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Abstract 
This t)ai)er deseril)es techniques to com- 
pile lexical entries in I IPSG (Pollard and 
Sag, 1.987; Poll;ml and Sag, 1993)-style 
g rammar  into a set of finite state au- 
tomata.  The states in automat~L are 
possible signs derived fl'om h',xical en- 
tries and contaili information raised fl'om 
the lexical entries. The automatt~ are 
augmented with feature structures use(l 
by a partial unification routine and de- 
layed/frozen definite el;rose programs. 

1 introduction 
Our aim is to 1)uild an e, fli(:ient and robust ]tl)SG - 
based parser. I IPSG has 1)(;eu re, gar(led as a so- 
phisticated but fl:;tgile and inettieient ff~mwwork. 
However, its principle-based al'(:hitecture enables 
a parser to handle real world texts only by giv- 
ing concise core grammar,  including principles and 
templates for lexicM entries, d e f a u l t  l ex ica l  en-  
t r ies(Horiguchi  et al., 1995). The architecture is 
different fl'om those of eonvelltional unification- 
l)t~sed ff)rmMisms which require hundreds of CFG 
skelet;ons to t)arse real world texl;s. 

However, tiles(', design prin(:il)les of l l I 'SG have 
draw-backs in parsing cost. Tha t  is, signs/feature 
structures corresponding ~o non-termillal symbols 
ill CFG become vi,sible, only after applying t)l'inci- 
p ie s  a l l d  ~t t )&rs0r  h a s  t o  Cl'e~4te ~(;&tlIl;C s t l ' I lCt l l leS  
()lie by one using unification. ]in addition, identity 
checking of non-terlninM symbols used to elimi- 
nate spurious signs must be replaced with sub- 
sumption checking, which flHther detcrior~tes ef- 
fi('ien(:y. 

Our g rammar  eompih',r COlnputes skeleta.l 1)~rt 
of possible phrasal-signs froln individual h!xical 
enl;l'ies prior to parsing, and generates a set of 
finite state au tomata  from h'~xical entries to ;tvoid 
the above draw-I)acks. We call this operation Oil-  
l ine r a i s ing  and an automaton thus generated is 
called a Lex iea l  E n t r y  A u t o m a t o n  (LA) .  its 
states corresponds to 1)art of sigl,s and each tran- 
sition between stales (;orrespon(ls to at)plication of 
a ru le  s c h e m a ,  which is a nonqexical comt)onent 
of grammar.  

Our parsing algorithm adopts a two-i)hased 
l/arsing method. 

P h a s e  1 ] iot tom-up (:hart-like 1)~rsing with LAs. 

Ilewriting lt,ule: 
MOTIIEI{([1]),  IIEAI)-I)TR ([81) NON-IIEAt)-I)TI~([S]) 
FS: 

sign 
[ '  ...... 't t 

S y l l  b;I I } ) C ~)a, 

content[4] 
scm iIKlices [3] 

, ...... ~ . ] 
1 ...... l-dr,, [s] '~Y" [ .~,l,,:~,: ( ,~ rl> 

S( ! l l l  i n d i c e s  

indices ] J 

goals arg2 2 
arg2 
fl ' (! t!z(~ 

Figur(' 1 : AlL e.xalnph; of a rule s(:hema. 

P h a s e  2 Computing part  of feature, structures 
which cannot l)e (:omputcd at (;oml)ile-tinm. 

We call tile tbature structures that  are repre- 
sented as states in automa,t;~ mtd are COml)uted 
at conlpih>time C o r e - s t r u c t u r e s ,  and the fca- 
tllre strllCtlll'es whi(;h are t;o l)e (:Olnl)ut, ed in Phase 
2, S u b - s t r u c t u r e s .  In l)h~sc 1 parsing, t~ (:ore- 
si, ructme. (:orr(,spond to a state in an ] ,A. The cost 
of comt)uting sub-structures at Phase 2 is inin- 
imized by D e p e n d e n c y  A n a l y s i s  mM P a r t i a l  
Un i f i ca t i on .  

Tile next section describes rule schcmtm~, cen- 
tral eompouents of the. formalism, and gives ~ def- 
inition of Definite Clause Programs. Section 3 de- 
scribes how to obtain LAs h'om lexical entries and 
how to perform the Phase i p;~rsing. Section 4 ex- 
plMns the Phase 2 Parsing algorithm. A parsing 
exmnple is ln'es(;iLted in Section 5. The effective- 
ness of our method is exeinplified with a series (117 
eXl)eriments in Section 6. 

