add a binary feature
to distinguish the semantic rules from the rest. We
experiment with adding the semantic rules from
the source side, and compare that with adding se-
mantic rules of both the source and the target side.

In all of the experiments in this paper, we use
a string-to-tree decoder which uses a CYK style
parser (Yamada and Knight, 2002). Figure 2 de-
picts a deduction step in the baseline decoder. The
CFG rule in the first line is used to generate a
new item A with span (i, k) using items B and
C, which have spans (i, j) and (j, k) respectively.
The cost of each item is shown on the right. For
experimenting with complete semantic rules, in
addition having more rules, the only other modi-
fication made to the baseline system is extending
the feature vector to include the new feature. We
do not modify the decoder in any significant way.

2.2 Semantic Language Model

The semantic language model is designed to en-
courage the correct order of translation for the se-
mantic roles. While the complete translation rules
of Section 2.1 contain the order of the translation
for core semantic roles, they do not include the
non-core semantic roles, that is, semantic roles
which are not essential for the verbal predicates,
but do contribute to the meaning of the predicate.

In addition, the semantic LM can help in cases
where no specific complete semantic rule can ap-
ply, which makes the system more flexible.

The semantic language model resembles a reg-
ular language model, but instead of words, it de-
fines a probability distribution over sequences of
semantic roles. For this method we also use a se-
mantic role labeler on our training data, and use
the labeled data to train a tri-gram semantic lan-
guage model.

The rules are extracted using the baseline rule
extraction method. As opposed to the previous
method, the rules for this method are not derived
by combining GHKM rules, but rather are reg-
ular GHKM rules which are annotated with se-
mantic roles. We make a new field in each rule
to keep the ordered list of the semantic roles in
that rule. We also include the nonterminals of the
right-hand-side of the rule in that ordered list, to
be able to substitute the semantic roles from the
input translation items in the correct order. The
decoder uses this new field to save the semantic
roles in the translation items, and propagates the
semantic LM states in the same way that the reg-
ular language model states are propagated by the
decoder.

We define a new feature for the semantic lan-
guage model, and score the semantic states in each
translation item, again analogously to a regular
language model. Figure 3 depicts how the de-
duction for this method is different from our base-
line. In this example, the semantic roles “Agent”,
“PRED bring” and “Theme” come from the input
items, and the role “Destination” (which tags the
terminals “to space”) comes from the translation
rule.

We stemmed the verbs for training this feature,
and also annotated our rules with stemmed verbal
predicates. The stemming helps the training since
the argument types of a verb are normally inde-
pendent of its inflected variants.
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avg. BLEU Score
dev test p-value

Baseline 26.01 25.00 -
Source 26.44 25.17 0.048

Source and target 26.39 25.63 < 10−10

Propbank LM 26.38 25.08 0.108
VerbNet LM 26.58 25.23 0.025

Table 1: Comparisons of the methods with the
baseline. The BLEU scores are calculated on the
top 3 results from 15 runs MERT for each experi-
ments. The p-values are calculated by comparing
each method against the baseline system.

3 Experiments

3.1 Experimental Setup

The data that we used for training the MT sys-
tem was a Chinese-English corpus derived from
newswire text from LDC.1 The data consists of
250K sentences, which is 6.3M words in the En-
glish side. Our language model was trained on
the English side of the entire data, which consisted
of 1.65M sentences (39.3M words). Our develop-
ment and test sets are from the newswire portion
of NIST evaluations (2004, 2005, 2006). We used
392 sentences for the development set and 428
sentences for the test set. These sentences have
lengths smaller than 30, and they each have 4 ref-
erence translations. We used our in-house string-
to-tree decoder that uses Earley parsing. Other
than the features that we presented for our new
methods, we used a set of nine standard features.
The rules for the baseline system were extracted
using the GHKM method. Our baseline GHKM
rules also include composed rules, where larger
rules are constructed by combining two levels of
the regular GHKM rules. We exclude any unary
rules (Chung et al., 2011), and only keep rules
that have scope up to 3 (Hopkins and Langmead,
2010). For the semantic language model, we used
the SRILM package (Stolcke, 2002) and trained
a tri-gram language model with the default Good-
Turing smoothing.

Our target side semantic role labeler uses a max-
imum entropy classifier to label parsed sentences.
We used Sections 02-22 of the Penn TreeBank to

1The data was randomly selected from the follow-
ing sources: LDC2006E86, LDC2006E93, LDC2002E18,
LDC2002L27, LDC2003E07, LDC2003E14, LDC2004T08,
LDC2005T06, LDC2005T10, LDC2005T34, LDC2006E26,
LDC2005E83, LDC2006E34, LDC2006E85, LDC2006E92,
LDC2006E24, LDC2006E92, LDC2006E24

train the labeler, and sections 24 and 23 for devel-
opment set and training set respectively. The la-
beler has a precision of 90% and a recall of 88%.
We used the Chinese semantic role labeler of Wu
and Palmer (2011) for source side SRL, which
uses the LIBLINEAR (Fan et al., 2008) as a classi-
fier. Minimum Error Rate Training (MERT) (Och,
2003) was used for tuning the feature weights.
For all of our experiments, we ran 15 instances
of MERT with random initial weight vectors, and
used the weights of the top 3 results on the de-
velopment set to test the systems on the test set.
We chose to use the top 3 runs (rather than the
best run) of each system to account for the insta-
bility of MERT (Clark et al., 2011). This method
is designed to reflect the average performance of
the MT system when trained with random restarts
of MERT: we wish to discount runs in which the
optimizer is stuck in a poor region of the weight
space, but also to average across several good runs
in order not to be mislead by the high variance of
the single best run. For each of our MT systems,
we merged the results of the top 3 runs on the test
set into one file, and ran a statistical significance
test, comparing it to the merged top 3 results from
our baseline system. The 3 runs were merged by
duplicating each run 3 times, and arranging them
in the file so that the significance testing compares
each run with all the runs of the baseline. We per-
formed significance testing using paired bootstrap
resampling (Koehn, 2004). The difference is con-
sidered statistically significant if p < 0.05 using
1000 iterations of paired bootstrap resampling.

3.2 Results

Our results are shown in Table 1. The second
and the third columns contain the average BLEU
score (Papineni et al., 2002) on the top three re-
sults on the development and test sets. The fourth
column is the p-value for statistical significance
testing against the baseline. The first row shows
the results for our baseline. The second row con-
tains the results for using the source (Chinese)
side complete semantic rules of Section 2.1, and
the third row is the results for combining both
the source and the target side complete semantic
rules. As noted before, in both of these experi-
ments we also use the regular GHKM rules. The
result show that the source side complete seman-
tic rules improve the system (p = 0.048), and as
we expected, combining the source and the tar-
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Source Sentence 因此 ,保护儿童免受武装冲突的伤害是国际社会重要的职责 .
Reference therefore , it is the international community ’s responsibility to protect the children from harms resulted

from armed conflicts .
Baseline the armed conflicts will harm the importance of the international community the responsibilities . there-

fore , from child protection
Verbet LM therefore , the importance of the international community is to protect children from the harm affected

by the armed conflicts .

Source Sentence 同去年的会议相比 ,今年会议的火药味消失了 ,双方的立场在靠近 .
Reference compared with last year ’s meeting , the smell of gunpowder has disappeared in this year ’s meeting and

the two sides ’ standpoints are getting closer .
Baseline disappears on gunpowder , near the stance of the two sides compared with last year ’s meeting , the

meeting of this year .
Verbet LM the smells of gunpowder has disappeared , the position in the two sides approach . compared with last

year ’s meeting , this meeting

(a) Comparison of the language model method (using VerbNet) and the baseline system.

Source Sentence 科学家曾大胆预料 ,这艘英国的太空船可能陷在坑洞中 .
Reference scientists have boldly predicted that the british spacecraft might have been stuck in a hole .
Baseline scientists boldly expected , this vessel uk may have in the space ship in hang tung .
Semantic Rules scientists have boldly expected this vessel and the possible settlement of the space ship in hang tung .

Source Sentence 美国政府应以善意对待朝鲜的这一立场 .
Reference the us government should show goodwills to north korea ’s stand .
Baseline this position of the government of the united states to goodwill toward the dprk .
Semantic Rules this position that the us government should use goodwill toward the dprk .

(b) Comparison of the experiments with source and target side semantic rules and the baseline system.

Figure 4: Comparison of example translations from our semantic methods and the baseline system.

get side rules improves the system even more sig-
nificantly (p < 10−10). To measure the effect
of combining the rules, in a separate experiment
we replicated the complete semantic rules exper-
iments of Bazrafshan and Gildea (2013), and ran
statistical significance tests comparing the combi-
nation of the source and target rules with using
only the source or the target semantic rules sep-
arately. The results showed that combining the se-
mantic rules outperforms both of the experiments
that used rules from only one side (with p < 0.05
in both cases).

The results for the language model feature are
shown in the last two rows of the table. Us-
ing Propbank for language model training did not
change the system in any significant way (p =
0.108), but using VerbNet significantly improved
the results (p = 0.025). Figure 4(a) contains an
example comparing the baseline system with the
VerbNet language model. We can see how the
VerbNet language model helps the decoder trans-
late the argument in the correct order. The baseline
system has also generated the correct arguments,
but the output is in the wrong order. Figure 4(b)
compares the experiment with semantic rules of
both target and source side and the baseline sys-

tem. Translation of the word “use” by our seman-
tic rules is a good example showing how the de-
coder uses these semantic rules to generate a more
complete predicate-argument structure.

4 Conclusions

We experimented with two techniques for incor-
porating semantics in machine translation. The
models were designed to help the decoder trans-
late semantic roles in the correct order, as well
as generating complete predicate-argument struc-
tures. We observed that using a semantic lan-
guage model can significantly improve the trans-
lations, and help the decoder to generate the se-
mantic roles in the correct order. Adding transla-
tion rules with complete semantic structures also
improved our MT system. We experimented with
using source side complete semantic rules, as well
as using rules for both the source and the target
sides. Both of our experiments showed improve-
ments over the baseline, and as expected, the sec-
ond one had a higher improvement.
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Abstract

We propose a simple unsupervised ap-
proach to detecting non-compositional
components in multiword expressions
based on Wiktionary. The approach makes
use of the definitions, synonyms and trans-
lations in Wiktionary, and is applicable to
any type of MWE in any language, assum-
ing the MWE is contained in Wiktionary.
Our experiments show that the proposed
approach achieves higher F-score than
state-of-the-art methods.

1 Introduction

A multiword expression (MWE) is a combina-
tion of words with lexical, syntactic or seman-
tic idiosyncrasy (Sag et al., 2002; Baldwin and
Kim, 2009). An MWE is considered (semanti-
cally) “non-compositional” when its meaning is
not predictable from the meaning of its compo-
nents. Conversely, compositional MWEs are those
whose meaning is predictable from the meaning
of the components. Based on this definition, a
component is compositional within an MWE, if its
meaning is reflected in the meaning of the MWE,
and it is non-compositional otherwise.

Understanding which components are non-
compositional within an MWE is important in
NLP applications in which semantic information
is required. For example, when searching for
spelling bee, we may also be interested in docu-
ments about spelling, but not those which contain
only bee. For research project, on the other hand,
we are likely to be interested in documents which
contain either research or project in isolation, and
for swan song, we are only going to be interested
in documents which contain the phrase swan song,
and not just swan or song.

In this paper, we propose an unsupervised ap-
proach based on Wikitionary for predicting which

components of a given MWE have a composi-
tional usage. Experiments over two widely-used
datasets show that our approach outperforms state-
of-the-art methods.

2 Related Work

Previous studies which have considered MWE
compositionality have focused on either the iden-
tification of non-compositional MWE token in-
stances (Kim and Baldwin, 2007; Fazly et al.,
2009; Forthergill and Baldwin, 2011; Muzny and
Zettlemoyer, 2013), or the prediction of the com-
positionality of MWE types (Reddy et al., 2011;
Salehi and Cook, 2013; Salehi et al., 2014). The
identification of non-compositional MWE tokens
is an important task when a word combination
such as kick the bucket or saw logs is ambiguous
between a compositional (generally non-MWE)
and non-compositional MWE usage. Approaches
have ranged from the unsupervised learning of
type-level preferences (Fazly et al., 2009) to su-
pervised methods specific to particular MWE con-
structions (Kim and Baldwin, 2007) or applica-
ble across multiple constructions using features
similar to those used in all-words word sense
disambiguation (Forthergill and Baldwin, 2011;
Muzny and Zettlemoyer, 2013). The prediction
of the compositionality of MWE types has tradi-
tionally been couched as a binary classification
task (compositional or non-compositional: Bald-
win et al. (2003), Bannard (2006)), but more re-
cent work has moved towards a regression setup,
where the degree of the compositionality is pre-
dicted on a continuous scale (Reddy et al., 2011;
Salehi and Cook, 2013; Salehi et al., 2014). In ei-
ther case, the modelling has been done either over
the whole MWE (Reddy et al., 2011; Salehi and
Cook, 2013), or relative to each component within
the MWE (Baldwin et al., 2003; Bannard, 2006).
In this paper, we focus on the binary classification
of MWE types relative to each component of the
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MWE.
The work that is perhaps most closely related to

this paper is that of Salehi and Cook (2013) and
Salehi et al. (2014), who use translation data to
predict the compositionality of a given MWE rel-
ative to each of its components, and then combine
those scores to derive an overall compositionality
score. In both cases, translations of the MWE and
its components are sourced from PanLex (Bald-
win et al., 2010; Kamholz et al., 2014), and if
there is greater similarity between the translated
components and MWE in a range of languages,
the MWE is predicted to be more compositional.
The basis of the similarity calculation is unsuper-
vised, using either string similarity (Salehi and
Cook, 2013) or distributional similarity (Salehi et
al., 2014). However, the overall method is su-
pervised, as training data is used to select the
languages to aggregate scores across for a given
MWE construction. To benchmark our method,
we use two of the same datasets as these two pa-
pers, and repurpose the best-performing methods
of Salehi and Cook (2013) and Salehi et al. (2014)
for classification of the compositionality of each
MWE component.

3 Methodology

Our basic method relies on analysis of lexical
overlap between the component words and the def-
initions of the MWE in Wiktionary, in the man-
ner of Lesk (1986). That is, if a given component
can be found in the definition, then it is inferred
that the MWE carries the meaning of that compo-
nent. For example, the Wiktionary definition of
swimming pool is “An artificially constructed pool
of water used for swimming”, suggesting that the
MWE is compositional relative to both swimming
and pool. If the MWE is not found in Wiktionary,
we use Wikipedia as a backoff, and use the first
paragraph of the (top-ranked) Wikipedia article as
a proxy for the definition.

As detailed below, we further extend the basic
method to incorporate three types of information
found in Wiktionary: (1) definitions of each word
in the definitions, (2) synonyms of the words in the
definitions, and (3) translations of the MWEs and
components.

3.1 Definition-based Similarity

The basic method uses Boolean lexical overlap be-
tween the target component of the MWE and a

definition. A given MWE will often have multiple
definitions, however, begging the question of how
to combine across them, for which we propose the
following three methods.

First Definition (FIRSTDEF): Use only the
first-listed Wiktionary definition for the MWE,
based on the assumption that this is the predom-
inant sense.

All Definitions (ALLDEFS): In the case that
there are multiple definitions for the MWE, cal-
culate the lexical overlap for each independently
and take a majority vote; in the case of a tie, label
the component as non-compositional.

Idiom Tag (ITAG): In Wiktionary, there is fa-
cility for users to tag definitions as idiomatic.1 If,
for a given MWE, there are definitions tagged as
idiomatic, use only those definitions; if there are
no such definitions, use the full set of definitions.

3.2 Synonym-based Definition Expansion

In some cases, a component is not explicitly men-
tioned in a definition, but a synonym does occur,
indicating that the definition is compositional in
that component. In order to capture synonym-
based matches, we optionally look for synonyms
of the component word in the definition,2 and ex-
pand our notion of lexical overlap to include these
synonyms.

For example, for the MWE china clay, the defi-
nition is kaolin, which includes neither of the com-
ponents. However, we find the component word
clay in the definition for kaolin, as shown below.

A fine clay, rich in kaolinite, used in ce-
ramics, paper-making, etc.

This method is compatible with the three
definition-based similarity methods described
above, and indicated by the +SYN suffix (e.g.
FIRSTDEF+SYN is FIRSTDEF with synonym-
based expansion).

3.3 Translations

A third information source in Wiktionary that can
be used to predict compositionality is sense-level
translation data. Due to the user-generated na-
ture of Wiktionary, the set of languages for which

1Although the recall of these tags is low (Muzny and
Zettlemoyer, 2013).

2After removing function words, based on a stopword list.
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ENC EVPC
WordNet 91.1% 87.5%
Wiktionary 96.7% 96.2%
Wiktionary+Wikipedia 100.0% 96.2%

Table 1: Lexical coverage of WordNet, Wik-
tionary and Wiktionary+Wikipedia over our two
datasets.

translations are provided varies greatly across lexi-
cal entries. Our approach is to take whatever trans-
lations happen to exist in Wiktionary for a given
MWE, and where there are translations in that lan-
guage for the component of interest, use the LCS-
based method of Salehi and Cook (2013) to mea-
sure the string similarity between the translation
of the MWE and the translation of the compo-
nents. Unlike Salehi and Cook (2013), however,
we do not use development data to select the opti-
mal set of languages in a supervised manner, and
instead simply take the average of the string simi-
larity scores across the available languages. In the
case of more than one translation in a given lan-
guage, we use the maximum string similarity for
each pairing of MWE and component translation.

Unlike the definition and synonym-based ap-
proach, the translation-based approach will pro-
duce real rather than binary values. To combine
the two approaches, we discretise the scores given
by the translation approach. In the case of dis-
agreement between the two approaches, we label
the given MWE as non-compositional. This re-
sults in higher recall and lower precision for the
task of detecting compositionality.

3.4 An Analysis of Wiktionary Coverage
A dictionary-based method is only as good as the
dictionary it is applied to. In the case of MWE
compositionality analysis, our primary concern is
lexical coverage in Wiktionary, i.e., what propor-
tion of a representative set of MWEs is contained
in Wiktionary. We measure lexical coverage rela-
tive to the two datasets used in this research (de-
scribed in detail in Section 4), namely 90 En-
glish noun compounds (ENCs) and 160 English
verb particle constructions (EVPCs). In each case,
we calculated the proportion of the dataset that
is found in Wiktionary, Wiktionary+Wikipedia
(where we back off to a Wikipedia document in the
case that a MWE is not found in Wiktionary) and
WordNet (Fellbaum, 1998). The results are found
in Table 1, and indicate perfect coverage in Wik-

tionary+Wikipedia for the ENCs, and very high
coverage for the EVPCs. In both cases, the cov-
erage of WordNet is substantially lower, although
still respectable, at around 90%.

4 Datasets

As mentioned above, we evaluate our method over
the same two datasets as Salehi and Cook (2013)
(which were later used, in addition to a third
dataset of German noun compounds, in Salehi
et al. (2014)): (1) 90 binary English noun com-
pounds (ENCs, e.g. spelling bee or swimming
pool); and (2) 160 English verb particle construc-
tions (EVPCs, e.g. stand up and give away). Our
results are not directly comparable with those of
Salehi and Cook (2013) and Salehi et al. (2014),
however, who evaluated in terms of a regression
task, modelling the overall compositionality of the
MWE. In our case, the task setup is a binary clas-
sification task relative to each of the two compo-
nents of the MWE.

The ENC dataset was originally constructed by
Reddy et al. (2011), and annotated on a contin-
uous [0, 5] scale for both overall compositional-
ity and the component-wise compositionality of
each of the modifier and head noun. The sampling
was random in an attempt to make the dataset bal-
anced, with 48% of compositional English noun
compounds, of which 51% are compositional in
the first component and 60% are compositional in
the second component. We generate discrete la-
bels by discretising the component-wise composi-
tionality scores based on the partitions [0, 2.5] and
(2.5, 5]. On average, each NC in this dataset has
1.4 senses (definitions) in Wiktionary.

The EVPC dataset was constructed by Ban-
nard (2006), and manually annotated for com-
positionality on a binary scale for each of the
head verb and particle. For the 160 EVPCs,
76% are verb-compositional and 48% are particle-
compositional. On average, each EVPC in this
dataset has 3.0 senses (definitions) in Wiktionary.

5 Experiments

The baseline for each dataset takes the form of
looking for a user-annotated idiom tag in the Wik-
tionary lexical entry for the MWE: if there is an id-
iomatic tag, both components are considered to be
non-compositional; otherwise, both components
are considered to be compositional. We expect
this method to suffer from low precision for two
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Method First Component Second Component
Precision Recall F-score Precision Recall F-score

Baseline 66.7 68.2 67.4 66.7 83.3 74.1
LCS 60.0 77.7 67.7 81.6 68.1 64.6
DS 62.1 88.6 73.0 80.5 86.4 71.2
DS+DSL2 62.5 92.3 74.5 78.4 89.4 70.6
LCS+DS+DSL2 66.3 87.5 75.4 82.1 80.6 70.1
FIRSTDEF 59.4 93.2 72.6 54.2 88.9 67.4
ALLDEFS 59.5 100.0 74.6 52.9 100.0 69.2
ITAG 60.3 100.0 75.2 54.5 100.0 70.6
FIRSTDEF+SYN 64.9 84.1 73.3 63.8 83.3 72.3
ALLDEFS+SYN 64.5 90.9 75.5 60.4 88.9 71.9
ITAG+SYN 64.5 90.9 75.5 61.8 94.4 74.7
FIRSTDEF+SYN COMB(LCS+DS+DSL2) 82.9 85.3 84.1 81.9 80.0 69.8
ALLDEFS+SYN COMB(LCS+DS+DSL2) 81.2 88.1 84.5 87.3 80.6 73.3
ITAG+SYN COMB(LCS+DS+DSL2) 81.0 88.1 84.1 88.0 81.1 73.9

Table 2: Compositionality prediction results over the ENC dataset, relative to the first component (the
modifier noun) and the second component (the head noun)

reasons: first, the guidelines given to the annota-
tors of our datasets might be different from what
Wiktionary contributors assume to be an idiom.
Second, the baseline method assumes that for any
non-compositional MWE, all components must be
equally non-compositional, despite the wealth of
MWEs where one or more components are com-
positional (e.g. from the Wiktionary guidelines
for idiom inclusion,3 computer chess, basketball
player, telephone box).

We also compare our method with: (1) “LCS”,
the string similarity-based method of Salehi and
Cook (2013), in which 54 languages are used;
(2) “DS”, the monolingual distributional similarity
method of Salehi et al. (2014); (3) “DS+DSL2”,
the multilingual distributional similarity method
of Salehi et al. (2014), including supervised lan-
guage selection for a given dataset, based on cross-
validation; and (4) “LCS+DS+DSL2”, whereby
the first three methods are combined using a su-
pervised support vector regression model. In
each case, the continuous output of the model
is equal-width discretised to generate a binary
classification. We additionally present results for
the combination of each of the six methods pro-
posed in this paper with LCS, DS and DSL2, us-
ing a linear-kernel support vector machine (rep-
resented with the suffix “COMB(LCS+DS+DSL2)” for
a given method). The results are based on cross-

3http://en.wiktionary.org/wiki/
Wiktionary:Idioms_that_survived_RFD

validation, and for direct comparability, the parti-
tions are exactly the same as Salehi et al. (2014).

Tables 2 and 3 provide the results when our pro-
posed method for detecting non-compositionality
is applied to the ENC and EVPC datasets, respec-
tively. The inclusion of translation data was found
to improve all of precision, recall and F-score
across the board for all of the proposed methods.
For reasons of space, results without translation
data are therefore omitted from the paper.

Overall, the simple unsupervised methods pro-
posed in this paper are comparable with the unsu-
pervised and supervised state-of-the-art methods
of Salehi and Cook (2013) and Salehi et al. (2014),
with ITAG achieving the highest F-score for the
ENC dataset and for the verb components of the
EVPC dataset. The inclusion of synonyms boosts
results in most cases.

When we combine each of our proposed meth-
ods with the string and distributional similar-
ity methods of Salehi and Cook (2013) and
Salehi et al. (2014), we see substantial improve-
ments over the comparable combined method of
“LCS+DS+DSL2” in most cases, demonstrating
both the robustness of the proposed methods and
their complementarity with the earlier methods. It
is important to reinforce that the proposed meth-
ods make no language-specific assumptions and
are therefore applicable to any type of MWE and
any language, with the only requirement being that
the MWE of interest be listed in the Wiktionary for
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Method First Component Second Component
Precision Recall F-score Precision Recall F-score

Baseline 24.6 36.8 29.5 59.6 40.5 48.2
LCS 36.5 49.2 39.3 61.5 63.7 60.3
DS 32.8 34.1 33.5 80.9 19.6 29.7
DS+DSL2 31.8 72.4 44.2 74.8 27.5 36.6
LCS+DS+DSL2 36.1 62.6 45.8 77.9 42.8 49.2
FIRSTDEF 24.8 84.2 38.3 54.5 94.0 69.0
ALLDEFS 25.0 97.4 39.8 53.6 97.6 69.2
ITAG 26.2 89.5 40.5 54.6 91.7 68.4
FIRSTDEF+SYN 32.9 65.8 43.9 60.4 65.5 62.9
ALLDEFS+SYN 28.4 81.6 42.1 62.5 77.4 69.1
ITAG+SYN 30.5 65.8 41.7 57.8 61.9 59.8
FIRSTDEF+SYN COMB(LCS+DS+DSL2) 34.0 65.3 44.7 83.6 67.3 65.4
ALLDEFS+SYN COMB(LCS+DS+DSL2) 37.4 70.9 48.9 80.4 65.9 63.0
ITAG+SYN COMB(LCS+DS+DSL2) 35.6 70.9 47.4 83.5 64.9 64.2

Table 3: Compositionality prediction results over the EVPC dataset, relative to the first component (the
head verb) and the second component (the particle)

that language.

6 Error Analysis

We analysed all items in each dataset where the
system score differed from that of the human
annotators. For both datasets, the majority of
incorrectly-labelled items were compositional but
predicted to be non-compositional by our sys-
tem, as can be seen in the relatively low preci-
sion scores in Tables 2 and 3. In many of these
cases, the prediction based on definitions and syn-
onyms was compositional but the prediction based
on translations was non-compositional. In such
cases, we arbitrarily break the tie by labelling the
instance as non-compositional, and in doing so
favour recall over precision.

Some of the incorrectly-labelled ENCs have
a gold-standard annotation of around 2.5, or in
other words are semi-compositional. For exam-
ple, the compositionality score for game in game
plan is 2.82/5, but our system labels it as non-
compositional; a similar thing happens with figure
and the EVPC figure out. Such cases demonstrate
the limitation of approaches to MWE composi-
tionality that treat the problem as a binary clas-
sification task.

On average, the EVPCs have three senses,
which is roughly twice the number for ENCs. This
makes the prediction of compositionality harder,
as there is more information to combine across (an
effect that is compounded with the addition of syn-

onyms and translations). In future work, we hope
to address this problem by first finding the sense
which matches best with the sentences given to the
annotators.

7 Conclusion

We have proposed an unsupervised approach for
predicting the compositionality of an MWE rel-
ative to each of its components, based on lexi-
cal overlap using Wiktionary, optionally incorpo-
rating synonym and translation data. Our experi-
ments showed that the various instantiations of our
approach are superior to previous state-of-the-art
supervised methods. All code to replicate the re-
sults in this paper has been made publicly avail-
able at https://github.com/bsalehi/
wiktionary_MWE_compositionality.
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Abstract

We propose a model for jointly predicting
multiple emotions in natural language sen-
tences. Our model is based on a low-rank
coregionalisation approach, which com-
bines a vector-valued Gaussian Process
with a rich parameterisation scheme. We
show that our approach is able to learn
correlations and anti-correlations between
emotions on a news headlines dataset. The
proposed model outperforms both single-
task baselines and other multi-task ap-
proaches.

1 Introduction

Multi-task learning (Caruana, 1997) has been
widely used in Natural Language Processing.
Most of these learning methods are aimed for Do-
main Adaptation (Daumé III, 2007; Finkel and
Manning, 2009), where we hypothesize that we
can learn from multiple domains by assuming sim-
ilarities between them. A more recent use of
multi-task learning is to model annotator bias and
noise for datasets labelled by multiple annotators
(Cohn and Specia, 2013).

The settings mentioned above have one aspect
in common: they assume some degree of posi-
tive correlation between tasks. In Domain Adap-
tation, we assume that some “general”, domain-
independent knowledge exists in the data. For an-
notator noise modelling, we assume that a “ground
truth” exists and that annotations are some noisy
deviations from this truth. However, for some set-
tings these assumptions do not necessarily hold
and often tasks can be anti-correlated. For these
cases, we need to employ multi-task methods that
are able to learn these relations from data and
correctly employ them when making predictions,
avoiding negative knowledge transfer.

An example of a problem that shows this be-
haviour is Emotion Analysis, where the goal is to

automatically detect emotions in a text (Strappa-
rava and Mihalcea, 2008; Mihalcea and Strappa-
rava, 2012). This problem is closely related to
Opinion Mining (Pang and Lee, 2008), with sim-
ilar applications, but it is usually done at a more
fine-grained level and involves the prediction of a
set of labels (one for each emotion) instead of a
single label. While we expect some emotions to
have some degree of correlation, this is usually not
the case for all possible emotions. For instance, we
expect sadness and joy to be anti-correlated.

We propose a multi-task setting for Emotion
Analysis based on a vector-valued Gaussian Pro-
cess (GP) approach known as coregionalisation
(Álvarez et al., 2012). The idea is to combine a GP
with a low-rank matrix which encodes task corre-
lations. Our motivation to employ this model is
three-fold:

• Datasets for this task are scarce and small
so we hypothesize that a multi-task approach
will results in better models by allowing a
task to borrow statistical strength from other
tasks;

• The annotation scheme is subjective and very
fine-grained, and is therefore heavily prone to
bias and noise, both which can be modelled
easily using GPs;

• Finally, we also have the goal to learn a
model that shows sound and interpretable
correlations between emotions.

2 Multi-task Gaussian Process
Regression

Gaussian Processes (GPs) (Rasmussen and
Williams, 2006) are a Bayesian kernelised
framework considered the state-of-the-art for
regression. They have been recently used success-
fully for translation quality prediction (Cohn and
Specia, 2013; Beck et al., 2013; Shah et al., 2013)
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and modelling text periodicities (Preotiuc-Pietro
and Cohn, 2013). In the following we give a
brief description on how GPs are applied in a
regression setting.

Given an input x, the GP regression assumes
that its output y is a noise corrupted version of a
latent function evaluation, y = f(x) + η, where
η ∼ N (0, σ2

n) is the added white noise and the
function f is drawn from a GP prior:

f(x) ∼ GP(µ(x), k(x,x′)), (1)

where µ(x) is the mean function, which is usually
the 0 constant, and k(x,x′) is the kernel or co-
variance function, which describes the covariance
between values of f at locations x and x′.

To predict the value for an unseen input x∗, we
compute the Bayesian posterior, which can be cal-
culated analytically, resulting in a Gaussian distri-
bution over the output y∗:1

y∗ ∼ N (k∗(K + σnI)−1yT , (2)

k(x∗,x∗)− kT∗ (K + σnI)−1k∗),

where K is the Gram matrix corre-
sponding to the covariance kernel evalu-
ated at every pair of training inputs and
k∗ = [〈x1,x∗〉, 〈x2,x∗〉, . . . , 〈xn,x∗〉] is the
vector of kernel evaluations between the test input
and each training input.

2.1 The Intrinsic Coregionalisation Model

By extending the GP regression framework to
vector-valued outputs we obtain the so-called
coregionalisation models. Specifically, we employ
a separable vector-valued kernel known as Intrin-
sic Coregionalisation Model (ICM) (Álvarez et al.,
2012). Considering a set of D tasks, we define the
corresponding vector-valued kernel as:

k((x, d), (x′, d′)) = kdata(x,x′)×Bd,d′ , (3)

where kdata is a kernel on the input points (here
a Radial Basis Function, RBF), d and d′ are task
or metadata information for each input and B ∈
RD×D is the coregionalisation matrix, which en-
codes task covariances and is symmetric and posi-
tive semi-definite.

A key advantage of GP-based modelling is its
ability to learn hyperparameters directly from data

1We refer the reader to Rasmussen and Williams (2006,
Chap. 2) for an in-depth explanation of GP regression.

by maximising the marginal likelihood:

p(y|X,θ) =
∫
f
p(y|X,θ, f)p(f). (4)

This process is usually performed to learn the
noise variance and kernel hyperparameters, in-
cluding the coregionalisation matrix. In order to
do this, we need to consider how B is parame-
terised.

Cohn and Specia (2013) treat the diagonal val-
ues of B as hyperparameters, and as a conse-
quence are able to leverage the inter-task trans-
fer between each independent task and the global
“pooled” task. They however fix non-diagonal val-
ues to 1, which in practice is equivalent to assum-
ing equal correlation across tasks. This can be lim-
iting, in that this formulation cannot model anti-
correlations between tasks.

In this work we lift this restriction by adopting
a different parameterisation of B that allows the
learning of all task correlations. A straightforward
way to do that would be to consider every corre-
lation as an hyperparameter, but this can result in
a matrix which is not positive semi-definite (and
therefore, not a valid covariance matrix). To en-
sure this property, we follow the method proposed
by Bonilla et al. (2008), which decomposes B us-
ing Probabilistic Principal Component Analysis:

B = UΛUT + diag(α), (5)

where U is an D × R matrix containing the R
principal eigenvectors and Λ is a R × R diago-
nal matrix containing the corresponding eigenval-
ues. The choice of R defines the rank of UΛUT ,
which can be understood as the capacity of the
manifold with which we model the D tasks. The
vector α allows for each task to behave more or
less independently with respect to the global task.
The final rank of B depends on both terms in
Equation 5.

For numerical stability, we use the incomplete-
Cholesky decomposition over the matrix UΛUT ,
resulting in the following parameterisation for B:

B = L̃L̃T + diag(α), (6)

where L̃ is a D ×R matrix. In this setting, we
treat all elements of L̃ as hyperparameters. Set-
ting a larger rank allows more flexibility in mod-
elling task correlations. However, a higher number
of hyperparameters may lead to overfitting prob-
lems or otherwise cause issues in optimisation due
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to additional non-convexities in the log likelihood
objective. In our experiments we evaluate this be-
haviour empirically by testing a range of ranks for
each setting.

The low-rank model can subsume the ones pro-
posed by Cohn and Specia (2013) by fixing and
tying some of the hyperparameters:

Independent: fixing L̃ = 0 and α = 1;

Pooled: fixing L̃ = 1 and α = 0;

Combined: fixing L̃ = 1 and tying all compo-
nents of α;

Combined+: fixing L̃ = 1.

These formulations allow us to easily replicate
their modelling approach, which we evaluate as
competitive baselines in our experiments.

3 Experimental Setup

To address the feasibility of our approach, we pro-
pose a set of experiments with three goals in mind:

• To find our whether the ICM is able to learn
sensible emotion correlations;

• To check if these correlations are able to im-
prove predictions for unseen texts;

• To investigate the behaviour of the ICM
model as we increase the training set size.

Dataset We use the dataset provided by the “Af-
fective Text” shared task in SemEval-2007 (Strap-
parava and Mihalcea, 2007), which is composed
of 1000 news headlines annotated in terms of six
emotions: Anger, Disgust, Fear, Joy, Sadness and
Surprise. For each emotion, a score between 0 and
100 is given, 0 meaning total lack of emotion and
100 maximum emotional load. We use 100 sen-
tences for training and the remaining 900 for test-
ing.

Model For all experiments, we use a Radial Ba-
sis Function (RBF) data kernel over a bag-of-
words feature representation. Words were down-
cased and lemmatized using the WordNet lemma-
tizer in the NLTK2 toolkit (Bird et al., 2009). We
then use the GPy toolkit3 to combine this kernel
with a coregionalisation model over the six emo-
tions, comparing a number of low-rank approxi-
mations.

2http://www.nltk.org
3http://github.com/SheffieldML/GPy

Baselines and Evaluation We compare predic-
tion results with a set of single-task baselines: a
Support Vector Machine (SVM) using an RBF
kernel with hyperparameters optimised via cross-
validation and a single-task GP, optimised via like-
lihood maximisation. The SVM models were
trained using the Scikit-learn toolkit4 (Pedregosa
et al., 2011). We also compare our results against
the ones obtained by employing the “Combined”
and “Combined+” models proposed by Cohn and
Specia (2013). Following previous work in this
area, we use Pearson’s correlation coefficient as
evaluation metric.

4 Results and Discussion

4.1 Learned Task Correlations

Figure 1 shows the learned coregionalisation ma-
trix setting the initial rank as 1, reordering the
emotions to emphasize the learned structure. We
can see that the matrix follows a block structure,
clustering some of the emotions. This picture
shows two interesting behaviours:

• Sadness and fear are highly correlated. Anger
and disgust also correlate with them, al-
though to a lesser extent, and could be con-
sidered as belonging to the same cluster. We
can also see correlation between surprise and
joy. These are intuitively sound clusters
based on the polarity of these emotions.

• In addition to correlations, the model
learns anti-correlations, especially between
joy/surprise and the other emotions. We also
note that joy has the highest diagonal value,
meaning that it gives preference to indepen-
dent modelling (instead of pooling over the
remaining tasks).

Inspecting the eigenvalues of the learned ma-
trix allows us to empirically determine its result-
ing rank. In this case we find that the model has
learned a matrix of rank 3, which indicates that
our initial assumption of a rank 1 coregionalisa-
tion matrix may be too small in terms of modelling
capacity5. This suggests that a higher rank is
justified, although care must be taken due to the
local optima and overfitting issues cited in §2.1.

4http://scikit-learn.org
5The eigenvalues were 592, 62, 86, 4, 3 × 10−3 and 9 ×

10−5.
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Anger Disgust Fear Joy Sadness Surprise All
SVM 0.3084 0.2135 0.3525 0.0905 0.3330 0.1148 0.2603
Single GP 0.1683 0.0035 0.3462 0.2035 0.3011 0.1599 0.3659
ICM GP (Combined) 0.2301 0.1230 0.2913 0.2202 0.2303 0.1744 0.3295
ICM GP (Combined+) 0.1539 0.1240 0.3438 0.2466 0.2850 0.2027 0.3723
ICM GP (Rank 1) 0.2133 0.1075 0.3623 0.2810 0.3137 0.2415 0.3988
ICM GP (Rank 5) 0.2542 0.1799 0.3727 0.2711 0.3157 0.2446 0.3957

Table 1: Prediction results in terms of Pearson’s correlation coefficient (higher is better). Boldface values
show the best performing model for each emotion. The scores for the “All” column were calculated over
the predictions for all emotions concatenated (instead of just averaging over the scores for each emotion).

Figure 1: Heatmap showing a learned coregional-
isation matrix over the emotions.

4.2 Prediction Results

Table 1 shows the Pearson’s scores obtained in
our experiments. The low-rank models outper-
formed the baselines for the full task (predicting
all emotions) and for fear, joy and surprise sub-
tasks. The rank 5 models were also able to out-
perform all GP baselines for the remaining emo-
tions, but could not beat the SVM baseline. As
expected, the “Combined” and “Combined+” per-
formed worse than the low-rank models, probably
due to their inability to model anti-correlations.

4.3 Error analysis

To check why SVM performs better than GPs for
some emotions, we analysed their gold-standard
score distributions. Figure 2 shows the smoothed
distributions for disgust and fear, comparing the
gold-standard scores to predictions from the SVM
and GP models. The distributions for the training
set follow similar shapes.

We can see that GP obtains better matching
score distributions in the case when the gold-

Figure 2: Test score distributions for disgust and
fear. For clarity, only scores between 0 and 50 are
shown. SVM performs better on disgust, while GP
performs better on fear.

standard scores are more spread over the full sup-
port of response values, i.e., [0, 100]. Since our GP
model employs a Gaussian likelihood, it is effec-
tively minimising a squared-error loss. The SVM
model, on the other hand, uses hinge loss, which
is linear beyond the margin envelope constraints.
This affects the treatment of outlier points, which
attract quadratic cf. linear penalties for the GP
and SVM respectively. Therefore, when train-
ing scores are more uniformly distributed (which
is the case for fear), the GP model has to take the
high scores into account, resulting in broader cov-
erage of the full support. For disgust, the scores
are much more peaked near zero, favouring the
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more narrow coverage of the SVM.
More importantly, Figure 2 also shows that both

SVM and GP predictions tend to exhibit a Gaus-
sian shape, while the true scores show an expo-
nential behaviour. This suggests that both mod-
els are making wrong prior assumptions about the
underlying score distribution. For SVMs, this is
a non-trivial issue to address, although it is much
easier for GPs, where we can use a different like-
lihood distribution, e.g., a Beta distribution to re-
flect that the outputs are only valid over a bounded
range. Note that non-Gaussian likelihoods mean
that exact inference is no longer tractable, due to
the lack of conjugacy between the prior and likeli-
hood. However a number of approximate infer-
ence methods are appropriate which are already
widely used in the GP literature for use with non-
Gaussian likelihoods, including expectation prop-
agation (Jylänki et al., 2011), the Laplace approx-
imation (Williams and Barber, 1998) and Markov
Chain Monte Carlo sampling (Adams et al., 2009).

4.4 Training Set Influence

We expect multi-task models to perform better for
smaller datasets, when compared to single-task
models. This stems from the fact that with small
datasets often there is more uncertainty associated
with each task, a problem which can be alleviated
using statistics from the other tasks. To measure
this behaviour, we performed an additional exper-
iment varying the size of the training sets, while
using 100 sentences for testing.

Figure 3 shows the scores obtained. As ex-
pected, for smaller datasets the single-task mod-
els are outperformed by ICM, but their perfor-
mance become equivalent as the training set size
increases. SVM performance tends to be slightly
worse for most sizes. To study why we obtained
an outlier for the single-task model with 200 sen-
tences, we inspected the prediction values. We
found that, in this case, predictions for joy, sur-
prise and disgust were all around the same value.6

For larger datasets, this effect disappears and the
single-task models yield good predictions.

5 Conclusions and Future Work

This paper proposed an multi-task approach for
Emotion Analysis that is able to learn correlations

6Looking at the predictions for smaller datasets, we found
the same behaviour, but because the values found were near
the mean they did not hurt the Pearson’s score as much.

Figure 3: Pearson’s correlation score according to
training set size (in number of sentences).

and anti-correlations between emotions. Our for-
mulation is based on a combination of a Gaussian
Process and a low-rank coregionalisation model,
using a richer parameterisation that allows the
learning of fine-grained task similarities. The pro-
posed model outperformed strong baselines when
applied to a news headline dataset.

As it was discussed in Section 4.3, we plan
to further explore the possibility of using non-
Gaussian likelihoods with the GP models. An-
other research avenue we intend to explore is to
employ multiple layers of metadata, similar to the
model proposed by Cohn and Specia (2013). An
example is to incorporate the dataset provided by
Snow et al. (2008), which provides multiple non-
expert emotion annotations for each sentence, ob-
tained via crowdsourcing. Finally, another possi-
ble extension comes from more advanced vector-
valued GP models, such as the linear model of
coregionalisation (Álvarez et al., 2012) or hierar-
chical kernels (Hensman et al., 2013). These mod-
els can be specially useful when we want to em-
ploy multiple kernels to explain the relation be-
tween the input data and the labels.
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Abstract

Previous work on extracting ideology
from text has focused on domains where
expression of political views is expected,
but it’s unclear if current technology can
work in domains where displays of ide-
ology are considered inappropriate. We
present a supervised ensemble n-gram
model for ideology extraction with topic
adjustments and apply it to one such do-
main: research papers written by academic
economists. We show economists’ polit-
ical leanings can be correctly predicted,
that our predictions generalize to new do-
mains, and that they correlate with public
policy-relevant research findings. We also
present evidence that unsupervised models
can under-perform in domains where ide-
ological expression is discouraged.

1 Introduction

Recent advances in text mining demonstrate that
political ideology can be predicted from text –
often with great accuracy. Standard experimen-
tal settings in this literature are ones where ide-
ology is explicit, such as speeches by American
politicians or editorials by Israeli and Palestinian
authors. An open question is whether ideology
can be detected in arenas where it is strongly dis-
couraged. A further consideration for applied re-
searchers is whether these tools can offer insight
into questions of import for policymakers. To ad-
dress both of these issues, we examine one such
domain that is both policy-relevant and where ide-
ology is not overtly expressed: research papers
written by academic economists.

Why economics? Economic ideas are important
for shaping policy by influencing the public debate
and setting the range of expert opinion on various
policy options (Rodrik, 2014). Economics also

views itself as a science (Chetty, 2013) carefully
applying rigorous methodologies and using insti-
tutionalized safe-guards such as peer review. The
field’s most prominent research organization ex-
plicitly prohibits researchers from making policy
recommendations in papers that it releases (Na-
tional Bureau of Economic Research, 2010). De-
spite these measures, economics’ close proximity
to public policy decisions have led many to see it
as being driven by ideology (A.S., 2010). Does
this view of partisan economics have any empiri-
cal basis?

To answer the question of whether economics
is politicized or neutral, we present a supervised
ensemble n-gram model of ideology extraction
with topic adjustments.1 Our methodology is most
closely related to Taddy (2013) and Gentzkow and
Shapiro (2010), the latter of which used χ2 tests
to find phrases most associated with ideology as
proxied by the language of U.S. Congresspersons.
We improve on this methodology by accounting
for ideological word choice within topics and in-
corporating an ensemble approach that increases
predictive accuracy. We also motivate the need to
adjust for topics even if doing so does not improve
accuracy (although it does in this case). We further
provide evidence that fully unsupervised methods
(Mei et al., 2007; Lin et al., 2008; Ahmed and
Xing, 2010; Paul and Girju, 2010; Eisenstein et
al., 2011; Wang et al., 2012) may encounter dif-
ficulties learning latent ideological aspects when
those aspects are not first order in the data.

Our algorithm is able to correctly predict the
ideology of 69.2% of economists in our data
purely from their academic output. We also show
that our predictions generalize and are predictors
of responses by a panel of top economists on is-
sues of economic importance. In a companion
paper (Jelveh et al., 2014), we further show that

1Grimmer and Stewart (2013) provide an overview of
models used for ideology detection.
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predicted ideologies are significantly correlated
to economists’ research findings. The latter re-
sult shows the relevance and applicability of these
tools beyond the task of ideology extraction.

2 Data

Linking Economists to Their Political Activity:
We obtain the member directory of the Ameri-
can Economics Association (AEA) and link it to
two datasets: economists’ political campaign con-
tributions and petition signing activities. We ob-
tain campaign contribution data from the Federal
Election Commission’s website and petition sign-
ing data from Hedengren et al. (2010). From this
data, we construct a binary variable to indicate the
ground-truth ideologies of economists. See our
companion paper (Jelveh et al., 2014) for further
details on the construction of this dataset. Re-
vealed ideology through contributions and peti-
tions is largely consistent. Of 441 economists
appearing in both datasets, 83.4% showed agree-
ment between contributions and petitions. For
the final dataset of ground-truth authors we in-
clude all economists with campaign contribu-
tions and/or petition signatures, however, we drop
those economists whose ideologies where differ-
ent across the contribution and petition datasets.
Overall, 60% of 2,204 economists with imputed
ideologies in this final dataset are left-leaning
while 40% lean rightwards.

Economic Papers Corpus: To create our cor-
pus of academic writings by economists, we col-
lect 17,503 working papers from NBER’s website
covering June 1973 to October 2011. We also ob-
tained from JSTOR the fulltext of 62,888 research
articles published in 93 journals in economics for
the years 1991 to 2008. Combining the set of
economists and papers leaves us with 2,171 au-
thors with ground truth ideology and 17,870 pa-
pers they wrote. From the text of these papers we
create n-grams of length two through eight. While
n-grams greater than three words in length are un-
common, Margolin et al. (2013) demonstrate that
ideological word choice can be detected by longer
phrases. To capture other expressions of ideol-
ogy not revealed in adjacent terms, we also in-
clude skipgrams of length two by combining non-
adjacent terms that are three to five words apart.
We remove phrases used by fewer than five au-
thors.

Topic Adjustments: Table 1 presents the top

20 most conservative and liberal bigrams ranked
by χ2 scores from a Pearson’s test of indepen-
dence between phrase usage by left- and right-
leaning economists. It appears that top ideo-
logical phrases are related to specific research
subfields. For example, right-leaning terms
‘free bank’, ‘stock return’, and ‘feder reserv’ are
related to finance and left-leaning terms ‘men-
tal health’, ‘child care’, and ‘birth weight’ are re-
lated to health care. This observation leads us to
ask: Are apparently ideological phrases merely
a by-product of an economist’s research interest
rather than reflective of true ideology?

To see why this is a critical question, consider
that ideology has both direct and indirect effects
on word choice, the former of which is what we
wish to capture. The indirect pathway is through
topic: ideology may influence the research area
an economist enters into, but not the word choice
within that area. In that case, if more conserva-
tive economists choose macroeconomics, the ob-
served correlation between macro-related phrases
and right-leaning ideology would be spurious. The
implication is that accounting for topics may not
necessarily improve performance but provide evi-
dence to support an underlying model of how ide-
ology affects word choice. Therefore, to better
capture the direct effect of ideology on phrase us-
age we adjust our predictions by topic by creating
mappings from papers to topics. For a topic map-
ping, we predict economists’ ideologies from their
word choice within each topic and combine these
results to form and overall prediction. We com-
pare different supervised and unsupervised topic
mappings and assess their predictive ability.

To create supervised topic mappings, we take
advantage of the fact that economics papers are
manually categorized by the Journal of Economic
Literature (JEL). These codes are hierarchical in-
dicators of an article’s subject area. For exam-
ple, the code C51 can be read, in increasing order
of specificity, as Mathematical and Quantitative
Methods (C), Econometric Modeling (C5), Model
Construction and Estimation (C51). We construct
two sets of topic mappings: JEL1 derived from
the 1st-level codes (e.g. C) and JEL2 derived from
the 2nd-level codes (e.g. C5). The former cov-
ers broad areas (e.g. macroeconomics, microeco-
nomics, etc.) while the latter contains more refined
ones (e.g. monetary policy, firm behavior, etc.).

For unsupervised mappings, we run Latent
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Left-Leaning Bigrams Right-Leaning Bigrams

mental health public choic
post keynesian stock return

child care feder reserv
labor market yes yes
health care market valu
work time journal financi

keynesian econom bank note
high school money suppli
polici analys free bank

analys politiqu liquid effect
politiqu vol journal financ
birth weight median voter
labor forc law econom

journal post vote share
latin america war spend

mental ill journal law
medic care money demand

labour market gold reserv
social capit anna j

singl mother switch cost

Table 1: Top 20 bigrams and trigrams.

Dirichilet Allocation (Blei et al., 2003) on our cor-
pus. We use 30, 50, and 100 topics to create
LDA30, LDA50, and LDA100 topic mappings.
We use the topic distributions estimated by LDA
to assign articles to topics. A paper p is assigned
to a topic t if the probability that t appears in p
is greater than 5%. While 5% might seem to be a
lower threshold, the topic distributions estimated
by LDA tend to be sparse. For example, even with
50 topics to ‘choose’ from in LDA50 and a thresh-
old of 5%, 99.5% of the papers would be assigned
to five or fewer topics. This compares favorably
with JEL2 codings where 98.8% of papers have
five or fewer topics.

3 Algorithm

There are two components to our topic-adjusted
algorithm for ideology prediction. First, we focus
on n-grams and skipgrams that are most correlated
with ideology in the training data. For each topic
within a topic mapping, we count the total num-
ber of times each phrase is used by all left- and
all right-leaning economists. Then, we compute
Pearson’s χ2 statistic and associated p-values and
keep phrases with p ≤ 0.05. As an additional fil-
ter, we split the data into ten folds and perform the

χ2 test within each fold. For each topic, we keep
phrases that are consistently ideological across all
folds. This greatly reduces the number of ideo-
logical phrases. For LDA50, the mean number of
ideological phrases per topic before the cross val-
idation filter is 12,932 but falls to 963 afterwards.

With the list of ideological phrases in hand, the
second step is to iterate over each topic and predict
the ideologies of economists in our test set. To
compute the predictions we perform partial least
squares (PLS): With our training data, we con-
struct the standardized frequency matrix Ft,train
where the (e, p)-th entry is the number of times
economist e used partisan phrase p across all of
e’s papers in t. This number is divided by the total
number of phrases used by e in topic t. For papers
with multiple authors, each author gets same count
of phrases. About 5% of the papers in our dataset
are written by authors with differing ideologies.
We do not treat these differently. Columns of
Ft,train are standardized to have unit variance. Let
y be the vector of ground-truth ideologies, test set
ideologies are predicted as follows:

1) Compute w = Corr(Ft,train,y), the corre-
lations between each phrase and ideology

2) Project to one dimension: z = Ft,trainw
3) Regress ideology, y, on the constructed vari-

able z: y = b1 z
4) Predict ideology ŷe of new economist by
ŷe = b1f̃e

′
w, (f̃e is scaled frequency vector)

To avoid over-fitting we introduce an ensemble
element: For each t, we sample from the list of
significant n-grams in t and sample with replace-
ment from the authors who have written in t.2 PLS
is performed on this sample data 125 times. Each
PLS iteration can be viewed as a vote on whether
an author is left- or right-leaning. We calculate
the vote as follows. For each iteration, we pre-
dict the ideologies of economists in the training
data. We find the threshold f that minimizes the
distance between the true and false positive rates
for the current iteration and the same rates for the
perfect classifier: 1.0 and 0.0, respectively. Then,
an author in the test set is voted left-leaning if
yt,test ≤ f and right-leaning otherwise.

For a given topic mapping, our algorithm re-
turns a three-dimensional array with the (e, t, c)-th
entry representing the number of votes economist
e received in topic t for ideology c (left- or right-

2The number of phrases sampled each iteration is the
square root of the number of ideological phrases in the topic.
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leaning). To produce a final prediction, we sum
across the second dimension and compute ideol-
ogy as the percentage of right-leaning votes re-
ceived across all topics within a topic-mapping.
Therefore, ideology values closer to zero are as-
sociated with a left-leaning ideology and values
closer to one are associated with a rightward lean.

To recap, we start with a topic mapping and then
for each topic run an ensemble algorithm with PLS
at its core.3 The output for each topic is a set of
votes. We sum across topics to compute a final
prediction for ideology.

4 Validation and Results

We split our ground-truth set of 2,171 authors
into training (80%) and test sets (20%) and com-
pute predictions as above. As our data exhibits
skew with 1.5 left-leaning for every right-leaning
economist, we report the area under the curve
(AUC) which is robust to class skew (Fawcett,
2006). It’s worth noting that a classifier that ran-
domly predicts a liberal economist 60% of the
time would have an AUC of 0.5. To compare
our model with fully unsupervised methods, we
also include results from running the Topic-Aspect
Model (TAM) (Paul and Girju, 2010) on our data.
TAM decomposes documents into two compo-
nents: one affecting topics and one affecting a la-
tent aspect that influences all topics in a similar
manner. We run TAM with 30 topics and 2 aspects
(TAM2/30). We follow Paul and Girju and use the
learned topic and aspect distributions as training
data for a SVM.4

Columns 2 to 4 from Table 2 show that our
models’ predictions have a clear association with
ground-truth ideology. The LDA topic mappings
outperform the supervised mappings as well as a
model that does not adjust for topics (NoTopic).
Perhaps not surprisingly, TAM does not perform
well in our domain. A drawback of unsupervised
methods is that the learned aspects may not be re-
lated to ideology but some other hidden factor.

For further insight into how well our model
generalizes, we use data from Gordon and Dahl
(2013) to compare our predictions to potentially
ideological responses of economists on a survey

3Other predictions algorithms could be dropped in for
PLS. Logistic regression and SVM produced similar results.

4Authors are treated as documents. TAM is run for 1,000
iterations with the following priors: α = 1.0, β = 1.0, γ0 =
1, γ1 = 1, δ0 = 20, δ1 = 80.

(1) (2) (3) (4)
Topic
Map

Accu-
racy(%)

Corr. w/
Truth

AUC

LDA50 69.2 0.381 0.719
LDA100 66.3 0.364 0.707
LDA30 65.0 0.313 0.674
NoTopic 63.9 0.290 0.672
JEL1 61.0 0.263 0.647
JEL2 61.8 0.240 0.646
TAM2/30 61.5 0.228 0.580

Table 2: Model comparisons

(1) (2) (3)

LDA50 1.814∗∗∗ 2.457∗∗∗ 2.243∗∗∗

Log-Lik. -1075.0 -758.7 -740.6

JEL1 1.450∗∗∗ 2.128∗∗∗ 1.799∗∗∗

Log-Lik. -1075.3 -757.4 -740.5

No Topic 0.524∗∗∗ 0.659∗∗∗ 0.824∗∗∗

Log-Lik. -1075.3 -760.5 -741.0

Question No Yes Yes
Demog./Prof. No No Yes
Observations 715 715 715
Individuals 39 39 39
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3: IGM correlations. Column (1) shows re-
sults of regression of response on predicted ideol-
ogy. Column (2) adds question dummies. Column
(3) adds demographic and professional variables.

conducted by the University of Chicago.5 Each
survey question asks for an economists opinion on
an issue of political relevance such as minimum
wages or tax rates. For further details on the data
see Gordon and Dahl. Of importance here is that
Gordon and Dahl categorize 22 questions where
agreement (disagreement) with the statement im-
plies belief a conservative (liberal) viewpoint.

To see if our predicted ideologies are corre-
lated with survey responses, we run an ordered-
logistic regression (McCullagh, 1980). Survey
responses are coded with the following order:
Strongly Disagree, Disagree, Uncertain, Agree,
Strongly Agree. We regress survey responses onto
predicted ideologies. We also include question-
level dummies and explanatory variables for a re-

5http://igmchicago.org
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spondent’s gender, year of Ph.D., Ph.D. univer-
sity, NBER membership, and experience in federal
government. Table 3 shows the results of these re-
gressions for three topic mappings. The correla-
tion between our predictions and survey respon-
dents are all strongly significant.

One way to interpret these results is to com-
pare the change in predicted probability of pro-
viding an Agree or Strongly Agree answer (agree-
ing with the conservative view point) if we change
predicted ideology from most liberal to most con-
servative. For NoTopic, this predicted probabil-
ity is 35% when ideology is set to most liberal
and jumps to 73.7% when set to most conserva-
tive. This difference increases for topic-adjusted
models. For LDA50, the probability of a conser-
vative answer when ideology is set to most liberal
is 14.5% and 93.8% for most conservative.

Figure 1 compares the predicted probabilities of
choosing different answers when ideology is set
to most liberal and most conservative. Our topic-
adjusted models suggest that the most conserva-
tive economists are much more likely to strongly
agree with a conservative response than for the
most liberal economists to strongly agree with a
liberal response. It is worthwhile to note from
the small increase in log-likelihood in Table 3
when controls are added, suggesting that our ide-
ology scores are much better predictors of IGM
responses than demographic and professional con-
trols.

5 Conclusions and Future Work

We’ve presented a supervised methodology for ex-
tracting political sentiment in a domain where it’s
discouraged and shown how it even predicts the
partisanship calculated from completely unrelated
IGM survey data. In a companion paper (Jelveh et
al., 2014) we further demonstrate how this tool can
be used to aid policymakers in de-biasing research
findings. When compared to domains where ideo-
logical language is expected, our predictive ability
is reduced. Future work should disentangle how
much this difference is due to modeling decisions
and limitations versus actual absence of ideology.
Future works should also investigate how fully un-
supervised methods can be extended to match our
performance.
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Figure 1: The predicted probability of agreeing
with a conservative response when ideology is
set to most liberal (gray) and most conservative
(black).
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Abstract
We develop a statistical model of saccadic
eye movements during reading of isolated
sentences. The model is focused on rep-
resenting individual differences between
readers and supports the inference of the
most likely reader for a novel set of eye
movement patterns. We empirically study
the model for biometric reader identifica-
tion using eye-tracking data collected from
20 individuals and observe that the model
distinguishes between 20 readers with an
accuracy of up to 98%.

1 Introduction

During skilled reading, the eyes of a reader do
not move smoothly over a text. Instead, read-
ing proceeds by alternating between brief fixations
on individual words and short ballistic movements
called saccades that move the point of fixation to a
new location. Evidence in psychological research
indicates that patterns of fixations and saccades are
driven partly by low-level visual cues (e.g., word
length), and partly by linguistic and cognitive pro-
cessing of the text (Kliegl et al., 2006; Rayner,
1998).

Eye-movement patterns are frequently studied
in cognitive psychology as they provide a rich
and detailed record of the visual, oculomotor, and
linguistic processes involved in reading. Com-
putational models of eye-movement control de-
veloped in psychology, such as SWIFT (Engbert
et al., 2005; Schad and Engbert, 2012) or E-Z
Reader (Reichle et al., 1998; Reichle et al., 2012),
simulate the generation of eye movements based
on physiological and psychological constraints re-
lated to attention, visual perception, and the ocu-
lomotor system. Recently, the problem of mod-
eling eye movements has also been approached

from a machine-learning perspective. Matties and
Søgaard (2013) and Hara et al. (2012) study con-
ditional random field models to predict which
words in a text are fixated by a reader. Nilsson
and Nivre (2009) use a transition-based log-linear
model to predict a sequence of fixations for a text.

A central observation made by these studies, as
well as by earlier psychological work (Erdmann
and Dodge, 1898; Huey, 1908), is that eye move-
ment patterns vary significantly between individ-
uals. As one example of the strength of indi-
vidual differences in reading eye movements, we
cite Dixon (1951) who compared the reading pro-
cesses of university professors and graduate stu-
dents of physics, education, and history on read-
ing material in their own and the two other fields.
He did not find strong effects of his experimen-
tal variables (i.e., field of research, expertise in re-
search) but “if there is one thing that this study
has shown, it is that individual differences in read-
ing skill existed among the subjects of all depart-
ments. Fast and slow readers were found in every
department, and the overlapping of distributions
from passage to passage was enormous” (p. 173).
Even though it is possible to predict across a large
base of readers with some accuracy whether spe-
cific words will be fixated (Matties and Søgaard,
2013), a strong variation between readers in at-
tributes such as the fraction of skipped words and
total number of saccades has been observed (Hara
et al., 2012).

Some recent work has studied eye movement
patterns as a biometric feature. Most studies are
based on an artificial visual stimulus, such as a
moving (Kasprowski and Ober, 2004; Komogort-
sev et al., 2010; Rigas et al., 2012b; Zhang and
Juhola, 2012) or fixed (Bednarik et al., 2005) dot
on a computer screen, or a specific image stimu-
lus (Rigas et al., 2012a). In the most common use
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case of biometric user identification, a decision on
whether access should be granted has to be made
after performing some test that requires the user’s
attention and therefore cannot take a long time. By
contrast, our work is motivated by a less intrusive
scenario in which the user is monitored continu-
ously during access to, for instance, a device or
document. When the accumulated evidence sup-
ports the conclusion that the user is not authorized,
access can be terminated or additional credentials
requested. In this use case, identification has to
be based on saccadic eye movements that occur
while a user is reading an arbitrary text—as op-
posed to movements that occur in response to a
fixed, controlled visual stimulus. Holland and Ko-
mogortsev (2012) study reader recognition based
on a set of aggregate features derived from eye
movements, irrespective of the text being read;
their work will serve as reference in our empiri-
cal study.

The paper is organized as follows. Section 2 de-
tails the problem setting. Section 3 introduces the
statistical model and discusses parameter estima-
tion and inference. Section 5 presents empirical
results, Section 6 concludes.

2 Problem Setting and Notation

Let R denote a set of readers, and
X = {X1, ...,Xn} a set of texts. Each r ∈ R
generates a set of eye movement patterns
S(r) = {S(r)

1 , . . . ,S(r)
n } on the set of texts X , by

S(r)
i ∼ p(S|Xi, r)

where p(S|X, r) is a reader-specific distribution
over eye movement patterns given a text X. A pat-
tern is a sequence S = ((s1, d1), . . . , (sT , dT )) of
fixations, consisting of a fixation position st (posi-
tion in text that was fixated) and duration dt ∈ R
(length of fixation in milliseconds). In our experi-
ments, individual sentences are presented in a sin-
gle line on a screen, thus we only model a hori-
zontal gaze position st ∈ R.

At test time, we observe novel eye move-
ment patterns S̄ = {S̄1, . . . , S̄m} on a novel set
of texts X̄ = {X̄1, ..., X̄m} generated by an un-
known reader r ∈ R. The goal is to infer

r∗ = arg max
r∈R

p(r|S̄, X̄ ). (1)
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Figure 1: Empirical distributions over amplitudes
and Gamma fits for different saccade types.

3 Statistical Model of Eye Movements

We solve Problem 1 by estimating reader-specific
models p(S|X; θr) for r ∈ R, and solving for

p(r|S̄, X̄ ; Θ) ∝
(

m∏
i=1

p(S̄i|X̄i; θr)

)
p(r) (2)

where all θr are aggregated into a global model Θ.
Assuming a uniform prior p(r) over readers, this
reduces to predicting the reader r that maximizes
the likelihood p(S̄|X̄ ; θr) =

∏m
i=1 p(S̄i|X̄i; θr).

We formulate a model p(S|X; θ) of a sequence
S of fixations given a text X. The model defines
a dynamic probabilistic process that successively
generates the fixation positions st and durations dt
in S, reflecting how a reader generates a sequence
of saccades in response to a text stimulus X. The
joint distribution over all fixation positions and du-
rations is assumed to factorize as

p(s1, . . . , sT , d1, . . . , dT |X; θ)

= p(s1, d1|X; θ)
T−1∏
t=1

p(st+1, dt+1|st,X; θ).

The conditional p(st+1, dt+1|st,X; θ) models the
generation of the next fixation position and du-
ration given the current fixation position st. In
the psychological literature, four different sac-
cadic types are distinguished: a reader can refix-
ate the current word (refixation), fixate the next
word in the text (next word movement), move the
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fixation to a word after the next word (forward
skip), or regress to fixate a word occurring ear-
lier than the currently fixated word in the text (re-
gression) (Heister et al., 2012). We observe em-
pirically, that modeling the amplitude as a mixture
of four Gamma distributions matches the empiri-
cal distribution of amplitudes in our data well—
see Figure 1. Modeling the amplitudes as a sin-
gle distribution, instead of a mixture of four dis-
tributions, results in a substantially lower out-
of-sampling likelihood of the model. Therefore,
at each time t, the model first draws a saccadic
type ut+1 ∈ {1, 2, 3, 4} from a multinomial dis-
tribution and then generates a saccade amplitude
at+1 and fixation duration dt+1 from type-specific
Gamma distributions. Formally, the generative
process is given by

ut+1 ∼ p(u|π) = Mult(u|π) (3)

at+1 ∼ p(a|ut+1, st,X; η) (4)

dt+1 ∼ p(d|ut+1; λ). (5)

Afterwards the model updates the fixation position
according to st+1 = st + at+1. The joint param-
eter vector θ concatenates parameters of the indi-
vidual distributions in Equations 3 to 5. Figure 2
shows a slice in the dynamical model.

Given the current fixation position st, the text
X, and the chosen saccadic type ut+1, the am-
plitude is constrained to fall within a specific
interval—for instance, within the characters of the
currently fixated word for refixations. Therefore,
we model the distribution over the saccade ampli-
tude given the saccadic type (Equation 4) as trun-
cated Gamma distributions, given by1

G(x|[l, r];α, β) =

{ G(x|α,β)∫ r
l G(x̄|α,β)dx̄

if x ∈ [l, r]

0 otherwise

where G(x|α, β) =
1

βαΓ(α)
xα−1e

−x
β

is the Gamma distribution with shape parameter
α and scale parameter β, and Γ is the Gamma
function. For x ∼ G(x|α, β) it holds that
G(x|[l, r];α, β) is the conditional distribution of
x given that x ∈ [l, r]. The distribution over a sac-

1The definition is straightforwardly generalized to open
truncation intervals.

tu 1tu 

ta 1ta td 1td 

t 1t 

X

ts 1ts 

Figure 2: Graphical model notation of a slice in
the dynamic model. Parameters are omitted to
avoid notational clutter.

cade amplitude given the saccade type is given by

p(a|ut+1 = 1, st,X; η) ={
µG(a|[0, r];α1, β1) if a > 0
(1− µ)G(−a|[0, l]; ᾱ1, β̄1) otherwise

(6)

where the parameter µ reflects the probability for
a forward saccade within a refixation, and

p(a|ut+1 = 2, st,X; η) = G(a|[l+, r+];α2, β2)
p(a|ut+1 = 3, st,X; η) = G(a|(r+,∞);α3, β3)
p(a|ut+1 = 4, st,X; η) = G(−a|(−l,∞);α4, β4).

(7)

Here, the truncation intervals reflect the con-
straints on the amplitude at+1 given ut+1, st and
X. Let wl (wr) denote the position of the left-
most (right-most) character of the currently fix-
ated word, and let w+

l , w
+
r denote these positions

for the word following the currently fixated word.
Then l = wl − st, r = wr − st, l+ = w+

l − st,
and r+ = w+

r − st. The parameter vector η
contains the parameters µ, ᾱ1, β̄1 and αi, βi for
i ∈ {2, 3, 4}.

The distribution over fixation durations given
saccade type is modeled by a Gamma distribution

p(d|ut+1; λ) = G(d|γut+1 , δut+1)

with type-specific parameters γu, δu for
u ∈ {1, 2, 3, 4} that are concatenated into a
parameter vector λ.

It remains to specify the distribution over initial
fixation positions and durations p(s1, d1|X; θ),
which is given by additional Gamma distributions

s1 ∼ G(d|α0, β0) d1 ∼ G(d|γ0, δ0)
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Figure 3: Reader identification accuracy as a function of the number of training sentences (left) and test
sentences (right) read for different model variants. Error bars indicate the standard error.

where the parameters α0, β0, γ0, δ0 are aggregated
into the joint parameter vector θ.

4 Parameter Estimation and Inference

Given a set S(r) of eye movement observations for
reader r ∈ R on texts X , the MAP estimate of the
parameters is

θr = arg max
θ

p(θ|S(r),X )

= arg max
θ

(
n∏
i=1

p(S(r)
i |Xi; θ)

)
p(θ). (8)

A Dirichlet distribution (add-one smoothing) is a
natural, conjugate prior for the multinomial distri-
bution; we use uninformative priors for all other
distributions. The structure of the model implies
that the posterior can be maximized by fitting the
parameters π to the observed saccadic types un-
der the Dirichlet prior, and independently fitting
the distributions p(at|ut,X, st; η) and p(dt|ut; λ)
by maximum likelihood to the saccade amplitudes
and durations observed for each saccade type.
The resulting maximum likelihood problems are
slightly non-standard in that we have to fit Gamma
distributions that are truncated differently for each
data point, depending on the textual content at
the position where the saccade occurs (see Equa-
tions 6 and 7). We solve the resulting optimization
problems using a Quasi-Newton method. To avoid
overfitting, we use a backoff-smoothing technique
for p(at|ut,X, st; η) and p(dt|ut; λ): we replace
reader-specific parameter estimates by estimates
obtained from the corresponding data of all read-
ers if the number of data points from which the dis-
tributions are estimated falls below a cutoff value.

The cutoff value is tuned by cross-validation on
the training data.

At test time, we have to infer likelihoods
p(Si|X; θr) (Equation 2). This is done by evalu-
ating the multinomial and (truncated) Gamma dis-
tributions in the model for the corresponding ob-
servations and model parameters.

5 Empirical Study

We empirically study the proposed model and sev-
eral baselines using eye-movement records of 20
individuals (Heister et al., 2012). For each indi-
vidual, eye movements are recorded while read-
ing each of the 144 sentences in the Potsdam Sen-
tence Corpus (Kliegl et al., 2006). The data set
contains fixation positions and durations that have
been obtained from raw eye movement data by
appropriate preprocessing. Eye movements were
recorded with an EyeLink II system with a 500-
Hz sampling rate (SR Research, Osgoode, On-
tario, Canada). All recordings and calibration
were binocular. We randomly sample disjoint
sets of n training sentences and m test sentences
from the set of 144 sentences. Models are esti-
mated on the eye movement records of individu-
als on the training sentences (Equation 8). The
eye-movement records of one individual on all test
sentences constitute a test example; the model in-
fers the most likely individual to have generated
these test observations (Equation 2). Identifica-
tion accuracy is the fraction of times an individ-
ual is correctly inferred; random guessing yields
an accuracy of 0.05. Results are averaged over 20
training and test sets.

We study the model introduced in Section 3
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Figure 4: Identification accuracy as a function of the number of training and test sentences read for
full model (left). Identification accuracy as a function of the number of individuals that have to be
distinguished for different model variants (right). Error bars indicate the standard error.

(full model), a model variant in which the variable
dt+1 and corresponding distribution is removed
(saccade type + amplitude), and a simple model
that only fits a multinomial distribution to saccade
types (saccade type only). Additionally, we com-
pare against the feature-based reader identification
approach by Holland & Komogortsev (2012). Six
of the 14 features used by Holland & Komogort-
sev depend on saccade velocities and vertical fix-
ation positions. As this information was not avail-
able in the preprocessed data set that we used, we
implemented the remaining features. There is ex-
tensive empirical evidence that saccade velocity
scales with saccade amplitude. Specifically, the
relationship between logarithmic peak saccade ve-
locity and logarithmic saccade amplitude is lin-
ear over a wide range of amplitudes and veloci-
ties; this is known as the main sequence relation-
ship (Bahill et al., 1975). Therefore, we do not ex-
pect that adding saccade velocities would dramat-
ically affect performance of this baseline. Holland
& Komogortsev employ a weighted combination
of features; we report results for the method with
and without feature weighting.

Figure 3 shows identification accuracy as a
function of the number n of training sentences
used to estimate model parameters (left) and as
a function of the number m of test sentences on
which inference of the most likely reader is based
(right, cf. Equation 2). The full model achieves
up to 98.25% accuracy, significantly outperform-
ing the Holland & Komogortsev (2012) baseline
(91.25%, without feature weighting) and simpler
model variants. All methods perform much better

than random guessing. Figure 4 (left) shows iden-
tification accuracy as a function of both training
size n and test size m for the full model.

We finally study how identification accuracy
changes with the number of individuals that have
to be distinguished. To this end, we perform the
same study as above, but with randomly sampled
subsets of the overall set of 20 individuals. In these
experiments, we average over 50 random train-test
splits. Figure 4 (right) shows identification ac-
curacy as a function of the number of individu-
als. We observe that identification accuracy drops
with the number of individuals for all methods;
our model consistently outperforms the baselines.

6 Conclusions

We have developed a model of individual differ-
ences in eye movements during reading, and stud-
ied its application in a biometric task. At test time,
individuals are identified based on eye movements
on novel text. Our approach thus provides poten-
tially unobtrusive biometric identification without
requiring users to react to a specific stimulus. Em-
pirical results show clear advantages over an exist-
ing approach for reader identification.
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Abstract

Multi-label text categorization (MTC) is
supervised learning, where a documen-
t may be assigned with multiple categories
(labels) simultaneously. The labels in the
MTC are correlated and the correlation re-
sults in some hidden components, which
represent the ”share” variance of correlat-
ed labels. In this paper, we propose a
method with hidden components for MTC.
The proposed method employs PCA to
capture the hidden components, and incor-
porates them into a joint learning frame-
work to improve the performance. Experi-
ments with real-world data sets and evalu-
ation metrics validate the effectiveness of
the proposed method.

1 Introduction

Many real-world text categorization applications
are multi-label text categorization (Srivastava and
Zane-Ulman, 2005; Katakis et al., 2008; Rubin
et al., 2012; Nam et al., 2013), where a docu-
ments is usually assigned with multiple labels si-
multaneously. For example, as figure 1 shows,
a newspaper article concerning global warming
can be classified into two categories, Environmen-
t, and Science simultaneously. Let X = Rd

be the documents corpus, and Y = {0, 1}m be
the label space with m labels. We denote by
{(x1x1x1, y1y1y1), (x2x2x2, y2y2y2), ..., (xnxnxn, ynynyn)} the training set of
n documents. Each document is denoted by a vec-
tor xxxi = [xi,1, xi,2, ..., xi,d] of d dimensions. The
labeling of the i-th document is denoted by vector
yyyi = [yi,1, yi,2, ..., yi,m], where yil is 1 when the
i-th document has the l-th label and 0 otherwise.
The goal is to learn a function fff : X → Y . Gener-
ally, we can assume fff consists of m functions, one
for a label.

fff = [f1, f2, ..., fm]

Figure 1: A newspaper article concerning global
warming can be classified into two categories, En-
vironment, and Science.

The labels in the MLC are correlated. For ex-
ample, a ”politics” document is likely to be an ”e-
conomic” document simultaneously, but likely not
to be a ”literature” document. According to the
latent variable model (Tabachnick et al., 2001),
the labels with correlation result in some hidden
components, which represent the ”share” variance
of correlated labels. Intuitively, if we can capture
and utilize these hidden components in MTC, the
performance will be improved. To implement this
idea, we propose a multi- label text categorization
method with hidden components, which employ
PCA to capture the hidden components, and then
incorporates these hidden components into a joint
learning framework. Experiments with various da-
ta sets and evaluation metrics validate the values
of our method. The research close to our work is
ML-LOC (Multi-Label learning using LOcal Cor-
relation) in (Huang and Zhou, 2012). The differ-
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ences between ours and ML-LOC is that ML-LOC
employs the cluster method to gain the local cor-
relation, but we employ the PCA to obtain the hid-
den code. Meanwhile, ML-LOC uses the linear
programming in learning the local code, but we
employ the gradient descent method since we add
non-linear function to the hidden code.

The rest of this paper is organized as follows.
Section 2 presents the proposed method. We con-
duct experiments to demonstrate the effectiveness
of the proposed method in section 3. Section 4
concludes this paper.

2 Methodology

2.1 Capturing Hidden Component via
Principle Component Analysis

The first step of the proposed method is to capture
hidden components of training instances. Here we
employ Principal component analysis (PCA). This
is because PCA is a well-known statistical tool that
converts a set of observations of possibly correlat-
ed variables into a set of values of linearly uncorre-
lated variables called principle components. These
principle components represent the inner structure
of the correlated variables.

In this paper, we directly employ PCA to con-
vert labels of training instances into their principle
components, and take these principle components
as hidden components of training instances. We
denote by hhhi the hidden components of the i-th in-
stance captured by PCA.

2.2 Joint Learning Framework
We expand the original feature representation of
the instance xxxi by its hidden component code vec-
tor ccci. For simplicity, we use logistic regression as
the motivating example. Let wwwl denote weights in
the l-th function fl, consisting of two parts: 1)wwwxl
is the part involving the instance features. 2) wwwcl
is the part involving the hidden component codes.
Hence fl is:

fl(xxx,ccc) =
1

1 + exp(−xxxTwwwxl − cccTwwwcl )
(1)

where CCC is the code vectors set of all training in-
stances.

The natural choice of the code vector ccc is hhh.
However, when testing an instance, the labeling is
unknown (exactly what we try to predict), conse-
quently we can not capture hhh with PCA to replace
the code vector ccc in the prediction function Eq.(1).

Therefore, we assume a linear transformation MMM
from the training instances to their independent
components, and use MMMxxx as the approximate in-
dependent component. For numerical stability, we
add a non-linear function (e.g., the tanh function)
toMMMxxx. This is formulated as follows.

ccc = tanh(MMMxxx) (2)

Aiming to the discrimination fitting and the in-
dependent components encoding, we optimize the
following optimization problem.

min
WWW,C

n∑
i=1

m∑
l=1

`(xxxi, ccci, yil, fl) + λ1Ω(fff)

+λ2Z(CCC) (3)

The first term of Eq.(3) is the loss function. `
is the loss function defined on the training data,
and WWW denotes all weights in the our model, i.e.,
www1, ...,wwwl, ...,wwwm. Since we utilize the logistic re-
gression in our model, the loss function is defined
as follows.

`(xxx,ccc, y, f)
= −ylnf(xxx,ccc)− (1− y)ln(1− f(xxx,ccc)) (4)

The second term of Eq.(3) Ω is to punish the
model complexity, which we use the `2 regular-
ization term.

Ω(fff) =
m∑
l=1

||wwwl||2. (5)

The third term of Eq.(3) Z is to enforce the code
vector close to the independent component vector.
To obtain the goal, we use the least square error
between the code vector and the independent com-
ponent vector as the third regularized term.

Z(C) =
n∑
i=1

||ccci − hhhi||2. (6)

By substituting the Eq.(5) and Eq.(6) into Eq.(3)
and changing ccc to tanh(MMMxxx) (Eq.(2)), we obtain
the following optimization problem.

min
WWW,MMM

n∑
i=1

m∑
l=1

`(xxxi, tanh(MMMxxxi), yil, fff)

+λ1

m∑
l=1

||wwwl||2 + λ2

n∑
i=1

||MMMxxxi − hihihi||2

(7)
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2.3 Alternative Optimization method

We solve the optimization problem in Eq.(7) by
the alternative optimization method, which opti-
mize one group of the two parameters with the
other fixed. When the MMM fixed, the third term of
Eq.(7) is a constant and thus can be ignored, then
Eq.(7) can be rewritten as follows.

min
WWW

n∑
i=1

m∑
l=1

`(xxxi, tanh(MMMxxxi), yil, fl)

+λ1

m∑
l=1

||wwwl||2 (8)

By decomposing Eq.(8) based on the label, the e-
quation Eq.(8) can be simplified to:

min
wwwl

n∑
i=1

`(xxxi, tanh(MMMxxxi), yil, fl) + λ1||wwwl||2 (9)

Eq.(9) is the standard logistic regression, which
has many efficient optimization algorithms.

When WWW fixed, the second term is constan-
t and can be omitted, then Ep.(7) can rewritten
to Eq.(10). We can apply the gradient descen-
t method to optimize this problem.

min
MMM

n∑
i=1

m∑
l=1

`(xxxi, tanh(MMMxxxi), yil, fl)

+λ2

n∑
i=1

||MMMxxxi − hihihi||2

(10)

3 Experiments

3.1 Evaluation Metrics

Compared with the single-label classification, the
multi-label setting introduces the additional de-
grees of freedom, so that various multi-label eval-
uation metrics are requisite. We use three differen-
t multi-label evaluation metrics, include the ham-
ming loss evaluation metric.

The hamming loss is defined as the percentage
of the wrong labels to the total number of labels.

Hammingloss =
1
m
|h(xxx)∆yyy| (11)

where ∆ denotes the symmetric difference of two
sets, equivalent to XOR operator in Boolean logic.
m denotes the label number.

The multi-label 0/1 loss, also known as subset
accuracy, is the exact match measure as it requires
any predicted set of labels h(xxx) to match the true
set of labels S exactly. The 0/1 loss is defined as
follows:

0/1loss = I(h(xxx) 6= yyy) (12)

Let aj and rj denote the precision and recall for
the j-th label. The macro-averaged F is a harmon-
ic mean between precision and recall, defined as
follows:

F =
1
m

m∑
i=j

2 ∗ aj ∗ rj
aj + rj

(13)

3.2 Datasets

We perform experiments on three MTC data sets:
1) the first data set is slashdot (Read et al., 2011).
The slashdot data set is concerned about science
and technology news categorization, which pre-
dicts multiply labels given article titles and partial
blurbs mined from Slashdot.org. 2) the second da-
ta set is medical (Pestian et al., 2007). This data set
involves the assignment of ICD-9-CM codes to ra-
diology reports. 3) the third data set is tmc2007 (S-
rivastava and Zane-Ulman, 2005). It is concerned
about safety report categorization, which is to la-
bel aviation safety reports with respect to what
types of problems they describe. The characteris-
tics of them are shown in Table 1, where n denotes
the size of the data set, d denotes the dimension of
the document instance, and m denotes the number
of labels.

dataset n d m Lcard
slashdot 3782 1079 22 1.18
medical 978 1449 45 1.245
tmc2007 28596 500 22 2.16

Table 1: Multi-label data sets and associated statis-
tics

The measure label cardinality Lcard, which
is one of the standard measures of ”multi-label-
ness”, defined as follows, introduced in (T-
soumakas and Katakis, 2007).

Lcard(D) =

∑n
i=1

∑m
j=1 y

i
j

n

where D denotes the data set, lij denotes the j-th
label of the i-th instance in the data set.
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3.3 Compared to Baselines
To examine the values of the joint learning frame-
work, we compare our method to two baselines.
The baseline 1 eliminates the PCA, which just
adds an extra set of non-linear features. To im-
plement this baseline, we only need to set λ2 = 0.
The baseline 2 eliminates the joint learning frame-
work. This baseline captures the hidden compo-
nent codes with PCA, trains a linear regression
model to fit the hidden component codes, and u-
tilizes the outputs of the linear regression model
as features.

For the proposed method, we set λ1 = 0.001
and λ2 = 0.1. For the baseline 2, we employ l-
ogistic regression with 0.001 `2 regularization as
the base classifier. Evaluations are done in ten-
fold cross validation. Note that all of them pro-
duce real-valued predictions. A threshold t needs
to be used to determine the final multi-label set yyy
such that lj ∈ yyy where pj ≥ t. We select threshold
t, which makes the Lcard measure of predictions
for the training set is closest to the Lcard mea-
sure of the training set (Read et al., 2011). The
threshold t is determined as follows, where Dt is
the training set and a multi-label model Ht pre-
dicts for the training set under threshold t.

t = argmin
t∈[0,1]

|Lcard(Dt)− Lcard(Ht(Dt))| (14)

Table 2 reports our method wins over the base-
lines in terms of different evaluation metrics,
which shows the values of PCA and our join-
t learning framework. The hidden component code
only fits the hidden component in the baseline
method. The hidden component code obtains bal-
ance of fitting hidden component and fitting the
training data in the joint learning framework.

3.4 Compared to Other Methods
We compare the proposed method to BR, C-
C (Read et al., 2011), RAKEL (Tsoumakas and
Vlahavas, 2007) and ML-KNN (Zhang and Zhou,
2007). entropy. ML-kNN is an adaption of kNN
algorithm for multilabel classification. methods.
Binary Revelance (BR) is a simple but effective
method that trains binary classifiers for each label
independently. BR has a low time complexity but
makes an arbitrary assumption that the labels are
independent from each other. CC organizes the
classifiers along a chain and take predictions pro-
duced by the former classifiers as features of the

latter classifiers. ML-kNN uses kNN algorithms
independently for each label with considering pri-
or probabilities. The Label Powerset (LP) method
models independencies among labels by treating
each label combination as a new class. LP con-
sumes too much time, since there are 2m label
combinations with m labels. RAndom K labEL
(RAKEL) is an ensemble method of LP. RAKEL
learns several LP models with random subsets of
size k from all labels, and then uses a vote process
to determine the final predictions.

For our proposed method, we employ the set-
up in subsection 3.3. We utilize logistic regression
with 0.001 `2 regularization as the base classifier
for BR, CC and RAKEL. For RAKEL, the num-
ber of ensemble is set to the number of label and
the size of the label subset is set to 3. For MLKN-
N, the number of neighbors used in the k-nearest
neighbor algorithm is set to 10 and the smooth pa-
rameter is set to 1. Evaluations are done in ten-
fold cross validation. We employ the threshold-
selection strategy introduced in subsection 3.3

Table 2 also reports the detailed results in terms
of different evaluation metrics. The mean metric
value and the standard deviation of each method
are listed for each data set. We see our proposed
method shows majorities of wining over the other
state-of-the-art methods nearly at all data sets un-
der hamming loss, 0/1 loss and macro f score. E-
specially, under the macro f score, the advantages
of our proposed method over the other methods are
very clear.

4 CONCLUSION

Many real-world text categorization applications
are multi-label text categorization (MTC), where a
documents is usually assigned with multiple labels
simultaneously. The key challenge of MTC is the
label correlations among labels. In this paper, we
propose a MTC method via hidden components
to capture the label correlations. The proposed
method obtains hidden components via PCA and
incorporates them into a joint learning framework.
Experiments with various data sets and evaluation
metrics validate the effectiveness of the proposed
method.
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hamming↓. Lower is better.
Dataset slashdot medical tmc2007

Proposed 0.044± 0.004 0.010± 0.002 0.056± 0.002
Baseline1 0.046± 0.003• 0.010± 0.002 0.056± 0.001
Baseline2 0.047± 0.003• 0.011± 0.001 0.059± 0.001•

BR 0.058± 0.003• 0.010± 0.001 0.060± 0.001•
CC 0.049± 0.003• 0.010± 0.001 0.058± 0.001•

RAKEL 0.039± 0.002◦ 0.011± 0.002 0.057± 0.001
MLKNN 0.067± 0.003• 0.016± 0.003• 0.070± 0.002•

0/1 loss↓. Lower is better.
Dataset slashdot medical tmc2007

Proposed 0.600± 0.042 0.316± 0.071 0.672± 0.010
Baseline1 0.615± 0.034• 0.324± 0.058• 0.672± 0.008
Baseline2 0.669± 0.039• 0.354± 0.062• 0.698± 0.007•

BR 0.803± 0.018• 0.337± 0.063• 0.701± 0.008•
CC 0.657± 0.025• 0.337± 0.064• 0.687± 0.010•

RAKEL 0.686± 0.024• 0.363± 0.064• 0.682± 0.009•
MLKNN 0.776± 0.020• 0.491± 0.083• 0.746± 0.003•

F score↑. Larger is better.
Dataset slashdot medical tmc2007

Proposed 0.429± 0.026 0.575± 0.067 0.587± 0.010
Baseline1 0.413± 0.032• 0.547± 0.056• 0.577± 0.011
Baseline2 0.398± 0.032• 0.561± 0.052• 0.506± 0.011•

BR 0.204± 0.011• 0.501± 0.058• 0.453± 0.011•
CC 0.303± 0.022• 0.510± 0.052• 0.505± 0.011•

RAKEL 0.349± 0.023• 0.589± 0.063◦ 0.555± 0.011•
MLKNN 0.297± 0.031• 0.410± 0.064• 0.431± 0.014•

Table 2: Performance (mean±std.) of our method and baseline in terms of different evaluation metrics.
•/◦ indicates whether the proposed method is statistically superior/inferior to baseline (pairwise t-test at
5% significance level).
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Abstract

We describe a convolutional neural net-
work that learns feature representations for
short textual posts using hashtags as a su-
pervised signal. The proposed approach is
trained on up to 5.5 billion words predict-
ing 100,000 possible hashtags. As well as
strong performance on the hashtag predic-
tion task itself, we show that its learned
representation of text (ignoring the hash-
tag labels) is useful for other tasks as well.
To that end, we present results on a docu-
ment recommendation task, where it also
outperforms a number of baselines.

1 Introduction

Hashtags (single tokens often composed of nat-
ural language n-grams or abbreviations, prefixed
with the character ‘#’) are ubiquitous on social
networking services, particularly in short textual
documents (a.k.a. posts). Authors use hashtags to
diverse ends, many of which can be seen as labels
for classical NLP tasks: disambiguation (chips
#futurism vs. chips #junkfood); identi-
fication of named entities (#sf49ers); sentiment
(#dislike); and topic annotation (#yoga).
Hashtag prediction is the task of mapping text to
its accompanying hashtags. In this work we pro-
pose a novel model for hashtag prediction, and
show that this task is also a useful surrogate for
learning good representations of text.

Latent representations, or embeddings, are vec-
torial representations of words or documents, tra-
ditionally learned in an unsupervised manner over
large corpora. For example LSA (Deerwester et
al., 1990) and its variants, and more recent neural-
network inspired methods like those of Bengio et
al. (2006), Collobert et al. (2011) and word2vec
(Mikolov et al., 2013) learn word embeddings. In
the word embedding paradigm, each word is rep-

resented as a vector in Rn, where n is a hyper-
parameter that controls capacity. The embeddings
of words comprising a text are combined using a
model-dependent, possibly learned function, pro-
ducing a point in the same embedding space. A
similarity measure (for example, inner product)
gauges the pairwise relevance of points in the em-
bedding space.

Unsupervised word embedding methods train
with a reconstruction objective in which the em-
beddings are used to predict the original text. For
example, word2vec tries to predict all the words
in the document, given the embeddings of sur-
rounding words. We argue that hashtag predic-
tion provides a more direct form of supervision:
the tags are a labeling by the author of the salient
aspects of the text. Hence, predicting them may
provide stronger semantic guidance than unsuper-
vised learning alone. The abundance of hashtags
in real posts provides a huge labeled dataset for
learning potentially sophisticated models.

In this work we develop a convolutional net-
work for large scale ranking tasks, and apply it
to hashtag prediction. Our model represents both
words and the entire textual post as embeddings as
intermediate steps. We show that our method out-
performs existing unsupervised (word2vec) and
supervised (WSABIE (Weston et al., 2011)) em-
bedding methods, and other baselines, at the hash-
tag prediction task.

We then probe our model’s generality, by trans-
fering its learned representations to the task of per-
sonalized document recommendation: for each of
M users, given N previous positive interactions
with documents (likes, clicks, etc.), predict the
N + 1’th document the user will positively inter-
act with. To perform well on this task, the rep-
resentation should capture the user’s interest in
textual content. We find representations trained
on hashtag prediction outperform representations
from unsupervised learning, and that our convolu-
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Figure 1: #TAGSPACE convolutional network f(w, t) for scoring a (document, hashtag) pair.

tional architecture performs better than WSABIE

trained on the same hashtag task.

2 Prior Work

Some previous work (Davidov et al., 2010; Godin
et al., 2013; She and Chen, 2014) has addressed
hashtag prediction. Most such work applies to
much smaller sets of hashtags than the 100,000 we
consider, with the notable exception of Ding et al.
(2012), which uses an unsupervised method.

As mentioned in Section 1, many approaches
learn unsupervised word embeddings. In our
experiments we use word2vec (Mikolov et al.,
2013) as a representative scalable model for un-
supervised embeddings. WSABIE (Weston et al.,
2011) is a supervised embedding approach that has
shown promise in NLP tasks (Weston et al., 2013;
Hermann et al., 2014). WSABIE is shallow, linear,
and ignores word order information, and so may
have less modeling power than our approach.

Convolutional neural networks (CNNs), in
which shared weights are applied across the in-
put, are popular in the vision domain and have re-
cently been applied to semantic role labeling (Col-
lobert et al., 2011) and parsing (Collobert, 2011).
Neural networks in general have also been applied
to part-of-speech tagging, chunking, named en-
tity recognition (Collobert et al., 2011; Turian et
al., 2010), and sentiment detection (Socher et al.,
2013). All these tasks involve predicting a limited
(2-30) number of labels. In this work, we make
use of CNNs, but apply them to the task of rank-
ing a very large set of tags. We thus propose a
model and training scheme that can scale to this
class of problem.

3 Convolutional Embedding Model

Our model #TAGSPACE (see Figure 1), like other
word embedding models, starts by assigning a d-
dimensional vector to each of the l words of an
input document w1, . . . , wl, resulting in a matrix
of size l × d. This is achieved using a matrix of
N × d parameters, termed the lookup-table layer
(Collobert et al., 2011), whereN is the vocabulary
size. In this work N is 106, and each row of the
matrix represents one of the million most frequent
words in the training corpus.

A convolution layer is then applied to the l × d
input matrix, which considers all successive win-
dows of text of size K, sliding over the docu-
ment from position 1 to l. This requires a fur-
ther Kd×H weights and H biases to be learned.
To account for words at the two boundaries of the
document we also apply a special padding vector
at both ends. In our experiments K was set to 5
and H was set to 1000. After the convolutional
step, a tanh nonlinearity followed by a max op-
eration over the l × H features extracts a fixed-
size (H-dimensional) global feature vector, which
is independent of document size. Finally, another
tanh non-linearity followed by a fully connected
linear layer of sizeH×d is applied to represent the
entire document in the original embedding space
of d-dimensions.

Hashtags are also represented using d-
dimensional embeddings using a lookup-table.
We represent the top 100,000 most frequent tags.
For a given document w we then rank any given
hashtag t using the scoring function:

f(w, t) = econv(w) · elt(t)
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where econv(w) is the embedding of the document
by the CNN just described and elt(t) is the em-
bedding of a candidate tag t. We can thus rank all
candidate hashtags via their scores f(w, t), largest
first.

To train the above scoring function, and hence
the parameters of the model we minimize a rank-
ing loss similar to the one used in WSABIE as
a training objective: for each training example,
we sample a positive tag, compute f(w, t+), then
sample random tags t̄ up to 1000 times until
f(w, t̄) > m + f(w, t+), where m is the mar-
gin. A gradient step is then made to optimize the
pairwise hinge loss:

L = max{0,m− f(w, t+) + f(w, t̄)}.

We use m = 0.1 in our experiments. This loss
function is referred to as the WARP loss in (We-
ston et al., 2011) and is used to approximately
optimizing the top of the ranked list, useful for
metrics like precision and recall@k. In particu-
lar, the search for a negative candidate tag means
that more energy is spent on improving the rank-
ing performance of positive labels already near the
top of the ranked list, compared to only randomly
sampling of negatives, which would optimize the
average rank instead.

Minimizing our loss is achieved with parallel
stochastic gradient descent using the hogwild al-
gorithm (Niu et al., 2011). The lookup-table lay-
ers are initialized with the embeddings learned by
WSABIE to expedite convergence. This kind of
‘pre-training’ is a standard trick in the neural net-
work literature, see e.g. (Socher et al., 2011).

The ranking loss makes our model scalable to
100,000 (or more) hashtags. At each training ex-
ample only a subset of tags have to be computed,
so it is far more efficient than a standard classifi-
cation loss that considers them all.

4 Experiments

4.1 Data

Our experiments use two large corpora of posts
containing hashtags from a popular social net-
work.1 The first corpus, which we call people,
consists of 201 million posts from individual user
accounts, comprising 5.5 billion words.

The second corpus, which we call pages, con-
sists of 35.3 million page posts, comprising 1.6

1Both corpora were de-identified during collection.

Posts Words
Dataset (millions) (billions) Top 4 tags

Pages 35.3 1.6
#fitness,
#beauty,
#luxury, #cars

People 201 5.5
#FacebookIs10,
#love, #tbt,
#happy

Table 1: Datasets used in hashtag prediction.

billion words. These posts’ authorial voice is a
public entity, such as a business, celebrity, brand,
or product. The posts in the pages dataset are pre-
sumably intended for a wider, more general audi-
ence than the posts in the people dataset. Both are
summarized in Table 1.

Both corpora comprise posts between February
1st and February 17th, 2014. Since we are not at-
tempting a multi-language model, we use a simple
trigram-based language prediction model to con-
sider only posts whose most likely language is En-
glish.

The two datasets use hashtags very differently.
The pages dataset has a fatter head, with popular
tags covering more examples. The people dataset
uses obscure tags more heavily. For example, the
top 100 tags account for 33.9% of page tags, but
only 13.1% of people tags.

4.2 Hashtag prediction

The hashtag prediction task attempts to rank a
post’s ground-truth hashtags higher than hash-
tags it does not contain. We trained models on
both the people and page datasets, and collected
precision at 1, recall at 10, and mean rank for
50,000 randomly selected posts withheld from
training. A further 50,000 withheld posts are
used for selecting hyperparameters. We compare
#TAGSPACE with the following models:

Frequency This simple baseline ignores input
text, always ranking hashtags by their frequency
in the training data.

#words This baseline assigns each tag a static
score based on its frequency plus a large bonus if
it corresponds to a word in the input text. For ex-
ample, on input “crazy commute this am”, #words
ranks #crazy, #commute, #this and #am
highest, in frequency order.

Word2vec We trained the unsupervised model
of Mikolov et al. (2013) on both datasets, treat-
ing hashtags the same as all other words. To ap-
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Crazy commute this am, #nyc, #snow, #puremichigan, #snowday, #snowstorm,
was lucky to even get in to work. #tubestrike, #blizzard, #commute, #snowpocalypse, #chiberia
This can’t go on anymore, #samelove, #equalrights, #equality, #equalityforall, #loveislove,
we need marriage equality now! #lgbt, #marriageequality, #noh8, #gayrights, #gaymarriage
Kevin spacey what a super hottie :) #houseofcards, #hoc, #houseofcardsseason2, #season2, #kevinspacey,

#frankunderwood, #netflix, #suits, #swoon, #hubbahubba
Went shopping today and found a really #mango, #shopping, #heaven, #100happydays, #yummy,
good place to get fresh mango. #lunch, #retailtherapy, #yum, #cravings, #wholefoods
Went running today -- #running, #ouch, #pain, #nopainnogain, #nike
my feet hurt so much! #marathontraining, #sore, #outofshape, #nikeplus, #runnerproblems

Wow, what a goal that was, #arsenal, #coyg, #ozil, #afc, #arsenalfc
just too fast, Mesut Ozil is the best! #lfc, #ynwa, #mesut, #gunners, #ucl
Working really hard on the paper #thestruggle, #smh, #lol, #collegelife, #homework
all last night. #sad, #wtf, #confused, #stressed, #work

The restaurant was too expensive #ripoff, #firstworldproblems, #smh, #fail, #justsaying
and the service was slow. #restaurant, #badservice, #food, #middleclassproblems, #neveragain

The restaurant had great food #dinner, #restaurant, #yum, #food, #delicious
and was reasonably priced. #stuffed, #goodtimes, #foodporn, #yummy, #winning

He has the longest whiskers, #cat, #kitty, #meow, #cats, #catsofinstagram
omg so sweet! #crazycatlady, #cute, #kitten, #catlady, #adorable

Table 2: #TAGSPACE (256 dim) predictions for some example posts.

ply these word embeddings to ranking, we first
sum the embeddings of each word in the text (as
word2vec does), and then rank hashtags by simi-
larity of their embedding to that of the text.2

WSABIE (Weston et al., 2011) is a supervised
bilinear embedding model. Each word and tag has
an embedding. The words in a text are averaged
to produce an embedding of the text, and hash-
tags are ranked by similarity to the text embed-
ding. That is, the model is of the form:

f(w, t) = w>U>V t

where the post w is represented as a bag of words
(a sparse vector in RN ), the tag is a one-hot-vector
in RN , and U and V are k ×N embedding matri-
ces. The WARP loss, as described in section 3, is
used for training.

Performance of all these models at hashtag pre-
diction is summarized in Tables 3 and 4. We find
similar results for both datasets. The frequency
and #words baselines perform poorly across the

2Note that the unsupervised Word2vec embeddings could
be used as input to a supervised classifier, which we did not
do. For a supervised embedding baseline we instead use WS-
ABIE. WSABIE trains word embeddings U and hashtag em-
beddings V in a supervised fashion, whereas Word2vec trains
them both unsupervised. Adding supervision to Word2vec
would effectively do something in-between: U would still be
unsupervised, but V would then be supervised.

board, establishing the need to learn from text.
Among the learning models, the unsupervised
word2vec performs the worst. We believe this
is due to it being unsupervised – adding super-
vision better optimizes the metric we evaluate.
#TAGSPACE outperforms WSABIE at all dimen-
sionalities. Due to the relatively large test sets,
the results are statistically significant; for example,
comparing #TAGSPACE (64 dim) beats Wsabie (64
dim) for the page dataset 56% of the time, and
draws 23% of the time in terms of the rank met-
ric, and is statistically significant with a Wilcoxon
signed-rank test.

Some example predictions for #TAGSPACE are
given for some constructed examples in Table 2.
We also show nearest word embeddings to the
posts. Training data was collected at the time of
the pax winter storm, explaining predictions for
the first post, and Kevin Spacey appears in the
show “House of Cards,”. In all cases the hash-
tags reveal labels that capture the semantics of the
posts, not just syntactic similarity of individual
words.

Comparison to Production System We also
compare to a proprietary system in production in
Facebook for hashtag prediction. It trains a lo-
gistic regression model for every hashtag, using
a bag of unigrams, bigrams, and trigrams as the
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Method dim P@1 R@10 Rank
Freq. baseline - 1.06% 2.48% 11277
#words baseline - 0.90% 3.01% 11034
Word2Vec 256 1.21% 2.85% 9973
Word2Vec 512 1.14% 2.93% 8727
WSABIE 64 4.55% 8.80% 6921
WSABIE 128 5.25% 9.33% 6208
WSABIE 256 5.66% 10.34% 5519
WSABIE 512 5.92% 10.74% 5452
#TAGSPACE 64 6.69% 12.42% 3569
#TAGSPACE 128 6.91% 12.57% 3858
#TAGSPACE 256 7.37% 12.58% 3820

Table 3: Hashtag test results for people dataset.

Method dim P@1 R@10 Rank
Freq. baseline - 4.20% 1.59% 11103
#words baseline - 2.63% 5.05% 10581
Word2Vec 256 4.66% 8.15% 10149
Word2Vec 512 5.26% 9.33% 9800
WSABIE 64 24.45% 29.64% 2619
WSABIE 128 27.47% 32.94% 2325
WSABIE 256 29.76% 35.28% 1992
WSABIE 512 30.90% 36.96% 1184
#TAGSPACE 64 34.08% 38.96% 1184
#TAGSPACE 128 36.27% 41.42% 1165
#TAGSPACE 256 37.42% 43.01% 1155

Table 4: Hashtag test results for pages dataset.

input features. Unlike the other models we con-
sider here, this baseline has been trained using a
set of approximately 10 million posts. Engineer-
ing constraints prevent measuring mean rank per-
formance. We present it here as a serious effort
at solving the same problem from outside the em-
bedding paradigm. On the people dataset this sys-
tem achieves 3.47% P@1 and 5.33% R@10. On
the pages dataset it obtains 5.97% P@1 and 6.30%
R@10. It is thus outperformed by our method.
However, we note the differences in experimen-
tal setting mean this comparison is perhaps not
completely fair (different training sets). We expect
performance of linear models such as this to be
similar to WSABIE as that has been in the case in
other datasets (Gupta et al., 2014), but at the cost
of more memory usage. Note that models like lo-
gistic regression and SVM do not scale well if you
have millions of hashtags, which we could handle
in our models.

4.3 Personalized document recommendation
To investigate the generality of these learned rep-
resentations, we apply them to the task of recom-
mending documents to users based on the user’s
interaction history. The data for this task comprise
anonymized day-long interaction histories for a
tiny subset of people on a popular social network-

Method dim P@1 R@10 R@50
Word2Vec 256 0.75% 1.96% 3.82%
BoW - 1.36% 4.29% 8.03%
WSABIE 64 0.98% 3.14% 6.65%
WSABIE 128 1.02% 3.30% 6.71%
WSABIE 256 1.01% 2.98% 5.99%
WSABIE 512 1.01% 2.76% 5.19%
#TAGSPACE 64 1.27% 4.56% 9.64%
#TAGSPACE 128 1.48% 4.74% 9.96%
#TAGSPACE 256 1.66% 5.29% 10.69%
WSABIE+ BoW 64 1.61% 4.83% 9.00%
#TAGSPACE+ BoW 64 1.80% 5.90% 11.22%
#TAGSPACE+ BoW 256 1.92% 6.15% 11.53%

Table 5: Document recommendation task results.

ing service. For each of the 34 thousand people
considered, we collected the text of between 5 and
167 posts that she has expressed previous positive
interactions with (likes, clicks, etc.). Given the
person’s trailing n−1 posts, we use our models to
predict the n’th post by ranking it against 10,000
other unrelated posts, and measuring precison and
recall. The score of the nth post is obtained by
taking the max similarity over the n− 1 posts. We
use cosine similarity between post embeddings in-
stead of the inner product that was used for hash-
tag training so that the scores are not unduly influ-
enced by document length. All learned hashtag
models were trained on the people dataset. We
also consider a TF-IDF weighted bag-of-words
baseline (BoW). The results are given in Table 5.

Hashtag-based embeddings outperform BoW
and unsupervised embeddings across the board,
and #TAGSPACE outperforms WSABIE. The best
results come from summing the bag-of-words
scores with those of #TAGSPACE.

5 Conclusion

#TAGSPACE is a convolutional neural network
that learns to rank hashtags with a minimum of
task-specific assumptions and engineering. It per-
forms well, beating several baselines and an in-
dustrial system engineered for hashtag prediction.
The semantics of hashtags cause #TAGSPACE to
learn a representation that captures many salient
aspects of text. This representation is general
enough to port to the task of personalized docu-
ment recommendation, where it outperforms other
well-known representations.
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Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. The Journal of Machine Learning Re-
search, 12:2493–2537.

Ronan Collobert. 2011. Deep learning for efficient dis-
criminative parsing. In International Conference on
Artificial Intelligence and Statistics, number EPFL-
CONF-192374.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Enhanced sentiment learning using twitter hashtags
and smileys. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics:
Posters, COLING ’10, pages 241–249, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Scott C. Deerwester, Susan T Dumais, Thomas K. Lan-
dauer, George W. Furnas, and Richard A. Harshman.
1990. Indexing by latent semantic analysis. JASIS,
41(6):391–407.

Zhuoye Ding, Qi Zhang, and Xuanjing Huang. 2012.
Automatic hashtag recommendation for microblogs
using topic-specific translation model. In COLING
(Posters)’12, pages 265–274.
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Abstract

In this paper, we provide a new method for
decoding tree transduction based sentence
compression models augmented with lan-
guage model scores, by jointly decoding
two components. In our proposed so-
lution, rich local discriminative features
can be easily integrated without increasing
computational complexity. Utilizing an
unobvious fact that the resulted two com-
ponents can be independently decoded, we
conduct efficient joint decoding based on
dual decomposition. Experimental results
show that our method outperforms tradi-
tional beam search decoding and achieves
the state-of-the-art performance.

1 Introduction

Sentence compression is the task of generating a
grammatical and shorter summary for a long sen-
tence while preserving its most important informa-
tion. One specific instantiation is deletion-based
compression, namely generating a compression by
dropping words. Various approaches have been
proposed to challenge the task of deletion-based
compression. Earlier pioneering works (Knight
and Marcu, 2000) considered several insightful
approaches, including noisy-channel based gen-
erative models and discriminative decision tree
models. Structured discriminative compression
models (McDonald, 2006) are capable of inte-
grating rich features and have been proved effec-
tive for this task. Another powerful paradigm for
sentence compression should be mentioned here
is constraints-based compression,including inte-
ger linear programming solutions (Clarke and La-
pata, 2008) and first-order Markov logic networks
(Huang et al., 2012; Yoshikawa et al., 2012).

A notable class of methods that explicitly deal
with syntactic structures are tree transduction

models (Cohn and Lapata, 2007; Cohn and Lap-
ata, 2009). In such models a synchronous gram-
mar is extracted from a corpus of parallel syn-
tax trees with leaves aligned. Compressions are
generated from the grammar with learned weights.
Previous works have noticed that local coherence
is usually needed by introducing ngram language
model scores, which will make accurate decoding
intractable. Traditional approaches conduct beam
search to find approximate solutions (Cohn and
Lapata, 2009).

In this paper we propose a joint decoding strat-
egy to challenge this decoding task. We ad-
dress the problem as jointly decoding a simple
tree transduction model that only considers rule
weights and an ngram compression model. Al-
though either part can be independently solved by
dynamic programming, the naive way to integrate
two groups of partial scores into a huge dynamic
programming chart table is computationally im-
practical. We provide an effective dual decompo-
sition solution that utilizes the efficient decoding
of both parts. By integrating rich structured fea-
tures that cannot be efficiently involved in normal
formulation, results get significantly improved.

2 Motivation

Under the tree transduction models, the sentence
compression task is formulated as learning a map-
ping from an input source syntax tree to a target
tree with reduced number of leaves. This map-
ping is known as a synchronous grammar. The
synchronous grammar discussed through out this
paper will be synchronous tree substitution gram-
mar (STSG), as in previous studies.

In such formulations, sentence compression is
finding the best derivation from a syntax tree that
produces a simpler target tree, under the current
definition of grammar and learned parameters.
Each derivation is attached with a score. For the
sake of efficient decoding, the score often decom-
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poses with rules involved in the derivation. A typ-
ical score definition for a derivation y of source
tree x is in such form (Cohn and Lapata, 2008;
Cohn and Lapata, 2009):

S(x,y)=
∑
r∈y

wTφr(x)+logP (ngram(y)) (1)

The first term is a weighted sum of features φr(x)
defined on each rule r. It is plausible to introduce
local scores from ngram models. The second term
in the above score definition is added with such
purpose.

Cohn and Lapata (2009) explained that ex-
act decoding of Equation 1 is intractable. They
proposed a beam search decoding strategy cou-
pled with cube-pruning heuristic (Chiang, 2007),
which can further improve decoding efficiency at
the cost of largely losing exactness in log probabil-
ity calculations. For efficiency reasons, rich local
ngram features have not been introduced as well.

3 Components of Joint Decoding

The score in Equation 1 consists of two parts: sum
of weighted rule features and local ngram scores
retrieved from a language model. There is an im-
plicit fact that either part can be used alone with
slight modifications to generate a coarse candidate
compression. Therefore, we can build a joint de-
coding system that consists of these two indepen-
dently decodable components.

In this section we will refer to these two in-
dependent models as the pure tree transduction
model and the pure ngram compression model,
described in Section 3.1 and Section 3.2 respec-
tively. There is a direct generalization of the
ngram model by introducing rich local features,
which results in the structured discriminative mod-
els (Section 3.3).

3.1 Pure Tree Transduction model

By merely considering scores from tree transduc-
tion rules, i.e. the first part of Equation 1, we can
have our scores factorized with rules. Then finding
the best derivation from a STSG grammar can be
easily solved by a dynamic programming process
described by Cohn and Lapata (2007).

This simplified pure tree transduction model
can still produce decent compressions if the rule
weights are properly learned during training.

3.2 Pure Ngram based Compression

The pure ngram based model will try to find
the most locally smooth compression, reflected
by having the maximum log probability score of
ngrams.

To avoid the trivial solution of deleting all
words, we find the target compression with speci-
fied length by dynamic programming.

Furthermore, we can integrate features other
than log probabilities. This is equivalent to using a
structured discriminative model with rich features
on ngrams of candidate compressions.

3.3 Structured Discriminative Model

The structured discriminative model proposed by
McDonald (2006) defines rich features on bigrams
of possible compressions. The score is defined as
weighted linear combination of those features:

f(x, z) =
|z|∑
j=2

w · f(x, L(zj−1), L(zj)) (2)

where the functionL(zk) maps a token zk in com-
pression z back to the index of the original sen-
tence x. Decoding can still be efficiently done by
dynamic programming.

With rich local structural information, the struc-
tured discriminative model can play a complemen-
tary role to the tree transduction model that focus
more on global syntactic structures.

4 Joint Decoding

From now on the remaining issue is jointly de-
coding the components. Either part factorizes
over local structures: rules for the tree transduc-
tion model and ngrams for the language model or
structured discriminative model. We may build a
large dynamic programming table to utilize this
kind of locality. Unfortunately this is computa-
tionally impractical. It is mathematically equiva-
lent to perform exact dynamic programming de-
coding of Equation 1, which would consume
asymptotically O(SRL2(n−1)V ) 1 time for build-
ing the chart (Cohn and Lapata, 2009). Cohn and
Lapata (2009) proposed a beam search approxima-
tion along with cube-pruning heuristics to reduce
the time complexity down to O(SRBV ) 2.

1S, R, L and V denote respectively for the number of
source tree nodes, the number of rules, size of target lexicon
and number of variables involved in each rule.

2B denotes the beam width.
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In this work we utilize the efficiency of indepen-
dent decoding from the two components respec-
tively and then combine their solutions according
to certain standards. This naturally results in a
dual decomposition (Rush et al., 2010) solution.

Dual decomposition has been applied in sev-
eral natural language processing tasks, including
dependency parsing (Koo et al., 2010), machine
translation (Chang and Collins, 2011; Rush and
Collins, 2011) and information extraction (Re-
ichart and Barzilay, 2012). However, the strength
of this inference strategy has seldom been noticed
in researches on language generation tasks.

We briefly describe the formulation here.

4.1 Description

We denote the pure tree transduction part and the
pure ngram part as g(y) and f(z) respectively.
Then joint decoding is equivalent to solving:

max
y∈Y,z∈Z

g(y) + f(z) (3)

s.t. zkt = ykt, ∀k ∈ {1, ..., n}, ∀t ∈ {0, 1},
where y denotes a derivation which yields a final

compression {y1, ...,ym}. This derivation comes
from a pure tree transduction model. z denotes the
compression composed of {z1, ..., zm} from an
ngram compression model. Without loss of gener-
ality, we consider yk and zk as indicators that take
value 1 if the k’s token of original sentence has
been preserved in the compression and 0 if it has
been deleted. In the constraints of problem 3, ykt
or zkt denote indicator variables that take value 1
if yk or zk = t and 0 otherwise.

Let L(u,y, z) be the Lagrangian of (3). Then
the dual objective naturally factorizes into two
parts that can be evaluated independently:

L(u) = max
y∈Y,z∈Z

L(u,y, z)

= max
y∈Y,z∈Z

g(y) + f(z) +
∑
k,t

ukt(zkt − ykt)

= max
y∈Y

(g(y)−
∑
k,t

uktykt) +

max
z∈Z

(f(z) +
∑
k,t

uktzkt)

With this factorization, Algorithm 1 tries to
solve the dual problem minu L(u) by alternatively
decoding each component.

This framework is feasible and plausible in that
the two subproblems (line 3 and line 4 in Algo-
rithm 1) can be easily solved with slight modifica-

Algorithm 1 Dual Decomposition Joint Decoding
1: Initialization: u(0)

k = 0, ∀k ∈ {1, ..., n}
2: for i = 1 to MAX ITER do
3: y(i) ← argmaxy∈Y(g(y)−∑

k,t u
(i−1)
kt ykt)

4: z(i) ← argmaxz∈Z(f(z) +
∑
k,t u

(i−1)
kt zkt)

5: if y
(i)
kt = z

(i)
kt ∀k ∀t then

6: return (y(i), z(i))
7: else
8: u

(i)
kt ← u

(i−1)
kt − δi(z(i)

kt − y
(i)
kt )

9: end if
10: end for

tions on the values of the original dynamic pro-
gramming chart. Joint decoding of a pure tree
transduction model and a structured discriminative
model is almost the same.

The asymptotic time complexity of Algorithm 1
is O(k(SRV + L2(n−1))), where k denotes the
number of iterations. This is a significant re-
duction of O(SRL2(n−1)V ) by directly solving
the original problem and is also comparable to
O(SRBV ) of conducting beam search decoding.

We apply a similar heuristic with Rush and
Collins (2012) to set the step size δi = 1

t+1 , where
t < i is the number of past iterations that increase
the dual value. This setting decreases the step
size only when the dual value moves towards the
wrong direction. We limit the maximum iteration
number to 50 and return the best primal solution
y(i) among all previous iterations for cases that do
not converge in reasonable time.

5 Experiments

5.1 Baselines
The pure tree transduction model and the discrim-
inative model naturally become part of our base-
lines for comparison 3. Besides comparing our
methods against the tree-transduction model with
ngram scores by beam search decoding, we also
compare them against the available previous work
from Galanis and Androutsopoulos (2010). This
state-of-the-art work adopts a two-stage method to
rerank results generated by a discriminative maxi-
mum entropy model.

5.2 Data Preparation
We evaluated our methods on two standard cor-
pora 4, refer to as Written and Spoken respectively.

3The pure ngram language model should not be consid-
ered here as it requires additional length constraints and in
general does not produce competitive results at all merely by
itself.

4Available at http://jamesclarke.net/research/resources
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We split the datasets according to Table 1.
Table 1: Dataset partition (number of sentences)

Corpus Training Development Testing

Written 1,014 324 294
Spoken 931 83 254

All tree transduction models require parallel
parse trees with aligned leaves. We parsed all sen-
tences with the Stanford Parser 5 and aligned sen-
tence pairs with minimum edit distance heuristic
6. Syntactic features of the discriminative model
were also taken from these parse trees.

For systems involving ngram scores, we trained
a trigram language model on the Reuters Corpus
(Volume 1) 7 with modified Kneser-Ney smooth-
ing, using the widely used tool SRILM 8.

5.3 Model Training

The training process of a tree transduction model
followed similarly to Cohn and Lapata (2007) us-
ing structured SVMs (Tsochantaridis et al., 2005).
The structured discriminative models were trained
according to McDonald (2006).

5.4 Evaluation Metrics

We assessed the compression results by the F1-
score of grammatical relations (provided by a
dependency parser) of generated compressions
against the gold-standard compression (Clarke and
Lapata, 2006). All systems were controlled to pro-
duce similar compression ratios (CR) for fair com-
parison. We also reported manual evaluation on a
sampled subset of 30 sentences from each dataset.
Three unpaid volunteers with self-reported fluency
in English were asked to rate every candidate. Rat-
ings are in the form of 1-5 scores for each com-
pression.

6 Results

We report test set performance of the struc-
tured discriminative model, the pure tree transduc-
tion (T3), Galanis and Androutsopoulos (2010)’s
method (G&A2010), tree transduction with lan-
guage model scores by beam search and the pro-
posed joint decoding solutions.

5http://nlp.stanford.edu/software/lex-parser.shtml
6Ties were broken by always aligning a token in compres-

sion to its last appearance in the original sentence. This may
better preserve the alignments of full constituents.

7http://trec.nist.gov/data/reuters/reuters.html
8http://www-speech.sri.com/projects/srilm/

Table 2 shows the compression ratios and F-
measure of grammatical relations in average for
each dataset. Table 3 presents averaged human rat-
ing results for each dataset. We carried out pair-
wise t-test to examine the statistical significance
of the differences 9. In both datasets joint decod-
ing with dual decomposition solution outperforms
other systems, especially when structured models
involved. We can also find certain improvements
of joint modeling with dual decomposition on the
original beam search decoding of Equation 1, un-
der very close compression ratios.

Joint decoding of pure tree transduction and dis-
criminative model gives better performance than
the joint model of tree transduction and language
model. From Table 3 we can see that integrat-
ing discriminative model will mostly improve the
preservation of important information rather than
grammaticality. This is reasonable under the fact
that the language model is trained on large scale
data and will often preserve local grammatical co-
herence, while the discriminative model is trained
on small but more compression specific corpora.
Table 2: Results of automatic evaluation. (†:
sig. diff. from T3+LM(DD); *: sig. diff. from
T3+Discr.(DD) for p < 0.01)

Written CR(%) GR-F1(%)
Discriminative 70.3 52.4†∗

G&A2010 71.6 60.2∗

Pure Tree-Transduction 72.6 52.3†∗

T3+LM (Beam Search) 70.4 58.8∗

T3+LM (Dual Decomp.) 70.7 60.5
T3+Discr. (Dual Decomp.) 71.0 62.3
Gold-Standard 71.4 100.0

Spoken CR(%) GR-F1(%)
Discriminative 69.5 50.6†∗

G&A2010 71.7 59.2∗

Pure Tree-Transduction 73.6 53.8†∗

T3+LM (Beam Search) 75.5 59.5∗

T3+LM (Dual Decomp.) 75.3 61.5
T3+Discr. (Dual Decomp.) 74.9 63.3
Gold-Standard 72.4 100.0

Table 4 shows some examples of compressed
sentences produced by all the systems in compar-
ison. The two groups of outputs are compressions
of one sentence from the Written corpora and
the Spoken corpora respectively. Ungrammatical
compressions can be found very often by several
baselines for different reasons, such as the outputs
from pure tree transduction and the discriminative
model in the first group. The reason behind the

9For all multiple comparisons in this paper, significance
level was adjusted by the Holm-Bonferroni method.
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Table 3: Results of human rating. (†: sig.
diff. from T3+LM(DD); *: sig. diff. from
T3+Discr.(DD), for p < 0.01)

Written GR. Imp. CR(%)
Discriminative 3.92†∗ 3.46†∗ 70.6
G&A2010 4.11†∗ 3.50†∗ 72.4
Pure Tree-Transduction 3.85†∗ 3.42†∗ 70.1
T3+LM (Beam Search) 4.22†∗ 3.69∗ 73.0
T3+LM (Dual Decomp.) 4.63 3.98 73.2
T3+Discr. (Dual Decomp.) 4.62 4.25 73.5
Gold-Standard 4.89 4.76 72.9

Spoken GR. Imp. CR(%)
Discriminative 3.95†∗ 3.62†∗ 71.2
G&A2010 4.09†∗ 3.96∗ 72.5
Pure Tree-Transduction 3.92†∗ 3.55†∗ 71.4
T3+LM (Beam Search) 4.20∗ 3.78∗ 75.0
T3+LM (Dual Decomp.) 4.35 4.18 74.5
T3+Discr. (Dual Decomp.) 4.47 4.26 74.7
Gold-Standard 4.83 4.80 73.1

under generation of pure tree transduction is that it
mainly deals with global syntactic integrity merely
in terms of the application of synchronous rules.
Introducing language model scores will smooth
the candidate compressions and avoid many ag-
gressive decisions of tree transduction. Discrim-
inative models are good at local decisions with
poor consideration of grammaticality. We can see
that the joint models have collected their predic-
tive power together. Unfortunately we can still
observe some redundancy from our outputs in the
examples. The size of training corpus is not large
enough to provide enough lexicalized information.

