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A b s t r a c t  
This paper describes an efficient parallel system 
for processing Typed Feature Structures (TFSs) 
on shared-memory parallel machines. We call 
the system Parallel Substrate for TFS (PSTFS). 
PSTFS is designed for parallel computing envi- 
ronments where a large number of agents are 
working and communicating with each other. 
Such agents use PSTFS as their low-level mod- 
ule for solving constraints on TFSs and send- 
ing/receiving TFSs to/fi 'om other agents in an 
efficient manner.  From a programmers point 
of view. PSTFS provides a simple and unified 
mechanism for building high-level parallel NLP 
svstems. The performance and the flexibility of 
our PSTFS are shown through the experiments 
on two different types of parallel HPSG parsers. 
The speed-up was more than 10 times on both 
parsers. 

1 I n t r o d u c t i o n  

The need for real-time NLP systems has been 
discussed for the last decade. The difficulty in 
implementing such a system is that  people can 
not use sophisticated but computationally ex- 
pensive methodologies. However, if we could 
provide an efficient tool/environment for de- 
veloping parallel NLP systems, programmers 
would have to be less concerned about the issues 
related to efficiency of the system. This became 
possible due to recent developments of parallel 
machines with shared-memory architecture. 

We propose an efficient programming envi- 
ronment for developing parallel NLP systems 
on shared-memory parallel machines, called the 
Parallel Substrate for Typed Feature Structures 
(PSTFS).  The environment is based on agent- 
based/object-oriented architecture. In other 
words, a system based on PSTFS has many 
computational  agents running on different pro- 
cessors in parallel; those agents communicate 
with each other by using messages including 
TFSs. Tasks of the whole system, such as pars- 

* This research is part ial ly founded by the project  of 
JSPS(JSPS-RFTF96P00502).  
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Figure 1: Agent-based System with the PSTFS 

ing or semantic processing, are divided into sev- 
eral pieces which can be simultaneously com- 
puted by several agents. 

Several parallel NLP systems have been de- 
veloped previously. But most of them have been 
neither efficient nor practical enough (Adriaens 
and Hahn, 1994). On the other hand, our 
PSTFS provides the following features. 

• An efficient communication scheme for 
messages including Typed Feature Struc- 
tures (TFSs) (Carpenter ,  1992). 

• Efficient t reatment  of TFSs by an abstract 
machine (Makino et al., 1998). 

Another possible way to develop parallel NLP 
systems with TFSs is to use a full concurrent 
logic programming language (Clark and Gre- 
gory, 1986; Ueda, 1985). However, we have ob- 
served that  it is necessary to control parallelism 
in a flexible way to achieve high-performance. 
(Fixed concurrency in a logic programming lan- 
guage does not provide sufficient flexibility.) 
Our agent-based architecture is suitable for ac- 
complishing such flexibility in parallelism. 

The next section discusses PSTFS from a pro- 
grammers '  point of view. Section 3 describes 
the PSTFS architecture in detail. Section 4 de- 
scribes the performance of PSTFS on our HPSG 
parsers. 
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Figure 2: Examt)le concatenate_name 

2 P r o g r a n a m e r s '  V i e w  

l:roln a progranmlers '  point of view, tile PS'I'I?S 
n~e('hanism is q u i l e  simI)le and natural ,  which 
is d lte Io careful design f o r  accomplishing high- 
l)erformance and ease of t)rogramlning. 

S y s t e n l s  Io  t)e constructed on our PSTFS will 
include two different tyt)es of agents: 

• Control Agents ((.:As) 

• Constraint Solver Agents (CSAs) 

As ilhlstrated in Figure 1, CAs have overall 
control of a system, including control of par- 
allelism, and they behave as masters of CSAs. 
CSAs modify TFSs according to the orders from 
CAs. Note that  CAs can neither modify nor 
generate TFSs by themselves. 

PSTFS has been implemented by combin- 
ing two existing programming languages: the 
concurrent object-oriented programming lan- 
guage A B C L / f  (Taura, 1997) and the sequential 
programming language LiLFeS (Makino et al., 
1998). CAs can be writ ten in ABCL/f ,  while 
description of CSAs can be mainly writ ten in 
LiLFeS. 

