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Abstract

The design of practical language applica-
tions by means of statistical approaches
requires annotated data, which is one of
the most critical constraint. This is par-
ticularly true for Spoken Dialog Systems
since considerably domain-specific con-
ceptual annotation is needed to obtain ac-
curate Language Understanding models.
Since data annotation is usually costly,
methods to reduce the amount of data are
needed. In this paper, we show that bet-
ter feature representations serve the above
purpose and that structure kernels pro-
vide the needed improved representation.
Given the relatively high computational
cost of kernel methods, we apply them to
just re-rank the list of hypotheses provided
by a fast generative model. Experiments
with Support Vector Machines and differ-
ent kernels on two different dialog cor-
pora show that our re-ranking models can
achieve better results than state-of-the-art
approaches when small data is available.

1 Introduction

Spoken Dialog Systems carry out automatic
speech recognition and shallow natural language
understanding by heavily relying on statistical
models. These in turn need annotated data de-
scribing the application domain. Such annotation
is far the most expensive part of the system de-
sign. Therefore, methods reducing the amount of
labeled data can speed up and lower the overall
amount of work.

Among others, Spoken Language Understand-
ing (SLU) is an important component of the sys-
tems above, which requires training data to trans-
late a spoken sentence into its meaning repre-
sentation based on semantic constituents. These

are conceptual units instantiated by sequences of
words.

In the last decade two major approaches have
been proposed to automatically map words in con-
cepts: (i) generative models, whose parameters re-
fer to the joint probability of concepts and con-
stituents; and (ii) discriminative models, which
learn a classification function based on conditional
probabilities of concepts given words.

A simple but effective generative model is the
one based on Finite State Transducers. It performs
SLU as a translation process from words to con-
cepts using Finite State Transducers (FST). An ex-
ample of discriminative model used for SLU is the
one based on Support Vector Machines (SVMs)
(Vapnik, 1995), as shown in (Raymond and Ric-
cardi, 2007). In this approach, data is mapped into
a vector space and SLU is performed as a clas-
sification problem using Maximal Margin Clas-
sifiers (Vapnik, 1995). A relatively more recent
approach for SLU is based on Conditional Ran-
dom Fields (CRF) (Lafferty et al., 2001). CRFs
are undirected graphical and discriminative mod-
els. They use conditional probabilities to account
for many feature dependencies without the need of
explicitly representing such dependencies.

Generative models have the advantage to be
more robust to overfitting on training data, while
discriminative models are more robust to irrele-
vant features. Both approaches, used separately,
have shown good accuracy (Raymond and Ric-
cardi, 2007), but they have very different charac-
teristics and the way they encode prior knowledge
is very different, thus designing models that take
into account characteristics of both approaches are
particularly promising.

In this paper, we propose a method for SLU
based on generative and discriminative models:
the former uses FSTs to generate a list of SLU
hypotheses, which are re-ranked by SVMs. To
effectively design our re-ranker, we use all pos-
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sible word/concept subsequences with gaps of the
spoken sentence as features (i.e. all possible n-
grams). Gaps allow for encoding long distance de-
pendencies between words in relatively small se-
quences. Since the space of such features is huge,
we adopted kernel methods, i.e. sequence kernels
(Shawe-Taylor and Cristianini, 2004) and tree ker-
nels (Collins and Duffy, 2002; Moschitti, 2006a)
to implicitly encode them along with other struc-
tural information in SVMs.

We experimented with different approaches for
training the discriminative models and two differ-
ent corpora: the french MEDIA corpus (Bonneau-
Maynard et al., 2005) and a corpus made available
by the European project LUNA1 (Dinarelli et al.,
2009b). In particular, the new contents with re-
spect to our previous work (Dinarelli et al., 2009a)
are:

• We designed a new sequential structure
(SK2) and two new hierarchical tree struc-
tures (MULTILEVEL and FEATURES) for
re-ranking models (see Section 4.2). The lat-
ter combined with two different tree kernels
originate four new different models.

