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Abstract

Determining whether a textual phrase denotes
a functional relation (i.e., a relation that maps
each domain element to a unique range el-
ement) is useful for numerous NLP tasks
such as synonym resolution and contradic-
tion detection. Previous work on this prob-
lem has relied on either counting methods or
lexico-syntactic patterns. However, determin-
ing whether a relation is functional, by ana-
lyzing mentions of the relation in a corpus,
is challenging due to ambiguity, synonymy,
anaphora, and other linguistic phenomena.

We present the LEIBNIZ system that over-
comes these challenges by exploiting the syn-
ergy between the Web corpus and freely-
available knowledge resources such as Free-
base. It first computes multiple typed function-
ality scores, representing functionality of the
relation phrase when its arguments are con-
strained to specific types. It then aggregates
these scores to predict the global functionality
for the phrase. LEIBNIZ outperforms previ-
ous work, increasing area under the precision-
recall curve from 0.61 to 0.88. We utilize
LEIBNIZ to generate the first public reposi-
tory of automatically-identified functional re-
lations.

1 Introduction

The paradigm of Open Information Extraction (IE)
(Banko et al., 2007; Banko and Etzioni, 2008) has
scaled extraction technology to the massive set of
relations expressed in Web text. However, additional
work is needed to better understand these relations,

and to place them in richer semantic structures. A
step in that direction is identifying the properties of
these relations, e.g., symmetry, transitivity and our
focus in this paper – functionality. We refer to this
problem as functionality identification.

A binary relation is functional if, for a given arg1,
there is exactly one unique value for arg2. Exam-
ples of functional relations are father, death date,
birth city, etc. We define a relation phrase to be
functional if all semantic relations commonly ex-
pressed by that phrase are functional. For exam-
ple, we say that the phrase ‘was born in’ denotes
a functional relation, because the different seman-
tic relations expressed by the phrase (e.g., birth city,
birth year, etc.) are all functional.

Knowing that a relation is functional is helpful
for numerous NLP inference tasks. Previous work
has used functionality for the tasks of contradiction
detection (Ritter et al., 2008), quantifier scope dis-
ambiguation (Srinivasan and Yates, 2009), and syn-
onym resolution (Yates and Etzioni, 2009). It could
also aid in other tasks such as ontology generation
and information extraction. For example, consider
two sentences from a contradiction detection task:
(1) “George Washington was born in Virginia.” and
(2) “George Washington was born in Texas.”
As Ritter et al. (2008) points out, we can only de-
termine that the two sentences are contradictory if
we know that the semantic relation referred to by
the phrase ‘was born in’ is functional, and that both
Virginia and Texas are distinct states.

Automatic functionality identification is essential
when dealing with a large number of relations as in
Open IE, or in complex domains where expert help
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Figure 1: Our system, LEIBNIZ, uses the Web and Free-
base to determine functionality of Web relations.

is scarce or expensive (e.g., biomedical texts). This
paper tackles automatic functionality identification
using Web text. While functionality identification
has been utilized as a module in various NLP sys-
tems, this is the first paper to focus exclusively on
functionality identification as a bona fide NLP infer-
ence task.

It is natural to identify functions based on triples
extracted from text instead of analyzing sentences
directly. Thus, as our input, we utilize tuples ex-
tracted by TEXTRUNNER (Banko and Etzioni, 2008)
when run over a corpus of 500 million webpages.
TEXTRUNNER maps sentences to tuples of the form
<arg1, relation phrase, arg2> and enables our
LEIBNIZ system to focus on the problem of decid-
ing whether the relation phrase is a function.

The naive approach, which classifies a relation
phrase as non-functional if several arg1s have multi-
ple arg2s in our extraction set, fails due to several
reasons: synonymy – a unique entity may be re-
ferred by multiple strings, polysemy of both entities
and relations – a unique string may refer to multiple
entities/relations, metaphorical usage, extraction er-
rors and more. These phenomena conspire to make
the functionality determination task inherently sta-
tistical and surprisingly challenging.

In addition, a functional relation phrase may ap-
pear non-functional until we consider the types of its
arguments. In our ‘was born in’ example, <George
Washington, was born in, 1732> does not contradict
<George Washington, was born in, Virginia> even
though we see two distinct arg2s for the same arg1.
To solve functionality identification, we need to con-
sider typed relations where the relations analyzed
are constrained to have specific argument types.