On the other hand, the time consumption of
the joint model with dual decomposition decoding
in our experiments matched the aforementioned
asymptotic analysis. The training process based
on new decoding method consumes similar time
as beam search with cube-pruning heuristic.

7 Conclusion and Future Work

In this paper we propose a joint decoding scheme
for tree transduction based sentence compression.
Experimental results suggest that the proposed
framework works well. The overall performance
gets further improved under our framework by in-
troducing the structured discriminative model.

As several recent efforts have focused on ex-
tracting large-scale parallel corpus for sentence
compression (Filippova and Altun, 2013), we
would like to study how larger corpora can af-
fect tree transduction and our joint decoding so-

Table 4: Example outputs

Original: It was very high for people who took their
full-time education beyond the age of 18 , and higher
among women than men for all art forms except jazz
and art galleries .
Discr.: It was high for people took education higher
among women .
(Galanis and Androutsopoulos, 2010): It was high for
people who took their education beyond the age of 18 ,
and higher among women .
Pure T3: It was very high for people who took .
T3+LM-BeamSearch: It was very high for people who
took their education beyond the age of 18 , and higher
among women than men .
T3+LM-DualDecomp: It was very high for people who
took their education beyond the age of 18 , and higher
among women than men .
T3+Discr.: It was high for people who took education
beyond the age of 18 , and higher among women than
men .
Gold-Standard: It was very high for people who took
full-time education beyond 18 , and higher among
women for all except jazz and galleries .

Original: But they are still continuing to search the
area to try and see if there were , in fact , any further
shooting incidents .
Discr.: they are continuing to search the area to try and
see if there were , further shooting incidents .
(Galanis and Androutsopoulos, 2010): But they are still
continuing to search the area to try and see if there
were , in fact , any further shooting incidents .
Pure T3: they are continuing to search the area to try
and see if there were any further shooting incidents .
T3+LM-BeamSearch: But they are continuing to
search the area to try and see if there were , in fact ,
any further shooting incidents .
T3+LM-DualDecomp: But they are continuing to
search the area to try and see if there were any further
shooting incidents .
T3+Discr.: they are continuing to search the area to try
and see if there were further shooting incidents .
Gold-Standard: they are continuing to search the area
to see if there were any further incidents .

lution. Meanwhile, We would like to explore on
how other text-rewriting problems can be formu-
lated as a joint model and be applicable to similar
strategies described in this work.
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Abstract

The current state-of-the-art single-
document summarization method gen-
erates a summary by solving a Tree
Knapsack Problem (TKP), which is the
problem of finding the optimal rooted sub-
tree of the dependency-based discourse
tree (DEP-DT) of a document. We can
obtain a gold DEP-DT by transforming a
gold Rhetorical Structure Theory-based
discourse tree (RST-DT). However, there
is still a large difference between the
ROUGE scores of a system with a gold
DEP-DT and a system with a DEP-DT
obtained from an automatically parsed
RST-DT. To improve the ROUGE score,
we propose a novel discourse parser
that directly generates the DEP-DT. The
evaluation results showed that the TKP
with our parser outperformed that with
the state-of-the-art RST-DT parser, and
achieved almost equivalent ROUGE
scores to the TKP with the gold DEP-DT.

1 Introduction

Discourse structures of documents are believed
to be highly beneficial for generating informa-
tive and coherent summaries. Several discourse-
based summarization methods have been devel-
oped, such as (Marcu, 1998; Daumé III and
Marcu, 2002; Hirao et al., 2013; Kikuchi et al.,
2014). Moreover, the current best ROUGE score
for the summarization benchmark data of the RST-
discourse Treebank (Carlson et al., 2002) has been
provided by (Hirao et al., 2013), whose method
also utilizes discourse trees. Thus, the discourse-
based summarization approach is one promising
way to obtain high-quality summaries.

One possible weakness of discourse-based sum-
marization techniques is that they rely greatly on

the accuracy of the discourse parser they use.
For example, the above discourse-based summa-
rization methods utilize discourse trees based on
the Rhetorical Structure Theory (RST) (Mann and
Thompson, 1988) for their discourse information.
Unfortunately, the current state-of-the-art RST
parser, as described in (Hernault et al., 2010),
is insufficient as an off-the-shelf discourse parser.
In fact, there is empirical evidence that the qual-
ity (i.e., ROUGE score) of summaries from auto-
parsed discourse trees is significantly degraded
compared with those generated from gold dis-
course trees (Marcu, 1998; Hirao et al., 2013).

From this background, the goal of this paper
is to develop an appropriate discourse parser for
discourse-based summarization. We first focus on
one of the best discourse-based single document
summarization methods as proposed in (Hirao et
al., 2013). Their method formulates a single doc-
ument summarization problem as a Tree Knap-
sack Problem (TKP) over a dependency-based dis-
course tree (DEP-DT). In their method, DEP-DTs
are automatically transformed from (auto-parsed)
RST-discourse trees (RST-DTs) by heuristic rules.
Instead, we develop a DEP-DT parser, that di-
rectly provides DEP-DTs for their state-of-the-art
discourse-based summarization method. We show
that summaries generated by our parser improve
the ROUGE scores to almost the same level as
those generated by gold DEP-DTs. We also inves-
tigate the way in which the parsing accuracy helps
to improve the ROUGE scores.

2 Single-Document Summarization as a
Tree Knapsack Problem

Hirao et al. (2013) formulated single-document
summarization as a TKP that is run on the DEP-
DT. They obtained a summary by trimming the
DEP-DT, i.e. the summary is a rooted subtree of
the DEP-DT.

Suppose that we have N EDUs in a document,
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Figure 1: Examples of RST-DT and DEP-DT. e1, · · · , e10 are EDUs. (a) Example of an RST-DT from
(Marcu, 1998). n1, · · · , n19 are the non-terminal nodes. (b) Example of the DEP-DT obtained from the
incorrect RST-DT that is made by swapping the Nucleus-Satellite relationship of the node n2 and the
node n3. (c) The correct DEP-DT obtained from the RST-DT in (a).

and the i-th EDU ei has li words. L is the maxi-
mum number of words allowed in a summary. In
the TKP, if we select ei, we need to select its par-
ent EDU in the DEP-DT. We denote parent(i) as
the index of the parent of ei in the DEP-DT. x is
an N -dimensional binary vector that represents a
summary, i.e. xi = 1 denotes that ei is included in
the summary. The TKP is defined as the following
ILP problem:

maximize
x

∑N
i=1 F (ei)xi

s.t.
∑N

i=1 lixi ≤ L

∀i : xparent(i) ≥ xi

∀i : xi ∈ {0, 1},

where F (ei) is the score of ei. We define F (ei) as
follows:

F (ei) =

∑
w∈W (ei)

tf(w,D)

Depth(ei)
,

where W (ei) is the set of words contained in ei.
tf(w, D) is the term frequency of word w in a doc-
ument D. Depth(ei) is the depth of ei in the DEP-
DT.

3 Tree Knapsack Problem with
Dependency-based Discourse Parser

3.1 Motivation

In (Hirao et al., 2013), they automatically ob-
tain the DEP-DT by transforming from the parsed
RST-DT. We simply followed their method for ob-

taining the DEP-DTs 1. The transformation algo-
rithm can be found in detail in (Hirao et al., 2013).
Figure 1(a) shows an example of the RST-DT. Ac-
cording to RST, a document is represented as a tree
whose terminal nodes correspond to elementary
discourse units (EDUs) and whose non-terminal
nodes indicate the role of the contiguous EDUs,
namely, ‘nucleus (N)’ or ‘satellite (S)’. Since a nu-
cleus is more important than a satellite in terms of
the writer’s purpose, a satellite is always a child of
a nucleus in the RST-DT. Some discourse relations
between a nucleus and a satellite or two nuclei are
defined.

Since the TKP of (Hirao et al., 2013) employs
a DEP-DT obtained from an automatically parsed
RST-DT, their method strongly relies on the ac-
curacy of the RST parser. For example, in Fig-
ure 1(a), if the RST-DT parser incorrectly sets
the node n2 as Satellite and the node n3 as Nu-
cleus, we obtain an incorrect DEP-DT in Figure
1(b) because the transformation algorithm uses
the Nucleus-Satellite relationships in the RST-DT.
The dependency relationships in Figure 1(b) are
quite different from that of the correct DEP-DT in
Figure 1(c). In this example, the parser failed to
determine the most salient EDU e2, that is the root
EDU of the gold DEP-DT. Thus, the summary ex-
tracted from this DEP-DT will have a low ROUGE
score.

The results motivated us to design a new dis-
course parser fully trained on the DEP-DTs and

1Li et al. also defined a similar transformation algorithm
(Li et al., 2014). In this paper, we follow the transformation
algorithm defined in (Hirao et al., 2013).
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Figure 2: (a) Overview of our proposed method. In the parser training phase, the parser is trained on
the DEP-DTs, and in the summarization phase, the document is directly parsed into the DEP-DT. (b)
Overview of (Hirao et al., 2013). In the parser training phase, the parser is trained on RST-DTs, and
in the summarization phase, the document is parsed into the RST-DT, and then transformed into the
DEP-DT.

that could directly generate the DEP-DT. Figure
2(a) shows an overview of the TKP combined with
our DEP-DT parser. In the parser training phase,
we transform RST-DTs into DEP-DTs, and di-
rectly train our parser with the DEP-DTs. In the
summarization phase, our method parses a raw
document directly into a DEP-DT, and generates
a summary with the TKP.

3.2 Description of Discourse Dependency
Parser

Our parser is based on the first-order Maximum
Spanning Tree (MST) algorithm (McDonald et al.,
2005b). Our parser extracts the features from the
EDU ei and the EDU ej . We use almost the fea-
tures as those shown in (Hernault et al., 2010).
Lexical N-gram features use the beginning (or
end) lexical N-grams (N ∈ {1, 2, 3}) in ei and
ej . We also include POS tags for the beginning
(or end) lexical N-grams (N ∈ {1, 2, 3}) in ei and
ej . Organizational features include the distance
between ei and ej . They also include the num-
ber of tokens, and features for identifying whether
or not ei and ej belong to the same sentence (or
paragraph). Soricut et al. (2003) introduced dom-
inance set features. They include syntactic labels
and the lexical heads of head and attachment nodes
along with their dominance relationship. We can-
not use the strong compositionality features and
rhetorical structure features described in (Her-
nault et al., 2010) because we have to know the
subtree structures in advance when using these
features.

To train the parser, we choose the Margin In-

fused Relaxed Algorithm (MIRA) (McDonald et
al., 2005a; Crammer et al., 2006). We denote
s(w,y) = wT fy as a score function given a
weight vector w and a DEP-DT y. L(y,y?) is
a loss function, and we define it as the number of
EDUs that have an incorrect parent EDU in a pre-
dicted DEP-DT y? = arg max

y
s(w,y). Then, we

solve the following optimization problem:

min
w

||w −w(t)||
s.t. s(w,y)− s(w,y?) ≥ L(y,y?),

(1)

where w(t) is a weight vector in the t-th iteration.

3.3 Redesign of Loss Function for Tree
Knapsack Problem

When we make a summary by solving a TKP, we
do not necessarily need a DEP-DT where all of the
parent-child relationships are correct. This is be-
cause we rarely select the EDUs around the leaves
in the DEP-DT. On the other hand, the parent-
child relationships around the root EDU in the
DEP-DT are important because we often select the
EDUs around the root EDU. Incorporating these
intuitions enables us to develop a DEP-DT parser
optimized for the TKP. To incorporate this infor-
mation, we define the following loss function:

LDepth(y,y?) =
∑

(i,r,j)∈y

[1− I(y?, i, j)]
Depth(ei)

, (2)

where I(y?, i, j) is an indicator function that
equals 1 if EDU ej is the parent of EDU ei in the
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DEP-DT y? and 0 otherwise. In Section 4, we re-
port results with the original loss function L(·, ·)
and with the modified loss function LDepth(·, ·).

4 Experimental Evaluation

4.1 Corpus

We used the RST-DT corpus (Carlson et al., 2002)
for our experimental evaluations. The corpus con-
sists of 385 Wall Street Journal articles with RST
annotation, and 30 of these documents also have
one human-made reference summary. We used
these 30 documents as the test documents for the
summarization evaluation, and used the remaining
355 RST annotated documents as the training data
for the parser. Note that we did not use the 30 test
documents for the summarization evaluation when
we trained the parser.

4.2 Summarization Evaluation

We compared the following three systems that dif-
fer in the way they obtain the DEP-DT.

TKP-GOLD Used a DEP-DT converted from a
gold RST-DT.

TKP-DIS-DEP Used a DEP-DT automatically
parsed by our discourse dependency-based
parser (DIS-DEP). Figure 2(a) shows an
overview of this system.

TKP-DIS-DEP-LOSS Used a DEP-DT automat-
ically parsed by our discourse dependency-
based parser (DIS-DEP). Figure 2(a) shows
an overview of this system. It is trained with
the loss function defined in equation (2).

TKP-HILDA Used a DEP-DT obtained by trans-
forming a RST-DT parsed by HILDA, a state-
of-the-art RST-DT parser (Hernault et al.,
2010). Figure 2(b) shows an overview of this
system.

Hirao et al. (2013) proved that TKP-HILDA
outperformed other methods including Marcu’s
method (Marcu, 1998), a simple knapsack model,
a maximum coverage model and LEAD method
that simply takes the first L tokens (L = summary
length). Thus, we only employed TKP-HILDA as
our baseline.

We follow the evaluation conditions described
in (Hirao et al., 2013). The number of tokens in
each summary is determined by the number in the

ROUGE-1 ROUGE-2
TKP-GOLD 0.321 0.112
TKP-DIS-DEP 0.319 0.109
TKP-DIS-DEP-LOSS 0.323 0.121
TKP-HILDA 0.284 0.093

Table 1: ROUGE Recall scores

human-annotated reference summary. The aver-
age length of the reference summaries corresponds
to about 10% of the words in the source document.
This is also the commonly used evaluation con-
dition for single-document summarization evalu-
ation on the RST-DT corpus. We employed the
recall of ROUGE-1, 2 as the evaluation measures.

Table 1 shows ROUGE scores on the RST-DT
corpus. We can see TKP-DIS-DEP and TKP-
DIS-DEP-LOSS outperformed TKP-HILDA, and
achieved almost the same ROUGE scores as TKP-
GOLD. Wilcoxon’s signed rank test in terms
of ROUGE rejected the null hypothesis, “there
is a difference between TKP-HILDA and TKP-
DIS-DEP (or TKP-DIS-DEP-LOSS)” (Wilcoxon,
1945). This would be because test documents are
relatively small.

We analyzed the differences between the pro-
posed systems (TKP-DIS-DEP and TKP-DIS-
DEP-LOSS) and TKP-HILDA. First, we evaluated
the overlaps between the EDUs in summaries gen-
erated by the system and the EDUs in summaries
generated by TKP-GOLD. To see the overlaps, we
calculated the average F-value using Recall and
Precision defined as follows: Recall = |Ss ∩
Sg|/|Sg|, Precision = |Ss ∩ Sg|/|Ss|, where Ss

is a set of EDUs in a summary generated by a sys-
tem, and Sg a set of EDUs in a summary generated
by TKP-GOLD. The first line in Table 2 shows the
results. TKP-DIS-DEP and TKP-DIS-DEP-LOSS
outperformed TKP-HILDA as regards the aver-
age F-values. The result revealed that TKP-DIS-
DEP and TKP-DIS-DEP-LOSS have more EDUs
in common with TKP-GOLD than TKP-HILDA.
This result is evidence that TKP-DIS-DEP and
TKP-DIS-DEP-LOSS outperformed TKP-HILDA
in terms of ROUGE score.

Second, we evaluated the root accuracy (RA),
the rate at which a parser can find the root of DEP-
DTs. Since the root of a gold DEP-DT is the most
salient EDU in a document, it should be included
in the summary. The second line in Table 2 shows
that our methods succeeded in extracting the root
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TKP-DIS-DEP TKP-DIS-DEP-LOSS TKP-HILDA
Avg F-value 0.532? 0.532? 0.415
RA 0.933? 0.933? 0.733
Avg DAS 0.847? 0.843? 0.596

?: significantly better than TKP-HILDA (p < .05)

Table 2: Average F-value, Root Accuracy (RA), and average Dependency Accuracy in Summary (DAS).
Wilcoxon’s signed rank test in terms of average F-value, RA and DAS accepted the null hypothesis.

TKP-GOLD:
Elcotel Inc. expects fiscal second-quarter earnings to trail 1988 results. Elcotel, a telecommunications company, had net
income of $272,000, or five cents a share, in its year-earlier second quarter. The lower results, Mr. Pierce said. Elcotel will
also benefit from moving into other areas. Elcotel has also developed an automatic call processor. Automatic call processors
will provide that system for virtually any telephone, Mr. Pierce said, not just phones.

TKP-DIS-DEP, TKP-DIS-DEP-LOSS:
Elcotel Inc. expects fiscal second-quarter earnings to trail 1988 results. Elcotel, a telecommunications company, had net
income of $272,000, or five cents a share, in its year-earlier second quarter. George Pierce, chairman and chief executive officer,
said in an interview. Although Mr. Pierce expects that line of business to strengthen in the next year. Elcotel will also benefit
from moving into other areas. Elcotel has also developed an automatic call processor.

TKP-HILDA:
Elcotel Inc. expects fiscal second-quarter earnings to trail 1988 results. That several new products will lead to a “much
stronger” performance in its second half. George Pierce, chairman and chief executive officer, said in an interview. Mr.
Pierce said Elcotel should realize a minimum of $10 of recurring net earnings for each machine each month. Elcotel has also
developed an automatic call processor. Automatic call processors will provide that system for virtually any telephone.

Figure 3: Summaries of wsj 2317. The sentences shown in bold-face are the root EDUs in each DEP-DT
of the summary.

of DEP-DT with high accuracy.
Third, to evaluate the coherency of the gener-

ated summaries, we compared the average Depen-
dency Accuracy in Summary (DAS), which is de-
fined as follows:

DAS(S) =
1
|S|

∑
e∈S

δ(e),

δ(e) =
{

1 (if parent(e) ∈ S)
0 (otherwise),

where S is a set of EDUs contained in the sum-
mary and parent(e) returns the parent EDU of e
in the gold DEP-DT. DAS(S) measures the rate of
the correct parent-child relationships in S. When
DAS equals 1, the summary is a rooted subtree of
the gold DEP-DT. The third line in Table 2 shows
the results. The results demonstrate that the sum-
maries generated by TKP-DIS-DEP or TKP-DIS-
DEP-LOSS tend to preserve the upper level depen-
dency relationships between the EDUs within the
gold DEP-DT.

Figure 3 shows summaries of wsj 2317 gener-
ated by the three systems. The EDUs correspond-
ing to the root of the DEP-DT are used in each
system shown in boldface. We can see that the

root EDU in the gold DEP-DT is found in the
summaries generated by TKP-DIS-DEP and TKP-
DIS-DEP-LOSS, but not in the summary gener-
ated by TKP-HILDA.

5 Conclusion

In this paper, we proposed a novel dependency-
based discourse parser for single-document sum-
marization. The parser enables us to obtain the
DEP-DT without transforming the RST-DT. The
evaluation results showed that the TKP with our
parser outperformed that with the state-of-the-art
RST-DT parser, and achieved almost equivalent
ROUGE scores to the TKP with the gold DEP-DT.
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Abstract
We show that semantic relationships can
be used to improve word alignment, in ad-
dition to the lexical and syntactic features
that are typically used. In this paper, we
present a method based on a neural net-
work to automatically derive word simi-
larity from monolingual data. We present
an extension to word alignment models
that exploits word similarity. Our exper-
iments, in both large-scale and resource-
limited settings, show improvements in
word alignment tasks as well as translation
tasks.

1 Introduction

Word alignment is an essential step for learn-
ing translation rules in statistical machine trans-
lation. The task is to find word-level transla-
tion correspondences in parallel text. Formally,
given a source sentence e consisting of words
e1, e2, . . . , el and a target sentence f consisting
of words f1, f2, . . . , fm, we want to infer an
alignment a, a sequence of indices a1, a2, . . . , am
which indicates, for each target word fi, the corre-
sponding source word eai or a null word. Machine
translation systems, including state-of-the-art sys-
tems, then use the word-aligned corpus to extract
translation rules.

The most widely used methods, the IBM mod-
els (Brown et al., 1993) and HMM (Vogel et al.,
1996), define a probability distribution p(f ,a | e)
that models how each target word fi is gener-
ated from a source word eai with respect to an
alignment a. The models, however, tend to mis-
align low-frequency words as they have insuffi-
cient training samples. The problem can get worse
in low-resource languages. Two branches of re-
search have tried to alleviate the problem. The
†Most of the work reported here was performed while the

second author was at the University of Southern California.

first branch relies solely on the parallel data; how-
ever, additional assumptions about the data are re-
quired. This includes, but is not limited to, ap-
plying prior distributions (Mermer and Saraçlar,
2011; Vaswani et al., 2012) or smoothing tech-
niques (Zhang and Chiang, 2014). The other
branch uses information learned from monolin-
gual data, which is generally easier to acquire than
parallel data. Previous work in this branch mostly
involves applying syntactic constraints (Yamada
and Knight, 2001; Cherry and Lin, 2006; Wang
and Zong, 2013) and syntactic features (Toutanova
et al., 2002) into the models. The use of syntac-
tic relationships can, however, be limited between
historically unrelated language pairs.

Our motivation lies in the fact that a meaningful
sentence is not merely a grammatically structured
sentence; its semantics can provide insightful in-
formation for the task. For example, suppose that
the models are uncertain about aligning e to f . If
the models are informed that e is semantically re-
lated to e′, f is semantically related to f ′, and f ′ is
a translation of e′, it should intuitively increase the
probability that f is a translation of e. Our work
focuses on using such a semantic relationship, in
particular, word similarity, to improve word align-
ments.

In this paper, we propose a method to learn sim-
ilar words from monolingual data (Section 2) and
an extension to word alignment models in which
word similarity can be incorporated (Section 3).
We demonstrate its application in word alignment
and translation (Section 4) and then briefly discuss
the novelty of our work in comparison to other
methods (Section 5).

2 Learning word similarity

Given a word w, we want to learn a word simi-
larity model p(w′ | w) of what words w′ might
be used in place of w. Word similarity can be
used to improve word alignment, as in this pa-
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per, but can potentially be useful for other nat-
ural language processing tasks as well. Such a
model might be obtained from a monolingual the-
saurus, in which humans manually provide sub-
jective evaluation for word similarity probabilities,
but an automatic method would be preferable. In
this section, we present a direct formulation of the
word similarity model, which can automatically be
trained from monolingual data, and then consider
a more practical variant, which we adopt in our
experiments.

2.1 Model
Given an arbitrary word type w, we define a word
similarity model p(w′ | w) for all word types w′

in the vocabulary V as

p(w′ | w) =
∑
c

p(c | w) p(w′ | c)

where c is a word context represented by a se-
quence w1, w2, . . . , w2n consisting of n word to-
kens on the left and n word tokens on the right
of w, excluding w. The submodel p(c | w) can
be a categorical distribution. However, modeling
the word context model, p(w′ | c), as a categori-
cal distribution would cause severe overfitting, be-
cause the number of all possible contexts is |V |2n,
which is exponential in the length of the context.
We therefore parameterize it using a feedforward
neural network as shown in Figure 1, since the
structure has been shown to be effective for lan-
guage modeling (Bengio et al., 2006; Vaswani et
al., 2013). The input to the network is a one-hot
representation of each word in c, where the spe-
cial symbols <s>, </s>, <unk> are reserved for
sentence beginning, sentence ending, and words
not in the vocabulary. There is an output node
for each w′ ∈ V , whose activation is p(w′ | c).
Following Bengio et al. (2006), the network uses
a shared linear projection matrix to the input em-
bedding layer, which allows information sharing
among the context words and also substantially
reduces the number of parameters. The input em-
bedding layer has a dimensionality of 150 for each
input word. The network uses two hidden layers
with 1,000 and 150 rectified linear units, respec-
tively, and a softmax output layer. We arbitrarily
use n = 5 throughout this paper.

2.2 Training
We extract training data by either collecting or
sampling the target words w ∈ V and their word

input
word

. . . . . .

w1 w2n

. . .
input

embeddings
. . . . . .

hidden layer 1 . . .

hidden layer 2 . . .

output
layer

. . .

Figure 1: The structure of the word context model

contexts from monolingual data. The submodel
p(c | w) can be independently trained easily by
maximum likelihood estimation, while the word
context model p(w′ | c) may be difficult to train at
scale. We follow previous work (Mnih and Teh,
2012; Vaswani et al., 2013) in adopting noise-
contrastive estimation (Gutmann and Hyvärinen,
2010), a fast and simple training algorithm that
scales independently of the vocabulary size.

2.3 Model variants
The above formulation of the word similarity
model can be interpreted as a mixture model in
which w′ is similar to w if any of the context prob-
abilities agrees. However, to guard against false
positives, we can alternatively reformulate it as a
product of experts (Hinton, 1999),

p(w′ | w) =
1

Z(w)
exp

∑
c

p(c | w) log p(w′ | c)

where Z(w) is a normalization constant. Under
this model, w′ is similar to w if all of the context
probabilities agree. Both methods produce reason-
ably good word similarity; however, in practice,
the latter performs better.

Since most of the p(w′ | w) will be close
to zero, for computational efficiency, we can se-
lect the k most similar words and renormalize
the probabilities. Table 1 shows some examples
learned from the 402M-word Xinhua portion of
the English Gigaword corpus (LDC2007T07), us-
ing a vocabulary V of the 30,000 most frequent
words. We set k = 5 for illustration purposes.

3 Word alignment model

In this section, we present our word alignment
models by extending the standard IBM models.
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p(w′ | country) p(w′ | region) p(w′ | area)
country 0.8363 region 0.8338 area 0.8551
region 0.0558 area 0.0760 region 0.0524
nation 0.0522 country 0.0524 zone 0.0338
world 0.0282 province 0.0195 city 0.0326
city 0.0273 city 0.0181 areas 0.0258

Table 1: Examples of word similarity

The method can easily be applied to other related
models, for example, the log-linear reparameteri-
zation of Model 2 by Dyer et al. (2013). Basically,
all the IBM models involve modeling lexical trans-
lation probabilities p(f | e) which are parameter-
ized as categorical distributions. IBM Model 1, for
instance, is defined as

p(f ,a | e) ∝
m∏
i=1

p(fi | eai) =
m∏
i=1

t(fi | eai)

where each t(f | e) denotes the model parameters
directly corresponding to p(f | e). Models 2–5
and the HMM-based model introduce additional
components in order to capture word ordering and
word fertility. However, they have p(f | e) in
common.

3.1 Model
To incorporate word similarity in word alignment
models, we redefine the lexical translation proba-
bilities as

p(f | e) =
∑
e′,f ′

p(e′ | e) t(f ′ | e′) p(f | f ′)

for all f, e, including words not in the vocabulary.
While the factor p(e′ | e) can be directly computed
by the word similarity model, the factor p(f | f ′)
can be problematic because it vanishes for f out
of vocabulary. One possible solution would be to
use Bayes’ rule

p(f | f ′) =
p(f ′ | f) p(f)

p(f ′)

where p(f ′ | f) is computed by the word similar-
ity model. However, we find that this is prone to
numerical instability and other complications. In
our experiments, we tried the simpler assumption
that p(f | f ′) ≈ p(f ′ | f), with the rationale that
both probabilities are measures of word similarity,
which is intuitively a symmetric relation. We also
compared the performance of both methods. Ta-
ble 2 shows that this simple solution works as well
as the more exact method of using Bayes’ rule. We
describe the experiment details in Section 4.

Model F1
BLEU

Test 1 Test 2

Chinese-English
Bayes’ rule 75.7 30.0 27.0
Symmetry assumption 75.3 29.9 27.0

Arabic-English
Bayes’ rule 70.4 37.9 36.7
Symmetry assumption 69.5 38.2 36.8

Table 2: Assuming that word similarity is sym-
metric, i.e. p(f | f ′) ≈ p(f ′ | f), works as well
as computing p(f | f ′) using Bayes’ rule.

3.2 Re-estimating word similarity
Depending on the quality of word similarity and
the distribution of words in the parallel data, ap-
plying word similarity directly to the model could
lead to an undesirable effect where similar but not
interchangeable words rank in the top of the trans-
lation probabilities. On the other hand, if we set

p(e′ | e) = 1[e′ = e]
p(f ′ | f) = 1[f ′ = f ]

where 1 denotes the indicator function, the model
reduces to the standard IBM models. To get the
best of both worlds, we smooth the two models
together so that we rely more on word similarity
for rare words and less for frequent words

p̃(w′ | w) =
count(w)1[w′ = w] + αp(w′ | w)

count(w) + α

This can be thought of as similar to Witten-Bell
smoothing, or adding α pseudocounts distributed
according to our p(w′ | w). The hyperparame-
ter α controls how much influence our word sim-
ilarity model has. We investigated the effect of α
by varying this hyperparameter in our word align-
ment experiments whose details are described in
Section 4. Figure 2 shows that performance of the
model, as measured by F1 score, is rather insensi-
tive to the choice of α. We used a value of 40 in
our experiments.

3.3 Training
Our word alignment models can be trained in the
same way as the IBM models using the Expec-
tation Maximization (EM) algorithm to maximize
the likelihood of the parallel data. Our extension
only introduces an additional time complexity on
the order of O(k2) on top of the base models,
where k is the number of word types used to es-
timate the full-vocabulary word similarity models.
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Figure 2: Alignment F1 is fairly insensitive to α
over a large range of values

The larger the value of k is, the closer to the full-
vocabulary models our estimations are. In prac-
tice, a small value of k seems to be effective since
p(w′ | w) is negligibly small for most w′.

4 Experiments

4.1 Alignment experiments

We conducted word alignment experiments
on 2 language pairs: Chinese-English and
Arabic-English. For Chinese-English, we used
9.5M+12.3M words of parallel text from the
NIST 2009 constrained task1 and evaluated
on 39.6k+50.9k words of hand-aligned data
(LDC2010E63, LDC2010E37). For Arabic-
English, we used 4.2M+5.4M words of parallel
text from the NIST 2009 constrained task2

and evaluated on 10.7k+15.1k words of hand-
aligned data (LDC2006E86). To demonstrate
performance under resource-limited settings,
we additionally experimented on only the first
eighth of the full data, specifically, 1.2M+1.6M
words for Chinese-English and 1.0M+1.4M
words for Arabic-English. We trained word
similarity models on the Xinhua portions of
English Gigaword (LDC2007T07), Chinese
Gigaword (LDC2007T38), and Arabic Gigaword
(LDC2011T1), which are 402M, 323M, and
125M words, respectively. The vocabulary V was
the 30,000 most frequent words from each corpus

1Catalog numbers: LDC2003E07, LDC2003E14,
LDC2005E83, LDC2005T06, LDC2006E24, LDC2006E34,
LDC2006E85, LDC2006E86, LDC2006E92, and
LDC2006E93.

2Excluding: United Nations proceedings (LDC2004E13),
ISI Automatically Extracted Parallel Text (LDC2007E08),
and Ummah newswire text (LDC2004T18)
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Figure 3: F1 scores for words binned by fre-
quency. Our model gives the largest improvements
for the lowest-frequency words.

and the k = 10 most similar words were used.
We modified GIZA++ (Och and Ney, 2003) to

incorporate word similarity. For all experiments,
we used the default configuration of GIZA++: 5
iterations each of IBM Model 1, 2, HMM, 3 and
4. We aligned the parallel texts in both forward
and backward directions and symmetrized them
using grow-diag-final-and (Koehn et al., 2005).
We evaluated alignment quality using precision,
recall, and F1.

The results in Table 3 suggest that our modeling
approach produces better word alignments. We
found that our models not only learned smoother
translation models for low frequency words but
also ranked the conditional probabilities more ac-
curately with respect to the correct translations.
To illustrate this, we categorized the alignment
links from the Chinese-English low-resource ex-
periment into bins with respect to the English
source word frequency and individually evaluated
them. As shown in Figure 3, the gain for low fre-
quency words is particularly large.

4.2 Translation experiments

We also ran end-to-end translation experiments.
For both languages, we used subsets of the NIST
2004 and 2006 test sets as development data. We
used two different data sets as test data: different
subsets of the NIST 2004 and 2006 test sets (called
Test 1) and the NIST 2008 test sets (called Test 2).
We trained a 5-gram language model on the Xin-
hua portion of English Gigaword (LDC2007T07).
We used the Moses toolkit (Koehn et al., 2007) to
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Model Precision Recall F1
BLEU METEOR

Test 1 Test 2 Test 1 Test 2

Chinese-English
Baseline 65.2 76.9 70.6 29.4 26.7 29.7 28.5
Our model 71.4 79.7 75.3 29.9 27.0 30.0 28.8

Baseline (resource-limited) 56.1 68.1 61.5 23.6 20.3 26.0 24.4
Our model (resource-limited) 66.5 74.4 70.2 24.7 21.6 26.8 25.6

Arabic-English
Baseline 56.1 79.0 65.6 37.7 36.2 31.1 30.9
Our model 60.0 82.4 69.5 38.2 36.8 31.6 31.4

Baseline (resource-limited) 56.7 76.1 65.0 34.1 33.0 27.9 27.7
Our model (resource-limited) 59.4 80.7 68.4 35.0 33.8 28.7 28.6

Table 3: Experimental results. Our model improves alignments and translations on both language pairs.

build a hierarchical phrase-based translation sys-
tem (Chiang, 2007) trained using MIRA (Chiang,
2012). Then, we evaluated the translation qual-
ity using BLEU (Papineni et al., 2002) and ME-
TEOR (Denkowski and Lavie, 2014), and per-
formed significance testing using bootstrap resam-
pling (Koehn, 2004) with 1,000 samples.

Under the resource-limited settings, our meth-
ods consistently show 1.1–1.3 BLEU (0.8–1.2
METEOR) improvements on Chinese-English and
0.8–0.9 BLEU (0.8–0.9 METEOR) improvements
on Arabic-English, as shown in Table 3. These im-
provements are statistically significant (p < 0.01).
On the full data, our method improves Chinese-
English translation by 0.3–0.5 BLEU (0.3 ME-
TEOR), which is unfortunately not statistically
significant, and Arabic-English translation by 0.5–
0.6 BLEU (0.5 METEOR), which is statistically
significant (p < 0.01).

5 Related work

Most previous work on word alignment problems
uses morphosyntactic-semantic features, for ex-
ample, word stems, content words, orthography
(De Gispert et al., 2006; Hermjakob, 2009). A
variety of log-linear models have been proposed to
incorporate these features (Dyer et al., 2011; Berg-
Kirkpatrick et al., 2010). These approaches usu-
ally require numerical optimization for discrimi-
native training as well as language-specific engi-
neering and may limit their applications to mor-
phologically rich languages.

A more semantic approach resorts to training
word alignments on semantic word classes (Ma
et al., 2011). However, the resulting alignments
are only used to supplement the word alignments
learned on lexical words. To our knowledge, our

work, which directly incorporates semantic rela-
tionships in word alignment models, is novel.

6 Conclusion

We have presented methods to extract word simi-
larity from monolingual data and apply it to word
alignment models. Our method can learn simi-
lar words and word similarity probabilities, which
can be used inside any probability model and in
many natural language processing tasks. We have
demonstrated its effectiveness in statistical ma-
chine translation. The enhanced models can sig-
nificantly improve alignment quality as well as
translation quality.
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Abstract

In this paper, we propose a new frame-
work that unifies the output of three infor-
mation extraction (IE) tasks - entity men-
tions, relations and events as an informa-
tion network representation, and extracts
all of them using one single joint model
based on structured prediction. This novel
formulation allows different parts of the
information network fully interact with
each other. For example, many rela-
tions can now be considered as the re-
sultant states of events. Our approach
achieves substantial improvements over
traditional pipelined approaches, and sig-
nificantly advances state-of-the-art end-to-
end event argument extraction.

1 Introduction

Information extraction (IE) aims to discover entity
mentions, relations and events from unstructured
texts, and these three subtasks are closely inter-
dependent: entity mentions are core components
of relations and events, and the extraction of rela-
tions and events can help to accurately recognize
entity mentions. In addition, the theory of eventu-
alities (Dölling, 2011) suggested that relations can
be viewed as states that events start from and result
in. Therefore, it is intuitive but challenging to ex-
tract all of them simultaneously in a single model.
Some recent research attempted to jointly model
multiple IE subtasks (e.g., (Roth and Yih, 2007;
Riedel and McCallum, 2011; Yang and Cardie,
2013; Riedel et al., 2009; Singh et al., 2013; Li et
al., 2013; Li and Ji, 2014)). For example, Roth and
Yih (2007) conducted joint inference over entity
mentions and relations; Our previous work jointly
extracted event triggers and arguments (Li et al.,
2013), and entity mentions and relations (Li and
Ji, 2014). However, a single model that can ex-
tract all of them has never been studied so far.

Asif Mohammed Hanif detonated explosives in Tel Aviv

AttackPerson Weapon Geopolitical Entity

Place

Instrument
Attacker

Agent-Artifact

Physical

x1 x2 x3 x4 x5 x6 x7 x8x:

y:

Figure 1: Information Network Representation.
Information nodes are denoted by rectangles. Ar-
rows represent information arcs.

For the first time, we uniformly represent the IE
output from each sentence as an information net-
work, where entity mentions and event triggers are
nodes, relations and event-argument links are arcs.
We apply a structured perceptron framework with
a segment-based beam-search algorithm to con-
struct the information networks (Collins, 2002; Li
et al., 2013; Li and Ji, 2014). In addition to the per-
ceptron update, we also apply k-best MIRA (Mc-
Donald et al., 2005), which refines the perceptron
update in three aspects: it is flexible in using var-
ious loss functions, it is a large-margin approach,
and it can use mulitple candidate structures to tune
feature weights.

In an information network, we can capture the
interactions among multiple nodes by learning
joint features during training. In addition to the
cross-component dependencies studied in (Li et
al., 2013; Li and Ji, 2014), we are able to cap-
ture interactions between relations and events. For
example, in Figure 1, if we know that the Person
mention “Asif Mohammed Hanif ” is an Attacker
of the Attack event triggered by “detonated”, and
the Weapon mention “explosives” is an Instrument,
we can infer that there exists an Agent-Artifact
relation between them. Similarly we can infer
the Physical relation between “Asif Mohammed
Hanif ” and “Tel Aviv”.

However, in practice many useful interactions
are missing during testing because of the data spar-
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sity problem of event triggers. We observe that
21.5% of event triggers appear fewer than twice in
the ACE’051 training data. By using only lexical
and syntactic features we are not able to discover
the corresponding nodes and their connections. To
tackle this problem, we use FrameNet (Baker and
Sato, 2003) to generalize event triggers so that
semantically similar triggers are clustered in the
same frame.

The following sections will elaborate the de-
tailed implementation of our new framework.

2 Approach

We uniformly represent the IE output from each
sentence as an information network y = (V,E).
Each node vi ∈ V is represented as a triple
〈ui, vi, ti〉 of start index ui, end index vi, and node
type ti. A node can be an entity mention or an
event trigger. A particular type of node is ⊥ (nei-
ther entity mention nor event trigger), whose max-
imal length is always 1. Similarly, each infor-
mation arc ej ∈ E is represented as 〈uj , vj , rj〉,
where uj and vj are the end offsets of the nodes,
and rj is the arc type. For instance, in Fig-
ure 1, the event trigger “detonated” is represented
as 〈4, 4, Attack〉, the entity mention “Asif Mo-
hammed Hanif ” is represented as 〈1, 3, Person〉,
and their argument arc is 〈4, 3, Attacker〉. Our
goal is to extract the whole information network y
for a given sentence x.

2.1 Decoding Algorithm

Our joint decoding algorithm is based on ex-
tending the segment-based algorithm described in
our previous work (Li and Ji, 2014). Let x =
(x1, ..., xm) be the input sentence. The decoder
performs two types of actions at each token xi
from left to right:

• NODEACTION(i, j): appends a new node
〈j, i, t〉 ending at the i-th token, where i− dt <
j ≤ i, and dt is the maximal length of type-t
nodes in training data.
• ARCACTION(i, j): for each j < i, incremen-

tally creates a new arc between the nodes ending
at the j-th and i-th tokens respectively: 〈i, j, r〉.

After each action, the top-k hypotheses are se-
lected according to their features f(x, y′) and

1http://www.itl.nist.gov/iad/mig//tests/ace

weights w:

bestk
y′∈buffer

f(x, y′) ·w

Since a relation can only occur between a pair of
entity mentions, an argument arc can only occur
between an entity mention and an event trigger,
and each edge must obey certain entity type con-
straints, during the search we prune invalid AR-
CACTIONs by checking the types of the nodes
ending at the j-th and the i-th tokens. Finally, the
top hypothesis in the beam is returned as the final
prediction. The upper-bound time complexity of
the decoding algorithm is O(d · b · m2), where d
is the maximum size of nodes, b is the beam size,
andm is the sentence length. The actual execution
time is much shorter, especially when entity type
constraints are applied.

2.2 Parameter Estimation
For each training instance (x, y), the structured
perceptron algorithm seeks the assignment with
the highest model score:

z = argmax
y′∈Y(x)

f(x, y′) ·w

and then updates the feature weights by using:

wnew = w + f(x, y)− f(x, z)

We relax the exact inference problem by the afore-
mentioned beam-search procedure. The stan-
dard perceptron will cause invalid updates be-
cause of inexact search. Therefore we apply early-
update (Collins and Roark, 2004), an instance of
violation-fixing methods (Huang et al., 2012). In
the rest of this paper, we override y and z to denote
prefixes of structures.

In addition to the simple perceptron update, we
also apply k-best MIRA (McDonald et al., 2005),
an online large-margin learning algorithm. During
each update, it keeps the norm of the change to
feature weights w as small as possible, and forces
the margin between y and the k-best candidate z
greater or equal to their loss L(y, z). It is formu-
lated as a quadratic programming problem:

min ‖wnew −w‖
s.t. wnewf(x, y)−wnewf(x, z) ≥ L(y, z)
∀z ∈ bestk(x,w)

We employ the following three loss functions
for comparison:
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Freq. Relation Type Event Type Arg-1 Arg-2 Example
159 Physical Transport Artifact Destination He(arg-1) was escorted(trigger) into Iraq(arg-2).
46 Physical Attack Target Place Many people(arg-1) were in the cafe(arg-2) during the blast(trigger).
42 Agent-Artifact Attack Attacker Instrument Terrorists(arg-1) might use(trigger) the devices(arg-2) as weapons.
41 Physical Transport Artifact Origin The truck(arg-1) was carrying(trigger) Syrians fleeing the war in Iraq(arg-2).
33 Physical Meet Entity Place They(arg-1) have reunited(trigger) with their friends in Norfolk(arg-2).
32 Physical Die Victim Place Two Marines(arg-1) were killed(trigger) in the fighting in Kut(arg-2).
28 Physical Attack Attacker Place Protesters(arg-1) have been clashing(trigger) with police in Tehran(arg-2).
26 ORG-Affiliation End-Position Person Entity NBC(arg-2) is terminating(trigger) freelance reporter Peter Arnett(arg-1).

Table 1: Frequent overlapping relation and event types in the training set.

• The first one is F1 loss:

L1(y, z) = 1− 2 · |y ∩ z|
|y|+ |z|

When counting the numbers, we treat each node
and arc as a single unit. For example, in Fig-
ure 1, |y| = 6.
• The second one is 0-1 loss:

L2(y, z) =

{
1 y 6= z

0 y = z

It does not discriminate the extent to which z
deviates from y.
• The third loss function counts the difference be-

tween y and z:

L3(y, z) = |y|+ |z| − 2 · |y ∩ z|
Similar to F1 loss function, it penalizes both
missing and false-positive units. The difference
is that it is sensitive to the size of y and z.

2.3 Joint Relation-Event Features
By extracting three core IE components in a joint
search space, we can utilize joint features over
multiple components in addition to factorized fea-
tures in pipelined approaches. In addition to the
features as described in (Li et al., 2013; Li and
Ji, 2014), we can make use of joint features be-
tween relations and events, given the fact that
relations are often ending or starting states of
events (Dölling, 2011). Table 1 shows the most
frequent overlapping relation and event types in
our training data. In each partial structure y′ dur-
ing the search, if both arguments of a relation par-
ticipate in an event, we compose the correspond-
ing argument roles and relation type as a joint fea-
ture for y′. For example, for the structure in Fig-
ure 1, we obtain the following joint relation-event
features:

Attacker Instrument

Agent-Artifact

Attacker Place

Physical

Split Sentences Mentions Relations Triggers Arguments

Train 7.2k 25.7k 4.8k 2.8k 4.5k
Dev 1.7k 6.3k 1.2k 0.7k 1.1k
Test 1.5k 5.3k 1.1k 0.6k 1.0k

Table 2: Data set
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Figure 2: Distribution of triggers and their frames.

2.4 Semantic Frame Features

One major challenge of constructing information
networks is the data sparsity problem in extract-
ing event triggers. For instance, in the sen-
tence: “Others were mutilated beyond recogni-
tion.” The Injure trigger “mutilated” does not oc-
cur in our training data. But there are some sim-
ilar words such as “stab” and “smash”. We uti-
lize FrameNet (Baker and Sato, 2003) to solve
this problem. FrameNet is a lexical resource for
semantic frames. Each frame characterizes a ba-
sic type of semantic concept, and contains a num-
ber of words (lexical units) that evoke the frame.
Many frames are highly related with ACE events.
For example, the frame “Cause harm” is closely
related with Injure event and contains 68 lexical
units such as “stab”, “smash” and “mutilate”.

Figure 2 compares the distributions of trigger
words and their frame IDs in the training data. We
can clearly see that the trigger word distribution
suffers from the long-tail problem, while Frames
reduce the number of triggers which occur only
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Methods
Entity Mention (%) Relation (%) Event Trigger (%) Event Argument (%)

P R F1 P R F1 P R F1 P R F1

Pipelined Baseline
83.6 75.7 79.5

68.5 41.4 51.6 71.2 58.7 64.4 64.8 24.6 35.7
Pipeline + Li et al. (2013) N/A 74.5 56.9 64.5 67.5 31.6 43.1
Li and Ji (2014) 85.2 76.9 80.8 68.9 41.9 52.1 N/A
Joint w/ Avg. Perceptron 85.1 77.3 81.0 70.5 41.2 52.0 67.9 62.8 65.3 64.7 35.3 45.6
Joint w/ MIRA w/ F1 Loss 83.1 75.3 79.0 65.5 39.4 49.2 59.6 63.5 61.5 60.6 38.9 47.4
Joint w/ MIRA w/ 0-1 Loss 84.2 76.1 80.0 65.4 41.8 51.0 65.6 61.0 63.2 60.5 39.6 47.9
Joint w/ MIRA w/ L3 Loss 85.3 76.5 80.7 70.8 42.1 52.8 70.3 60.9 65.2 66.4 36.1 46.8

Table 3: Overall performance on test set.

once in the training data from 100 to 60 and al-
leviate the sparsity problem. For each token, we
exploit the frames that contain the combination of
its lemma and POS tag as features. For the above
example, “Cause harm” will be a feature for “mu-
tilated”. We only consider tokens that appear in
at most 2 frames, and omit the frames that occur
fewer than 20 times in our training data.

3 Experiments

3.1 Data and Evaluation

We use ACE’05 corpus to evaluate our method
with the same data split as in (Li and Ji, 2014). Ta-
ble 2 summarizes the statistics of the data set. We
report the performance of extracting entity men-
tions, relations, event triggers and arguments sep-
arately using the standard F1 measures as defined
in (Ji and Grishman, 2008; Chan and Roth, 2011):

• An entity mention is correct if its entity type (7
in total) and head offsets are correct.
• A relation is correct if its type (6 in total) and the

head offsets of its two arguments are correct.
• An event trigger is correct if its event subtype

(33 in total) and offsets are correct.
• An argument link is correct if its event subtype,

offsets and role match those of any of the refer-
ence argument mentions.

In this paper we focus on entity arguments while
disregard values and time expressions because
they can be most effectively extracted by hand-
crafted patterns (Chang and Manning, 2012).

3.2 Results

Based on the results of our development set, we
trained all models with 21 iterations and chose the
beam size to be 8. For the k-best MIRA updates,
we set k as 3. Table 3 compares the overall perfor-
mance of our approaches and baseline methods.

Our joint model with perceptron update out-
performs the state-of-the-art pipelined approach
in (Li et al., 2013; Li and Ji, 2014), and further
improves the joint event extraction system in (Li
et al., 2013) (p < 0.05 for entity mention extrac-
tion, and p < 0.01 for other subtasks, accord-
ing to Wilcoxon Signed RankTest). For the k-
best MIRA update, the L3 loss function achieved
better performance than F1 loss and 0-1 loss on
all sub-tasks except event argument extraction. It
also significantly outperforms perceptron update
on relation extraction and event argument extrac-
tion (p < 0.01). It is particularly encouraging to
see the end output of an IE system (event argu-
ments) has made significant progress (12.2% ab-
solute gain over traditional pipelined approach).

3.3 Discussions

3.3.1 Feature Study

Rank Feature Weight
1 Frame=Killing Die 0.80
2 Frame=Travel Transport 0.61
3 Physical(Artifact, Destination) 0.60
4 w1=“home” Transport 0.59
5 Frame=Arriving Transport 0.54
6 ORG-AFF(Person, Entity) 0.48
7 Lemma=charge Charge-Indict 0.45
8 Lemma=birth Be-Born 0.44
9 Physical(Artifact,Origin) 0.44
10 Frame=Cause harm Injure 0.43

Table 4: Top Features about Event Triggers.

Table 4 lists the weights of the most significant
features about event triggers. The 3rd, 6th, and
9th rows are joint relation-event features. For in-
stance, Physical(Artifact, Destination) means the
arguments of a Physical relation participate in a
Transport event as Artifact and Destination. We
can see that both the joint relation-event features
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and FrameNet based features are of vital impor-
tance to event trigger labeling. We tested the im-
pact of each type of features by excluding them in
the experiments of “MIRA w/ L3 loss”. We found
that FrameNet based features provided 0.8% and
2.2% F1 gains for event trigger and argument la-
beling respectively. Joint relation-event features
also provided 0.6% F1 gain for relation extraction.

3.3.2 Remaining Challenges
Event trigger labeling remains a major bottleneck.
In addition to the sparsity problem, the remain-
ing errors suggest to incorporate external world
knowledge. For example, some words act as trig-
gers for some certain types of events only when
they appear together with some particular argu-
ments:

• “Williams picked up the child again and this
time, threwAttack her out the window.”
The word “threw” is used as an Attack event
trigger because the Victim argument is a “child”.
• “Ellison to spend $10.3 billion to getMerge Org

his company.” The common word “get” is
tagged as a trigger of Merge Org, because its
object is “company”.
• “We believe that the likelihood of them

usingAttack those weapons goes up.”
The word “using” is used as an Attack event
trigger because the Instrument argument is
“weapons”.

Another challenge is to distinguish physical and
non-physical events. For example, in the sentence:

• “we are paying great attention to their ability to
defendAttack on the ground.”,

our system fails to extract “defend” as an Attack
trigger. In the training data, “defend” appears mul-
tiple times, but none of them is tagged as Attack.
For instance, in the sentence:

• “North Korea could do everything to defend it-
self. ”

“defend” is not an Attack trigger since it does not
relate to physical actions in a war. This challenge
calls for deeper understanding of the contexts.

Finally, some pronouns are used to refer to ac-
tual events. Event coreference is necessary to rec-
ognize them correctly. For example, in the follow-
ing two sentences from the same document:

• “It’s important that people all over the world
know that we don’t believe in the warAttack.”,

• “Nobody questions whether thisAttack is right
or not.”

“this” refers to “war” in its preceding contexts.
Without event coreference resolution, it is difficult
to tag it as an Attack event trigger.

4 Conclusions

We presented the first joint model that effectively
extracts entity mentions, relations and events
based on a unified representation: information
networks. Experiment results on ACE’05 cor-
pus demonstrate that our approach outperforms
pipelined method, and improves event-argument
performance significantly over the state-of-the-art.
In addition to the joint relation-event features, we
demonstrated positive impact of using FrameNet
to handle the sparsity problem in event trigger la-
beling.

Although our primary focus in this paper is in-
formation extraction in the ACE paradigm, we be-
lieve that our framework is general to improve
other tightly coupled extraction tasks by capturing
the inter-dependencies in the joint search space.
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Abstract

The efficiency of Information Extraction
systems is known to be heavily influenced
by domain-specific knowledge but the cost
of developing such systems is consider-
ably high. In this article, we consider the
problem of event extraction and show that
learning word representations from unla-
beled domain-specific data and using them
for representing event roles enable to out-
perform previous state-of-the-art event ex-
traction models on the MUC-4 data set.

1 Introduction

In the Information Extraction (IE) field, event ex-
traction constitutes a challenging task. An event
is described by a set of participants (i.e. at-
tributes or roles) whose values are text excerpts.
The event extraction task is related to several sub-
tasks: event mention detection, candidate role-
filler extraction, relation extraction and event tem-
plate filling. The problem we address here is the
detection of role-filler candidates and their associ-
ation with specific roles in event templates. For
this task, IE systems adopt various ways of ex-
tracting patterns or generating rules based on the
surrounding context, local context and global con-
text (Patwardhan and Riloff, 2009). Current ap-
proaches for learning such patterns include boot-
strapping techniques (Huang and Riloff, 2012a;
Yangarber et al., 2000), weakly supervised learn-
ing algorithms (Huang and Riloff, 2011; Sudo et
al., 2003; Surdeanu et al., 2006), fully supervised
learning approaches (Chieu et al., 2003; Freitag,
1998; Bunescu and Mooney, 2004; Patwardhan
and Riloff, 2009) and other variations. All these
methods rely on substantial amounts of manually
annotated corpora and use a large body of lin-
guistic knowledge. The performance of these ap-
proaches is related to the amount of knowledge

engineering deployed and a good choice of fea-
tures and classifiers. Furthermore, the efficiency
of the system relies on the a priori knowledge of
the applicative domain (the nature of the events)
and it is generally difficult to apply a system on
a different domain with less annotated data with-
out reconsidering the design of the features used.
An important step forwards is TIERlight (Huang
and Riloff, 2012a) that targeted the minimization
of human supervision with a bootstrapping tech-
nique for event roles detection. Also, PIPER (Pat-
wardhan and Riloff, 2007; Patwardhan, 2010) dis-
tinguishes between relevant and irrelevant regions
and learns domain-relevant extraction patterns us-
ing a semantic affinity measure. Another possi-
ble approach for dealing with this problem is to
combine the use a restricted set of manually anno-
tated data with a much larger set of data extracted
in an unsupervised way from a corpus. This ap-
proach was experimented for relations in the con-
text of Open Information Extraction (Soderland et
al., 2010) but not for extracting events and their
participants to our knowledge.

In this paper, we propose to approach the task
of labeling text spans with event roles by auto-
matically learning relevant features that requires
limited prior knowledge, using a neural model to
induce semantic word representations (commonly
referred as word embeddings) in an unsupervised
fashion, as in (Bengio et al., 2006; Collobert and
Weston, 2008). We exploit these word embed-
dings as features for a supervised event role (mul-
ticlass) classifier. This type of approach has been
proved efficient for numerous tasks in natural lan-
guage processing, including named entity recog-
nition (Turian et al., 2010), semantic role label-
ing (Collobert et al., 2011), machine translation
(Schwenk and Koehn, 2008; Lambert et al., 2012),
word sense disambiguation (Bordes et al., 2012) or
sentiment analysis (Glorot et al., 2011; Socher et
al., 2011) but has never been used, to our knowl-
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edge, for an event extraction task. Our goal is two-
fold: (1) to prove that using as only features word
vector representations makes the approach com-
petitive in the event extraction task; (2) to show
that these word representations are scalable and
robust when varying the size of the training data.
Focusing on the data provided in MUC-4 (Lehnert
et al., 1992), we prove the relevance of our ap-
proach by outperforming state-of-the-art methods,
in the same evaluation environment as in previous
works.

2 Approach

In this work, we approach the event extraction task
by learning word representations from a domain-
specific data set and by using these representa-
tions to identify the event roles. This idea relies
on the assumption that the different words used
for a given event role in the text share some se-
mantic properties, related to their context of use
and that these similarities can be captured by spe-
cific representations that can be automatically in-
duced from the text, in an unsupervised way. We
then propose to rely only on these word repre-
sentations to detect the event roles whereas, in
most works (Riloff, 1996; Patwardhan and Riloff,
2007; Huang and Riloff, 2012a; Huang and Riloff,
2012b), the role fillers are represented by a set
of different features (raw words, their parts-of-
speech, syntactic or semantic roles in the sen-
tence).

Furthermore, we propose two additional contri-
butions to the construction of the word representa-
tions. The first one is to exploit limited knowledge
about the event types (seed words) to improve the
learning procedure by better selecting the dictio-
nary. The second one is to use a max operation1 on
the word vector representations in order to build
noun phrase representations (since slot fillers are
generally noun phrases), which represents a better
way of aggregating the semantic information born
by the word representations.

2.1 Inducing Domain-Relevant Word
Representations

In order to induce the domain-specific word rep-
resentations, we project the words into a 50-
dimensional word space. We chose a single

1This max operation consists in taking, for each compo-
nent of the vector, the max value of this component for each
word vector representation.

layer neural network (NN) architecture that avoids
strongly engineered features, assumes little prior
knowledge about the task, but is powerful enough
to capture relevant domain information. Follow-
ing (Collobert et al., 2011), we use an NN which
learns to predict whether a given text sequence
(short word window) exists naturally in the consid-
ered domain. We represent an input sequence of n
words as 〈wi〉 = 〈wi−(n/2) . . . , wi, . . . wi+(n/2)〉.
The main idea is that each sequence of words in
the training set should receive a higher score than
a sequence in which one word is replaced with
a random one. We call the sequence with a ran-
dom word corrupted ( ¯〈wi〉) and denote as correct
(〈wi〉) all the sequences of words from the data
set. The goal of the training step is then to min-
imize the following loss function for a word wi
in the dictionary D: Cwi =

∑
wi∈Dmax(0, 1 −

g(〈wi〉)+g( ¯〈wi〉)), where g(·) is the scoring func-
tion given by the neural network. Further details
and evaluations of these embeddings can be found
in (Bengio et al., 2003; Bengio et al., 2006; Col-
lobert and Weston, 2008; Turian et al., 2010). For
efficiency, words are fed to our architecture as in-
dices taken from a finite dictionary. Obviously,
a simple index does not carry much useful infor-
mation about the word. So, the first layer of our
network maps each of these word indices into a
feature vector, by a lookup table operation. Our
first contribution intervenes in the process of the
choosing the proper dictionary. (Bengio, 2009)
has shown that the order of the words in the dic-
tionary of the neural network is not indifferent to
the quality of the achieved representations: he pro-
posed to order the dictionary by frequency and se-
lect the words for the corrupted sequence accord-
ing to this order. In our case, the most frequent
words are not always the most relevant for the task
of event role detection. Since we want to have a
training more focused to the domain specific task,
we chose to order the dictionary by word relevance
to the domain. We accomplish this by considering
a limited number of seed words for each event type
that needs to be discovered in text (e.g. attack,
bombing, kidnapping, arson). We then rate with
higher values the words that are more similar to the
event types words, according to a given semantic
similarity, and we rank them accordingly. We use
the “Leacock Chodorow” similarity from Word-
net 3.0 (Leacock and Chodorow, 1998). Initial ex-
perimental results proved that using this domain-
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oriented order leads to better performance for the
task than the order by frequency.

2.2 Using Word Representations to Identify
Event Roles

After having generated for each word their vec-
tor representation, we use them as features for the
annotated data to classify event roles. However,
event role fillers are not generally single words but
noun phrases that can be, in some cases, identi-
fied as named entities. For identifying the event
roles, we therefore apply a two-step strategy. First,
we extract the noun chunks using SENNA2 parser
(Collobert et al., 2011; Collobert, 2011) and we
build a representation for these chunks defined as
the maximum, per column, of the vector represen-
tations of the words it contains. Second, we use
a statistical classifier to recognize the slot fillers,
using this representation as features. We chose
the extra-trees ensemble classifier (Geurts et al.,
2006), which is a meta estimator that fits a num-
ber of randomized decision trees (extra-trees) on
various sub-samples of the data set and use averag-
ing to improve the predictive accuracy and control
over-fitting.

3 Experiments and Results

3.1 Task Description

We conducted the experiments on the official
MUC-4 training corpus that consists of 1,700 doc-
uments and instantiated templates for each doc-
ument. The task consists in extracting informa-
tion about terrorist events in Latin America from
news articles. We classically considered the fol-
lowing 4 types of events: attack, bombing, kid-
napping and arson. These are represented by tem-
plates containing various slots for each piece of
information that should be extracted from the doc-
ument (perpetrators, human targets, physical tar-
gets, etc). Following previous works (Huang and
Riloff, 2011; Huang and Riloff, 2012a), we only
consider the “String Slots” in this work (other slots
need different treatments) and we group certain
slots to finally consider the five slot types PerpInd
(individual perpetrator), PerpOrg (organizational
perpetrator), Target (physical target), Victim (hu-
man target name or description) and Weapon (in-
strument id or type). We used 1,300 documents
(DEV) for training, 200 documents (TST1+TST2)

2Code and resources can be found at http://ml.
nec-labs.com/senna/

for tuning, and 200 documents (TST3+TST4) as
the blind test set. To compare with similar works,
we do not evaluate the template construction and
only focus on the identification of the slot fillers:
for each answer key in a reference template, we
check if we find it correctly with our extraction
method, using head noun matching (e.g., the vic-
tim her mother Martha Lopez Orozco de Lopez is
considered to match Matha Lopez), and merging
duplicate extractions (so that different extracted
slot fillers sharing the same head noun are counted
only once). We also took into account the answer
keys with multiple values in the reference, deal-
ing with conjunctions (when several victims are
named, we need to find all of them) and disjunc-
tions (when several names for the same organiza-
tion are possible, we need to find any of them).
Our results are reported as Precision/Recall/F1-
score for each event role separately and averaged
on all roles.

3.2 Experiments

In all the experiments involving our model, we es-
tablished the following stable choices of parame-
ters: 50-dimensional vectors obtained by training
on sequences of 5 words, which is consistent with
previous studies (Turian et al., 2010; Collobert
and Weston, 2008). All the hyper-parameters of
our model (e.g. learning rate, size of the hidden
layer, size of the word vectors) have been chosen
by finetuning our event extraction system on the
TST1+TST2 data set. For DRVR-50 and W2V-50,
the embeddings were built from the whole training
corpus (1,300 documents) and the dictionary was
made of all the words of this corpus under their
inflected form.

We used the extra-trees ensemble classifier im-
plemented in (Pedregosa et al., 2011), with hyper-
parameters optimized on the validation data: for-
est of 500 trees and the maximum number of
features to consider when looking for the best
split is

√
number features. We present a 3-

fold evaluation: first, we compare our system with
state-of-the-art systems on the same task, then we
compare our domain-relevant vector representa-
tions (DRVR-50) to more generic word embed-
dings (C&W50, HLBL-50)3 and finally to another

3C&W-50 are described in (Collobert and Weston,
2008), HLBL-50 are the Hierarchical log-bilinear embed-
dings (Mnih and Hinton, 2007), provided by (Turian et
al., 2010), available at http://metaoptimize.com/
projects/wordreprs induced from the Reuters-RCV1

1854



State-of-the-art systems
PerpInd PerpOrg Target Victim Weapon Average

(Riloff, 1996) 33/49/40 53/33/41 54/59/56 49/54/51 38/44/41 45/48/46
(Patwardhan and Riloff, 2007) 39/48/43 55/31/40 37/60/46 44/46/45 47/47/47 44/36/40
(Patwardhan and Riloff, 2009) 51/58/54 34/45/38 43/72/53 55/58/56 57/53/55 48/57/52
(Huang and Riloff, 2011) 48/57/52 46/53/50 51/73/60 56/60/58 53/64/58 51/62/56
(Huang and Riloff, 2012a) 47/51/47 60/39/47 37/65/47 39/53/45 53/55/54 47/53/50
(Huang and Riloff, 2012b) 54/57/56 55/49/51 55/68/61 63/59/61 62/64/63 58/60/59

Models based on word embeddings
C&W-50 80/55/65 64/65/64 76/72/74 53/63/57 85/64/73 68/63/65
HLBL-50 81/53/64 63/67/65 78/72/75 53/63/58 93/64/75 69/62/66
W2V-50 79/57/66 88/71/79 74/72/73 69/75/71 97/65/78 77/68/72
DRVR-50 79/57/66 91/74/81 79/57/66 77/75/76 92/58/81 80/67/73

Table 1: Accuracy of “String Slots” on the TST3 + TST4 test set P/R/F1 (Precision/Recall/F1-Score)

word representation construction on the domain-
specific data (W2V-50)4.

Figure 1: F1-score results for event role labeling
on MUC-4 data, for different size of training data,
of “String Slots” on the TST3+TST4 with differ-
ent parameters, compared to the learning curve of
TIER (Huang and Riloff, 2012a). The grey points
represent the performances of other IE systems.

Figure 1 presents the average F1-score results,
computed over the slots PerpInd, PerpOrg, Tar-
get, Victim and Weapon. We observe that mod-
els relying on word embeddings globally outper-
form the state-of-the-art results, which demon-
strates that the word embeddings capture enough
semantic information to perform the task of event

newswire corpus
4W2V-50 are the embeddings induced from the MUC4

data set using the negative sampling training algorithm
(Mikolov et al., 2013a; Mikolov et al., 2013b; Mikolov et
al., 2013c), available at https://code.google.com/
p/word2vec/

role labeling on “String Slots” without using any
additional hand-engineered features. Moreover,
our representations (DRVR-50) clearly surpass the
models based on generic embeddings (C&W-50
and HLBL-50) and obtain better results than W2V-
50, based the competitive model of (Mikolov et
al., 2013a), even if the difference is small. We
can also note that the performance of our model
is good even with a small amount of training data,
which makes it a good candidate to easily develop
an event extraction system on a new domain.

Table 1 provides a more detailed analysis of the
comparative results. We can see in this table that
our results surpass those of previous systems (0.73
vs. 0.59) with, particularly, a consistently higher
precision on all roles, whereas recall is smaller for
certain roles (Target and Weapon). To further ex-
plore the impact of these representations, we com-
pared our word embeddings with other word em-
beddings (C&W-50, HLBL-50) and report the re-
sults in Figure 1 and Table 1. The results show
that our model also outperforms the models using
others word embeddings (F1-score of 0.73 against
0.65, 0.66). This proves that a model learned
on a domain-specific data set does indeed pro-
vide better results, even if its size is much smaller
(whereas it is usually considered that neural mod-
els require often important training data). Finally,
we also achieve slightly better results than W2V-50
with other word representations built on the same
corpus, which shows that the choices made for the
word representation construction, such as the use
of domain information for word ordering, tend to
have a positive impact.
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4 Conclusions and Perspectives

We presented in this paper a new approach for
event extraction by reducing the features to only
use unsupervised word representations and a small
set of seed words. The word embeddings induced
from a domain-specific corpus bring improvement
over state-of-art models on the standard MUC-
4 corpus and demonstrate a good scalability on
different sizes of training data sets. Therefore,
our proposal offers a promising path towards eas-
ier and faster domain adaptation. We also prove
that using a domain-specific corpus leads to bet-
ter word vector representations for this task than
using other publicly-available word embeddings
(even if they are induced from a larger corpus).

As future work, we will reconsider the archi-
tecture of the neural network and we will refo-
cus on creating a deep learning model while tak-
ing advantage of a larger set of types of infor-
mation such as syntactic information, following
(Levy and Goldberg, 2014), or semantic informa-
tion, following (Yu and Dredze, 2014).
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Abstract

This paper proposes a history-based struc-
tured learning approach that jointly ex-
tracts entities and relations in a sentence.
We introduce a novel simple and flexible
table representation of entities and rela-
tions. We investigate several feature set-
tings, search orders, and learning meth-
ods with inexact search on the table. The
experimental results demonstrate that a
joint learning approach significantly out-
performs a pipeline approach by incorpo-
rating global features and by selecting ap-
propriate learning methods and search or-
ders.

1 Introduction

Extraction of entities and relations from texts has
been traditionally treated as a pipeline of two sep-
arate subtasks: entity recognition and relation ex-
traction. This separation makes the task easy to
deal with, but it ignores underlying dependencies
between and within subtasks. First, since entity
recognition is not affected by relation extraction,
errors in entity recognition are propagated to re-
lation extraction. Second, relation extraction is
often treated as a multi-class classification prob-
lem on pairs of entities, so dependencies between
pairs are ignored. Examples of these dependen-
cies are illustrated in Figure 1. For dependencies
between subtasks, a Live in relation requires PER
and LOC entities, and vice versa. For in-subtask
dependencies, the Live in relation between “Mrs.
Tsutayama” and “Japan” can be inferred from the
two other relations.

Figure 1 also shows that the task has a flexible
graph structure. This structure usually does not
cover all the words in a sentence differently from
other natural language processing (NLP) tasks
such as part-of-speech (POS) tagging and depen-

Mrs. Tsuruyama is from Kumamoto Prefecture in Japan .
PER LOC LOC

Live_in Located_in

Live_in

Figure 1: An entity and relation example (Roth
and Yih, 2004). Person (PER) and location (LOC)
entities are connected by Live in and Located in
relations.

dency parsing, so local constraints are considered
to be more important in the task.

Joint learning approaches (Yang and Cardie,
2013; Singh et al., 2013) incorporate these de-
pendencies and local constraints in their models;
however most approaches are time-consuming and
employ complex structures consisting of multi-
ple models. Li and Ji (2014) recently proposed
a history-based structured learning approach that
is simpler and more computationally efficient than
other approaches. While this approach is promis-
ing, it still has a complexity in search and restricts
the search order partly due to its semi-Markov rep-
resentation, and thus the potential of the history-
based learning is not fully investigated.

In this paper, we introduce an entity and relation
table to address the difficulty in representing the
task. We propose a joint extraction of entities and
relations using a history-based structured learning
on the table. This table representation simplifies
the task into a table-filling problem, and makes
the task flexible enough to incorporate several en-
hancements that have not been addressed in the
previous history-based approach, such as search
orders in decoding, global features from relations
to entities, and several learning methods with in-
exact search.

2 Method

In this section, we first introduce an entity and re-
lation table that is utilized to represent the whole
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entity and relation structures in a sentence. We
then overview our model on the table. We finally
explain the decoding, learning, search order, and
features in our model.

2.1 Entity and relation table

The task we address in this work is the extraction
of entities and their relations from a sentence. En-
tities are typed and may span multiple words. Re-
lations are typed and directed.

We use words to represent entities and relations.
We assume entities do not overlap. We employ
a BILOU (Begin, Inside, Last, Outside, Unit) en-
coding scheme that has been shown to outperform
the traditional BIO scheme (Ratinov and Roth,
2009), and we will show that this scheme induces
several label dependencies between words and be-
tween words and relations in §2.3.2. A label is
assigned to a word according to the relative posi-
tion to its corresponding entity and the type of the
entity. Relations are represented with their types
and directions. ⊥ denotes a non-relation pair, and
→ and← denote left-to-right and right-to-left re-
lations, respectively. Relations are defined on not
entities but words, since entities are not always
given when relations are extracted. Relations on
entities are mapped to relations on the last words
of the entities.

Based on this representation, we propose an en-
tity and relation table that jointly represents en-
tities and relations in a sentence. Figure 2 illus-
trates an entity and relation table corresponding to
an example in Figure 1. We use only the lower tri-
angular part because the table is symmetric, so the
number of cells is n(n + 1)/2 when there are n
words in a sentence. With this entity and relation
table representation, the joint extraction problem
can be mapped to a table-filling problem in that
labels are assigned to cells in the table.

2.2 Model

We tackle the table-filling problem by a history-
based structured learning approach that assigns la-
bels to cells one by one. This is mostly the same as
the traditional history-based model (Collins, 2002)
except for the table representation.

Let x be an input table, Y(x) be all possible
assignments to the table, and s(x,y) be a scoring
function that assesses the assignment of y ∈ Y(x)
to x. With these definitions, we define our model
to predict the most probable assignment as fol-

lows:
y∗ = arg max

y∈Y(x)
s(x,y) (1)

This scoring function is a decomposable function,
and each decomposed function assesses the as-
signment of a label to a cell in the table.

s(x,y) =
|x|∑
i=1

s(x,y, 1, i) (2)

Here, i represents an index of a cell in the table,
which will be explained in §2.3.1. The decom-
posed function s(x,y, 1, i) corresponds to the i-th
cell. The decomposed function is represented as a
linear model, i.e., an inner product of features and
their corresponding weights.

s(x,y, 1, i) = w·f(x,y, 1, i) (3)

The scoring function are further divided into two
functions as follows:

s(x,y, 1, i) = slocal(x,y, i) + sglobal(x,y, 1, i)
(4)

Here, slocal(x,y, i) is a local scoring func-
tion that assesses the assignment to the i-th
cell without considering other assignments, and
sglobal(x,y, 1, i) is a global scoring function that
assesses the assignment in the context of 1st to
(i − 1)-th assignments. This global scoring func-
tion represents the dependencies between entities,
between relations, and between entities and rela-
tions. Similarly, features f are divided into local
features flocal and global features fglobal, and they
are defined on its target cell and surrounding con-
texts. The features will be explained in §2.5. The
weights w can also be divided, but they are tuned
jointly in learning as shown in §2.4.

2.3 Decoding
The scoring function s(x,y, 1, i) in Equation (2)
uses all the preceding assignments and does not
rely on the Markov assumption, so we cannot em-
ploy dynamic programming.

We instead employ a beam search to find the
best assignment with the highest score (Collins
and Roark, 2004). The beam search assigns la-
bels to cells one by one with keeping the top K
best assignments when moving from a cell to the
next cell, and it returns the best assignment when
labels are assigned to all the cells. The pseudo
code for decoding with the beam search is shown
in Figure 3.
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Mrs. Tsutayama is from Kumamoto Prefecture in Japan .
Mrs. B-PER

Tsutayama ⊥ L-PER
is ⊥ ⊥ O

from ⊥ ⊥ ⊥ O
Kumamoto ⊥ ⊥ ⊥ ⊥ B-LOC
Prefecture ⊥ Live in→ ⊥ ⊥ ⊥ L-LOC

in ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ O
Japan ⊥ Live in→ ⊥ ⊥ ⊥ Located in→ ⊥ U-LOC

. ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
Figure 2: The entity and relation table for the example in Figure 1.

INPUT: x: input table with no assignment,
K: beam size

OUTPUT: best assignment y∗ for x
1: b← [x]
2: for i = 1 to |x| do
3: T ← ∅
4: for k = 1 to |b| do
5: for a ∈A(i, b[k]) do
6: T ← T ∪ append(a, b[k])
7: end for
8: end for
9: b← top K tables from T using the scoring

function in Equation (2)
10: end for
11: return b[0]

Figure 3: Decoding with the beam search. A(i, t)
returns possible assignments for i-th cell of a table
t, and append(a, t) returns a table t updated with
an assignment a.

We explain how to map the table to a sequence
(line 2 in Figure 3), and how to calculate possible
assignments (line 6 in Figure 3) in the following
subsections.

2.3.1 Table-to-sequence mapping
Cells in an input table are originally indexed in
two dimensions. To apply our model in §2.2 to the
cells, we need to map the two-dimensional table
to a one-dimensional sequence. This is equivalent
to defining a search order in the table, so we will
use the terms “mapping” and “search order” inter-
changeably.

Since it is infeasible to try all possible map-
pings, we define six promising static mappings
(search orders) as shown in Figure 4. Note that the
“left” and “right” directions in the captions cor-
respond to not word orders, but tables. We de-

1 3 6

A B C

A 1

B 2 3

C 4 5 6

A B C

52

4

(a) Up to
down, left to
right

1 2 4

A B C

A 1

B 3 2

C 6 5 4

A B C

53

6

(b) Up to
down, right
to left

4 2 1

A B C

A 4

B 5 2

C 6 3 1

A B C

35

6

(c) Right to
left, up to
down

6 3 1

A B C

A 6

B 5 3

C 4 2 1

A B C

25

4

(d) Right to
left, down to
up

1 2 3

A B C

A 1

B 4 2

C 6 5 3

A B C

54

6

(e) Close-
first, left to
right

3 2 1

A B C

A 3

B 5 2

C 6 4 1

A B C

45

6

(f) Close-
first, right to
left

Figure 4: Static search orders.

fine two mappings (Figures 4(a) and 4(b)) with the
highest priority on the “up to down” order, which
checks a sentence forwardly (from the beginning
of a sentence). Similarly, we also define two map-
pings (Figures 4(c) and 4(d)) with the highest pri-
ority on the “right to left” order, which check a
sentence backwardly (from the end of a sentence).
From another point of view, entities are detected
before relations in Figures 4(b) and 4(c) whereas
the order in a sentence is prioritized in Figures 4(a)
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Condition Possible labels on wi

Relation(s) on wi−1 B-*, O, U-*
Relation(s) on wi L-*, U-*

Table 1: Label dependencies from relations to en-
tities. * indicates any type.

Label on wi Relations from/to wi

B-*, I-*, O ⊥
L-*, U-* *

Label on wi+1 Relations from/to wi

I-*, L-* ⊥
B-*, U-*, O *

Table 2: Label dependencies from entities to rela-
tions.

and 4(d). We further define two close-first map-
pings (Figures 4(e) and 4(f)) since entities are
easier to find than relations and close relations are
easier to find than distant relations.

We also investigate dynamic mappings (search
orders) with an easy-first policy (Goldberg and El-
hadad, 2010). Dynamic mappings are different
from the static mappings above, since we reorder
the cells before each decoding1. We evaluate the
cells using the local scoring function, and assign
indices to the cells so that the cells with higher
scores have higher priorities. In addition to this
naı̈ve easy-first policy, we define two other dy-
namic mappings that restricts the reordering by
combining the easy-first policy with one of the fol-
lowing two policies: entity-first (all entities are de-
tected before relations) and close-first (closer cells
are detected before distant cells) policies.

2.3.2 Label dependencies
To avoid illegal assignments to a table, we have
to restrict the possible assignments to the cells ac-
cording to the preceding assignments. This restric-
tion can also reduce the computational costs.

We consider all the dependencies between cells
to allow the assignments of labels to the cells in
an arbitrary order. Our representation of entities
and relations in §2.1 induces the dependencies be-
tween entities and between entities and relations.
Tables 1-3 summarize these dependencies on the i-
th word wi in a sentence. We can further utilize de-
pendencies between entity types and relation types
if some entity types are involved in a limited num-

1It is also possible to reorder the cells during decoding,
but it greatly increases the computational costs.

Label on wi−2 Possible labels on wi

B-TYPE B-*, I-TYPE, L-TYPE, O, U-*
I-TYPE B-*, I-TYPE, L-TYPE, O, U-*
L-TYPE B-*, I-*, L-*, O, U-*

O B-*, I-*, L-*, O, U-*
U-TYPE B-*, I-*, L-*, O, U-*

O/S B-*, I-*, L-*, O, U-*
Label on wi−1 Possible labels on wi

B-TYPE I-TYPE, L-TYPE
I-TYPE I-TYPE, L-TYPE
L-TYPE B-*, O, U-*

O B-*, O, U-*
U-TYPE B-*, O, U-*

O/S B-*, O, U-*
Label on wi+1 Possible labels on wi

B-TYPE L-*, O, U-*
I-TYPE B-TYPE, I-TYPE
L-TYPE B-TYPE, I-TYPE

O L-*, O, U-*
U-TYPE L-*, O, U-*

O/S L-*, O, U-*
Label on wi+2 Possible labels on wi

B-TYPE B-*, I-*, L-*, O, U-*
I-TYPE B-TYPE, I-TYPE, L-*, O, U-*
L-TYPE B-TYPE, I-TYPE, L-*, O, U-*

O B-*, I-*, L-*, O, U-*
U-TYPE B-*, I-*, L-*, O, U-*

O/S B-*, I-*, L-*, O, U-*

Table 3: Label dependencies between entities.
TYPE represents an entity type, and O/S means
the word is outside of a sentence.

ber of relation types or vice versa. We note that
the dependencies between entity types and rela-
tion types include not only words participating in
relations but also their surrounding words. For ex-
ample, the label on wi−1 can restrict the types of
relations involving wi. We employ these type de-
pendencies in the evaluation, but we omit these de-
pendencies here since these dependencies are de-
pendent on the tasks.

2.4 Learning

The goal of learning is to minimize errors between
predicted assignments y∗ and gold assignments
ygold by tuning the weights w in the scoring func-
tion in Equation 3. We employ a margin-based
structured learning approach to tune the weights
w. The pseudo code is shown in Figure 5. This ap-
proach enhances the traditional structured percep-

1861



INPUT: training sets D = {(xi,yi)}Ni=1,
T: iterations

OUTPUT: weights w
1: w← 0
2: for t = 1 to T do
3: for x,y ∈ D do
4: y∗← best assignment for x using decod-

ing in Figure 3 with s′ in Equation (5)
5: if y∗ ̸= ygold then
6: m← arg maxi{s′(x,ygold, 1, i)−

s′(x,y∗, 1, i)}
7: w← update(w, f(x,ygold, 1,m),

f(x,y∗, 1,m))
8: end if
9: end for

10: end for
11: return w

Figure 5: Margin-based structured learn-
ing approach with a max-violation update.
update(w, f(x,ygold, 1,m), f(x,y∗, 1,m))
depends on employed learning methods.

tron (Collins, 2002) in the following ways. Firstly,
we incorporate a margin ∆ into the scoring func-
tion as follows so that wrong assignments with
small differences from gold assignments are pe-
nalized (lines 4 and 6 in Figure 5) (Freund and
Schapire, 1999).

s′(x,y) = s(x,y) + ∆(y,ygold) (5)

Similarly to the scoring function s, the margin ∆
is defined as a decomposable function using 0-1
loss as follows:

∆(y,ygold) =
|x|∑
i=1

∆(yi, y
gold
i ),

∆(yi, y
gold
i ) =

{
0 if yi = ygold

i

1 otherwise
(6)

Secondly, we update the weights w based on a
max-violation update rule following Huang et al.
(2012) (lines 6-7 in Figure 5). Finally, we em-
ploy not only perceptron (Collins, 2002) but also
AROW (Mejer and Crammer, 2010; Crammer et
al., 2013), AdaGrad (Duchi et al., 2011), and
DCD-SSVM (Chang and Yih, 2013) for learning
methods (line 7 in Figure 5.) We employ parame-
ter averaging except for DCD-SSVM. AROW and
AdaGrad store additional information for covari-
ance and feature counts respectively, and DCD-

SSVM keeps a working set and performs addi-
tional updates in each iteration. Due to space limi-
tations, we refer to the papers for the details of the
learning methods.

2.5 Features

Here, we explain the local features flocal and the
global features fglobal introduced in §2.2.

2.5.1 Local features
Our focus is not to exploit useful local features
for entities and relations, so we incorporate several
features from existing work to realize a reasonable
baseline. Table 4 summarizes the local features.
Local features for entities (or words) are similar
to the features used by Florian et al. (2003), but
some features are generalized and extended, and
gazetteer features are excluded. For relations (or
pairs of words), we employ and extend features in
Miwa et al. (2009).

2.5.2 Global features
We design global features to represent dependen-
cies among entities and relations. Table 5 summa-
rizes the global features2. These global features
are activated when all the information is available
during decoding.

We incorporate label dependency features like
traditional sequential labeling for entities. Al-
though our model can include other non-local fea-
tures between entities (Ratinov and Roth, 2009),
we do not include them expecting that global fea-
tures on entities and relations can cover them. We
design three types of global features for relations.
These features are activated when all the partic-
ipating relations are not ⊥ (non-relations). Fea-
tures except for the “Crossing” category are simi-
lar to global relation features in Li and Ji (2014).
We further incorporate global features for both en-
tities and relations. These features are activated
when the relation label is not ⊥. These features
can act as a bridge between entities and relations.

3 Evaluation

In this section, we first introduce the corpus and
evaluation metrics that we employed for evalua-
tion. We then show the performance on the train-
ing data set with explaining the parameters used

2We tried other “Entity+Relation” features to represent a
relation and both its participating entities, but they slightly
degraded the performance in our preliminary experiments.
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Target Category Features
Word Lexical Character n-grams (n=2,3,4)
(Entity) Attributes by parsers (base form, POS)

Word types (all-capitalized, initial-capitalized, all-digits, all-puncts, all-
digits-or-puncts)

Contextual Word n-grams (n=1,2,3) within a context window size of 2
Word pair Entity Entity lexical features of each word
(Relation) Contextual Word n-grams (n=1,2,3) within a context window size of 2

Shortest
path

Walk features (word-dependency-word or dependency-word-
dependency) on the shortest paths in parsers’ outputs
n-grams (n=2,3) of words and dependencies on the paths
n-grams (n=1,2) of token modifier-modifiee pairs on the paths
The length of the paths

Table 4: Local features.

Target Category Details
Entity Bigram Bigrams of labels

Combinations of two labels and their corresponding POS tags
Combinations of two labels and their corresponding words

Trigram Trigrams of labels
Combinations of three labels and each of their corresponding POS tags
Combinations of three labels and each of their corresponding words

Entity Combinations of a label and its corresponding entity
Relation Entity-

sharing
Combinations of two relation labels that share a word (i.e., relations in
same columns or same rows in a table)
Combinations of two relation labels and the shared word
Relation shortest path features between non-shared words, augmented by
a combination of relation labels and the shared word

Cyclic Combinations of three relation labels that make a cycle
Crossing Combinations of two relation labels that cross each other

Entity + Entity- Relation label and the label of its participating entity
Relation relation Relation label and the label and word of its participating entity

Table 5: Global features.

for the test set evaluation, and show the perfor-
mance on the test data set.

3.1 Evaluation settings

We used an entity and relation recognition corpus
by Roth and Yih (2004)3. The corpus defines four
named entity types Location, Organization, Per-
son, and Other and five relation types Kill, Live In,
Located In, OrgBased In and Work For.

All the entities were words in the original cor-
pus because all the spaces in entities were replaced
with slashes. Previous systems (Roth and Yih,
2007; Kate and Mooney, 2010) used these word

3conll04.corp at http://cogcomp.cs.illinois.
edu/page/resource_view/43

boundaries as they were, treated the boundaries as
given, and focused the entity classification prob-
lem alone. Differently from such systems, we re-
covered these spaces by replacing these slashes
with spaces to evaluate the entity boundary detec-
tion performance on this corpus. Due to this re-
placement and the inclusion of the boundary de-
tection problem, our task is more challenging than
the original task, and our results are not compara-
ble with those by the previous systems.

The corpus contains 1,441 sentences that con-
tain at least one relation. Instead of 5-fold cross
validation on the entire corpus by the previous sys-
tems, we split the data set into training (1,153 sen-
tences) and blind test (288 sentences) data sets and

1863



developed the system on the training data set. We
tuned the hyper-parameters using a 5-fold cross
validation on the training data set, and evaluated
the performance on the test set.

We prepared a pipeline approach as a baseline.
We first trained an entity recognition model using
the local and global features, and then trained a
relation extraction model using the local features
and global features without global “Relation” fea-
tures in Table 5. We did not employ the global
“Relation” features in this baseline since it is com-
mon to treat relation extraction as a multi-class
classification problem.

We extracted features using the results from two
syntactic parsers Enju (Miyao and Tsujii, 2008)
and LRDEP (Sagae and Tsujii, 2007). We em-
ployed feature hashing (Weinberger et al., 2009)
and limited the feature space to 224. The num-
bers of features greatly varied for categories and
targets. They also caused biased predictions that
prefer entities to relations in our preliminary ex-
periments. We thus chose to re-scale the features
as follows. We normalized local features for each
feature category and then for each target. We also
normalized global features for each feature cate-
gory, but we did not normalize them for each target
since normalization was impossible during decod-
ing. We instead scaled the global features, and the
scaling factor was tuned by using the same 5-fold
cross validation above.

We used the F1 score on relations with entities
as our primary evaluation measure and used it for
tuning parameters. In this measure, a relation with
two entities is considered correct when the offsets
and types of the entities and the type of the relation
are all correct. We also evaluated the F1 scores for
entities and relations individually on the test data
set by checking their corresponding cells. An en-
tity is correct when the offset and type are correct,
and a relation is correct when the type is correct
and the last words of two entities are correct.

3.2 Performance on Training Data Set

It is infeasible to investigate all the combinations
of the parameters, so we greedily searched for a
default parameter setting by using the evaluated
results on the training data set. The default pa-
rameter setting was the best setting except for the
beam size. We show learning curves on the train-
ing data set in Figure 6 when we varied each pa-
rameter from the default parameter setting. We

employed 5-fold cross validation. The default pa-
rameter setting used DCD-SSVM as the learning
method, entity-first, easy-first as the search order,
local and global features, and 8 as the beam size.
This section discusses how these parameters affect
the performance on the training data set and ex-
plains how the parameter setting was selected for
the test set.

Figure 6(a) compares the learning methods in-
troduced in §2.4. DCD-SSVM and AdaGrad per-
formed slightly better than perceptron, which has
often been employed in history-based structured
learning. AROW did not show comparable per-
formance to the others. We ran 100 iterations to
find the number of iterations that saturates learn-
ing curves. The large number of iterations took
time and the performance of DCD-SSVM almost
converged after 30 iterations, so we employed 50
iterations for other evaluation on the training data
set. AdaGrad got its highest performance more
quickly than other learning methods and AROW
converged slower than other methods, so we em-
ployed 10 for AdaGrad, 90 for AROW, and 50 it-
erations for other settings on the test data set.

The performance was improved by widening
the beam as in Figure 6(b), but the improvement
was gradually diminished as the beam size in-
creased. Since the wider beam requires more train-
ing and test time, we chose 8 for the beam size.

Figure 6(c) shows the effects of joint learning
as well as features explained in §2.5. We show the
performance of the pipeline approach (Pipeline)
introduced in §3.1, and the performance with lo-
cal features alone (Local), local and global fea-
tures without global “Relation” features in Table 5
(Local+global (−relation)) and all local and global
features (Local+global). We note that Pipeline
shows the learning curve of relation extraction in
the pipeline approach. Features in “Local+global
(−relation)” are the same as the features in the
pipeline approach, and the result shows that the
joint learning approach performed slightly better
than the pipeline approach. The incorporation
of global “Entity” and “Entity+Relation” features
improved the performance as is common with the
existing pipeline approaches, and relation-related
features further improved the performance.

Static search orders in §2.3.1 also affected the
performance as shown in Figure 6(d), although
search orders are not investigated in the joint en-
tity and relation extraction. Surprisingly, the gap
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(a) Learning methods (b) Beam sizes

(c) Features and pipeline / joint approaches (d) Static search orders

(e) Dynamic search orders

Figure 6: Learning curves of entity and relation extraction on the training data set using 5-fold cross
validation.

between the performances with the best order and
worst order was about 0.04 in an F1 score, which
is statistically significant, and the performance can
be worse than the pipeline approach in Figure 6(c).
This means improvement by joint learning can be
easily cancelled out if we do not carefully con-
sider search order. It is also surprising that the sec-
ond worst order (Figure 4(b)) is the most intuitive

“left-to-right” order, which is closest to the order
in Li and Ji (2014) among the six search orders.

Figure 6(e) shows the performance with dy-
namic search orders. Unfortunately, the easy-first
policy did not work well on this entity and relation
task, but, with the two enhancements, dynamic or-
ders performed as well as the best static order in
Figure 6(d). This shows that entities should be de-
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tected earlier than relations on this data set.

3.3 Performance on Test Data Set
Table 6 summarizes the performance on the test
data set. We employed the default parameter set-
ting explained in §3.2, and compared parameters
by changing the parameters shown in the first col-
umn. We performed a statistical test using the ap-
proximate randomization method (Noreen, 1989)
on our primary measure (“Entity+Relation”). The
results are almost consistent with the results on the
training data set with a few exceptions.

Differently from the results on the training data
set, AdaGrad and AROW performed significantly
worse than perceptron and DCD-SSVM and they
performed slightly worse than the pipeline ap-
proach. This result shows that DCD-SSVM per-
forms well with inexact search and the selection of
learning methods can significantly affect the entity
and relation extraction performance.

The joint learning approach showed a signifi-
cant improvement over the pipeline approach with
relation-related global features, although the joint
learning approach alone did not show a signif-
icant improvement over the pipeline approach.
Unfortunately, no joint learning approach outper-
formed the pipeline approach in entity recognition.
This may be partly because hyper-parameters were
tuned to the primary measure. The results on the
pipeline approach also indicate that the better per-
formance on entity recognition does not necessar-
ily improve the relation extraction performance.

Search orders also affected the performance,
and the worst order (right to left, down to up) and
best order (close-first, left to right) were signifi-
cantly different. The performance of the worst or-
der was worse than that of the pipeline approach,
although the difference was not significant. These
results show that it is necessary to carefully select
the search order for the joint entity and relation
extraction task.

3.4 Comparison with Other Systems
To compare our model with the other sys-
tems (Roth and Yih, 2007; Kate and Mooney,
2010), we evaluated the performance of our model
when the entity boundaries were given. Differ-
ently from our setting in §3.1, we used the gold
entity boundaries encoded in the BILOU scheme
and assigned entity labels to the boundaries. We
performed 5-fold cross validation on the data set
following Roth and Yih (2007) although the split

was different from theirs since their splits were not
available. We employed the default parameter set-
ting in §3.2 for this comparison.

Table 7 shows the evaluation results. Although
we cannot directly compare the results, our model
performs better than the other models. Compared
to Table 6, Table 7 also shows that the inclusion
of entity boundary detection degrades the perfor-
mance about 0.09 in F-score.

4 Related Work

Search order in structured learning has been stud-
ied in several NLP tasks. Left-to-right and right-
to-left orderings have been often investigated in
sequential labeling tasks (Kudo and Matsumoto,
2001). Easy-first policy was firstly introduced
by Goldberg and Elhadad (2010) for dependency
parsing, and it was successfully employed in sev-
eral tasks, such as joint POS tagging and depen-
dency parsing (Ma et al., 2012) and co-reference
resolution (Stoyanov and Eisner, 2012). Search
order, however, has not been focused in relation
extraction tasks.

Named entity recognition (Florian et al., 2003;
Nadeau and Sekine, 2007) and relation extrac-
tion (Zelenko et al., 2003; Miwa et al., 2009)
have often been treated as separate tasks, but
there are some previous studies that treat enti-
ties and relations jointly in learning. Most stud-
ies built joint learning models upon individual
models for subtasks, such as Integer Linear Pro-
gramming (ILP) (Roth and Yih, 2007; Yang and
Cardie, 2013) and Card-Pyramid Parsing (Kate
and Mooney, 2010). Our approach does not re-
quire such individual models, and it also can de-
tect entity boundaries that these approaches except
for Yang and Cardie (2013) did not treat. Other
studies (Yu and Lam, 2010; Singh et al., 2013)
built global probabilistic graphical models. They
need to compute distributions over variables, but
our approach does not. Li and Ji (2014) proposed
an approach to jointly find entities and relations.
They incorporated a semi-Markov chain in repre-
senting entities and they defined two actions dur-
ing search, but our approach does not employ such
representation and actions, and thus it is more sim-
ple and flexible to investigate search orders.

5 Conclusions

In this paper, we proposed a history-based struc-
tured learning approach that jointly detects enti-
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Parameter Entity Relation Entity+Relation
Perceptron 0.809 / 0.809 / 0.809 0.760 / 0.547 / 0.636 0.731 / 0.527 / 0.612⋆

AdaGrad 0.801 / 0.790 / 0.795 0.732 / 0.486 / 0.584 0.716 / 0.476 / 0.572
AROW 0.810 / 0.802 / 0.806 0.797 / 0.468 / 0.590 0.758 / 0.445 / 0.561

DCD-SSVM† 0.812 / 0.802 / 0.807 0.783 / 0.524 / 0.628 0.760 / 0.509 / 0.610⋆

Pipeline 0.823 / 0.814 / 0.818 0.672 / 0.542 / 0.600 0.647 / 0.522 / 0.577
Local 0.819 / 0.812 / 0.815 0.844 / 0.399 / 0.542 0.812 / 0.384 / 0.522

Local + global (−relation) 0.809 / 0.799 / 0.804 0.784 / 0.481 / 0.596 0.747 / 0.458 / 0.568
Local + global† 0.812 / 0.802 / 0.807 0.783 / 0.524 / 0.628 0.760 / 0.509 / 0.610⋆

(a) Up to down, left to right 0.824 / 0.801 / 0.813 0.821 / 0.433 / 0.567 0.787 / 0.415 / 0.543
(b) Up to down, right to left 0.828 / 0.808 / 0.818 0.850 / 0.461 / 0.597 0.822 / 0.445 / 0.578
(c) Right to left, up to down 0.823 / 0.799 / 0.811 0.826 / 0.448 / 0.581 0.789 / 0.427 / 0.554
(d) Right to left, down to up 0.811 / 0.784 / 0.797 0.774 / 0.445 / 0.565 0.739 / 0.425 / 0.540
(e) Close-first, left to right 0.821 / 0.806 / 0.813 0.807 / 0.522 / 0.634 0.780 / 0.504 / 0.612⋆

(f) Close-first, right to left 0.817 / 0.801 / 0.809 0.832 / 0.491 / 0.618 0.797 / 0.471 / 0.592
Easy-first 0.811 / 0.790 / 0.801 0.862 / 0.415 / 0.560 0.831 / 0.399 / 0.540

Entity-first, easy-first† 0.812 / 0.802 / 0.807 0.783 / 0.524 / 0.628 0.760 / 0.509 / 0.610⋆

Close-first, easy-first 0.816 / 0.803 / 0.810 0.796 / 0.486 / 0.603 0.767 / 0.468 / 0.581

Table 6: Performance of entity and relation extraction on the test data set (precision / recall / F1 score).
The † denotes the default parameter setting in §3.2 and ⋆ represents a significant improvement over the
underlined “Pipeline” baseline (p<0.05). Labels (a)-(f) correspond to those in Figure 4.

Kate and Mooney (2010) Roth and Yih (2007) Entity-first, easy-first
Person 0.921 / 0.942 / 0.932 0.891 / 0.895 / 0.890 0.931 / 0.948 / 0.939

Location 0.908 / 0.942 / 0.924 0.897 / 0.887 / 0.891 0.922 / 0.939 / 0.930
Organization 0.905 / 0.887 / 0.895 0.895 / 0.720 / 0.792 0.903 / 0.896 / 0.899

All entities - - 0.924 / 0.924 / 0.924
Located In 0.675 / 0.567 / 0.583 0.539 / 0.557 / 0.513 0.821 / 0.549 / 0.654

Work For 0.735 / 0.683 / 0.707 0.720 / 0.423 / 0.531 0.886 / 0.642 / 0.743
OrgBased In 0.662 / 0.641 / 0.647 0.798 / 0.416 / 0.543 0.768 / 0.572 / 0.654

Live In 0.664 / 0.601 / 0.629 0.591 / 0.490 / 0.530 0.819 / 0.532 / 0.644
Kill 0.916 / 0.641 / 0.752 0.775 / 0.815 / 0.790 0.933 / 0.797 / 0.858

All relations - - 0.837 / 0.599 / 0.698

Table 7: Results of entity classification and relation extraction on the data set using the 5-fold cross
validation (precision / recall / F1 score).

ties and relations. We introduced a novel entity
and relation table that jointly represents entities
and relations, and showed how the entity and re-
lation extraction task can be mapped to a simple
table-filling problem. We also investigated search
orders and learning methods that have been fixed
in previous research. Experimental results showed
that the joint learning approach outperforms the
pipeline approach and the appropriate selection of
learning methods and search orders is crucial to
produce a high performance on this task.

As future work, we plan to apply this approach
to other relation extraction tasks and explore more
suitable search orders for relation extraction tasks.

We also plan to investigate the potential of this ta-
ble representation in other tasks such as semantic
parsing and co-reference resolution.
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Abstract

Open Relation Extraction (ORE) over-
comes the limitations of traditional IE
techniques, which train individual extrac-
tors for every single relation type. Sys-
tems such as ReVerb, PATTY, OLLIE, and
Exemplar have attracted much attention
on English ORE. However, few studies
have been reported on ORE for languages
beyond English. This paper presents a
syntax-based Chinese (Zh) ORE system,
ZORE, for extracting relations and seman-
tic patterns from Chinese text. ZORE
identifies relation candidates from auto-
matically parsed dependency trees, and
then extracts relations with their semantic
patterns iteratively through a novel double
propagation algorithm. Empirical results
on two data sets show the effectiveness of
the proposed system.

1 Introduction

Traditional Information Extraction (IE) system-
s train extractors for pre-specified relations (Kim
and Moldovan, 1993). This approach cannot scale
to the web, where target relations are not defined
in advance. Open Relation Extraction (ORE) at-
tempts to solve this problem by shallow-parsing-
based, syntax-based or semantic-role-based pat-
tern matching without pre-defined relation types,
and has achieved great success on open-domain
corpora ranging from news to Wikipedia (Banko
et al., 2007; Wu and Weld, 2010; Nakashole et
al., 2012; Etzioni et al., 2011; Moro and Nav-
igli, 2013). Many NLP and IR applications, in-
cluding selectional preference learning, common-
sense knowledge and entailment rule mining, have
benefited from ORE (Ritter et al., 2010). Howev-
er, most existing ORE systems focus on English,
and little research has been reported on other lan-
guages. In addition, existing ORE techniques are

mainly concerned with the extraction of textual re-
lations, without trying to give semantic analysis,
which is the advantage of traditional IE.

Our goal in this paper is to present a syntax-
based Chinese (Zh) ORE system, ZORE, which
extracts relations by using syntactic dependen-
cy patterns, while associating them with explic-
it semantic information. An example is shown
is Figure 1, where the relation (cnê (Oba-
ma)oÚ (President) , Pred[.� (graduate)],M
Ã (Harvard) {Æ� (Law School)) is extract-
ed from the given sentence “cnê (Obama) o
Ú (President) .� (graduate) u (from) MÃ
(Harvard) {Æ� (Law School)”, and general-
ized into the syntactic-semantic pattern {nsubj-
NR(Af) Pred[.� (graduate)] prep-u (from)
pobj-NN(Di)}. Here, Af and Di stand for human
and institution, respectively, according to a Chi-
nese taxonomy Extended Cilin (Che et al., 2010).

Rather than extracting binary relations and then
generalizing them into semantic patterns, which
most previous work does (Mausam et al., 2012;
Nakashole et al., 2012; Moro and Navigli, 2012;
Moro and Navigli, 2013), we develop a novel
method that extracts relations and patterns simul-
taneously. A double propagation algorithm is used
to make relation and pattern information reinforce
each other, so that negative effects from automatic
syntactic and semantic analysis errors can be miti-
gated. In this way, semantic pattern information is
leveraged to improve relation extraction.

We manually annotate two sets of data, from
news text and Wikipedia, respectively. Experi-
ments on both data sets show that the double prop-
agation algorithm gives better precision and recall
compared to the baseline. To our knowledge, we
are one of the first to report empirical results on
Chinese ORE. The ZORE system, together with
the two sets of test data we annotated, and the sets
of 5 million relations and 344K semantic patterns
extracted from news and Wikipedia, is freely re-
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Figure 1: A sample sentence analyzed by ZORE.

leased1.

2 Basic Definitions for Open Information
Extraction

ZORE is applied to web text to extract general re-
lations and their semantic types. Our definition
of relations follow previous work on ORE (Moro
and Navigli, 2013), but with language-specific ad-
justments. In this section, we use the sentence in
Figure 1 as an instance to describe the basic defi-
nitions for ZORE.

Definition 1 (predicate phrase) A predicate
phrase is a sequence of words that contains at least
one verb or copula, and governs one or more noun
phrases syntactically. For instance, a predicate
phrase for the sentence in Figure 1 is “.� (grad-
uate)”. Following Fader et al. (2011), Mausam et
al. (2012) and Nakashole et al. (2012), in case of
light verb constructions, the verb and its direct ob-
ject jointly serve as predicate phrase. We do not
include prepositions into the predicate phrases.

Definition 2 (argument) An argument is a base
noun phrase governed by a predicate phrase direct-
ly or indirectly with a preposition. For instance,
“cnê (Obama) oÚ (President)” and “MÃ
(Harvard) {Æ� (Law School)” are two argu-
ments of the predicate phrase “.� (graduate)”.

Definition 3 (relation) A binary relation is a
triple that consists of the predicate phrase Pred
and its two arguments x and y. Accordingly, an
n-ary relation contains n arguments. For instance,
the sentence in Figure 1 contains the binary rela-
tion (cnê (Obama)oÚ (President), Pred[.
� (graduate)], MÃ (Harvard) {Æ� (Law
School)). In English, the two arguments of a bi-
nary relation are usually positioned on the left and
right of Pred, respectively. Hence, shallow pat-
terns are highly useful for English relation extrac-

1https://sourceforge.net/projects/zore/

tion (Banko et al., 2007). In Chinese, however, the
two arguments can be both on the left, both on the
right or one on the left and one on the right of the
predicate, and the resulting binary relation can be
either (x, y, Pred), (Pred, x, y) and (x, Pred, y), de-
pending on the sentence. This makes the detection
of relation phrases more complicated.

Definition 4 (syntactic pattern) A syntactic pat-
tern is the syntactic abstraction of a relation. A re-
lation can be generalized into the combination of
words, POS-tags and syntactic dependency labels
(Nakashole et al., 2012). For instance, the syntac-
tic pattern of the sentence in Figure 1 is {nsubj-
NR(A) Pred[.�] prep-u pobj-NN(A)}. It con-
sists of four sub-patterns. The first, nsubj-NR(A),
denotes that the current phrase acts as the sub-
ject of the predicate phrase with the POS-tag NR
(proper nouns). Here, “(A)” means that the phrase
is an argument of the extracted relation. The sec-
ond sub-pattern denotes that the predicate phrase
of the example is “.� (graduate)”. Note that
the words between the predicate and arguments
(e.g., prep-u) are included into the pattern direct-
ly (Nakashole et al., 2012; Mausam et al., 2012).

Definition 5 (semantic signature) The seman-
tic signature of a relation consists of the semantic
categories of the arguments. The semantic signa-
ture of Figure 1 is (Af, Di), where Af and Di de-
notes human and institute, respectively.

Definition 6 (semantic pattern) A semantic pat-
tern is the semantic abstraction of a relation. It
is the combination of a syntactic pattern and a
semantic signature. For instance, the syntactic
pattern {nsubj-NR(A) Pred[.�] prep-u pobj-
NN(A)}, combined with the semantic signature
(Af, Di), results in the semantic pattern {nsubj-
NR(Af) Pred[.�] prep-u pobj-NN(Di)}.
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Figure 2: Architecture of ZORE.

Figure 3: Parsing result of the example sentence
in Figure 1, in Stanford dependencies.

3 ZORE

The architecture of ZORE is shown in Figure 2. It
consists of three components. The first is a relation
candidate extractor, which consumes input tex-
t and performs sentence segmentation, word seg-
mentation, POS tagging, syntactic parsing, base
NP extraction, light verb structure (LVC) detection
and relation candidate extraction. The output is a
set of relation candidates. The second component
tags relations and extracts semantic patterns by a
double propagation algorithm. In the third compo-
nent, extracted patterns are grouped into synsets,
and relations are filtered by confidence scores.

3.1 Extracting Relation Candidates

3.1.1 Parsing and Base NP Extraction
ZORE analyzes the syntactic structures of input
texts by applying a pipeline of NLP tools. Each
sentence is segmented into a list of words by using
the Stanford segmenter (Chang et al., 2008), and
parsed by using ZPar (Zhang and Clark, 2011),
with POS tags and constituent structures by the
CTB standard (Xue et al., 2005). The result-
ing constituent trees are transformed into projec-
tive trees with Stanford dependencies by using the
Stanford parser (Chang et al., 2009). Figure 4
shows the parse tree of the sentence in Figure 1.

Next, base noun phrases (NPs) are extracted
from the dependency tree. Here a base NP is a
maximum phrase whose words can only have POS
from the first row of Table 1. The head word of a
base NP can be either a noun, a pronoun, a num-
ber or a measure word (the second row of Table
1). The dependency labels within a base NP can
only be from the third row of Table 1. Obviously,
a base NP does not contain other base NPs, and is
also not contained by any other base NP.

3.1.2 Detecting Light Verb Constructions
In linguistics, a light verb is a verb that has little
semantic content of its own, and typically form-
s a predicate with a noun (Butt, 2003). Exam-
ple predicates by light verb constructions (LVC)
include “is a capital of” and “claim responsibil-
ity for”, where “is” and “claim” are light verbs.
Improper handling of LVC can cause a significan-
t problem by uninformative extractions (Etzioni et
al., 2011). For example, if “is” and “claim” are ex-
tracted as predicates, the resulting relations (such
as (Hamas, claimed, responsibility) from the sen-
tence “Hamas claimed responsibility for the Gaza
attack”) might not bare useful information. Re-
Verb (Etzioni et al., 2011) handles this problem by
hard syntactic constraints, taking the noun phrase
(e.g., responsibility) between a verb phrase (e.g.,
“claim”) and a preposition (e.g., “for”) as a part of
the predicate phrase rather than an argument, lead-
ing to the relation (Hamas, claimed responsibility
for, the Gaza attack).

In Chinese, LVCs are highly frequent and
should be handled properly in order to ensure that
the extracted relations are informative. Howev-
er, the syntactic constraints in ReVerb can not be
transferred to Chinese directly, because the word
orders of English and Chinese are quite different.
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Labels
Base NP modifier NN (common noun), M (measure word), CD (cardinal number), OD (ordinal number), PN (pronoun), NR

(proper noun), NT (temporal noun), JJ (other noun-modifier), or PU (punctuation)
Base NP head NN (common noun), M (measure word), CD (cardinal number), OD (ordinal number), PN (pronoun), NR

(proper noun), NT (temporal noun)
Labels in base NPs nn (noun compound modifier), conj (conjunct), nummod (number modifier), cc (coordinating conjunction),

clf (classifier modifier), det (determiner), ordmod (ordinal number modifier), punct (punctuation), dep (other
dependencies), or amod (adjectival modifier)

Labels from base
NPs to predicate
phrase

nsubj (nominal subject), conj (conjunct), dobj (direct object), advmod (adverbial modifier), prep (preposi-
tional modifier), pobj (prepositional object), lobj (localizer object), range (dative object that is a quantifier
phrase), tmod (temporal modifier), plmod (localizer modifier of a preposition), attr (attributive), loc (local-
izer), top (topic), xsubj (controlling subject), ba (“ba” construction), nsubjpass (nominal passive subject)

Table 1: Constraints on POS-tags and dependency labels. Labels in the top three rows are used for base
NP extraction, while labels in the last row for traversing from a base NP to the predicate phrase.

In Chinese, prepositions acting as the modifier of
a verb can be on both the left and right of the ver-
b. For instance, the sentence “cnê (Obama)o
Ú (President) u (from) MÃ (Harvard) {Æ�
(Law School).� (graduate)” is a paraphrase of
the sentence in Figure 1, with the preposition u
(from) on the left of the predicate phrase.

Chinese LVCs can be classified into two types,
which we refer to as dummy-LVCs and common
LVCs, respectively. For the first type, the predi-
cate is a dummy verb such as “?1 (do)” and “�
± (give)”, which has a noun phrase as its object.
Since dummy verbs in Chinese are a closed set, we
detect this type of LVCs (such as “?1 (do)¬!
(talk)”) by finding the dummy verb from a lexi-
con. For the second type of LVCs, the predicate is
a common verb, which has a nominalized structure
or a common noun as its object. For instance, “Ð
m (launch) N� (investigation)” belongs to this
type of construction.

Common LVCs are more difficult to detect than
dummy-LVCs. We detect common LVCs by the
context. Besides the NPs in the LVC itself, a com-
mon LVC typically governs two NPs, with the lat-
ter being connected to the predicate phrase by an
LVC-related preposition such as “é (for), éu
(for), �é (for), � (to), Ó (with), � (with), Ú
(with) ”. Based on the observation, a basic idea of
identifying common LVCs is to find verb-object
structures that frequently co-occur with a LVC-
related preposition in a large-scale corpus parsed
automatically. For a given verb-object v, let fv and
fp denote the frequency of v and the frequency of v
co-occurring with an LVC-related preposition, re-
spectively. We define the statistical strength of v
to be an LVC as the ratio fp/fv. If the statistical
strength of v exceeds a threshold tlvc, we identify v
as a LVC. Table 2 illustrates some high-frequency

LVCs extracted by the method automatically.

3.1.3 Extracting Relation Candidates

ZORE tries to extract relation candidates from
sentences that contain two or more base NPs. Giv-
en two base NPs, we traverse the dependency tree
to obtain the shortest path that connects them. The
path can contain only dependency labels in the
fourth row of Table 1, and should contain at least
one of the labels from “nsubj” and “dobj” to en-
sure that a predicate phrase is included in the path.
If such a path is acquired, other base NPs governed
by the same predicate phrase are included into the
target relation, resulting in a n-ary relation candi-
dates with each base NP being an argument. Ac-
cording to the predicate phrase, relation candidates
can be classified into the following classes.

Common and dummy LVC relations. In this
type of relations, the predicate phrase of the path
is an LVC (e.g., a light verb and a nominal ob-
ject). The two base NPs can be the subject or
prepositional object of the light verb. For instance,
in the sentence “¿&Z (Houdini) é (to) ·�
(my)¯� (career)k (have)é� (big)K� (in-
fluence)”, “k (have)”and “K� (influence)” are
combined into a common LVC and taken as the
predicate phrase, resulting the relation (¿&Z
(Houdini), Pred[k (have)K� (influence)],·�
(my)¯� (career)). In the corresponding English
sentence, the predicate phrase “be a big influence
in” is also an LVC structure.

Verb relations. In this type of relations, a verb
acts as the predicate phrase. For instance, the rela-
tion (cnê (Obama)oÚ (President), Pred[.
� (graduate)], MÃ (Harvard) {Æ� (Law
School)) extracted from the sentence in Figure 1
is a typical verb relation.

Relative-clause relations. In an relative-clause
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Verb Noun
?1 (do) (*) u1 (distribution),©Û (analysis),Â8 (collection),?U (modification),�¯ (visit),?v (punishment)
k (have) (*) K�(effect),�z (contribution),,� (interest),�Ï (help),@£ (understanding),Ï" (expectation)
�) (generate) (**) K� (effect),,� (interest),~¦(doubt),ÀÂ (shock),Ða (good feeling),�ê (fear)
E¤ (cause) (**) K� (effect),»�(destruction),ú³ (harm),%� (threat),Øå (pressure),Z6 (distraction)
L« (express) (**) ÷¿ (satisfaction),�H (welcome),� (respect),úb (worry),H� (mourning),a� (gratitude)
Ðm (launch) (**) N� (investigation),ôÂ (attack),ô³ (offensive),1µ (criticism),1� (negotiation),�z (lawsuit)

Table 2: Instances of dummy-LVCs (*) and common LVCs (**). A verb in the left column is combined
with a noun in the right column to form an LVC, which serves as the predicate phrase.

relation, the head word is a noun, modified by
an relative clause, but acting as an argument of
the predicate of the relative clause semantically.
The sentence “.� (graduate) u (from) MÃ
(Harvard) {Æ� (Law School) � (de, an aux-
iliary word) cnê (Obama) oÚ (president)”
is a paraphrase of the sentence in Figure 1, with
the same predicate phrase and arguments. How-
ever, the relation extracted from this phrase is an
relative-clause relation (Pred[.� (graduate)],
MÃ (Harvard) {Æ� (Law School), cnê
(Obama) oÚ (president)), which belongs to the
same pattern synset as the relation of Figure 1.

3.2 Semantic Tagging by Double Propagation

The basic idea of our approach is to identify rela-
tions and patterns iteratively through semantical-
ly tagging the head words of arguments in rela-
tion candidates. Given a set of relation candidates
and a semantic taxonomy, the propagation consist-
s of three steps. In Step 1, monosemic arguments
in candidate relations are tagged with a seman-
tic category, such as Af and Di, to obtain seman-
tic patterns. In Step 2 and Step 3, untagged am-
biguous and unknown words are tagged by perfect
matching and partial matching, respectively. In the
end of each step, semantic patterns are generalized
from extracted and tagged relations, and then used
to help relation tagging in the next step. Because
of the two-way information exchange, we call this
method double propagation. The method can also
be treated as similar to bootstrapping (Yangarber
et al., 2000; Qiu et al., 2009).

3.2.1 Step 1: Tagging Monosemic Arguments
Each argument in a relation candidate is a base N-
P. Since base NPs are endocentric, we can take the
semantic category of the head word of a base NP
as the semantic category of the base NP. In a tax-
onomy, each word is associated with one or more
semantic categories. In this step, however, only
monosemic words are tagged, while both ambigu-

ous words and unknown words are left untagged.
Most named entities are not included in the

taxonomy. However, after POS-tagging, most of
them are detected as NR (proper noun). As a re-
sult, they are taken as ambiguous words that can
be person names, organization names or location
names. The named entities that are not included in
the taxonomy are tagged in Steps 2 and 3.

After this step, all the arguments in some re-
lation candidates have been tagged with semantic
categories. We refer to these relation candidates as
tagged relation candidates, and the remaining re-
lation candidates as untagged relation candidates.
Tagged relation candidate are generalized into se-
mantic patterns, consisting of syntactic patterns
and semantic signatures, as illustrated in Figure 1
and Section 2. We call the set of resulting seman-
tic patterns SetSemPat.

3.2.2 Step 2: Tagging by Perfect Pattern
Matching

In this step, the arguments in the untagged relation
candidates are tagged by semantic pattern match-
ing. Given an untagged relation candidate r, we
acquire a set of possible semantic categories for
each argument with an ambiguous head word. For
the arguments with unknown head words, we ac-
quire a set of possible semantic categories accord-
ing to their characters. Qiu et al. (2011) demon-
strate that 98% Chinese words have at least one
synonym, which shares at least one character. For
Chinese nouns, the set of synonyms usually shares
the last one or two characters. According to this,
our strategy for acquiring possible semantic cate-
gories for an unknown word is as follows.

Given an unknown word wu, if we find a known
word wk that shares the last two character with wu,
the semantic categories of wk will be used as the
possible semantic categories of wu. Otherwise, if
we find a known word wk that share the last one
character with wu, the semantic categories of wk

will be used as the possible categories of wu.
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We then acquire possible semantic signatures of
untagged relation candidates, of which all the ar-
guments are tagged with possible semantic cate-
gories. As in Step 1, we generalize relation r in-
to a syntactic pattern patsyn, and then combine
patsyn with each possible semantic signature of
r to generate possible semantic patterns. In case
one or more possible semantic patterns of r ex-
ist in SetSemPat, if the highest frequency of these
patterns is above a threshold tsem, the correspond-
ing pattern will be taken as the semantic pattern
of r, from which we infer the semantic signature
for r and then the semantic category for the head
word of each argument of r. After this step, the
frequency of each semantic pattern in SetSemPat

is updated according to the newly tagged relation
candidates.

3.2.3 Step 3: Tagging by Partial Pattern
Matching

In this step, we tag the ambiguous and unknown
words by partial matching rather than perfec-
t matching of the whole semantic pattern. This
can be treated as a back-off of the last step.

We first split n-ary semantic patterns in
SetSemPat into binary semantic patterns, and cal-
culate their frequencies. Second, we split each
untagged relation candidate r into several binary
sub-relations and then search for the correspond-
ing semantic patterns as in Step 2 — for each bi-
nary sub-relation, we obtain a binary semantic sig-
nature with the highest frequency. By combining
the binary semantic signatures, we obtain one n-
ary semantic signature for r, based on which all
the unknown and ambiguous words can be tagged
with a semantic categories. If all the arguments
of a relation candidate r are tagged, r is treated as
tagged. Finally, according to the newly tagged re-
lations, statistics in SetSemPat are updated.

3.3 Grouping Patterns into Synsets

In this step, we group semantic patterns from
SetSemPat into pattern synsets, based on a
single-pass clustering process (Papka and Allan,
1998). Given two semantic patterns SemPati and
SemPatj , we refer to their corresponding syntac-
tic pattern, semantic signature and predicate phras-
es as SynPati and SynPatj , SemSigi and SemSigj ,
Predi and Predj , respectively. Not taking the pred-
icate phrase into account, SynPati and SynPatj are
identical, and we call them loosely identical (≈).

The algorithm in Figure 4 is used to group

Figure 4: Algorithm for pattern synset grouping.

Type Feature Weight
Base r covers all words in c 0.96
Base There are commas within r -0.47
Base LENGTH(r)<10 words 0.35
Base 10 words[LENGTH(r)<20 words 0.11
Base 20 words[LENGTH(r) -1.06
Base COUNT(arguments)=2 0.14
Base COUNT(arguments)=3 0.33
Base COUNT(arguments)=4 -0.60
Base COUNT(arguments)> 4 -0.46
SemPat Being tagged in Step 3 0.87
SemPat Being tagged before Step 3 0.75
SemPat 50[SIZE(SemPat) and untagged -0.05
SemPat 50[SIZE(SemPat) and tagged 0.65
SemPat 10[SIZE(SemPat)<50 and untagged -0.16
SemPat 10[SIZE(SemPat)<50 and tagged 0.39
SemPat 5[SIZE(SemPat)<10 and untagged -0.22
SemPat 5[SIZE(SemPat)<10 and tagged 0.36
SemPat SIZE(SemPat) <5 and untagged -0.92
SemPat SIZE(SemPat) <5 and tagged -0.64

Table 3: Features of the logistic regression classi-
fier with weights trained on Wiki-500 dataset.

patterns, where ARGCOUNT(SynPatj) denotes the
number of arguments in SemPati, SEMCAT(arg1)
indicates the semantic category of the first ar-
gument, and ISSYNONYM (Predi, Predj) return-
s whether two predicates are synonyms. In
similarity-based single-pass clustering, the topic
excursion problem is common (Papka and Allan,
1998). But since our similarity measure is sym-
metric, we do not suffer from this problem.

3.4 Computing the Confidence for Relations

Without filtering, the extraction algorithm in the
previous sections may yield false relations. Fol-
lowing previous ORE systems, we make a balance
between recall and precision by using a confidence
threshold (Fader et al., 2011). A logistic regres-
sion classifier is used to give a confidence score
to each relation, with features shown in Table 3.
In the table, c, r, arguments and SemPat denote
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Dataset Source #Sen #Rel
Wiki-500 Chinese Wikipedia 500 561
Sina-500 Sina News 500 707

Table 4: Annotated relation datasets.

clause, relation, arguments in a relation, and se-
mantic pattern, respectively. LENGTH(r), COUN-
T(arguments) and SIZE(SemPat) indicate the num-
ber of words in r, the number of arguments in
r, and the number of relations that belong to the
same semantic pattern SemPat as r. Because se-
mantic patterns from the double propagation al-
gorithm are used as features in the classifier, they
participate in relation extraction also. Their effect
on relation extraction can directly demonstrate the
effectiveness of double propagation.

4 Experiments

4.1 Experimental Setup
We run ZORE on two difference corpora: the Chi-
nese edition of Wikipedia (Wiki), which contain-
s 4.3 million sentences (as of March 29, 2014),
and a corpus from the Sina News archive (Sina
News), which includes 6.1 million sentences from
January 2013 to May 2013. The sentences that do
not end with punctuations are filtered. The Chi-
nese taxonomy Extended Cilin2 (Cilin) (Che et al.,
2010) is used to give semantic categories for each
word. Cilin contains 77,492 Chinese words, or-
ganized into a five-level hierarchy. There are 12
categories in the top level, 94 in the second and
1492 in the third. In this paper, the second level
is used for semantic categories. We create two test
sets, containing 500 sentences from Wiki and 500
sentences from Sina News, respectively (see Table
4), annotated by two independent annotators us-
ing the annotation strategy of Fader et al. (2011).
The thresholds tlvc and tsem for pattern matching
are set as 0.4 and 5, tuned on 100 sentences from
Wiki-500 dataset, respectively.