Figure 2 shows an example of a part  of the 
PSTFS code. The task of this code is to con- 
catenate  the first and the second name in a 
given list. One of the CAs is called name- 
concatenator. This specific CA gathers pairs of 
the first and last name by asking a CSA with the 
m e s s a g e  so ]_ve -consg ra : ] . r t 4 : ; ( t na ' nze ( . ' ? ) ' ) .  When 
the CSA receives this message, the argument  
' name(?) '  is treated as a Prolog query in 

LiLFeS 1, according to the program of a CSA 
((A) of Figure 2). There  are several facts with 
the predicate 'name'. When the goal 'name(?)' 
is processed by a CSA, all the possible answers 
defined by these facts are returned.  The ob- 
tained pairs are stored in the variable F in the 
name-concatenator((C) in Figure 2). 

The next behavior of the name-concatenator 
agent is to create CAs (namc-concatenator- 
subs) and to send the message s o l v e  with a 
TFS to each created CA running in parallel. 
The message contains one of the TFSs in I". 
Each name-concatenator-sub asks a CSA to con- 
catenate FIRST and LAST in a TFS. Then 
each CSA concatenates them using the defi- 
nite clause concatenate_name given in (A) of 
Figure 2. The result is re turned to the name- 
concatenator-sub which had asked to do tile job. 
Note that the name-coneatenator-sub can ask 
any of the existing CSAs. All CSAs can basi- 
cally perform concatenation in parallel and in- 
dependent way. Then,  the name-cones~chafer 
waits for the name-concatenator-sub to return 
concatenated names, and puts the return val- 
ues into the variable R. 

The ('A name-com'atc,ator controls the over- 
all process. It controls parallelism by creating 
( 'As and s(,nding messages to them. On the 
other hand, all the e l ) o r a t i o n s  Oil TFSs are per- 
formed by CSAs when they are asked by CAs. 

Supt)ose thai one is trying to implement a 
i)arsing system based on PSTFS. The distinc- 
tion between CAs att(t CSAs roughly corre- 
sponds to the distinction between an al)stract 
parsing schema and application of phrase struc- 
ture rules. Itere, a parsing schema means a 
high-level description of a parsing algorithm in 
which the application of phrase structure rules 
is regarded as an atomic operation or a sub- 
routine. This distinction is a minor factor in 
writing a sequential parser, but it has a major  
impact on a parallel environment.  

For instance, suppose that  several distinct 
agents evoke applications of phrase structure 
rules against the same data  simultaneously, and 
the applications are accompanied with destruc- 
tive operations on the data. This can cause an 
anomaly, since the agents will modify the orig- 
inal data  in unpredictable order and there is 
no way to keep consistency. In order to avoid 
this anomaly, one has to determine what is an 
atomic operation and provide a method to pre- 
vent the anomMy when atomic operations are 
evoked by several agents. In our fi'amework, 
any action taken by CSAs is viewed as such 
an atomic operation and it is guaranteed that  
no anomaly occurs even if CSAs concurrently 

1LiLFeS suppor | s  definite clause programs, it T F S  
version of t torn chutses. 
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Figure 3: Inside of the PSTFS 

perform operations on the same data. This 
can be done by introducing copying of TFSs, 
which does not require any destructive opera- 
tions. The details are described in the next sec- 
tion. 

The other implication of the distinction be- 
tween CAs and CSAs is that  this enables effi- 
cient communication between agents in a natu- 
ral way. During parsing in HPSG, it is possible 
that  TFSs with hundreds of nodes can be gen- 
erated. Encoding such TFSs in a message and 
sending them in an efficient way are not triv- 
ial. PSTFS provides a communicat ion scheme 
that enables efficient sending/receiving of such 
TFSs. This becomes possible because of the 
distinction of agents. In other words, since (?As 
cannot modify a TFS, CAs do not have to have 
a real image of TFSs. When CSAs return the 
results of computations to CAs, the CSAs send 
only an ID of a TFS. Only when the ID is passed 
to other CSAs and they try to modify a TFS 
with the ID, the actual transfer of the TFS's 
real image occurs. Since the transfer is car- 
ried out only between CSAs, it can be directly 
performed using a low level representation of 
TFSs used in CSAs in an efficient manner.  Note 
that  if CAs were to modify TFSs directly, this 
scheme could not have been used. 

