
An Educa t i on and Research Tool for C o m p u t a t i o n a l Semant ics

Karsten Konrad 1, Holger Maier 1, David Milward 2 and Manfred PinkaP

(t) C o i n p u t e r l i n g u i s t i k ,

U n i v e r s i t g t des S a a r l a n d e s

66041 S a a r b r i i c k e n , G e r m a n y

k o n r a d , m aier , p i n k a l @ c o l i . u n i - s b . d e

(2) S R I In t e rna l ; i ona l ,

S u i t e 23, Mi l l e r s Y a r d

C a m b r i d g e , CI]2 1 RQ , G B

m i l w a r d ~ c a m . s r i . c o m

Abstract

This paper describes an interactive
graphical environment for computational
semantics. The system provides a teach-
ing tool, a stand alone extendible gra-
pher, and a library of algorithms to-
gether with test suites. The teaching
tool allows users to work step by step
through derivations of semantic repre-
sentations, and to compare the proper-
ties of various semantic formalisms such
as Intensional Logic, DRT, and Situation
Semantics. The system is freely available
on the Internet.

1 Introduct ion

The CT,EARS tool (Computational Linguistics Ed-
ucation and Research Tool in Semantics) was de-
veloped as part of the FraCaS project 1 which
aimed to encourage convergence between different
semantic formalisms. Although formalisms such
as Intensional Logic, DR?l', and Situation Seman-
tics look different on first sight, they share many
common assumptions, and provide similar treat-
meats of many phenomena. The CLEARS tool al-
lows exploration and comparison of these different
formalisms, enabling the user to get an idea of the
range of possibilities of semantic construction. It
is intended to be used as both a research tool and
a tutoriM tool.

The first part of the paper shows the poten-
tial of the system for investigating the properties
of different seinantic formMisms, and for teach-
ing students formal semantics. The next section
outlines the library contents and the system archi-
tecture, which was designed to reflect convergence
between theories. The result is a highly modular
and, we beliew~, a highly flexible system which

1A lh'amework tor Computational Semantics, F,u-
ropean Community LRE 62-051.

s

app(1,2)

np vp
id id

I I
pn v

] la!ghs anna

X A . ~ ® A (B))~C, laughs(C)

Figure 1: Initial ffepresentation of anna laughs
with Aq)l{l'

allows user prograrns to be integrated at various
levels. The final part of the paper describes the
grapher which was designed as a stand alone tool
which can be used by various applications.

2 A T u t o r i a l S y s t e m f o r

C o m p u t a t i o n a l Semant ics

As a tutorial tool, CI, PArtS allows students to in-
vestigate certain tbrmalisms and their relation-
ship. It also provides the possibility for the
teacher to provide interactive demonstrations ami
to produce example slides and handouts.

In this section we show how a user can inter-
actively explore the step-by-step construction of a
semantic representation out of a syntax tree. Fig-
ures 1 and 2 show a possible initial display for the
sentence "Anna laughs" in a compositional ver-
sion of I)RT (Bos et al., 1994) and in 'Montague
Grammar ' (Dowty et al., 198:1).

The user controls the semantic construction
process by moving to particular nodes in the
derivation tree, and performing operations by us-
ing mouse double-clicks, or by selecting froln a
pop-up menu. For example, clicking on a p p (2 , 1)

1098

s
app(2,1)

np vp
id id

pn v

f I
anna laughs

anna XA.laughs(A)

C

man(C)

J

Ioves(C,J)

woman (J)

VC.(man(C) ~ 3J.(Ioves(C,J) ^ woman(J)))

Figure 4: 'I'ranslating I)I{T to Predicate Logic

li'igure 2: Initial Representation of Anna laughs
with 'Montague Grammar '

s

laughs(anna)

I . . app(2,1)

/ N
np vp

I irA.laughs (A)

)n v

nna i a ! q h s
anna kA.laughs (A)

-Figure 3: Final Representation of Anna laughs in
' Montague-Grammar'

in the tree shown in l?igure 2 has the effect of ap-
plying the lambda-ext)ression l A . l a u g h s (A) to
anna . The resulting display is given in t,'igure 3.

The poI)-up menu allows a user to per-
tbrm single derivation steps. For example,
the user can first form an application term
A A . h m g h s (A) (a n n a) and then reduce this at
the next step. Menu options include the possibil-
ity of cancelling intensional operators, performing
lmnbda reduction, applying meaning postulates,
and [)RS merging. The glenn also allows a user
to choose whether or not to perform quantifier
storage or discharge, and thereby pick a particn-
lar reading for a sentence. Alterxlatively the user
can choose to fully process a node, in which case
all readings are simultaneously displayed.

