# Automatic Recognition of Verbal Polysemy 

Fumiyo FUKUMOTO * Jun'ichi TSUJII $\dagger$<br>Centre for Computational Linguistics, UMIST<br>P.O.Box 88, Manchester M60 1QD, United Kingdom<br>E-mail fukumoto@cel.umist.ac.uk tsuji@cel.umist.ac.uk $\dagger$


#### Abstract

Polysemy is one of the major causes of difficulties in semantic clustering of words in a corpus. In this paper, we first give a definition of polysemy from the viewpoint of clustering and then, based on this definition, we propose a clustering method which recognises verbal polysemies from a textual corpus. The results of experiments demonstrate the effectiveness of the proposed method.


## 1 Introduction

There has been quite a lot of research concerned with automatic: clustering of semantically similar words or antomatic recognition of collocations among them from corpora [Church, 1991], [Hindle, 1991], [Smadja, 1991]. Most of this work is based on similarity measures derived from the distribution of words in corpora. However, the facts that a single word does have more than one meaning and that the distribution of a word in a corpus is a mixture of usages of different meanings of the same word often hamper such attempts.

The meaning of a word depends on the domain in which it is used; the same word can be used differently in different domains. It is also often the case that a word which is polysemons in general is not polysemous in a restricted subject domain. In general, restriction of the sulject domain makes the problem of polysemy less problematic. However, even in texts from a restricted domain such as Wall Street Journall ${ }^{1}$, one enconnters quite a large number of polysmous words. In particular, unlike nouns, verbs are often polysemons even in a restricted subject domain.

Because polysemous verbs are usually also highfroquency verbs, their treatment is crucial in actual applications. Furthermore, because of their highfrequency, polysemous verbs tend to have a harmful influcuce on the semantic clustering of nouns, because semantic clustering of noums is usually performed based on their collocational behaviour with verbs.

[^0]Although polysemy is said to be widespread in language, the definition of polysemy is highly subjective. Polysemy can only be recognised by haman intuition and different linguists often identify a different number of senses in the same word. In this paper, we first give a definition of polysemy from the viewpoint of clustering, and propose an overlapping clustering method which automatically recognises polysemous words. The results of experiments are also given to demonstrate the effectiveness of our method.

## 2 Related Work

Although there have been several attempts to extract scmantically similar words from a given corpus, few studies seriously deal with the problem of polysemy; of these, even fewer are based on real texts.

The techniques developed by Zernik [Zernik, 1991] and Brown [Brown, 1991] seem to cope with the discrimination of polysemy and be based on real texts. Zernik used monolingual texts which consist of about 1. million words tagged by part-of-speech. His method associates each word sense of a polysemons word with a set of its co-occurring words. If a word has several senses, then the word is associated with several different sets of co-occurring words, each of which corresponds to one of the senses of the word. The limitation of Zernik's method, however, is that it solely relies on human intuition for identifying different senses of a word, i.e. the human editor has to determine, by her/his intuition, how many senses a word has, and then identify the sets of co-occurring words (signatures) that correspond to the different senses.

Brown used bilingual texts, which consist of 12 million words. The results of Brown's technique, when applied to a Frencl-English machine traushation system, seems to show its effectiveness and validity. However, as he admits, the approach is linited because it can only assign at most two senses to a word. More seriously, polysemy is defined in terms of translation, i.e. only when a word is translated into two different words in a target language, it is recognised as polysemous. The approach can be used only when a large parallel corpus is available. Furthermore, individual senses thus identified do not necessarily constitute single semantic units in the monolingual domain to which plansible semantic properties (i.e. semantic restrictions,
collocations, etc.) can be associated.
The defects of these two methods show that it is crucial to have an appropriate definition of polysemy in terms of distributional behaviours of words in monolingual texts. The approach proposed in this paper focuses on this problem. Tike Brown's approach, our approach adopts a relativistic view of polyseny, That is, a word is recognised as polysemous in terms of other related words. However, while Brown's approach identities polysemous words in terms of related words of another language, we use semantically similar words of the same language to identify polysemons words. Whether a word is polysemous or not depends on whether a set of other, semantically similar words exists whose distributional behaviours correspond to a subset of the distributional behaviour of the word.
Because the distributional behaviour of a word is characterised by its co-occuring words, the process of identifying such subsets essentially corresponds to the process performed mannally by the hmman editor in Zernik's approach.