3 A r c h i t e c t u r e  

This section explains the  inner s tructure of 
PSTFS focusing on the execution mechanism of 
CSAs (See (Taura, 1997) for fur ther  detail on 
CAs). A CSA is implemented by modifying the 
abstract  machine for TFSs (i.e., LiAM), origi- 
nally designed for executing LiLFeS (Makino et 
al., 1998). 

The important  constraint in designing the ex- 
ecution mechanism for CSAs is that  TFSs gen- 
erated by CSAs must be kept unmodified. This 
is because the TFSs must  be used with several 
agents in parallel. If the TFS had been modi- 
fied by a CSA and if other  agents did not know 
the fact, the expected results could not have 
been obtained. Note that  unification, which is 

(i) Copying from shared heap 

-L0cal Heap 
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Figure d: Operation steps on PSTFS 

a major  operation on TFSs,  is a destructive op- 
eralion, and modifications are likely to occur 
while executing CSAs. Our execution mecha- 
nism handles this problem by letting CSAs copy 
TFSs generated by other  CSAs at each time. 
Though this may  not look like an efficient way 
at first glance, it has been performed efficiently 
by shared memory  mechanisms and our copying 
methods.  

A CSA uses two different types of memory  
areas as its heap: 

• shared heap 

• local heap 

A local heap is used for temporary  operations 
during the computat ion inside a CSA. A CSA 
cannot read/wr i te  local heap of other CSAs. A 
shared heap is used as a medium of commu- 
nication between CSAs, and it is realized on 
a shared memory.  When a CSA completes a 
computat ion on TFSs, it writes the result on 
a shared heap. Since the shared heap can be 
read by any CSAs, each CSA can read the re- 
sult performed by any other  CSAs. However, 
the portion of a shared heap that  the CSA can 
write to is limited. Any other  CSA cannot write 
on that  portion. 

Next:, we look at the steps performed by a 
CSA when it is asked by CAs with a message. 
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Note that  the message only contains the IDs of 
the TFSs as described in the previous section. 
The IDs are realized a~s pointers on the shared 
heap. 

1. Copy TFSs pointed at by the IDs in the 
message fi'om the shared heap to the local 
heap of the CSA. ((i)in Figure 4.) 

2. Process a query using LiAM and the local 
heap. ( ( i i ) in  Figure 4.) 

3. If a query has an answer, the result is 
copied to the portion of the shared heap 
writable by the CSA. Keep IDs on the 
copied TFSs. If there is no answer for the 
query, go to Step 5. ((iii) in Figure 4.) 

4. Evoke backtracking in LiAM and go to Step 
2. 

5. Send the message, including the kept IDs, 
back to the CA that had asked the task. 

Note that:, in step 3, the results of the compu- 
tation becomes readable by other CSAs. This 
procedure has the following desirable features. 

S i m u l t a n e o u s  C o p y i n g  An identical TFS on 
a shared hea I) can be (:opied by several 
( 'SAs simultaneously. This is due to our 
shared memory medmnism and the prop- 
er ty of LiAM that copying does not have 
ally side-ef['ect on TFSs 2. 

S i m u l t a n e o u s / S a f e  W r i t i n g  CSAs can 
write on their own shared heap without the 
danger of accidental modification by other  
CSAs. 

D e m a n d  D r i v e n  C o p y i n g  As described in 
the previous section, the transfer of real 
images of TFSs is performed only after the 
IDs of the TFSs reach to the CSAs requir- 
ing the TFSs. Redundant  copying/sending 
of the TFSs '  real image is reduced, and the 
transfer is performed efficiently by mecha- 
nisms originally provided by LiAM. 

With efficient da ta  transfer in shared-memory 
machines, these features reduce the overhead of 
parallelization. 

Note that  copying in the procedures makes 
it possible to support non-determinism in NLP 
systems. For instance, during parsing, interme- 
diate parse trees must be kept. In a chart  pars- 
ing for a unification-based grammar,  generated 

2Actually,  this is not trivial. Copying in Step 3 nor- 
realizes TFSs  and s tores  the TFSs  into a cont inuous  re- 
gion on a shared heap.  TI 'Ss  s tored in such a way can 
be copied wi thout  any side-effect. 

edges are kept untouched, and destructive oper- 
ations on the results nmst be done after copying 
them. The copying of TFSs in the above steps 
realizes such nmchanisms in a natural  way, as it 
is designed for efficient support  for da ta  sharing 
and destructive operations on shared heaps by 
parallel agents. 