• We experimented with automatic speech
transcriptions thus assessing the robustness to
noise of our models.

• We compare our models against Conditional
Random Field (CRF) approaches described
in (Hahn et al., 2008), which are the cur-
rent state-of-the-art in SLU. Learning curves
clearly show that our models improve CRF,
especially when small data sets are used.

The remainder of the paper is organized as fol-
lows: Section 2 introduces kernel methods for
structured data, Section 3 describes the generative
model producing the initial hypotheses whereas
Section 4 presents the discriminative models for
re-ranking them. The experiments and results
are reported in Section 5 and the conclusions are
drawn in Section 6.

2 Feature Engineering via Structure
Kernels

Kernel methods are viable approaches to engi-
neer features for text processing, e.g. (Collins and
Duffy, 2002; Kudo and Matsumoto, 2003; Cumby
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and Roth, 2003; Cancedda et al., 2003; Culotta
and Sorensen, 2004; Toutanova et al., 2004; Kudo
et al., 2005; Moschitti, 2006a; Moschitti et al.,
2007; Moschitti, 2008; Moschitti et al., 2008;
Moschitti and Quarteroni, 2008). In the follow-
ing, we describe structure kernels, which will be
used to engineer features for our discriminative re-
ranker.

2.1 String Kernels

The String Kernels that we consider count the
number of substrings containing gaps shared by
two sequences, i.e. some of the symbols of the
original string are skipped. We adopted the ef-
ficient algorithm described in (Shawe-Taylor and
Cristianini, 2004; Lodhi et al., 2000). More
specifically, we used words and markers as sym-
bols in a style similar to (Cancedda et al., 2003;
Moschitti, 2008). For example, given the sen-
tence: How may I help you ? sample substrings,
extracted by the Sequence Kernel (SK), are: How
help you ?, How help ?, help you, may help you,
etc.

2.2 Tree kernels

Tree kernels represent trees in terms of their sub-
structures (fragments). The kernel function detects
if a tree subpart (common to both trees) belongs to
the feature space that we intend to generate. For
such purpose, the desired fragments need to be de-
scribed. We consider two important characteriza-
tions: the syntactic tree (STF) and the partial tree
(PTF) fragments.

2.2.1 Tree Fragment Types
An STF is a general subtree whose leaves can
be non-terminal symbols (also called SubSet Tree
(SST) in (Moschitti, 2006a)). For example, Fig-
ure 1(a) shows 10 STFs (out of 17) of the sub-
tree rooted in VP (of the left tree). The STFs sat-
isfy the constraint that grammatical rules cannot
be broken. For example, [VP [V NP]] is an
STF, which has two non-terminal symbols, V and
NP, as leaves whereas [VP [V]] is not an STF.
If we relax the constraint over the STFs, we ob-
tain more general substructures called partial trees
fragments (PTFs). These can be generated by the
application of partial production rules of the gram-
mar, consequently [VP [V]] and [VP [NP]]
are valid PTFs. Figure 1(b) shows that the num-
ber of PTFs derived from the same tree as before
is still higher (i.e. 30 PTs).
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(a) Syntactic Tree fragments (STF) (b) Partial Tree fragments (PTF)

Figure 1: Examples of different classes of tree fragments.

2.3 Counting Shared Subtrees
The main idea of tree kernels is to compute the
number of common substructures between two
trees T1 and T2 without explicitly considering the
whole fragment space. To evaluate the above ker-
nels between two T1 and T2, we need to define a
set F = {f1, f2, . . . , f|F|}, i.e. a tree fragment
space and an indicator function Ii(n), equal to 1
if the target fi is rooted at node n and equal to 0
otherwise. A tree-kernel function over T1 and T2

is TK(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2),
where NT1 and NT2 are the sets of the T1’s
and T2’s nodes, respectively and ∆(n1, n2) =∑|F|

i=1 Ii(n1)Ii(n2). The latter is equal to the num-
ber of common fragments rooted in the n1 and n2

nodes.
The algorithm for the efficient evaluation of ∆

for the syntactic tree kernel (STK) has been widely
discussed in (Collins and Duffy, 2002) whereas its
fast evaluation is proposed in (Moschitti, 2006b),
so we only describe the equations of the partial
tree kernel (PTK).

