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Abstract

We study self-training with products of latent
variable grammars in this paper. We show
that increasing the quality of the automatically
parsed data used for self-training gives higher
accuracy self-trained grammars. Our genera-
tive self-trained grammars reach F scores of
91.6 on the WSJ test set and surpass even
discriminative reranking systems without self-
training. Additionally, we show that multi-
ple self-trained grammars can be combined in
a product model to achieve even higher ac-
curacy. The product model is most effective
when the individual underlying grammars are
most diverse. Combining multiple grammars
that were self-trained on disjoint sets of un-
labeled data results in a final test accuracy of
92.5% on the WSJ test set and 89.6% on our
Broadcast News test set.

1 Introduction

The latent variable approach of Petrov et al. (2006)
is capable of learning high accuracy context-free
grammars directly from a raw treebank. It starts
from a coarse treebank grammar (Charniak, 1997),
and uses latent variables to refine the context-free
assumptions encoded in the grammar. A hierarchi-
cal split-and-merge algorithm introduces grammar
complexity gradually, iteratively splitting (and po-
tentially merging back) each observed treebank cat-
egory into a number of increasingly refined latent
subcategories. The Expectation Maximization (EM)
algorithm is used to train the model, guaranteeing
that each EM iteration will increase the training like-
lihood. However, because the latent variable gram-
mars are not explicitly regularized, EM keeps fit-

ting the training data and eventually begins over-
fitting (Liang et al., 2007). Moreover, EM is a lo-
cal method, making no promises regarding the final
point of convergence when initialized from different
random seeds. Recently, Petrov (2010) showed that
substantial differences between the learned gram-
mars remain, even if the hierarchical splitting re-
duces the variance across independent runs of EM.

In order to counteract the overfitting behavior,
Petrov et al. (2006) introduced a linear smoothing
procedure that allows training grammars for 6 split-
merge (SM) rounds without overfitting. The in-
creased expressiveness of the model, combined with
the more robust parameter estimates provided by the
smoothing, results in a nice increase in parsing ac-
curacy on a held-out set. However, as reported by
Petrov (2009) and Huang and Harper (2009), an ad-
ditional 7th SM round actually hurts performance.

Huang and Harper (2009) addressed the issue of
data sparsity and overfitting from a different angle.
They showed that self-training latent variable gram-
mars on their own output can mitigate data spar-
sity issues and improve parsing accuracy. Because
the capacity of the model can grow with the size
of the training data, latent variable grammars are
able to benefit from the additional training data, even
though it is not perfectly labeled. Consequently,
they also found that a 7th round of SM training was
beneficial in the presence of large amounts of train-
ing data. However, variation still remains in their
self-trained grammars and they had to use a held-out
set for model selection.

The observation of variation is not surprising;
EM’s tendency to get stuck in local maxima has been
studied extensively in the literature, resulting in vari-
ous proposals for model selection methods (e.g., see
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Burnham and Anderson (2002)). What is perhaps
more surprising is that the different latent variable
grammars seem to capture complementary aspects
of the data. Petrov (2010) showed that a simple ran-
domization scheme produces widely varying gram-
mars. Quite serendipitously, these grammars can
be combined into an unweighted product model that
substantially outperforms the individual grammars.

In this paper, we combine the ideas of self-
training and product models and show that both
techniques provide complementary effects. We hy-
pothesize that the main factors contributing to the
final accuracy of the product model of self-trained
grammars are (i) the accuracy of the grammar used
to parse the unlabeled data for retraining (single
grammar versus product of grammars) and (ii) the
diversity of the grammars that are being combined
(self-trained grammars trained using the same auto-
matically labeled subset or different subsets). We
conduct a series of analyses to develop an under-
standing of these factors, and conclude that both di-
mensions are important for obtaining significant im-
provements over the standard product models.