4 A p p l i e a t i o n  a n d  P e r f o r m a n c e  
E v a l u a t i o n  

This section describes two difl%rent types of 
IIPSG parsers implemented on PSTFS.  One is 
designed for our Japanese g rammar  and the al- 
gori thm is a parallel version of the CKY algo- 
r i thm (Kasami, 1965). The other is a parser for 
an ALE-style Grammar  (Carpenter  and Penn, 
1994). The algorithms of both parsers are based 
on parallel parsing algorithms for CFG (Ni- 
nomiya et al., 1997; Nijholt, 1994; Grishman 
and Chitrao, 1988; Thompson,  1994). Descrip- 
tions of both parsers are concise. Both of them 
are writ ten in less than 1,000 lines. This shows 
thal our I 'STFS can be easily used. With the 
high i)erfornaance of the parsers, this shows the 
feasibi]ily and tlexibility of our PSTFS. 

For sin@icily of discussion, we assume that 
Ill)S(; consists of' lexical entries and rule 
schemala,  l,exical entries can be regarded as 
'l'l.Ss assigned to each word. A rule schema is 
a r , l - i n  the fi)rm of z - -  abe:.., where z . , . / , . c  
are T li'Ss. 

4.1 P a r a l l e l  C K Y - s t y l e  H P S G  P a r s i n g  
Algo r i t  h m  

A sequential CKY parser for CI"(; uses a data 
s t ructure called a trianyular table. Let 1'} 4 de- 
note a cell in the triang(flar table. Each cell ]'},j 
has a set of the non-terminal symbols in CFG 
that  can generate the word sequence from tile 
i + 1-th word to the j - th  word in an input sen- 
tence. The sequential CKY algorithm computes 
each Fi,j according to a certain order. 

Our algorithm for a parallel CKY-style parser 
for HPSG computes each Fi,j in parallel. Note 
that  b]-,j contains TFSs covering the word se- 
quence fi'om the i + 1-th word to the j - th  
word, not non-terminMs. We consider only the 
rule schemata with a form of z --. ab where 
z ,a ,b  are TFSs. Parsing is started by a CA 
called 7)ATtSgT4. PAT48gT~ creates cell-agents 
Ci,j(O <_ i < j < n) and distributes them to pro- 
cessors on a parallel machine (Figure 5). Each 
Ci, j computes F},j in parallel. More precisely, 
Ci,j(j - i = 1) looks up a dictionary and obtains 
lexical entries. Ci,j(j - i > 1) waits for the mes- 
sages including I'},k and Fk,j for all k(i < k < j)  
from other cell-agents. When Ci,j receives /'},k 
and I"k j for an arbitrary k, Ci,j computes rI'FSs 
1)3' aI)plying rule schemata to each meint)ers of 

971 



Figure 5: Correspondence between CKY matrix 
and agents: C,i,j correspond to the element of a 
CKY triangular matrix 

Fi,k and Fk,j. The computed TFSs are consid- 
ered to be mothers of members of Fi,k and Fk,  
and they are added to Fi,j. Note that  these ap J- 
plications of rule schemata are done in parallel 
in several CSAs 3. Finally. when computation of 
[},j (using Fi,~. and [k-,j for all k(i < k < j ) )  is 
completed, Ci,j distributes Fi,j to other agents 
waiting for/~'/j. Parsing is completed when the 
COml)utation of [o.,~ is completed. 

We have done a series of experiments on a 
shared-memory parallel machine. SUN Ultra 
Enterprise 10000 consisting of 64 nodes (each 
node is a 2,50 MHz UltraSparc) and 6 GByte 
shared memory. The corpus consists of 879 
random sentences from the EDR Japanese cor- 
pus written in Japanese (average length of sen- 
tences is 20.8) 4 . The grammar we used is an 
underspecified Japanese HPSG grammar (Mit- 
suishi et al., 1998) consisting of 6 ID-schemata 
and 39 lexical entries (assigned to functional 
words) and 41 lexical-entry-templates (assigned 
to parts of speech). This grammar has wide cov- 
erage and high accuracy for real-world texts s. 

