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Abstract 

Measuring semantic relatedness between 

words or concepts is a crucial process to 

many Natural Language Processing tasks. 

Exiting methods exploit semantic evidence 

from a single knowledge source, and are 

predominantly evaluated only in the 

general domain. This paper introduces a 

method of harnessing different knowledge 

sources under a uniform model for 

measuring semantic relatedness between 

words or concepts. Using Wikipedia and 

WordNet as examples, and evaluated in 

both the general and biomedical domains, it 

successfully combines strengths from both 

knowledge sources and outperforms state-

of-the-art on many datasets. 

1    Introduction 

Semantic relatedness (SR) measures how much 

two (strings of) words or concepts are related by 

encompassing all kinds of relations between them 

(Strube and Ponzetto, 2006). It is more general 

than semantic similarity. SR is often an important 

pre-processing step to many complex Natural 

Language Processing (NLP) tasks, such as Word 

Sense Disambiguation (Leacock and Chodorow, 

1998; Han and Zhao, 2010), and information 

retrieval (Finkelstein et al., 2002). In the 

biomedical domain, SR is an important technique 

for discovering gene functions and interactions 

(Wu et al., 2005; Ye et al., 2005).  

There is an abundant literature on measuring 

SR between words or concepts. Typically, these 

methods extract semantic evidence of words and 

concepts from a background knowledge source, 

with which their relatedness is assessed. The 

knowledge sources can be unstructured documents 

or (semi-)structured resources such as Wikipedia, 

WordNet, and domain specific ontologies (e.g., the 

Gene Ontology
1
).  

In this paper, we identify two issues that have 

not been addressed in the previous works. First, 

existing works typically employ a single 

knowledge source of semantic evidence. Research 

(Strube and Ponzetto, 2006; Zesch and Gurevych, 

2010; Zhang et al., 2010) has shown that the 

accuracy of an SR method differs depending on the 

choice of the knowledge sources, and there is no 

conclusion which knowledge source is superior to 

others. Zhang et al. (2010) argue that this indicates 

different knowledge sources may complement each 

other. Second, the majority of SR methods have 

been evaluated in general domains only, except a 

few earlier WordNet-based methods that have been 

adapted to biomedical ontologies and evaluated in 

that domain (Lord et al., 2003; Pedersen et al., 

2006; Pozo et al., 2008). Given the significant 

attention that SR has received in specific domains 

(Pesquita et al., 2007), evaluation of SR methods 

in specific domains is increasingly important.  

This paper addresses these issues by proposing 

a generic and uniform model for computing SR 

between words or concepts using multiple 

knowledge sources, and evaluating the proposed 

method in both general and specific domains. The 

method combines and integrates semantic evidence 

of words or concepts extracted from any 

knowledge source in a generic graph 

representation, with which the SR between 

concepts or words is computed. Using two of the 

most popular general-domain knowledge sources, 

                                                         
1 http://www.geneontology.org/, last retrieved in Mar. 2011 
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Wikipedia and WordNet as examples, the method 

is evaluated on 7 benchmarking datasets, including 

three datasets from the biomedical domain and 

four from the general domain. It has achieved 

excellent results: compared to the baselines that 

use each single knowledge sources, combining 

both knowledge sources has improved the accuracy 

on all datasets by 2~11%; compared to state-of-

the-art on the general domain datasets, the method 

achieves the best results on three datasets; and on 

the other three biomedical datasets, it obtains the 

best result in one case; and second and third best 

results on the other two among eight participating 

methods, where all other competitors exploit some 

domain-specific knowledge sources.  

The remainder of this paper is organized as 

follows. Section 2 discusses related work; Section 

3 presents the proposed method; Section 4 

describes the experiments and evaluation; Section 

5 discusses results and findings; Section 6 

concludes this paper. 

2    Related work 

2.1    SR methods 

Methods for computing SR can be classified into 

path based, Information Content (IC) based, 

statistical and hybrid methods. Path based 

methods (Hirst and St-Onge, 1998; Leacock and 

Chodorow, 1998; Pekar and Staab, 2002; Rada et 

al., 1989; Wu and Palmer, 1994) measure SR 

between words or concepts as a function of their 

distance in a semantic network, usually calculated 

based on the path connecting the words or concepts 

by certain semantic (typically is-a) links. IC based 

methods (Jiang and Conrath, 1997; Lin, 1998; 

Pirro et al., 2009; Resnik, 1995; Seco et al., 2004) 

assess relatedness between words or concepts by 

the amount of information they share, usually 

determined by a higher level concept that 

subsumes both concepts in a taxonomic structure. 