We develop several approaches to overcome these

challenges. Our first scheme employs approximate
argument merging to overcome the synonymy and
anaphora problems. Our second approach, DIS-
TRDIFF, takes a statistical view of the problem
and learns a separator for the typical count dis-
tributions of functional versus non-functional rela-
tions. Finally, our third and most successful scheme,
CLEANLISTS, identifies and processes a cleaner
subset of the data by intersecting the corpus with en-
tities in a secondary knowledge-base (in our case,
Freebase (Metaweb Technologies, 2009)). Utiliz-
ing pre-defined types, CLEANLISTS first identifies
typed functionality for suitable types for that rela-
tion phrase, and then combines them to output a final
functionality label. LEIBNIZ, a hybrid of CLEAN-
LISTS and DISTRDIFF, returns state-of-the-art re-
sults for our task.

Our work makes the following contributions:

1. We identify several linguistic phenomena that
make the problem of corpus-based functional-
ity identification surprisingly difficult.

2. We designed and implemented three novel
techniques for identifying functionality based
on instance-based counting, distributional dif-
ferences, and use of external knowledge bases.

3. Our best method, LEIBNIZ, outperforms the
existing approaches by wide margins, increas-
ing area under the precision-recall curve from
0.61 to 0.88. It is also capable of distinguishing
functionality of typed relation phrases, when
the arguments are restricted to specific types.

4. Utilizing LEIBNIZ, we created the first public
repository of functional relations.1

2 Related Work

There is a recent surge in large knowledge bases
constructed by human collaboration such as Free-
base (Metaweb Technologies, 2009) and VerbNet
(Kipper-Schuler, 2005). VerbNet annotates its
verbs with several properties but not functionality.
Freebase does annotate some relations with an ‘is
unique’ property, which is similar to functionality,
but the number of relations in Freebase is still much

1available at http://www.cs.washington.edu/
research/leibniz
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Figure 2: Sample arg2 values for a non-functional relation (visited) vs. a functional relation (was born in) illustrate
the challenge in discriminating functionality from Web text.

smaller than the hundreds of thousands of relations
existing on the Web, necessitating automatic ap-
proaches to functionality identification.

Discovering functional dependencies has been
recognized as an important database analysis tech-
nique (Huhtala et al., 1999; Yao and Hamilton,
2008), but the database community does not address
any of the linguistic phenomena which make this
a challenging problem in NLP. Three groups of re-
searchers have studied functionality identification in
the context of natural language.
AuContraire (Ritter et al., 2008) is a contradic-
tion detection system that also learns relation func-
tionality. Their approach combines a probabilis-
tic model based on (Downey et al., 2005) with es-
timates on whether each arg1 is ambiguous. The
estimates are used to weight each arg1’s contri-
bution to an overall functionality score for each
relation. Both argument-ambiguity and relation-
functionality are jointly estimated using an EM-like
method. While elegant, AuContraire requires sub-
stantial hand-engineered knowledge, which limits
the scalability of their approach.
Lexico-syntactic patterns: Srinivasan and Yates
(2009) disambiguate a quantifier’s scope by first
making judgments about relation functionality. For
functionality, they look for numeric phrases follow-
ing the relation. For example, the presence of the nu-
meric term ‘four’ in the sentence “the fire destroyed
four shops” suggests that destroyed is not functional,
since the same arg1 can destroy multiple things.

The key problem with this approach is that it often
assigns different functionality labels for the present
tense and past tense phrases of the same semantic re-
lation. For example, it will consider ‘lived in’ to be
non-functional, but ‘lives in’ to be functional, since
we rarely say “someone lives in many cities”. Since
both these phrases refer to the same semantic rela-

tion this approach has low precision. Moreover, it
performs poorly for relation phrases that naturally
expect numbers as the target argument (e.g., ‘has an
atomic number of’).

While these lexico-syntactic patterns do not per-
form as well for our task, they are well-suited for
identifying whether a verb phrase can take multiple
objects or not. This can be understood as a function-
ality property of the verb phrase within a sentence,
as opposed to functionality of the semantic relation
the phrase represents.
WIE: In a preliminary study, Popescu (2007) ap-
plies an instance based counting approach, but her
relations require manually annotated type restric-
tions, which makes the approach less scalable.

