
Fini te-s tate Approx imat ion of Constraint-based Grammars using
Left-corner Grammar Transforms

M a r k J o h n s o n *
C o g n i t i v e a n d L i n g u i s t i c Sc iences , B o x 1978

B r o w n U n i v e r s i t y

M a r k _ J o h n s o n @ 3 r o w n . e d u

A b s t r a c t

This paper describes how to construct a finite-state
machine (FSM) approximating a 'unification-based'
g rammar using a left-corner g rammar transform.
The approximation is presented as a series of gram-
mar transforms, and is exact for leftqinear and right-
linear CFGs, and for trees up to a user-specified
depth of center-embedding.

1 I n t r o d u c t i o n

This paper describes a method for approximat-
ing grammm's with finite-state machines. Unlike
the method derived from the LR(k) parsing algo-
r i thm described in Pereira and Wright (1991), these
methods use g rammar transformations based on the
left-corner g rammar transform (Rosenkrantz and
Lewis II, 1970; Aho and Ulhnan, 1972). One ad-
vantage of the left, corner methods is that they gen-
eralize straightforwardly to complex feature "unifi-
cation based" grammars , unlike the LR(k) based at>
proach. For example, the implementat ion described
here translates a DCG version of the example gram-
mar given by Pereira and Wright (1991) directly into
a FSM without constructing an approximating CFG.

Left-corner based techniques are natural for this
kind of application because (with the simple opti-
mization described below) they can parse pure left-
branching or pure right-branching structures with
a stack depth of one (two if terminals are pushed
and popped from the stack). Higher stack depth
occurs with center-embedded structures, which hu-
mans find difficult to comprehend. This suggests
tha t we may get a finite-state approximation to hu-
man performance by simply imposing a stack depth
bound. We provide a simple tree-geometric descrip-
tion of the configurations tha t cause an increase ill
a left corner parser 's stack depth below.

The rest of this paper is structured as follows.
The remainder of this section outlines the "gram-
mar transform" approach, summarizes the top-down

" This research was suppor ted by NSF grant SBR526978. I
began this research while I wins on sabbatical at the Xerox
Research Centre in Grenoble, lh-ance. I would like to thank
them and my colleages at Brown for their suppor t .

t)arsing algorithm and discusses how finite state
approximations of top-down parsers can be con-
s trut ted. The fact that this approximation is not ex-
act for left linear grammars (which define finite-state
languages) motivates a finite-state approxinlation
based on the left-corner parsing algorithm (which
is presented as a g rammar transform in section 2).
In its s tandard form the approximation based on the
left-corner parsing algorithm suffers from the com-
plementary problem to the toi)-down approximation:
it is not exact for right-linear grmnmars, but tile
"optimized" variants presented in section 3 over-
come this deficiency, resulting in finite-state CFG
approximations which m'e exact for leftqinear and
right-linear grmnmars. Section 4 discusses how these
techniques can be combined in an implementation.

1.1 P a r s i n g s t r a t e g i e s as grammar
t r a n s f o r m a t i o n s

The parsing algorithms discussed here are presented
as grammar trans/ormatioTzs, i.e., functions T that
map a context-free g rammar G into another context-
fi'ee g rammar T(G). The transforms have the prop-
erty tha t a top-down parse using the transformed
g rammar is isomorphic to some other kind of parse
using tile original grammar. Thus g rammar trans-
forms provide a simple, compact way of describing
various parsing algorithms, as a top-down parser us-
ing T(G) behaves identically to the kind of parser
we want to study using G.

1.2 Mappings from trees to trees

Tile t ranstbrmations presented here can also be un-
derstood as isomorphisms fi'om the set of parse trees
of the source g rammar G to parse trees of the trans-
formed grammar which preserve terminal strings.
Tiros it is convenient to explain the transforms in
terms of their effect on parse trees. We call a parse
tree with respect to tile source g rammar G an anal-
ysis tree, in order to distinguish it from parse trees
with respect to some transform of G. Tile analy-
sis tree t in Figure 1 will be used as an example
throughout this paper.