2 Experimental Setup

2.1 Data

We conducted experiments in two genres: newswire
text and broadcast news transcripts. For the
newswire studies, we used the standard setup (sec-
tions 02-21 for training, 22 for development, and 23
for final test) of the WSJ Penn Treebank (Marcus et
al., 1999) for supervised training. The BLLIP cor-
pus (Charniak et al., 2000) was used as a source of
unlabeled data for self-training the WSJ grammars.
We ignored the parse trees contained in the BLLIP
corpus and retained only the sentences, which are
already segmented and tokenized for parsing (e.g.,
contractions are split into two tokens and punctua-
tion is separated from the words). We partitioned
the 1,769,055 BLLIP sentences into 10 equally sized
subsets1.

For broadcast news (BN), we utilized the Broad-

1We corrected some of the most egregious sentence segmen-
tation problems in this corpus, and so the number of sentences is
different than if one simply pulled the fringe of the trees. It was
not uncommon for a sentence split to occur on abbreviations,
such as Adm.

cast News treebank from Ontonotes (Weischedel et
al., 2008) together with the WSJ Penn Treebank for
supervised training, because their combination re-
sults in better parser models compared to using the
limited-sized BN corpus alone (86.7 F vs. 85.2 F).
The files in the Broadcast News treebank represent
news stories collected during different time periods
with a diversity of topics. In order to obtain a rep-
resentative split of train-test-development sets, we
divided them into blocks of 10 files sorted by alpha-
betical filename order. We used the first file in each
block for development, the second for test, and the
remaining files for training. This training set was
then combined with the entire WSJ treebank. We
also used 10 equally sized subsets from the Hub4
CSR 1996 utterances (Garofolo et al., 1996) for self-
training. The Hub 4 transcripts are markedly noisier
than the BLLIP corpus is, in part because it is harder
to sentence segment, but also because it was pro-
duced by human transcription of spoken language.

The treebanks were pre-processed differently for
the two genres. For newswire, we used a slightly
modified version of the WSJ treebank: empty
nodes and function labels were deleted and auxiliary
verbs were replaced with AUXB, AUXG, AUXZ,
AUXD, or AUXN to represent infinitive, progres-
sive, present, past, or past participle auxiliaries2.
The targeted use of the broadcast models is for pars-
ing broadcast news transcripts for language mod-
els in speech recognition systems. Therefore, in
addition to applying the transformations used for
newswire, we also replaced symbolic expressions
with verbal forms (e.g., $5 was replaced with five
dollars) and removed punctuation and case. The
Hub4 data was segmented into utterances, punctua-
tion was removed, words were down-cased, and con-
tractions were tokenized for parsing. Table 1 sum-
marizes the data set sizes used in our experiments,
together with average sentence length and standard
deviation.

2.2 Scoring
Parses from all models are compared with respective
gold standard parses using SParseval bracket scor-
ing (Roark et al., 2006). This scoring tool pro-

2Parsing accuracy is marginally affected. The average over
10 SM6 grammars with the transformation is 90.5 compared to
90.4 F without it, a 0.1% average improvement.

13



Genre Statistics Train Dev Test Unlabeled

Newswire
# sentences 39.8k 1.7k 2.4k 1,769.1k

# words 950.0k 40.1k 56.7k 43,057.0k
length Avg./Std. 28.9/11.2 25.1/11.8 25.1/12.0 24.3/10.9

Broadcast News
# sentences 59.0k 1.0k 1.1k 4,386.5k

# words 1,281.1k 17.1k 19.4k 77,687.9k
length Avg./Std. 17.3/11.3 17.4/11.3 17.7/11.4 17.7/12.8

Table 1: The number of words and sentences, together with average (Avg.) sentence length and its standard deviation
(Std.), for the data sets used in our experiments.

duces scores that are identical to those produced
by EVALB for WSJ. For Broadcast News, SParse-
val applies Charniak and Johnson’s (Charniak and
Johnson, 2001) scoring method for EDITED nodes3.
Using this method, BN scores were slightly (.05-.1)
lower than if EDITED constituents were treated like
any other, as in EVALB.