Finally, functionality is just one property of rela-
tions that can be learned from text. A number of
other studies (Guarino and Welty, 2004; Volker et
al., 2005; Culotta et al., 2006) have examined detect-
ing other relation properties from text and applying
them to tasks such as ontology cleaning.

3 Challenges for Functionality Identification

A functional binary relation r is formally defined as
one such that ∀x, y1, y2 : r(x, y1)∧r(x, y2)⇒ y1 =
y2. We define a relation string to be functional if all
semantic relations commonly expressed by the rela-
tion string are individually functional. Thus, under
our definition, ‘was born in’ and ‘died in’ are func-
tional, even though they can take different arg2s for
the same arg1, e.g., year, city, state, country, etc.

The definition of a functional relation suggests a
naive instance-based counting algorithm for identi-
fying functionality. “Look for the number of arg2s
for each arg1. If all (or most) arg1s have exactly one
arg2, label the relation phrase functional, else, non-
functional.” Unfortunately, this naive algorithm fails
for our task exposing several linguistic phenomena
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that make our problem hard (see Figure 2):

Synonymy: Various arg2s for the same arg1 may
refer to the same entity. This makes many func-
tional relations seem non-functional. For instance,
<George Washington, was born in, Virginia> and
<George Washington, was born in, the British
colony of Virginia> are not in conflict. Other
examples of synonyms include ‘Windy City’ and
‘Chicago’; ‘3rd March’ and ’03/03’, etc.

Anaphora: An entity can be referred to by using
several phrases. For instance,<George Washington,
was born in, a town> does not conflict with his be-
ing born in ‘Colonial Beach, Virginia’, since ‘town’
is an anaphora for his city of birth. Other examples
include ‘The US President’ for ‘George W. Bush’,
and ‘the superpower’ to refer to ‘United States’. The
effect is similar to that of synonyms – many relations
incorrectly appear non-functional.

Argument Ambiguity: <George Washington, was
born in, ‘Kortrijk, Belgium’> in addition to his be-
ing born in ‘Virginia’ suggests that ‘was born in’
is non-functional. However, the real cause is that
‘George Washington’ is ambiguous and refers to dif-
ferent people. This ambiguity gets more pronounced
if the person is referred to just by their first (or last
name), e.g., ‘Clinton’ is commonly used to refer to
both Hillary and Bill Clinton.

Relation Phrase Ambiguity: A relation phrase can
have several senses. For instance ‘weighs 80 kilos’
is a different weighs than ‘weighs his options’.

Type Restrictions: A closely related problem
is type-variations in the argument. E.g., <George
Washington, was born in, America> vs. <George
Washington, born in, Virginia> both use the same
sense of ‘was born in’ but refer to different semantic
relations – one that takes a country in arg2, and the
other that takes a state. Moreover, different argu-
ment types may result in different functionality la-
bels. For example, ‘published in’ is functional if the
arg2 is a year, but non-functional if it is a language,
since a book could be published in many languages.
We refer to this finer notion of functionality as typed
functionality.

Data Sparsity: There is limited data for more ob-
scure relations instances and non-functional relation
phrases appear functional due to lack of evidence.

Textually Functional Relations: Last but not least,
some relations that are not functional may appear
functional in text. An example is ‘collects’. We col-
lect many things, but rarely mention it in text. Usu-
ally, someone’s collection is mentioned in text only
when it makes the news. We name such relations
textually functional. Even though we could build
techniques to reduce the impact of other phenomena,
no instance based counting scheme could overcome
the challenge posed by textually functional relations.

Finally, we note that our functionality predictor
operates over tuples generated by an Open IE sys-
tem. The extractors are not perfect and their errors
can also complicate our analysis.

4 Algorithms

To overcome these challenges, we design three al-
gorithms. Our first algorithm, IBC, applies several
rules to determine whether two arg2s are equal. Our
second algorithm, DISTRDIFF, takes a statistical ap-
proach, and tries to learn a discriminator between
typical count distributions for functional and non-
functional relations. Our final approach, CLEAN-
LISTS, applies counting over a cleaner subset of the
corpus, which is generated based on entities present
in a secondary KB such as Freebase.