Statistical methods measure relatedness between 

words or concepts based on their distribution of 

contextual evidence. This can be formalized as co-

occurrence statistics collected from unstructured 

documents (Chen et al., 2006; Cilibrasi and 

Vitanyi, 2007; Matsuo et al., 2006), or 

distributional concept or word vectors with 

features extracted from either unstructured 

documents (Harrington, 2010; Wojtinnek and 

Pulman, 2011) or (semi-)structured knowledge 

resources (Agirre et al., 2009; Gabrilovich and 

Markovitch, 2007; Gouws et al., 2010; Zesch and 

Gurevych, 2007; Zhang et al., 2010). Hybrid 

methods combine different purebred methods in 

certain ways. For example Riensche et al. (2007) 

employ both an IC based method (Resnik, 1995) 

and a statistical method (cosine vector similarity) 

in their study. Pozo et al. (2008) derive a taxonomy 

of terms from unstructured documents by applying 

hierarchical clustering based on corpus statistics, 

then apply path based method on this taxonomy to 

compute SR. Han and Zhao (2010) use one IC 

based method and two statistical methods to 

compute SR, then derive an aggregated score.  

2.2    SR knowledge sources and domains 

Computing SR requires background knowledge 

about concepts or words, which can be extracted 

from unstructured corpora, semi-structured and 

structured knowledge resources. Unstructured 

corpora are easier to create and cheaper to 

maintain, however, semantic relations between 

words or concepts are implicit. Methods (Chen et 

al., 2006; Cilibrasi and Vitanyi 2007; Matsuo et al., 

2006) that exploit unstructured corpora typically 

depend on distributional statistics, and thus may 

ignore important semantic evidences present in 

(semi-)structured knowledge sources (Pan and 

Farrell, 2007). Recent studies (Harrington, 2010; 

Pozo et al., 2008; Wojtinnek and Pulman, 2011) 

propose to pre-process a corpus to learn a semantic 

network, with which SR is computed. This creates 

high pre-processing cost; also, the choice of corpus 

and its size often have a direct correlation with the 

accuracy of SR methods (Batet et al., 2010). 

(Semi-)Structured knowledge sources on the 

other hand, organize semantic knowledge about 

concepts and words explicitly and interlink them 

with semantic relations. They have been popular 

choices in the studies of SR, and they include 

lexical resources such as WordNet, Wiktionary, 

and (semi-)structured encyclopedic resources such 

as Wikipedia. WordNet has been used in earlier 

studies (Hirst and St-Onge, 1998; Jiang and 

Conrath, 1997; Lin, 1998; Leacock and Chodorow 

1998; Resnik, 1995; Seco et al., 2004; Wu and 

Palmer, 1994) and is still a preferred knowledge 

source in recent works (Agirre et al., 2009). 

However, its effectiveness may be hindered by its 

lack of coverage of specialized lexicons and 

domain specific concepts (Strube and Ponzetto, 
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2006; Zhang et al., 2010). Wikipedia and 

Wiktionary are collaboratively maintained know-

ledge sources and therefore may overcome this 

limitation. Wikipedia in particular, is found to have 

reasonable coverage of many domains (Holloway 

et al., 2007; Halavais, 2008). It has become 

increasingly popular in SR studies recently. 

However, research (Zesch and Gurevych, 2010) 

have shown that methods based on Wikipedia have 

no clear advantage over WordNet-based methods 

on some general domain datasets in terms of 

accuracy, while Zhang et al. (2010) argue that 

different knowledge sources may complement each 

other, and SR methods may benefit from 

harnessing different knowledge sources.  

Several studies (Lord et al., 2003; Pedersen et 

al., 2006; Petrakis et al., 2006; Pozo et al., 2008) 

have adapted state-of-the-art to domain specific 

knowledge sources (e.g., the Gene Ontology, the 

MeSH
2
) and evaluated them therein. Despite these 

efforts, a large proportion of state-of-the-art is still 

only evaluated in the general domain.  

2.3    SR methods similar to this work 

Few works have attempted at combining different 

knowledge sources in SR studies, especially (semi-

)structured knowledge sources. The closest studies 

are Han and Zhao (2010) and Tsang and Stevenson 

(2010). Han and Zhao firstly compute SR between 

words using three state-of-the-art SR methods 

separately. Next, one score is chosen subject to an 

arbitrary preference order, and used to create a 

connected graph of weighted edges between 

words. A recursive function is then applied to the 

graph to compute final SR scores between words. 

Essentially, each SR method is applied in isolation 

and features from different sources are used 

separately with each distinctive method. Although 

this retains advantages of each method, the 

limitations of them are also combined.  

