Hypothesis Selection in Grammar Acquisition

Masaki KIYONO* and Jun'ichi TSUJII
Centre for Computational Linguistics
University of Manchester Institute of Science and Technology
PO Box 88, Manchester M60 1QD
United Kingdom
kiyono@ccl.umist.ac.uk, tsujii@ccl.umist.ac.uk

Abstract

'This paper presents some techiniques for selecting linguistically adequate hypolheses of new grammatical knowledge to be used as resourees of grammatical knowledge acquisition. In our framework of linguistic knowledge acquisition, a ralebased hypothesis generator is invoked in case of parsing failures and all the possible hypotheses of new grammar rules or lexical entries are generated from partial parsing results. Although each hypothesis could recover the defects of the existing grammar, the greater part of hypotheses are linguistically unatural. The techniques we propose here prevent such unnatural hypotheses from being generated without discarding plausible ones and make the following corpus-based acquisition process nore ellicienti and more reliable.

1 Introduction

Reusability of existing linguistic knowledge is the most important requirement for the rapid development of practical nalural lauguage processing systems. In order to realize automatic customization of existing linguistic knowledge to each application domain, we proposed a new approach of linguistic knowledge acquisition, which is a combination of symbolic and statistical approaches [Kiyono and Tsujii, 1993].

The framework of our approach is shown in l'igure 1. The acquisition flow starls with executing the parse of each sentence in a corpus. If parsing failed, the 'Hypothesis Generator' produces the hypotheses of additional grammatical knowledge, each of which could recover the incompleteness of the existing grammar. After iterating this hypothesis generation process for all the sentences in the corpus, the hypotheses are passed to the statistical analysis process and finally plausible hypotheses are chosen as now knowledge by observing statistical properties of the hypotheses.

Unlike robust parsing [Mcllish, 1989; Goeser, 1992; Douglas and Dale, 1992] or non-statistical approach for grammar acquisition, our approach does not require a mechanism to detect the catuse of the parsing failure in the sentencial analysis phase and therefore the 'IIypothesis Generator' may output all the possible hypotheses. However, the greater part of hypotheses gencrated by a simple deductive mechanism are unmatural revisions of the existing grammar. For example, even a rule which derives a top node category S directly from the input string of words might be hypothesized.

[^0]

Figure 1: Framework of Grammar Acquisition

Linguistically umatural hypotheses have harmful effects on the following corpus-based process, not only making the process inefficient but also interfering with statistical data as noise. In this paper, some techniques to remove such inadequate hypotheses are proposed and the results of experinents which show the eflectiveness of the proposed techniques are also discussed.

2 Grammar Hypothesizing

2.1 Grammar Formalism

The grammar fomalism we use is a conventional mification-based grammar. Fach grammar rule is written in the form of a combination of a context-free rule and feature unification functions. This formalism is not specific to any lingnistic theory, but we introduced a number of concepts widely accepted in linguistic theorics, such as grammatical functions, subcategorization frames, and X-bar theory.

The parsing system we introduced to apply our grammar formalism is a system called SAX [Matsumoto, 1986]. SAX uses the concepts of active and inactive edges of Chart Parsing and analyses an input sentence with a botton-up and parallel algorithm. As the grammar hypothesizing algorithm is supposed to refer partial parsing results of unsuccessfully parsed sentences, we slightly modified SAX so that it outputs inactive edges as partial parsing results.

2.2 Basic Algorithm

When SAX fails to parsc a sentence, no inactive edge of category S spanning the whole sentence exists in the parsing result. Grammar hypothesizing is a process to introduce this inactive edge by augmenting the current grammar. The basic part of the hypothesis generation algorithm is written as follows:
[Algorithm] An inactive edge $\left[i e(A): x_{0}, \boldsymbol{x}_{n}\right]$ can be introduced from x_{0} to x_{n}, with label A, by each of the hypotheses generated by the following two steps.
[Step 1] For each sequence of inactive edges, $\left[i e\left(B_{1}\right): x_{0}, x_{1}\right], \ldots,\left[i e\left(B_{n}\right): x_{n-1}, x_{n}\right]$, spanniug from x_{0} to x_{n}, generates a new rulc.

