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Abstract

We re-investigate the rationale for and the ef-
fectiveness of adopting the notions of depth
and density in WordNet-based semantic sim-
ilarity measures. We show that the intuition
for including these notions in WordNet-based
similarity measures does not always stand up
to empirical examination. In particular, the
traditional definitions of depth and density
as ordinal integer values in the hierarchical
structure of WordNet does not always corre-
late with human judgment of lexical semantic
similarity, which imposes strong limitations
on their contribution to an accurate similarity
measure. We thus propose several novel defi-
nitions of depth and density, which yield sig-
nificant improvement in degree of correlation
with similarity. When used in WordNet-based
semantic similarity measures, the new defini-
tions consistently improve performance on a
task of correlating with human judgment.

1 Introduction

Semantic similarity measures are widely used in
natural language processing for measuring distance
between meanings of words. There are currently
two mainstream approaches to deriving such mea-
sures, i.e., distributional and lexical resource-based
approaches. The former usually explores the co-
occurrence patterns of words in large collections
of texts such as text corpora (Lin, 1998) or the
Web (Turney, 2001). The latter takes advantage of
mostly handcrafted information, such as dictionar-
ies (Chodorow et al., 1985; Kozima and Ito, 1997)
or thesauri (Jarmasz and Szpakowicz, 2003).

Another important resource in the latter stream is
semantic taxonomies such as WordNet (Fellbaum,
1998). Despite their high cost of compilation and
limited availability across languages, semantic tax-
onomies have been widely used in similarity mea-
sures, and one of the main reasons behind this is that
the often complex notion of lexical semantic simi-
larity can be approximated with ease by the distance
between words (represented as nodes) in their hier-
archical structures, and this approximation appeals
much to our intuition. Even methods as simple as
“hop counts” between nodes (e.g., that of Rada et al.
1989 on the English WordNet) can take us a long
way. Meanwhile, taxonomy-based methods have
been constantly refined by incorporating various
structural features such as depth (Sussna, 1993; Wu
and Palmer, 1994), density (Sussna, 1993), type of
connection (Hirst and St-Onge, 1998; Sussna, 1993),
word class (sense) frequency estimates (Resnik,
1999), or a combination these features (Jiang and
Conrath, 1997). Most of these algorithms are fairly
self-contained and easy to implement, with off-the-
shelf toolkits such as that of Pedersen et al. (2004).

With the existing literature focusing on carefully
weighting these features to construct a better seman-
tic similarity measure, however, the rationale for
adopting these features in calculating semantic sim-
ilarity remains largely intuitive. To the best of our
knowledge, there is no empirical study directly in-
vestigating the effectiveness of adopting structural
features such as depth and density. This serves as
the major motivation for this study.

The paper is organized as follows. In Section
2 we review the basic rationale for adopting depth
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and density in WordNet-based similarity measures
as well as existing literature on constructing such
measures. In Section 3, we show the limitations of
the current definitions of depth and density as well as
possible explanations for these limitations.1 We then
propose new definitions to avoid such limitations in
Section 4. The effectiveness of the new definitions
is evaluated by applying them in semantic similar-
ity measures in Section 5 and conclusions made in
Section 6.

2 Related Work

The following are the current definitions of depth
and density which we aim at improving. Given a
node/concept c in WordNet, depth refers to the num-
ber of nodes between c and the root of WordNet,
(i.e., the root has depth zero, its hyponyms depth
one, and so on). There are more variations in the
definition of density, but it is usually defined as the
number of edges leaving c (i.e., its number of child
nodes) or leaving its parent node(s) (i.e., its number
of sibling nodes). We choose to use the latter since
it is used by most of the existing literature.

2.1 The Rationale for Depth and Density
The rationale for using the notions of depth and den-
sity in WordNet-based semantic similarity measures
is based on the following assumption:

Assumption 1 Everything else being equal, two
nodes are semantically closer if (a) they reside
deeper in the WordNet hierarchy, or (b) they are
more densely connected locally.