4.2 Evaluation of Relation Extraction
First, we compare ZORE with a baseline system
to illustrate the effectiveness of the double prop-
agation algorithm. The baseline system does not
have the double propagation tagging component
in Figure 2, using the logistic regression classifier
in Section 3.4.1 with the 9 base features to filter
extracted relation candidates. It is similar to the
architecture of ReVerb (Fader et al., 2011). We

2http://ir.hit.edu.cn/demo/ltp/Sharing Plan.htm

Figure 5: Performance on Wiki.

Figure 6: Performance on Sina News.

measure the precision and recall of the extracted
relations. An extracted relation is considered cor-
rect only when the predicate phrase and all the ar-
guments match the the gold set. On each data set,
we perform 5-fold cross-validation test and take
the average as the final precision and recall.

Figures 5 and 6 show the comparison of the two
systems on Wiki and Sina News, respectively. On
Wiki, ZORE has higher precision than the baseline
at all levels of recall. When the recall is 0.3, the
precision of ZORE is 0.77, 0.11 higher than the
baseline. The result on Sina News is similar. The
second column of Table 3 shows the weights of all
features trained on the Wiki data set, which indi-
cates that the semantic pattern features can give a
positive effect on relation filtering.

Second, we compare the intermediate results at
Steps 1, 2, and 3 in Section 3.2, respectively. The
precision, recall and F1 of the three steps with d-
ifferent numbers of Wiki sentences (from 10K to
5M sentences) are shown in Table 5. This figure
shows that Step 2 achieves higher precision than
Step 1 at all levels of recall, indicating that the
word sense tagging method in step 2 is useful for
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Sentences Step 1 Step 2 Step 3
P R F1 P R F1 P R F1

10K 0.947 0.032 0.062 0.960 0.043 0.082 0.933 0.075 0.139
50K 0.894 0.075 0.138 0.922 0.105 0.189 0.907 0.139 0.241
100K 0.897 0.093 0.169 0.924 0.130 0.228 0.909 0.160 0.272
200K 0.901 0.114 0.202 0.926 0.157 0.268 0.892 0.191 0.315
500K 0.891 0.146 0.251 0.909 0.196 0.322 0.860 0.230 0.363
1M 0.860 0.164 0.275 0.885 0.219 0.351 0.842 0.248 0.383
2M 0.797 0.182 0.296 0.819 0.250 0.383 0.788 0.278 0.411
3M 0.784 0.187 0.302 0.802 0.253 0.385 0.778 0.282 0.414
4M 0.739 0.178 0.287 0.801 0.258 0.390 0.778 0.287 0.419
5M 0.779 0.189 0.304 0.798 0.260 0.392 0.768 0.289 0.420

Table 5: Accuracies on different numbers Wiki sentences.

a significant boost of recall, together with a lit-
tle improvement in precision. In particular, Step
2 can extract about 20% relations with relatively
high precision (about 90%). The result of Step 3
is better to that of Step 2 in terms of F1-measure,
with the highest F1-measure achieved by this step.

4.3 Evaluation of Patterns

ZORE acquires 122K and 222K patterns from Wi-
ki and Sina News, clustered into 59K and 118K
pattern synsets, respectively. The frequency distri-
bution of the Wiki patterns is shown in Figure 7,
which conforms to Zipf’s law.

To assess the accuracy of pattern extraction, we
rank the extracted patterns by the size, and eval-
uated the precision of the top 100 and a random
set of 100 pattern synsets. Two annotators were
shown a pattern synset with its semantic signature
and a few example relations, and then asked to
judge whether it indicates a valid semantic rela-
tion or not. The results are shown in Table 6. The
averaged precision is 92% for the top 100 set, and
85% for the random 100 set.

The patterns in a pattern synset can be taken
as paraphrases (Barzilay and Lee, 2003). We ob-
serve that two synonymous patterns might differ
in three aspects. First, two patterns can differ
by the predicates, which are synonyms. For in-
stance, the verbs “ú?, �, ?, Ñ?, �, �”
are synonyms, meaning “to hold the appointment
of”. Second, two patterns in the same synset can
belong to different syntactic patterns, and there-
fore are paraphrases in the syntactic level. For in-
stance, the semantic patterns of the two sentences
“.� (graduate)u (from)MÃ (Harvard){Æ
� (Law School)� (de, an auxiliary word)cn
ê (Obama)oÚ (president)” and “cnê (Oba-
ma)oÚ (president)l(from)MÃ (Harvard){
Æ� (Law School).� (graduate)” are both syn-
onymous to that of the sentence in Figure 1; al-

l the three patterns are found in the same synset
obtained by ZORE. Third, two patterns can dif-
fer only by the POS-tag. For instance, “cnê
(Obama) l(from) MÃ (Harvard) {Æ� (Law
School).� (graduate)” and “@� (That)Æ�
(attorney)l(from)MÃ (Harvard){Æ� (Law
School) .� (graduate)” are synonyms with d-
ifferent POS-tags for the first argument (i.e. N-
R and NN). According to the grouping algorithm
in Section 3.3, all the three types of paraphrases
are grouped in a pattern synset, which makes some
synsets very large. The largest synset contains 110
patterns, while the top 100 synsets contain more
than 20 patterns.

4.4 Error analysis

We analyze the incorrect extractions (precision
loss) and missed correct relations (recall loss) re-
turned by Step 2, running on 500K sentences. Ta-
ble 7 summarizes the types of correct relations that
are missed by ZORE. 40% missed relations are
due to the minimum frequency constraint on se-
mantic patterns, which is used for a balance be-
tween precision and recall. Another main source
of failure is the incorrect identification of the pred-
icate phrase due to parsing errors, which account
for 37% of the total errors. Other sources of fail-
ures include redundant arguments and segmenta-
tion errors. Most redundant arguments are related
to prepositions such as “Uì (according to)” and
“�â (on the basis of)”. For instance, in the sen-
tence “Uì (according to)ù� (the)*: (point
of view) § (,) �� (fundamental) ¯K (prob-
lem) ´ (is)”, an incorrect binary relation (ù�
(the)*: (point of view),�� (fundamental)¯
K (problem), Pred[´ (is)]) is extracted, because
the prepositional object “ù� (the) *: (point
of view)” is tagged as an argument of the predi-
cate phrase “´ (is)”.

Table 8 summarizes the major types of incor-
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Corpus Patterns Synsets Top100 Random100
Wiki 122,723 59,298 0.93 0.87
Sina 222,773 118,923 0.91 0.83

Table 6: Precision of pattern synsets.

40% Relations filtered by semantic pattern constraint
37% Could not identify correct predicates because of

preprocessing errors
12% Too many arguments because of parsing errors
11% Segmentation and POS tagging errors

Table 7: Relations missed by ZORE.

rect relations, 56% of which were caused by pars-
ing errors, and 34% of which were due to word
segmentation and POS tagging errors. Although
many errors have been filtered by ZORE, the
biggest source of errors is still syntactic analysis,
which is very important for high quality of ORE.

5 Related Work

English has been the major language on which
ORE research has been conducted. Previous
work on English ORE has evolved from shallow-
syntactic (Banko et al., 2007; Fader et al., 2011;
Merhav et al., 2012) to full-syntactic (Nakashole
et al., 2012; Mausam et al., 2012; Moro and Nav-
igli, 2013; Xu et al., 2013) and semantic (Johans-
son and Nugues, 2008) systems.

It has been shown that a full-syntactic system
based on dependency grammar can give signif-
icantly better results than shallow syntactic sys-
tems based on surface POS-patterns, yet enjoy
higher efficiency compared with semantic system-
s (Mesquita et al., 2013). Our investigation on
Chinese ORE takes root in full dependency syntax
and is hence able to identify patterns that involve
long-range dependencies. Considering the charac-
teristics of the Chinese language, such as the lack
of morphology and function words, and the high
segmentation and word sense ambiguities, we in-
corporate semantic ontology information into the
design of the system to improve the output quality
without sacrificing efficiency.

The state-of-the-art systems most closely relat-
ed to our approach are PATTY (Nakashole et al.,
2012) and the system of Moro and Navigli (2013).
Both, however, extract relations first, and then de-
fines patterns based on extracted relations. This
paper differs in that patterns and relations are ex-
tracted in a simultaneous process and so they can
improve each other. Previous studies show that
pattern generalization benefit from relation extrac-

56% Parsing errors
17% Segmentation errors
17% POS tagging errors
6% Redundant arguments
6% Other, including base NP extraction errors

Table 8: Incorrect extractions by ZORE.

Figure 7: The frequency distribution of patterns
extracted from Wiki. Size and Count denote the
number of relations that belong to a semantic pat-
tern and the logarithmic number of semantic pat-
terns that have the same size, respectively.

tion (Nakashole et al., 2012; Moro and Navigli,
2013), and relation extraction can benefit from
pattern generalization (Mausam et al., 2012). By
using double propagation, not only can we make
relation and pattern extraction benefit from each
other, but we can also tag relations and patterns
with semantic categories in a joint process.

There has been a line of research on Chinese re-
lation extraction, where both feature-based (Zhou
et al., 2005; Li et al., 2008) and kernel-based
(Zhang et al., 2006; Che et al., 2005) methods have
been applied. In addition, semantic ontologies
such as Extended Cilin have been shown useful
for Chinese relation extraction (Liu et al., 2013).
However, these studies have focused on tradition-
al IE, with pre-defined relations. In contrast, we
investigate ORE for Chinese, finding that seman-
tic ontologies useful for this task also. Tseng et al.
(2014) is the only previous research focusing on
Chinese ORE. Their system can be considered as
a pipeline of word segmentation, POS-tagging and
parsing, while our work gives semantic interpreta-
tion and explicitly deals with statistical errors in
parsing by a novel double propagation algorithm
between patterns and relations.
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6 Conclusion and Future Work

We presented a Chinese ORE system that inte-
grates relation extraction with semantic pattern
generalization by double propagation. Experimen-
tal results on two datasets demonstrated the ef-
fectiveness of the proposed algorithm. We make
the ZORE system, together with the large scale
relations and pattern synsets extracted by ZORE,
freely available at (https://sourceforge.
net/projects/zore/). Another version of
ZORE (ZORE-PMT), which is based on the de-
pendency tagset from PMT1.0 (Qiu et al., 2014),
is also provided.

Our error analysis demonstrates that the quali-
ty of syntactic parsing is crucial to the accuracy of
syntax-based Chinese ORE. Improvements to syn-
tactic analysis is likely to lead to improved ORE.
In addition, the idea of double propagation can be
generalized into information propagation between
relation extraction and syntactic analysis. We plan
to investigate the use of ORE in improving syntac-
tic analysis in future work.
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Abstract

Correctly predicting abbreviations given
the full forms is important in many natu-
ral language processing systems. In this
paper we propose a two-stage method to
find the corresponding abbreviation given
its full form. We first use the contextual
information given a large corpus to get ab-
breviation candidates for each full form
and get a coarse-grained ranking through
graph random walk. This coarse-grained
rank list fixes the search space inside the
top-ranked candidates. Then we use a sim-
ilarity sensitive re-ranking strategy which
can utilize the features of the candidates
to give a fine-grained re-ranking and se-
lect the final result. Our method achieves
good results and outperforms the state-of-
the-art systems. One advantage of our
method is that it only needs weak super-
vision and can get competitive results with
fewer training data. The candidate genera-
tion and coarse-grained ranking is totally
unsupervised. The re-ranking phase can
use a very small amount of training data
to get a reasonably good result.

1 Introduction

Abbreviation Prediction is defined as finding the
meaningful short subsequence of characters given
the original fully expanded form. As an example,
“HMM” is the abbreviation for the correspond-
ing full form “Hidden Markov Model”. While
the existence of abbreviations is a common lin-
guistic phenomenon, it causes many problems like
spelling variation (Nenadić et al., 2002). The dif-
ferent writing manners make it difficult to identify
the terms conveying the same concept, which will
hurt the performance of many applications, such
as information retrieval (IR) systems and machine
translation (MT) systems.

Previous works mainly treat the Chinese ab-
breviation generation task as a sequence labeling
problem, which gives each character a label to in-
dicate whether the given character in the full form
should be kept in the abbreviation or not. These
methods show acceptable results. However they
rely heavily on the character-based features, which
means it needs lots of training data to learn the
weights of these context features. The perfor-
mance is good on some test sets that are similar to
the training data, however, when it moves to an un-
seen context, this method may fail. This is always
true in real application contexts like the social me-
dia where there are tremendous new abbreviations
burst out every day.

A more intuitive way is to find the full-
abbreviation pairs directly from a large text cor-
pus. A good source of texts is the news texts. In
a news text, the full forms are often mentioned
first. Then in the rest of the news its corresponding
abbreviation is mentioned as an alternative. The
co-occurrence of the full form and the abbrevia-
tion makes it easier for us to mine the abbreviation
pairs from the large amount of news texts. There-
fore, given a long full form, we can generate its
abbreviation candidates from the given corpus, in-
stead of doing the character tagging job.

For the abbreviation prediction task, the candi-
date abbreviation must be a sub-sequence of the
given full form. An intuitive way is to select
all the sub-sequences in the corpus as the can-
didates. This will generate large numbers of ir-
relevant candidates. Instead, we use a contextual
graph random walk method, which can utilize the
contextual information through the graph, to select
a coarse grained list of candidates given the full
form. We only select the top-ranked candidates to
reduce the search space. On the other hand, the
candidate generation process can only use limited
contextual information to give a coarse-grained
ranked list of candidates. During generation, can-
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didate level features cannot be included. There-
fore we propose a similarity sensitive re-ranking
method to give a fine-grained ranked list. We then
select the final result based on the rank of each
candidate.

The contribution of our work is two folds.
Firstly we propose an improved method for abbre-
viation generation. Compared to previous work,
our method can perform well with less training
data. This is an advantage in the context of so-
cial media. Secondly, we build a new abbreviation
corpus and make it publicly available for future re-
search on this topic.

The paper is structured as follows. Section 1
gives the introduction. In section 2 we describe
the abbreviation task. In section 3 we describe
the candidate generation part and in section 4 we
describe the re-ranking part. Experiments are de-
scribed in section 5. We also give a detailed anal-
ysis of the results in section 5. In section 6 related
works are introduced, and the paper is concluded
in the last section.

2 Chinese Abbreviation Prediction
System

Chinese Abbreviation Prediction is the task of
selecting representative characters from the long
full form1. Previous works mainly use the se-
quence labeling strategies, which views the full
form as a character sequence and give each char-
acter an extra label ‘Keep’ or ‘Skip’ to indicate
whether the current character should be kept in
the abbreviation. An example is shown in Table
1. The sequence labeling method assumes that
the character context information is crucial to de-
cide the keep or skip of a character. However,
we can give many counterexamples. An exam-
ple is “北京大学”(Peking University) and “清
华大学”(Tsinghua University), whose abbrevia-
tions correspond to “北大” and ‘清华’ respec-
tively. Although sharing a similar character con-
text, the third character ‘大’ is kept in the first case
and is skipped in the second case.

We believe that a better way is to extract these
abbreviation-full pairs from a natural text corpus
where the full form and its abbreviation co-exist.
Therefore we propose a two stage method. The
first stage generates a list of candidates given a
large corpus. To reduce the search space, we adopt

1Details of the difference between English and Chinese
abbreviation prediction can be found in Zhang et al. (2012).

Full form 香 港 大 学

Status Skip Keep Keep Skip
Result 港 大

Table 1: The abbreviation “港大” of the full form
“香港大学” (Hong Kong University)

graph random walk to give a coarse-grained rank-
ing and select the top-ranked ones as the can-
didates. Then we use a similarity sensitive re-
ranking method to decide the final result. Detailed
description of the two parts is shown in the follow-
ing sections.

3 Candidate Generation through Graph
Random Walk

3.1 Candidate Generation and Graph
Representation

Chinese abbreviations are sub-sequences of the
full form. We use a brute force method to select
all strings in a given news article that is the sub-
sequence of the full form. The brute force method
is not time consuming compared to using more
complex data structures like trie tree, because in
a given news article there are a limited number of
sub-strings which meet the sub-sequence criteria
for abbreviations. When generating abbreviation
candidates for a given full form, we require the
full form should appear in the given news article
at least once. This is a coarse filter to indicate that
the given news article is related to the full form and
therefore the candidates generated are potentially
meaningful.

The main motivation of the candidate genera-
tion stage in our approach is that the full form and
its abbreviation tend to share similar context in a
given corpus. To be more detailed, given a word
context window w, the words that appear in the
context window of the full form tend to be sim-
ilar to those words in the context window of the
abbreviations.

We use a bipartite graph G(Vword, Vcontext, E)
to represent this phenomena. We build bipartite
graphs for each full form individually. For a given
full form vfull, we first extract all its candidate
abbreviations VC . We have two kinds of nodes
in the bipartite graph: the word nodes and the
context nodes. We construct the word nodes as
Vword = VC ∪ {vfull}, which is the node set of
the full form and all the candidates. We construct
the context nodes Vcontext as the words that appear
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in a fixed window of Vword. To reduce the size of
the graph, we make two extra assumptions: 1) We
only consider the nouns and verbs in the context
and 2) context words should appear in the vocab-
ulary for more than a predefined threshold (i.e. 5
times). Because G is bipartite graph, the edges E
only connect word node and context nodes. We
use the number of co-occurrence of the candidate
and the context word as the weight of each edge
and then form the weight matrix W . Details of the
bipartite graph construction algorithm are shown
in Table 2. An example bipartite graph is shown
in figure 1.

Figure 1: An example of the bipartite graph rep-
resentation. The full form is “香港大学”(Hong
Kong University), which is the first node on the
left. The three candidates are “港大”, “香港”,
“大学”, which are the nodes on the left. The
context words in this example are “徐立之”(Tsui
Lap-chee, the headmaster of Hong Kong Uni-
versity), “招生”(Enrollment), “举办”(Hold), “实
施”(Enact), “地铁”(Subway), which are the nodes
on the right. The edge weight is the co-occurrence
of the left word and the right word.

3.2 Coarse-grained Ranking Using Random
Walks

We perform Markov Random Walk on the con-
structed bipartite graph to give a coarse-grained
ranked list of all candidates. In random walk, a
walker starts from the full form source node S

(in later steps, vi) and randomly walks to another
node vj with a transition probability pij . In ran-
dom walk we assume the walker do the walking n
times and finally stops at a final node. When the
walking is done, we can get the probability of each
node that the walker stops in the end. Because
the destination of each step is selected based on
transition probabilities, the word node that shares
more similar contexts are more likely to be the fi-
nal stop. The random walk method we use is sim-
ilar to those defined in Norris (1998); Zhu et al.
(2003); Sproat et al. (2006); Hassan and Menezes
(2013); Li et al. (2013).

The transition probability pij is calculated us-
ing the weights in the weight matrix W and then
normalized with respect to the source node vi with
the formula pij = wij∑

l wil
. When the graph ran-

dom walk is done, we get a list of coarse-ranked
candidates, each with a confidence score derived
from the context information. By performing the
graph random walk, we reduce the search space
from exponential to the top-ranked ones. Now we
only need to select the final result from the candi-
dates, which we will describe in the next section.

4 Candidate Re-ranking

Although the coarse-grained ranked list can serve
as a basic reference, it can only use limited in-
formation like co-occurrence. We still need a re-
ranking process to decide the final result. The rea-
son is that we cannot get any candidate-specific
features when the candidate is not fully gener-
ated. Features such as the length of a candidate are
proved to be useful to rank the candidates by pre-
vious work. In this section we describe our second
stage for abbreviation generation, which we use a
similarity sensitive re-ranking method to find the
final result.

4.1 Similarity Sensitive Re-ranking

The basic idea behind our similarity sensitive re-
ranking model is that we penalize the mistakes
based on the similarity of the candidate and the
reference. If the model wrongly selects a less sim-
ilar candidate as the result, then we will attach a
large penalty to this mistake. If the model wrongly
chooses a candidate but the candidate is similar to
the reference, we slightly penalize this mistake.
The similarity between a candidate and the ref-
erence is measured through character similarity,
which we will describe later.
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Input: the full form vfull, news corpus U
Output: bipartite graph G(Vword, Vcontext, E)
Candidate vector Vc = ∅, Vcontext = ∅
for each document d in U

if d contains vfull
add all words w in the window of vfull into Vcontext
for each n-gram s in d

if s is a sub-sequence of vfull
add s into Vc
add all word w in the window of s into Vcontext

end if
end for

end if
end for
Vword = Vc ∪ {vfull}
for each word vi in Vword

for each word vj in Vcontext
calculate edge weight in E based on co-occurrence

end for
end for
Return G(Vword, Vcontext, E)

Table 2: Algorithm for constructing bipartite graphs

We first give some notation of the re-ranking
phase.

1. f(x, y) is a scoring function for a given com-
bination of x and y, where x is the original full
form and y is an abbreviation candidate. For a
given full form xi with K candidates, we assume
its corresponding K candidates are y1

i ,y2
i ,...,yKi .

2. evaluation function s(x, y) is used to mea-
sure the similarity of the candidate to the refer-
ence, where x is the original full form and y is one
abbreviation candidate. We require that s(x, y)
should be in [0, 1] and s(x, y) = 1 if and only if y
is the reference.

One choice for s(x, y) may be the indicator
function. However, indicator function returns zero
for all false candidates. In the abbreviation predic-
tion task, some false candidates are much closer to
the reference than the rest. Considering this, we
use a Longest Common Subsequence(LCS) based
criterion to calculate s(x, y). Suppose the length
of a candidate is a, the length of the reference is b
and the length of their LCS is c, then we can define
precision P and recall R as:

P =
c

a
,

R =
c

b
,

F =
2 ∗ P ∗R
P +R

(1)

It is easy to see that F is a suitable s(x, y).
Therefore we can use the F-score as the value for
s(x, y).

3. φ(x, y) is a feature function which returns a
m dimension feature vector. m is the number of
features in the re-ranking.

4. ~w is a weight vector with dimension m.
~wTφ(x, y) is the score after re-ranking. The candi-
date with the highest score will be our final result.

Given these notations, we can now describe our
re-ranking algorithm. Suppose we have the train-
ing set X = {x1, x2, ..., xn}. We should find the
weight vector ~w that can minimize the loss func-
tion:

Loss(~w) =
n∑
i=1

k∑
j=1

((s(xi, y1
i )− s(xi, yji ))

∗ I(~wTφ(xi, y
j
i ) ≥ ~wTφ(xi, y1

i )))
(2)
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I(x) is the indicator function. It equals to 1
if and only if x ≥ 0. I(j) = 1 means that the
candidate which is less ‘similar’ to the reference
is ranked higher than the reference. Intuitively,
Loss(~w) is the weighted sum of all the wrongly
ranked candidates.

It is difficult to optimize Loss(~w) because
Loss(~w) is discontinuous. We make a relaxation
here2:

L(~w) =
n∑
i=1

k∑
j=1

((s(xi, y1
i )− s(xi, yji ))

∗ 1

1 + e−~wT (φ(xi,y
j
i )−φ(xi,y1i ))

)

≤ 1
2

n∑
i=1

k∑
j=1

((s(xi, y1
i )− s(xi, yji ))

∗ I(~wTφ(xi, y
j
i ) ≥ ~wTφ(xi, y1

i )))

=
1
2
Loss(~w)

(3)

From the equations above we can see that
2L(~w) is the upper bound of our loss function
Loss(~w). Therefore we can optimize L(~w) to ap-
proximate Loss(~w).

We can use optimization methods like gradient
descent to get the ~w that minimize the loss func-
tion. Because L is not convex, it may go into a lo-
cal minimum. In our experiment we held out 10%
data as the develop set and try random initializa-
tion to decide the initial ~w.

4.2 Features for Re-ranking
One advantage of the re-ranking phase is that it
can now use features related to candidates. There-
fore, we can use a variety of features. We list them
as follows.

1. The coarse-grained ranking score from the
graph random walk phase. From the de-
scription of the previous section we know that
this score is the probability a ‘walker’ ‘walk’
from the full form node to the current candi-
date. This is a coarse-grained score because
it can only use the information of words in-
side the window. However, it is still informa-
tive because in the re-ranking phase we can-
not collect this information directly.

2To prove this we need the following two inequalities: 1)
when x ≥ 0, I(x) ≤ 2

1+e−x and 2) s(xi, y1
i )− s(xi, yji ) ≥

0.

2. The character uni-grams and bi-grams in
the candidate. This kind of feature cannot
be used in the traditional character tagging
methods.

3. The language model score of the candi-
date. In our experiment, we train a bi-gram
language model using Laplace smoothing on
the Chinese Gigaword Data3.

4. The length of the candidate. Intuitively,
abbreviations tend to be short. Therefore
length can be an important feature for the re-
ranking.

5. The degree of ambiguity of the candidate.
We first define the degree of ambiguity di of a
character ci as the number of identical words
that contain the character. We then define the
degree of ambiguity of the candidate as the
sum of all di in the candidates. We need a dic-
tionary to extract this feature. We collect all
words in the PKU data of the second Interna-
tional Chinese Word Segmentation Bakeoff4.

6. Whether the candidate is in a word dictio-
nary. We use the PKU dictionary in feature
5.

7. Whether all bi-grams are in a word dictio-
nary. We use the PKU dictionary in feature
5.

8. Adjacent Variety(AV) of the candidate. We
define the left AV of the candidate as the
probability that in a corpus the character in
front of the candidate is a character in the
full form. For example if we consider the full
form “北京大学”(Peking University) and the
candidate “京大”, then the left AV of “京大”
is the probability that the character preced-
ing “京大” is ‘北’ or ‘京’ or ‘大’ or ‘学’ in
a corpus. We can similarly define the right
AV, with respect to characters follow the can-
didate.

The AV feature is very useful because in some
cases a substring of the full form may have a con-
fusingly high frequency. In the example of “北京
大学”(Peking University), an article in the corpus
may mention “北京大学”(Peking University) and

3http://www.ldc.upenn.edu/Catalog/
catalogEntry.jsp?catalogId=LDC2003T09

4http://www.sighan.org/bakeoff2005/
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“东京大学”(Tokyo University) at the same time.
Then the substring “京大学” may be included in
the candidate generation phase for “北京大学”
with a high frequency. Because the left AV of “京
大学” is high, the re-ranker can easily detect this
false candidate.

In practice, all the features need to be scaled in
order to speed up training. There are many ways
to scale features. We use the most intuitive scal-
ing method. For a feature value x, we scale it as
(x−mean)/(max−min). Note that for language
model score and the score of random walk phase,
we scale based on their log value.

5 Experiments

5.1 Dataset and Evaluation metrics

For the dataset, we collect 3210 abbreviation pairs
from the Chinese Gigaword corpus. The abbre-
viation pairs include noun phrases, organization
names and some other types. The Chinese Gi-
gaword corpus contains news texts from the year
1992 to 2007. We only collect those pairs whose
full form and corresponding abbreviation appear
in the same article for at least one time. For full
forms with more than one reasonable reference,
we keep the most frequently used one as its refer-
ence. We use 80% abbreviation pairs as the train-
ing data and the rest as the testing data.

We use the top-K accuracy as the evaluation
metrics. The top-K accuracy is widely used as the
measurement in previous work (Tsuruoka et al.,
2005; Sun et al., 2008, 2009; Zhang et al., 2012). It
measures what percentage of the reference abbre-
viations are found if we take the top k candidate
abbreviations from all the results. In our experi-
ment, we compare the top-5 accuracy with base-
lines. We choose the top-10 candidates from the
graph random walk are considered in re-ranking
phase and the measurement used is top-1 accuracy
because the final aim of the algorithm is to detect
the exact abbreviation, rather than a list of candi-
dates.

5.2 Candidate List

Table 3 shows examples of the candidates. In our
algorithm we further reduce the search space to
only incorporate 10 candidates from the candidate
generation phase.

K Top-K Accuracy
1 6.84%
2 19.35%
3 49.01%
4 63.70%
5 73.60%

Table 4: Top-5 accuracy of the candidate genera-
tion phase

5.3 Comparison with baselines

We first show the top-5 accuracy of the candidate
generation phase Table 4. We can see that, just
like the case of using other feature alone, using
the score of random walk alone is far from enough.
However, the first 5 candidates contain most of the
correct answers. We use the top-5 candidates plus
another 5 candidates in the re-ranking phase.

We choose the character tagging method as the
baseline method. The character tagging strategy
is widely used in the abbreviation generation task
(Tsuruoka et al., 2005; Sun et al., 2008, 2009;
Zhang et al., 2012). We choose the ‘SK’ labeling
strategy which is used in Sun et al. (2009); Zhang
et al. (2012). The ‘SK’ labeling strategy gives each
character a label in the character sequence, with
‘S’ represents ’Skip’ and ‘K’ represents ‘Keep’.
Same with Zhang et al. (2012), we use the Con-
ditional Random Fields (CRFs) model in the se-
quence labeling process.

The baseline method mainly uses the charac-
ter context information to generate the candidate
abbreviation. To be fair we use the same fea-
ture set in Sun et al. (2009); Zhang et al. (2012).
One drawback of the sequence labeling method is
that it relies heavily on the character context in
the full form. With the number of new abbrevi-
ations grows rapidly (especially in social media
like Facebook or twitter), it is impossible to let the
model ‘remember’ all the character contexts. Our
method is different from theirs, we use a more in-
tuitive way which finds the list of candidates di-
rectly from a natural corpus.

Table 5 shows the comparison of the top-5 accu-
racy. We can see that our method outperforms the
baseline methods. The baseline model performs
well when using character features (Column 3).
However, it performs poorly without the charac-
ter features (Column 2). In contrast, without the
character features, our method (Column 4) works
much better than the sequence labeling method.
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Full form Reference Generated Candidates #Enum #Now
国际政治系 (Depart-
ment of International
Politics)

国政系 国政系,政治系,国际政治,国政
治,国政,政治,国际

30 7

无核武器国家 (Non-
nuclear Countries)

无核国 核国,无核,核武,核国家,无核
国,武器国,无核国家,核武器
国,无核武器,核武器国家,核武
器,国家,武器

62 13

贩卖毒品 (Drug traf-
ficking)

贩毒 卖毒品,贩毒品,贩卖,毒品,贩毒 14 5

长江经济联合发展股
份有限公司 (Yangtze
Joint River Economic
Development Inc.)

长发公司 合股,长发,长发公司,长江公
司,长江经济,联合发展,经济发
展,经济联合,长江联合发展,长
江发展公司,长江经济联合,经济
联合发展,长江经济联合发展,股
份有限公司,有限公司,长江,公
司,股份,联合,经济

16382 20

Table 3: Generated Candidates. #Enum is the number of candidates generated by enumerating all possi-
ble candidates. #Now is the number of candidates generated by our method.

When we add character features, our method (Col-
umn 5) still outperforms the sequence labeling
method.

K CRF-char Our-char CRF Our
1 38.00% 48.60% 53.27% 55.61%
2 38.16% 70.87% 65.89% 73.10%
3 39.41% 81.78% 72.43% 81.96%
4 55.30% 87.54% 78.97% 87.57%
5 62.31% 89.25% 81.78% 89.27%

Table 5: Comparison of the baseline method and
our method. CRF-char (‘-’ means minus) is the
baseline method without character features. CRF
is the baseline method. Our-char is our method
without character features. We define character
features as the features that consider the charac-
ters from the original full form as their parts.

5.4 Performance with less training data

One advantage of our method is that it only
requires weak supervision. The baseline
method needs plenty of manually collected
full-abbreviation pairs to learn a good model.
In our method, the candidate generation and
coarse-grained ranking is totally unsupervised.
The re-ranking phase needs training instances
to decide the parameters. However we can use
a very small amount of training data to get a
reasonably good model. Figure 2 shows the result

of using different size of training data. We can
see that the performance of the baseline methods
drops rapidly when there are less training data.
In contrast, when using less training data, our
method does not suffer that much.

Figure 2: Top-1 accuracy when changing the size
of training data. For example, “50%” means “us-
ing 50% of all the training data”.

5.5 Comparison with previous work
We compare our method with the method in the
previous work DPLVM+GI in Sun et al. (2009),
which outperforms Tsuruoka et al. (2005); Sun
et al. (2008). We also compare our method with
the web-based method CRF+WEB in Zhang et al.
(2012). Because the comparison is performed on
different corpora, we run the two methods on our
data. Table 6 shows the top-1 accuracy. We
can see that our method outperforms the previous
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methods.

System Top-K Accuracy
DPLVM+GI 53.29%
CRF+WEB 54.02%
Our method 55.61%

Table 6: Comparison with previous work. The
search results of CRF+WEB is based on March 9,
2014 version of the Baidu search engine.

5.6 Error Analysis

We perform cross-validation to find the errors and
list the two major errors below:

1. Some full forms may correspond to more
than one acceptable abbreviation. In this
case, our method may choose the one that is
indeed used as the full form’s abbreviation in
news texts, but not the same as the standard
reference abbreviations. The reason for this
phenomenon may lie in the fact that the veri-
fication data we use is news text, which tends
to be formal. Therefore when a reference is
often used colloquially, our method may miss
it. We can relieve this by changing the corpus
we use.

2. Our method may provide biased information
when handling location sensitive phrases.
Not only our system, the system of Sun et al.
(2009); Zhang et al. (2012) also shows this
phenomenon. An example is the case of “香
港民主同盟” (Democracy League of Hong
Kong). Because most of the news is about
news in mainland China, it is hard for the
model to tell the difference between the ref-
erence “港同盟” and a false candidate “民
盟”(Democracy League of China).

Another ambiguity is “清华大学”(Tsinghua
University), which has two abbreviations “清
大” and “清华”. This happens because the
full form itself is ambiguous. Word sense dis-
ambiguation can be performed first to handle
this kind of problem.

6 Related Work

Abbreviation generation has been studied during
recent years. At first, some approaches maintain
a database of abbreviations and their correspond-
ing “full form” pairs. The major problem of pure

database-building approach is obvious. It is im-
possible to cover all abbreviations, and the build-
ing process is quite laborious. To find these pairs
automatically, a powerful approach is to find the
reference for a full form given the context, which
is referred to as “abbreviation generation”.

There is research on using heuristic rules
for generating abbreviations Barrett and Grems
(1960); Bourne and Ford (1961); Taghva and
Gilbreth (1999); Park and Byrd (2001); Wren et al.
(2002); Hearst (2003). Most of them achieved
high performance. However, hand-crafted rules
are time consuming to create, and it is not easy to
transfer the knowledge of rules from one language
to another.

Recent studies of abbreviation generation have
focused on the use of machine learning tech-
niques. Sun et al. (2008) proposed an SVM ap-
proach. Tsuruoka et al. (2005); Sun et al. (2009)
formalized the process of abbreviation generation
as a sequence labeling problem. The drawback of
the sequence labeling strategies is that they rely
heavily on the character features. This kind of
method cannot fit the need for abbreviation gen-
eration in social media texts where the amount of
abbreviations grows fast.

Besides these pure statistical approaches, there
are also many approaches using Web as a corpus
in machine learning approaches for generating ab-
breviations. Adar (2004) proposed methods to de-
tect such pairs from biomedical documents. Jain
et al. (2007) used web search results as well as
search logs to find and rank abbreviates full pairs,
which show good result. The disadvantage is that
search log data is only available in a search en-
gine backend. The ordinary approaches do not
have access to search engine internals. Zhang et al.
(2012) used web search engine information to re-
rank the candidate abbreviations generated by sta-
tistical approaches. Compared to their approaches,
our method only uses a fixed corpus, instead of us-
ing collective information, which varies from time
to time.

Some of the previous work that relate to ab-
breviations focuses on the task of “abbreviation
disambiguation”, which aims to find the correct
abbreviation-full pairs. In these works, machine
learning approaches are commonly used (Park and
Byrd, 2001; HaCohen-Kerner et al., 2008; Yu
et al., 2006; Ao and Takagi, 2005). We focus on
another aspect. We want to find the abbreviation
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given the full form. Besides, Sun et al. (2013) also
works on abbreviation prediction but focuses on
the negative full form problem, which is a little
different from our work.

One related research field is text normalization,
with many outstanding works (Sproat et al., 2001;
Aw et al., 2006; Hassan and Menezes, 2013; Ling
et al., 2013; Yang and Eisenstein, 2013). While
the two tasks share similarities, abbreviation pre-
diction has its identical characteristics, like the
sub-sequence assumption. This results in different
methods to tackle the two different problems.

7 Conclusion

In this paper, we propose a unified framework for
Chinese abbreviation generation. Our approach
contains two stages: candidate generation and
re-ranking. Given a long term, we first gener-
ate a list of abbreviation candidates using the co-
occurrence information. We give a coarse-grained
rank using graph random walk to reduce the search
space. After we get the candidate lists, we can use
the features related to the candidates. We use a
similarity sensitive re-rank method to get the final
abbreviation. Experiments show that our method
outperforms the previous systems.
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Abstract

Distant supervision has become the lead-
ing method for training large-scale rela-
tion extractors, with nearly universal adop-
tion in recent TAC knowledge-base pop-
ulation competitions. However, there are
still many questions about the best way
to learn such extractors. In this paper we
investigate four orthogonal improvements:
integrating named entity linking (NEL)
and coreference resolution into argument
identification for training and extraction,
enforcing type constraints of linked argu-
ments, and partitioning the model by rela-
tion type signature.

We evaluate sentential extraction perfor-
mance on two datasets: the popular set of
NY Times articles partially annotated by
Hoffmann et al. (2011) and a new dataset,
called GORECO, that is comprehensively
annotated for 48 common relations. We
find that using NEL for argument identi-
fication boosts performance over the tra-
ditional approach (named entity recogni-
tion with string match), and there is further
improvement from using argument types.
Our best system boosts precision by 44%
and recall by 70%.

1 Introduction

Relation extractors are commonly trained by dis-
tant supervision (also known as knowledge-based
weak supervision (Hoffmann et al., 2011)), an au-
tonomous technique that creates a labeled train-
ing set by heuristically matching the contents of a
knowledge base (KB) to mentions (substrings) in
a textual corpus. For example, if a KB contained
the ground tuple BornIn(Albert Einstein, Ulm) then

Training Extraction

KB

Argument 
Identification

Matching

Train Extractor Extractor

Argument 
Identification

Figure 1: Distantly supervised extraction pipeline.

a distant supervision system might label the sen-
tence “While [Einstein]1 was born in [Ulm]2, he
moved to Munich at an early age.” as a positive
training instance of the BornIn relation. Although
distant supervision is a simple idea and often cre-
ates data with false positives, it has become ubiq-
uitous; for example, all top-performing systems in
recent TAC-KBP slot filling competitions used the
method.

Surprisingly, however, many aspects of distant
supervision are poorly studied. In response we
perform an extensive search of ways to improve
distant supervision and the extraction process, in-
cluding using named entity linking (NEL) and
coreference to identify arguments for distant su-
pervision and extraction, as well as using type con-
straints and partitioning the trained model by rela-
tion type signatures.

The first step in the distant supervision process
is argument identification (Figure 1) — finding
textual mentions referring to entities that might be
in some relation. Next comes matching, where KB
facts, e.g. tuples such as R(e1, e2), are associated
with sentences mentioning entities e1 and e2 in
the assumption that many of these sentences de-
scribe the relation R. Most previous systems per-
form these steps by first using named entity recog-
nition (NER) to identify possible arguments and
then using a simple string match, but this crude
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approach misses many possible instances. Since
the separately-studied task of named entity linking
(NEL) is precisely what is needed to perform dis-
tant supervision, it is interesting to see if today’s
optimized linkers lead to improved performance
when used to train extractors.

Coreference, the task of clustering mentions
that describe the same entity, may also be use-
ful for increasing the number of candidate argu-
ments. Consider the following variant of our pre-
vious example: “While [he]1 was born in [Ulm]2,
[Einstein]3 moved to Munich at an early age.”
Since mentions 1 and 3 corefer, one could con-
sider using either the pair 〈1, 2〉 or 〈3, 2〉 (or both)
for training. Intuitively, it seems that 〈1, 2〉 is more
representative of BornIn and might generalize bet-
ter, so we consider the use of coreference at both
training and extraction time.

Semantic relations often have selectional prefer-
ences (also known as type signatures); for exam-
ple, BornIn holds between people and locations.
Therefore, it seems promising to include entity
types, whether coarse or fine grained in the dis-
tantly supervised relation extraction process. We
consider two ways of adding this information. By
using NEL to get linked entities, we can impose
type constraints on the relation extraction system
to only allow relations over appropriately typed
mentions. We also investigate using coarse types
from NER to learn separate models for different
relation type signatures in order to make the mod-
els more effective.

In summary, this paper represents the following
contributions:

• We explore several dimensions for improv-
ing distantly supervised relation extraction,
including better argument identification dur-
ing training and extraction using both NEL
and coreference, partitioning the model by
relation type signatures, and enforcing type
constraints of linked arguments as a post-
processing step. While some of these ideas
may seem straightforward, to our knowledge
they have not been systematically studied.
And, as we show, they lead to dramatic im-
provements.

• Since previous datasets are incapable of mea-
suring an extractor’s true recall, we intro-
duce GORECO, a new exhaustively-labeled
dataset with gold annotations for sentential

instances of 48 relations across 128 newswire
documents from the ACE 2004 corpus (Dod-
dington et al., 2004).

• We demonstrate that NEL argument identifi-
cation boosts both precision and recall, and
using type constraints with linked arguments
further boosts precision, yielding a 43% in-
crease in precision and 27% boost to re-
call. Using coreference during training ar-
gument identification gives an additional 7%
improvement to precision and further boosts
recall by 9%. Partitioning the model by rela-
tion type signature offers further benefits, so
our best system yields a total boost of 44% to
precision and 70% to recall.

2 Distantly Supervised Extraction

At a sentence-level, the goal for relation extrac-
tion is to determine for each sentence, what facts
are expressed. We describe these as relation an-
notations of the form s→R(m1,m2), where s is
a sentence, R ∈ R is a relation name, R is our
finite set of target relations, and m1 and m2 are
grounded entity mentions of the form (s, t1, t2, e),
where t1 and t2 delimit a text span in the sentence,
and e is a grounded entity.

2.1 Training
During training, the contents of the KB are heuris-
tically matched to the training corpus according
to the distant supervision hypothesis: if a relation
holds between two entities, any sentence contain-
ing those two entities is likely to express that rela-
tion.

The training KB ∆ contains fact tuples of form
R(e1, e2), where R ∈ R is a relation name, R is
our finite set of target relations, and e1 and e2 are
ground entities. The training text corpus Σ con-
tains documents, which contain sentences. Argu-
ment identification is performed over the text cor-
pus to get grounded mentionsm. Then during sen-
tential instance generation, sentential instances of
the form (s,m1,m2) are generated representing
a sentence with two grounded mentions. At this
point, these sentential instances can be matched
to the seed KB, yielding candidate relation anno-
tations of the form s→R(m1,m2) by finding all
relations that hold over the entities in a sentential
instance. These candidate relation annotations are
all positive instances to use for training. Negative
instance generation is also performed, generating
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negative examples of the form s→NA(m1,m2) in-
dicating that no relation holds between m1 and
m2. There are several heuristics for generating
negative instances, and the number of negative ex-
amples and how they are treated can greatly affect
performance (Min et al., 2013).

Because the distant supervision hypothesis of-
ten does not hold, this training data is noisy. That
a fact is in the KB does not imply that the sen-
tence in question is expressing the relation. There
has been much work in combating noise in dis-
tant supervision training data, but one of the most
successful ideas is to train a multi-instance classi-
fier which assumes at-least-one relation holds for
positive bags. We use Hoffmann et al. (2011)’s
MULTIR system, which uses a probabilistic graph-
ical model to jointly reason at the corpus-level
and sentence-level, handles overlapping relations
in the KB so that multiple relations can hold over
an entity pair, and scales to large datasets.

2.2 Extraction

The trained relation extractor can assign a most
likely relation and a confidence score to a senten-
tial instance (s,m1,m2). To get these sentential
instances, argument identification and sentential
instance generation are applied to new documents.
Then the relation extractor potentially yields a re-
lation annotation of the form s→R(m1,m2), or
potentially no relation. At extraction time a men-
tion m might have a NIL link if a correspond-
ing ground entity was not found during argument
identification (meaning the entity is not in the KB).
The relation annotations have associated confi-
dence scores, so a threshold can be chosen to only
use high-confidence relation annotations.

3 Argument Identification

An important piece of relation extraction is deter-
mining what can be an argument, and how to form
a semantic representation of it. We define an argu-
ment identification function ArgIdent∆(D), which
takes a document D, finds potential arguments,
and links them to entities in ∆ if possible, yield-
ing m, a set of grounded mentions in D. Pre-
vious relation extraction systems have based this
on NER. We evaluate NER-based argument iden-
tification against argument identification based on
NEL, as well as NEL with coreference.

3.1 Named Entity Recognition

Named entity recognition (NER) tags spans of to-
kens with basic types such as PERSON, ORGANI-
ZATION, LOCATION, and MISC. This is a high
accuracy tagging task often performed using a
sequence classifier (Finkel et al., 2005). Rela-
tion extraction systems can base their argument
identification on NER, by using NER to identify
text spans indicating entities and then find corre-
sponding entities in the KB through exact string
match (Riedel et al., 2010). Some downsides of
using NER with exact string match for relation ex-
traction is that it does not allow for overlapping
mentions, it can only capture arguments with full
names, and it can only capture arguments with
types of the NER system, e.g., “politician” might
not be captured.

3.2 Named Entity Linking

Named entity linking (NEL) is the task of ground-
ing textual mentions to entities in a KB, such as
Wikipedia. Thus “named entity” here, has a some-
what broader definition than in NER — these are
any entities in the KB, not just those expressed
with proper names. Hachey et al. (2013) define
three stages that NEL systems take to perform
this task: extraction (mention detection), search
(generating candidate KB entities for a mention),
and disambiguation (selecting the best entity for a
mention). There has been much work on the task
of NEL in recent years (Milne and Witten, 2008;
Kulkarni et al., 2009; Ratinov et al., 2011; Cheng
and Roth, 2013).

Our definition of a function ArgIdent(D) is
completely served by an NEL system. It can
find any entity in the KB, and those entities are
grounded. Additionally, NEL can have overlap-
ping mentions as well as support for abbreviated
mentions like “Obama”, or acronyms like “US”.
NEL does not seek to capture anaphoric mentions,
however.

3.3 Coreference Resolution

Coreference resolution is the task of clustering
mentions of entities together, typically within a
single document. Using coreference, we can find
even more mentions than NEL, since it can find
pronouns and anaphoric mentions. We seek to use
coreference to add additional arguments to those
found by NEL, and we refer to this combined ar-
gument identification method as NEL+Coref. Tak-
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ing in arguments from NEL argument identifica-
tion and coreference clusters, we ground the clus-
ters by picking the most common grounded entity
from NEL mentions that occur in a coreference
cluster. A difficulty is that mentions from NEL
and coreference can have small differences in text
spans, such as whether determiners are included.
We try to assign each NEL argument to a corefer-
ence cluster, first looking for an exact span match,
then by looking for the shortest coreference men-
tion that contains it. If the coreference cluster al-
ready has matched an NEL argument through ex-
act span match that is different from the one found
by looking for the shortest containing coreference
mention, the new NEL argument is not added.
This gives for each coreference cluster a possible
grounding to an entity in the KB. What is provided
as final arguments for NEL+Coref argument iden-
tification are, in order, grounded NEL arguments,
grounded coreference arguments that do not over-
lap with previous arguments, NIL arguments from
NEL that do not overlap with previous arguments,
and NIL arguments from coreference that do not
overlap with previous arguments.

4 Type-Awareness

Relations have expected types for each argument.
Entity types, whether coarse-grained, such as from
NER, or fine-grained, such as from Freebase enti-
ties, are an important source of information that
can be useful for making decisions in relation ex-
traction. We bring type-awareness into the system
through partitioning the model, as well as by en-
forcing type constraints on output relation annota-
tions.

Model Partitioning Instead of building a single
relation extractor that can generate sentential in-
stances and then relation annotations with argu-
ments of any type, we can instead build separate
relation extractors for each possible coarse type
signature, e.g., (PERSON, PERSON), (PERSON, LO-
CATION), etc., and combine the extractions from
the extractor for each type signature. This modi-
fication allows each trained model to only handle
instances of specific types, and thus relations of
that type signature, allowing each to do a better job
of choosing relations within the type signature.

Type Constraints We can additionally reject re-
lation annotations where the types of the argu-
ments do not agree with the expected types of the

relation. That is, we only accept a relation annota-
tion s→R(m1,m2) when EntityTypes(e1) ∩ τ1 6=
∅ and EntityTypes(e2)∩τ2 6= ∅, wherem1 is linked
to e1, m2 is linked to e2, EntityTypes provides the
set of valid types for an entity, τ1 is the set of al-
lowed types for the first argument of target relation
r, and τ2 for the second argument.

5 Evaluation Setups

Relation extraction is often evaluated from a
macro-reading perspective (Mitchell et al., 2009),
in which the extracted facts, R(e1, e2), are judged
true or false independent of any supporting sen-
tence. For these experiments, however, we take a
micro-reading approach in order to strictly eval-
uate whether a relation extractor is able to extract
every fact expressed by a sentence s→R(m1,m2).
Micro-reading is more difficult, but it provides
fully semantic information at the sentence and
document level allowing detailed justifications,
and, for our purposes, allows us to better under-
stand the effects of our modifications. In order
to fairly evaluate different systems, even those us-
ing different methods of argument identification,
we want to use gold evaluation data allowing for
varying mention types. We additionally use Hoff-
mann et al. (2011)’s sentential evaluation as-is in
order to better compare with prior work. For our
training corpus, we use the TAC-KBP 2009 (Mc-
Namee and Dang, 2009) English newswire corpus
containing one million documents with 27 million
sentences.

5.1 Hoffmann et al. Sentential Evaluation

Hoffmann et al. (2011) generated their gold data
by taking the union of sentential instances where
some system being evaluated extracted a relation
as well as the sentential instances matching ar-
guments in the KB. They took a random sample
of these sentential instances and manually labeled
them with either a single relation or NA. Although
this process provides good coverage, since is is
sampled from extractions over a large corpus, it
does not allow one to measure true recall. Indeed,
Hoffmann’s method significantly overestimates re-
call, since the random sample is only over senten-
tial instances where a program detected an extrac-
tion or a KB match was found. Furthermore, this
test set only contains sentential instances in which
arguments are marked using NER, which makes
it impossible to determine if the use of NEL or
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coreference confers any benefit.
Finally, it does not allow for the possibility that

there may be multiple relations that should be ex-
tracted for a pair of arguments. For example, a
CeoOf relation, and an EmployedBy relation might
both be present for (Larry Page, Google). To ad-
dress these issues, we manually annotate a full set
of documents with relation annotations. Because
we are evaluating changing various aspects of the
distant supervision process, we cannot use Riedel
et al. (2010)’s distant supervision data as-is as oth-
ers did on the Hoffmann et al. (2011) sentential
evaluation. Instead, we use the TAC-KBP data de-
scribed above.

5.2 GoReCo Evaluation

In order to allow for variations on mentions (NER,
NEL, and coreference each has its own definition
of what a mention boundary should be), we want
gold relation annotations over coreference clus-
ters broadly defined to allow mentions obtained
from NER and NEL, as well as gold coreference
mentions. So as long as a relation extraction sys-
tem extracts a relation annotation s→R(m1,m2)
where m1 and m2 are allowed options (based on
text spans), it will get credit for extracting the
relation annotation. We introduce the GORECO

(gold relations and coreference) evaluation to sat-
isfy these constraints.

We start with an existing gold coreference
dataset, ACE 2004 (Doddington et al., 2004)
newswire, consisting of 128 documents. To get
relation annotations over coreference clusters, we
define two human annotation tasks and use the
BRAT (Stenetorp et al., 2012) tool for visualization
and relation and coreference annotations.

Relation Annotation The annotator is pre-
sented with a document with gold mentions indi-
cated and asked to determine for each sentence,
what facts involving target relations are expressed
by the sentence. They draw an arrow for each fact
and label it with the relation. They also have the
ability to add mentions not present (ReAnn men-
tions).

Supplemental Coreference Mentions from
NER and NEL are displayed along with ACE and
ReAnn mentions from the previous task. The
annotator draws coreference links from NER or
NEL mentions to an ACE or ReAnn mention if
they are coreferent.

We randomly shuffle the 128 ACE 2004
newswire documents and use 64 as a development
set and 64 as a test set. To complete annotations
of these documents, we only used one original hu-
man annotator (hired using the oDesk crowdsourc-
ing platform) and found mistakes by having others
check the work, as well as checking false positives
of relation extractors on the development set to
find patterns of annotation mistakes. On average,
there are 7 relation annotations per document.

For the GORECO evaluation, we define our
train/test split (with the separate TAC-KBP corpus
used for training) such that each has a different set
of documents and entities, in order to evaluate how
well the system performs on unseen entities. To do
this, we remove entities found in the gold evalua-
tion set from the training KB. (We do not remove
entities for the Hoffmann et al. (2011) evaluation,
since they do not.) We choose the threshold con-
fidence score for each system using the develop-
ment set to optimize for F1 and report results on
the test set.

5.2.1 Target Relations
Since we use a different evaluation, we also seek to
choose a more comprehensive and interesting set
of relations than prior work. Riedel et al. (2010),
whose train and test data is also used by Hoff-
mann et al. (2011) and Surdeanu et al. (2012), use
Freebase properties under domains /people, /busi-
ness, and /location. Since /location relations such
as /location/location/contains dominate the results
(and are relatively uninteresting in that they rarely
change), we do not use any /location relations, and
instead use the domains /people, /business, and
/organization (Google, 2012).

Since many Freebase properties are between
an entity and a table instead of another
entity, we also use joined relations, such
as /people/person/employment_history ./ /busi-
ness/employment_tenure/company , in this case
representing employment. We bring in an addi-
tional 20 relations of this form, also under /person,
/business, and /organization. Additionally we use
NELL (Carlson et al., 2010a) relations mapped to
Freebase by Zhang et al. (2012).

We only include a relation in our set of target
relations if both of its entity arguments are con-
tained in the set of entities found via NER with
exact string match or NEL over the training cor-
pus. We also remove inverse relations, since they
represent needless duplication. This gives us a set
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R of 105 target relations based on joins and unions
of Freebase properties. Of the 105 target relations,
48 were used at least once in the GORECO data.

6 Experiments and Results

We conduct experiments to determine how chang-
ing distantly supervised relation extraction along
various dimensions affects performance. We ex-
amine the choice of argument identification dur-
ing training and extraction, as well as the effects
of model type partitioning, and type constraints.
We consider the space of all combinations of these
dimensions, but focus on specific combinations
where we find improvements.

6.1 Relation Extraction Setup

We use and modify Hoffmann et al. (2011)’s sys-
tem MULTIR to control our experiments and as
a baseline. For NER argument identification as
well as for the use of NER in the features, we use
use Stanford NER (Finkel et al., 2005). For NEL
argument identification we use Wikipedia Miner
with the default threshold 0.5, and allowing re-
peated mentions (Milne and Witten, 2008). Since
Wikipedia Miner does not support NIL links, we
use non-overlapping NER mentions as NIL links.
For coreference, we use Stanford’s sieve-based de-
terministic coreference system (Lee et al., 2013).
For sentential instance generation, we take all
pairs of non-overlapping arguments in a sentence
(in either order). If the arguments have KB links,
we do not allow sentential instances where both
arguments represent the same entity. We use the
same lexical and syntactic features as MULTIR,
based on the features of Mintz et al. (2009). As
required for features, we use Stanford CoreNLP’s
tokenizer, part of speech tagger (Toutanova et al.,
2003), and dependency parser (de Marneffe and
Manning, 2008), and use the Charniak Johnson
constiuent parser (Charniak and Johnson, 2005).
For negative training generation, we take a simi-
lar approach to Riedel et al. (2010) and define a
percentage parameter n of the number of nega-
tive instances divided by the number of total in-
stances. Experimenting with n ∈ {0, 20%, 80%},
we find that n = 20% works best for our evalua-
tions, optimizing for F1, although using 80% neg-
ative training gives high precision at lower recall.
We use frequency-based feature selection to elimi-
nate features that appear less than 10 times, which
is helpful both for reducing overfitting as well as
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Figure 2: Methods evaluated in the context of
Hoffmann et al. (2011)’s sentential extraction
evaluation. NER: our NER baseline used for
training and extraction, LT: use NEL for train-
ing only, CT: use coreference for training only.
(NER+LT+CT means we use NER for extraction,
and NEL+Coref for training.)

constraining memory usage. Since the perceptron
learning of MULTIR is sensitive to instance order-
ing, we perform 10 random shuffles and average
the models.

For model type partitioning, when training with
NER, we ensure that the NER types match the
coarse relation type signatures. For NEL, we at-
tempt to use NER for coarse types of arguments,
but if an NER type is not present, we map the Free-
base type to its FIGER type (Ling and Weld, 2012)
to its coarse type. For type constraints, we use
Freebase’s expected input and output types for re-
lations. For NIL links, we use the NER type of
PERSON, ORGANIZATION, or LOCATION, if avail-
able, mapping it to appropriate Freebase types.

6.2 NER Baseline

As a result of a larger training set, as well as model
averaging, our baseline, which is otherwise equiv-
alent to the methods of Hoffmann et al. (2011)
and uses their MULTIR system, has slightly higher
precision as shown in Figure 2, curve NER. It is
also higher than that of Xu et al. (2013), who
achieved higher performance than Hoffmann et
al. (2011); our baseline gets 89.9% precision and
59.6% relative recall, while Xu et al. (2013)’s sys-
tem gets 84.6% precision and 56.1% relative re-
call. See Figure 3 and Table 1 for results on
GORECO.

6.3 NEL and Type Constraints

On GORECO, using NEL argument identification
increases recall and gives higher precision over the
entire curve. We further find that filtering results
using type constraints gives a large boost in pre-
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cision at a small cost to recall. Note the increase
in performance from NER to NEL to NEL+TC in
Figure 3a, as well as in Table 1. Using NEL gives
more recall, since it is able to capture arguments
that NER cannot, such as professions like “pa-
leontologist”. The decrease in recall from type
constraints comes from false positives in the type
constraints process including from non-ideal links,
e.g., “paleontologist” might get linked to the entity
Paleontology, so will not have the type required for
the Profession relation.

On the Hoffmann et al. (2011) sentential evalu-
ation, we were not able to use NEL argument iden-
tification at extraction time, because the instances
in the test set are from NER argument identifica-
tion. We tried using NEL only at training time
and found that it got similar performance to using
NER (Figure 2, curve NER+LT). Doing the same
on GORECO yielded slightly lower recall, because
of the mismatch of features learned from NEL ar-
guments (Figure 3b, curve NER+LT).

6.4 NEL+Coref Argument Identification

Using NEL+Coref for both training and extrac-
tion (see Table 1) introduces noise from arguments
not encountered during training time, but using
NEL+Coref just for training results in a decrease
in recall but similar precision (Figures 2 and 3b).

We found using NEL+Coref at test time unhelp-
ful for this dataset, because there were no exam-
ples we could find where coreference could re-
cover arguments that NEL could not. There were
three true positives from NEL+Coref involving
pronouns in the GORECO development set, but
there were also proper name versions of the ar-
guments nearby in the same sentences, making
coreference unnecessary. Additionally, corefer-
ence brings in many mentions such as times like
“Friday” or “1954” that do not have corresponding
KB matches during training time. These sentential
instances have similar features to others involv-
ing coreference mentions, and there are not neg-
ative instances to weigh against these, since these
types do not appear in the training data. Better fea-
tures more suited to coreference mentions could be
helpful here.

At both training and extraction time, corefer-
ence can cluster together mentions that can be con-
sidered to be separate, such as in “Brian Kain, a
33-year-old accountant”, “Brian Kain” and “ac-
countant” are coreferent in the gold ACE 2004
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Figure 3: Precision versus true positives count
curves for different versions of the system evalu-
ated on the GORECO test set, containing 470 gold
instances. NER/NEL: argument identification used
in training and extraction, LT: use NEL for train-
ing only, CT: use coreference for training only, TC:
type constraints, TP: model type partitioning.

dataset. This means that type constraints will
disregard a Profession annotation between these
when it should not, because “Brian Kain” (which
would have been a NIL link) gets the link of “ac-
countant”. This effect contributes to the decrease
in recall.

6.5 Model Type Partitioning

Using type partitioning helps both NER and NEL
based models as shown with the +TP curves in
Figure 3). Partitioning by type signature results in
each model being able to better choose relations
for sentential instances of that type signature. In
the Partitioned columns of Table 1, removing type
partitioning from the best system (NEL training
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Single Partitioned

R P F1 R P F1

NER training
NER extraction 7.9 21.8 11.6 11.3 21.0 14.7
NEL extraction 8.5 21.4 12.2 9.8 19.7 13.1

NEL training
NER extraction 9.6 21.1 13.2 8.9 25.1 13.2
NEL extraction 10.0 30.5 15.1 15.3 16.7 16.0
NEL w/TC extraction 11.7 31.1 17.0 13.4 31.3 18.8

NEL+Coref training
NER extraction 9.4 19.2 12.6 6.8 28.3 11.0
NEL extraction 12.1 27.5 16.8 11.1 21.6 14.6
NEL w/TC extraction 12.8 33.3 18.5 12.1 34.1 17.9
NEL+Coref extraction 10.6 20.4 14.0 10.0 12.9 11.3
NEL+Coref w/TC extraction 9.4 22.7 13.3 7.9 19.1 11.1

Table 1: Evaluation of different versions of the relation extraction system on the GORECO test set. For
nearly all systems, partitioning the model by argument types boosts F1, as does using NEL at either
training or extraction time, and using coreference at training time with type constraints (w/TC) raises F1
except with coreference at extraction time and when combined with type partitioning.

and extraction, with type constraints, Partitioned)
results in a decrease in F1 from 18.8% to 17.0%.
Table 2 shows by-relation performance results for
the best system (curve NEL+TC+TP in Figure 3a).

6.6 Other Dimensions Explored
We also experimented with adding generalized
features that replaced lexemes with WordNet
classes (Fellbaum, 1998), which had uneven re-
sults. We observed a small but consistent improve-
ment on the NER baseline (11.6% F1 to 12.7%
F1 on GORECO), but after introducing NEL argu-
ment identification and partitioning, we no longer
observed the improvement. For some relations,
there was a small gain in recall that was offset by
a loss in precision, but for others, the gain in recall
outweighed the loss of precision.

We experimented with a negative instance feed-
back loop that ran a trained extractor over the
training corpus and tested whether each extrac-
tion made was in fact a negative example. Even
though the training corpus contains one million
documents, this method only yielded a few thou-
sand new negative instances due to the difficulty
of being certain an extraction should be negative.
A naïve approach would simply ensure that both
entities participate in a relation in the KB; this is
troublesome, because of KB incompleteness and
because of type errors. For example Freebase con-
tains BornIn(Barack Obama, Honolulu), but our ex-
tractor extracted BornIn(Barack Obama, Hawaii).
To avoid labeling this true extraction as a nega-
tive instance we have to be robust about location

semantics. We selected new negative instances
NA(e1, e2) from our initial extractor that had e1

in the knowledge base, with e1 participating as the
first argument in the extracted relation but with-
out e2 as the second argument. The results were
promising for some relations but overall inconclu-
sive as identifying true negatives is quite difficult.

Relation #Extractions #TP #FP

Nationality 50 11 38
Profession 43 23 20

EmployedBy 27 17 10
Spouse 22 2 20
LivedIn 6 4 2

OrgInCitytown 4 3 1
AthletePlaysForTeam 2 2 0

OrgType 1 1 0

Table 2: By-relation evaluation of the best system
(NEL with type constraints and type partitioning)
on the GORECO test set. The true positives (TP)
are the number of gold relations over coreference
clusters that matched, so multiple extractions can
match a single true positive.

7 Related Work

There has been much recent work on distantly su-
pervised relation extraction. Mintz et al. (2009)
use Freebase to train relation extractors over
Wikipedia without labeled data using multi-class
logistic regression and lexical and syntactic fea-
tures. Hoffmann et al. (2011) use a probabilis-
tic graphical model for multi-instance, multi-label
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learning and extract over newswire text using
Freebase relations. Surdeanu et al. (2012) take a
similar approach and use soft constraints and lo-
gistic regression. Riedel et al. (2013) integrate
open information extraction with schema-based,
proposing a universal schema approach, including
using features based on latent types. There has
also been recent work on reducing noise in dis-
tantly supervised relation extraction (Nguyen and
Moschitti, 2011; Takamatsu et al., 2012; Roth et
al., 2013; Ritter et al., 2013). Xu et al. (2013) and
Min et al. (2013) improve the quality of distant su-
pervision training data by reducing false negative
examples.

Distant supervision is related to semi-
supervised bootstrap learning work such as
Carlson et al. (2010b) and many others. Note that
distant supervision can be viewed as a subroutine
of bootstrap learning; bootstrap learning can
continue the process of distant supervision by
taking the new tuples found and then training on
those again, and repeating the process.

There has also been work on performing NEL
and coreference jointly (Cucerzan, 2007; Ha-
jishirzi et al., 2013), however these systems do not
perform relation extraction. Singh et al. (2013)
performs joint relation extraction, NER, and coref-
erence in a fully-supervised manner. They get
slight improvement by adding coreference, but do
not use NEL. Ling and Weld (2013) extend MUL-
TIR to find meronym relations in a biology text-
book. They get slight improvement over NER by
using coreference to pick the best mention of an
entity in the sentence for the meronym relation at
training and extraction time.

8 Conclusions and Future Work

Given the growing importance of distant supervi-
sion, a comprehensive understanding of its vari-
ants is crucial. While some of the optimizations
we propose may seem intuitive, they have not pre-
viously been systematically explored. Our experi-
ments show that NEL, type constraints, and type
partitioning are extremely important in order to
best take advantage of the seed KB during training
as well as known information at extraction time.
Our best system results in a 44% increase in pre-
cision, and a 70% increase in recall over our NER
baseline using GORECO. While we were not able
to evaluate all our methods on Hoffmann et al.
(2011)’s sentential evaluation, our baseline per-

forms significantly better than previous methods,
especially in precision, and training-only modifi-
cations perform similarly in both evaluations.

Future work will explore the use of NEL in dis-
tantly supervised relation extraction further, tun-
ing a confidence parameter for the NEL system,
and determining whether different confidence pa-
rameters should be used for training and extrac-
tion. Another possible direction is interleaving
NEL with relation extraction by using newly ex-
tracted facts to try to improve NEL performance.

We freely distribute GORECO a new gold stan-
dard evaluation for relation extraction consisting
of exhaustive annotations of the 128 documents
from ACE 2004 newswire for 48 relations. The
source code of our system, its output, as well as
our gold data are available at
http://cs.uw.edu/homes/mkoch/re.
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Abstract

We address the problem of automatically
inferring the tense of events in Chinese
text. We use a new corpus annotated with
Chinese semantic tense information and
other implicit Chinese linguistic informa-
tion using a “distant annotation” method.
We propose three improvements over a rel-
atively strong baseline method – a statisti-
cal learning method with extensive feature
engineering. First, we add two sources
of implicit linguistic information as fea-
tures – eventuality type and modality of
an event, which are also inferred automat-
ically. Second, we perform joint learning
on semantic tense, eventuality type, and
modality of an event. Third, we train arti-
ficial neural network models for this prob-
lem and compare its performance with
feature-based approaches. Experimental
results show considerable improvements
on Chinese tense inference. Our best per-
formance reaches 68.6% in accuracy, out-
performing a strong baseline method.

1 Introduction

As a language with no grammatical tense, Chinese
does not encode the temporal location of an event
directly in a verb, while in English, the grammati-
cal tense of a verb is a strong indicator of the tem-
poral location of an event. In this paper we ad-
dress the problem of inferring the semantic tense,
or the temporal location of an event (e.g., present,
past, future) in Chinese text. The semantic tense is
defined relative to the utterance time or document
creation time, and it does not always agree with
the grammatical tense in languages like English
where there is grammatical tense. Inferring se-
mantic tense potentially benefits natural language
processing tasks such as Machine Translation and

Information Extraction (Xue, 2008; Reichart and
Rappoport, 2010; Ye et al., 2006; Ye, 2007; Liu et
al., 2011), but previous work has shown that auto-
matic inference of the semantic tense of events in
Chinese is a very challenging task (Xue, 2008; Ye
et al., 2006; Liu et al., 2011).

There are at least two reasons why this is a dif-
ficult problem. First, since Chinese does not have
grammatical tense which could serve as an impor-
tant clue when annotating the semantic tense of
an event, generating consistent annotation for Chi-
nese semantic tense has proved to be a challenge.
Xue and Zhang (2014) use a “distant annotation”
method to address this problem. They take advan-
tage of an English-Chinese parallel corpus with
manual word alignments (Li et al., 2012) , and per-
form annotation on the English side, which pro-
vides more explicit information such as grammati-
cal tense that helps annotators decide the appropri-
ate semantic tense. The annotations are then pro-
jected to the Chinese side via the word alignments.
They show consistent annotation agreements on
semantic tense. Second, the lack of grammatical
tense also makes automatic inference of Chinese
semantic tense challenging since the grammatical
tense would be an important source of information
for predicting the semantic tense. Previous work
has shown that it is very difficult to achieve high
accuracy using standard machine learning tech-
niques such as Maximum Entropy and Conditional
Random Field classifiers combined with extensive
feature engineering.

We address these challenges in two ways. First
of all, we take advantage of the newly annotated
corpus described in (Xue and Zhang, 2014) in
which semantic tense is annotated together with
eventuality type and modality using the distant an-
notation method. This makes it possible to use
these two additional sources of information to help
predict tense. Eventuality type and modality are
intricately tied to tense. For example, Smith and
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Erbaugh (2005) show that states by default hold in
the present but (episodic) events occur by default
in the past. This means knowing the eventuality
type of an event would help determine the tense.
Eventuality type and modality are also annotated
on the English side and then projected onto the
Chinese side via manual word alignments, taking
advantage of the rich morphosyntactic clues in En-
glish. High inter-annotator agreement scores are
also reported on eventuality type and modality.

We experimented with two ways of using even-
tuality type and modality information. In the first
approach, we first train statistical machine learn-
ing models to predict eventuality type and modal-
ity and then use these two sources of information
as features to predict semantic tense. In the sec-
ond approach we trained joint learning models be-
tween semantic tense and eventuality type, and be-
tween semantic tense and modality. We show both
approaches improve the tense inference accuracy
over a baseline where these two sources of infor-
mation are not used. Second, in our statistical
machine learning experiments on tense inference
using feature engineering, we find that the design
of feature templates has great influence on the re-
sults. So in order to explore more possible feature
combinations and mitigate the feature engineering
work, we apply artificial neural network models to
this problem. This shows improvements on tense
inference accuracy as well in some of the experi-
ment settings.

The rest of the paper is organized as follows.
Section 2 discusses related work in automatic
tense inference. Section 3 briefly introduces the
distant annotation method. In section 4, we de-
scribe our experiments and analyze the experimen-
tal results. We conclude this paper in section 7.

2 Related Work

Inferring the semantic tense of events in Chinese
text is not a new topic. There have been several
attempts at it, yet high accuracy in this task has
proved to be elusive. Using a corpus with tense
annotated directly in Chinese text, Xue (2008) per-
formed extensive feature engineering in a machine
learning framework to address this problem. They
used both local lexical features and structured fea-
tures extracted from manually annotated syntactic
parsing trees. In our baseline method, we adopt
most of their features as the baseline, only on a
new corpus in which semantic tenses are not an-

notated directly on Chinese events but projected
from annotations from the English side of a par-
allel Chinese-English corpus. In our experiments,
we also use structural features extracted from au-
tomatic parse trees, so our experimental settings
are more realistic.

Ye et al. (2006) took a similar approach in
which they predict tense with feature engineering
in a statistical learning framework. They also used
a Chinese-English parallel corpus and projected
tense for English events onto Chinese events via
human alignments. The main difference between
their data and ours is that they used the gram-
matical tense of the English events, while we use
human-annotated semantic tense which we believe
are more “transferrable” across languages as it
is free of the language-specific idiosyncrasies of
grammatical tense. In addition, they also used hu-
man annotated linguistic information as “latent”
features in their work, which are similar to our
implicit linguistic features. However, the “latent”
features that they used in their system are human-
annotated, while the eventuality type and modality
features in our system are predicted automatically.
Another difference is that they ignored events that
are not verbs. For example, they excluded ver-
bal expressions in Chinese that are translated into
nominal phrases in English. In contrast, we kept
all events in our data, and they can be realized as
verbs, nouns, as well as words in other parts of
speech. We performed separate experiments on
events realized as verbal expressions and events
not in verbal expressions to investigate their im-
pact on semantic tense inference.

Liu et al. (2011) introduced more global fea-
tures in a machine learning framework, and on
top of that proposed an iterative learning algorithm
which better handles noisy data, but they also ig-
nored events that are not realized as verbal ex-
pressions, or events that are verbal expressions but
have more than one verb in them. They mainly
focused on events that are one-verb expressions.

In a similar work on inferring tense in English
text, Reichart and Rappoport (2010) aimed at in-
ferring fine-grained semantic tenses for events in
English. They introduced a fine-grained sense tax-
onomy for tense in a more general Tense Sense
Disambiguation (TSD) task to annotate and dis-
ambiguate semantic tenses. The underlying senses
include “things that are always true”, “general and
repeated actions and habits”, “plans, expectations
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and hopes”, etc., which encode a combination of
tense, eventuality type and modality. In the corpus
that we use, the same information is organized in
a more structured manner along three dimensions
– semantic tense, eventuality type, and modality.

3 Distant Annotation

Figure 1 shows the distant annotation procedure
from (Xue and Zhang, 2014). Starting with a
word-aligned parallel English-Chinese corpus, all
sentences are part-of-speech (POS) tagged first
and then all verb instances in the English text as
well as expressions aligned with verb instances
on the Chinese side are targeted for annotation.
As we will show in Section 4, these expressions
include verbs as well as nouns, prepositions and
word sequences “headed” by a verb. We consider
those expressions as events. Annotators work only
on the English side and tag every event with a
pre-defined semantic tense label. These labels are
then projected from the English side to the Chi-
nese side via word alignments. The resulting cor-
pus contains events annotated with semantic tense
labels in both languages. Categories for seman-
tic tense are “Past”, “Present”, “Future”, “Relative
Past”, “Relative Present”, “Relative Future”, and
“None”.

Events annotated with relative tenses are also
linked to another event that serves as the tempo-
ral reference for the event in question. In some
cases the relative tense can be resolved to an ab-
solute tense. For example, if an event is anno-
tated with a “relative past” tense to a reference
event that is annotated with a present tense, then
the semantic tense of that event can resolve to an
absolute “past” tense. In other cases, they can
not be resolved. For example, if an event is la-
beled with a “relative future” tense and the refer-
ence event has a past tense, then its tense cannot
be resolved to an absolute tense, which is defined
with regard to the utterance time or document cre-
ation time. In our work, where possible, we re-
solve these links and keep only absolute tense la-
bels. For events with relative tenses that can not
be resolved (i.e. events which are “Relative Fu-
ture” to “Past” events, or events which are “Rela-
tive Past” to “Future” events), we use “None” as
the default label.

Eventuality type and modality are labeled in the
same way as auxiliary annotation that can help
with the inference of tense. Labels for eventual-

ity type include “Episodic”, “Habitual”, “State”,
“Progressive”, “Completed”, and “None”. Labels
for modality are “Actual”, “Intended”, “Hypothet-
ical”, “Modalized”, and “None”. Readers are ref-
ered to (Xue and Zhang, 2014) for detailed expla-
nations of each label.

Figure 1: Distant annotation procedure.

As we mentioned in Section 2, in this corpus
not only verbs but also their counterparts on the
opposite language are considered as events, yield-
ing events that may not be verbs. For example,
in the following sentence pair (1), the Chinese
verb (VV) “利用” is aligned with an English noun
(NN) “use”. In the sentence pair (2), the English
verb (VBG) “opening” is aligned with an Chinese
noun (NN) “开放”.

(1) Statistics show that , in the past five years ,
Guangxi’s foreign trade and its use of foreign
investments has expanded rapidly.

统计资料显示，过去五年广西对外贸易
和利利利用用用(li4yong4)外资规模迅速扩大。

(2) Beihai has already become a bright star aris-
ing from China’s policy of opening up to the
outside world.

北海已成为中国对外开开开放放放(kai1fang4) 中
升起的一颗明星。

In this corpus, events could be either one verb,
or a verb compound, or a verb sequence “headed”
by a verb, or even nouns and words of other parts
of speech.

4 Experiments

4.1 Experimental Setting
Xue and Zhang (2014) annotated semantic tense,
eventuality type and modality on top of the Par-
allel Aligned Treebank (Li et al., 2012), a corpus
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of word-aligned Chinese-English sentences tree-
banked based on the Penn TreeBank (Marcus et
al., 1993) and the Chinese TreeBank (Xue et al.,
2005) standards. Human annotation of tense is
performed on the newswire and webblog sections
of this corpus. They report that the average pair-
wise agreement among three annotators consis-
tently stays above 80% and the average Kappa
score consistently exceeds 70%, indicating reli-
able annotation.

Apart from using the entire corpus, we also con-
ducted experiments on three different subsets of
the corpus. An examination of the data indicates
that newswire data is grammatically more for-
mal and complete than webblog data, so we also
conducted separate experiments on newswire data
only. Considering that the diversity of the parts
of speech of the events may affect the inference
accuracy and that most of our features extracted
from the parse trees assume that our events being
verbs, we also conducted experiments exclusively
on “v events”. “v events” consist of two parts.
One part is events that are realized as a single word
and the word is a verb; the other one is events
which have multiple words but there is only one
verb among them. In the latter case, we stripped
off words tagged with other parts of speech and
only keep the verbs as events. This makes it more
effective to use features from previous work that
are designed for single verbs. One such feature is
the aspect marker. Distinctions between newswire
and webblog data and between v events and other
events are further explored in Section 5.1 and Sec-
tion 5.2. Table 1 presents the statistics for each
subset of the experimental data.

dataset # of v events # of all events
nw 6,686 8,268
all 17,153 20,885

Table 1: Statistics of four subsets of the annotated
corpus (Chinese side). “nw” denotes the newswire
data. “v events” denotes events that consist of or
can be reduced to only a single verb.

For each subset, randomly selected 80% were
used as the training set, while 10% were used as
the development set and 10% were used as the test
set.

4.2 Baseline
Based on previous approaches on Chinese tense
inference, we used a Maximum Entropy model
with extensive feature engineering as our baseline
method. We use the implementation of the Maxi-
mum Entropy algorithm in Mallet 1 for our exper-
iments. The corpus is parsed using the Berkeley
Parser for the purpose of extracting structure fea-
tures. Since the Parallel Alignment TreeBank is
a subset of the Chinese TreeBank (CTB) 8.0, we
automatically parsed the CTB 8.0 by doing a 10-
fold cross validation. The bracketing F-score is
80.5%. Feature extractions are performed on the
automatic parse trees. Adopted features include
previous word and its POS tag, next word and
its POS tag, aspect marker following the event,
得following the event, the governing verb of the
event, the character string of the main verb in the
previous clause that is coordinated with the clause
the event is in, whether the event is in quote, and
left modifiers of the event including head of adver-
bial phrases, temporal noun phrases, prepositional
phrases, localizer phrases, as well as subordinat-
ing clauses. Readers are referred to (Xue, 2008)
for details of these features. Since in this corpus
an event can span over more than one verb, we
also use the character string and the POS string of
the entire event instead of one word and one POS
tag as features.

• The character string of an event – it could
be one or more words. In our corpus, only
69.7% events consist of single word (e.g. “居
住”, “live”), the other 30.3% of the events are
expressed with two or more words (e.g. “引
发+了”, “have caused”).

• The POS string of an event – it could be
verbs, nouns, or POS sequences of other
word sequences. Table 2 shows the top ten
POS tag or POS tag sequences with example
word or word sequences.

Other features that we used in the baseline sys-
tem are as follows.

• DEC – if the word immediately following an
event has the POS tag “DEC”, use its charac-
ter string as a feature. In most cases, “DEC”
is the POS tag for “的” when it used as a com-
plementizer marking the boundary in a rela-
tive clause. This feature implies that an event

1http://mallet.cs.umass.edu/
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POS freq examples
VV 48.2% 居住(live)
NN 5.8% 开放(opening)
VC 5.2% 是(is)

VV+AS 5.2% 引发+了(have caused)
VV+DEC 3.2% 隔绝+的(isolated)

AD+VV 3.0% 正在+建议(is suggesting)
VA 3.0% 大(is big)
AD 2.0% 似乎(seemed)
VE 1.9% 有(there is)

P 1.8% 根据(according to)

Table 2: Frequencies and examples of the ten most
frequent POS tag or POS tag sequences for events
in our corpus.

is inside a relative clause modifying a noun
phrase and it is more often stative than even-
tive.

• Determiners – we find the subject of an event
from its parse tree and extract the determiner
of the subject, if there is one, as a fea-
ture. This feature indicates different types
of agents, and different types of agents of-
ten signal different types of events. For ex-
ample, individual agents tend to perform one-
time episodic actions which are by default lo-
cated in the past or described by a state in
the present, while multiple agents tend to in-
volved in habitual actions that spans over a
long period of time.

Baseline results are reported in Table 5 and Ta-
ble 6, in MaxEnt b rows.

4.3 Eventuality Type and Modality as
Features

Xue and Zhang (2014) reports that gold eventual-
ity type and modality labels significantly help the
inference of tense in Chinese, improving the ac-
curacy by more than 20%. However, it is unreal-
istic to expect to have human annotated eventual-
ity type and modality labels in a random new data
set if we want to use these two sources of implicit
linguistic information in any Chinese text. So we
trained statistical learning models to automatically
extract these two labels. We trained Maximum En-
tropy models and ran a 10-fold cross validation on
the entire corpus in order to get automatic labels
for every event. Feature used for labeling modal-

ity are as follows. Table 3 shows the average ac-
curacies for automatic modality labeling.

• The character string of an event.

• The POS string of an event.

• The character string of an event’s governing
verb and its POS tag.

• Whether the event is in a conditional clause.
If an event is in a subtree with the func-
tional tag “CND”, return “True”; otherwise,
return “False”. This feature indicates that the
event’s modality label is “Hypothetical”.

• Whether the event is in a purpose or reason
clause. If an event is in a subtree with the
functional tag “PRP”, return “True”; other-
wise, return “False” as a feature. This feature
indicates the event’s modality label is “In-
tended”.

• Whether the event string is the start of a sen-
tence. If an event is the start of a sentence, re-
turn “True”; otherwise, return “False”. Sen-
tences that start with an event is often impera-
tive, and the event generally has “modalized”
modality label.

dataset v events all events
nw 81.1% 81.2%
all 75.4% 76.4%

Table 3: Average modality labeling accuracy, us-
ing a 10-fold cross validation.

Statistics show that the five labels for modality
have a skewed distribution in this corpus. Among
all events, 67.3% of them fall in the “Actual” cat-
egory, while the events of all the other categories
are around or less than 10%. Similar distributions
are found in all four subsets of the data. Still, com-
pared with always choosing the most frequent la-
bel (around 67% accuracy), we still get a big im-
provement from our statistical model, even though
only a very simple set of features are used.

Features used for labeling eventuality type are
as follows. Table 4 shows the average accuracies
for automatic eventuality type labeling.

• The character string of an event.

• The POS string of an event.
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• Adverbs on the left that modifies the event.

• Aspect marker following the event

• Whether the event is Inside a relative clause.
If an event is in a CP subtree with the word
“的” and POS tag “DEC” as its last node,
return “True”; otherwise, return “False”.
Events in relative clauses modifying a noun
phrase and tend to be more often stative than
eventive.

dataset v events all events
nw 68.7% 67.7%
all 65.3% 65.1%

Table 4: Average automatic eventuality type label-
ing accuracy using a 10-fold cross validation.

The six labels of eventuality type are also dis-
tributed unevenly. The first group of columns in
Figure 3 shows the distribution of all events. Over
65% of events are either “Episodic” or “State”,
while the other types of events are less than 15%.
There are two categories that are even less than
5%. However, even though we only use some sim-
ple features, our model still beats the most fre-
quent label baseline (around 35% accuracy) by a
big margin, as shown in Table 4.

Tense inference accuracies using automatic
eventuality type and/or modality features are re-
ported in Table 5 and Table 6, in MaxEnt e, Max-
Ent m, and MaxEnt em rows.

4.4 Joint Learning

Apart from using eventuality type and modality la-
bels as features, we also conducted joint learning
experiments on them. Joint learning are applied
on 1) tense and eventuality type, and 2) tense and
modality. Features used are the union of the two
sets of features in inferring each single label. Max-
Ent jle and MaxEnt jlm rows in Table 5 and Table
6 present the experimental results on joint learn-
ing.

4.5 Artificial Neural Network

For each of the experiments using the maximum
entropy algorithm, we conducted a neural network
experiment using the same setting in order to ex-
plore more possible feature combinations and mit-
igate the feature engineering work. We convert

the features in each of our tense inference meth-
ods into feature vectors. If a feature is not a word,
we use a one-hot representation for that feature (a
vector with all 0s except for a 1 at the place of the
feature’s index in our feature lexicon). If a feature
is a word, we convert it into a word embedding. To
get a dictionary of word embeddings, we use the
word2vec tool 2 (Mikolov et al., 2013) and train it
on the Chinese Gigaword corpus (LDC2003T09).
For each word embedding, a 300-dimensional vec-
tor is used. Artificial neural networks are built us-
ing the theano package 3 (Bergstra et al., 2010).
We use 5000 hidden units for all networks and set
the learning rate α = 0.01. Experimental results
are presented in the ANN rows of Tables 5 and 6.

5 Results Analysis

A comparison of the baseline accuracy for the four
different subsets of the data shows that (1) tense
inference is slightly better on v events than on all
events, but the difference is not substantial; and
(2) tense inference on newswire data performs bet-
ter than on all data by around 8% on v events and
around 5% on all events, verifying our assump-
tion that automatic tense inference is easier on
newswire data than webblog data. Although our
experiments are performed on different data sets
from that of previous work, our baseline method
still shows strong results compared with previous
work (Xue, 2008; Ye et al., 2006; Liu et al., 2011).

Adding automatic eventuality type and modal-
ity labels as features for semantic tense inference
leads to improvements over the baseline on all four
data subsets. In fact they provide considerable
improvements (around 2% increase) on newswire
v events dataset. MaxEnt e rows report results
when only automatic eventuality type is added
as a feature, and MaxEnt m rows report results
when only automatic modality is added as a fea-
ture. They both outperform (or, in several datasets,
match) the baseline results on all datasets. Max-
Ent em rows report results when both automatic
linguistic labels are added as features, and they
show further improvements over when only one
source of information is used. Analysis of the
results shows again that tense inference accuracy
is higher than webblog data under this experi-
ment condition. The results also show that after
adding eventuality type and modality as features,

2http://code.google.com/p/word2vec/
3http://deeplearning.net/software/theano/
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method all data nw data
MaxEnt b 58.9% 66.8%
MaxEnt e 59.5% 67.9%
MaxEnt m 59.5% 67.1%
MaxEnt em 59.6% 68.6%
MaxEnt jle 59.6% 63.5%
MaxEnt jlm 60.5% 66.9%
MaxEnt ge 74.6% 77.4%
MaxEnt gm 66.6% 70.0%
MaxEnt gem 76.2% 76.9%
ANN b 63.4% 67.2%
ANN e 62.6% 66.1%
ANN m 63.4% 59.8%
ANN em 59.7% 68.3%
ANN jle 62.7% 64.5%
ANN jlm 62.0% 65.6%

Table 5: Accuracy of tense inference on v events.
Best performances for each group of methods are
in bold.

the improvements on v events (0.7% and 1.8%)
are much bigger than that on all events (0.2% and
0.4%), regardless of the data genre (newswire or
weblog).

In order to test the potential for these two new
features, we also conducted experiments using
gold eventuality type and/or modality labels as
features for the Maximum Entropy models (Table
5 and Table 6, MaxEnt ge, MaxEnt gm, and Max-
Ent gem rows.). They outperform our best Max-
Ent results by around 10% on newswire data and
around 15% on all data, indicating strong poten-
tials for more accurately classified automatic even-
tuality type and modality labels.

Results also show that joint learning with
modality proves to be working better than the
baseline (Table 5 and Table 6, MaxEnt jle, Max-
Ent jlm). In fact, on the datasets with all events,
joint learning with modality produces the highest
accuracy among all approaches. However, joint
learning with eventuality is even worse than the
baseline. One possible explanation is that the
lower eventuality type classification accuracy af-
fects the tense inference accuracy. We also believe
there is still room for improvement with features
tuned for the joint learning model. Simply adding
the features may not be the best strategy.

On the entire dataset, regardless of v events or
other events, results of the neural network models
show improvements over the maximum entropy

method all data nw data
MaxEnt b 59.7% 65.1%
MaxEnt e 59.9% 65.1%
MaxEnt m 59.9% 65.4%
MaxEnt em 59.9% 65.5%
MaxEnt jle 59.7% 62.7%
MaxEnt jlm 60.4% 65.6%
MaxEnt ge 75.3% 76.1%
MaxEnt gm 67.1% 69.0%
MaxEnt gem 76.2% 75.9%
ANN b 63.0% 64.0%
ANN e 63.2% 66.9%
ANN m 60.1% 64.7%
ANN em 57.8% 66.1%
ANN jle 61.4% 63.0%
ANN jlm 62.9% 63.5%

Table 6: Accuracy of tense inference on all events.
Best performances for each group of methods are
in bold.

models under most experimental conditions. A
clear trend is that artificial neural networks help
more on all data than on newswire data only, in-
dicating greater potentials of the neural network
models to select and combine features with care-
fully trained parameters, given noisier but larger
training sets.

Experimental results also show significant dif-
ferences in accuracy between newswire data and
webblog data, and smaller but still recognizable
difference between v events and all events. There-
fore, we specifically look into distinctions be-
tween these data sets.

5.1 Newswire Data vs. Webblog Data

Considering the big gap in accuracy between
newswire and webblog data in our baseline results,
we delve deeper into the data and found several
major distinctions between these two domains that
might have contributed to the rather significant dif-
ference in performance on tense inference. First,
we look into the word frequency distribution of the
two datasets. Here by “word” we mean the char-
acter string of an event. We find that both datasets
have a small portion of words with high frequen-
cies, but the webblog dataset contains much more
low-frequent words than the newswire dataset. In
Figure 2, the x-axis shows possible frequencies of
words and the y-axis shows the number of words at
a particular frequency. It can be seen that the num-
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ber of words that appear only once in the webblog
dataset is about three times as large as that in the
newswire dataset. The entire newswire dataset has
a vocabulary of only 2671 entries, while the web-
blog dataset has a vocabulary size of 6117. This
greatly reduces the coverage of features extracted
from the training dataset on the events in the test
dataset.

Second, webblog data contains more events
that are “inherently” ambiguous on temporal lo-
cation. Among four possible labels for tense
in this corpus, “None” is for events whose tem-
poral locations are not clear even to human an-
notators. Statistics show that in webblog data
about 13.4% of the events are tagged as “None”,
while in newswire data only around 6.7% are
“None”. Another piece of evidence showing web-
blog data is harder to process is the different inter-
annotator agreement scores for tense annotation
on newswire and webblog data reported by (Xue
and Zhang, 2014). Newswire data has a 89.0%
agreement score and a 84.9% kappa score, while
webblog data only has a 81.0% agreement score
and a 72.7% kappa. Third, automatic parse trees
for newswire data is also more accurate than that
for webblog data. The bracketing F-score of au-
tomatically parsed newswire data is 83.0% while
it is only 80.4% for weblog data. Moreover, sen-
tences in newswire data are more grammatically
complete. Analysis shows that webblog data has
more dropped constituents in sentences. There
are around 40.5% sentences in newswire data that
have nominal empty categories, while in webblog
data the number is 48.1%. Dropped constituents
affect the structures of parse trees and some of
the features, which can affect tense inference ac-
curacy.
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Figure 2: Word frequency distribution in newswire
and webblog datasets.

5.2 V events vs. All Events

In our definition, v events are (1) events that are
single verbs (example 1, 3, 7, 9 in Table 2), and
(2) events that are multi-word sequences but only
one word among them is a verb and any non-verb
words are stripped off (verbs in example 4, 5, 6
in Table 2). Conversely, events that do not fall into
this definition include (1) events that have no verbs
in their surface form (example 2, 8, 10 in Table 2),
and (2) events that have more than one verb in their
surface form (e.g. “使+成为(shi3+cheng2wei2)”,
VV+VV, “make it become”). So from the point
of view of a statistical learning algorithm, ev-
ery v event has one and only one verb. This
makes sure that all features that we used are ap-
plicable to v events. For other events, however,
some features may be not applicable. For ex-
ample, for an event which has a nominal expres-
sion, aspect marker, DER, and DEC features are
all “None” because these features are only appli-
cable to verbs. Another major distinction between
v events and “other events” is that the distributions
of eventuality type labels on them are very differ-
ent, presented in the second and third groups of
columns in Figure 3. There is a rather high per-
centage of “State” among “other events” and very
low percentage of “Completed” and “None”. The
highly uneven distribution of eventuality type la-
bels make it less effective as a feature for tense
inference.
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Figure 3: Statistics of eventuality types on differ-
ent events.

We also find that, on newswire datasets, max-
imum entropy models and neural network mod-
els do not show much difference in performance.
To understand this result better, we plot learn-
ing curves of the artificial neural network model,
trained and tested on newswire v events dataset.
In Figure 4, the black line represents the error rate
on training set, and the grey line represents the er-
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ror rate on test set. As the size of training data
grows, the error rate on the training set gets larger
because with more training examples the training
set becomes noisier and it gets harder to model all
samples with the same number of features; and the
error rate on the test set gets smaller because a big-
ger training set reduces the data sparsity and trains
the parameters better. Both lines end at a rather
high error rate (around 30%, i.e. only around 70%
in accuracy) which means the current network is
general enough to cover most cases in the test set,
but it is under-fitting the training data. The cur-
rent model is not specific enough to better cap-
ture the fine distinctions between the tense cat-
egories. The black line being not very smooth
is also understandable, given that there are only
around 6000 training examples in the newswire
v events dataset.
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Figure 4: Learning curves of the artificial neural
network model, trained and tested on newswire
v events dataset.

6 Error Analysis

In order to get a better understanding of the use
of eventuality type and modality, we look into the
error rates for each error type in greater detail.
In Table 7, “Pa” stands for “Past”, “Pre” is short
for “Present”, “Fu” is for “Future”, and “No” is
“None”. For each error type, the left-hand side
is the gold-standard tense, and the right-hand side
is the wrongly assigned label. Statistics are col-
lected on the newswire v events data test set. Ta-
ble 7 compares the different error types between
the baseline method and the MaxEnt em method,
the best approach for this dataset. We can see that
(1) “Present” and “Past” is the most frequently
confused tense pair, and (2) eventuality type and
modality information help disambiguate “Present”

and “Past” events greatly, and reduce the errors
due to mis-classifying “Past” as “Future”, or “Fu-
ture” as “Present”, or “None” as “Present”.

error type MaxEnt b MaxEnt em
Pre→ Pa 11.7% 11.2%
Pa→ Pre 9.8% 9.2%
Pa→ Fu 2.5% 2.3%
No→ Pa 2.0% 2.0%
Fu→ Pre 1.9% 1.6%
Pre→ Fu 1.4% 1.4%
Fu→ Pa 1.4% 1.4%
No→ Pre 1.6% 1.2%
No→ Fu 0.5% 0.5%
Pa→ No 0.3% 0.3%
Pre→ No 0.2% 0.2%
Fu→ No 0.0% 0.0%

Table 7: Tense inference error rates for different
error types on newswire v events test set.

A closer examination of the sentences in which
events are assigned the wrong tense reveals that
“Pre → Pa” error is prone to occur on events
in relative clauses. The Chinese verb implies a
past episodic event, while the event is actually a
present state or habitual event. As a good example,
the “生产(sheng1chan3)” event in Sentence (3) is
wrongly labeled as “Past” by MaxEnt b but cor-
rectly classified as “Present” by MaxEnt em with
eventuality type “Habitual” and modality tag “Ac-
tual” (the underlined part in the Chinese sentence
is the relative clause). It is also found that most
“Pa → Pre” errors occur on events that are more
stative. It is reasonable since classifiers tend to
assign “Present” to states and “Past” to episodic
events. MaxEnt em managed to correct some with
“episodic” as their correct eventuality type.

(3) 目前该区生生生产产产(sheng1chan3)此疫苗的 普
康公司已形成年产五百万人份的生产规
模，这对有效地控制甲肝流行具有重大意
义。

At present , the Pu Kang Company
, which produces the vaccine in this zone ,
has already formed a production scale of 5
million doses per year , which has great sig-
nificance in effectively controlling the hepati-
tis A epidemic .

We are also surprised to see that over 2% “Past”
events are classified as “Future” events, ranking
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third among all error types. This mistake seems
very unlikely, but it is still possible when per-
forming tense inference on a language with no
grammatical tense at all. Take the following sen-
tence pair (4) as an example. In the Chinese sen-
tence, MaxEnt b classifies “讨论(tao3lun4)” as
“Future” because there is no grammatical indica-
tor in the Chinese sentence implying that the “dis-
cussion” has already happened and it is reason-
able to assume the “discussion” is in the near fu-
ture. However, with eventuality type “Episodic”
and modality label “Actual”, MaxEnt em classi-
fies it as “Past” correctly, because episodic events
tend to occur in the past and future events tend to
get “Intended” or “Hypothetical” modality labels.

(4) 他还说，法国政府“甚至指示它的代表，
在联合国安理会讨讨讨论论论(tao3lun4)制裁古巴
的议案时不要投赞成票”。

He also said, the French government “even
directed its representative not to vote Yes
when the Security Council discussed the res-
olution on sanctions on Cuba”.

7 Conclusion and Future Work

In this paper, we address the problem of automatic
inference of Chinese semantic tense. We took ad-
vantage of a new corpus annotated with rich lin-
guistic information, and experimented with three
approaches. In the first approach, we use two
sources of implicit linguistic information, even-
tuality type and modality, automatically derived,
as features in tense inference. We then conducted
joint learning on tense and each of these two infor-
mation types. Finally, we experimented with using
artificial neural networks to train models for tense
prediction. All three approaches outperformed a
strong baseline, a maximum entropy model with
extensive engineering. Our future work will in-
clude exploring ways to improve automatic even-
tuality type and modality labeling accuracy to fur-
ther improve tense inference accuracy.
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Abstract

Populating Knowledge Base (KB) with
new knowledge facts from reliable text re-
sources usually consists of linking name
mentions to KB entities and identifying
relationship between entity pairs. How-
ever, the task often suffers from errors
propagating from upstream entity linkers
to downstream relation extractors. In this
paper, we propose a novel joint infer-
ence framework to allow interactions be-
tween the two subtasks and find an opti-
mal assignment by addressing the coher-
ence among preliminary local predictions:
whether the types of entities meet the ex-
pectations of relations explicitly or implic-
itly, and whether the local predictions are
globally compatible. We further measure
the confidence of the extracted triples by
looking at the details of the complete ex-
traction process. Experiments show that
the proposed framework can significantly
reduce the error propagations thus obtain
more reliable facts, and outperforms com-
petitive baselines with state-of-the-art re-
lation extraction models.

1 Introduction

Recent advances in natural language processing
have made it possible to construct structured KBs
from online encyclopedia resources, at an un-
precedented scale and much more efficiently than
traditional manual edit. However, in those KBs,
entities which are popular to the community usu-
ally contain more knowledge facts, e.g., the bas-
ketball player LeBron James, the actor Nicholas
Cage, etc., while most other entities often have
fewer facts. On the other hand, knowledge facts
should be updated as the development of entities,
such as changes in the cabinet, a marriage event,
or an acquisition between two companies, etc.

In order to address the above issues, we could
consult populating existing KBs from reliable text
resources, e.g., newswire, which usually involves
enriching KBs with new entities and populating
KBs with new knowledge facts, in the form of
<Entity, Relation, Entity> triple. In this paper, we
will focus on the latter, identifying relationship be-
tween two existing KB entities. This task can be
intuitively considered in a pipeline paradigm, that
is, name mentions in the texts are first linked to
entities in the KB (entity linking, EL), and then
the relationship between them are identified (re-
lation extraction, RE). It is worth mentioning that
the first task EL is different from the task of named
entity recognition (NER) in traditional informa-
tion extraction (IE) tasks, where NER recognizes
and classifies the entity mentions (to several pre-
defined types) in the texts, but EL focuses on link-
ing the mentions to their corresponding entities in
the KB. Such pipeline systems often suffer from
errors propagating from upstream to downstream,
since only the local best results are selected to the
next step. One idea to solve the problem is to allow
interactions among the local predictions of both
subtasks and jointly select an optimal assignment
to eliminate possible errors in the pipeline.

Let us first look at an example. Suppose we are
extracting knowledge facts from two sentences in
Figure 1: in sentence [1], if we are more confi-
dent to extract the relation fb:org.headquarters1,
we will be then prompted to select Bryant Univer-
sity, which indeed favors the RE prediction that
requires an organization to be its subject. On
the other side, if we are sure to link to Kobe
Bryant in sentence [2], we will probably select
fb:pro athlete.teams, whose subject position ex-
pects an athlete, e.g., an NBA player. It is not dif-
ficult to see that the argument type expectations of
relations can encourage the two subtasks interact
with each other and select coherent predictions for

1The prefix fb means the relations are defined in Freebase.
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Sentence 1: … [Bryant] is a private university located in [Smithfield]. …

Sentence 2 : … Shaq and [Bryant] led the [Lakers] to three consecutive championships …

Bryant, Illinois

fb:people.person.place_of_birth

fb:sports.pro_athlete.teams

fb:org.org.headquarters

fb:business.board_member.leader_of

Bryant University

...

Kobe Bryant

Kobe Bryant

Bryant University

Bryant, Illinois

...

Smithfield, Rhode Island 

Smithfield, Illinois

...

Los Angeles Lakers

Laguna Lakers

...

Figure 1: Two example sentences from which we
can harvest knowledge facts.

both of them. In KBs with well-defined schemas,
such as Freebase, type requirements can be col-
lected and utilized explicitly (Yao et al., 2010).
However, in other KBs with less reliable or even
no schemas, it is more appropriate to implicitly
capture the type expectations for a given relation
(Riedel et al., 2013).

Furthermore, previous RE approaches usually
process each triple individually, which ignores
whether those local predictions are compatible
with each other. For example, suppose the local
predictions of the two sentences above are <Kobe
Bryant, fb:org.headquarters, Smithfield, Rhode Is-
land> and <Kobe Bryant, fb:pro athlete.teams,
Los Angeles Lakers>, respectively, which, in fact,
disagree with each other with respect to the KB,
since, in most cases, these two relations cannot
share subjects. Now we can see that either the re-
lation predictions or the EL results for “Bryant”
are incorrect. Those disagreements provide us an
effective way to remove the possible incorrect pre-
dictions that cause the incompatibilities.

On the other hand, the automatically extracted
knowledge facts inevitably contain errors, espe-
cially for those triples collected from open do-
main. Extractions with confidence scores will be
more than useful for users to make proper deci-
sions according to their requirements, such as trad-
ing recall for precision, or supporting approximate
queries.

In this paper, we propose a joint framework to
populate an existing KB with new knowledge facts
extracted from reliable text resources. The joint
framework is designed to address the error propa-
gation issue in a pipeline system, where subtasks
are optimized in isolation and locally. We find an
optimal configuration from top k results of both
subtasks, which maximizes the scores of each step,

fulfills the argument type expectations of relations,
which can be captured explicitly or implicitly, in
the KB, and avoids globally incoherent predic-
tions. We formulate this optimization problem in
an Integer Linear Program (ILP) framework, and
further adopt a logistic regression model to mea-
sure the reliability of the whole process, and assign
confidences to all extracted triples to facilitate fur-
ther applications. The experiments on a real-world
case study show that our framework can elimi-
nate error propagations in the pipeline systems by
taking relations’ argument type expectations and
global compatibilities into account, thus outper-
forms the pipeline approaches based on state-of-
the-art relation extractors by a large margin. Fur-
thermore, we investigate both explicit and implicit
type clues for relations, and provide suggestions
about which to choose according to the character-
istics of existing KBs. Additionally, our proposed
confidence estimations can help to achieve a pre-
cision of over 85% for a considerable amount of
high quality extractions.

In the rest of the paper, we first review related
work and then define the knowledge base popula-
tion task that we will address in this paper. Next
we detail the proposed framework and present our
experiments and results. Finally, we conclude this
paper with future directions.

2 Related Work

Knowledge base population (KBP), the task of ex-
tending existing KBs with entities and relations,
has been studied in the TAC-KBP evaluations (Ji et
al., 2011), containing three tasks. The entity link-
ing task links entity mentions to existing KB nodes
and creates new nodes for the entities absent in the
current KBs, which can be considered as a kind
of entity population (Dredze et al., 2010; Tamang
et al., 2012; Cassidy et al., 2011). The slot-filling
task populates new relations to the KB (Tamang
et al., 2012; Roth et al., 2012; Liu and Zhao,
2012), but the relations are limited to a predefined
sets of attributes according to the types of enti-
ties. In contrast, our RE models only require min-
imal supervision and do not need well-annotated
training data. Our framework is therefore easy to
adapt to new scenarios and suits real-world appli-
cations. The cold-start task aims at constructing a
KB from scratch in a slot-filling style (Sun et al.,
2012; Monahan and Carpenter, 2012).

Entity linking is a crucial part in many KB re-
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lated tasks. Many EL models explore local con-
texts of entity mentions to measure the similarity
between mentions and candidate entities (Han et
al., 2011; Han and Sun, 2011; Ratinov et al., 2011;
Cheng and Roth, 2013). Some methods further ex-
ploit global coherence among candidate entities in
the same document by assuming that these enti-
ties should be closely related (Han et al., 2011;
Ratinov et al., 2011; Sen, 2012; Cheng and Roth,
2013). There are also some approaches regarding
entity linking as a ranking task (Zhou et al., 2010;
Chen and Ji, 2011). Lin et al. (2012) propose an
approach to detect and type entities that are cur-
rently not in the KB.

Note that the EL task in KBP is different from
the name entity mention extraction task, mainly
in the ACE task style, which mainly identifies the
boundaries and types of entity mentions and does
not explicitly link entity mentions into a KB (ACE,
2004; Florian et al., 2006; Florian et al., 2010; Li
and Ji, 2014), thus are different from our work.

Meanwhile, relation extraction has also been
studied extensively in recent years, ranging from
supervised learning methods (ACE, 2004; Zhao
and Grishman, 2005; Li and Ji, 2014) to unsuper-
vised open extractions (Fader et al., 2011; Carl-
son et al., 2010). There are also models, with dis-
tant supervision (DS), utilizing reliable texts re-
sources and existing KBs to predict relations for a
large amount of texts (Mintz et al., 2009; Riedel et
al., 2010; Hoffmann et al., 2011; Surdeanu et al.,
2012). These distantly supervised models can ex-
tract relations from texts in open domain, and do
not need much human involvement. Hence, DS is
more suitable for our task compared to other tradi-
tional RE approaches.

Joint inference over multiple local models has
been applied to many NLP tasks. Our task is dif-
ferent from the traditional joint IE works based in
the ACE framework (Singh et al., 2013; Li and
Ji, 2014; Kate and Mooney, 2010), which jointly
extract and/or classify named entity mentions to
several predefined types in a sentence and iden-
tify in a sentence level which relation this specific
sentence describes (between a pair of entity men-
tions in this sentence). Li and Ji (2014) follow
the ACE task definitions and present a neat incre-
mental joint framework to simultaneously extract
entity mentions and relations by structure percep-
tron. In contrast, we link entity mentions from a
text corpus to their corresponding entities in an ex-

isting KB and identify the relations between pairs
of entities based on that text corpus. Choi et al.
(2006) jointly extracts the expressions and sources
of opinion as well as the linking relations (i.e., a
source entity expresses an opinion expression) be-
tween them, while we focus on jointly modeling
EL and RE in open domain, which is a different
and challenging task.

Since the automatically extracted knowledge
facts inevitably contain errors, many approaches
manage to assign confidences for those extracted
facts (Fader et al., 2011; Wick et al., 2013). Wick
et al. (2013) also point out that confidence estima-
tion should be a crucial part in the automated KB
constructions and will play a key role for the wide
applications of automatically built KBs. We thus
propose to model the reliability of the complete
extraction process and take the argument type ex-
pectations of the relation, coherence with other
predictions and the triples in the existing KB into
account for each populated triple.

3 Task definition

We formalize our task as follows. Given a set
of entities sampled from an existing KB, E =
{e1, e2, ..., e|E|}, a set of canonicalized relations
from the same KB, R = {r1, r2, ..., r|R|}, a set
of sentences extracted from news corpus, SN =
{sn1, sn2, ..., sn|SN |}, each contains two men-
tions m1 and m2 whose candidate entities belong
to E, a set of text fragments T = {t1, t2, ..., t|T |},
where ti contains its corresponding target sentence
sni and acts as its context. Our task is to link those
mentions to entities in the given KB, identify the
relationship between entity pairs and populate new
knowledge facts into the KB.

4 The Framework

We propose to perform joint inference over sub-
tasks involved. For each sentence with two entity
mentions, we first employ a preliminary EL model
and RE model to obtain entity candidates and pos-
sible relation candidates between the two men-
tions, respectively. Our joint inference framework
will then find an optimal assignment by taking the
preliminary prediction scores, the argument type
expectations of relations and the global compati-
bilities among the predictions into account. In the
task of KBP, an entity pair may appear in multiple
sentences as different relation instances, and the
crucial point is whether we can identify all the cor-
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Sentence 1: … [Bryant] is a private university located in [Smithfield]. …

Sentence 2: … Shaq and [Bryant] led the [Lakers] to three consecutive 

championships from 2000 to 2002. …

Bryant, Illinois
fb:people.place_of_birth

fb:pro_athlete.teams

fb:org.headquarters

fb:business.leader_of

Bryant University

...

Kobe Bryant

Kobe Bryant

Bryant University

Bryant, Illinois

...

Smithfield, Rhode Island 

Smithfield, Illinois

...

Los Angeles Lakers

Laguna Lakers

...

Disagreement!

Figure 2: An example of our joint inference framework. The top and bottom are two example sentences
with entity mentions in the square brackets, candidate entities in the white boxes, candidate relations in
the grey boxes, and the solid lines with arrows between relations and entities represent their preference
scores, with thickness indicating the preferences’ value.

rect relations for an entity pair. Thus, after finding
an optimal sentence-level assignment, we aggre-
gate those local predictions by ORing them into
the entity pair level. Finally, we employ a regres-
sion model to capture the reliability of the com-
plete extraction process.

4.1 Preliminary Models
Entity Linking The preliminary EL model can
be any approach which outputs a score for each
entity candidate. Note that a recall-oriented model
will be more than welcome, since we expect to in-
troduce more potentially correct local predictions
into the inference step. In this paper, we adopt
an unsupervised approach in (Han et al., 2011)
to avoid preparing training data. Note the chal-
lenging NIL problem, i.e., identifying which en-
tity mentions do not have corresponding entities
in the KB (labeled as NIL) and clustering those
mentions, will be our future work. For each men-
tion we retain the entities with top p scores for the
succeeding inference step.

Relation Extraction The choice of RE model is
also broad. Any sentence level extractor whose
results are easy to be aggregated to entity pair
level can be utilized here (again, a recall-oriented
version will be welcome), such as Mintz++ men-

tioned in (Surdeanu et al., 2012), which we adapt
into a Maximum Entropy version. We also include
a special label, NA, to represent the case where
there is no predefined relationship between an en-
tity pair. For each sentence, we retain the relations
with top q scores for the inference step, and we
also call that this sentence supports those candi-
date relations. As for the features of RE models,
we use the same features (lexical features and syn-
tactic features) with the previous works (Chen et
al., 2014; Mintz et al., 2009; Riedel et al., 2010;
Hoffmann et al., 2011).

4.2 Relations’ Expectations for Argument
Types

In most KBs’ schemas, canonicalized relations are
designed to expect specific types of entities to be
their arguments. For example, in Figure 2, it is
more likely that an entity Kobe Bryant takes the
subject position of a relation fb:pro athlete.teams,
but it is unlikely for this entity to take the subject
position of a relation fb:org.headquarters. Making
use of these type requirements can encourage the
framework to select relation and entity candidates
which are coherent with each other, and discard
incoherent choices.

In order to obtain the preference scores between

1915



the entities in E and the relations in R, we gener-
ate two matrices with |E| rows and |R| columns,
whose elements spij indicates the preference score
of entity i and relation j. The matrix Ssubj is for
relations and their subjects, and the matrix Sobj is
for relations and their objects. We initialize the
two matrices using the KB as follows: for entity i
and relation j, if relation j takes entity i as its sub-
ject/object in the KB, the element at the position
(i, j) of the corresponding matrix will be 1, oth-
erwise it will be 0. Note that in our experiments,
we do not count the triples that are evaluated in the
testing data, to build the matrices. Now the prob-
lem is how we can obtain the unknown elements
in the matrices.

Explicit Type Information Intuitively, we
should examine whether the explicit types of the
entities fulfill the expectations of relations in the
KB. For each unknown element Ssubj(i, j), we
first obtain the type of entity i, which is collected
from the lowest level of the KB’s type hierarchy,
and examine whether there is another entity
with the same type taking the subject position
of relation j in the initial matrix. If such an
entity exists, Ssubj(i, j) = 1, otherwise 0. For
example, for the subject Jay Fletcher Vincent and
the relation fb:pro athlete.teams, we first obtain
the subject’s type basketball player, and then we
go through the initial matrix and find another
entity Kobe Bryant with the same type taking
the subject position of fb:pro athlete.teams,
indicating that Jay Fletcher Vincent may take the
relation fb:pro athlete.teams. The matrix Sobj is
processed in the same way.

Implicit Type Expectations In practice, few
KBs have well-defined schemas. In order to make
our framework more flexible, we need to come up
with an approach to implicitly capture the rela-
tions’ type expectations, which will also be rep-
resented as preference scores.

Inspired by Riedel et al. (2013) who use a ma-
trix factorization approach to capture the associa-
tion between textual patterns, relations and entities
based on large text corpora, we adopt a collabora-
tive filtering (CF) method to compute the prefer-
ence scores between entities and relations based
on the statistics obtained from an existing KB.

In CF, the preferences between customers and
items are calculated via matrix factorization over
the initial customer-item matrix. In our frame-

work, we compute the preference scores between
entities and relations via the same approach over
the two initialized matrices Ssubj and Sobj , re-
sulting in two entity-relation matrices with esti-
mated preference values. We use ALS-WR (Zhou
et al., 2008) to process the matrices and compute
the preference of a relation taking an entity as its
subject and object, respectively. We normalize the
preference scores of each entity using their means
µ and standard deviations σ.

4.3 Compatibilities among Predicted Triples
The second aspect we investigate is whether the
extracted triples are compatible with respect to all
other knowledge facts. For example, according to
the KB, the two relations fb:org.headquarters and
fb:pro athlete.teams in Figure 2 cannot share the
same entity as their subjects. So if such sharing
happens, that will indicate either the predictions
of the relations or the entities are incorrect. The
clues can be roughly grouped into three categories,
namely whether two relations can share the same
subjects, whether two relations can share the same
objects, and whether one relation’s subject can be
the other relation’s object.

Global compatibilities among local predictions
have been investigated by several joint models (Li
et al., 2011; Li and Ji, 2014; Chen et al., 2014) to
eliminate the errors propagating in a pipeline sys-
tem. Specifically, Chen et al. (2014) utilized the
clues with respect to the compatibilities of rela-
tions in the task of relation extraction. Following
(Li et al., 2011; Chen et al., 2014), we extend the
idea of global compatibilities to the entity and re-
lation predictions during knowledge base popula-
tion. We examine the pointwise mutual informa-
tion (PMI) between the argument sets of two re-
lations to collect such clues. For example, if we
want to learn whether two relations can share the
same subject, we first collect the subject sets of
both relations from the KB, and then compute the
PMI value between them. If the value is lower
than a certain threshold (set to -3 in this paper), the
clue that the two relations cannot share the same
subject is added. These clues can be easily inte-
grated into an optimization framework in the form
of constraints.

4.4 Integer Linear Program Formulation
Now we describe how we aggregate the above
components, and formulate the joint inference
problem into an ILP framework. For each candi-
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date entity e of mention m in text fragment t, we
define a boolean decision variable dm,et , which de-
notes whether this entity is selected into the final
configuration or not. Similarly, for each candidate
relation r of fragment t, we define a boolean de-
cision variable drt . In order to introduce the pref-
erence scores into the model, we also need a deci-
sion variable dr,m,et , which denotes whether both
relation r and candidate entity e of mention m are
selected in t.

We use st,m,eel to represent the score of mention
m in t disambiguated to entity e, which is output
by the EL model, st,rre representing the score of re-
lation r assigned to t, which is output by the RE
model, sr,ep the explicit/implicit preference score
between relation r and entity e.

Our goal is to find the best assignment to the
variables drt and dm,et , such that it maximizes the
overall scores of the two subtasks and the co-
herence among the preliminary predictions, while
satisfying the constraints between the predicted
triples as well. Our objective function can be writ-
ten as:

max el× confent + re× conf rel + sp× cohe−r
(1)

where el, re and sp are three weighting parameters
tuned on development set. confent is the overall
score of entity linking:

confent =
∑
t

∑
m∈M(t)

∑
e∈Ce(m)

st,m,eel dm,et (2)

where M(t) is the set of mentions in t, Ce(m) is
the candidate entity set of the mention m. conf rel

represents the overall score of relation extraction:

conf rel =
∑
t

∑
r∈Cr(t)

st,rre d
r
t (3)

where Cr(t) is the set of candidate relations in t.
cohe−r is the coherence between the candidate re-
lations and entities in the framework:

cohe−r =
∑
t

∑
r∈Cr(t)

∑
m∈M(t)

∑
e∈Ce(m)

sr,ep dr,m,et (4)

Now we describe the constraints used in our ILP
problem. The first kind of constraints is intro-
duced to ensure that each mention should be dis-
ambiguated to only one entity:

∀t,∀m ∈M(t),
∑

e∈Ce(m)

dm,et ≤ 1 (5)

The second type of constraints ensure that each en-
tity mention pair in one sentence can only take one
relation label:

∀t,
∑

r∈Cr(t)
dtr ≤ 1 (6)

The third is introduced to ensure the decision vari-
able dr,m,et equals 1 if and only if both the corre-
sponding variables drt and dm,et equal 1.

∀t,∀r ∈ Cr(t), ∀m ∈M(t),∀e ∈ Ce(m)
dr,m,et ≤ drt (7)

dr,m,et ≤ dm,et (8)

drt + dm,et ≤ dr,m,et + 1 (9)

As for the compatibility constraints, we need to
introduce another type of boolean decision vari-
ables. If a mention m1 in t1 and another mention
m2 in t2 share an entity candidate e, we add a vari-
able y for this mention pair, which equals 1 if and
only if both dm1,e

t1 and dm2,e
t2 equal 1. So we add

the following constraints for each mention pairm1

and m2 satisfies the previous condition:

y ≤ dm1,e
t1 (10)

y ≤ dm2,e
t2 (11)

dm1,e
t1 + dm2,e

t2 ≤ y + 1 (12)

Then we further add the following constraints for
each mention pair to avoid incompatible predic-
tions:

∀r1 ∈ Cr(t1), r2 ∈ Cr(t2)
If (r1, r2) ∈ Csr, p(m1) = subj, p(m2) = subj

dr1t1 + dr2t2 + y ≤ 2 (13)

If (r1, r2) ∈ Cro, p(m1) = obj, p(m2) = obj

dr1t1 + dr2t2 + y ≤ 2 (14)

If (r1, r2) ∈ Csro, p(m1) = obj, p(m2) = subj

dr1t1 + dr2t2 + y ≤ 2 (15)

where p(m) returns the position of mention m, ei-
ther subj (subject) or obj (object). Csr is the pairs
of relations which cannot share the same subject,
Cro is the pairs of relations which cannot share the
same object, Csro is the pairs of relations in which
one relation’s subject cannot be the other one’s ob-
ject.

We use IBM ILOG Cplex2 to solve the above
ILP problem.

2http://www.cplex.com
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Table 1: The features used to calculate the confi-
dence scores.
Type Feature
Real The RE score of the relation.
Real The EL score of the subject.
Real The EL score of the object.

Real The preference score between the relation
and the subject.

Real The preference score between the relation
and the object.

Real The ratio of the highest and the second highest
relation score in this entity pair.

Real The ratio of the current relation score and the
maximum relation score in this entity pair.

Real
The ratio of the number of sentences supporting
the current relation and the total number
of sentences in this entity pair.

Real Whether the extracted triple is coherent with the KB
according to the constraints in Section 4.3.

4.5 Confidence Estimation for Extracted
Triples

The automatically extracted triples inevitably con-
tain errors and are often considered as with high
recall but low precision. Since our aim is to pop-
ulate the extracted triples into an existing KB,
which requires highly reliable knowledge facts,
we need a measure of confidence for those ex-
tracted triples, so that others can properly utilize
them.

Here, we use a logistic regression model to mea-
sure the reliability of the process, how the entities
are disambiguated, how the relationships are iden-
tified, and whether those predictions are compat-
ible. The features we used are listed in Table 1,
which are all efficiently computable and indepen-
dent from specific relations or entities. We manu-
ally annotate 1000 triples as correct or incorrect to
prepare the training data.

5 Experiments

We evaluate the proposed framework in a real-
world scenario: given a set of news texts with en-
tity mentions and a KB, a model should find more
and accurate new knowledge facts between pairs
of those entities.

5.1 Dataset

We use New York Times dataset from 2005 to
2007 as the text corpus, and Freebase as the KB.
We divide the corpus into two equal parts, one for
creating training data for the RE models using the
distant supervision strategy (we do not need train-
ing data for EL), and the other as the testing data.

For the convenience of experimentation, we ran-
domly sample a subset of entities for testing. We
first collect all sentences containing two mentions
which may refer to the sampled entities, and prune
them according to: (1)there should be no more
than 10 words between the two mentions; (2)the
prior probability of the mention referring to the
target entity is higher than a threshold (set to 0.1
in this paper), which is set to filter the impossi-
ble mappings; (3)the mention pairs should not be-
long to different clauses. The resulting test set is
split into 10 parts and a development set, each with
3500 entity pairs roughly, which leads to averagely
200,000 variables and 900,000 constraints per split
and may take 1 hour for Cplex to solve. Note that
we do not count the triples that will be evaluated
in the testing data when we learn the preferences
and the clues from the KB.

5.2 Experimental Setup

We compare our framework with three baselines.
The first one, ME-pl, is the pipeline system con-
structed by the entity linker in (Han et al., 2011)
and the MaxEnt version of Mintz++ extractor
mentioned in (Surdeanu et al., 2012). The sec-
ond and third baselines are the pipeline systems
constructed by the same linker and two state-of-
the-art DS approaches, MultiR (Hoffmann et al.,
2011) and MIML-RE (Surdeanu et al., 2012), re-
spectively. They are referred to as MultiR-pl and
MIML-pl in the rest of this paper.

We also implement several variants of our
framework to investigate the following two com-
ponents in our framework: whether to use ex-
plicit (E) or implicit (I) argument type expecta-
tions, whether to take global (G) compatibilities
into account, resulting in four variants: ME-JE,
ME-JI, ME-JEG, ME-JIG.

We tune the parameters in the objective func-
tion on the development set to be re = 1, el = 4,
sp = 1. The numbers of preliminary results re-
tained to the inference step are set to p = 2, q = 3.
Three metrics used in our experiments include:
(1)the precision of extracted triples, which is the
ratio of the number of correct triples and the num-
ber of total extracted triples; (2)the number of cor-
rect triples (NoC); (3)the number of correct triples
in the results ranked in top n. The third metric
is crucial for KBP, since most users are only in-
terested in the knowledge facts with high confi-
dences. We compare the extracted triples against
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Table 2: The results of our joint frameworks and
the three baselines.

Approach Precision NoC Top 50 Top 100
ME-pl 28.7± 0.8 725± 12 38± 2 75± 4

MultiR-pl 31.0± 0.8 647± 15 39± 2 71± 3
MIML-pl 33.2± 0.6 608± 16 40± 3 74± 5
ME-JE 32.8± 0.7 768± 10 46± 2 90± 3

ME-JEG 34.2± 0.5 757± 8 46± 2 90± 3
ME-JI 34.5± 1.0 784± 9 43± 3 88± 3

ME-JIG 35.7± 1.0 772± 8 43± 3 88± 4

Freebase to compute the precision, which may un-
derestimate the performance since Freebase is in-
complete. Since we do not have exact annotations
for the EL, it is difficult to calculate the exact re-
call. We therefore use NoC instead. We evalu-
ate our framework on the 10 subsets of the testing
dataset and compute their means and standard de-
viations.