619

S e e l (t) =
DE T S - D E T

the N S-NP

s dog vP s-s t =

NP VP V V P - V

DET N V ADV r a n ADV V P - V P

I I I I I
the dog ran fast fast

S =

DET S - D E T

the N S-NP

I I
dog vP

V V P - V

I t
ran ADV

I
fast

£ C 4 (t) = S

DET S - D E T

the N S-NP

dog v v P - v

I I
ran ADV

I
last

Figure 1: The analysis tree t used as a running example below, and its left-corner t ransforms £Ci(t). Note
tha t the phonological forms are t reated here as annotations on the nodes drawn above them, ra ther than
independent nodes. Tha t is, DET (annotated with the) is a terminal node.

1.3 T o p - d o w n p a r s e r s a n d p a r s e t r e e s

The "predictive" or "top-down" recognition algo-
r i thm is one of the simplest CFG recognition al-
gorithms. Given a CFG G = (N , T , P , S) , a (top-
down) stack state is a sequence of terminals and
nonterminals. Let Q = (N U T)* be the set of stack
states for G. The start state qo E Q is the sequence
S, and the final state qs E Q is the empty sequence ~.
The s tate transit ion function 5 : Q × (TU {~}) ~ 2 Q
maps a s tate and a terminal or epsilon into a set of
states. It is the smallest function 3 tha t satisfies the
following conditions:

" T E 6 (a ' y , a) : a E T , T E (N U T) * .
/~'y E 5(A'y, e) : A E N, "), E (N U T)*, A -~/3 E P.

A string w is accepted by the top-down recognition
algorithm if q/ E ~*(qo,w), where 5* is the reflex-
ive transit ive closure of ($ with respect to epsilon
moves. Extending this top-down parsing algorithm
to a 'unification-based' g rammar is straight-forward,
and described in many textbooks, such as Pereira
and Shieber (1987).

It is easy to read off the stack states of a top-
down parser constructing a parse tree from the tree
itself. For any node X in the tree, the stack contents
of a top-down parser just before the construction
of X consists of (the label of) X followed by the
sequence of labels on the right siblings of the nodes
encountered on the pa th from X back to the root.
It is easy to check tha t a top-down parser requires a
stack of depth 3 to construct the tree t depicted in
Figure 1.

1.4 F i n l t e - s t a t e a p p r o x i m a t i o n s

We obtain a finite-state approximation to a top-
down parser by restricting at tention to only a finite
number of possible stack states. The system imple-
mented here imposes a stack depth restriction, i.e.,
the transit ion function is modified so that there are

no transitions to any stack state whose size is larger
than some user-specified limit. 1 This restriction en-
sures that there is only a finite number of possible
stack states, and hence tha t the top down parser
is an finite-state machine. The resulting finite-state
machine accepts a subset of the language generated
by the original grammar.

The situation becomes more complicated when we
move to 'unification-based' grammars , since there
may be an unbounded number of different categories
appearing in the accessible stack states. In the sys-
tem implemented here we used restriction (Shieber,
1985) on the stack states to restrict a t tent ion to a
finite number of distinct stack states for any given
stack depth. Since the restriction operat ion maps
a stack state to a more general one, it produces a
finite-state approximation which accepts a superset
of the language generated by the original unification
grammar. Thus for general constraint-based gram-
mars the language accepted by our finite-state ap-
t)roximation is not guaranteed to be either a superset
or a subset of the language generated by the input
grammar.