$$
A \Rightarrow B_{1}, \cdots, B_{n}
$$

[Step 2] For each existing rule $A \Rightarrow A_{1}, \cdots, A_{n}$, find an incomplete sequence of inactive edges, $\left[i c\left(A_{1}\right): x_{0}, x_{1}\right], \ldots,\left[i e\left(A_{i-1}\right): x_{i-2}, x_{i-1}\right]$, $\left[i e\left(A_{i+1}\right): x_{i}, x_{i+1}\right], \ldots,\left[i e\left(A_{n}\right): x_{n-1}, x_{n}\right]$, and call this algorithm for $\left[i e\left(A_{i}\right): x_{i-1}, x_{i}\right]$.
Feature Structures: A rule generated in [Step 1] could be a lexical entry when this top-down algorithm reaches the bottom. As we adopted a unificationbased granmar formalism, we extended the algorithm so that it can hypothesize a feature structure of a lexical entry by observing surrounding successful categories. As the algorithm works even for a complex feature like a subcategorization frame, it can be used to acquire a subcategorization dictionary. While some previous works on subcategorization frame acquisition assumed very little prior knowledge concerning the classification of subcategorization frames [Brent, 1991; Manning, 1993], our approach assumes the existence of grammar rules specifying subcategorization frame assignment, which enables more accurate learning of subeategorization frames.
Multiple Defects: In [Step 2] of the algorithm, it is supposed that each uusuccossfully parsed sentence has exactly one cause of failure but a sentence in actual texts often contains two or more causes of failure (for example, two unknowi words). To solve this problem, we extended the algorithun so that it searches for a multiple hypothesis which is a set of rewriting rules and lexical entries.

3 Hypothesis Selection

3.1 Basic Grammatical Constraints

From a linguistic point of view, hypotheses generated by the algorithm given above might contain many unnatural hypotheses because the algorithm itself does not have any linguistic knowledge to judge the appropriatencss of hypotheses. To remove unnatural hypotheses, we have introduced the following criteria [Kiyono and Tsujii, 1993].

- The maximum number of adjacent unsuccessful categories is set to 2 in order not to decrease the efficiency of the algorithm.
- The maximum number of daughter nodes is set to 3 .
- Supposing that the existing grammar contains all the category conversion rules, a mary rule which has only one daughter node is not generated.
- Using gencralizations embodied in the existing grammar, a hypothesis containing a sequence of subnodes which are collected into a larger category by existing grammar rules is not generated.
- Distinguishing non-lexical categories from lexical categories, a hypothesis whose mother category is a lexical category is not generated.
- Assuming that the existing grammar has a complete set of functional words, a lexical hypothesis is restricted to the open lexical categories, such as noun, verb, adjective, and adverb.

3.2 Constraint based on Local Boundaries

A new constraint on the violation of the boundary condition given to phrases was introduced to avoid any collection of adjacent successful categories in rule lypothesizing. The boundary condition is given by putting parentlieses at both ends of a phrase, such as a noun phrase, a verls phrase, and a prepositional phrase. This constraint filters out a hypothesis which crosses either end, not both ends, of a phrase. For example, when parentheses are put like "[The default, blocking factor] is [20 blocks]", a hypothesis ' $V P \Rightarrow$ $V P, N P, V E R B B E$ " covering "blocking factor is" is discarded because of the violation of the boundary condition of a noun phrase "The default blocking factor"

This constraint requires the human task of puting parentheses before the hypothesis generator is invoked. In comparison with writing a constituent structure of the whole sentence, this work is much easier because we have only to give parentheses to definite phrases. Moreover, instead of giving parentheses by hand, we can even obtain various tagged corpora.
As this constraint is also applicable to other constituents of the input sentence, it might improve the cfliciency of the top-down hypothesizing algorithm.