5.3 Overall Performance
We are interested to find out: (a)whether the task
benefits from the joint inference i.e., can we col-
lect more and correct facts? Or with a higher pre-
cision? (b) whether the argument type expecta-
tions (explicit and implicit) and global compati-
bility do their jobs as we expected? And, how do
we choose from these components ? (c)whether
the framework can work with other RE models?
(d)whether we can find a suitable approach to
measure the confidence or uncertainty during the
extraction so that users or other applications can
better utilize the extracted KB facts?

Let us first look at the performance of the
baselines and our framework in Table 2 for an
overview. Comparing the three pipeline sys-
tems, we can discover that using the same en-
tity linker, MIML-pl performs the best in precision
with slightly fewer correct triples, while ME-pl
performs the worst. It is not surprising, ME-pl, as
a strong and high-recall baseline, outputs the most
correct triples. As for the results with high confi-
dences, MultiR-pl outputs more correct triples in
the top 50 results than ME-pl, and MIML-pl per-
forms better or comparable than ME-pl in top n
results.

After performing the joint inference, ME-JE
improves ME-pl with 4.1% in precision and 43
more correct triples averagely, and results in bet-
ter performance in top n results. By taking global
compatibilities into consideration, ME-JEG fur-
ther improve the precision to 34.2% in average
with slightly fewer correct triples, indicating that
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Figure 3: The numbers of correct triples v.s. the
precisions for different approaches.

both argument type expectations and global com-
patibilities are useful in improving the perfor-
mance: argument type information can help to
select the correct and coherent predictions from
the candidates EL and RE outputs, while global
compatibilities can further prune incorrect triples
that cause disagreements, although a few correct
ones may be incorrectly eliminated. We can also
observe that ME-JIG performs even higher than
ME-JEG in overall precision, but ME-JEG col-
lects more correct triples than ME-JIG in the top
n predictions, showing that explicit type expec-
tations with more accurate type information may
perform better in high confidence results.

Furthermore, even though MultiR-pl and
MIML-pl are based on state-of-the-art RE ap-
proaches, our model (for example, ME-JIG) can
still outperform them in terms of all metrics, with
4.7% higher in precision than MultiR-pl, 2.5%
higher than MIML-pl. Our model can extract 125
more correct triples than MultiR-pl, 164 more
than MIML-pl, and perform better in top n results
as well.

In previous RE tasks, Precision-Recall curves
are mostly used to evaluate the systems’ perfor-
mances. In our task, since it is difficult to calculate
the recall exactly, we use the number of correct
triples instead, and plot curves of Precision-NoC
to show the performance of the competitors and
our approaches in more detail. For each value of
NoC, the precision is the average of the ten splits
of the testing dataset.

As shown in Figure 3, our approaches (ME-JEG
and ME-JIG) obtain higher precisions on each
NoC value, and the curves are much smoother than

1919



Table 3: The results of our joint frameworks with
MultiR sentence extractor.

Approach Precision NoC Top 50 Top 100
MultiR-pl 31.0± 0.8 647± 15 39± 2 71± 3

MultiR-JEG 36.9± 0.8 687± 15 46± 2 88± 3
MultiR-JIG 38.5± 0.9 700± 15 45± 2 88± 3

the pipeline systems, indicating that our frame-
work is more suitable for harvesting high quality
knowledge facts. Comparing the two kinds of type
clues, we can see that explicit ones perform better
when the confidence control is high and the num-
ber of correct triples is small, and then the two are
comparable. Since the precision of the triples with
high confidences is crucial for the task of KBP,
we still suggest choosing the explicit ones when
there is a well-defined schema available in the KB,
although implicit type expectations can result in
higher overall precision.

5.4 Adapting MultiR Sentence Extractor into
the Framework

The preliminary relation extractor of our frame-
work is not limited to the MaxEnt3 extractor. It
can be any sentence level recall-oriented relation
extractors. To further investigate the generaliza-
tion of our joint inference framework, we also
try to fit other sentence level relation extractors
into the framework. Considering that MIML-RE
does not output sentence-level results, we only
adapt MultiR, with both global compatibilities
and explicit/implicit type expectations, named as
MultiR-JEG and MultiR-JIG, respectively. Since
the scores output by the original MultiR are un-
normalized, which are difficult to directly apply to
our framework, we normalize their scores and re-
tune the framework’s parameters accordingly. The
parameters are set to re = 1, el = 32, sp = 16.

As seen in Table 3, MultiR-JEG helps MultiR
obtain about 40 more correct triples in average,
and achieves 5.9% higher in precision, as well
as significant improvements in top n correct pre-
dictions. As for MultiR-JIG, the improvements
are 7.5% in precision and 53 in number of cor-
rect triples. In terms of top n results, the explicit
and implicit type expectations perform compara-
ble. We also observe that our framework improves
MultiR as much as it does to MaxEnt, indicating
our joint framework can generalize well in differ-
ent RE models.

3http://homepages.inf.ed.ac.uk/
lzhang10/maxent_toolkit.html
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Figure 4: The numbers of correct triples v.s. the
precisions for approaches with MultiR extractor.
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Figure 5: The precisions of different models un-
der different confidence thresholds. The error bars
represents the standard deviations of the results.

We further plot Precision-NoC curves for
MultiR-JEG and MultiR-JIG in Figure 4, show-
ing that our framework can result in better perfor-
mance and smoother curves with MultiR extractor.
It is interesting to see that with MultiR extractor,
the two kinds of expectations perform comparably.

5.5 Results with Confidence Estimations

Now, we will investigate the results from another
perspective with the help of confidence estima-
tions. We calculate the precisions of the competi-
tors and our approaches on different confidence
thresholds from 0.5 to 1. The results are summa-
rized in Figure 5. Note that the results across dif-
ferent approaches are not directly comparable, we
put them in the same figure only to save space.

In Figure 5, intuitively, as the confidence thresh-
old goes up, the extraction precisions should
increase, indicating triples with higher confi-
dences are more likely to be correct. However,

1920



lower thresholds tend to result in estimations with
smaller standard derivations due to those preci-
sions are estimated over much more triples than
those with higher thresholds, which means the ran-
domness will be smaller.

On the other hand, our joint frameworks pro-
vide more evidences that can be used to well cap-
ture the reliability of an extraction. For example,
the precisions of Multir-JIG and ME-JIG both stay
around 85% when the confidence is higher than
0.85, with about 120 correct triples, indicating that
by setting a proper threshold, we can obtain con-
siderable amount of high quality knowledge facts
at an acceptable precision, which is crucial for
KBP. However, we cannot harvest such amount of
high quality knowledge facts from the other three
pipeline systems.

6 Conclusions

In this paper, we propose a joint framework for the
task of populating KBs with new knowledge facts,
which performs joint inference on two subtasks,
maximizes their preliminary scores, fulfills the
type expectations of relations and avoids global
incompatibilities with respect to all local predic-
tions to find an optimal assignment. Experimen-
tal results show that our framework can signifi-
cantly eliminate the error propagations in pipeline
systems and outperforms competitive pipeline sys-
tems with state-of-the-art RE models. Regard-
ing the explicit argument type expectations and
the implicit ones, the latter can result in a higher
overall precision, while the former performs bet-
ter in acquiring high quality knowledge facts with
higher confidence control, indicating that if the
KB has a well-defined schema we can use explicit
type requirements for the KBP task, and if not,
our model can still perform well by mining the
implicit ones. Our framework can also generalize
well with other preliminary RE models. Further-
more, we assign extraction confidences to all ex-
tracted facts to facilitate further applications. By
setting a suitable threshold, our framework can
populate high quality reliable knowledge facts to
existing KBs.

For future work, we will address the NIL is-
sue of EL where we currently assume all entities
should be linked to a KB. It would be also inter-
esting to jointly model the two subtasks through
structured learning, instead of joint inference only.
Currently we only use the coherence of extracted

triples and the KB to estimate confidences, which
would be nice to directly model the issue in a joint
model.
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Abstract

Information in visually rich formats such
as PDF and HTML is often conveyed
by a combination of textual and visual
features. In particular, genres such as
marketing flyers and info-graphics often
augment textual information by its color,
size, positioning, etc. As a result, tradi-
tional text-based approaches to informa-
tion extraction (IE) could underperform.
In this study, we present a supervised ma-
chine learning approach to IE from on-
line commercial real estate flyers. We
evaluated the performance of SVM clas-
sifiers on the task of identifying 12 types
of named entities using a combination of
textual and visual features. Results show
that the addition of visual features such
as color, size, and positioning significantly
increased classifier performance.

1 Introduction

Since the Message Understanding Conferences in
the 1990s (Grishman and Sundheim, 1996; Chin-
chor and Robinson, 1997), Information Extraction
(IE) and Named Entity Recognition (NER) ap-
proaches have been applied and evaluated on a va-
riety of domains and textual genres. The majority
of the work, however, focuses on the journalistic,
scientific, and informal genres (newswires, scien-
tific publications, blogs, tweets, and other social
media texts) (Nadeau and Sekine, 2007) and deals
with purely textual corpora. As a result, the fea-
ture space of NER systems involves purely tex-
tual features, typically word attributes and char-
acteristics (orthography, morphology, dictionary
lookup, etc.), their contexts and document features
(surrounding word window, local syntax, docu-
ment/corpus word frequencies, etc.) (Nadeau and
Sekine, 2007).

At the same time, textual information is often
presented in visually rich formats, e.g. HTML and
PDF. In addition to text, these formats use a vari-
ety of visually salient characteristics, (e.g. color,
font size, positioning) to either highlight or aug-
ment textual information. In some genres and do-
mains, a textual representation of the data, exclud-
ing visual features is often not enough to accu-
rately identify named entities of interest or extract
relevant information. Marketing materials, such
as online flyers or HTML emails, often contain
a plethora of visual features and text-based NER
approaches lead to poor results. In this paper, we
present a supervised approach that uses a combi-
nation of textual and visual features to recognize
named entities in online marketing materials.

2 Motivation and Problem Definition

A number of broker-based industries (e.g. com-
mercial real estate, heavy equipment machinery,
etc.) lack a centralized searchable database with
industry offerings. In particular, the commercial
real estate industry (unlike residential real estate)
does not have a centralized database or an estab-
lished source of information. Commercial real
estate brokers often need to rely on networking,
chance, and waste time with a variety of commer-
cial real estate databases that often present out-
dated information. While brokers do not often up-
date third party inventory databases, they do create
marketing materials (usually PDF flyers) that con-
tain all relevant listing information. Virtually all
commercial real estate offerings come with pub-
licly available marketing material that contains all
relevant listing information. Our goal is to harness
this source of information (the marketing flyer)
and use it to extract structured listing information.

Figure 1 shows an example of a commercial
real estate flyer. The commercial real estate fly-
ers are often distributed as PDF documents, links
to HTML pages, or visually rich HTML-based
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Figure 1: An example of a commercial real estate
flyer c© Kudan Group Real Estate.

emails. They typically contain all relevant listing
information such as the address and neighborhood
of the offering, the names and contact information
of the brokers, the type of space offered (build-
ing, land, unit(s) within a building), etc. Similar to
other info-graphics, relevant information could be
easily pinpointed by visual clues. For example, the
listing street address in Figure 1 (1629 N. Halsted
St., upper left corner) can be quickly identified and
distinguished from the brokerage firm street ad-
dress (156 N. Jefferson St., upper right corner) due
to its visual prominence (font color, size, position-
ing).

In this study we explored a supervised machine
learning approach to the task of identifying list-
ing information from commercial real estate fly-
ers. In particular, we focused on the recognition
of 12 types of named entities as described in Table
1 below.

3 Related Work

Nadeau and Satoshi (2007) present a survey of
NER and describe the feature space of NER re-
search. While they mention multi-media NER in
the context of video/text processing, all described
features/approaches focus only on textual repre-
sentation.

Broker Name The contact information of all
Broker Email listing brokers, including full name,
Broker Phone email address, phone number.
Company Phone The brokerage company phone

number.
Street The address information of the
City listing address including street or
Neighborhood intersection, city, neighborhood,
State state, and zip code.
Zip
Space Size Size and attributes of relevant spaces
Space Type (e.g. 27,042 SF building, 4.44 acres

site, etc.); Mentions of space type
descriptors, e.g. building, land/lot,
floor, unit. This excludes space type
and size information of non-essential
listing attributes (e.g. basement size
or parking lot size).

Confidential Any mentions of confidentiality.

Table 1: Types and descriptions of named enti-
ties relevant to extracting listing information from
commercial real estate flyers.

The literature on Information Extraction from
HTML resources is dominated by various ap-
proaches based on wrapper induction (Kushmer-
ick, 1997; Kushmerick, 2000). Wrapper induc-
tions rely on common HTML structure (based on
the HTML DOM) and formatting features to ex-
tract structured information from similarly format-
ted HTML pages. This approach, however, is not
applicable to the genres of marketing materials
(PDF and HTML) since they typically do not share
any common structure that can be used to iden-
tify relevant named entities. Laender et al. (2002)
present a survey of data extraction techniques and
tools from structured or semi-structured web re-
sources.

Cai et al. (2003) present a vision-based segmen-
tation algorithm of web pages that uses HTML
layout features and attempts to partition the page
at the semantic level. In (Burget and Rudolfova,
2009) authors propose web-page block classifica-
tion based on visual features. Yang and Zhang
(2001) build a content tree of HTML documents
based on visual consistency inferred semantics.
Burget (2007) proposes a layout based informa-
tion extraction from HTML documents and states
that this visual approach is more robust than tradi-
tional DOM-based methods.

Changuel et al.(2009a) describe a system for
automatically extracting author information from
web-pages. They use spatial information based on
the depth of the text node in the HTML DOM tree.
In (Changuel et al., 2009b) and (Hu et al., 2006),
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the authors proposed a machine learning method
for title extraction and utilize format information
such as font size, position, and font weight. In
(Zhu et al., 2007) authors use layout information
based on font size and weight for NER for auto-
mated expense reimbursement.

While the idea of utilizing visual features based
on HTML style has been previously suggested,
this study tackles a non-trivial visually rich dataset
that prevents the use of previously suggested sim-
plistic approaches to computing HTML features
(such as relying on the HTML DOM tree or sim-
plistic HTML style rendering). In addition, we in-
troduce the use of RGB color as a feature and nor-
malize it approximating human perception.

4 Dataset and Method

The dataset consists of 800 randomly selected
commercial real estate flyers spanning 315 US
locations, 75 companies, and 730 brokers. The
flyers were collected from various online sources
and were originally generated using a variety of
HTML and PDF creator tools. The collection rep-
resents numerous flyer formats and layouts, com-
mercial real estate property types (industrial, re-
tail, office, land, etc.), and transactions (invest-
ment, sale, lease).

All flyers were converted to a common format
(HTML)1. The HTML versions of all documents
were then annotated by 2 annotators. Figure 2
shows an example of an annotated flyer. Annota-
tion guidelines were developed and the 2 annota-
tors were able to achieve an inter-annotator agree-
ment of 91%2. The named entities with lowest
inter-annotator agreement were entities describ-
ing Space Size and Type because of the some-
what complex rules for determining essential list-
ing space information. For example, one of the
space size/type rules reads as follows: If the list-

ing refers to a building and mentions the lot size, include

both the land size, the building size, and corresponding space

types. Do not include individual parts of the building (e.g.

office/basement) as separate spaces. If the listing refers to a

UNIT within the building, not the whole building, then DO

NOT include the land site as a separate space.

A supervised machine learning approach was

1PDFs were converted to HTML using the PDFTO-
HTML conversion program http://pdftohtml.
sourceforge.net/.

2The inter-annotator agreement was measured as F1-score
using one of the annotator’s named entities as the gold stan-
dard set and the other as a comparison set.

Figure 2: The HTML versions of the flyers were
annotated by 2 annotators using a custom web-
based annotation tool.

then applied to the task of identifying the 12
named entities shown in Table 1. Flyers were con-
verted to text using an HTML parser while pre-
serving some of the white space formatting. The
text was tokenized and the task was then modeled
as a BIO classification task, classifiers identify the
Beginning, the Inside, and Outside of the text seg-
ments. We first used a traditional set of text-based
features for the classification task. Table 2 lists
the various text-based features used. In all cases,
a sliding window including the 5 preceding and 5
following tokens was used as features.

Feature Name Description
Token A normalized string representation of

the token. All tokens were converted
to lower case and all digits were
converted to a common format.

Token Orth The token orthography. Possible values
are lowercase (all token characters are
lower case), all capitals (all token
characters are upper case), upper initial
(the first token character is upper case,
the rest are lower case), mixed (any
mixture of upper and lower case letters
not included in the previous categories).

Token Kind Possible values are word, number,
symbol, punctuation.

Regex type Regex-based rules were used to mark
chunks as one of 3 regex types:
email, phone number, zip code.

Gazetteer Text chunks were marked as possible
US cities or states based on US Census
Bureau city and state data.
www.census.gov/geo/maps-data/data/gazetteer2013.html.

Table 2: List of text-based features used for the
NER task. A sliding window of the 5 preceding
and 5 following tokens was used for all features.
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As noted previously, human annotators were
able to quickly spot named entities of interest
solely because of their visual characteristics. For
example, a text-only version of the flyer shown in
Figure 1, stripped of all rich formatting, will make
it quite difficult to distinguish the listing address
(shown in prominent size, position, and color)
from the brokerage company address, which is
rarely prominent as it is not considered important
information in the context of the flyer. Similarly,
the essential size information for the listing shown
on Figure 2 appears prominently on the first page
(square footage of the offered restaurant), while
non-essential size information, such as the size of
the adjacent parking lot or basement, tend to ap-
pear in smaller font on subsequent flyer pages.

To account for such visual characteristics we at-
tempted to also include visual features associated
with text chunks. We used the computed HTML
style attributes for each DOM element containing
text. Table 3 lists the computed visual features.

Feature Name Description
Font Size The computed font-size attribute of

the surrounding HTML DOM element,
normalized to 7 basic sizes (xx-small,
x-small, small, medium, large, x-large,
xx-large).

Color The computed color attribute of the
surrounding HTML DOM element.
The RGB values were normalized
to a set of 100 basic colors. We
converted the RGB values to the
YUV color space, and then used
Euclidian distance to find the
most similar basic color
approximating human perception.

Y Coordinate The computed top attribute of the
surrounding HTML DOM element, i.e.
the y-coordinate in pixels. The pixel
locations was normalized to 150 pixel
increments (roughly 1/5th of the
visible screen for the most common
screen resolution.)

Table 3: List of visual features used for the NER
task. A sliding window of 5 preceding and 5 fol-
lowing DOM elements were used for all features.

Computing the HTML style attributes is a com-
plex task since they are typically defined by a
combination of CSS files, in-lined HTML style
attributes, and browser defaults. The complex-
ities of style definition, inheritance, and over-
writing are handled by browsers3. We used the

3We attempted to use an HTML renderer from the Cobra
java toolkit http://lobobrowser.org/cobra.jsp
to compute HTML style attributes. However, this renderer

Chrome browser to compute dynamically the style
of each DOM element and output it as inline
style attributes. To achieve this we program-
matically inserted a javascript snippet that inlines
the computed style and saves the new version of
the HTML on the local file system utilizing the
HTML5 saveAs interface4. Details on how we
normalized the style attribute values for font size,
RGB color, and Y coordinate are shown in Table
3.

We then applied Support Vector Machines
(SVM) (Vapnik, 2000) on the NER task using the
LibSVM library (Chang and Lin, 2011). We chose
SVMs as they have been shown to perform well
on a variety of NER tasks, for example (Isozaki
and Kazawa, 2002; Takeuchi and Collier, 2002;
Mayfield et al., 2003; Ekbal and Bandyopadhyay,
2008). We used a linear kernel model with the
default parameters. The multi-class problem was
converted to binary problems using the one-vs-
others scheme. 80% of the documents were used
for training, and the remaining 20% for testing.

5 Results

Results are shown in Table 4. We compared clas-
sifier performance using only textual features (first
3 columns), versus performance using both textual
and visual features (next 3 columns). Results were
averaged over 2 runs of randomly selected train-
ing/test documents with 80%/20% ratio. We used
an exact measure which considers an answer to be
correct only if both the entity boundaries and en-
tity type are accurately predicted.

The addition of visual features significantly5

increased the overall F1-score from 83 to 87%.
As expected, performance gains are more signif-
icant for named entities that are typically visu-
ally salient and are otherwise difficult (or impossi-
ble) to identify in a text-only version of the fly-
ers. Named Entities referring to listing address
information showed the most significant improve-
ments. In particular, the F1-score for mentions of
Neighborhoods (typically prominently shown on
the first page of the flyers) improved by 19%; F1-
score for mentions of the listing State improved by
9%; and Street, City, Zip by roughly 4% each, all

produced poor results on our dataset and failed to accurately
compute the pixel location of text elements.

4https://github.com/eligrey/FileSaver.
js

5The difference is statistically significant with p value <
0.0001% using Z-test on two proportions.

1927



Named Entity Pt Rt Ft Pv+t Rv+t Fv+t S
Broker Name 82.7 91.7 87.0 95.0 91.6 93.2 Y
Broker Email 92.3 92.8 92.6 97.2 90.2 93.6 N
Broker Phone 90.2 86.1 88.1 94.7 85.2 89.7 N
Company Ph. 95.2 67.4 78.9 89.8 65.4 75.7 N
Street 87.4 70.5 78.1 87.3 77.3 82.0 Y
City 92.5 88.5 90.5 94.9 92.8 93.8 Y
Neighborhood 68.2 52.8 59.5 85.3 72.9 78.6 Y
State 77.4 97.5 86.3 95.8 95.0 95.4 Y
Zip 89.7 94.5 92.1 96.1 97.1 96.6 Y
Space Size 80.2 65.0 71.8 87.0 70.6 77.9 Y
Space Type 76.0 74.7 75.3 78.6 72.2 75.3 N
Confidential 100 60.0 75.0 75.0 85.7 79.9 N
OVERALL 84.8 81.3 83.0 91.2 83.2 87.0 Y

Table 4: Results from applying SVM using the
textual features described in Table 2, as well as
both the textual and visual features described in
Tables 2 and 3. t=textual features only, v+t=visual
+ textual features, P=Precision, R=Recall, F=F1-
score, S=Significant Difference

statistically significant. Visual clues are also typi-
cally used when identifying relevant size informa-
tion and, as expected, performance improved sig-
nificantly by roughly 6%. The difference in per-
formance for mentions used to describe confiden-
tial information is not statistically significant6 be-
cause such mentions rarely occurred in the dataset.
Similarly, performance differences for Company
Phone, Broker Phone, Broker Email, and Space
Type are not statistically significant. In all of
these cases, visual features did not influence per-
formance and text-based features proved adequate
predictors.

6 Conclusion

We have shown that information extraction in cer-
tain genres and domains spans different media -
textual and visual. Ubiquitous online and dig-
ital formats such as PDF and HTML often ex-
ploit the interaction of textual and visual elements.
Information is often augmented or conveyed by
non-textual features such as positioning, font size,
color, and images. However, traditionally, NER
approaches rely exclusively on textual features
and as a result could perform poorly in visually
rich genres such as online marketing flyers or info-
graphics. We have evaluated the performance gain
on the task of NER from commercial real estate
flyers by adding visual features to a set of tradi-
tional text-based features. We used SVM classi-
fiers for the task of identifying 12 types of named
entities. Results show that overall visual features
improved performance significantly.

6p value = 0.7323% using Z-test on two proportions.
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Abstract

Temporal scope adds a time dimension to
facts in Knowledge Bases (KBs). These
time scopes specify the time periods when
a given fact was valid in real life. With-
out temporal scope, many facts are under-
specified, reducing the usefulness of the
data for upper level applications such as
Question Answering. Existing methods
for temporal scope inference and extrac-
tion still suffer from low accuracy. In this
paper, we present a new method that lever-
ages temporal profiles augmented with
context— Contextual Temporal Profiles
(CTPs) of entities. Through change pat-
terns in an entity’s CTP, we model the en-
tity’s state change brought about by real
world events that happen to the entity (e.g,
hired, fired, divorced, etc.). This leads to
a new formulation of the temporal scoping
problem as a state change detection prob-
lem. Our experiments show that this for-
mulation of the problem, and the resulting
solution are highly effective for inferring
temporal scope of facts.

1 Introduction

Recent years have seen the emergence of large
Knowledge Bases (KBs) of facts (Carlson 2010;
Auer 2007; Bollacker 2008; Suchanek 2007).
While the wealth of accumulated facts is huge,
most KBs are still sparsely populated in terms of
temporal scope. Time information is an important
dimension in KBs because knowledge is not static,
it changes over time: people get divorced; coun-
tries elect new leaders; and athletes change teams.
This means that facts are not always indefinitely
true. Therefore, temporal scope has crucial impli-
cations for KB accuracy.

Figure 1: Behavior patterns of context uni-grams
for the US presidency state change as seen in the
Google Books N-grams corpus: the rise of ‘elect’,
immediately followed by the rise of ‘administra-
tion’ and ‘president’.

Towards bridging the time gap in KBs, we
propose a new method for temporal scope infer-
ence. Our method is based on leveraging aggre-
gate statistics from a time-stamped corpus. First
we generate Contextual Temporal Profiles (CTPs)
of entities from contexts surrounding mentions of
these entities in the corpus. We then detect change
patterns in the CTPs. We then use these changes
to determine when a given entity undergoes a spe-
cific state change caused by real world events. Our
main insight is as follows: events that happen to
an entity change the entity’s state and therefore its
facts. Thus by learning when a given entity under-
goes a specific state change, we can directly infer
the time scopes of its facts. For example, in the di-
vorce event, the person’s state changes from ‘mar-
ried’ to ‘divorced’ hence the hasSpouse relation
no longer applies to it, signaling the end time of
its current hasSpouse value. In a country election
event, the country’s state changes and it obtains a
new value for its hasPresident relation.
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Our method involves learning context units
(uni-grams and bi-grams surrounding mentions of
an entity) that are relevant to a given state change.
For this we use a few seed examples of entities that
have gone through the state change. For example,
for the US presidency state change denoting the
beginning of a US presidency, given seed exam-
ples such as (Richard Nixon, 1969) and (Jimmy
Carter, 1977), relevant context units include uni-
grams such as ‘administration’ and ‘elect’, which
are common to both CTPs in 1969 and 1977 re-
spectively. Secondly, we learn the mention behav-
ior of these context units for an entity undergoing
a given state change (section 3 has more details).
Figure 1 shows a motivating example, we see the
behavior patterns of context uni-grams for the US
presidency state change: the rise of ‘elect’ at the
beginning of presidencies, immediately followed
by the rise of ‘administration’ and ‘president’ in
the context of the entities, Nixon and Carter.

2 Related work

Prior work mainly falls into two categories: i)
methods that extract temporal scope from text,
at the time of fact extraction; ii) methods that
infer temporal scope from aggregate statistics in
large Web corpora. Early methods mostly fall
under category i); Timely YAGO (Wang 2010),
TIE (Ling 2010), and PRAVDA (Wang 2011) are
three such methods. Timely YAGO applies regu-
lar expressions to Wikipedia infoboxes to extract
time scopes. It is therefore not applicable to any
other corpora but Wikipedia. The TIE (Ling 2010)
system produces a maximal set of events and their
temporal relations based on the text of a given sen-
tence. PRAVDA uses textual patterns along with
a graph-based re-ranking method. Methods falling
under category i) have the downside that it is un-
clear how they can be applied to facts that are al-
ready in the knowledge base. Only one other ap-
proach learned time scopes from aggregate cor-
pus statistics, a recent system called CoTS (Taluk-
dar 2012b). CoTS uses temporal profiles of facts
and how the mentions of such facts rise and fall
over time. However, CoTS is based on frequency
counts of fact mentions and does not take into ac-
count state change inducing context. For exam-
ple, to find the time scope of Nixon presidency,
CoTS uses the rise and fall of the mention ’nixon’
and ’president’ over time. To improve accuracy,

CoTS combined this frequency signal with manu-
ally supplied constraints such as the functionality
of the US presidency relation to scope the begin-
ning and end of Nixon presidency. In contrast, the
proposed system does not require constraints as in-
put.

There have also been tools and competitions
developed to facilitate temporal scope extraction.
TARSQI (Verhagen 2005) is a tool for automat-
ically annotating time expressions in text. The
TempEval (Verhagen 2007) challenge has led to
a number of works on temporal relation extrac-
tion (Puscasu 2007; Yoshikawa 2009; Bethard
2007).

3 Method

Given an entity and its Contextual Temporal Pro-
file (CTP), we can learn when such an entity un-
dergoes a specific state change. We can then di-
rectly infer the begin or end time of the fact asso-
ciated with the state change.

The CTP of an entity at a given time point t con-
tains the context within which the entity is men-
tioned at that time. Our method is based on two
related insights: i) the context of the entity at time
t reflects the events happening to the entity and
the state of the entity at time t. ii) the differ-
ence in context before, at time t − 1, and after, at
time t, reflect the associated state change at time
t. However an entity can undergo a multiplicity of
changes at the same time. Thus both the contexts
and the differences in contexts can contain infor-
mation pertaining to several state changes. We
therefore need a way of determining which part
of the context is relevant to a given state change
sci. To this end, we generate what we refer to as
an aggregate state vector, V s(e, sci) for a hypo-
thetical average entity e undergoing state change
sci. We generate V s(e, sci) from the CTPs of a
seed set of entities at the time they undergo state
change sci.

3.1 Learning State and State Change Vectors

To build CTPs for entities, we use two time-
stamped corpora: the Google Books Ngram cor-
pus (Michel 2011); and the English Gigaword
(Graff 2003) corpus. The Google Books Ngram
corpus contains n-grams for n = 1−5; along with
occurrence statistics from over about 5 million
digitized books. The English Gigaword (Graff
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2003) corpus contains newswire text from 1994-
2008. From these corpora, we use the time granu-
larity of a year as it is the finest granularity com-
mon to both corpora.

Definition 1 (Contextual Temporal Profile)
The Contextual Temporal Profile (CTP) of an
entity e at time t, Ce(t), consists of the context
within which e is mentioned. Specifically Ce(t)
consists of uni-grams and bi-grams generated
from the 5-grams(Google Books Ngram) or
sentences (Gigaword) that mention e at time t.

Notice that the CTPs can contain context units
(bi-grams or uni-grams) that are simply noise. To
filter the noise, we compute tf-idf statistics for
each contextual unit and only retain the top k rank-
ing units in Ce(t). In our experiments, we used
k = 100. We compute tf-idf by treating each time
unit t as a document containing words that occur
in the context of e (Wijaya 2011).

Furthermore, CTPs may contain context units
attributed to several state changes. We therefore
tease apart the CTPs to isolate contexts specific
to a given state change. For this, our method
takes as input a small set of seed entities, S(sci),
for each type of state change. Thus for the US
presidency state change that denotes the begin-
ning of a US presidency, we would have seeds as
follows: (Richard Nixon, 1969), (Jimmy Carter,
1977). From the CTPs of the seeds for state
change sci, we generate an aggregate state vector,
V s(e, sci). To obtain the few dozen seeds required
by our method, one can leverage semi-structured
sources such as Wikipedia infoboxes, where rela-
tions e.g., spouse often have time information.

Definition 2 ( Aggregate State Vector for e)
The aggregate state vector of a mean entity
e for state change sci, V s(e, sci), is made
up of the contextual units from the CTPs of
entities in the seed set S(sci) that undergo
state change sci. Thus, we have: V s(e, sci) =

1
|S(sci)|

∑
e,t:(e,t)∈S(sci)

Ce(t).

Thus, the state vector V s(e, sci) reflects events
happening to e and the state of e at the time it
undergoes the state change sci. Additionally, we
compute another type of aggregate vector, aggre-
gate change vector 4V s(e, sci) to capture the
change patterns in the context units of e. Recall
that context units rise or fall due to state change,
as seen earlier in Figure 1.

Definition 3 ( Aggregate Change Vector for e)
The aggregate change vector of a mean entity e
for state change sci, 4V s(e, sci), is made up of
the change in the contextual units of the CTPs
of entities in the seed set S(sci) that undergo
state change sci. Thus, we have: 4V s(e, sci) =

1
|S(sci)|

∑
e,t:(e,t)∈S(sci)

Ce(t)− Ce(t− 1).

The aggregate state vector V s(e, sci) and the
aggregate change vector 4V s(e, sci) are then
used to detect state changes.

3.2 Detecting State Changes

To detect state changes in a previously unseen en-
tity enew, we generate its state vector, Cenew(t),
and its change vector, 4Cenew(t) = Cenew(t) -
Cenew(t − 1), for every time point t. We consider
every time point t in the CTP of the new entity to
be a candidate for a given state change sci, which
we seek to determine whether enew goes through
and at which time point. We then compare the
state vector and change vector of every candidate
time point t to the aggregate state and aggregate
change vector of state change sci. We use cosine
similarity to measure similarities between the state
vector and the aggregate state vector and between
the change vector and the aggregate change vector.
To combine these two vector similarities, we sum
the state vector and change vector similarities. In
future we can explore cross validation and a sepa-
rate development set to define a weighted sum for
combining these two similarities.

The highest ranking candidate time point (most
similar to the aggregate state and aggregate change
vector) is then considered to be the start of state
change sci for the new entity enew.

4 Experiments

We carried out experiments to answer the fol-
lowing questions: Is treating temporal scoping
as state change detection in Contextual Temporal
Profiles(CTPs) effective? Do CTPs help improve
temporal scope extraction over context-unaware
temporal profiles?

4.1 Methods under Comparison

We answer these questions by comparing to the
following methods.

1. CoTS a state-of-the-art temporal scoping
system (Talukdar 2012b)
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2. MaxEnt a baseline to which CoTS was com-
pared. It is a Maximum Entropy classifier
trained separately for each relation using nor-
malized counts and gradients of facts as fea-
tures. An Integer Linear Program (ILP) is
used to predict which facts are active at which
times. This is done based on the output of
the MAXENT classifier together with tem-
poral intra-relation constraints that regulate
the temporal scoping of one or more fac-
sts from a single relation (e.g., FUNCTIONAL

constraints on US President relation that reg-
ulate that at most one fact from the relation
can be true at any given time i.e., there is only
one US President at any given time).

3. MaxEnt + Intra Relation Constraints
MaxEnt with cross relation constraints
added: constraints that couple facts from
multiple relations e.g., a constraint that Al
Gore’s vice presidency is aligned exactly
with Bill Clinton’s presidency.

We evaluate on the same set of facts as CoTS
and its baselines: facts from the US Administra-
tion domain ( US President, US Vice President,
and US Secretary of State); and facts from the
Academy Awards domain (Best Director and Best
Picture). The number of facts per relation are as
follows: US President, 9; US Vice President, 12;
US Secretary of State, 13; Best Director, 14; and
Best Picture, 14. Our method however is not spe-
cific to these relations from these two domains.
Since our method does not depend on temporal
constraints, the method can work a very different
domain, for example one where many facts can ex-
ist for any time span without being superseded by
another, as long as the entities involved experience
a change of state. Thus, it can be applied to re-
lations like spouse, even though many people are
married in a year as these people change state from
single or engaged to married.

Similar to CoTS, the datasets from which the
CTPs were generated are as follows: The Google
Books Ngram (1960-2008) dataset (Michel 2011)
for the US Administration domain and the En-
glish Gigaword (1994-2008) dataset (Graff 2003)
for Academy Award domain.

Figure 2: Precision @ k using Contextual Tempo-
ral Profiles.

Figure 3: Comparison of F1 scores with CoTS and
other baselines.

4.2 CTPs Begin time precision

To compute precision we used cross validation,
in particular, leave-one-out cross validation due to
the small number of facts per relation.We predict
the begin time of each fact, the time the fact starts
to be valid. True begin times were determined by
a human annotator. This human annotated data
formed the gold-standard which we used to deter-
mine Precision (P), Recall (R), and the F1 mea-
sure. All evaluations were performed at the year
level, the finest granularity common to the two
time-stamped datasets.

For our first experiment, we report the aver-
age precision@k, where k=1 to n, where n=47 is
the number of years between 1960 to 2008 to se-
lect from. As can be seen in Figure 2, precision
quickly reaches 1 for most relations. The true be-
gin time is usually found within top k=5 results.
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4.3 Comparison to baselines

For our second experiment, we compared to the F1
scores of CoTS and other baselines in (Talukdar
2012b). As can be seen in Figure 3, our CTPs ap-
proach gives comparable or better F1 (@k=1) than
systems that use only plain temporal profiles, even
when these systems are supplemented with many
carefully crafted, hand-specified constraints.

We note that the performance on the US Secre-
tary of State relation is low in both CoTS (Taluk-
dar 2012b) and in our approach. We found that this
was due to few documents mentioning the “sec-
retary of state” in Google Books Ngram dataset.
This leads to weak signals for predicting the tem-
poral scope of secretary of state appointments.

We also observe that the uni-grams and bi-
grams in the train CTPs and change vectors reflect
meaningful events and state changes happening to
the entities (Table 1). For example, after ‘becom-
ing president’ and ‘taking office’, US presidents
often see a drop in mentions of their previous (job
title state) such as ‘senator’, ‘governor’ or ‘vice
president’ as they gain the‘president’ state.

4.4 Discussion

Overall, our results show that our method is
promising for detecting begin time of facts. In its
current state, our method performs poorly on in-
ferring end times as contexts relevant to a fact of-
ten still mentioned with the entity even after the
fact ceases to be valid. For example, the entity
Al Gore is still mentioned a lot with the bi-gram
‘vice president’ even after he is no longer a vice
president. Prior work, CoTS, inferred end times
by leveraging manually specified constraints, e.g.,
that there can only be one vice president at a time:
the beginning of one signals the end of another
(Talukdar 2012b). However such methods do not
scale due to the amount of constraints that must be
hand-specified. In future, we would like to inves-
tigate how to better detect the end times of facts.

5 Conclusion

This paper presented a new approach for inferring
temporal scopes of facts. Our approach is to re-
formulate temporal scoping as a state change de-
tection problem. To this end, we introduced Con-
textual Temporal Profiles (CTPs) which are entity
temporal profiles enriched with relevant context.

Relation CTP State
Context

Unigrams and Bigrams
in CTP Change Vectors

US President was
elected,
took office,
became
president

vice president (-), by
president (+), adminis-
tration (+), senator (-),
governor (-), candidate
(-)

Best Picture nominated
for, to
win, won
the, was
nominated

best picture (+), hour
minute (-), academy
award (+), oscar (+),
nominated (+), won (+),
star (-), best actress (+),
best actor (+), best sup-
porting (+)

Table 1: Example behavior of various contex-
tual units (unigrams and bigrams) automatically
learned in the train CTPs and change vector. The
(+) and (-) signs indicate rise and fall in mention
frequency, respectively.

From the CTPs, we learned change vectors that re-
flect change patterns in context units of CTPs. Our
experiments showed that the change patterns are
highly relevant for detecting state change, which
is an effective way of identifying begin times of
facts. For future work, we would like to investi-
gate how our method can be improved to dp better
at detecting fact end times. We also would like to
investigate time-stamped corpora of finer-grained
granularity such as day. This information can be
obtained by subscribing to daily newsfeeds of spe-
cific entities.
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Abstract

Distant supervision, a paradigm of rela-
tion extraction where training data is cre-
ated by aligning facts in a database with a
large unannotated corpus, is an attractive
approach for training relation extractors.
Various models are proposed in recent lit-
erature to align the facts in the database
to their mentions in the corpus. In this
paper, we discuss and critically analyse a
popular alignment strategy called the“at
least one” heuristic. We provide a sim-
ple, yet effective relaxation to this strat-
egy. We formulate the inference proce-
dures in training as integer linear program-
ming (ILP) problems and implement the
relaxation to the“at least one ” heuris-
tic via a soft constraint in this formulation.
Empirically, we demonstrate that this sim-
ple strategy leads to a better performance
under certain settings over the existing ap-
proaches.

1 Introduction

Although supervised approaches to relation ex-
traction (GuoDong et al., 2005; Surdeanu and Cia-
ramita, 2007) achieve very high accuracies, they
do not scale as they are data intensive and the cost
of creating annotated data is quite high. To alle-
viate this problem, Mintz et al. (2009) proposed
relation extraction in the paradigm ofdistant su-
pervision. In this approach, given a database of
facts (e.g. Freebase1) and an unannotated docu-
ment collection, the goal is to heuristically align
the facts in the database to the sentences in the
corpus which contain the entities mentioned in the
fact. This is done to create weakly labeled train-
ing data to train a classifier for relation extraction.
The underlying assumption is that all mentions of

1www.freebase.com

an entity pair2 (i.e. sentences containing the en-
tity pair) in the corpus express the same relation
as stated in the database.

The above assumption is a weak one and is
often violated in natural language text. For in-
stance, the entity pair,(Barack Obama, United

States) participate in more than one relation:
citizenOf, presidentOf, bornIn and every men-
tion expresses either one of these fixed set of rela-
tions or none of them.

Consequently, a number of models have been
proposed in literature to provide better heuristics
for the mapping between the entity pair in the
database and its mentions in the sentences of the
corpus. Riedel et al. (2010) tightens the assump-
tion of distant supervision in the following man-
ner: “Given a pair of entities and their mentions in
sentences from a corpus,at least oneof the men-
tions express the relation given in the database”.
In other words, it models the problem as that of
multi-instance (mentions) single-label (relation)
learning. Following this, Hoffmann et al. (2011)
and Surdeanu et al. (2012) propose models that
consider the mapping as that of multi-instance
multi-label learning. The instances are the men-
tions of the entity pair in the sentences of the cor-
pus and the entity pair can participate in more than
one relation.

Although, these models work very well in prac-
tice, they have a number of shortcomings. One
of them is the possibility that during the align-
ment, a fact in the database might not have an in-
stantiation in the corpus. For instance, if our cor-
pus only contains documents from the years 2000
to 2005, the factpresidentOf(Barack Obama,
United States) will not be present in the corpus.
In such cases, the distant supervision assumption
fails to provide a mapping for the fact in the cor-
pus.

In this paper, we address this situation with a

2In this paper we restrict ourselves to binary relations
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noisy-ormodel (Srinivas, 2013) in training the re-
lation extractor by relaxing the“at least one” as-
sumption discussed above. Our contributions in
this paper are as follows: (i) We formulate the in-
ference procedures in the training algorithm as in-
teger linear programming (ILP) problems, (ii) We
introduce a soft-constraint in the ILP objective to
model noisy-or in training, and (iii) Empirically,
our algorithm performs better than Hoffmann et
al. (2011) procedure under certain settings on two
benchmark datasets.

Our paper is organized as follows. In Section 2,
we discuss our methodology. We review the ap-
proach of Hoffmann et al. (2011) and explain our
modifications to it. In Section 3, we discuss re-
lated work. In Section 4, we discuss the experi-
mental setup and our preliminary results. We con-
clude in Section 4.

2 Methodology

Our work extends the work of Hoffmann et al.
(2011). So, we recapitulate Hoffmann’s model in
the following subsection. Following which our ad-
ditions to this model is explained in detail.

Hoffmann’s model

Hoffmann et al. (2011) present a multi-instance
multi-label model for relation extraction through
distant supervision. In this model, a pair of enti-
ties have multiple mentions (sentence containing
the entity pair) in the corpus. An entity pair can
have one or more relation labels (obtained from
the database).

Objective function

Consider an entity pair(e1, e2) denoted by the in-
dex i. The set of sentences containing the entity
pair is denotedxi and the set of relation labels for
the entity pair from the database is denoted byyi.
The mention-level labels are denoted by the latent
variablez (there is one variablezj for each sen-
tencej).

To learn the parametersθ, the training objective
to maximize is the likelihood of the facts observed
in the database conditioned on the sentences in the
text corpus.

θ∗ = arg max
θ

∏
i

Pr(yi|xi; θ)

= arg max
θ

∏
i

∑
z

Pr(yi, z|xi; θ)

The expressionPr(yi, z|xi) for a given entity
pair is defined by two types of factors in the factor
graph. They areextract factorsfor each mention
andmention factorsbetween a relation label and
all the mentions.

The extract factorscapture the local signal for
each mention and consists of a bunch of lexical
and syntactic features like POS tags, dependency
path between the entities and so on (Mintz et al.,
2009).

Themention factorscapture the dependency be-
tween relation label and its mentions. Here, theat
least oneassumption that was discussed in Section
1 is modeled. It is implemented as a simple deter-
ministic OR operator as given below:

fmention(yr, z) =
{

1 if yr is true∧∃i : zi = r

0 otherwise

Training algorithm

The learning algorithm is a perceptron-style
parameter update scheme with 2 modifications:
i) online learning ii) Viterbi approximation. The
inference is shown to reduce to the well-known
weighted edge-cover problem which can be
solved exactly, although Hoffmann et al. (2011)
provide an approximate solution.

Algorithm 1: Hoffmann et al. (2011) : Train-
ing

Input : i) Σ: set of sentences,ii ) E: set of entities
mentioned in the sentences,iii ) R: set of
relation labels,iv) ∆: database of facts

Output: Extraction model :Θ
begin

for t← 1 to T ; /* training iterations */

do
for i← 1 to N ; /* No. of entity pairs */

do
ŷ, ẑ, = arg max

y,z
Pr
(
y, z
∣∣xi; Θ

)

if ŷ! = yi then
z∗ = arg max

z
Pr
(
z
∣∣yi,xi; Θ

)

Θnew = Θold+Φ(xi, z
∗)−Φ(xi, ẑ)

end

Our additions to Hoffmann’s model

In the training algorithm described above, there
are two MAP inference procedures. Our con-
tributions in this space is two-fold. Firstly, we
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have formulated these as ILP problems. As a re-
sult of this, the approximate inference therein is
replaced by an exact inference procedure. Sec-
ondly, we replace thedeterministic-orby anoisy-
or which provides a soft-constraint instead of the
hard-constraint of Hoffmann. (“at least one” as-
sumption)

ILP formulations

Some notations:

� zji : The mention variablezj (or jth sen-
tence) taking the relation valuei

� sji : Score forzj taking the value ofi. Scores
are computed from theextractfactors

� yi : relation label beingi
� m : number of mentions (sentences) for the

given entity pair
� R: total number of relation labels (excluding

thenil label)

Deterministic OR

The following is the ILP formulation for the exact
inferencearg max Pr(y, z|xi) in the model based
on thedeterministic-or:

max
Z,Y

{
m∑

j=1

∑

i∈{R,nil}

[
zjisji

]}

s.t 1.
∑

i∈{R,nil}
zji = 1 ∀j

2. zji ≤ yi ∀j, ∀i

3. yi ≤
m∑

j=1

zji ∀i

where zji ∈ {0, 1}, yi ∈ {0, 1}

The first constraint restricts a mention to have
only one label. The second and third constraints
impose theat least oneassumption. This is the
same formulation as Hoffmann but expressed as
an ILP problem. However, posing the inference as
an ILP allows us to easily add more constraints to
it.

Noisy OR

As a case-study, we add thenoisy-or soft-
constraint in the above objective function. The
idea is to model the situation where a fact is
present in the database but it is not instantiated in
the text. This is a common scenario, as the facts
populated in the database and the text of the corpus

can come from different domains and there might
not be a very good match.

max
Z,Y,ǫ

{(
m∑

j=1

∑

i∈{R,nil}

[
zjisji

])

−
(
∑

i∈R

ǫi

)}

s.t 1.
∑

i∈{R,nil}
zji = 1 ∀j

2. zji ≤ yi ∀j, ∀i

3. yi ≤
m∑

j=1

zji + ǫi ∀i

where zji ∈ {0, 1}, yi ∈ {0, 1}, ǫi ∈ {0, 1}

In the above formulation, the objective function
is augmented with a soft penalty. Also the third
constraint is modified with this penalty term. We
call this new termǫi and it is a binary variable to
model noise. Through this term we encourageat
least onetype of configuration but will not disal-
low a configuration that does not conform to this.
Essentially, the consequence of this is to allow the
case where a fact is present in the database but is
not instantiated in the text.

3 Related Work

Relation Extraction in the paradigm of distant su-
pervision was introduced by Craven and Kum-
lien (1999). They used a biological database as
the source of distant supervision to discover rela-
tions between biological entities. The progression
of models for information extraction using distant
supervision was presented in Section 1.

Surdeanu et al. (2012) discuss a noisy-or
method for combining the scores of various sen-
tence level models to rank a relation during evalu-
ation. In our approach, we introduce the noisy-or
mechanism in the training phase of the algorithm.

Our work is inspired from previous works
like Roth and tau Yih (2004). The use of ILP
for this problem facilitates easy incorporation of
different constraints and to the best of our knowl-
edge, has not been investigated by the community.

4 Experiments

The experimental runs were carried out using the
publicly available Stanford’s distantly supervised
slot-filling system3 (Surdeanu et al., 2011) and
Hoffmann et al. (2011) code-base4.

3http://nlp.stanford.edu/software/
mimlre.shtml

4http://www.cs.washington.edu/ai/
raphaelh/mr/
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Datasets and Evaluation

We report results on two standard datasets used as
benchmarks by the community namely KBP and
Riedel datasets. A complete description of these
datasets is provided in Surdeanu et al. (2012).

The evaluation setup and module is the same
as that described in Surdeanu et al. (2012). We
also use the same set of features used by the var-
ious systems in the package to ensure that the ap-
proaches are comparable. As in previous work, we
report precision/recall (P/R) graphs to evaluate the
various techniques.

We used the publicly availablelp solvepack-
age5 to solve our inference problems.

Performance of ILP

Use of ILP raises concerns about performance as
it is NP-hard. In our problem we solve a separate
ILP for every entity pair. The number of variables
is limited by the number of mentions for the given
entity pair. Empirically, on the KBP dataset (larger
of the two datasets), Hoffmann takes around 1hr
to run. Our ILP formulation takes around 8.5hrs.
However, MIMLRE algorithm (EM-based) takes
around 23hrs to converge.

Results

We would primarily like to highlight two settings
on which we report the P/R curves and contrast
it with Hoffmann et al. (2011). Firstly, we re-
place the approximate inference in that work with
our ILP-based exact inference; we call this set-
ting the hoffmann-ilp. Secondly, we replace the
deterministic-or in the model with a noisy-or, and
call this setting thenoisy-or. We further compare
our approach with Surdeanu et al. (2012). The
P/R curves for the various techniques on the two
datasets are shown in Figures 1 and 2.

We further report the highest F1 point in the P/R
curve for both the datasets in Tables 1 and 2.

Table 1 : Highest F1 point in P/R curve : KBP Dataset
Precision Recall F1

Hoffmann 0.306451619 0.197916672 0.2405063349
MIMLRE 0.28061223 0.286458343 0.2835051518
Noisy-OR 0.297002733 0.189236104 0.2311770916
Hoffmann-ilp 0.293010741 0.189236104 0.2299577976

Discussion

We would like to discuss the results in the above
two scenarios.

5http://lpsolve.sourceforge.net/5.5/
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Figure 2: Results : Riedel dataset

1. Performance ofhoffmann-ilp

On the KBP dataset, we observe that
hoffmann-ilp has higher precision in the
range of 0.05 to 0.1 at lower recall (0 to 0.04).
In other parts of the curve it is very close to
the baseline (although hoffmann’s algorithm
is slightly better). In Table 1, we notice that
recall ofhoffmann-ilpis lower in comparison
with hoffmann’s algorithm.

On the Riedel dataset, we observe that
hoffmann-ilp has better precision (0.15 to
0.2) than MIMLRE within recall of 0.1.
At recall > 0.1, precision drops drastically.
This is because,hoffmann-ilppredicts signif-
icantly more nil labels. However, nil labels
are not part of the label-set in the P/R curves
reported in the community. In Table 2, we see
thathoffmann-ilphas higher precision (0.04)
compared to Hoffmann’s algorithm.

2. Performance ofnoisy-or
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Table 2 : Highest F1 point in P/R curve : Riedel Dataset
Precision Recall F1

Hoffmann 0.32054795 0.24049332 0.27480916
MIMLRE 0.28061223 0.28645834 0.28350515
Noisy-OR 0.317 0.18139774 0.23075178
Hoffmann-ilp 0.36701337 0.12692702 0.18862161

In Figure 1 we see that there is a big jump
in precision (around 0.4) ofnoisy-or com-
pared to Hoffmann’s model in most parts of
the curve on the KBP dataset. However, in
Figure 2 (Riedel dataset), we do not see such
a trend. Although, we do perform better than
MIMLRE (Surdeanu et al., 2012) (precision
> 0.15 for recall< 0.15).

On both datasets,noisy-orhas higher preci-
sion than MIMLRE, as seen from Tables 1
and 2. However, the recall reduces. More in-
vestigation in this direction is part of future
work.

5 Conclusion

In this paper we described an important addition to
Hoffmann’s model by the use of thenoisy-orsoft
constraint to further relax theat least oneassump-
tion. Since we posed the inference procedures in
Hoffmann using ILP, we could easily add this con-
straint during the training and inference.

Empirically, we showed that the resulting P/R
curves have a significant performance boost over
Hoffmann’s algorithm as a result of this newly
added constraint. Although our system has a lower
recall when compared to MIMLRE (Surdeanu et
al., 2012), it performs competitively w.r.t the pre-
cision at low recall.

As part of immediate future work, we would
like to improve the system recall. Our ILP for-
mulation provides a good framework to add new
type of constraints to the problem. In the future,
we would like to experiment with other constraints
like modeling the selectional preferences of entity
types.
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Abstract

Parameter tuning is an important problem in
statistical machine translation, but surpris-
ingly, most existing methods such as MERT,
MIRA and PRO are agnostic about search,
while search errors could severely degrade
translation quality. We propose a search-
aware framework to promote promising par-
tial translations, preventing them from be-
ing pruned. To do so we develop two met-
rics to evaluate partial derivations. Our tech-
nique can be applied to all of the three
above-mentioned tuning methods, and ex-
tensive experiments on Chinese-to-English
and English-to-Chinese translation show up
to +2.6 BLEU gains over search-agnostic
baselines.

1 Introduction

Parameter tuning has been a key problem for ma-
chine translation since the statistical revolution.
However, most existing tuning algorithms treat the
decoder as a black box (Och, 2003; Hopkins and
May, 2011; Chiang, 2012), ignoring the fact that
many potentially promising partial translations are
pruned by the decoder due to the prohibitively
large search space. For example, the popular
beam-search decoding algorithm for phrase-based
MT (Koehn, 2004) only explores O(nb) items for
a sentence of n words (with a beam width of b),
while the full search space is O(2nn2) or worse
(Knight, 1999).

As one of the very few exceptions to the
“search-agnostic” majority, Yu et al. (2013) and
Zhao et al. (2014) propose a variant of the per-
ceptron algorithm that learns to keep the refer-
ence translations in the beam or chart. How-
ever, there are several obstacles that prevent their
method from becoming popular: First of all, they
rely on “forced decoding” to track gold derivations
that lead to the reference translation, but in practice
only a small portion of (mostly very short) sen-

(a)

0 1 2 3 4

(b)

Figure 1: (a) Some potentially promising partial trans-
lations (in red) fall out of the beam (bin 2); (b) We
identify such partial translations and assign them higher
model scores so that they are more likely to survive the
search.

tence pairs have at least one such derivation. Sec-
ondly, they learn the model on the training set, and
while this does enable a sparse feature set, it is or-
ders of magnitude slower compared to MERT and
PRO.

We instead propose a very simple framework,
search-aware tuning, which does not depend on
forced decoding, and thus can be trained on all sen-
tence pairs of any dataset. The key idea is that,
besides caring about the rankings of the complete
translations, we also promote potentially promis-
ing partial translations so that they are more likely
to survive throughout the search, see Figure 1 for
illustration. We make the following contributions:

• Our idea of search-aware tuning can be ap-
plied (as a patch) to all of the three most
popular tuning methods (MERT, PRO, and
MIRA) by defining a modified objective func-
tion (Section 4).

• To measure the “promise” or “potential” of a
partial translation, we define a new concept
“potential BLEU” inspired by future cost in
MT decoding (Koehn, 2004) and heuristics in
A* search (Hart et al., 1968) (Section 3.2).
This work is the first study of evaluating met-
rics for partial translations.

• Our method obtains substantial and consistent
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improvements on both the large-scale NIST
Chinese-to-English and English-to-Chinese
translation tasks on top of MERT, MIRA, and
PRO baselines. This is the first time that con-
sistent improvements can be achieved with a
new learning algorithm under dense feature
settings (Section 5).

For simplicity reasons, in this paper we use
phrase-based translation, but our work has the po-
tential to be applied to other translation paradigms.

2 Review: Beam Search for PBMT
Decoding

We review beam search for phrase-based decoding
in our notations which will facilitate the discussion
of search-aware tuning in Section 4. Following Yu
et al. (2013), let 〈x, y〉 be a Chinese-English sen-
tence pair in the tuning set D, and

d = r1 ◦ r2 ◦ . . . ◦ r|d|

be a (partial) derivation, where each ri =
〈c(ri), e(ri)〉 is a rule, i.e., a phrase-pair. Let |c(r)|
be the number of Chinese words in rule r, and
e(d) ∆= e(r1) ◦ e(r2) . . . ◦ e(r|d|) be the English
prefix (i.e., partial translation) generated so far.

In beam search, each binBi(x) contains the best
k derivations covering exactly i Chinese words,
based on items in previous bins (see Figures 1
and 2):

B0(x) = {ε}
Bi(x) = topkw0

(
⋃
j=1..i

{d ◦ r | d∈Bi−j(x), |c(r)|=j})

where r is a rule covering j Chinese words, and
topkw0

(·) returns the top k derivations according
to the current model w0. As a special case, note
that top1

w0
(S) = argmaxd∈S w0 · Φ(d), so

top1
w0

(B|x|(x)) is the final 1-best result.1 See Fig-
ure 2 for an illustration.

3 Challenge: Evaluating Partial
Derivations

As mentioned in Section 1, the current mainstream
tuning methods such as MERT, MIRA, and PRO are

1Actually B|x|(x) is an approximation to the k-best list
since some derivations are merged by dynamic programming;
to recover those we can use Alg. 3 of Huang and Chiang
(2005).

0 1 2 3 4
B0(x) B1(x) B2(x) B3(x) B4(x)

Figure 2: Beam search for phrase-based decoding. The
item in red is top1

w0
(B4(x)), i.e., the 1-best result.

Traditional tuning only uses the final bin B4(x) while
search-aware tuning considers all binsBi(x) (i = 1..4).

all search-agnostic: they only care about the com-
plete translations from the last bin, B|x|(x), ignor-
ing all partial ones, i.e., Bi(x) for all i < |x|. As
a result, many potentially promising partial deriva-
tions never reach the final bin (See Figure 1).

To address this problem, our new “search-aware
tuning” aims to promote not only the accurate
translations in the final bin, but more importantly
those potentially promising partial derivations in
non-final bins. The key challenge, however, is
how to evaluate the “promise” or “potential” of
a partial derivation. In this Section, we develop
two such measures, a simple “partial BLEU” (Sec-
tion 3.1) and a more principled “potential BLEU”
(Section 3.2). In Section 4, we will then adapt tra-
ditional tuning methods to their search-aware ver-
sions using these partial evaluation metrics.

3.1 Solution 1: Simple and Naive Partial BLEU

Inspired by a trick in (Li and Khudanpur, 2009)
and (Chiang, 2012) for oracle or hope extraction,
we use a very simple metric to evaluate partial
translations for tuning. For a given derivation d,
the basic idea is to evaluate the (short) partial trans-
lation e(d) against the (full) reference y, but using
a “prorated” reference length proportional to c(d)
which is the number of Chinese words covered so
far in d:

|y| · |c(d)|/|x|
For example, if d has covered 2 words on a 8-
word Chinese sentence with a 12-word English
reference, then the “effective reference length” is
12×2/8 = 3. We call this method “partial BLEU”
since it does not complete the translation, and de-
note it by

δ̄|x|y (d) = −δ(y, e(d); reflen = |y| · |c(d)|/|x|).
(1)
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δ(y, y′) = −Bleu+1(y, y′) string distance metric

δy(d) = δ(y, e(d)) full derivations eval

δxy (d) =

{
δ̄
|x|
y (d) partial bleu (Sec. 3.1)
δ(y, ēx(d)) potential bleu (Sec. 3.2)

Table 1: Notations for evaluating full and partial deriva-
tions. Functions δ̄|x|y (·) and ēx(·) are defined by Equa-
tions 1 and 3, respectively.

where reflen is the effective length of reference
translations, see (Papineni et al., 2002) for details.

3.1.1 Problem with Partial BLEU
Simple as it is, this method does not work well in
practice because comparison of partial derivations
might be unfair for different derivations covering
different set of Chinese words, as it will naturally
favor those covering “easier” portions of the in-
put sentence (which we do observe empirically).
For instance, consider the following Chinese-to-
English example which involves a reordering of
the Chinese PP:

(2) wǒ
I

cóng
from

Shànghǎi
Shanghai

fēi
fly

dào
to

Běijı̄ng
Beijing

“I flew from Shanghai to Beijing”

Partial BLEU will prefer subtranslation “I from” to
“I fly” in bin 2 (covering 2 Chinese words) because
the former has 2 unigram mathces while the latter
only 1, even though the latter is almost identical
to the reference and will eventually lead to a com-
plete translation with substantially higher Bleu+1

score (matching a 4-gram “from Shanghai to Bei-
jing”). Similarly, it will prefer “I from Shanghai”
to “I fly from” in bin 3, without knowing that the
former will eventually pay the price of word-order
difference. This example suggests that we need a
more “global” or less greedy metric (see below).

3.2 Solution 2: Potential BLEU via Extension
Inspired by future cost computation in MT decod-
ing (Koehn, 2004), we define a very simple fu-
ture string by simply concatenating the best model-
score translation (with no reorderings) in each un-
covered span. Let bestw(x[i:j]) denote the best
monotonic derivation for span [i : j], then

future(d, x) = ◦[i:j]∈uncov(d,x) e(bestw(x[i:j]))

where ◦ is the concatenation operator and
uncov(d, x) returns an ordered list of uncovered

e(d) future(d, x)

x =

ēx(d) =

monotonicreordering

�

Figure 3: Example of the extension function ēx(·) (and
future string) on an incomplete derivation d.

spans of x. See Figure 3 for an example. This fu-
ture string resembles (inadmissible) heuristic func-
tion (Hart et al., 1968). Now the “extended trans-
lation” is simply a concatenation of the exist-
ing partial translation e(d) and the future string
future(d, x):

ēx(d) = e(d) ◦ future(d, x). (3)

Instead of calculating bestw(x[i:j]) on-the-fly
for each derivation d, we can precompute it for
each span [i : j] during future-cost computa-
tion, since the score of bestw(x[i:j]) is context-
free (Koehn, 2004). Algorithm 1 shows the
pseudo-code of computing bestw(x[i:j]). In prac-
tice, since future-cost precomputation already
solves the best (monotonic) model-score for each
span, is the only extra work for potential BLEU

is to record (for each span) the subtranslation that
achieves that best score. Therefore, the extra time
for potential BLEU is negligible (the time com-
plexity is O(n2), but just as in future cost, the con-
stant is much smaller than real decoding). The im-
plementation should require minimal hacking on a
phrase-based decoder (such as Moses).

To summarize the notation, we use δxy (d) to
denote a generic evaluation function for par-
tial derivation d, which could be instantiated in
two ways, partial bleu (δ̄|x|y (d)) or potential bleu
(δ(y, ēx(d))). See Table 1 for details. The next
Section will only use the generic notation δxy (d).

Finally, it is important to note that although
both partial and potential metrics are not BLEU-
specific, the latter is much easier to adapt to other
metrics such as TER since it does not change the
original Bleu+1 definition. By contrast, it is not
clear to us at all how to generalize partial BLEU to
partial TER.

4 Search-Aware MERT, MIRA, and PRO

Parameter tuning aims to optimize the weight vec-
tor w so that the rankings based on model score de-
fined by w is positively correlated with those based
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Algorithm 1 Computation of best Translations for Potential BLEU.
Input: Source sentence x, a rule set < for x, and w.
Output: Best translations e(bestw(x[i : j])) for all spans [i : j].

1: for l in (0..|x|) do
2: for i in (0..|x| − l) do
3: j = i+ l + 1
4: best score = −∞
5: if <[i : j] 6= ∅ then . <[i : j] is a subset of rules < for span [i : j].
6: bestw(x[i : j]) = argmaxr∈<[i:j] w ·Φ({r}) . {r} is a derivation consisting of one rule r.
7: best score = w ·Φ(bestw(x[i : j]))
8: for k in (i+ 1 .. i+ p) do . p is the phrase length limit

9: if best score < w ·Φ
(

bestw(x[i : k]) ◦ bestw(x[k : j])
)

then

10: bestw(x[i : j]) = bestw(x[i : k]) ◦ bestw(x[k : j])
11: best score = w ·Φ(bestw(x[i : j]))

on some translation metric (such as BLEU (Pap-
ineni et al., 2002)). In other words, for a train-
ing sentence pair 〈x, y〉, if a pair of its trans-
lations y1 = e(d1) and y2 = e(d2) satisfies
BLEU(y, y1) > BLEU(y, y2), then we expect w ·
Φ(d1) > w ·Φ(d2) to hold after tuning.

4.1 From MERT to Search-Aware MERT

Suppose D is a tuning set of 〈x, y〉 pairs. Tra-
ditional MERT learns the weight by iteratively
reranking the complete translations towards those
with higher BLEU in the final bin B|x|(x) for
each x in D. Formally, it tries to minimize the
document-level error of 1-best translations:

`MERT(D,w) =
⊕
〈x,y〉∈D

δy

(
top1

w(B|x|(x))
)
,

(4)
where top1

w(S) is the best derivation in S under
model w, and δ·(·) is the full derivation metric as
defined in Table 1; in this paper we use δy(y′) =
−BLEU(y, y′). Here we follow Och (2003) and
Lopez (2008) to simplify the notations, where the
⊕ operator (similar to

∑
) is an over-simplification

for BLEU which, as a document-level metric, is ac-
tually not factorizable across sentences.

Besides reranking the complete translations as
traditional MERT, our search-aware MERT (SA-
MERT) also reranks the partial translations such
that potential translations may survive in the mid-
dle bins during search. Formally, its objective
function is defined as follows:

`SA-MERT(D,w)=
⊕
〈x,y〉∈D

⊕
i=1..|x|

δxy

(
top1

w(Bi (x))
)

(5)

where top1
w(·) is defined in Eq. (4), and δxy (d),

defined in Table 1, is the generic metric for eval-
uating a partial derivation d which has two imple-
mentations (partial bleu or potential bleu). In or-
der words we can obtain two implementations of
search-aware MERT methods, SA-MERTpar and
SA-MERTpot.

Notice that the traditional MERT is a special
case of SA-MERT where i is fixed to |x|.

4.2 From MIRA to Search-Aware MIRA

MIRA is another popular tuning method for SMT.
It firstly introduced in (Watanabe et al., 2007), and
then was improved in (Chiang et al., 2008; Chiang,
2012; Cherry and Foster, 2012). Its main idea is to
optimize a weight such that the model score dif-
ference of a pair of derivations is greater than their
loss difference.

In this paper, we follow the objective function
in (Chiang, 2012; Cherry and Foster, 2012), where
only the violation between hope and fear deriva-
tions is concerned. Formally, we define d+(x, y)
and d−(x, y) as the hope and fear derivations in
the final bin (i.e., complete derivations):

d+(x, y) = argmax
d∈B|x|(x)

w0 ·Φ(d)− δy(d) (10)

d−(x, y) = argmax
d∈B|x|(x)

w0 ·Φ(d) + δy(d) (11)

where w0 is the current model. The loss function
of MIRA is in Figure 4. The update will be be-
tween d+(x, y) and d−(x, y).

To adapt MIRA to search-aware MIRA (SA-
MIRA), we need to extend the definitions of hope

1945



`MIRA(D,w) =
1

2C
‖w−w0‖2 +

∑
〈x,y〉∈D

[
∆δy

(
d+(x, y), d−(x, y)

)−w·∆Φ
(
d+(x, y), d−(x, y)

)]
+

(6)

`SA-MIRA(D,w)=
1

2C
‖w−w0‖2+

∑
〈x,y〉∈D

|x|∑
i=1

[
∆δxy

(
d+
i (x, y), d−i (x, y)

)−w·∆Φ
(
d+
i (x, y), d−i (x, y)

)]
+

(7)

`PRO(D,w) =
∑
〈x,y〉∈D

∑
d1,d2∈B|x|(x), ∆δy(d1,d2)>0

log
(

1 + exp(−w·∆Φ(d1, d2))
)

(8)

`SA-PRO(D,w) =
∑
〈x,y〉∈D

|x|∑
i=1

∑
d1,d2∈Bi (x), ∆δxy (d1,d2)>0

log
(

1 + exp(−w·∆Φ(d1, d2))
)

(9)

Figure 4: Loss functions of MIRA, SA-MIRA, PRO, and SA-PRO. The differences between traditional and search-
aware versions are highlighted in gray. The hope and fear derivations are defined in Equations 10–13, and we
define ∆δy(d1, d2) = δy(d1)− δy(d2), and ∆δx

y (d1, d2) = δx
y (d1)− δx

y (d2). In addition, [θ]+ = max{θ, 0}.

and fear derivations from the final bin to all bins:

d+
i (x, y) = argmax

d∈Bi (x)

w0 ·Φ(d)− δy(d) (12)

d−i (x, y) = argmax
d∈Bi (x)

w0 ·Φ(d) + δy(d) (13)

The new loss function for SA-MIRA is Eq. 7 in
Figure 4. Now instead of one update per sentence,
we will perform |x| updates, each based on a pair
d+
i (x, y) and d−i (x, y).

4.3 From PRO to Search-Aware PRO

Finally, the PRO algorithm (Hopkins and May,
2011; Green et al., 2013) aims to correlate the
ranking under model score and the ranking un-
der BLEU score, among all complete derivations
in the final bin. For each preference-pair d1, d2 ∈
B|x|(x) such that d1 has a higher BLEU score than
d2 (i.e., δy(d1) < δy(d2)), we add one positive ex-
ample Φ(d1) − Φ(d2) and one negative example
Φ(d2)−Φ(d1).

Now to adapt it to search-aware PRO (SA-
PRO), we will have many more examples to con-
sider: besides the final bin, we will include all
preference-pairs in the non-final bins as well. For
each bin Bi(x), for each preference-pairs d1, d2 ∈
Bi(x) such that d1 has a higher partial or potential
BLEU score than d2 (i.e., δxy (d1) < δxy (d2)), we
add one positive example Φ(d1)−Φ(d2) and one

negative example Φ(d2)−Φ(d1). In sum, search-
aware PRO has |x| times more examples than tradi-
tional PRO. The loss functions of PRO and search-
aware PRO are defined in Figure 4.

5 Experiments

We evaluate our new tuning methods on two large
scale NIST translation tasks: Chinese-to-English
(CH-EN) and English-to-Chinese (EN-CH) tasks.

5.1 System Preparation and Data

We base our experiments on Cubit2 (Huang and
Chiang, 2007), a state-of-art phrase-based system
in Python. We set phrase-limit to 7, beam size to
30 and distortion limit 6. We use the 11 dense
features from Moses (Koehn et al., 2007), which
can lead to good performance and are widely used
in almost all SMT systems. The baseline tuning
methods MERT (Och, 2003), MIRA (Cherry and
Foster, 2012), and PRO (Hopkins and May, 2011)
are from the Moses toolkit, which are batch tuning
methods based on k-best translations. The search-
aware tuning methods are called SA-MERT, SA-
MIRA, and SA-PRO, respectively. Their partial
BLEU versions are marked with superscript 1 and
their potential BLEU versions are marked with su-
perscript 2, as explained in Section 3. All these
search-aware tuning methods are implemented on
the basis of Moses toolkit. They employ the de-

2http://www.cis.upenn.edu/˜lhuang3/cubit/
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Methods nist03 nist04 nist05 nist06 nist08 avg
MERT 33.6 35.1 33.4 31.6 27.9 –

SA-MERTpar -0.2 +0.0 +0.1 -0.1 -0.1 –
SA-MERTpot +0.8 +1.1 +0.9 +1.7 +1.5 +1.2

MIRA 33.5 35.2 33.5 31.6 27.6 –
SA-MIRApar +0.3 +0.3 +0.4 +0.4 +0.6 –
SA-MIRApot +1.3 +1.6 +1.4 +2.2 +2.6 +1.8

PRO 33.3 35.1 33.3 31.1 27.5 –
∗SA-PROpar -2.0 -2.7 -2.2 -1.0 -1.7 –
∗SA-PROpot +0.8 +0.5 +1.0 +1.6 +1.6 +1.1

Table 2: CH-EN task: BLEU scores on test sets (nist03, nist04, nist05, nist06, and nist08). par: partial BLEU; pot:
potential BLEU. ∗: SA-PRO tunes on only 109 short sentences (with less than 10 words) from nist02.

Final bin All bins
MERT 35.5 28.2

SA-MERT -0.1 +3.1

Table 3: Evaluation on nist02 tuning set using two
methods: BLEU is used to evaluate 1-best complete
translations in the final bin; while potential BLEU is
used to evaluate 1-best partial translations in all bins.
The search-aware objective cares about (the potential
of) all bins, not just the final bin, which can explain this
result.

fault settings following Moses toolkit: for MERT

and SA-MERT, the stop condition is defined by the
weight difference threshold; for MIRA, SA-MIRA,
PRO and SA-PRO, their stop condition is defined
by max iteration set to 25; for all tuning methods,
we use the final weight for testing.

The training data for both CH-EN and EN-CH

tasks is the same, and it is collected from the
NIST2008 Open Machine Translation Campaign.
It consists of about 1.8M sentence pairs, including
about 40M/48M words in Chinese/English sides.
For CH-EN task, the tuning set is nist02 (878
sents), and test sets are nist03 (919 sents), nist04
(1788 sents), nist05 (1082 sents), nist06 (616 sents
from news portion) and nist08 (691 from news por-
tion). For EN-CH task, the tuning set is ssmt07
(995 sents)3, and the test set is nist08 (1859 sents).
For both tasks, all the tuning and test sets contain
4 references.

We use GIZA++ (Och and Ney, 2003) for word
alignment, and SRILM (Stolcke, 2002) for 4-gram
language models with the Kneser-Ney smoothing

3On EN-CH task, there is only one test set available for us,
and thus we use ssmt07 as the tuning set, which is provided
at the Third Symposium on Statistical Machine Translation
(http://mitlab.hit.edu.cn/ssmt2007.html).

option. The LM for EN-CH is trained on its target
side; and that for CH-EN is trained on the Xin-
hua portion of Gigaword. We use BLEU-4 (Pap-
ineni et al., 2002) with “average ref-len” to evalu-
ate the translation performance for all experiments.
In particular, the character-based BLEU-4 is em-
ployed for EN-CH task. Since all tuning meth-
ods involve randomness, all scores reported are av-
erage of three runs, as suggested by Clark et al.
(2011) for fairer comparisons.

5.2 Main Results on CH-EN Task

Table 2 depicts the main results of our methods on
CH-EN translation task. On all five test sets, our
methods consistently achieve substantial improve-
ments with two pruning options: SA-MERT pot

gains +1.2 BLEU points over MERT on average;
and SA-MIRApot gains +1.8 BLEU points over
MIRA on average as well. SA-PROpot, however,
does not work out of the box when we use the en-
tire nist02 as the tuning set, which might be at-
tributed to the “Monster” behavior (Nakov et al.,
2013). To alleviate this problem, we only use the
109 short sentences with less than 10 words from
nist02 as our new tuning data. To our supurise,
this trick works really well (despite using much
less data), and also made SA-PROpot an order of
magnitude faster. This further confirms that our
search-aware tuning is consistent across all tuning
methods and datasets.

As discussed in Section 3, evaluation metrics
of partial derivations are crucial for search-aware
tuning. Besides the principled “potential BLEU”
version of search-aware tuning (i.e. SA-MERTpot,
SA-MIRApot, and SA-PROpot), we also run the
simple “partial BLEU” version of search-aware
tuning (i.e. SA-MERTpar, SA-MIRApar, and SA-
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Figure 5: BLEU scores against beam size on nist05.
Our search-aware tuning can achieve (almost) the same
BLEU scores with much smaller beam size (beam of 4
vs. 16).

methods nist02 nist05

1-best
MERT 35.5 33.4

SA-MERT -0.1 +0.9

Oracle
MERT 44.3 41.1

SA-MERT +0.5 +1.6

Table 4: The k-best oracle BLEU comparison between
MERT and SA-MERT.

PROpar). In Table 2, we can see that they may
achieve slight improvements over tradition tuning
on some datasets, but SA-MERTpot, SA-MIRApot,
and SA-PROpot using potential BLEU consistently
outperform them on all the datasets.

Even though our search-aware tuning gains sub-
stantially on all test sets, it does not gain signif-
icantly on nist02 tuning set. The main reason is
that, search-aware tuning optimizes an objective
(i.e. BLEU for all bins) which is different from
the objective for evaluation (i.e. BLEU for the final
bin), and thus it is not quite fair to evaluate the
complete translations for search-aware tuning as
the same done for traditional tuning on the tuning
set. Actally, if we evaluate the potential BLEU for
all partial translations, we find that search-aware
tuning gains about 3.0 BLEU on nist02 tuning set,
as shown in Table 3.

5.3 Analysis on CH-EN Task

Different beam size. Since our search-aware tun-
ing considers the rankings of partial derivations
in the middle bins besides complete ones in the
last bin, ideally, if the weight learned by search-
aware tuning can exactly evaluate partial deriva-

Diversity nist02 nist05
MERT 0.216 0.204

SA-MERT 0.227 0.213

Table 5: The diversity comparison based on the k-best
list in the final bin on both tuning and nist05 test sets
by tuning methods. The higher the metric is, the more
diverse the k-best list is.

tions, then accurate partial derivations will rank
higher according to model score. In this way, even
with small beam size, these accurate partial deriva-
tions may still survive in the bins. Therefore, it
is expected that search-aware tuning can achieve
good performance with smaller beam size. To
justify our conjecture, we run SA-MERTpot with
different beam size (2,4,8,16,30,100), its testing
results on nist05 are depicted in Figure 5. our
mehtods achieve better trade-off between perfor-
mance and efficiey. Figure 5 shows that search-
aware tuning is consistent with all beam sizes, and
as a by-product, search-aware MERT with a beam
of 4 can achieve almost identical BLEU scores to
MERT with beam of 16.

Oracle BLEU. In addition, we examine the BLEU

ponits of oracle for MERT and SA-MERT. We
use the weight tuned by MERT and SA-MERT for
k-best decoding on nist05 test set, and calculate
the oracle over these two k-best lists. The oracle
BLEU comparison is shown in Table 4. On nist05
test set, for MERT the oracle BLEU is 41.1; while
for SA-MERT its oracle BLEU is 42.7, i.e. with 1.6
BLEU improvements. Although search-aware tun-
ing employs the objective different from the objec-
tive of evaluation on nist02 tuning set, it still gains
0.5 BLEU improvements.

Diversity. A k-best list with higher diversity can
better represent the entire decoding space, and thus
tuning on such a k-best list may lead to better
tesing performance (Gimpel et al., 2013). Intu-
itively, tuning with all bins will encourage the di-
versity in prefix, infix and suffix of complete trans-
lations in the final bin. To testify this, we need a
diversity metric.

Indeed, Gimpel et al. (2013) define a diversity
metric based on the n-gram matches between two
sentences y and y′ as follows:

d(y, y′) = −
|y|−q∑
i=1

|y′|−q∑
j=1

[[yi:i+q = y′j:j+q]]
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Methods
tuning set test sets (4-refs)

set # refs # sents # words nist03 nist04 nist05 nist06 nist08
MERT nist02 4 878 23181 33.6 35.1 33.4 31.6 27.9

SA-MERTpot nist02 4 878 23181 34.4 36.2 34.3 33.3 29.4
MAXFORCE nist02-px 1 434 6227 29.0 30.3 28.7 26.8 24.1
MAXFORCE train-r-part 1 1225 22684 31.7 33.5 31.5 30.3 26.7

MERT nist02-r 1 92 1173 31.6 32.7 31.3 29.3 25.9
SA-MERTpot nist02-r 1 92 1173 33.5 35.0 33.4 31.5 28.0

Table 6: Comparisons with MAXFORCE in terms of BLEU. nist02-px is the non-trivial reachable prefix-data from
nist02 via forced decoding; nist02-r is a subset of nist02-px consisting of the fully reachable data; train-r is a
subset of fully reachable data from training data that is comparable in size to nist02. All experiments use only
dense features.

where q = n− 1, and [[x]] equals to 1 if x is true, 0
otherwise. This metric, however, has the following
critical problems:

• it is not length-normalized: longer strings will
look as if they are more different.

• it suffers from duplicates in n-grams. Af-
ter normalization, d(y, y) will exceed -1 for
any y. In the extreme case, consider y1 =
“the the the the” and y2 = “the ... the” with
10 the’s then will be considered identical af-
ter normalization by length.

So we define a balanced metric based on their met-
ric

d′(y, y′) = 1− 2× d(y, y′)
d(y, y) + d(y′, y′)

which satisfies the following nice properties:

• d′(y, y) = 0 for all y;

• 0 ≤ d′(y, y′) ≤ 1 for all y, y′;

• d′(y, y′) = 1 if y and y′ is completely dis-
joint.

• it does not suffer from duplicates, and can dif-
ferentiate y1 and y2 defined above.

With this new metric, we evaluate the diversity
of k-best lists for both MERT and SA-MERT. As
shown in Table 5, on both tuning and test sets the
k-best list generated by SA-MERT is more diverse.

5.4 Comparison with Max-Violation
Perceptron

Our method considers the rankings of partial
derivations, which is simlar to MAXFORCE

Bùshı́ yǔ Shālóng jǔxı́ng huı̀tán
Bush and Sharon held a meeting

Bush held talks with Sharon

qiāngshǒu bèi jı̌ngfāng jı̄bı̀
police killed the gunman

the gunman was shot dead
⇓

Bùshı́ yǔ Shālóng jǔxı́ng huı̀tán Bush and Sharon held a meeting
Bùshı́ yǔ Shālóng jǔxı́ng huı̀tán Bush held talks with Sharon

qiāngshǒu bèi jı̌ngfāng jı̄bı̀ police killed the gunman
qiāngshǒu bèi jı̌ngfāng jı̄bı̀ the gunman was shot dead

Figure 6: Transformation of a tuning set in forced de-
coding for MAXFORCE: the original tuning set (on the
top) contains 2 source sentences with 2 references for
each; while the transformed set (on the bottom) con-
tains 4 source sentences with one reference for each.

method (Yu et al., 2013), and thus we re-
implement MAXFORCE method. Since the nist02
tuning set contains 4 references and forced decod-
ing is performed for only one reference, we enlarge
the nist02 set to a variant set following the trans-
formation in Figure 6, and obtain a variant tun-
ing set denoted as nist02-px, which consists of 4-
times sentence-pairs. On nist02-px, the non-trivial
reachable prefix-data only accounts for 12% sen-
tences and 7% words. Both these sentence-level
and the word-level percentages are much lower
than those on the training data as shown in Ta-
ble 3 from (Yu et al., 2013). This is because there
are many OOV words on a tuning set. We run the
MAXFORCE with dense feature setting on nist02-
px and its testing results are shown in Table 6. We
can see that on all the test sets, its testing perfor-
mance is lower than that of SA-MERTpot tuning on
nist02 with about 5 BLEU points.

For more direct comparisons, we run MERT and
SA-MERTpot on a data set similar to nist02-px. We
pick up the fully reachable sentences from nist02-
px, remove the sentence pairs with the same source
side, and get a new tuning set denoted as nist02-r.
When tuning on nist02-r, we find that MERT is bet-
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Methods tuning-set nist08
MERT ssmt07 31.3

MAXFORCE train-r-part 29.9
SA-MERTpar ssmt07 31.3
SA-MERTpot ssmt07 31.7

Table 7: EN-CH task: BLEU scores on nist08 test set for
MERT, SA-MERT, and MAXFORCE on different tun-
ing sets. train-r-part is a part of fully reachable data
from training data via forced decoding. All the tuning
methods run with dense feature set.

ter than MAXFORCE,4 and SA-MERTpot are much
better than MERT on all the test sets. In addition,
we select about 1.2k fully reachable sentence pairs
from training data, and run the forced decoding
on this new tuning data (denoted as train-r-part),
which is with similar size to nist02. 5 With more
tuning data, the performance of max-violation is
improved largely, but it is still underperformed by
SA-MERTpot.

5.5 Results on EN-CH Translation Task

We also run our search-aware tuning method on
EN-CH task. We use SA-MERT as the representa-
tive of search-aware tuning methods, and compare
its two versions with other tuning methods MERT,
MAXFORCE. For MAXFORCE, we first run forced
decoding on the training data and then select about
1.2k fully reachable sentence pairs as its tuning
set (denoted as train-r-part). For MERT, SA-
MERT pot, and SA-MERT par, their tuning set is
ssmt07. Table 7 shows that SA-MERTpot is much
better than MAXFORCE, i.e. it achieves 0.4 BLEU

improvements over MERT. Finally, comparison
between SA-MERT pot and SA-MERT par shows
that the potential BLEU is better for evaluation of
partial derivations.

5.6 Discussions on Tuning Efficiency

As shown in Figure 2, search-aware tuning consid-
ers all partial translations in the middle bins beside
all complete translations in the last bin, and thus its
total number of training examples is much greater
than that of the traditional tuning. In details, sup-

4Under the dense feature setting, MAXFORCE is worse
than standard MERT. This result is consistent with that in
Figure 12 of (Yu et al., 2013).

5We run MAXFORCE on train-r-part, i.e. a part of reach-
able data instead of the entire reachable data, as we found
that more tuning data does not necessarily lead to better test-
ing performance under dense feature setting in our internal
experiments.

Optimization time MERT MIRA PRO

basline 3 2 2
search-aware 50 7 6

Table 8: Search-aware tuning slows down MERT sig-
nificantly, and MIRA and PRO moderately. The time (in
minutes) is for optimization only (excluding decoding)
and measured at the last iteration during the entire tun-
ing (search aware tuning does not increase the number
of iterations in our experiments). The decoding time is
20 min. on a single CPU but can be parallelized.

pose the tuning data consists of two sentences with
length 10 and 30, respectively. Then, for tradi-
tional tuning its number of training examples is 2;
but for search-aware tuning, the total number is 40.
More training examples makes our search-aware
tuning slower than the traditional tuning.

Table 8 shows the training time comparisons
between search-aware tuning and the traditional
tuning. From this Table, one can see that both
SA-MIRA and SA-PRO are with the same order
of magtitude as MIRA and PRO; but SA-MERT

is much slower than MERT. The main reason is
that, as the training examples increase dramati-
cally, the envelope calculation for exact line search
(see (Och, 2003)) in MERT is less efficient than the
update based on (sub-)gradient with inexact line
search in MIRA and PRO.

One possible solution to speed up SA-MERT is
the parallelization but we leave it for future work.

6 Related Work

Many tuning methods have been proposed for
SMT so far. These methods differ by the ob-
jective function or training mode: their objective
functions are based on either evaluation-directed
loss (Och, 2003; Galley and Quirk, 2011; Gal-
ley et al., 2013) or surrogate loss (Hopkins and
May, 2011; Gimpel and Smith, 2012; Eidelman
et al., 2013); they are either batch (Och, 2003;
Hopkins and May, 2011; Cherry and Foster, 2012)
or online mode (Watanabe, 2012; Simianer et al.,
2012; Flanigan et al., 2013; Green et al., 2013).
These methods share a common characteristic:
they learn a weight by iteratively reranking a set of
complete translations represented by k-best (Och,
2003; Watanabe et al., 2007; Chiang et al., 2008)
or lattice (hypergraph) (Tromble et al., 2008; Ku-
mar et al., 2009), and they do not care about search
errors that potential partial translations may be
pruned during decoding, even if they agree with

1950



that their decoders are built on the beam pruning
based search.

On the other hand, it is well-known that search
errors can undermine the standard training for
many beam search based NLP systems (Huang et
al., 2012). As a result, Collins and Roark (2004)
and Huang et al. (2012) propose the early-update
and max-violation update to deal with the search
errors. Their idea is to update on prefix or par-
tial hypotheses when the correct solution falls out
of the beam. This idea has been successfully
used in many NLP tasks and improves the perfor-
mance over the state-of-art NLP systems (Huang
and Sagae, 2010; Huang et al., 2012; Zhang et al.,
2013).

Goldberg and Nivre (2012) propose the concept
of “dynamic oracle” which is the absolute best po-
tential of a partial derivation, and is more akin to
a strictly admissible heuristic. This idea inspired
and is closely related to our potential BLEU, except
that in our case, computing an admissible heuristic
is too costly, so our potential BLEU is more like an
average potential.

Gesmundo and Henderson (2014) also consider
the rankings between partial translation pairs as
well. However, they evaluate a partial translation
through extending it to a complete translation by
re-decoding, and thus they need many passes of
decoding for many partial translations, while ours
only need one pass of decoding for all partial trans-
lations and thus is much more efficient. In sum-
mary, our tuning framework is more general and
has potential to be employed over all the state-of-
art tuning methods mentioned above, even though
ours is only tested on three popular methods.

7 Conclusions and Future Work

We have presented a simple yet powerful approach
of “search-aware tuning” by promoting promising
partial derivations, and this idea can be applied to
all three popular tuning methods. To solve the key
challenge of evaluating partial derivations, we de-
velop a concept of “potential BLEU” inspired by
future cost in MT decoding. Extensive experi-
ments confirmed substantial BLEU gains with only
dense features. We believe our framework can be
applied to sparse feature settings and other transla-
tion paradigms, and potentially to other structured
prediction problems (such as incremental parsing)
as well.
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Abstract

Data-driven refinement of non-terminal
categories has been demonstrated to be
a reliable technique for improving mono-
lingual parsing with PCFGs. In this pa-
per, we extend these techniques to learn
latent refinements of single-category syn-
chronous grammars, so as to improve
translation performance. We compare two
estimators for this latent-variable model:
one based on EM and the other is a spec-
tral algorithm based on the method of mo-
ments. We evaluate their performance on a
Chinese–English translation task. The re-
sults indicate that we can achieve signifi-
cant gains over the baseline with both ap-
proaches, but in particular the moments-
based estimator is both faster and performs
better than EM.

1 Introduction

Translation models based on synchronous context-
free grammars (SCFGs) treat the translation prob-
lem as a context-free parsing problem. A parser
constructs trees over the input sentence by pars-
ing with the source language projection of a syn-
chronous CFG, and each derivation induces trans-
lations in the target language (Chiang, 2007).
However, in contrast to syntactic parsing, where
linguistic intuitions can help elucidate the “right”
tree structure for a grammatical sentence, no such
intuitions are available for synchronous deriva-
tions, and so learning the “right” grammars is a
central challenge.

Of course, learning synchronous grammars
from parallel data is a widely studied problem
(Wu, 1997; Blunsom et al., 2008; Levenberg et
al., 2012, inter alia). However, there has been
less exploration of learning rich non-terminal cat-
egories, largely because previous efforts to learn

such categories have been coupled with efforts
to learn derivation structures—a computationally
formidable challenge. One popular approach has
been to derive categories from source and/or target
monolingual grammars (Galley et al., 2004; Zoll-
mann and Venugopal, 2006; Hanneman and Lavie,
2013). While often successful, accurate parsers
are not available in many languages: a more ap-
pealing approach is therefore to learn the category
structure from the data itself.

In this work, we take a different approach to
previous work in synchronous grammar induc-
tion by assuming that reasonable tree structures
for a parallel corpus can be chosen heuristically,
and then, fixing the trees (thereby enabling us to
sidestep the worst of the computational issues), we
learn non-terminal categories as latent variables to
explain the distribution of these synchronous trees.
This technique has a long history in monolingual
parsing (Petrov et al., 2006; Liang et al., 2007;
Cohen et al., 2014), where it reliably yields state-
of-the-art phrase structure parsers based on gen-
erative models, but we are the first to apply it to
translation.

We first generalize the concept of latent PCFGs
to latent-variable SCFGs (§2). We then follow
by a presentation of the tensor-based formulation
for our parameters, a representation that makes it
convenient to marginalize over latent states. Sub-
sequently, two methods for parameter estimation
are presented (§4): a spectral approach based on
the method of moments, and an EM-based likeli-
hood maximization. Results on a Chinese–English
evaluation set (§5) indicate significant gains over
baselines and point to the promise of using latent-
variable synchronous grammars in conjunction
with a smaller, simpler set of rules instead of un-
wieldy and bloated grammars extracted via exist-
ing heuristics, where a large number of context-
independent but un-generalizable rules are uti-
lized. Hence, the hope is that this work pro-
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motes the move towards translation models that
directly model the conditional likelihood of trans-
lation rules via (potentially feature-rich) latent-
variable models which leverage information con-
tained in the synchronous tree structure, instead
of relying on a heuristic set of features based on
empirical relative frequencies (Koehn et al., 2003)
from non-hierarchical phrase-based translation.

2 Latent-Variable SCFGs

Before discussing parameter learning, we in-
troduce latent-variable synchronous context-free
grammars (L-SCFGs) and discuss an inference al-
gorithm for marginalizing over latent states.

We extend the definition of L-PCFGs (Mat-
suzaki et al., 2005; Petrov et al., 2006) to syn-
chronous grammars as used in machine transla-
tion (Chiang, 2007). A latent-variable SCFG (L-
SCFG) is a 6-tuple (N ,m, ns, nt, π, t) where:

• N is a set of non-terminal (NT) symbols in the
grammar. For hierarchical phrase-based transla-
tion (HPBT), the set consists of only two sym-
bols, X and a goal symbol S.
• [m] is the set of possible hidden states associ-

ated with NTs. Aligned pairs of NTs across the
source and target languages share the same hid-
den state.
• [ns] is the set of source side words, i.e., the

source-side vocabulary, with [ns] ∩N = ∅.
• [nt] is the set of target side words, i.e., the

target-side vocabulary, with [nt] ∩N = ∅.
• The synchronous production rules compose a

setR = R0 ∪R1 ∪R2:

• Arity 2 (binary) rules (R2):

a(h1)→ 〈α1b(h2)α2c(h3)α3, β1b(h2)β2c(h3)β3〉

or

a(h1)→ 〈α1b(h2)α2c(h3)α3, β1c(h2)β2b(h3)β3〉

where a, b, c ∈ N , h1, h2, h3 ∈ [m],
α1, α2, α3 ∈ [ns]∗ and β1, β2, β3 ∈ [nt]∗.

• Arity 1 (unary) rules (R1):

a(h1)→ 〈α1b(h2)α2, β1b(h2)β2〉

where a, b ∈ N , h1, h2 ∈ [m], α1, α2 ∈ [ns]∗

and β, β2 ∈ [nt]∗.

• Pre-terminal rules (R0): a(h1) → 〈α, β〉
where a ∈ N , α ∈ [nt]∗ and β ∈ [ns]∗.

Each of these rules is associated with a proba-
bility t(a(h1) → γ|a, h1) where γ is the right-
hand side (RHS) of the rule.
• For a ∈ N , h ∈ [m], π(a, h) is a parameter

specifying the root probability of a(h).

A skeletal tree (s-tree) for a sentence is the set
of rules in the synchronous derivation of that sen-
tence, without any additional latent state informa-
tion or decoration. A full tree consists of an s-
tree r1, . . . , rN together with values h1, . . . , hN
for every NT in the tree. An important point to
keep in mind in comparison to L-PCFGs is that
the right-hand side (RHS) non-terminals of syn-
chronous rules are aligned pairs across the source
and target languages.

In this work, we refine the one-category gram-
mar introduced by Chiang (2007) for HPBT in or-
der to learn additional latent NT categories. Thus,
the following discussion is restricted to these kinds
of grammars, although the method is equally ap-
plicable in other scenarios, e.g., the extended tree-
to-string transducer (xRs) formalism (Huang et
al., 2006; Graehl et al., 2008) commonly used in
syntax-directed translation, and phrase-based MT
(Koehn et al., 2003).

Marginal Inference with L-SCFGs. For a pa-
rameter t of rule r, the latent state h1 attached to
the left-hand side (LHS) NT of r is associated with
the outside tree for the sub-tree rooted at the LHS,
and the states attached to the RHS NTs are asso-
ciated with the inside trees of that NT. Since we
do not assume conditional independence of these
states, we need to consider all possible interac-
tions, which can be compactly represented as a
3rd-order tensor in the case of a binary rule, a ma-
trix (i.e., a 2nd-order tensor) for unary rules, and
a vector for pre-terminal (lexical) rules. Prefer-
ences for certain outside-inside tree combinations
are reflected in the values contained in these tensor
structures. In this manner, we intend to capture in-
teractions between non-local context of a phrase,
which can typically be represented via features de-
fined over outside trees of the node spanning the
phrase, and the interior context, correspondingly
defined via features over the inside trees. We re-
fer to these tensor structures collectively as Cr for
rules r ∈ R, which encompass the parameters t.

For r ∈ R0 : Cr ∈ Rm×1; similarly for
r ∈ R1 : Cr ∈ Rm×m and r ∈ R2 : Cr ∈
Rm×m×m. We also maintain a vector CS ∈ R1×m

corresponding to the parameters π(S, h) for the
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Inputs: Sentence f1 . . . fN , L-SCFG (N , S,m, n), param-
eters Cr ∈ R(m×m×m), ∈ R(m×m), or ∈ R(m×1) for all
r ∈ R, CS ∈ R(1×m), hypergraphH.
Data structures:
For each node q ∈ H:

• α(q) ∈ Rm×1 is a column vector of inside terms.
• β(q) ∈ R1×m is a row vector of outside terms.
• For each incoming edge e ∈ B(q) to node q, µ(e) is a

marginal probability for edge (rule) e.

Algorithm:
. Inside Computation
For nodes q in topological order inH,

α(q) = 0
For each incoming edge e ∈ B(q),

tail = t(e), rule = r(e)
if |tail| = 0, then α(q) = α(q) + C rule

else if |tail| = 1, then α(q) = α(q) +
C rule ×1 α(tail0)

else if |tail| = 2, then α(q) = α(q) +
C rule ×2 α(tail1)×1 α(tail0)

. Outside Computation
For q ∈ H,

β(q) = 0
β(goal) = CS

For q in reverse topological order inH,
For each incoming edge e ∈ B(q),

tail = t(e), rule = r(e)
if |tail| = 1, then

β(tail0) = β(tail0) + β(q)×0 C
rule

else if |tail| = 2, then
β(tail0) = β(tail0) +
β(q)×0 C

rule ×2 α(tail1)
β(tail1) = β(tail1) +
β(q)×0 C

rule ×1 α(tail0)
.Edge Marginals
Sentence probability g = α(goal)× β(goal)
For edge e ∈ H,

head = h(e), tail = t(e), rule = r(e)
if |tail| = 0, then µ(e) = (β(head)×0 C

rule)/g
else if |tail| = 1, then µ(e) = (β(head) ×0 C

rule ×1

α(tail0))/g
else if |tail| = 2, then µ(e) = (β(head) ×0 C

rule ×2

α(tail1)×1 α(tail0))/g

Figure 1: The tensor form of the hypergraph inside-
outside algorithm, for calculation of rule marginals µ(e). A
slight simplification in the marginal computation yields NT
marginals for spans µ(X, i, j). B(q) returns the incoming hy-
peredges for node q, and h(e), t(e), r(e) return the head node,
tail nodes, and rule for hyperedge e.

goal node (root). These parameters participate in
tensor-vector operations: a 3rd-order tensor Cr2
can be multiplied along each of its three modes
(×0,×1,×2), and if multiplied by an m × 1 vec-
tor, will produce an m×m matrix.1 Note that ma-
trix multiplication can be represented by ×1 when
multiplying on the right and ×0 when multiplying
on the left of the matrix. The decoder computes
marginal probabilities for each skeletal rule in the

1This operation is sometimes called a contraction.

parse forest of a source sentence by marginaliz-
ing over the latent states, which in practice corre-
sponds to simple tensor-vector products. This op-
eration is not dependent on the manner in which
the parameters were estimated.

Figure 1 presents the tensor version of the
inside-outside algorithm for decoding L-SCFGs.
The algorithm takes as input the parse forest of
the source sentence represented as a hypergraph
(Klein and Manning, 2001), which is computed
using a bottom-up parser with Earley-style rules
similar to the algorithm in Chiang (2007). Hyper-
graphs are a compact way to represent a forest of
multiple parse trees. Each node in the hypergraph
corresponds to an NT span, and can have multiple
incoming and outgoing hyperedges. Hyperedges,
which connect one or more tail nodes to a single
head node, correspond exactly to rules, and tail or
head nodes correspond to children (RHS NTs) or
parent (LHS NT). The function B(q) returns all in-
coming hyperedges to a node q, i.e., all rules such
that the LHS NT of the rule corresponds to the NT
span of the node q. The algorithm computes inside
and outside probabilities over the hypergraph us-
ing the tensor representations, and converts these
probabilities to marginal rule probabilities. It is
similar to the version presented in Cohen et al.
(2014), but adapted to hypergraph parse forests.

The complexity of this decoding algorithm is
O(n3m3|G|) where n is the length of the input
sentence, m is the number of latent states, and |G|
is the number of production rules in the grammar
without latent-variable annotations (i.e., m = 1).2

The bulk of the computation is a series of tensor-
vector products of relatively small size (each di-
mension is of length m), which can be computed
very quickly and in parallel. The tensor computa-
tions can be significantly sped up using techniques
described by Cohen and Collins (2012), so that
they are linear in m and not cubic.

3 Derivation Trees for Parallel Sentences

To estimate the parameters t and π of an L-
SCFG (discussed in detail in the next section),
we assume the existence of a dataset composed
of synchronous s-trees, which can be acquired
from word alignments. Normally in phrase-based
translation models, we consider all possible phrase

2In practice, the term m3|G| can be replaced with a
smaller term, which separates the rules inG by the number of
NTs on the RHS. This idea relates to the notion of “effective
grammar size” which we discuss in §5.
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pairs consistent with the word alignments and es-
timate features based on surface statistics associ-
ated with the phrase pairs or rules. The weights of
these features are then learned using a discrimina-
tive training algorithm (Och, 2003; Chiang, 2012,
inter alia). In contrast, in this work we restrict
the number of possible synchronous derivations
for each sentence pair to just one; thus, derivation
forests do not have to be considered, making pa-
rameter estimation more tractable.3

To achieve this objective, for each sentence in
the training data we extract the minimal set of
synchronous rules consistent with the word align-
ments, as opposed to the composed set of rules
(Galley et al., 2006). Composed rules are ones that
can be formed from smaller rules in the grammar;
with these rules, there are multiple synchronous
trees consistent with the alignments for a given
sentence pair, and thus the total number of applica-
ble rules can be combinatorially larger than if we
just consider the set of rules that cannot be formed
from other rules, namely the minimal rules. The
rule types across all sentence pairs are combined
to form a minimal grammar.4 To extract a set of
minimal rules, we use the linear-time extraction
algorithm of Zhang et al. (2008). We give a rough
description of their method below, and refer the
reader to the original paper for additional details.

The algorithm returns a complete minimal
derivation tree for each word-aligned sentence
pair, and generalizes an approach for finding all
common intervals (pairs of phrases such that no
word pair in the alignment links a word inside
the phrase to a word outside the phrase) between
two permutations (Uno and Yagiura, 2000) to se-
quences with many-to-many alignment links be-
tween the two sides, as in word alignment. The
key idea is to encode all phrase pairs of a sen-
tence alignment in a tree of size proportional to
the source sentence length, which they call the
normalized decomposition tree. Each node cor-
responds to a phrase pair, with larger phrase spans
represented by higher nodes in the tree. Construct-
ing the tree is analogous to finding common in-
tervals in two permutations, a property that they
leverage to propose a linear-time algorithm for tree

3For future work, we will consider efficient algorithms for
parameter estimation over derivation forests, since there may
be multiple valid ways to explain the sentence pair via a syn-
chronous tree structure.

4Table 2 presents a comparison of grammar sizes for our
experiments (§5.1).

extraction. Converting the tree to a set of minimal
SCFG rules for the sentence pair is straightfor-
ward, by replacing nodes corresponding to spans
with lexical items or NTs in a bottom-up manner.5

By using minimal rules as a starting point
instead of the traditional heuristically-extracted
rules (Chiang, 2007) or arbitrary compositions of
minimal rules (Galley et al., 2006), we are also
able to explore the transition from minimal rules
to composed ones in a principled manner by en-
coding contextual information through the latent
states. Thus, a beneficial side effect of our re-
finement process is the creation of more context-
specific rules without increasing the overall size
of the baseline grammar, instead holding this in-
formation in our parameters Cr.

4 Parameter Estimation for L-SCFGs

We explore two methods for estimating the param-
eters Cr of the model: a likelihood-maximization
approach based on EM (Dempster et al., 1977),
and a spectral approach based on the method of
moments (Hsu et al., 2009; Cohen et al., 2014),
where we identify a subspace using a singular
value decomposition (SVD) of the cross-product
feature space between inside and outside trees and
estimate parameters in this subspace.

Figure 2 presents a side-by-side comparison of
the two algorithms, which we discuss in this sec-
tion. In the spectral approach, we base our pa-
rameter estimates on low-rank representations of
moments of features, while EM explicitly maxi-
mizes a likelihood criterion. The parameter es-
timation algorithms are relatively similar, but in
lieu of sparse feature functions in the spectral case,
EM uses partial counts estimated with the current
set of parameters. The nature of EM allows it to
be susceptible to local optima, while the spectral
approach comes with guarantees on obtaining the
global optimum (Cohen et al., 2014). Lastly, com-
puting the SVD and estimating parameters in the
low-rank space is a one-shot operation, as opposed
to the iterative procedure of EM, and therefore is
much more computationally efficient.

4.1 Estimation with Spectral Method
We generalize the parameter estimation algorithm
presented in Cohen et al. (2013) to the syn-

5We filtered rules with arity 3 and above (i.e., containing
more than 3 NTs on the RHS). While the L-SCFG formalism
is perfectly capable of handling such cases, it would have re-
sulted in higher order tensors for our parameter structures.
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Inputs:
Training examples (r(i), t(i,1), t(i,2), t(i,3), o(i), b(i))

for i ∈ {1 . . .M}, where r(i) is a context free rule;
t(i,1), t(i,2), and t(i,3) are inside trees; o(i) is an out-
side tree; and b(i) = 1 if the rule is at the root of tree,
0 otherwise. A function φ that maps inside trees t to
feature-vectors φ(t) ∈ Rd. A function ψ that maps
outside trees o to feature-vectors ψ(o) ∈ Rd′ .
Algorithm:
. Step 0: Singular Value Decomposition

• Compute the SVD of Eq. 1 to calculate matri-
ces Û ∈ R(d×m) and V̂ ∈ R(d′×m).

. Step 1: Projection

Y (t) = U>φ(t)

Z(o) = Σ−1V >ψ(o)

. Step 2: Calculate Correlations

Êr =


∑

o∈Qr Z(o)

|Qr| if r ∈ R0∑
(o,t)∈Qr Z(o)⊗Y (t)

|Qr| if r ∈ R1∑
(o,t2,t3)∈Qr Z(o)⊗Y (t2)⊗Y (t3)

|Qr| if r ∈ R2

Qr is the set of outside-inside tree triples for binary
rules, outside-inside tree pairs for unary rules, and
outside trees for pre-terminals.
. Step 3: Compute Final Parameters

• For all r ∈ R,

Ĉr = count(r)
M
× Êr

• For all r(i) ∈ {1, . . . ,M} such that b(i) is 1,

ĈS = ĈS + Y (t(i,1))

|QS|

QS is the set of trees at the root.

(a) The spectral learning algorithm for estimating pa-
rameters of an L-SCFG.

Inputs:
Training examples (r(i), t(i,1), t(i,2), t(i,3), o(i), b(i)) for i ∈
{1 . . .M}, where r(i) is a context free rule; t(i,1), t(i,2), and
t(i,3) are inside trees; o(i) is an outside tree; b(i) = 1 if the rule
is at the root of tree, 0 otherwise; and MAX ITERATIONS.
Algorithm:
. Step 0: Parameter Initialization
For rule r ∈ R,

• if r ∈ R0: initialize Ĉr ∈ Rm×1

• if r ∈ R1: initialize ĈrRm×m

• if r ∈ R2: initialize ĈrRm×m×m

Initialize ĈS ∈ Rm×1

Ĉr0 = Ĉr, ĈS
0 = ĈS

For iteration t = 1, . . . ,MAX ITERATIONS,

• Expectation Step:

. Estimate Y and Z
Compute partial counts and total tree probabili-
ties g for all t and o using Fig. 1 and parameters
Ĉrt−1, Ĉ

S
t−1.

. Calculate Correlations

Êr =



∑
o,g∈Qr

Z(o)
g

if r ∈ R0∑
(o,t,g)∈Qr

Z(o)⊗Y (t)
g

if r ∈ R1∑
(o,t2,t3,g)∈Qr

Z(o)⊗Y (t2)⊗Y (t3)
g

if r ∈ R2

. Update Parameters
For all r ∈ R, Ĉrt = Ĉrt−1 � Êr
For all r(i) ∈ {1, . . . ,M} such that b(i) is 1,
ĈS
t = ĈS

t + (ĈS
t−1 � Y (r(i)))/g

QS is the set of trees at the root.

• Maximization Step

if r ∈ R0: ∀h1 : Ĉr(h1) = Ĉr(h1)∑
r′=r

∑
h1
Ĉr′ (h1)

if r ∈ R1: ∀h1, h2 : Ĉr(h1, h2) =
Ĉr(h1,h2)∑

r′=r

∑
h2
Ĉr′ (h1,h2)

if r ∈ R2: ∀h1, h2, h3 : Ĉr(h1, h2, h3) =
Ĉr(h1,h2,h3)∑

r′=r

∑
h2,h3

Ĉr′ (h1,h2,h3)

if LHS(r) = S: ∀h1 : Ĉr(h1) =
Ĉr(h1)∑

r′=r

∑
h1
Ĉr′ (h1)

(b) The EM-based algorithm for estimating parameters of an L-
SCFG.

Figure 2: The two parameter estimation algorithms proposed for L-SCFGs; (a) method of moments; (b) expectation maxi-
mization. � is the element-wise multiplication operator.

chronous or bilingual case. The central concept
of the spectral parameter estimation algorithm is
to learn an m-dimensional representation of in-
side and outside trees by defining these trees in
terms of features, in combination with a projection
step (SVD), with the hope being that the lower-
dimensional space captures the syntactic and se-

mantic regularities among rules from the sparse
feature space. Every NT in an s-tree has an as-
sociated inside and outside tree; the inside tree
contains the entire sub-tree at and below the NT,
and the outside tree is everything else in the syn-
chronous s-tree except the inside tree. The inside
feature function φ maps the domain of inside tree
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fragments to a d-dimensional Euclidean space,
and the outside feature function ψ maps the do-
main of outside tree fragments to a d′-dimensional
space. The specific features we used are discussed
in §5.2.

Let O be the set of all tuples of inside-outside
trees in our training corpus, whose size is equiva-
lent to the number of rule tokens (occurrences in
the corpus)M , and let φ(t) ∈ Rd×1, ψ(o) ∈ Rd

′×1

be the inside and outside feature functions for in-
side tree t and outside tree o. By computing the
outer product ⊗ between the inside and outside
feature vectors for each pair and aggregating, we
obtain the empirical inside-outside feature covari-
ance matrix:

Ω̂ =
1
|O|

∑
(o,t)∈O

φ(t) (ψ(o))> (1)

If m is the desired latent space dimension, we
compute an m-rank truncated SVD of the empir-
ical covariance matrix Ω̂ ≈ UΣV >, where U ∈
Rd×m and V ∈ Rd′×m are the matrices containing
the left and right singular vectors, and Σ ∈ Rm×m

is a diagonal matrix containing the m-largest sin-
gular values along its diagonal.

Figure 2a provides the remaining steps in the
algorithm. The M training examples are obtained
by considering all nodes in all of the synchronous
s-trees given as input. In step 1, for each inside
and outside tree, we project its high-dimensional
representation to the m-dimensional latent space.
Using the m-dimensional representations for in-
side and outside trees, in step 2 for each rule type r
we compute the covariance between the inside tree
vectors and the outside tree vector using the ten-
sor product, a generalized outer product to com-
pute covariances between more than two random
vectors. For binary rules, with two child inside
vectors and one outside vector, the result Êr is a
3-mode tensor; for unary rules, a regular matrix,
and for pre-terminal rules with no right-hand side
non-terminals, a vector. The final parameter es-
timate is then the associated tensor/matrix/vector,
scaled by the maximum likelihood estimate of the
rule r, as in step 3.

The corresponding theoretical guarantees from
Cohen et al. (2014) can also be generalized to
the synchronous case. Ω̂ is an empirical esti-
mate of the true covariance matrix Ω, and if Ω
has rank m, then the marginals computed using
the spectrally-estimated parameters will converge

to the true marginals, with the sample complexity
for convergence inversely proportional to a poly-
nomial function of the mth largest singular value
of Ω.

4.2 Estimation with EM

A likelihood maximization approach can also be
used to learn the parameters of an L-SCFG. Pa-
rameters are initialized by sampling each param-
eter value Ĉr(h1, h2, h3) from the interval [0, 1]
uniformly at random.6 We first decode the train-
ing corpus using an existing set of parameters to
compute the inside and outside probability vectors
associated with NTs for every rule in each s-tree,
constrained to the tree structure of the training ex-
ample. These probabilities can be computed us-
ing the decoding algorithm in Figure 1 (where α
and β correspond to the inside and outside proba-
bilities respectively), except the parse forest con-
sists of a single tree only. These vectors repre-
sent partial counts over latent states. We then de-
fine functions Y and Z (analogous to the spectral
case) which map inside and outside tree instances
to m-dimensional vectors containing these partial
counts. In the spectral case, Y and Z are estimated
just once, while in the case of EM they have to be
re-estimated at each iteration.

The expectation step thus consists of comput-
ing the partial counts of inside and outside trees t
and o, i.e., recovering the functions Y and Z, and
updating parameters Cr by computing correla-
tions, which involves summing over partial counts
(across all occurrences of a rule in the corpus).
Each partial count’s contribution is divided by a
normalization factor g, which is the total probabil-
ity of the tree which t or o is part of. Note that
unlike the spectral case, there is a specific normal-
ization factor for each inside-outside tuple. Lastly,
the correlations are scaled by the existing parame-
ter estimates.

To obtain the next set of parameters, in the max-
imization step we normalize Ĉr for r ∈ R such
that for every h1,

∑
r′=r,h2,h3

Ĉr
′
(h1, h2, h3) = 1

for r ∈ R2,
∑

r′=r,h2
Ĉr
′
(h1, h2) = 1 for r ∈ R1,

and
∑

r′=r,h2
Ĉr
′
(h2) = 1 for r ∈ R0. We

also normalize the root rule parameters Ĉr where
LHS(r) = S. It is also possible to add sparse,
overlapping features to an EM-based estimation

6In our experiments, we also tried the initialization
scheme described in Matsuzaki et al. (2005), but found that it
provided little benefit.
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procedure (Berg-Kirkpatrick et al., 2010) and we
leave this extension for future work.

5 Experiments

The goal of the experimental section is to evalu-
ate the performance of the latent-variable SCFG
in comparison to a baseline without any additional
NT annotations (MIN-GRAMMAR), and to com-
pare the performance of the two parameter esti-
mation algorithms. We also compare L-SCFGs to
a HIERO baseline (Chiang, 2007). The language
pair of evaluation is Chinese–English (ZH-EN).

We score translations using BLEU (Papineni
et al., 2002). The latent-variable model is inte-
grated into the standard MT pipeline by comput-
ing marginal probabilities for each rule in the parse
forest of a source sentence using the algorithm in
Figure 1 with the parameters estimated through
the algorithms in Figure 2, and is added as a fea-
ture for the rule during MERT (Och, 2003). These
probabilities are conditioned on the LHS (X), and
are thus joint probabilities for a source-target RHS
pair. We also write out as features the condi-
tional relative frequencies P̂ (e|f) and P̂ (f |e) as
estimated by our latent-variable model, i.e., con-
ditioned on the source and target RHS.

Overall, we find that both the spectral and
the EM-based estimators improve upon a mini-
mal grammar baseline with only a single cate-
gory, but the spectral approach does better. In fact,
it matches the performance of the standard HI-
ERO baseline, despite learning on top of a minimal
grammar.

5.1 Data and Baselines

The ZH-EN data is the BTEC parallel corpus
(Paul, 2009); we combine the first and second
development sets in one, and evaluate on the third
development set. The development and test sets
are evaluated with 16 references. Statistics for
the data are shown in Table 1. We used the CDEC

decoder (Dyer et al., 2010) to extract word align-
ments and the baseline hierarchical grammars,
MERT tuning, and decoding. We used a 4-gram
language model built from the target-side of the
parallel training data. The Python-based imple-
mentation of the tensor-based decoder, as well as
the parameter estimation algorithms is available at
github.com/asaluja/spectral-scfg/.

The baseline HIERO system uses a grammar ex-
tracted by applying the commonly used heuris-

ZH-EN
TRAIN (SRC) 334K
TRAIN (TGT) 366K
DEV (SRC) 7K
DEV (TGT) 7.6K
TEST (SRC) 3.8K
TEST (TGT) 3.9K

Table 1: Corpus statistics (in words). For the target DEV and
TEST statistics, we take the first reference.

tics (Chiang, 2007). Each rule is decorated with
two lexical and phrasal features corresponding to
the forward (e|f) and backward (f |e) conditional
log frequencies, along with the log joint frequency
(e, f), the log frequency of the source phrase (f),
and whether the phrase pair or the source phrase
is a singleton. Weights for the language model
(and language model OOV), glue rule, and word
penalty are also tuned. The MIN-GRAMMAR

baseline7 maintains the same set of weights.

Grammar Number of Rules
HIERO 1.69M
MIN-GRAMMAR 59K
LV m = 1 27.56K
LV m = 8 3.18M
LV m = 16 22.22M

Table 2: Grammar sizes for the different systems; for the
latent-variable models, effective grammar sizes are provided.

Grammar sizes are presented in Table 2. For
the latent-variable models, we provide the effec-
tive grammar size, where the number of NTs on
the RHS of a rule is taken into account when com-
puting the grammar size, by assuming each possi-
ble latent variable configuration amongst the NTs
generates a different rule. Furthermore, all single-
tons are mapped to the OOV rule, while we in-
clude singletons in MIN-GRAMMAR.8 Hence, ef-
fective grammar size can be computed as m(1 +
|R>1

0 |) +m2|R1|+m3|R2|, whereR>1
0 is the set

of pre-terminal rules that occur more than once.

5.2 Spectral Features

We use the following set of sparse, binary features
in the spectral learning process:

7Code to extract the minimal derivation trees is available
at www.cs.rochester.edu/u/gildea/mt/.

8This OOV mapping is done so that the latent-variable
model can handle unknown tokens.
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• Rule Indicator. For the inside features, we con-
sider the rule production containing the current
non-terminal on the left-hand side, as well as
the rules of the children (distinguishing between
left and right children for binary rules). For
the outside features, we consider the parent rule
production along with the rule production of the
sibling (if it exists).
• Lexical. for both the inside and outside fea-

tures, any lexical items that appear in the rule
productions are recorded. Furthermore, we con-
sider the first and last words of spans (left and
right child spans for inside features, distinguish-
ing between the two if both exist, and sibling
span for outside features). Source and target
words are treated separately.
• Length. the span length of the tree and each

of its children for inside features, and the span
length of the parent and sibling for outside fea-
tures.

In our experiments, we instantiated a total of
170,000 rule indicator features, 155,000 lexical
features, and 80 length features.

5.3 Chinese–English Experiments
Table 3 presents a comprehensive evaluation of the
ZH-EN experimental setup. The first section con-
sists of the various baselines we consider. In ad-
dition to the aforementioned baselines, we eval-
uated a setup where the spectral parameters sim-
ply consist of the joint maximum likelihood esti-
mates of the rules. This baseline should perform
en par with MIN-GRAMMAR, which we see is the
case on the development set. The performance
on the test set is better though, primarily because
we also include the reverse log relative frequency
(f |e) computed from the latent-variable model as
an additional feature in MERT. Furthermore, in
line with previous work (Galley et al., 2006) which
compares minimal and composed rules, we find
that minimal grammars take a hit of more than 2.5
BLEU points on the development set, compared to
composed (HIERO) grammars. The m = 1 spec-
tral baseline with only rule indicator features per-
forms slightly better than the minimal grammar
baseline, since it overtly takes into account inside-
outside tree combination preferences in the param-
eters, but improvement is minimal with one latent
state naturally and the performance on the test set
is in line with the MLE baseline.

On top of the baselines, we looked at a number

BLEU
Setup Dev Test

Baselines
HIERO 46.08 55.31
MIN-
GRAMMAR

43.38 51.78

MLE 43.24 52.80

Spectral

m = 1 RI 44.18 52.62
m = 8 RI 44.60 53.63
m = 16 RI 46.06 55.83
m=16 RI+Lex+Sm 46.08 55.22
m=16 RI+Lex+Len 45.70 55.29
m=24 RI+Lex 43.00 51.28
m=32 RI+Lex 43.06 52.16

EM m = 8 40.53 (0.2) 49.78 (0.5)
m = 16 42.85 (0.2) 52.93 (0.9)
m = 32 41.07 (0.4) 49.95 (0.7)

Table 3: Results for the ZH-EN corpus, comparing across
the baselines and the two parameter estimation techniques.
RI, Lex, and Len correspond to the rule indicator, lexical,
and length features respectively, and Sm denotes smoothing.
For the EM experiments, we selected the best scoring iter-
ation by tuning weights for parameters obtained after 25 it-
erations and evaluating other parameters with these weights.
Results for EM are averaged over 5 starting points, with stan-
dard deviation given in parentheses. Spectral, EM, and MLE
performances compared to the MIN-GRAMMAR baseline are
statistically significant (p < 0.01).

of feature combinations and latent states for the
spectral and EM-estimated latent-variable models.
For the spectral models, we tuned MERT parame-
ters separately for each rank on a set of parameters
estimated from rule indicator features only; subse-
quent variations within a given rank, e.g., the ad-
dition of lexical or length features or smoothing,
were evaluated with the same set of rank-specific
weights from MERT. For EM, we ran parame-
ter estimation with 5 randomly initialized starting
points for 50 iterations; we tuned the MERT pa-
rameters with EM parameters obtained after 25th

iterations. Similar to the spectral experiments,
we fixed the MERT weight values and evaluated
BLEU performance with parameters after every 5
iterations and chose the iteration with the highest
score on the development set. The results are av-
eraged over the 5 initializations, with standard de-
viation in parentheses.

Firstly, we can see a clear dependence on rank,
with peak performance for the spectral and EM
models occurring at m = 16. In this instance, the
spectral model roughly matches the performance
of the HIERO baseline, but it only uses rules ex-
tracted from a minimal grammar, whose size is a
fraction of the HIERO grammar. The gains seem
to level off at this rank; additional ranks seem to
add noise to the parameters. Feature-wise, addi-
tional lexical and length features add little, prob-
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ably because much of this information is encap-
sulated in the rule indicator features. For EM,
m = 16 outperforms the minimal grammar base-
line, but is not at the level of the spectral results.
All EM, spectral, and MLE results are statistically
significant (p < 0.01) with respect to the MIN-
GRAMMAR baseline (Zhang et al., 2004), and the
improvement over the HIERO baseline achieved by
them = 16 rule indicator configuration is also sta-
tistically significant.

The two estimation algorithms differ signifi-
cantly in their estimation time. Given a feature
covariance matrix, the spectral algorithm (SVD,
which was done with Matlab, and correlation com-
putation steps) for m = 16 took 7 minutes, while
the EM algorithm took 5 minutes for each iteration
with this rank.

5.4 Analysis

Figure 3 presents a comparison of the non-
terminal span marginals for two sentences in the
development set. We visualize these differences
through a heat map of the CKY parse chart, where
the starting word of the span is on the rows, and
the span end index is on the columns. Each cell is
shaded to represent the marginal of that particular
non-terminal span, with higher likelihoods in blue
and lower likelihoods in red.