Tsang and Stevenson (2010) combine WordNet 

and unstructured documents by weighing each 

word found in WordNet using its frequency 

observed in a large corpus. The frequencies 

however, are sensitive to the choice of corpus, thus 

different corpora may result in different accuracies. 

Furthermore, their method is only applicable to 

computing SR between pairs of sets of words or 

concepts.  

                                                         
2 http://www.nlm.nih.gov/mesh/ last retrieved in March 2011 

3    Methodology  

We define a set of requirements for SR methods 

that harness different knowledge sources: 

 It should improve over the same method 

based on a single knowledge source 

 It should be generic and applicable to any 

knowledge source 

 It should be robust in dealing with 

knowledge source specific features but 

also tolerate the quality and coverage 

issues of individual knowledge source 

Our method of harnessing different knowledge 

sources contains four steps. Firstly (Section 3.1), 

each word or word segment is searched in each 

knowledge source to identify their contexts that is 

specific to that knowledge source. We define a 

context as the representation of meaning or a 

concept for a word. In the following, we say that 

each context is associated with a distinct concept. 

Secondly (Section 3.2), for each concept of an 

input word, features are extracted from its context 

and a graph representation of each concept and 

their features is created. Thirdly (Section 3.3), 

cross-source contexts are mapped where they refer 

to the same concept, thus their features from 

different sources can be combined to derive an 

enriched representation. This creates a final, 

uniform graph representation where input words 

are connected by shared features of their 

underlying candidate concepts. Then (Section 3.4) 

the graph is submitted to a generic algorithm to 

compute SR between words. 

In the following, we discuss details with respect 

to different types of knowledge sources, while 

focusing on Wikipedia and WordNet in our 

experiments for two reasons. First, they are used 

by the majority of SR methods and are therefore 

most representative knowledge sources. Second, 

they have strongly distinctive and complementary 

characteristics, which make ideal testbeds for the 

requirements. On one hand, WordNet is a lexical 

resource containing rich and strict semantic 

relations between words, but lacks coverage of 

specialized vocabularies. On the other hand, 

Wikipedia is a semi-structured resource with good 

coverage of domains and named entities, but the 

semantic knowledge is organized in a looser way. 
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3.1    Context retrieval 

Given a pair of words or word segments, we firstly 

identify contexts representing the underlying 

meanings or concepts from each knowledge 

source. For lexical resources, this could be 

distinctive word senses. In WordNet (WN), a 

context corresponds to a single synset, which 

corresponds to a concept. We search each word in 

WordNet and extract all possible synsets. Let w be 

a word or word segment (e.g., “cat”), and   
   

    
      

      

    be the set of k concepts of w 

extracted from WordNet.  

Using Wikipedia (WK) as an example semi-

structured resource, the context can be an article 

that describes a unique concept. Thus we search 

for underlying articles that describe different 

concepts. Firstly, we search w in Wikipedia, where 

three situations may be anticipated. If a single non-

disambiguation page describing a concept is 

returned, the concept is selected and the retrieval is 

complete. In the second case, a disambiguation 

page linking to all possible concept pages may be 

returned. This page lists all underlying concepts 

and entities referenced by w as links and a short 

description with each link. In this case, we always 

keep the first concept page, which is found often to 

be the most common sense of the word; 

additionally, we select other concept pages whose 

short descriptions contain the word w. We do not 

select all linked pages because many of these in 

fact link to a concept relevant to w, but not 

necessarily a candidate sense of w. Thirdly, if no 

pages are returned for w, we search for the most 

relevant page using w as keyword(s) in an inverted 

index of all Wikipedia pages (e.g., via search 

engines). We denote concepts retrieved from 

Wikipedia as   
       

      
      

   .  

For unstructured sources such as documents, a 

simple approach could be defining a word context 

as a text passage around each occurrence of w, and 

grouping similar contexts of w as representation of 

its underlying meanings, or concepts. Alternatively, 

more complex approaches such as Pozo et al. 

(2008) and Harrington (2010) may be applied to 

extract a lexical network of words, whereby similar 

methods to WordNet can be applied. 

3.2 Feature extraction and representation 

Next, for each concept identified from a 

knowledge source, features are extracted from their 

corresponding contexts. In our case, for each 

    
  , we follow the work by Zhang et al. 