2.3 Latent Variable Grammars

We use the latent variable grammar (Matsuzaki et
al., 2005; Petrov et al., 2006) implementation of
Huang and Harper (2009) in this work. Latent vari-
able grammars augment the observed parse trees in
the treebank with a latent variable at each tree node.
This effectively splits each observed category into
a set of latent subcategories. An EM-algorithm is
used to fit the model by maximizing the joint like-
lihood of parse trees and sentences. To allocate the
grammar complexity only where needed, a simple
split-and-merge procedure is applied. In every split-
merge (SM) round, each latent variable is first split
in two and the model is re-estimated. A likelihood
criterion is used to merge back the least useful splits
(50% merge rate for these experiments). This itera-
tive refinement proceeds for 7 rounds, at which point
parsing performance on a held-out set levels off and
training becomes prohibitively slow.

Since EM is a local method, different initial-
izations will result in different grammars. In
fact, Petrov (2010) recently showed that this EM-
algorithm is very unstable and converges to widely
varying local maxima. These local maxima corre-

3Non-terminal subconstituents of EDITED nodes are re-
moved so that the terminal constituents become immediate chil-
dren of a single EDITED node, adjacent EDITED nodes are
merged, and they are ignored for span calculations of the other
constituents.

spond to different high quality latent variable gram-
mars that have captured different types of patterns in
the data. Because the individual models’ mistakes
are independent to some extent, multiple grammars
can be effectively combined into an unweighted
product model of much higher accuracy. We build
upon this line of work and investigate methods to
exploit products of latent variable grammars in the
context of self-training.

3 Self-training Methodology

Different types of parser self-training have been pro-
posed in the literature over the years. All of them
involve parsing a set of unlabeled sentences with a
baseline parser and then estimating a new parser by
combining this automatically parsed data with the
original training data. McClosky et al. (2006) pre-
sented a very effective method for self-training a
two-stage parsing system consisting of a first-stage
generative lexicalized parser and a second-stage dis-
criminative reranker. In their approach, a large
amount of unlabeled text is parsed by the two-stage
system and the parameters of the first-stage lexical-
ized parser are then re-estimated taking the counts
from the automatically parsed data into considera-
tion.

More recently Huang and Harper (2009) pre-
sented a self-training procedure based on an EM-
algorithm. They showed that the EM-algorithm that
is typically used to fit a latent variable grammar
(Matsuzaki et al., 2005; Petrov et al., 2006) to a tree-
bank can also be used for self-training on automati-
cally parsed sentences. In this paper, we investigate
self-training with products of latent variable gram-
mars. We consider three training scenarios:

ST-Reg Training Use the best single grammar to
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Regular Best Average Product
SM6 90.8 90.5 92.0
SM7 90.4 90.1 92.2

Table 2: Performance of the regular grammars and their
products on the WSJ development set.

parse a single subset of the unlabeled data and
train 10 self-trained grammars using this single
set.

ST-Prod Training Use the product model to parse
a single subset of the unlabeled data and train
10 self-trained grammars using this single set.

ST-Prod-Mult Training Use the product model to
parse all 10 subsets of the unlabeled data and
train 10 self-trained grammars, each using a
different subset.

The resulting grammars can be either used individu-
ally or combined in a product model.

These three conditions provide different insights.
The first experiment allows us to investigate the
effectiveness of product models for standard self-
trained grammars. The second experiment enables
us to quantify how important the accuracy of the
baseline parser is for self-training. Finally, the third
experiment investigates a method for injecting some
additional diversity into the individual grammars to
determine whether a product model is most success-
ful when there is more variance among the individ-
ual models.