2 Rule Sch(:nmta and Definite 
C l a u s ( ;  l ) r o g r a m s  

Our fonmdism has only one type of compolmnt 
g-tS llOll-10xic&l (;ollll)Ollellt,q o f  ~ r a l l l l n a r ,  i .e . ,  ru le  
s c h e m a t a .  I An example is showll in Figure 1. A 
ruh' s(:henl;~ consists of the following two items. 

Ih l  ()Ill' cilrr(!ilt, sysLeil/~ rill(', s(;h(2mltt~ ~l'('. goltc.r- 
i~t('.(1 froul principh,.s and rewriting rules ~m(:ording (;c) 
;L SlmCifical, ion given by ~ progr~mmter. 
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r u l e ( R )  a rewriting rule without specific syntac- 
tic categories; 

f s (R)  a feature structure. 

A characteristic of HPSG is in the flexibility 
of principles which demands complex operations, 
such as append or subtraction of list-value feature 
structures. In our formalism, those operations are 
treated by a Definite Clause Program. A DCP can 
be seen as a logic program language whose argu- 
ments are feature structures. An auxiliary term, a 
query to a DCP augmenting a rule schema, is em- 
bedded in a feature structure of a rule schema as 
the value of goa l s .  The rule schema in the exam- 
pie has an auxiliary term, append([1], [2], [3] ). 

The bot tom-up application of the rule schema 
R is carried out as follows. First, two daugh- 
ter signs are substituted to the HEAD-DTP~ position 
and NOR-HEAD-DTI~ position of the rewriting rule 
rule(R).  Then, the signs are unified with the 
h e a d - d t r  value and the n o n - h e a d - d t r  value of 
the feature structure of the schema, f s (R ) .  Fi- 
nally, the auxiliary term for DCPs given in the 
schema is evaluated• 

Our definition of a DCP has a more operational 
flavor than that  given by Carpenter(Carpenter ,  
1992)• The definition is crucial to capture the cor- 
rectness of our method. 2 

D e f i n i t i o n  1 ( D C P )  A definite clause program 
(DCP) is a finite set of feature structures, each of 
which has the following form. 

goals (HI 1-13) J 
n e x t - s t e p s  [ g o a S s  (1~o, B1 , ' ' ' ,  ~ ,  [1] ) ] 

a where 0 <_ n and H, Bo," • •, B,~ are feature struc- 
tures. 

A feature structure of the above form corre- 
sponds to a clause in Prolog. H, B 0 , . . . , B ~  cor- 
responds to literals in Prolog. H is the head and 
B o , " ' ,  B,~ are literals in the body of a clause. 

D e f i n i t i o n  2 ( E x e c u t i o n  of  D C P )  Execution 
of a DCP P for the query, 

C2~e~y = [ go~Ss (qo, q~,'" qz) ] 

is a sequence of unification, 

Query U rl U r2 U . . .  U r n  

where ri = [ ( n e x t - s t e p s )  i-1 Ci ], C, ¢ P or 
Ci = [ g o a l s  0 ]. / f  the execution is terminated, 
C~ must be unifiable wi th[  g o a l s  () ]. In this 
case, we call the sequence ( r l , ' " , r ,~}  a r e s o l u -  
t i o n  s e q u e n c e .  

2Though, through the rest of the paper, we treat 
the definition as if it were used in an actual implemen- 
tation, the actual implementation uses a more efficient 
method whose output is equivalent with the result ob- 
tained by the defiifition. 

a (H0, . - ' ,  H~, [1]) is an abbreviation of 

r e s t  " ' r e s t  [1] 

E21[ • N 
~,bcat 0 

My colleague 

[ sig,! ~d ] 
S 2 maJ 

subcat ( 

'ql ms.) V 
subcat ([2]NP) 

ln~i 
sutJcat (~ 

m a j  V 

subcat ([lJNI', 
[2]NP) 

wrote a good paper 

Figure 3: A parsing example 

( n e x t - s t e p s )  i-1 [goa l s  of QueryHrl Hr2 H. • • H 
ri represents the goals which are to be solved in 
the steps following the i-th step. The goals are 
instantiated by the steps fi'om the first one to i-th 
one, through structure sharings. The result of ex- 
ecution in a Prolog-like sense appears  in the query, 
Figure 2 is an example of execution for the query 

a p p e n d ( [ a ] ,  [b] ,X) , whose definition is based 
on a s tandard definition of append in Prolog. 

Given this definition of DCPs,  an application 
of a rule schema to two (laughter signs D1 and 
D2 can be expressed in the following form, where 
@1, r 2 , . " ,  r,~} is a resolution sequence: 

M =  [ head-dtrnon_head_dtr D~D2 ]Ufs(R)U','tUr.2U...Ur,~ 

3 L e x i c a l  E n t r y  A u t o m a t a  
This section presents a Lex ica l  E n t r y  A u t o m a -  
t o n  (LA) .  The ineifieiency of parsing in HPSG 
is due to the fact that  what kind of constituents 
phrasal-signs would become is invisible until the 
whole sequence of applications of rule schemata 
is completed. Consider the parse tree in Figure 
3. The phrasal-signs $1 and $2 are invisible until 
a parser creates the feature structures describing 
them, using expensive unification. 