2.4 The Partial Tree Kernel (PTK)
PTFs have been defined in (Moschitti, 2006a).
Their computation is carried out by the following
∆ function:

1. if the node labels of n1 and n2 are different
then ∆(n1, n2) = 0;

2. else ∆(n1, n2) =

1 +
∑

~I1,~I2,l(~I1)=l(~I2)

∏l(~I1)
j=1 ∆(cn1(~I1j), cn2(~I2j))

where ~I1 = 〈h1, h2, h3, ..〉 and ~I2 =
〈k1, k2, k3, ..〉 are index sequences associated with
the ordered child sequences cn1 of n1 and cn2 of
n2, respectively, ~I1j and ~I2j point to the j-th child
in the corresponding sequence, and, again, l(·) re-
turns the sequence length, i.e. the number of chil-
dren.

Furthermore, we add two decay factors: µ for
the depth of the tree and λ for the length of the

child subsequences with respect to the original se-
quence, i.e. we account for gaps. It follows that
∆(n1, n2) =

µ
(
λ2+

∑
~I1,~I2,l(~I1)=l(~I2)

λd(~I1)+d(~I2)

l(~I1)∏
j=1

∆(cn1(~I1j), cn2(~I2j))
)
,

(1)
where d(~I1) = ~I1l(~I1) − ~I11 and d(~I2) = ~I2l(~I2) −
~I21. This way, we penalize both larger trees and
child subsequences with gaps. Eq. 1 is more gen-
eral than the ∆ equation for STK. Indeed, if we
only consider the contribution of the longest child
sequence from node pairs that have the same chil-
dren, we implement STK.

3 Generative Model: Stochastic
Conceptual Language Model (SCLM)

The first step of our approach is to produce a list
of SLU hypotheses using a Stochastic Conceptual
Language Model. This is the same described in
(Raymond and Riccardi, 2007) with the only dif-
ference that we train the language model using the
SRILM toolkit (Stolcke, 2002) and we then con-
vert it into a Stochastic Finite State Transducer
(SFST). Such method allows us to use a wide
group of language models, backed-off or inter-
polated with many kind of smoothing techniques
(Chen and Goodman, 1998).

To exemplify our SCLM let us consider the
following input italian sentence taken from the
LUNA corpus along with its English translation:

Ho un problema col monitor.
(I have a problem with my screen).

A possible semantic annotation is:

null{ho} PROBLEM{un problema} HARD-
WARE{col monitor},
where PROBLEM and HARDWARE are two
domain concepts and null is the label used for
words not meaningful for the task. To associate
word sequences with concepts, we use begin
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(B) and inside (I) markers after each word of a
sequence, e.g.:

null{ho} PROBLEM-B{un} PROBLEM-
I{problema} HARDWARE-B{col} HARD-
WARE-I{monitor}
This annotation is automatically performed
by a model based on a combination of three
transducers:

λSLU = λW ◦ λW2C ◦ λSLM ,

where λW is the transducer representation of the
input sentence, λW2C is the transducer mapping
words to concepts and λSLM is the Stochastic
Conceptual Language Model trained with SRILM
toolkit and converted in FST. The SCLM repre-
sents joint probability of word and concept se-
quences by using the joint probability:

P (W,C) =
k∏

i=1

P (wi, ci|hi),

where W = w1..wk, C = c1..ck and hi =
wi−1ci−1..w1c1.

