
Parsing Plans Situation-Dependently in Dialogues

K i y o s h i K o g u r e , A k i r a S h i m a z u a n d M i k i o N a k a n o

N T T Bas i c R e s e a r c h L a b o r a t o r i e s

3-1 M o r i n o s a t o - W a k a m i y a , A t su g i , K a n a g a w a , 243-01. J a p a n

{ k o g u r e , s h i m a z u , n a k a n o } @ a t o m , b r l . n t t . j p

A b s t r a c t

This paper describes a plan parsing
method that can handle the effects and
preconditions of actions and that parses
plans in a manner dependent on dialogue
state changes, especially on the men-
tal state changes of dialogue participants
caused by utterances. This method is
based on active chart parsing and uses
augmented edge structures to keep state
information locally and time map man-
agement to deal with state changes. It
has been implemented in Prolog and is
used for plan recognition in dialogues.

1 I n t r o d u c t i o n

Dialogue understanding requires plan recognition.
Many plan inference models have thus been pro-
posed. As an approach to the computation of plan
recognition from observed actions, plan parsing
hms been proposed by Sidner (1985) and formal-
ized by Vilain (1990). A typical plan recipe for
an action includes a sequence of subactions as its
decomposition, so interpreting an action sequence
in terms of plans can be seen as parsing in which
observed actions correspond to lexieal tokens and
plan recipes correspond to grammatical rules.

Previous plan parsing methods, however, are
insufficient for dialogue understanding since they
do not handle the effects and preconditions of ac-
tions. These effects and preconditions are of cru-
cial importance in reasoning about what the agent
intends to do and what she presupposes. More
concretely, without treating them, it is impossible
(a) to describe actions in terms of their effects, (b)
to capture the relationship between an action and
another action that satisfies the former's precon-
ditions to enable it, and (c) to interpret actions in
a manner dependent on the dialogue state.

To solve these problems, we have developed a
plan parsing method that can handle the effects
and preconditions of actions and that parses plans
in a manner dependent on dialogue state changes,
especially on the mental state changes of dia-
logue participants caused by dialogue utterances.

This method, in particular, makes (a) (c) possi-
ble. The method is based on active chart pars-
ing and uses augmented edge structures to keep
state information locally and time map manage-
ment (Dean and McDermott, 1987) to deal with
state changes. The method is implemented in Sic-
stus Prolog and is applied to a dialogue under-
standing system (Shimazu et al., 1994).

2 R e q u i r e m e n t s f o r T r e a t i n g

E f f e c t s a n d P r e c o n d i t i o n s

Let us examine typical situations where the effects
and preconditions of actions must be treated.

2.1 Effect-Based Action Descriptions
In describing plan recipes, it is convenient to spec-
ify an action in terms of its effects ms follows:

Recipe 1
Action: informref(S, H, Term, Prop)
Decomposition: achieve(bel(H, P))
Effects: belref(H, Term, Prop)
Constraints: parameter(Term, Prop)

A description of the form 'achieve(P)' specifies the
action for achieving the state where the propo-
sition P holds. This recipe thus says that an
informref action can be performed by an action
that has 'bel(H, P) ' as its effect. There may
be many such actions. Furthermore, the action
specified by 'achieve(P)' depends on the situation
where P is about to be achieved. In the extreme
case, i fP already holds, the agent need not do any-
thing. For example, a speaker may not perform
any action to make a hearer believe a proposition
if the speaker believes the hearer already believes
it. If we are not permitted to use this form, we
must enumerate all the actions that achieve P to-
gether with the conditions under which they do.
Treating this form requires calculating the effects
of actions.

2.2 Action-Enabling
Given a goal, a planning procedure searches for an
action to achieve the goal (a main action). If the
procedure identifies such an action with precondi-
tions, it calls itself recursively to search for actions

1094

O~

~01 .~ : contradicts(~,~, q</)
~oj:

Figure h Effects of Complex Action.

that satisfy them (enabling actions of tile main ac-
tion), and then provides the action sequence con-
sisting of the main action preceded by its enabling
actions. Given an action sequence of this form, a
plan recognition procedure must thus regard it as
I)erforming a main action to achieve its ettb.ct(s).
There are many kinds of dialogue phenomena that
can be captured by such action-enabling relation-
ships. Understanding snch dialogue phenomena
reqnires handling effects and preconditions.

2.3 S t a t e - D e p e n d e n t I n t e r i) r e t a t i o n

There are cases where state-dependent interpreta-
tion is iml)ossible unless the effects and precondi-
tions of actions are treated. Consider, for exam-
ple, the folh)wing dialogue fragment:

A: Please tell Ine how to go to the Laboratories.
B: Take the bus to Tokyo.