Table 1 shows the result and comparison with 
a parser written in LiLFeS. Figure 6 shows 
its speed-up. From the Figure 6, we observe 
that  the maximum speedup reaches up to 12.4 
times. The average parsing time is 85 msec per 

aCSAs cannot be added dynamically in our imple- 
mentation. So, to gain the maximum parallelism, we 
assigned a CSA to each processor. Each Ci.j asks the 
CSA on the same processor to apply rule schemata. 

4We chose 1000 random sentences from the EDR 
Japanese corpus, and the used 897 sentences are all the 
parsable sentences by the grammar. 

5This grammar can generate parse trees for 82% of 
10000 sentences from the EDR Japanese corpus and the 
dependency accuracy is 78%. 

N u m b e r  of , A v ~  of P a r s i n g  T i m e (  . . . .  ) 
P rocessors  J P S T F S  | L iLFeS 

] 10$7 991 
10 248 
20 138 
30 i 0 6  
40 93 
50 85 
60 135 

Table h Average parsing time per sentence 
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Figure 6: Speed-up of parsing time on parallel 
CKY-style HPSG parser 

SOIl t on ce  6 . 

4.2 C h a r t - b a s e d  Pa ra l l e l  H P S G  
P a r s i n g  A l g o r i t h m  for A L E  
G r a m m a r  

Next, we developed a parallel chart-based 
HPSG parser for an ALE-style grammar. The 
algorithm is based on a chart schema on which 
each agent throws active edges and inactive 
edges containing a TFS. When we regard the 
rule schemata as a set of rewriting rules in 
CFG, this algorithm is exactly the same as 
the Thompson's  algorithm (Thompson, 1994) 
and similar to PAX (Matsumoto,  1987). The 
main difference between the chart-based parser 
and our CKY-style parser is that the ALE-style 
parser supports a n-branching tree. 

A parsing process is started by a CA called 
:P.AT~S£7~. It .creates word-position agents 
Pk(0 _< k _< n), distributes them to parallel 
processors and waits for them to complete their 
tasks. The role of the word-position agent 79k 

6Using 60 processors is worse than with 50 proces- 
sors. Ill general, when the number of processes increases 
to near  or more  than  the number  of exist ing processors,  
con tex t  switch be tween  processes  occurs f requent ly  on 
sha red -memory  parallel machines  (many people  can use 
the machines  s imul taneous ly) .  We believe tile cause for 
the inefficiency when using 60 processors lies in such con- 
text  switchcs.  
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e n c e s  

[ 4 he er~'uades her  to  walk  
e l t t ences  

~ ~ a . ~  y W tOl~ e t r ies  to  t i e s  to  

| (2 )  [ ~ h o  sees k im  w h o m  
] " " ] he t r ies  to see wMks 
[ (3)  ] ~ a n d y  who  sees k im  who 
[ ~  be l i eves  he r  to  t e n d  to  wa lk  walks  

Table 2: Test corpus for parallel ALE-style 
l lPSG parser 

S h o r t  L e n g t h  ~en tences  
N u m b e r  of  Avg .  of  P a r s i n g  T i m e ( r e s e t )  
P r o c e s s o r s  P S T F S  [ L iLFeS I A L E  

1 l O 625160 125 1590 

20 156 
30 127 
40 205 
50 142 
60 170 

Lon~  L e n g t h  5 e n t e n c e ~  

N u m b e r  of  Avg .  o l  P&r~ing T i m e ( m s e c ~  
P r o c e s s o r s  P S T F S  I LiLFeS I A L E  

110 193013208 30867 389370  

20 2139 
30 1776 
40 1841 
50 1902 
60 2052 

is to collect edges adjacent to the position k. 
A word-position agent has its own active edges 
and inactive edges. An active edge is in the form 
( i , z  ~ A o x B } ,  where A is a set of TFSs which 
have already been unified with an existing con- 
stituents, B is a set of TFSs which have not 
been unified yet,  and x is the TFS which can be 
unified with the  consti tuent  in an inactive edge 
whose left-side is in position k. Inactive edges 
are in the form (k, x, j}, where k is the left-side 
position of th(, consti tuent x and j is the right- 
side position of the consti tuent x. That  is, the 
set of all inactive edges whose left-side position 
is k are collected by T'-k. 

hi our algorithm, Pk. is always waiting for eF 
ther an active e(l,,'e or an inactive edge. and t)er- 
torlns the following 1)rocedure when receiving an 
edge. 

