THE MERGED UPPER MODEL: A IINGUISTIC ON'TOLOGY FOR GERMAN AND ENGLISH

Renate Henschel and John Bateman*
Project Kompr
(MDO /Institut fïr Integrierte Publikations- und Luformationssysteme
Dolivostr: 15, D)-64293 Darmstadt, (Germany

$\{$ henschel, bateman\}@ipsi.darmstadt.gmd.de

Abstract

Λ detailed comparison of the Pemman Opper Model and the KOMET' German Upper Model has been earried oul in order to construct a now Meryed Upper Model capa. ble of serving as the ideational basis for generation in both linglish and Cemman. Previonsly proposed criteria for conducting such a merge are expanded on and evaluated. Tt is established that no (semi-) atotomatic: merging of such knowledge sonces can be expected to produce: a reasonable result and that detailed comparison of the kine reportex is essential. I'he result of the merge is now being used ass the basis for sentence generation in Whglish, (ierman and Dutch.

1 INTRODUCTION: MUITIIINGUAL LINGUISTIC 'ONTOLOCTES'

With the noed to develop re-usable frameworks for organizing information (cl., e.g., the ARP' K Kowl. edge Sharing Fiflort [Pabil ct al., 1992]), workable proposals for 'ontologies' to provide such organi. zation are increasing in importance. Such ontologies are now commonly applied in Natural language Procossing systems since there the representation of commonsense aud domain knowledge is essential, Accordingly, a nmber of organazions of knowledge have been developed some quite extensive. These organizations are evaluated by the extent to which they prove re-usable across distinct domatus and ap. plications. The consideration of the reense of these organizations is, however, complicated by the range of differing design eriteria that are employed in their construction; an extensive overview of approaches is given in [Bateman, 1992a]. One particular approach is to define linguiskically motinated ontologies, where the eriteria for organzation rest on semantie distinctions that the grammar of a language needs to lave drawn in order to motivate itss deployment of gram matical distinctions.
'T'wo sizcable linguistic ontologies constructed in This way are the Pemman Upper Model developed for Fanglish text genoration within the Pemman project at USC:/SL [Pemman l'roject, 1989] and the Upper Model for German developed similarly for text generation within the KOME: project at GMD/IDS] [Bate. man at al, 1991 a]. The Dinglish Upper Model ($E U M$) is described in [Bateman cl al., 1990]; the concepts of the German Upper Model (GUM) go back to Steiner ct al., 1988] and [Teich, 1992]. Both ontologies are individually examples of the most detailed such on tologies current ly under development, each with over 200 domain and application independent concepts

[^0]arranged in a subsumption lattice, spanning dislinct types of processes (mental, commanication, relational, actions), and (liverse qualities and objects. Both ontologies have been used in a namber of domaitus and show good re-usability characteristics mandy due to the fact that they are linguisticatly motivated. 'Thus, for example, if language generalion is required there is typically 100% re-usability across comans in contrast to the 50% deseribed by [Pirlein, 1993] for the, largely non-lingnistically motivated, bilooc ontology.'
'There ate a mumber of suggestions for the eval mation of ontologies in terms of formal proper. ties of consistence and coherence of the informaLion those ontologies contiain (e.g., LItoracek, 1989, (auarino, 1094]). With a restriction to linguistically motivated ontologies, we can now state further design principles conceruing what is to be represented and how. Although hose principles were origitally developed in onder to carry out a detailed compar. ison of the $L U M$ and the GUM, they are gencrally applicable for all limgustically motivated onlologies; evaluating the concepts proposed within such an on tology according to the principles deseribed in this paper should improve the statios of that ontology overall.
'The main result of the RUM-GUM comparison is a Mopged Upper Model presently used withint the Komber project as the basis for multilingual sentence generation in linglish, (German and Dutech." 'This then also provides an early answer to a question concerning a different kind of re-usability of limguistically motivated ontologies, i.e., the extent to which they can be re-used across distinet lomguages rather tham across distinct, domains.