This is the working assumption for virtually all
WordNet-based semantic similarity studies using
depth and/or density. For depth, the intuition is
that adjacent nodes deep down the hierarchy are
likely to be conceptually close, since the differen-
tiation is based on finer details (Jiang and Conrath,
1997). Sussna (1993) termed the use of depth as
depth-relative scaling, claiming that “only-siblings
deep in a tree are more closely related than only-
siblings higher in the tree”. Richardson and Smeaton
(1995) gave an hypothetical example illustrating
this “only-siblings” situation, where plant–animal

1Since the works we review in this section have different
definitions of depth and density, we defer our formal definitions
to Section 3.

are the only two nodes under living things, and
wolfhound–foxhound under hound. They claimed
the reason that the former pair can be regarded as
conceptually farther apart compared to the latter is
related to the difference in depth.

As for the relation between density and similar-
ity, the intuition is that if the overall semantic mass
for a given node is constant (Jiang and Conrath,
1997), then the more neighboring nodes there are in
a locally connected subnetwork, the closer its mem-
bers are to each other. For example, animal, per-
son, and plant are more strongly connected with life
form than aerobe and plankton because the first three
words all have high density in their local network
structures (Richardson and Smeaton, 1995). Note
that the notion of density here is not to be con-
fused with the conceptual density used by Agirre
and Rigau (1996), which is essentially a semantic
similarity measure by itself.

In general, both observations on depth and density
conform to intuition and are supported qualitatively
by several existing studies. The main objective of
this study is to empirically examine the validity of
this assumption.

2.2 Semantic Similarity Measures Using Depth
and/or Density

One of the first examples of using depth and den-
sity in WordNet-based similarity measures is that of
Sussna (1993). The weight on an edge between two
nodes c1 and c2 with relation r in WordNet is given
as:

w(c1,c2) =
w(c1→r c2)+w(c2→r c1)

2d

where d is the depth of the deeper of the two nodes.
As depth increases, weight decreases and similarity
in turn increases, conforming to Assumption 1. The
edge weight was further defined as

w(c1→r c2) = maxr−
maxr−minr

nr(c1)

where nr(X) is “the number of relations of type r
leaving node X”, which is essentially an implicit
form of density, and maxr and minr are the maxi-
mum and minimum of nr, respectively. Note that
this formulation of density contradicts Assumption
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1 since it is proportional to edge weight (left-hand-
side) and thus negatively correlated to similarity.

Wu and Palmer (1994) proposed a concept simi-
larity measure between two concepts c1 and c2 as:

sim(c1,c2) =
2 ·dep(c)

len(c1,c)+ len(c2,c)+2 ·dep(c)
(1)

where c is the lowest common subsumer (LCS) of c1
and c2, and len(·, ·) is the number of edges between
two nodes. The rationale is to adjust “hop count”
(the first two terms in the denominator) with the
depth of LCS: similarity between nodes with same-
level LCS is in negative proportion to hop counts,
while given the same hop count, a “deeper” LCS
pulls the similarity score closer to 1.

Jiang and Conrath (1997) proposed a hybrid
method incorporating depth and density information
into an information-content-based model (Resnik,
1999):

w(c, p) =(
dep(p)+1

dep(p)
)α

× [β+(1−β)
Ē

den(p)
]

× [IC(c)− IC(p)]T (c, p) (2)

Here, p and c are parent and child nodes in Word-
Net, dep(·) and den(·) denote the depth and den-
sity of a node, respectively, Ē is the average density
over the entire network of WordNet, and α and β are
two parameters controlling the contribution of depth
and density values to the similarity score. IC(·) is
the information content of a node based on proba-
bility estimates of word classes from a small sense-
tagged corpus (Resnik, 1999), and T (c, p) is a link-
type factor differentiating different types of relations
between c and p.

3 Limitations on the Current Definitions of
Depth and Density

To what extent do the notions of depth and density
help towards an accurate semantic similarity mea-
sure? Our empirical investigation below suggests
that more often than not, they fail our intuition.