4 Discriminative re-ranking

Our discriminative re-ranking is based on SVMs
trained with pairs of conceptually annotated sen-
tences produced by the FST-based generative
model described in the previous section. An SVM
learn to classify which annotation has an error rate
lower than the others so that it can be used to sort
the m-best annotations based on their correctness.
While for SVMs details we remaind to the wide
literature available, for example (Vapnik, 1995) or
(Shawe-Taylor and Cristianini, 2004), in this sec-
tion we focus on hypotheses generation and on the
kernels used to implement our re-ranking model.

4.1 Generation of m-best concept labeling
Using the FST-based model described in Section
3, we can generate the list of m best hypotheses
ranked by the joint probability of the Stochastic
Conceptual Language Model (SCLM). The Re-
ranking model proposed in this paper re-ranks
such list.

After an analysis of the m-best hypothesis list,
we noticed that many times the first hypothesis
ranked by SCLM is not the most accurate, i.e.
the error rate evaluated with its Levenshtein dis-
tance from the manual annotation is not the low-
est among the m hypotheses. This means that re-

ranking hypotheses could improve the SLU ac-
curacy. Intuitively, to achieve satisfactory re-
sults, different features from those used by SCLM
should be considered to exploit in a different way
the information encoded in the training data.

4.2 Structural features for re-ranking

The kernels described in previous sections pro-
vide a powerful technology for exploiting features
of structured data. These kernels were originally
designed for data annotated with syntactic parse
trees. In Spoken Language Understanding the data
available are text sentences with their semantic
annotation based on basic semantic constituents.
This kind of data has a rather flat structure with
respect to syntactic parse trees. Thus, to exploit
the power of kernels, a careful design of the struc-
tures used to represent data must be carried out,
where the goal is to build tree-like annotation from
the semantic annotation. For this purpose, we
note that the latter is made upon sentence chunks,
which implicitly define syntactic structures as long
as the annotation is consistent in the corpus.

We took into account the characteristics of the
presented kernels and the structure of semantic an-
notated data. As a result we designed the tree
structures shown in figures 2(a), 2(b) and 3 for
STK and PTK and sequential structures for SK
defined in the following (where all the structures
refer to the same example presented in Section 3,
i.e. Ho un problema col monitor). The structures
used with SK are:

(SK1) NULL ho PROBLEM-B un
PROBLEM-I problema HARDWARE-B col
HARDWARE-I monitor

(SK2) NULL ho PROBLEM B un PROB-
LEM I problema HARDWARE B col HARD-
WARE I monitor,
For simplicity, from now on, the two structures
will be referred as SK1 and SK2 (String Kernel 1
and 2). They differer in the use of chunk mark-
ers B and I. In SK1, markers are part of the con-
cept, thus they increase the number of semantic
tags in the data whereas in SK2 markers are put
apart as separated words so that they can mark ef-
fectively the beginning and the end of a concept,
but for the same reason they can add noise in the
sentence. Notice that the order of words and con-
cepts is meaningful since each word is preceded
by its corresponding concepts.

The structures shown in Figure 2(a), 2(b) and 3
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have been designed for STK and PTK. They pro-
vide trees with increasing structure complexity as
described in the following.

The first structure (FLAT) is a simple tree
providing direct dependency between words and
chunked concepts. From it, STK and PTK can ex-
tract relevant features (tree fragments).

The second structure (MULTILEVEL) has one
more level of nodes and yields the same separation
of concepts and markers shown in SK1. Notice
that the same separation can be carried out putting
the markers B and I as features at the same level of
the words. This would increase exponentially (in
the number of leaves) the number of subtrees taken
into account by the STK computation. Since STK
doesn’t separate children, as described in Section
2.3, the structure we chose is lighter but also more
rigid.

The third structure (FEATURES) is a more
complex structure. It allows to use a wide num-
ber of features (like Word categories, POS tags,
morpho-syntactic features), which are commonly
used in this kind of task. As described above, the
use of features exponentially increases the num-
ber of subtrees taken into account by kernel com-
putations but they also increase the robustness of
the model. In this work we only used Word Cate-
gories as features. They are domain independent,
e.g. ”Months”, ”Dates”, ”Number” etc. or POS
tags, which are useful to generalize target words.
Note also that the features in common between
two trees must appear in the same child-position,
hence we sort them based on their indices, e.g.’F0’
for words and ’F1’ for word categories.