Our parsing method avoids this on-line con- 
struction of phrasal-signs by computing skeletal 
part  of parse trees prior to parsing. [n Figure 
3, our compiler generates $1 and $2 only from 
the lexical entry "wrote," without specifying the 
non-head daughters indicated by the triangles in 
Figure 3. Since the non-head daughters are token- 
identical with subca t  values of the lexical entry 
for "wrote", the obtained skeletal parse tree con- 
tains the information that  St takes a noun phrase 
as object and $2 selects another noun-phrase. 
Then unifying those non-head daughters with ac- 
tual signs constructed from input, parsing can be 
done. An LA expresses a set of such skeletal parse 
trees. A state in an LA corresponds to a phrasal- 
sign suc h as Sj and $2. They are called c o r e -  
s t r u c t u r e s .  A transition arc is a domination link 
between a phrasal-sign and its head daughter,  and 
its condition for transition on input is a non-head 
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Q t l e r y  : 

P l"Ogt'iUll: 

I,'~xecut iott : 

Q10 (J2 =: 

C; I =: 
goals 

llext-steps 

goals 

1 ..... 
/ i~l'g, 1 (} 
/ lll'g~ [2] I[]] , 
L ,,,.ga [21 
m,,,l.~ [J]] 

n e x t - s t e p s  

. . . . . .  

.-,,.~a [ (!~'q][l[~i) ]} 
argl 4 [ e-list ] 

arg'3 6 

&rgl  ( : goals arg2 

(21 I I ( ;2  U [ nca:t-.sL,ep.s C I ] =: 

( goals 

( ' 2  = 

next-steps 

l[7][ (,-list 1} 

[ ;~, [[{![)e list ]) 

[ (2 31[8] ]([q[ ,, })) 

a,'g2 arg, (f:~t[ [ 4 ] ) [ [ 7 ]  
g l ' g a  ( [ 3J l [ ~ } )  

goals arg2 4 i[r] 
re'g3 

I[r)[ e-list ] )  

n e x t - s t e p s  
/ ,u~J 4 [ ,<i.~t ] 

goals / arg2 5 b 

.... xt-steps goals <) ] 

I[r][ ,!-li,~t ] )  ] 

Figure 2: An examl)le of D C P ' s  execution 

daughter ,  such as signs tagged [1] and [2] in Fig- 
ure 3. Kasper  c.t al. 1)resented an idea similar to 
this @ l i n e  raising in their work on H P S G - T A G  
compiler(Kasper  et al., 1995). The  difference, is 
tha t  our  a lgori thm is based ou subst i tut ion,  not 
adjoining, Fur thermore ,  it is not  clear in their 
work how off l ine raising is used to improve ef[i- 
cicncy of parsing. 

Before giving the definition of LAs, we detine 
the notion of a quasi-sign, which is part of a sign 
and const i tutes  l~As. 

D e f i n i t i o n  3 ( q u a s i - s i g n ( n ) )  For a given inte- 
ger n, a fcatu,e  structure S is a q 'aasi-sign(n)  
if  it has some of  tile following four  attributes: 
syn,  sem, h e a d - d t r , n o n - h e a d - d t r  and does 
not /Lave values for  the paths ( h e a d - d t r  + 
non-head-dtr)"". 

A qua,.si-sign('n) cannot  rel)resent a parse tree 
whose height is inore than  n, while a sign can 
express a parse tree with any height. T lm)ugh  the 
rest of this 1)aper, we often extract  a quasi-sig"n.(n) 
S from a sign or a quasi-sig',,(,n/) S '  where '., < 
n ' .  This operat ion is denote(l by S' = c'x(S',,n). 
This means tha t  5' is equivMent to S '  except ff)r 
the a t t r ibutes  h e a d - d t r  mM n o n - h e a d - d t r  whose 
root  is the (head-dtr  + non-head-dtr )  '~ value in 
S' .  Note tha t  S and S '  are completely different 
entities. In other  words, S and S '  pose different 
scopes on s t ructure  sharing tags, in addit ion,  we 
also extract  a feature s t ructure  F reached by a 
pa th  or an a t t r ibu te  1) in a feature s t ructure  IP'. 
We denote this by F = v a l ( F ' , p )  and regard F 
and F '  as different entities. 