• When Pk receives an active edge (i ,z  - -  
el o xB) ,  ~k preserve tire edge and tries to 
find the unifiable consti tuent with x from 
the set of inactive edges that  7)/~ has ah'eady 
received. If the unification succeeds, a new 
active edge {i,z ~ Ax  o B} is created. If 
the dot in the new active edge reaches to 
the end of RHS (i.e. B = 0), a new inactive 
edge is created and is sent to Pi. Otherwise 
the new active edge is sent to 7)j. 

• When Tak receives an inactive edge (k, x, j ) ,  
7~k preserves the edge and tries to find the 
unifiable const i tuent  on the right side of 
the dot from the set of active edges that  
T'k has already received. If the unification 
succeeds, a new active edge {i, z ~ Ax  oB)  
is created. If the dot in the new active edge 
reaches to the end of RHS (i.e. B = 0), a 
new inactive edge is created and is sent to 
7)/. Otherwise the new active edge is sent 
t o  ~Oj. 

As long as word-position-agents follow these 
behavior, they can run in parallel without any 
other  restriction. 

We have done a series of experiments in the 
same machine settings as the experiments with 

Table 3: Average parsing time per sentence 

Speed-up 

t 2  

10 

0 10 20 30 40 50 60 
# o f  Processors  

Figure 7: Speed-up of t)arsing time on chart- 
based paralM Ill S(, parser 

the CKY-style IIPSG parser. We measured 
both its speed up and real parsing time, and 
we compared our parallel parser with the ALE 
system and a sequential parser on LiLFeS. The 
grammar  we used is a sample I tPSG grammar  
at tached to ALE system r, which has 7 schemata  
and 62 lexical entries. The test corpus we 
used in this experiment  is shown in the Table 
2. Results and comparison with other sequen- 
tial parsing systems are given in Table 3. Its 
speedup is shown in Figure 7. From the figure, 
we observe that  the maximum speedup reaches 
up to 10.9 times and its parsing time is 1.776 
msec per sentence. 

4.3  D i s c u s s i o n  
In both parsers, parsing time reaches a level 
required by reM-time applications, though we 
used computationally expensive grammar  for- 
mMisms, i.e. IIPSG with reasonable coverage 
and accuracy. This shows the feasibility of our 

rThis sample granlingtr is converted to LiLFeS style 
half automatically. 

973 



Processor ID Processor Status 

=F - V - 
40  ~ = I = " - -  - - - - "  = -  

. - -  . - - -  o I . - - - ~  - ---- ----- __-- 

0 2 
616,12 616.14 616.16 616.1g 

]..K< 
] ~ccv 

P 

Figure 8: Processors status 

framework for the goM to provide a parallel pro- 
gramming environment for real-time NLP. In 
addition, our parallel HPSG parsers are con- 
siderably more efficient than other sequential 
IIPSG parsers. 

However, the speed-up is not proportional to 
the number of processors. We think that this is 
because the parallelism extracted in our parsing 
algorithm is not enough. Figure 8 shows the log 
of parsing Japanese sentences by the CKY-style 
parser. The black lines indicate when a proces- 
sor is busy. One can see thal many l)r<)cessors 
are Dequently idle. 

We think that  this idle time does not sug- 
gest that parallel NLP systems are useless. On 
the contrary, this suggest; that parallel NLP sys- 
tems have many possibilities. If we introduce 
semantic processing for instance, overall pro- 
cessing time may not change because the idle 
time is used for semantic processing. Another 
possibility is the use of parallel NLP systems as 
a server. Even if we feed several sentences at a 
time, throughput  will not change, because the 
idle time is used for parsing different sentences. 

5 C o n c l u s i o n  a n d  F u t u r e  W o r k  

We described PSTFS,  a substrate for parallel 
processing of typed feature structures. PSTFS 
serves as an efficient programming environment 
for implementing parallel NLP systems. We 
have shown the feasibility and flexibility of 
our PSTFS through the implementation of two 
HPSG parsers. 

For the future, we are considering the use of 
our HPSG parser on PSTFS for a speech recog- 
nition system, a NaturM Language Interface or 
Speech Machine Translation applications. 
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