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This paper  describes how to construct a finite-state 
machine (FSM) approximating a 'unification-based' 
g rammar  using a left-corner g rammar  transform. 
The approximation is presented as a series of gram- 
mar  transforms, and is exact for leftqinear and right- 
linear CFGs, and for trees up to a user-specified 
depth of center-embedding. 

1 I n t r o d u c t i o n  

This paper  describes a method for approximat-  
ing grammm's  with finite-state machines. Unlike 
the method derived from the LR(k) parsing algo- 
r i thm described in Pereira and Wright (1991), these 
methods use g rammar  transformations based on the 
left-corner g rammar  transform (Rosenkrantz and 
Lewis II, 1970; Aho and Ulhnan, 1972). One ad- 
vantage of the left, corner methods is that  they gen- 
eralize straightforwardly to complex feature "unifi- 
cation based" grammars ,  unlike the LR(k) based at> 
proach. For example, the implementat ion described 
here translates a DCG version of the example gram- 
mar  given by Pereira and Wright (1991) directly into 
a FSM without constructing an approximating CFG. 

Left-corner based techniques are natural  for this 
kind of application because (with the simple opti- 
mization described below) they can parse pure left- 
branching or pure right-branching structures with 
a stack depth of one (two if terminals are pushed 
and popped from the stack). Higher stack depth 
occurs with center-embedded structures, which hu- 
mans find difficult to comprehend. This suggests 
tha t  we may get a finite-state approximation to hu- 
man performance by simply imposing a stack depth 
bound. We provide a simple tree-geometric descrip- 
tion of the configurations tha t  cause an increase ill 
a left corner parser 's  stack depth below. 

The rest of this paper  is structured as follows. 
The remainder of this section outlines the "gram- 
mar  transform" approach, summarizes the top-down 
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t)arsing algorithm and discusses how finite state 
approximations of top-down parsers can be con- 
s trut ted.  The fact that  this approximation is not ex- 
act for left linear grammars  (which define finite-state 
languages) motivates a finite-state approxinlation 
based on the left-corner parsing algorithm (which 
is presented as a g rammar  transform in section 2). 
In its s tandard form the approximation based on the 
left-corner parsing algorithm suffers from the com- 
plementary problem to the toi)-down approximation: 
it is not exact for right-linear grmnmars,  but tile 
"optimized" variants presented in section 3 over- 
come this deficiency, resulting in finite-state CFG 
approximations which m'e exact for leftqinear and 
right-linear grmnmars.  Section 4 discusses how these 
techniques can be combined in an implementation. 

1.1 P a r s i n g  s t r a t e g i e s  as grammar 
t r a n s f o r m a t i o n s  

The parsing algorithms discussed here are presented 
as grammar trans/ormatioTzs, i.e., functions T that  
map a context-free g rammar  G into another context- 
fi'ee g rammar  T(G). The transforms have the prop- 
erty tha t  a top-down parse using the transformed 
g rammar  is isomorphic to some other kind of parse 
using tile original grammar.  Thus g rammar  trans- 
forms provide a simple, compact  way of describing 
various parsing algorithms, as a top-down parser us- 
ing T(G) behaves identically to the kind of parser 
we want to study using G. 

1.2 Mappings  from trees to trees 

Tile t ranstbrmations presented here can also be un- 
derstood as isomorphisms fi'om the set of parse trees 
of the source g rammar  G to parse trees of the trans- 
formed grammar  which preserve terminal strings. 
Tiros it is convenient to explain the transforms in 
terms of their effect on parse trees. We call a parse 
tree with respect to tile source g rammar  G an anal- 
ysis tree, in order to distinguish it from parse trees 
with respect to some transform of G. Tile analy- 
sis tree t in Figure 1 will be used as an example 
throughout  this paper. 
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Figure 1: The  analysis tree t used as a running example below, and its left-corner t ransforms £Ci(t). Note 
tha t  the phonological forms are t reated here as annotations on the nodes drawn above them, ra ther  than 
independent nodes. Tha t  is, DET (annotated with the) is a terminal node. 