3.3 Constraint based on X-bar Theory

Most of the criteria in 3.1 are based on linguistic category classification but none of them conmits itself to dealing with the relationship anong the mother node and the daughter nodes. For example, supposing the existing grammar does not contain a rule for participial adjuncts in noun phrases, the hypothesizing progran generates a new rewriting rule ' $N P \Rightarrow V P, N P$ ' from the phrase "blocking factor" in the sentence "The dofault blocking factor is 20 blocks". However, the progran also generates outher alternative hypotheses from the same plirase, such as ${ }^{'} P P \Rightarrow V P, N P, \quad ' I N H T N I T I V E \Rightarrow V P, N P$ ', and 'THAT'_CDAUSE $\Rightarrow V P, N P$ ', each of which derives a post-positional adjunct for "default" by believing "default" is a head noun of the noun phrasc. Linguistically, such combinations of mother nodes and daughter nodes are not allowed.

As a general principle for explaining phrase structures, X-bar theory is widely accepted. According to X-bar theory, a grammar rule is (or can be converted to) either of the following forms, where caclu prime(') expresses the projection level of a head X. The projection level increases as grammar rules are applied and $X^{\prime \prime}$ is called a maximal projection of that category. U and W are adjuncts of X^{\prime} and should be maximal projections of some categories.

$$
\begin{aligned}
& X^{\prime \prime} \Rightarrow Y X^{\prime} Z \\
& X^{\prime \prime} \Rightarrow V X W
\end{aligned}
$$

If the existing grammar is writem in X-bar theory, this constraint is drastically eflective in reducing the number of hypotheses.

3.4 Plausibility of Hypotheses

Anong the hypotheses which passed through all the constraints, each one has a different plansibility as grammatical knowledge. Assmming that the existing grammar is reasonably comprelensive, lexical or idiosyncratic knowledge should be more plawsible than general rewriting rules. In order to emphasize this tendency, each hypothesis is given the following pausibil ity value.

$$
I\left(I y p o_{i}\right)-1 \cdots \frac{W\left(I y p o_{i}\right) \times M\left(I \| \not \omega_{i}\right)}{W(S) \times \Pi\left(S^{\prime}\right)}
$$

Ihis value is related to the proportion of the size, or the product of the width and the height, of the subtree composed by the hypothesis in the whole structure of the sentence. The value ranges from 0 to 1 and gets bigger if the hypothesis covers a smaller part, of the sentence. The width of the hypothesis, $W\left(H y m_{i}\right)$, is delined as the word coment of the subtree and the height $I\left(I y_{p o}\right)$ is as the shortest path from lexical nodes to the top node of the subtree.

4 Experiments

4.1 Corpus

In order to check the effects of the hypothesis selection technigues, we carried ont sone experiments with the UNIX on line mammal. 100 sentences were chosen as an experimental sed from the manual, 'The characteristics of this corpus are as follows.

- Number of sentences: 100
- Length of sentences: 9.08 words (average)
- Number of difierent words: 381
- Examples:

There is no escape sequemee that prints a double-cutute
Hes the mext argument as the blocking factor for tape records.
'The defand, blocking factor is 20 blocks.

4.2 Given Grammatical Knowledge

'Two sets of grammar rules were prepared for the experiments, G̛Tammar A and Cormmmar B. (irammar A contains 118 rewriting rules that eover basic expres. sions of binglish. (irammar B is asmbet of (irammar A and contains only 25 rewriting rules. The contents of Grammar A and Grammar B are shown in Table 1.

The dictionary wo nse is the floh Einglish Dictionary containing 200,000 entries. The entries of this dieLionary are not written in the form of a feature structure but have the encoded information of the syntactic patterns, which we interpret as a feature structure. As the EDR Dictionary was developed as a master dietionary for various applications, it took in the information concenning all the appearances of each word with. out screening by frequencios. This chamateristic of the

Mohher Category	Cirammar Λ	Grammar 15
Sentence	23	1
Verb l'hrase	40	12
Noun Plirase	27	i
Prepositional Phrase	2	1
Adjective Phrase	9	1
Adverbial]hase	5	1
Iufinitive Clause	4	1
'Ihat (lamse	1	1
Relative Clause	i	0
Subordinate (${ }^{\text {anass }}$	1	0
Total	-118	25

'Table 1: Rale Comuts of 'I'wo Cirammar Sots

FiDR Dictionary increases the ambiguity of parsing. In fact, each word within the sample sentences from the UNIX mamual has 1.49 parts of speech in the EDR Dictionary while the same vatue is 1.41 according to the (OLHINS (OBUHI) Jictionary.