From this section onwards, we gloss over the dis-
tinction between a semantic relation and a relation
phrase, since our algorithms do not have access to
relations and operate only at the phrase level. We
use ‘relation’ to refer to the phrases.

4.1 Instance Based Counting (IBC)

For each relation, IBC computes a global function-
ality score by aggregating local functionality scores
for each arg1. The local functionality for each arg1
computes the fraction of arg2 pairs that refer to the
same entity. To operationalize this computation we
need to identify which arg2s co-refer. Moreover, we
also need to pick an aggregation strategy to combine
local functionality scores.

Data Cleaning: Common nouns in arg1s are of-
ten anaphoras for other entities. For example, <the
company, was headquartered in, ...> refers to dif-
ferent companies in different extractions. To combat
this, IBC restricts arg1s to proper nouns. Secondly,
to counter extraction errors and data bias, it retains
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Figure 3: IBC judges that Colonial Beach and Westmore-
land County, Virginia refer to the same entity.

an extraction only once per unique sentence. This
reduces the disproportionately large frequencies of
some assertions that are generated from a single ar-
ticle published at multiple websites. Similarly, it al-
lows an extraction only once per website url. More-
over, it filters out any arg1 that does not appear at
least 10 times with that relation.

Equality Checking: This key component judges
if two arg2s refer to the same entity. It first em-
ploys weak typing by disallowing equality checks
across common nouns, proper nouns, dates and
numbers. This mitigates the relation ambiguity
problem, since we never compare ‘born in(1732)’
and ‘born in(Virginia)’. Within the same category it
judges two arg2s to co-refer if they share a content
word. It also performs a connected component anal-
ysis (Hopcraft and Tarjan, 1973) to take a transitive
closure of arg2s judged equal (see Figure 3).

For example, for the relation ‘was named after’
and arg1=‘Bluetooth’ our corpus has three arg2s:
‘Harald Bluetooth’, ‘Harald Bluetooth, the King of
Denmark’ and ‘the King of Denmark’. Our equal-
ity method judges all three as referring to the same
entity. Note that this is a heuristic approach, which
could make mistakes. But for an error, there needs
to be extractions with the same arg1, relation and
similar arg2s. Such cases exist, but are not com-
mon. Our equality checking mitigates the problems
of anaphora, synonymy as well as some typing.

Aggregation: We try several methods to aggre-
gate local functionality scores for each arg1 into a
global score for the relation. These include, a simple
average, a weighted average weighted by frequency
of each arg1, a weighted average weighted by log
of frequency of each arg1, and a Bayesian approach
that estimates the probability that a relation is func-
tional using statistics over a small development set.

Overall, the log-weighting works the best: it assigns
a higher score for popular arguments, but not so high
that it drowns out all the other evidence.

4.2 DISTRDIFF

Our second algorithm, DISTRDIFF, takes a purely
statistical, discriminative view of the problem. It
recognizes that, due to aforementioned reasons,
whether a relation is functional or not, there are
bound to be several arg1s that look locally functional
and several that look locally non-functional. The
difference is in the number of such arg1s – a func-
tional relation will have more of the former type.

DISTRDIFF studies the count distributions for a
small development set of functional relations (and
similarly for non-functional) and attempts to build
a separator between the two. As an illustration,
Figure 4(a) plots the arg2 counts for various arg1s
for a functional relation (‘is headquartered in’).
Each curve represents a unique arg1. For an arg1,
the x-axis represents the rank (based on frequency)
of arg2s and y-axis represents the normalized fre-
quency of the arg2. For example, if an arg1 is found
with just one arg2, then x=1 will match with y=1
(the first point has all the mass) and x=2 will match
with y=0. If, on the other hand, an arg1 is found
with five arg2s, say, appearing ten times each, then
the first five x-points will map to 0.2 and the sixth
point will map to 0.

We illustrate the same plot for a non-functional
relation (‘visited’) in Figure 4(b). It is evident from
the two figures that, as one would expect, curves for
most arg1s die early in case of a functional relation,
whereas the lower ranked arg2s are more densely
populated in case of a non-functional relation.