1.3 T o p - d o w n  p a r s e r s  a n d  p a r s e  t r e e s  

The "predictive" or "top-down" recognition algo- 
r i thm is one of the simplest CFG recognition al- 
gorithms. Given a CFG G = ( N , T , P , S ) ,  a (top- 
down) stack state is a sequence of terminals and 
nonterminals.  Let Q = (N U T)* be the set of stack 
states for G. The start state qo E Q is the sequence 
S, and the final state qs E Q is the empty sequence ~. 
The s tate  transit ion function 5 : Q × (TU {~}) ~ 2 Q 
maps a s tate  and a terminal  or epsilon into a set of 
states. It  is the smallest function 3 tha t  satisfies the 
following conditions: 

" T E 6 ( a ' y , a ) : a E T ,  T E  ( N U T ) * .  
/~'y E 5(A'y, e) : A E N, "), E (N U T)*, A -~/3 E P. 

A string w is accepted by the top-down recognition 
algorithm if q/ E ~*(qo,w), where 5* is the reflex- 
ive transit ive closure of ($ with respect to epsilon 
moves. Extending this top-down parsing algorithm 
to a 'unification-based'  g rammar  is straight-forward, 
and described in many textbooks,  such as Pereira 
and Shieber (1987). 

It  is easy to read off the stack states of a top- 
down parser constructing a parse tree from the tree 
itself. For any node X in the tree, the stack contents 
of a top-down parser just  before the construction 
of X consists of (the label of) X followed by the 
sequence of labels on the right siblings of the nodes 
encountered on the pa th  from X back to the root. 
It  is easy to check tha t  a top-down parser requires a 
stack of depth 3 to construct  the tree t depicted in 
Figure 1. 

1.4 F i n l t e - s t a t e  a p p r o x i m a t i o n s  

We obtain a finite-state approximation to a top- 
down parser  by restricting at tention to only a finite 
number  of possible stack states. The system imple- 
mented here imposes a stack depth restriction, i.e., 
the transit ion function is modified so that  there are 

no transitions to any stack state whose size is larger 
than some user-specified limit. 1 This restriction en- 
sures that  there is only a finite number  of possible 
stack states, and hence tha t  the top down parser 
is an finite-state machine. The resulting finite-state 
machine accepts a subset of the language generated 
by the original grammar.  

The situation becomes more complicated when we 
move to 'unification-based' grammars ,  since there 
may be an unbounded number  of different categories 
appearing in the accessible stack states. In the sys- 
tem implemented here we used restriction (Shieber, 
1985) on the stack states to restrict a t tent ion to a 
finite number  of distinct stack states for any given 
stack depth. Since the restriction operat ion maps 
a stack state to a more general one, it produces a 
finite-state approximation which accepts a superset 
of the language generated by the original unification 
grammar.  Thus for general constraint-based gram- 
mars the language accepted by our finite-state ap- 
t)roximation is not guaranteed to be either a superset 
or a subset of the language generated by the input 
grammar.  

2 T h e  l e f t - c o r n e r  t r a n s f o r m  

While conceptually simple, the top-down parsing al- 
gori thm presented in the last section suffers from 
a number of drawbacks for a finite-state approxi- 
mation. For example, the number  of distinct ac- 
cessible stack states is unbounded if the g rammar  
is left-recursive, yet left-linear g rammars  always 
generate regular languages. This section presents 

1With  the  opt imized  left-corner t r a n s f o r m s  descr ibed be- 
low we obta in  acceptable  a p p r o x i m a t i o n s  wi th  a s tack size 
l imit  of 5 or less. In m a n y  useful  cases,  inc luding  the  example  
g r a m m a r  provided by Pere i ra  and  Wr igh t  (1991), th is  s tack 
bound  is never  reached and  the  s y s t e m  repor ts  t ha t  the  FSA 
it r e tu rns  is exact.  
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the s tandard  left-corner g rammar  transformation 
(Rosenkrantz and Lewis II, 1970; Aho and Ull- 
man, 1972); these references should be consulted for 
proofs of correctness. This t ransform serves as the 
basis for the fllrther t ransforms described in the next 
,;ection; tliese transforms have the property that  the 
output  g r am m ar  induces a finite number of distinct 
accessible stack states if their input is a left-rccursive 
left-linear grammar .  

Given an input g rammar  G with nonterminals 
N and terminals T, these transforms £Ci produce 
g rammars  with an enlarged set of nonterminals N '  = 
N U (N x (N U T)).  The new "pair" categories in 
N x (N U T) are written A-X ,  where A is a non- 
terminal  of G and X is either a terminal or non- 
terminal of G. It  turns out that  if A =~; X 7 then 
A - X  =~)c,((~) % i.e., a non-terminal A - X  in the 
trmlsformed g r am m ar  derives the diffeT~nce between 
A and X in the original g rammar ,  and the notation 
is meant  to be suggestive of this. 