Our initial experiments and analysis will focus on
the development set of WSJ. We will then follow
up with an analysis of broadcast news (BN) to de-
termine whether the findings generalize to a second,
less structured type of data. It is important to con-
struct grammars capable of parsing this type of data
accurately and consistently in order to support struc-
tured language modeling (e.g., (Wang and Harper,
2002; Filimonov and Harper, 2009)).

4 Newswire Experiments

In this section, we compare single grammars and
their products that are trained in the standard way
with gold WSJ training data, as well as the three
self-training scenarios discussed in Section 3. We

ST-Reg Best Average Product
SM6 91.5 91.2 92.0
SM7 91.6 91.5 92.4

Table 3: Performance of the ST-Reg grammars and their
products on the WSJ development set.

report the F scores of both SM6 and SM7 grammars
on the development set in order to evaluate the ef-
fect of model complexity on the performance of the
self-trained and product models. Note that we use
6th round grammars to produce the automatic parse
trees for the self-training experiments. Parsing with
the product of the 7th round grammars is slow and
requires a large amount of memory (32GB). Since
we had limited access to such machines, it was in-
feasible for us to parse all of the unlabeled data with
the SM7 product grammars.

4.1 Regular Training

We begin by training ten latent variable models ini-
tialized with different random seeds using the gold
WSJ training set. Results are presented in Table 2.
The best F score attained by the individual SM6
grammars on the development set is 90.8, with an
average score of 90.5. The product of grammars
achieves a significantly improved accuracy at 92.04.
Notice that the individual SM7 grammars perform
worse on average (90.1 vs. 90.5) due to overfitting,
but their product achieves higher accuracy than the
product of the SM6 grammars (92.2 vs. 92.0). We
will further investigate the causes for this effect in
Section 5.

4.2 ST-Reg Training

Given the ten SM6 grammars from the previous sub-
section, we can investigate the three self-training
methods. In the first regime (ST-Reg), we use the
best single grammar (90.8 F) to parse a single subset
of the BLLIP data. We then train ten grammars from
different random seeds, using an equally weighted
combination of the WSJ training set with this sin-
gle set. These self-trained grammars are then com-
bined into a product model. As reported in Table 3,

4We use Dan Bikel’s randomized parsing evaluation com-
parator to determine the significance (p < 0.05) of the differ-
ence between two parsers’ outputs.
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ST-Prod Best Average Product
SM6 91.7 91.4 92.2
SM7 91.9 91.7 92.4

Table 4: Performance of the ST-Prod grammars and their
products on the WSJ development set.

thanks to the use of additional automatically labeled
training data, the individual SM6 ST-Reg grammars
perform significantly better than the individual SM6
grammars (91.2 vs. 90.5 on average), and the indi-
vidual SM7 ST-Reg grammars perform even better,
achieving a high F score of 91.5 on average.

The product of ST-Reg grammars achieves signif-
icantly better performance over the individual gram-
mars, however, the improvement is much smaller
than that obtained by the product of regular gram-
mars. In fact, the product of ST-Reg grammars per-
forms quite similarly to the product of regular gram-
mars despite the higher average accuracy of the in-
dividual grammars. This may be caused by the fact
that self-training on the same data tends to reduce
the variation among the self-trained grammars. We
will show in Section 5 that the diversity among the
individual grammars is as important as average ac-
curacy for the performance attained by the product
model.

4.3 ST-Prod Training

Since products of latent variable grammars perform
significantly better than individual latent variable
grammars, it is natural to try using the product
model for parsing the unlabeled data. To investi-
gate whether the higher accuracy of the automati-
cally labeled data translates into a higher accuracy
of the self-trained grammars, we used the product of
6th round grammars to parse the same subset of the
unlabeled data as in the previous experiment. We
then trained ten self-trained grammars, which we
call ST-Prod grammars. As can be seen in Table 4,
using the product of the regular grammars for label-
ing the self-training data results in improved individ-
ual ST-Prod grammars when compared with the ST-
Reg grammars, with 0.2 and 0.3 improvements for
the best SM6 and SM7 grammars, respectively. In-
terestingly, the best individual SM7 ST-Prod gram-
mar (91.9 F) performs comparably to the product of

ST-Prod-Mult Best Average Product
SM6 91.7 91.4 92.5
SM7 91.8 91.7 92.8

Table 5: Performance of the ST-Prod-Mult grammars and
their products on the WSJ development set.

the regular grammars (92.0 F) that was used to label
the BLLIP subset used for self-training. This is very
useful for practical reasons because a single gram-
mar is faster to parse with and requires less memory
than the product model.