2 THE MERGTNG METHOD

2.1 Starting points

Merging distinct ontologies is a problem that will oscur more frequently as new proposals are to be reconciled. [Hovy and Nirenbarg, 1992] propose a general method for creating a merged ontology out of dif ferent ontologies where it does not matier whether

[^1]differences are language dependent or duc to differcnt linguistic theories. The commonalities and differences in two ontologies are classified according to Hovy and Nirenburg as follows:

1. Identity: The same concept is found in both ontologies.
2. Extension: There is a concept in one ontology which is missing in the other, but which specializes the latter ontology further.
3. Cross classification: 'The partitioning of identificd concepts into subconcepts differs in the considered ontologies.

The merging procedure then kecps all concepts of cases (1) and (2) and resolves case (3) by exhaustive cross classification.
Λ simplified version of this procedure is proposed in [Hovy and Knight, 1993]. Here, the cross classification resulting from nonmatching partitions of identified concepts into subconcepts is replaced by parallel subordination of those subconcepts. This results in a substantial reduction in the concepts necessary, but leaves open the question of the mutual relation between concepts stemming from different source ontologies. Participating nip components can be controlled well by such a shared ontology, but its adequacy as a point of communication in a joint mT system is less clar.

We have found that it is necessary to go beyond the original merging methodology in a number of ways. Nevertheless, as a consequence of the criteria for merging that we propose, not all existent concepts of the EUM and GUM need find their representation in the Merged Upper Model and cross classification is still significantly reduced without impairing inter-translatability across concepts arising from different source ontologies.

2.2 Problems with identity

The crucial point in [Hovy and Nirenburg, 1992] is the notion of 'identity'. The decision how to deal with different concepts (identification, extension, or cross classification) is based on the possibility of stating an identity between concepts of different language ontologies. This is somewhat problematic. In the comparison between the English and the German upper models, we took as identification criterion the equivalence of the sentences or phrases which can be generated by the concepts. This correspondence relies on the assumption that. German and English sentences have a one-to-onc-mapping and that translation is a totally information preserving relation. Although this is not true in general, we based our merging on the assumption that it may be true for simple sentences if we abstract out the textual and interpersonal-i.e., non-experiential (examples below)-dimensions of utterances, and the language distance is close. Hence, the whole construction has to be seen in the context of its own relativity.

2.3 Further Principles

Principle 1: Removal of non-experiential concept discrimination
Difficulties can arise when ontologies to be merged are themselves inherently problematic in some way.

Internal probloms should not be automatically transmitted to a merged ontology. Thus, during merging, the distinctions drawn in individual ontologies need always to be evaluated internally before being admitted. The exclusion of textual and interpersonal information in a merged upper model provides an additional important criterium for an 'extended identification' of concepts within ontologies to be merged. Two common kinds of non-experiential concept discriminations were found in the GUM. The first introduces distinct upper model concepts in order to motivate lexicogrammatical realization by differing types of grammatical units. The second introduces distinct upper model concopts to motivate the selection of semantic roles from a given semantic configuration that are to be lexicogrammatically expressed.

An example of the first kind is offered by the concepts G-Relational and G-Relationship ${ }^{3}$. These are both responsible for the generation of processes experientially classifiable as relational, but whercas G Relationship causes an attributive or adverbial realization, G-Relational causes a clausal realization. Thus, phrases (1) and (2) can only be generated from different semantic input--expressed here in the form of the typed semantic assertions of the Penman Sentence P'lan Language (spl.) [Kasper, 1989]: ${ }^{4}$
(1) Das Mädchen ist krank. (The girl is sick.)

> (a / classificatory
> : attribuant (m / person : lex mädchen)
> :classifier (k / quality :lex krank))
(2) das kranke Mädchen (the sick girl)

```
(a / property-ascription
    :domain (m / person :lex mädchen)
    :range (k / quality :lex krank))
```

This problem does not surface so often in the EUM, although there are occasional violations e.g., the inclusion of 'rhetorical relations' that are explicitly textual (see [Bateman et al., 1990] for details).