Whereas an imperative sentence (with surface
speech act type surface_request) is generally inter-
preted as a request, the second utterance actually
describes a step in tile plan to go to the Labora-
tories because the first utterance convinces B that
A wants to have that plan. This latter interpreta-
tion can be captured by using the heuristic rule for
seh;cting an interpretation with fewer unsatisfied
preconditions and the following recipe:

R e c i p e 2
Action: describe_step(S, H, Action, Plan)
Preconditions: bel(S, want(H, Plan))
Decomposition: surface_request(S, It, Action)
Constraints: stei)(Aetion , Plan)

This interpretation would be possible instead by
using a recipe whose decomposition Mso contains
the action of making B believe A's want. How-
ever, such a recipe can handle only cases where
the belief has been established by the action just
before surface_request.

3 E f f e c t s a n d P r e c o n d i t i o n s

3.1 Effects o f A c t i o n s

The efl>cts of a linguistic action in a dia-
logue mainly I)roducc unobservable mental state
changes of the diMogne participants. For a com-
puter to participate in a dialogue like people do,
it must simulate such mental state changes.

The clthcts of an action are the propositions
tlmt hold after the action's successfltl execution.
The effects are taken to be cah:nlated recursively

c~

Case (a)
(tgj = ~/)k I I *

C ~ e (b)

~ P k : ~ j = ~Pk)
~i ,, , contradicts(~i, ~bk)

C:~s0 (~)
'~bk : contradi('ts((pl, ~bk)

qoi)).

Case (d) contradicts(q~i, ~Pk)
't/,' i

Figure 2: Preconditions of Complex Action.

fl'om tile action's recipe and component actions
if any: the effects are essentially those specified
by the action's recipe, plus those of component
actions. Since an action is modeled to have a cer-
tain tenq)oral extent, an action's effect is inodeled
to hohl at the point in time where the action has
just finished and to continue, to persist infinitely
or until the first instance that a contradictory fact
holds. An effect of a n a (: t i o n ' s component action
also holds in the same way. Therefore, an ac-
tion ~ with (7 1 , - . . , %) as its component actions
has component action 7{'s effect ~oi as its own ef-
R'~ct if there is no component action 3'3 after 3'/
with a n e [f e c t 99j contradictory to ~oi written as
contradicts(~,i, ~j)- and does not if such "~i exists
as in Figure 1.

a.2 P r e c o n d i t i o n s o f A c t i o n s

Tile preconditions of an action are tile proi)osi-
(ions that must hold before the action's successful
execution. Recognizing an action thus requires
that its preconditions can be ~msured or at letust
hypothesized to be believed by the agent.

The preconditions of an action are essentiMly
taken to consists of those specified by the ac~
tion's recipe and those of its component actions if
atty. A component action's precondition, however,
can be satisfied by another component action's ef-
fect. Consider action a with its component ac-
tions (%, . . . ,%~), as shown in Fignre 2. Let us
focus on precondition '~b/~ of action %. When
the.re is an action 7j before % such that its ef~
fect q0j is identical to '~bk as in Case (a) in the
figure, "~b k is satisfied by ~oj, so *Pk need not hoht
at (~'s starting time. That is, ~ does not have ~/J/~
as its precondition. On the contrary, when there
is an action ~i before % such that its effect q0i
contradicts ~/;k, ~bk's hohting at a ' s starting time
cannot contribute to the satisfaction of % ' s pre-
condition */;k- If there exists an action 7j between
7i and % with its effect qoj identical to ~bk, ~/Jk can
be satistied [Case (b)]. Otherwise, *Pk emmot be
satisfied [Case (c)], so a cannot be successflflly ex--
ecuted and shonht not be recognized. This kind of

1095

interference is hereafter called 'effect-precondition
(E-P) conflict.' There is another kind of interfer-
ence called 'precondition-precondition (P-P) con-
flict:' if a precondition specified by ~'s recipe, or a
precondition ¢i of any other component action 7i
contradicts Ck, they cannot hold simultaneously
at c~'s starting time [Case (d)]. In such a case,
should not be recognized.

4 A c t i v e C h a r t P l a n P a r s i n g

4.1 D e c o m p o s i t i o n G r a m m a r

The relationship between an action and its de-
composition specified by a recipe can be viewed
as a phrase structure rule. The decomposition re-
lationship specified by Recipe 2, for example, can
be view as

describeostep(S, H, Action, Plan)

surface_request(S, H, Action).

This interpretation of the decomposition relation-
ships specified by recipes in a plan library gives us
a decomt)osition grammar and allows us to apply
syntactic parsing techniques to plan recognition.

Based on this idea, we constructed a plan pars-
ing method that handles the effects and precondi=
tions of actions. Hereafter, we focus on bottom-
up active chart parsing, although the core of the
discussion below can be applied to other parsing
methods.