The product of the SM6 ST-Prod grammars also
achieves a 0.2 higher F score compared to the prod-
uct of the SM6 ST-Reg grammars, but the product
of the SM7 ST-Prod grammars has the same perfor-
mance as the product of the SM7 ST-Reg grammars.
This could be due to the fact that the ST-Prod gram-
mars are no more diverse than the ST-Reg grammars,
as we will show in Section 5.

4.4 ST-Prod-Mult Training

When creating a product model of regular gram-
mars, Petrov (2010) used a different random seed for
each model and conjectured that the effectiveness of
the product grammars stems from the resulting di-
versity of the individual grammars. Two ways to
systematically introduce bias into individual mod-
els are to either modify the feature sets (Baldridge
and Osborne, 2008; Smith and Osborne, 2007) or
to change the training distributions of the individual
models (Breiman, 1996). Petrov (2010) attempted to
use the second method to train individual grammars
on either disjoint or overlapping subsets of the tree-
bank, but observed a performance drop in individ-
ual grammars resulting from training on less data,
as well as in the performance of the product model.
Rather than reducing the amount of gold training
data (or having treebank experts annotate more data
to support the diversity), we employ the self-training
paradigm to train models using a combination of the
same gold training data with different sets of the
self-labeled training data. This approach also allows
us to utilize a much larger amount of low-cost self-
labeled data than can be used to train one model by
partitioning the data into ten subsets and then train-
ing ten models with a different subset. Hence, in
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(a) Difference in F score between the product and the individual SM6 regular grammars.
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(b) Difference in F score between the product of SM6 regular grammars and the individual SM7 ST-Prod-Mult
grammars.

Figure 1: Difference in F scores between various individual grammars and representative product grammars.

the third self-training experiment, we use the prod-
uct of the regular grammars to parse all ten subsets
of the unlabeled data and train ten grammars, which
we call ST-Prod-Mult grammars, each using a dif-
ferent subset.

As shown in Table 5, the individual ST-Prod-Mult
grammars perform similarly to the individual ST-
Prod grammars. However, the product of the ST-
Prod-Mult grammars achieves significantly higher
accuracies than the product of the ST-Prod gram-
mars, with 0.3 and 0.4 improvements for SM6 and
SM7 grammars, respectively, suggesting that the use
of multiple self-training subsets plays an important
role in model combination.

5 Analysis

We conducted a series of analyses to develop an un-
derstanding of the factors affecting the effectiveness
of combining self-training with product models.

5.1 What Has Improved?

Figure 1(a) depicts the difference between the prod-
uct and the individual SM6 regular grammars on
overall F score, as well as individual constituent F
scores. As can be observed, there are significant

variations among the individual grammars, and the
product of the regular grammars improves almost all
categories, with a few exceptions (some individual
grammars do better on QP and WHNP constituents).

Figure 1(b) shows the difference between the
product of the SM6 regular grammars and the indi-
vidual SM7 ST-Prod-Mult grammars. Self-training
dramatically improves the quality of single gram-
mars. In most of the categories, some individ-
ual ST-Prod-Mult grammars perform comparably or
slightly better than the product of SM6 regular gram-
mars used to automatically label the unlabeled train-
ing set.