A direct assessment of the effectiveness of us-
ing depth and density is to examine their correla-
tion with similarity. Empirical results in this section

Figure 1: Correlation between depth and similarity.

are achieved by the following experimental setting.
Depth is defined as the number of edges between the
root of the hierarchy and the lowest common sub-
sumer (LCS) of two nodes under comparison, and
density as the number of siblings of the LCS.2 Sim-
ilarity is measured by human judgment on similar-
ity between word pairs. Commonly used data sets
for such judgments include that of Rubenstein and
Goodenough (1965), Miller and Charles (1991), and
Finkelstein et al. (2001) (denoted RG, MC, and FG,
respectively). RG is a collection of similarity ratings
of 65 word pairs averaged over judgments from 51
human subjects on a scale of 0 to 4 (from least to
most similar). MC is a subset of 30 pairs out of the
RG data set. These pairs were chosen to have evenly
distributed similarity ratings in the original data set,
and similarity judgment was elicited from 38 human
judges with the same instruction as used for RG. FG
is a much larger set consisting of 353 word pairs,
and the rating scale is from 0 to 10. We combine the
RG and FG data sets in order to maximize data size.
Human ratings r on individual sets are normalized to
rn on 0 to 1 scale by the following formula:

rn =
r− rmin

rmax− rmin

where rmax and rmin are the maximum and minimum
of the original ratings, respectively. Correlation is
evaluated using Spearman’s ρ.

2We also tried several other variants of these definitions,
e.g., using the maximum or minimum depth of the two nodes
instead of the LCS. With respect to statistical significance tests,
these variants all gave the same results as our primary definition.
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Figure 2: Histogram of depth of WordNet noun synsets.

3.1 Depth

The distribution of similarity of the combined data
set over depth is plotted in Figure 1. For depth val-
ues under 5, similarity scores are fairly evenly dis-
tributed over depth, showing no statistical signifi-
cance in correlation. For depth 5 and above, the
shape of distribution resembles an upper-triangle,
suggesting that (1) correlation with similarity be-
comes stronger in this range of depth value, and (2)
data points with higher depth values tend to have
higher similarity scores, but the reverse of the claim
does not hold, i.e., word pairs with “shallower” LCS
can also be judged quite similar by humans.

There are many more data points with lower depth
values than with higher depth values in the com-
bined data set. In order to have a fair comparison of
statistical significance tests on the two value ranges
for depth, we randomly sample an equal number
(100) of data points from each value range, and the
correlation coefficient between depth and similarity
is averaged over 100 of such samplings. Correla-
tion coefficients for depth value under 5 versus 5 and
above are ρ = 0.0881, p ≈ 0.1 and ρ = 0.3779, p <
0.0001, respectively, showing an apparent difference
in degree of correlation.

Two interesting observations can be made from
these results. Firstly, the notion of depth is relative
to the distribution of number of nodes over depth
value. For example, depth 20 by itself is virtually
meaningless since it might be quite high if the ma-
jority of nodes in WordNet are of depth 10 or less,
or quite low if the majority depth value are 50 or
more. According to the histogram of depth values
in WordNet (Figure 2), the distribution of number of
nodes over depth value approximately conforms to a

normal distribution N (8,2). It is visually quite no-
ticeable that the actual quantity denoting how deep a
node resides in WordNet is conflated at depth values
below 5 or above 14. In other words, the distribution
makes it rather inaccurate to say, for instance, that a
node of depth 4 is twice as deep as a node of depth 2.
This might explain the low degree of correlation be-
tween similarity and depth under 5 in Figure 1 (man-
ifested by the long, vertical stripes across the entire
range of similarity scores (0 to 1) for depth 4 and
under), and also how the correlation increases with
depth value. Unfortunately, we do not have enough
data for depth above 14 to draw any conclusion on
this higher end of the depth spectrum.

Secondly, even on the range of depth values with
higher correlation with similarity, there is no defini-
tive sufficient and necessary relation between depth
and similarity (hence the upper triangle instead of
a sloped line or band). Particularly, semantically
more similar words are not necessarily deeper in the
WordNet hierarchy. Data analysis reveals that the
LCS of highly similar words can be quite close to
the hierarchical root. Examples include coast–shore,
which is judged to be very similar by humans (9 on
a scale of 0–10 in both data sets). The latter is a hy-
pernym of the former and thus the LCS of the pair,
yet it is only four levels below the root node entity
(via geological formation, object, and physical en-
tity). Another situation is when the human judges
confused relatedness with similarity, and WordNet
fails to capture the relatedness with its hierarchical
structure of lexical semantics: the pair software–
computer can only be related by the root node en-
tity as their LCS, although the pair is judged quite
“similar” by humans (8.5 on 0 to 10 scale).