D e f i n i t i o n  4 ( L e x i c a l  E n t r y  A u t o n ,  a t o n ( L A ) )  
A Lezical Entry  Au toma ton  is a tuplc (Q,A,qo}  
whel'e~ 

Q :  a set of states, where a .state is a 
quasi-s ign(O).  

A : a ,set of transition arcs between states, where 
a transition arc is a tuple (qd, q .... N , D , R )  
where qd, q,. 6 Q, N is a quasi-s ign(O),  D is 
a quas i - s ign ( I )  and R is a rule schema. 

qo : tile initial state, which corresponds to a lezi- 
cal erLtry. 

In a transit ion :-tt'(; < qd, q ..... N ,  D,  1~} , q,~ denotes 
the destination of the transi t ion arc, and qd is the 
root  of the arc. The N is a non-head daughter  
of a l)hrasal-sign, i.e., the dest inat ion state  of the 
transition, and expresses the input  condit ion for 
the transition. The  D is used to represe, nt: the de- 
pendency 1)etween the nn)ther sign and the daugh- 
ters th rough  s t ructure  sharings. This is called a 
D e p e n d e n c y  F e a t u r e  S t r u e t u r e ( D F S )  of the 
transi t ion arc, the role of which will be discussed 
in Section 4. 1~, is the rule schema used to create 
this arc. 

An LA is generated fl'om a lexieal ent ry  l by the 
following recursive pro(:edure: 

1. Let; ,~; 1)e {/}, A be an eml)ty set and sd = / 
2. For ea(:h rule, schema 1~, and for each of its 

ea(:h resolution sequence ( r l , . . . , ' r ,~} obtain,  

1) - [ h e a d - d t r  ,Sd ] 

uf.s(l~) u r, u . - .  o r,~ 

and if l) is a 
feature s tructure,  obtain  s , ,  = ex (D,O)  and 
N = ex(w~l(D,  n o n - h e a d - d t r ) ,  0). 

a. If D is a t~ature s t ructure ,  

• If the, re is a state s~,~ 6 S such tha t  s',~ 
,s .... 4 let s,~ be s~,~. Otherwise,  add s,,~ 
to 5". 

* If there is no T'r = \'/~"d, '~,,~"', N " ,  D" ,  1~) 
A such that  .%~ ~ s{',~, s,z ~ sSl, N 

4For ~my feature structures f ~md f ' ,  f ~ f '  iff 
f E f '~md f '  E f 
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Phase2-proc-dcp(e : edge); 
assume e = (1, r, S, Dep) 
return S U sub-structure(e) 

sub-structure(e : edge); 
assmne e = (l, r, S, Dep) 
If Dep = 4) 
then return sub(S), 
else 

for each (D, eh, e~, R) C Dep, 
assume that  el~ = (lh, rh, Sh, Deph) 

and e~ : (In, r~, Sn, Dep,~) 
Sh := sub-structure(eh), 
S,~ := Sn U sub-strueture(e~) 
If neither of Sh and Sn is n i l ,  

s%bo :~ 
fv(dep(D) u sub(fs(R)), 

[ h e a d - d t r  Sh ] 
non-head-dtr S n ' 

rs) 
............................... (A) 

for each resolution sequence 
,rd, 

sub := .sub0 LIT 1 I~ • • • U Ti 
............................... (B) 

If sub is not a feature structure or 
either of Sh or S~ is n i l ,  

then return n i l  
else return sub 

Figure 4: A recursive procedure for tile Phase 2 

N "  and D ~ D",  then, add the tuple 
(s,t, s,,~, N, D, R) to A. 

4. If the new quasi-sign(O) (s,~) was added to 
S in the previous step, let sd be s,~ and go to 
Step 2. 

When this terminates,  (S, A, l) is the LA for 1. 
The major  difference of Step 2 and the 

normal application of a rule schema is that  
n o n - h e a d - d t r  values are not specified in Step 2. 
In spite of this underspecification, certain parts 
of the n o n - h e a d - d t r  are instantiated because 
they are token-identicM with certain values of the 
head-d%r domain. By unifying n o n - h e a d - d t r  
values with actual signs to be constructed fl'om in- 
put sentences, a parser can obtain parsing results. 
For more intuitive explanation, see (Torisawa and 
Tsujii, 1996). 

However, this simple LA generation algorithm 
has a termination problem. There are two poten- 
tial causes of non-termination. The first is the 
generative capacity of a feature structure of a rule 
schema, i.e., a rule schema can generate infinite 
variety of signs. The second is non-termination of 
the execution of DCP in Step 2 because of lack of 
concrete non-head daughters. 