For the most part, marginals at the leaves (i.e.,
pre-terminal marginals) tend to score relatively
similarly across different setups. Higher up in the
chart, the latent SCFG marginals look quite dif-
ferent than the MLE parameters. Most noticeably,
spans starting at the beginning of the sentence are
much more favored. It is these rules that allow
the right translation to be preferred since the MLE
chooses not to place the object of the sentence in
the subject’s span. However, the spectral param-
eters seem to discriminate between these higher-
level rules better than EM, which scores spans
starting with the first word uniformly highly. An-
other interesting point is that the range of likeli-
hoods is much larger in the EM case compared to
the MLE and spectral variants. For the second sen-
tence (row), the 1-best hypothesis produced by all
systems are the same, but the heat map accentuates
the previous observation.

6 Related Work

The goal of refining single-category HPBT gram-
mars or automatically learning the NT categories

in a grammar, instead of relying on noisy parser
outputs, has been explored from several different
angles in the MT literature. Blunsom et al. (2008)
present a Bayesian model for synchronous gram-
mar induction, and place an appropriate nonpara-
metric prior on the parameters. However, their
starting point is to estimate a synchronous gram-
mar with multiple categories from parallel data
(using the word alignments as a prior), while we
aim to refine a fixed grammar with additional la-
tent states. Furthermore, their estimation proce-
dure is extremely expensive and is restricted to
learning up to five NT categories, via a series of
mean-field approximations.

Another approach is to explicitly attach a real-
valued vector to each NT: Huang et al. (2010) use
an external source-language parser for this pur-
pose and score rules based on the similarity be-
tween a source sentence parse and the information
contained in this vector, which explicitly requires
the integration of a good-quality source-language
parser. The EM-based algorithm that we propose
here is similar to what they propose, except that we
need to handle tensor structures. Mylonakis and
Sima’an (2011) select among linguistically moti-
vated non-terminal labels with a cross-validated
version of EM. Although they consider a restricted
hypothesis space, they do marginalize over dif-
ferent derivations therefore their inside-outside al-
gorithm is O(n6). In the syntax-directed trans-
lation literature, there have been efforts to relax
or coarsen the hard labels provided by a syntactic
parser in an automatic manner to promote param-
eter sharing (Venugopal et al., 2009; Hanneman
and Lavie, 2013), which is the complement of our
aim in this paper.

The idea of automatically learned grammar re-
finements comes from the monolingual parsing lit-
erature, where phenomena like head lexicalization
can be modeled through latent variables. Mat-
suzaki et al. (2005) look at a likelihood-based
method to split the NT categories of a gram-
mar into a fixed number of sub-categories, while
Petrov et al. (2006) learn a variable number of
sub-categories per NT. The latter’s extension may
be useful for finding the optimal number of latent
states from the data in our case.

The question of whether we can incorporate ad-
ditional contextual information in minimal rule
grammars in MT via auxiliary models instead of
using longer, composed rules has been investi-
gated before as well. n-gram translation mod-
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Figure 3: A comparison of the CKY charts containing marginal probabilities of non-terminal spans µ(X, i, j) for the MLE,
spectral m = 16 with rule indicator features, and EM m = 16, for the two Chinese sentences. Higher likelihoods are in blue,
lower likelihoods in red. The hypotheses produced by each setup are below the heat maps.

els (Mariño et al., 2006; Durrani et al., 2011)
seek to model long-distance dependencies and re-
orderings through n-grams. Similarly, Vaswani
et al. (2011) use a Markov model in the context
of tree-to-string translation, where the parameters
are smoothed with absolute discounting (Ney et
al., 1994), while in our instance we capture this
smoothing effect through low rank or latent states.
Feng and Cohn (2013) also utilize a Markov model
for MT, but learn the parameters through a more
sophisticated estimation technique that makes use
of Pitman-Yor hierarchical priors.

Hsu et al. (2009) presented one of the initial
efforts at spectral-based parameter estimation (us-
ing SVD) of observed moments for latent-variable
models, in the case of Hidden Markov models.
This idea was extended to L-PCFGs (Cohen et al.,
2014), and our approach can be seen as a bilingual
or synchronous generalization.

7 Conclusion

In this work, we presented an approach to re-
fine synchronous grammars used in MT by in-
ferring the latent categories for the single non-

terminal in our grammar rules, and proposed two
algorithms to estimate parameters for our latent-
variable model. By fixing the synchronous deriva-
tions of each parallel sentence in the training data,
it is possible to avoid many of the computational
issues associated with synchronous grammar in-
duction. Improvements over a minimal grammar
baseline and equivalent performance to a hierar-
chical phrase-based baseline are achieved by the
spectral approach. For future work, we will seek
to relax this consideration and jointly reason about
non-terminal categories and derivation structures.
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Adrià de Gispert, Patrik Lambert, José A. R. Fonol-
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Abstract

We investigate the interaction of power,
gender, and language use in the Enron
email corpus. We present a freely avail-
able extension to the Enron corpus, with
the gender of senders of 87% messages
reliably identified. Using this data, we
test two specific hypotheses drawn from
the sociolinguistic literature pertaining to
gender and power: women managers use
face-saving communicative strategies, and
women use language more explicitly than
men to create and maintain social rela-
tions. We introduce the notion of “gender
environment” to the computational study
of written conversations; we interpret this
notion as the gender makeup of an email
thread, and show that some manifestations
of power differ significantly between gen-
der environments. Finally, we show the
utility of gender information in the prob-
lem of automatically predicting the direc-
tion of power between pairs of participants
in email interactions.

1 Introduction

It has long been observed that men and women
communicate differently in different contexts.
This phenomenon has been studied by sociolin-
guists, who typically rely on case studies or sur-
veys. The availability of large corpora of nat-
urally occurring social interactions has given us
the opportunity to study language use at a broader
level than before. In this paper, we use the Enron
Corpus of work-related emails to examine written
communication in a corporate setting. We inves-
tigate three factors that affect choices in commu-
nication: the writer’s gender, the gender of his or
her fellow discourse participants (what we call the

“gender environment”), and the relations of orga-
nizational power he or she has to the discourse par-
ticipants. We concentrate on modeling the writer’s
choices related to discourse structure, rather than
lexical choice. Specifically, our goal is to show
that gender, gender environment, and power all af-
fect individuals’ choices in complex ways, result-
ing in patterns in the discourse that reveal the un-
derlying factors.

This paper makes three major contributions.
First, we introduce an extension to the well-known
Enron corpus of emails: we semi-automatically
identify the sender’s gender of 87% of email mes-
sages in the corpus. This extension will be made
publicly available. Second, we use this enriched
version of the corpus to investigate the interaction
of hierarchical power and gender. We formalize
the notion of “gender environment”, which reflects
the gender makeup of the discourse participants
of a particular conversation. We study how gen-
der, power, and gender environment influence dis-
course participants’ choices in dialog. We inves-
tigate two specific hypotheses from the sociolin-
guistic literature, relating to face-saving use of lan-
guage, and to the use of language to strengthen so-
cial relations. This contribution does not exhaust
the possibilities of our corpus, but it shows how
social science can benefit from advanced natural
language processing techniques in analyzing cor-
pora, allowing social scientists to tackle corpora
such as the Enron corpus which cannot be exam-
ined in its entirety by hand. Third, we show that
the gender information in the enriched corpus can
be useful for computational tasks, specifically for
training a system that predicts the direction of hier-
archical power between participants in an interac-
tion. Our use of the gender-based features boosts
the accuracy of predicting the direction of power
between pairs of email interactants from 68.9% to
70.2% on an unseen test set.
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The paper is structured as follows. We review
related work in Section 2. We present the Gender
Identified Enron Corpus (our first contribution) in
Section 3. Section 4 defines the problem of pre-
dicting power and the various dimensions of in-
teraction we analyze. We turn to our second con-
tribution, the analysis of the data, in Sections 5
and 6. Section 7 describes our third contribution,
the machine learning experiments using gender-
related features in the prediction of hierarchical
power. We then conclude and discuss future work.

2 Related Work

There is much sociolinguistic background related
to gender and language use, some of it specifically
related to language use in the work environment
(Kendall and Tannen, 1997; Holmes and Stubbe,
2003; Kendall, 2003; Herring, 2008). We do not
provide a full discussion of this work for lack of
space, but single out one paper which has partic-
ularly influenced our work. Holmes and Stubbe
(2003) provide two case studies that do not look
at the differences between male and female man-
agers’ communication, but at the difference be-
tween female managers’ communication in more
heavily female vs. more heavily male environ-
ments. They find that, while female managers tend
to break many stereotypes of “feminine” commu-
nication, they have different strategies in connect-
ing with employees and exhibiting power in the
two gender environments. This work has inspired
us to look at this phenomenon by including “Gen-
der Environment” in our study. By finding the ra-
tios of males to females on a thread, we can look at
whether indicators change within a more heavily
male or female thread. This notion of gender envi-
ronment is supported by an idea in recent Twitter-
based sociolinguistic research on gender identity
and lexical variation (Bamman et al., 2014). One
of the many insights from their work is that gen-
dered linguistic behavior is oriented by a number
of factors, one of which includes the speaker’s au-
dience. Their work looks at Twitter users whose
linguistic style fails to identify their gender in clas-
sification experiments, and finds that the linguis-
tic gender norms can be influenced by the style of
their interlocutors.

Within the NLP community, there has been
substantial research exploring language use and
power. A large number of these studies are per-
formed in the domain of organizational email

where the notion of power is well defined in terms
of organizational hierarchy. It is also aided by the
availability of the moderately large Enron email
corpus which captures email interactions in an or-
ganizational setting. Earlier approaches used sim-
ple lexical features alone (e.g. (Bramsen et al.,
2011; Gilbert, 2012)) as a means to predict power.
Later studies have used more complex linguistic
and structural features, such as formality (Peterson
et al., 2011), dialog acts (Prabhakaran and Ram-
bow, 2013), and thread structure (Prabhakaran and
Rambow, 2014). Our work is also on the Enron
email corpus, and our baseline features are derived
from some of this prior work. Researchers have
also studied power and influence in other genres
of interactions, such as online forums (Danescu-
Niculescu-Mizil et al., 2012; Biran et al., 2012),
multi-party chats (Strzalkowski et al., 2012) and
off-line interactions such as presidential debates
(Nguyen et al., 2013; Prabhakaran et al., 2013;
Prabhakaran et al., 2014).

There is also some work within the NLP field
on analyzing language use in relation to gender.
Mohammad and Yang (2011) analyzed the way
gender affects the expression of sentiments in text,
while we are interested in how gender relates to
manifestations of organizational power. For their
study, they assigned gender for the core employees
in the Enron email corpus based on whether the
first name of the person was easily gender iden-
tifiable or not. If the person had an unfamiliar
name or a name that could be of either gender,
they marked his/her gender as unknown and ex-
cluded them from their study.1 For example, the
gender of the employee Kay Mann was marked as
unknown in their gender assignment. However, in
our work, we manually research and determine the
gender of every core employee.

Researchers have also attempted to automati-
cally predict the gender of email senders using su-
pervised learning techniques based on linguistic
features (Corney et al., 2002; Cheng et al., 2011;
Deitrick et al., 2012), a task we do not address in
this paper. These studies use datasets that are rel-
atively smaller in size. Corney et al. (2002) use
around 4K emails from 325 gender identified au-
thors. Cheng et al. (2011) use around 9K emails
from 108 gender identified authors. Deitrick et al.
(2012) use around 18K emails from 144 gender

1http://www.saifmohammad.com/WebDocs/dir-email-
gender.txt
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identified authors. The dataset we offer is much
larger in size, with around 97K emails whose au-
thors are gender identified. We believe that our
resource will aid further research in this area.

3 Gender Identified Enron Corpus

3.1 Enron Corpus

In our work, we use the version of Enron email
corpus released by Yeh and Harnly (2006). The
corpus contains emails from the mailboxes of 145
core employees who held top managerial positions
within Enron at the time of bankruptcy. Yeh and
Harnly (2006) preprocessed the corpus to combine
multiple email addresses belonging to the same
entity and identify each entity in the corpus with
a unique identifier. The corpus contains a total of
111,933 messages. This version of the corpus has
been enriched later by Agarwal et al. (2012) with
gold organizational power relations, manually de-
termined using information from Enron organiza-
tional charts. It includes relations of 1,518 em-
ployees and captures dominance relations between
13,724 pairs of them. This information enables us
to study the manifestations of power in these inter-
actions, in relation to gender.

In this version of the corpus, the thread structure
of email messages is reconstructed, with the miss-
ing messages restored from other emails in which
they were quoted. This allows us to go beyond
isolated messages and study the dialog structure
within email threads. There were 34,156 unique
discourse participants across all the email threads
present in the corpus. Manually determining the
gender of all the discourse participants in the cor-
pus is not feasible. Hence, we adopt a two-step
approach through which we reliably identify the
gender of a large majority of entities in the email
threads within the corpus. We manually deter-
mine the gender of the 145 core employees who
have a bigger representation in the corpus, and we
systemically determine the gender of the rest of
the discourse participants using the Social Secu-
rity Administration’s baby names database. We
adopt a conservative approach so that we assign
a gender only when the name of the participant
meets a very low ambiguity threshold.

3.2 Manual Gender Assignment

We researched each of the 145 core employees us-
ing web search and found public records about
them or articles referring to them. In order to

make sure that the results are about the same per-
son we want, we added the word ‘enron’ to the
search queries. Within the public records returned
for each core employee, we looked for instances
in which they were being referred to either using a
gender revealing pronoun (he/him/his vs. she/her)
or using a gender revealing addressing form (Mr.
vs. Mrs./Ms./Miss). Since these employees held
top managerial positions within Enron at the time
of bankruptcy, it was fairly easy to find public
records or articles referring to them. For example,
the page we found for Kay Mann clearly identifies
her gender.2 We were able to correctly determine
the gender of each of the 145 core employees in
this manner. A benefit of manually determining
the gender of these core employees is that it en-
sures a high coverage of 100% confident gender
assignments in the corpus.

3.3 Automatic Gender Assignment

As mentioned in Section 3.1, our corpus contains
a large number of discourse participants in addi-
tion to the 145 core employees for which we man-
ually identified the gender. To attempt to find
the gender of these other discourse participants,
we first determine their first names and then find
how ambiguous the names are by querying the So-
cial Security Administration’s (SSA) baby names
dataset. We first describe how we calculate an am-
biguity score for a name using the SSA dataset and
then describe how we use it to determine the gen-
der of discourse participants in our corpus.

3.3.1 SSA Names and Gender Dataset
The US Social Security Administration maintains
a dataset of baby names, gender, and name count
for each year starting with the 1880s, for names
with at least five counts.3 We used this dataset
in order to determine the gender ambiguity of a
name. The Enron data set contains emails from
1998 to 2001. We estimate the common age range
for a large, corporate firm like Enron at 24-67,4 so
we used the SSA data from 1931-1977 to calculate
ambiguity scores for our purposes.

For each name n in the database, let mp(n)
and fp(n) denote the percentages of males and fe-
males with the name n. Then, we calculate the
ambiguity score AS (n) as 100−|mp(n)− fp(n)|.

2http://www.prnewswire.com/news-releases/kay-mann-
joins-noble-as-general-counsel-57073687.html

3http://www.ssa.gov/oact/babynames/limits.html
4http://www.bls.gov/cps/demographics.htm
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The value of AS (n) varies between 0 and 100. A
name that is ‘perfectly unambiguous’ would have
an ambiguity score of 0, while a ‘perfectly am-
biguous’ name (i.e., 50%/50% split between gen-
ders) would have an ambiguity score of 100. We
assign the likely gender of the name to be the one
with the higher percentage, if the ambiguity score
is below a threshold AST .

G(n) =

{
M, if AS(n) ≤ AST and mp(n) > fp(n)

F, if AS(n) ≤ AST and mp(n) ≤ fp(n)

I, if AS(n) > AST

Around 88% of the names in the SSA dataset
have AS (n) = 0. We choose a very conserva-
tive threshold of AST = 10 for our gender assign-
ments, which assigns gender to around 93% names
in the SSA dataset.5

3.3.2 Identifying the First Name
Each discourse participant in our corpus has at
least one email address and zero or more names
associated with it. The name field is automatically
assembled by Yeh and Harnly (2006), where they
captured the different names from email headers,
which are populated from individual email clients
and do not follow a standard format. Not all dis-
course participants are human; some may refer to
organizational groups (e.g., HR Department) or
anonymous corporate email accounts (e.g., a web-
master account, do-not-reply address etc.). The
name field may sometimes be empty, contain mul-
tiple names, contain an email address, or show
other irregularities. Hence, it is nontrivial to deter-
mine the first name of our discourse participants.
We used the heuristics below to extract the most
likely first name for each discourse participant.
• If the name field contains two words, pick the

second or first word, depending on whether a
comma separates them or not.
• If the name field contains three words and a

comma, choose the second and third words
(a likely first and middle name, respectively).
If the name field contains three words but no
comma, choose the first and second words
(again, a likely first and middle name).
• If the name field contains an email address,

pick the portion from the beginning of the
string to a ‘.’,‘ ’ or ‘-’; if the email address
is in camel case, take portion from the begin-
ning of the string to the first upper case letter.

5In the corpus that will be released, we retain the AS(n)
of each name, so that the users of this resource can decide the
threshold that suit their needs.

• If the name field is empty, apply the above
rule to the email address field to pick a name.

The above heuristics create a list of candidate
names for each discourse participant which we
then query for an ambiguity score (Section 3.3.1)
and the likely gender. We find the candidate
name with the lowest ambiguity score that passes
the threshold and assign the associated gender to
the discourse participant. If none of the candi-
date names for a discourse participant passes the
threshold, we assign the gender to be ‘I’ (Indeter-
minate). We also assign the gender to be ‘I’, if
none of the candidate names is present in the SSA
dataset. This will occur if the name is a first name
that is not in the database (an unusual or interna-
tional name; e.g., Vladi), or if no true first name
was found (e.g., the name field was empty and the
email address was only a pseudonym). This will
also include most of the cases where the discourse
participant is not a human.

3.3.3 Coverage and Accuracy
We evaluated the coverage and accuracy of our
gender assignment system on the manually as-
signed gender data of the 145 core people. We
obtained a coverage of 90.3%, i.e., for 14 of the
145 core people, the ambiguity score was higher
than the threshold. Of the 131 people the sys-
tem assigned a gender to, we obtained an accu-
racy of 89.3% in correctly identifying the gender.
We investigated the errors and found that all er-
rors were caused due to incorrectly identifying the
first name. These errors arise because the name
fields are automatically populated and sometimes
the core discourse participants’ name fields in-
clude their secretaries. While this is common for
people in higher managerial positions, we expect
this not to happen in the middle management and
below, to which most of the automatically gender-
assigned discourse participants belong.

3.4 Corpus Statistics and Divisions

We apply the gender assignment system described
above to all discourse participants of all email
threads in the entire Enron corpus described in
Section 3.1. Table 1 shows the coverage of gen-
der assignment in our corpus at different lev-
els: unique discourse participants, messages and
threads. In Table 2, we show the male/female per-
centage split of all unique discourse participants,
as well as the split at the level of messages (i.e.,
messages sent by males vs. females).
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Count (%)

Total unique discourse participants 34,156

- gender identified 23,009 (67.3%)

Total messages 111,933

- senders gender identified 97,255 (86.9%)

Total threads 36,615

- all senders gender identified 26,015 (71.1%)

- all participants gender identified 18,030 (49.2%)

Table 1: Coverage of Gender Identification at various level:
unique discourse participants, messages and threads

Male Female

Unique Discourse Participants 66.1% 33.9%

Message Senders 58.2% 41.8%

Table 2: Male/Female split across a) all unique participants
who were gender identified, b) all messages whose senders
were gender identified

We divide the entire corpus into Train, Dev and
Test sets at the thread level, through random sam-
pling, with a distribution of 50%, 25% and 25%
each. The number of threads and messages in each
subdivision is shown in Table 3.

Total Train Dev Test
Threads 36,615 18,498 8,973 9,144
Messages 111,933 56,447 27,565 27,921

Table 3: Train/Test/Dev breakup of the entire corpus

We also create a sub-corpus of the threads called
All Participants Gender Identified (APGI), con-
taining the 18,030 threads for which the gender as-
signment system succeeded in assigning the gen-
ders of all participants, including senders and all
recipients (To and CC). For the analysis and ex-
periments presented in the rest of this paper, we
use 17,788 threads from this APGI subset, exclud-
ing the remaining 242 threads that were used for
previous manual annotation efforts.

4 Manifestations of Power

We use the gender information of the participants
to investigate how the gender of the sender and
recipients affect the manifestations of hierarchical
power in interactions. In order to do this, we use
the interaction analysis framework from our prior
work (Prabhakaran and Rambow, 2014). In this
section, we give a brief overview of the problem
formulation and the structural features we used.

4.1 Hierarchically Related Interacting Pairs
Let t denote an email thread and Mt denote the
set of all messages in t . Also, let Pt be the set
of all participants in t , i.e., the union of senders
and recipients (To and CC) of all messages in Mt .
We are interested in analyzing the power relations
between pairs of participants who interact within
a given email thread. Not every pair of partic-
ipants (p1 , p2 ) ∈ Pt × Pt interact with one an-
other within t . Let IMt(p1 , p2 ) denote the set of
Interaction Messages — non-empty messages in
t in which either p1 is the sender and p2 is one
of the recipients or vice versa. We call the set
of (p1 , p2 ) such that |IMt(p1 , p2 )| > 0 the inter-
acting participant pairs of t (IPPt ). For every
(p1 , p2 ) ∈ IPPt , we query the set of dominance
relations in the gold hierarchy and assign their hi-
erarchical power relation (HP(p1 , p2 )) to be su-
perior if p1 dominates p2 , and subordinate if p2

dominates p1 . We exclude pairs that do not exist
in the gold hierarchy from our analysis and call
the remaining set related interacting participant
pairs (RIPPt ). Table 4 shows the total number
of pairs in IPPt and RIPPt from all the threads
in the APGI subset of our corpus and across Train,
Dev and Test sets.

Description Total Train Dev Test
# of threads 17,788 8,911 4,328 4,549∑

t |IPPt | 74,523 36,528 18,540 19,455∑
t |RIPPt | 4,649 2,260 1,080 1,309

Table 4: Data Statistics
Row 1 presents the total number of threads in different

subsets of the corpus. Row 2 and 3 present the number of
interacting participant pairs (IPP ) and related interacting

participant pairs (RIPP ) in those subsets.

4.2 Structural Features
Now, we describe various features that capture
the structure of interaction between the pairs of
participants in a thread. Each feature f is ex-
tracted with respect to a person p over a refer-
ence set of messages M (denoted f p

M ). For a pair
(p1 , p2 ), we extract 4 versions of each feature f :
f p1

IMt (p1 ,p2 ), f p2

IMt (p1 ,p2 ), f p1

Mt
and f p2

Mt
. The first two

capture behavior of each person of the pair in in-
teractions between themselves, while the third and
fourth capture their overall behavior in the entire
thread. We group our features into three categories
— THRSTR, THRMETA and DIA. THRSTR cap-
tures the thread structure in terms of verbosity and
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positional features of messages (e.g., how many
emails did a person send). THRMETA contain
email header meta-data based features that cap-
ture the thread structure (e.g., how many recipients
were there). Both sets of features do not perform
any NLP analysis on the the content of the emails.
DIA captures the pragmatics of the dialog and re-
quires a deeper analysis of the email content (e.g.,
did they issue any requests).

THRSTR: This feature set includes two kinds
of features — positional and verbosity. The po-
sitional features are a boolean feature to denote
whether p sent the first message (Initiate), and
the relative positions of p’s first and last messages
(FirstMsgPos and LastMsgPos) in M . The ver-
bosity features are p’s message count (MsgCount),
message ratio (MsgRatio), token count (Token-
Count), token ratio (TokenRato) and tokens per
message (TokenPerMsg), all calculated over M .

THRMETA: This feature set includes the av-
erage number of recipients (AvgRecipients) and
To recipients (AvgToRecipients) in emails sent by
p, the percentage of emails p received in which
he/she was in the To list (InToList%), boolean fea-
tures denoting whether p added or removed peo-
ple when responding to a message (AddPerson
and RemovePerson), average number of replies re-
ceived per message sent by p (ReplyRate) and av-
erage number of replies received from the other
person of the pair to messages where he/she was
a To recipient (ReplyRateWithinPair). ReplyRate-
WithinPair applies only to IMt(p1 , p2 ).

DIA: We use dialog acts (DA) and overt dis-
plays of power (ODP) tags to model the struc-
ture of interactions within the message content.
We obtain DA and ODP tags using automatic tag-
gers trained on manual annotations. The DA tag-
ger (Omuya et al., 2013) obtained an accuracy of
92%. The ODP tagger (Prabhakaran et al., 2012)
obtained an accuracy of 96% and F-measure of
54%. The DA tagger labels each sentence to be
one of the 4 dialog acts: Request Action, Request
Information, Inform, and Conventional. The ODP
Tagger identifies sentences (mostly requests) that
express additional constraints on their addressee,
beyond those introduced by the dialog act. For
example, the sentence “Please come to my of-
fice right now” is considered as an ODP, while
“It would be great if you could come to my of-
fice now” is not, even though both issue the same
request. For more details on ODP, we refer the

Feature Name Mean(f X
IMt

)|X =

Fsub Fsup Msub Msup

THRMETA

AvgRecipients∗∗∗ 4.76 5.74 5.58 4.98
AvgToRecipients∗∗∗ 3.63 4.73 3.84 3.80
InToList%. 0.83 0.86 0.84 0.83
ReplyRate∗∗∗ 0.72 0.86 0.70 0.61
AddPerson 0.58 0.66 0.59 0.68
RemovePerson 0.55 0.60 0.54 0.65

THRSTR

Initiate 0.38 0.24 0.39 0.30
FirstMsgPos∗ 0.18 0.25 0.19 0.22
LastMsgPos∗∗ 0.34 0.33 0.34 0.39
MsgCount∗∗∗ 0.92 0.61 0.93 0.91
MsgRatio∗∗∗ 0.33 0.23 0.33 0.32
TokenCount 76.5 41.0 102.0 54.3
TokenRatio 0.38 0.23 0.40 0.27
TokenPerMsg∗∗∗ 90.2 67.9 118.2 53.2

DIAPR

Conventional 0.55 0.43 0.64 0.56
Inform 3.50 1.96 4.51 2.53
ReqAction∗∗ 0.07 0.06 0.05 0.10
ReqInform 0.29 0.21 0.20 0.16
DanglingReq% 0.06 0.12 0.07 0.18
ODPCount∗∗∗ 0.10 0.07 0.09 0.13

Table 5: ANOVA results and group means for Hierarchical
Power and Gender

Fsub: Female subordinates; Fsup: Female superiors;
Msub: Male subordinates; Msup: Male superiors;

* (p < .05 ); ** (p < .01 ); *** (p < .001 )

reader to (Prabhakaran et al., 2012). We use 5
features: ReqAction, ReqInform, Inform, Conven-
tional, and ODPCount to capture the number of
sentences in messages sent by p that have each of
these labels. We also use a feature to capture the
number of p’s messages with a request that did not
get a reply, i.e., dangling request percentage (Dan-
glingReq%), over all messages sent by p.

5 Gender and Power

In this subsection, we analyze the impact of gen-
der on the expression of power in email. We per-
form an ANOVA test on all features described in
Section 4.2 keeping both Hierarchical Power and
Gender as independent variables. We perform this
on the Train subset of the APGI subset of our cor-
pus. Table 5 shows the results for thread level ver-
sion of the features (we obtain similar significance
results at the interaction level as well). As can be
seen from the ANOVA results, the mean values of
many features differ significantly for the factorial
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Figure 1: Mean values of ODPCounts in different groups: Subordinates vs. Superiors; Female vs. Male;
across all combinations of Hierarchical Power and Gender.

groups of Hierarchical Power and Gender. For ex-
ample, ReplyRate was highly significant; female
superiors obtain the highest reply rate.

It is crucial to note that ANOVA only deter-
mines that there is a significant difference between
groups, but does not tell which groups are signifi-
cantly different. In order to ascertain that, we must
use the Tukey’s HSD (Honest Significant Differ-
ence) Test. We do not describe the analysis of
all our features to that depth in this paper due to
space limitations. Instead, we investigate specific
hypotheses which we have derived from sociolin-
guistic literature. The first hypothesis we investi-
gate is:

• Hypothesis 1: Female superiors tend to use
“face-saving” strategies at work that include
conventionally polite requests and imperson-
alized directives, and that avoid imperatives
(Herring, 2008).

As a stand-in for a face-threatening communica-
tive strategy, we use our “Overt Display of Power”
feature (ODP). An ODP limits the addressee’s
range of possible responses, and thus threatens his
or her (negative) face.6 We thus reformulate our
hypothesis as follows: the use of ODP by superi-
ors changes when looking at the splits by gender,
with female superiors using fewer ODPs than male
superiors. We look further into the ANOVA anal-
ysis of the thread-level ODPCount treating Hierar-
chical Power and Gender as independent variables.
Figure 1 shows the mean values of ODP counts in

6For a discussion of the notion of “face”, see (Brown and
Levinson, 1987).

each group of participants. A summary of the re-
sults follows.

Hierarchical Power was significant. Subordi-
nates had an average of 0.091 ODP counts and Su-
periors had an average of 0.114 ODP counts. Gen-
der was also significant; Females had an average
of 0.086 ODP counts and Males had an average of
0.113 ODP counts. When looking at the factorial
groups of Hierarchical Power and Gender, how-
ever, several results were very highly significant.
The significantly different pairs of groups, as per
the Tukey’s HSD test, are Male Superiors/Male
Subordinates, Male Superiors/Female Superiors,
and Male Superiors/Female Subordinates. Male
Superiors used the most ODPs, with an average
of 0.135 counts. Somewhat surprisingly, Female
Superiors used the least of the entire group, with
an average of 0.072 counts. Among Subordinates,
Females actually used slightly more ODP, with an
average of 0.096 counts. Male Subordinates had
an average of 0.086 ODP counts. However, the
differences among these three groups (Female Su-
periors, Female Subordinates, and Male Subordi-
nates) are not significant.

The results confirm our hypothesis: female
superiors use fewer ODPs than male superiors.
However, we also see that among women, there
is no significant difference between superiors and
subordinates, and the difference between superi-
ors and subordinates in general (which is signif-
icant) is entirely due to men. This in fact shows
that a more specific (and more interesting) hypoth-
esis than our original hypothesis is validated: only
male superiors use more ODPs than subordinates.
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6 Gender Environment and Power

We now turn to gender environments and their re-
lation to the expression of power in written di-
alogs. We again start with a hypothesis based on
the sociolinguistic literature.

• Hypothesis 2: Women use language to cre-
ate and maintain social relations, for exam-
ple, they use more small talk (based on a re-
ported “stereotype” in (Holmes and Stubbe,
2003)).

We first define more formally what we mean by
“gender environment” (Section 6.1), and then in-
vestigate our hypothesis (Section 6.2).

6.1 The Notion of “Gender Environment”

The notion of “gender environment” refers to the
gender composition of a group who are communi-
cating. In the sociolinguistic studies we have con-
sulted (Holmes and Stubbe, 2003; Herring, 2008),
the notion refers to a stable work group who in-
teract regularly. Since we are interested in study-
ing email conversations (threads), we adapt the
notion to refer to a single thread at a time. Fur-
thermore, we assume that a discourse participant
makes communicative decisions based on (among
other factors) his or her own gender, and based
on the genders of the people he or she is commu-
nicating with in a given conversation (i.e., email
thread). We therefore consider the “gender envi-
ronment” to be specific to each discourse partic-
ipant and to describe the other participants from
his or her point of view. Put differently, we use the
notion of “gender environment” to model a dis-
course participant’s (potential) audience in a con-
versation. For example, a conversation among five
women and one man looks like an all-female audi-
ence from the man’s point of view, but a majority-
female audience from the women’s points of view.

We define the gender environment of a dis-
course participant p in a thread t as follows. As
discussed, we assume that the gender environment
is a property of each discourse participant p in
thread t. We take the set of all discourse partic-
ipants of the thread t, Pt (see Section 4.1), and
exclude p from it: Pt \ {p}. We then calculate
the percentage of women in this set.7 We obtain

7We note that one could also define the notion of gender
environment at the level of individual emails: not all emails
in a thread involve the same set of participants. We leave this
to future work.

three groups by setting thresholds on these per-
centages. Finer-grained gender environments re-
sulted in partitions of the data with very few in-
stances, since most of our data involves fairly bal-
anced gender ratios. The three gender environ-
ments we use are the following:

• Female Environment: if the percentage of
women in Pt \ {p} is above 66.7%.

• Mixed Environment: if the percentage of
women in Pt \ {p} is between 33.3% and
66.7%.

• Male Environment: if the percentage of
women in Pt \ {p} is below 33.3%

Across all threads and discourse participants in
the threads, we have 791 female, 2087 mixed and
1642 male gender environments.

6.2 Gender Environment and Conventional
Dialog Acts

We now turn to testing Hypothesis 2. We have at
present no way of testing for “small talk” as op-
posed to work-related talk, so we instead test Hy-
pothesis 2 by asking how many conventional dia-
log acts a person performs. Conventional dialog
acts serve not to convey information or requests
(both of which would typically be work-related in
the Enron corpus), but to establish communication
(greetings) and to manage communication (sign-
offs); since communication is an important way of
creating and maintaining social relations, we can
say that conventional dialog acts serve the purpose
of easing conversations and thus of maintaining
social relations. Since this aspect of language is
specifically dependent on a group of people (it is
an inherently social function), we assume that the
relevant feature is not simply Gender, but Gender
Environment. Specifically, we make our Hypothe-
sis 2 more precise by saying that a higher number
of conventional dialog acts is used in Female En-
vironments. We use the thread level version of the
feature ConventionalCount.

Figure 2 shows the mean values of Conven-
tionalCount in each sub-group of participants.
Hierarchical Power was highly significant as
per ANOVA results. Subordinates use conven-
tional language more (0.60 counts) than Superiors
(0.52). Gender is a very highly significant vari-
able; Males use 0.60 counts on average, whereas
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Figure 2: Mean values of Conventional Counts: Subordinates vs. Superiors; across all Gender
Environments; across all combinations of Hierarchical Power and Gender Environments.

Females use 0.50. This result is somewhat sur-
prising, but does not invalidate our Hypothesis 2,
since our hypothesis is not formulated in terms of
Gender, but in terms of Gender Environment. The
analysis of Gender Environment at first appears to
be a negative result: while the averages by Gender
Environment differ, the differences are not signif-
icant. However, the groups defined by both Hi-
erarchical Power and Gender Environment have
highly significant differences. Subordinates in Fe-
male Environments use the most conventional lan-
guage of all six groups, with an average of 0.79.
Superiors in Female Environments use the least,
with an average of 0.48. Mixed Environments and
Male Environments differ, but are more similar to
each other than to Female Environments. In fact,
in the Tukey HSD test, the only significant pairs
are exactly the set of subordinates in Female En-
vironments paired with each other group (Supe-
riors in Female Environments, and Subordinates
and Superiors in Mixed Environments and Male
Environments). That is, Subordinates in Female
environments use significantly more conventional
language than any other group, but the remaining
groups do not differ significantly from each other.

Our hypothesis is thus only partially verified:
while gender environment is a crucial aspect of the
use of conventional DAs, we also need to look at
the power status of the writer. In fact only sub-
ordinates in female environments use more con-
ventional DAs than any other group (as defined by
power status and gender environment). While our
hypothesis is not fully verified, we interpret the
results to mean that subordinates are more com-
fortable in female environments to use a style of
communication which includes more conventional
DAs than outside the female environments.

7 Predicting Power in Participant Pairs

In this section, we use the formulation of
the power prediction problem presented in our
prior work (Prabhakaran and Rambow, 2014).
Given a thread t and a pair of participants
(p1 , p2 ) ∈ RIPPt , we want to automatically de-
tect HP(p1 , p2 ). We use the SVM-based su-
pervised learning system from (Prabhakaran and
Rambow, 2014) that can predict HP(p1 , p2 ) to
be either superior or subordinate based on the in-
teraction within a thread t for any pair of partici-
pants (p1 , p2 ) ∈ RIPPt . The order of participants
in (p1 , p2 ) is fixed such that p1 is the sender of
the first message in IMt(p1 , p2 ). The power pre-
diction system is built using the ClearTK (Ogren
et al., 2008) wrapper for SVMLight (Joachims,
1999) package. It uses a quadratic kernel to cap-
ture feature-feature interactions, which is very im-
portant as we see in Section 5 and 6. We use the
Train, Dev and Test subsets of the APGI subset
of our corpus for our experiments. We use the re-
lated interacting participant pairs in threads from
the Train set to train our models and optimize our
performance on those from the Dev set. We report
results on both Dev and Test sets.

In addition to the features described in Sec-
tion 4.2, the power prediction system presented
in (Prabhakaran and Rambow, 2014) uses a lexi-
cal feature set (LEX) that captures word ngrams,
POS (part of speech) ngrams and mixed ngrams,
since lexical features have been established to be
very useful for power prediction. Mixed ngrams
are word ngrams where words belonging to open
classes are replaced with their POS tags. We add
two gender-based feature sets: GEN containing
the gender of both persons of the pair and ENV
containing the gender environment feature.
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Table 6 presents the results obtained using vari-
ous feature combinations. We experimented using
all subsets of {LEX, THRSTR, THRMETA, DIA,
GEN, ENV } on the Dev set; we report the most
interesting results here. The majority baseline
(subordinate) obtains an accuracy of 55.8%. Us-
ing the gender-based features alone performs only
slightly better than the majority baseline. We use
the best performing feature subset from (Prab-
hakaran and Rambow, 2014) (LEX + THRMETA)
as another baseline, which obtains an accuracy
of 68.2%. Adding the GEN features improves
the performance to 70.6%. Further adding the
ENV features improves the performance, but only
marginally to 70.7% (our overall best result, an
improvment of 2.4% points). The best perform-
ing feature set without using LEX was the combi-
nation of DIA, THRMETA and GEN (67.3%). Re-
moving the gender features from this reduced the
performance to 64.6%. Similarly, the best per-
forming feature set which do not use the content
of emails at all was THRSTR + THRMETA + GEN
(66.6). Removing the gender features decreases
the accuracy by a larger margin (5.4% accuracy
reduction to 63.0).

We interpret the differences in absolute im-
provement as follows: the gender-based features
on their own are not very useful, and gain predic-
tive value only when paired with other features.
This is because the other features in fact make
quite different predictions depending on gender
and/or gender environment. However, the content
features (and in particular the lexical features) are
so powerful on their own that the relative contribu-
tion of the gender-based features decreases again.
Nonetheless, we take these results as validation of
the claim that gender-based features enhance the
value of other features in the task of predicting
power relations.

We performed another experiment where we
partitioned the data into two subsets according to
the gender of the first person of the pair and trained
two separate models to predict power. At test time,
we chose the appropriate model based on the gen-
der of the first person of the pair. However, this
did not improve the performance.

On our blind test set, the majority baseline ob-
tains an accuracy of 57.9% and the (Prabhakaran
and Rambow, 2014) baseline obtains an accuracy
of 68.9%. On adding the gender-based features,
the accuracy of the system improves to 70.2%.

Description Accuracy

Majority (Always Subordinate) 55.83

GEN 57.59

GEN + ENV 57.59

Baseline (LEX + THRMETA) 68.24

Baseline (LEX + THRMETA) + GEN 70.56

Baseline (LEX + THRMETA) + GEN + ENV 70.74

DIA + THRMETA + GEN 67.31

DIA + THRMETA 64.63

THRSTR + THRMETA + GEN 66.57

THRSTR + THRMETA 62.96

Table 6: Accuracies on feature subsets (Dev set).
THRMETA: meta-data; THRSTR: structural; DIA: dialog-act;

GEN: gender; ENV: gender environment; LEX: ngrams;

8 Conclusion

We presented a new, freely available resource: the
Gender Identified Enron Corpus, and explored the
relation between power, gender, and language us-
ing this resource. We also introduced the notion
of gender environment, and showed that the man-
ifestations of power differ significantly between
gender environments. We also showed that the
gender-related features helps in improving power
prediction. In future work, we will explore ma-
chine learning algorithms which capture the inter-
actions between features better than our SVM with
quadratic kernel.

We expect our corpus to be a rich resource for
social scientists interested in the effect of power
and gender on language use. We will investi-
gate several other sociolinguistic-inspired research
questions; for example, do the strategies managers
use for “effectiveness” of communication differ
based on gender environments?

While our findings pertain to the Enron data
set, we believe that the insights and techniques
from this study can be extended to other genres
in which there is an independent notion of hierar-
chical power, such as moderated online forums.
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Abstract

Latent Dirichlet allocation (LDA) is a
topic model that has been applied to var-
ious fields, including user profiling and
event summarization on Twitter. When
LDA is applied to tweet collections, it gen-
erally treats all aggregated tweets of a user
as a single document. Twitter-LDA, which
assumes a single tweet consists of a single
topic, has been proposed and has shown
that it is superior in topic semantic coher-
ence. However, Twitter-LDA is not capa-
ble of online inference. In this study, we
extend Twitter-LDA in the following two
ways. First, we model the generation pro-
cess of tweets more accurately by estimat-
ing the ratio between topic words and gen-
eral words for each user. Second, we en-
able it to estimate the dynamics of user in-
terests and topic trends online based on the
topic tracking model (TTM), which mod-
els consumer purchase behaviors.

1 Introduction

Microblogs such as Twitter, have prevailed rapidly
in our society recently. Twitter users post a mes-
sage using 140 characters, which is called a tweet.
The characters limit allows users to post tweets
easily about not only personal interest or real life
but also public events such as traffic accidents
or earthquakes. There have been many studies
on how to extract and utilize such information
on tweets (Diao et al., 2012; Pennacchiotti and
Popescu, 2011; Sakaki et al., 2010; Weng et al.,
2010).

Topic models, such as latent Dirichlet alloca-
tion (LDA) (Blei et al., 2003) are widely used to
identify latent topic structure in large collections
of documents. Recently, some studies have ap-
plied LDA to Twitter for user classification (Pen-

nacchiotti and Popescu, 2011), detection of influ-
ential users (Weng et al., 2010), and so on. LDA
is a generative document model, which assumes
that each document is represented as a probabil-
ity distribution over some topics, and that each
word has a latent topic. When we apply LDA
to tweets, each tweet is treated as a single docu-
ment. This direct application does not work well
because a tweet is very short compared with tradi-
tional media such as newspapers. To deal with the
shortness of a tweet, some studies aggregated all
the tweets of a user as a single document (Hong
and Davison, 2010; Pennacchiotti and Popescu,
2011; Weng et al., 2010). On the other hand, Zhao
et al. (2011) proposed “Twitter-LDA,” which is
a model that considers the shortness of a tweet.
Twitter-LDA assumes that a single tweet consists
of a single topic, and that tweets consist of topic
and background words. Zhao et al. (2011) show
that it works well at the point of semantic coher-
ence of topics compared with LDA. However, as
with the case of LDA, Twitter-LDA cannot con-
sider a sequence of tweets because it assumes that
samples are exchangeable. In Twitter, user inter-
ests and topic trends are dynamically changing.
In addition, when new data comes along, a new
model must be generated again with all the data
in Twitter-LDA because it does not assume online
inference. Therefore, it cannot efficiently analyze
the large number of tweets generated everyday. To
overcome these difficulties, a model that considers
the time sequence and has the capability of online
inference is required.

In this study, we first propose an improved
model based on Twitter-LDA, which assumes that
the ratio between topic and background words dif-
fers for each user. This study evaluates the pro-
posed method based on perplexity and shows the
efficacy of the new assumption in the improved
model. Second, we propose a new topic model
called “Twitter-TTM” by extending the improved
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model based on the topic tracking model (TTM)
(Iwata et al., 2009), which models the purchase
behavior of consumers and is capable of online
inference. Finally, we demonstrate that Twitter-
TTM can effectively capture the dynamics of user
interests and topic trends in Twitter.

2 Improvement of Twitter-LDA

2.1 Improved-Model

Figure 1(a) shows the graphical representation of
Twitter-LDA based on the following assumptions.
There areK topics in Twitter and each topic is rep-
resented by a topic word distribution. Each user
has his/her topic interestsϕu represented by a dis-
tribution overK topics. Topick is assigned to
each tweet of useru depending on the topic inter-
estsϕu. Each word in the tweet assigned by topic
k is generated from a background word distribu-
tion θB or a topic word distributionθk. Whether
the word is a background word or a topic word
is determined by a latent valuey. Wheny = 0,
the word is generated from the background word
distributionθB, and from the topic word distribu-
tion θk wheny = 1. The latent valuey is chosen
according to a distributionπ. In other words, the
ratio between background and topic words is de-
termined byπ.

In Twitter-LDA, π is common for all users,
meaning that the rate between background and
topic words is the same for each user. However,
this assumption could be incorrect, and the rate
could differ for each user. Thus, we develop an
improved model based on Twitter-LDA, which as-
sumes thatπ is different for each user, as shown
in Figure 1(b). In the improved model, the rate
between background and topic words for user u is
determined by a user-specific distributionπu. The
improved model is expected to infer the generative
process of tweets more efficiently.

2.2 Experiment for Improved Model

We performed an experiment to compare the pre-
dictive performances of LDA, TTM, and the im-
proved model shown in Section 2.1. In this ex-
periment, LDA was applied as the method to ag-
gregate all tweets of a user as a single document.
The original Twitter data set contains 14,305 users
and 292,105 tweets collected on October 18, 2013.
We then removed words that occurred less than
20 times and stop words. Retweets1 were treated

1Republishing a tweet written by another Twitter user.

as the same as other general tweets because they
reflected the user’s interests. After the above
preprocessing, we obtained the final dataset with
14,139 users, 252,842 tweets, and 7,763 vocab-
ularies. Each model was inferred with collapsed
Gibbs sampling (Griffiths and Steyvers, 2004) and
the iteration was set at 500. For a fair comparison,
the hyper parameters in these models were opti-
mized in each Gibbs sampling iteration by max-
imizing likelihood using fixed iterations (Minka,
2000).

This study employs perplexity as the evaluation
index, which is the standard metric in information
retrieval literature. The perplexity of a held-out
test set is defined as

perplexity = exp
(
− 1

N

∑
u

log p(wu)
)

(1)

wherewu represents words are contained in the
tweets of useru andN is the number of words in
the test set. A lower perplexity means higher pre-
dictive performance. We set the number of topics
K at 50, 100, 150, 200, and 250 and evaluated the
perplexity for each model in eachK via a 10-fold
cross-validation.

The results are shown in Table 1, which shows
that the improved model performs better than the
other models for anyK. Therefore, the new as-
sumption of the improved model, that the rate be-
tween background and topic words is different for
each user, could be more appropriate. LDA per-
formance worsens with an increase inK because
the aggregated tweets of a single user neglect the
topic of each tweet.

Table 2 shows examples of the tweets of users
with high and low rates of background words. The
users with a high background words rate tend to
use basic words that are often used in any top-
ics, such as “like,” “about,” and “people,” and they
tend to tweet about their personal lives. On the
other hand, for users with a low background words
rate, topical words are often used such as “Arse-
nal,” “Justin,” and “Google”. They tend to tweet
about their interests, including music, sports, and
movies.

3 Twitter-TTM

3.1 Model Extension based on Topic
Tracking Model

We extend the improved model shown in Section
2.1 considering the time sequence and capabil-
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Figure 1: Graphical representation of Twitter-LDA and Improved-model

Table 1: Perplexity of each model in 10 runs
Number of topicK LDA Twitter-LDA Improved-model

50 1586.7 (14.4) 2191.0 (28.4) 1555.3(36.7)
100 1612.7 (11.9) 1933.9 (23.6) 1471.7(22.3)
150 1635.3 (11.2) 1760.1 (15.7) 1372.3(20.0)
200 1655.2 (13.0) 1635.4 (22.1) 1289.5(13.3)
250 1672.7 (17.2) 1542.8 (12.5) 1231.1(11.9)

Table 2: Example of tweets of users with high and low rate of background words
High rate of background wordsLow rate of background words

I hope today goes quickly Team Arsenal v will Ozil be
I want to work in a cake Making Justin smile and laugh as he is working on music
All need your support please Google nexus briefly appears in Google play store

ity of online inference based on TTM (Iwata et
al., 2009). TTM is a probabilistic consumer pur-
chase behavior model based on LDA for track-
ing the interests of each user and the trends in
each topic. Other topic models considering the dy-
namics of topics include the dynamic topic model
(DTM) (Blei and Lafferty, 2006) and topic over
time (ToT) (Wang and McCallum, 2006). DTM is
a model for analyzing the time evolution of top-
ics in time-ordered document collections. It does
not track the interests of each user as shown in
Figure 2(a) because it assumes that a user (doc-
ument) has only one time stamp. ToT requires all
the data over time for inference, thus, it is not ap-

propriate for application to continuously generated
data such as Twitter. We consider a model must be
capable of online inference and track the dynam-
ics of user interests and topic trends for modeling
tweets. Since TTM has these abilities, we adapt it
to the improved model described in Section 2.

Figure 2(b) shows the graphical representation
of TTM. TTM assumes that the mean of user in-
terests at the current time is the same as that at the
previous time, unless new data is observed. For-
mally, the current interestϕt,u are drawn from the
following Dirichlet distribution in which the mean
is the previous interest̂ϕt−1,u and the precision is
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Figure 2: Graphical representation of DTM and TTM

αt,u

p(ϕt,u|ϕ̂t−1,u, αt,u) ∝
∏
k

ϕ
αt,uϕ̂t−1,u,k−1
t,u,k (2)

whereϕt,u,k represents the probability that useru
is interested in topick at time t. t is a discrete
variable and can be arbitrarily set as the unit time
interval, e.g., at one day or one week. The preci-
sionαt,u represents the interest persistence of how
consistently useru maintains his/her interests at
time t compared with the previous timet−1. αt,u

is estimated for each time period and each user
because interest persistence depends on both time
and users. As mentioned above, the current topic
trend θt,k is drawn from the following Dirichlet
distribution with the previous trend̂θt−1,k

p(θt,k|θ̂t−1,k, βt,k) ∝
∏
v

θ
βt,k θ̂t−1,k,v−1
t,k,v (3)

whereθt,k,v represents the probability that wordv
is chosen in topick at timet.

Here our proposed Twitter-TTM adapts the
above TTM assumptions to the improved model.
That is, we extend the improved model whereby
user interestϕt,u and topic trendθt,k depend on
previous states. Time dependency is not consid-
ered onθB andπu because they can be regarded
as being independent of time.

Figures 3 and 4 show the generative process
and a graphical representation of Twitter-TTM, re-
spectively. Twitter-TTM can capture the dynam-
ics of user interests and topic trends in Twitter
considering the features of tweets online. More-
over, Twitter-TTM can be extended to capture
long-term dependences, as described in Iwata et
al. (2009).

3.2 Model Inference

We use a stochastic expectation-maximization al-
gorithm for Twitter-TTM inference, as described
in Wallach (2006) in which Gibbs sampling of la-
tent values and maximum joint likelihood estima-
tion of parameters are alternately iterated. At time
t, we estimate user interestsΦt = {ϕ̂t,u}U

u=1,
topic trendsΘt = {θ̂t,k}K

k=1, background word
distributionθt,B, word usage rate distributionπt,u,
interest persistence parametersαt = {αt,u}U

u=1,
and trend persistence parametersβt = {βt,k}K

k=1

using the previous time interestŝΦt−1 and trends
Θ̂t−1.

We employ collapsed Gibbs sampling to infer
the latent variables. LetDt be a set of tweets and
Zt, Yt be a set of latent variablesz, y at timet. We
can integrate the parameters in the joint distribu-
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tion as follows:

p(Dt, Yt, Zt|Φ̂t−1, Θ̂t−1, αt,βt, λ, γ)

=
(Γ(2γ)

Γ(γ)2
)U ∏

u

Γ(γ + nt,u,B)Γ(γ + nt,u,K)
Γ(2γ + nt,u)

×Γ(V λ)
Γ(λ)V

∏
v
Γ(nt,B,v + λ)

Γ(nt,B + V λ)

×
∏
k

Γ(βt,k)
Γ(nt,k + βt,k)

∏
v

Γ(nt,k,v + βt,kθ̂t−1,k,v)

Γ(βt,kθ̂t−1,k,v)

×
∏
u

Γ(αt,u)
Γ(ct,u + αt,u)

∏
k

Γ(ct,u,k + αt,uϕ̂t−1,u,k)

Γ(αt,uϕ̂t−1,u,k)
,

(4)

wherent,u,B andnt,u,K are the number of back-
ground and topic words of useru at timet, nt,B,v

is the number of times that wordv is assigned as
a background word at timet, nt,k,v is the num-
ber of times that wordv is assigned to topick
at time t, ct,u,k is the number of tweets assigned
to topic k for user u at time t. In addition,
nt,u = nt,u,B + nt,uK , nt,B =

∑
v nt,B,v, nt,K =∑

k nt,k =
∑

k

∑
v nt,k,v, nt,u =

∑
k nt,u,k, and

ct,u =
∑

k ct,u,k.
Given the assignment of all other latent vari-

ables, we derive the following formula calculated
from eq.(4) to infer a latent topic,

p(zi = k|Dt, Yt, Zt\i, Φ̂t−1, Θ̂t−1, αt, βt)

∝ ct,u,k\i + αt,uϕ̂t−1,u,k

ct,u\i + αt,u

Γ(nt,k\i + βt,k)
Γ(nt,k + βt,k)

×
∏
v

Γ(nt,k,v + βt,kθ̂t−1,k,v)

Γ(nt,k,v\i + βt,kθ̂t−1,k,v)
, (5)

wherei = (t, u, s), thuszi represents a topic as-
signed to thes-th tweet of useru at timet, and\i
represents a count excluding thei-th tweet.

Then, whenzi = k is given, we derive the fol-
lowing formula to infer a latent variableyj ,

p(yj = 0|Dt, Yt\j , Zt, λ, γ)

∝ nt,B,v\j + λ

nt,B\j + V λ

nt,u,B\j + γ

nt,u\j + 2γ
, (6)

p(yj = 1|Dt, Yt\j , Zt, Θ̂t−1, βt, γ)

∝ nt,k,v\j + βt,kθ̂t−1,k,v

nt,k\j + βt,k

nt,u,K\j + γ

nt,u\j + 2γ
, (7)

wherej = (t, u, s, n), thusyj represents a latent
variable assigned to then-th word in thes-th tweet

of useru at timet, and\j represents a count ex-
cluding thej-th word.

The persistence parametersαt andβt are esti-
mated by maximizing the joint likelihood eq.(4),
using a fixed point iteration (Minka, 2000). The
update formulas are as follows:

αnew
t,u = αt,u

∑
k
ϕ̂t−1,u,kAt,u,k

Ψ(ct,u + αt,u)−Ψ(αt,u)
,

(8)

where At,u,k = Ψ(ct,u,k + αt,uϕ̂t−1,u,k) −
Ψ(αt,uϕ̂t−1,u,k), and

βnew
t,k = βt,k

∑
v
θ̂t−1,k,vBt,k,v

Ψ(nt,k + βt,k)−Ψ(βt,k)
,

(9)

where Bt,k,v = Ψ(nt,k,v + βt,kθ̂t−1,k,v) −
Ψ(βt,kθ̂t−1,k,v). We can estimate latent variables
Zt, Yt, and parametersαt and βt by iterating
Gibbs sampling with eq.(5), eq.(6), and eq.(7) and
maximum joint likelihood with eq.(8) and eq.(9).
After the iterations, the means ofϕt,u,k andθt,k,v

are obtained as follows.

ϕ̂t,u,k =
ct,u,k + αt,uϕ̂t−1,u,k

ct,u + αt,u
, (10)

θ̂t,k,v =
nt,k,v + βt,kθ̂t−1,k,v

nt,k + βt,k
. (11)

These estimates are used as the hyper parameters
of the prior distributions at the next time period
t + 1.

4 Related Work

Recently, topic models for Twitter have been pro-
posed. Diao et al. (2012) proposed a topic
model that considers both the temporal informa-
tion of tweets and user’s personal interests. They
applied their model to find bursty topics from
Twitter. Yan et al. (2013) proposed a biterm
topic model (BTM), which assumes that a word-
pair is independently drawn from a specific topic.
They demonstrated that BTM can effectively cap-
ture the topics within short texts such as tweets
compared with LDA. Chua and Asur (2013) pro-
posed two topic models considering time order
and tweet intervals to extract the tweets summa-
rizing a given event. The models mentioned above
do not consider the dynamics of user interests, nor
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1. Drawθt,B ∼Dirichlet(λ)
2. For each topick = 1, ...,K,

(a) drawθt,k ∼Dirichlet(βt,kθ̂t−1,k)
3. For each useru = 1, ..., U ,

(a) drawϕt,u ∼Dirichlet(αt,uϕ̂t−1,u)
(b) drawπt,u ∼Beta(γ)
(c) for each tweets = 1, ..., Nu

i. drawzt,u,s ∼Multinomial(ϕt,u)
ii. for each wordn = 1, ..., Nu,s

A. drawyt,u,s,n ∼Bernoulli(πt,u)
B. drawwt,u,s,n ∼

Multinomial(θt,B) if yt,u,s,n = 0
or Multinomial(θt,zt,u,s)
if yt,u,s,n = 1

Figure 3: Generative process of tweets in Twitter-
TTM

do they have the capability of online inference;
thus, they cannot efficiently model the large num-
ber of tweets generated everyday, whereas Twitter-
TTM can capture the dynamics of user interests
and topic trends and has the capability of online
inference.

Some online topic models have also been pro-
posed. TM-LDA was proposed by Wang et al.
(2012), which can efficiently model online the top-
ics and topic transitions that naturally arise in a
tweet stream. Their model learns the transition
parameters among topics by minimizing the pre-
diction error on topic distribution in subsequent
tweets. However, the TM-LDA does not con-
sider dynamic word distributions. In other words,
their model can not capture the dynamics of topic
trends. Lau et al. (2012) proposed a topic model
implementing a dynamic vocabulary based on on-
line LDA (OLDA) (AlSumait et al., 2008) and ap-
plied it to track emerging events on Twitter. An
online variational Bayes algorithm for LDA is also
proposed (Hoffman et al., 2010). However, these
methods are based on LDA and do not consider
the shortness of a tweet. Twitter-TTM tackles
the shortness of a tweet by assuming that a single
tweet consists of a single topic. This assumption
is based on the following observation: a tweet is
much shorter than a normal document, so a single
tweet rarely contains multiple topics but rather a
single one.
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Figure 4: Graphical model of Twitter-TTM

5 Experiment

5.1 Setting

We evaluated the effectiveness of the proposed
Twitter-TTM using an actual Twitter data set. The
original Twitter data set contains 15,962 users and
4,146,672 tweets collected from October 18 to 31,
2013. We then removed words that occurred less
than 30 times and stop words. After this prepro-
cessing, we obtained the final data set with 15,944
users, 3,679,481 tweets, and 30,096 vocabularies.

We compared the predictive performance of
Twitter-TTM with LDA, TTM, Twitter-LDA,
Twitter-LDA+TTM, and the improved model
based on the perplexity for the next time tweets.
Twitter-LDA+TTM is a combination of Twitter-
LDA and TTM. It is equivalent to Twitter-TTM,
except that the rate between background and topic
words is different for each user. We set the num-
ber of topicsK at 100, the iteration of each model
at 500, and the unit time interval at one day. The
hyper parameters in these models were optimized
in each Gibbs sampling iteration by maximizing
likelihood using fixed iterations (Minka, 2000).
The inferences of LDA, Twitter-LDA, and the im-
proved model were made for current time tweets.

5.2 Result

Figure 5 shows the perplexity of each model for
each time, wheret = 1 in the horizontal axis rep-
resents October 18,t = 2 represents October 19,
..., andt = 13 represents October 31. The perplex-
ity at timet represents the predictive performance
of each model inferred by previous time tweets to
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the current time tweets. Note that att = 1, the per-
formance of LDA and TTM, that of Twitter-LDA
and Twitter-LDA+TTM, and that of Twitter-TTM
and the improved model were found to be equiva-
lent.

As shown in Figure 5(a), the proposed Twitter-
TTM shows lower perplexity compared with con-
ventional models, such as LDA, Twitter-LDA, and
TTM at any time, which implies that Twitter-TTM
can appropriately model the dynamics of user in-
terests and topic trends in Twitter. TTM could
not have perplexity lower than LDA although it
considers the dynamics. If LDA could not ap-
propriately model the tweets, then the user inter-
estsΦ̂t−1 and topic trendŝΘt−1 in the previous
time are not estimated well in TTM. Figure 5(b)
shows the perplexities of the improved model and
Twitter-TTM. From t = 2, Twitter-TTM shows
lower perplexity than the improved model for each
time. The reason for the high perplexity of the im-
proved model is that it does not consider the dy-
namics. Twitter-TTM also shows lower perplexity
than Twitter-LDA+TTM for each time, as shown
in Figure 5(c), because Twitter-TTM’s assumption
that the rate between background and topic words
is different for each user is more appropriate, as
demonstrated in Section 2.2. These results imply
that Twitter-TTM also outperforms other conven-
tional methods, such as DTM, OLDA, and TM-
LDA, which do not consider the shortness of a
tweet or the dynamics of user interests or topic
trends .

Table 3 shows two topic examples of the topic
evolution analyzed by Twitter-TTM, and Figure 6
shows the trend persistence parametersβ of each
topic at each time. The persistence parameters of
the topic “Football” are lower than those of “Birth-
day” because it is strongly affected by trends in the
real world. In fact, the top words in “Football”
change more dynamically than those of “Birth-
day.” For example, in the “Football” topic, though
‘Arsenal’ is usually popular, ‘Madrid’ becomes
more popular on October 24.

6 Conclusion

We first proposed an improved model based
on Twitter-LDA, which estimates the rate be-
tween background and topic words for each user.
We demonstrated that the improved model could
model tweets more efficiently than LDA and
Twitter-LDA. Next we proposed a novel proba-
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Figure 5: Perplexity for each time

bilistic topic model for Twitter, called Twitter-
TTM, which can capture the dynamics of user in-
terests and topic trends and is capable of online
inference. We evaluated Twitter-TTM using an ac-
tual Twitter data set and demonstrated that it could
model more accurately tweets than conventional
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methods.
The proposed method currently needs to prede-

termine the number of topics each time, and it is
fixed. In future work, we plan to extend the pro-
posed method to capture the birth and death of
topics along the timeline with a variable number
of topics, such as the model proposed by Ahmed
(Ahmed and Xing, 2010). We also plan to ap-
ply the proposed method to content recommenda-
tions and trend analysis in Twitter to investigate
this method further.
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Table 3: Two examples of topic evolution analyzed by Twitter-TTM
Label Date Top words
Birthday 10/18 birthday,happy,maria,hope,good,love,thanks,bday,lovely,enjoy

10/19 happy,birthday,good,hope,thank,enjoy,love,bday,lovely,great
10/20 birthday,happy,hope,good,love,lovely,great,enjoy,thank,beautiful
10/21 birthday,happy,hope,good,beautiful,love,lovely,bday,great,thank
10/22 birthday,happy,hope,good,beautiful,love,bless,thank,today,bday
10/23 birthday,happy,thank,good,love,hope,beautiful,enjoy,channing,wish
10/24 birthday,happy,thank,love,hope,good,beautiful,fresh,thanks,jamz

Football 10/18 arsenal,ozil,game,team,cazorla,league,wenger,play,season,good
10/19 goal,liverpool,gerrard,arsenal,ozil,league,newcastle,suarez,goals,team
10/20 arsenal,ozil,goal,ramsey,norwich,goals,league,wilshere,mesut,premier
10/21 arsenal,goal,goals,league,townsend,spurs,player,season,wenger,ozil
10/22 arsenal,goal,wenger,ozil,league,arsene,goals,birthday,happy,team
10/23 arsenal,dortmund,ozil,fans,wilshere,borussia,ramsey,lewandowski,giroud,league
10/24 madrid,goals,ronaldo,cska,real,league,city,moscow,champions,yaya
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Abstract

Self-disclosure, the act of revealing one-
self to others, is an important social be-
havior that strengthens interpersonal rela-
tionships and increases social support. Al-
though there are many social science stud-
ies of self-disclosure, they are based on
manual coding of small datasets and ques-
tionnaires. We conduct a computational
analysis of self-disclosure with a large
dataset of naturally-occurring conversa-
tions, a semi-supervised machine learning
algorithm, and a computational analysis
of the effects of self-disclosure on subse-
quent conversations. We use a longitu-
dinal dataset of 17 million tweets, all of
which occurred in conversations that con-
sist of five or more tweets directly reply-
ing to the previous tweet, and from dyads
with twenty of more conversations each.
We develop self-disclosure topic model
(SDTM), a variant of latent Dirichlet al-
location (LDA) for automatically classi-
fying the level of self-disclosure for each
tweet. We take the results of SDTM and
analyze the effects of self-disclosure on
subsequent conversations. Our model sig-
nificantly outperforms several comparable
methods on classifying the level of self-
disclosure, and the analysis of the longitu-
dinal data using SDTM uncovers signifi-
cant and positive correlation between self-
disclosure and conversation frequency and
length.

1 Introduction

Self-disclosure is an important and pervasive so-
cial behavior. People disclose personal informa-
tion about themselves to improve and maintain

∗This work was done when JinYeong Bak was a visiting
student at Microsoft Research, Beijing, China.

relationships (Jourard, 1971; Joinson and Paine,
2007). A common instance of self-disclosure is
the start of a conversation with an exchange of
names and additional self-introductions. Another
example of self-disclosure, shown in Figure 1c,
where the information disclosed about a family
member’s serious illness, is much more personal
than the exchange of names. In this paper, we seek
to understand this important social behavior using
a large-scale Twitter conversation data, automati-
cally classifying the level of self-disclosure using
machine learning and correlating the patterns with
conversational behaviors which can serve as prox-
ies for measuring intimacy between two conversa-
tional partners.

Twitter conversation data, explained in more
detail in section 4.1, enable an extremely large
scale study of naturally-occurring self-disclosure
behavior, compared to traditional social science
studies. One challenge of such large scale study,
though, remains in the lack of labeled ground-
truth data of self-disclosure level. That is,
naturally-occurring Twitter conversations do not
come tagged with the level of self-disclosure in
each conversation. To overcome that challenge,
we propose a semi-supervised machine learning
approach using probabilistic topic modeling. Our
self-disclosure topic model (SDTM) assumes that
self-disclosure behavior can be modeled using a
combination of simple linguistic features (e.g.,
pronouns) with automatically discovered seman-
tic themes (i.e., topics). For instance, an utterance
“I am finally through with this disastrous relation-
ship” uses a first-person pronoun and contains a
topic about personal relationships.

In comparison with various other models,
SDTM shows the highest accuracy, and the result-
ing conversation frequency and length patterns on
self-disclosure are shown different over time. Our
contributions to the research community include
the following:
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• We present key features and prior knowl-
edge for identifying self-disclosure level, and
show relevance of it with experiment results
(Sec. 2).

• We present a topic model that explicitly in-
cludes the level of self-disclosure in a conver-
sation using linguistic features and the latent
semantic topics (Sec. 3).

• We collect a large dataset of Twitter conver-
sations over three years and annotate a small
subset with self-disclosure level (Sec. 4).

• We compare the classification accuracy of
SDTM with other models and show that it
performs the best (Sec. 5).

• We correlate the self-disclosure patterns and
conversation behaviors to show that there is
significant relationship over time (Sec. 6).

2 Self-Disclosure

In this section, we look at social science literature
for definition of the levels of self-disclosure. Us-
ing that definition, we devise an approach to au-
tomatically identify the levels of self-disclosure
in a large corpus of OSN conversations. We dis-
cuss three approaches, first, using first-person pro-
noun features, and second, extracting seed words
and phrases from the Twitter conversation cor-
pus, and third, extracting seed words and phrases
from an external corpus of anonymously posted
secrets, and we demonstrate the efficacy of those
approaches with an annotated corpus.

2.1 Self-disclosure (SD) level
To analyze self-disclosure, researchers categorize
self-disclosure language into three levels: G (gen-
eral) for no disclosure, M for medium disclosure,
and H for high disclosure (Vondracek and Von-
dracek, 1971; Barak and Gluck-Ofri, 2007). Ut-
terances that contain general (non-sensitive) in-
formation about the self or someone close (e.g.,
a family member) are categorized as M. Exam-
ples are personal events, past history, or future
plans. Utterances about age, occupation and hob-
bies are also included. Utterances that contain
sensitive information about the self or someone
close are categorized as H. Sensitive information
includes personal characteristics, problematic be-
haviors, physical appearance and wishful ideas.
Generally, these are thoughts and information that

(a) A G level Twitter conversation

(b) A M level Twitter conversation

(c) A H level Twitter conversation

Figure 1: An example of a Twitter conversation
(from annotated dataset) with G, M and H level of
self-disclosure.

one would keep as secrets to himself. All other
utterances, those that do not contain information
about the self or someone close are categorized
as G. Examples include gossip about celebrities
or factual discourse about current events. Figure
1 shows Twitter conversation examples with G,
M and H levels from annotated dataset (see Sec-
tion 4.2 for a detailed description of the annotated
dataset).

2.2 G Level of Self-Disclosure
An obvious clue of self-disclosure is the use of
first-person pronouns. For example, phrases such
as ‘I live’ or ‘My name is’ indicate that the ut-
terance contains personal information. In pre-
vious research, the simple method of counting
first-person pronouns was used to measure the de-
gree of self-disclosure (Joinson, 2001; Barak and
Gluck-Ofri, 2007). Consequently, the absence of a
first-person pronoun signals that the utterance be-
longs in the G level of self-disclosure. We ver-
ify this pattern with a dataset of Tweets annotated
with G, M, and H levels. We divide the annotated
Tweets into two classes, G and M/H. Then we com-
pute mutual information of each unigram, bigram,
or trigram feature to see which features are most
discriminative. As Table 1 shows, 18 out of 30
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Category Words/Expressions
Unigram my, I, I’m, I’ll, but, was, I’ve, love, dad, have
Bigram I love, I was, I have, my dad, go to, my mom,

with my, have to, to go, my mum
Trigram I have a, is going to, to go to, want to go, and I

was, going to miss, I love him, I think I, I was
like, I wish I

Table 1: High ranked words and expressions by
mutual information between G and M/H level in
annotated conversations.

most highly ranked discriminative features contain
a first-person pronoun.

2.3 M Level of Self-Disclosure

Utterances with M level include two types: 1)
information related with past events and future
plans, and 2) general information about self
(Barak and Gluck-Ofri, 2007). For the former, we
add as seed trigrams ‘I have been’ and ‘I will’.
For the latter, we use seven types of information
generally accepted to be personally identifiable in-
formation (McCallister, 2010), as listed in the left
column of Table 2. To find the appropriate tri-
grams for those, we take Twitter conversation data
(described in Section 4.1) and look for trigrams
that begin with ‘I’ and ‘my’ and occur more than
200 times. We then check each one to see whether
it is related with any of the seven types listed in
the table. As a result, we find 57 seed trigrams for
M level. Table 2 shows several examples.

Type Trigram
Name My name is, My last name
Birthday My birthday is, My birthday party
Location I live in, I lived in, I live on
Contact My email address, My phone number
Occupation My job is, My new job
Education My high school, My college is
Family My dad is, My mom is, My family is

Table 2: Example seed trigrams for identifying M
level of SD. There are 51 of these used in SDTM.

2.4 H Level of Self-Disclosure

Utterances with H level express secretive wishes
or sensitive information that exposes self or some-
one close (Barak and Gluck-Ofri, 2007). These
are generally kept as secrets. With this intuition,
we crawled 26,523 posts from Six Billion Secrets1

site where users post secrets anonymously2. We

1http://www.sixbillionsecrets.com
2This site is regularly monitored for spam.

Category Words - SECRET Words - Annotated
physical
appear-
ance

acne, hair, overweight,
stomach, chest, hand,
scar, thighs, chubby

ankle, face, toe,
skin

mental/
physical
condition

addicted, bulimia, doc-
tor, illness, alcoholic,
disease, drugs, pills

ache, epilepsy,
pain, chiropractor,
codeine

Table 3: Example words for identifying H level of
SD from secret posts (2nd column) and annotated
data (3rd column). Categories are hand-labeled.

call this external dataset SECRET. Unlike G and M
levels, evidence of H level of self-disclosure tends
to be topical, such as physical appearance, mental
and physical illnesses, and family problems, so we
take an approach of fitting a topic model driven by
seed words. A similar approach has been success-
ful in sentiment classification (Jo and Oh, 2011;
Kim et al., 2013).

A critical component of this approach is the set
of seed words with which to drive the discovery
of topics that are most indicative of H level self-
disclosure. To extract the seed words that express
secretive personal information, we compute mu-
tual information (Manning et al., 2008) with SE-
CRET and 24,610 randomly selected tweets. We
select 1,000 words with high mutual information
and filter out stop words. Table 3 shows some of
these words. To extract seed trigrams of secretive
wishes, we again look for trigrams that start with
‘I’ or ‘my’, occur more than 200 times, and select
trigrams of wishful thinking, such as ‘I want to’,
and ‘I wish I’. In total, there are 88 seed words
and 8 seed trigrams for H.

Since SECRET is quite different from Twitter,
we must show that posts in SECRET are seman-
tically similar to the H level Tweets. Rather than
directly comparing SECRET posts and Tweets, we
use the same method of extracting discriminative
word features from the annotated H level Tweets
(see Section 4.2). Table 3 shows the seed words
extracted from SECRET as well as the annotated
Tweets. Because the annotated dataset consists of
only 200 conversations, the coverage of the topics
seems narrower than the much larger SECRETS,
but both datasets show similarities in the topics.
This, combined with the results of the model with
the two sets of seed words (see Section 5 for the
results), shows that SECRETS is an effective and
simple-to-obtain substitute for an annotated cor-
pus of H level of self-disclosure.

1988



𝑤

𝑧

𝜋

𝑟

𝛼𝛾

CTN

𝑦

ω

𝜆

𝑥

𝜃𝑙
3

𝛽𝑙

𝜙𝑙

𝐾𝑙
3

Figure 2: Graphical model of SDTM

Notation Description
G; M ; H {general; medium; high} SD level
C; T ; N Number of conversations; tweets;

words
KG;KM ;KH Number of topics for {G; M; H}
c; ct Conversation; tweet in conversation c
yct SD level of tweet ct, G or M/H
rct SD level of tweet ct, M or H
zct Topic of tweet ct
wctn nth word in tweet ct
λ Learned Maximum entropy parameters
xct First-person pronouns features
ωct Distribution over SD level of tweet ct
πc SD level proportion of conversation c
θGc ;θMc ;θHc Topic proportion of {G; M; H} in con-

versation c
φG;φM ;φH Word distribution of {G; M; H}
α; γ Dirichlet prior for θ; π
βG,βM ;βH Dirichlet prior for φG;φM ;φH

ncl Number of tweets assigned SD level l
in conversation c

nlck Number of tweets assigned SD level l
and topic k in conversation c

nlkv Number of instances of word v assigned
SD level l and topic k

mctkv Number of instances of word v assigned
topic k in tweet ct

Table 4: Summary of notations used in SDTM

3 Self-Disclosure Topic Model

This section describes our model, the self-
disclosure topic model (SDTM), for classifying
self-disclosure level and discovering topics for
each self-disclosure level.

3.1 Model

In section 2, we discussed different approaches
to identifying each level of self-disclosure, based
on social science literature, annotated and unan-
notated Tweets, and an external corpus of se-
cret posts. In this section, we describe our
self-disclosure topic model, based on the widely
used latent Dirichlet allocation (Blei et al., 2003),
which incorporates those approaches.

Figure 2 illustrates the graphical model of

1. For each level l ∈ {G, M, H}:
For each topic k ∈ {1, . . . ,Kl}:

Draw φl
k ∼ Dir(βl)

2. For each conversation c ∈ {1, . . . , C}:
(a) Draw θGc ∼ Dir(α)
(b) Draw θMc ∼ Dir(α)
(c) Draw θHc ∼ Dir(α)
(d) Draw πc ∼ Dir(γ)
(e) For each message t ∈ {1, . . . , T}:

i. Observe first-person pronouns features xct

ii. Draw ωct ∼MaxEnt(xct,λ)
iii. Draw yct ∼ Bernoulli(ωct)
iv. If yct = 0 which is G level:

A. Draw zct ∼Mult(θGc )
B. For each word n ∈ {1, . . . , N}:

Draw word wctn ∼Mult(φG
zct)

Else which can be M or H level:
A. Draw rct ∼Mult(πc)
B. Draw zct ∼Mult(θrctc )
C. For each word n ∈ {1, . . . , N}:

Draw word wctn ∼Mult(φrct
zct)

Figure 3: Generative process of SDTM.

SDTM and how those approaches are embodied
in it. The first approach based on the first-person
pronouns is implemented by the observed vari-
able xct and the parameters λ from a maximum
entropy classifier for G vs. M/H level. The ap-
proach of seed words and phrases for levels M and
H is implemented by the three separate word-topic
probability vectors for the three levels of SD: φl

which has a Bayesian informative prior βl where
l ∈ {G,M,H}, the three levels of self-disclosure.
Table 4 lists the notations used in the model and
the generative process, and Figure 3 describes the
generative process.

3.2 Classifying G vs M/H levels

Classifying the SD level for each tweet is done in
two parts, and the first part classifies G vs. M/H
levels with first-person pronouns (I, my, me). In
the graphical model, y is the latent variable that
represents this classification, and ω is the distri-
bution over y. x is the observation of the first-
person pronoun in the tweets, andλ are the param-
eters learned from the maximum entropy classifier.
With the annotated Twitter conversation dataset
(described in Section 4.2), we experimented with
several classifiers (Decision tree, Naive Bayes)
and chose the maximum entropy classifier because
it performed the best, similar to other joint topic
models (Zhao et al., 2010; Mukherjee et al., 2013).
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3.3 Classifying M vs H levels
The second part of the classification, the M and the
H level, is driven by informative priors with seed
words and seed trigrams. In the graphical model,
r is the latent variable that represents this classi-
fication, and π is the distribution over r. γ is a
non-informative prior for π, and βl is an informa-
tive prior for each SD level by seed words. For
example, we assign a high value for the seed word
‘acne’ for βH , and a low value for ‘My name is’.
This approach is the same as joint models of topic
and sentiment (Jo and Oh, 2011; Kim et al., 2013).

3.4 Inference
For posterior inference of SDTM, we use col-
lapsed Gibbs sampling which integrates out la-
tent random variables ω,π,θ, and φ. Then we
only need to compute y, r and z for each tweet.
We compute full conditional distribution p(yct =
j′, rct = l′, zct = k′|y−ct, r−ct, z−ct,w,x) for
tweet ct as follows:

p(yct = 0, zct = k′|y−ct, r−ct, z−ct,w,x)

∝ exp(λ0 · xct)∑1
j=0 exp(λj · xct)

g(c, t, l′, k′),

p(yct = 1, rct = l′, zct = k′|y−ct, r−ct, z−ct,w,x)

∝ exp(λ1 · xct)∑1
j=0 exp(λj · xct)

(γl′ + n
(−ct)
cl′ ) g(c, t, l′, k′),

where z−ct, r−ct,y−ct are z, r,y without tweet
ct, mctk′(·) is the marginalized sum over word v of
mctk′v and the function g(c, t, l′, k′) as follows:

g(c, t, l′, k′) =
Γ(
∑V

v=1 β
l′
v + n

l′−(ct)
k′v )

Γ(
∑V

v=1 β
l′
v + n

l′−(ct)
k′v +mctk′(·))(

αk′ + n
l′(−ct)
ck′∑K

k=1 αk + nl
′
ck

)
V∏
v=1

Γ(βl
′
v + n

l′−(ct)
k′v +mctk′v)

Γ(βl′v + n
l′−(ct)
k′v )

.

4 Data Collection and Annotation

To test our self-disclosure topic model, we use a
large dataset of conversations consisting of Tweets
over three years such that we can analyze the re-
lationship between self-disclosure behavior and
conversation frequency and length over time. We
chose to crawl Twitter because it offers a prac-
tical and large source of conversations (Ritter et
al., 2010). Others have also analyzed Twitter con-
versations for natural language and social media

Users Dyads Conv’s Tweets
101,686 61,451 1,956,993 17,178,638

Table 5: Dataset of Twitter conversations. We
chose conversations consisting of five or more
tweets each. We chose dyads with twenty or more
conversations.

research (boyd et al., 2010; Danescu-Niculescu-
Mizil et al., 2011), but we collect conversations
from the same set of dyads over several months for
a unique longitudinal dataset. We also make sure
that each conversation is at least five tweets, and
that each dyad has at least twenty conversations.

4.1 Collecting Twitter conversations
We define a Twitter conversation as a chain of
tweets where two users are consecutively reply-
ing to each other’s tweets using the Twitter reply
button. We initialize the set of users by randomly
sampling thirteen users who reply to other users
in English from the Twitter public streams3. Then
we crawl each user’s public tweets, and look at
users who are mentioned in those tweets. It is
a breadth-first search in the network defined by
users as nodes and edges as conversations. We
run this search for dyads until the depth of four,
and filter out users who tweet in a non-English
language. We use an open source tool for de-
tecting English tweets4. To protect users’ privacy,
we replace Twitter userid, usernames and url in
tweets with random strings. This dataset consists
of 101,686 users, 61,451 dyads, 1,956,993 conver-
sations and 17,178,638 tweets which were posted
between August 2007 to July 2013. Table 5 sum-
marizes the dataset.

4.2 Annotating self-disclosure level
To measure the accuracy of our model, we ran-
domly sample 301 conversations, each with ten or
fewer tweets, and ask three judges, fluent in En-
glish and graduate students/researchers, to anno-
tate each tweet with the level of self-disclosure.
Judges first read and discussed the definitions and
examples of self-disclosure level shown in (Barak
and Gluck-Ofri, 2007), then they worked sepa-
rately on a Web-based platform.

As a result of annotation, there are 122 G level
converstaions, 147 M level and 32 H level con-

3https://dev.twitter.com/docs/api/
streaming

4https://github.com/shuyo/ldig
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Figure 4: Screenshot of annotation web-based
platform. Annotators read a Twitter conversation
and annotate self-disclosure level to each tweet.

versations, and inter-rater agreement using Fleiss
kappa (Fleiss, 1971) is 0.68, which is substantial
agreement result (Landis and Koch, 1977).

5 Classification of Self-Disclosure Level

This section describes experiments and results of
SDTM as well as several other methods for classi-
fication of self-disclosure level.

We first start with the annotated dataset in sec-
tion 4.2 in which each tweet is annotated with SD
level. We then aggregate all of the tweets of a
conversation, and we compute the proportions of
tweets in each SD level. When the proportion of
tweets at M or H level is equal to or greater than
0.2, we take the level of the larger proportion and
assign that level to the conversation. When the
proportions of tweets at M or H level are both less
than 0.2, we assign G to the SD level. The reason
for setting 0.2 as the threshold is that a conversa-
tion containing tweets with H or M level of self-
disclosure usually starts with a greeting or a gen-
eral comment, and contains one or more questions
or comments before or after the self-disclosure
tweet.

We compare SDTM with the following methods
for classifying conversations for SD level:

• LDA (Blei et al., 2003): A Bayesian topic
model. Each conversation is treated as a doc-
ument. Used in previous work (Bak et al.,
2012).

• MedLDA (Zhu et al., 2012): A super-
vised topic model for document classifica-
tion. Each conversation is treated as a doc-
ument and response variable can be mapped
to a SD level.

• LIWC (Tausczik and Pennebaker, 2010):
Word counts of particular categories5. Used
in previous work (Houghton and Joinson,
2012).

• Bag of Words + Bigrams + Trigrams
(BOW+): A bag of words, bigram and tri-
gram features. We exclude features that ap-
pear only once or twice.

• Seed words and trigrams (SEED): Occur-
rences of seed words/trigrams from SECRET

which are described in section 3.3.

• SDTM with seed words from annotated
Tweets (SDTM−): To compare with SDTM
below using seed words from SECRET, this
uses seed words from the annotated data de-
scribed in section 2.4.

• ASUM (Jo and Oh, 2011): A joint model
of sentiments and topics. We map each SD
level to one sentiment and use the same seed
words/trigrams from SECRET as in SDTM
below. Used in previous work (Bak et al.,
2012).

• First-person pronouns (FirstP): Occurrence
of first-person pronouns which are described
in section 3.2. To identify first-person pro-
nouns, we tagged parts of speech in each
tweet with the Twitter POS tagger (Owoputi
et al., 2013).

• First-person pronouns + Seed words/trigrams
(FP+SE1): First-person pronouns and seed
words/trigrams from SECRET.

• Two stage classifier with First-person pro-
nouns + Seed words/trigrams (FP+SE2): A

5personal pronouns, 3rd person singular words, family
words, human words, sexual words, etc
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Method Acc G F1 M F1 H F1 Avg F1

LDA 49.2 0.00 0.65 0.05 0.23
MedLDA 43.3 0.41 0.52 0.09 0.34
LIWC 49.2 0.34 0.61 0.18 0.38
BOW+ 54.1 0.50 0.59 0.15 0.41
SEED 54.4 0.52 0.60 0.14 0.42
ASUM 56.6 0.32 0.70 0.38 0.47
SDTM− 60.4 0.57 0.70 0.14 0.47
FirstP 63.2 0.63 0.69 0.10 0.47
FP+SE1 61.0 0.61 0.67 0.16 0.48
FP+SE2 60.4 0.64 0.69 0.17 0.50
SDTM 64.5 0.61 0.71 0.43 0.58

Table 6: SD level classification accuracies and F-
measures using annotated data. Acc is accuracy,
and G F1 is F-measure for classifying the G level.
Avg F1 is the macroaveraged value of G F1, M F1

and H F1. SDTM outperforms all other methods
compared. The difference between SDTM and
FirstP is statistically significant (p-value < 0.05
for accuracy, < 0.0001 for Avg F1).

two stage classifier with first-person pro-
nouns and seed words/trigrams from SE-
CRET. In the first stage, the classifier identi-
fies G with first-person pronouns. Then in the
second stage, the classifier uses seed words
and trigrams to identify M and H levels.

• SDTM: Our model with first-person pro-
nouns and seed words/trigrams from SE-
CRET.

SEED, LIWC, LDA and FirstP cannot be used
directly for classification, so we use Maximum en-
tropy model with outputs of each of those models
as features6. BOW+ uses SVM with a radial ba-
sis kernel which performs better than all other set-
tings tried including maximum entropy. We split
the data randomly into 80/20 for train/test. We run
MedLDA, ASUM and SDTM 20 times each and
compute the average accuracies and F-measure for
each level. We run LDA and MedLDA with var-
ious number of topics from 80 to 140, and 120
topics shows best outputs. So we set 120 topics
for LDA, MedLDA and ASUM, 60; 40; 40 topics
for SDTM KG,KM and KH respectively which
is best perform from 40; 40; 40 to 60; 60; 60 top-
ics. We assume that a conversation has few topics

6It performs better than other classifiers (C4.5, Naive-
Bayes, SVM with linear kernel, polynomial kernel and radial
basis)

and self-disclosure levels, so we set α = γ = 0.1
(Tang et al., 2014). To incorporate the seed words
and trigrams into ASUM and SDTM, we initial-
ize βG,βM and βH differently. We assign a high
value of 2.0 for each seed word and trigram for
that level, and a low value of 10−6 for each word
that is a seed word for another level, and a default
value of 0.01 for all other words. This approach
is the same as previous papers (Jo and Oh, 2011;
Kim et al., 2013).

As Table 6 shows, SDTM performs better than
the other methods for accuracy as well as F-
measure. LDA and MedLDA generally show
the lowest performance, which is not surprising
given these models are quite general and not tuned
specifically for this type of semi-supervised clas-
sification task. BOW which is simple word fea-
tures also does not perform well, showing espe-
cially low F-measure for the H level. LIWC and
SEED perform better than LDA, but these have
quite low F-measure for G and H levels. ASUM
shows better performance for classifying H level
than others, confirming the effectiveness of a topic
modeling approach to this difficult task, but not as
well as SDTM. FirstP shows good F-measure for
the G level, but the H level F-measure is quite low,
even lower than SEED. Combining first-person
pronouns and seed words and trigrams (FP+SE1)
shows better than each feature alone, and the two
stage classifier (FP+SE2) which is a similar ap-
proach taken in SDTM shows better results. Fi-
nally, SDTM classifies G and M level at a similar
accuracy with FirstP, FP+SE1 and FP+SE2, but
it significantly improves accuracy for the H level
compared to all other methods.

6 Relations of Self-Disclosure and
Conversation Behaviors

In this section, we investigate whether there is
a relationship between self-disclosure and con-
versation behaviors over time. Self-disclosure is
one way to maintain and improve relationships
(Jourard, 1971; Joinson and Paine, 2007). So
two people’s intimacy changes over time has rela-
tionship with self-disclosure in their conversation.
However, it is hard to identify intimacy between
users in large scale online social network. So we
choose conversation behaviors such as conversa-
tion frequency and length which can be treated as
proxies for measuring intimacy between two peo-
ple (Emmers-Sommer, 2004; Bak et al., 2012).
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With SDTM, we can automatically classify the
SD level of a large number of conversations, so
we investigate whether there is a similar relation-
ship between self-disclosure in conversations and
subsequent conversation behaviors with the same
partner on Twitter.

For comparing conversation behaviors over
time, we divided the conversations into two sets
for each dyad. For the initial period, we include
conversations from the dyad’s first conversation to
20 days later. And for the subsequent period,
we include conversations during the subsequent 10
days. We compute proportions of conversation for
each SD level for each dyad in the initial and
subsequent periods.

More specifically, we ask the following three
questions:

1. If a dyad shows high conversation frequency
at a particular time period, would they dis-
play higher SD in their subsequent conver-
sations?

2. If a dyad displays high SD level in their con-
versations at a particular time period, would
their subsequent conversations be longer?

3. If a dyad displays high overall SD level,
would their conversations increase in length
over time more than dyads with lower overall
SD level?

6.1 Experiment Setup

We first run SDTM with all of our Twitter con-
versation data with 150; 120; 120 topics for
SDTM KG,KM and KH respectively. The
hyper-parameters are the same as in section 5. To
handle a large dataset, we employ a distributed al-
gorithm (Newman et al., 2009), and run with 28
threads.

Table 7 shows some of the topics that were
prominent in each SD level by KL-divergence. As
expected, G level includes general topics such as
food, celebrity, soccer and IT devices, M level in-
cludes personal communication and birthday, and
finally, H level includes sickness and profanity.

We define a new measurement, SD level score
for a dyad in the period, which is a weighted sum
of each conversation with SD levels mapped to 1,
2, and 3, for the levels G, M, and H, respectively.
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Figure 5: Relationship between initial conversa-
tion frequency and subsequent SD level. The
solid line is the linear regression line, and the co-
efficient is 0.0020 with p < 0.0001, which shows
a significant positive relationship.

6.2 Does high frequency of conversation lead
to more self-disclosure?

We investigate whether the initial conversation
frequency is correlated with the SD level in the
subsequent period. We run linear regression with
the initial conversation frequency as the indepen-
dent variable, and SD level in the subsequent pe-
riod as the dependent variable.

The regression coefficient is 0.0020 with low p-
value (p < 0.0001). Figure 5 shows the scatter
plot. We can see that the slope of the regression
line is positive.

6.3 Does high self-disclosure lead to longer
conversations?

Now we investigate the effect of the self-
disclosure level to conversation length. We run
linear regression with the intial SD level score as
the independent variable, and the rate of change
in conversation length between initial period
and subsequent period as the dependent variable.
Conversation length is measured by the number of
tweets in a conversation.

The result of regression is that the independent
variable’s coefficient is 0.048 with a low p-value
(p < 0.0001). Figure 6 shows the scatter plot with
the regression line, and we can see that the slope
of regression line is positive.
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G level M level H level
101 184 176 36 104 82 113 33 19

chocolate obama league send twitter going ass better lips
butter he’s win email follow party bitch sick kisses
good romney game i’ll tumblr weekend fuck feel love
cake vote season sent tweet day yo throat smiles

peanut right team dm following night shit cold softly
milk president cup address account dinner fucking hope hand
sugar people city know fb birthday lmao pain eyes
cream good arsenal check followers tomorrow shut good neck
make going chelsea link facebook come dick cough arms
love time liverpool need followed i’ll kick bad head
yum party won message omg family face i’ve smirks
hot election football let right fun hoe need slowly

cookies gop united sure saw friends lmfao sore hair
banana paul final thanks page tonight nigga flu face
bread way away my email timeline plans bi today chest

Table 7: High ranked topics in each level by comparing KL-divergence with other level’s topics
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Figure 6: Relationship between initial SD level
and conversation length changes over time. The
solid line is the linear regression line, and the co-
efficient is 0.048 with p < 0.0001, which shows a
significant positive relationship.

6.4 Is there a difference in conversation
length patterns over time depending on
overall SD level?

Now we investigate the conversation length
changes over time with three groups, low,
medium, and high, by overall SD level. Then
we investigate changes in conversation length over
time.

Figure 7 shows the results of this investigation.
First, conversations are generally lengthier when
SD level is high. This phenomenon is also ob-
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Figure 7: Changes in conversation length over
time. We divide dyads into three groups by SD
level score as low, medium, and high. Conversa-
tion length noticeably increases over time in the
medium and high groups, but only slight in the low
group.

served in figure 6, but here we can see it as a
long-term persistent pattern. Second, conversation
length increases consistently and significantly for
the high and medium groups, but for the low SD
group, there is not a significant increase of conver-
sation length over time.

7 Related Work

Prior work on quantitatively analyzing self-
disclosure has relied on user surveys (Ledbetter et
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al., 2011; Trepte and Reinecke, 2013) or human
annotation (Barak and Gluck-Ofri, 2007; Court-
ney Walton and Rice, 2013). These methods con-
sume much time and effort, so they are not suit-
able for large-scale studies. In prior work clos-
est to ours, Bak et al. (2012) showed that a topic
model can be used to identify self-disclosure, but
that work applies a two-step process in which a
basic topic model is first applied to find the top-
ics, and then the topics are post-processed for bi-
nary classification of self-disclosure. We improve
upon this work by applying a single unified model
of topics and self-disclosure for high accuracy in
classifying the three levels of self-disclosure.

Subjectivity which is aspect of expressing opin-
ions (Pang and Lee, 2008; Wiebe et al., 2004) is
related with self-disclosure, but they are different
dimensions of linguistic behavior. Because there
indeed are many high self-disclosure tweets that
are subjective, but there are also counter examples
in annotated dataset. The tweet “England manager
is Roy Hodgson.” is low self-disclosure and low
subjectivity, “I have barely any hair left.” is high
self-disclosure but low subjectivity, and “Senator
stop lying!” is low self-disclosure but high subjec-
tivity.

8 Conclusion and Future Work

In this paper, we have presented the self-disclosure
topic model (SDTM) for discovering topics and
classifying SD levels from Twitter conversation
data. We devised a set of effective seed words
and trigrams, mined from a dataset of secrets. We
also annotated Twitter conversations to make a
ground-truth dataset for SD level. With anno-
tated data, we showed that SDTM outperforms
previous methods in classification accuracy and F-
measure. We publish the source code of SDTM
and the dataset include annotated Twitter conver-
sations and SECRET publicly7.

We also analyzed the relationship between SD
level and conversation behaviors over time. We
found that there is a positive correlation be-
tween initial SD level and subsequent conversa-
tion length. Also, dyads show higher level of
SD if they initially display high conversation fre-
quency. Finally, dyads with overall medium and
high SD level will have longer conversations over
time. These results support previous results in so-

7http://uilab.kaist.ac.kr/research/
EMNLP2014

cial psychology research with more robust results
from a large-scale dataset, and show the effective-
ness of computationally analyzing at SD behavior.

There are several future directions for this re-
search. First, we can improve our modeling for
higher accuracy and better interpretability. For
instance, SDTM only considers first-person pro-
nouns and topics. Naturally, there are other lin-
guistic patterns that can be identified by humans
but not captured by pronouns and topics. Sec-
ond, the number of topics for each level is varied,
and so we can explore nonparametric topic mod-
els (Teh et al., 2006) which infer the number of
topics from the data. Third, we can look at the
relationship between self-disclosure behavior and
general online social network usage beyond con-
versations. We will explore these directions in our
future work.
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Abstract

Social media websites provide a platform
for anyone to describe significant events
taking place in their lives in realtime.
Currently, the majority of personal news
and life events are published in a tex-
tual format, motivating information ex-
traction systems that can provide a struc-
tured representations of major life events
(weddings, graduation, etc. . . ). This pa-
per demonstrates the feasibility of accu-
rately extracting major life events. Our
system extracts a fine-grained description
of users’ life events based on their pub-
lished tweets. We are optimistic that our
system can help Twitter users more easily
grasp information from users they take in-
terest in following and also facilitate many
downstream applications, for example re-
altime friend recommendation.

1 Introduction

Social networking websites such as Facebook and
Twitter have recently challenged mainstream me-
dia as the freshest source of information on im-
portant news events. In addition to an important
source for breaking news, social media presents a
unique source of information on private events, for
example a friend’s engagement or college gradua-
tion (examples are presented in Figure 1). While
a significant amount of previous work has inves-
tigated event extraction from Twitter (e.g., (Rit-
ter et al., 2012; Diao et al., 2012)), existing ap-
proaches mostly focus on public bursty event ex-
traction, and little progress has been made towards
the problem of automatically extracting the major
life events of ordinary users.

A system which can automatically extract ma-
jor life events and generate fine-grained descrip-
tions as in Figure 1 will not only help Twitter

users with the problem of information overload by
summarizing important events taking place in their
friends lives, but could also facilitate downstream
applications such as friend recommendation (e.g.,
friend recommendation in realtime to people who
were just admitted into the same university, get
the same jobs or internships), targeted online ad-
vertising (e.g., recommend baby care products to
newly expecting mothers, or wedding services to
new couples), information extraction, etc.

Before getting started, we first identify a num-
ber of key challenges in extracting significant life
events from user-generated text, which account the
reason for the lack of previous work in this area:

Challenge 1: Ambiguous Definition for Ma-
jor Life Events Major life event identification
is an open-domain problem. While many types of
events (e.g., marriage, engagement, finding a new
job, giving birth) are universally agreed to be im-
portant, it is difficult to robustly predefine a list of
characteristics for important life events on which
algorithms can rely for extraction or classification.

Challenge 2: Noisiness of Twitter Data: The
user-generated text found in social media websites
such as Twitter is extremely noisy. The language
used to describe life events is highly varied and
ambiguous and social media users frequently dis-
cuss public news and mundane events from their
daily lives, for instance what they ate for lunch.

Even for a predefined life event category, such
as marriage, it is still difficult to accurately iden-
tify mentions. For instance, a search for the
keyphrase ”get married” using Twitter Search1 re-
sults in a large number of returned results that do
not correspond to a personal event:
• I want to get married once. No divorce & no

cheating, just us two till the end.
(error: wishes)

1https://twitter.com/search?q=
get˜married
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Figure 1: Examples of users mentioning personal life events on Twitter.

• Can Adam Sandler and Drew Barrymore just
drop the pretense and get married already?
(error: somebody else)
• I got married and had kids on purpose

(error: past)

Challenge 3: the Lack of Training Data Col-
lecting sufficient training data in this task for ma-
chine learning models is difficult for a number of
reasons: (1) A traditional, supervised learning ap-
proach, requires explicit annotation guidelines for
labeling, though it is difficult to know which cat-
egories are most representative in the data apriori.
(2) Unlike public events which are easily identi-
fied based on message volume, significant private
events are only mentioned by one or several users
directly involved in the event. Many important cat-
egories are relatively infrequent, so even a large
annotated dataset may contain just a few or no ex-
amples of these categories, making classification
difficult.

In this paper, we present a pipelined system that
addresses these challenges and extracts a struc-
tured representation of individual life events based
on users’ Twitter feeds. We exploit the insight to
automatically gather large volumes of major life
events which can be used as training examples for
machine learning models. Although personal life
events are difficult to identify using traditional
approaches due to their highly diverse nature, we
noticed that users’ followers often directly reply
to such messages with CONGRATULATIONS or
CONDOLENCES speech acts, for example:

User1: I got accepted into Harvard !
User2: Congratulations !

These speech acts are easy to identify with high
precision because the possible ways to express
them are relatively constrained. Instead of directly
inspecting tweets to determine whether they corre-
spond to major life events, we start by identifying
replies corresponding to CONGRATULATIONS or
CONDOLENCES, and then retrieve the message
they are in response to, which we assume refer to
important life events.

The proposed system automatically identifies
major life events and then extracts correspondent
event properties. Through the proposed system,
we demonstrate that it is feasible to automatically
reconstruct a detailed list of individual life events
based on users’ Twitter streams. We hope that
work presented in this paper will facilitate down-
stream applications and encourage follow-up work
on this task.

2 System Overview

An overview of the components of the system is
presented in Figure 2. Pipeline1 first identifies
the major life event category the input tweet talks
about and filters out the irrelevant tweets and will
be described in Section 4. Next, Pipeline2, as,
demonstrated in Section 5, identifies whether the
speaker is directly involved in the life event. Fi-
nally, Pipeline3 extracts the property of event and
will be illustrated in Section 6.

Section 3 serves as the preparing step for the
pipelined system, describing how we collect train-
ing data in large-scale. The experimental evalua-
tion regarding each pipeline of the system is pre-
sented in the corresponding section (i.e., Section
4,5,6) and the end-to-end evaluation will be pre-
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Figure 2: System Overview. Blue: original input tweets. Red: filtered out tweets. Magenta: life event
category. Green: life event property. Pipeline 1 identifies the life category the input tweet talks about
(e.g., marriage, graduation) and filter out irrelevant tweets (e.g., I had beef stick for lunch). Pipeline 2
identifies whether the speaker is directly involved in the event. It will preserve self-reported information
(i.e. “I got married”) and filtered out unrelated tweets (e.g., “my friend Chris got married”). Pipeline
3 extracts the property of event (e.g. to whom the speaker married or the speaker admitted by which
university).

sented in Section 7.

3 Personal Life Event Clustering

In this section, we describe how we identify com-
mon categories of major life events by leverag-
ing large quantities of unlabeled data and obtain
a collection of tweets corresponding to each type
of identified event.

3.1 Response based Life Event Detection
While not all major life events will elicit CON-
GRATULATIONS or CONDOLENCES from a user’s
followers, this technique allows us to collect large
volumes of high-precision personal life events
which can be used to train models to recognize the
diverse categories of major life events discussed
by social media users.

3.2 Life Event Clustering
Based on the above intuition, we develop an ap-
proach to obtain a list of individual life event clus-
ters. We first define a small set of seed responses
which capture common CONGRATULATIONS and
CONDOLENCES, including the phrases: ”Congrat-
ulations”, ”Congrats”, ”Sorry to hear that”, ”Awe-
some”, and gather tweets that were observed with
seed responses. Next, an LDA (Blei et al., 2003)2

based topic model is used to cluster the gathered
2Topic Number is set to 120.

tweets to automatically identify important cate-
gories of major life events in an unsupervised way.
In our approach, we model the whole conversation
dialogue as a document3 with the response seeds
(e.g., congratulation) masked out. We furthermore
associate each sentence with a single topic, fol-
lowing strategies adopted by (Ritter et al., 2010;
Gruber et al., 2007). We limit the words in our
document collection to verbs and nouns which
we found to lead to clearer topic representations,
and used collapsed Gibbs Sampling for inference
(Griffiths and Steyvers, 2004).

Next one of the authors manually inspected the
resulting major life event types inferred by the
model, and manually assigned them labels such
as ”getting a job”, ”graduation” or ”marriage”
and discarded incoherent topics4. Our methodol-
ogy is inspired by (Ritter et al., 2012) that uses
a LDA-CLUSTERING+HUMAN-IDENTIFICATION

strategy to identify public events from Twitter.
Similar strategies have been widely used in un-
supervised information extraction (Bejan et al.,
2009; Yao et al., 2011) and selectional preference

3Each whole conversation usually contains multiple
tweets and users.

4While we applied manual labeling and coherence eval-
uation in this work, an interesting direction for future work
is automatically labeling major life event categories follow-
ing previous work on labeling topics in traditional document-
based topic models (Mimno et al., 2011; Newman et al.,
2010).
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Figure 3: Illustration of bootstrapping process.

Input: Reply seed list E = {e}, Tweet conversation col-
lection T = {t}, Retrieved Tweets Collection D = φ.
Identified topic list L=φ
Begin
While not stopping:

1. For unprocessed conversation t ∈ T
if t contains reply e ∈ E,
• add t to D: D = D + t.
• remove t from T : T = T − t

2. Run streaming LDA (Yao et al., 2009) on newly added
tweets in D.

3. Manually Identify meaningful/trash topics, giving label
to meaningful topics.

4. Add newly detected meaningful topic l to L.
5. For conversation t belonging to trash topics

• remove t from D: D = D − t
6. Harvest more tweets based on topic distribution.
7. Manually identify top 20 responses to tweets harvested

from Step 6.
8. Add meaningful responses to E.

End
Output: Identified topic list L. Tweet collection D.

Figure 4: Bootstrapping Algorithm for Response-
based Life event identification.

modeling (Kozareva and Hovy, 2010a; Roberts
and Harabagiu, 2011).

Conversation data was extracted from the CMU
Twitter Warehouse of 2011 which contains a total
number of 10% of all published tweets in that year.

3.3 Expanding dataset using Bootstrapping

While our seed patterns for identifying mes-
sages expressing CONGRATULATIONS and CON-
DOLENCES are very high precision, they don’t
cover all the possible ways these speech acts
can be expressed. We therefore adopt a semi-
supervised bootstrapping approach to expand our
reply seeds and event-related tweets. Our boot-
strapping approach is related to previous work
on semi-supervised information harvesting (e.g.,
(Kozareva and Hovy, 2010b; Davidov et al.,
2007)). To preserve the labeled topics from the
first iteration, we apply a streaming approach to
inference (Yao et al., 2009) over unlabeled tweets
(those which did not match one of the response

Figure 5: Illustration of data retrieved in each step
of bootstrapping.

congratulations (cong, congrats); (that’s) fantastic; (so) cool;
(I’m) (very) sorry to hear that; (that’s) great (good) new;
awesome; what a pity; have fun; great; that sucks; too
bad; (that’s) unfortunate; how sad; fabulous; (that’s)
terrific; (that’s) (so) wonderful; my deepest condolences;

Table 1: Responses retrieved from Bootstrapping.

seeds). We collect responses to the newly added
tweets, then select the top 20 frequent replies5.
Next we manually inspect and filter the top ranked
replies, and use them to harvest more tweets. This
process is then repeated with another round of
inference in LDA including manual labeling of
newly inferred topics, etc... An illustration of our
approach is presented in Figure 3 and the details
are presented in Figure 4. The algorithm outputs
a collection of personal life topics L, and a collec-
tion of retrieved tweets D. Each tweet d ∈ D is
associated with a life event topic l, l ∈ L.

We repeat the bootstrapping process for 4 iter-
ations and end up with 30 different CONGRATU-
LATIONS and CONDOLENCES patterns (shown in
Table 1) and 42 coherent event types which refer to
significant life events (statistics for harvested data
from each step is shown in Figure 5). We show
examples of the mined topics with correspondent
human labels in Table 3, grouped according to a
specific kind of resemblance.

3.4 Summary and Discussion
The objective of this section is (1) identifying a
category of life events (2) identifying tweets asso-
ciated with each event type which can be used as
candidates for latter self reported personal infor-
mation and life event category identification.

We understand that the event list retrieved from
our approach based on replies in the conversation
is far from covering all types of personal events
(especially the less frequent life events). But our

5We only treat the first sentence that responds to the be-
ginning of the conversation as replies.
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Life Event Proportion
Birthday 9.78
Job 8.39
Wedding
Engagement

7.24

Award 6.20
Sports 6.08
Anniversary 5.44
Give Birth 4.28
Graduate 3.86
Death 3.80
Admission 3.54
Interview
Internship

3.44

Moving 3.26
Travel 3.24
Illness 2.45

Life Event Proportion
Vacation 2.24
Relationship 2.16
Exams 2.02
Election 1.85
New Car 1.65
Running 1.42
Surgery 1.20
Lawsuit 0.64
Acting 0.50
Research 0.48
Essay 0.35
Lost Weight 0.35
Publishing 0.28
Song 0.22
OTHER 15.31

Table 2: List of automatically discovered life event
types with percentage (%) of data covered.

list is still able to cover a large proportion of IM-
PORTANT and COMMON life events. Our latter
work is focused on given a random tweet, identi-
fying whether it corresponds to one of the 42 types
of life events in our list.

Another thing worth noting here is that, while
current section is not focused on self-reported in-
formation identification, we have already obtained
a relatively clean set of data with a large pro-
portion of non self-reported information related
tweets being screened: people do not usually re-
spond to non self-reported information with com-
monly used replies, or in other words, with replies
that will pass our next step human test6. These non
self-reported tweets would therefore be excluded
from training data.

4 Life Event Identification

In this section, we focused on deciding whether a
given tweet corresponds to one of the 42 prede-
fined life events.

Our training dataset consists of approximately
72,000 tweets from 42 different categories of life
events inferred by our topic model as described
in Section 3. We used the top 25% of tweets for
which our model assigned highest probability to
each topic. For sparsely populated topics we used
the top 50% of tweets to ensure sufficient cover-
age.

We further collected a random sample of about
10 million tweets from Twitter API7 as non-life

6For example, people don’t normally respond to ”I want
to get married once” (example in Challenge 2, Section 1)
with ”Congratulations”.

7https://dev.twitter.com/

Human Label Top words
Wedding
&engagement

wedding, love, ring, engagement,
engaged, bride, video, marrying

Relationship
Begin

boyfriend, girlfriend, date, check,
relationship, see, look

Anniversary anniversary, years, year, married,
celebrating, wife, celebrate, love

Relation End/
Devoice

relationship, ended, hurt, hate, de-
voice, blessings, single

Graduation graduation, school, college, gradu-
ate, graduating, year, grad

Admission admitted, university, admission, ac-
cepted, college, offer, school

Exam passed, exam, test, school,
semester, finished, exams,
midterms

Research research, presentation, journalism,
paper, conference, go, writing

Essay & Thesis essay, thesis, reading, statement,
dissertation, complete, project

Job job, accepted, announce, join, join-
ing, offer, starting, announced,
work

Interview& In-
ternship

interview, position, accepted, in-
ternship, offered, start, work

Moving house, moving, move, city, home,
car, place, apartment, town, leaving

Travel leave, leaving, flight, home, miss,
house, airport, packing, morning

Vacation vocation, family, trip, country, go,
flying, visited, holiday, Hawaii

Winning Award won, award, support, awards, win-
ning, honor, scholarship, prize

Election/
Promotion/
Nomination

president, elected, run, nominated,
named, promotion, cel, selected,
business, vote

Publishing book, sold, writing, finished, read,
copy, review, release, books, cover

Contract signed, contract, deal, agreements,
agreed, produce, dollar, meeting

song/ video/ al-
bum release

video, song, album, check, show,
see, making, radio, love

Acting play, role, acting, drama, played,
series, movie, actor, theater

Death dies, passed, cancer, family, hospi-
tal, dad, grandma, mom, grandpa

Give Birth baby, born, boy, pregnant, girl, lbs,
name, son, world, daughter, birth

Illness ill, hospital, feeling, sick, cold, flu,
getting, fever, doctors, cough

Surgery surgery, got, test, emergency, blood,
tumor, stomachs, hospital, pain,
brain

Sports win, game, team, season, fans,
played, winning, football, luck

Running run, race, finished, race, marathon,
ran, miles, running, finish, goal

New Car car, buy, bought, cars, get, drive,
pick, seat, color, dollar, meet

Lost Weight weight, lost, week, pounds, loss,
weeks, gym, exercise, running

Birthday birthday, come, celebrate, party,
friends, dinner, tonight, friend

Lawsuit sue, sued, file, lawsuit, lawyer, dol-
lars, illegal, court, jury.

Table 3: Example event types with top words dis-
covered by our model.
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event examples and trained a 43-class maximum
entropy classifier based on the following features:
• Word: The sequence of words in the tweet.
• NER: Named entity Tag.
• Dictionary: Word matching a dictionaries of

the top 40 words for each life event category
(automatically inferred by the topic model).
The feature value is the term’s probability
generated by correspondent event.
• Window: If a dictionary term exists, left and

right context words within a window of 3
words and their part-of-speech tags.

Name entity tag is assigned from Ritter et al’s
Twitter NER system (Ritter et al., 2011). Part-of-
Speech tags are assigned based on Twitter POS
package (Owoputi et al., 2013) developed by
CMU ARK Lab. Dictionary and Window are
constructed based on the topic-term distribution
obtained from the previous section.

The average precision and recall are shown in
Table 4. And as we can observe, the dictionary
(with probability) contributes a lot to the perfor-
mance and by taking into account a more compre-
hensive set of information around the key word,
classifier on All feature setting generate signifi-
cantly better performance, with 0.382 prevision
and 0.48 recall, which is acceptable considering
(1) This is is a 43-way classification with much
more negative data than positive (2) Some types of
events are very close to each other (e.g., Leaving
and Vocation). Note that recall is valued more than
precision here as false-positive examples will be
further screened in self-reported information iden-
tification process in the following section.

Feature Setting Precision Recall
Word+NER 0.204 0.326

Word+NER+Dictionary 0.362 0.433
All 0.382 0.487

Table 4: Average Performance of Multi-Class
Classifier on Different Feature Settings. Negative
examples (non important event type) are not con-
sidered.

5 Self-Reported Information
Identification

Although a message might refer to a topic cor-
responding to a life event such as marriage, the
event still might be one in which the speaker is
not directly involved. In this section we describe
the self reported event identification portion of our

pipeline, which takes output from Section 4 and
further identifies whether each tweet refers to an
event directly involving the user who publishes it.

Direct labeling of randomly sampled Twitter
messages is infeasible for the following reasons:
(1) Class imbalance: self-reported events are rela-
tively rare in randomly sampled Twitter messages.
(2) A large proportion of self-reported information
refers to mundane, everyday topics (e.g., “I just
finished dinner!”). Fortunately, many of the tweets
retrieved from Section 3 consist of self-reported
information and describe major life events. The
candidates for annotation are therefore largely nar-
rowed down.

We manually annotated 800 positive examples
of self-reported events distributed across the event
categories identified in Section 3. We ensured
good coverage by first randomly sampling 10 ex-
amples from each category, the remainder were
sampled from the class distribution in the data.
Negative examples of self-reported information
consisted of a combination of examples from the
original dataset8 and randomly sampled messages
gathered by searching for the top terms in each of
the pre-identified topics using the Twitter Search
interface 9. Due to great varieties of negative sce-
narios, the negative dataset constitutes about 2500
tweets.

5.1 Features

Identifying self-reported tweet requires sophisti-
cated feature engineering. Let u denote the term
within the tweet that gets the highest possibility
generated by the correspondent topic. We experi-
mented with combinations of the following types
of features (results are presented in Table ??):
• Bigram: Bigrams within each tweet (punctu-

ation included).
• Window: A window of k ∈ {0, 1, 2} words

adjacent to u and their part-of-speech tags.
• Tense: A binary feature indicating past tense

identified in by the presence of past tense
verb (VBD).
• Factuality: Factuality denotes whether one

expression is presented as corresponding to
real situations in the world (Saurı́ and Puste-
jovsky, 2007). We use Stanford PragBank10,

8Most tweets in the bootstrapping output are positive.
9The majority of results returned by Twitter Search are

negative examples.
10http://compprag.christopherpotts.net/

factbank.html
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an extension of FactBank (Saurı́ and Puste-
jovsky, 2009) which contains a list of modal
words such as “might”, “will”, “want to”
etc11.
• I: Whether the subject of the tweet is first per-

son singular.
• Dependency: If the subject is first person

singular and the u is a verb, the dependency
path between the subject and u (or non-
dependency).

Tweet dependency paths were obtained from
(Kong et al., 2014). As the tweet parser we use
only supports one-to-one dependency path iden-
tification but no dependency properties, Depen-
dency is a binary feature. The subject of each
tweet is determined by the dependency link to the
root of the tweet from the parser.

Among the features we explore, Word encodes
the general information within the tweet. Win-
dow addresses the information around topic key
word. The rest of the features specifically address
each of the negative situations described in Chal-
lenge 2, Section 1: Tense captures past event de-
scription, Factuality filters out wishes or imagi-
nation, I and Dependency correspond to whether
the described event involves the speaker. We built
a linear SVM classifier using SVMlight package
(Joachims, 1999).

5.2 Evaluation

Feature Setting Acc Pre Rec
Bigram+Window 0.76 0.47 0.44
Bigram+Window
+Tense+Factuality

0.77 0.47 0.46

all 0.82 0.51 0.48

Table 5: Performance for self-report information
identification regarding different feature settings.

We report performance on the task of identi-
fying self-reported information in this subsection.
We employ 5-fold cross validation and report Ac-
curacy (Accu), Prevision (Prec) and Recall (Rec)
regarding different feature settings. The Tense,
Factuality, I and Dependency features positively
contribute to performance respectively and the
best performance is obtained when all types of fea-
tures are included.

11Due to the colloquial property of tweets, we also intro-
duced terms such as “gonna”, “wanna”, “bona”.

precision recall F1
0.82 0.86 0.84

Table 7: Performance for identifying properties.

6 Event Property Extraction

Thus far we have described how to automatically
identify tweets referring to major life events. In
addition, it is desirable to extract important prop-
erties of the event, for example the name of the
university the speaker was admitted to (See Figure
1). In this section we take a supervised approach to
event property extraction, based on manually an-
notated data for a handfull of the major life event
categories automatically identified by our system.
While this approach is unlikely to scale to the di-
versity of important personal events Twitter users
are discussing, our experiments demonstrate that
event property extraction is indeed feasible.

We cast the problem of event property extrac-
tion as a sequence labeling task, using Conditional
Random Fields (Lafferty et al., 2001) for learning
and inference. To make best use of the labeled
data, we trained a unified CRF model for closely
related event categories which often share proper-
ties; the full list is presented in Table 6 and we
labeled 300 tweets in total. Features we used in-
clude:
• word token, capitalization, POS
• left and right context words within a window

of 3 and the correspondent part-of-speech
tags
• word shape, NER
• a gazetteer of universities and employers bor-

rowed from NELL12.
We use 5-fold cross-validation and report results
in Table 7.

7 End-to-End Experiment

The evaluation for each part of our system has
been demonstrated in the corresponding section.
We now present a real-world evaluation: to what
degree can our trained system automatically iden-
tify life events in real world.

7.1 Dataset

We constructed a gold-standard life event dataset
using annotators from Amazon’s Mechanical Turk
(Snow et al., 2008) using 2 approaches:

12http://rtw.ml.cmu.edu/rtw/kbbrowser/
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Life Event Property
(a) Acceptance, Graduation Name of University/College

(b) Wedding, Engagement, Falling love Name of Spouse/ partner/ bf/ gf
(c) Getting a job, interview, internship Name of Enterprise

(d) Moving to New Places, Trip, Vocation, Leaving Place, Origin, Destination
(e) Winning Award Name of Award, Prize

Table 6: Labeling Event Property.

• Ask Twitter users to label their own tweets
(Participants include friends, colleagues of
the authors and Turkers from Amazon Me-
chanical Turk13).
• Ask Turkers to label other people’s tweets.

For option 1, we asked participants to directly la-
bel their own published tweets. For option 2, for
each tweet, we employed 2 Turkers. Due to the
ambiguity in defining life events, the value co-
hen’s kappa14 as a measure of inter-rater agree-
ment is 0.54; this does not show significant inter-
annotator agreement. The authors examined dis-
agreements and also verified all positively labeled
tweets. The resulting dataset contains around 900
positive tweets and about 60,000 negative tweets.

To demonstrate the advantage of leveraging
large quantities of unlabeled data, the first base-
line we investigate is a Supervised model which is
trained on the manually annotated labeled dataset,
and evaluated using 5 fold cross validation. Our
Supervised baseline consists of a linear SVM
classifier using bag of words, NER and POS fea-
tures. We also tested a second baseline that
combines Supervised algorithm with an our self-
reported information classifier, denoted as Super-
vised+Self.

Results are reported in Table 8; as we can ob-
serve, the fully supervised approach is not suitable
for this task with only one digit F1 score. The
explanations are as follows: (1) the labeled data
can only cover a small proportion of life events
(2) supervised learning does not separate impor-
tant event categories and will therefore classify
any tweet with highly weighted features (e.g., the
mention of “I” or “marriage”) as positive. By us-
ing an additional self-reported information classi-
fier in Supervised+Self, we get a significant boost
in precision with a minor recall loss.

13https://www.mturk.com/mturk/welcome
14http://en.wikipedia.org/wiki/Cohen’s_

kappa

Approach Precision Recall
Our approach 0.62 0.48

Supervised 0.13 0.20
Supervised+Self 0.25 0.18

Table 8: Performance for different approaches for
identifying life events in real world.

Approach Precision Recall
Step 1 0.65 0.36
Step 2 0.64 0.43
Step 3 0.62 0.48

Table 9: Performance for different steps of boot-
strapping for identifying life events in real world.

Another interesting question is to what degree
the bootstrapping contributes to the final results.
We keep the self-reported information classifier
fixed (though it’s based the ultimate identified
data source), and train the personal event classifier
based on topic distributions identified from each
of the three steps of bootstrapping15. Precision
and recall at various stages of bootstrapping are
presented in Table 9. As bootstrapping continues,
the precision remains roughly constant, but recall
increases as more life events and CONGRATULA-
TIONS and CONDOLENCES are discovered.

8 Related Work

Our work is related to three lines of NLP re-
searches. (1) user-level information extraction on
social media (2) public event extraction on social
media. (3) Data harvesting in Information Extrac-
tion, each of which contains large amount of re-
lated work, to which we can not do fully justice.

User Information Extraction from Twitter
Some early approaches towards understanding
user level information on social media is focused
on user profile/attribute prediction (e.g.,(Ciot et
al., 2013)) user-specific content extraction (Diao

15which are 24, 38, 42-class classifiers, where 24, 38, 42
denoted the number of topics discovered in each step of boot-
strapping (see Figure 5).
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et al., 2012; Diao and Jiang, 2013; Li et al., 2014)
or user personalization (Low et al., 2011) identifi-
cation.

The problem of user life event extraction was
first studied by Li and Cardie’s (2014). They at-
tempted to construct a chronological timeline for
Twitter users from their published tweets based on
two criterion: a personal event should be personal
and time-specific. Their system does not explic-
itly identify a global category of life events (and
tweets discussing correspondent event) but identi-
fies the topics/events that are personal and time-
specific to a given user using an unsupervised ap-
proach, which helps them avoids the nuisance of
explicit definition for life event characteristics and
acquisition of labeled data. However, their sys-
tem has the short-coming that each personal topic
needs to be adequately discussed by the user and
their followers in order to be detected16.

Public Event Extraction from Twitter Twitter
serves as a good source for event detection owing
to its real time nature and large number of users.
These approaches include identifying bursty pub-
lic topics (e.g.,(Diao et al., 2012)), topic evolution
(Becker et al., 2011) or disaster outbreak (Sakaki
et al., 2010; Li and Cardie, 2013) by spotting the
increase/decrease of word frequency. Some other
approaches are focused on generating a structured
representation of events (Ritter et al., 2012; Ben-
son et al., 2011).

Data Acquisition in Information Extraction
Our work is also related with semi-supervised data
harvesting approaches, the key idea of which is
that some patterns are learned based on seeds.
They are then used to find additional terms, which
are subsequently used as new seeds in the patterns
to search for additional new patterns (Kozareva
and Hovy, 2010b; Davidov et al., 2007; Riloff
et al., 1999; Igo and Riloff, 2009; Kozareva et
al., 2008). Also related approaches are distant or
weakly supervision (Mintz et al., 2009; Craven et
al., 1999; Hoffmann et al., 2011) that rely on avail-
able structured data sources as a weak source of
supervision for pattern extraction from related text
corpora.

16The reason is that topic models use word frequency for
topic modeling.

9 Conclusion and Discussion

In this paper, we propose a pipelined system for
major life event extraction from Twitter. Experi-
mental results show that our model is able to ex-
tract a wide variety of major life events.

The key strategy adopted in this work is to ob-
tain a relatively clean training dataset from large
quantity of Twitter data by relying on minimum
efforts of human supervision, and sometimes is at
the sacrifice of recall. To achieve this goal, we rely
on a couple of restrictions and manual screenings,
such as relying on replies, LDA topic identifica-
tion and seed screening. Each part of system de-
pends on the early steps. For example, topic clus-
tering in Section 3 not only offers training data for
event identification in Section 4, but prepares the
training data for self-information identification in
Section 5. .