The l@-corne.r transform of a CFG G = 
(N, T, P, S) is a g rammar  /2dr (G) = (N ' ,  T, PI, S), 
where 1~ contains all productions of the form (1.a- 
1.c). This paper  assumes that  N n T = (~, as is 
s tandard.  To save space we assume that  P does not 
contain any epsilon productions (but it is straight- 
forward to deal with them). 

A -+ aA- -a :  A c N , a  E T. (1.a) 
A -X -+ f l A - B  : A E N , B  -4 X f l  C P. (1.b) 

A- A -+ ~ : A e N. (1.c) 
Informally, the productions (1.a) s tar t  the left- 
corner recognition of A by recognizing a ternfinal 
a as a possible left-corner of A. The actual left- 
corner recognition is performed by the productions 
(1.b), which extend the left-corner from X to its 
parent  B by recognizing fl; these productions are 
used repeatedly to construct  increasingly larger left- 
corners. Finally, the productions (1.c) terminate  the 
recognition of A when this left-corner construction 
process has constructed an A. 

The left-corner t ransform preserves the number 
of parses of a string, so it defines an isomorphism 
from analysis trees (i.e., parse trees with respect to 
(J) to parse trees with respect to £Ct (G). If t is a 
parse tree with respect to G then (abusing notation) 
£Ct (t) is the corresponding parse tree with respect 
to £61(G). Figure 1 shows the etfect of this map- 
ping on a simple tree. The t ransformed tree is con- 
siderably more complex: it has double the number 
of nodes of the original tree. In a top-down parse 
of the tree £C1(t) in Figure 1 the maximum stack 
depth is 3, which occurs at  the recognition of the 
terminals ran and fast. 

2.1 Fi l ter ing useless  categories  
In general tile g r am m ar  produced by the transform 
£C1(G) contains a large number  of useless nontcr- 

minals, i.e., non-terminals which can never appear  
in any complete derivation, even if the g r ammar  G is 
flflly pruned (i.e., contains no useless productions).  
While £C1(G) can be pruned using s tandard algo- 
rithms, given the observation about  the relationship 
between the pair non-terminals in £Cl (G) and non- 
terminals in G, it, is clear that  certain productions 
can be discarded immediately as useless. Define the 
h:ft-corncr relation < C (N U T) x N as follows: 

X < A iff 3fl. A ~ X fl E P, 

Let <* be the reflexive and transitive closure of <. 
It  is easy to show tha t  a category A - X  is useless 
in £C1(G) (i.e., derives no sequence of terminals) 
unless X <* A. Thus we can restrict the productions 
in (1.a-l .c) without affecting the language (strongly) 
generated to those that; only contain pair categories 
A - X  where X m* A. 

2.2 Unif icat ion grammars  

One of the main advantages of left-corner parsing 
algorithms over LR(k) based parsing algorithms is 
that  they extend straight-forwardly to complex fea- 
ture based "unification" grammars .  The transfor- 
mation/2C1 itself can be encoded in several lines of 
Prolog (Matsumoto et al., 1983; Pereira and Shieber, 
1987). This contrasts with the LR(k) methods.  In 
LR(k) parsing a single LR state may correspond 
to sew~ral items or dotted rules, so it is not cleat" 
how the feature "unification" constraints should be 
associated with transitions from LR state  to LR 
state (see Nakazawa (1995) for one proposal),  in 
contrast,  extending the techniques described here 
to complex feature based "unification" g rammar  is 
straight-forward. 

The main complication is the filter on useless non- 
terminals and productions just discussed. General- 
izing the left-corner closure filter on pair categories 
to complex feature "unification" g rammars  in an ef- 
ficient way is complicated, and is the pr imary diffi- 
culty in using left-corner methods with complex fea- 
ture based grammars ,  vail Noord (1997) provides 
a detailed discussion of methods for using such a 
"left-corner filter" in unif icat ion-grammar parsing, 
and the methods he discusses are used in the imple- 
mentat ion described below. 