For the first case, consider a rule schema with 
the following feature structure. 

h e a d - d t r  s y n  [ c o u n t e r  [1] ] ] 

Then, this can generate an infinite se- 
quence of signs, each of which contains a part ,  
[ c o u n t e r  <bar, ba, r , . . . , b a r )  l and is not equiv- 
alent to any previously generated sign. In order 

to resolve this difficulty, we apply tim r e s t r i c t i o n  
(Shieber, 1985) to a rule schemata  and a lexical 
entry, and split the feature structure F = f s ( R )  
of a rule schema R or a lexical entry F = l, 
into two, namely, core(F) and sub(F) such that  
F = core(F) U sub(F).  The definition of the re- 
striction here is given as follows. 

Definition 5 ( p a t h s )  For arty node n in a fea- 
ture structure F, pa ths (n ,F)  is a set of all the 
paths that reaches n from the root of F.  
Definition 6 (Restriction Schema) A 
restriction schema rs is a set of paths. 
Definition 7 ( R e s )  F '  = Res(F,  rs) is a ma.~;i- 
real feature structure such that each node n in F ~ 
satisfies the following conditions. 

• The~ is a node no in f: such that 
pa ths(no ,F)  = path.s(n,F')  and type('n) = 
t?tpe(no). 

• For any p C paths( 'n,F') ,  there is no path 
p,, 6 rs which prefixes p. 

Res eliminates the feature structure nodes 
which is specified by a restriction schema. For a 
certMn given restriction schema rs ,  eore(fs(l~,)) -= 
R e s ( f s ( R ) , r s )  and sub( fs (R))  is a mini- 
mM feature structure such that  c o r e ( f s ( R ) ) U  
sub( f s (R) )  = f s (R ) .  Tile nodes eliminated by 
Res must appear  in sub( fs (R)) .  In tile example, 
if we add (syn, counter}  to a restriction schema 
and replace f s ( R )  with eorc(fs(.R)) in the Mgo- 
ri thm for generating LAs, the termination prob- 
lenl does not occur because LAs can contain a loop 
and equivMent signs are reduced to one state in 
LAs. The sub( fs (R))  contains the s y n l c o u n t e r ,  
and  the value is treated at Phase 2. 

The other problem, i.e., termination of DCPs,  
often occurs because of underspecification of the 
nork-head-d t r  wines.  Consider the rule schema 
in F igure  1. The append does not terminate at 
Phase 2 because the i n d i c e s  value of non-head 
(laughters is [ ± ]. (Consider the case of execut- 
ing append(X, (b) ,Y)  in Prolog.) We introduce 
the .freeze Nnctor  in Prolog which delays the 
evaluation of the second argument of the func- 
tors if the first arguruent is not instantiated. For 
instance, f r e e z e  (X, append(X, [b ] ,  Z) ) means to 
delay the ewfluation of append until X is instan- 
tinted. We introduce the functor in the following 
forln. 

goals arg2 (fl 
arg3 [~  
freeze ] 

This means the resolution of this query is not 
performed if [1] is [±]. The delayed evaluation 
is considered later when tile n o n - h e a d - d t r  val- 
ues are instantiated by an actual sign. Note that  
this change does not affect the discussion on the 
correctness of our parsing method, because the 
difference can be seen as only changes of order of 
unification. 

Now, tile two phases of our parsing algorithm 
can be described in more detail. 
P h a s e  1 : Enumerate  possible parses or edges in 

a chart only with unifiability checking in a 
bot tom-up chart-parsing like manner.  
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P h a s e  2 : For comt)leted parse trees, compute  
sub-structures by DFSs, , sub( f s (R) )  for each 
schema R and frozen 1)C1 ) programs. 

Note that,  in ['has(; 1, unification is replaced 
with nnifiability checking, which is more efficient 
than unification in terlns of space an(l time. The 
intended side effect by unification, such as build- 
ing up logical forms in sere v a l u e s ,  is COmlntted 
at Phase 2 only for the parse trees covering the 
whole input. 

a.1 P h a s e  1 P a r s i n g  

The Phase~ 1 parsing algorithm is quite similar to a 
bot tom-up chart parsing for CFG. The Mgorithm 
has a chart and edges. 

D e f i n i t i o n  8 ( e d g e )  A n  edge is a tupla 
(1, r ,  S, l )ep) where, 

• 1 and r arc. vertexes in the chart. 
• S is a slate of an LA.  
• .l)ep i.s a .set of tuples in the f o rm  of 

(D, eh, c,,, ll} wh, e, rc. eh a7%d Cn aTY; (:dges, ]) 
i.s a quasi- .s ign(I)  and R is a rule .schema. 

The intuition behind this definition is, 

• £' l)lays the role of a non- / te rmimd in CFG, 
though it is actually a quasi-sign(O).  

• ch and e,~ denote a head daughter edge and a 
non-head daughter edge, respectively. 