2 T h e l e f t - c o r n e r t r a n s f o r m

While conceptually simple, the top-down parsing al-
gori thm presented in the last section suffers from
a number of drawbacks for a finite-state approxi-
mation. For example, the number of distinct ac-
cessible stack states is unbounded if the g rammar
is left-recursive, yet left-linear g rammars always
generate regular languages. This section presents

1With the opt imized left-corner t r a n s f o r m s descr ibed be-
low we obta in acceptable a p p r o x i m a t i o n s wi th a s tack size
l imit of 5 or less. In m a n y useful cases, inc luding the example
g r a m m a r provided by Pere i ra and Wr igh t (1991), th is s tack
bound is never reached and the s y s t e m repor ts t ha t the FSA
it r e tu rns is exact.

620

the s tandard left-corner g rammar transformation
(Rosenkrantz and Lewis II, 1970; Aho and Ull-
man, 1972); these references should be consulted for
proofs of correctness. This t ransform serves as the
basis for the fllrther t ransforms described in the next
,;ection; tliese transforms have the property that the
output g r am m ar induces a finite number of distinct
accessible stack states if their input is a left-rccursive
left-linear grammar .

Given an input g rammar G with nonterminals
N and terminals T, these transforms £Ci produce
g rammars with an enlarged set of nonterminals N ' =
N U (N x (N U T)). The new "pair" categories in
N x (N U T) are written A-X , where A is a non-
terminal of G and X is either a terminal or non-
terminal of G. It turns out that if A =~; X 7 then
A - X =~)c,((~) % i.e., a non-terminal A - X in the
trmlsformed g r am m ar derives the diffeT~nce between
A and X in the original g rammar , and the notation
is meant to be suggestive of this.

The l@-corne.r transform of a CFG G =
(N, T, P, S) is a g rammar /2dr (G) = (N ' , T, PI, S),
where 1~ contains all productions of the form (1.a-
1.c). This paper assumes that N n T = (~, as is
s tandard. To save space we assume that P does not
contain any epsilon productions (but it is straight-
forward to deal with them).

A -+ aA- -a : A c N , a E T. (1.a)
A -X -+ f l A - B : A E N , B -4 X f l C P. (1.b)

A- A -+ ~ : A e N. (1.c)
Informally, the productions (1.a) s tar t the left-
corner recognition of A by recognizing a ternfinal
a as a possible left-corner of A. The actual left-
corner recognition is performed by the productions
(1.b), which extend the left-corner from X to its
parent B by recognizing fl; these productions are
used repeatedly to construct increasingly larger left-
corners. Finally, the productions (1.c) terminate the
recognition of A when this left-corner construction
process has constructed an A.

The left-corner t ransform preserves the number
of parses of a string, so it defines an isomorphism
from analysis trees (i.e., parse trees with respect to
(J) to parse trees with respect to £Ct (G). If t is a
parse tree with respect to G then (abusing notation)
£Ct (t) is the corresponding parse tree with respect
to £61(G). Figure 1 shows the etfect of this map-
ping on a simple tree. The t ransformed tree is con-
siderably more complex: it has double the number
of nodes of the original tree. In a top-down parse
of the tree £C1(t) in Figure 1 the maximum stack
depth is 3, which occurs at the recognition of the
terminals ran and fast.

2.1 Fi l ter ing useless categories
In general tile g r am m ar produced by the transform
£C1(G) contains a large number of useless nontcr-

minals, i.e., non-terminals which can never appear
in any complete derivation, even if the g r ammar G is
flflly pruned (i.e., contains no useless productions).
While £C1(G) can be pruned using s tandard algo-
rithms, given the observation about the relationship
between the pair non-terminals in £Cl (G) and non-
terminals in G, it, is clear that certain productions
can be discarded immediately as useless. Define the
h:ft-corncr relation < C (N U T) x N as follows:

X < A iff 3fl. A ~ X fl E P,

Let <* be the reflexive and transitive closure of <.
It is easy to show tha t a category A - X is useless
in £C1(G) (i.e., derives no sequence of terminals)
unless X <* A. Thus we can restrict the productions
in (1.a-l .c) without affecting the language (strongly)
generated to those that; only contain pair categories
A - X where X m* A.