We aggregate this information using slope of the
best-fit line for each arg1 curve. For functional re-
lations, the best-fit lines have steep slopes, whereas
for non-functional the lines are flatter. We bucket the
slopes in integer bins and count the fraction of arg1s
appearing in each bin. This lets us aggregate the
information into a single slope-distribution for each
relation. Bold lines in Figure 4(c) illustrate the aver-
age slope-distributions, averaged over ten sample re-
lations of each kind – dashed for non-functional and
solid for functional. Most non-functional relations
have a much higher probability of arg1s with low
magnitude slopes, whereas functional relations are
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Figure 4: DISTRDIFF: Arg2 count distributions fall more sharply for (a) a sample functional relation, than (b) a
sample non-functional relation. (c) The distance of aggregated slope-distributions from average slope-distributions
can be used to predict the functionality.

the opposite. Notice that the aggregated curve for
‘visited’ in the figure is closer to the average curve
for non-functional than to functional and vice-versa
for ‘was born on’.

We plot the aggregated slope-distributions for
each relation and use the distance from average dis-
tributions as a means to predict the functionality. We
use KL divergence (Kullback and Leibler, 1951) to
compute the distance between two distributions. We
score a relation’s functionality in three ways using:
(1) KLFUNC, its distance from average functional
slope-distribution Favg, (2) KLDIFF, its distance
from average functional minus its distance from av-
erage non-functional Navg, and (3) average of these
two scores. For a relation with slope distribution R,
the scores are computed as:

KLFUNC =
∑

iR(i)ln R(i)
Favg(i)

KLDIFF = KLFUNC - (
∑

iR(i)ln R(i)
Navg(i) )

Section 5.2 compares the three scoring functions.
A purely statistical approach is resilient to noisy
data, and does not need to explicitly account for the
various issues we detailed earlier. A disadvantage
is that it cannot handle relation ambiguity and type
restrictions. Moreover, we may need to relearn the
separator if applying DISTRDIFF to a corpus with
very different count distributions.

4.3 CLEANLISTS

Our third algorithm, CLEANLISTS, is based on the
intuition that for identifying functionality we need
not reason over all the data in our corpus; instead,

a small but cleaner subset of the data may work
best. This clean subset should ideally be free of syn-
onyms, ambiguities and anaphora, and be typed.

Several knowledge-bases such as Wordnet,
Wikipedia, and Freebase (Fellbaum, 1998;
Wikipedia, 2004; Metaweb Technologies, 2009),
are readily and freely available and they all provide
clean typed lists of entities. In our experiments
CLEANLISTS employs Freebase as a source of
clean lists, but we could use any of these or other
domain-specific ontologies such as SNOMED
(Price and Spackman, 2000) as well.

CLEANLISTS takes the intersection of Freebase
entities with our corpus to generate a clean subset for
functionality analysis. Freebase currently has over
12 million entities in over 1,000 typed lists. Thus,
this intersection retains significant portions of the
useful data, and gets rid of most of anaphora and
synonymy issues. Moreover, by matching against
typed lists, many relation ambiguities are separated
as well, since ambiguous relations often take dif-
ferent types in the arguments (e.g., ‘ran(Distance)’
vs. ‘ran(Company)’). To mitigate the effect of argu-
ment ambiguity, we additionally get rid of instances
in which arg1s match multiple names in the Freebase
list of names.

As an example, consider the ‘was born in’ rela-
tion. CLEANLISTS will remove instances with only
‘Clinton’ in arg1, since it matches multiple people
in Freebase. It will treat the different types, e.g.,
cities, states, countries, months separately and ana-
lyze the functionality for each of these individually.
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By intersecting the relation data with argument lists
for these types, we will be left with a smaller, but
much cleaner, subset of relation data, one for each
type. CLEANLISTS analyzes each subset using sim-
ple, instance based counting and computes a typed
functionality score for each type. Thus, it first com-
putes typed functionality for each relation.

There are two subtleties in applying this algo-
rithm. First, we need to identify the set of types to
consider for each relation. Our algorithm currently
picks the types that occur most in each relation’s
observed data. In the future, we could also use a
selectional preferences system (Ritter et al., 2010;
Kozareva and Hovy, 2010). Note that we remove
Freebase types such as Written Work from consid-
eration for containing many entities whose primary
senses are not that type. For example, both ‘Al Gore’
and ‘William Clinton’ are also names of books, but
references in text to these are rarely a reference to
the written work sense.