Examples of the second kind are offered by sentences (3a-b).
(3)a. Der Lehrer antwortet, dass das Ranmschiff rurück gekehrt, ist.
(The teacher answers that the spaceship has returned.)
b. Der lehrer antwortet den Schülern, dass das Raumschiff zurück gekehrt ist.
(The teacher answers the students that...)
The differences in (3) arise from differences in the number of semantic participants in the answeringovent that are made grammatically explicit. Both (3a) and (3b) could be used to describe the same experiential event, the selection being made on nonexperiential grounds (c.g., lack of relevance of a participant, being known from context, known from preceding text, etc.) specific to the text being created.

[^2]Both are, however, classified semantically underneath distinct GUM concepts. These distinct concepts have differing obligatory role conligurations, which requires that the selection of semantic (experiential) type has to be made according to the participants that are to be expressed - a decision that is often made on textual grounds without a change in experiential perspective. In the $\begin{aligned} & \text { LUM }\end{aligned}$ the only semantic distinction in this area of communication processes is between 'telling'-like event.s (addressec-oriented) and 'saying'-like events (non-(uddressec-oriented), which is a difference in experiontial perspective.5 In the EUM, concept discrimination is made with respect to differing possible realizations of roles, not straightforward absence/presence of roles as in the GUM. 'Missing' surface participants can be modelled more adequately by an upper model-grammar interface which allows defined semantic roles to have zero realization. 'Ihis is an elegant way to deal with optional participant.s, pas sive, and impersonal constructions.

The net effect of both kinds of violations ${ }^{6}$ of principle 1 is that the number of concopts is increased and necessary decisions concerning lexicogrammatical realizations are avoided. The proliferation of concepts if allowed would complicate considerably the task of 'identification' of similar concepts in ontologies to be merged.

Principle 2: Intelligent cross classification

Pven following extended identification of concepts, it is not sufficient to provide cross products for those concepts that are not identifiathe but which classify overlapping semantic areas. This is clarified by the following concrele, allhough much abbreviated, example of merging in the area of material (action) process types. The decisions that ate required here are typical of the merging process as a whole.

The L^{\prime}-Material-Process hierarchy distinguishes processes more or less with regard to transitivity patlerning. Au b-Nondirected-Action is a process without external cansation (mostly intransitive, although transitive sentences where the object is not affected or created by the action also fall into this class). f -Ambient-Process and L-Motion-Process are not exhaustive subeoncepts of t - Nondirected-Action.

The vase broke.	Nondirected-Action
I phay piano.	Nondirected-Action
The tourist ran.	Motion-Process
lt rains here.	Ambient-Process

An L-Directed-Action in contrast is a process with $^{\text {a }}$ an external causer as additional participant. H -Directed-Actions divide into h-Creative-MaterialAction and k-Dispositive-Material-Action.

[^3]The child broke the vase. Disposilive-Muterial-Action 'The lion chased the tourist. Dispositivc-Material-Action Mary baked a cake. Crcative-Malerial-Action

The GUM differentiates G-Ayent-centered, G -Affected-centered, G-Agent-only and G-Affected-only as disjoint G-Action subtypes. Here, we have at first, a classification with regard to kind and number of participants. Hxamples for the semantic representations of the intransitive process types are given in (4) and (5), again in spl notation:
(4) Der Tourist ramute. (The tomrist ran.)