The experiments in this paper use a corpus amotated only by part-of-speech but not structurally annotated. However, the clustering algorithm, which antomatically recognises polysemous words, only assumes that words are semantically characterised by a vector in an $n$-dimensional space so that it can be applied to any data satisfying this condition.

## 3 Polysemy in Context

The basic assmmption of this work is the same as that made in previous corpus-hased approaches, i.e. semantically similar words appear in a similar context. Semantically similar verbs, for example, co-oceur with the same noms. The following sentences from the Wall Streed Journal corpus show the point:
(sl) New York Times said it offered to buy the shares of pop radio corp.
(s2) He may sell more shares in the open market or in private transactions.

It is intuitively obvious that buy and sell are semantically related and that the semantic closeness of these two verbs is manifested by the fact that they co-occond with the same noun shares. We can think of an $n$ dimensional space, each dimension of which is associated with a specific noun and in which a verb is assigned a vector whose value of the $i$-th dinnension is the value of mutual information (mu in short) [Church, 1991] between the verls and the noun assigned to the $i$-th axis. If the basic assumption is correct, then semantically similar verbs form a cluster in the space, and therefore, statistical chustering algorithons can be applied to verb vectors in order to discover semantic classes of verbs.

However, this straightforward method is often hampered by the existence of polysemons words. The fol-
lowing sentences show polysemous usages of take.
(s3) In the past, however, coke has typically tikken a minority stake in such ventures.
(s3') Guber and peters tried to buy a stake in mgm in 1988.
(s4) That process of sorting out specifies is likely to take time.
(s4') We spent a lot of tine and money in building our group of stations.
(s5) People are queuing at the door to take his product but he doesin't have the working capital to make the thing.
( $55^{\prime}$ ) Goodyear used atwood trade credits to olotain chemicals and other products and servies in the U.S.

We can make the following observations.

1. take and bny in (si3) and (s3'), take and spend in ( s 4 ) and ( $\mathrm{s} 4^{4}$ ), take and obtain in ( s 5 ) and ( $55^{\circ}$ ) co-occur with the noun stake, time and product, respectively, and the verbs of each of these pairs have almost the same sense.
2. While certain usages of take have senses similar to buy, spend, and obtain, these three specific verbs have distinct, senses and we hardly see synonynny anong these verbs.

In the space spanmed by the three axes, each associated with stake, time, and product, take does not constitute a cluster with any of the three verbs. take co-occurs with the three nomus and has high mat valnes with them, while buy, spend and olotain have high mut values only with one of the three noms. Therefore, the distances between take and these three verbs are large and the synonymy of take with them disappears.

In order to capture the synonymy of take with the three verbs correctly, one has to decompose the vector assigned to take iuto three component vectors, eacla of which corresponds to the three distinct usages of take. The decomposition of a vector into a set of its component vectors requires a proper decomposition of context in which the word occurs. figure 1 shows the decomposition of the verl) take in the there-dimensional spaces. take1, take 2 , and take 3 are the component vectors which collectively constitite the vector assigned to take.

For the sake of simplicity, we assume in the above that the three nouns characterise the contexts where the verb take occurs and, at the same time, each of them characterises a distinct usage of take. IIowever, in a general situation, a polysemons verb co-occurs with a large group of nouns and one has to divide the group) of nouns into a set of subgroups, each of which correctly characterises the context for a specific sense of the polysemous word. The algorithm has to be able to determine when the context of a word should be divided and how.

There are clnstering algorithnns, called overlapping clustering [Jardine, 1991], which allow an entity to be-


Figure 1: The decomposition of the verb take
long to more than one cluster. However, these algorithms assume that even an entity which belongs to more than one clusters is still a single entity. An entity belongs to several clusters because it can be seen from several different viewpoints. The same entity, for example, egg, can be seen as food, like bread, and as ingredients-of-food, like flour, at the same time.

However, as we saw it the above, polysemous verbs can be captured more naturally by seeing them as multiple entities, which happen to take the same surface form. take1, take2 and take3 are distinct entities (we call them hypothetical verbs in the following) with which different sets of nouns co-occur, and with which, therefore, different contexts are associated.