5.2 Overfitting vs. Smoothing

Figure 2(a) and 2(b) depict the learning curves of
the regular and the ST-Prod-Mult grammars. As
more latent variables are introduced through the iter-
ative SM training algorithm, the modeling capacity
of the grammars increases, leading to improved per-
formance. However, the performance of the regular
grammars drops after 6 SM rounds, as also previ-
ously observed in (Huang and Harper, 2009; Petrov,
2009), suggesting that the regular SM7 grammars
have overfit the relatively small-sized gold training
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data. In contrast, the performance of the self-trained
grammars continues to improve in the 7th SM round.
Huang and Harper (2009) argued that the additional
self-labeled training data adds a smoothing effect to
the grammars, supporting an increase in model com-
plexity without overfitting.

Although the performance of the individual gram-
mars, both regular and self-trained, varies signif-
icantly and the product model consistently helps,
there is a non-negligible difference between the im-
provement achieved by the two product models over
their component grammars. The regular product
model improves upon its individual grammars more
than the ST-Prod-Mult product does in the later SM
rounds, as illustrated by the relative error reduction
curves in figures 2(a) and (b). In particular, the prod-
uct of the SM7 regular grammars gains a remarkable
2.1% absolute improvement over the average perfor-
mance of the individual regular SM7 grammars and
0.2% absolute over the product of the regular SM6
grammars, despite the fact that the individual regular
SM7 grammars perform worse than the SM6 gram-
mars. This suggests that the product model is able
to effectively exploit less smooth, overfit grammars.
We will examine this issue further in the next sub-
section.

5.3 Diversity

From the perspective of Products of Experts (Hin-
ton, 1999) or Logarithmic Opinion Pools (Smith et
al., 2005), each individual expert learns complemen-
tary aspects of the training data and the veto power
of product models enforces that the joint prediction
of their product has to be licensed by all individual
experts. One possible explanation of the observa-
tion in the previous subsection is that with the ad-
dition of more latent variables, the individual gram-
mars become more deeply specialized on certain as-
pects of the training data. This specialization leads
to greater diversity in their prediction preferences,
especially in the presence of a small training set.
On the other hand, the self-labeled training set size
is much larger, and so the specialization process is
therefore slowed down.

Petrov (2010) showed that the individually
learned grammars are indeed very diverse by look-
ing at the distribution of latent annotations across the
treebank categories, as well as the variation in over-

all and individual category F scores (see Figure 1).
However, these measures do not directly relate to the
diversity of the prediction preferences of the gram-
mars, as we observed similar patterns in the regular
and self-trained models.

Given a sentence s and a set of grammars G =
{G1, · · · , Gn}, recall that the decoding algorithm of
the product model (Petrov, 2010) searches for the
best tree T such that the following objective function
is maximized: ∑

r∈T

∑
G∈G

log p(r|s, G)

where log p(r|s, G) is the log posterior probability
of rule r given sentence s and grammar G. The
power of the product model comes directly from the
diversity in log p(r|s, G) among individual gram-
mars. If there is little diversity, the individual
grammars would make similar predictions and there
would be little or no benefit from using a product
model. We use the average empirical variance of
the log posterior probabilities of the rules among the
learned grammars over a held-out set S as a proxy
of the diversity among the grammars:∑

s∈S

∑
G∈G

∑
r∈R(G,s)

p(r|s, G)VAR(log(p(r|s,G)))∑
s∈S

∑
G∈G

∑
r∈R(G,s)

p(r|s, G)

where R(G, s) represents the set of rules extracted
from the chart when parsing sentence s with gram-
mar G, and VAR(log(p(r|s,G))) is the variance of
log(p(r|s, G)) among all grammars G ∈ G.

Note that the average empirical variance is only
an approximation of the diversity among grammars.
In particular, this measure tends to be biased to pro-
duce larger numbers when the posterior probabili-
ties of rules tend to be small, because small differ-
ences in probability produce large changes in the log
scale. This happens for coarser grammars produced
in early SM stages when there is more uncertainty
about what rules to apply, with the rules remaining
in the parsing chart having low probabilities overall.