We acknowledge that our approach is not
perfect due to the following ways: (1) The system
is only capable of discovering a few categories
of life events with many others left unidentified.
(2) Each step of the system will induce errors and
negatively affected the following parts. (3) Some
parts of evaluations are not comprehensive due
to the lack of gold-standard data. (4) Among all
pipelines, event property identification in Section
6 still requires full supervision in CRF model,
making it hard to scale to every event type17.
How to address these aspects and generate a more
accurate, comprehensive and fine-grained life
event list for Twitter users constitute our further
work.
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Abstract

Comparisons are common linguistic de-
vices used to indicate the likeness of two
things. Often, this likeness is not meant
in the literal sense—for example, “I slept
like a log” does not imply that logs ac-
tually sleep. In this paper we propose a
computational study of figurative compar-
isons, or similes. Our starting point is a
new large dataset of comparisons extracted
from product reviews and annotated for
figurativeness. We use this dataset to char-
acterize figurative language in naturally
occurring comparisons and reveal linguis-
tic patterns indicative of this phenomenon.
We operationalize these insights and ap-
ply them to a new task with high relevance
to text understanding: distinguishing be-
tween figurative and literal comparisons.
Finally, we apply this framework to ex-
plore the social context in which figurative
language is produced, showing that simi-
les are more likely to accompany opinions
showing extreme sentiment, and that they
are uncommon in reviews deemed helpful.

1 Introduction
In argument similes are like songs in love; they
describe much, but prove nothing.

— Franz Kafka

Comparisons are fundamental linguistic devices
that express the likeness of two things—be it en-
tities, concepts or ideas. Given that their work-
ing principle is to emphasize the relation between
the shared properties of two arguments (Bredin,
1998), comparisons can synthesize important se-
mantic knowledge.

Often, comparisons are not meant to be under-
stood literally. Figurative comparisons are an im-
portant figure of speech called simile. Consider the

following two examples paraphrased from Ama-
zon product reviews:

(1) Sterling is much cheaper than gold.

(2) Her voice makes this song shine brighter than gold.

In (1) the comparison draws on the relation be-
tween the price property shared by the two metals,
sterling and gold. While (2) also draws on a com-
mon property (brightness), the polysemantic use
(vocal timbre vs. light reflection) makes the com-
parison figurative.

Importantly, there is no general rule separating
literal from figurative comparisons. More gen-
erally, the distinction between figurative and lit-
eral language is blurred and subjective (Hanks,
2006). Multiple criteria for delimiting the two
have been proposed in the linguistic and philo-
sophical literature—for a comprehensive review,
see Shutova (2010)—but they are not without ex-
ceptions, and are often hard to operationalize in a
computational framework. When considering the
specific case of comparisons, such criteria cannot
be directly applied.

Recently, the simile has received increasing at-
tention from linguists and lexicographers (Moon,
2008; Moon, 2011; Hanks, 2013) as it became
clearer that similes need to be treated separately
from metaphors since they operate on funda-
mentally different principles (Bethlehem, 1996).
Metaphors are linguistically simple structures hid-
ing a complex mapping between two domains,
through which many properties are transferred.
For example the conceptual metaphor of life as
a journey can be instantiated in many particular
ways: being at a fork in the road, reaching the end
of the line (Lakoff and Johnson, 1980). In contrast,
the semantic context of similes tends to be very
shallow, transferring a single property (Hanks,
2013). Their more explicit syntactic structure al-
lows, in exchange, for more lexical creativity. As
Hanks (2013) puts it, similes “tend to license all
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sorts of logical mayhem.” Moreover, the over-
lap between the expressive range of similes and
metaphors is now known to be only partial: there
are similes that cannot be rephrased as metaphors,
and the other way around (Israel et al., 2004). This
suggests that figurativeness in similes should be
modeled differently than in metaphors. To further
underline the necessity of a computational model
for similes, we give the first estimate of their fre-
quency in the wild: over 30% of comparisons are
figurative.1 We also confirm that a state of the art
metaphor detection system performs poorly when
applied directly to the task of detecting similes.

In this work we propose a computational study
of figurative language in comparisons. To this end,
we build the first large collection of naturally oc-
curring comparisons with figurativeness annota-
tion, which we make publicly available. Using
this resource we explore the linguistic patterns that
characterize similes, and group them in two con-
ceptually distinctive classes. The first class con-
tains cues that are agnostic of the context in which
the comparison appears (domain-agnostic cues).
For example, we find that the higher the seman-
tic similarity between the two arguments, the less
likely it is for the comparison to be figurative—in
the examples above, sterling is semantically very
similar to gold, both being metals, but song and
gold are semantically dissimilar. The second type
of cues are domain-specific, drawing on the in-
tuition that the domain in which a comparison is
used is a factor in determining its figurativeness.
We find, for instance, that the less specific a com-
parison is to the domain in which it appears, the
more likely it is to be used in a figurative sense
(e.g., in example (2), gold is very unexpected in
the musical domain).

We successfully exploit these insights in a new
prediction task relevant to text understanding: dis-
criminating figurative comparisons from literal
ones. Encouraged by the high accuracy of our
system—which is within 10% of that obtained by
human annotators—we automatically extend the
figurativeness labels to 80,000 comparisons occur-
ring in product reviews. This enables us to conduct
a fine-grained analysis of how comparison usage
interacts with their social context, opening up a
research direction with applications in sentiment
analysis and opinion mining. In particular we find

1This estimate is based on the set of noun-noun compar-
isons with non-identical arguments collected for this study
from Amazon.com product reviews.

that figurative comparisons are more likely to ac-
company reviews showing extreme sentiment, and
that they are uncommon in opinions deemed as be-
ing helpful. To the best of our knowledge, this is
the first time figurative language is tied to the so-
cial context in which it appears.

To summarize, the main contributions of this
work are as follows:

• it introduces the first large dataset of compar-
isons with figurativeness annotations (Sec-
tion 3);

• it unveils new linguistic patterns characteriz-
ing figurative comparisons (Section 4);

• it introduces the task of distinguishing figura-
tive from literal comparisons (Section 5);

• it establishes the relation between figurative
language and the social context in which it
appears (Section 6).

2 Further Related Work

Corpus studies on figurative language in compar-
isons are scarce, and none directly address the
distinction between figurative and literal compar-
isons. Roncero et al. (2006) observed, by search-
ing the web for several stereotypical comparisons
(e.g., education is like a stairway), that similes
are more likely to be accompanied by explana-
tions than equivalent metaphors (e.g., education
is a stairway). Related to figurativeness is irony,
which Veale (2012a) finds to often be lexically
marked. By using a similar insight to filter out
ironic comparisons, and by assuming that the rest
are literal, Veale and Hao (2008) learn stereotyp-
ical knowledge about the world from frequently
compared terms. A similar process has been ap-
plied to both English and Chinese by Li et al.
(2012), thereby encouraging the idea that the trope
behaves similarly in different languages. A related
system is the Jigsaw Bard (Veale and Hao, 2011),
a thesaurus driven by figurative conventional sim-
iles extracted from the Google N-grams. This sys-
tem aims to build and generate canned expressions
by using items frequently associated with the sim-
ile pattern above. An extension of the principles of
the Jigsaw Bard is found in Thesaurus Rex (Veale
and Li, 2013), a data-driven partition of words into
ad-hoc categories. Thesaurus Rex is constructed
using simple comparison and hypernym patterns
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and is able to provide weighted lists of categories
for given words.

In text understanding systems, literal compar-
isons are used to detect analogies between related
geographical places (Lofi et al., 2014). Tandon et
al. (2014) use relative comparative patterns (e.g.,
X is heavier than Y) to enrich a common-sense
knowledge base. Jindal and Liu (2006) extract
graded comparisons from various sources, with
the objective of mining consumer opinion about
products. They note that identifying objective vs.
subjective comparisons—related to literality—is
an important future direction. Given that many
comparisons are figurative, a system that discrim-
inates literal from figurative comparisons is essen-
tial for such text understanding and information
retrieval systems.

The vast majority of previous work on figu-
rative language focused on metaphor detection.
Tsvetkov et al. (2014a) propose a cross-lingual
system based on word-level conceptual features
and they evaluate it on Subject-Verb-Object triples
and Adjective-Noun pairs. Their features include
and extend the idea of abstractness used by Turney
et al. (2011) for Adjective-Noun metaphors. Hovy
et al. (2013) contribute an unrestricted metaphor
corpus and propose a method based on tree ker-
nels. Bridging the gap between metaphor identifi-
cation and interpretation, Shutova and Sun (2013)
proposed an unsupervised system to learn source-
target domain mappings. The system fits concep-
tual metaphor theory (Lakoff and Johnson, 1980)
well, at the cost of not being able to tackle figu-
rative language in general, and similes in particu-
lar, as similes do not map entire domains to one
another. Since similes operate on fundamentally
different principles than metaphors, our work pro-
poses a computational approach tailored specifi-
cally for comparisons.

3 Background and Data

3.1 Structure of a comparison

Unlike metaphors, which are generally unre-
stricted, comparisons are more structured but also
more lexically and semantically varied. This en-
ables a more structured computational representa-
tion of which we take advantage. The constituents
of a comparison according to Hanks (2012) are:

• the TOPIC, sometimes called tenor: it is usu-
ally a noun phrase and acts as logical subject;

• the VEHICLE: it is the object of the compari-
son and is also usually a noun phrase;

• the shared PROPERTY or ground: it expresses
what the two entities have in common—it can
be explicit but is often implicit, left for the
reader to infer;

• the EVENT (eventuality or state): usually a
verb, it sets the frame for the observation of
the common property;

• the COMPARATOR: commonly a preposition
(like) or part of an adjectival phrase (better
than), it is the trigger word or phrase that
marks the presence of a comparison.

The literal example (1) would be segmented as:

[Sterling /TOPIC] [is /EVENT] much [cheaper
/PROPERTY] [than /COMPARATOR] [gold /VE-
HICLE]

3.2 Annotation

People resort to comparisons often when mak-
ing descriptions, as they are a powerful way of
expressing properties by example. For this rea-
son we collect a dataset of user-generated compar-
isons in Amazon product reviews (McAuley and
Leskovec, 2013), where users have to be descrip-
tive and precise, but also to express personal opin-
ion. We supplement the data with a smaller set of
comparisons from WaCky and WaCkypedia (Ba-
roni et al., 2009) to cover more genres. In pre-
liminary work, we experimented with dependency
parse tree patterns for extracting comparisons and
labeling their parts (Niculae, 2013). We use the
same approach, but with an improved set of pat-
terns, to extract comparisons with the COMPARA-
TORS like, as and than.2 We keep only the matches
where the TOPIC and the VEHICLE are nouns, and
the PROPERTY, if present, is an adjective, which
is the typical case. Also, the head words of the
constituents are constrained to occur in the distri-
butional resources used (Baroni and Lenci, 2010;
Faruqui and Dyer, 2014).3

2We process the review corpus with part-of-speech tag-
ging using the IRC model for TweetNLP (Owoputi et al.,
2013; Forsyth and Martell, 2007) and dependency parsing
using the TurboParser standard model (Martins et al., 2010).

3Due to the strong tendency of comparisons with the same
TOPIC and VEHICLE to be trivially literal in the WaCky
examples, we filtered out such examples from the Amazon
product reviews. We also filtered proper nouns using a capi-
talization heuristic.
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We proceed to validate and annotate for figu-
rativeness a random sample of the comparisons
extracted using the automated process described
above. The annotation is performed using crowd-
sourcing on the Amazon Mechanical Turk plat-
form, in two steps. First, the annotators are asked
to determine whether a displayed sentence is in-
deed a comparison between the highlighted words
(TOPIC and VEHICLE). Sentences qualified by
two out of three annotators as comparisons are
used in the second round, where the task is to
rate how metaphorical a comparison is. We use
a scale of 1 to 4 following Turney et al. (2011),
and then binarize to consider scores of 1–2 as lit-
eral and 3–4 as figurative. Finally, in this work we
only consider comparisons where all three annota-
tors agree on this binary notion of figurativeness.
For both tasks, we provide guidelines mostly in
the form of examples and intuition, motivated on
one hand by the annotators not having specialized
knowledge, and on the other hand by the observa-
tion that the literal-figurative distinction is subjec-
tive. All annotators have the master worker qual-
ification, reside in the U.S. and completed a lin-
guistic background questionnaire that verifies their
experience with English. In both tasks, control
sentences with confidently known labels are used
to filter low quality answers; in addition, we test
annotators with a simple paraphrasing task shown
to be effective for eliciting and verifying linguis-
tic attention (Munro et al., 2010). Both tasks
seem relatively difficult for humans, with inter-
annotator agreement given by Fleiss’ k of 0.48
for the comparison identification task and of 0.54
for the figurativeness annotation after binarization.
This is comparable to 0.57 reported by Hovy et al.
(2013) for general metaphor labeling. We show
some statistics about the collected data in Table 1.
Overall, this is a costly process: out of 2400 auto-
matically extracted comparison candidates, about
60% were deemed by the annotators to be actual
comparisons and only 12% end up being selected
confidently enough as figurative comparisons.

Our dataset of human-filtered comparisons,
with the scores given by the three annotators,
is made publicly available to encourage further
work.4 This also includes about 400 comparisons
where the annotators do not agree perfectly on bi-
nary figurativeness. Such cases can be interest-
ing to other analyses, even if we don’t consider

4http://vene.ro/figurative-comparisons/

Domain fig. lit. % fig.

Books 177 313 36%
Music 45 68 40%

Electronics 23 105 18%
Jewelery 9 126 7%

WaCky 19 79 19%

Total 273 609 31%

Table 1: Figurativeness annotation results. Only
comparisons where all three annotators agree are
considered.

them in our experiments. It is worth noting that
the existing corpora annotated for metaphor can-
not be directly used to study comparisons. For ex-
ample, in TroFi (Birke and Sarkar, 2006), a cor-
pus of 6436 sentences annotated for figurative-
ness, we only find 42 noun-noun comparisons with
sentence-level (thus noisy) figurativeness labels.

4 Linguistic Insights

We now proceed to exploring the linguistic pat-
terns that discriminate figurative from literal com-
parisons. We consider two broad classes of cues,
which we discuss next.

4.1 Domain-specific cues
Figurative language is often used for striking ef-
fects, and comparisons are used to describe new
things in terms of something given (Hanks, 2013).
Since the norms that define what is surprising and
what is well-known vary across domains, we ex-
pect that such contextual information should play
an important role in figurative language detection.
This is a previously unexplored dimension of figu-
rative language, and Amazon product reviews of-
fer a convenient testbed for this intuition since cat-
egory information is provided.

Specificity To estimate whether a compari-
son can be considered striking in a particular
domain—whether it references images or ideas
that are unexpected in its context—we employ a
simple measure of word specificity with respect to
a domain: the ratio of the word frequency within
the domain and the word frequency in all domains
being considered.5 It should be noted that speci-
ficity is not purely a function of the word, but

5We measure specificity for the VEHICLE, PROPERTY
and EVENT.
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(c) Imageability of the PROPERTY.

Figure 1: Distribution of some of the features we use, across literal and figurative comparisons in the test
set. The profile of the plot is a kernel density estimation of the distribution, and the markers indicate the
median and the first and third quartiles.

of the word and the context in which it appears.
A comparison in the music domain that involves
melodies is not surprising:

But the title song really feels like a pretty bland
vocal melody [...]

But the same word can play a very different role
in another context, for example, book reviews:

Her books are like sweet melodies that flow
through your head.

Indeed, the word melody has a specificity of 96%
in the music domain and only of 3% in the books
domain.

An analysis on the labeled data confirms that
literal comparisons do indeed tend to have more
domain-specific VEHICLES (Mann-Whitney U
test, p < 0.01) than figurative ones. Further-
more, the distribution of specificity across both
types of comparisons, as shown in Figure 1a, has
the appearance of a mixture model of general and
specific words. Figurative comparison VEHICLES

largely exhibit only the general component of the
mixture.6

Domain label An analysis of the annotation re-
sults reveals that the percentage of comparisons
that are figurative differs widely across domains,
as indicated in the last column in Table 1. This
suggests that simply knowing the domain of a
text can serve to adjust some prior expectation
about figurative language presence and therefore
improve detection. We test this hypothesis using

6The mass around 0.25 in Figure 1a is largely explained
by generic words such as thing, others, nothing, average and
barely specific words like veil, reputation, dream, garbage.

a Z-test comparing all Amazon categories. With
the exception of books and music reviews, that
have similar ratios, all other pairs of categories
show significantly different proportions of figura-
tive comparisons (p < 0.01).

4.2 Domain-agnostic cues

Linguistic studies of figurative language suggest
that there is a fundamental generic notion of fig-
urativeness. We attempt to capture this notion in
the context of comparisons using syntactic and se-
mantic information.

Topic-Vehicle similarity The default role of lit-
eral comparisons is to assert similarity of things.
Therefore, we expect that a high semantic simi-
larity between the TOPIC and the VEHICLE of a
comparison is a sign of literal usage, as we pre-
viously hypothesized in preliminary work (Nicu-
lae, 2013). To test this hypothesis, we compute
TOPIC-VEHICLE similarity using Distributional
Memory (Baroni and Lenci, 2010), a freely avail-
able distributional semantics resource that cap-
tures word relationships through grammatical role
co-occurrence.

By applying this measure to our data, we find
that there is indeed an important difference be-
tween the distributions of TOPIC-VEHICLE simi-
larity in figurative and literal comparisons (shown
in Figure 1b); the means of the two distribu-
tions are significantly different (Mann-Whitney
p < 0.01).

Metaphor-inspired features We also seek to
understand to what extent insights provided by
computational work on metaphor detection can be
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more concrete less concrete

more imageable cinnamon, kiss devil, happiness
less imageable casque, pugilist aspect, however

Table 2: Examples of words with high and low
concreteness and imageability scores from the
MRC Psycholinguistic Database.

applied in the context of comparisons. To that end
we consider features shown to provide state of the
art performance in the task of metaphor detection
(Tsvetkov et al., 2014a): abstractness, imageabil-
ity and supersenses.

Abstractness and imageability features are de-
rived from the MRC Psycholinguistic Database
(Coltheart, 1981), a dictionary based on manually
annotated datasets of psycholinguistic norms. Im-
ageability is the property of a word to arouse a
mental image, be it in the form of a mental pic-
ture, sound or any other sense. Concreteness is
defined as “any word that refers to objects, materi-
als or persons,” while abstractness, at the other end
of the spectrum, is represented by words that can-
not be usually experienced by the senses (Paivio
et al., 1968). Table 2 shows a few examples of
words with high and low concreteness and image-
ability scores. Supersenses are a very coarse form
of meaning representation. Tsvetkov et al. (2014a)
used WordNet (Miller, 1995) semantic classes
for nouns and verbs, for example noun.body,
noun.animal, verb.consumption, or verb.motion.
For adjectives, Tsvetkov et al. (2014b) developed
and made available a novel classification in the
same spirit.7 We compute abstractness, image-
ability and supersenses for the TOPIC, VEHICLE,
EVENT, and PROPERTY.8 We concatenate these
features with the raw vector representations of the
constituents, following Tsvetkov et al. (2014a).

We find that such features relate to figurative
comparisons in a meaningful way. For example,
out of all comparisons with explicit properties, fig-
urative comparisons tend to have properties that

7Following Tsvetkov et al. (2014a) we train a classifier to
predict these features from a vector space representation of a
word. We use the same cross-lingually optimized represen-
tation from Faruqui and Dyer (2014) and a simpler classifier,
a logistic regression, which we find to perform as well as the
random forests used in Tsvetkov et al. (2014a). We treat su-
persense prediction as a multi-label problem and apply a one-
versus-all transformation, effectively learning a linear classi-
fier for each supersense.

8If the PROPERTY is implicit, all corresponding features
are set to zero. An extra binary feature indicates whether the
PROPERTY is explicit or implicit.

are more imageable (Mann-Whitney p < 0.01), as
illustrated by Figure 1c. This is in agreement with
Hanks (2005), who observed that similes are char-
acterized by their appeal to sensory imagination.

Definiteness We introduce another simple but
effective syntactic cue that relates to concreteness:
the presence of a definite article versus an indefi-
nite one (or none at all). We search for the indefi-
nite articles a and an and the definite article the in
each component of a comparison.

We find that similes tend to have indefinite arti-
cles in the VEHICLE more often and definite arti-
cles less often (Mann-Whitney p < 0.01). In par-
ticular, 59% of comparisons where the VEHICLE

has a indefinite article are figurative, as opposed
to 13% of the comparisons where VEHICLE has a
definite article.

5 Prediction Task

We now turn to the task of predicting whether a
comparison is figurative or literal. Not only does
this task allow us to assess and compare the effi-
ciency of the linguistic cues we discussed, but it is
also highly relevant in the context of natural lan-
guage understanding systems.

We conduct a logistic regression analysis, and
compare the efficiency of the features derived
from our analysis to a bag of words baseline.
In addition to the features inspired by the pre-
viously described linguistic insights, we also try
to computationally capture the lexical usage pat-
terns of comparisons using a version of bag of
words adapted to the comparison structure. In this
slotted bag of words system, features correspond
to occurrence of words within constituents (e.g.,
bright ∈ PROPERTY).

We perform a stratified split of our compari-
son dataset into equal train and test sets (each set
containing 408 comparisons, out of which 134 are
figurative),9 and use a 5-fold stratified cross vali-
dation over the training set to choose the optimal
value for the logistic regression regularization pa-
rameter and the type of regularization (ℓ1 or ℓ2) for
each feature set.10

9The entire analysis described in Section 4 is only con-
ducted on the training set. Also, in order to ensure that we are
assessing the performance of the classifier on unseen com-
parisons, we discard from our dataset all those with the same
TOPIC and VEHICLE pair.

10We use the logistic regression implementation
of liblinear (Fan et al., 2008) wrapped by the
scikit-learn library (Pedregosa et al., 2011).
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Model # features Acc. P R F1 AUC

Bag of words 1970 0.79 0.63 0.84 0.72 0.87
Slotted bag of words 1840 0.80 0.64 0.90 0.75 0.89

Domain-agnostic cues 357 0.81 0.70 0.74 0.72 0.90
only metaphor inspired 345 0.75 0.60 0.72 0.65 0.84

Domain-specific cues 8 0.69 0.51 0.81 0.63 0.76
All linguistic insight cues 365 0.86 0.76 0.83 0.79 0.92

Full 2202 0.88 0.80 0.84 0.82 0.94

Human - 0.96 0.92 0.96 0.94 -

Table 3: Classification performance on the test set for the different sets of features we considered; human
performance is shown for reference.

Classifier performance The performance on
the classification task is summarized in Table 3.
We note that the bag of words baseline is remark-
ably strong, because of common idiomatic simi-
les that can be captured through keywords. Our
full system (which relies on our linguistically in-
spired cues discussed in Section 4 in addition to
slotted bag of words) significantly outperforms the
bag of words baseline and the slotted bag of words
system in terms of accuracy, F1 score and AUC
(p < 0.05),11 suggesting that linguistic insights
complement idiomatic simile matching. Impor-
tantly, a system using only our linguistic insight
cues also significantly improves over the baseline
in terms of accuracy and AUC and it is not signif-
icantly different from the full system in terms of
performance, in spite of having about an order of
magnitude fewer features. It is also worth noting
that the domain-specific cues play an important
role in bringing the performance to this level by
capturing a different aspect of what it means for a
comparison to be figurative.

The features used by the state of the art
metaphor detection system of Tsvetkov et al.
(2014a), adapted to the comparison structure, per-
form poorly by themselves and do not improve
significantly over the baseline. This is consis-
tent with the theoretical motivation that figura-
tiveness in comparisons requires special compu-
tational treatment, as discussed in Section 1. Fur-
thermore, the linguistic insight features not only
significantly outperform the metaphor inspired
features (p < 0.05), but are also better at exploit-
ing larger amounts of data, as shown in Figure 2.

11All statistical significance results in this paragraph are
obtained from 5000 bootstrap samples.
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Figure 2: Learning curves. Each point is obtained
by fitting a model on 10 random subsets of the
training set. Error bars show 95% confidence in-
tervals.

Comparison to human performance To gauge
how well humans would perform at the classifica-
tion task on the actual test data, we perform an-
other Amazon Mechanical Turk evaluation on 140
examples from the test set. For the evaluation,
we use majority voting between the three anno-
tators,12 and compare to the agreed labels in the
dataset. Estimated human accuracy is 96%, plac-
ing our full system within 10% of human accuracy.

Feature analysis The predictive analysis we
perform allows us to investigate to what extent the
features inspired by our linguistic insights have
discriminative power, and whether they actually
cover different aspects of figurativeness.

12Majority voting helps account for the noise inherent to
crowdsourced annotation, which is less accurate than profes-
sional annotation. Taking the less optimistic invididual turker
answers, human performance is on the same level as our full
system.
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Feature Coef. Example where the feature is positively activated

TOPIC-VEHICLE similarity −11.3 the older man was wiser and stronger than the boy
VEHICLE specificity −5.8 the cord is more durable than the adapter [Electronics]

VEHICLE imageability 4.9 the explanations are as clear as mud
VEHICLE communication supersense −4.6 the book reads like six short articles
VEHICLE indefiniteness 4.0 his fame drew foreigners to him like a magnet

life ∈ VEHICLE 7.1 the hero is truly larger than life: godlike, yet flawed
picture ∈ VEHICLE −6.0 the necklace looks just like the picture
other ∈ VEHICLE −5.9 this one is just as nice as the other
others ∈ VEHICLE −5.5 some songs are more memorable than others
crap ∈ VEHICLE 4.7 the headphones sounded like crap

Table 4: Top 5 linguistic insight features (top) and slotted bag of words features (bottom) in the full model
and their logistic regression coefficients. A positive coefficient means the feature indicates figurativeness.

Table 4 shows the best linguistic insight and
slotted bag of words features selected by the full
model. The strongest feature by far is the seman-
tic similarity between the TOPIC and the VEHI-
CLE. By itself, this feature gets 70% accuracy and
61% F1 score.

The rest of the top features involve mostly the
VEHICLE. This suggests that the VEHICLE is the
most informative element of a comparison when it
comes to figurativeness. Features involving other
constituents also get selected, but with slightly
lower weights, not making it to the top.

VEHICLE specificity is one of the strongest fea-
tures, with positive values indicating literal com-
parisons. This confirms our intuition that domain
information is important to discriminate figurative
from literal language.

Of the adapted metaphor features, the noun
communication supersense and the imageability
of the VEHICLE make it to the top. Nouns with
low communication rating occurring in the train-
ing set include puddles, arrangements, carbohy-
drates while nouns with high communication rat-
ing include languages and subjects.

Presence of an indefinite article in the VEHICLE

is a strong indicator of figurativeness. By them-
selves, the definiteness and indefiniteness features
perform quite well, attaining 78% accuracy and
67% F1 score.

The salient bag of words features correspond to
specific types of comparisons. The words other
and others in the VEHICLE indicate comparisons
between the same kind of arguments, for exam-
ple some songs are more memorable than others,
and these are likely to be literal. The word pic-

ture is specific to the review setting, as products
are accompanied by photos, and for certain kinds
of products, the resemblance of the product with
the image is an important factor for potential buy-
ers.13 The bag of words systems are furthermore
able to learn idiomatic comparisons by identify-
ing common figurative VEHICLES such as life and
crap, corresponding to fixed expressions such as
larger than life.

Error analysis Many of the errors made by our
full system involve indirect semantic mechanisms
such as metonymy. For example, the false pos-
itive the typeface was larger than most books
really means larger than the typefaces found in
most books, but without the implicit expansion the
meaning can appear figurative. A similar kind of
ellipsis makes the example a lot [of songs] are
even better than sugar be wrongly classified as
literal. Another source of error is polysemy. Ex-
amples like the rejuvelac formula is about 10 times
better than yogurt are misclassified because of the
multiple meanings of the word formula, one being
closely related to yogurt and food, but the more
common ones being general and abstract, suggest-
ing figurativeness.

6 Social Correlates

The advantage of studying comparisons situated
in a social context is that we can understand how
their usage interacts with internal and external hu-
man factors. An internal factor is the sentiment of

13This feature is highly correlated with the domain: it ap-
pears 25 times in the training set, 24 of which in the jewelery
domain and once in book reviews.
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(a) Figurative comparisons are more likely to be found in re-
views with strongly polarized sentiment.
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(b) Helpful reviews are less likely to contain figurative compar-
isons.

Figure 3: Interaction between figurative language and social context aspects. Error bars show 95%
confidence intervals. The dashed horizontal line marks the average proportion of figurative comparisons.
In Figure 3b the average proportion is different because we only consider reviews rated by at least 10
readers.

the user towards the reviewed product, indicated
by the star rating of the review. An external factor
present in the data is how helpful the review is per-
ceived by other users. In this section we analyze
how these factors interact with figurative language
in comparisons.

To gain insight about fine grained interactions
with human factors at larger scale, we use our clas-
sifier to find over 80,000 figurative and literal com-
parisons from the same four categories. The trends
we reveal also hold significantly on the manually
annotated data.

Sentiment While it was previously noted that
similes often transmit strong affect (Hanks, 2005;
Veale, 2012a; Veale, 2012b), the connection be-
tween figurativeness and sentiment was never em-
pirically validated. The setting of product reviews
is convenient for investigating this issue, since
the star ratings associated with the reviews can
be used as sentiment labels. We find that com-
parisons are indeed significantly more likely to
be figurative when the users express strong opin-
ions, i.e., in one-star or five-star reviews (Mann-
Whitney p < 0.02 on the manually annotated
data). Figure 3a shows how the proportion of fig-
urative comparisons varies with the polarity of the
review.

Helpfulness It is also interesting to understand
to what extent figurative language relates to the
external perception of the content in which it ap-

pears. We find that comparisons in helpful re-
views14 are less likely to be figurative. Figure 3b
shows a near-constant high ratio of figurative com-
parisons among unhelpful and average reviews; as
helpfulness increases, figurative comparisons be-
come less frequent. We further validate that this
effect is not a confound of the distribution of help-
fulness ratings across reviews of different polarity
by controlling for the star rating: given a fixed star
rating, the proportion of figurative comparisons is
still lower in helpful (helpfulness over 50%) than
in unhelpful (helpfulness under 50%) reviews; this
difference is significant (Mann-Whitney p < 0.01)
for all classes of ratings except one-star. The
size of the manually annotated data does not al-
low for star rating stratification, but the overall dif-
ference is statistically significant (Mann-Whitney
p < 0.01). This result encourages further exper-
imentation to determine whether there is a causal
link between the use of figurative language in user
generated content and its external perception.

7 Conclusions and Future Work

This work proposes a computational study of fig-
urative language in comparisons. Starting from
a new dataset of naturally occurring comparisons
with figurativeness annotation (which we make
publicly available) we explore linguistic patterns
that are indicative of similes. We show that these

14In order to have reliable helpfulness scores, we only con-
sider reviews that have been rated by at least by ten readers.
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insights can be successfully operationalized in a
new prediction task: distinguishing literal from
figurative comparisons. Our system reaches ac-
curacy that is within 10% of human performance,
and is outperforming a state of the art metaphor
detection system, thus confirming the need for
a computational approach tailored specifically to
comparisons. While we take a data-driven ap-
proach, our annotated dataset can be useful for
more theoretical studies of the kinds of compar-
isons and similes people use.

We discover that domain knowledge is an im-
portant factor in identifying similes. This suggests
that future work on automatic detection of figura-
tive language should consider contextual parame-
ters such as the topic and community where the
content appears.

Furthermore, we are the first to tie figurative
language to the social context in which it is pro-
duced and show its relation to internal and exter-
nal human factors such as opinion sentiment and
helpfulness. Future investigation into the causal
effects of these interactions could lead to a better
understanding of the role of figurative language in
persuasion and rhetorics.

In our work, we consider common noun TOP-
ICS and VEHICLES and adjectival PROPERTIES.
This is the most typical case, but supporting other
parts of speech—such as proper nouns, pronouns,
and adverbs—can make a difference in many ap-
plications. Capturing compositional interaction
between the parts of the comparison could lead to
more flexible models that give less weight to the
VEHICLE.

This study is also the first to estimate how
prevalent similes are in the wild, and reports that
about one third of the comparisons we consider are
figurative. This is suggestive of the need to build
systems that can properly process figurative com-
parisons in order to correctly harness the semantic
information encapsulated in comparisons.
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Abstract
We describe an algorithm for automatic clas-
sification of idiomatic and literal expressions.
Our starting point is that words in a given text
segment, such as a paragraph, that are high-
ranking representatives of a common topic of
discussion are less likely to be a part of an id-
iomatic expression. Our additional hypothesis
is that contexts in which idioms occur, typi-
cally, are more affective and therefore, we in-
corporate a simple analysis of the intensity of
the emotions expressed by the contexts. We
investigate the bag of words topic represen-
tation of one to three paragraphs containing
an expression that should be classified as id-
iomatic or literal (a target phrase). We ex-
tract topics from paragraphs containing idioms
and from paragraphs containing literals us-
ing an unsupervised clustering method, Latent
Dirichlet Allocation (LDA) (Blei et al., 2003).
Since idiomatic expressions exhibit the prop-
erty of non-compositionality, we assume that
they usually present different semantics than
the words used in the local topic. We treat
idioms as semantic outliers, and the identifi-
cation of a semantic shift as outlier detection.
Thus, this topic representation allows us to dif-
ferentiate idioms from literals using local se-
mantic contexts. Our results are encouraging.

1 Introduction
The definition of what is literal and figurative is still
object of debate. Ariel (2002) demonstrates that lit-
eral and non-literal meanings cannot always be distin-
guished from each other. Literal meaning is originally
assumed to be conventional, compositional, relatively
context independent, and truth conditional. The prob-
lem is that the boundary is not clear-cut, some figu-
rative expressions are compositional – metaphors and
many idioms; others are conventional – most of the id-
ioms. Idioms present great challenges for many Natu-
ral Language Processing (NLP) applications. They can
violate selection restrictions (Sporleder and Li, 2009)
as in push one’s luck under the assumption that only
concrete things can normally be pushed. Idioms can
disobey typical subcategorization constraints (e.g., in

line without a determiner before line), or change the
default assignments of semantic roles to syntactic cate-
gories (e.g., in X breaks something with Y, Y typically
is an instrument but for the idiom break the ice, it is
more likely to fill a patient role as in How to break the
ice with a stranger). In addition, many potentially id-
iomatic expressions can be used either literally or fig-
uratively, depending on the context. This presents a
great challenge for machine translation. For example,
a machine translation system must translate held fire
differently in Now, now, hold your fire until I’ve had a
chance to explain. Hold your fire, Bill. You’re too quick
to complain. and The sergeant told the soldiers to hold
their fire. Please hold your fire until I get out of the
way. In fact, we tested the last two examples using the
Google Translate engine and we got proper translations
of the two neither into Russian nor into Hebrew, Span-
ish, or Chinese. Most current translation systems rely
on large repositories of idioms. Unfortunately, these
systems are not capable to tell apart literal from figura-
tive usage of the same expression in context. Despite
the common perception that phrases that can be idioms
are mainly used in their idiomatic sense, Fazly et al.
(2009)’s analysis of 60 idioms has shown that close to
half of these also have a clear literal meaning; and of
those with a literal meaning, on average around 40% of
their usages are literal.

In this paper we describe an algorithm for automatic
classification of idiomatic and literal expressions. Our
starting point is that words in a given text segment,
such as a paragraph, that are high-ranking representa-
tives of a common topic of discussion are less likely
to be a part of an idiomatic expression. Our additional
hypothesis is that contexts in which idioms occur, typ-
ically, are more affective and therefore, we incorpo-
rate a simple analysis of the intensity of the emotions
expressed by the contexts. We investigate the bag of
words topic representation of one to three paragraphs
containing an expression that should be classified as
idiomatic or literal (a target phrase). We extract top-
ics from paragraphs containing idioms and from para-
graphs containing literals using an unsupervised clus-
tering method, Latent Dirichlet Allocation (LDA) (Blei
et al., 2003). Since idiomatic expressions exhibit the
property of non-compositionality, we assume that they
usually present different semantics than the words used
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in the local topic. We treat idioms as semantic outliers,
and the identification of semantic shift as outlier detec-
tion. Thus, this topic representation allows us to differ-
entiate idioms from literals using the local semantics.

The paper is organized as follows. Section 2 briefly
describes previous approaches to idiom recognition or
classification. In Section 3 we describe our approach in
detail, including the hypothesis, the topic space repre-
sentation, and the proposed algorithm. After describing
the preprocessing procedure in Section 4, we turn to the
actual experiments in Sections 5 and 6. We then com-
pare our approach to other approaches (Section 7) and
discuss the results (Section 8).

2 Previous Work

Previous approaches to idiom detection can be classi-
fied into two groups: 1) Type-based extraction, i.e., de-
tecting idioms at the type level; 2) token-based detec-
tion, i.e., detecting idioms in context. Type-based ex-
traction is based on the idea that idiomatic expressions
exhibit certain linguistic properties that can distinguish
them from literal expressions (Sag et al. (2002); Fa-
zly et al. (2009)), among many others, discuss various
properties of idioms. Some examples of such proper-
ties include 1) lexical fixedness: e.g., neither ‘shoot
the wind’ nor ‘hit the breeze’ are valid variations of
the idiom shoot the breeze and 2) syntactic fixedness:
e.g., The guy kicked the bucket is potentially idiomatic
whereas The bucket was kicked is not idiomatic any-
more; and of course, 3) non-compositionality. Thus,
some approaches look at the tendency for words to oc-
cur in one particular order, or a fixed pattern. Hearst
(1992) identifies lexico-syntactic patterns that occur
frequently, are recognizable with little or no precoded
knowledge, and indicate the lexical relation of interest.
Widdows and Dorow (2005) use Hearst’s concept of
lexicosyntactic patterns to extract idioms that consist
of fixed patterns between two nouns. Basically, their
technique works by finding patterns such as “thrills and
spills”, whose reversals (such as “spills and thrills”) are
never encountered.

While many idioms do have these properties, many
idioms fall on the continuum from being composi-
tional to being partly unanalyzable to completely non-
compositional (Cook et al. (2007)). Fazly et al. (2009);
Li and Sporleder (2010), among others, notice that
type-based approaches do not work on expressions that
can be interpreted idiomatically or literally depending
on the context and thus, an approach that considers to-
kens in context is more appropriate for the task of idiom
recognition.

A number of token-based approaches have been
discussed in the literature, both supervised (Katz
and Giesbrech (2006)), weakly supervised (Birke and
Sarkar (2006)) and unsupervised (Sporleder and Li
(2009); Fazly et al. (2009)). Fazly et al. (2009) de-
velop statistical measures for each linguistic property
of idiomatic expressions and use them both in a type-

based classification task and in a token identification
task, in which they distinguish idiomatic and literal us-
ages of potentially idiomatic expressions in context.
Sporleder and Li (2009) present a graph-based model
for representing the lexical cohesion of a discourse.
Nodes represent tokens in the discourse, which are con-
nected by edges whose value is determined by a seman-
tic relatedness function. They experiment with two dif-
ferent approaches to semantic relatedness: 1) Depen-
dency vectors, as described in Pado and Lapata (2007);
2) Normalized Google Distance (Cilibrasi and Vitányi
(2007)). Sporleder and Li (2009) show that this method
works better for larger contexts (greater than five para-
graphs). Li and Sporleder (2010) assume that literal
and figurative data are generated by two different Gaus-
sians, literal and non-literal and the detection is done by
comparing which Gaussian model has a higher prob-
ability to generate a specific instance. The approach
assumes that the target expressions are already known
and the goal is to determine whether this expression is
literal or figurative in a particular context. The impor-
tant insight of this method is that figurative language
in general exhibits less semantic cohesive ties with the
context than literal language.

Feldman and Peng (2013) describe several ap-
proaches to automatic idiom identification. One of
them is idiom recognition as outlier detection. They
apply principal component analysis for outlier detec-
tion – an approach that does not rely on costly an-
notated training data and is not limited to a specific
type of a syntactic construction, and is generally lan-
guage independent. The quantitative analysis provided
in their work shows that the outlier detection algorithm
performs better and seems promising. The qualitative
analysis also shows that their algorithm has to incor-
porate several important properties of the idioms: (1)
Idioms are relatively non-compositional, comparing to
literal expressions or other types of collocations. (2)
Idioms violate local cohesive ties, as a result, they are
semantically distant from the local topics. (3) While
not all semantic outliers are idioms, non-compositional
semantic outliers are likely to be idiomatic. (4) Id-
iomaticity is not a binary property. Idioms fall on the
continuum from being compositional to being partly
unanalyzable to completely non-compositional.

The approach described below is taking Feldman
and Peng (2013)’s original idea and is trying to address
(2) directly and (1) indirectly. Our approach is also
somewhat similar to Li and Sporleder (2010) because it
also relies on a list of potentially idiomatic expressions.

3 Our Hypothesis

Similarly to Feldman and Peng (2013), out starting
point is that idioms are semantic outliers that violate
cohesive structure, especially in local contexts. How-
ever, our task is framed as supervised classification and
we rely on data annotated for idiomatic and literal ex-
pressions. We hypothesize that words in a given text
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segment, such as a paragraph, that are high-ranking
representatives of a common topic of discussion are
less likely to be a part of an idiomatic expression in
the document.

3.1 Topic Space Representation
Instead of the simple bag of words representation of a
target document (segment of three paragraphs that con-
tains a target phrase), we investigate the bag of words
topic representation for target documents. That is, we
extract topics from paragraphs containing idioms and
from paragraphs containing literals using an unsuper-
vised clustering method, Latent Dirichlet Allocation
(LDA) (Blei et al., 2003). The idea is that if the LDA
model is able to capture the semantics of a target docu-
ment, an idiomatic phrase will be a “semantic” outlier
of the themes. Thus, this topic representation will al-
low us to differentiate idioms from literals using the
semantics of the local context.

Let d = {w1, · · · , wN}t be a segment (document)
containing a target phrase, where N denotes the num-
ber of terms in a given corpus, and t represents trans-
pose. We first compute a set of m topics from d. We
denote this set by

T (d) = {t1, · · · , tm},

where ti = (w1, · · · , wk)t. Here wj represents a word
from a vocabulary of W words. Thus, we have two
representations for d: (1) d, represented by its original
terms, and (2) d̂, represented by its topic terms. Two
corresponding term by document matrices will be de-
noted by MD and MD̂, respectively, where D denotes
a set of documents. That is, MD represents the original
“text” term by document matrix, while MD̂ represents
the “topic” term by document matrix.

Figure 1 shows the potential benefit of topic space
representation. In the figure, text segments containing
target phrase “blow whistle” are projected on a two di-
mensional subspace. The left figure shows the projec-
tion in the “text” space, represented by the term by doc-
ument matrixMD. The middle figure shows the projec-
tion in the topic space, represented by MD̂. The topic
space representation seems to provide a better separa-
tion.

We note that when learning topics from a small data
sample, learned topics can be less coherent and inter-
pretable, thus less useful. To address this issue, regu-
larized LDA has been proposed in the literature (New-
man et al., 2011). A key feature is to favor words that
exhibit short range dependencies for a given topic. We
can achieve a similar effect by placing restrictions on
the vocabulary. For example, when extracting topics
from segments containing idioms, we may restrict the
vocabulary to contain words from these segments only.
The middle and right figures in Figure 1 illustrate a case
in point. The middle figure shows a projection onto the
topic space that is computed with a restricted vocabu-
lary, while the right figure shows a projection when we

place no restriction on the vocabulary. That is, the vo-
cabulary includes terms from documents that contain
both idioms and literals.

Note that by computing MD̂, the topic term by doc-
ument matrix, from the training data, we have created
a vocabulary, or a set of “features” (i.e., topic terms)
that is used to directly describe a query or test segment.
The main advantage is that topics are more accurate
when computed by LDA from a large collection of id-
iomatic or literal contexts. Thus, these topics capture
more accurately the semantic contexts in which the tar-
get idiomatic and literal expressions typically occur. If
a target query appears in a similar semantic context, the
topics will be able to describe this query as well. On the
other hand, one might similarly apply LDA to a given
query to extract query topics, and create the query vec-
tor from the query topics. The main disadvantage is
that LDA may not be able to extract topic terms that
match well with those in the training corpus, when ap-
plied to the query in isolation.

3.2 Algorithm

The main steps of the proposed algorithm, called
TopSpace, are shown below.

Input: D = {d1, · · · , dk, dk+1, · · · , dn}: training
documents of k idioms and n− k literals.
Q = {q1, · · · , ql}: l query documents.

1. Let DicI be the vocabulary determined solely
from idioms {d1, · · · , dk}. Similarly, let DicL
be the vocabulary obtained from literals
{dk+1, · · · , dn}.

2. For a document di in {d1, · · · , dk}, apply LDA
to extract a set of m topics T (di) = {t1, · · · , tm}
using DicI . For di ∈ {dk+1, · · · , dn}, DicL is
used.

3. Let D̂ = {d̂1, · · · , d̂k, d̂k+1, · · · , d̂n} be the
resulting topic representation of D.

4. Compute the term by document matrix MD̂ from
D̂, and let DicT and gw be the resulting
dictionary and global weight (idf ), respectively.

5. Compute the term by document matrix MQ from
Q, using DicT and gw from the previous step.

Output: MD̂ and MQ

To summarize, after splitting our corpus (see section
4) into paragraphs and preprocessing it, we extract top-
ics from paragraphs containing idioms and from para-
graphs containing literals. We then compute a term by
document matrix, where terms are topic terms and doc-
uments are topics extracted from the paragraphs. Our
test data are represented as a term-by-document matrix
as well (See the details in section 5).
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Figure 1: 2D projection of text segments containing “blow whistle.” Left panel: Original text space. Middle panel:
Topic space with restricted vocabulary. Right panel: Topic space with enlarged vocabulary.

3.3 Fisher Linear Discriminant Analysis

Once MD̂ and MQ are obtained, a classification rule
can be applied to predict idioms vs. literals. The ap-
proach we are taking in this work for classifying id-
ioms vs. literals is based on Fisher’s discriminant anal-
ysis (FDA) (Fukunaga, 1990). FDA often significantly
simplifies tasks such as regression and classification by
computing low-dimensional subspaces having statisti-
cally uncorrelated or discriminant variables. In lan-
guage analysis, statistically uncorrelate or discriminant
variables are extracted and utilized for description, de-
tection, and classification. Woods et al. (1986), for ex-
ample, use statistically uncorrelated variables for lan-
guage test scores. A group of subjects is scored on a
battery of language tests, where the subtests measure
different abilities such as vocabulary, grammar or read-
ing comprehension. Horvath (1985) analyzes speech
samples of Sydney speakers to determine the relative
occurrence of five different variants of each of five
vowels sounds. Using this data, the speakers cluster
according to such factors as gender, age, ethnicity and
socio-economic class.

A similar approach has been discussed in Peng et al.
(2010). FDA is a class of methods used in machine
learning to find the linear combination of features that
best separate two classes of events. FDA is closely
related to principal component analysis (PCA), where
a linear combination of features that best explains the
data. Discriminant analysis explicitly exploits class in-
formation in the data, while PCA does not.

Idiom classification based on discriminant analysis
has several advantages. First, as has been mentioned,
it does not make any assumption regarding data distri-
butions. Many statistical detection methods assume a
Gaussian distribution of normal data, which is far from
reality. Second, by using a few discriminants to de-
scribe data, discriminant analysis provides a compact
representation of the data, resulting in increased com-
putational efficiency and real time performance.

In FDA, within-class, between-class, and mixture
scatter matrices are used to formulate the criteria of
class separability. Consider a J class problem, where

m0 is the mean vector of all data, and mj is the mean
vector of jth class data. A within-class scatter ma-
trix characterizes the scatter of samples around their
respective class mean vector, and it is expressed by

Sw =
J∑

j=1

pj

lj∑
i=1

(xj
i −mj)(xj

i −mj)t, (1)

where lj is the size of the data in the jth class, pj

(
∑

j pj = 1) represents the proportion of the jth class
contribution, and t denotes the transpose operator. A
between-class scatter matrix characterizes the scatter of
the class means around the mixture mean m0. It is ex-
pressed by

Sb =
J∑

j=1

pj(mj −m0)(mj −m0)t. (2)

The mixture scatter matrix is the covariance matrix of
all samples, regardless of their class assignment, and it
is given by

Sm =
l∑

i=1

(xi −m0)(xi −m0)t = Sw + Sb. (3)

The Fisher criterion is used to find a projection matrix
W ∈ <q×d that maximizes

J(W ) =
|W tSbW |
|W tSwW | . (4)

In order to determine the matrix W that maximizes
J(W ), one can solve the generalized eigenvalue prob-
lem: Sbwi = λiSwwi. The eigenvectors corresponding
to the largest eigenvalues form the columns ofW . For a
two class problem, it can be written in a simpler form:
Sww = m = m1 − m2, where m1 and m2 are the
means of the two classes.

4 Data preprocessing
4.1 Verb-noun constructions
For our experiments we use the British National Cor-
pus (BNC, Burnard (2000)) and a list of verb-noun con-
structions (VNCs) extracted from BNC by Fazly et al.
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(2009); Cook et al. (2008) and labeled as L (Literal),
I (Idioms), or Q (Unknown). The list contains only
those VNCs whose frequency was greater than 20 and
that occurred at least in one of two idiom dictionaries
(Cowie et al., 1983; Seaton and Macaulay, 2002). The
dataset consists of 2,984 VNC tokens. For our experi-
ments we only use VNCs that are annotated as I or L.

4.2 Lemmatization

Instead of dealing with various forms of the same root,
we use lemmas provided by the BNC XML annotation,
so our corpus is lemmatized. We also apply the (modi-
fied) Google stop list before extracting the topics. The
reason we modified the stop list is that some function
words can potentially be idiom components (e.g., cer-
tain prepositions).

4.3 Paragraphs

We use the original SGML annotation to extract para-
graghs from BNC. We only kept the paragraphs that
contained VNCs for our experiments. We experi-
mented with texts of one paragraph length (single para-
graph contexts) and of three-paragraph length (multi-
paragraph contexts). An example of multi-paragraph
contexts is shown below:

So, reluctantly, I joined Jack Hobbs in not rocking
the boat, reporting the play and the general uproar with
perhaps too much impartiality. My reports went to all
British newspapers, with special direct services by me
to India, South Africa and West Indies; even to King
George V in Buckingham Palace, who loved his cricket.
In other words, I was to some extent leading the British
public astray.

I regret I can shed little new light on the mystery of
who blew the whistle on the celebrated dressing-room
scene after Woodfull was hit. while he was lying on the
massage table after his innings waiting for a doctor,
Warner and Palairet called to express sympathy.

Most versions of Woodfull’s reply seem to agree that
he said. There are two teams out there on the oval.
One is playing cricket, the other is not. This game is
too good to be spoilt. It is time some people got out of
it. Warner and Palairet were too taken aback to reply.
They left the room in embarrassment.

Single paragraph contexts simply consist of the mid-
dle paragraph.

5 Experiments

5.1 Methods

We have carried out an empirical study evaluating the
performance of the proposed algorithm. For compar-
ison, the following methods are evaluated. (1) The
proposed algorithm TopSpace (1), where the data are
represented in topic space. (2) TexSpace algorithm,
where the data are represented in original text space.
For each representation, two classification schemes are

applied: a) FDA (Eq. 4), followed by the nearest neigh-
bor rule. b) SVMs with Gaussian kernels (Cristianini
and Shawe-Taylor (2000)). For the nearest neighbor
rule, the number of nearest neighbors is set to dn/5e,
where n denotes the number of training examples. For
SVMs, kernel width and soft margin parameters are set
to default values.

5.2 Data Sets

The following data sets are used to evaluate the perfor-
mance of the proposed technique. These data sets have
enough examples from both idioms and literals to make
our results meaningful. On average, the training data is
6K word tokens. Our test data is of a similar size.

BlowWhistle: This data set has 78 examples, 27 of
which are idioms and the remaining 51 are literals. The
training data for BlowWhistle consist of 40 randomly
chosen examples (20 paragraphs containing idioms and
20 paragraphs containing literals). The remaining 38
examples (7 idiomatic and 31 literals) are used as test
data.

MakeScene: This data set has 50 examples, 30 of
which are paragraphs containing idioms and the re-
maining 20 are paragraphs containing literals. The
training data for MakeScene consist of 30 randomly
chosen examples, 15 of which are paragraphs contain-
ing make scene as an idiom and the rest 15 are para-
graphs containing make scene as a literal. The remain-
ing 20 examples (15 idiomatic paragraphs and 5 liter-
als) are used as test data.

LoseHead: This data set has 40 examples, 21 of
which are idioms and the remaining 19 are literals.
The training data for LoseHead consist of 30 randomly
chosen examples (15 idiomatic and 15 literal). The
remaining 10 examples (6 idiomatic and 4 literal) are
used as test data.

TakeHeart: This data set has 81 examples, 61 of
which are idioms and the remaining 20 are literals. The
training data for TakeHeart consist of 30 randomly
chosen examples (15 idiomatic and 15 literals). The
remaining 51 examples (46 idiomatic and 5 literals) are
used as test data.

5.3 Adding affect

Nunberg et al. (1994) notice that “idioms are typically
used to imply a certain evaluation or affective stance
toward the things they denote”. Language users usu-
ally choose an idiom in non-neutral contexts. The situ-
ations that idioms describe can be positive or negative;
however, the polarity of the context is not as impor-
tant as the strength of the emotion expressed. So, we
decided to incorporate the knowledge about the emo-
tion strength into our algorithm. We use a database of
word norms collected by Warriner et al. (2013). This
database contains almost 14,000 English lemmas an-
notated with three components of emotions: valence
(the pleasantness of a stimulus), arousal (the intensity
of emotion provoked by a stimulus), and dominance
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Table 1: Average accuracy of competing methods on four datasets in single paragraph contexts: A = Arousal

Model BlowWhistle LoseHead MakeScene TakeHeart
Prec Recall Acc Prec Recall Acc Prec Recall Acc Prec Recall Acc

FDA-Topics 0.44 0.40 0.79 0.70 0.90 0.70 0.82 0.97 0.81 0.91 0.97 0.89
FDA-Topics+A 0.51 0.51 0.75 0.78 0.68 0.66 0.80 0.99 0.80 0.93 0.84 0.80
FDA-Text 0.37 0.81 0.63 0.60 0.88 0.58 0.82 0.89 0.77 0.36 0.38 0.41
FDA-Text+A 0.42 0.49 0.76 0.64 0.92 0.63 0.83 0.95 0.82 0.75 0.53 0.53
SVMs-Topics 0.08 0.39 0.59 0.28 0.25 0.45 0.59 0.74 0.61 0.91 1.00 0.91
SVMs-Topics+A 0.06 0.21 0.69 0.38 0.18 0.44 0.53 0.40 0.44 0.91 1.00 0.91
SVMs-Text 0.08 0.39 0.59 0.36 0.60 0.52 0.23 0.30 0.40 0.42 0.16 0.22
SVMs-Text+A 0.15 0.51 0.60 0.31 0.38 0.48 0.37 0.40 0.45 0.95 0.48 0.50

(the degree of control exerted by a stimulus). These
components were elicited from human subjects via an
Amazon Mechanical Turk crowdsourced experiment.
We only used the arousal feature in our experiments
because we were interested in the intensity of the emo-
tion rather than its valence.

For a document d = {w1, · · · , wN}t, we calculate
the corresponding arousal value ai for each wi, ob-
taining dA = {a1, · · · , aN}t. Let mA be the aver-
age arousal value calculated over the entire training
data. The centered arousal value for a training docu-
ment is obtained by subtractingmA from dA, i.e., d̄A =
dA−mA = {a1−mA, · · · , aN−mA}t. Similarly, the
centered arousal value for a query is computed accord-
ing to q̄A = qA −mA = {q1 −mA, · · · , qN −mA}t.
That is, the training arousal mean is used to center both
training and query arousal values. The corresponding
arousal matrices for D, D̂, and Q are AD, AD̂, AQ, re-
spectively. To incorporate the arousal feature, we sim-
ply compute

ΘD = MD +AD, (5)

and
ΘD̂ = MD̂ +AD̂. (6)

The arousal feature can be similarly incoporated into
query ΘQ = MQ +AQ.

6 Results
Table 1 shows the average precision, recall, and ac-
curacy of the competing methods on the four data
sets over 10 runs in simple paragraph contexts. Table
2 shows the results for the multi-paragraph contexts.
Note that for single paragraph contexts, we chose two
topics, each having 10 terms. For multi-paragrah con-
texts, we had four topics, with 10 terms per topic. No
optimization was made for selecting the number of top-
ics as well as the number of terms per topic. In the
tables, the best performance in terms of the sum of pre-
cision, recall and accuracy is given in boldface.

The results show that the topic representation
achieved the best performance in 6 out of 8 cases. Fig-
ure 2 plots the overall aggregated performance in terms
of topic vs text representations across the entire data
sets, regardless of the classifiers used. Everything else

being equal, this clearly shows the advantage of topics
over simple text representation.
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Figure 2: Aggregated performance: Topic vs text rep-
resentations.

The arousal feature (Eqs 5 and 6) also improved the
overall performance, particularly in text representation
(Eq. 5). This can be seen in the top panel in Figure 3.
In fact, in 2/8 cases, text representation coupled with
the arousal feature achieved the best performance. One
possible explanation is that the LDA model already per-
formed “feature” selection (choosing topic terms), to
the extent possible. Thus, any additional information
such as arousal only provides marginal improvement
at the best (bottom panel in Figure 3). On the other
hand, original text represents “raw” features, whereby
arousal information helps provide better contexts, thus
improving overall performance.

Figure 4 shows a case in point: the average (sorted)
arousal values of idioms and literals of the target phrase
“lose head.” The upper panel plots arousal values in
the text space, while lower panel plots arousal values
in the topic space. The plot supports the results shown
in Tables 1 and 2, where the arousal feature generally
improves text representation.

7 Comparisons with other approaches
Even though we used Fazly et al. (2009)’s dataset for
these experiments, the direct comparison with their
method is impossible here because our task is formu-
lated differently and we do not use the full dataset for
the experiments. Fazly et al. (2009)’s unsupervised
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Table 2: Average accuracy of competing methods on four datasets in multiple paragraph contexts: A = Arousal

Model BlowWhistle LoseHead MakeScene TakeHeart
Prec Recall Acc Prec Recall Acc Prec Recall Acc Prec Recall Acc

FDA-Topics 0.62 0.60 0.83 0.76 0.97 0.78 0.79 0.95 0.77 0.93 0.99 0.92
FDA-Topics+A 0.47 0.44 0.79 0.74 0.93 0.74 0.82 0.69 0.65 0.92 0.98 0.91
FDA-Text 0.65 0.43 0.84 0.72 0.73 0.65 0.79 0.95 0.77 0.46 0.40 0.42
FDA-Text+A 0.45 0.49 0.78 0.67 0.88 0.65 0.80 0.99 0.80 0.47 0.29 0.33
SVMs-Topics 0.07 0.40 0.56 0.60 0.83 0.61 0.46 0.57 0.55 0.90 1.00 0.90
SVMs-Topics+A 0.21 0.54 0.55 0.66 0.77 0.64 0.42 0.29 0.41 0.91 1.00 0.91
SVMs-Text 0.17 0.90 0.25 0.30 0.50 0.50 0.10 0.01 0.26 0.65 0.21 0.26
SVMs-Text+A 0.24 0.87 0.41 0.66 0.85 0.61 0.07 0.01 0.26 0.74 0.13 0.20
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Figure 3: Aggregated performance: Text
vs. text+Arousal representations (top) and Top-
ics vs. Topics+Arousal representations (bottom).

model that relies on the so-called canonical forms gives
72.4% (macro-)accuracy on the extraction of idiomatic
tokens when evaluated on their test data.

We cannot compare our method directly with the
other methods discussed in section 2 either because
each uses a different dataset or formulates the task
differently (detection vs. recognition vs. identifica-
tion). However, we can compare the method presented
here with Feldman and Peng (2013) who also experi-
ment with LDA, use similar data, and frame the prob-
lem as classification. Their goal, however, is to clas-
sify sentences as either idiomatic or literal. To obtain
a discriminant subspace, they train their model on a
small number of randomly selected idiomatic and non-
idiomatic sentences. They then project both the train-
ing and the test data on the chosen subspace and use
the three nearest neighbor (3NN) classifier to obtain
accuracy. The average accuracy they report is 80%.
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Figure 4: Average arousal values–Upper panel: Text
space. Lower panel: Topic space.

Our method clearly outperforms the Feldman and Peng
(2013) approach (at least on the dataset we use).

8 Discussion and Conclusion

We have described an algorithm for automatic classi-
fication of idiomatic and literal expressions. We have
investigated the bag of words topic representation for
target documents (segments of one or three paragraphs
that contains a target phrase). The approach definitely
outperforms the baseline model that is based on the
simple bag of words representation, but it also outper-
forms approaches previously discussed in the literature.
Our model captures the local semantics and thus is ca-
pable to identify semantic outliers (=idioms).

While we realize that the data set we use is small, the
results are encouraging. We notice that using 3 para-
graphs for local contexts improves the performance of
the classifiers. The reason is that some paragraphs are
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relatively short. A larger context provides more related
terms, which gives LDA more opportunities to sample
these terms.

Idioms are also relatively non-compositional. While
we do not measure their non-compositionality in this
approach, we indirectly touch upon this property by hy-
pothesizing that non-compositional idiomatic expres-
sions are likely to be far from the local topics.

We feel that incorporating the intensity of emotion
expressed by the context into our model improves per-
formance, in particular, in text representation. When
we performed a qualitative analysis of the results try-
ing to determine the causes of false positives and neg-
atives, we noticed that there were quite a number of
cases that improved after incorporating the arousal fea-
ture into the model. For example, the FDA:topic classi-
fier labels ”blow the whistle” as literal in the following
context, but FDA:topics+A marks this expression as id-
iomatic (italicized words indicate words with relatively
high arousal values):

Peter thought it all out very carefully. He decided the wis-
est course was to pool all he had made over the last two years,
enabling Julian to purchase the lease of a high street property.
This would enable them to set up a business on a more set-
tled and permanent trading basis. Before long they opened a
grocery-cum-delicatessen in a good position as far as passing
trade was concerned. Peter’s investment was not misplaced.
The business did very well with the two lads greatly appreci-
ated locally for their hard work and quality of service. The
range of goods they were able to carry was welcomed in the
area, as well as lunchtime sandwich facilities which had pre-
viously been missing in the neighbourhood.

Success was the fruit of some three years’ strenuous work.
But it was more than a shock when Julian admitted to Pe-
ter that he had been running up huge debts with their bank.
Peter knew that Julian gambled, but he hadn’t expected him
to gamble to that level, and certainly not to use the shop as
security. With continual borrowing over two years, the bank
had blown the whistle. Everything was gone. Julian was
bankrupt. Even if they’d had a formal partnership, which
they didn’t, it would have made no difference. Peter lost all
he’d made, and with it his chance to help his parents and his
younger brother and sister, Toby and Laura.

Peter was heartbroken. His father had said all along: nei-
ther a lender nor a borrower. Peter had found out the hard
way. But as his mother observed, he was the same Peter, he’d
pick himself up somehow. Once again, Peter was resolute. He
made up his mind he’d never make the same mistake twice. It
wasn’t just the money or the hard work, though the waste of
that was difficult enough to accept. Peter had been working
a debt of love. He’d done all this for his parents, particularly
for his father, whose dedication to his children had always
impressed Peter and moved him deeply. And now it had all
come to nothing.

Therefore, we think that idioms have the tendency to
appear in more affective contexts; and we think that in-
corporating more sophisticated sentiment analysis into
our model will improve the results.
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Abstract

We address the grounding of natural lan-
guage to concrete spatial constraints, and
inference of implicit pragmatics in 3D en-
vironments. We apply our approach to the
task of text-to-3D scene generation. We
present a representation for common sense
spatial knowledge and an approach to ex-
tract it from 3D scene data. In text-to-
3D scene generation, a user provides as in-
put natural language text from which we
extract explicit constraints on the objects
that should appear in the scene. The main
innovation of this work is to show how
to augment these explicit constraints with
learned spatial knowledge to infer missing
objects and likely layouts for the objects
in the scene. We demonstrate that spatial
knowledge is useful for interpreting natu-
ral language and show examples of learned
knowledge and generated 3D scenes.

1 Introduction

To understand language, we need an understanding
of the world around us. Language describes the
world and provides symbols with which we rep-
resent meaning. Still, much knowledge about the
world is so obvious that it is rarely explicitly stated.
It is uncommon for people to state that chairs are
usually on the floor and upright, and that you usu-
ally eat a cake from a plate on a table. Knowledge
of such common facts provides the context within
which people communicate with language. There-
fore, to create practical systems that can interact
with the world and communicate with people, we
need to leverage such knowledge to interpret lan-
guage in context.
Spatial knowledge is an important aspect of the

world and is often not expressed explicitly in nat-
ural language. This is one of the biggest chal-

Figure 1: Generated scene for “There is a room
with a chair and a computer.” Note that the system
infers the presence of a desk and that the computer
should be supported by the desk.

lenges in grounding language and enabling natu-
ral communication between people and intelligent
systems. For instance, if we want a robot that can
follow commands such as “bring me a piece of
cake”, it needs to be imparted with an understand-
ing of likely locations for the cake in the kitchen
and that the cake should be placed on a plate.
The pioneering WordsEye system (Coyne and

Sproat, 2001) addressed the text-to-3D task and is
an inspiration for our work. However, there are
many remaining gaps in this broad area. Among
them, there is a need for research into learning spa-
tial knowledge representations from data, and for
connecting them to language. Representing un-
stated facts is a challenging problem unaddressed
by prior work and the focus of our contribution.
This problem is a counterpart to the image descrip-
tion problem (Kulkarni et al., 2011; Mitchell et al.,
2012; Elliott and Keller, 2013), which has so far
remained largely unexplored by the community.
We present a representation for this form of spa-

tial knowledge that we learn from 3D scene data
and connect to natural language. We will show
how this representation is useful for grounding
language and for inferring unstated facts, i.e., the
pragmatics of language describing physical envi-
ronments. We demonstrate the use of this repre-
sentation in the task of text-to-3D scene genera-
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Figure 2: Overview of our spatial knowledge representation for text-to-3D scene generation. We parse
input text into a scene template and infer implicit spatial constraints from learned priors. We then ground
the template to a geometric scene, choose 3Dmodels to instantiate and arrange them into a final 3D scene.

tion, where the input is natural language and the
desired output is a 3D scene.
We focus on the text-to-3D task to demonstrate

that extracting spatial knowledge is possible and
beneficial in a challenging scenario: one requiring
the grounding of natural language and inference of
rarelymentioned implicit pragmatics based on spa-
tial facts. Figure 1 illustrates some of the inference
challenges in generating 3D scenes from natural
language: the desk was not explicitly mentioned
in the input, but we need to infer that the computer
is likely to be supported by a desk rather than di-
rectly placed on the floor. Without this inference,
the user would need to be much more verbose with
text such as “There is a room with a chair, a com-
puter, and a desk. The computer is on the desk, and
the desk is on the floor. The chair is on the floor.”

Contributions We present a spatial knowledge
representation that can be learned from 3D scenes
and captures the statistics of what objects occur
in different scene types, and their spatial posi-
tions relative to each other. In addition, we model
spatial relations (left, on top of, etc.) and learn a
mapping between language and the geometric con-
straints that spatial terms imply. We show that
using our learned spatial knowledge representa-
tion, we can infer implicit constraints, and generate
plausible scenes from concise natural text input.

2 Task Definition and Overview

We define text-to-scene generation as the task of
taking text that describes a scene as input, and gen-
erating a plausible 3D scene described by that text
as output. More concretely, based on the input
text, we select objects from a dataset of 3D models
and arrange them to generate output scenes.
The main challenge we address is in transform-

ing a scene template into a physically realizable 3D
scene. For this to be possible, the system must be

able to automatically specify the objects present
and their position and orientation with respect to
each other as constraints in 3D space. To do so, we
need to have a representation of scenes (§3). We
need good priors over the arrangements of objects
in scenes (§4) and we need to be able to ground
textual relations into spatial constraints (§5). We
break down our task as follows (see Figure 2):
Template Parsing (§6.1): Parse the textual de-
scription of a scene into a set of constraints on the
objects present and spatial relations between them.
Inference (§6.2): Expand this set of constraints by
accounting for implicit constraints not specified in
the text using learned spatial priors.
Grounding (§6.3): Given the constraints and pri-
ors on the spatial relations of objects, transform the
scene template into a geometric 3D scenewith a set
of objects to be instantiated.
Scene Layout (§6.4): Arrange the objects and op-
timize their placement based on priors on the rel-
ative positions of objects and explicitly provided
spatial constraints.

3 Scene Representation

To capture the objects present and their arrange-
ment, we represent scenes as graphs where nodes
are objects in the scene, and edges are semantic re-
lationships between the objects.
We represent the semantics of a scene using a

scene template and the geometric properties using
a geometric scene. One critical property which is
captured by our scene graph representation is that
of a static support hierarchy, i.e., the order in which
bigger objects physically support smaller ones: the
floor supports tables, which support plates, which
can support cakes. Static support and other con-
straints on relationships between objects are rep-
resented as edges in the scene graph.
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Figure 3: Probabilities of different scene types
given the presence of “knife” and “table”.

Figure 4: Probabilities of support for some most
likely child object categories given four different
parent object categories, from top left clockwise:
dining table, bookcase, room, desk.

3.1 Scene Template
A scene template T = (O, C, Cs) consists of a
set of object descriptions O = {o1, . . . , on} and
constraints C = {c1, . . . , ck} on the relationships
between the objects. A scene template also has a
scene type Cs.
Each object oi, has properties associated with

it such as category label, basic attributes such as
color and material, and number of occurrences in
the scene. For constraints, we focus on spatial re-
lations between objects, expressed as predicates of
the form supported_by(oi, oj) or left(oi, oj)where
oi and oj are recognized objects.1 Figure 2a shows
an example scene template. From the scene tem-
plate we instantiate concrete geometric 3D scenes.
To infer implicit constraints on objects and spa-
tial support we learn priors on object occurrences
in 3D scenes (§4.1) and their support hierarchies
(§4.2).

3.2 Geometric Scene
We refer to the concrete geometric representation
of a scene as a “geometric scene”. It consists of
a set of 3D model instances – one for each ob-
ject – that capture the appearance of the object. A
transformation matrix that represents the position,
orientation, and scaling of the object in a scene is
also necessary to exactly position the object. We
generate a geometric scene from a scene template
by selecting appropriate models from a 3D model
database and determining transformations that op-

1Our representation can also support other relationships
such as larger(oi, oj).

timize their layout to satisfy spatial constraints. To
inform geometric arrangement we learn priors on
the types of support surfaces (§4.2) and the relative
positions of objects (§4.4).

4 Spatial Knowledge

Our model of spatial knowledge relies on the idea
of abstract scene types describing the occurrence
and arrangement of different categories of objects
within scenes of that type. For example, kitchens
typically contain kitchen counters on which plates
and cups are likely to be found. The type of scene
and category of objects condition the spatial rela-
tionships that can exist in a scene.
We learn spatial knowledge from 3D scene data,

basing our approach on that of Fisher et al. (2012)
and using their dataset of 133 small indoor scenes
created with 1723 Trimble 3D Warehouse mod-
els (Fisher et al., 2012).

4.1 Object Occurrence Priors
We learn priors for object occurrence in different
scene types (such as kitchens, offices, bedrooms).

Pocc(Co|Cs) =
count(Co in Cs)

count(Cs)
This allows us to evaluate the probability of dif-

ferent scene types given lists of object occurring
in them (see Figure 3). For example given input of
the form “there is a knife on the table” then we are
likely to generate a scene with a dining table and
other related objects.

4.2 Support Hierarchy Priors
We observe the static support relations of objects
in existing scenes to establish a prior over what ob-
jects go on top of what other objects. As an exam-
ple, by observing plates and forks on tables most
of the time, we establish that tables are more likely
to support plates and forks than chairs. We esti-
mate the probability of a parent category Cp sup-
porting a given child category Cc as a simple con-
ditional probability based on normalized observa-
tion counts.2

Psupport(Cp|Cc) =
count(Cc on Cp)

count(Cc)

We show a few of the priors we learn in Figure 4
as likelihoods of categories of child objects being
statically supported by a parent category object.

2The support hierarchy is explicitly modeled in the scene
dataset we use.

2030



Figure 5: Predicted positions using learned rela-
tive position priors for chair given desk (top left),
poster-room (top right), mouse-desk (bottom left),
keyboard-desk (bottom right).

4.3 Support Surface Priors
To identify which surfaces on parent objects sup-
port child objects, we first segment parent models
into planar surfaces using a simple region-growing
algorithm based on (Kalvin and Taylor, 1996). We
characterize support surfaces by the direction of
their normal vector, limited to the six canonical
directions: up, down, left, right, front, back. We
learn a probability of supporting surface normal di-
rection Sn given child object category Cc. For ex-
ample, posters are typically found on walls so their
support normal vectors are in the horizontal di-
rections. Any unobserved child categories are as-
sumed to havePsurf (Sn = up|Cc) = 1 sincemost
things rest on a horizontal surface (e.g., floor).

Psurf (Sn|Cc) =
count(Cc on surface with Sn)

count(Cc)

4.4 Relative Position Priors
We model the relative positions of objects based
on their object categories and current scene type:
i.e., the relative position of an object of category
Cobj is with respect to another object of category
Cref and for a scene type Cs. We condition on the
relationship R between the two objects, whether
they are siblings (R = Sibling) or child-parent
(R = ChildParent).

Prelpos(x, y, θ|Cobj , Cref , Cs, R)

When positioning objects, we restrict the search
space to points on the selected support surface.
The position x, y is the centroid of the target ob-
ject projected onto the support surface in the se-
mantic frame of the reference object. The θ is the
angle between the front of the two objects. We rep-
resent these relative position and orientation pri-
ors by performing kernel density estimation on the

Relation P (relation)

inside(A,B) V ol(A∩B)
V ol(A)

outside(A,B) 1 - V ol(A∩B)
V ol(A)

left_of(A,B) V ol(A∩ left_of (B))
V ol(A)

right_of(A,B) V ol(A∩ right_of (B))
V ol(A)

near(A,B) 1(dist(A, B) < tnear)
faces(A,B) cos(front(A), c(B)− c(A))

Table 1: Definitions of spatial relation using
bounding boxes. Note: dist(A, B) is normalized
against the maximum extent of the bounding box
of B. front(A) is the direction of the front vector
of A and c(A) is the centroid of A.

Keyword Top Relations and Scores
behind (back_of, 0.46), (back_side, 0.33)
adjacent (front_side, 0.27), (outside, 0.26)
below (below, 0.59), (lower_side, 0.38)
front (front_of, 0.41), (front_side, 0.40)
left (left_side, 0.44), (left_of, 0.43)
above (above, 0.37), (near, 0.30)
opposite (outside, 0.31), (next_to, 0.30)
on (supported_by, 0.86), (on_top_of, 0.76)
near (outside, 0.66), (near, 0.66)
next (outside, 0.49), (near, 0.48)
under (supports, 0.62), (below, 0.53)
top (supported_by, 0.65), (above, 0.61)
inside (inside, 0.48), (supported_by, 0.35)
right (right_of, 0.50), (lower_side, 0.38)
beside (outside, 0.45), (right_of, 0.45)

Table 2: Map of top keywords to spatial relations
(appropriate mappings in bold).

observed samples. Figure 5 shows predicted posi-
tions of objects using the learned priors.

5 Spatial Relations

We define a set of formal spatial relations that we
map to natural language terms (§5.1). In addi-
tion, we collect annotations of spatial relation de-
scriptions from people, learn a mapping of spatial
keywords to our formal spatial relations, and train
a classifier that given two objects can predict the
likelihood of a spatial relation holding (§5.2).

5.1 Predefined spatial relations
For spatial relations we use a set of predefined rela-
tions: left_of, right_of, above, below, front, back,
supported_by, supports, next_to, near, inside, out-
side, faces, left_side, right_side.3 These are mea-
sured using axis-aligned bounding boxes from the
viewer’s perspective; the involved bounding boxes
are compared to determine volume overlap or clos-
est distance (for proximity relations; see Table 1).

3Wedistinguish left_of(A,B) asA being left of the left edge
of the bounding box of B vs left_side(A,B) as A being left of
the centroid of B.
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Feature # Description
delta(A, B) 3 Delta position (x, y, z) between the centroids of A and B
dist(A, B) 1 Normalized distance (wrt B) between the centroids of A and B

overlap(A, f(B)) 6 Fraction of A inside left/right/front/back/top/bottom regions wrt B: V ol(A∩f(B))
V ol(A)

overlap(A, B) 2 V ol(A∩B)
V ol(A)

and V ol(A∩B)
V ol(B)

support(A, B) 2 supported_by(A, B) and supports(A, B)

Table 3: Features for trained spatial relations predictor.

Figure 6: Our data collection task.

Since these spatial relations are resolvedwith re-
spect to the view of the scene, they correspond to
view-centric definitions of spatial concepts.

5.2 Learning Spatial Relations

We collect a set of text descriptions of spatial rela-
tionships between two objects in 3D scenes by run-
ning an experiment on Amazon Mechanical Turk.
We present a set of screenshots of scenes in our
dataset that highlight particular pairs of objects and
we ask people to fill in a spatial relationship of the
form “The __ is __ the __” (see Fig 6). We col-
lected a total of 609 annotations over 131 object
pairs in 17 scenes. We use this data to learn pri-
ors on view-centric spatial relation terms and their
concrete geometric interpretation.
For each response, we select one keyword from

the text based on length. We learn a mapping of
the top 15 keywords to our predefined set of spa-
tial relations. We use our predefined relations on
annotated spatial pairs of objects to create a binary
indicator vector that is set to 1 if the spatial relation
holds, or zero otherwise. We then create a simi-
lar vector for whether the keyword appeared in the
annotation for that spatial pair, and then compute
the cosine similarity of the two vectors to obtain
a score for mapping keywords to spatial relations.
Table 2 shows the obtained mapping. Using just
the top mapping, we are able to map 10 of the 15

Above

Above On

Left Right

Front Behind

Figure 7: High probability regions where the cen-
ter of another object would occur for some spatial
relations with respect to a table: above (top left),
on (top right), left (mid left), right (mid right), in
front (bottom left), behind (bottom right).

keywords to an appropriate spatial relation. The 5
keywords that are not well mapped are proximity
relations that are not well captured by our prede-
fined spatial relations.
Using the 15 keywords as our spatial relations,

we train a log linear binary classifier for each key-
word over features of the objects involved in that
spatial relation (see Table 3). We then use this
model to predict the likelihood of that spatial re-
lation in new scenes.
Figure 7 shows examples of predicted likeli-

hoods for different spatial relations with respect to
an anchor object in a scene. Note that the learned
spatial relations are much stricter than our prede-
fined relations. For instance, “above” is only used
to referred to the area directly above the table, not
to the region above and to the left or above and in
front (which our predefined classifier will all con-
sider to be above). In our results, we showwe have
more accurate scenes using the trained spatial re-
lations than the predefined ones.
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Dependency Pattern Example Text

{tag:VBN}=verb >nsubjpass {}=nsubj >prep ({}=prep >pobj {}=pobj) The chair[nsubj] is made[verb] of[prep] wood[pobj].
attribute(verb,pobj)(nsubj,pobj) material(chair,wood)

{}=dobj >cop {} >nsubj {}=nsubj The chair[nsubj] is red[dobj].
attribute(dobj)(nsubj,dobj) color(chair,red)

{}=dobj >cop {} >nsubj {}=nsubj >prep ({}=prep >pobj {}=pobj) The table[nsubj] is next[dobj] to[prep] the chair[pobj].
spatial(dobj)(nsubj, pobj) next_to(table,chair)

{}=nsubj >advmod ({}=advmod >prep ({}=prep >pobj {}=pobj)) There is a table[nsubj] next[advmod] to[prep] a chair[pobj].
spatial(advmod)(nsubj, pobj) next_to(table,chair)

Table 4: Example dependency patterns for extracting attributes and spatial relations.

6 Text to Scene generation

We generate 3D scenes from brief scene descrip-
tions using our learned priors.

6.1 Scene Template Parsing
During scene template parsing we identify the
scene type, the objects present in the scene, their
attributes, and the relations between them. The
input text is first processed using the Stanford
CoreNLP pipeline (Manning et al., 2014). The
scene type is determined by matching the words
in the utterance against a list of known scene types
from the scene dataset.
To identify objects, we look for noun phrases

and use the head word as the category, filtering
with WordNet (Miller, 1995) to determine which
objects are visualizable (under the physical object
synset, excluding locations). We use the Stanford
coreference system to determine when the same
object is being referred to.
To identify properties of the objects, we extract

other adjectives and nouns in the noun phrase. We
alsomatch dependency patterns such as “X ismade
of Y” to extract additional attributes. Based on the
object category and attributes, and other words in
the noun phrase mentioning the object, we identify
a set of associated keywords to be used later for
querying the 3D model database.
Dependency patterns are also used to extract

spatial relations between objects (see Table 4 for
some example patterns). We use Semgrex patterns
to match the input text to dependencies (Cham-
bers et al., 2007). The attribute types are deter-
mined from a dictionary using the text express-
ing the attribute (e.g., attribute(red)=color, at-
tribute(round)=shape). Likewise, spatial relations
are looked up using the learned map of keywords
to spatial relations.
As an example, given the input “There is a room

with a desk and a red chair. The chair is to the left

of the desk.” we extract the following objects and
spatial relations:
Objects category attributes keywords

o0 room room
o1 desk desk
o2 chair color:red chair, red

Relations: left(o2, o1)

6.2 Inferring Implicits
From the parsed scene template, we infer the pres-
ence of additional objects and support constraints.
We can optionally infer the presence of addi-

tional objects from object occurrences based on the
scene type. If the scene type is unknown, we use
the presence of known object categories to pre-
dict the most likely scene type by using Bayes’
rule on our object occurrence priors Pocc to get
P (Cs|{Co}) ∝ Pocc({Co}|Cs)P (Cs). Once we
have a scene type Cs, we sample Pocc to find ob-
jects that are likely to occur in the scene. We re-
strict sampling to the top n = 4 object categories.
We can also use the support hierarchy priors

Psupport to infer implicit objects. For instance, for
each object oi we find the most likely supporting
object category and add it to our scene if not al-
ready present.
After inferring implicit objects, we infer the sup-

port constraints. Using the learned text to prede-
fined relation mapping from §5.2, we can map the
keywords “on” and “top” to the supported_by re-
lation. We infer the rest of the support hierarchy
by selecting for each object oi the parent object oj

that maximizes Psupport(Coj |Coi).

6.3 Grounding Objects
Once we determine from the input text what ob-
jects exist and their spatial relations, we select 3D
models matching the objects and their associated
properties. Each object in the scene template is
grounded by querying a 3D models database with
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 There is a desk and 
a keyboard and a 

monitor. 

Input Text Basic +Support Hierarchy +Relative Positions

 There is a coffee table 
and there is a lamp 

behind the coffee table. 
There is a chair in front of 

the coffee table. 

UPDATE UPDATE

No Relations Predefined Relations Learned Relations

Figure 8: Top Generated scenes for randomly placing objects on the floor (Basic), with inferred Support
Hierarchy, and with priors on Relative Positions. Bottom Generated scenes with no understanding of
spatial relations (No Relations), scoring using Predefined Relations and Learned Relations.

the appropriate category and keywords.
We use a 3D model dataset collected from

Google 3DWarehouse by prior work in scene syn-
thesis and containing about 12490 mostly indoor
objects (Fisher et al., 2012). These models have
text associated with them in the form of names and
tags. In addition, we semi-automatically annotated
models with object category labels (roughly 270
classes). We used model tags to set these labels,
and verified and augmented them manually.
In addition, we automatically rescale models so

that they have physically plausible sizes and orient
them so that they have a consistent up and front
direction (Savva et al., 2014). We then indexed all
models in a database that we query at run-time for
retrieval based on category and tag labels.

6.4 Scene Layout
Once we have instantiated the objects in the scene
by selecting models, we aim to optimize an over-
all layout score L = λobjLobj + λrelLrel that is
a weighted sum of object arrangement Lobj score
and constraint satisfaction Lrel score:

Lobj =
∑
oi

Psurf (Sn|Coi)
∑

oj∈F (oi)

Prelpos(·)

Lrel =
∑
ci

Prel(ci)

where F (oi) are the sibling objects and parent ob-
ject of oi. We use λobj = 0.25 and λrel = 0.75 for
the results we present.
We use a simple hill climbing strategy to find a

reasonable layout. We first initialize the positions

Figure 9: Generated scene for “There is a room
with a desk and a lamp. There is a chair to the
right of the desk.” The inferred scene hierarchy is
overlayed in the center.

of objects within the scene by traversing the sup-
port hierarchy in depth-first order, positioning the
children from largest to first and recursing. Child
nodes are positioned by first selecting a supporting
surface on a candidate parent object through sam-
pling of Psurf . After selecting a surface, we sam-
ple a position on the surface based on Prelpos. Fi-
nally, we check whether collisions exist with other
objects, rejecting layouts where collisions occur.
We iterate by randomly jittering and repositioning
objects. If there are any spatial constraints that are
not satisfied, we also remove and randomly repo-
sition the objects violating the constraints, and it-
erate to improve the layout. The resulting scene is
rendered and presented to the user.

7 Results and Discussion

We show examples of generated scenes, and com-
pare against naive baselines to demonstrate learned
priors are essential for scene generation. We
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Figure 10: Generated scene for “There is a room
with a poster bed and a poster.”

Figure 11: Generated scene for “living room”.

also discuss interesting aspects of using spatial
knowledge in view-based object referent resolu-
tion (§7.2) and in disambiguating geometric inter-
pretations of “on” (§7.3).

Model Comparison Figure 8 shows a compari-
son of scenes generated by our model versus sev-
eral simpler baselines. The top row shows the im-
pact of modeling the support hierarchy and the rel-
ative positions in the layout of the scene. The bot-
tom row shows that the learned spatial relations
can give a more accurate layout than the naive
predefined spatial relations, since it captures prag-
matic implicatures of language, e.g., left is only
used for directly left and not top left or bottom
left (Vogel et al., 2013).

Figure 12: Left: chair is selected using “the chair
to the right of the table” or “the object to the right of
the table”. Chair is not selected for “the cup to the
right of the table”. Right: Different view results
in different chair being selected for the input “the
chair to the right of the table”.

7.1 Generated Scenes
Support Hierarchy Figure 9 shows a generated
scene along with the input text and support hier-
archy. Even though the spatial relation between
lamp and desk was not mentioned, we infer that the
lamp is supported by the top surface of the desk.

Disambiguation Figure 10 shows a generated
scene for the input “There is a room with a poster
bed and a poster”. Note that the system differen-
tiates between a “poster” and a “poster bed” – it
correctly selects and places the bed on the floor,
while the poster is placed on the wall.

Inferring objects for a scene type Figure 11
shows an example of inferring all the objects
present in a scene from the input “living room”.
Some of the placements are good, while others can
clearly be improved.

7.2 View-centric object referent resolution
After a scene is generated, the user can refer to ob-
jects with their categories andwith spatial relations
between them. Objects are disambiguated by both
category and view-centric spatial relations. We use
the WordNet hierarchy to resolve hyponym or hy-
pernym referents to objects in the scene. In Fig-
ure 12 (left), the user can select a chair to the right
of the table using the phrase “chair to the right of
the table” or “object to the right of the table”. The
user can then change their viewpoint by rotating
and moving around. Since spatial relations are re-
solved with respect to the current viewpoint, a dif-
ferent chair is selected for the same phrase from a
different viewpoint in the right screenshot.

7.3 Disambiguating “on”
As shown in §5.2, the English preposition “on”,
when used as a spatial relation, corresponds
strongly to the supported_by relation. In our
trained model, the supported_by feature also has
a high positive weight for “on”.
Our model for supporting surfaces and hierar-

chy allows interpreting the placement of “A on
B” based on the categories of A and B. Fig-
ure 13 demonstrates four different interpretations
for “on”. Given the input “There is a cup on the
table” the system correctly places the cup on the
top surface of the table. In contrast, given “There
is a cup on the bookshelf”, the cup is placed on a
supporting surface of the bookshelf, but not nec-
essarily the top one which would be fairly high.
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Figure 13: From top left clockwise: “There is a
cup on the table”, “There is a cup on the book-
shelf”, “There is a poster on the wall”, “There is
a hat on the chair”. Note the different geometric
interpretations of “on”.

Given the input “There is a poster on the wall”, a
poster is pasted on the wall, while with the input
“There is a hat on the chair” the hat is placed on
the seat of the chair.

7.4 Limitations

While the system shows promise, there are still
many challenges in text-to-scene generation. For
one, we did not address the difficulties of resolving
objects. A failure case of our system stems from
using a fixed set of categories to identify visualiz-
able objects. For example, the sense of “top” refer-
ring to a spinning top, and other uncommon object
types, are not handled by our system as concrete
objects. Furthermore, complex phrases including
object parts such as “there’s a coat on the seat of
the chair” are not handled. Figure 14 shows some

Figure 14: Left: A water bottle instead of wine
bottle is selected for “There is a bottle of wine on
the table in the kitchen”. In addition, the selected
table is inappropriate for a kitchen. Right: A floor
lamp is incorrectly selected for the input “There is
a lamp on the table”.

example cases where the context is important in
selecting an appropriate object and the difficulties
of interpreting noun phrases.
In addition, we rely on a few dependency pat-

terns for extracting spatial relations so robustness
to variations in spatial language is lacking. We
only handle binary spatial relations (e.g., “left”,
“behind”) ignoringmore complex relations such as
“around the table” or “in the middle of the room”.
Though simple binary relations are some of the
most fundamental spatial expressions and a good
first step, handling more complex expressions will
do much to improve the system.
Another issue is that the interpretation of sen-

tences such as “the desk is covered with paper”,
which entails many pieces of paper placed on the
desk, is hard to resolve. With a more data-driven
approach we can hope to link such expressions to
concrete facts.
Finally, we use a traditional pipeline approach

for text processing, so errors in initial stages
can propagate downstream. Failures in depen-
dency parsing, part of speech tagging, or coref-
erence resolution can result in incorrect interpre-
tations of the input language. For example, in
the sentence “there is a desk with a chair in front
of it”, “it” is not identified as coreferent with
“desk” so we fail to extract the spatial relation
front_of(chair, desk).

8 Related Work

There is related prior work in the topics of mod-
eling spatial relations, generating 3D scenes from
text, and automatically laying out 3D scenes.

8.1 Spatial knowledge and relations

Prior work that required modeling spatial knowl-
edge has defined representations specific to the
task addressed. Typically, such knowledge is man-
ually provided or crowdsourced – not learned from
data. For instance, WordsEye (Coyne et al., 2010)
uses a set of manually specified relations. The
NLP community has explored grounding text to
physical attributes and relations (Matuszek et al.,
2012; Krishnamurthy and Kollar, 2013), gener-
ating text for referring to objects (FitzGerald et
al., 2013) and connecting language to spatial re-
lationships (Vogel and Jurafsky, 2010; Golland et
al., 2010; Artzi and Zettlemoyer, 2013). Most
of this work focuses on learning a mapping from
text to formal representations, and does not model
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implicit spatial knowledge. Many priors on real
world spatial facts are typically unstated in text and
remain largely unaddressed.

8.2 Text to Scene Systems
Early work on the SHRDLU system (Winograd,
1972) gives a good formalization of the linguis-
tic manipulation of objects in 3D scenes. By re-
stricting the discourse domain to a micro-world
with simple geometric shapes, the SHRDLU sys-
tem demonstrated parsing of natural language in-
put for manipulating scenes. However, generaliza-
tion to more complex objects and spatial relations
is still very hard to attain.
More recently, a pioneering text-to-3D scene

generation prototype system has been presented by
WordsEye (Coyne and Sproat, 2001). The authors
demonstrated the promise of text to scene genera-
tion systems but also pointed out some fundamen-
tal issues which restrict the success of their system:
much spatial knowledge is required which is hard
to obtain. As a result, users have to use unnatural
language (e.g., “the stool is 1 feet to the south of
the table”) to express their intent. Follow up work
has attempted to collect spatial knowledge through
crowd-sourcing (Coyne et al., 2012), but does not
address the learning of spatial priors.
We address the challenge of handling natural

language for scene generation, by learning spatial
knowledge from 3D scene data, and using it to in-
fer unstated implicit constraints. Our work is simi-
lar in spirit to recent work on generating 2D clipart
for sentences using probabilistic models learned
from data (Zitnick et al., 2013).

8.3 Automatic Scene Layout
Work on scene layout has focused on determining
good furniture layouts by optimizing energy func-
tions that capture the quality of a proposed layout.
These energy functions are encoded from design
guidelines (Merrell et al., 2011) or learned from
scene data (Fisher et al., 2012). Knowledge of ob-
ject co-occurrences and spatial relations is repre-
sented by simple models such as mixtures of Gaus-
sians on pairwise object positions and orientations.
We leverage ideas from this work, but they do not
focus on linking spatial knowledge to language.

9 Conclusion and Future Work

We have demonstrated a representation of spatial
knowledge that can be learned from 3D scene data

and how it corresponds to natural language. We
also showed that spatial inference and grounding is
critical for achieving plausible results in the text-
to-3D scene generation task. Spatial knowledge is
critically useful not only in this task, but also in
other domains which require an understanding of
the pragmatics of physical environments.
We only presented a deterministic approach for

mapping input text to the parsed scene template.
An interesting avenue for future research is to
automatically learn how to parse text describing
scenes into formal representations by using more
advanced semantic parsing methods.
We can also improve the representation used for

spatial priors of objects in scenes. For instance, in
this paper we represented support surfaces by their
orientation. We can improve the representation by
modeling whether a surface is an interior or exte-
rior surface.
Another interesting line of future work would

be to explore the influence of object identity in de-
termining when people use ego-centric or object-
centric spatial reference models, and to improve
resolution of spatial terms that have different in-
terpretations (e.g., “the chair to the left of John” vs
“the chair to the left of the table”).
Finally, a promising line of research is to explore

using spatial priors for resolving ambiguities dur-
ing parsing. For example, the attachment of “next
to” in “Put a lamp on the table next to the book” can
be readily disambiguated with spatial priors such
as the ones we presented.
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Abstract

Coherence is what makes a multi-sentence
text meaningful, both logically and syn-
tactically. To solve the challenge of or-
dering a set of sentences into coherent or-
der, existing approaches focus mostly on
defining and using sophisticated features
to capture the cross-sentence argumenta-
tion logic and syntactic relationships. But
both argumentation semantics and cross-
sentence syntax (such as coreference and
tense rules) are very hard to formalize. In
this paper, we introduce a neural network
model for the coherence task based on
distributed sentence representation. The
proposed approach learns a syntactico-
semantic representation for sentences au-
tomatically, using either recurrent or re-
cursive neural networks. The architecture
obviated the need for feature engineering,
and learns sentence representations, which
are to some extent able to capture the
‘rules’ governing coherent sentence struc-
ture. The proposed approach outperforms
existing baselines and generates the state-
of-art performance in standard coherence
evaluation tasks1.

1 Introduction

Coherence is a central aspect in natural language
processing of multi-sentence texts. It is essen-
tial in generating readable text that the text plan-
ner compute which ordering of clauses (or sen-
tences; we use them interchangeably in this paper)
is likely to support understanding and avoid con-
fusion. As Mann and Thompson (1988) define it,

A text is coherent when it can be ex-
plained what role each clause plays with
regard to the whole.

1Code available at stanford.edu/˜jiweil/ or by
request from the first author.

Several researchers in the 1980s and 1990s ad-
dressed the problem, the most influential of
which include: Rhetorical Structure Theory (RST;
(Mann and Thompson, 1988)), which defined
about 25 relations that govern clause interde-
pendencies and ordering and give rise to text
tree structures; the stepwise assembly of seman-
tic graphs to support adductive inference toward
the best explanation (Hobbs et al., 1988); Dis-
course Representation Theory (DRT; (Lascarides
and Asher, 1991)), a formal semantic model of
discourse contexts that constrain coreference and
quantification scoping; the model of intention-
oriented conversation blocks and their stack-based
queueing to model attention flow (Grosz and Sid-
ner, 1986), and more recently an inventory of a
hundred or so binary inter-clause relations and as-
sociated annotated corpus (Penn Discourse Tree-
bank. Work in text planning implemented some
of these models, especially operationalized RST
(Hovy, 1988) and explanation relations (Moore
and Paris, 1989) to govern the planning of coher-
ent paragraphs. Other computational work defined
so called schemas (McKeown, 1985), frames with
fixed sequences of clause types to achieve stereo-
typical communicative intentions.

Little of this work survives. Modern research
tries simply to order a collection of clauses or sen-
tences without giving an account of which order(s)
is/are coherent or what the overall text structure
is. The research focuses on identifying and defin-
ing a set of increasingly sophisticated features by
which algorithms can be trained to propose order-
ings. Features being explored include the clause
entities, organized into a grid (Lapata and Barzi-
lay, 2005; Barzilay and Lapata, 2008), coreference
clues to ordering (Elsner and Charniak, 2008),
named-entity categories (Eisner and Charniak,
2011), syntactic features (Louis and Nenkova,
2012), and others. Besides being time-intensive
(feature engineering usually requites considerable
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Figure 1: Illustrations of coherent (positive) vs not-coherent (negative) training examples.

effort and can depend greatly on upstream feature
extraction algorithms), it is not immediately ap-
parent which aspects of a clause or a coherent text
to consider when deciding on ordering. More im-
portantly, the features developed to date are still
incapable of fully specifying the acceptable order-
ing(s) within a context, let alone describe why they
are coherent.

Recently, deep architectures, have been applied
to various natural language processing tasks (see
Section 2). Such deep connectionist architectures
learn a dense, low-dimensional representation of
their problem in a hierarchical way that is capa-
ble of capturing both semantic and syntactic as-
pects of tokens (e.g., (Bengio et al., 2006)), en-
tities, N-grams (Wang and Manning, 2012), or
phrases (Socher et al., 2013). More recent re-
searches have begun looking at higher level dis-
tributed representations that transcend the token
level, such as sentence-level (Le and Mikolov,
2014) or even discourse-level (Kalchbrenner and
Blunsom, 2013) aspects. Just as words combine
to form meaningful sentences, can we take advan-
tage of distributional semantic representations to
explore the composition of sentences to form co-
herent meanings in paragraphs?

In this paper, we demonstrate that it is feasi-
ble to discover the coherent structure of a text
using distributed sentence representations learned
in a deep learning framework. Specifically, we
consider a WINDOW approach for sentences, as
shown in Figure 1, where positive examples are
windows of sentences selected from original arti-
cles generated by humans, and negatives examples
are generated by random replacements2. The se-
mantic representations for terms and sentences are
obtained through optimizing the neural network
framework based on these positive vs negative ex-

2Our approach is inspired by Collobert et al.’s idea (2011)
that a word and its context form a positive training sample
while a random word in that same context gives a negative
training sample, when training word embeddings in the deep
learning framework.

amples and the proposed model produces state-of-
art performance in multiple standard evaluations
for coherence models (Barzilay and Lee, 2004).

The rest of this paper is organized as follows:
We describe related work in Section 2, then de-
scribe how to obtain a distributed representation
for sentences in Section 3, and the window compo-
sition in Section 4. Experimental results are shown
in Section 5, followed by a conclusion.

2 Related Work

Coherence In addition to the early computa-
tional work discussed above, local coherence was
extensively studied within the modeling frame-
work of Centering Theory (Grosz et al., 1995;
Walker et al., 1998; Strube and Hahn, 1999; Poe-
sio et al., 2004), which provides principles to form
a coherence metric (Miltsakaki and Kukich, 2000;
Hasler, 2004). Centering approaches suffer from a
severe dependence on manually annotated input.

A recent popular approach is the entity grid
model introduced by Barzilay and Lapata (2008)
, in which sentences are represented by a vec-
tor of discourse entities along with their gram-
matical roles (e.g., subject or object). Proba-
bilities of transitions between adjacent sentences
are derived from entity features and then concate-
nated to a document vector representation, which
is used as input to machine learning classifiers
such as SVM. Many frameworks have extended
the entity approach, for example, by pre-grouping
entities based on semantic relatedness (Filippova
and Strube, 2007) or adding more useful types
of features such as coreference (Elsner and Char-
niak, 2008), named entities (Eisner and Charniak,
2011), and discourse relations (Lin et al., 2011).

Other systems include the global graph model
(Guinaudeau and Strube, 2013) which projects en-
tities into a global graph. Louis and Nenkova
(2012) introduced an HMM system in which the
coherence between adjacent sentences is modeled
by a hidden Markov framework captured by the
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Figure 2: Sentential compositionality obtained from (a) recurrent / (b) recursive neural network. The
bottom layer represents word vectors in the sentence. The top layer hs denotes the resulting sentence
vector.

transition rules of different topics.

Recurrent and Recursive Neural Networks In
the context of NLP, recurrent neural networks
view a sentence as a sequence of tokens and in-
corporate information from the past (i.e., preced-
ing tokens) (Schuster and Paliwal, 1997; Sutskever
et al., 2011) for acquisition of the current output.
At each step, the recurrent network takes as input
both the output of previous steps and the current
token, convolutes the inputs, and forwards the re-
sult to the next step. It has been successfully ap-
plied to tasks such as language modeling (Mikolov
et al., 2010) and spoken language understanding
(Mesnil et al., 2013). The advantage of recur-
rent network is that it does not depend on exter-
nal deeper structure (e.g., parse tree) and is easy to
implement. However, in the recurrent framework,
long-distance dependencies are difficult to capture
due to the vanishing gradient problem (Bengio et
al., 1994); two tokens may be structurally close to
each other, even though they are far away in word
sequence3.

Recursive neural networks comprise another
class of architecture, one that relies and operates
on structured inputs (e.g., parse trees). It com-
putes the representation for each parent based on
its children iteratively in a bottom-up fashion. A
series of variations have been proposed, each tai-
lored to different task-specific requirements, such
as Matrix-Vector RNN (Socher et al., 2012) that
represents every word as both a vector and a ma-
trix, or Recursive Neural Tensor Networks (Socher
et al., 2013) that allow the model to have greater

3For example, a verb and its corresponding direct object
can be far away in terms of tokens if many adjectives lies in
between, but they are adjacent in the parse tree (Irsoy and
Cardie, 2013).

interactions between the input vectors. Many tasks
have benefited from this recursive framework, in-
cluding parsing (Socher et al., 2011b), sentiment
analysis (Socher et al., 2013), and paraphrase de-
tection (Socher et al., 2011a).

2.1 Distributed Representations

Both recurrent and recursive networks require a
vector representation of each input token. Dis-
tributed representations for words were first pro-
posed in (Rumelhart et al., 1988) and have been
successful for statistical language modeling (El-
man, 1990). Various deep learning architectures
have been explored to learn these embeddings in
an unsupervised manner from a large corpus (Ben-
gio et al., 2006; Collobert and Weston, 2008;
Mnih and Hinton, 2007; Mikolov et al., 2013),
which might have different generalization capabil-
ities and are able to capture the semantic mean-
ings depending on the specific task at hand. These
vector representations can to some extent cap-
ture interesting semantic relationships, such as
King−man ≈ Queue−woman (Mikolov et al.,
2010), and recently have been successfully used
in various NLP applications, including named en-
tity recognition, tagging, segmentation (Wang et
al., 2013), and machine translation (e.g.,(Collobert
and Weston, 2008; Zou et al., 2013)).

3 Sentence Model

In this section, we demonstrate the strategy
adopted to compute a vector for a sentence given
the sequence of its words and their embeddings.
We implemented two approaches, Recurrent and
Recursive neural networks, following the de-
scriptions in for example (Mikolov et al., 2010;
Sutskever et al., 2011; Socher et al., 2013). As
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the details of both approaches can be readily found
there, we make this section brief and omit the de-
tails for brevity.

Let s denote a sentence, comprised of a se-
quence of words s = {w1, w2, ..., wns}, where ns
denotes the number of words within sentence s.
Each word w is associated with a specific vector
embedding ew = {e1

w, e
2
w, ..., e

K
w }, where K de-

notes the dimension of the word embedding. We
wish to compute the vector representation for cur-
rent sentence hs = {h1

s, h
2
s, ..., h

K
s }.

Recurrent Sentence Representation (Recur-
rent) The recurrent network captures certain
general considerations regarding sentential com-
positionality. As shown in Figure 2 (a), for sen-
tence s, recurrent network successively takes word
wi at step i, combines its vector representation etw
with former input hi−1 from step i− 1, calculates
the resulting current embedding ht, and passes it
to the next step. The standard recurrent network
calculates ht as follows:

ht = f(VRecurrent·ht−1+WRecurrent·etw+bRecurrent)
(1)

where WRecurrent and VRecurrent are K ×K ma-
trixes. bRecurrent denotes K × 1 bias vector and
f = tanh is a standard element-wise nonlinearity.

Note that calculation for representation at time
t = 1 is given by:

h1 = f(VRecurrent·h0+WRecurrent·e1
w+bRecurrent)

(2)
where h0 denotes the global sentence starting vec-
tor.

Recursive Sentence Representation (Recursive)
Recursive sentence representation relies on the
structure of parse trees, where each leaf node of
the tree corresponds to a word from the original
sentence. It computes a representation for each
parent node based on its immediate children re-
cursively in a bottom-up fashion until reaching the
root of the tree. Concretely, for a given parent p
in the tree and its two children c1 (associated with
vector representation hc1) and c2 (associated with
vector representation hc2), standard recursive net-
works calculates hp for p as follows:

hp = f(WRecursive · [hc1 , hc2 ] + bRecursive) (3)

where [hc1 , hc2 ] denotes the concatenating vec-
tor for children vector representation hc1 and hc2 .

WRecursive is a K × 2K matrix and bRecursive is
the 1×K bias vector. f(·) is tanh function.

Recursive neural models compute parent vec-
tors iteratively until the root node’s representation
is obtained, and use the root embedding to repre-
sent the whole sentence, as shown in Figure 2 (b).

4 Coherence Model

The proposed coherence model adopts a window
approach (Collobert et al., 2011), in which we
train a three-layer neural network based on a slid-
ing windows of L sentences.

4.1 Sentence Convolution
We treat a window of sentences as a clique C and
associate each clique with a tag yC that takes the
value 1 if coherent, and 0 otherwise4. As shown in
Figure 1, cliques taken from original articles are
treated as coherent and those with sentences ran-
domly replaced are used as negative examples. .

The sentence convolution algorithm adopted in
this paper is defined by a three-layer neural net-
work, i.e., sentence-level input layer, hidden layer,
and overall output layer as shown in Figure 3. For-
mally, each clique C takes as input a (L×K)× 1
vector hC by concatenating the embeddings of
all its contained sentences, denoted as hC =
[hs1 , hs2 , ..., hsL ]. (Note that if we wish to clas-
sify the first and last sentences and include their
context, we require special beginning and ending
sentence vectors, which are defined as h<S> for
sstart and h</S> for send respectively.)

Let H denote the number of neurons in the hid-
den (second) layer. Then each of the hidden lay-
ers takes as input hC and performs the convolution
using a non-linear tanh function, parametrized by
Wsen and bsen. The concatenating output vector
for hidden layers, defined as qC , can therefore be
rewritten as:

qC = f(Wsen × hC + bsen) (4)

where Wsen is a H× (L×K) dimensional matrix
and bsen is a H × 1 dimensional bias vector.

4instead of a binary classification (correct/incorrect), an-
other commonly used approach is the contrastive approach
that minimizes the score function max(0, 1 − s + sc) (Col-
lobert et al., 2011; Smith and Eisner, 2005). s denotes the
score of a true (coherent) window and sc the score of a cor-
rupt (containing incoherence) one) in an attempt to make the
score of true windows larger and corrupt windows smaller.
We tried the contrastive one for both recurrent and recursive
networks but the binary approach constantly outperformed
the contrastive one in this task.
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Figure 3: An example of coherence model based on a window of sentences (clique).

The output layer takes as input qC and generates
a scalar using linear function UT qC +b. A sigmod
function is then adopted to project the value to a
[0,1] probability space, which can be interpreted
as the probability of whether one clique is coher-
ent or not. The execution at the output layer can
be summarized as:

p(yC = 1) = sigmod(UT qC + b) (5)

where U is anH×1 vector and b denotes the bias.

4.2 Training
In the proposed framework, suppose we have M
training samples, the cost function for recurrent
neural network with regularization on the training
set is given by:

J(Θ) =
1
M

∑
C∈trainset

{−yC log[p(yC = 1)]

− (1− yC) log[1− p(yC = 1)]}+
Q

2M

∑
θ∈Θ

θ2

(6)
where

Θ = [WRecurrent,Wsen, Usen]

The regularization part is paralyzed by Q to avoid
overfitting. A similar loss function is applied to
the recursive network with only minor parameter
altering that is excluded for brevity.

To minimize the objective J(Θ), we use the di-
agonal variant of AdaGrad (Duchi et al., 2011)
with minibatches, which is widely applied in deep
learning literature (e.g.,(Socher et al., 2011a; Pei
et al., 2014)). The learning rate in AdaGrad is
adapting differently for different parameters at dif-
ferent steps. Concretely, for parameter updates, let

giτ denote the subgradient at time step for param-
eter θi, which is obtained from backpropagation5,
the parameter update at time step t is given by:

θτ = θτ−1 − α∑τ
t=0

√
gi2τ

giτ (7)

where α denotes the learning rate and is set to 0.01
in our approach. Optimal performance is achieved
when batch size is set between 20 and 30.

4.3 Initialization

Elements in Wsen are initialized by randomly
drawing from the uniform distribution [−ε, ε],
where ε =

√
6√

H+K×L as suggested in (Collobert
et al., 2011). Wrecurrent, Vrecurrent, Wrecursive

and h0 are initialized by randomly sampling from
a uniform distribution U(−0.2, 0.2). All bias vec-
tors are initialized with 0. Hidden layer numberH
is set to 100.

Word embeddings {e} are borrowed from
Senna (Collobert et al., 2011; Collobert, 2011).
The dimension for these embeddings is 50.

5 Experiments

We evaluate the proposed coherence model on two
common evaluation approaches adopted in exist-
ing work (Barzilay and Lapata, 2008; Louis and
Nenkova, 2012; Elsner et al., 2007; Lin et al.,
2011): Sentence Ordering and Readability Assess-
ment.

5.1 Sentence Ordering

We follow (Barzilay and Lapata, 2008; Louis and
Nenkova, 2012; Elsner et al., 2007; Lin et al.,

5For more details on backpropagation through RNNs, see
Socher et al. (2010).
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2011) that all use pairs of articles, one containing
the original document order and the other a ran-
dom permutation of the sentences from the same
document. The pairwise approach is predicated
on the assumption that the original article is al-
ways more coherent than a random permutation;
this assumption has been verified in Lin et al.’s
work (2011).

We need to define the coherence score Sd for
a given document d, where d is comprised of a
series of sentences, d = {s1, s2, .., sNd}, and Nd

denotes the number of sentences within d. Based
on our clique definition, document d is comprised
of Nd cliques. Taking window size L = 3 as ex-
ample, cliques generated from document d appear
as follows:

< sstart, s1, s2 >,< s1, s2, s3 >, ...,

< sNd−2, sNd−1, sNd >,< sNd−1, sNd , send >

The coherence score for a given document Sd is
the probability that all cliques within d are coher-
ent, which is given by:

Sd =
∏
C∈d

p(yC = 1) (8)

For document pair < d1, d2 > in our task, we
would say document d1 is more coherent than d2

if
Sd1 > Sd2 (9)

5.1.1 Dataset
We use two corpora that are widely employed
for coherence prediction (Barzilay and Lee, 2004;
Barzilay and Lapata, 2008; Elsner et al., 2007).
One contains reports on airplane accidents from
the National Transportation Safety Board and the
other contains reports about earthquakes from the
Associated Press. These articles are about 10
sentences long and usually exhibit clear sentence
structure. For preprocessing, we only lowercase
the capital letters to match with tokens in Senna
word embeddings. In the recursive network, sen-
tences are parsed using the Stanford Parser6 and
then transformed into binary trees. The accident
corpus ends up with a vocabulary size of 4758 and
an average of 10.6 sentences per document. The
earthquake corpus contains 3287 distinct terms
and an average of 11.5 sentences per document.

6http://nlp.stanford.edu/software/
lex-parser.shtml

For each of the two corpora, we have 100 arti-
cles for training and 100 (accidents) and 99 (earth-
quakes) for testing. A maximum of 20 random
permutations were generated for each test arti-
cle to create the pairwise data (total of 1986 test
pairs for the accident corpus and 1956 for earth-
quakes)7.

Positive cliques are taken from original training
documents. For easy training, rather than creating
negative examples by replacing centered sentences
randomly, the negative dataset contains cliques
where centered sentences are replaced only by
other sentences within the same document.

5.1.2 Training and Testing
Despite the numerous parameters in the deep
learning framework, we tune only two principal
ones for each setting: window size L (tried on
{3, 5, 7}) and regularization parameterQ (tried on
{0.01, 0.1, 0.25, 0.5, 1.0, 1.25, 2.0, 2.5, 5.0}). We
trained parameters using 10-fold cross-validation
on the training data. Concretely, in each setting,
90 documents were used for training and evalua-
tion was done on the remaining articles, following
(Louis and Nenkova, 2012). After tuning, the final
model was tested on the testing set.

5.1.3 Model Comparison
We report performance of recursive and recurrent
networks. We also report results from some popu-
lar approaches in the literature, including:

Entity Grid Model : Grid model (Barzilay and
Lapata, 2008) obtains the best performance when
coreference resolution, expressive syntactic infor-
mation, and salience-based features are incorpo-
rated. Entity grid models represent each sentence
as a column of a grid of features and apply ma-
chine learning methods (e.g., SVM) to identify the
coherent transitions based on entity features (for
details of entity models see (Barzilay and Lapata,
2008)). Results are directly taken from Barzilay
and Lapata’s paper (2008).

HMM : Hidden-Markov approach proposed by
Louis and Nenkova (2012) to model the state
(cluster) transition probability in the coherent con-
text using syntactic features. Sentences need to be
clustered in advance where the number of clus-
ters is tuned as a parameter. We directly take

7Permutations are downloaded from http:
//people.csail.mit.edu/regina/coherence/
CLsubmission/.
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Acci Earthquake Average
Recursive 0.864 0.976 0.920
Recurrent 0.840 0.951 0.895

Entity Grid 0.904 0.872 0.888
HMM 0.822 0.938 0.880

HMM+Entity 0.842 0.911 0.877
HMM+Content 0.742 0.953 0.848

Graph 0.846 0.635 0.740

Table 1: Comparison of Different Coherence
Frameworks. Reported baseline results are among
the best performance regarding each approach is
reprinted from prior work from (Barzilay and Lap-
ata, 2008; Louis and Nenkova, 2012; Guinaudeau
and Strube, 2013).

the results from Louis and Nenkova’s paper and
report the best results among different combi-
nations of parameter and feature settings8. We
also report performances of models from Louis
and Nenkova’s work that combine HMM and en-
tity/content models in a unified framework.

Graph Based Approach : Guinaudeau and
Strube (2013) extended the entity grid model to
a bipartite graph representing the text, where the
entity transition information needed for local co-
herence computation is embedded in the bipartite
graph. The Graph Based Approach outperforms
the original entity approach in some of feature set-
tings (Guinaudeau and Strube, 2013).

As can be seen in Table 1, the proposed frame-
works (both recurrent and recursive) obtain state-
of-art performance and outperform all existing
baselines by a large margin. One interpretation
is that the abstract sentence vector representations
computed by the deep learning framework is more
powerful in capturing exactly the relevant the se-
mantic/logical/syntactic features in coherent con-
texts than features or other representations devel-
oped by human feature engineering are.

Another good quality of the deep learning
framework is that it can be trained easily and
makes unnecessary the effort required of feature
engineering. In contrast, almost all existing base-
lines and other coherence methods require sophis-
ticated feature selection processes and greatly rely
on external feature extraction algorithm.

The recurrent network is easier to implement
than the recursive network and does not rely on
external resources (i.e., parse trees), but the recur-
sive network obtains better performance by build-

8The details for information about parameter and feature
of best setting can be found in (Louis and Nenkova, 2012).

ing the convolution on parse trees rather than sim-
ply piling up terms within the sentence, which is
in line with common expectation.

Both recurrent and recursive models obtain bet-
ter performance on the Earthquake than the Acci-
dent dataset. Scrutiny of the corpus reveals that
articles reporting earthquakes exhibit a more con-
sistent structure: earthquake outbreak, describing
the center and intensity of the earthquake, injuries
and rescue operations, etc., while accident articles
usually exhibit more diverse scenarios.

5.2 Readability Assessment

Barzilay and Lapata (2008) proposed a readability
assessment task for stylistic judgments about the
difficulty of reading a document. Their approach
combines a coherence system with Schwarm and
Ostendorf’s (2005) readability features to clas-
sify documents into two categories, more read-
able (coherent) documents and less readable ones.
The evaluation accesses the ability to differentiate
“easy to read” documents from difficult ones of
each model.

5.2.1 Dataset
Barzilay and Lapata’s (2008) data corpus is
from the Encyclopedia Britannica and the
Britannica Elementary, the latter being a new
version targeted at children. Both versions con-
tain 107 articles. The Encyclopedia Britannica
corpus contains an average of 83.1 sentences
per document and the Britannica Elementary
contains 36.6. The encyclopedia lemmas are
written by different authors and consequently
vary considerably in structure and vocabulary
choice. Early researchers assumed that the chil-
dren version (Britannica Elementary) is easier
to read, hence more coherent than documents in
Encyclopedia Britannica. This is a somewhat
questionable assumption that needs further inves-
tigation.

5.2.2 Training and Testing
Existing coherence approaches again apply a pair-
wise ranking strategy and the article associated
with the higher score is considered to be the more
readable. As the replacement strategy for gener-
ating negative example is apparently not well fit-
ted to this task, we adopted the following training
framework: we use all sliding windows of sen-
tences from coherent documents (documents from
Britannica Elementary) as positive examples,
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Approach Accuracy
Recurrent 0.803
Recursive 0.828

Graph Approach 0.786
Entity 0.509
S&O 0.786

Entity+S&O 0.888

Table 2: Comparison of Different Coherence
Frameworks on Readability Assessment. Re-
ported baselines results are are taken from (Barzi-
lay and Lapata, 2008; Guinaudeau and Strube,
2013). S&O: Schwarm and Ostendorf (2005).

and cliques from Encyclopedia Britannica as
negative examples, and again apply Eq. 6 for train-
ing and optimization. During testing, we turn to
Equations 8 and 9 for pairwise comparison. We
adopted five-fold cross-validation in the same way
as in (Barzilay and Lapata, 2008; Guinaudeau and
Strube, 2013) for fair comparison. Parameters
were tuned within each training set also using five-
fold cross-validation. Parameters to tune included
window size L and regularization parameter Q.

5.3 Results

We report results of the proposed approaches in
the work along with entity model (Barzilay and
Lapata, 2008) and graph based approach (Elsner
and Charniak, 2008) in Table 2. The tabs shows
that deep learning approaches again significantly
outperform Entry and Global Approach baselines
and are nearly comparable to the combination of
entity and S&O features. Again, the recursive
network outperforms the recurrent network in this
task.

6 Conclusion

In this paper, we apply two neural network
approaches to the sentence-ordering (coherence)
task, using compositional sentence representations
learned by recurrent and recursive composition.
The proposed approach obtains state-of-art per-
formance on the standard coherence evaluation
tasks.
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Abstract

In this paper, we present a discrimina-
tive approach for reranking discourse trees
generated by an existing probabilistic dis-
course parser. The reranker relies on tree
kernels (TKs) to capture the global depen-
dencies between discourse units in a tree.
In particular, we design new computa-
tional structures of discourse trees, which
combined with standard TKs, originate
novel discourse TKs. The empirical evalu-
ation shows that our reranker can improve
the state-of-the-art sentence-level parsing
accuracy from 79.77% to 82.15%, a rel-
ative error reduction of 11.8%, which in
turn pushes the state-of-the-art document-
level accuracy from 55.8% to 57.3%.

1 Introduction

Clauses and sentences in a well-written text are
interrelated and exhibit a coherence structure.
Rhetorical Structure Theory (RST) (Mann and
Thompson, 1988) represents the coherence struc-
ture of a text by a labeled tree, called discourse
tree (DT) as shown in Figure 1. The leaves cor-
respond to contiguous clause-like units called ele-
mentary discourse units (EDUs). Adjacent EDUs
and larger discourse units are hierarchically con-
nected by coherence relations (e.g., ELABORA-
TION, CAUSE). Discourse units connected by a re-
lation are further distinguished depending on their
relative importance: nuclei are the core parts of the
relation while satellites are the supportive ones.

Conventionally, discourse analysis in RST in-
volves two subtasks: (i) discourse segmentation:
breaking the text into a sequence of EDUs, and
(ii) discourse parsing: linking the discourse units
to form a labeled tree. Despite the fact that dis-
course analysis is central to many NLP appli-
cations, the state-of-the-art document-level dis-
course parser (Joty et al., 2013) has an f -score

of only 55.83% using manual discourse segmen-
tation on the RST Discourse Treebank (RST-DT).

Although recent work has proposed rich lin-
guistic features (Feng and Hirst, 2012) and pow-
erful parsing models (Joty et al., 2012), discourse
parsing remains a hard task, partly because these
approaches do not consider global features and
long range structural dependencies between DT
constituents. For example, consider the human-
annotated DT (Figure 1a) and the DT generated by
the discourse parser of Joty et al. (2013) (Figure
1b) for the same text. The parser makes a mistake
in finding the right structure: it considers only e3
as the text to be attributed to e2, where all the text
spans from e3 to e6 (linked by CAUSE and ELAB-
ORATION) compose the statement to be attributed.
Such errors occur because existing systems do not
encode long range dependencies between DT con-
stituents such as those between e3 and e4−6.

Reranking models can make the global struc-
tural information available to the system as fol-
lows: first, a base parser produces several DT
hypotheses; and then a classifier exploits the en-
tire information in each hypothesis, e.g., the com-
plete DT with its dependencies, for selecting the
best DT. Designing features capturing such global
properties is however not trivial as it requires the
selection of important DT fragments. This means
selecting subtree patterns from an exponential fea-
ture space. An alternative approach is to implicitly
generate the whole feature space using tree kernels
(TKs) (Collins and Duffy, 2002; Moschitti, 2006).

In this paper, we present reranking models for
discourse parsing based on Support Vector Ma-
chines (SVMs) and TKs. The latter allows us
to represent structured data using the substructure
space thus capturing structural dependencies be-
tween DT constituents, which is essential for ef-
fective discourse parsing. Specifically, we made
the following contributions. First, we extend the

2049



Topic-Comment

Attribution

Cause

Elaboration

Elaboration

e

e

e

e

e e

2

3

4

5 6

1
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(b) A discourse tree generated by Joty et al. (2013).

Figure 1: Example of human-annotated and system-generated discourse trees for the text [what’s more,]e1 [he believes]e2
[seasonal swings in the auto industry this year aren’t occurring at the same time in the past,]e3 [because of production and pric-
ing differences]e4 [that are curbing the accuracy of seasonal adjustments]e5] [built into the employment data.]e6 Horizontal
lines indicate text segments; satellites are connected to their nuclei by curved arrows.

existing discourse parser1 (Joty et al., 2013) to
produce a list of k most probable parses for each
input text, with associated probabilities that define
the initial ranking.

Second, we define a set of discourse tree ker-
nels (DISCTK) based on the functional composi-
tion of standard TKs with structures representing
the properties of DTs. DISCTK can be used for
any classification task involving discourse trees.

Third, we use DISCTK to define kernels for
reranking and use them in SVMs. Our rerankers
can exploit the complete DT structure using TKs.
They can ascertain if portions of a DT are compat-
ible, incompatible or simply not likely to coexist,
since each substructure is an exploitable feature.
In other words, problematic DTs are expected to
be ranked lower by our reranker.

Finally, we investigate the potential of our ap-
proach by computing the oracle f -scores for both
document- and sentence-level discourse parsing.
However, as demonstrated later in Section 6, for
document-level parsing, the top k parses often
miss the best parse. For example, the oracle f -
scores for 5- and 20-best document-level parsing
are only 56.91% and 57.65%, respectively. Thus
the scope of improvement for the reranker is rather
narrow at the document level. On the other hand,
the oracle f -score for 5-best sentence-level dis-
course parsing is 88.09%, where the base parser
(i.e., 1-best) has an oracle f -score of 79.77%.
Therefore, in this paper we address the following
two questions: (i) how far can a reranker improve
the parsing accuracy at the sentence level? and
(ii) how far can this improvement, if at all, push
the (combined) document-level parsing accuracy?