3 E x t e n d e d  l e f t - c o r n e r  t r a n s f o r m s  

This section presents some simple extensions to the 
basic left-corner t ransform presented abow~'. The 
' tail-recursion' optimization permits bounded-stack 
parsing of both left, and right linear constructions. 
Further manipulat ion of this t ransform puts it into a 
form in which we can identify precisely the tree con- 
figurations in the original g rammar  which cause the 
stack size of a left-corner parser to increase. These 
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observations motivate the special binarization meth- 
ods described in the next section, which minimize 
stack depth in grammars that  contain productions 
of length no greater than two. 

3.1 A ta i l -recurs ion op t imiza t ion  

If G is a left-linear grammar, a top-down parser us- 
ing Z:C1 (G) can recognize any string generated by (7 
with a constant-bounded stack size. However, the 
corresponding operation with right-linear grammars 
requires a stack of size proportional to the length 
of the string, since the stack fills with paired cate- 
gories A - A  for each non-left-corner nonterminal in 
the analysis tree. 

The 'tail recursion' or 'composition' optimiza- 
tion (Abney and Johnson, 1991; Resnik, 1992) per- 
mits right-branching structures to be parsed with 
bounded stack depth. It is the result of epsilon re- 
moval applied to the output  of £C1, and can be de- 
scribed in terms of resolution or partial evaluation 
of the transformed grammar with respect to pro- 
ductions (1.c). In effect, the schema (1.b) is split 
into two cases, depending on whether or not the 
rightmost nonterminal A - B  is expanded by the ep- 
silon rules produced by schema (1.c). This expansion 
yields a grammar £C2(G) = (N ' ,  T,  P2, S) ,  where P2 
contains all productions of the form (2.a-2.c). (In 
these schemata A , B  E N; a E T; X E N U T and 
¢t E ( N U T ) * ) .  

A ~ a A - a  (2.a) 
A - X  ~ l~ A - B  : B ~ X ~ E P. (2.b) 

A - X  ~ IJ : A ~ X ~ E P. (2.c) 
Figure 1 shows the effect, of the transform £C2 on 
the example tree. The maximum stack depth re- 
quired for this tree is 2. When this 'tail recursion' 
optimization is applied, pair categories in the trans- 
formed grammar encode proper left-corner relation- 
ships between nodes in the analysis tree. This lets 
us strengthen the 'useless category' filter described 
above as follows. Let ~+ be the transitive closure of 
the left-corner relation ,~ defined above. It is easy 
to show that  a category A - X  is useless in £C2(G) 
(i.e., derives no sequence of terminals) unless X <+ A. 
Thus we can restrict the productions in (2.a-2.b) 
without affecting the language (strongly) generated 
to just those that  only contain pair categories A - X  
where X ,~+ A. 

3.2 The  special  ease of  b inary product ions  

We can get a bet ter  idea of the properties of transfor- 
mation £C2 if we investigate the special case where 
the productions of (7 are unary or binary. In this 
situation, transformation £62(G) can be more ex- 
plicitly written as £C3((7) = ( N ' , T ,  P 3 , S ) ,  where 
P3 contains all instances of the production schemata 
(3.a-3.e). (In these schemata, a E T; A, B E N and 
X , Y  E N U T ) .  

a 

A - X  ~ a C a A - B  (4.f) 

Figure 2: The highly distinctive "zig-zag" or "light- 
ning bolt" configuration of nodes in the analysis tree 
characteristic of the use of production schema (4.f) 
in transform £C4. This is the only configuration 
which causes an increase in stack depth in a top- 
down parser using a grammar transformed with £C4. 

A ~ (t A - a .  (3.a) 
A X ~ A - B : B - - ~ X E P .  (3.b) 

A - X  --+ e : A ~ X E P. (3.c) 
A - X  ~ Y A--B : B ~ X Y  E P. (3.d) 

A - X  ~ Y : A --4 X Y E P. (3.e) 
Productions (3.b-3.c) and (3.d-3.e) correspond to 
unary and binary productions respectively in the 
original grammar. Now, note that  nonterminals 
from N only appear in thc right hand sides of pro- 
ductions of type (3.d) and (3.e). Moreover, any such 
nonterminals must be immediately expanded by a 
production of type (3.a). Thus these non-terminals 
are eliminable by resolving them with (3.a); the 
only remaining nonterminal is the start  symbol S. 
This expansion yields a new transform £C4, where 
£C4(G) = ({S} U (N x ( N U T ) ) , T ,  P 4 , S ) .  P4, de- 
fined in (4.a-4.g), still contains productions of type 
(3.a), but these only expand the start  symbol, as all 
occurences of nonterminals in N have been resolved 
away. (In these sctmmata a E T; A , B , C , D  E N 
and X E N U T ) .  