Therefore, unlike standard overlapping clustering algorithms, our algorithm explicitly introduces new entities when an entity is judged polysemons and associates them with contexts which are subcontexts of the context of the original entity. Our algorithm has two basic operations, splitting and lumping. Splitting means to divide a polysemous verb into two hypothetical verbs and lurnping means to combine two hypothetical verbs to make one verb out of them.

## 4 Measuring the Compactness of a Group of Verbs

The algorithm should rlecide when a verb has to be split into two hypothetical verbs. The decision is based on a measure of the semantic compactness of a group of verbs. The semantic compactness of a group of verbs is a measure which shows the degree of dispersion of the group in an $n$-dimensional space. The compactness of a group of verbs, $V G=\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$, is defined as follows.

1. Let $v_{i}$ be one of the verbs $v_{1}, \cdots, v_{m}$, and a vector assigned to $v_{i}$ be $\left(v_{i 1}, \cdots, v_{i n}\right)$. Each $v_{i j}(1 \leq j \leq$ 11 ) is computed by the following formula.

$$
\begin{array}{cl}
v_{i j}=m u\left(v_{i}, n_{j}\right) & \text { if } m u\left(v_{i}, n_{j}\right) \geq \alpha \\
0 & \text { otherwise } \tag{1}
\end{array}
$$

Here, $m u\left(v_{i}, n_{j}\right)$ is the value of mutual information defined in [Church, 1991] between $v_{i}$ atud $n_{j}$.
$\alpha$ is a threshold value given in advance.
2. The centre of gravity of a group of verlos, $v_{1}, \cdots$, $v_{m}$, is the mean vector of the vectors assigned to the verbs, which is used to compute the dispersions of the individual verbs in the group. The contre of gravity $\bar{g}=\left(\overline{g_{1}}, \cdots, \overline{g_{n}}\right)$, and the length of it $|\bar{g}|$, are defined as follows.

$$
\begin{align*}
\left(\overline{g_{1}}, \cdots, \overline{g_{n}}\right) & =\left(\frac{1}{m} \sum_{i=1}^{m} v_{i 1}, \cdots, \frac{1}{m} \sum_{i=1}^{m} v_{i n}\right) \\
|\bar{g}| & =\frac{1}{m} \sqrt{\sum_{j=1}^{n}\left(\sum_{i=1}^{m} v_{i j}\right)^{2}} \tag{2}
\end{align*}
$$

3. The dispersion, $\operatorname{disp}\left(v_{1}, \cdots, v_{m}\right)$, indicates the compactness of a group and is defined as:

$$
\begin{equation*}
\operatorname{disp}\left(v_{1}, \cdots, v_{m}\right)=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left(v_{i j}-\bar{g}_{j}\right)^{2}} \tag{3}
\end{equation*}
$$

4. Let us think of two clusters of verls, $A$ and $B$, which have the same degree of dispersions. If $|\bar{g}|$ of $A$ is larger then that of $B$, the absolute value of $m u$ calculated for $A$ is larger than that of $B$. This means that the absolute probabilities of cooccurrences of cach noun and the verbs of $A$ is larger than those of $B$; as a result, $A$ should be judged to be semantically more compact than $B$. Therefore, the dispersion of (3) is normalised as:

$$
\begin{equation*}
\operatorname{dispp_{nor}}\left(v_{1}, \cdots, v_{n}\right)=\frac{\operatorname{disp}\left(v_{1}, \cdots, v_{m}\right)}{|\vec{g}|} \tag{4}
\end{equation*}
$$

5. disp nor of (4) is proportional to the number of verbs. This means that a cluster of a greater number of verbs tends to be judged to be less compact than those of a smaller number of verbs. Therefore, the dispersion of (4) should be further normalised to compensate the effect of the number of verbs in a group. This normalisation is done by least square estimation. The result is (5), which will be used to measure the compactness of a group of verbs.

$$
\begin{equation*}
\operatorname{Com}\left(v_{\mathrm{l}}, \cdots, v_{m}\right)=\frac{d i s p_{n o r}\left(v_{1}, \cdots, v_{m}\right)}{(\beta * m-\gamma)} \tag{5}
\end{equation*}
$$

$\beta * m-\gamma(\beta=0.964, \gamma=0.495)$ is a coefficient that is empirically determined by least square estimation ${ }^{2}$.