The only conclusive claim that can be made here
is that word pairs with deeper LCS’s tend to be more
similar. However, since only word forms (rather
than senses) are available in these psycho-linguistic
experiments, the one similarity rating given by hu-
man judges sometimes fails to cover multiple senses
for polysemous words. In the pair stock–jaguar of
the FG set, for example, one sense of stock (live-
stock, stock, farm animal: any animals kept for use
or profit) is closely connected to jaguar through a
depth-10 LCS (placental, placental mammal, eu-
therian, eutherian mammal). However, the pair re-
ceived a low similarity rating (0.92 on 0–10), prob-
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Figure 3: Correlation between density and similarity.

MC RG FG
dep 0.7056*** 0.6909*** 0.3701***

den 0.2268 0.2660* 0.1023

Table 1: Correlation between depth/density and similar-
ity on individual data sets. Number of asterisks indicates
different confidence intervals (“*” for p< 0.05, “***” for
p < 0.0001).

ably because judges associated the word form stock
with its financial sense, especially when there was
an abundant presence of pairs indicating this particu-
lar sense of the word (e.g., stock–market, company–
stock).

3.2 Density

Comparing to depth, density exhibits much lower
correlation with similarity (Figure 3-a and 3-b). We
conducted correlation experiments between density
and similarity with the same setting as for depth and
similarity above. Data points with extremely high
density values (up to over 400) are mostly idiosyn-
cratic to the densely connected regions in WordNet
and are numerically quite harmful. We thus ex-
cluded outliers with density values above 100 in the
experiment.

Evaluation on the combined data set shows no
correlation between density and similarity. To con-
firm the result, we break the experiments down to the
three individual data sets, and the results are listed in
Table 1. The correlation coefficient between density
and similarity ranges from 0.10 to 0.27 There is no

statistical significance of correlation on two of the
three data sets (MC and FG), and the significance
on RG is close to marginal with p = 0.0366.

Data analysis suggests that density values are of-
ten biased by particular fine-grainedness of local
structures in WordNet. Qualitatively, Richardson
and Smeaton (1995) previously observed that “the
irregular densities of links between concepts results
in unexpected conceptual distance measures”. Em-
pirically, on the one hand, more than 90% of Word-
Net nodes have density values less than or equal to
3. This means that for 90% of the LCS’s, there are
only three integer values for density to distinguish
the varying degrees of similarity. In other words,
such a range might be too narrow to have any real
distinguishing power over similarity. On the other
hand, there are outliers with extreme density values
particular to the perhaps overly fine-grained subcat-
egorization of some WordNet concepts, and these
nodes can be LCS’s of word pairs of drastically dif-
ferent similarity. The node person, individual, for
example, can be the LCS of similar pairs such as
man–woman, as well as quite dissimilar ones such
as boy–sage, where the large density value does not
necessarily indicate high degree of similarity.

Another crucial limitation of the definition of den-
sity is the information loss on specificity. In the ex-
isting literature, density is often adopted as a proxy
for the degree of specificity of a concept, i.e., nodes
in densely connected regions in WordNet are taken
to be more specific and thus closer to each other.
This information of a given node should be inher-
ited by its hierarchical descendants, since specificity
should monotonically increase as one descends the
hierarchy. For example, the node piano has a den-
sity value of 15 under the node percussion instru-
ment. However, the density value of its hyponyms
Grand piano, upright piano, and mechanical piano,
is only 3. Due to the particular structure of this sub-
network in WordNet, the grand–upright pair might
be incorrectly regarded as less specific (and thus less
similar) than, say, between piano–gong, both as per-
cussion instruments.

4 New Definitions of Depth and Density

In this section, we formalize new definitions of
depth and density to correct for their current limi-
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MC RG FG
depu 0.7201*** 0.6798*** 0.3751***

denu 0.2268 0.2660* 0.1019
deni 0.7338*** 0.6751*** 0.3445***

Table 2: Correlation between new definitions of
depth/density and similarity.

tations discussed in Section 3.