4.2 C a l c u l a t i n g Ef fec t s a n d P r e c o n d i t i o n s

T i m e M a p M a n a g e m e n t

Time map management is used to capture the
temporal state changes caused by the effects of ac-
tions. A time map consists of a set of (potential)
fact tokens) A fact token is a triple (tl,t2,~o),
where tl and t2 are time points and ~ is a time-
less fact description (a term), that represents the
proposition that ~ holds at t l and continues to
persist through t2 or until a contradictory fact
holds. As a time point, we use a vertex in a chart,
which is an integer. As a special case, time point
T is used to represent unbounded persistence. An
effect ~ of action finishing at t is represented by a
fact token (t, T, ~o}.

A time map with a set ~" of fact tokens sup-
ports queries about whether it guarantees that a
fact ~ holds over an interval [t~, t2] (written as
tm_holds((h, t2, ~),~-)). i fact ~ is guaranteed
to hold over an interval [tl, t2] exactly if there is
an intervalr t ' g l such that (t~ < t l < t 2 < t ~) A L 1 , 2 1 - - - - - -

(t~,t~,qo) e ~" an d if there is no (ta,t4, v ') 6 ~"
such that contradicts(~0,~0') A (t~ < ta _< t2).

A precondition ¢ of an action can be repre-
sented by a triple similar to a fact token. Since it
must be satisfied at the action's starting time t, it
is represented by (t, t, ¢).

1This paper uses Shoham's terminology (1994).

start
end
action
rsubactions
constraints
effects
preconditions
acnd

(an !nteger)
(gn ihteger)
(a term)
(a sequence of terms)
(a set of constraints}
(a set of triples)
(a set of triples)
(a variable)

Figure 3: Edge structure

D a t a S t r u c t u r e s

In our chart parsing, an action is represented by
an edge. Since information on the effects and pre-
conditions of the action represented by an edge
must be kept locally, we use the edge structure
shown in Figure 3. An edge's start and end values
are vertices that are the respective integers repre-
senting the starting and ending time points of (the
part of) the action represented by the edge. The
action and rsubactions (remaining subaetions) val-
ues are respectively an action description and a
sequence of descriptions of actions to find in order
to recognize the action. An edge is called active
if its rsubaetions vahm is a non-empty sequence
and is inactive otherwise. The constraints value
is a set of constraints on variable instantiation.
The effects and preconditions values respectively
are sets of triples representing the action's effects
and preconditions. The aend (action end) value is
a variable used as the placeholder of the action's
ending time point. The ending time of the action
represented by an active edge is not determined
yet, and neither is the starting point of the effects
specified by the action's recipe. To keep informa-
tion on those effects in the edge, fact tokens with
the aend value as their starting time points are
used. An unbound time point variable is taken to
be greater than any integer and to be less than T.
An edge's aend value is bound to its end value if
it is inactive. Given an edge e and its field field,
field(e) denotes the value of field in e.

C h a r t P r o c e d u r e s

Given an observed action, chart parsing applies
the following procedure:

P r o c e d u r e 1 Let ~j be the description of the
j - th observed action. For each recipe with ac-
tion ~r, and for each most general unifier 0 of
~j and C~r satisfying the constraints Cr speci-
fied by the recipe, create an inactive edge from
j - 1 to j such that its action, constraints, effects,
and preconditions values respectively are a j0, CrO,
{(j, T, ~T0)I~T e E~}, and { (j - 1 , j - 1 , ¢~0} I¢," E
Pr}, where Er and Pr are the effects and precon-
ditions specified by the recipe.

Chart parsing proceeds using the following two
procedures.

1096

l ' r o c e d u r e 2 Let ei be an inactive edge. For
each recipe with its a.ction a,., decomposi t ion
(7 1 , . - . , %) , effects Er, and precondit ions P , ,
and for each most general unifier 0, satisfy-
ing constraints(ei) and recipe's constrains C,., of
action@i) and 71 such that

g = (cffccts(ci))O
U{(v,T,9::,,.O) I~," C ZC,.} and

7) = {(t , t , '¢ ') rd (prcconditions(ci))O I
~tm_holds((t , t, ¢) , g)}

U{(start(ei), start(ed,GO) l G c/',.},
without E-P or P - I ' contlict, where v is a new
variable, create an edge from start(ci) to cnd(ci)
such tha t its action, rsubactions, constraints, ef-
fects, prceonditions, and aend values respectively
are <Y,.O, (%, . . . ,7,~)0, (C,. O eonstraints(ci))O, g,
7), and V.