4.3 Re-ranking models using sequences

The FST generates the m most likely concept an-
notations. These are used to build annotation
pairs,

〈
si, sj

〉
, which are positive instances if si

has a lower concept annotation error than sj , with
respect to the manual annotation. Thus, a trained
binary classifier can decide if si is more accurate
than sj . Each candidate annotation si is described
by a word sequence with its concept annotation.
Considering the example in the previous section, a
pair of annotations

〈
si, sj

〉
could be

si: NULL ho PROBLEM-B un PROBLEM-
I problema HARDWARE-B col HARDWARE-I
monitor
sj : NULL ho ACTION-B un ACTION-I prob-

lema HARDWARE-B col HARDWARE-B moni-

tor
where NULL, ACTION and HARDWARE are
the assigned concepts. The second annotation is
less accurate than the first since problema is erro-
neously annotated as ACTION and ”col monitor”
is split in two different concepts.

Given the above data, the sequence kernel
is used to evaluate the number of common n-
grams between si and sj . Since the string ker-
nel skips some elements of the target sequences,
the counted n-grams include: concept sequences,
word sequences and any subsequence of words
and concepts at any distance in the sentence.

Such counts are used in our re-ranking function
as follows: let ek be the pair

〈
s1k, s

2
k

〉
we evaluate

the kernel:

KR(e1, e2) = SK(s11, s
1
2) + SK(s21, s

2
2) (2)

− SK(s11, s
2
2)− SK(s21, s

1
2)

This schema, consisting in summing four different
kernels, has been already applied in (Collins and
Duffy, 2002; Shen et al., 2003) for syntactic pars-
ing re-ranking, where the basic kernel was a tree
kernel instead of SK. It was also used also in (Shen
et al., 2004) to re-rank different candidates of the
same hypothesis for machine translation. Notice
that our goal is different from the one tackled in
such paper and, in general, it is more difficult: we
try to learn which is the best annotation of a given
input sentence, while in (Shen et al., 2004), they
learn to distinguish between ”good” and ”bad”
translations of a sentence. Even if our goal is more
difficult, our approach is very effective, as shown
in (Dinarelli et al., 2009a). It is more appropriate
since in parse re-ranking there is only one best hy-
pothesis, while in machine translation a sentence
can have more than one correct translations.

Additionally, in (Moschitti et al., 2006; Mos-
chitti et al., 2008) a tree kernel was applied to se-
mantic trees similar to the one introduced in the
next section to re-rank Semantic Role Labeling an-
notations.

4.4 Re-ranking models using trees
Since the aim of concept annotation re-ranking is
to exploit innovative and effective source of infor-
mation, we can use, in addition to sequence ker-
nels, the power of tree kernels to generate correla-
tion between concepts and word structures.

Figures 2(a), 2(b) and 3 describe the struc-
tural association between the concept and the word
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(a) FLAT Tree (b) MULTILEVEL Tree

Figure 2: Examples of structures used for STK and PTK

Figure 3: The FEATURES semantic tree used for STK or PTK

Corpus Train set Test set
LUNA words concepts words concepts
Dialogs 183 67
Turns 1.019 373
Tokens 8.512 2.887 2.888 984
Vocab. 1.172 34 - -
OOV rate - - 3.2% 0.1%

Table 1: Statistics on the LUNA corpus

Corpus Train set Test set
Media words concepts words concepts
Turns 12,922 3,518
# of tokens 94,912 43,078 26,676 12,022
Vocabulary 5,307 80 - -
OOV rate - - 0.01% 0.0%

Table 2: Statistics on the MEDIA corpus

level. This kind of trees allows us to engineer new
kernels and consequently new features (Moschitti
et al., 2008), e.g. their subparts extracted by STK
or PTK, like the tree fragments in figures 1(a) and
1(b). These can be used in SVMs to learn the clas-
sification of words in concepts.