Secondly, an argument could belong to multiple
Freebase lists. For example, ‘California’ is both a
city and a state. We apply a simple heuristic: if a
string appears in multiple lists under consideration,
we assign it to the smallest of the lists (the list of
cities is much larger than states). This simple heuris-
tic usually assigns an argument to its intended type.
On a development set, the error rate of this heuristic
is<4%, though it varies a bit depending on the types
involved.

CLEANLISTS determines the overall functional-
ity of a relation string by aggregating the scores for
each type. It outputs functional if a majority of typed
senses for the relation are functional. For example,
CLEANLISTS judges ‘was born in’ to be functional,
since all relevant type restrictions are individually
typed functional – everyone is born in exactly one
country, city, state, month, etc.

CLEANLISTS has a much higher precision due to
the intersection with clean lists, though at some cost
of recall. The reason for lower recall is that the ap-
proach has a bias towards types that are easy to enu-
merate. It does not have different distances (e.g., 50
kms, 20 miles, etc.) in its lists. Moreover, arguments
that do not correspond to a noun cannot be handled.
For example, in the sentence, “He weighed eating
a cheeseburger against eating a salad”, the arg2 of
‘weighed’ can’t be matched to a Freebase list. To

increase the recall we back off to DISTRDIFF in the
cases when CLEANLISTS is unable to make a pre-
diction. This combination gives the best balance of
precision and recall for our task. We name our final
system LEIBNIZ.

One current limitation is that using only those
arg2s that exactly match clean lists leaves out some
good data (e.g., a tuple with an arg2 of ‘Univ of
Wash’ will not match against a list of universities
that spells it as ‘University of Washington’). Be-
cause we have access to entity types, using typed
equality checkers (Prager et al., 2007) with the clean
lists would allow us to recapture much of this useful
data. Moreover, the knowledge of functions could
apply to building new type nanotheories and reduce
considerable manual effort. We wish to study this in
the future.

5 Evaluation

In our evaluation, we wish to answer three ques-
tions: (1) How do our three approaches, Instance
Based Counting (IBC), DISTRDIFF, and CLEAN-
LISTS, compare on the functionality identification
task? (2) How does our final system, LEIBNIZ,
compare against the existing state of the art tech-
niques? (3) How well is LEIBNIZ able to identify
typed functionality for different types in the same
relation phrase?

5.1 Dataset

For our experiments we test on the set of 887 re-
lations used by Ritter et al. (2008) in their exper-
iments. We use the Open IE corpus generated by
running TEXTRUNNER on 500 million high quality
Webpages (Banko and Etzioni, 2008) as the source
of instance data for these relations. Extractor and
corpus differences lead to some relations not occur-
ring (or not occurring with sufficient frequency to
properly analyze, i.e.,≥ 5 arg1 with≥ 10 evidence),
leaving a dataset of 629 relations on which to test.

Two human experts tagged these relations for
functionality. Tagging the functionality of relation
phrases can be a bit subjective, as it requires the
experts to imagine the various senses of a phrase
and judge functionality over all those senses. The
inter-annotator agreement between the experts was
95.5%. We limit ourselves to the subset of the data
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Figure 5: (a) The best scoring method for DISTRDIFF averages KLFUNC and KLDIFF. (b) CLEANLISTS performs
significantly better than DISTRDIFF, which performs significantly better than IBC.

on which the two experts agreed (a subset of 601
relation phrases).

5.2 Internal Comparisons

First, we compare the three scoring functions for
DISTRDIFF. We vary the score thresholds to gener-
ate the different points on the precision-recall curves
for each of the three. Figure 5(a) plots these curves.
It is evident that the hybrid scoring function, i.e.,
one which is an average of KLFUNC (distance from
average functional) and KLDIFF (distance from av-
erage functional minus distance from average non-
functional) performs the best. We use this scoring in
the further experiments involving DISTRDIFF.