2.2 Unif icat ion grammars

One of the main advantages of left-corner parsing
algorithms over LR(k) based parsing algorithms is
that they extend straight-forwardly to complex fea-
ture based "unification" grammars . The transfor-
mation/2C1 itself can be encoded in several lines of
Prolog (Matsumoto et al., 1983; Pereira and Shieber,
1987). This contrasts with the LR(k) methods. In
LR(k) parsing a single LR state may correspond
to sew~ral items or dotted rules, so it is not cleat"
how the feature "unification" constraints should be
associated with transitions from LR state to LR
state (see Nakazawa (1995) for one proposal), in
contrast, extending the techniques described here
to complex feature based "unification" g rammar is
straight-forward.

The main complication is the filter on useless non-
terminals and productions just discussed. General-
izing the left-corner closure filter on pair categories
to complex feature "unification" g rammars in an ef-
ficient way is complicated, and is the pr imary diffi-
culty in using left-corner methods with complex fea-
ture based grammars , vail Noord (1997) provides
a detailed discussion of methods for using such a
"left-corner filter" in unif icat ion-grammar parsing,
and the methods he discusses are used in the imple-
mentat ion described below.

3 E x t e n d e d l e f t - c o r n e r t r a n s f o r m s

This section presents some simple extensions to the
basic left-corner t ransform presented abow~'. The
' tail-recursion' optimization permits bounded-stack
parsing of both left, and right linear constructions.
Further manipulat ion of this t ransform puts it into a
form in which we can identify precisely the tree con-
figurations in the original g rammar which cause the
stack size of a left-corner parser to increase. These

621

observations motivate the special binarization meth-
ods described in the next section, which minimize
stack depth in grammars that contain productions
of length no greater than two.

3.1 A ta i l -recurs ion op t imiza t ion

If G is a left-linear grammar, a top-down parser us-
ing Z:C1 (G) can recognize any string generated by (7
with a constant-bounded stack size. However, the
corresponding operation with right-linear grammars
requires a stack of size proportional to the length
of the string, since the stack fills with paired cate-
gories A - A for each non-left-corner nonterminal in
the analysis tree.

The 'tail recursion' or 'composition' optimiza-
tion (Abney and Johnson, 1991; Resnik, 1992) per-
mits right-branching structures to be parsed with
bounded stack depth. It is the result of epsilon re-
moval applied to the output of £C1, and can be de-
scribed in terms of resolution or partial evaluation
of the transformed grammar with respect to pro-
ductions (1.c). In effect, the schema (1.b) is split
into two cases, depending on whether or not the
rightmost nonterminal A - B is expanded by the ep-
silon rules produced by schema (1.c). This expansion
yields a grammar £C2(G) = (N ' , T, P2, S) , where P2
contains all productions of the form (2.a-2.c). (In
these schemata A , B E N; a E T; X E N U T and
¢t E (N U T) *) .

A ~ a A - a (2.a)
A - X ~ l~ A - B : B ~ X ~ E P. (2.b)

A - X ~ IJ : A ~ X ~ E P. (2.c)
Figure 1 shows the effect, of the transform £C2 on
the example tree. The maximum stack depth re-
quired for this tree is 2. When this 'tail recursion'
optimization is applied, pair categories in the trans-
formed grammar encode proper left-corner relation-
ships between nodes in the analysis tree. This lets
us strengthen the 'useless category' filter described
above as follows. Let ~+ be the transitive closure of
the left-corner relation ,~ defined above. It is easy
to show that a category A - X is useless in £C2(G)
(i.e., derives no sequence of terminals) unless X <+ A.
Thus we can restrict the productions in (2.a-2.b)
without affecting the language (strongly) generated
to just those that only contain pair categories A - X
where X ,~+ A.