In the following, we use (5) as the value which shows the compactness of a group. A group with a smaller valuc of (5) is judged semantically more compact.

[^1]
## 5 Clustering Method

Lat this section, we present onr chnstering algorithon. We first explain the operations of splitting and bumping. Then. we show the flow of the algorithen and explain how the whole algorither works.

### 5.1 The Basic Idea

 longs to the overlapping type. The $b_{k}(k: \cdots 1,2,3 . \cdots)$ method, proposed by fatine, is one of the typical orer haping chastering algorithms [Jardine, 1991]. The essential difference between one alporithen and the $B_{k}$ mothod is that our algorithm explicitly introduces a coudition when an entity (a verb) shonld be split and assigned to several dusters. In our method. whether a rerl) 0 has two senses or not is judged by comparing the sematutic compactaness values of groups of verbs to be produced. That is, there are possibilities of creating the following three chusters:

$$
\begin{array}{r}
\left\{u_{1}, u_{1}\right\},\left\{u_{2}, u_{2}\right\} \\
\left\{u_{1}, u_{1}, u_{2}\right\} \tag{i}
\end{array}
$$

where or and $^{\text {whe }}$ in (6) ate now. hypothetical rembs which correspond to two distinct senses of the sanke verls, $b$. These two newly introduced verlos are supposer to appear in different contexts. Their contexts are actually hypothesised by dividing the set of nomes that co-occur with the vorb $r$ into two distinet sots of nombs. This clivision of the context of the original redte is hypothesised based on the set of nouns that co-ocents with $w_{1}$ and the set of noums that cowoccurs with tw.

### 5.2 Splitting and Lumping

The operations of splitting and lumpiny are defined as follows:

$\because i$ is a rerb whose coordinate in an $n$-dinmensional space is ( $r_{i 1}, \cdots, r_{i n}$ ). ber and vis ate hepothesised verbs whose coomelinates in the $n$-dinmensional space are made from the cootelinates of the origimal verb ${ }^{\prime}$; by dividimg the sot of moms that coocene with $r^{\prime}$ into two distinet sets. The division is made in terms of two sets of nombs: one is the set of homes which co-oce(ut with $t_{p}$, and the other is the set of nouns which co-ocerer with ty.

$$
\begin{align*}
\text { split }\left(r_{i}, r_{p}, r_{4}\right) & =\left(\cdots, n_{1}\right) \\
\text { where } \operatorname{Com}\left(r_{2}, r_{4}\right) & \leq \operatorname{Com}\left(n_{2}, c_{p}\right) \tag{8}
\end{align*}
$$

$v_{j}=\left[\begin{array}{c}r_{1} j_{1} \\ r_{i} j_{2} \\ \vdots \\ r_{n}\end{array}\right]$ s.t. $\quad_{j}=\left\{\begin{array}{cc}0 & \text { if }\left(v_{q j}=0\right) \text { and } \\ & \left.v_{p j} \neq 0\right) \\ r_{i j} & \text { otherwise }\end{array}\right.$
Note that if the nomu associated with the dimension $j$ which co-occurs with $r_{i}$ also co-occurs with both of $e_{p}$, and $r_{a}$, the values of the $j$-the dimension of mand ris. ( onj $_{j}$ and ribj), awe the same value, i.e. the value of the ma between the nown atsoredated with the $j$ eth climemsion and $v_{i}$. Futhermote. if the noun associated with the climension $j$, which co-ocems with ri, does not co-occur with both rp and $v_{q}$, the value of the mub between the noun as. sociated with the $j$-the climension and 0 ; is set to the values of the $j$-the dimension of ris. Heree, we call this value the sumplas value. We reeall that the compractuess value of a group of $v$; and $v_{4}$ is smaller than that of $n_{i}$ and $p_{p}$. This means that the former is more compact than the latere. If the smbples value is not set to both en alud ros. the gronp of as and 'y is more compact than that of ra and $r_{p}$. Therefore in order to make der and if as symmetrical as possible, the smplus value is set to ros.
2. Function lamp(er, wit) has the opposite effect of the function splitt $\left(v_{j}, l_{p}, c_{q}\right)$, i.e. it merges en ancl


$$
\begin{equation*}
\operatorname{lump(ln,r^{\prime }\beta )=v_{i},~} \tag{9}
\end{equation*}
$$

$$
r_{i}=\left[\begin{array}{l}
r_{i 1} \\
v_{i 2} \\
\vdots \\
v_{i n}
\end{array}\right] \text { s.l. } v_{i j}= \begin{cases}r_{j}+r a_{j} & \text { if } a_{j} \neq u_{j} \\
m_{j} & \text { otherwiso }\end{cases}
$$