> (r / action :lex rennent
> \quad : agent (t/ tourist))
(5) Die lPlanze geht cin. ('The plant is dying.)
(e/action :lex eingehen :affected (p/pflanze))

The transitive processes (with two participants) are further broken up into G-Agent-centered and G -Affected-centered. The (- -Affected-contered process type is a very special case of a transitive process. The definition is given in [Stociner et al., 1988] thas: "X affected-centered-verb Y iff X causes that. Y affected-centered-verb". Examples are:

Das Kind zerbricht dic Vase. \leftrightarrow
Das Kind bewirkt, dass die Vase zerbricht.
The child breaks the vase. \&s
The child brings it about that the vase breaks.
Thus a process is called $G-A f f e c t e d$-centered if the realizing verl) is able to form an ergative pair. All G-Affected-centered processes have at least, two participants, the G-Ayent and the G-Affected.

The (i-Agent-centered process is differentiated with regard to the different participant types for the second participant:

Affecting Der Baucr fallt den Banm.

$$
\begin{aligned}
& \text { (The farmer is felling the tree.) } \\
& \text { (i-Agent } \\
& G \text {-A)fected }
\end{aligned}
$$

Wffecting	Dic Mutter malt cin Itaus. (The mother is painting a house.)
Ranging	Ich spiele Klavior.
	(1 play piano.)
	G-Agent G-Process-range

At first sight, there are few commonalities between these two ontologies. Without deeper introspection, one can only state an identity

$$
\text { K-Ambicnt-Process }=\because \text { G-Natural-Phenomenon }
$$

and could mechanically build a cross classification as shown in Figure 1. Some created concepts should, however, be omitted from this 'cross product ontol. ogy'.
The first obvious argument is the number of parlicipants. These are contradiciory in the following cross concepts: h-Directed-Action/ (- -Ayent-only and L'-Directed-Action/ (1 -Affected-only. A comparison of the low level concepts shows further that the

ligure 1: Mechanical merge of the material processes by cross classification
following GUM and $E U M$ concepts can in lact be identified:

> L-Dispositive-Material-Action $=$
> G-Affecting $+G$-Affected-centercd
> E-Creative-Material-Action $=G$-Effecting.

This rules out the cross concepts:

> B-Dispositive-Material-Action $/ G$-Effecting,
> E-Dispositive-Material-Action $/ G$-Ranging,
> L-Crcative-Material-Action G-Affected-centered,
> E-Creative-Material-Action/ G-Affcting,
> E-Creative-Material-Action $/ G$-Ranging.

Furthemore, it is known from the delintion of fi-Nondirected-Action in [Bateman et al., 1990] that such processes arc cither intransitive or they have a second participant which is in meaning nothing else than the G-Process-range participant. Hence, the cross concepts:

> B-Nondirected-Action/G-Affecting,
> $B-$ Nondirected-Action $/(-$-Lffecting,
> $B-$ Nondirected-Action $/ G-$ Affected-centered
as well as its subconcepts

$$
\begin{aligned}
& \text { E-Motion-Process/G-Affecting, } \\
& \text { E-Motion-Process/G-Effecting }
\end{aligned}
$$

are ruled out. Finally, the cxhaustive coverage of the low level subtypes in the $F U M$ and GUM supports the following identities:

[^4]By these kinds of detailed considerations, we have filtered an intelligent merge out of the mechanical merge. Within the intelligent morge, we omit the Gorman differences concorning the participant number (G-Agent-only, (G-Ranging) since these violate principle 1 , and do not establish the very subtle G -Affected-centered type. Preferring the English terminology the result is given in ligure 2.
'This turns out to be mainly the EUM subhierarchy for material processes. 'lo also cover the German requirements, the Nondirected-Action concept is differentiated into Nondirected-Doing and Nondirected-Happening according to the distinction between Agent-only and Affected-only. Therefore we do not need to preserve the Gemman participant typos Agent and Affected, and can infer the relevant information from the new Nondirected-Action subconcepts. The German spl examples (4) and (5) then have the revised semant ic form:
(4') (r / nondirected-doing : lex rennen :actor (t / tourist))
(5') (e / nondirected-happening :lex eingehen :actor (p / pilanze))

Because we have fixed the semantice differences between the G-Agent and the G-Affectod participant in the procoss types we do not need this differentiation as participant roles again. Hence, we choose the Finglish participant types E-Actor and E-Actee, the correspondence of which to the German G-Agent, G Affected, G-Effected and (G-Process-range differs with the process type (sec l'igure 2). For further details of the merging of all 12 top-level regions of the two ontologics, see [Henschel, 1993].