As shown in Figure 2(c), the average variances
all start at a high value and then drop, probably due
to the aforementioned bias. However, as the SM
iteration continues, the average variances increase
despite the bias. More interestingly, the variance
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Figure 2: Learning curves of the individual regular (a) and ST-Prod-Mult (b) grammars (average performance, with
minimum and maximum values indicated by bars) and their products before and after self-training on the WSJ de-
velopment set. The relative error reductions of the products are also reported. (c) The measured average empirical
variance among the grammars trained on WSJ.

among the regular grammars grows at a much faster
speed and is consistently greater when compared to
the self-trained grammars. This suggests that there
is more diversity among the regular grammars than
among the self-trained grammars, and explains the
greater improvement obtained by the regular product
model. It is also important to note that there is more
variance among the ST-Prod-Mult grammars, which
were trained on disjoint self-labeled training data,
and a greater improvement in their product model
relative to the ST-Reg and ST-Prod grammars, fur-
ther supporting the diversity hypothesis. Last but not
the least, the trend seems to indicate that the vari-
ance of the self-trained grammars would continue
increasing if EM training was extended by a few
more SM rounds, potentially resulting in even bet-
ter product models. It is currently impractical to test
this due to the dramatic increase in computational
requirements for an SM8 product model, and so we
leave it for future work.

5.4 Generalization to Broadcast News

We conducted the same set of experiments on the
broadcast news data set. While the development set
results in Table 6 show similar trends to the WSJ
results, the benefits from the combination of self-
training and product models appear even more pro-
nounced here. The best single ST-Prod-Mult gram-
mar (89.2 F) alone is able to outperform the product

of SM7 regular grammars (88.9 F), and their prod-
uct achieves another 0.7 absolute improvement, re-
sulting in a significantly better accuracy at 89.9 F.

Model Rounds Best Product

Regular
SM6 87.1 88.6
SM7 87.1 88.9

ST-Prod
SM6 88.5 89.0
SM7 89.0 89.6

ST-Prod-Mult
SM6 88.8 89.5
SM7 89.2 89.9

Table 6: F-score for various models on the BN develop-
ment set.

Figure 3 shows again that the benefits of self-
training and product models are complementary and
can be stacked. As can be observed, the self-
trained grammars have increasing F scores as the
split-merge rounds increase, while the regular gram-
mars have a slight decrease in F score after round 6.
In contrast to the newswire models, it appears that
the individual ST-Prod-Mult grammars trained on
broadcast news always perform comparably to the
product of the regular grammars at all SM rounds,
including the product of SM7 regular grammars.
This is noteworthy, given that the ST-Prod-Mult
grammars are trained on the output of the worse per-
forming product of the SM6 regular grammars. One
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Figure 3: Learning curves of the individual regular (a) and ST-Prod-Mult (b) grammars (average performance, with
minimum and maximum values indicated by bars) and their products before and after self-training on the BN develop-
ment set. The relative error reductions of the products are also reported. (c) The measured average empirical variance
among the grammars trained on BN.

possible explanation is that we used more unlabeled
data for self-training the broadcast news grammars
than for the newswire grammars. The product of the
ST-Prod-Mult grammars provides further and signif-
icant improvement in F score.

6 Final Results

We evaluated the best single self-trained gram-
mar (SM7 ST-Prod), as well as the product of
the SM7 ST-Prod-Mult grammars on the WSJ test
set. Table 7 compares these two grammars to
a large body of related work grouped into sin-
gle parsers (SINGLE), discriminative reranking ap-
proaches (RE), self-training (SELF), and system
combinations (COMBO).