(2010) to extract four types of features from their 

corresponding Wikipedia pages. Figure 1 shows an 

example representation of a concept and its 

Wikipedia features: 

 Words from page titles and redirection 

links (can be considered as synonyms) 

 Words from categories, used as higher 

level hypernyms in some studies (Zesch et 

al., 2010; Strube and Ponzetto, 2006) 

 Words from outgoing links 

 Top n most frequent words from a page 

 

Figure 1. Representation of the concept “cat, the 

mammal” using different types of features 

extracted from Wikipedia. The shaded circle 

represents the concept; ovals represent feature 

values; edges connecting feature values to the 

concept and <labels> represent feature types 

 

For each     
  , we extract ten features from 

WordNet: hypernyms, hyponyms, meronyms, 

holonyms, synonyms, antonyms, attributes, “see 

also” words, “related” words, and gloss. These are 

also represented in the same way as in Figure 1.  

With unstructured sources, contextual words 

can be used as features. Alternatively, if a lexical 

network is extracted, features may be extracted in a 

similar way to those of WordNet. 

 

Additionally, with WordNet and Wikipedia, we 

also propose several intra-resource feature merging 

strategies to study the effect of feature 

diversification. This is because, while some 

approaches (such as Agirre et al., 2009; 

Harrington, 2010; Yeh et al., 2009) do not 

distinguish different feature types in graph 

construction, or adopt a bag-of-words feature 

representation (such as Zesch and Gurevych, 

2010), others (such as Yazdani and Popescu-Belis, 

2010; Zhang et al., 2010) have used differentiated 
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feature types and weights in their model. We 

therefore carry out studies to investigate this issue. 

Specifically, for the original four Wikipedia 

features, we create a bag-of-words feature that 

simply merges all feature types (i.e., all edges in 

Figure 1 will have the same label). For the original 

ten WordNet features, we propose two merged 

representations corresponding to that of Wikipedia, 

so as to support the studies of feature enrichment 

in the following section. We introduce a bag-of-

words feature that collapses all different feature 

types, and a four-feature representation as follow: 

 wn-synant merges WordNet synonyms and 

antonyms.  

 wn-hypoer merges WordNet hypernyms 

and hyponyms, collectively representing 

features by “is-a” semantic relation 

 wn-assc merges WordNet meronyms, 

holonyms, related and “see also”, which 

are features corresponding to associative 

relations  

 wn-dist merges WordNet gloss and 

attributes that generally describe a concept.  

3.3 Concept mapping and feature enrichment 

Our method essentially harnesses different 

knowledge sources by combining features 

extracted from different sources in a uniform 

model. This requires two sub-processes: cross-

source concept mapping and cross-source 

feature enrichment.  

In cross-source concept mapping, concepts 

extracted from different knowledge sources are 

mapped according to similar meanings such that 

cross-source features can be combined. To do so, 

we select the concepts from one knowledge source 

as the reference concept set; then concepts from 

other knowledge sources are mapped to reference 

concepts of similar meanings. There can be 

different criteria of choosing reference knowledge 

source concepts. Empirically, we found it 

necessary to choose the knowledge source with 

broader coverage and richer features. This will be 

discussed later in Section 5. Following this 

strategy, in our example,   
   is chosen as 

reference concepts, and for each   
     

  we 

select a   
     

   such that   
   and   

   refer to 

the same meaning. To do so, we apply a simple 

maximum set overlap metric to their feature 

values. Let F(c) be a function that returns all 

feature values of c as bag-of-words, then for each 

  
     

  , it is mapped to a   
   such that 

     
          

     is maximized among all 

  
     

  . The resulting concept candidates are 

denoted as   
    

, where   
    

=    
     

    is a 

mapped set of concepts potentially referring to the 

same meaning. If   
     then   

    
 

  
   

        
  . 

Next, cross-source feature enrichment creates 

a uniform feature representation for each mapped 

sets of concepts. The process can be considered as 

enriching the features from one knowledge source 

with others. The most straightforward approach is 

to simply collect features extracted from each 

knowledge source on to a single graph, retaining 

the diversity in feature types. For example, Figure 

2 shows a graph representation based on the 

collection of the four Wikipedia features and the 

four derived WordNet features. We refer to this 

approach as “feature combination”.  

 
Figure 2. Representation of “cat, the mammal” 

after concept mapping and feature combination 
 

On the other hand, cross-source features may be 

merged according to their semantics.  For example, 

WordNet and Wikipedia contain features based on 

synonyms of concepts; while Wikipedia and 

unstructured documents contain word distribution-

al features. Thus we define “feature integration” 

as merging feature types from different knowledge 

sources into single types of features based on their 

similarity in semantics.  With WordNet and Wiki-

pedia, we integrate features as below (Figure 3): 

 merged-synant merges Wikipedia page 

titles and redirection links with wn-synant 

 merged-hypoer merges merges Wikipedia 

categories with wn-hypoer 

995



 merged-assc merges Wikipedia links with 

wn-assc. We consider Wikipedia links bear 

other associative relations and are 

therefore merged with features extracted 

by other WordNet relations 

 merged-dist merges Wikipedia frequent n 

words with wn-dist.  