Principle 3: Flexible semantics-grammar interface
One peculiarity of the proposed merging is that we do not assume a straightforward correspondence between concepts (especially process types) and sets of surface sentences. That means, disjoint concepts

ligure 2: Merging proposal for the material process type
in the Merged Uppor Model do not necessarily correspond to disjoint sets of surface sentences only to disjoint semantic perspectives on thene. The interface between the npper model and the grammar needs to be written in stach a way that it is possible in some casos to generate the same sentence from diflerent semantic inpul. 'Ihis approach meets the differences between the process type partitioning in the $W W M$ and the GUM without eliminating both perspectives and without creating new cross product types (as it, would be the case in the simple merging strategy), but by giving the upper model grammar interface more flexibility 7 . As a consequence, a sentence such as (6) can now have lwo distined, somantic reprosentations (7a-b) according to the Morged Upper Model; the concept destination in (7b) is it subconcept of relational-process, which is disjomb io matcrial-process in (7ia).
(6) Der Sohn begleitet seinen Vater in die Stadt. ('The son accompanies his father to the city.)
(7)a. (b / material-process : lex begleiten :actor ($\mathrm{p} / \mathrm{per}$ on : lex sohn) :actee (v / porson :lex vater)
:destination (s / one-or-two-d-Location : lex stadt))
b. (b / destination : Lex begleiten :domain (v / person :lox vater) trange (s / one-or-two-d-location : lex stadt)
:third-party agent
(p / person : l.ex sohn))
The two semantice representations correspond to two genuinely altiernative experiential perspectives on the event, one focusing mom on its action-like nature, the other more on jts relational-like nature.

3 RESULTS AND CONCLUSIONS

3.1 The Merged Upper Model

By applying the principles for merging set ont above, it was possible to fully replace both upper models

[^5]by a simgle merged upper model that differs very slightly from the $E U M$. 'the Merged Upper Model can in fach be obmaned liom the JUM by a small number of additions (6 now concepts and 1 change of role restrictions to an existing concepti). 'Ihis lack of difference supports the chainas concerning multilingratity of functional deseriptions made in [Bateman et al., 1991b)]. There it is argued that a functional gramman abready goos beyond strictly language specific distinctions: the re- usablility of the vast that jortity of the L WM organization for Gemman denon strates that that organization is not tied solely to Thaglish. 'J'his is further reinfored by the experience during the nerge that where the HOM extended on distinctions made in the ($U M$, these extensions were generally equally applicable aud useful for (iemmat (see [Henschel, 1993] for relevanti examples).
'The result of our merging procedure is an ontol ogy fulfilling the conshmetion ideas of [llovy and Knight, 1993$]$ in bat the resulting ontology contains all concepts necessary for the opreration of the print MAN module and the KOMEI module. However, it contradicts the merging theory of Hovy and Kmight in that it states some theoretical principles for the merge construction which should be maintained by the source ontologies as well ats in the merge.

3.2 Merging Statistics

Because of theit questionable stiatus, we leave the 'rhetorical retations' out of accome in the statis. tical comparison. Without this Res-subherarchy the $k \| M$ includes 252 concepts. The GVM makes no precise distinction betweon upper and domain model. For the comparison, 235 GTM concepts are considered. 'I'he Merged Upper Model contains 258 concepts.

Identity

We foumed 167 identical concept names (excluding the RsT-relabions), from which only 87 concepts can really be identified. Itentical meaning can strongly be stated for 106 concepts (i.e. 19 have distinct names) The main identification areas are the object and the quality hterarely as well as the temporal one. The
precise distribution for strong identical meaning is shown by the numbers outside of brackets in Figure 3 .