3.2 The special ease of b inary product ions

We can get a bet ter idea of the properties of transfor-
mation £C2 if we investigate the special case where
the productions of (7 are unary or binary. In this
situation, transformation £62(G) can be more ex-
plicitly written as £C3((7) = (N ' , T , P 3 , S) , where
P3 contains all instances of the production schemata
(3.a-3.e). (In these schemata, a E T; A, B E N and
X , Y E N U T) .

a

A - X ~ a C a A - B (4.f)

Figure 2: The highly distinctive "zig-zag" or "light-
ning bolt" configuration of nodes in the analysis tree
characteristic of the use of production schema (4.f)
in transform £C4. This is the only configuration
which causes an increase in stack depth in a top-
down parser using a grammar transformed with £C4.

A ~ (t A - a . (3.a)
A X ~ A - B : B - - ~ X E P . (3.b)

A - X --+ e : A ~ X E P. (3.c)
A - X ~ Y A--B : B ~ X Y E P. (3.d)

A - X ~ Y : A --4 X Y E P. (3.e)
Productions (3.b-3.c) and (3.d-3.e) correspond to
unary and binary productions respectively in the
original grammar. Now, note that nonterminals
from N only appear in thc right hand sides of pro-
ductions of type (3.d) and (3.e). Moreover, any such
nonterminals must be immediately expanded by a
production of type (3.a). Thus these non-terminals
are eliminable by resolving them with (3.a); the
only remaining nonterminal is the start symbol S.
This expansion yields a new transform £C4, where
£C4(G) = ({S} U (N x (N U T)) , T , P 4 , S) . P4, de-
fined in (4.a-4.g), still contains productions of type
(3.a), but these only expand the start symbol, as all
occurences of nonterminals in N have been resolved
away. (In these sctmmata a E T; A , B , C , D E N
and X E N U T) .

S ~ a S - a . (4.a)
A--X ~ A - B : B ~ X E P. (4.b)

A X - ~ e : A - - + X e P . (4.c)
A - X --+ a A - B : B ~ X a E P. (4.d)

A -X -+ a : A -+ X a E P. (4.e)
A - X --4 a C - a A - B : B ~ X C E P. (4.f)

A - X --+ a C - a : A -~ X C E P. (4.g)
In the production schemata defining £C4, (4.a-4.c)
are copied directly from (3.a-3.c) respectively. The
schemata (4.d-4.e) are obtained by instantiating Y
in (3.d-3.e) to a terminal a E T, while the other two
schemata (4.f-4.g) are obtained by instantiating Y in
(3.d-3.e) with the right hand sides of (3.a). Figure l
shows the result of applying the transformation £C4
to the example analysis tree t.

The transform also simplifies the specification of
finite-state machine approximations. Because all
terminals are introduced as the left-most symbols in

622

their productions, there is no need for terminal sym-
bols to at)t)em on the parser's stack, saving an ep-
silon transition associated with a stack push and an
immediately following stack pop with respect to the
standard left-corner algorithm. Productions (4.a)
and (4.d-4.g) can t)e understood as transitions over
a terminal a that replace the top stack element with
a sequence of other elements, while the other produc-
tions can be interpreted as epsilon transitions that
manipulate the stack contents accordingly.

Note that the right hand sides of all of these
productions except for schema (4.f) are right-linear.
Thus instances of this schema are the only produc-
tions that can inc re~e the stack size in a top-down
parse with /2(24(G), and the stack depth required
to parse an analysis tree is the maximum number
of "zig-zag" patterns in the l)ath in the analysis
tree from any terminal node to the root. Figure 2
sketches the configuration of nodes in the analysis
trees in which instances of schemata (4.f) would l)e
used in a parse using /;C4(G). This highly distinc-
tive "zig-zag" or "lightning bolt" pat tern does not
occur at all in the example tree t in Figure 1, so the
maximmn required stack depth is 2. (Recall that in
a traditional top-down parser terminals are pushed
onto the stack and poI)ped later, so initialization
productions (4.a) cause two symbols to t)e pushed
onto the stack). It follows that this tinite state ap-
proximation is exact for left-linear and right-linear
CFGs. Indeed, analysis trees that consist simply of a
left>branching subtree followed by a right-l)ranching
subtree, such as the example tree t, m:e transformed
into strictly right-branching trees by 12(-:4.