 
Figure 3. Representation of “cat, the mammal” 

after concept mapping and feature integration 

 

Note that the difference between cross-source 

feature combination and integration is that the 

former introduces more types of features, whereas 

the latter retains same number of feature types but 

increases feature values for each type. Both have 

the effect of establishing additional path (via 

features) between concepts, but in different ways. 

 

With intra-resource feature diversification, cross-

source feature combination and feature 

integration, we create a total of nine intra- and 

cross-source feature representations to be tested 

with the uniform random walk model: 

 four types of Wikipedia features (wk-4F) 

 one type of Wikipedia features (wk-1F) 

 ten types of WordNet features (wn-10F) 

 four types of WordNet features (wn-4F) 

 one type of WordNet features (wn-1F) 

 wk-4F combines wn-4F: wk-4F+wn4F,C 

 wk-4F integrates wn-4F: wk-4F+wn4F,I 

 wk-1F combines wn-1F: wk-1F+wn1F,C 

 wk-1F integrates wn-1F: wk-1F+wn1F,I 

3.4 Computing SR using the graph 

The algorithm for computing SR using the graph is 

based on the idea of random walk. It formalizes the 

idea that taking successive steps along the paths in 

a graph, the “easier” it is to arrive at a target node 

starting from a source node, the more related the 

two nodes are. Following the previous steps, the 

feature representations of all candidate concepts 

relevant to the input word pairs are joined, which 

creates a single undirected, weighted, bi-partite 

graph. Let G = (V, E) be the graph, where V is the 

set of nodes (concepts and feature values); E is the 

set of edges (feature types) that connect concepts 

and features. As shown in Figure 4, different 

concepts are connected if they share same values 

of same types of features, namely, there exists a 

path that connects one concept to another.  

 
Figure 4. Paths are established between different 

concepts if they share values of same feature types 

<bold underlined> 

Using Figure 4 it is easier to comprehend the 

difference between feature combination and 

integration. Since concept nodes can only be 

connected by same types of edges (feature types), 

feature combination increases the chances of 

connectivity by adding in more types of edges, 

while integration merges similar types of edges 

across knowledge sources and increases the 

number of feature nodes connected by each type.  

From the graph, we start by building an 

adjacency matrix W of initial probability 

distribution: 
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Where Wij is the ith
-line and jth

-column entry of W, 

indexed by V; l(i, j) is a function that returns the 

type of edge (i.e., type of feature) connecting 

nodes i and j; L is the set of all possible types; w(l) 

returns the weight for that type. Essentially, L is 

the collection of all feature types, and w(l) assigns 
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a weight to a particular feature type. Next, we 

compute the transition probability matrix P(t)(j|i) = 

[(D−1W)t]ij (Dii = ∑kWik), which returns the 

probability of reaching other nodes from a starting 

node on the graph after t steps. In this method, we 

follow the work by Rowe and Ciravegna (2010) to 

set t=2 in order to preserve locally connected 

nodes. Next, we extract the probability vectors 

corresponding to concept nodes from P, and 

compute pair-wise relatedness using the cosine 

function. Effectively, this formalizes the notion 

that two concepts related to a third concept is also 

semantically related, which is similar to the 

hypothesis proposed by Patwardhan and Pedersen 

(2006) in their method based on second-order 

context vectors. The final SR between the input 

word pair is the maximum pair-wise concept SR. 

4    Experiment and evaluation 

We evaluate the method based on correlation 

against human judgment (gold standard) on seven 

benchmarking datasets covering both general and 

technical domains. These include four general 

domain datasets: the Rubenstein and Goodenough 

(1965) dataset containing 65 pairs of nouns 

(RG65); the Miller and Charles (1991) dataset that 

is a subset of the RG-65 dataset and contains 30 

pairs (MC30); the Finkelstein et al. (2002) dataset 

with 353 pairs of words, including nouns, verbs, 

adjectives, as well as named entities. This contains 

two subsets, a set of 153 pairs (Fin153) and a set of 

200 (Fin200) pairs each annotated by a different 

groups of annotators. Zesch and Gurevych (2010) 

show largely varying Inter-Annotator-Agreement 

(IAA) between the two sets (Table 1), and argue 

that they should be treated as separate datasets. 