P r o c e d u r e 3 Let c~ and ei be adjacent active
and inactive edges such tha t rsubactions(e~) is
(71 , . - . , 7~). For each most generM unifier 0, sat-
isfying C = constraints(e~) O constraints(ci), of 71
and action(el) such tha t

= (eFects(ea) u eJy~cts(ed)O and
7) = {(t,t,'~b) E (prcconditions(e.)

Upreeonditions(ei))OI
t . ,_holds ((t, t, ¢) , C) },

without F,-P or P -P conflict, create an edge
fr<)m start(e<,) to end(el) such that its action,
rsubaetions, constraints, effects, preconditions,
and acnd values respectively are (action(e,))O,
(Tu,-. . ,7~)0, CO, g, ~P, and acnd(c,~).

Now tha t we have the basic means to eah:ulate
the effects and precondit ions of the action repre-
sented by an edge, we can augment plan parsing
to handle the si tuations described in Section 2.

E f f e c t - b a s e d a c t i o n d e s c r i p t i o n s The fact
tha t the description of the form achieve(P) can
specify an action with P as its effect is captured
by augment ing Procedures 2 and 3. The set of ef-
fects of the act ion represented by an inactive edge
ei tha t hold at the. act ion 's ending t ime is /?7/ =
{qo I tm_holds({qo, end(ei) , cnd(ei)), effects@i))}.
The fact is thus captured in these procedures by
checking tha t Ei contains P, instead of unifying
71 with action(ei), if 71 is of tha t form.

The fact tha t achieve(P) can specify the null
action if P already holds is captured by a new
procedure that , given an active edge e~ with as its
rsubactions value (achieve(P), 7 2 , . - . , %}, creates
a new edge whose rsubactions value is (% , . . . , %}
and whose preconditions value is preconditions (e,~)
if e~, has P aa its effect and preconditions(ca) plus
{end(e.), end(c~), P} otherwise.

A c t i o n - e n a b l i n g An act ion-enabling relation-
ship can be captured by a new procedure that,
given two adjacent inactive edges el and e2 such

tha t e l ' s effects satisfy some of eu's preconditions,
treaties a new inactive edge with action(c2) ,as its
action value. .+

S t a t e - d e p e n d e n t i n t e r p r e t a t i o n A dialogue
state is determined by the initial s tate and the ef-
fects of the I)receding actions. The initial state
is t reated by using a special ' initialize' inactive
edge from 0 to 0 with the effects value represent-
ing it. The influence of the qnitialize' edge is
propagated by the procedure for t reat ing action-
enabling relationships and preference rules refer-
ring to precon(litions, a

5 C o n c l u s i o n

A plan l)arsing method has been prol)osed that
handles the effe<:ts and l)reeonditions of actions
and tha t parses i)lans hi a manner del)endent (m
<tialogue state changes ('ause<t by utterances. The
method has been implemented in Prolog. The.
imt)lemented progl 'am uses an agenda inechanism
that uses priority scores on edges to obtain i)re -
fi'.rred plans first. The method has been applied to
unders tanding route-explanat ion dialogues by us-
ing the dialogue plan model tha t takes each action
of ut ter ing a word ;~s a primitive and that treats
intra- and inter-ut terance plans uniformly to treat
f ragmentary ut terances (Kogure et al., 1994).

R e f e r e n c e s

Tllomas I~. l)ean and Drew V. McDermott. :1987.
Tmnporal data base management. ArtiJicial Intel-
ligence, 32(1):1-55.

Kiyoshi Kogure, Akira Shimazu, and Mikio Nakano.
1994. Recognizing plans in more natural dialogue
utterances, in Proceedings of IGWLP .94, pages 935 -
938.

Akira Shimazu, Kiyoshi Kogure, and Mikio Nakano.
1994. Cooperative distributed processing for un-
derstanding dialogue utterances. In Proceedings of
IUSLP 94, pages 99:102.

Yoav Shoham. 1994. Artificial Intelligence Tech-
niques in Prolo 9. Morgan Kanfmann Publishers.

Candace L. Sidner. 1985. Plan parsing for intended
response recognition in discourse. Computational
InteUigence, 1 (1):1-10.

Mark VilMn. 1990. Getting serious about parsing
plans: a grammatical analysis of plan recoguition.
In Proceedings of AAAI-90, pages 190-197.

2As an extention to control the applicability of this
procedure, the effects and preconditions fields respec-
tively are divided into main_effects and side_effect.s
fields amt into preconditions and prerequisites fields.
The procedure checks enabling relationships only be-
tween main_effects and preconditions.

aThe use of the initial state also contributes to the
efficiency of plan parsing: an input action sequence
(:an be shortened by cMculating the current state in
the middle of a dialogue and by restarting plan parsing
with the current state as a new initial state.

1097