• Dep  represents the dependency of an 
edge and its daughter edges. Where 
(D, eh,c,~,l~} E Dcp, D is a DIeS of a tran- 
sition arc. Basi(:ally, Phase 1 parsing creates 
these tuples, and ])hase 2 parsing uses them. 

The Phase 1 parsing (:onsists of the folh)wing 
steps. Assume that  a word in i n p u t  ]n~s a lexical 
entry L~ and that  an LA (Q,;,A,,q~) generated 
fi'om Li is at tached to the word: 

1. Create an edge li -= (j.i,ji + 1,q~,()) in the 
chart for each Li, for at)propriate .ji. 

2. For an edge e. 1 whose state is q~ in the chart, 
pick u t) an edge e2 which is adjacent to el 
and whose state is q~. 

3. For a transition arc (ql, q, N, D, ll), check if 
N is unifiable with q2. 

4. If the unifiability check is successful, find an 
edge (l = ('m,d,'n,d,q, Depd) strictly covering 
el and e2. 

5. if there is, replace d with a new edge 
(m,, , 'na,q, Dep,z U {(D,c , , eu ,B)} )  it) the. 
chart. 

6. Otherwise, create 
a new edge (Tn, n, q, {(D, el, e2, R)}) strictly 
covering el and e2. 

7. Go to steI) 2. 

4 P h a s e  2 P a r s i n g  

The algorithnl of Phase 2 parsing is given in 
Figure 4. The procedure sub-.s tructure is a re- 
cursive 1)rocedure which takes an edge as in- 
put and builds Ul) sub-structures, which is dif- 
fer'ential feature structures representing modifica- 
tions to core-structures, in a bottoln-U 1) nlanner. 

The obtained sub-structures are unified with core- 
structures when 1) the input edge covers a whole 
input or 2) the edge is a non-head daughter  edge 
of sonm other edge. Note that  the .~ub-struet'are 
treats s u b ( f s ( R ) ) ,  a feature structure eliminated 
l)y the restriction in the generation of LAs, (the 
(A) 1)art in Figure 4) and frozen goals of DCPs,  
by additional ewduation of DCPs. (the (B) part) 

Here, we use two techniques: ()tie is dependency 
analysis which is eml)odied by the function dep in 
Figure 4. The other is a partiM unification routine 
expressed by p _ n n i f y  in the figure. 

The del)endency analysis is represented with 
the function, dep(F, 'rs) ,  where F is a DFS and 
rs  is a restriction schema used in generation of 
LAs: 

D e f i n i t i o n  9 (dep )  For a feature structure ["' 
and the. restriction schema r.s, F = dep( l  c~,r,s) 
is a maximal  fc.atu're~ structure such O~,at any 'node 
'n in F sati,~fies the conjunct ion of th, e. following 
two conditions: 

t. There is a node n' in f i'' ,such, that 
v ( t m . + , . ,  P )  - ~ ) , ,m . ,+ , , ' , F ' )  a, .Z t:,mc.(7,0 := 
typc(n ' ) .  

2. Where A)  ha. = 'n or B)  n,t is a descendan? 
of n, pa, ths (n , z ,F)  contains a path. prefixed 
by one of (head-dtr), (non-head-dtr) and 
<goa:ts>. 

3. The diajunetion of the following three condi- 
tions is satisfied where A)  n,t = n or B)  'n(t 
is a descendant of n. 

• For .some p G pa, th, s(7t~l,F), t he re  i.s a 
path, p,,. E ' rs wh, ieh prefixes p. 

• Some p ~ p.,th,@n,t,F) is prefixed by 
(~m.,ls). 

• 7'here is no node 'n. in F .~'uch th, at 
i) there is paths Pi,7)'2 ~ paths('n<,., f;') 
such that Pi is prefixed by (syn) 07' 
(sere) aTtd P2 is 'p'r'efi;Le.d by (head-dtr) 
Or (non-head-dtr>, and i/) for  a~ty p G 
paths(rid, F )  there is p,~ E path..s(n,~, F)  
which prefixes p. 

Roughly, dep eliminates 1) the descendant 
nodes of the node which apl)ears both in syn /sem 
domains and h e a d - d t r / n o n - h e a d - d t r  domains 
and 2) the nodes at)peering only in syn /sem do- 
mains, excet)t for the node which el)pears in 
s'ab(fs(]¢)) or g o a l s  domains. In other words, 
it removes the feature structures that  have I)een 
already raised to core-structures or other DFSs, 
ex(:ept for the structure sharings, and leaves those 
which will be required by DCPs or x u b ( f s ( R ) ) .  