4.3 Generated Hypotheses

Genemal Onteome: The experiments of generating hypotheses were carried out with Grammar A moder three diflerent, conditions, (a) nsing the basic grammatical constraints only, (b) adding the constrant with local pherasal boundaries given as parentheses, and (c) adding the constrant with X-bar theory. To carry ont experiments (b) and (c), within the barget sentences, parentheses were given do nom phases, infinitive clanses, that-clauses, and subordimate clatuses. A part of the result, of experiment (a) is shown in Table 2 , cach colamm of which displays the number of hypotheses generated. 'Ilve columms 'Single' and 'Multiple' show the mumbers of simgle aud multiple hypotheses respoctively.

The results of the thee experiments are summarized it Table 3. The parser failed to analyse 6 t ont of 100 seutences and the grammar hypothesizing, program was invoked for those sentences. While no hypotheses were gencrated from 20 or 30% of unsuccessfully parsed sentences becanse the current hypothesizing algorithm does not allow vertical duplication of incompleteness and also because the parameters of the basic grammatical constraints do not allow the existence of more than t, wo adjacent incomplete nodes, the results on the numbers of actual hypotheses made show that the stronger the constraint we pose, the fewer hypotheses are generated. The average hypotheses per sentence, calculated by dividing the total hypothesis comb of 1,301 in (a), 708 in (b), and $231 \mathrm{in}(\mathrm{c})$, by the number of actual sentences from which hypotheses were generated, 50 in (a), $14 \mathrm{inn}(b)$, and $41 \mathrm{in}(\mathrm{c})$, was reduced from 26.0 to 5.6.

In some cases, all the hypotheses are removed by newly introduced constrants, 6 sentences by the local boumdary constrant and 3 more semtences by the constraint of X bar theory. Investigation of the initial set of hypothoses generated from such sentences revealed that no plansible hypothesis was included in it. 'Therefore, these sentences are not critical to the hypothesis selection method we introduced.

In the final set, of hypotheses, 30 pansible hypothe-

Sentence	Single		Multiple			Total
	Lex	Rule	Lex	Mixed	Rule	
The default blocking factor is 20 blocks.	3	18	0	0	0	21
The output device in use is not capable of backspacing.	4	26	0	0	0	30
Remove initial definitions for all predefined symbols.	3	24	0	0	0	27
The escaped NEWLINE is not included in the macro value.	0	0	2	2	0	1
Components of an expression are separated by white space.	2	16	0	0	0	18
The name of this directory is listed in the folder variable.	3	0	0	0	0	3
The name of the editor is listed in the EDITOR variable.	2	0	0	0	0	2

Table 2: Part of the Result of Experiment (a)

	Experiment (a)	Exporiment (b)	Experiment (c)
No. of Unsuccessfilly Parsed Sentences	61	61	61
No. of Sentences which generated No Mypothesis	11	17	20
No. of Sentences which generated Single Hypothescs	43	39	37
No. of Sentences which generated Multiple Itypotheses	7	5	4
No. of Sentences which generated Plausible Itypotheses	33	32	30
Rank of Plausible Hypotheses (Average)	7.4	2.8	1.6
No. of Mypotheses (Total)	1301	708	231
No. of Hypotheses (Average)	26.0	16.1	5.6