Three biomedical datasets are selected to evaluate 

domain-specific performance of the proposed 

method. These include a set of 36 MeSH term pairs 

in Petrakis et al. (2006) (MeSH36), 30 pairs of 

medical terms annotated by a group of physicians 

as in Pedersen et al. (2006) (Ped30-p) and the same 

set annotated by a different group of medical 

coders (Ped30-c). Table 1 shows statistics of the 

seven datasets.  

The correlation is computed using the 

Spearman rank order coefficient for two reasons. 

First, it is a better metric than other alternatives 

(Zesch and Gurevych, 2010). Second, it is 

consistent with the majority of studies such that 

results can be compared.  
 

Dataset Size Domain IAA 

MC30 30 General 0.9 

RG65 65 General 0.8 

Fin153 153 General 0.73 

Fin200 200 General 0.55 

Ped30-p 30 Biomedical 0.68 

Ped30-c 30 Biomedical 0.78 

MeSH36 36 Biomedical - 

Table 1: Information of benchmarking datasets 

 

We distribute feature weights w(l) across 

different feature types L evenly in each feature 

representation. Although Zhang et al. (2010) show 

that discriminated feature weights leads to 

improved accuracy; this is not the focus of this 

study. Since we aim to investigate the effects of 

harnessing different knowledge sources, we 

obtained baseline performances by applying the 

method to those feature representations based on 

single knowledge sources (i.e., wk-4F, wk-1F, wn-

10F, wn-4F, wn-1F). Tables 2 and 3 show the best 

results obtained with baselines and corresponding 

knowledge sources and feature representation.  

 

Dataset Corr. Feature Coverage (% pairs) 

MC30 0.77 wn-1F 77% 

RG65 0.71 wn-1F 65% 

Fin153 0.45 wn-4F 82% 

Fin200 0.35 wn-4F 76% 

Ped30-p 0.66 wn-4F 33% 

Ped30-c 0.8 wn-4F 33% 

MeSH36 0.49 wn-1F 50% 

Table 2: Correlation obtained using WordNet.  

Many word pairs are not covered due to sparse 

feature space and lack of coverage. Only covered 

pairs are accounted. 
 

Dataset Corr. Feature 

MC30 0.74 wk-1F 

RG65 0.67 wk-1F 

Fin153 0.7 wk-1F 

Fin200 0.51 wk-4F 

Ped30-p 0.53 wk-4F 

Ped30-c 0.58 wk-4F 

MeSH36 0.73 wk-4F 

Table 3: Correlation obtained using only 

Wikipedia. All word pairs are 100% covered. 
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Tables 4 – 6 show results obtained with 

enriched feature representation. 

 

 Combination (C) Integration (I) 

Dataset wn-4F + 

wk-4F 

wn-1F + 

wk-1F 

wn-4F + 

wk-4F 

wn-1F 

+ wk-1F 

MC30 0.77 0.8 0.8 0.79 

RG65 0.74 0.73 0.73 0.729 

Fin153 0.73 0.75 0.74 0.73 

Fin200 0.52 0.54 0.53 0.54 

Ped30-p 0.63 0.52 0.64 0.47 

Ped30-c 0.64 0.52 0.67 0.49 

MeSH36 0.7 0.694 0.75 0.7 

Table 4: Correlation obtained using both 

knowledge sources. Word pairs are 100% covered. 
 

 KS and # of feature types 

 WN WK WK+WN,C WK+WN, I  

MC30 1 1 1 4 

RG65 1 1 4 4 

Fin153 4 1 1 4 

Fin200 4 4 1 1 

Ped30-p 4 4 4 4 

Ped30-c 4 4 4 4 

MeSH36 1 4 4 4 

Table 5: Number of feature types with which best 

results are obtained on each dataset. KS: 

Knowledge Source 
 

 Single KS Multiple KS Impr. 

Dataset Best corr. Best corr. Strategy  

MC30 0.74 0.8 C/I 0.06 

RG65 0.67 0.74 C 0.07 

Fin153 0.7 0.75 C 0.05 

Fin200 0.51 0.54 C/I 0.03 

Ped30-p 0.53 0.64 I 0.11 

Ped30-c 0.58 0.67 I 0.09 

MeSH36 0.73 0.75 I 0.02 

Table 6: Improvement achieved by harnessing 

multiple KSs. Best correlation with single KS is 

based on Wikipedia, which provides 100% 

coverage of word pairs. 

 

 

Tables 7 and 8 compare our method against state-

of-the-art. For Table 8, figures for other state-of-

the-art systems can be found in corresponding 

publications; while we only list the best 

performing systems for comparison. 
 