p_uni f y( Fl  , F.2 , r s ) is a partial unification rou- 
tine where Fl and F2 are feature structures, and 
rs  is a restriction schema used in generation of 
LAs. l{oughly, it performs unification of F, and 
l'12 only for common  part  of Ft,  F.2, and it pro- 
duces unified results only for the node 'n in Fl if 

s'nj is ~t descendant of 'n2 in a feaiure structur{~ l,' 
i l l  'nt # n2, and  the.r('. ~u:e p a t h s  Pl 6 path, s(~,,l, [ " )  ~Hld 
I)'2 E pa, th, s(n.2, l " ) ,  nnd  p2 l)r('.fixes p l .  
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phon "wrote" 

syn , o r v , ]  .... .... 
subcat <NI'[1],NP[2]) 

rein wrote 
sere content agent 

object 
indices 0 

Figure 5: A lexical entry for "wrote" 

$2 ? A State 

P b  T : N  T2:N S1 
A Transition Arc 

T I : N P  (N d e n o t e s  
L a non-head-dtr.) 

Figure 6: The LA derived from "wrote" 

n has a counter part  in F~. More precisely, it pro- 
duces the unification results for a nod(; n in Fj 
such that  

• there is a path p ~ paths(n, I~) such that  the 
node reached by 1) is also defined in F2, or 

• there is a path p ~ paths(n, F1) prefixed by 
some p,, C rs or (goals). 

Note that  a node is unified if its structure- 
shared part  has a counter-I)art in F2. Intuitively, 
the routing produces unified results for the part  of 
Fi instantiated by /7'2. The other part,  that  is not 
produced by p_unify, is not required at Phase 2 
because it is already computed in a state or DFSs 
in LAs when the LAs are generated. Then, a sign 
can be obtained by unifying a sub-structure and 
the corresponding core-structure. 

5 E x a m p l e  

This section describes the parsing process of the 
sentence "My colleague wrote a good paper." The 
LA generated fronl the lexical entry for "wrote" 
in Figure 5 is given in Figure 6. The transition arc 
T1 between the states L and S1 is generated by 
the rule schema in Figure 1. Note thai; the query 
to DCP, freeze([1], append(Ill, [2], [3])), is used to 
obtain union of indices values of daughters and the 
result is written to the indices values of the mother 
sign. During the generation of the transition arc, 
since the first argument  of the query is [ ± ], it is 
frozen. The core-structures arid the dependency- 
analyzed DFSs that  augment the LA are shown 
in Figure 7. We assume that  we do not use any 
restriction, i.e., for any lexical entry l and rule 
schenaata 2~, s,bb(1) ~-[±1 and sub(fs(I{)) = [±1. 

Note that ,  in the DFSs, the already raised fea- 
ture structures are eliminated and, that  the DFS 
of the transition arc T contains the frozen query 
as the goa l s .  

Assmne that  the noun phrases "My colleague" 
and '% good paper" are already recognized by a 
parser. At phase 1, they are checked if they are 
unifiable to the condition of transition arcs T1 and 
T2, i.e., the NPs  which are non-head daughters 

$2 

syn 

senl 

5'1 

syn 

head [ ..... ior V ] ] 
subcat 0 ] 

rehl wrote content agent ± 
object ± 

indices ± 

head [ major V ] ] 
subcat (NP[2]) 

rein wrote 
senl content agent ] 

object 
indices A_ 

The dependency-anMyzed D F S  of T2 
syn [~ ..... l [s] ] 

seln 
indices [a] 

- synSign 1 ] .... ] 
h~ad-dtr [a] s~beat .[qN;'[r]) 

Z 
[ }  t f l l l a j o r  ..... 

syn subcttt ) 
non-head-dtr [5] 

sere indices 

goals argl 
arg2 
arg2 

The dependency-analyzed D F S  of T1 
head 8] 

syn subcat {/10]±[9]} ] 

content [6] agent 
sere object 

indices [3] 
• sign 

sy 
1 ..... I-dtr [3] 9]) 

..... [ ic'::~itceet: t [2 t (, ] 

syn [ t subcat ) 
non-head-dtr [5] 

sere indices 

1 ..... ]> freeze 1 
goals argl 

a,-~2 () 
arg2 

Nll] 

N,I] 

Figure 7: States and DFSs in tim LA in Figure 6 

The sub-structure for $2 

content | agen~ 1]my_colleaque | 
. . . . .  [ obje,:t [2]good_p.vJ4' J 

indices {[llmy_collea.o .... [2]good_paper) 
The sub-structure for S1 

sere [ object [1]good_paper ] 
indices ([1]good_paper) 

The goals,head-dtr,non-head- dtr vMues are omitted. 