Next, we compare our three algorithms on
the dataset. Figure 5(b) reports the results.
CLEANLISTS outperforms DISTRDIFF by vast mar-
gins, covering a 33.5% additional area under the
precision-recall curve. Overall, CLEANLISTS finds
the very high precision points, because of its use of
clean data. However, it is unable to make 23.1% of
the predictions, primarily because the intersection
between the corpus and Freebase entities results in
very little data for those relations. DISTRDIFF per-
forms better than IBC, due to its statistical nature,
but the issues described in Section 3 plague both
these systems much more than CLEANLISTS.

To increase the recall LEIBNIZ uses a combina-
tion of DISTRDIFF and CLEANLISTS, in which the
algorithm backs off to DISTRDIFF if CLEANLISTS

is unable to output a prediction.

5.3 External Comparisons

We next compare LEIBNIZ against the existing state
of the art approaches. Our competitors are AuCon-
traire and NumericTerms (Ritter et al., 2008; Srini-
vasan and Yates, 2009). Because we use the Au-
Contraire dataset, we report the results from their
best performing system. We reimplement a version
of NumericTerms using their list of numeric quanti-
fiers and extraction patterns that best correspond to
our relation format. We run our implementation of
NumericTerms on a dataset of 100 million English
sentences from a crawl of high quality Webpages to
generate the functionality labels.

Figure 6(a) reports the results of this experiment.
We find that LEIBNIZ outperforms AuContraire by
vast margins covering an additional 44% area in the
precision-recall curve. AuContraire’s AUC is 0.61
whereas LEIBNIZ covers 0.88. A Bootstrap Per-
centile Test (Keller et al., 2005) on F1 score found
the improvement of our techniques over AuCon-
traire to be statistically significant at α = 0.05. Nu-
mericTerms does not perform well, because it makes
decisions based only on the local evidence in a sen-
tence, and does not integrate the knowledge from
different occurrences of the same relation. It returns
many false positives, such as ‘lives in’, which ap-
pear functional to the lexico-syntactic pattern, but
are clearly non-functional, e.g., one could live in
many places over a lifetime.

An example of a LEIBNIZ error is the ‘repre-
sented’ relation. LEIBNIZ classifies this as func-
tional, because it finds several strongly functional
senses (e.g., when a person represents a country),
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Figure 6: (a) LEIBNIZ, which is a hybrid of CLEANLISTS and DISTRDIFF, achieves 0.88 AUC and outperforms the
0.61 AUC from AuContraire (Ritter et al., 2008) and the 0.05 AUC from NumericTerms (Srinivasan and Yates, 2009).
(b) LEIBNIZ is able to tease apart different senses of polysemous relations much better than other systems.

but the human experts might have had some non-
functional senses in mind while labeling.

5.4 Typed Functionality
Next, we conduct a study of the typed functional-
ity task. We test on ten common polysemous re-
lations, each having both a functional and a non-
functional sense. An example is the ‘was pub-
lished in’ relation. If arg2 is a year it is func-
tional, e.g. <Harry Potter 5, was published in,
2003>. However, ‘was published in(Language)’
is not functional, e.g. <Harry Potter 5, was pub-
lished in, [French / Spanish / English]>. Simi-
larly, ‘will become(Company)’ is functional because
when a company is renamed, it transitions away
from the old name exactly once, e.g. <Cingular,
will become, AT&T Wireless>. However, ‘will be-
come(government title)’ is not functional, because
people can hold different offices in their life, e.g.,
<Obama, will become, [Senator / President]>.

In this experiment, a simple baseline of predict-
ing the same label for the two types of each rela-
tion achieves a precision of 0.5. Figure 6(b) presents
the results of this study. AuContraire achieves a flat
0.5, since it cannot distinguish between types. Nu-
mericTerms can be modified to distinguish between
basic types – check the word just after the numeric
term to see whether it matches the type name. For
example, the modified NumericTerms will search
the Web for instances of “was published in [nu-
meric term] years” vs. “was published in [numeric
term] languages”. This scheme works better when
the type name is simple (e.g., languages) rather than

complex (e.g., government titles).
LEIBNIZ performs the best and is able to tease

apart the functionality of various types very well.
When LEIBNIZ did not work, it was generally be-
cause of textual functionality, which is a larger issue
for typed functionality than general functionality. Of
course, these results are merely suggestive – we per-
form a larger-scale experiment and generate a repos-
itory of typed functions next.