To this end, our comparative experiments on

1Available from http://alt.qcri.org/tools/

RST-DT show that the sentence-level reranker can
improve the f -score of the state-of-the-art from
79.77% to 82.15%, corresponding to a relative
error reduction of 11.8%, which in turn pushes
the state-of-the-art document-level f -score from
55.8% to 57.3%, an error reduction of 3.4%.

In the rest of the paper, after introducing the TK
technology in Section 2, we illustrate our novel
structures, and how they lead to the design of
novel DISCTKs in Section 3. We present the k-
best discourse parser in Section 4. In Section 5, we
describe our reranking approach using DISCTKs.
We report our experiments in Section 6. We briefly
overview the related work in Section 7, and finally,
we summarize our contributions in Section 8.

2 Kernels for Structural Representation

Tree kernels (Collins and Duffy, 2002; Shawe-
Taylor and Cristianini, 2004; Moschitti, 2006) are
a viable alternative for representing arbitrary sub-
tree structures in learning algorithms. Their ba-
sic idea is that kernel-based learning algorithms,
e.g., SVMs or perceptron, only need the scalar
product between the feature vectors representing
the data instances to learn and classify; and kernel
functions compute such scalar products in an effi-
cient way. In the following subsections, we briefly
describe the kernel machines and three types of
tree kernels (TKs), which efficiently compute the
scalar product in the subtree space, where the vec-
tor components are all possible substructures of
the corresponding trees.

2.1 Kernel Machines

Kernel Machines (Cortes and Vapnik, 1995), e.g.,
SVMs, perform binary classification by learning
a hyperplane H(~x) = ~w · ~x + b = 0, where
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Figure 2.4: A tree (left) and all of its proper subtrees (right).
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Figure 2.5: A tree (left) and all of its subset trees (right).

Proper Subtree A proper subtree ti comprises node vi along with all of its de-

scendants (see figure 2.4 for an example of a tree along with all its proper subtrees).

Subset Tree A subset tree is a subtree for which the following constraint is sat-

isfied: either all of the children of a node belong to the subset tree or none of them.

The reason for adding such a constraint can be understood by considering the fact

that subset trees were defined for measuring the similarity of parse trees in natural

language applications. In that context a node along with all of its children represent

a grammar production. Figure 2.5 gives an example of a tree along with some of its

subset trees.

Figure 2: A tree with its STK subtrees; STKb also includes
leaves as features.

~x ∈ Rn is the feature vector representation of an
object o ∈ O to be classified and ~w ∈ Rn and
b ∈ R are parameters learned from the training
data. One can train such machines in the dual
space by rewriting the model parameter ~w as a lin-
ear combination of training examples, i.e., ~w =∑

i=1..l yiαi~xi, where yi is equal to 1 for positive
examples and −1 for negative examples, αi ∈ R+

and ~xi∀i ∈ {1, .., l} are the training instances.
Then, we can use the data object oi ∈ O directly
in the hyperplane equation considering their map-
ping function φ : O → Rn, as follows: H(o) =∑

i=1..l yiαi~xi ·~x+b =
∑

i=1..l yiαiφ(oi) ·φ(o)+
b =

∑
i=1..l yiαiK(oi, o) + b, where the product

K(oi, o) = 〈φ(oi) · φ(o)〉 is the kernel function
(e.g., TK) associated with the mapping φ.

2.2 Tree Kernels

Convolution TKs compute the number of com-
mon tree fragments between two trees T1 and T2

without explicitly considering the whole fragment
space. A TK function over T1 and T2 is defined as:
TK(T1, T2) =

∑
n1∈NT1

∑
n2∈NT2

∆(n1, n2),
where NT1 and NT2 are the sets of the nodes of
T1 and T2, respectively, and ∆(n1, n2) is equal
to the number of common fragments rooted in
the n1 and n2 nodes.2 The computation of ∆
function depends on the shape of fragments,
conversely, a different ∆ determines the richness
of the kernel space and thus different tree kernels.
In the following, we briefly describe two existing
and well-known tree kernels. Please see several
tutorials on kernels (Moschitti, 2013; Moschitti,
2012; Moschitti, 2010) for more details.3

Syntactic Tree Kernels (STK) produce fragments
such that each of their nodes includes all or none
of its children. Figure 2 shows a tree T and its
three fragments (do not consider the single nodes)
in the STK space on the left and right of the ar-

2To get a similarity score between 0 and 1, it is
common to apply a normalization in the kernel space,
i.e. TK(T1,T2)√

TK(T1,T1)×TK(T2,T2)
.

3Tutorials notes available at http://disi.unitn.
it/moschitti/
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Figure 2.3: A tree (left) and some of its subtrees (right).

node. The maximum out-degree of a tree is the highest index of all the nodes of the

tree. The out-degree of a node for an ordered tree corresponds to the number of its

children. The depth of a node vi with respect to one of its ascendants vj is defined

as the number of nodes comprising the path from vj to vi. When not specified, the

node with respect to the depth is computed, is the root.

A tree can be decomposed in many types of substructures.

Subtree A subtree t is a subset of nodes in the tree T , with corresponding edges,

which forms a tree. A subtree rooted at node vi will be indicated with ti, while a

subtree rooted at a generic node v will be indicated by t(v). When t is used in a

context where a node is expected, t refers to the root node of the subtree t. The

set of subtrees of a tree will be indicated by NT . When clear from the context NT

may refer to specific type of subtrees. Figure 2.3 gives an example of a tree together

with its subtrees. Various types of subtrees can be defined for a tree T .

Figure 3: A tree with its PTK fragments.

row, respectively. STK(T ,T ) counts the number
of common fragments, which in this case is the
number of subtrees of T , i.e., three. In the figure,
we also show three single nodes, c, e, and g, i.e.,
the leaves of T , which are computed by a vari-
ant of the kernel, that we call STKb. The com-
putational complexity of STK is O(|NT1 ||NT2 |),
but the average running time tends to be linear
(i.e. O(|NT1 | + |NT2 |)) for syntactic trees (Mos-
chitti, 2006).

Partial Tree Kernel (PTK) generates a richer set
of tree fragments. Given a target tree T , PTK

can generate any subset of connected nodes of T ,
whose edges are in T . For example, Figure 3
shows a tree with its nine fragments including all
single nodes (i.e., the leaves of T ). PTK is more
general than STK as its fragments can include any
subsequence of children of a target node. The time
complexity of PTK is O(pρ2|NT1 ||NT2 |), where
p is the largest subsequence of children that one
wants to consider and ρ is the maximal out-degree
observed in the two trees. However, the average
running time again tends to be linear for syntactic
trees (Moschitti, 2006).

3 Discourse Tree Kernels (DISCTK)

Engineering features that can capture the depen-
dencies between DT constituents is a difficult task.
In principle, any dependency between words, rela-
tions and structures (see Figure 1) can be an im-
portant feature for discourse parsing. This may
lead to an exponential number of features, which
makes the feature engineering process very hard.

The standard TKs described in the previous sec-
tion serve as a viable option to get useful sub-
tree features automatically. However, the defini-
tion of the input to a TK, i.e., the tree represent-
ing a training instance, is extremely important as
it implicitly affects the subtree space generated by
the TK, where the target learning task is carried
out. This can be shown as follows. Let φM ()
be a mapping from linguistic objects oi, e.g., a
discourse parse, to a meaningful tree Ti, and let
φTK() be a mapping into a tree kernel space us-
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(b) SRN

Figure 4: DISCTK trees: (a) Joint Relation-Nucleus (JRN), and (b) Split Relation Nucleus (SRN).

ing one of the TKs described in Section 2.2, i.e.,
TK(T1, T2) = φTK(T1) · φTK(T2). If we apply
TK to the objects oi transformed by φM (), we
obtain TK(φM (o1), φM (o2)) = φTK(φM (o1)) ·
φTK(φM (o2))=

(
φTK◦φM

)
(o1)·(φTK◦φM)(o2)

= DiscTK(o1, o2), which is a new kernel4 in-
duced by the mapping φDiscTK =

(
φTK ◦ φM

)
.

We define two different mappings φM to trans-
form the discourse parses generated by the base
parser into two different tree structures: (i) the
Joint Relation-Nucleus tree (JRN), and (ii) the
Split Relation Nucleus tree (SRN).

3.1 Joint Relation-Nucleus Tree (JRN)

As shown in Figure 4a, JRN is a direct mapping
of the parser output, where the nuclearity statuses
(i.e., satellite or nucleus) of the connecting nodes
are attached to the relation labels.5 For example,
the root BACKGROUNDSatellite−Nucleus in Figure
4a denotes a Background relation between a satel-
lite discourse unit on the left and a nucleus unit on
the right. Text spans (i.e., EDUs) are represented
as sequences of Part-of-Speech (POS) tags con-
nected to the associated words, and are grouped
under dummy SPAN nodes. We experiment with
two lexical variations of the trees: (i) All includes
all the words in the EDU, and (ii) Bigram includes
only the first and last two words in the EDU.

When JRN is used with the STK kernel, an ex-
ponential number of fragments are generated. For
example, the upper row of Figure 5 shows two

4People interested in algorithms may like it more design-
ing a complex algorithm to compute

(
φTK ◦φM

)
. However,

the design of φM is conceptually equivalent and more effec-
tive from an engineering viewpoint.

5This is a common standard followed by the parsers.

smallest (atomic) fragments and one subtree com-
posed of two atomic fragments. Note that much
larger structures encoding long range dependen-
cies are also part of the feature space. These frag-
ments can reveal if the discourse units are orga-
nized in a compatible way, and help the reranker
to detect the kind of errors shown earlier in Fig-
ure 1b. However, one problem with JRN repre-
sentation is that since the relation nodes are com-
posed of three different labels, the generated sub-
trees tend to be sparse. In the following, we de-
scribe SRN that attempts to solve this issue.

3.2 Split Relation Nucleus Tree (SRN)
SRN is not very different from JRN as shown in
Figure 4b. The only difference is that instead of
attaching the nuclearity statuses to the relation la-
bels, in this representation we assign them to their
respective discourse units. When STK kernel is
applied to SRN it again produces an exponential
number of fragments. For example, the lower row
of Figure 5 shows two atomic fragments and one
subtree composed of two atomic fragments. Com-
paring the two examples in Figure 5, it is easy
to understand that the space of subtrees extracted
from SRN is less sparse than that of JRN.

Note that, as described in Secion 2.2, when the
PTK kernel is applied to JRN and SRN trees, it can
generate a richer feature space, e.g., features that
are paths containing relation labels (e.g., BACK-
GROUND - CAUSE - ELABORATION or ATTRIBU-
TION - CAUSE - ELABORATION).

4 Generation of k-best Discourse Parses
In this section we describe the 1-best discourse
parser of Joty et al. (2013), and how we extend
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Figure 5: Fragments from JRN in Figure 4a (upper row) and SRN in Figure 4b (lower row).

it to k-best discourse parsing.
Joty et al. (2013) decompose the problem of

document-level discourse parsing into two stages
as shown in Figure 6. In the first stage, the intra-
sentential discourse parser produces discourse
subtrees for the individual sentences in a docu-
ment. Then the multi-sentential parser combines
the sentence-level subtrees and produces a DT for
the document. Both parsers have the same two
components: a parsing model and a parsing al-
gorithm. The parsing model explores the search
space of possible DTs and assigns a probability to
every possible DT. Then the parsing algorithm se-
lects the most probable DT(s). While two separate
parsing models are employed for intra- and multi-
sentential parsing, the same parsing algorithm is
used in both parsing conditions. The two-stage
parsing exploits the fact that sentence boundaries
correlate very well with discourse boundaries. For
example, more than 95% of the sentences in RST-
DT have a well-formed discourse subtree in the
full document-level discourse tree.

The choice of using two separate models for
intra- and multi-sentential parsing is well justified
for the following two reasons: (i) it has been ob-
served that discourse relations have different dis-
tributions in the two parsing scenarios, and (ii) the
models could independently pick their own infor-
mative feature sets. The parsing model used for
intra-sentential parsing is a Dynamic Conditional
Random Field (DCRF) (Sutton et al., 2007) shown
in Figure 7. The observed nodes Uj at the bottom
layer represent the discourse units at a certain level
of the DT; the binary nodes Sj at the middle layer
predict whether two adjacent units Uj−1 and Uj
should be connected or not; and the multi-class
nodes Rj at the top layer predict the discourse
relation between Uj−1 and Uj . Notice that the
model represents the structure and the label of a
DT constituent jointly, and captures the sequential
dependencies between the DT constituents. Since
the chain-structured DCRF model does not scale
up to multi-sentential parsing of long documents,

Model

A lgorithm
Sentences 
segmented
into EDUs

Document-level
discourse tree

Model

A lgorithm

Multi-sentential parserIntra-sentential parser

Figure 6: The two-stage document-level discourse parser
proposed by Joty et al. (2013).
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Figure 7: The intra-sentential parsing model.

the multi-sentential parsing model is a CRF which
breaks the chain structure of the DCRF model.

The parsing models are applied recursively at
different levels of the DT in their respective pars-
ing scenarios (i.e., intra- and multi-sentential),
and the probabilities of all possible DT con-
stituents are obtained by computing the posterior
marginals over the relation-structure pairs (i.e.,
P (Rj , Sj=1|U1, · · · , Ut,Θ), where Θ are model
parameters). These probabilities are then used in
a CKY-like probabilistic parsing algorithm to find
the globally optimal DT for the given text.

Let U bx and U ex denote the beginning and
end EDU Ids of a discourse unit Ux, and
R[U bi , U

e
m, U

e
j ] refers to a coherence relation

R that holds between the discourse unit con-
taining EDUs U bi through U em and the unit
containing EDUs U em+1 through U ej . Given n
discourse units, the parsing algorithm uses the
upper-triangular portion of the n×n dynamic
programming table A, where cell A[i, j] (for
i < j) stores:
A[i, j] = P (r∗[U bi , U

e
m∗ , U

e
j ]), where

(m∗, r∗) = argmax
i≤m<j ; R

P (R[U bi , U
e
m, U

e
j ])×

A[i,m]×A[m+ 1, j] (1)

2053



1 1 2
2 2

3

B

r1 r3 r2
r2 r3

r4

C

r2

r1

e1 e2

r4

e3 e4

Figure 8: The B and C dynamic programming tables (left), and the corresponding discourse tree (right).

In addition to A, which stores the probability of
the most probable constituents of a DT, the pars-
ing algorithm also simultaneously maintains two
other tables B and C for storing the best structure
(i.e., U em∗) and the relations (i.e., r∗) of the corre-
sponding DT constituents, respectively. For exam-
ple, given 4 EDUs e1 · · · e4, the B and C tables at
the left side in Figure 8 together represent the DT
shown at the right. More specifically, to generate
the DT, we first look at the top-right entries in the
two tables, and find B[1, 4] = 2 and C[1, 4] = r2,
which specify that the two discourse units e1:2 and
e3:4 should be connected by the relation r2 (the
root in the DT). Then, we see how EDUs e1 and
e2 should be connected by looking at the entries
B[1, 2] and C[1, 2], and find B[1, 2] = 1 and
C[1, 2] = r1, which indicates that these two units
should be connected by the relation r1 (the left
pre-terminal). Finally, to see how EDUs e3 and e4
should be linked, we look at the entriesB[3, 4] and
C[3, 4], which tell us that they should be linked by
the relation r4 (the right pre-terminal).

It is straight-forward to generalize the above al-
gorithm to produce k most probable DTs. When
filling up the dynamic programming tables, rather
than storing a single best parse for each subtree,
we store and keep track of k-best candidates si-
multaneously. More specifically, each cell in the
dynamic programming tables (i.e., A, B and C)
should now contain k entries (sorted by their prob-
abilities), and for each such entry there should be a
back-pointer that keeps track of the decoding path.

The algorithm works in polynomial time. For
n discourse units and M number of relations, the
1-best parsing algorithm has a time complexity of
O(n3M) and a space complexity of O(n2), where
the k-best version has a time and space complexi-
ties ofO(n3Mk2 log k) andO(n2k), respectively.
There are cleverer ways to reduce the complexity
(e.g., see (Huang and Chiang, 2005) for three such
ways). However, since the efficiency of the algo-
rithm did not limit us to produce k-best parses for
larger k, it was not a priority in this work.

5 Kernels for Reranking Discourse Trees

In Section 3, we described DISCTK, which essen-
tially can be used for any classification task involv-
ing discourse trees. For example, given a DT, we
can use DISCTK to classify it as correct vs. in-
correct. However, such classification is not com-
pletely aligned to our purpose, since our goal is
to select the best (i.e., the most correct) DT from
k candidate DTs; i.e., a ranking task. We adopt
a preference reranking technique as described in
(Moschitti et al., 2006; Dinarelli et al., 2011).

5.1 Preference Reranker

Preference reranking (PR) uses a classifier C of
pairs of hypotheses 〈hi, hj〉, which decides if hi
(i.e., a candidate DT in our case) is better than
hj . We generate positive and negative examples to
train the classifier using the following approach.
The pairs 〈h1, hi〉 constitute positive examples,
where h1 has the highest f -score accuracy on the
Relation metric (to be described in Section 6) with
respect to the gold standard among the candidate
hypotheses, and vice versa, 〈hi, h1〉 are considered
as negative examples. At test time, C classifies all
pairs 〈hi, hj〉 generated from the k-best hypothe-
ses. A positive decision is a vote for hi, and a neg-
ative decision is a vote for hj . Also, the classifier
score can be used as a weighted vote. Hypotheses
are then ranked according to the number (sum) of
the (weighted) votes they get.6

We build our reranker using simple SVMs.7

6As shown by Collins and Duffy (2002), only the classifi-
cation of k hypotheses (paired with the empty one) is needed
in practice, thus the complexity is only O(k).

7Structural kernels, e.g., TKs, cannot be used in more ad-
vanced algorithms working in structured output spaces, e.g.,
SVMstruct. Indeed, to our knowledge, no one could suc-
cessfully find a general and exact solution for the argmax
equation, typically part of such advanced models, when struc-
tural kernels are used. Some approximate solutions for sim-
ple kernels, e.g., polynomial or gaussian kernels, are given in
(Joachims and Yu, 2009), whereas (Severyn and Moschitti,
2011; Severyn and Moschitti, 2012) provide solutions for
using the cutting-plane algorithm (which requires argmax
computation) with structural kernels but in binary SVMs.
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Since in our problem a pair of hypotheses 〈hi, hj〉
constitutes a data instance, we now need to define
the kernel between the pairs. However, notice that
DISCTK only works on a single pair.

Considering that our task is to decide whether
hi is better than hj , it can be convenient to
represent the pairs in terms of differences be-
tween the vectors of the two hypotheses, i.e.,
φK(hi)− φK(hj), where K (i.e., DISCTK) is de-
fined between two hypotheses (not on two pairs
of hypotheses). More specifically, to compute
this difference implicitly, we can use the follow-
ing kernel summation: PK(〈h1, h2〉, 〈h′1, h′2〉) =
(φK(h1) − φK(h2)) ◦ (φK(h′1) − φK(h′2)) =
K(h1, h

′
1)+K(h2, h

′
2)−K(h1, h

′
2)−K(h2, h

′
1).

In general, Preference Kernel (PK) works well
because it removes many identical features by tak-
ing differences between two huge implicit TK-
vectors. In our reranking framework, we also in-
clude traditional feature vectors in addition to the
trees. Therefore, each hypothesis h is represented
as a tuple 〈T,~v〉 composed of a tree T and a fea-
ture vector ~v. We then define a structural kernel
(i.e., similarity) between two hypotheses h and
h′ as follows: K(h, h′) = DiscTK(T, T ′) +
FV (~v,~v′), where DISCTK maps the DTs T and
T ′ to JRN or SRN and then applies STK, STKb or
PTK defined in Sections 2.2 and 3, and FV is a
standard kernel, e.g., linear, polynomial, gaussian,
etc., over feature vectors (see next section).

5.2 Feature Vectors

We also investigate the impact of traditional
(i.e., not subtree) features for reranking discourse
parses. Our feature vector comprises two types of
features that capture global properties of the DTs.

Basic Features. This set includes eight global
features. The first two are the probability and
the (inverse) rank of the DT given by the base
parser. These two features are expected to help
the reranker to perform at least as good as the base
parser. The other six features encode the structural
properties of the DT, which include depth of the
DT, number of nodes connecting two EDUs (i.e.,
SPANs in Figure 4), number of nodes connecting
two relational nodes, number of nodes connecting
a relational node and an EDU, number of nodes
that connects a relational node as left child and an
EDU as right child, and vice versa.

Relation Features. We encode the relations in
the DT as bag-of-relations (i.e., frequency count).

This will allow us to assess the impact of a flat rep-
resentation of the DT. Note that more important
relational features would be the subtree patterns
extracted from the DT. However, they are already
generated by TKs in a simpler way. See (Pighin
and Moschitti, 2009; Pighin and Moschitti, 2010)
for a way to extract the most relevant features from
a model learned in the kernel space.

6 Experiments

Our experiments aim to show that reranking of
discourse parses is a promising research direction,
which can improve the state-of-the-art. To achieve
this, we (i) compute the oracle accuracy of the k-
best parser, (ii) test different kernels for reranking
discourse parses by applying standard kernels to
our new structures, (iii) show the reranking perfor-
mance using the best kernel for different number
of hypotheses, and (iv) show the relative impor-
tance of features coming from different sources.

6.1 Experimental Setup

Data. We use the standard RST-DT corpus (Carl-
son et al., 2002), which comes with discourse an-
notations for 385 articles (347 for training and 38
for testing) from the Wall Street Journal. We ex-
tracted sentence-level DTs from a document-level
DT by finding the subtrees that exactly span over
the sentences. This gives 7321 and 951 sentences
in the training and test sets, respectively. Follow-
ing previous work, we use the same 18 coarser re-
lations defined by Carlson and Marcu (2001).

We create the training data for the reranker in a
5-fold cross-validation fashion.8 Specifically, we
split the training set into 5 equal-sized folds, and
train the parsing model on 4 folds and apply to the
rest to produce k most probable DTs for each text.
Then we generate and label the pairs (by compar-
ing with the gold) from the k most probable trees
as described in Section 5.1. Finally, we merge the
5 labeled folds to create the full training data.

SVM Reranker. We use SVM-light-TK to train
our reranking models,9 which enables the use
of tree kernels (Moschitti, 2006) in SVM-light
(Joachims, 1999). We build our new kernels for
reranking exploiting the standard built-in TK func-
tions, such as STK, STKb and PTK. We applied

8Note that our earlier experiments with a 2-fold cross vali-
dation process yielded only 50% of our current improvement.

9http://disi.unitn.it/moschitti/Tree-Kernel.htm
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a linear kernel to standard feature vectors as it
showed to be the best on our development set.

Metrics. The standard procedure to evaluate dis-
course parsing performance is to compute Pre-
cision, Recall and f -score of the unlabeled and
labeled metrics proposed by Marcu (2000b).10

Specifically, the unlabeled metric Span measures
how accurate the parser is in finding the right
structure (i.e., skeleton) of the DT, while the la-
beled metrics Nuclearity and Relation measure the
parser’s ability to find the right labels (nuclearity
and relation) in addition to the right structure. Op-
timization of the Relation metric is considered to
be the hardest and the most desirable goal in dis-
course parsing since it gives aggregated evaluation
on tree structure and relation labels. Therefore,
we measure the oracle accuracy of the k-best dis-
course parser based on the f -scores of the Relation
metric, and our reranking framework aims to op-
timize the Relation metric.11 Specifically, the ora-
cle accuracy for k-best parsing is measured as fol-

lows: ORACLE =
∑N

i=1 maxk
j=1 f−scorer(gi,h

j
i)

N , where
N is the total number of texts (sentences or docu-
ments) evaluated, gi is the gold DT annotation for
text i, hji is the jth parse hypothesis generated by
the k-best parser for text i, and f -scorer(gi, h

j
i ) is

the f -score accuracy of hypothesis hji on the Re-
lation metric. In all our experiments we report the
f -scores of the Relation metric.

6.2 Oracle Accuracy

Table 1 presents the oracle scores of the k-
best intra-sentential parser PAR-S on the standard
RST-DT test set. The 1-best result corresponds
to the accuracy of the base parser (i.e., 79.77%).
The 2-best shows dramatic oracle-rate improve-
ment (i.e., 4.65% absolute), suggesting that the
base parser often generates the best tree in its
top 2 outputs. 5-best increases the oracle score
to 88.09%. Afterwards, the increase in accuracy
slows down, achieving, e.g., 90.37% and 92.57%
at 10-best and 20-best, respectively.

The results are quite different at the document
level as Table 2 shows the oracle scores of the k-
best document-level parser PAR-D.12 The results

10Precision, Recall and f -score are the same when the dis-
course parser uses manual discourse segmentation. Since all
our experiments in this paper are based on manual discourse
segmentation, we only report the f -scores.

11It is important to note that optimizing Relation metric
may also result in improved Nuclearity scores.

12For document-level parsing, Joty et al. (2013) pro-

k 1 2 5 10 15 20
PAR-S 79.77 84.42 88.09 90.37 91.74 92.57

Table 1: Oracle scores as a function of k of k-best sentence-
level parses on RST-DT test set.

k 1 2 5 10 15 20
PAR-D 55.83 56.52 56.91 57.23 57.54 57.65

Table 2: Oracle scores as a function of k of k-best
document-level parses on RST-DT test set.

suggest that the best tree is often missing in the
top k parses, and the improvement in oracle-rate is
very little as compared to the sentence-level pars-
ing. The 2-best and the 5-best improve over the
base accuracy by only 0.7% and 1.0%, respec-
tively. The improvement becomes even lower for
larger k. For example, the gain from 20-best to
30-best parsing is only 0.09%. This is not sur-
prising because generally document-level DTs are
big with many constituents, and only a very few
of them change from k-best to k+1-best parsing.
These small changes do not contribute much to
the overall f -score accuracy.13 In summary, the
results in Tables 1 and 2 demonstrate that a k-best
reranker can potentially improve the parsing accu-
racy at the sentence level, but may not be a suit-
able option for improving parsing at the document
level. In the following, we report our results for
reranking sentence-level discourse parses.

6.3 Performance of Different DISCTKs

Section 3 has pointed out that different DISCTKs
can be obtained by specifying the TK type (e.g.,
STK, STKb, PTK) and the mapping φM (i.e.,
JRN, SRN) in the overall kernel function

(
φTK ◦

φM
)
(o1)·(φTK◦φM)(o2). Table 3 reports the per-

formance of such model compositions using the 5-
best hypotheses on the RST-DT test set. Addition-
ally, it also reports the accuracy for the two ver-
sions of JRN and SRN, i.e., Bigram and All. From
these results, we can note the following.

Firstly, the kernels generally perform better on
Bigram than All lexicalization. This suggests that
using all the words from the text spans (i.e., EDUs)
produces sparse models.

pose two approaches to combine intra- and multi-sentential
parsers, namely 1S-1S (1 Sentence-1 Subtree) and Sliding
window. In this work we extend 1S-1S to k-best document-
level parser PAR-D since it is not only time efficient but it
also achieves better results on the Relation metric.

13Note that Joty et al. (2012; 2013) report lower f -scores
both at the sentence level (i.e., 77.1% as opposed to our
79.77%) and at the document level (i.e., 55.73% as opposed
to our 55.83%). We fixed a crucial bug in their (1-best) pars-
ing algorithm, which accounts for the improved performance.
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φTK ◦ φM JRN SRN
Bigram All Bigram All

STK 81.28 80.04 82.15 80.04
STKb 81.35 80.28 82.18 80.25
PTK 81.63 78.50 81.42 78.25

Table 3: Reranking performance of different discourse tree
kernels on different representations.

Secondly, while the tree kernels perform sim-
ilarly on the JRN representation, STK performs
significantly better (p-value < 0.01) than PTK

on SRN.14 This result is interesting as it pro-
vides indications of the type of DT fragments use-
ful for improving parsing accuracy. As pointed
out in Section 2.2, PTK includes all features
generated by STK, and additionally, it includes
fragments whose nodes can have any subsets of
the children they have in the original DT. Since
this does not improve the accuracy, we speculate
that complete fragments, e.g., [CAUSE [ATTRI-
BUTION][ELABORATION]] are more meaningful
than the partial ones, e.g., [CAUSE [ATTRIBU-
TION]] and [CAUSE [ELABORATION]], which
may add too much uncertainty on the signature
of the relations contained in the DT. We verified
this hypothesis by running an experiment with
PTK constraining it to only generate fragments
whose nodes preserve all or none of their children.
The accuracy of such fragments approached the
ones of STK, suggesting that relation information
should be used as a whole for engineering features.

Finally, STKb is slightly (but not significantly)
better than STK suggesting that the lexical infor-
mation is already captured by the base parser.

Note that the results in Table 3 confirms many
other experiments we carried out on several devel-
opment sets. For any run: (i) STK always performs
as well as STKb, (ii) STK is always better than
PTK, and (iii) SRN is always better than JRN. In
what follows, we show the reranking performance
based on STK applied to SRN with Bigram.

6.4 Insights on DISCTK-based Reranking
Table 4 reports the performance of our reranker
(RR) in comparison with the oracle (OR) accuracy
for different values of k, where we also show the
corresponding relative error rate reduction (ERR)
with respect to the baseline. To assess the general-
ity of our approach, we evaluated our reranker on
both the standard test set and the entire training set
using 5-fold cross validation.15

14Statistical significance is verified using paired t-test.
15The reranker was trained on 4 folds and tested on the rest

Baseline Basic feat. + Rel. feat. + Tree
79.77 79.84 79.81 82.15

Table 5: Comparison of features from different sources for
5-best discourse reranking.

(Joty et al., 2013) With Reranker
PAR-D 55.8 57.3

Table 6: Document-level parsing results with 5-best
sentence-level discourse reranker.

We note that: (i) the best result on the standard
test set is 82.15% for k = 4 and 5, which gives
an ERR of 11.76%, and significantly (p-value <
0.01) outperforms the baseline, (ii) the improve-
ment is consistent when we move from standard
test set to 5-folds, (iii) the best result on the 5-folds
is 80.86 for k = 6, which is significantly (p-value
< 0.01) better than the baseline 78.57, and gives
an ERR of 11.32%. We also experimented with
other values of k in both training and test sets (also
increasing k only in the test set), but we could not
improve over our best result. This suggests that
outperforming the baseline (which in our case is
the state of the art) is rather difficult.16

In this respect, we also investigated the im-
pact of traditional ranking methods based on fea-
ture vectors, and compared it with our TK-based
model. Table 5 shows the 5-best reranking accu-
racy for different feature subsets. The Basic fea-
tures (Section 5.2) alone do not significantly im-
prove over the Baseline. The only relevant fea-
tures are the probability and the rank of each hy-
pothesis, which condense all the information of
the local model (TKs models always used them).

Similarly, adding the relations as bag-of-
relations in the vector (Rel. feat.) does not pro-
vide any gain, whereas the relations encoded in
the tree fragments (Tree) gives improvement. This
shows the importance of using structural depen-
dencies for reranking discourse parses.

Finally, Table 6 shows that if we use our
sentence-level reranker in the document-level
parser of Joty et al. (2013), the accuracy of the lat-
ter increases from 55.8% to 57.3%, which is a sig-
nificant improvement (p < 0.01), and establishes
a new state-of-the-art for document-level parsing.

6.5 Error Analysis

We looked at some examples where our reranker
failed to identify the best DT. Unsurprisingly, it

16The human agreement on sentence-level parsing is 83%.
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Standard test set 5-folds (average)
k=1 k=2 k=3 k=4 k=5 k=6 k=1 k=2 k=3 k=4 k=5 k=6

RR 79.77 81.08 81.56 82.15 82.15 82.11 78.57 79.76 80.28 80.68 80.80 80.86
ERR - 6.48 8.85 11.76 11.76 11.57 - 5.88 8.45 10.43 11.02 11.32
OR 79.77 84.42 86.55 87.68 88.09 88.75 78.57 83.20 85.13 86.49 87.35 88.03

Table 4: Reranking performance (RR) in comparison with oracle (OR) accuracy for different values of k on the standard
testset and 5-folds of RST-DT. Second row shows the relative error rate reduction (ERR).

happens many times for small DTs containing
only two or three EDUs, especially when the re-
lations are semantically similar. Figure 9 presents
such a case, where the reranker fails to rank the
DT with Summary ahead of the DT with Elabo-
ration. Although we understand that the reranker
lacks enough structural context to distinguish the
two relations in this example, we expected that in-
cluding the lexical items (e.g., (CFD)) in our DT
representation could help. However, similar short
parenthesized texts are also used to elaborate as
in Senate Majority Leader George Mitchell (D.,
Maine), where the text (D., Maine) (i.e., Democrat
from state Maine) elaborates its preceding text.
This confuses our reranker. We also found er-
ror examples where the reranker failed to distin-
guish between Background and Elaboration, and
between Cause and Elaboration. This suggests
that we need rich semantic representation of the
text to improve our reranker further.

7 Related Work
Early work on discourse parsing applied hand-
coded rules based on discourse cues and surface
patterns (Marcu, 2000a). Supervised learning was
first attempted by Marcu (2000b) to build a shift-
reduce discourse parser. This work was then con-
siderably improved by Soricut and Marcu (2003).
They presented probabilistic generative models for
sentence-level discourse parsing based on lexico-
syntactic patterns. Sporleder and Lapata (2005)
investigated the necessity of syntax in discourse
analysis. More recently, Hernault et al. (2010)
presented the HILDA discourse parser that itera-
tively employs two SVM classifiers in pipeline to
build a DT in a greedy way. Feng and Hirst (2012)
improved the HILDA parser by incorporating rich
linguistic features, which include lexical seman-
tics and discourse production rules.

Joty et al. (2013) achieved the best prior results
by (i) jointly modeling the structure and the la-
bel of a DT constituent, (ii) performing optimal
rather than greedy decoding, and (iii) discriminat-
ing between intra- and multi-sentential discourse
parsing. However, their model does not con-

Same-UnitSummary

begins trading today.On the Big Board, Crawford & Co., Atlanta, (CFD)

Elaboration

Figure 9: An error made by our reranker.

sider long range dependencies between DT con-
stituents, which are encoded by our kernels. Re-
garding the latter, our work is surely inspired by
(Collins and Duffy, 2002), which uses TK for syn-
tactic parsing reranking or in general discrimina-
tive reranking, e.g., (Collins and Koo, 2005; Char-
niak and Johnson, 2005; Dinarelli et al., 2011).
However, such excellent studies do not regard
discourse parsing, and in absolute they achieved
lower improvements than our methods.

8 Conclusions and Future Work
In this paper, we have presented a discriminative
approach for reranking discourse trees generated
by an existing discourse parser. Our reranker uses
tree kernels in SVM preference ranking frame-
work to effectively capture the long range struc-
tural dependencies between the constituents of a
discourse tree. We have shown the reranking per-
formance for sentence-level discourse parsing us-
ing the standard tree kernels (i.e., STK and PTK)
on two different representations (i.e., JRN and
SRN) of the discourse tree, and compare it with
the traditional feature vector-based approach. Our
results show that: (i) the reranker improves only
when it considers subtree features computed by
the tree kernels, (ii) SRN is a better representation
than JRN, (iii) STK performs better than PTK for
reranking discourse trees, and (iv) our best result
outperforms the state-of-the-art significantly.

In the future, we would like to apply our
reranker to the document-level parses. However,
this will require a better hypotheses generator.
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Abstract

Text-level discourse parsing remains a
challenge: most approaches employ fea-
tures that fail to capture the intentional, se-
mantic, and syntactic aspects that govern
discourse coherence. In this paper, we pro-
pose a recursive model for discourse pars-
ing that jointly models distributed repre-
sentations for clauses, sentences, and en-
tire discourses. The learned representa-
tions can to some extent learn the seman-
tic and intentional import of words and
larger discourse units automatically,. The
proposed framework obtains comparable
performance regarding standard discours-
ing parsing evaluations when compared
against current state-of-art systems.

1 Introduction

In a coherent text, units (clauses, sentences, and
larger multi-clause groupings) are tightly con-
nected semantically, syntactically, and logically.
Mann and Thompson (1988) define a text to be
coherent when it is possible to describe clearly
the role that each discourse unit (at any level of
grouping) plays with respect to the whole. In a
coherent text, no unit is completely isolated. Dis-
course parsing tries to identify how the units are
connected with each other and thereby uncover the
hierarchical structure of the text, from which mul-
tiple NLP tasks can benefit, including text sum-
marization (Louis et al., 2010), sentence compres-
sion (Sporleder and Lapata, 2005) or question-
answering (Verberne et al., 2007).

Despite recent progress in automatic discourse
segmentation and sentence-level parsing (e.g.,
(Fisher and Roark, 2007; Joty et al., 2012; Sori-
cut and Marcu, 2003), document-level discourse
parsing remains a significant challenge. Recent
attempts (e.g., (Hernault et al., 2010b; Feng and

Hirst, 2012; Joty et al., 2013)) are still consid-
erably inferior when compared to human gold-
standard discourse analysis. The challenge stems
from the fact that compared with sentence-level
dependency parsing, the set of relations between
discourse units is less straightforward to define.
Because there are no clause-level ‘parts of dis-
course’ analogous to word-level parts of speech,
there is no discourse-level grammar analogous to
sentence-level grammar. To understand how dis-
course units are connected, one has to understand
the communicative function of each unit, and the
role it plays within the context that encapsulates it,
taken recursively all the way up for the entire text.
Manually developed features relating to words and
other syntax-related cues, used in most of the re-
cent prevailing approaches (e.g., (Feng and Hirst,
2012; Hernault et al., 2010b)), are insufficient for
capturing such nested intentionality.

Recently, deep learning architectures have been
applied to various natural language processing
tasks (for details see Section 2) and have shown
the advantages to capture the relevant semantic
and syntactic aspects of units in context. As word
distributions are composed to form the meanings
of clauses, the goal is to extend distributed clause-
level representations to the single- and multi-
sentence (discourse) levels, and produce the hier-
archical structure of entire texts.

Inspired by this idea, we introduce in this pa-
per a deep learning approach for discourse pars-
ing. The proposed parsing algorithm relies on
a recursive neural network to decide (1) whether
two discourse units are connected and if so (2)
by what relation they are connected. Concretely,
the parsing algorithm takes as input a document of
any length, and first obtains the distributed repre-
sentation for each of its sentences using recursive
convolution based on the sentence parse tree. It
then proceeds bottom-up, applying a binary clas-
sifier to determine the probability of two adjacent
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discourse units being merged to form a new sub-
tree followed by a multi-class classifier to select
the appropriate discourse relation label, and cal-
culates the distributed representation for the sub-
tree so formed, gradually unifying subtrees un-
til a single overall tree spans the entire sentence.
The compositional distributed representation en-
ables the parser to make accurate parsing decisions
and capture relations between different sentences
and units. The binary and multi-class classifiers,
along with parameters involved in convolution, are
jointly trained from a collection of gold-standard
discourse structures.

The rest of this paper is organized as follows.
We present related work in Section 2 and de-
scribe the RST Discourse Treebank in Section 3.
The sentence convolution approach is illustrated in
Section 4 and the discourse parser model in Sec-
tion 5. We report experimental results in Section 6
and conclude in Section 7.

2 Related Work

2.1 Discourse Analysis and Parsing

The basis of discourse structure lies in the recog-
nition that discourse units (minimally, clauses) are
related to one another in principled ways, and that
the juxtaposition of two units creates a joint mean-
ing larger than either unit’s meaning alone. In a
coherent text this juxtaposition is never random,
but serves the speaker’s communicative goals.

Considerable work on linguistic and computa-
tional discourse processing in the 1970s and 80s
led to the development of several proposals for re-
lations that combine units; for a compilation see
(Hovy and Maier, 1997). Of these the most influ-
ential is Rhetorical Structure Theory RST (Mann
and Thompson, 1988) that defines about 25 rela-
tions, each containing semantic constraints on its
component parts plus a description of the overall
functional/semantic effect produced as a unit when
the parts have been appropriately connected in the
text. For example, the SOLUTIONHOOD relation
connects one unit describing a problem situation
with another describing its solution, using phrases
such as “the answer is”; in successful communi-
cation the reader will understand that a problem is
described and its solution is given.

Since there is no syntactic definition of a prob-
lem or solution (they can each be stated in a sin-
gle clause, a paragraph, or an entire text), one has
to characterize discourse units by their commu-

nicative (rhetorical) function. The functions are
reflected in text as signals of the author’s inten-
tions, and take various forms (including expres-
sions such as “therefore”, “for example”, “the an-
swer is”, and so on; patterns of tense or pronoun
usage; syntactic forms; etc.). The signals govern
discourse blocks ranging from a clause to an en-
tire text , each one associated with some discourse
relation.

In order to build a text’s hierarchical structure,
a discourse parser needs to recognize these signals
and use them to appropriately compose the rela-
tionship and nesting. Early approaches (Marcu,
2000a; LeThanh et al., 2004) rely mainly on overt
discourse markers (or cue words) and use hand-
coded rules to build text structure trees, bottom-up
from clauses to sentences to paragraphs. . . . Since
a hierarchical discourse tree structure is analo-
gous to a constituency based syntactic tree, mod-
ern research explored syntactic parsing techniques
(e.g., CKY) for discourse parsing based on mul-
tiple text-level or sentence-level features (Soricut
and Marcu, 2003; Reitter, 2003; Baldridge and
Lascarides, 2005; Subba and Di Eugenio, 2009;
Lin et al., 2009; Luong et al., 2014).

A recent prevailing idea for discourse parsing
is to train two classifiers, namely a binary struc-
ture classifier for determining whether two adja-
cent text units should be merged to form a new
subtree, followed by a multi-class relation classi-
fier for determining which discourse relation label
should be assigned to the new subtree. The idea is
proposed by Hernault and his colleagues (Duverle
and Prendinger, 2009; Hernault et al., 2010a) and
followed by other work using more sophisticated
features (Feng and Hirst, 2012; Hernault et al.,
2010b). Current state-of-art performance for re-
lation identification is achieved by the recent rep-
resentation learning approach proposed by (Ji and
Eisenstein, 2014). The proposed framework pre-
sented in this paper is similar to (Ji and Eisenstein,
2014) for transforming the discourse units to the
abstract representations.

2.2 Recursive Deep Learning

Recursive neural networks constitute one type of
deep learning frameworks which was first pro-
posed in (Goller and Kuchler, 1996). The recur-
sive framework relies and operates on structured
inputs (e.g., a parse tree) and computes the rep-
resentation for each parent based on its children
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iteratively in a bottom-up fashion. A series of vari-
ations of RNN has been proposed to tailor differ-
ent task-specific requirements, including Matrix-
Vector RNN (Socher et al., 2012) that represents
every word as both a vector and a matrix, or Recur-
sive Neural Tensor Network (Socher et al., 2013)
that allows the model to have greater interactions
between the input vectors. Many tasks have ben-
efited from the recursive framework, including
parsing (Socher et al., 2011b), sentiment analysis
(Socher et al., 2013), textual entailment (Bowman,
2013), segmentation (Wang and Mansur, 2013;
Houfeng et al., 2013), and paraphrase detection
(Socher et al., 2011a).

3 The RST Discourse Treebank

There are today two primary alternative discourse
treebanks suitable for training data: the Rhetor-
ical Structure Theory Discourse Treebank RST-
DT (Carlson et al., 2003) and the Penn Discourse
Treebank (Prasad et al., 2008). In this paper, we
select the former. In RST (Mann and Thompson,
1988), a coherent context or a document is repre-
sented as a hierarchical tree structure, the leaves
of which are clause-sized units called Elementary
Discourse Units (EDUs). Adjacent nodes (siblings
in the tree) are linked with discourse relations that
are either binary (hypotactic) or multi-child (parat-
actic). One child of each hypotactic relation is al-
ways more salient (called the NUCLEUS); its sib-
ling (the SATELLITE) is less salient compared and
may be omitted in summarization. Multi-nuclear
relations (e.g., CONJUNCTION) exhibit no distinc-
tion of salience between the units.

The RST Discourse Treebank contains 385 an-
notated documents (347 for training and 38 for
testing) from the Wall Street Journal. A total
of 110 fine-grained relations defined in (Marcu,
2000b) are used for tagging relations in RST-DT.
They are subtypes of 18 original high-level RST
categories. For fair comparison with existing sys-
tems, we use in this work the 18 coarse-grained re-
lation classes, which with nuclearity attached form
a set of 41 distinct relations. Non-binary relations
are converted into a cascade of right-branching bi-
nary relations.

Conventionally, discourse parsing in RST-DT
involves the following sub-tasks: (1) EDU seg-
mentation to segment the raw text into EDUs, (2)
tree-building. Since the segmentation task is es-
sentially clause delimitation and hence relatively

easy (with state-of-art accuracy at most 95%),
we focus on the latter problem. We assume that
the gold-standard EDU segmentations are already
given, as assumed in other past work (Feng and
Hirst, 2012).

4 EDU Model

In this section, we describe how we compute
the distributed representation for a given sentence
based on its parse tree structure and contained
words. Our implementation is based on (Socher
et al., 2013). As the details can easily be found
there, we omit them for brevity.

Let s denote any given sentence, comprised of a
sequence of tokens s = {w1, w2, ..., wns}, where
ns denotes the number of tokens in s. Each to-
ken w is associated with a specific vector embed-
ding ew = {e1

w, e
2
w, ..., e

K
w }, where K denotes the

dimension of the word embedding. We wish to
compute the vector representation hs for current
sentence, where hs = {h1

s, h
2
s, ..., h

K
s }.

Parse trees are obtained using the Stanford
Parser1, and each clause is treated as an EDU. For
a given parent p in the tree and its two children c1

(associated with vector representation hc1) and c2

(associated with vector representation hc2), stan-
dard recursive networks calculate the vector for
parent p as follows:

hp = f(W · [hc1 , hc2 ] + b) (1)

where [hc1 , hc2 ] denotes the concatenating vector
for children representations hc1 and hc2 ; W is a
K × 2K matrix and b is the 1 × K bias vector;
and f(·) is the function tanh. Recursive neural
models compute parent vectors iteratively until the
root node’s representation is obtained, and use the
root embedding to represent the whole sentence.

5 Discourse Parsing

Since recent work (Feng and Hirst, 2012; Hernault
et al., 2010b) has demonstrated the advantage of
combining the binary structure classifier (deter-
mining whether two adjacent text units should be
merged to form a new subtree) with the multi-class
classifier (determining which discourse relation la-
bel to assign to the new subtree) over the older
single multi-class classifier with the additional la-
bel NO-REL, our approach follows the modern

1http://nlp.stanford.edu/software/
lex-parser.shtml
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Figure 1: RST Discourse Tree Structure.

strategy but trains binary and multi-class classi-
fiers jointly based on the discourse structure tree.

Figure 2 illustrates the structure of a discourse
parse tree. Each node e in the tree is associated
with a distributed vector he. e1, e2, e3 and e6

constitute the leaves of trees, the distributed vec-
tor representations of which are assumed to be al-
ready obtained from convolution in Section 4. Let
Nr denote the number of relations and we have
Nr = 41.

5.1 Binary (Structure) Classification

In this subsection, we train a binary (structure)
classifier, which aims to decide whether two EDUs
or spans should be merged during discourse tree
reconstruction.

Let tbinary(ei, ej) be the binary valued variable
indicating whether ei and ej are related, or in other
words, whether a certain type of discourse rela-
tions holds between ei and ej . According to Fig-
ure 2, the following pairs constitute the training
data for binary classification:

tbinary(e1, e2) = 1, tbinary(e3, e4) = 1,
tbinary(e2, e3) = 0, tbinary(e3, e6) = 0,
tbinary(e5, e6) = 1

To train the binary classifier, we adopt a three-
layer neural network structure, i.e., input layer,
hidden layer, and output layer. Let H = [hei , hej ]
denote the concatenating vector for two spans ei
and ej . We first project the concatenating vector
H to the hidden layer withNbinary hidden neurons.
The hidden layer convolutes the input with non-
linear tanh function as follows:

L
binary
(ei,ej)

= f(Gbinary ∗ [hei , hej ] + bbinary)

where Gbinary is an Nbinary ∗ 2K convolution ma-
trix and bbinary denotes the bias vector.

The output layer takes as input Lbinary
(ei,ej)

and gen-
erates a scalar using the linear function Ubinary ·
L

binary
(ei,ej)

+ b. A sigmod function is then adopted to
project the value to a [0,1] probability space. The
execution at the output layer can be summarized
as:

p[tbinary(ei, ej) = 1] = g(Ubinary ·Lbinary
(ei,ej)

+b∗binary)
(2)

where Ubinary is an Nbinary × 1 vector and b∗binary
denotes the bias. g(·) is the sigmod function.

5.2 Multi-class Relation Classification
If tbinary(ei, ej) is determined to be 1, we next
use variable r(ei, ej) to denote the index of rela-
tion that holds between ei and ej . A multi-class
classifier is train based on a three-layer neural net-
work, in the similar way as binary classification in
Section 5.1. Concretely, a matrix GMulti and bias
vector bMulti are first adopted to convolute the con-
catenating node vectors to the hidden layer vector
Lmulti

(ei,ej)
:

Lmulti
(ei,ej)

= f(Gmulti ∗ [hei , hej ] + bmulti) (3)

We then compute the posterior probability over
labels given the hidden layer vector L using the
softmax and obtain the Nr dimensional probabil-
ity vector P(e1,e2) for each EDU pair as follows:

S(ei,ej) = Umulti · Lmulti
(ei,ej)

(4)

P(e1,e2)(i) =
exp(S(e1,e2)(i))∑
k exp(S(e1,e2))(k)

(5)

where Umulti is the Nr × 2K matrix. The ith ele-
ment in P(e1,e2) denotes the probability that ith re-
lation holds between ei and ej . To note, binary and
multi-class classifiers are trained independently.

5.3 Distributed Vector for Spans
What is missing in the previous two subsections
are the distributed vectors for non-leaf nodes (i.e.,
e4 and e5 in Figure 1), which serve as structure and
relation classification. Again, we turn to recursive
deep learning network to obtain the distributed
vector for each node in the tree in a bottom-up
fashion.

Similar as for sentence parse-tree level compo-
sitionally, we extend a standard recursive neural
network by associating each type of relations r
with one specific K×2K convolution matrix Wr.
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Figure 2: System Overview.

The representation for each node within the tree is
calculated based on the representations for its chil-
dren in a bottom-up fashion. Concretely, for a par-
ent node p, given the distributed representation hei
for left child, hej for right child, and the relation
r(e1, e2), its distributed vector hp is calculated as
follows:

hp = f(Wr(e1,e2) · [hei , hej ] + br(e1,e2)) (6)

where br(e1,e2) is the bias vector and f(·) is the
non-linear tanh function.

To note, our approach does not make any dis-
tinction between within-sentence text spans and
cross-sentence text spans, different from (Feng
and Hirst, 2012; Joty et al., 2013)

5.4 Cost Function
The parameters to optimize include sentence-
level convolution parameters [W , b],
discourse-level convolution parameters
[{Wr}, {br}], binary classification parameters
[Gbinary, bbinary, Ubinary, b

∗
binary], and multi-class

parameters [Gmulti, bmulti, Umulti].
Suppose we have M1 binary training samples

and M2 multi-class training examples (M2 equals
the number of positive examples in M1, which
is also the non-leaf nodes within the training dis-
course trees). The cost function for our framework
with regularization on the training set is given by:

J(Θbinary) =
∑

(ei,ej)∈{binary}
Jbinary(ei, ej)

+Qbinary ·
∑

θ∈Θbinary

θ2

(7)

J(Θmulti) =
∑

(ei,ej)∈{multi}
Jmulti(ei, ej)

+Qmulti ·
∑

θ∈Θmulti

θ2

(8)
where

Jbinary(ei, ej) = −t(ei, ej) log p(t(ei, ej) = 1)
− (1− t(ei, ej)) log[1− p(t(ei, ej) = 1)]

Jmulti(ei, ej) = − log[p(r(ei, ej) = r)]
(9)

5.5 Backward Propagation
The derivative for parameters involved is com-
puted through backward propagation. Here we
illustrate how we compute the derivative of
Jmulti(ei, ej) with respect to different parameters.

For each pair of nodes (ei, ej) ∈ multi, we
associate it with a Nr dimensional binary vector
R(ei, ej), which denotes the ground truth vector
with a 1 at the correct label r(ei, ej) and all other
entries 0. Integrating softmax error vector, for any
parameter θ, the derivative of Jmulti(ei, ej) with re-
spect to θ is given by:

∂Jmulti(ei, ej)
∂θ

= [P(ei,ej) −R(ei,ej)]⊗
∂S(ei,ej)

∂θ
(10)

where ⊗ denotes the Hadamard product between
the two vectors. Each training pair recursively
backpropagates its error to some node in the dis-
course tree through [{Wr}, {br}], and then to
nodes in sentence parse tree through [W, b], and
the derivatives can be obtained according to stan-
dard backpropagation (Goller and Kuchler, 1996;
Socher et al., 2010).
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5.6 Additional Features

When determining the structure/multi relation be-
tween individual EDUs, additional features are
also considered, the usefulness of which has been
illustrated in a bunch of existing work (Feng and
Hirst, 2012; Hernault et al., 2010b; Joty et al.,
2012). We consider the following simple text-level
features:

• Tokens at the beginning and end of the EDUs.

• POS at the beginning and end of the EDUs.

• Whether two EDUs are in the same sentence.

5.7 Optimization

We use the diagonal variant of AdaGrad (Duchi et
al., 2011) with minibatches, which is widely ap-
plied in deep learning literature (e.g.,(Socher et
al., 2011a; Pei et al., 2014)). The learning rate
in AdaGrad is adapted differently for different pa-
rameters at different steps. Concretely, let giτ de-
note the subgradient at time step t for parameter
θi obtained from backpropagation, the parameter
update at time step t is given by:

θτ = θτ−1 − α∑τ
t=0

√
gi2τ

giτ (11)

where α denotes the learning rate and is set to 0.01
in our approach.

Elements in {Wr}, W , Gbinary, Gmulti, Ubinary,
Umulti are initialized by randomly drawing from
the uniform distribution [−ε, ε], where ε is calcu-
lated as suggested in (Collobert et al., 2011). All
bias vectors are initialized with 0. Word embed-
dings {e} are borrowed from Senna (Collobert et
al., 2011; Collobert, 2011).

5.8 Inference

For inference, the goal is to find the most proba-
ble discourse tree given the EDUs within the doc-
ument. Existing inference approach basically in-
clude the approach adopted in (Feng and Hirst,
2012; Hernault et al., 2010b) that merges the most
likely spans at each step and SPADE (Fisher and
Roark, 2007) that first finds the tree structure that
is globally optimal, then assigns the most probable
relations to the internal nodes.

In this paper, we implement a probabilistic
CKY-like bottom-up algorithm for computing the
most likely parse tree using dynamic program-
ming as are adopted in (Joty et al., 2012; Joty

et al., 2013; Jurafsky and Martin, 2000) for the
search of global optimum. For a document with
n EDUs, as different relations are characterized
with different compositions (thus leading to dif-
ferent vectors), we use a Nr×n×n dynamic pro-
gramming table Pr, the cell Pr[r, i, j] of which
represents the span contained EDUs from i to j
and stores the probability that relation r holds be-
tween the two spans within i to j. Pr[r, i, j] is
computed as follows:

Pr[r, i, j] =maxr1,r2,kPr[r1, i, k] · Pr[r2, k, j]
×P (tbinary(e[i,k], e[k,j]) = 1)

×P (r(e[i,k], e[k,j]) = 1)
(12)

At each merging step, a distributed vector for the
merged point is calculated according to Eq. 13 for
different relations. The CKY-like algorithms finds
the global optimal. To note, the worst-case run-
ning time of our inference algorithm is O(N2

r n
3),

where n denotes the number of sentences within
the document, which is much slower than the
greedy search. In this work, for simplification, we
simplify the framework by maintaining the top 10
options at each step.

6 Experiments

A measure of the performance of the system is
realized by comparing the structure and labeling
of the RS-tree produced by our algorithm to gold-
standard annotations.

Standard evaluation of discourse parsing output
computes the ratio of the number of identical tree
constituents shared in the generated RS-trees and
the gold-standard trees against the total number
of constituents in the generated discourse trees2,
which is further divided to three matrices: Span
(on the blank tree structure), nuclearity (on the
tree structure with nuclearity indication), and rela-
tion (on the tree structure with rhetorical relation
indication but no nuclearity indication).

The nuclearity and relation decisions are made
based on the multi-class output labels from the
deep learning framework. As we do not consider
nuclearity when classifying different discourse re-
lations, the two labels attribute[N][S] and at-
tribute[S][N] made by multi-class classifier will
be treated as the same relation label ATTRIBUTE.

2Conventionally, evaluation matrices involve precision,
recall and F-score in terms of the comparison between tree
structures. But these are the same when manual segmenta-
tion is used (Marcu, 2000b).

2066



Approach Span Nuclearity Relation
HILDA 75.3 60.0 46.8

Joty et al. 82.5 68.4 55.7
Feng and Hirst 85.7 71.0 58.2

Ji and Eisenstein 82.1 71.1 61.6
Unified (with feature) 82.0 70.0 57.1

Ours (no feature) 82.4 69.2 56.8
Ours (with feature) 84.0 70.8 58.6

human 88.7 77.7 65.7

Table 1: Performances for different approaches.
Performances for baselines are reprinted from
(Joty et al., 2013; Feng and Hirst, 2014; Ji and
Eisenstein, 2014).

Also, we do not train a separate classifier for NU-
CLEUS and SATELLITE identification. The nucle-
arity decision is made based on the relation type
produced by the multi-class classifier.

6.1 Parameter Tuning
The regularization parameter Q constitutes the
only parameter to tune in our framework. We tune
it on the 347 training documents. Concretely, we
employ a five-fold cross validation on the RST
dataset and tune Q on 5 different values: 0.01,
0.1, 0.5, 1.5, 2.5. The final model was tested on
the testing set after parameter tuning.

6.2 Baselines
We compare our model against the following
currently prevailing discourse parsing baselines:

HILDA A discourse parser based on support
vector machine classification introduced by Her-
nault et al. (Hernault et al., 2010b). HILDA uses
the binary and multi-class classifier to reconstruct
the tree structure in a greedy way, where the
most likely nodes are merged at each step. The
results for HILDA are obtained by running the
system with default settings on the same inputs
we provided to our system.

Joty et al The discourse parser introduced by
Joty et al. (Joty et al., 2013). It relies on CRF
and combines intra-sentential and multi-sentential
parsers in two different ways. Joty et al. adopt
the global optimal inference as in our work. We
reported the performance from their paper (Joty et
al., 2013).

Feng and Hirst The linear-time discourse
parser introduced in (Feng and Hirst, 2014) which

relies on two linear-chain CRFs to obtain a se-
quence of discourse constituents.

Ji and Eisenstein The shift-reduce discourse
parser introduced in (Ji and Eisenstein, 2014)
which parses document by relying on the dis-
tributed representations obtained from deep learn-
ing framework.

Additionally, we implemented a simplified ver-
sion of our model called unified where we use
a unified convolutional function with unified pa-
rameters [Wsen, bsen] for span vector computation.
Concretely, for a parent node p, given the dis-
tributed representation hei for left child, hej for
right child, and the relation r(e1, e2), rather than
taking the inter relation between two children, its
distributed vector hp is calculated:

hp = f(Wsen · [hei , hej ] + bsen) (13)

6.3 Performance
Performances for different models approaches re-
ported in Table 1. And as we can observe, al-
though the proposed framework obtains compa-
rable result compared with existing state-of-state
performances regarding all evaluating parameters
for discourse parsing. Specifically, as for the three
measures, no system achieves top performance on
all three, though some systems outperform all oth-
ers for one of the measures. The proposed system
achieves high overall performance on all three, al-
though it does not achieve top score on any mea-
sure. The system gets a little bit performance
boost by considering text-level features illustrated
in Section 5.6. The simplified version of the orig-
inal model underperforms against the original ap-
proach due to lack of expressive power in convo-
lution. Performance plummets when different re-
lations are uniformly treated, which illustrates the
importance of taking into consideration different
types of relations in the span convolution proce-
dure.

7 Conclusion

In this paper, we describe an RST-style text-level
discourse parser based on a neural network model.
The incorporation of sentence-level distributed
vectors for discourse analysis obtains compara-
ble performance compared with current state-of-
art discourse parsing system.

Our future work will focus on extending
discourse-level distributed presentations to related
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tasks, such as implicit discourse relation identifi-
cation or dialogue analysis. Further, once the tree
structure for a document can be determined, the
vector for the entire document can be obtained
in bottom-up fashion, as in this paper. One can
now investigate whether the discourse parse tree
is useful for acquiring a single document-level
vector representation, which would benefit mul-
tiple tasks, such as document classification or
macro-sentiment analysis.
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Abstract

We present a novel method for coreference
resolution error analysis which we apply
to perform a recall error analysis of four
state-of-the-art English coreference reso-
lution systems. Our analysis highlights
differences between the systems and iden-
tifies that the majority of recall errors for
nouns and names are shared by all sys-
tems. We characterize this set of com-
mon challenging errors in terms of a broad
range of lexical and semantic properties.

1 Introduction

Coreference resolution is the task of determining
which mentions in a text refer to the same entity.
State-of-the-art approaches include both learning-
based (Fernandes et al., 2012; Björkelund and
Farkas, 2012; Durrett and Klein, 2013) and de-
terministic models (Lee et al., 2013; Martschat,
2013). These approaches achieve state-of-the-art
performance mainly relying on morphosyntactic
and lexical factors. However, consider the follow-
ing example.

In order to improving the added value
of oil products, the second phase project
of the Qinghai Petroleum Bureau’s
Ge’ermu oil refinery has been put into
production. This will further improve
the factory’s oil products structure.

Due to the lack of any string overlap, most
state-of-the-art systems will miss the link between
the factory and the Qinghai Petroleum Bureau’s
Ge’ermu oil refinery. The information that factory
is a hypernym of refinery, however, may be useful
to resolve such links.

The aim of this paper is to quantify and char-
acterize such recall errors made by state-of-the-
art coreference resolution systems. By doing so,

we provide a solid foundation for work on em-
ploying knowledge sources for improving recall
for coreference resolution (Ponzetto and Strube,
2006; Rahman and Ng, 2011; Ratinov and Roth,
2012; Bansal and Klein, 2012, inter alia). In par-
ticular, we make the following contributions:

We present a novel framework for coreference
resolution error analysis. This yields a formal
foundation for previous work on link-based error
analysis (Uryupina, 2008; Martschat, 2013) and
complements work on transformation-based error
analysis (Kummerfeld and Klein, 2013).

We apply the method proposed in this paper to
perform a recall error analysis of four state-of-
the-art systems, encompassing deterministic and
learning-based approaches. In particular, we iden-
tify and characterize a set of challenging errors
common to all systems, and discuss strengths and
weaknesses of each system regarding specific er-
ror types. We also present a brief precision error
analysis.

A toolkit which implements the framework pro-
posed in this paper is available for download.1

2 A Link-Based Analysis Framework

In this section we discuss challenges in corefer-
ence resolution error analysis and devise an error
analysis framework to overcome these challenges.

2.1 Motivation

Suppose a document contains the entity BARACK

OBAMA, which is referenced by four mentions
in the following order: Obama, he, the president
and his. A typical output of a current system not
equipped with world knowledge will consist of
two entities: {Obama, he} and {the president, his}

Obviously, the system made a recall error. But,
due to the complex nature of the coreference reso-
lution task, it is not clear how to represent the re-

1http://smartschat.de/software
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Figure 1: (a) a reference entity r, represented as a complete one-directional graph, (b) a set S of three
system entities, (c) the partition rS , (d) a spanning tree for r.

call error: is it missing the link between the pres-
ident and Obama? Can the error be attributed to
deficiencies in pronoun resolution?

Linguistically motivated error representations
would facilitate both understanding of current
challenges and make system development faster
and easier. The aim of this section is to devise
such representations.

2.2 Formalizing Coreference Resolution

To start with, we give a formal description of the
coreference resolution task following the termi-
nology used for the ACE (Mitchell et al., 2004)
and OntoNotes (Weischedel et al., 2013) projects.
A mention is a linguistic realization of a reference
to an entity. Two mentions corefer if they refer to
the same entity. Hence, coreference is reflexive,
symmetric and transitive, and therefore an equiva-
lence relation. The task of coreference resolution
is to predict equivalence classes of mentions in a
document according to the coreference relation.

In order to extract errors, we need to compare
the reference equivalence classes, given by the
annotation, with the system equivalence classes
obtained from system output. The key question
now is how we represent these equivalence classes
of mentions. Adapting common terminology, we
also refer to the equivalence classes as entities.

2.3 Representing Entities

The most straightforward entity representation ig-
nores any structure and models an entity as a set
of mentions. This representation was utilized for
error analysis by Kummerfeld and Klein (2013),
who extract errors by transforming reference into
system entities. In this set-based representation,
we can only extract whether two mentions corefer
at all. More fine-grained information, for example
about antecedent information, is not accessible.

We therefore propose to employ a structured en-
tity representation, which explicitly models links
established by the coreference relation between
mentions. This leads to a link-based error repre-
sentation which formalizes the methods presented
in Uryupina (2008) and Martschat (2013).

We employ for representation a complete one-
directional graph. That is, we represent an en-
tity e over mentions {m1, . . . ,mn} as a graph
e = (N,A), where N = {m1, . . . ,mn} and
A = {(mk,mj) | k > j}. The indices respect
the mention ordering. Mentions earlier in the text
have a lower index. An example graph for an en-
tity over four mentions m1, . . . ,m4 (such as the
BARACK OBAMA entity) is depicted in Figure 1a.
In this graph, we express all coreference relations
between all pairs of mentions.2

Using this representation, we can represent a set
of entities as a set of graphs. In particular, given a
document we consider the set of reference entities
R given by the annotation, and the set of system
entities S, given by the system output. In order to
extract errors, we compare the graphs in R with
the graphs in S.

In the following, we discuss how to compute re-
call errors for a reference entity r ∈ Rwith respect
to the system entities S. For computing precision
errors, we just switch the roles of R and S.

2.4 Comparing Reference and System
Entities

As we represent entities as sets of links between
mentions, errors can be quantified as differences in
the links. For example, if an edge (representing a
link) from some reference entity r ∈ R is missing

2We could also use an undirected instead of a one-
directional graph, but using a one-directional graph conve-
niently models sequential information, which simplifies no-
tation and the algorithms we will present.
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in all system entities in S, this is a recall error.
In order to formalize this, we employ the notion

of a partition of an entity. Let r ∈ R be some ref-
erence entity, and let S be a set of system entities.
The partition of r by S, written rS , is obtained
by taking all edges in r that also appear in S. rS
consists of all connected components of r (we will
refer to these as subentities) that are also in S. All
edges in r that are not in rS are candidates for re-
call errors, as these were not in any entity in S.

Figure 1b shows a set S of three system entities:
two consist of two mentions, one of three men-
tions. In our running example, this corresponds
to the system output {Obama, he} and {the pres-
ident, his} plus some spurious mentions, which
are colored gray. The graph rS for our example
is shown in Figure 1c. The two edges correspond
to the correctly recognized links (he, Obama) and
(his, the president). All edges in r (Figure 1a)
missing from this graph are candidates for errors.

2.5 Spanning Trees

However, taking all edges in r missing in rS as er-
rors leads to unintuitive results. In the BARACK

OBAMA example, this would lead to four errors
being extracted: (the president, Obama), (his,
Obama), (the president, he) and (his, he). But,
in order to correctly predict the BARACK OBAMA

entity, a coreference resolution system only needs
to predict three correct links, i.e. it has to provide a
spanning tree of the entity’s graph representation.

Therefore, to extract errors, we compute a span-
ning tree Tr of r, and take all edges in Tr that do
not appear in rS as errors. Figure 1d shows an ex-
ample spanning tree for the running example en-
tity r. The dashed edge, which corresponds to the
link (the president, Obama), does not appear in rS
and is therefore extracted as an error.

The strategies for computing a spanning tree
may differ for recall and precision errors. Hence,
our extraction algorithm is parametrized by two
procedures STrec(e, P ) and STprec(e, P ) which,
given an entity e and a set of entities P , output
a spanning tree Te of e. The whole algorithm for
error extraction is summarized in Algorithm 1.

3 Spanning Tree Algorithms

In the last section we presented a framework for
link-based error analysis, which extracts errors by
comparing entity spanning trees to entity parti-
tions. Therefore we can accommodate different

Algorithm 1 Error Extraction from a Corpus
Input: A corpus C, algorithms STrec, STprec for

computing spanning trees.
function ERRORS(C, STrec, STprec)

recall errors = [ ]
precision errors = [ ]
for d ∈ C do

Let Rd be the reference entities and Sd
be the system entities of document d.
for r ∈ Rd do

Add all edges in STrec(r, Sd) not in
rSd to recall errors.

for s ∈ Sd do
Add all edges in STprec(s,Rd) not in
sRd to precision errors.

Output: recall errors, precision errors

notions of errors by varying the algorithm for com-
puting spanning trees. We now present some span-
ning tree algorithms for extracting recall and pre-
cision errors.

3.1 Recall Errors

We first observe that for error extraction, the struc-
ture of the spanning trees of the subentities appear-
ing in rS does not play a role. Edges present in rS
are not candidates for errors, since they appear in
both the reference entity r and the system output
S. Therefore, it does not matter which edges from
the subentities are in the spanning tree.

Hence, to build the spanning tree, we first
choose arbitrary spanning trees for the subentities
in the partition. We choose the remaining edges
according to the spanning tree algorithm.

Having settled on this, we only have to decide
which edges to choose that connect the trees rep-
resenting the subentities. There are many possible
choices for this. For example, the graph in Fig-
ure 1c has four candidate edges which connect the
trees for the subentities.

We can reduce the number of candidate edges
by only considering the first mention (with respect
to textual order) in a subentity as the source of
an edge to be added. This makes sense since all
other mentions in that subentity were correctly re-
solved to be coreferent with some preceding men-
tion. We still have to decide on the target of the
edge. In Figure 1c, we have two choices for edges:
(m3,m1) and (m3,m2). We now present two
methods for choosing edges.
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Choosing Edges by Distance. The most
straight-forward way to decide on an edge is to
take the edge with smallest mention distance
between source and target. This is the approach
taken by Martschat (2013).

Choosing Edges by Accessibility. However, the
distance-based approach may lead to unintuitive
results. Let us consider again the BARACK

OBAMA example from Figure 1. When choosing
edges by distance, we would extract the error (the
president, he). However, such links with a non-
pronominal anaphor and a pronominal antecedent
are difficult to process and considered unreliable
(Ng and Cardie, 2002; Bengtson and Roth, 2008).
On the other hand, the missed link (the president,
Obama) constitutes a well-defined hyponymy re-
lation which can be found in knowledge bases and
is easily interpretable by humans.

Uryupina (Uryupina, 2007; Uryupina, 2008)
presents a recall error analysis where she takes
the “intuitively easiest” missing link to analyze
(Uryupina, 2007, p. 196). How can we formal-
ize such an intuition? We will employ a no-
tion grounded in accessibility theory (Ariel, 1988).
Names and nouns refer to less accessible entities
than pronouns do. For such anaphors, we prefer
descriptive (name/nominal) antecedents. Inspired
by Ariel’s degrees of accessibility, we choose a
target for a given anaphor mi as follows:
• Ifmi is a pronoun, choose the closest preced-

ing mention.
• If mi is not a pronoun, choose the closest

preceding proper name. If no such mention
exists, choose the closest preceding common
noun. If no such mention exists, choose the
closest preceding mention.

Applied to the example from Figure 1, this algo-
rithm extracts the error (the president, Obama).3

3.2 Precision Errors

Virtually all approaches to coreference resolu-
tion obtain entities by outputting pairs of anaphor
and antecedent, subject to the constraint that one
anaphor has at most one antecedent.

We use this information to build spanning trees
for system entities: these spanning trees con-
sist of exactly the edges which correspond to
anaphor/antecedent pairs in the system output.

3A similar procedure was used by Ng and Cardie (2002)
to extract meaningful antecedents when training a corefer-
ence resolution system.

4 Data and Systems

We now discuss data and coreference resolution
systems which we will employ for our analysis.

4.1 Data
We analyze the errors of the systems on the En-
glish development data of the CoNLL’12 shared
task on multilingual coreference resolution (Prad-
han et al., 2012). This corpus contains 343 docu-
ments, spanning seven genres: bible texts, broad-
cast conversation, broadcast news, magazine texts,
news wire, telephone conversations and web logs.

4.2 Systems
State-of-the-art approaches to coreference resolu-
tion encompass various paradigms, ranging from
deterministic pairwise systems to learning-based
structured prediction models. Hence, we want to
conduct our analysis on a representative sample of
the state of the art, which should be publicly avail-
able. Therefore, we decided on two deterministic
and two learning-based systems:
• StanfordSieve4 (Lee et al., 2013) was the

winning system of the CoNLL’11 shared
task. It employs a multi-sieve approach by
making more confident decisions first.
• Multigraph5 (Martschat, 2013) is a deter-

ministic pairwise system which is based on
Martschat et al. (2012), the second-ranking
system in the English track of the CoNLL’12
shared task. It uses a subset of features as
hard constraints and chooses an antecedent
for a mention by summing up the remaining
boolean features.
• IMSCoref6 (Björkelund and Farkas, 2012)

ranked second overall in the CoNLL’12
shared task (third for English). It stacks mul-
tiple decoders and relies on a combination of
standard pairwise and lexicalized features.
• BerkeleyCoref7 (Durrett and Klein, 2013) is

a state-of-the-art system that uses mainly lex-
icalized features and a latent antecedent rank-
ing architecture. It outperforms Stanford-
Sieve and IMSCoref on the CoNLL’11 data.

4Part of Stanford CoreNLP, available at http://nlp.
stanford.edu/software/corenlp.shtml. We
use version 3.4.

5http://smartschat.de/software
6http://www.ims.uni-stuttgart.de/

forschung/ressourcen/werkzeuge/IMSCoref.
en.html . We use the CoNLL 2012 system.

7http://nlp.cs.berkeley.edu/
berkeleycoref.shtml
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System MUC B3 CEAFe Average

Fernandes et al. 69.46 57.83 54.43 60.57
Martschat 66.22 55.47 51.90 57.86

StanfordSieve 64.96 54.49 51.24 56.90
Multigraph 69.13 58.61 56.06 61.28
IMSCoref 67.15 55.19 50.94 57.76
BerkeleyCoref 70.27 59.29 56.11 61.89

Table 1: Comparison of the systems with Fernan-
des et al. (2012) and with Martschat (2013) on
CoNLL’12 English development data.

For Multigraph, we modified the system described
in Martschat (2013) slightly to allow for the in-
corporation of distance (similar to Cai and Strube
(2010)). Inspired by Lappin and Leass (1994), we
add salience weights for subjects and objects to
the model to improve third-person pronoun reso-
lution. We also extended the feature set by a sub-
string feature. Furthermore, motivated by Chen
and Ng (2012), we added a lexicalized feature for
non-pronominal mentions that were coreferent in
at least 50% of the cases in the training data.

StanfordSieve was run with its standard CoNLL
shared task settings. The learning-based sys-
tems were trained on the CoNLL’12 training data.
We trained IMSCoref with its standard settings,
and trained BerkeleyCoref with the final feature
set from Durrett and Klein (2013) for twenty it-
erations. We evaluate the systems on English
CoNLL’12 development data and compare it with
the winning system of the CoNLL’12 shared task
(Fernandes et al., 2012) and with Martschat (2013)
in Table 1, using the reference implementation v7
of the CoNLL scorer (Pradhan et al., 2014).

BerkeleyCoref performs best according to all
metrics, followed by Multigraph. StanfordSieve
is the worst performing system: the gap to Berke-
leyCoref is five points in average score.

4.3 Discussion

Although we analyze recent systems on a recently
published coreference data set, we believe that the
results of our analysis will have implications for
coreference in general. The data set is the largest
and most genre-diverse coreference corpus so far.
The systems we investigate represent major di-
rections in coreference resolution model research,
and make use of large and diverse feature sets pro-
posed in the literature (Ng, 2010).

5 A Comparative Analysis

The coreference resolution systems presented in
the previous section are a representative sample of
the state of the art. Therefore, by analyzing the
errors they make, we can learn about remaining
challenges in coreference resolution and analyze
the qualitative differences between the systems.
The results of such an analysis will deepen our
understanding of coreference resolution and will
suggest promising directions for further research.

5.1 Experimental Settings

Previous studies identified the presence of recall
errors as a main bottleneck for improving per-
formance (Raghunathan et al., 2010; Durrett and
Klein, 2013; Kummerfeld and Klein, 2013). This
is also evidenced by the CoNLL shared tasks on
coreference resolution (Pradhan et al., 2011; Prad-
han et al., 2012), where most competitive systems
had higher precision than recall. This indicates
that an analysis of recall errors helps to understand
and improve the state of the art. Hence, we focus
on analyzing recall errors, and complement this by
a brief analysis of precision errors.

We analyze errors of the four systems presented
in the previous section on the CoNLL’12 English
development data. To extract recall errors we em-
ploy the spanning tree algorithm which chooses
edges by accessibility. We obtain precision errors
from the pairwise output of the systems.

5.2 A Recall Error Analysis of StanfordSieve

Since StanfordSieve is currently the most-widely
used coreference resolution system, it serves as a
good starting point for our analysis. Remember
that we represent each error as a pair of anaphor
and antecedent. For an initial analysis, we cate-
gorize each error by mention type, distinguishing
between proper name, common noun, pronoun,
demonstrative pronoun and verb.8

StanfordSieve makes 5245 recall errors. To put
this number into context, we compare it with the
maximum number of recall errors a system can
make. This count is obtained by extracting recall
errors from the output of a system that puts each
mention in its own entity, which yields 14609 er-
rors. In Table 2 we present a detailed analysis.
For each pair of mention type of anaphor and an-

8We obtain the type from the part-of-speech tag of the
mention’s head. Furthermore, we treat every mention whose
head has a NER label in the data as a proper name.
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Name Noun Pron. Dem. Verb

Name
Errors 1006 181 43 0 0
Maximum 3578 206 56 2 0

Noun
Errors 517 1127 46 14 91
Maximum 742 2063 51 14 91

Pron.
Errors 483 761 543 45 53
Maximum 1166 1535 4596 92 53

Dem.
Errors 23 86 41 31 117
Maximum 27 93 43 46 117

Verb
Errors 1 20 2 4 10
Maximum 1 20 2 4 11

Table 2: Number of StanfordSieve’s recall er-
rors according to mention type, compared to the
maximum possible number of errors. Rows are
anaphors, columns antecedents.

tecedent, the table displays the number of recall
errors and of maximum errors possible.

StanfordSieve gets almost none of the links in-
volving verbal or demonstrative mentions correct.
This is due to the system not attempting to handle
event coreference, and performing very poorly for
demonstratives. On the other hand, recall for pro-
noun resolution is quite good, at least when con-
sidering non-verbal antecedents. While Stanford-
Sieve makes 1885 recall errors when the anaphor
is a pronoun, it successfully resolves most of such
links present in the corpus. Finally, let us consider
the links involving only proper names and com-
mon nouns. In total, these amount to 6589 links
in the corpus (around 45% of all links). Stanford-
Sieve misses 2831 of these links. Pairs of proper
names seem to be easier to resolve than pairs of
common nouns. Links between a common noun
and a proper name are less frequent, but much
more difficult: most of the links are missing.

5.3 Analysis of the Other Systems

In the previous section we identified various char-
acteristics of the errors made by StanfordSieve:
only (comparatively) few errors are made for pro-
noun resolution and name coreference, while other
types of nominal anaphora and coreference of
demonstrative/verbal mentions pose a challenge
for the system. Do the other systems in our study
also have these characteristics? In order to answer

Proportion

System Total Anaphor Pron. Name/Noun

StanfordSieve 5245 36% 54%
Multigraph 4630 32% 56%
IMSCoref 5220 32% 58%
BerkeleyCoref 4635 32% 56%

Table 3: Recall error numbers for all systems.

this question, we repeated the analysis for the three
other systems described in Section 4. We summa-
rize the results in Table 3. We only report num-
bers for pronoun resolution and name/noun coref-
erence, as all systems do not resolve verbal men-
tions and perform poorly for demonstratives.

StanfordSieve makes the most recall errors,
closely followed by IMSCoref. Multigraph
and BerkeleyCoref make around 600 errors less.
While the total number of errors differs between
the systems, the distributions are similar. In par-
ticular, around 55% of recall errors made involve
only proper names and common nouns. The num-
ber is a bit higher for IMSCoref. We conclude
that, despite variations in performance, both de-
terministic and learning-based state-of-the-art sys-
tems have similar weaknesses regarding recall.

The results displayed in Table 3 suggest vari-
ous opportunities for future research. In this pa-
per, we will focus on analyzing name/noun recall
errors, as these constitute a large fraction of all re-
call errors. Future work should address the pro-
noun resolution errors and a characterization of the
verbal/demonstrative errors.

5.4 Analysis of the Name/Noun Recall Errors

We now turn towards a fine-grained analysis of the
name/noun recall errors.

Table 4 displays the number of such recall errors
made by each system, according to the mention
types of anaphor and antecedent. We are interested
in errors common to all systems, and in qualitative
differences of errors between the systems.

5.4.1 Common Errors
Let us first analyze the errors common to all sys-
tems. Our analysis is driven by the question how
these can be characterized, and which knowledge
is missing to resolve such links. We discuss the
errors depending on the mention types of anaphor
and antecedent. The lower part of Table 4 displays
the number of common errors for each category.
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Number of Recall Errors (Anaphor-Antecedent)

Description Name-Name Noun-Name Name-Noun Noun-Noun

StanfordSieve 1006 517 181 1127
Multigraph 753 501 189 1152
IMSCoref 1082 500 188 1264
BerkeleyCoref 910 456 171 1072

Common errors 475 371 147 835
Correct boundaries idenfified 257 273 108 563
excl. IMSCoref 156 222 97 475

Table 4: Name/Noun recall errors for all systems.

Common All

Type % Type %

ORG 25% PERSON 26%
PERSON 19% GPE 26%
GPE 16% ORG 20%
DATE 14% NONE 14%
NONE 9% DATE 6%

Table 5: Distribution of top five named entity
types of common name-name recall errors and all
possible name-name recall errors.

Furthermore, in order to assess the impact of
mention detection, the table shows the number of
common errors where boundaries for both men-
tions were identified correctly by some system.
We can see that boundary identification is a diffi-
cult problem, especially for proper name pairs: for
48% of such errors, no system found the correct
boundaries of both mentions participating in the
error. The number of errors where correct bound-
aries could be found drops significantly after ex-
cluding IMSCoref. This is due to the mention ex-
traction strategy of IMSCoref: the other systems
in our study discard the shorter mention when two
mentions have the same head, IMSCoref keeps
both mentions. Hence, the system is able to cor-
rectly identify some mentions even in the presence
of parsing or preprocessing errors. However, as
a result, IMSCoref has to process many spurious
mentions, which makes learning more difficult.

We conclude that mention detection still consti-
tutes a challenge. We now proceed to a detailed
analysis of errors common to all systems. In pass-
ing we will discuss difficulties in mention detec-
tion with regard to specific error types.

Errors between Pairs of Proper Names. The
systems share 475 recall errors between pairs of
proper names. In Table 5, we compare the distri-
bution of gold named entity types of these errors
with the distribution of gold named entity types of
all possible errors (obtained via a singleton sys-
tem). We see that especially difficult classes of
links are pairs with type ORG or DATE.

Let us now consider lexical features of the er-
rors.9 In 154 errors, the strings match completely,
but the correct resolution was mostly prevented by
annotation inconsistencies (e.g. China instead of
China’s) or propagated parsing and NER errors,
which lead to deficiencies in mention extraction.

For 217 errors, at least one token appears in both
mention strings, as in the “Cole” and the “USS
Cole”. This shows the insufficiency of the features
which hint to alias relations, may it be heuristics or
learned lexical similarities (for 109 of the 217 er-
rors, both mention boundaries were identified cor-
rectly by at least one system). Disambiguation
with respect to knowledge bases could provide a
principled way to identify name variations.

We classified the remaining 104 errors manu-
ally, see Table 6. For a couple of categories such
as identifying acronyms, spelling variations and
aliases, disambiguation could also help. Many er-
rors happen for date mentions, which suggests the
use of temporal tagging features.

Errors for Noun-Name Pairs. We now inves-
tigate the errors where the anaphor is a common
noun and the antecedent is a proper name. 371 er-
rors are common to all systems. The high fraction
of common errors shows that this is an especially
challenging category. We again start by investigat-
ing how the distribution of the named entity type

9When computing these, we ignored case and ignored all
tokens with part-of-speech tag DT or POS.
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Description Occ. Example

Acronyms 20 National Ice Hockey League and
NHL

Alias 24 Florida and the Sunshine State
Annotation 2 Annotation errors (pronoun as

name)
Context 2 Paula Coccoz and juror number ten
Date 29 1989 and last year’s
Metonymy 12 South Afria and Pretoria
Roles 8 Al Gore and the Vice President
Spelling 7 Hsiachuotzu and Hsiachuotsu

Table 6: Classification of common name-name re-
call errors without common tokens.

Common All

Type % Type %

ORG 28% ORG 27%
PERSON 22% GPE 22%
GPE 19% PERSON 18%
NONE 7% NONE 11%
DATE 5% DATE 5%

Table 7: Distribution of top five named entity
types of common noun-name recall errors and all
possible noun-name recall errors.

of the antecedent differs when we compare com-
mon errors to all possible errors. The results are
shown in Table 7. Links with a proper name an-
tecedent of type PERSON are especially difficult.
They constitute 22% of the common errors, but
only 18% of all possible errors.

Most mentions are in a hyponymy relation, like
the prime minister and Mr. Papandreou. This con-
firms that harnessing such relations could improve
coreference resolution (Rahman and Ng, 2011;
Uryupina et al., 2011). For 65 of the errors (18%)
there is lexical overlap: the head of the anaphor is
contained in the proper name antecedent, as in the
entire park and the Ocean Park.

When categorizing all common errors accord-
ing to the head of the anaphor, we observe 204 dif-
ferent heads. 142 heads appear only once, but the
top ten heads make up 88 of the 371 errors. The
most frequent heads are company (15), group (12),
government, country and nation (each 9). This
suggests that even with few reliable hyponymy re-
lations recall could be significantly improved.

We observe similar trends when the anaphor is
a proper name and the antecedent is a noun.

Reference System

System Stanford MG IMS Berkeley

Stanford - 51 47 61
MG 17 - 42 60
IMS 26 54 - 54
Berkeley 12 42 25 -

Table 8: Comparison of noun-name recall errors.
Entries are errors made by the system in the row,
while the participating mentions are coreferent ac-
cording to the the system in the column.

Errors between Pairs of Common Nouns. 835
errors between pairs of common nouns are shared
by all systems. For 174 of these, the anaphor is
an indefinite noun phase, which makes resolution
a lot harder, since most coreference resolution sys-
tems classify these as non-anaphoric and therefore
do not attempt resolution.

For further analysis, we split all 835 errors in
two categories, distinguishing whether the head
matches between the mentions or not. In 341 cases
the heads match. For many of these cases, parsing
errors propagate and prevent the systems from rec-
ognizing the correct mention boundaries.

In order to get a better understanding of the er-
rors for nouns with different heads, we randomly
extracted 50 of the 494 pairs and investigated the
relation that holds between the heads. In 23 cases,
the heads were related via hyponymy. In 10 cases
they were synonyms. The remaining 17 cases
involve many different phenomena, for example
meronymy. This confirms findings from previous
research (Vieira and Poesio, 2000).

Hence, looking up lexical relations, especially
hyponymy, might be helpful to solve these cases.

5.4.2 Differences between the Systems
In order to analyze differences between the sys-
tems, we compare the recall errors they make.
The information how recall errors differ between
systems will enable us to understand individual
strengths and weaknesses.

Exemplarily, we will have a look at the differ-
ences in the errors when the anaphor is a common
noun and the antecedent is a proper name. By sys-
tem design and by the total error numbers (Table
4) we expect the learning-based systems to have a
slight advantage over the deterministic systems.

In Table 8 we compare noun-name recall errors
made by each system. Entries are errors made by
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Number and Proportion of Precision Errors (Anaphor-Antecedent)

Description Name-Name Noun-Name Name-Noun Noun-Noun

StanfordSieve 1038 31% 64 59% 65 72% 944 48%
Multigraph 1131 30% 76 51% 24 56% 743 42%
IMSCoref 834 26% 74 59% 46 64% 1050 54%
BerkeleyCoref 810 24% 191 67% 60 62% 1015 48%

Common errors 158 1 2 167

Table 9: Name/Noun precision errors for all systems. The percentages are the proportion of precision
errors with respect to all decision of the system in that category.

the system in the row, while the participating men-
tions are coreferent according to the the system in
the column. The numbers confirm our hypothesis,
but also show that the deterministic systems are
able to recover a few links missed by the learning-
based systems.

For example, BerkeleyCoref recovers 60 links
that could not be found by Multigraph, including
34 links without any common token, such as the
airline and Pan Am. Multigraph recovers only 42
links not found by BerkeleyCoref, 21 without any
common token. Qualitatively, StanfordSieve and
Multigraph are able to resolve a few links thanks
to their engineered substring match, such as the
judge and Dallas District Judge Jack Hampton.

We also conducted similar investigations for
common noun and proper name pairs. For com-
mon nouns, the trends are similar: the learning-
based systems have an advantage over the deter-
ministic systems. However, only few relations be-
tween nouns with different heads are learned –
compared to StanfordSieve, BerkeleyCoref recov-
ers only 11 such pairs, such as the man and an
expert in the law. Recall of the deterministic sys-
tems is further hampered by their strict checks for
modifier agreement, which they employ to keep
precision high. Both systems miss for example the
link from the anaphor the Milosevic regime to the
regime, since the nominal modifier of the anaphor
does not appear in the antecedent.

For proper names, Multigraph employs so-
phisticated alias heuristics which help to resolve
matches such as Marshall Ye Ting’s and his grand-
father Ye Ting. This explains the corresponding
low number in Table 4. The lexicalized features
of Multigraph, IMSCoref and BerkeleyCoref help
to learn aliases when there is no string match, es-
pecially for the bible part of the corpus (resolving
links such as Jesus and the Son of Man).

5.5 Precision Errors

In the above analysis we identified common
name/noun recall errors and discussed strengths
and weaknesses of each system. Let us comple-
ment this analysis by a brief discussion of corre-
sponding precision errors.

Table 9 gives an overview. It displays the num-
ber of precision errors for each category, and the
proportion of these errors compared to all deci-
sions in that category. We can see some general
trends from this table: first, more decisions lead to
a higher proportion of errors. This shows the dif-
ficulty of balancing recall and precision. Second,
proper name coreference seems much easier than
common noun coreference. Coreference involving
different mention types is a lot harder – the sys-
tems only attempt few decisions, most of them are
wrong. This confirms findings from our recall er-
ror analysis. Third, the fraction of common errors
is very low, which indicates that precisions errors
stem from various sources, which are handled dif-
ferently by each system.

6 Related Work

We now discuss related work in coreference res-
olution error analysis and in the related field of
coreference resolution evaluation metrics.

Error Analysis. While many papers on coref-
erence resolution briefly discuss errors made and
resolved by the system under consideration, only
few concentrate on error analysis. Uryupina
(2008) presents a manual error analysis on the
small MUC-7 test set; Martschat (2013) performs
an automatic coarse-grained error classification on
CoNLL data. By extending and formalizing the
approach of Martschat (2013), we are able to per-
form a large-scale investigation of recall errors
made by state-of-the-art systems.
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Kummerfeld and Klein (2013) devise a method
to extract errors from transformations of reference
to system entities. They apply this method to a
variety of systems and aggregate errors over these
systems. By aggregating, they are not able to ana-
lyze differences. They furthermore focus on de-
scribing many different error classes, instead of
closely investigating particular phenomena.

Evaluation Metrics. We extract recall and pre-
cision errors. How does our error analysis frame-
work relate to coreference resolution evaluation
metrics, which quantify recall and precision er-
rors? We first observe a fundamental difference:
evaluation metrics deal with scoring coreference
chains, they provide no means of extracting recall
or precision errors. Therefore our analysis com-
plements insights obtained via evaluation metrics.

We follow Chen and Ng (2013) and distinguish
between linguistically agnostic metrics, which do
not employ linguistic information during scoring,
and linguistically informed metrics, which employ
linguistic information similar as we do when com-
puting spanning trees.

We limit the discussion of linguistically ag-
nostic metrics to the three most popular evalua-
tion metrics whose average constitutes the official
score in the CoNLL shared tasks on coreference
resolution: MUC (Vilain et al., 1995), B3 (Bagga
and Baldwin, 1998) and CEAFe (Luo, 2005).10

Our framework bears most similarities to the
MUC metric, as both are based on the same link-
based entity representation. In particular, when we
divide the number of errors extracted from an en-
tity by the size of a spanning tree for that entity, we
obtain a score linearly related11 to the MUC score
for that entity (recall for reference entities, preci-
sion for system entities). B3 and CEAFe are not
founded on a link-based structure. B3 computes
recall by computing the relative overlap of refer-
ence and system entity for each reference mention,
and then normalizes by the number of mentions.
CEAFe computes an optimal entity alignment with
respect to the relative overlap, and then normalizes
by the number of entities. As the metrics are not
link-based, they do not provide means to extract
link-based errors. We leave determining whether
the framework of these metrics exhibits a useful
notion of errors to future work.

10These are linguistically agnostic since they do not differ
between different mention or entity types when evaluating.

11via the transformation x 7→ 1− x

Recent work considered devising evaluation
metrics which take linguistic information into
account. Chen and Ng (2013) inject linguis-
tic knowledge into existing evaluation metrics by
weighting links in an entity representation graph.
Tuggener (2014) devises scoring algorithms tai-
lored for particular applications by redefining the
notion of a correct link. While both of these works
focus on scoring, they weight or explicitly define
links in the reference and system entities, thereby
they in principle allow error extraction. However,
the authors do not attempt this and it is not clear
whether the errors extracted that way are useful for
analysis and system development.

7 Conclusions

We presented a novel link-based framework for
coreference resolution error analysis, which ex-
tends and complements previous work. We ap-
plied the framework to analyze recall errors of four
state-of-the-art systems on a large English bench-
mark dataset. Concentrating on errors involving
only proper names and common nouns, we identi-
fied a core set of challenging errors common to all
systems in our study.

We characterized the common errors among a
broad range of properties. In particular, our anal-
ysis highlights and quantifies the usefulness of
world knowledge. Furthermore, by comparing the
recall errors made by each system, we identified
individual strengths and weaknesses. A brief pre-
cision error analysis highlighted the hardness of
resolving noun-name and noun-noun links.

The presented method and findings help to iden-
tify challenges in coreference resolution and to in-
vestigate ways to overcome these challenges.
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Abstract

Bridging resolution plays an important
role in establishing (local) entity coher-
ence. This paper proposes a rule-based
approach for the challenging task of unre-
stricted bridging resolution, where bridg-
ing anaphors are not limited to defi-
nite NPs and semantic relations between
anaphors and their antecedents are not re-
stricted to meronymic relations. The sys-
tem consists of eight rules which target
different relations based on linguistic in-
sights. Our rule-based system significantly
outperforms a reimplementation of a pre-
vious rule-based system (Vieira and Poe-
sio, 2000). Furthermore, it performs better
than a learning-based approach which has
access to the same knowledge resources
as the rule-based system. Additionally,
incorporating the rules and more features
into the learning-based system yields a mi-
nor improvement over the rule-based sys-
tem.

1 Introduction

Bridging resolution recovers the various non-
identity relations between anaphora and an-
tecedents. It plays an important role in establish-
ing entity coherence in a text. In Example 1, the
links between the bridging anaphors (The five as-
tronauts and touchdown) and the antecedent (The
space shuttle Atlantis) establish (local) entity co-
herence.1

(1) The space shuttle Atlantis landed at a desert
air strip at Edwards Air Force Base, Calif.,
ending a five-day mission that dispatched
the Jupiter-bound Galileo space probe. The

1Examples are from OntoNotes (Weischedel et al., 2011).
Bridging anaphora are typed in boldface; antecedents in ital-
ics.

five astronauts returned to Earth about three
hours early because high winds had been pre-
dicted at the landing site. Fog shrouded the
base before touchdown.

Bridging or associative anaphora has been
widely discussed in the linguistic literature (Clark,
1975; Prince, 1981; Gundel et al., 1993;
Löbner, 1998). Poesio and Vieira (1998) and
Bunescu (2003) include cases where antecedent
and anaphor are coreferent but do not share the
same head noun (different-head coreference). We
follow our previous work (Hou et al., 2013b) and
restrict bridging to non-coreferential cases. We
also exclude comparative anaphora (Modjeska et
al., 2003).

Bridging resolution includes two subtasks: (1)
recognizing bridging anaphors and (2) finding the
correct antecedent among candidates. In recent
empirical work, these two subtasks have been
tackled separately: (Markert et al., 2012; Cahill
and Riester, 2012; Rahman and Ng, 2012; Hou et
al., 2013a) handle bridging recognition as part of
information status (IS) classification, while (Poe-
sio et al., 1997; Poesio et al., 2004; Markert et
al., 2003; Lassalle and Denis, 2011; Hou et al.,
2013b) concentrate on antecedent selection only,
assuming that bridging recognition has already
been performed. One exception is Vieira and Poe-
sio (2000). They propose a rule-based system for
processing definite NPs. However, they include
different-head coreference into bridging. They re-
port results for the whole anaphora resolution but
do not report results for bridging resolution only.
Another exception is Rösiger and Teufel (2014).
They apply a coreference resolution system with
several additional semantic features to find bridg-
ing links in scientific text where bridging anaphors
are limited to definite NPs. They report prelim-
inary results using the CoNLL scorer. However,
we think the coreference resolution system and the
evaluation metric for coreference resolution are
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not suitable for bridging resolution since bridging
is not a set problem.

Another vein of research for bridging resolu-
tion focuses on formal semantics. Asher and Las-
carides (1998) and Cimiano (2006) model bridg-
ing by integrating discourse structure and seman-
tics from a formal semantics viewpoint. However,
the implementation of such a theoretical frame-
work is beyond the current capabilities of NLP
since it depends heavily on commonsense entail-
ment.

In this paper, we propose a rule-based system
for unrestricted bridging resolution. The system
consists of eight rules which we carefully design
based on linguistic intuitions, i.e., how the nature
of bridging is reflected by various lexical, syntac-
tic and semantic features. We evaluate our rule-
based system on a corpus where bridging is reli-
ably annotated. We find that our rule-based sys-
tem significantly outperforms a reimplementation
of a previous rule-based system (Vieira and Poe-
sio, 2000). We further notice that our rule-based
system performs better than a learning-based ap-
proach which has access to the same knowledge
resources as the rule-based system. Surprisingly,
incorporating the rules and more features into the
learning-based approach only yields a minor im-
provement over the rule-based system. We ob-
serve that diverse bridging relations and relatively
small-scale data for each type of relations make
generalization difficult for the learning-based ap-
proach. This work is – to the best of our
knowledge – the first system recognizing bridging
anaphora and finding links to antecedents for unre-
stricted phenomenon where bridging anaphors are
not limited to definite NPs and semantic relations
between anaphors and their antecedents are not re-
stricted to meronymic relations.

2 Data

All the data used throughout the paper come
from the ISNotes corpus2 released by Hou et al.
(2013b). This corpus contains around 11,000 NPs
annotated for information status including 663
bridging NPs and their antecedents in 50 texts
taken from the WSJ portion of the OntoNotes cor-
pus (Weischedel et al., 2011). ISNotes is reli-
ably annotated for bridging: for bridging anaphor
recognition, κ is over 60 for all three possible an-

2http://www.h-its.org/english/research/nlp/download/
isnotes.php

notator pairings (κ is over 70 for two expert anno-
tators); for selecting bridging antecedents, agree-
ment is around 80% for all annotator pairings.

It is notable that bridging anaphors in ISNotes
are not limited to definite NPs as in previous work
(Poesio et al., 1997; Poesio et al., 2004; Lassalle
and Denis, 2011). Table 1 shows the bridging

Bridging Anaphors 663
Non-determiner 44.9%
Definite 38.5%
Indefinite 15.4%
Other-determiner 1.2%

Table 1: Bridging anaphora distribution w.r.t. de-
terminers in ISNotes.

anaphora distribution with regard to determiners in
ISNotes: only around 38% of bridging anaphors
are definite NPs (NPs modified by the); 15.4%
of bridging anaphors are modified by determiners
such as a, an or one which normally indicate in-
definite NPs. Most bridging anaphors (43%) are
not modified by any determiners, such as touch-
down in Example 1. A small fraction of bridging
anaphors (1.2%) are modified by other determin-
ers, such as demonstratives.

The semantic relations between anaphor and
antecedent in the corpus are extremely diverse:
only 14% of anaphors have a part-of/attribute-
of relation with the antecedent (see Example 2)
and only 7% of anaphors stand in a set relation-
ship to the antecedent (see Example 3). 79%
of anaphors have “other” relations with their an-
tecedents (without further distinction), including
encyclopedic relations such as The space shut-
tle Atlantis-The five astronauts (see Example 1)
as well as context-specific relations such as The
space shuttle Atlantis-touchdown (Example 1).

(2) At age eight, Josephine Baker was sent by
her mother to a white women’s house to do
chores in exchange for meals and a place to
sleep – a place in the basement with coal.

(3) This creates several problems. One is that
there are not enough police to satisfy small
businesses.

In ISNotes, bridging anaphora with distant an-
tecedents are common when the antecedent is the
global focus of a document. 29% of the anaphors
in the corpus have antecedents that are three or
more sentences away.
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Bridging resolution is an extremely challeng-
ing task in ISNotes. In contrast with surface clues
for coreference resolution, there are no clear sur-
face clues for bridging resolution. In Example 4,
the bridging anaphor low-interest disaster loans
associates to the antecedent the Carolinas and
Caribbean, whereas in Example 5 the NP loans is
a generic use. In Example 6, the bridging anaphor
The opening show associates to the antecedent
Mancuso FBI, whereas the NP the show is coref-
erent with its antecedent Mancuso FBI.

(4) The $2.85 billion measure comes on top of
$1.1 billion appropriated after Hugo stuck
the Carolinas and Caribbean last month, and
these totals don’t reflect the additional benefit
of low-interest disaster loans.

(5) Many states already have Enterprise Zones
and legislation that combines tax incentives,
loans, and grants to encourage investment in
depressed areas.

(6) Over the first few weeks, Mancuso FBI has
sprung straight from the headlines. The
opening show featured a secretary of defense
designate accused of womanizing (a la John
Tower).
. . .
Most of all though, the show is redeemed
by the character of Mancuso.

Our previous work on bridging resolution on
this corpus only focuses on its subtasks. In
Hou et al. (2013a) we model bridging anaphora
recognition as a subtask of learning fine-grained
information status. We report an F-measure
of 0.42 for bridging anaphora recognition. In
Hou et al. (2013b) we propose a joint inference
framework for antecedent selection by exploring
Markov logic networks. We report an accuracy
of 0.41 for antecedent selection given gold bridg-
ing anaphora. In this paper, we aim to solve these
two substasks together, i.e., recognizing bridging
anaphora and finding links to antecedents.

3 Method

In this section, we describe our rule-based system
for unrestricted bridging resolution. We choose
ten documents randomly from the corpus as the
development set. Then we carefully design rules
for finding “bridging links” among all NPs in a

document based on the generalizations of bridg-
ing in the linguistic literature as well as our in-
spections of bridging annotations in the develop-
ment set. The system consists of two components:
bridging link prediction and post processing.

3.1 Bridging Link Prediction
The bridging link prediction component consists
of eight rules. Löbner (1985; 1998) interprets
bridging anaphora as a particular kind of func-
tional concept, which in a given situation assign
a necessarily unique correlate to a (implicit) pos-
sessor argument. He distinguishes between rela-
tional nouns (e.g. parts terms, kinship terms, role
terms) and sortal nouns and points out that rela-
tional nouns are more frequently used as bridg-
ing anaphora than sortal nouns. Rule1 to Rule4 in
our system aim to resolve such relational nouns.
We design Rule5 and Rule6 to capture set bridg-
ing. Finally, Rule7 and Rule8 are motivated by
previous work on implicit semantic role labeling
(Laparra and Rigau, 2013) which focuses on few
predicates.

For all NPs in a document, each rule r is applied
separately to predict a set of potential bridging
links. Every rule has its own constraints on bridg-
ing anaphora and antecedents respectively. Bridg-
ing anaphors are diverse with regard to syntactic
form and function: they can be modified by def-
inite or indefinite determiners (Table 1), further-
more they can take the subject (e.g. Example 3
and Example 6) or other positions (e.g. Example
2 and Example 4) in sentences. The only fre-
quent syntactic property shared is that bridging
anaphors most often have a simple internal struc-
ture concerning modification. Therefore we first
create an initial list of potential bridging anaphora
A which excludes NPs which have a complex syn-
tactic structure. An NP is added to A if it does
not contain any other NPs and do not have modifi-
cations strongly indicating comparative NPs (such
as other symptoms)3. Since head match is a strong
indicator of coreference anaphora for definite NPs
(Vieira and Poesio, 2000; Soon et al., 2001), we
further exclude definite NPs from A if they have
the same head as a previous NP. Then a set of
potential bridging anaphors Ar is chosen from A
based on r’s constraints on bridging anaphora. Fi-
nally, for each potential bridging anaphor ana ∈

3A small list of 10 markers such as such, another . . . and
the presence of adjectives or adverbs in the comparative form
are used to predict comparative NPs.
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Ar, a single best antecedent ante from a list of
candidate NPs (Cana) is chosen if the rule’s con-
straint on antecedents is applied successfully.

Every rule has its own scope to form the
antecedent candidate set Cana. Instead of using
a static sentence window to construct the list of
antecedent candidates like most previous work for
resolving bridging anaphora (Poesio et al., 1997;
Markert et al., 2003; Poesio et al., 2004; Lassalle
and Denis, 2011), we use the development set
to estimate the proper scope for each rule. The
scope is influenced by the following factors: (1)
the nature of the target bridging link (e.g., set
bridging is a local coherence phenomenon where
the antecedent often occurs in the same or up
to two sentences prior to the anaphor); and (2)
the strength of the rule’s constraint to select the
correct antecedent (e.g., in Rule8, the ability
to select the correct antecedent decreases with
increasing the scope to contain more antecedent
candidates). In the following, we describe the mo-
tivation for each rule and their constraints in detail.

Rule1: building part NPs. To capture typical
part-of bridging (see Example 2), we extract a
list of 45 nouns which specify building parts (e.g.
room or roof ) from the General Inquirer lexicon
(Stone et al., 1966). A common noun phrase from
A is added to Ar1 if: (1) its head appears in the
building part list; and (2) it does not contain any
nominal pre-modifications. Then for each poten-
tial bridging anaphor ana ∈ Ar1, the NP with
the strongest semantic connectivity to the potential
anaphor ana among all NPs preceding ana from
the same sentence as well as from the previous two
sentences is predicted to be the antecedent.

The semantic connectivity of an NP to a po-
tential anaphor is measured via the hit counts of
the preposition pattern query (anaphor preposi-
tion NP) in big corpora4. An initial effort to ex-
tract partOf relations using WordNet yields low
recall on the development set. Therefore we use
semantic connectivity expressed by prepositional
patterns (e.g. the basement of the house) to cap-
ture underlying semantic relations. Such syntactic
patterns are also explored in Poesio et al. (2004) to
resolve meronymy bridging.

4We use Gigaword (Parker et al., 2011) with automatic
POS tag and NP chunk information.

Rule2: relative person NPs. This rule is used
to capture the bridging relation between a relative
(e.g. The husband) and its antecedent (e.g. She).
A list of 110 such relative nouns is extracted from
WordNet. However, some relative nouns are fre-
quently used generically instead of being bridging,
such as children. To exclude such cases, we com-
pute the argument taking ratio α for an NP using
NomBank (Meyers et al., 2004). For each NP, α is
calculated via its head frequency in the NomBank
annotation divided by the head’s total frequency
in the WSJ corpus in which the NomBank anno-
tation is conducted. The value of α reflects how
likely an NP is to take arguments. For instance,
the value of α is 0.90 for husband but 0.31 for
children. To predict bridging anaphora more ac-
curately, a conservative constraint is used. An NP
from A is added to Ar2 if: (1) its head appears in
the relative person list; (2) its argument taking ra-
tio α is bigger than 0.5; and (3) it does not contain
any nominal or adjective pre-modifications. Then
for each potential bridging anaphor ana ∈ Ar2,
the closest non-relative person NP among all NPs
preceding ana from the same sentence as well as
from the previous two sentences is chosen as its
antecedent.

Rule3: GPE job title NPs. In news articles, it is
common that a globally salient geo-political entity
(hence GPE, e.g. Japan or U.S.) is introduced in
the beginning, then later a related job title NP (e.g.
officials or the prime minister) is used directly
without referring to this GPE explicitly. To resolve
such bridging cases accurately, we compile a list
of twelve job titles which are related to GPEs (e.g.
mayor or official). An NP from A is added to Ar3
if its head appears in this list and does not have a
country pre-modification (e.g. the Egyptian pres-
ident). Then for each potential bridging anaphor
ana ∈ Ar3, the most salient GPE NP among all
NPs preceding ana is predicted as its antecedent.
We use the NP’s frequency in the whole document
to measure its salience throughout the paper. In
case of a tie, the closest one is chosen to be the
predicted antecedent.

Rule4: role NPs. Compared to Rule3, Rule4
is designed to resolve more general role NPs to
their implicit possessor arguments. We extract a
list containing around 100 nouns which specify
professional roles from WordNet (e.g. chairman,
president or professor). An NP from A is added to
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Ar4 if its head appears in this list. Then for each
potential bridging anaphor ana ∈ Ar4, the most
salient proper name NP which stands for an orga-
nization among all NPs preceding ana from the
same sentence as well as from the previous four
sentences is chosen as its antecedent (if such an
NP exists). Recency is again used to break ties.

Rule5: percentage NPs. In set bridging as
shown in Example 7, the anaphor (Seventeen per-
cent) is indicated by a percentage expression from
A, which is often in the subject position. The an-
tecedent (the firms) is predicted to be the closest
NP which modifies another percentage NP via the
preposition “of” among all NPs occurring in the
same or up to two sentences prior to the potential
anaphor.

(7) 22% of the firms said employees or owners
had been robbed on their way to or from
work. Seventeen percent reported their cus-
tomers being robbed.

Rule6: other set member NPs. In set bridg-
ing, apart from percentage expressions, numbers
or indefinite pronouns are also good indicators for
bridging anaphora. For such cases, the anaphor
is predicted if it is: (1) a number expression (e.g.
One in Example 3) or an indefinite pronoun(e.g.
some, as shown in Example 8) from A; and (2) a
subject NP. The antecedent is predicted to be the
closest NP among all plural, subject NPs preced-
ing the potential anaphor from the same sentence
as well as from the previous two sentences (e.g.
Reds and yellows in Example 8). If such an NP
does not exist, the closest NP among all plural, ob-
ject NPs preceding the potential anaphor from the
same sentence as well as from the previous two
sentences is chosen to be the predicted antecedent
(e.g. several problems in Example 3).

(8) Reds and yellows went about their business
with a kind of measured grimness. Some
frantically dumped belongings into pillow-
cases.

Rule7: argument-taking NPs I. Laparra and
Rigau (2013) found that different instances of the
same predicate in a document likely maintain the
same argument fillers. Here we follow this as-
sumption but apply it to nouns and their nomi-
nal modifiers only: different instances of the same
noun predicate likely maintain the same argument
fillers indicated by nominal modifiers. First, a

common noun phrase from A is added to Ar7 if:
(1) its argument taking ratio α is bigger than 0.5;
(2) it does not contain any nominal or adjective
pre-modifications; and (3) it is not modified by in-
definite determiners5 which usually introduce new
discourse referents (Hawkins, 1978). Then for
each potential bridging anaphor ana ∈ Ar7, we
choose the antecedent by performing the follow-
ing steps:

1. We take ana’s head lemma form anah
and collect all its syntactic modifications in
the document. We consider nominal pre-
modification, possessive modification as well
as prepositional post-modification. All real-
izations of these modifications which precede
ana form the antecedent candidates setCana.

2. We choose the most recent NP from Cana
as the predicted antecedent for the potential
bridging anaphor ana.

In Example 9, we first predict the two occur-
rences of residents as bridging anaphors. Since
in the text, other occurrences of the lemma “res-
ident” are modified by “Marina” (supported by
Marina residents) and “buildings” (supported by
some residents of badly damaged buildings), we
collect all NPs whose syntactic head is “Ma-
rina” or “buildings” in Cana (i.e. Marina, badly
damaged buildings and buildings with substan-
tial damage). Then among all NPs in Cana, the
most recent NP is chosen to be the antecedent (i.e.
buildings with substantial damage).

(9) She finds the response of Marina residents to
the devastation of their homes “incredible”.
. . .
Out on the streets, some residents of badly
damaged buildings were allowed a 15 minute
scavenger hunt through their possessions.
. . .
After being inspected, buildings with sub-
stantial damage were color - coded.
Green allowed residents to re-enter; red
allowed residents one last entry to gather
everything they could within 15 minutes.

Rule8: argument-taking NPs II. Prince (1992)
found that discourse-old entities are more likely

5We compile a list of 17 such determiners, such as a, an
or one.
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to be represented by NPs in subject position.
Although she could not draw a similar conclu-
sion when collapsing Inferrable (= bridging) with
Discourse-old Nonpronominal, we find that in the
development set, an argument-taking NP in the
subject position is a good indicator for bridging
anaphora (e.g. participants in Example 10). A
common noun phrase from A is collected in Ar8
if: (1) its argument taking ratio α is bigger than
0.5; (2) it does not contain any nominal or adjec-
tive pre-modifications; and (3) it is in the subject
position. Semantic connectivity again is used as
the criteria to choose the antecedent: for each po-
tential bridging anaphor ana ∈ Ar8, the NP with
the strongest semantic connectivity to ana among
all NPs preceding ana from the same sentence as
well as from the previous two sentences is pre-
dicted to be the antecedent.

(10) Initial steps were taken at Poland’s first in-
ternational environmental conference, which
I attended last month. . . . While Polish data
have been freely available since 1980, it was
no accident that participants urged the free
flow of information.

3.2 Post-processing
In the bridging link prediction component, each
rule is applied separately. To resolve the conflicts
between different rules (e.g., two rules predict dif-
ferent antecedents for the same potential anaphor),
a post processing step is applied. We first order
the rules according to their precision for predicting
bridging pairs (i.e., recognizing bridging anaphors
and finding links to antecedents) in the develop-
ment set. When a conflict happens, the rule with
the highest order has the priority to decide the an-
tecedent. Table 2 summarizes the rules described
in Section 3.1, the numbers in square brackets in
the first column indicate the order of the rules. Ta-
ble 3 shows the precisions of bridging anaphora
recognition and bridging pairs prediction for each
rule in the development set. Firing rate is the
proportion of bridging links predicted by rule r
among all predicted links.

4 Experiments and Results

4.1 Experimental Setup
We conduct all experiments on the ISNotes cor-
pus. We use the OntoNotes named entity and syn-
tactic annotations to extract features. Ten doc-
uments containing 113 bridging anaphors from

the ISNotes corpus are set as the development set
to estimate parameters for the rule-based system.
The remaining 40 documents are used as the test
set. In order to compare the results of different
systems directly, we evaluate all systems on the
test set.

4.2 Evaluation Metric

In ISNotes, bridging is annotated mostly between
an NP (anaphor) and an entity (antecedent)6, so
that a bridging anaphor could have multiple links
to different instantiations of the same entity (entity
information is based on the Ontonotes coreference
annotation). For bridging resolution, we use an
evaluation metric based on bridging anaphors in-
stead of all links between bridging anaphors and
their antecedent instantiations. A link predicted by
the system is counted as correct if it recognizes the
bridging anaphor correctly and links the anaphor
to any instantiation of the right antecedent entity
preceding the anaphor.

In the evaluation metric, recall is calculated
via the number of the correct links predicted by
the system (one unique link per each predicted
anaphor) divided by the total number of the gold
bridging anaphors, precision is calculated via the
number of the correct links predicted by the sys-
tem divided by the total links predicted by the sys-
tem.

4.3 A Learning-based Approach

To compare our rule-based system (hence ruleSys-
tem, described in Section 3) with other ap-
proaches, we implement a learning-based system
for unrestricted bridging resolution. We adapt the
pairwise model which is widely used in corefer-
ence resolution (Soon et al., 2001). Similar to
the rule-based system, we first create an initial list
of possible bridging anaphora Aml with one more
constraint. The purpose is to exclude as many ob-
vious non-bridging anaphoric NPs from the list
as possible. An NP is added to Aml if: (1) it
does not contain any other NPs; (2) it is not mod-
ified by pre-modifications which strongly indicate
comparative NPs; and (3) it is not a pronoun or a
proper name. Then for each NP a ∈ Aml, a list
of antecedent candidates Ca is created by includ-
ing all NPs preceding a from the same sentence

6There are a few cases where bridging is annotated be-
tween an NP and a non-NP antecedent (e.g. verbs or clauses).
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antecedentrule anaphor antecedent
candidates scope

rule1 [2] building part NPs the NP with the strongest semantic connectivity to the two
potential anaphor

rule2 [5] relative person NPs the closest person NP which is not a relative NP two
rule3 [6] GPE job title NPs the most salient GPE NP all
rule4 [7] role NPs the most salient organization NP four
rule5 [1] percentage NPs the closest NP which modifies another percentage NP two

via the preposition “of”
rule6 [3] other set member NPs the closest subject, plural NP; two

otherwise the closest object, plural NP
rule7 [4] argument-taking NPs I the closest NP whose head is an unfilled role of the potential all

anaphor (such a role is predicted via syntactic modifications of NPs
which have the same head as the potential anaphor)

rule8 [8] argument-taking NPs II the NP with the strongest semantic connectivity to the two
potential anaphor

Table 2: Rules for unrestricted bridging resolution. Antecedent candidates scope are verified in the
development set: “all” represents all NPs preceding the potential anaphor from the whole document,
“four” NPs occurring in the same or up to four sentences prior to the potential anaphor, “two” NPs
occurring in the same or up to two sentences prior to the potential anaphor.

anaphora recognition bridging pairs predictionrule anaphora
precision precision

firing rate

rule1 [2] building part NPs 75.0% 50.0% 6.1%
rule2 [5] relative person NPs 69.2% 46.2% 6.1%
rule3 [6] GPE job title NPs 52.6% 44.7% 19.4%
rule4 [7] role NPs 61.7% 32.1% 28.6%
rule5 [1] percentage NPs 100.0% 100.0% 2.6%
rule6 [3] other set member NPs 66.7% 46.7% 7.8%
rule7 [4] argument-taking NPs I 53.8% 46.4% 6.1%
rule8 [8] argument-taking NPs II 64.5% 25.0% 25.5%

Table 3: Precision of bridging anaphora recognition and bridging pairs prediction for each rule in the
development set. The numbers in square brackets in the first column indicate the order of the rules.

as well as from the previous two sentences7. We
create a pairwise instance (a, c) for every c ∈ Ca.
We also add extra pairwise instances from the pre-
diction of ruleSystem to the learning-based sys-
tem. In the decoding stage, the best first strat-
egy (Ng and Cardie, 2002) is used to predict the
bridging links. Specifically, for each a ∈ Aml, we
predict the bridging link to be the most confident
pair (a, cante) among all instances with the posi-
tive prediction. We use SVMlight to conduct the
experiments8. All experiments are conducted via
10-fold cross-validation on the whole corpus9.

7In ISNotes, 71% of NP antecedents occur in the same
or up to two sentences prior to the anaphor. Initial experi-
ments show that increasing the window size more than two
sentences decreases the performance.

8To deal with data imbalance, the SVMlight parameter
is set according to the ratio between positive and negative
instances in the training set.

9To compare the learning-based approach to the rule-
based system described in Section 3 directly, we report the

mlSystem ruleFeats We provide mlSys-
tem ruleFeats with the same knowledge resources
as the rule-based system. All rules from the
rule-based system are incorporated into mlSys-
tem ruleFeats as the features.

mlSystem ruleFeats + atomFeats We augment
mlSystem ruleFeats with more features from our
previous work (Markert et al., 2012; Hou et al.,
2013a; Hou et al., 2013b) on bridging anaphora
recognition and antecedent selection. Some of
these features overlap with the atomic features
used in the rule-based system.

Table 4 shows all the features we use for rec-
ognizing bridging anaphora. “∗” indicates the re-
sources are used in the rule-based system. We ap-
ply them to the first element a of a pairwise in-
stance (a, c). Markert et al. (2012) and Hou et

results of learning-based approaches on the same test set as
the rule-based system.
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Markert et al. local feature set
f1 FullPrevMention (b) ∗ f2 FullPreMentionTime (n) f3 PartialPreMention (b)
f4 ContentWordPreMention (b) f5 Determiner (n) ∗ f6 NPtype (n) ∗
f7 NPlength (int) f8 GrammaticalRole (n) ∗ f9 NPNumber (n) ∗
f10 PreModByCompMarker (b) ∗
Hou et al. local feature set
features to identify bridging anaphora
f1 IsCoherenceGap (b) f2 IsSentFirstMention (b) f3 IsDocFirstMention (b)
f4 IsWordNetRelationalNoun (b) ∗ f5 IsInquirerRoleNoun (b) f6 IsBuildingPart (b) ∗
f7 IsSetElement (b) ∗ f8 PreModSpatialTemporal (b) f9 IsYearExpression (b)
f10 PreModifiedByCountry (b) ∗ f11 AppearInIfClause (b) f12 VerbPosTag (l)
f13 IsFrequentGenericNP (b) f14 WorldKnowledgeNP (l) f15 Unigrams (l)
f16 PreModByGeneralQuantifier (b) f17 BridgingHeadNP (l) f18 HasChildNP (b) ∗
features to identify function and worldKnowledge NPs
f20 DependOnChangeVerb (b) f21 IsFrequentProperName (b)

Table 4: Features for bridging anaphora recognition from Markert et al. (2012) and Hou et al. (2013a).
“b” indicates binary, “n” nominal, “l” lexical features, “∗” resources used in the rule-based system.

Group Feature Value
semantic f1 preposition pattern ∗ the normalized hit counts of the preposition pattern query

a prep. c (e.g. participants of the conference) in big corpora
f2 verb pattern the normalized hit counts of the verb pattern query c verba or

verba c in big corpora (for set bridging in Example 7, the
pattern query is the firms reported)

f3 WordNet partOf whether a partOf relation holds between a and c in WordNet
f4 semantic class ∗ 16 classes, e.g. location, organization, GPE, rolePerson,

relativePerson, product, date, money, percent
salience f5 document span the normalized value of the span of text in which c is mentioned

f6 utterance distance the sentence distance between a and c
f7 local first mention whether c is the first mention within the previous five sentences
f8 global first mention whether c is the first mention in the whole document

syntactic f9 isSameHead whether a and c share the same head
& (exclude coreferent antecedent candidates)
lexical f10 isWordOverlap whether a is prenominally modified by the head of c (for

bridging where the anaphor is a compound noun, such as
the mine-mine security)

f11 isCoArgument whether subject c and object a are dependent on the same verb
(the subject can not be the bridging antecedent of the object
in the same clause)

f12 WordNet distance the inverse value of the shortest path length between a and c
in WordNet

Table 5: Features for antecedent selection from Hou et al. (2013b). “∗” indicates resources used in the
rule-based system.

al. (2013a) classify eight fine-grained information
status (IS) categories for NPs: old, new and 6
mediated categories (syntactic, worldKnowledge,
bridging, comparative, aggregate and function).
Features from Markert et al. (2012) work well to

identify old, new and several mediated categories
but fail to recognize most bridging anaphora. Hou
et al. (2013a) remedy this by adding discourse
structure features (f1-f3), semantic features (f4-
f10) and features to detect generic nouns (f11-
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Feature Value
for anaphor candidate a
f1 preModByNominal whether a contains any nominal pre-modifications
f2 preModByAdj whether a contains any adjective modifications
f3 isGPEJobTitle whether a is a job title about GPE (e.g. mayor or official)
f4 isArgumentTakingNP whether the argument taking ratio of a is bigger than 0.5
for antecedent candidate c
f5 fullMentionTime the normalized value of the frequency of c in the whole document
for pairwise instance (a, c)
f6 word distance the token distance between a and c

Table 6: Additional atomic features from the rule-based system.

f14 and f16).
Table 5 shows all features we use for selecting

antecedents for bridging anaphora. “∗” indicates
the resources that are used in the rule-based sys-
tem. These features are from Hou et al. (2013b)’s
local pairwise model. They try to model: (1) the
semantic relations between bridging anaphors and
their antecedents (f1 to f4); (2) the salience of
an antecedent from different perspectives (f5 to
f8); and (3) the syntactic and lexical constraints
between anaphor and antecedent (f9 to f12).