S ~ a S - a .  (4.a) 
A--X  ~ A - B  : B ~ X E P. (4.b) 

A X - ~ e : A - - + X e P .  (4.c) 
A - X  --+ a A - B  : B ~ X a E P. (4.d) 

A -X -+ a : A -+ X a  E P. (4.e) 
A - X  --4 a C - a  A - B  : B ~ X C E P. (4.f) 

A - X  --+ a C - a :  A -~ X C E P. (4.g) 
In the production schemata defining £C4, (4.a-4.c) 
are copied directly from (3.a-3.c) respectively. The 
schemata (4.d-4.e) are obtained by instantiating Y 
in (3.d-3.e) to a terminal a E T, while the other two 
schemata (4.f-4.g) are obtained by instantiating Y in 
(3.d-3.e) with the right hand sides of (3.a). Figure l 
shows the result of applying the transformation £C4 
to the example analysis tree t. 

The transform also simplifies the specification of 
finite-state machine approximations. Because all 
terminals are introduced as the left-most symbols in 
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their productions, there is no need for terminal sym- 
bols to at)t)em on the parser's stack, saving an ep- 
silon transition associated with a stack push and an 
immediately following stack pop with respect to the 
standard left-corner algorithm. Productions (4.a) 
and (4.d-4.g) can t)e understood as transitions over 
a terminal a that  replace the top stack element with 
a sequence of other elements, while the other produc- 
tions can be interpreted as epsilon transitions that  
manipulate the stack contents accordingly. 

Note that  the right hand sides of all of these 
productions except for schema (4.f) are right-linear. 
Thus instances of this schema are the only produc- 
tions that  can inc re~e  the stack size in a top-down 
parse with /2(24(G), and the stack depth required 
to parse an analysis tree is the maximum number 
of "zig-zag" patterns in the l)ath in the analysis 
tree from any terminal node to the root. Figure 2 
sketches the configuration of nodes in the analysis 
trees in which instances of schemata (4.f) would l)e 
used in a parse using /;C4(G). This highly distinc- 
tive "zig-zag" or "lightning bolt" pat tern does not 
occur at all in the example tree t in Figure 1, so the 
maximmn required stack depth is 2. (Recall that in 
a traditional top-down parser terminals are pushed 
onto the stack and poI)ped later, so initialization 
productions (4.a) cause two symbols to t)e pushed 
onto the stack). It follows that  this tinite state ap- 
proximation is exact for left-linear and right-linear 
CFGs. Indeed, analysis trees that  consist simply of a 
left>branching subtree followed by a right-l)ranching 
subtree, such as the example tree t, m:e transformed 
into strictly right-branching trees by 12(-:4. 

4 I m p l e m e n t a t i o n  

This section provides further details of the finite- 
state apt)roximator implemented in this research. 
The apt)roximator is written in Sicstus l'rolog. It 
takes a user-specifier Definite Clause Grammar G 
(without Prolog annotations) as intmt, which it bi- 
narizes and then applie.s transform 12(24 to. 

The implementation annotates each transition 
with the production it corresponds to (represented 
as a pair of a £(24 schema number and a produc- 
tion number fl'om G), so the finite-state approxima- 
tion actually defines a transducer which transduces 
a lexical input to a sequence of productions which 
specify a parse of that  input with respect to EC4 (G). 
A following program inverts the tree transform 12C4, 
returning a corresponding parse tree with respect 
to G. This parse tree can be checked by perform- 
ing complete unifications with respe(:t to the ()rig- 
inal grammar productions if so desired, q_'hus the 
finite-state approximation provides an eflMent way 
of determining if an analysis of a given input string 
with respect to a unification grammar G exists, and 
if so, it can be used to suggest such analyses. 

5 C o n c l u s i o n  
This paper surveyed the issues arising in tile con- 
struction of finite-state approximations of left-corner 
parsers. The different kinds of parsers were pre- 
sented as grammar transforms, which let us abstract 
away from the algorithmic details of parsing algo- 
rithms themselves. It; derived the various forms of 
the left-corner parsing algorithms in terms of gram- 
mar transfbrmations fi'om the original left-corner 
grmmnar transform. 
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