Figure 8: The sub-structures obtained in the pars- 
ing 
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__Parsing ~ i t h n l  
Phase 1 only 
Pheuse 1 & Phase 2 
Phase 1 & Phase 2 

~ f - ~  
naive application of rule sche, ma ta  

naive application of rule s<:hentata 

~['ylTe. -6f sent;ences 
( #  of sentences) 
glT 7 0  - - - -  

<ufly successful~7~) 
enD. s ~ s ~  

Ass) 
onTy ~ f u T - -  - 

_ ( ~ ) _  . . . . . . .  

19.2 
19.2 
18.8 

17.13 

3:[.4 

Av 3n< e& 
1.25 ~L121_ 
3.00 ~1.65) 

85.09 

1093.22 ~ 2 . 1 ~  

A bracke ted  t ime  indicates non-(~(] execution tim(< '] 'he eXl)erimeuts was l)(nformed on SparcSta t ion  20 with 128 MI) I I A M  

Figure 9: Ext>eriments on a Japanese newsl)aper(Asahi Shinl)un) 

<)f $1 and $2. Since all l;he u,dfial)ility <:lwx:k- 
ings ,'/.1"o successful, Phase 1 parsing produ(:es the 
parse tree whose form is presented in Figure 3. 
The Phase 2 1)arsing produces the sub-structures 
in Figure 8. Note that  the frozen goals are eval- 
uated and the i n d i c e s  wdues have al)prot)riate 
values. A l)arsing result is obtaine{l by unifying 
the sub-structure for 5"2 with tim correspon<ling 
c o r e - s t r u c t l l r e .  

The amount of the feature stru<:ture nodes gen- 
erate(1 during t)arsing are r(~<lu(:e(1 (:<m~t>are(l to 
the case of the naive at)l)lication of rule schemata 
presented in Section 2. The important  point is 
that  they contMn only either the part  iu the 
DFSs that  was instantiated by head daughters '  
sub-structures, and non-head daughters '  core- 
structures and sub-structures, or the part  that  
contributes to the DCP ' s  exaluation. The feature 
structure that  does not al)pear i ,  a sub-structure 
appears  in the corresponding core-structure. Se, e 
Figure 7. Because of these 1)rot>erties, the correct- 
ness of our parsing nmthod is guaranteed. ('lbri- 
sawa and Tsujii, 1996). 

7 C o n c l u s i o n  

We have lu'esented a two-phased t)arsing nlethod 
tor HPSG. In the first l)hase,, our 1)arser pro- 
duces parse trees using Lexical Entry  Automnta  
compilcxl from lexical entries, in the second 
phase, only the feature structures whi<:h luust ])e 
(:ompute([ dynamically are (:omputed. As a re- 
suit, amount  of the fl;ature structures unifie<l at 
1)arsing-time is reduce.d. We also showed the el'- 
feet of our optinfization te(:hniques by a series of 
exl)erinwats <m a real world text. 

]t can l)e noticed that ea<:h transition arc of tim 
cOral)ileal l,As can be seen as a rewriting rule in 
CFG (or a dott;ed notation in a chart parser.) We 
belie.ve this can Ol)en the way to integrate severaJ 
n,et;hods deveh)l>ed for CI,'G, including the inside- 
outside algorithm tot grmmnar  learning or disam 
biguation, into an HPSC, framework. We also 1)e- 
lieve that,  by pursuing this direction for optimiz- 
ing tt l)SG parsers, we can reach the point whe.re 
g rammar  learning from corl)ora can be done with 
concise, and linguistically well-defined (:ore grant- 
I t t ; t r .  

6 E x I ) e r i m e n t s  

We have implenmnted our parsing metho<l in 
Common Lisp Ol)je<:t Systen~. hnprovenmnt by 
our method has /)een measured on 70 ra.ndonfly 
selected Japanese sentences from a newsl)at)er 
(Asahi Shinbun). The used g rammar  (',onsists of 
just 5 rule schemata, which are generated fl'om 
principles and rewriting rules, aim 55 default lex- 
ical entries given for each part  of speech, with 44 
manually tailored lexical entries. The total  num- 
ber of states in the LAs compiled fl'oln them was 
1490. The grammar  does not have a semantic 
part.  The results arc. l)resented in Figure 9. Our 
grammar produ<:ed l>ossil)le parse trees for 43 sen- 
ten<'.es (61.4%). We compared the. execution time 
of our I)arsing method and a more naive algorithm, 
which l)erforms Phase 1 parsing with LAs and al)- 
plys rule s(:hemata to (:olnph'.ted pars<; trees in the 
naive way described in Se<:tion 2. As the. naive al- 
gorithm caused thrashing for storage in GC, it is 
pointless to compare those tigures simply. How- 
ever, it is obvious that  our method is much fi~ster 
than the naive one. We could not measure the ex- 
ecution time for a totally naive algorithm which 
t)uilds parse trees without LAs because of Uwash- 
ing. 
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