Apart from the features shown in Table
4 and Table 5, we further enrich mlSys-
tem ruleFeats+atomFeats with additional atomic
features used in the rule-based system (Table 6).

mlSystem atomFeats Based on mlSys-
tem ruleFeats+atomFeats, the rule features
from the rule-based system are removed.

4.4 Baseline
We also reimplement the rule-based system from
Vieira and Poesio (2000) as a baseline. The origi-
nal algorithm focuses on processing definite NPs.
It classifies four categories for the definite NPs:
discourse new, direct anaphora (same-head coref-
erent anaphora), lenient bridging and Unknown.
This algorithm also finds antecedents for NPs
which belong to direct anaphora or lenient bridg-
ing.

Since Vieira and Poesio (2000) include
different-head coreference into their lenient
bridging category, we further divide their le-
nient bridging category into two subcategories:
different-head coreference and bridging. Figure
1 shows the details of the division after failing
to classify an NP as discourse new or direct
anaphora. For more details about the whole
system, see Vieira and Poesio (2000). We then

apply this slightly revised algorithm to process
all NPs in the initial list of potential bridging
anaphoraA from ruleSystem (described in Section
3.1).

4.5 Results and Discussion

Table 7 shows the results on the same test set of
different approaches for unrestricted bridging res-
olution. The results reveal the difficulty of the
task, when evaluating on a realistic scenario with-
out constraints on types of bridging anaphora and
bridging relations.

Both our rule-based system and all learning-
based approaches significantly outperform the
baseline at p < 0.01 (randomization test). The
low recall in baseline is predictable, since it
only considers meronymy bridging and compound
noun anaphors whose head is prenominally mod-
ified by the antecedent head. (e.g. the state–
state gasoline taxes). Under the same features,
the learning-based approach (mlSystem ruleFeats)
performs slightly worse than the rule-based sys-
tem (ruleSystem) with regard to the F-score.

R P F
baseline 2.9 13.3 4.8
ruleSystem 11.9 42.9 18.6
mlSystem ruleFeats 12.1 35.0 18.0
mlSystem ruleFeats+atomFeats 16.7 21.2 18.7
mlSystem atomFeats 20.5 10.1 13.5

Table 7: Experimental results for the baseline, the
rule-based system and the learning-based systems.

Surprisingly, incorporating rich features
into the learning-based approach (mlSys-
tem ruleFeats+atomFeats) does not yield much
improvement over the rule-based system (with an
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Figure 1: Vieria & Poesio’s (2000) original algorithm for processing definite NPs. We further divide
their lenient bridging category into two subcategories: 2.1 Different-head coreference and 2.2 Bridging.

F-score of 18.7 in mlSystem ruleFeats+atomFeats
compared to 18.6 in ruleSystem). We suppose that
the learning-based system generalizes poorly with
only atomic features in Table 4, Table 5 and Table
6. Results on mlSystem atomFeats support our
assumption: the F-score drops considerably after
removing the rule features. Although ISNotes is
a reasonably sized corpus for bridging compared
to previous work, diverse bridging relations,
especially lots of context specific relations such
as pachinko-devotees or palms-the thieves, lead
to relatively small-scale training data for each
type of relation. Therefore it is difficult for the
learning-based approach to learn effective rules to
predict bridging links.

However, all learning-based systems tend to
have higher recall but lower precision compared
to the rule-based system. This suggests that the
learning-based systems are “greedy” to predict
bridging links. A close look at these links in
mlSystem atomFeats indicates that the learning-
based system predicts more correct bridging
anaphors but fails to find the correct antecedents.
In fact, lots of those “half” correct links sound
reasonable without the specific context, such as
the story-readers (gold bridging link: this novel-
readers) or the executive director’s office-the
desks (gold bridging link: the fund’s building-the
desks).

5 Conclusions

We proposed a rule-based approach for un-
restricted bridging resolution where bridging
anaphora are not limited to definite NPs and the
relations between anaphor and antecedent are not
restricted to meronymic relations. We designed
eight rules to resolve bridging based on linguis-
tic intuition. Our rule-based system performs bet-
ter than a learning-based approach which has ac-
cess to the same knowledge resources as the rule-
based system. Particularly, the learning-based sys-
tem enriched with more features does not yield
much improvement over the rule-based system.
We speculate that the learning-based system could
benefit from more training data. Furthermore, bet-
ter methods to model the semantics of the specific
context need to be explored in the future.

This work is – to our knowledge – the first
bridging resolution system that handles the unre-
stricted phenomenon in a realistic setting.
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Abstract

Unlike traditional over-the-phone spoken
dialog systems (SDSs), modern dialog
systems tend to have visual rendering on
the device screen as an additional modal-
ity to communicate the system’s response
to the user. Visual display of the system’s
response not only changes human behav-
ior when interacting with devices, but also
creates new research areas in SDSs. On-
screen item identification and resolution
in utterances is one critical problem to
achieve a natural and accurate human-
machine communication. We pose the
problem as a classification task to cor-
rectly identify intended on-screen item(s)
from user utterances. Using syntactic, se-
mantic as well as context features from the
display screen, our model can resolve dif-
ferent types of referring expressions with
up to 90% accuracy. In the experiments we
also show that the proposed model is ro-
bust to domain and screen layout changes.

1 Introduction

Todays natural user interfaces (NUI) for applica-
tions running on smart devices, e.g, phones (SIRI,
Cortana, GoogleNow), consoles (Amazon FireTV,
XBOX), tablet, etc., can handle not only simple
spoken commands, but also natural conversational
utterances. Unlike traditional over-the-phone spo-
ken dialog systems (SDSs), user hears and sees the
system’s response displayed on the screen as an
additional modality. Having visual access to the
system’s response and results changes human be-
havior when interacting with the machine, creating
new and challenging problems in SDS.

[System]: How can i help you today ?
[User]: Find non-fiction books by Chomsky.
[System]: (Fetches the following books from database)

[User]: “show details for the oldest production” or
“details for the syntax book” or
“open the last one” or
“i want to see the one on linguistics” or
“bring me Jurafsky’s text book”

Table 1: A sample multi-turn dialog. A list of second turn
utterances referring to the last book (in bold) and a new search
query (highlighted) are shown.

Consider a sample dialog in Table 1 between a
user and a NUI in the books domain. After the sys-
tem displays results on the screen, the user may
choose one or more of the on-screen items with
natural language utterances as shown in Table 1.
Note that, there are multiple ways of referring to
the same item, (e.g. the last book)1. To achieve a
natural and accurate human to machine conversa-
tion, it is crucial to accurately identify and resolve
referring expressions in utterances. As important
as interpreting referring expressions (REs) is for
modern NUI designs, relatively few studies have
investigated withing the SDSs. Those that do fo-
cus on the impact of the input from multimodal
interfaces such as gesture for understanding (Bolt,
1980; Heck et al., 2013; Johnston et al., 2002),
touch for ASR error correction (Huggins-Daines
and Rudnicky, 2008), or cues from the screen
(Balchandran et al., 2008; Anastasiou et al., 2012).
Most of these systems are engineered for a specific

1An item could be anything from a list, e.g. restaurants,
games, contact list, organized in different lay-outs on the
screen.
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task, making it harder to generalize for different
domains or SDSs. In this paper, we investigate a
rather generic contextual model for resolving nat-
ural language REs for on-screen item selection to
improve conversational understanding.

Our model, which we call FIS (Flexible Item
Selection), is able to (1) detect if the user is re-
ferring to any item(s) on the screen, and (2) re-
solve REs to identify which items are referred to
and score each item. FIS is a learning based sys-
tem that uses information from pair of user utter-
ance and candidate items on the screen to model
association between them. We cast the task as a
classification problem to determine whether there
is a relation between the utterance and the item,
representing each instance in the training dataset
as relational features.

In a typical SDS, the spoken language under-
standing (SLU) engine maps user utterances into
meaning representation by identifying user’s in-
tent and token level semantic slots via a seman-
tic parser (Mori et al., 2008). The dialog man-
ager uses the SLU components to decide on the
correct system action. For on-screen item selec-
tion SLU alone may not be sufficient. To correctly
associate the user’s utterance with any of the on-
screen items one would need to resolve the rela-
tional information between the utterance and the
items. For instance, consider the dialog in Ta-
ble 1. SLU engine can provide signals to the di-
alog model about the selected item, e.g., that “lin-
guistics” is a book-genre or content, but may not
be enough to indicate which book the user is refer-
ring. FIS module provides additional information
for the dialog manager by augmenting SLU com-
ponents.

In §3, we provide details about our data as well
as data collection and annotation steps. In §4, we
present various syntactic and semantic features to
resolve different REs in utterances. In the exper-
iments (§6), we evaluate the individual impact of
each feature on the FIS model. We analyze the
performance of the FIS model per each type of
REs. Finally, we empirically investigate the ro-
bustness of the FIS model to domain and display
screen changes. When tested on a domain that
is unseen to the training data or on a device that
has a different NUI design, the performance only
slightly degrades proving its robustness to domain
and design changes.

2 Related Work

Although the problems of modern NUIs on smart
devices are fairly new, RE resolution in natural
language has been studied by many in NLP com-
munity.

Multimodal systems provide a natural and ef-
fective way for users to interact with computers
through multiple modalities such as speech, ges-
ture, and gaze. Since the first appearance of the
Put-That-There system (Bolt, 1980), a number of
multimodal systems have been built, among which
there are systems that combine speech, point-
ing (Neal, 1991), and gaze (Koons et al., 1993),
systems that engage users in an intelligent con-
versation (Gustafson et al., 2000). Earlier stud-
ies have shown that multimodal interfaces enable
users to interact with computers naturally and ef-
fectively (Schober and Clark, 1989; Oviatt et al.,
1997). Considered as part of the situated interac-
tive frameworks, many work focus on the prob-
lem of predicting how the user has resolved REs
that is generated by the system, e.g., (Clark and
Wilkes-Gibbs, ; Dale and Viethen, 2009; Giesel-
mann, 2004; Janarthanam and Lemon, 2010; Gol-
land et al., 2010). In this work, focusing on smart
devices, we investigate how the system resolves
the REs in user utterances to take the next correct
action.

In (Pfleger and J.Alexandersson, 2006) a refer-
ence resolution model is presented for a question-
answering system on a mobile, multi-modal inter-
face. Their system has several features to parse
the posed question and keep history of the dia-
log to resolve co-reference issues. Their question-
answering model uses gesture as features to re-
solve queries such as “what’s the name of that
[pointing gesture] player?”, but they do not re-
solve locational referrals such as “the middle one”
or “the second harry potter movie”. Others such as
(Funakoshi et al., 2012) resolve anaphoric (“it”)
or exophoric (“this one”) types of expressions in
user utterances to identify geometric objects. In
this paper, we study several types of REs to build
a natural and flexible interaction for the user.

(Heck et al., 2013) present an intent prediction
model enriched with gesture detector to help dis-
ambiguate between different user intents related to
the interface. In (Misu et al., 2014) a situated in-
car dialog model is presented to answer drivers’
spoken queries about their surroundings (no dis-
play screen). They integrate multi-modal inputs of
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speech, geo-location and gaze. We investigate a
variety of REs for visual interfaces, and analyze
automatic resolution in a classification task intro-
ducing a wide range of syntactic, semantic and
contextual features. We look at how REs change
with screen layout comparing different devices.
To the best of our knowledge, our work is first to
analyze REs from these aspects.

3 Data

Crowdsourcing services, such as Amazon Me-
chanical Turk or CrowdFlower, have been exten-
sively used for a variety of NLP tasks (Callison-
Burch and Dredze, 2010). Here we explain how
we collected the raw utterances from Crowd-
Flower platform (crowdflower.com).

For each HITApp (Human Intelligence Task
Application), we provide judges with a written ex-
planation about our Media App, a SDS built on a
device with a large screen which displays items in
a grid style layout, and what this particular sys-
tem would do, namely search for books, music,
tv and movies media result 2 Media App returns
results based on the user query using an already
implemented speech recognition, SLU and dialog
engines. For each HIT, the users are shown a dif-
ferent screenshot showing the Media App’s search
results after a first-turn query is issued (e.g., “find
non-fiction books by Chomsky” in Table 1). Users
are asked to provide five different second turn text
utterances for each screenshot. We launch several
hitapps each with a different prompt to cover dif-
ferent REs.

3.1 HITApp Types and Data Collection

A grid of media items is shown to the user with
a red arrow pointing to the media result we want
them to refer to (see Fig. 1). They can ask to play
(an album or an audio book), select, or ask details
about the particular media item. Each item in each
grid layout becomes a different HIT or screenshot.

3.1.1 Item Layout and Screen Type Variation
The applications we consider have the following
row×column layouts: 1×6, 2×6 and 3×6, as
shown in Fig. 1 (columns vary depending on the
returned item size). By varying the layout, we ex-
pect the referent of the last and the bottom layer
items to change depending on how many rows, or

2Please e-mail the first author to inquire about the
datasets.

(a) A two row display. (b) A three row display.

(c) Single row display. (d) Display forcing location
based referring expressions.

Figure 1: Sketches of different HITApp Screens.
The red arrows point to the media we want the an-
notators to refer.

columns exist in the grid. In addition, phrases like
“middle”, or ”center” would not appear in the data
when there are only one or two rows. Also, we ex-
pect that the distribution of types of utterances to
vary. For example, in a grid of 1×6, “the second
one” makes sense, but not so much on a 2×6 grid.
We expect similar change based on the number of
columns.

We use two kinds of screenshots to collect ut-
terances with variations in REs. The first type of
screenshots are aimed to bias the users to refer to
items ’directly’ using (full/partial) titles or ’indi-
rectly’ using other descriptors, or meta informa-
tion such as year the movie is taken, or the au-
thor of the book. To collect utterances that indi-
rectly referred to items, we need to show screen
shots displaying system results with common ti-
tles, eventually forcing the user to use other de-
scriptors for disambiguation. For example, given
the first turn query “find harry potter movies”, the
system returns all the Harry Potter series, all of
which contain the words Harry Potter in the title.
The user can either refer in their utterance with the
series number, the subtitle (e.g. The prisoners of
Azkaban) or the location of the movie in the grid
or by date, e.g., “the new one”,

Because some media items have long titles, or
contain foreign names that are not easy to pro-
nounce, users may chose to refer these items by
their location on the display, such as “top right”,
“first album”, “the movie on the bottom left”, etc.
The second type of screen shots contains a tem-
plate for each layout with no actual media item
(Fig. 1(d)) which simply forces user to use loca-
tional references.
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3.1.2 Interface Design Variation

In order to test our model’s robustness to a
different screen display on a new device, we
employ an additional collection running another
application named places, designed for hand-
held devices. The places application can assist
users in finding local businesses (restaurants, ho-
tels, schools, etc.). and by nature of the de-
vice size can display fewer media items and ar-
ranges them in a list (one column). The num-
ber of items on the screen at any given time de-
pends on the size of the hand-held device screen.

Figure 2: A HitApp
screen of places app. Items
returned by the system re-
garding the first-turn utter-
ance ”burger places near
me?”

The user can scroll
down to see the rest
of the results. Our
collection displays the
items in a 3, 4, and
5-rows per 1 column
layout as shown in
Fig. 2. We use the
same variations in
prompts as in §3.1. To
generate the HitApp
screens, we search
for nearby places, in
the top search engines
(Google, Bing) and
collect the results to

the first turn natural language search queries
(e.g.,“find me sushi restaurants near me”).

3.2 Data Annotation

We collect text utterances using our media and
places application. Using a similar HitApp we
labeled each utterance with a domain, intent and
segments in utterance with slot tags (see Table 2).
The annotation agreement, Kappa measure (Co-
hen, 1960) is around 85%. Since we are building a
relational model between utterances and each item
on the screen, we ask the annotators to label each
utterance-item as ’0’ or ’1’ indicating if the utter-
ance is referring to that item or not. ’1’ means
the item is the intended one. ’0’ indicates the item
is not intended one or the utterance is not refer-
ring to any item on the screen, e.g., new search
query. We also ask the annotators to label each
utterance whether they contain locational (spatial)
references.

Domain Intents (I) & Slots

movie I: find-movie/director/actor,buy-ticket
Slots: name, mpaa-rating (g-rated), date,

books I: find-book, buy-book,
Slots: name, genre(thriller), author, publisher,

music I: find-album, find-song,
Slots: song-name, genre, album-type,...

tv I: find-tvseries/play/add-to-queue..
Slots: name, type(cartoon), show-time....

places I: find-place, select-item(first one)..
Slots: place-type, rating, nearby(closest)....

Table 2: A sample of intents and semantic slot tags
of utterance segments per domain. Examples for
some slots values are presented in parenthesis as
italicized.

3.3 Types of Observed Referring Expressions

We observe four main categories of REs in the ut-
terances that are collected by varying the prompts
and HITApp screens in crowd-sourcing:

Explicit Referential : Explicit mentions of
whole or portions of the title of the item on the
screen, and no other descriptors, e.g.,“show me the
details of star wars six” (referring to the item with
title ”Star wars: Episode VI - Return of the Jedi”).

Implicit Referential : The user refers to the
item using distinguishing features other than the
title, such as the release or publishing date, writ-
ers, actors, image content (describing the item im-
age), genre, etc. “how about the one with Kevin
Spacey”.

Explicit Locational : The user refers to the
item using the grid design, e.g., “i want to pur-
chase the e-book on the bottom right corner”.

Implicit Locational : Locational references in
relation to other items on the screen, e.g., “the sec-
ond of Dan Brown’s book” (showing two of the
Dan Brown’s book on the same row).

4 Feature Extraction for FIS Model

Here, provide descriptions of each set of features
of FIS model used to resolve each expression.

4.1 Similarity Features (SIM)

Similarity features represent the lexical overlap
between the utterance and the item’s title (that
is displayed on the user’s screen) and are mainly
aimed to resolve explicit REs. We represent
each utterance ui and item-title tk as sequence of
words:

ui={wi(1), . . . , wi(ni)}
tk={wk(1), . . . , wk(mk)}
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item bigrams <bos> call five guys and fries <eos>

<bos> five
five guys

guys burgers
burgers and

and fries
fries <eos>

Table 3: Bigram overlap between the item “five guys burg-
ers and fries” and utterance“five guys and fries”.

where wi(j) and wk(j) are the jth word in the se-
quence. Since inflectional morphology may make
a word appear in an utterance in a different form
than what occurs in the official title, we use both
the word form as it appears in the utterance and in
the item title. For example, burger and burgers, or
woman and women are considered as four distinct
words and all included in the bag-of-words. Us-
ing this representation we calculate four different
similarity measures:

Jaccard Similarity: A common feature that
can represent the ratio of the intersection to
the union of unigrams. Consider, for instance,
ui=“call five guys and fries” and the item tk=“five
guys burgers and fries” in Fig 2. The Jaccard sim-
ilarity S(i,k) is:

S(i,k)=1- ( c(ri ∩ rk)/c(ri ∪ rk) )

where the ri and rk are unigrams of ui and tk re-
spectively. c(ri ∩ rk) is the number of common
words of ui and tk, c(ri ∪ rk) is the total unigram
vocabulary size between them. In this case, the
S(i,k)=0.66.

Orthographic Distance: Orthographic dis-
tance represent similarity of two text and can be
as simple as an edit distance (Levenshtein dis-
tance) between their graphemes. The Levenshtein
distance (Levenshtein, 1965) counts the insertion,
deletion and substitution operations that are re-
quired to transform an utterance ui into item’s title
tk.

Word Order: This feature represents how sim-
ilar are the order of words in two text. Sentences
containing the same words but in different orders
may result in different meanings. We extend Jac-
card similarity by defining bigram word vectors ri
and rk and look for overlapping bigrams as in Ta-
ble 3. Among 6 bigrams between them, only 2
are overapping, hence the word-order similarity is
S(i,k)=0.33.

Word Vector: This feature is the cosine sim-
ilarity between the utterance ui and the item-
title tk that measures the cosine of the an-

gle between them. Here, we use the uni-
gram word counts to represent the word vec-
tors and the word vector similarity is defined as:
S(i, k)=(ri· rk)/‖ri‖· ‖rk‖.
4.2 Knowledge Graph Features
This binary feature is used to represent overlap be-
tween utterance and the meta information about
the item and is mainly aimed to resolve implicit
REs.

First, we obtain the meta information about
the on-screen items using Freebase (Bollacker et
al., 2008), the knowledge graph that contains
knowledge about classes (books, movies, ...) and
their attributes (title, publisher, year-released, ...).
Knowledge is often represented as the attributes
of the instances, along with values for those prop-
erties. Once we obtain the attribute values of
the item from Freebase, we check if any attribute
overlaps with part of the utterance. For instance,
given an utterance “how about the one with Kevin
Spacey”, and the item-title “House of Cards”, the
knowledge graph attributes include year(2013),
cast(Kevin Spacey), director(James Foley),... We
turn the freebase feature ’on’ since the actor at-
tribute of that item is contained in the utterance.
We also consider partial matches, e.g., last name
of the actor attribute.

This feature is also used to resolve implicit REs,
with item descriptions, such as “the messenger boy
with bicycle” referring to the media item Ride Like
Hell, a movie about a bike messenger. The syn-
opsis feature in Freebase fires the freebase meta
feature as the synopsis includes the following pas-
sage: “... in which real

:::::::::
messenger

:::::
boys are used

as stunts... ”.

4.3 Semantic Location Labeler (SLL)
Feature

This feature set captures spatial cues in utterances
and is mainly aimed to resolve explicit locational
REs. Our goal is to capture the location indicating
tokens in utterances and then resolve the referred
location on the screen by using an indicator fea-
ture. We implement the SLL (Semantic Location
Labeler), a sequence labeling model to tag loca-
tional cues in utterances using Conditional Ran-
dom Fields (CRF) (Lafferty et al., 2001).

We sampled a set of locational utterances from
each domain to be used as training set. We
asked the annotators to label tokens with four
different semantic tags that indicate a location.
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The semantic tags include row and column in-
dicator tags, referring to the position or pivotal
reference. For instance, in “

::::::
second from the

:::
top”, “second” is the column-position, and
“top” is the row-pivot, indicating the pivotal
reference of the row in a multi-row grid dis-
play. Also in “

::::
third from the

:::
last”, the “third”

is the column-position, and the “last” is the
column-pivot, the pivotal reference of the col-
umn in a multi-column grid display. The fourth
tag, row-position, is used when the specific
row is explicitly referred, such as in “the Harry
Potter movie in the

:::
first row”.

To train our CRF-based SLL model we use
three types of features: the current word, window
words e.g., previous-word, next-word, etc., using
five-window around the current word, and syntac-
tic features from the part-of-speech (POS) tagger
using the Stanford’s parser (Klein and Manning,
2003).

Row Indicator Feature: This feature sets the
relationship between the n-gram in an utterance in-
dicated by the row-position or row-pivot
tag and the item’s row number on the screen. For
instance, given SSL output row-pivot(’top’)
and item’s location row=1, the value of the feature
is set to ’1’. If no row tag is found by SLL, this
feature is set to ’0’. We use regular expressions to
parse the numerical indicators, e.g., ’top’=’1’.

Column Indicator Feature: Similarly,
this feature indicates if a phrase in utterance
indicated by the column-position or
column-pivot tag matches the item’s col-
umn number on the screen. If SLL model tags
column-pivot(’on the left’), then using the
item’s column number(=1), the value of this
feature is set to ’1’.

4.4 SLU Features

The SLU (Spoken Language Understanding) fea-
tures are used to resolve implicit and explicit REs.

For our dialog system, we build one SLU model
per each domain to extract two sets of semantic at-
tributes from utterances: user’s intent and seman-
tic slots based on a predefined semantic schema
(see examples in Table 2). We use the best in-
tent hypothesis as a categorical feature in our FIS
model. Although FIS is not an intent detection
model, the intent from SLU is an effective seman-
tic feature in resolving REs. Consider second turn
utterance such as “weather in seattle”, which is

a ’find’ intent that is a new search or not related
to any item on the screen. We map SLU intents
such as find-book or find-place, to more specific
ones, so that the intent feature would have values
such as find, filter, check-time, not specific to a
domain or device. The intent feature helps us to
identify if user’s utterance is related to any item
on the screen. We also use the best slot hypothesis
from the SLU slot model and search if there is full
overlap of any recognized slot value with either the
item-title or the item meta-information from free-
base. In addition, we include the longest slot value
n-gram match as an additional feature. We add
a binary feature per domain, indicating whether
there is a slot value match. Because we are us-
ing generic intents as categorical features instead
of specific intents, and a slot value match feature
instead of domain specific slot types as features,
our models are rather domain independent.

5 GBDT Classifier

Among various classifier learning algorithms, we
choose the GBDT (gradient boosted decision tree)
(Friedman, 2001; Hastie et al., 2009), also known
as MART (Multiple Additive Regression Trees).
GBDT3 is an efficient algorithm which learns an
ensemble of trees. We find the main advantage
of the decision tree classifier as opposed to other
non-linear classifiers such as SVM (support vec-
tor machines) (Vapnik, 1995) or NN (neural net-
works) (Bishop, 1995) is the interpretability. De-
cision trees are ”white boxes” in the sense that per-
feature gain can be expressed by the magnitude
of their weights, while SVM or NN’s are gener-
ally black boxes, i.e. we cannot read the acquired
knowledge in a comprehensible way. Addition-
ally, decision trees can easily accept categorical
and continuous valued features. We also present
the results of the SVM models.

6 Experiments

We investigate several aspects of the SISI model
including its robustness in resolving REs for do-
main or device variability. We start with the details
of the data and model parameters.

We collect around 16K utterances in the me-
dia domains (movies, music, tv, and books) and
around 10K utterances in places (businesses and

3Treenet: http://www.salford-systems.com/products/
treenet is the implementation of the GBDT which is used in
this paper.
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Movies Tv Music Book Overall Media Places

Feature Description GBDT SVM GBDT SVM GBDT SVM GBDT SVM GBDT SVM GBDT SVM

SLL 79.6 77.1 62.0 62.0 77.1 76.5 63.7 63.0 83.6 82.7 67.9 68.9

SIM 86.6 85.7 78.7 74.1 84.9 84.0 81.6 77.3 88.5 88.3 67.1 66.5

Knowledge Graph (KG) 81.0 82.0 64.8 65.6 86.3 85.4 77.8 77.9 84.4 84.1 76.5 76.5

SLU (Gold) 91.7 91.8 89.1 88.5 87.8 87.5 86.3 84.9 83.7 83.2 77.8 71.1

SLU (Pred.) 75.8 72.6 80.3 79.8 84.3 84.1 82.4 82.4 81.4 80.9 71.4 67.8

SIM+SLL 90.9 90.2 87.2 87.1 85.9 86.2 88.5 87.6 91.9 91.9 78.9 73.4

SIM+SLL+KG 91.7 91.3 89.9 89.1 89.1 87.7 91.4 90.3 93.0 92.7 85.9 82.3

SIM+SLL+KG+SLU(Gold) 96.2 95.01 95.2 95.09 90.3 89.9 94.6 94.0 93.7 93.2 86.3 84.3

SIM+SLL+KG+SLU(Pred.) 90.9 90.8 92.3 92.00 86.9 85.7 93.1 93.0 89.3 88.9 85.7 83.9

Table 5: Performance of the FIS models on test data using different features. Acc:Accuracy,. SIM: sim-
ilarity features; SLU:Spoken Language Understanding features (intent and slot features); SLL:Semantic
Locational Labeler features; Gold: using true intent and slot values, Pred.: using predicted intent and
slot values from the SLU models.

Model: Movies TV Music Books Places

Intent Acc. 84.5% 87.4% 87.6% 98.1% 89.5%

Slot F-score 92.1F 89.4F 88.5F 86.6F 88.4F

Table 4: The performance of the SLU Engine’s
intent detection models in accuracy (Acc.) and slot
tagging models in F-Score on the test dataset.

locations) domain. We also construct additional
negative instances from utterance-item pairs us-
ing first turn non-selection queries, which mainly
indicate a new search or starting over. In total
we compile around 250K utterance-item pairs for
media domains and 150K utterance-item pairs for
the places domain.4 We randomly split each col-
lection into 60%-20%-20% parts to construct the
train/dev/test datasets. We use the dev set to tune
the regularization parameter for the GBDT and
SVM using LIBSVM (Chang and Lin, 2011) with
linear kernel.

We use the training dataset to build the SLU in-
tent and slot models for each domain. For the in-
tent model, we use the GBDT classifier with n-
gram and lexicon features. The lexicon entries are
obtained from Freebase and are used as indicator
variables, e.g., whether the utterance contains an
instance which exists in the lexicon. Similarly,
we train a semantic slot tagging model using CRF
method. We use n-gram features with up to five-
gram window, and lexicon features similar to the
intent models. Table 4 shows the accuracy and F-
score values of SLU models on the test data. The
slot and intent performance is consistent accroess

4In the final version of the paper, we will provide anno-
tated data sets on a web page, which is reserved due to blind
review.

domains. The books domain has only two intents
and hence we observe much better intent perfor-
mance compared to other domains.

6.1 Impact of Individual FIS Features

In our first experiment, we investigate the impact
of individual feature sets on FIS model’s perfor-
mance. We train a set of FIS models on the entire
media dataset to investigate the per-feature gain on
the test dataset for each domain. We also train an-
other set of FIS models with the same feature sets,
this time on the places dataset and present the re-
sults on the places test set. Table 5 shows the re-
sults. We measure the performance starting with
individual feature sets, and then incrementally add
each feature set. Note that the SLU feature set
includes the categorical intent, binary slot-value
match and the longest slot value n-gram match
with the item’s title or meta information. The SLL
feature set includes two features indicating the row
and column (see §4.3).

As expected, larger gains in accuracy are ob-
served when features that resolve different REs
are used. Resolving locational cues in utter-
ances with SLL features considerably impacts the
performance when used together with similarity
(SIM) features. We see a positive impact on per-
formance as we add the knowledge graph features,
which are used to resolve implicit REs. Using
only the predicted SLU features in feature gener-
ation without golden values degrades the perfor-
mance. Although the results are not statistically
significant, the GBDT outperforms the SVM for
almost all models, except for a few models, where
the results are similar. However, the models which
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Figure 3: A sample of normalized feature weights of the
GBDT FIS models across domains.

combine different features as apposed to individ-
ual feature set (the above the line models versusu
below the horizantil line models) are statistically
significant (based on the student t-test p¡0.01).

Next, we illustrate the significance of individual
features across domains as well as devices. Fig. 3
compares the normalized feature weights of me-
dia and places domains. Across domains there are
similar features with similar weight values such as
SLU-intent, some similarity features (SIM-) and
even spatial cue features (SLL). It is not surpris-
ing to observe that the places domain knowledge-
graph meta feature weights are noticeably larger
than all media model features. We think that this
is due to the way the REs are used when the de-
vice changes (places app is on a phone with a
smaller screen display). Especially, places appli-
cation users refer items related to restaurants, li-
braries, etc., not so much by their names, but more
so with implicit REs by using: the location (refer-
ring to the address: “call the one on 31 street”) or
cuisine (“Chinese”), or the star-rating (“with the
most stars”), etc.

6.2 Resolution Across REs

We go on to analyze the performance of differ-
ent RE types. A particularly interesting set of er-
rors we found from the previous experiments are
those that involve implicit referrals. Table 6 shows
the distribution of different REs in the collected
datasets.

Some noticeable instances with false positives
for implicit locational REs include ambiguous
cases or item referrals with one of its facets that
require further resolution including comparison to
other items, e.g., “the nearest one”. Table 7 shows
further examples. As might be expected, the lo-
cational cues are less common compared to other

All Media Places
Utterance Type % Acc. % Acc.
All utterances 100% 93.7% 100% 86.3%

Direct/Indirect RE 81% 93.9% 73% 86.9%

Locational RE 19% 92.5% 28% 85.2%
Explicit RE 60% 94.3% 45% 88.4%

Implicit RE 21% 83.4% 28% 72.2%
Explicit Locational RE 15% 75.2% 24% 86.2%

Implicit Locational RE 3% 56.6% 2% 56.7%

Table 6: Distribution of referring expressions
(RE) in the media (large screen like tv) and places
(handheld device like phone) corpus and the FIS
accuracies per RE type.

Utterance Displayed on screen

“the most rated restaurant” FFF’s next to each item

“first thomas crown affair” original release (vs. remake)

“second one over” (incomplete row/col. information)

Table 7: Display screen as user utters.

expressions. We also confirm that the handheld
(places domain) users implicitly refer to the items
more commonly compared to media app, and use
the contextual information about the items such as
their location, address, star-rating, etc. The mod-
els are considerably better at resolving explicit re-
ferrals (both non-spatial and spatial) compared to
implicit ones. However, for locational referrals,
the difference between the accuracy of implicit
and explicit REs is significant (75.2% vs. 56.6%
in media and 86.2% vs. 56.7% in places). Al-
though not very common, we observe negative ex-
pressions, e.g., “the one with no reviews”, which
are harder for the FIS to resolve. They require
quantifying over every other item on the screen,
namely the context features, which we leave as a
future work.

6.3 New Domains and Device Independence

In the series of experiments below, we empirically
investigate the FIS model’s robustness to when a
new domain or device is introduced.

Robustness to New Domains: So far we
trained media domain FIS models on utterances
from all domains. To investigate how FIS models
would behave when tested on a new domain, we
train additional models by leaving out utterances
from one domain and test on the left out domain.
We used GBDT with all the feature sets. To set
up an upper bound, we also train models on each
individual domain and test on the same domain.

Table 8 shows the performance of the FIS mod-
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Models tested on:
Model trained on: Movies TV Music Books
All domains 96.2% 95.2% 90.3% 94.6%
All other domains 94.6% 92.4% 89.7% %
Only *this domain 96.4% 96.8% 93.4% %

Table 8: Accuracy of FIS models tested on domains that
are: seen at training time (all domains), unseen at training
time (all other domains) and trained on individual domains.
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0 50 100

94

95
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Figure 4: The accuracy (y-axis) versus the percentage (%)
of in-domain utterances used in the training dataset. The
dashed vertical line indicates an optimum threshold for the
amount of in-domain data to be added to the training data.

els in accuracy on each media test domain. The
first row shows the results when all domains are
used at training time (same as in Table 5). The
second row represents models where one domain
is unseen at training time. We notice that the ac-
curacy, although degraded for movies and tv do-
mains, is in general not significantly effected by
the domain variations. We setup another experi-
ment, where we incrementally add utterances from
the domain that we are testing the model on. For
instance, we incrementally add random samples
from movies training utterances on the dataset that
does not contain movies utterances and test on all
movies test data. The charts in Fig. 4 show the
% improvement in accuracy as in-domain data is
incrementally added to the training dataset. The
results are interesting in that, using as low as 10-
20% in-domain data is sufficient to build a flexi-
ble item selection model given enough utterances
from other domains with varying REs.

Robustness to a New Device: The difference
between the vocabulary and language usage ob-
served in the data collected from the two devices

Media
“only the new movies” ; “second one on the left”
“show me the thriller song”; “by Lewis Milestone”
“the first harry potter book”
Places
“directions to Les Schwab tire center”
“the closest one” ;“show me a map of ...”
“get hours of Peking restaurant”; “call Mike’s burgers”

Table 9: Sample of utterances collected from media and
places applications illustrating the differences in language us-
age.

Trained on Tested on Media Tested on Places

Media 93.7 % 85.9%

Places 85.9% 86.3%

Media+Places 92.7% 85.8%

Table 10: Accuracy of FIS models tested on two separate
devices (large screen media, and small screen places) that are
unseen at test time.

is mainly due to changes in: (i) the screen design
(places on phone has one column format wheres
the media app has multi-column layout); (ii) the
domain of the data. Table 9 shows some exam-
ples. Here, we add a little bit of complexity, and
train one FIS model using the training data col-
lected on one device and test the model on a dif-
ferent one, which is unseen at training time. Table
10 shows the comparisons for media and phone
interfaces. The results are interesting. The perfor-
mance of the places domain on phone does not get
affected when the models are trained on the media
data and tested on the phone device (86.3% down
to 85.9% which is statistically insignificant). But
when the data is trained on the places and tested
on the media, we see a rather larger degradation
on the performance (93.7% down to 85.9%). This
is due to the fact that the media display screens
are much complicated compared to phone result-
ing in a larger vocabulary with more variation in
REs compared to places domain.

6.4 Conclusion

We presented a framework for identifying and rec-
ognizing referring expressions in user utterances
of human-machine conversations in natural user
interfaces. We use several on-screen cues to in-
terpret whether the user is referring to on-screen
items, and if so, which item is being referred to.
We investigate the effect of different set of fea-
tures on the FIS models performance. We also
show that our model is domain and device inde-
pendent which is very beneficial when new do-
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mains are added to the application to cover more
scenarios or when FIS is implemented on new de-
vices. As a future work, we would like to adapt our
model for different languages and include other
features from multi modality including gesture or
geo-location.
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Abstract 

In this paper, we propose a Connective-

driven Dependency Tree (CDT) scheme 

to represent the discourse rhetorical 

structure in Chinese language, with ele-

mentary discourse units as leaf nodes 

and connectives as non-leaf nodes, large-

ly motivated by the Penn Discourse 

Treebank and the Rhetorical Structure 

Theory. In particular, connectives are 

employed to directly represent the hier-

archy of the tree structure and the rhetor-

ical relation of a discourse, while the nu-

clei of discourse units are globally de-

termined with reference to the depend-

ency theory. Guided by the CDT scheme, 

we manually annotate a Chinese Dis-

course Treebank (CDTB) of 500 docu-

ments. Preliminary evaluation justifies 

the appropriateness of the CDT scheme 

to Chinese discourse analysis and the 

usefulness of our manually annotated 

CDTB corpus. 

1 Introduction 

It is well-known that interpretation of a text re-

quires understanding of its rhetorical relation 

hierarchy since discourse units rarely exist in 

isolation. Such discourse structure is fundamen-

tal to many text-based applications, such as 

summarization (Marcu, 2000) and question-

answering (Verberne et al., 2007). Due to the 

wide and potential use of discourse structure, 

constructing discourse resources has been at-

tracting more and more attention in recent years. 

In comparison with English, there are much 

fewer discourse resources for Chinese which 

largely restricts the researches in Chinese dis-

course analysis. 

The general notion of discourse structure 

mainly consists of discourse unit, connective, 

structure, relation and nuclearity. However, pre-

vious studies on discourse failed to fully express 

these kinds of information. For example, the 

Rhetorical Structure Theory (RST) (Mann and 

Thompson, 1988) represents a discourse as a 

tree with phrases or clauses as elementary dis-

course units (EDUs). However, RST ignores the 

importance of connectives to a great extent. Fig-

ure 1 gives an example tree structure with four 

EDUs (e1-e4). In comparison, Penn Discourse 

Treebank (PDTB) (Prasad et al., 2008) adopts 

the predicate-argument view of discourse rela-

tion, with discourse connective as predicate and 

two text spans as its arguments. Example (1) 

shows an explicit reason relation signaled by the 

discourse connective “particularly if” and an 

implicit result relation represented by the insert-

ed discourse connective “so”, with Arg1 in ital-

ics and Arg2 in bold. However, as a connective 

and its arguments are determined in a local con-

textual window, it is normally difficult to deduce 

a complete discourse structure from such a con-

nective-argument scheme. In this sense, the 

PDTB at best only provides a partial solution to 

the discourse structure. 

[Catching up with commercial competitors in retail 

banking and financial services,] e1 [they argue,] e2 

[will be difficult,] e3 [particularly if market condi-

tions turn sour.]e4 

e4

e2

e3

condition

same-unit

e1-e4

e1-e3

attributione1-e2

e1  
Figure 1: An example of discourse structure in RST 
 

Example (1): An example of the connective-argument 

scheme in PDTB 

A)[Catching up with commercial competitors in retail 

banking and financial services will be difficult ]Arg1, 

they argue, will be difficult, particularly if [market 
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conditions turn sour ] Arg2. (Contingency.Condition. 

Hypothetical) (0616) 

B) So much of the stuff poured into its Austin, Texas, 

offices [that its mail rooms there simply stopped de-

livering it.]Arg1 (Implicit = so)[Now, thousands of 

mailers, catalogs and sales pitches go straight into 

the trash.]Arg2 (Contingency.Cause. Result) (0989) 

Obviously, both RST and PDTB have their 

own advantages and disadvantages in represent-

ing different characteristics of the discourse 

structure. In this paper, we attempt to propose a 

new scheme to Chinese discourse structure, 

adopt advantages of the tree structure from RST 

and connective from PDTB. Meanwhile, the 

special characteristics of Chinese discourse 

structure are well addressed. 

First, it is difficult to define EDU in Chinese 

due to the frequent occurrence of the ellipsis of 

subjects, objects and predicates, and the lack of 

functional marks for EDU. Second, the connec-

tives in Chinese omit much more frequently than 

those in English with about 82.0% vs. 54.5% in 

Zhou and Xue (2012). In Example (2), there are 

even no explicit connectives. Third, previous 

studies have shown the difference in classifying 

Chinese discourse relations from English (Xing, 

2001; Huang and Liao, 2011). This suggests that 

the discourse relations defined for English (both 

RST and PDTB) are not readily suitable for 

Chinese. Finally, the nucleus of a Chinese dis-

course relation is normally not directly related to 

a particular relation type but should be dynami-

cally determined from the global meaning of a 

discourse. 

Example (2): An example of discourse with 4 EDUs 

[       据悉，                东莞        海关     共      接受     

According to reports,Dongguan Customs  total accept 

企业 合同      备案   八千四百多份，]e1 [比     试点     

company contract record 8400 plus class, than  pilot 

前    略 有   上升，]e2 [   企业       反应   良好，]e3 

before a slight increase, company responses well,  

[普遍             表示            接受。]e4 

generally acknowledge acceptance. 

“[According to reports, Dongguan District Cus-

toms accepted more than 8400 records of company 

contracts,] e1 [a slight increase from before the pi-

lot.]e2 [Companies responded well,]e3 [generally 

acknowledging acceptance.]e4” 

In this paper, we present a Connective-driven 

Dependency Tree (CDT) discourse representa-

tion scheme, which takes advantage of both RST 

and PDTB, with elementary discourse units 

(limited to clauses) as leaf nodes and connec-

tives as non-leaf nodes. Especially, we define 

EDU from three aspects, and employ the con-

nective’ level and semantic to indicate the rhe-

torical structure and the discourse relation. Be-

sides, the nuclearity of discourse units in a dis-

course relation is decided on the overall dis-

course meaning. On the basis, we adopt the CDT 

scheme to annotate a certain scale corpus, called 

Chinese Discourse Treebank (CDTB) thereafter 

in this paper. Evaluation shows the appropriate-

ness of the CDT scheme to Chinese discourse 

analysis. 

The rest of this paper is organized as follows. 

Section 2 overviews related work. In Section 3, 

we present the CDT discourse representation 

scheme. In Section 4, we describe the annotation 

of the CDTB corpus. Section 5 compares CDTB 

with other major discourse corpora. Section 6 

gives the experimental results on EDU recogni-

tion, the crucial step for discourse parsing. Final-

ly, conclusion is given in section 7. 

2 Related Work 

In the past decade, several discourse corpora for 

English have emerged, with the Rhetorical 

Structure Theory Discourse Treebank (RST-DT) 

(Carlson et al., 2003) and the Penn Discourse 

Treebank (PDTB) (Prasad et al., 2008) most 

prevalent. 

In the RST framework, a text is represented as 

a discourse tree, with non-overlapping text spans 

(either phrases or clauses) as leaves, and adja-

cent nodes are related through particular rhetori-

cal relations to form a discourse sub-tree, which 

is then related to other adjacent nodes in the tree 

structure. According to RST, there are two types 

of discourse relations, mononuclear and multi-

nuclear. Figure 1 shows an example of discourse 

tree representation, following the notational 

convention of RST. Among the four EDUs (e1-

e4), e1 and e2 are connected by a mononuclear 

relation “attribution”, where e1 is the nucleus, 

the span (e1-e2) and the EDU e3 are further 

connected by a multi-nuclear relation “same-

unit”, where they are equally salient. Annotated 

according to the RST framework, the RST-DT 

consists of 385 documents from the Wall Street 

Journal (WSJ). Besides, the original 24 dis-

course relations defined by Mann and Thompson 

(1988) are further divided into a set of 18 rela-

tion classes with 78 finer grained rhetorical rela-

tions in RST-DT. 

As the largest discourse corpus so far, the 

Penn Discourse Treebank (PDTB) contains over 

one million words from WSJ. With EDUs lim-

ited to clauses, the PDTB adopts the predicate-
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argument view of discourse relations, with con-

nective as predicate and two text spans as its 

arguments. Example (1) shows two annotation 

tokens for the connective “particularly if” and 

“so”. The current version of PDTB 2.0 annotates 

40600 tokens, including 18459 explicit relations 

of 100 distinct types (e.g. “particularly if” and 

“if” are the same type) and 16224 implicit dis-

course relations of 102 distinct token types. Be-

sides, PDTB provides a three level hierarchy of 

relation tags with the first level consisting of 

four major relation classes (Temporal, Contin-

gency, Comparison, and Expansion), which are 

further divided into 16 types and 23 subtypes. 

In comparison, there are few researches on 

Chinese discourse annotation (Xue, 2005a; Chen, 

2006; Yue, 2008; Huang and Chen, 2011; Zhou 

and Xue, 2012), with no exception employing 

existing RST or PDTB frameworks. For exam-

ple, Zhou and Xue (2012) use the PDTB annota-

tion guidelines to annotate Chinese discourse 

with 98 files from Chinese Treebank (Xue et al., 

2005b) of Xinhua newswire. In particular, they 

adopt a lexically grounded approach and make 

some adaptation based on the linguistic and sta-

tistical characteristics of Chinese text, with Arg1 

and Arg2 defined semantically and the senses of 

discourse relations annotated besides connec-

tives and their lexical alternatives. The agree-

ment on relation types reaches 95.1% and the 

agreement on implicit relations with exact span 

match reaches 76.9%. 

Instead, Chen (2006) and Yue (2008) use RST 

to annotate Chinese discourse. Chen (2006) se-

lects comma as the segmentation signal of EDUs 

(in Example (2), “据悉(According to reports)” 

will be segmented as an EDU), and finds that 

RST fails to deal with some special features of 

Chinese. Yue (2008) manually annotates a set of 

97 texts according to RST and shows the cross-

lingual transferability of RST to Chinese. How-

ever, it also shows that EDUs in Chinese are 

much different from those in English, and many 

relation types in Chinese have no correspond-

ence to English, and vice versa. 

3 Connective-driven Dependency Tree 

An appropriate representation scheme is funda-

mental to linguistic resource construction. With 

reference to various theories and representation 

scheme on the tree structure and nuclearity of 

RST, the connective, relation and discourse 

structure of Chinese complex sentence (Xing, 

2001), the sentence-group theory (Cao, 1984), 

the connective treatment of PDTB, the conjunc-

tion dependent analysis (Feng and Ji, 2011) and 

the center theory of dependency grammar (Hays, 

1964), we propose a new discourse representa-

tion scheme for Chinese, called Connective-

driven Dependency Tree (CDT), with EDUs as 

leaf nodes and connectives as non-leaf nodes, to 

accommodate the special characteristics of the 

Chinese language in discourse structure. 

For instance, Example (3) consists of 2 sen-

tences, which is part of a paragraph from 

“chtb_0001”, and its corresponding CDT repre-

sentation is shown in Figure 2. Here, the number 

of “|” in Example (3) stands for the level of 

EDUs in CDT and the numbers marked in Fig-

ure 2 (such as 1, 2 etc.) distinguish EDUs. While 

an arrow points to the main EDU or main dis-

course unit (called nucleus), the combination of 

different EDUs can be considered as EDUs in a 

higher level and the new discourse units can thus 

be combined into higher-level units from bottom 

to up. In this way, the discourse structure can be 

expressed as a tree structure via bottom-up com-

bination of EDUs.  

Obviously, such discourse structure is con-

structed by two kinds of basic units, EDUs (leaf 

nodes) and connectives (non-leaf nodes). On the 

one hand, connectives can represent the dis-

course structure by its hierarchical level in the 

tree. The discourse structure is independent on 

the connective level essentially, rather than the 

reverse. On the other hand, connectives them-

selves can represent the discourse relation. This 

is why we call the scheme “Connective-driven”. 

As for the abstract discourse relation, we can 

construct a set of discourse relations, mapping a 

connective to discourse relation, according to the 

users’ specific requirements. 

Example (3): CDT example from CTB 

1 浦东    开发   开放    是   一项    振兴  上海，建设 

Pudong development open up is a promote Shanghai, construct 

现代化          经济、贸易、   金融       中心   的     跨世纪 

modern economy, trade, financial century De cross-century 

工程，|| 2 (因此)     大量             出现的是    以前      不曾 

project, therefore a large number arisen De previously never 

遇到过的   新   情 况、新问题。|  3 (对此)，  浦东  {不是} 

encounter DE new situation, new problem.To this, Pudong not 

简单    的    采取    “干        一段      时间，等       积累    了 

simply DE adopting “does a period time, wait accumulate Le 

   经验     以后再制定    法规   条例” 的    做法，|| 4{而是} 

experience after re-enactment laws regulations De approach,but  

借鉴  发达          国家     和           深圳      等      特区      的  

learn developed countries and Shenzhen etc. special zone DE 

经验     教训，|||| 5<并且>聘请          国内外       有关专家 

experience lesson, Invite at home and abroad revlant expert 

学者，|||| 6<并且>积极、及时地         制定  和       推出 
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scholars,               actively, timely DI formulate and issuing 

法规性  文件，||| 7 {使} 这些    经济  活动    一    出现就  被 

statutory file, make these economic activity as soon as appear bei 

 纳入      法制  轨道。  

bring into legality track. 

“1 Pudong's development and opening up is a century-

spanning undertaking for vigorously promoting Shanghai and 

constructing a modern economic, trade, and financial center. || 

2 Because of this, new situations and new questions that have 

not been encountered before are emerging in great numbers. | 3 

In response to this, Pudong is not simply adopting an approach 

of "work for a short time and then draw up laws and regula-

tions only after experience has been accumulated.”|| 4 Instead, 

Pudong is taking advantage of the lessons from experience of 

developed countries and special regions such as Shenzhen, ||||5 

by hiring appropriate domestic and foreign specialists and 

scholars, ||||6 actively and promptly formulating and issuing 

regulatory documents. ||| 7 So these economic activities are 

incorporated into the sphere of influence of the legal system as 

soon as they appear.” 

1 2 3 4 5 6 7

因此(therefore）
{can be deleted}

对此  (for this) 
{can be deleted}

 并且(and)
 <inserted, bad language sense>

使(cause)
{cann’t be deleted}

不是...而是(is not... but)

{cann’t be deleted}

 

Figure 2: CDT representation of Example (3) 

3.1 Elementary Discourse Unit 

As the leaf nodes of CDT, EDUs are limited to 

clauses. In principle, EDUs play a crucial role to 

discourse analysis. Since from bottom-up dis-

course combination, EDUs are the start of dis-

course analysis, while from top-down discourse 

segmentation, they are the end of discourse 

analysis. Unfortunately, since there lacks obvi-

ous distinction between Chinese sentence struc-

ture and phrase structure, it is rather difficult to 

define Chinese EDU (clause). Till now, there is 

still no widely accepted definition in the Chinese 

linguistics community (Wang, 2010). Inspired 

by Li et al. (2013a), we give the definition of 

Chinese EDU from three perspectives. First, 

from the syntactic structure perspective, an EDU 

should contain at least one predicate and express 

at least one proposition. Second, from the func-

tional perspective, an EDU should be related to 

other EDUs with some propositional function, 

i.e. not act as a grammatical element of other 

EDUs. Finally, from the morphological perspec-

tive, an EDU should be segmented by some 

punctuation, e.g. comma, semicolon and period. 

We use punctuation because there usually has a 

pause between clauses (EDUs), which can be 

shown in written commas, semicolons etc 

(Huang and Liao, 2011). Normally, it is easy to 

handle complex sentences and special sentence 

patterns (e.g. serial predicate sentences). For 

Example (4), A) is a single sentence with serial 

predicate; B) is complex sentence with two 

EDUs (clauses): 

Example (4): EDU examples 

A) He opened the door and went out. (single sentence, 

serial predicate, one EDU) 

B) 1 He opened the door,| 2 and went out. (complex sen-

tence, two EDUs) 

Take as example, there exist 7 EDUs in Ex-

ample (3), each marked with a number in front. 

According to our definition, the fragment “干一

段时间， … 法规条例 ”(“work for a short 

time…has been accumulated” ) in EDU 3 is not 

segmented as a EDU since: 1) it acts as a gram-

matical element of other EDUs and has no direct 

relationship with other EDUs on propositional 

function; 2) it is marked by a pair of quotation 

marks and does not end with any punctuation. In 

contrast, the fragment “而是借鉴发达…法制轨

道 ”(“but learn developed…legality track.”) is 

segment as 4 EDUs since it meets the three crite-

ria in our EDU definition. 

3.2 Connective 

As non-leaf nodes in the CDT representation, 

connectives connect EDUs or discourse units. 

Thus, the main criterion of determining whether 

an expression is a connective is to check wheth-

er the two fragments it connects are EDUs (or 

discourse units). In our scheme, the list of ex-

plicit discourse connectives is judged by a data 

driven approach, i.e. with any discourse-like 

word or phrase marked as connective in the an-

notation practice, e.g. “因此(therefore)”, “对此

(to this)”, “不是...而是...(is not...but....)”, “使(so 

that), “正因为(just because)” in Example (3), 

“先 ...然后(first...then) ”, “同时也(and at the 

same time)” in Example (5). 

Example (5): Connective examples from CTB 

A) 1<如果；只要>建筑公司进区，| 2 有关部门先送

上这些法规性文件，|| 3然后有专门队伍进行监督检

查。(chtb_0001) 

1<If ; As long as>The construction company enters the 

region, |2 first the appropriate bureau delivers these regu-

latory documents,|| 3 Then there is a specialized contin-

gent that carries out a supervisory inspection. 

B) 1加工贸易…, 2同时 也 是粤港澳台经贸合作的

重要内容。(chtb_0031) 
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1 The processing trade …, | 2 and at the same time 

is important content in the economic and trade coop-

eration between Guangdong, Hong Kong, Macao and 

Taiwan. 

It is worthy of mention that from the part-of-

speech perspective, connectives are not 

necessarily conjunctions. For example, in 

Example (3) and (5), adverbs “先...然后(first… 

then)”, verb phrases “不是…而是(is not…but)”, 

and preposition phrases “ 对此 (to this)” are 

determined as connectives. From the 

morphological perspective, a connective may 

contain more than one word, even discontinuous. 

As a common occurring phenomenon in Chinese 

discourse, there exist many paired Chinese 

connectives, e.g. “不是…而是 (is not…but)” in 

Figure 2. Even in some paired connectives, such 

as “因为…所以 (because…so)”, a word in a 

paired connective can appear independently as a 

connective. Please note that this may not be 

applied to other cases, e.g. “不是…而是  (is 

not…but)” as appeared in Example (3). Moreo-

ver, in many cases whether an expression is a 

connective or not depends on its meaning, e.g., 

“为  (in order to)” is a connective, while “为 

(for)” is not. For the positional distribution, a 

connective may appear anywhere, i.e. in the be-

ginning, middle, or the end of the first or second 

EDU. Example (3) and (5) show some of cases 

in different positions. The above characteristics 

pose special challenges on connective determi-

nation in Chinese language.  

According to the appearance of a connective 

or not, a discourse relation can be either explicit 

or implicit. Previous studies have shown the dif-

ficulty of implicit relation recognition in English 

due to the omission of connectives (Pitler et al., 

2009; Lin et al., 2009). This becomes even 

worse in Chinese since compared with the im-

plicit ratio of 54.5% in English connectives, this 

ratio rises up to about 82% in Chinese (Zhou and 

Xue, 2012). It is worth noting that the majority 

of discourse relations in Chinese are implicit, so 

the insertion of a connective in an implicit posi-

tion can significantly ease the understanding of 

the discourse. That is, a connective driven repre-

sentation scheme is still applicable to a discourse 

with implicit connectives. To help determine 

implicit relations, two special strategies are pro-

posed. 

First, for each explicit connective, a decision 

is made whether or not it can be deleted without 

changing the rhetorical relation of a discourse. It 

should be emphasized that this constraint is 

largely semantic. The motivation behind the re-

moval of explicit connectives is to enlarge im-

plicit instances and help recognize implicit rela-

tions. As shown in Figure 2, we use the paired 

mark “()” to indicate that a connective can be 

deleted, e.g. connectives “(对此 to this)”, “(因此 

therefore)”, “(正因此 just because)”, and the 

paired mark “{}” to indicate that a connective 

cannot be deleted, e.g. connectives “{ 使 so 

that}”, “{不是…而是 is not…but}”. 

Second, since a connective can be inserted to 

represent an implicit relation, our scheme tries to 

insert a connective which can be easily inter-

preted from the semantic perspective with little 

ambiguity into the most appropriate place. Most 

of the connective insertions for implicit relations 

occur between adjacent discourse spans. It is 

worth noting that not all implicit connectives are 

subjective to the language sense. To mark this 

difference, we cluster implicit connectives into 

two categories according to their language sens-

es, either “good language intuition” or “bad lan-

guage intuition”. In our scheme, we use the 

paired mark “<>”to indicate inserted implicit 

connectives, e.g. connectives“<例如 e.g.>”, “<

却 but>” with “good language sense”, connec-

tive “<并且 and>” with “bad language sense”, as 

shown in Figure 2. 

In some cases, it is possible that there exist 

several insertion options for an implicit connec-

tive due to the ambiguity in a discourse. For ex-

ample, in Example (5A), connectives “如果 (if)” 

and “只要 (as long as)” are inserted into the first 

level to show the two discourse relation options. 

As far as this happens, connectives are inserted 

and ordered according to annotators’ first intui-

tion. 

3.3 Discourse Structure 

In Figure 2, the paragraph is organized as a tree 

structure, in which EDUs appear in the leaf 

nodes and the connectives appear in the non-leaf 

ones. The adoption of tree structure conforms to 

traditional Chinese discourse theories and prac-

tice. For example, a native Chinese speaker 

tends to determine the overall level boundary 

first and then the analysis goes on step by step to 

the individual clauses, when understanding a 

complex sentence. This process naturally forms 

a tree structure. Besides, tree structure is easier 

to formalize, compared with graph.  

More specifically, the hierarchical structure of 

connectives indicates the hierarchical structure 

of discourse units. Apparently, discourse struc-
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ture analysis can be viewed as hierarchical anal-

ysis of connectives, with hierarchical connective 

structure reflecting hierarchical combination of 

discourse units. Essentially, the discourse hierar-

chy indicates the correlation degrees of semantic 

relations in the discourse, the deeper tree level of 

two discourse units, the higher correlation de-

gree of their semantic relation. Therefore, a dis-

course relation is the ultimate factor for the 

choice of hierarchical discourse structure. For a 

reference, please take Sentence 2 in Figure 2 as 

an example. 

3.4 Discourse Relation  

For discourse relation representation, a general 

approach is to assign an abstract relation type to 

a discourse relation directly, such as cause, con-

junction, condition, purpose, etc, as done in 

RST-DT and PDTB. In our CDT scheme, we 

avoid to directly assign an abstract relation type 

to a discourse relation. Instead, we use the con-

nective itself to express the discourse relation, as 

shown in Figure 2. In this way, the difficulty of 

pre-defining a set of acknowledged discourse 

relations and selecting an exact discourse rela-

tion can be avoided during the corpus annotation 

process. Since a Chinese discourse relation is 

largely controlled by connective (Xing, 2001), 

the key to determine a relation is to identify a 

suitable connective. Normally, most of relation 

annotations can easily map from connectives to 

abstract semantic classes of relations, if neces-

sary, with the help of the discourse context. The 

majority of discourse relations in Chinese are 

implicit, but it makes sense to insist on a con-

nective driven representation. With connective 

as a bridge, at least it makes discourse represen-

tation easier. 

For the abstraction of discourse relations, we 

leave it in a later separate stage. Of course, there 

are cases where a connective may represent 

more than one discourse relation. For example, 

connective “而” can denotes the continuous rela-

tion “而 (especially)” and the transitional rela-

tion “而 (however)”. Compared with annotating 

discourse relation directly, annotator's intuition 

is more accurate for specific connective. We 

don't object to label discourse relation, referring 

to the general work and Chinese analysis prac-

tice, give a set of relations (Figure 3), regarding 

it as connective's semantics, and then annotate 

the connective with it. In this way, we can obtain 

a general relation set and resolve the connec-

tive's polysemy problem. We believe that the 

connective itself is the foundation of discourse 

relation, and the relation set can be adjusted dy-

namically according to the application require-

ments. 

Figure 3 shows a three-level set of discourse 

relations example. In the first level, this set con-

tains four relations of causality, coordination, 

transition and explanation, which are further 

clustered into 17 sub-relations in the second lev-

el. For example, relation causality contains 6 

sub-relations, i.e. cause-result, inference, hypo-

thetical, purpose, condition and background. In 

the third level, the connectives are under each 

sub-relation. For example, cause-result relation 

can be represented by “because”, 'therefore' etc. 

The numbers shown in the parentheses illustrate 

the distributions of different relations in our cor-

pus. For example, there are 1335 causality rela-

tions in the first level, including 686 cause-result 

relations, 38 inference relations, 70 hypothetical 

relations, 335 purpose relations, 72 condition 

relations and 134 background relations. 

causality(1335) coordination(4148)  

cause-result(686) 
because... 

inference(38) 
so that... 

hypothetical(70) 
if... 

purpose(335) 
in order to... 

condition(72) 
only… 

background(134) 
background... 

transition(217) 

transition (200) 
but... 

concessive(17) 
altough... 

coordination(3503) 
and... 

continue(517) 
first...second... 

progressive(59) 
in addition.. 

selectional(10) 
or... 

inverse(59) 
compared with... 

explanation(1617) 

explanation(911) 
which including... 

summary-

elaboration 
in a word... 

(234) 

example(252) 
e.g.... 

evaluation (220) 

evaluation ... 
Figure 3: A three-level set of discourse relations 

3.5 Nucleus and Satellite 

Once discourse units are determined, adjacent 

spans are linked together via connectives to 

build a hierarchical structure. As stated above, 

discourse relations may be either mononuclear 

or multi-nuclear. A mononuclear relation holds 

between a nucleus and a satellite unit. Normally, 

the nucleus usually reflects the intention focus of 

the discourse and is thus more salient in the dis-

course structure, while the satellite usually rep-

resents supportive information for the nucleus. 

In comparison, a multi-nuclear relation usually 
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holds two or more discourse units of equal 

weight in the discourse structure.  

For nucleus determination, we adopt the de-

pendency grammar, and select the unit which 

can stand for the relationship with other dis-

course units in a discourse. As shown in Figure 

2, on the first level, discourse relation “对此 (to 

this)” has the latter unit “浦东…法制轨道
(Pudong…as soon as they appear.)” as nucleus and 

the former unit “浦东…新问题 (Pudong …new 

problem)” as satellite, since the latter unit agrees 

with the main purpose of the discourse, which 

emphasizes some methods for the progress of 

Pudong. Moreover, since the combination of 4, 5 

and 6 has the cause relation with 7, we choose 7 

as nucleus because it can stand for the combina-

tion of 4, 5, 6 and 7, and has the selection rela-

tionship with 3. 

4 Chinese Discourse Treebank 

Given above the CDT scheme, we choose 500 

Xinhua newswire documents from the Chinese 

Treebank (Xue et al., 2005b) in our Chinese 

Discourse Treebank (CDTB) annotation. In par-

ticular, we annotate one discourse tree for each 

paragraph. 

In this section, we address the key issues with 

the CDTB annotation, such as annotator training, 

tagging strategies, corpus quality, along with the 

statistics of the CDTB corpus. 

4.1 Annotator Training 

The annotator team consists of a Ph.D. in Chi-

nese linguistics as the supervisor (senior annota-

tor) and four undergraduate students in Chinese 

linguistics as annotators (two pairs). The annota-

tion is done in four phases. In the first phase, the 

annotators spend 3 months on learning the prin-

ciples of CDT and the use of our developed dis-

course annotation tool. In the second phase, the 

annotators spend 2 months on independently 

annotating the same 50 documents (about 260 

paraphrases), and another 2 months on cross-

checking to resolve the difference and to revise 

the guidelines. In the third phase, the annotators 

spend 9 months on annotating the remaining 450 

documents. In the final phase, the supervisor 

spends 3 months carefully proofread all 500 

documents. 

4.2 Tagging Strategies 

In the CDTB annotation, we employ a top-down 

strategy. That is, we determine the overall level 

first and then the analysis goes on step by step to 

the individual EDUs. This strategy is adopted in 

our annotation tool. The advantages of the top-

down strategy are three folds. First, such a strat-

egy can easily grasp the whole discourse struc-

ture. This conforms to the global nature of dis-

course analysis. Second, due to the lack of clear 

difference between Chinese sentence and phrase 

structure, such a strategy can largely avoid the 

error propagation in Chinese EDU segmentation. 

Since in such a top-down strategy, EDU seg-

mentation becomes an end question, and even if 

an EDU segmentation error happens, its impact 

is localized, i.e. with little impact on the whole 

discourse structure. Our annotation practice 

shows that such strategy is effective. Third, such 

a strategy accords with the cognitive of Chinese 

characteristics, and conforms to the mental pro-

cess of Chinese discourse understanding (Huang 

and Liao, 2011). However, we do not exclude 

the bottom-up strategy. In some cases, on the 

cognitive psychological process, annotator is 

combine top-down and bottom-up strategies. 

Take Example (3) as an example, an annotator 

first finds the first level, with the period at the 

end of sentence 1, and chooses discourse rela-

tion (either explicit or implicit), connective, and 

connective related information (e.g. whether can 

be added, deleted, and the language sense, etc.), 

nuclearity etc. Then, the annotator turns to sen-

tence 1 and marks the second comma as level 2 

with necessary information annotated, and goes 

on to sentence 2, recursively, until all EDUs are 

marked. In this way, a discourse tree with the 

CDT representation is constructed. 

4.3 Quality Assurance 

A number of steps are taken to ensure the quality 

of CDTB. These involve two tasks: checking the 

validity of the trees and tracking inter-annotator 

consistency. 

4.3.1 Tree validation 

We first manually check if a tree has a single 

root node and compare the tree with the docu-

ment to check for missing sentence or fragments 

from the end of text. Then we check the attached 

information such as connectives, relations and 

nuclearity in the tree. We also check the tree 

with a tree traversal program to find the errors 

undetected by the manual validation process. 

Finally, all of the trees work successfully.  

4.3.2 Consistency 

To ensure the quality of CDTB, we adopt the 

inter-annotator consistency using Agreement 

and kappa on 60 documents (chtb0041-chtb 
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0100). Table 1 illustrates the inter-annotator 

consistency in details. 

As shown in Table 1, we measure the agree-

ment of EDU segmentation by determining 

whether punctuation (all period, comma etc. are 

considered) is treated as an EDU boundary. It 

shows that the agreement reaches 91.7% with 

Cohen's kappa value (Cohen, 1960) 0.91. This 

justifies the appropriateness of our EDU defini-

tion. Explicit or Implicit agreement 94.7% is 

calculate by the same EDU boundary (intersec-

tion) of two annotators. For the same explicit 

relation, the connective identification agreement 

is 82.3%, because this is strict measure when 

two annotators choose the same connective word. 

If we relax the measure to contain the same 

word, the agreement can reach 98%. For exam-

ple, one annotate “也…并(also…and)”, and the 

other annotate “并(and)” is wrong with our strict 

measure. 

 Agreement  Kappa 

EDU segmentation 

Explicit or Implicit 

Explicit connective identifi-

cation 

Implicit connective insertion 

Mononuclear or Multinuclear 

Nuclearity 

Structure 

91.7      0.91 

94.7      0.81 

82.3        -- 

 

74.6        -- 

80.8        -- 

82.4        -- 

77.4        -- 

Table 1: Inter-annotator consistency 

It is not surprising that the agreement on im-

plicit connective insertion with the same posi-

tion and the same connective only reaches 

74.6% since for some discourse relations, there 

may existing several connective alternatives. For 

example, both “so” and “therefore” can express 

the same causation relation. If we relax the con-

straint to the compatible connective, the agree-

ment on implicit connective insertion can reach 

up to 84.5%. 

Finally, it shows that the agreement on overall 

discourse structure (with the same connectives 

as non-leaf nodes, the same EDUs as leaf nodes) 

reaches 77.4%. This justifies the appropriateness 

of our CDT scheme, given the inherent ambigui-

ty in Chinese discourse structure. 

4.4 Corpus Statistics 

Currently, the CDTB corpus consists of 500 

newswire articles from Chinese Treebank, which 

are further divided into 2342 paragraphs with a 

CDT representation for one paragraph.  

 For EDUs, CDTB contains 10650 EDUs with 

an average of 4.5 EDUs per tree. On average, 

there are 2 EDUs per sentence and 22 Chi-

nese characters per EDU. 

 For discourse relations, CDTB contains 7310 

relations, of which 1812 are explicit relations 

(24.8%) and 5498 are implicit relations 

(75.2%). This indicates that implicit relations 

occur much more frequently in Chinese than 

in English, e.g. 75.2% in CDTB (Chinese) vs. 

~50% in PDTB (English). 

 With the deepest level of 9, most (98.5%) of 

discourse relations occur in level 1 (2342), 

level 2(2372), level 3(1532), level 4(712), 

and level 5(242). It also shows that 3557 

(48.7%) relations are mononuclear relations 

with 2110 nucleus ahead, while the remain-

ing 3754 relations are multi-nuclear. The 

numbers shown in the parentheses of Figure 

3 illustrate the distributions of different rela-

tions. In comparison with the top 2 most fre-

quently occurring relations in PDTB (Eng-

lish), i.e. the coordination and explanation re-

lations, there exist 3503 (47.9%) and 911 in-

stances respectively, with regard to the ab-

stract relation set as shown in Figure 3. 

 CDTB contains 282 connectives, among 

which 274 (140 can be deleted) appears as 

explicit connectives and 44 can be inserted in 

place of implicit connectives. Table 2 lists 

the top 10 frequent explicit connectives and 

implicit connectives. 

Explicit connectives Implicit connectives 

connectives   frequency connectives   frequency 

并(and)                     208 

其中(among them)   154 

也(also)                     131 

而(however)              70 

但(but)                       69 

还(also)                      68 

使(so that)                  56 

以(in order to)            52 

为(in order to)            49 

同时(meanwhile)       46 

因此(so)                    368 

并(and)                      354 

并且(and)                  259 

例如(e.g)                   140 

来(in order to)             68 

以(in order to)             61 

然后(then)                   55 

其中(among them)      48 

而(while)                     47 

因为(because)             32 

Table 2: The most frequent connectives in CDTB 

5 Comparison with other Discourse 

Banks 

Table 3 compares the difference of CDTB with 

RST-DT and PDTB from various perspectives, 

such as EDU, connective, relation, structure and 

nuclearity. 
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 RST-DB PDTB CDTB 

EDU 

Clear defined; start of 

combination; one relation 

has two or more EDUs 

Predicate-argument 

view; one relation 

has two arguments 

Clear defined from three aspects; end of 

top-down segmentation; one relation has 

two or more EDUs 

Connective -- 

Mark explicit con-

nectives and insert 

implicit connectives 

Mark whether an connective can be deleted 

without changing the rhetorical relation; 

insert implicit connective with good intui-

tion and bad intuition differentiated 

Relation 

Abstract set of relation 

types; annotate the rela-

tion types 

Abstract set of rela-

tion types; annotate 

connective and rela-

tion type 

Represent relation by connective; annotate 

connective and it’s attribute; mapping of 

connective to the set of discourse relations 

in a later stage 

Structure Complete tree 

Partial tree, deduced 

by connective and 

it’s argument 

Complete tree; top-down segmentation; 

structure can be represented by the connec-

tive hierarchy 

Nuclearity 
Determined by certain 

rhetorical relation 
-- 

Determined by the global meaning of a 

discourse 

Table 3: The comparison of RST-DT, PDTB and CDTB 

 

6 Preliminary Experimentation 

In order to evaluate the computability of CDTB, 

we give the experimental results on EDU recog-

nition, which is crucial in discourse parsing. Af-

ter excluding sentence end punctuations (such as 

period, question mark, and exclamatory mark), 

which are certainly EDU boundaries, there re-

mains 7625 punctuations as EDU boundaries 

(positive instances) and 4876 punctuations as 

non-EDU boundaries (negative instances). With 

various features as adopted in Xue and Yang 

(2011) and Li et al. (2013b), Table 4 shows the 

performance of EDU recognition on the CDTB 

corpus with 10-fold cross validation.  

 Gold standard parse      Automatic parse 

Accuracy  F1(+)  F1(-)  Accuracy  F1(+)  F1(-) 

MaxEnt 90.6     91.1   90.5 89.0    90.3    87.2 

C45 90.2    90.5    90.1 88.7    90.0    87.7 

NiveBayes 90.2    89.9   88.9 88.0    89.0    86.9 

Table 4: Performance of EDUs recognition 

As shown in Table 4, MaxEnt performs best, 

with accuracy up to 90.6% on gold standard 

parse tree, close to human agreement of 91.7%, 

and with accuracy up to 89% on automatic parse 

tree. This suggests the appropriateness of our 

definition of clause as EDU. Table 4 also gives 

the performance on both positive and negative 

instances. It shows better F1-measure on recog-

nizing positive instances than negative instances. 

7 Conclusions 

In this paper, we propose a Connective-driven 

Dependency Tree (CDT) structure as a represen-

tation scheme for Chinese discourse structure. 

CDT takes advantage of both RST and PDTB, 

and well adapts to the special characteristics of 

Chinese discourse. In particular, we describe 

CDT in detail from various perspectives, such as 

EDU, connective, structure, relation and nucle-

arity. Given the CDT scheme, we annotate 500 

documents in a top-down segmentation process 

to keep consistent with Chinese native’s cogni-

tive habit. Evaluation of the CDTB corpus on 

EDU recognition justifies the appropriateness of 

the CDT scheme to Chinese discourse structure 

and the usefulness of our CDTB corpus. 

In the future work, we will focus on enlarging 

the scale of the corpus annotation and develop-

ing a complete Chinese discourse parser. 
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Abstract

We propose a novel search-based approach
for greedy coreference resolution, where
the mentions are processed in order and
added to previous coreference clusters.
Our method is distinguished by the use
of two functions to make each corefer-
ence decision: a pruning function that
prunes bad coreference decisions from fur-
ther consideration, and a scoring function
that then selects the best among the re-
maining decisions. Our framework re-
duces learning of these functions to rank
learning, which helps leverage powerful
off-the-shelf rank-learners. We show that
our Prune-and-Score approach is superior
to using a single scoring function to make
both decisions and outperforms sever-
al state-of-the-art approaches on multiple
benchmark corpora including OntoNotes.

1 Introduction

Coreference resolution is the task of clustering a
set of mentions in the text such that all mentions in
the same cluster refer to the same entity. It is one
of the first stages in deep language understanding
and has a big potential impact on the rest of the
stages. Several of the state-of-the-art approaches
learn a scoring function defined over mention pair,
cluster-mention or cluster-cluster pair to guide the
coreference decision-making process (Daumé II-
I, 2006; Bengtson and Roth, 2008; Rahman and
Ng, 2011b; Stoyanov and Eisner, 2012; Chang et
al., 2013; Durrett et al., 2013; Durrett and Klein,
2013). One common and persistent problem with
these approaches is that the scoring function has to
make all the coreference decisions, which leads to
a highly non-realizable learning problem.

Inspired by the recent success of theHC-Search
Framework (Doppa et al., 2014a) for studying a

variety of structured prediction problems (Lam et
al., 2013; Doppa et al., 2014c), we study a novel
approach for search-based coreference resolution
called Prune-and-Score. HC-Search is a divide-
and-conquer solution that learns multiple compo-
nents with pre-defined roles, and each of them
contribute towards the overall goal by making the
role of the other components easier. The HC-
Search framework operates in the space of com-
plete outputs, and relies on the loss function which
is only defined on the complete outputs to drive it-
s learning. Unfortunately, this method does not
work for incremental coreference resolution since
the search space for coreference resolution con-
sists of partial outputs, i.e., a set of mentions only
some of which have been clustered so far.

We develop an alternative framework to HC-
Search that allows us to effectively learn from par-
tial output spaces and apply it to greedy corefer-
ence resolution. The key idea of our work is to
address the problem of non-realizability of the s-
coring function by learning two different function-
s: 1) a pruning function to prune most of the bad
decisions, and 2) a scoring function to pick the
best decision among those that are remaining. Our
Prune-and-Score approach is a particular instanti-
ation of the general idea of learning nearly-sound
constraints for pruning, and leveraging the learned
constraints to learn improved heuristic function-
s for guiding the search. The pruning constraints
can take different forms (e.g., classifiers, decision-
list, or ranking functions) depending on the search
architecture. Therefore, other coreference resolu-
tion systems (Chang et al., 2013; Durrett and K-
lein, 2013; Björkelund and Kuhn, 2014) can also
benefit from this idea. While our basic idea of two-
level selection might appear similar to the coarse-
to-fine inference architectures (Felzenszwalb and
McAllester, 2007; Weiss and Taskar, 2010), the
details differ significantly. Importantly, our prun-
ing and scoring functions operate sequentially at
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each greedy search step, whereas in the cascades
approach, the second level function makes its pre-
diction only when the first level decision-making
is done.

Summary of Contributions. The main contribu-
tions of our work are as follows. First, we moti-
vate and introduce the Prune-and-Score approach
to search-based coreference resolution. Second,
we identify a decomposition of the overall loss
of the Prune-and-Score approach into the pruning
loss and the scoring loss, and reduce the problem
of learning these two functions to rank learning,
which allows us to leverage powerful and efficien-
t off-the-shelf rank learners. Third, we evaluate
our approach on OntoNotes, ACE, and MUC da-
ta, and show that it compares favorably to sever-
al state-of-the-art approaches as well as a greedy
search-based approach that uses a single scoring
function.

The remainder of the paper proceeds as follows.
In Section 2, we dicuss the related work. We intro-
duce our problem setup in Section 3 and then de-
scribe our Prune-and-Score approach in Section 4.
We explain our approaches for learning the prun-
ing and scoring functions in Section 5. Section 6
presents our experimental results followed by the
conclusions in Section 7.

2 Related Work

The work on learning-based coreference resolu-
tion can be broadly classified into three types.
First, the pair-wise classifier approaches learn a
classifier on mention pairs (edges) (Soon et al.,
2001; Ng and Cardie, 2002; Bengtson and Roth,
2008), and perform some form of approximate de-
coding or post-processing using the pair-wise s-
cores to make predictions. However, the pair-wise
classifier approach suffers from several drawback-
s including class imbalance (fewer positive edges
compared to negative edges) and not being able to
leverage the global structure (instead making in-
dependent local decisions).

Second, the global approaches such as Struc-
tured SVMs and Conditional Random Fields
(CRFs) learn a cost function to score a potential
clustering output for a given input set of men-
tions (Mccallum and Wellner, 2003; Finley and
Joachims, 2005; Culotta et al., 2007; Yu and
Joachims, 2009; Haghighi and Klein, 2010; Wick
et al., 2011; Wick et al., 2012; Fernandes et al.,
2012). These methods address some of the prob-

lems with pair-wise classifiers, however, they suf-
fer from the intractability of “Argmin” inference
(finding the least cost clustering output among ex-
ponential possibilities) that is encountered during
both training and testing. As a result, they resort to
approximate inference algorithms (e.g., MCMC,
loopy belief propagation), which can suffer from
local optima.

Third, the incremental approaches construct the
clustering output incrementally by processing the
mentions in some order (Daumé III, 2006; De-
nis and Baldridge, 2008; Rahman and Ng, 2011b;
Stoyanov and Eisner, 2012; Chang et al., 2013;
Durrett et al., 2013; Durrett and Klein, 2013).
These methods learn a scoring function to guide
the decision-making process and differ in the form
of the scoring function (e.g., mention pair, cluster-
mention or cluster-cluster pair) and how it is being
learned. They have shown great success and are
very efficient. Indeed, several of the approach-
es that have achieved state-of-the-art results on
OntoNotes fall under this category (Chang et al.,
2013; Durrett et al., 2013; Durrett and Klein,
2013; Björkelund and Kuhn, 2014). However,
their efficiency requirement leads to a highly non-
realizable learning problem. Our Prune-and-Score
approach is complementary to these methods, as
we show that having a pruning function (or a set
of learned pruning rules) makes the learning prob-
lem easier and can improve over the performance
of scoring-only approaches. Also, the models in
(Chang et al., 2013; Durrett et al., 2013) try to
leverage cluster-level information implicitly (vi-
a latent antecedents) from mention-pair features,
whereas our model explicitly leverages the cluster
level information.

Coreference resolution systems can benefit
by incorporating the world knowledge including
rules, constraints, and additional information from
external knowledge bases (Lee et al., 2013; Rah-
man and Ng, 2011a; Ratinov and Roth, 2012;
Chang et al., 2013; Zheng et al., 2013; Hajishirzi
et al., 2013). Our work is orthogonal to this line
of work, but domain constraints and rules can be
incorporated into our model as done in (Chang et
al., 2013).

3 Problem Setup

Coreference resolution is a structured pre-
diction problem where the set of mentions
m1,m2, · · · ,mD extracted from a document cor-
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reponds to a structured input x and the structured
output y corresponds to a partition of the men-
tions into a set of clusters C1, C2, · · · , Ck. Each
mention mi belongs to exactly one of the clusters
Cj . We are provided with a training set of input-
output pairs drawn from an unknown distribution
D, and the goal is to return a function/predictor
from inputs to outputs. The learned predictor
is evaluated against a non-negative loss function
L : X ×Y×Y 7→ <+, L(x, y′, y) is the loss asso-
ciated with predicting incorrect output y′ for input
x when the true output is y (e.g., B-Cubed Score).

In this work, we formulate the coreference
resolution problem in a search-based framework.
There are three key elements in this framework:
1) the Search space Sp whose states correspond
to partial clustering outputs; 2) the Action prun-
ing function Fprune that is used to prune irrelevant
actions at each state; and 3) the Action scoring
function Fscore that is used to construct a com-
plete clustering output by selecting actions from
those that are left after pruning. Sp is a 3-tuple
〈I, A, T 〉, where I is the initial state function, A
gives the set of possible actions in a given state,
and T is a predicate which is true for terminal s-
tates. In our case, s0 = I(x) corresponds to a s-
tate where every mention is unresolved, and A(si)
consists of actions to place the next mention mi+1

in each cluster in si or a NEW action which creates
a new cluster for it. Terminal nodes correspond to
states with all mentions resolved.

We focus on greedy search. The decision pro-
cess for constructing an output corresponds to s-
electing a sequence of actions leading from the
initial state to a terminal state using both Fprune
and Fscore, which are parameterized functions
over state-action pairs (Fprune(φ1(s, a)) ∈ < and
Fscore(φ2(s, a)) ∈ <), where φ1 and φ2 stand for
feature functions. We want to learn the parameters
of both Fprune and Fscore such that the predicted
outputs on unseen inputs have low expected loss.

4 Greedy Prune-and-Score Approach

Our greedy Prune-and-Score approach for coref-
erence resolution is parameterized by a pruning
function Fprune : S × A 7→ <, a scoring func-
tion Fscore : S × A 7→ <, and a pruning param-
eter b ∈ [1, Amax], where Amax is the maximum
number of actions at any state s ∈ S . Given a
set of input mentions m1,m2, · · · ,mD extracted
from a document (input x), and a pruning param-

Algorithm 1 Greedy Prune-and-Score Resolver
Input: x = set of mentions m1,m2, · · · ,mD from
a document D, 〈I, A, T 〉 = Search space defini-
tion, Fprune = learned pruning function, b = prun-
ing parameter, Fscore = learned scoring function

1: s← I(x) // initial state
2: while not T (s) do
3: A

′ ← Top b actions from A(s) according to
Fprune // prune

4: ap ← arg maxa∈A′ Fscore(s, a) // score
5: s← Apply ap on s
6: end while
7: return coreference output corresponding to s

eter b, our Prune-and-Score approach makes pre-
dictions as follows. The search starts at the ini-
tial state s0 = I(x) (see Algorithm 1). At each
non-terminal state s, the pruning function Fprune
retains only the top b actions (A′) from A(s) (Step
3), and the scoring function Fscore picks the best
scoring action ap ∈ A′ (Step 4) to reach the next
state. When a terminal state is reached its con-
tents are returned as the prediction. Figure 1 illus-
trates the decision-making process of our Prune-
and-Score approach for an example state.

We now formalize the learning objective of our
Prune-and-Score approach. Let ŷ be the predicted
coreference output for a coreference input-output
pair (x, y∗). The expected loss of the greedy
Prune-and-Score approach E(Fprune,Fscore) for a
given pruning function Fprune and scoring func-
tion Fscore can be defined as follows.

E(Fprune,Fscore) = E(x,y∗)∼D L (x, ŷ, y∗)

Our goal is to learn an optimal pair of pruning
and scoring functions

(Foprune,Foscore) that min-
imizes the expected loss of the Prune-and-Score
approach. The behavior of our Prune-and-Score
approach depends on the pruning parameter b,
which dictates the workload of pruning and scor-
ing functions. For small values of b (aggressive
pruning), pruning function learning may be harder,
but scoring function learning will be easier. Simi-
larly, for large values of b (conservative pruning),
scoring function learning becomes hard, but prun-
ing function learning is easy. Therefore, we would
expect beneficial behavior if pruning function can
aggressively prune (small values of b) with little
loss in accuracy. It is interesting to note that our
Prune-and-Score approach degenerates to existing
incremental approaches that use only the scoring
function for search (Daumé III, 2006; Rahman and
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(a) Text with input set of mentions
Ramallah ( West Bank 2 )1 10-15 ( AFP3) - Eyewitnesses4 reported that Palestinians5

demonstrated today Sunday in the West Bank6 against the Sharm el-Sheikh7 summit to be
held in Egypt8 tomorrow Monday. In Ramallah9, around 500 people10 took to the town11’s
streets chanting slogans denouncing the summit ...

(b) Illustration of Prune-and-Score approach

1m
9m 3m 4m

6m
2m

1C

1a 2a 3a 4a 5a 6a 7a

5m

10m 7m
11m

2C 3C 4C 5C 6C

State: s = {C1, C2, C3, C4, C5, C6} Actions: A(s) = {a1, a2, a3, a4, a5, a6, a7}
Pruning step:

Scoring step:

2.5             2.2               1.9                1.5              1.4              0.7              0.4

4.5             3.1              2.6

2a 1a 7a 5a 6a 3a 4a

1a 2a 7a
A′(s) = {a2, a1, a7}

b = 3

Decision: a1 is the best action for state s

Fprune values

Fscore values

Figure 1: Illustration of Prune-and-Score approach. (a) Text with input set of mentions. Mentions are highlighted
and numbered. (b) Illustration of decision-making process for mention m11. The partial clustering output corre-
sponding to the current state s consists of six clusters denoted by C1, C2, · · · , C6. Highlighted circles correspond
to the clusters. Edges from mention m11 to each of the six clusters and to itself stand for the set of possible actions
A(s) in state s, and are denoted by a1, a2, · · · , a7. The pruning function Fprune scores all the actions in A(s) and
only keeps the top 3 actions A′ = {a2, a1, a7} as specified by the pruning parameter b. The scoring function picks
the best scoring action a1 ∈ A′ as the final decision, and mention m11 is merged with cluster C1.

Ng, 2011b) when b =∞. Additionally, for b = 1,
our pruning function coincides with the scoring
function.

Analysis of Representational Power. The fol-
lowing proposition formalizes the intuition that t-
wo functions are strictly better than one in expres-
sive power. See Appendix for the proof.

Proposition 1. Let Fprune and Fscore be func-
tions from the same function space. Then for all
learning problems, minFscore E(Fscore,Fscore) ≥
min(Fprune,Fscore) E(Fprune,Fscore). More-
over there exist learning problems for which
minFscore E(Fscore,Fscore) can be arbitrarily
worse than min(Fprune,Fscore) E(Fprune,Fscore).

5 Learning Algorithms

In general, learning the optimal
(Foprune,Foscore)

pair can be intractable due to their potential inter-
dependence. Specifically, when learning Fprune
in the worst case there can be ambiguity about
which of the non-optimal actions to retain, and

for only some of those an effective Fscore can be
found. However, we observe a loss decomposi-
tion in terms of the individual losses due to Fprune
and Fscore, and develop a stage-wise learning ap-
proach that first learns Fprune and then learns a
corresponding Fscore.

5.1 Loss Decomposition

The overall loss of the Prune-and-Score approach
E (Fprune,Fscore) can be decomposed into prun-
ing loss εprune, the loss due to Fprune not be-
ing able to retain the optimal terminal state in
the search space; and scoring loss εscore|Fprune ,
the additional loss due to Fscore not guiding the
greedy search to the best terminal state after prun-
ing using Fprune. Below, we will define these
losses more formally.

Pruning Loss is defined as the expected loss of
the Prune-and-Score approach when we perform
greedy search with Fprune and F∗score, the opti-
mal scoring function. A scoring function is said to
be optimal if at every state s in the search space
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Sp, and for any set of remaining actions A(s), it
can score each action a ∈ A(s) such that greedy
search can reach the best terminal state (as eval-
uated by task loss function L) that is reachable
from s through A(s). Unfortunately, computing
the optimal scoring function is highly intractable
for the non-decomposable loss functions that are
employed in coreference resolution (e.g., B-Cubed
F1). The main difficulty is that the decision at any
one state has interdependencies with future deci-
sions (see Section 5.5 in (Daumé III, 2006) for
more details). So we need to resort to some form
of approximate optimal scoring function that ex-
hibits the intended behavior. This is very similar
to the dynamic oracle concept developed for de-
pendency parsing (Goldberg and Nivre, 2013).

Let y∗prune be the coreference output corre-
sponding to the terminal state reached from input
x by Prune-and-Score approach when performing
search using Fprune and F∗score. Then the pruning
loss can be expressed as follows.

εprune = E(x,y∗)∼D L
(
x, y∗prune, y

∗)
Scoring Loss is defined as the additional loss due
to Fscore not guiding the greedy search to the best
terminal state reachable via the pruning function
Fscore (i.e., y∗prune). Let ŷ be the coreference out-
put corresponding to the terminal state reached by
Prune-and-Score approach by performing search
with Fprune and Fscore for an input x. Then the
scoring loss can be expressed as follows:

εscore|Fprune
= E(x,y∗)∼D L (x, ŷ, y∗)− L (x, y∗prune, y∗)

The overall loss decomposition of our Prune-and-
Score approach can be expressed as follows.

E (Fprune,Fscore)
= E(x,y∗)∼D L

(
x, y∗prune, y

∗)︸ ︷︷ ︸
εprune

+

E(x,y∗)∼D L (x, ŷ, y∗)− L (x, y∗prune, y∗)︸ ︷︷ ︸
εscore|Fprune

5.2 Stage-wise Learning

The loss decomposition motivates a learning ap-
proach that targets minimizing the errors of prun-
ing and scoring functions independently. In par-
ticular, we optimize the overall loss of the Prune-
and-Score approach in a stage-wise manner. We

first train a pruning function F̂prune to optimize
the pruning loss component εprune and then train
a scoring function F̂score to optimize the scoring
loss εscore|F̂prune conditioned on F̂prune.

F̂prune ≈ arg minFprune∈Fp
εprune

F̂score ≈ arg minFscore∈Fs
εscore|F̂prune

Note that this approach is myopic in the sense that
F̂prune is learned without considering the impli-
cations for learning F̂score. Below, we first de-
scribe our approach for pruning function learning,
and then explain our scoring function learning al-
gorithm.

5.3 Pruning Function Learning

In our greedy Prune-and-Score approach, the role
of the pruning function Fprune is to prune away
irrelevant actions (as specified by the pruning pa-
rameter b) at each search step. More specifically,
we want Fprune to score actions A(s) at each s-
tate s such that the optimal action a∗ ∈ A(s) is
ranked within the top b actions to minimize εprune.
For this, we assume that for any training input-
output pair (x, y∗) there exists a unique action se-
quence, or solution path (initial state to terminal
state), for producing y∗ from x. More formally, let
(s∗0, a∗0), (s∗1, a∗1), · · · , (s∗D,∅) correspond to the
sequence of state-action pairs along this solution
path, where s∗0 is the initial state and s∗D is the ter-
minal state. The goal is to learn the parameters of
Fprune such that at each state s∗i , a

∗
i ∈ A(s∗i ) is

ranked among the top b actions.
While we can employ an online-LaSO style ap-

proach (III and Marcu, 2005; Xu et al., 2009) to
learn the parameters of the pruning function, it is
quite inefficient, as it must regenerate the same
search trajectory again and again until it learn-
s to make the right decision. Additionally, this
approach limits applicability of the off-the-shelf
learners to learn the parameters of Fprune. To
overcome these drawbacks, we apply offline train-
ing.

Reduction to Rank Learning. We reduce the
pruning function learning to a rank learning prob-
lem. This allows us to leverage powerful and effi-
cient off-the-shelf rank-learners (Liu, 2009). The
reduction is as follows. At each state s∗i on the so-
lution path of a training example (x, y∗), we create
an example by labeling optimal action a∗i ∈ A(s∗i )
as the only relevant action, and then try to learn
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a ranking function that can rank actions such that
the relevant action a∗i is in the top b actions, where
b is the input pruning paramter. In other word-
s, we have a rank learning problem, where the
learner’s goal is to optimize the Precision at Top-
b. The training approach creates such an exam-
ple for each state s in the solution path. The set
of aggregate imitation examples collected over al-
l the training data is then given to a rank learner
(e.g., LambdaMART (Burges, 2010)) to learn the
parameters of Fprune by optimizing the Precision
at Top-b loss. See appendix for the pseudocode.

If we can learn a function Fprune that is con-
sistent with these imitation examples, then the
learned pruning function is guaranteed to keep
the solution path within the pruned space for al-
l the training examples. We can also employ
more advanced imitation learning algorithms in-
cluding DAgger (Ross et al., 2011) and SEARN
(Hal Daumé III et al., 2009) if we are provid-
ed with an (approximate) optimal scoring function
F∗score that can pick optimal actions at states that
are not in the solution path (i.e., off-trajectory s-
tates).

5.4 Scoring Function Learning

Given a learned pruning function Fprune, we want
to learn a scoring function that can pick the best
action from the b actions that remain after prun-
ing at each state. We formulate this problem in the
framework of imitation learning (Khardon, 1999).
More formally, let (ŝ0, a∗0), (ŝ1, a∗1), · · · , (ŝ∗D,∅)
correspond to the sequence of state-action pairs
along the greedy trajectory obtained by running
the Prune-and-Score approach with Fprune and
F∗score, the optimal scoring function, on a train-
ing example (x, y∗), where ŝ∗D is the best terminal
state in the pruned space. The goal of our imita-
tion training approach is to learn the parameters
of Fscore such that at each state ŝi, a∗i ∈ A′ is
ranked higher than all other actions in A′, where
A′ ⊆ A(ŝi) is the set of b actions that remain after
pruning.

It is important to note that the distribution of
states in the pruned space due to Fprune on the
testing data may be somewhat different from those
on training data. Therefore, we train our scoring
function via cross-validation by training the scor-
ing function on heldout data that was not used to
train the pruning function. This methodology is
commonly employed in Re-Ranking and Stacking

approaches (Collins, 2000; Cohen and de Carval-
ho, 2005).

Our scoring function learning procedure uses
cross validation and consists of the following four
steps. First, we divide the training data D in-
to k folds. Second, we learn k different pruners,
where each pruning function F iprune is learned us-
ing the data from all the folds excluding the ith

fold. Third, we generate ranking examples for
scoring function learning as described above us-
ing each pruning function F iprune on the data it
was not trained on. Finally, we give the aggregate
set of ranking examples R to a rank learner (e.g.,
SVM-Rank or LambdaMART) to learn the scoring
function Fscore. See appendix for the pseudocode.

Approximate Optimal Scoring Function. If the
learned pruning function is not consistent with the
training data, we will encounter states ŝi that are
not on the target path, and we will need some su-
pervision for learning in those cases. As discussed
before in Section 5.1, computing an optimal scor-
ing functionF∗score is intractable for combinatorial
loss functions that are used for coreference resolu-
tion. So we employ an approximate function from
existing work that is amenable to evaluate partial
outputs (Daumé III, 2006). It is a variant of the
ACE scoring function that removes the bipartite
matching step from the ACE metric. Moreover
this score is computed only on the partial coref-
erence output corresponding to the “after state”
s′ resulting from taking action a in state s, i.e.,
F∗score(s, a) = F∗score(s′). To further simplify the
computation, we give uniform weight to the three
types of costs: 1) Credit for correct linking, 2)
Penalty for incorrect linking, and 3) Penalty for
missing links. Intuitively, this is similar to the
correct-link count computed only on a subgraph.
We direct the reader to (Daumé III, 2006) for more
details (see Section 5.5).

6 Experiments and Results

In this section, we evaluate our greedy Prune-
and-Score approach on three benchmark corpora
– OntoNotes 5.0 (Pradhan et al., 2012), ACE 2004
(NIST, 2004), and MUC6 (MUC6, 1995) – and
compare it against the state-of-the-art approaches
for coreference resolution. For OntoNotes data,
we report the results on both gold mentions and
predicted mentions. We also report the results on
gold mentions for ACE 2004 and MUC6 data.
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6.1 Experimental Setup
Datasets. For OntoNotes corpus, we employ the
official split for training, validation, and testing.
There are 2802 documents in the training set; 343
documents in the validation set; and 345 docu-
ments in the testing set. The ACE 2004 corpus
contains 443 documents. We follow the (Culot-
ta et al., 2007; Bengtson and Roth, 2008) split
in our experiments by employing 268 documents
for training, 68 documents for validation, and 107
documents (ACE2004-CULOTTA-TEST) for test-
ing. We also evaluate our system on the 128
newswire documents in ACE 2004 corpus for a
fair comparison with the state-of-the-art. The
MUC6 corpus containts 255 documents. We em-
ploy the official test set of 30 documents (MUC6-
TEST) for testing purposes. From the remaining
225 documents, which includes 195 official train-
ing documents and 30 dry-run test documents, we
randomly pick 30 documents for validation, and
use the remaining ones for training.

Evaluation Metrics. We compute three most pop-
ular performance metrics for coreference resolu-
tion: MUC (Vilain et al., 1995), B-Cubed (Bag-
ga and Baldwin, 1998), and Entity-based CEAF
(CEAFφ4) (Luo, 2005). As it is commonly done
in CoNLL shared tasks (Pradhan et al., 2012), we
employ the average F1 score (CoNLL F1) of these
three metrics for comparison purposes. We evalu-
ate all the results using the updated version1 (7.0)
of the coreference scorer.

Features. We built2 our coreference resolver
based on the Easy-first coreference system (Stoy-
anov and Eisner, 2012), which is derived from the
Reconcile system (Stoyanov et al., 2010). We es-
sentially employ the same features as in the Easy-
first system. However, we provide some high-
level details that are necessary for subsequent dis-
cussion. Recall that our features φ(s, a) for both
pruning and scoring functions are defined over
state-action pairs, where each state s consists of
a set of clusters and an action a corresponds to
merging an unprocessed mention m with a clus-
ter C in state s or create one for itself. Therefore,
φ(s, a) defines features over cluster-mention pairs
(C,m). Our feature vector consists of three part-
s: a) mention pair features; b) entity pair features;
and c) a single indicator feature to represent NEW

1http://code.google.com/p/reference-coreference-scorers/
2See http://research.engr.oregonstate.edu/dral/ for our

software.

action (i.e., mention m starts its own cluster). For
mention pair features, we average the pair-wise
features over all links between m and every men-
tion mc in cluster C (often referred to as average-
link). Note that, we cannot employ the best-link
feature representation because we perform offline
training and do not have weights for scoring the
links. For entity pair features, we treat mention
m as a singleton entity and compute features by
pairing it with the entity represented by cluster C
(exactly as in the Easy-first system). The indica-
tor feature will be 1 for the NEW action and 0 for
all other actions.We have a total of 140 features:
90 mention pair features; 49 entity pair features;
and one NEW indicator feature. We believe that
our approach can benefit from employing features
of the mention for the NEW action (Rahman and
Ng, 2011b; Durrett and Klein, 2013). However,
we were constrained by the Reconcile system and
could not leverage these features for the NEW ac-
tion.

Base Rank-Learner. Our pruning and scoring
function learning algorithms need a base rank-
learner. We employ LambdaMART (Burges,
2010), a state-of-the art rank learner from the
RankLib3 library. LambdaMART is a variant of
boosted regression trees. We use a learning rate
of 0.1, specify the maximum number of boost-
ing iterations (or trees) as 1000 noting that its ac-
tual value is automatically decided based on the
validation set, and tune the number of leaves per
tree based on the validation data. Once we fix
the hyper-parameters of LambdaMART, we train
the final model on all of the training data. Lamb-
daMART uses an internal train/validation split of
the input ranking examples to decide when to stop
the boosting iterations. We fixed this ratio to 0.8
noting that the performance is not sensitive to this
parameter. For scoring function learning, we used
5 folds for the cross-validation training.

Pruning Parameter b. The hyper-parameter b
controls the amount of pruning in our Prune-and-
Score approach. We perform experiments with d-
ifferent values of b and pick the best value based
on the performance on the validation set.

Singleton Mention Filter for OntoNotes Cor-
pus. We employ the Illinois-Coref system (Chang
et al., 2012) to extract system mentions for our
OntoNotes experiments, and observe that the num-

3http://sourceforge.net/p/lemur/wiki/RankLib/
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ber of predicted mentions is thrice the number of
gold mentions. Since the training data provides the
clustering supervision for only gold mentions, it is
not clear how to train with the system mention-
s that are not part of gold mentions. A common
way of dealing with this problem is to treat all the
extra system mentions as singleton clusters (Dur-
rett and Klein, 2013; Chang et al., 2013). Howev-
er, this solution most likely will not work with our
current feature representation (i.e., NEW action is
represented as a single indicator feature). Recall
that to predict these extra system mentions as s-
ingleton clusters with our incremental clustering
approach, the learned model should first predic-
t a NEW action while processing these mention-
s to form a temporary singleton cluster, and then
refrain from merging any of the subsequent men-
tions with that cluster so that it becomes a single-
ton cluster in the final clustering output. Howev-
er, in OntoNotes corpus, the training data does not
include singleton clusters for the gold mentions.
Therefore, only the large number (57%) of system
mentions that are not part of gold mentions will
constitute the set of singleton clusters. This leads
to a highly imbalanced learning problem because
our model needs to learn (the weight of the sin-
gle indicator feature) to predict NEW as the best
action for a large set of mentions, which will bias
our model to predict large number of NEW actions
during testing. As a result, we will generate many
singleton clusters, which will hurt the recall of the
mention detection after post-processing. There-
fore, we aim to learn a singleton mention filter
that will be used as a pre-processor before training
and testing to overcome this problem. We would
like to point out that our filter is complementary to
other solutions (e.g., employing features that can
discriminate a given mention to be anaphoric or
not in place of our single indicator feature, or us-
ing a customized loss to weight our ranking exam-
ples for cost-sensitive training)(Durrett and Klein,
2013).

Filter Learning. The singleton mention filter is
a classifier that will label a given mention as “s-
ingleton” or not. We represent each mention m
in a document by averaging the mention-pair fea-
tures φ(m,m′) of the k-most similar mentions
(obtained by ranking all other mentions m′ in the
document with a learned ranking functionR given
m) and then learn a decision-tree classifier by opti-
mizing the F1 loss. We learn the mention-ranking

function R by optimizing the recall of positive
pairs for a given k, and employ LambdaMART as
our base ranker. The hyper-parameters are tuned
based on the performance on the validation set.

6.2 Results

We first describe the results of the learned single-
ton mention filter, and then the performance of
our Prune-and-Score approach with and without
the filter. Next, we compare the results of our ap-
proach with several state-of-the-art approaches for
coreference resolution.

Singleton Mention Filter Results. Table 1 shows
the performance of the learned singleton mention
filter with k = 2 noting that the results are ro-
bust for all values of k ≥ 2. As we can see, the
learned filter improves the precision of the men-
tion detection with only small loss in the recall of
gold mentions.

Mention Detection Accuracy
P R F1

Before- 43.18% 86.99% 57.71%
filtering (16664/38596) (16664/19156)
After- 79.02% 80.98% 79.97%
filtering (15516/19640) (15516/19156)

Table 1: Performance of the singleton mention filter on
the OntoNotes 5.0 development set. The numerators of
the fractions in the brackets show the exact numbers of
mentions that are matched with the gold mentions.

Prune-and-Score Results. Table 2 shows the per-
formance of Prune-and-Score approach with and
without the singleton mention filter. We can see
that the results with filter are much better than the
corresponding results without the filter. These re-
sults show that our approach can benefit from hav-
ing a good singleton mention filter.

Filter settings MUC B3 CEAFφ4 CoNLL

OntoNotes 5.0 Dev Set w. Predict Ment.
O.S. (w.o. Filter) 66.73 53.40 44.23 54.79
P&S (w.o. Filter) 65.93 52.96 50.24 56.38
P&S (w. Filter) 71.18 58.87 57.88 62.64

Table 2: Performance of Prune-and-Score approach
with and without the singleton mention filter, and Only-
Score approach without the filter.

Table 3 shows the performance of different con-
figurations of our Prune-and-Score approach. As
we can see, Prune-and-Score gives better results
than the configuration where we employ only the
scoring function (b = ∞) for small values of b.
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MUC B3 CEAFφ4 CoNLL
P R F1 P R F1 P R F1 Avg-F1

a. Results on OntoNotes 5.0 Test Set with Predicted Mentions
Prune-and-Score 81.03 66.16 72.84 66.90 51.10 57.94 68.75 44.34 53.91 61.56

Only-Scoring 75.95 61.53 67.98 63.94 47.37 54.42 58.54 49.76 53.79 58.73
HOTCoref 67.46 74.3 70.72 54.96 62.71 58.58 52.27 59.4 55.61 61.63

CPL3M - - 69.48 - - 57.44 - - 53.07 60.00
Berkeley 74.89 67.17 70.82 64.26 53.09 58.14 58.12 52.67 55.27 61.41

Fernandes et al., 2012 75.91 65.83 70.51 65.19 51.55 57.58 57.28 50.82 53.86 60.65
Stanford 65.31 64.11 64.71 56.54 48.58 52.26 46.67 52.29 49.32 55.43

b. Results on OntoNotes 5.0 Test Set with Gold Mentions
Prune-and-Score 88.10 85.85 86.96 76.82 76.16 76.49 80.90 74.06 77.33 80.26

Only-Scoring 86.96 84.52 85.73 74.51 74.25 74.38 79.04 70.67 74.62 78.24
CPL3M - - 84.80 - - 78.74 - - 68.75 77.43

Berkeley 85.73 89.26 87.46 78.23 75.11 76.63 82.89 70.86 76.40 80.16
Stanford 89.94 78.17 83.64 81.75 68.95 74.81 73.97 61.20 66.98 75.14

c. Results on ACE2004 Culotta Test Set with Gold Mentions
Prune-and-Score 85.57 72.68 78.60 90.09 77.02 83.04 74.64 86.02 79.42 80.35

Only-Scoring 82.75 69.25 75.40 88.54 74.22 80.75 73.69 85.22 78.58 78.24
CPL3M - - 78.29 - - 82.20 - - 79.26 79.91

Stanford 82.91 69.90 75.85 89.14 74.05 80.90 75.67 77.45 76.55 77.77

d. Results on ACE2004 Newswire with Gold Mentions
Prune-and-Score 89.72 75.72 82.13 90.89 76.15 82.87 72.43 86.83 78.69 81.23

Only-Scoring 86.92 76.49 81.37 88.10 75.83 81.51 73.15 84.31 78.05 80.31
Easy-first - - 80.1 - - 81.8 - - - -
Stanford 84.75 75.34 79.77 87.50 74.59 80.53 73.32 81.49 77.19 79.16

e. Results on MUC6 Test Set with Gold Mentions
Prune-and-Score 89.53 82.75 86.01 86.48 76.18 81.00 60.74 80.33 68.68 78.56

Only-Scoring 86.77 80.96 83.76 81.72 72.99 77.11 57.56 75.38 64.91 75.26
Easy-first - - 88.2 - - 77.5 - - - -
Stanford 91.19 69.54 78.91 91.07 63.39 74.75 62.43 69.62 65.83 73.16

Table 4: Comparison of Prune-and-Score with state-of-the-art approaches. Metric values reflect version 7 of
CoNLL scorer.

The performance is clearly better than the degen-
erate case (b = ∞) over a wide range of b values,
suggesting that it is not necessary to carefully tune
the parameter b.

Pruning param. b MUC B3 CEAFφ4 CoNLL

OntoNotes 5.0 Dev Set w. Predict Ment.
2 69.12 56.80 56.30 60.74
3 70.50 57.89 57.24 61.88
4 71.00 58.65 57.41 62.35
5 71.18 58.87 57.88 62.64
6 70.93 58.66 57.85 62.48
8 70.12 58.13 57.37 61.87
10 70.24 58.34 56.27 61.61
20 67.97 57.73 56.63 60.78
∞ 67.03 56.31 55.56 59.63

Table 3: Performance of Prune-and-Score approach
with different values of the pruning parameter b. For
b =∞, Prune-and-Score becomes an Only-Scoring al-
gorithm.

Comparison to State-of-the-Art. Table 4
shows the results of our Prune-and-Score ap-

proach compared with the following state-of-the-
art coreference resolution approaches: HOTCoref
system (Björkelund and Kuhn, 2014); Berkeley
system with the FINAL feature set (Durrett and K-
lein, 2013); CPL3M system (Chang et al., 2013);
Stanford system (Lee et al., 2013); Easy-first sys-
tem (Stoyanov and Eisner, 2012); and Fernan-
des et al., 2012 (Fernandes et al., 2012). On-
ly Scoring is the special case of our Prune-and-
Score approach where we employ only the scoring
function. This corresponds to existing incremen-
tal approaches (Daumé III, 2006; Rahman and Ng,
2011b). We report the best published results for
CPL3M system, Easy-first, and Fernandes et al.,
2012. We ran the publicly available software to
generate the results for Berkeley and Stanford sys-
tems with the updated CoNLL scorer. We include
the results of Prune-and-Score for best b on the de-
velopment set with singleton mention filter for the
comparison. In Table 4, ’-’ indicates that we could
not find published results for those cases. We see
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that results of the Prune-and-Score approach are
comparable to or better than the state-of-the-art in-
cluding Only-Scoring.

7 Conclusions and Future Work

We introduced the Prune-and-Score approach for
greedy coreference resolution whose main idea
is to learn a pruning function along with a scor-
ing function to effectively guide the search. We
showed that our approach improves over the meth-
ods that only learn a scoring function, and gives
comparable or better results than several state-of-
the-art coreference resolution systems.

Our Prune-and-Score approach is a particular
instantiation of the general idea of learning nearly-
sound constraints for pruning, and leveraging the
learned constraints to learn improved heuristic
functions for guiding the search (See (Chen et
al., 2014) for another instantiation of this idea for
multi-object tracking in videos). Therefore, oth-
er coreference resolution systems (Chang et al.,
2013; Durrett and Klein, 2013; Björkelund and
Kuhn, 2014) can also benefit from this idea. One
way to further improve the peformance of our
approach is to perform a search in the Limited
Discrepancy Search (LDS) space (Doppa et al.,
2014b) using the learned functions.

Future work should apply this general idea to
other natural language processing tasks including
dependency parsing (Nivre et al., 2007) and in-
formation extraction (Li et al., 2013). We would
expect more beneficial behavior with the prun-
ing constraints for problems with large action sets
(e.g., labeled dependency parsing). It would be in-
teresting and useful to generalize this approach to
search spaces where there are multiple target paths
from the initial state to the terminal state, e.g., as
in the Easy-first framework.
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Abstract

A typical discussion thread in an online fo-
rum spans multiple pages involving par-
ticipation from multiple users and thus,
may contain multiple view-points and so-
lutions. A user interested in the topic of
discussion or having a problem similar to
being discussed in the thread may not want
to read all the previous posts but only a few
selected posts that provide her a concise
summary of the ongoing discussion. This
paper describes an extractive summariza-
tion technique that uses textual features
and dialog act information of individual
messages to select a subset of posts. Pro-
posed approach is evaluated using two real
life forum datasets.

1 Introduction

In recent times, online discussion boards (or fo-
rums) have become quite popular as they provide
an easily accessible platform to users in different
parts of the world to come together, share informa-
tion and discuss issues of common interest. The
archives of web forums contain millions of discus-
sion threads and act as a valuable repository of hu-
man generated information that can be utilized for
various applications. Oftentimes, the discussions
in a thread span multiple pages involving partici-
pation from multiple users and thus, may contain
multiple view-points and solutions. In such a case,
the end-user may prefer a concise summary of the
ongoing discussion to save time. Further, such a
summary helps the user to understand the back-
ground of the whole discussion as well as provides
an overview of different view-points in a time ef-
ficient manner. In addition to generic forums on
the web, automatic forum summarization methods
can prove to be useful for various domain specific
applications, such as helping students and support-

ing tutors in virtual learning environments (Car-
bonaro, 2010).

A typical discussion thread in a web forum con-
sists of a number of individual posts or messages
posted by different participating users. Often, the
thread initiator posts a question to which other
users reply, leading to an active discussion. As
an example, consider the discussion thread shown
in Figure 1 where the thread starter describes his
problem about the missing headphone switch in
his Linux installation. In the third post in the
thread, some other user asks about some clarifying
details and in the next post the topic starter pro-
vides the requested details that makes the problem
clearer. On receiving additional details about the
problem, some other user provides a possible so-
lution to the problem (fifth post). The topic starter
tries the suggested solution and reports his experi-
ence in the next post (sixth post). Thus, we see that
each individual post in a discussion thread serves
a different purpose in the discussion and we posit
that identifying the purpose of each such post is
essential for creating effective summaries of the
discussions. Intuitively, the most important mes-
sages in a discussion are the ones that describe the
problem being discussed and the solutions being
proposed to solve the problem.

The role of an individual message in a discus-
sion is typically specified in terms of dialog acts.
There have been efforts to automatically assign
dialog acts to messages in online forum discus-
sions (Jeong et al., 2009; Joty et al., 2011; Bhatia
et al., 2012) and also using dialog acts for linguis-
tic analysis of forum data, such as in subjectiv-
ity analysis of forum threads (Biyani et al., 2012;
Biyani et al., 2014). In this paper, we describe our
initial efforts towards addressing the problem of
automatically creating summaries of such online
discussion threads. We frame forum summariza-
tion as a classification problem and identify mes-
sages that should be included in a summary of the
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discussion. In addition to textual features, we em-
ploy dialog act labels of individual messages for
summarization and show that incorporating dialog
acts leads to substantial improvements in summa-
rization performance.

Figure 1: An example thread illustrating different
role played by each post in the discussion. Differ-
ent users are indicated by different colors.

2 Definition of Dialog Acts Used

We use the same set of dialog acts as defined by
Bhatia et al. (2012). Note that based on the appli-
cation context and requirements new dialog acts
can be defined and added.
1. Question: The poster asks a question which
initiates discussion in the thread. This is usually
the first post in the thread but not always. Often,
the topic initiator or some other user may ask other
related questions in the thread.
2. Repeat Question: Some user repeats a previ-
ously asked question (e.g. Me too having the same
problem.).
3. Clarification: The poster asks clarifying ques-
tions in order to gather more details about the
problem or question being asked. For example,
Could you provide more details about the issue
you are facing.

4. Further Details: The poster provides more de-
tails about the problem as asked by other fellow
posters.
5. Solution: The poster suggests a solution to the
problem being discussed in the thread.
6. Positive Feedback: Somebody tries the sug-
gested solution and provides a positive feedback if
the solution worked.
7. Negative Feedback: Somebody tries the sug-
gested solution and provides a negative feedback
if the solution did not work.
8. Junk: There is no useful information in the
post. For example, someone justs posts a smiley
or some comments that is not useful to topic being
discussed. For example, “bump”, “sigh”, etc., or
messages posted by forum moderators such as this
thread is being closed for discussion.

3 Proposed Approach for Thread
Summarization

In general, text summarization techniques can
be classified into two categories, namely extrac-
tive Summarization, and Abstractive Summariza-
tion (Hahn and Mani, 2000). Extractive summa-
rization involves extracting salient units of text
(e.g., sentences) from the document and then con-
catenating them to form a shorter version of the
document. Abstractive summarization, on the
other hand, involves generating new sentences by
utilizing the information extracted from the doc-
ument corpus (Carenini and Cheung, 2008), and
often involves advanced natural language process-
ing tools such as parsers, lexicons and grammars,
and domain-specific knowledge bases (Hahn and
Mani, 2000). Owing to their simplicity and good
performance, extractive summarization techniques
are often the preferred tools of choice for various
summarization tasks (Liu and Liu, 2009) and we
also adopt an extractive approach for discussion
summarization in this work.

3.1 Summarization Unit – Individual
Sentence vs Individual Message

Before we can perform extractive summarization
on discussion threads, we need to define an ap-
propriate text unit that will be used to construct
the desired summaries. For typical summariza-
tion tasks, a sentence is usually treated as a unit of
text and summaries are constructed by extracting
most relevant sentences from a document. How-
ever, a typical discussion thread is different from
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a generic document in that the text of a discus-
sion thread is created by multiple authors (users
participating in the thread). Further, the text of
a discussion can be divided into individual user
messages, each message serving a specific role
in the whole discussion. In that sense, summa-
rizing a discussion thread is similar to the task
of multi-document summarization where content
of multiple documents that are topically related is
summarized simultaneously to construct an inclu-
sive, coherent summary. However, we also note
that an individual user message in a discussion is
much smaller than a stand-alone document (com-
pare 3 ∼ 4 sentences in a message to a few dozen
sentences in a document). Thus, the sentences in a
message are much more coherent and contextually
related to each other than in a stand-alone docu-
ment. Hence, selecting just a few sentences from a
message may lead to loss of context and make the
resulting summaries hard to comprehend. There-
fore, in this work, we choose each individual mes-
sage as a text unit and thus, the thread summaries
are created by extracting most relevant posts from
a discussion.

3.2 Framing Thread Summarization as Post
Classification

We consider the problem of extracting relevant
posts from a discussion thread as a binary classifi-
cation problem where the task is to classify a given
post as either belonging to the summary or not.
We perform classification in a supervised fashion
by employing following features.
1. Similarity with Title (TitleSim): This feature
is computed as the cosine similarity score between
the post and the title of the thread.
2. Length of Post (Length): The number of
unique words in the post.
3. Post Position (Position): The normalized po-
sition of the post in the discussion thread. It is
defined as follows:

Position of the post in the thread
Total # of posts in the thread

(1)

4. Centroid Similarity (Centroid): This fea-
ture is obtained by computing the cosine similarity
score between the post document vector and the
vector obtained as the centroid of all the post vec-
tors of the thread. Similarity with centroid mea-
sures the relatedness of each post with the under-
lying discussion topic. A post with a higher sim-
ilarity score with the thread centroid vector indi-

cates that the post better represents the basic ideas
of the thread.
5. Inter Post Similarity: This feature is com-
puted by taking the mean of the post’s cosine sim-
ilarity scores with all the other posts in the thread.
6. Dialog Act Label (Class): This is a set of bi-
nary features indicating the dialog act class label
of the post. We have one binary feature corre-
sponding to each dialog act.

4 Experimental Evaluation

4.1 Data Description

We used the dataset used by Bhatia et al. (2012)
that consists of randomly sampled 100 threads
from two different online discussion forums
– ubuntuforums.org and tripadvisor.
com. There are a total of 556 posts in the 100
threads from Ubuntu dataset and 916 posts in 100
threads from NYC dataset. The associated dialog
act labels of individual messages in each of the
threads are also available.

Next, for creating data for the summarization
task, two independent human evaluators (H1 and
H2) were recruited to create summaries of the
discussion threads in the two datasets. For each
thread, the evaluators were asked to read the whole
discussion and write a summary of the discussion
in their own words. The annotators were requested
to keep the length of summaries roughly between
10% and 25% of the original text length. Thus for
each thread, we obtain two human written sum-
maries.

These hand-written summaries were then used
to identify most relevant posts in a discussion
thread in a manner similar to one used by Ram-
bow et al. (2004). We compute cosine similarity
scores for each post in the thread with the corre-
sponding thread summary and the top k ranked
posts are then selected to be part of the sum-
mary of the thread. The number k is deter-
mined by the compression factor used for creat-
ing summaries. We choose a compression fac-
tor of 20%. The top k ranked posts, thus consti-
tute the gold summary of each thread. Note that
we obtain two gold summaries for each thread –
one corresponding to each evaluator. This sum-
marization data can be downloaded for research
purposes from http://sumitbhatia.net/
source/datasets.html.
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Evaluator Method Ubuntu NYC
Precision F-1 Precision F-1

Baseline 0.39 0.53 0.32 0.46

H1

Without Dialog Acts 0.578 0.536 0.739 0.607
With Dialog Acts 0.620 0.608 0.760 0.655

Gain +7.27% +13.43% +2.84% +7.91%

Baseline 0.38 0.52 0.31 0.45

H2

Without Dialog Acts 0.739 0.607 0.588 0.561
With Dialog Acts 0.760 0.655 0.652 0.588

Gain +14.94% +20.53% +10.88% +4.81%

Table 1: Results of post classification for summarization task. H1 and H2 correspond to the two hu-
man evaluators. Percentage improvements obtained by addition of post class label information is also
reported.

4.2 Baseline

As a baseline method, we use a rule based clas-
sifier that classifies all the Question and Solution
posts in a thread as belonging to the summary and
discards the remaining posts.

4.3 Results and Discussions

We used Naive Bayes classifier as implemented
in the Weka machine learning toolkit (Hall et al.,
2009) for classification experiments. We trained
the classifier on 75% of the data and used the re-
maining 25% for testing. Table 1 reports the clas-
sification results using (i) the baseline method,(ii)
features 1–5 only, and (iii) using all the features
(dialog act labels, in addition to the five features).
For both the datasets, we observe that incorpo-
rating dialog act information along with textual
features results in performance gain across all re-
ported metrics. The strong performance improve-
ments achieved for the two datasets corroborate
the proposed hypothesis that knowing the role
of each individual message in an online discus-
sion can help create better summaries of discus-
sion threads. Further, we observe that the preci-
sion values are very low for the baseline algorithm
(from 0.31 to 0.39) with moderate F-1 values (0.45
to 0.53), indicating a higher recall. This means
that even though many of the posts in the gold
summaries belong to question and solution cate-
gories, not all the posts belonging to these two cat-
egories are useful for summarization. Using tex-
tual features and dialog act labels in a supervised
machine learning framework captures the distin-
guishing characteristics of in-summary and out of
summary posts and thus, yields a much better clas-
sification performance.

5 Related Work

Among various applications of text summariza-
tion, work on E-Mail thread summarization (Ram-
bow et al., 2004; Cohen et al., 2004) can be con-
sidered as closely related to the problem discussed
in this paper. An E-Mail thread is similar to a fo-
rum discussion thread in that it involves back and
forth communication with the participants, how-
ever, the problem of discussion thread summariza-
tion is very different (and difficult) due to a rela-
tively larger number of participants, highly infor-
mal and noisy language, and frequent topic drifts
in discussions. Zhou and Hovy (2005) identify
clusters in internet relay chats (irc) and then em-
ploy lexical and structural features to summarize
each cluster. Ren et al. (2011) have proposed a fo-
rum summarization algorithm that models the re-
ply structures in a discussion thread.

6 Conclusions and Future Work

We proposed that dialog act labels of individual
messages in an online forums can be helpful in
summarizing discussion threads. We framed dis-
cussion thread summarization as a binary clas-
sification problem and tested our hypothesis on
two different datasets. We found that for both
the datasets, incorporating dialog act information
as features improves classification performance as
measured in terms of precision and F-1 measure.
As future work, we plan to explore various other
forum specific features such as user reputation and
quality of content to improve summarization per-
formance.
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