 

 

 

 

 MC30 RG65 Fin153 Fin200 KS 

best of 

WN+WK  
0.8 0.74 0.75 0.54 Both 

Rad89* 0.75 0.79 0.33 0.24 WN 

LC98* 0.75 0.79 0.33 0.24 WN 

WP94* 0.77 0.78 0.38 0.24 WN 

HS98* 0.76 0.79 0.33 0.32 WN 

Res95* 0.72 0.74 0.35 0.26 WN 

JC97* 0.68 0.58 0.28 0.10 WN 

Lin98* 0.67 0.60 0.27 0.17 WN 

Zes07* 0.77 0.82 0.6 0.51 WK 

GM07* 0.67 0.75 0.69 0.51 WK 

Zha10 0.71 0.76 0.71 0.46 WK 

Table 7
3
: Comparison against state-of-the-art in the 

general domain. (* figures from Zesch and 

Gurevych, 2010) 
 

 Ped30-p Ped30-c MeSH36 KS 

best of 

WN+WK 

0.64 0.67 0.75 WN+

WK 

Pet06 best - - 0.74 MeSH 

Ped06 best 0.84 0.75 - GO, D 

Ped06 second 0.62 0.68 - GO, D 

Table 8
4
: Comparison against state-of-the-art in the 

biomedical domain. GO – Gene Ontology; D – 

document sets.  
 

Given the fact that some datasets (i.e., MC30, 

Ped30-p, Ped30-c, MeSH36) have a relatively low 

sample size, we cannot always be sure that 

correlation values are accurate or occurred by 

chance. Therefore, we measure the statistical 

significance of correlation by computing the p-

value for the correlation values reported for our 

system in Tables 7 and 8. For all cases, a p-value 

of less than 0.001 is obtained, which indicates that 

correlation values are statistically significant. 

                                                         
3 Rada (1989) (Rad89); Leacock and Chodorow (1998) 

(LC98); Wu and Palmer (1994) (WP04); Hirst and St-Onge 

(1998) (HS98); Resnik (1995) (Res95); Jiang and Conrath 
(1997) (JC97); Lin (1998) (Lin98); Zesch and Gurevych 

(2007) (ZG07); Gabrilovich and Markovitch (2007) (GM07); 

Zhang et al. (2010) (Zha10) 
4 Petrakis et al. (2006) (Pet06); Pedersen et al. (2006) (Ped06). 
Original participating systems can be found in these works. 

998



5    Discussion  

Single v.s. multiple knowledge sources As shown 

in Table 6, considering the best performances 

across all feature enrichment strategies and feature 

sets, the proposed method successfully harnessed 

different knowledge sources and improved over the 

baselines using single knowledge sources by 0.02 

~ 0.11. The biggest improvement (0.11) is on a 

domain-specific dataset, on which the method 

based on single knowledge source performed 

poorly in terms of coverage and accuracy. The best 

enrichment strategy that has consistently improved 

the baselines is wk-4F+wn-4F, Integration (Table 

4 v.s. Table 3).  With features enriched from 

multiple knowledge sources, the method also 

consistently improved over their corresponding 

single-source features on all datasets, except 

MeSH36, on which wk-4F+wn-4F, Combination 

(Table 4) slightly reduced the accuracy obtained 

with wk-4F (Table 3) only.  

The large proportion of uncovered word pairs 

using WordNet is due to its lack of coverage of 

specialized lexicons, and sparser semantic content. 

For example, of all 115 distinctive terms in the 

Ped30 and MeSH36 datasets, 30% are not included 

in WordNet. And of all 447 distinctive words in all 

general domain datasets, only 69% have multiple 

synonyms. Features such as attributes and “see 

also” are present for less than 20 words. This is the 

reason that some approaches using WordNet (e.g., 

Agirre et al., 2009) require a graph of all WordNet 

lexicons to be built, thus intermediate words may 

“bridge” input words even if they do not connect 

directly by their features. Nevertheless, the 

improvement in accuracy and 100% coverage after 

harnessing both knowledge sources suggests that 

they complement each other well. On one hand, 

Wikipedia brings its strength in domain and 

content coverage; on the other hand, WordNet 

brings useful semantic evidences for words that are 

covered. 

Concept mapping and feature enrichment 

methods While the set overlap based method for 

cross-source concept mapping using the reference 

knowledge source concepts is simple and proved 

successful, the accuracy of mapping and its 

correlation with the accuracy of the SR method 

was not studied. This will be explored in the future. 