4 I m p l e m e n t a t i o n

This section provides further details of the finite-
state apt)roximator implemented in this research.
The apt)roximator is written in Sicstus l'rolog. It
takes a user-specifier Definite Clause Grammar G
(without Prolog annotations) as intmt, which it bi-
narizes and then applie.s transform 12(24 to.

The implementation annotates each transition
with the production it corresponds to (represented
as a pair of a £(24 schema number and a produc-
tion number fl'om G), so the finite-state approxima-
tion actually defines a transducer which transduces
a lexical input to a sequence of productions which
specify a parse of that input with respect to EC4 (G).
A following program inverts the tree transform 12C4,
returning a corresponding parse tree with respect
to G. This parse tree can be checked by perform-
ing complete unifications with respe(:t to the ()rig-
inal grammar productions if so desired, q_'hus the
finite-state approximation provides an eflMent way
of determining if an analysis of a given input string
with respect to a unification grammar G exists, and
if so, it can be used to suggest such analyses.

5 C o n c l u s i o n
This paper surveyed the issues arising in tile con-
struction of finite-state approximations of left-corner
parsers. The different kinds of parsers were pre-
sented as grammar transforms, which let us abstract
away from the algorithmic details of parsing algo-
rithms themselves. It; derived the various forms of
the left-corner parsing algorithms in terms of gram-
mar transfbrmations fi'om the original left-corner
grmmnar transform.

Refe rences
Stephen Abney and Mark Johnson. 1991. Mem-

ory requirements and local ambiguities of parsing
strategies. Journal of Psycholinguistic Research,
20(3):233-250.

Alfred V. Aho and Jeffery D. Ulhnau. 1972. The
77mory of Parsing, Translation and Compiling;
Volume 1: Parsing. Prentice-Hall, Englewood
Cliffs, New Jersey.

Yuji Matsumoto, Itozumi Tanaka, Hideki Hirakawa,
Hideo Miyoshi, and Hideki Yasulmwa. 1983.
BUP: A bottom-up parser embedded in Prolog.
New Generation Computing, 1(2):145 158.

Tsuneko Nakazawa. 1995. Construction of LR pars-
ing tables for granunars using feature-based syn-
tactic categories. In Jennifer Colt, Georgia M.
Green, and Jerry L. Morgan, editors, Linguis-
tics and Computation, number 52 in CSLI Lecture
Notes Series, pages 199--219, Stantbrd, California.
CSLI Publications.

Fe.rnando C.N. Pereira and Stuart M. Shieber. 1987.
P~vlog and Natural Language Analysis. Num-
ber 10 in CSLI Lecture Notes Series. Chicago Uni-
versity Press, Chicago.

Fernando C. N. Pereira and Rebecca N. Wright.
1991. Finite state approximation of phrase struc-
ture granunars. In The Proceedings of the 29th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 246-255.

Philip Resnik. 1992. Left-corner parsing and psy-
chological plausibility. In The Proceedings of the
fifteenth International Conference on Computa-
tional Linguistics, COLING-92, vohnne 1, pages
191-197.

Stanley J. Rosenkrantz and Philip M. Lewis Ii.
1970. Deterministic left, corner parser. In IEEE
Uonfcrence I?zcord of the l l th Annual Symposium
on Switching and Automata, pages 139-152.

Smart M. Shieber. 1985. Using Restriction to ex-
tend parsing algorithms for unification-based for-
malisms. In Proceedin9 s of the 23rd Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 145-152, Chicago.

Gertjan wm Noord. 1997. An efficient implemen-
tation of the head-corner parser. Computational
Linguistics, 23(3):425-456.

623