More specifically, in our approach, we use tree
fragments to establish the order of correctness
between two alternative annotations. Therefore,
given two trees associated with two annotations, a
re-ranker based on tree kernel can be built in the
same way of the sequence-based kernel by substi-
tuting SK in Eq. 2 with STK or PTK. The major
advantage of using trees is the hierarchical depen-
dencies between its nodes, allowing for the use of
richer n-grams with back-off models.

5 Experiments

In this section, we describe the corpora, parame-
ters, models and results of our experiments on re-
ranking for SLU. Our baseline is constituted by the
error rate of systems solely based on either FST
or SVMs. The re-ranking models are built on the
FST output, which in turn is applied to both man-
ual or automatic transcriptions.

5.1 Corpora

We used two different speech corpora:
The LUNA corpus, produced in the homony-

mous European project, is the first Italian dataset
of spontaneous speech on spoken dialogs. It is
based on help-desk conversations in a domain
of software/hardware repairing (Dinarelli et al.,
2009b). The data is organized in transcriptions
and annotations of speech based on a new multi-
level protocol. Although data acquisition is still in
progress, 250 dialogs have been already acquired
with a WOZ approach and other 180 Human-
Human (HH) dialogs have been annotated. In this
work, we only use WOZ dialogs, whose statistics
are reported in Table 1.

The corpus MEDIA was collected within
the French project MEDIA-EVALDA (Bonneau-
Maynard et al., 2005) for development and evalu-
ation of spoken understanding models and linguis-
tic studies. The corpus is composed of 1257 di-
alogs (from 250 different speakers) acquired with
a Wizard of Oz (WOZ) approach in the context
of hotel room reservations and tourist information.
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Statistics on transcribed and conceptually anno-
tated data are reported in Table 2.

5.2 Experimental setup

Given the small size of LUNA corpus, we did not
carried out any parameterization thus we used de-
fault or a priori parameters. We experimented with
LUNA and three different re-rankers obtained with
the combination of SVMs with STK, PTK and SK,
described in Section 4. The initial annotation to be
re-ranked is the list of the ten best hypotheses out-
put by an FST model.

We point out that, on the large Media dataset the
processing time is considerably high2 so we could
not run all the models.

We trained all the SCLMs used in our experi-
ments with the SRILM toolkit (Stolcke, 2002) and
we used an interpolated model for probability es-
timation with the Kneser-Ney discount (Chen and
Goodman, 1998). We then converted the model in
an FST again with SRILM toolkit.

The model used to obtain the SVM baseline for
concept classification was trained using YamCHA
(Kudo and Matsumoto, 2001). As re-ranking
models based on structure kernels and SVMs,
we used the SVM-Light-TK toolkit (available at
disi.unitn.it/moschitti). For λ (see Section 3), cost-
factor and trade-off parameters, we used, 0.4, 1
and 1, respectively (i.e. the default parameters).
The number m of hypotheses was always set to 10.

The CRF model we compare with was
trained with the CRF++ tool, available at
http://crfpp.sourceforge.net/. The model is equiva-
lent to the one described in (Hahn et al., 2008). As
features, we used word and morpho-syntactic cat-
egories in a window of [-2, +2] with respect to the
current token, plus bigrams of concept tags (see
(Hahn et al., 2008) and the CRF++ web site for
more details).

Such model is very effective for SLU. In (Hahn
et al., 2008), it is compared with other four models
(Stochastic Finite State Transducers, Support Vec-
tor Machines, Machine Translation, Positional-
Based Log-linear model) and it is by far the best
on MEDIA. Additionally, in (Raymond and Ric-
cardi, 2007), a similar CRF model was compared
with FST and SVMs on ATIS and on a different

2The number of parameters of the models and the number
of training approaches make the exhaustive experimentation
very expensive in terms of processing time, which would be
roughly between 2 and 3 months of a typical workstation.