Our best single grammar achieves an accuracy
that is only slightly worse (91.6 vs. 91.8 in F score)
than the product model in Petrov (2010). This is
made possible by self-training on the output of a
high quality product model. The higher quality of
the automatically parsed data results in a 0.3 point
higher final F score (91.6 vs. 91.3) over the self-
training results in Huang and Harper (2009), which
used a single grammar for parsing the unlabeled
data. The product of the self-trained ST-Prod-Mult
grammars achieves significantly higher accuracies
with an F score of 92.5, a 0.7 improvement over the
product model in Petrov (2010).

8Our ST-Reg grammars are trained in the same way as in

Type Parser LP LR EX
SI

N
G

L
E Charniak (2000) 89.9 89.5 37.2

Petrov and Klein (2007) 90.2 90.1 36.7
Carreras et al. (2008) 91.4 90.7 -

R
E Charniak and Johnson (2005) 91.8 91.2 44.8

Huang (2008) 92.2 91.2 43.5

SE
L

F Huang and Harper (2009)8 91.6 91.1 40.4
McClosky et al. (2006) 92.5 92.1 45.3

C
O

M
B

O Petrov (2010) 92.0 91.7 41.9
Sagae and Lavie (2006) 93.2 91.0 -
Fossum and Knight (2009) 93.2 91.7 -
Zhang et al. (2009) 93.3 92.0 -

This Paper
Best Single 91.8 91.4 40.3
Best Product 92.7 92.2 43.1

Table 7: Final test set accuracies on WSJ.

Although our models are based on purely gen-
erative PCFG grammars, our best product model
performs competitively to the self-trained two-step
discriminative reranking parser of McClosky et al.
(2006), which makes use of many non-local rerank-
ing features. Our parser also performs comparably
to other system combination approaches (Sagae and
Lavie, 2006; Fossum and Knight, 2009; Zhang et
al., 2009) with higher recall and lower precision,

Huang and Harper (2009) except that we keep all unary rules.
The reported numbers are from the best single ST-Reg grammar
in this work.
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but again without using a discriminative reranking
step. We expect that replacing the first-step genera-
tive parsing model in McClosky et al. (2006) with a
product of latent variable grammars would give even
higher parsing accuracies.

On the Broadcast News test set, our best perform-
ing single and product grammars (bolded in Table 6)
obtained F scores of 88.7 and 89.6, respectively.
While there is no prior work using our setup, we ex-
pect these numbers to set a high baseline.

7 Conclusions and Future Work

We evaluated methods for self-training high accu-
racy products of latent variable grammars with large
amounts of genre-matched data. We demonstrated
empirically on newswire and broadcast news genres
that very high accuracies can be achieved by training
grammars on disjoint sets of automatically labeled
data. Two primary factors appear to be determin-
ing the efficacy of our self-training approach. First,
the accuracy of the model used for parsing the unla-
beled data is important for the accuracy of the result-
ing single self-trained grammars. Second, the diver-
sity of the individual grammars controls the gains
that can be obtained by combining multiple gram-
mars into a product model. Our most accurate sin-
gle grammar achieves an F score of 91.6 on the WSJ
test set, rivaling discriminative reranking approaches
(Charniak and Johnson, 2005) and products of latent
variable grammars (Petrov, 2010), despite being a
single generative PCFG. Our most accurate product
model achieves an F score of 92.5 without the use of
discriminative reranking and comes close to the best
known numbers on this test set (Zhang et al., 2009).

In future work, we plan to investigate additional
methods for increasing the diversity of our self-
trained models. One possibility would be to utilize
more unlabeled data or to identify additional ways to
bias the models. It would also be interesting to deter-
mine whether further increasing the accuracy of the
model used for automatically labeling the unlabeled
data can enhance performance even more. A simple
but computationally expensive way to do this would
be to parse the data with an SM7 product model.

Finally, for this work, we always used products
of 10 grammars, but we sometimes observed that
subsets of these grammars produce even better re-

sults on the development set. Finding a way to se-
lect grammars from a grammar pool to achieve high
performance products is an interesting area of future
study.
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