Also, alternative mapping methods will be 

investigated. For example, Toral and Muñoz (2006) 

describe a different method of mapping Wikipedia 

articles to WordNet synsets; one could also adopt a 

simple disambiguation process to select the best 

candidate concept from each knowledge source 

suited for the input word pairs, whereby cross-

source concept mapping becomes straightforward. 

In terms of feature enrichment strategies, there is 

no strong indication (Table 6) of which (feature 

combination v.s. integration) is more effective, 

although the system consistently outperforms the 

baselines (Table 4 v.s. Table 3) with the wk-

4F+wn-4F, Integration strategy. 

Feature diversification v.s. unification Table 

5 suggests that in most cases, differentiating 

feature types leads to better results than merging 

them uniformly, despite the knowledge sources 

used. This is consistent with the findings by Zhang 

et al. (2010). This can be understandable since 

although unifying feature types effectively 

increases possibility of sharing features, equally, 

this may also increase the proportion of noisy 

features. For example, consider the Wikipedia 

article of “Horse” (animal), which has a category 

label “livestock”; and the article “Famine”, which 

has an outgoing link “livestock” (in a sentence 

describing diseases that caused decline of livestock 

production). By differentiating the feature types 

“has_category” and “has_outlink”, the two 

concepts will not be connected even if they both 

have the same word “livestock” in their feature 

representation. However, using a bag-of-words 

representation where feature types are 

undistinguished, the strength of their relatedness is 

boosted by sharing this word, which may be 

uninteresting in this occasion. 

Compared against state-of-the-art, the 

proposed method has achieved promising results. 

Overall, by harnessing different knowledge sources, 

the method achieves, and in many cases, 

outperforms state-of-the-art. In the general domain, 

it outperforms state-of-the-art on three out of four 

datasets. It is worth noting that all methods based 

on WordNet generally have poor performance on 

the Fin153 and Fin200 datasets (Table 7). Despite 

the heterogeneity in these datasets, this may also 

relate to the quality of the feature space generated 

with WordNet. In fact methods using Wikipedia 

perform better on these datasets. With enriched 

features from both knowledge sources, the 

accuracies are further improved.   
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In the biomedical domain, the proposed method 

outperforms state-of-the-art on one dataset and 

produces competitive results on others. Note that 

all other methods exploit domain-specific 

ontologies and corpora. The Ped06 best and Ped06 

second methods also depend on a corpus of one 

million documents. These results further confirmed 

the benefits of our method: harnessing knowledge 

from general-purpose knowledge sources of 

limited domain coverage, it is possible to achieve 

results that rival methods based on well-curated 

and specially tailored domain-specific knowledge 

sources. This is an encouraging finding. Although 

there are abundant resources in the biomedical 

domain for this type of tasks, such resources may 

be scarce in other domains and are expensive to 

build. However, the results suggest that the 

proposed method offers a more affordable 

approach that provides reasonable coverage and 

quality, even if individual general knowledge 

sources may be limited in themselves. 

Generality of the method. The proposed 

method represents features extracted from different 

knowledge sources in a generic manner, which 

facilitates cross-source feature enrichment and 

requires generic algorithm computation. As 

discussed in Section 3, semantic evidence of words 

and concepts may be extracted from different 

knowledge sources in different ways, while 

harnessed in the generic model. In contrast, other 

methods using multiple knowledge sources (e.g., 

Han and Zhao, 2010; Tsang and Stevenson, 2010) 

introduce algorithms that are bound to the 

knowledge sources, which may limit their 

adaptability and portability. 

6    Conclusion  

This paper introduced a generic method of 

harnessing different knowledge sources to compute 

semantic relatedness. We have shown empirically 

that different knowledge sources contain 

complementary semantic evidence, which, when 

combined together under a uniform model, can 

improve the accuracy of SR methods. Moreover, 

we have demonstrated its robustness in dealing 

with knowledge sources of different quality and 

coverage. Several remaining issues will be studied 

in the future. First, additional knowledge sources 

will be studied, particularly unstructured corpora 

and domain-specific resources. The experiments 

have shown that although harnessing different 

knowledge sources achieved encouraging results 

on biomedical datasets, they are still far from being 

perfect. While it should be appreciated that the 

results are obtained using only general purpose 

knowledge sources, it would be interesting to 

investigate whether harnessing domain specific 

knowledge sources (where available) further 

improves the performance. Second, different 

methods of concept mapping will be studied. We 

will also design methods for assessing the quality 

of mapping, and analyze their correlations with the 

SR methods. Third, analyses will be carried out to 

uncover the differences between feature 

combination and integration that have led to 

different accuracies. 
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