3 C o m p a r i n g T h e o r i e s

A major use of the tool is for comparison of dif-
ferent semantic theories and methods of seman-
tic construction. To akl comparison of theories,
there are translation routines between some se-
mantic tbrmalisms. For example,],'igure 4 shows
a translation from a D|{S to a formula in Predi-
cate Logic.

The user can try out various options for seman-
tic construction by using a menu to set various
parameters. An illustrative subset of the parame-
ters and their possible va.lues is given below:

s e m a n t i c f o r n t a l i s m
l,ogic of Generalized Quantitiers,
lntensional Logic,
Compositional 1)RT (Muskens, 1993),
Aq)R'F (Bos et al., 1994),
' lbp-l)own-Dl{T (Kamp and Reyle, [993),
Situation Semantics.

g r a n l l n a r
simple PSG, PSG with features,
Categorial Grammar with features.

p a r s e r
top-down, incremental (for CG only).

lexicon
simple lexicon, lexicon with features.

s y n t a x - s e m a n t i c s m a i) p l n g
rule-to-.rule, syntactic template.

syntax-semantlcs ('onstruetlon
serial, parallel.

s u b j e c t a p p l i e d t o v e r b p h r a s e
yes, no.

q u a n t i f i e r s t o r a g e m e (: h a n i s m
Cooper Storage (Cooper, 1983),
Nested Cooper Storage (Keller, 1988)

f l - r e d u c t i o n
unification based, substitution based.

1099

4 T h e L i b r a r y

Because a tutorial system of this kind has to be
based largely on standard routines and algorithms
that are fundamental for the area of computa-
tional semantics, a secondary aim of the project
was to provide a set of well documented programs
which could form the nucleus of a larger library
of reusable code for this field. Most of the library
contents correspond directly to particular values
of parameter settings. However there are some ex-
t ra library routines, for example a very generalised
form of flmction composition. The library is be-
ing expanded with routines for semantic construc-
tion driven by semantic types. It is also intended
to integrate a wider range of grammars , parsing
strategies and pronoun resolution strategies. For
program documentat ion we largely have followed
the approach taken in LEDA (Ngher, 1993)).

Apart from the routines concerned directly with
computat ional semantics, there are also routines
designed to aid application developers who want
to provide a graphical output tbr semantic repre-
sentations. These routines are mainly concerned
with translating from Prolog syntax into the de-
scription string syntax used by the CLiG grapher.
Currently they rely on the Tc l / Tk library package
provided by Sicstus 3.

4.1 Modularlsatlon Principles

A standard approach to modularisation is to split
a problem into independent black boxes, e.g. a
g rammar , a parser etc. This top-down modulari-
sation is then followed by some bo t tom-up mod-
ularisation in the sense of supplying general utili-
ties which each of the larger modules can use. For
this application, such an approach had obvious in-
adequacies. For example, there are subtle differ-
ences in some steps of quantifier storage according
to the formalism being used, similarly, differences
even in lambda reduction (for intensional logic it
is natural to interleave the step of operator can-
eellation between/?-reductions). Even the parsing
stage cannot be totally independent unless we gen-
eralise to the worst case (the Situation Semantics
fragment requires an utterance node as well as a
sentence node).

One of the aims in building the tool was to
show where semantic formalisms converge. Thus
there was theoretical motivation to ensure compo-
nents of the system were shared wherever possible.
There was also practical motivation, since there is
more chance of finding errors in shared code. The
solution adopted was to use parameterised modu-
larisation. This allows differences to be located in
as small pieces of code as possible (e.g. single lines

I parameterised node formation 1

I semantic construction I

I parameterised extraction from nodes 1
- - -

Figure 5: Architecture of a pm't of
the Syntax-Semantics lnt, erface

of tile quantifier storage routine), with the param-
eters picking up the correct; piece of code at run
time. There are some small costs due to indirec-
tion (instead of calling e.g. a /?-reducer directly,
a program first calls a routine which chooses the
/?-reducer according to the parameters) . But with
these parameter isat ion layers we provide natural
points where the system can be extended or modi-
fied by the user. The approach also gets rid of the
need to create large da ta structures which include
information which would be relevant for one choice
of parameters , but not the current choice. For ex-
ample, in parsing, a parameterised level chooses
how to annotate nodes so that the syntax trees
only have the relevant inibrmation for the chosen
syntax-semantics strategy. The architecture is il-
lustrated in Figure 5.

The result of the parameterised approach is a
system which provides several thousand possible
valid combinations of semantic tbrmalism, gram-
mar, reducer etc. using a small amount of code.