4.1 Depth

The major problem with the current definition of
depth is its failure to take into account the uneven
distribution of number of nodes over the depth value.
As seen in previous examples, the distribution is
rather “flat” on both ends of depth value, which does
not preserve the linearity of using the ordinal values
of depth and thus introduces much inaccuracy.

To avoid this problem, we “re-curve” depth value
to the cumulative distribution. Specifically, if we
take the histogram distribution of depth value in Fig-
ure 2 as a probability density function, our approach
is to project cardinal depth values onto its cumula-
tive distribution function. The new depth is denoted
depu and is defined as:

depu(c) =
∑c′∈WN |{c′ : dep(c′)≤ dep(c)}|

|WN|

Here, dep(·) is the original depth value, and WN is
the set of all nodes in WordNet. The resulting depth
values not only reflect the flat ends, but also preserve
linearity for the depth value range in the middle. In
comparison with Table 1), correlation between depu
and similarity increases over the original depth val-
ues on two of the three data sets (first row in Table
2 and decreases on the RG set. Later, in Section 5,
we show how these marginal improvements translate
into better similarity measures with statistical signif-
icance.

4.2 Density

In theory, a procedure analogous to the above cumu-
lative definition can also be applied to density, i.e.,
by projecting the original values onto the cumula-
tive distribution function. However, due to the Zip-
fian nature of density’s histogram distribution (Fig-
ure 4, in contrast to Gaussian for depth in Figure
2), this is essentially to collapse most density values

Figure 4: Histogram of density in WordNet.

into a very small number of discrete values (which
correspond to the original density of 1 to 3). Ex-
periments show that it does not help in improving
correlation with similarity scores (second row in Ta-
ble 2 for denu): correlation remains the same on MC
and RG, and decreases slightly on FG.

We therefore resort to addressing the issue of in-
formation loss on specificity by inheritance. Intu-
itively, the idea is to ensure that a node be assigned
no less density mass than its parent node(s). In the
“piano” example (Section 3.2), the concept piano is
highly specific due to its large number of siblings
under the parent node percussion instruments. Con-
sequently, the density of its child nodes upright pi-
ano and grand piano should inherit its specificity on
top of their own.

Formally, we redefine density recursively as fol-
lows:

deni(r) = 0

deni(c) =
∑h∈hyper(c) deni(h)
|hyper(c)| +den(c)

where r is the root of WordNet hierarchy (with no
hypernym), and hyper(·) is the set of hypernyms of a
given concept. The first term is the inheritance part,
normalized over all hypernyms of c in case of mul-
tiple inheritance, and the second term is the original
value of density.

The resulting density values correlate signifi-
cantly better with similarity. As shown in row 3
in Table 2, the correlation coefficients are about
tripled on all three data sets with the new density
definition deni, and the significance of correlation
is greatly improved as well (from non-correlating or
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marginally correlating to strongly significantly cor-
relating on all three data sets).

5 Using the New Definitions in Semantic
Similarity Measures

In this section, we test the effectiveness of the new
definitions of depth and density by using them in
WordNet-based semantic similarity measures. The
two similarity measures we experiment with are that
of Wu and Palmer (1994) and Jiang and Conrath
(1997). The first one used depth only, and the second
one used both depth and density.

The task is to correlate the similarity measures
with human judgment on similarity between word
pairs. We use the same three data sets as in Section
3. despite the fact that MC is a subset of RG data
set, we include both in order to compare with exist-
ing studies.

Correlation coefficient is calculated using Spear-
man’s ρ, although results reported by some earlier
studies used parametric tests such as the Pearson
Correlation Coefficient. The reason for our choice
is that the similarity scores of the word pairs in
these data sets do not necessarily conform to nor-
mal distributions. Rather, we are interested in testing
whether the artificial algorithms would give higher
scores to pairs that are regarded closer in meaning
by human judges. A non-parametric test suits better
for this scenario. And this partly explains why our
re-implementations of the models have lower corre-
lation coefficients than in the original studies.