Union

If both considered ontologies are equally weighted as in [Hovy and Nirenburg, 1992], individual concepts in an ontology must be maintained in any merge. However, in our approach we have cxtensively made use of an ontology-internal concept union. 'This is a result of the general ontology design principles given in Section 2.3. The clause/PP distinction, for example, which is often a concept discrimination critcrion in the GUM violates Principle 1 and so this discrimination is not prescrved in the Merged Upper Model. Therefore, leaving out of account the clause/PP distinction, identical concepts then amount to 163. The number and distribution of concepts identical after union is shown by the numbers in brackets in Figure 3. 106 concepts arc strongly identical and 57 morged concepts are identical with the unions of different, GUM concepts.

Extension

Extension can be found in both directions. Because of the emphasis we have given to the FUM, most of the extensions are fUUM concepts which extend the GUM further. These are 60 concepts, 11 for the Mental-Procoss, 11 Participants and 38 others from the Relational-Process hierarchy. On the other hand, only 4 German participant concepts have found their way into the Merged Upper Model.

Cross classification

An cssential field for cross classification has been avoided by the relaxation of the upper modelgrammar interface stated in Principle 3 in Section 2.3. l'or example, whereas the cross classification discussed for the Material-Process/Action hierarchy in Section 2.3 would have cross classified 2 English subconcepts with 5 German subconcepts and thcir subhierarchies respectively, resulting in 42 merged concepts, 9 concepts are sufficient to cover all distinctions expressed in the EUM and the GUM.

Summary

Summarizing the merging statistics, strong identity can be found for 41%. If we allow identification of unified concopts, identity can be stated for 63%. About 25% of the merged UM are created by extension, and only 3.6% by cross classification. Beside this, there is a small part of the Merged Upper Model (8%) where the concepts are not created by identification, extension and cross classification, but by preferring $E U M$ concepts over GUM ones.

3.3 Future work

In the current merging process, we have only looked for identities and differences betwcen the given English and German Upper Models. We did not try to improve the inherent consistency of both, although it became clear during the merge that certain distinctions should be removed and others further developed; these local improvements are detailed in [IIenschel, 1993] and will be incorporated in future versions of the Merged Upper Morlel.

In addition, one of our aims with the Merged Upper Model is to provide a stable basis for further

Figure 3: Identity statisties and distribution
extension- -both to include further linguistic phenomena and to cover further languages. We expect that an organization of information based on the requirements of natural language grammars will provide a more stable and re-usable result than organizations based on the requirements of individual computational systems. We are already using the Merged Upper Model as the basis for sontence generation in Dutch and there is suggestion here that, again, fow additional concepts appear necessary. Of more interest is the extension to rather different languages, some of which has already been begun. Dotailed accounts of this work of extension and comparison are nocessary since automatic merging will rarcly be possible when these most general levols of information organization are considered.

Finally, extensions in future may also be made by comparison with other ontologies--although here it is necessary to be very careful concerning the kinds of ontologies considered. Since the Merged Upper Model is explicitly a linguistically motivated ontology, comparison with ontologies with differing motivations can be difficult. In considering the ontology of the hllog project, for example, the mixture of linguistic and non-linguistic information criticized by [Lang, 1991] should not be carried over into the morge.

The evaluation of the resulting linguistic ontologies as potential semantic type hierarchies for representations in machine translation, analysis and multilingual generation is then a clear further step.