5 T h e Graphica l Interface

A major part of our work on the educational
tool was the development of a general graph-
ical browser or grapher for the graphical no-
tations used in computat ional linguistics, espe-
ciMly those in computat ional semantics such as
trees, Attribute-Value-Matrices, EKN (Barwise
and Cooper, 1993) and 1)RSs. The grapher was

Ii00

written in Tcl /Tk, a programming system tbr
developing graphical user interfaces (Ousterhout,
1994). Two attrilmtes of Te l /Tk which were im-
portant lbr this applieattion were the l)rowision of
translation routines from graphic canvasses into
Postscript (allowing generation of diagrams such
as Figures 1 to d), and the ease of providing scal-
ing routines for zooming.

The grapher was designed to be extendible for
future al)plications. Graphical structures are de-
scribed using a (les(:ril)tion stritlg, a. plain text hi--
erarchical description of the object to be drawn
without any exact positioning information, l,'or
example, the following tree:

S

A
is created by the description string:

{tree {plain-text "S"}
{plain-text "NP"}
{plain-text "VP"}}

CLIG Call display hale,active graphical slA'llcl;llres
which aJlow tim user to perform actions by click-
ing on mouse-sensitive regions ill the display are;~.
The grapher and an underlying application there-
fore can behaw.' in a way that the grapher is not
only a way to visual*st the data of t;he application,
but also providc.s a real interface I)etween user and
af)plication.

6 Availability of the System

The system ('urrently requires Sicstus 3 plus
'['cl version 7.d and 'l'k w;rsion 4.0 (or later
versions), lit, is awfilablc at the' ftp address:
f t p . c o l i . u n i - s b . d e : / p u b / f r a c a s or on the
WWW at the UI/J,:

http ://coli. uni-sb, de/~ clears/clears, html

l;urther (toeumentation of the' system is given in
(l,'raCaS, 1996a) and (FraC, aS, 1996b), which are
available from:

http://www, cogsc i . ed , ac .uk/~fracas /

7 Conclusion

Initial reactions to demonstrations of the educa-
tional tool suggest that it has the potential to
become a widely used educatioual aid. We also
believe that the programs iml~lemented and docu-
mented it* this work provide the nucleus of a larger
library of rensab[e programs for computational se-
mantics. Our current plans a.re to test t;[l(', system

with a wide (:lass of users to discover areas requir-
ing extension or modification. A longer term aim
is to integrate the system with existing grammar
develol)ment environments.

A c k n o w l e d g e m e n t s

'l'his work would not have been I)ossible without
the encouragement and support of the other men>
hers of the l"ra(~aS Project. We. would especially
like to thank Ih)bin (,'ooper, Mass*me Poe.sio and
Steven lhdman for eontril)utions to the code.

R e f e r e n c e s

.J. Barwise and R. Cooper. 1993. Extended l(anq~
notation. In Y. I(atagiri P. A(:zel, 1). Israel and
S. Peters, editors, ,Situation 7'heorg and its Ap-
plication Vol. 3, chapter 2, t)ages 29 54. CSIA,
Stanford.

J. Bos, E. Mastenbroek, S. McClashan, S. Mil-
lies, and M. l'inkal. 1994. A compositional
l)i{S-based ['orm~dism for nip applic;~tions. In
Proceedings of the International Workshop
on Computational ,5'cmanlics, pages 21 3 ,
Tilbucg.

11. (JOOl)er. 1983. Q'uanlificalion and 5'gnlactw
Tttcory. SI,AI'. l{eidel, 1)ordrecht.

I). l)owty, R. Wall, and 8. Peters. 1981. Intro-
duction I.o Monla(lUC ,%:man*its. SI,A I'. t/x~ide[,
I)ord vecht.

FraCaS. 1996a. Ih,il(ling the framework, l"racas
I)eliver~d)lc l)J 5.

l"ra(:aS. 1996b. I.Jsing tim framework. Fracas
Deliverable 1)16.

1l. l (amp and 11. lt.(:yle. 1993. l')zmt I)iscours(' to
Logic. Kluwer, l)ordrecht.

W. Keller. 11988. Nested cooper storag< In
U. Reyle and C. Rohrer, editors, Natural Lan-
(tltag('~ Parsing and Ling.uistic Theories, pages
432 447. i/,eidel, 1)ordreeht.

If. Muskens. 1993. A compositional discoul:se
representation theory. In P. l)ekker and
M. Stokhof, editors, I'rocecdings of the 9th A'mo
sterdam Colloquium, pages 467 48(5. IIAX], Uni-.
versity of Amsterdam.

S. Niher. 1993. Le(la manuM version 3.11. 'Ib.chni-
eel l~eport MP1-I-93-109, IHa.x-Planck-lnstitut
fiir Infornmtik, S~.~arbriicken, I"ebru~ry.

a. Ousterhout. 1994. "Fcl and the 7'k 7'oolkii. Pro--
fessional Computing. Addison-Wesley, I{eading,
Massachusetts.

ii01