Structure STK PTK SK
FLAT 18.5 19.3 -
MULTILEVEL 20.6 19.1 -
FEATURES 19.9 18.4 -
SK1 - - 16.2
SK2 - - 18.5

Table 3: CER of SVMs using STK, PTK and SK
on LUNA (manual transcriptions). The Baselines,
FST and SVMs alone, show a CER of 23.2% and
26.3%, respectively.

Model MEDIA (CER) LUNA (CER)
FST 13.7% 23.2%
CRF 11.5% 20.4%
SVM-RR (PTK) 12.1% 18.4%

Table 4: Results of SLU experiments on MEDIA
and LUNA test set (manual transcriptions).

version of MEDIA, showing again to be very ef-
fective.

We ran SLU experiments on manual and auto-
matic transcriptions. The latter are produced by
a speech recognizer with a WER of 41.0% and
31.4% on the LUNA and the MEDIA test sets, re-
spectively.

5.3 Training approaches

The FST model generates the 10-best annotations,
i.e. the data used to train the re-ranker based on
SVMs. Different training approaches can be car-
ried out based on the use of the data. We divided
the training set in two parts. We train FSTs on
part 1 and generate the 10-best hypotheses using
part 2, thus providing the first chunk of re-ranking
data. Then, we re-apply these steps inverting part
1 with part 2 to provide the second data chunk.
Finally, we train the re-ranker on the merged data.

For classification, we generate the 10-best hy-
potheses of the whole test set using the FST
trained on all training data.

5.4 Re-ranking results

In Tables 3, 4 and 5 and Figures 4(a) and 4(b) we
report the results of our experiments, expressed in
terms of concept error rate (CER). CER is a stan-
dard measure based on the Levensthein alignment
of sentences and it is computed as the ratio be-
tween inserted, deleted and confused concepts and
the number of concepts in the reference sentence.

Table 3 shows the results on the LUNA cor-
pus using the different training approaches, ker-
nels and structures described in this paper. The
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(a) Learning Curve on MEDIA corpus using the RR model
based on SVMs and STK
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(b) Learning Curve on LUNA corpus using the RR model
based on SVMs and SK

Figure 4: Learning curves on MEDIA and LUNA corpora using FST, CRF and RR on the FST hypotheses

Model MEDIA (CER) LUNA (CER)
FST 28.6% 42.7%
CRF 24.0% 41.8%
SVM-RR (PTK) 25.0% 38.9%

Table 5: Results of SLU experiments on MEDIA
and LUNA test set (automatic transcriptions with
a WER 31.4% on MEDIA and 41% on LUNA)

dash symbol means that the structure cannot be
applied to the corresponding kernel. We note that
our re-rankers significantly improve our baselines,
i.e. 23.2% CER for FST and 26.3% CER for SVM
concept classifiers. For example, SVM re-ranker
using SK, in the best case, improves FST concept
classifier of 23.2-16.2 = 7 points.

Note also that the structures designed for trees
yield quite different results depending on which
kernel is used. We can see in Table 3 that the
best result using STK is obtained with the simplest
structure (FLAT), while with PTK the best result
is achieved with the most complex structure (FEA-
TURES). This is due to the fact that STK does
not split the children of each node, as explained in
Section 2.2, and so structures like MULTILEVEL
and FEATURES are too rigid and prevent the STK
to be effective.

For lack of space we do not report all the results
using different kernels and structures on MEDIA,
but we underline that as MEDIA is a more com-
plex task (34 concepts in LUNA, 80 in MEDIA),
the more complex structures are more effective to
capture word-concept dependencies and the best
results were obtained using the FEATURES tree.

Table 4 shows the results of the SLU exper-
iments on the MEDIA and LUNA test sets us-
ing the manual transcriptions of spoken sentences

and a re-ranker based on PTK and the FEATURES
structure (already reported in the previous table).
We used PTK since it is enough efficient to carry
out the computation on the much larger Media cor-
pus although as previously shown it is less accu-
rate than SK.