References

[1Rateman et al., 1990] John A. Bateman, Robert 'I'. Kasper, Johanna 1). Moore, and Richard A. Whitney. A general organization of knowledge for natural language processing; the PENMAN upper model. Technical report, USC/Information Sciences Institute, Marina del Rey, California, 1990.
[Bateman et al, 1991 a] John A. Bateman, Blisabeth A. Maier, Elke Teich, and Loo Wantor. Towards an architecture for situated text gencraison. In International Conference on Current Issucs in Computational Linguislics, Penang, Malaysia, 1991. Also available as technical report of (iMD/Institut für Integriorte Publikations- und Informationssysteme, Darmstadt, Germany.
[Batcman et al., 1991b] John A. Bateman, Christian M.l.M. Mathiessen, Kcizo Nanri, and Licheng Zeng. 'The re-nse of linguistic resoures
across languages in multilingual generation com pononts. In Procectings of the 1991 International toint Conference on Artificial Intelligence, Sydney, Auslralia, volume 2, pages 966-971. Morgan Kaufnamm Publishers, 1991.
[Bateman, 1992a] John A. Bateman. 'The theoretical status of ontologies in natural langmage processing. In Susame Preaß and Birte Schmit\%, editors, Teat Representalion and Domain Modelling ideas from linguistics and A 1 , pages 50 ... 99. KI'l-Report 97, Tochnische Universibät Berlin, May 1992. (1 apers from KI'l-MS'I Workshop, Pechnical University Borliu, October 9th - 11th 1991).
[Bateman, 1992b] Jobn A. Bateman. 'lowards Meaning Based Machine 'Iranslation: using abstractions from text generation for preserving momimg. Machine Tronslalion, 6(1):1-37, 1992. (Special edition on the role of text generation in $\mathrm{M}^{\prime} \mathrm{I}^{\prime}$).
[Guarino, 1994] Nicola Ginarino. 'The ontological level In R. Gassali, B. Smith, and (i. White, ditors, Philosophy and the Cognitive Siciences. Höder-Pichler-'Tempsky, Viema, 1994.
[Halliday and Matthiessen, to appear]
Michacl A.K. Halliday and ('loristian M.I.M. Matibiessen. Construing experience through meaning: a language-hased approach to cognition. do Cipuyter, Berlim, to appear.
[Henschel, 1993] Renate Henschel. Mergintr the English and the (German Uppor Model. 'Pechnical report, (iMD)/Institut für Integriente Publikationsmod Infommationssysteme, Darmstadt, Gemany, 1.993.
[Horacek, 1989] Helmud Horacek. 'Towards principles of ontology. In 1). Metaing, editor, frocectings of the (ierman Workshop on Arlificial Cnlelligence: (rWA189, pages 323 330.Springer.Verlag, Berlin, Heichelberg, New York, 1989.
[Hovy and Knight, 1993] R'duard Hovy and Kovin Knight, Mobivating shared knowleclge resources: an example from the Pangloss eollabomation. In Proccotings of IJC,AI Workshop on Knowledge Sharing and Information Intorchange. International doint Conference on Artificial hatelligence, 1993.
[Hovy and Nirenburg, 1092] R. Hovy and S. Virenburg. Approximating an interlingma in a primcipled way. In Procectings of the $D A R P A$ Speceh and Natural Language Workshop. Arden llouse, Now York, 1992. Also available from USC/hnformation Scionees institute (Marina del Rey, hos Angeles) as 'Tedhical Report LSI/RR$93: 345$, lobuary 1993.
[Kasper, 1989] Robert ' 1 '. Kasper. A Hexible iuterface for linking applications to PunMAN's sentence generator. In Procedings of the DARP' Workshop on Speech and Natural Language, 1989. Available from USC/Luformation Geiences Institute, Marina del Rey, CA.
[Lang, 1091] Fiwald Lang. The thoc: ontology from a linguistic point of view. In O. Her\%og and C.-R. Rollinger, cditors, Y'ext understanding in Lifoo: integraling computational linguistics and artificial intelligence, linal report on the IDSM Germany lioog-Project, pages 464-341. Springer-Verlas, Berlin, 1991. Lecture notes in artilicial intelligence, 546.
[MacGregor and Rrill, 1989] Robert MacGregor and David Brill. The 100 m manual, 1989 USC/Information Sciences Institute, Marina del Rey, ('A.
[Patil et al., 1992] Ramosh S. Patil, Richard li. Vikes, Poter l'. Patel-Schmeider, Don McKay, 'Jim linin, Jhomas R. Gruber, and Robert Neches. The Darba knowledge sharing effort: progress report. In Ghartes Rich, Bernhard Nebel, and Williann R. Swartout, editors, Principles of knowlcdge representation and reasoning: proccedings of the third international conference, Cambridge, MA, 1992. Morgan Kaufmann.
[Penman Project, 1989] Pemman Project. Penman documentation: the Primer, the User Guide, the Reference Manual, and the Nigel manual. 'Technical report, USC/ Information Sciences Institute, Marina del Rey, (alifornia, 1989.
[Pirlein, 1993] 'Thomas Pirlein. Reusing a large domain-indepondent knowledge base. In Fiflh International Confcrence on. Software limgincering and Knowledge ringinecting (SFKb:9g), San Prancisco, 1993.
[Steiner ef al., 1988] Jirich H. Stemer, Ursula Eek ert, Birgit Weck, and Jutta Winter. The development of the wUROARA-1) system of semantic relations. In lirich UI. Steiner, Jaul Schmidt, and Cornelia Zelinksy-Wibbelt, editors, From Syntax to Semantics: insights from Machine Thraslation. Frances Pinter, Fondon, 1988.
[Teich, 1992] Blke Teich. Komet: grammar documentation. Teclmical report, (GMI)/Institut für Integrierte P'ublikations- und Iuformationssys. teme, Darmstadt, West Germany, 1992.