6 A Repository of Functional Relations

We now report on a repository of typed functional
relations generated automatically by applying LEIB-
NIZ to a large collection of relation phrases. Instead
of starting with the most frequent relations from
TEXTRUNNER, we use OCCAM’s relations (Fader
et al., 2010) because they are more specific. For in-
stance, where TEXTRUNNER outputs an underspec-
ified tuple, <Gold, has, an atomic number of 79>,
OCCAM extracts <Gold, has an atomic number of,
79>. OCCAM enables LEIBNIZ to identify far more
functional relations than TEXTRUNNER.

6.1 Addressing Evidence Sparsity

Scaling up to a large collection of typed relations
requires us to consider the size of our data sets. For
example, consider which relation is more likely to be
functional—a relation with 10 instances all of which
indicate functionality versus a relation with 100 in-
stances where 95 behave functionally.

To address this problem, we adapt the likelihood
ratio approach from Schoenmackers et al. (2010).
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For a typed relation with n instances, f of which in-
dicate functionality, the G-test (Dunning, 1993), G
= 2*(f*ln(f/k)+(n-f)*ln((n-f)/(n-k))), provides a mea-
sure for the likelihood that the relation is not func-
tional. Here k denotes the evidence indicating func-
tionality for the case where the relation is not func-
tional. Setting k = n*0.25 worked well for us. This
G-score replaces our previous metric for scoring
functional relations.

6.2 Evaluation of the Repository

In CLEANLISTS a factor that affects the quality of
the results is the exact set of lists that is used. If
the lists are not clean, results get noisy. For exam-
ple, Freebase’s list of films contains 73,000 entries,
many of which (e.g., ”Egg”) are not films in their pri-
mary senses. Even with heuristics such as assigning
terms to their smallest lists and disqualifying dictio-
nary words that occur from large type lists, there is
still significant noise left.

Using LEIBNIZ with a set of 35 clean lists on
OCCAM’s extraction corpus, we generated a repos-
itory of 5,520 typed functional relations. To eval-
uate this resource a human expert tagged a random
subset of the top 1,000 relations. Of these relations
22% were either ill-formed or had non-sensical type
constraints. From the well-formed typed relations
the precision was estimated to be 0.8. About half
the errors were due to textual functionality and the
rest were LEIBNIZ errors. Some examples of good
functions found include isTheSequelTo(videogame)
and areTheBirthstoneFor(month). An example of
a textually functional relation found is wasThe-
FounderOf(company).

This is the first public repository of automatically-
identified functional relations. Scaling up our data
set forced us to confront new sources of noise in-
cluding extractor errors, errors due to mismatched
types, and errors due to sparse evidence. Still, our
initial results are encouraging and we hope that our
resource will be valuable as a baseline for future
work.

7 Conclusions

Functionality identification is an important subtask
for Web-scale information extraction and other ma-
chine reading tasks. We study the problem of pre-

dicting the functionality of a relation phrase auto-
matically from Web text. We presented three algo-
rithms for this task: (1) instance-based counting, (2)
DISTRDIFF, which takes a statistical approach and
discriminatively classifies the relations using aver-
age arg-distributions, and (3) CLEANLISTS, which
performs instance based counting on a subset of
clean data generated by intersection of the corpus
with a knowledge-base like Freebase.

Our best approach, LEIBNIZ, is a hybrid of
DISTRDIFF and CLEANLISTS, and outperforms
the existing state-of-the-art approaches by covering
44% more area under the precision-recall curve. We
also observe that an important sub-component of
identifying a functional relation phrase is identifying
typed functionality, i.e., functionality when the ar-
guments of the relation phrase are type-constrained.
Because CLEANLISTS is able to use typed lists, it
can successfully identify typed functionality.

We run our techniques on a large set of relations to
output a first repository of typed functional relations.
We release this list for further use by the research
community.2

Future Work: Functionality is one of the sev-
eral properties a relation can possess. Others in-
clude selectional preferences, transitivity (Schoen-
mackers et al., 2008), mutual exclusion, symme-
try, etc. These properties are very useful in increas-
ing our understanding about these Open IE relation
strings. We believe that the general principles devel-
oped in this work, for example, connecting the Open
IE knowledge with an existing knowledge resource,
will come in very handy in identifying these other
properties.
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