Table 3: Hypotheses Generated from Different Conditions
ses, 7 new rewriting rules and 23 new or modified lexical entries, remained without being filtered out by newly introduced constraints. Some of the plausible hypotheses are listed below.

```
New Rule: \(n \mathrm{p} \Rightarrow \mathrm{np}, \mathrm{adjp}\)
New Rule: \(n p \Rightarrow n p, n p\).
New Rule: \(n \mathrm{p} \Rightarrow \mathrm{vp}, \mathrm{np}\). (from 3 sentences)
New Rule: \(n \mathrm{np} \Rightarrow\) vppsv,np.
New Rule: \(\mathrm{vp} \Rightarrow \mathrm{vp}, \mathrm{p}\).
New Lexical Lntry: \(n \Rightarrow\) ['DELETE'].
New Lexical Entry: \(n \Rightarrow\) [pathinames].
Modified Lexical Entry: v \(\Rightarrow\) [default].
Modified Lexical Entry: adj \(\Rightarrow\) [invisible].
Modified Lexical Entry: adj \(\Rightarrow\) [capable].
New Lexical Entry: adv \(\Rightarrow\) [recursively].
```

The weighting function explained in 3.4 was not used for selecting hypotheses but the validity of it was proved by counting the order of each plausible hypothesis in the set of generated hypotheses. The row of 'Rank of Plausible Hypotheses' in 'Table 3 indicates that plausible hypotheses stand much higher than the middle of the order.
Examples: IIereafter, in order to show how hypotheses were selected by each constraint, we explain the results for some typical examples,
Ex.1) "The default blocking factor is 20 blocks."
As Grammar A does not contain a rule for participial adjuncts, the parser fails to analyse the noun phrase "the default blocking factor" and the grammar hypothesizing program is invoked. While this program generates 21 lypotheses in experiment (a), it filters out the following 12 hypotheses in experiment (b). While checking local boundary violation, the program removes those grammatically umatural combinations of categories, though it does not use any
linguistic knowledge

```
New Rule: advp => np,vp.
New Rule: infinitive => np,vp.
New Rule: infinitive => vp,np,vp.
New Rule: np => s,vp,np.
New Rule: np # vp,np,vp.
New Rule: pp }=>\textrm{np},\textrm{vp
New Rule: pp => vp,np,vp.
New Rule: that_clause }=>\mathrm{ vp,np,vp.
New Rule: vp }=>\mathrm{ vp,np,auxbe.
New Rule: vp => vp,np,s.
New Rule: vppsv }=>\mathrm{ vp,np,auxbe.
New Rule: vppsv => vp,np,vp.
```

Moreover, the program filters out the following 4 hypothese with the constraint of X-bar theory.

```
New Rule: infinitive => vp,np.
New Rule: pp }=>>vp,np
New Rule: that_clause => vp,np.
New Rule: vppsv => vp,np.
```

Finally, the following 5 hypotheses, anong which the expected hypothesis ' $N P$ ' $\Rightarrow V P, N P$ ' still remains are generated

Modified Lexical Entry: $n \Rightarrow$ [factor].
New Lexical Entry: adv \Rightarrow [factor]
New Lexical Entry: $n \Rightarrow$ [blocking].
New Rule: $n p \Rightarrow$ vp,np.
New Rule: $n p \Rightarrow s, v p, n p$.
Ex.2) "The output device in usc is not capable of backspacing."
This sentence is also parsed unsuccessfully becanse the curront version of the EDR Dictionary does not have information that "capable" subcategorizes a prepositional phrase. Among the initial set of 30 hypotheses, the following 8 hypotheses pass through

	Grammar A	Grammar B
No. of Unsuccessfilly Parsed Sentences	61	97
No. of Sontences which gencrated No Hypothesis	11	45
No. of Sentences which generated Single Iypotheses	43	41
No. of Sontences which generated Multiple Ilypotheses	7	11
No. of Sentences which generated Plausible Hypotheses	31	16
No. of Typotheses (Total)	1301	550
No. of Hypotheses (Average)	26.0	10.6

Thale 4: Hypotheses Generated from Two Grammar Sets
the constraints of local boundaries and X-bar theory. The first hypothesis in the list is the plausible hypothesis obtained in search of the real canse of the feature disagreement between "capable" and "ol backspacing". This lexical hypothesis for "capable" contains a modified version of its subeategorization frame so that it subcategorizes of prepositional phrase.

```
Modified Lexical Entry: adj => [capable].
New Lexical Entry: n => [capable].
New Lexical Entry: v => [capable].
New Lexical Entry: v => [not].
New Rule: adjp => neg,adjp.
New Rule: adjp # neg,adjp.
New fule: s => s,adjp.
New Hule: vp #> vp,p.
```


4.4 Hypotheses from Smaller Knowledge

Another experiment, was performed with (Grammar B under the hasie grammatical constraints in order to compare the effects of the maturity of existing grammatical knowledge. The numbers of hypotheses generated from two grammar sets are shown in Table 4.