Note that there are other WordNet-based similar-
ity measures using depth and/or density that we opt
to omit for various reasons. Some of them were not
designed for the particular task at hand (e.g., that of
Sussna, 1993, which gives very poor correlation in
this task). Others use depth of the entire WordNet
hierarchy instead of individual nodes as a scaling
factor (e.g., that of Leacock and Chodorow, 1998),
which is unsuitable for illustrating the improvement
brought about by the new depth and density defini-
tions.

Parameterization of the weighting of depth and
density is a common practice to control their indi-
vidual contribution to the final similarity score (e.g.,
α and β in Equation (2)). Jiang and Conrath already
had separate weights in their original study. In or-

Best Average
MC RB GR MC RB GR

dep 0.7671 0.7824 0.3773 0.7612 0.7686 0.3660
depu 0.7824 0.7912 0.3946 0.7798 0.7810 0.3787

Table 3: Correlation between human judgment and simi-
larity score by Wu and Palmer (1994) using two versions
of depth.

Best Average
MC RB GR MC RB GR

dep,den 0.7875 0.8111 0.3720 0.7689 0.7990 0.3583
depu, den 0.8009 0.8181 0.3804 0.7885 0.8032 0.3669
dep,deni 0.7882 0.8199 0.3803 0.7863 0.8102 0.3689

depu,deni 0.8065 0.8202 0.3818 0.8189 0.8194 0.3715

Table 4: Correlation between human judgment and sim-
ilarity score by Jiang and Conrath (1997) using different
definitions of depth and density.

der to parameterize depth used by Wu and Palmer in
their similarity measure, we also modify Equation
(1) as follows:

sim(c1,c2) =
2 ·depα(c)

len(c1,c)+ len(c2,c)+2 ·depα(c)

where depth is raised to the power of α to vary its
contribution to the similarity score.

For a number of combinations of the weighting
parameters, we report both the best performance
and the averaged performance over all the param-
eter combinations. The latter number is meaningful
in that it is a good indication of numerical stability of
the parameterization. In addition, parameterization
is able to generate multiple correlation coefficients,
on which statistical tests can be run in order to show
the significance of improvement. We use the range
from 0 to 5 with step 1 for α and from 0 to 1 with
step 0.1 for β.

Table 3 and 4 list the experiment results. In both
models, the cumulative definition of depth depu con-
sistently improve the performance of the similarity
measures. In the Jiang and Conrath (1997) model,
where density is applicable, the inheritance-based
definition of density deni also results in better cor-
relation with human judgments. The optimal result
is achieved when combining the new definitions of
depth and density (row 4 in Table 4). For average
performance, the improvement of all the new def-
initions over the original definitions is statistically
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significant on all three data sets according to paired
t-test.

6 Conclusions

This study explored effective uses of depth and/or
density in WordNet-based similarity measures. We
started by examining how well these two structural
features correlate with human judgment on word
pair similarities. This direct comparison showed that
depth correlates with similarity only on certain value
ranges, while density does not correlate with human
judgment at all.

Further investigation revealed that the problem for
depth lies in the simplistic representation as its ordi-
nal integer values. The linearity in this representa-
tion fails to take into account the conflated quantity
of depth in the two extreme ends of the depth spec-
trum. For density, a prominent issue is the informa-
tion loss on specificity of WordNet concepts, which
gives an inaccurate density value that is biased by
the idiosyncratic constructions in densely connected
regions in the hierarchy.

We then proposed new definitions of depth and
density to address these issues. For depth, linear-
ity in different value ranges is realistically reflected
by projecting the depth value to its cumulative dis-
tribution function. The loss of specificity informa-
tion in density, on the other hand, is corrected by
allowing concepts to inherit specificity information
from their parent nodes. The new definitions show
significant improvement in correlation of semantic
similarity given by human judges. In addition, when
used in existing WordNet-based similarity measures,
they consistently improve performance and numeri-
cal stability of the parameterization of the two fea-
tures.

The notions of depth and density pertain to any
hierarchical structure like WordNet, which suggests
various extensions of this work. A natural next step
of the current work is to apply the same idea to se-
mantic taxonomies in languages other than English
with available similarity judgments are also avail-
able. Extrinsic tasks using WordNet-based semantic
similarity can potentially benefit from these refined
notions of depth and density as well.
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