We note that on a big corpus like MEDIA, the
baseline models (FST and CRF) can be accurately
learned thus less errors can be ”corrected”. As
a consequence, our re-ranking approach does not
improve CRF but it still improves the FSTs base-
line of 1.6% points (11.7% of relative improve-
ment).

The same behavior is reproduced for the SLU
experiments on automatic transcriptions, shown in
Table 5. We note that, on the LUNA corpus, CRFs
are more accurate than FSTs (0.9% points), but
they are significantly improved by the re-ranking
model (2.9% points), which also improves the
FSTs baseline by 3.8% points. On the MEDIA
corpus, the re-ranking model is again very accu-
rate improving the FSTs baseline of 3.6% points
(12.6% relative improvement) on attribute anno-
tation, but the most accurate model is again CRF
(1% points better than the re-ranking model).

5.5 Discussion

The different behavior of the re-ranking model in
the LUNA and MEDIA corpora is due partially to
the task complexity, but it is mainly due to the fact
that CRFs have been deeply studied and experi-
mented (see (Hahn et al., 2008)) on MEDIA. Thus
CRF parameters and features have been largely
optimized. We believe that the re-ranking model
can be relevantly improved by carrying out param-
eter optimization and new structural feature de-
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sign.
Moreover, our re-ranking models achieve the

highest accuracy for automatic concept annota-
tion when small data sets are available. To show
this, we report in Figure 4(a) and 4(b) the learning
curves according to an increasing number of train-
ing sentences on the MEDIA and LUNA corpora,
respectively. To draw the first plot, we used a re-
ranker based on STK (and the FLAT tree), which
is less accurate than the other kernels but also the
most efficient in terms of training time. In the sec-
ond plot, we report the re-ranker accuracy using
SK applied to SK1 structure.

In these figures, the FST baseline performance
is compared with our re-ranking (RR) and a Con-
ditional Random Field (CRF) model. The above
curves clearly shows that for small datasets our
RR model is better than CRF whereas when the
data increases, CRF accuracy approaches the one
of the RR.

Regarding the use of kernels two main findings
can be derived:

• Kernels producing a high number of features,
e.g. SK, produce accuracy higher than ker-
nels less rich in terms of features, i.e. STK. In
particular STK is improved by 18.5-16.2=2.3
points (Table 3). This is an interesting re-
sult since it shows that (a) a kernel producing
more features also produces better re-ranking
models and (b) kernel methods give a remark-
able help in feature design.

• Although the training data is small, the re-
rankers based on kernels appear to be very
effective. This may also alleviate the burden
of annotating large amount of data.

6 Conclusions

In this paper, we propose discriminative re-
ranking of concept annotation to jointly exploit
generative and discriminative models. We im-
prove the FST-based generative approach, which
is a state-of-the-art model in LUNA, by 7 points,
where the more limited availability of annotated
data leaves a larger room for improvement. Our
re-ranking model also improves FST and CRF on
MEDIA when small data sets are used.

Kernel methods show that combinations of fea-
ture vectors, sequence kernels and other structural
kernels, e.g. on shallow or deep syntactic parse
trees, appear to be a promising future research

line3. Finally, the experimentation with automatic
speech transcriptions revealed that to test the ro-
bustness of our models to transcription errors.

In the future we would like to extend this re-
search by focusing on advanced shallow semantic
approaches such as predicate argument structures,
e.g. (Giuglea and Moschitti, 2004; Moschitti and
Cosmin, 2004; Moschitti et al., 2008). Addition-
ally, term similarity kernels, e.g. (Basili et al.,
2005; Bloehdorn et al., 2006), will be likely im-
prove our models, especially when combined syn-
tactic and semantic kernels are used, i.e. (Bloe-
hdorn and Moschitti, 2007a; Bloehdorn and Mos-
chitti, 2007b).
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