The coverage of crammar B is so limited that 97 out of 100 sentences were parsed unsuccessfinlly and passed to the Ilypothesis Generator However, as the immaturity of Grammar B also affects the number of generated hypotheses, the number of plansible hypotheses among the 550 hypotheses (10.6 hypotheses per sentence) generated from 97 sentences was ouly 16. This result clams that cyclic acquisition of grammatical knowledge is valid. Fiven the sentences from which no hypotheses are generated with a small grammar would be taken into consideration in a later acquisition cycle with a larger grammar.

5 Conclusion

This paper proposed techniques for selecting appropriate liypotheses in the rule-based processing stage of grammar açuisition. The experiments to examine the effects of these techniques indicate that they have several advantages.

- The tewly introduced constraints reduce the number of hypotheses per sentence, from 20.0 to only 5.b, small enough to be treated in a corpus-based processing enviromment. This hypothesis selection is done without discarding plansible hypotheses. Although, all the initial hypotheses may be, in certain cases, removed by the new constraints, this happens only if ues plausible hypotlessis is included in the initial set.
- Even if no hypothesis is generated from an unsuccossfully parsed sentence (20 out of 61 sentences in experiment (c)) or no plansible hypothesis is included in the initial hypothesis set (11 out of 41 sentences in experiment (c)), a plausible hypothesis will be generated in the later acquisition cycle after adding grammatical knowledge vital for the sentence.
- Among the generated hypotheses, lexical hypotheses are more plausible than rule hypotheses (23 out of 30 plausible hypotheses were lexical in experiment. (c)). This fact means that the grammar used for the experiments has an almost suflicient set of rewriting rules and that, after the grammar reaches such a mature situation during the acquisition cycle, only lexical or idiosyncratic knowledge has to be added. As our method has a Cacility to hypothesize a lexical entry with its feature structure including a subcategorization liame, we can set the target of acquisition only to lexical knowledge for a large dictionary.
- The local boundary constraint was introduced for autonatic hypothesis selection, but it, might also be used in an interactive debugging tool for grammar maintenance.

References

[Brent, 1991] Michael R. Brent. Autonatic Acquisition of Subcategorization Frames from Untagged 'Text. In Proc. of the 29si ACL meeting, pp.209214, 1991.
[1)ouglas and Dale, 1992] Shoma Douglas and Robert Dale. Towards Robnst PATR. In Proc. of COLING92, pp. 468 474, 1992.
[Gocser, 1992] Sebastian Gocser. Chart Parsing of Robust Grammars. In Proc. of COLING-92, pp 120 126, 1992.
[Kiyono and T'sujii, 1993] Masaki Kiyono and Jun'ichi Tsujii. Linguistic knowledge acquisition from parsing failures. In Proc. of EACL. $93, \mathrm{pp} .222231,1993$.
[Manning, 1993] Christopher D. Manning. Autonatic Acquisition of a Large Subcategorization Dictionary from Corpora. In Proce of the 31st ACL meeting, pp.235-242, 1993.
[Matsumoto, 1986] Yuuji Matsumoto. A Parallel P'arsing System for Natural Language Aualysis. In Lecture Notes in Computer Science 225, SpringerVerlag, pp.394-409, 1986.
[Mcllish, 1989] Chris S. Mellish. Some Chart--based Techniques for Parsing Ill-formed Input. In Proe. of the P'th 7 AC 'L meeting, pp.102-109, 1989.

[^0]: *also a staf[member of Matsushita Filectric Industrial Co, Ltel., Shinagawa, Tolyo, JAPAN.