Syntax

[^0]: * Also on indefinite leave from the l'emman Project, USC//nformation Sciences Institute, Marina del Rey, Los Angeles.

[^1]: This is simply becanse a lingnistically motivatod ontology is bound to the semantics of a grammar and not to general, possibly domain-iranscendent knowledge. 'The two kinds of ontologies should therefore be seen as performing different kinds of work. For exten sive molivations for maintaining a linguistically motivated ontology, see [IIalliday and Matdhiessen, to appear, Bateman, 1992a].
 ${ }^{2}$ The comparison is based on the Ringlish Upper Model and Cerman Upper Model data files from July 1992 Both are expressed in the knowledge reptesentation language 1oom (MacCregor and Buill, 1989]).

[^2]: ${ }^{3}$ Concepts from the Ringlish Upper Model and the German Upper Model will be differentiated where relcvant by prefixing either 'fs-' or 'G.' as appropriate.
 ${ }^{4}$ Classificatory is a subtype of GUM concept Relational, property-ascription a subtype of relationship. l'urther, in the spl examples in this paper, lexical selection is specified directly by means of the keyword : lex to avoid complicating the discussion unnecessarily.

[^3]: ${ }^{5}$ The former necessarily involves an addressee semantically, someone who is intended to be listoning, white the latter does not. This difference is grammaticized in Linglish in the acceptability/non acceptability of ' t told him that...'/'l said lim that.. .' In order to grammaticize an addressee in a saying-like event, it is necessary to respect its less central role and to nse the form 'l said to him that. . '
 ${ }^{6}$ There are further similar cases; for example the GUM also includes interpersonally motivated concopt discriminations such as negative-fealure-ascription and ncgative-guality. These govern the generation of negative assertions, thus pre-empting a more appropriate speech function control of negation.

[^4]: E-Nondirected-Action/ (i-Natural-phenomenon
 $=E$ Ambient-Process/G-Natural-phenomenon
 W-Nondirected-Action/G-Agent-centered
 $=H$ Nondirected-Action/G-Ranging,
 h-Dirceted-Action/G-Affected-centered
 $=$ L-Dispositive-Material-Action/G-Affected-ccntered,
 E-Dirccted-Action/C-Agent-conlered
 $=F_{r}$-Dispositive-Material-Action/ - - $/ f f e c t i n g$

 + H-Creative-Material-Action/G-Effecting.

[^5]: ${ }^{7}$ Giving this interface this flexibility is in any case argucd for on other gromids in [Bateman, 1992b].