### 5.3 Flow of the Algorithm

Given a group of rerios. $r_{1}$, $r_{2}$. $\cdots$. $r_{m}$. the algotithm produces a set of semantic chusters, which are ordered in the ascernding order of their semantic compaterness values. If $r$ ' is non-polysemons. it bolongs to at least one of the resultant semantic clusters. If it is polysemous, the algorithm splits it into several hypothetical verbs and cach of them belongs to at least one of the semantic chasters. The flow of the algorithen is shown in Figure 2.

As shown in ligure 2, the ahgorithm is composed of three procedures: Make-Initial-Cluster-Set, Make.-Temporary-Cluster-Set and Recognition-of-Polysemy.

1. Make-Initial-Cluster-Set
'The procedure Make-Initial-Cluster-Set produces all possible pairs of verbs in the input with their semantic compactuess values. The result is a list
```
begin
    do Make-Initial-Cluster-Set
        for i (1\leqi\leq\frac{m(m-1)}{2})
            do Make-Temporary-Cluster-Set;
            if a set of clusters which is retrieved by
                Make-Temporary-Cluster-Set exists
                    then do Recognition-of-Polysemy:
            end_if
            store the newly obtained cluster:
            if the nowly obtained cluster contains
                all the verlos in input.
                then exit from the loop;
            end_if
        end_for
end
```

Figure 2: The flow of the algorithm
of pairs which are sorted in the ascenting order of their semantic compactuess values. The list iss called ICS (Initial Cluster Set). ICS contains $\frac{m(m-1)}{2}$ pairs. In the FOR-loop in the algorithm, a pair of verlos is retriced from ICS, one at cach itcration, and passed to the next two procedures.

## 2. Make-Temporary-Cluster-Set

The procedure takes two arguments: 'The first atgument is a pair of verbs from ICS and the second one is a set of chusters (CCS - Created Cluster Set). CCS consists of the dusters which have been crated so far. When the algorithm termi1ateses, CCS is the output of the algorithu. Make-Temporary-Cluster-Set retrieves the clusters from CCS which contain one of the verbs of the first argument (a pair from ICS). The clusters thens retrieved from CCS are passed to the uext procechure for further consideration. If there is no CCS which contains one of the verlos of a pair from ICS, a pair of verbs from ICS is stored in CCS as a nemply olstained chuster.

## 3. Recognition-of-Polysemy

This procedure, which recognises a polysemous verb, also takes two arguments: the pair of verls from ICS and a set of clusters retriewed by Make-Temporary-Cluster-Set.
We recall the discussion in section 5.1. Let $\{0$, $\left.u_{1}\right\}$ be the pair of verlss from ICS and $\left\{w^{2}, w_{2}\right\}$ be one of the clusters of the second argument, i.e. the chusters so far obtained which contain one of the verbs, $p$ in the pair. We lave to determine whe ther the verl) $v$ has two senses, which corresponds to $w_{1}$ and $w_{2}$, respectively. This is determined by comparing the semantic compactuess values of the three different clusters shown in (6) and ( 7 ). The
splitting function (8) is applied to $w_{1}, w_{1}$, and $w_{2}$ and produced newly hypothetical verbs, $i_{1}$ and $v_{2}$. The lumping function (9) is applied to $v_{1}$ and $v_{2}$ and makes one vert) $v$ out of them. If both of the semantic compactuess values of cach set showit in (6) are smaller than a set shown in (7), the sets ( 0 ) ate selected, otherwise, (7) is selected and stored in CCS as a newly obtained cluster.
If the newly obtained duster does not contain all the verbs in input, the next pair of verlos is taken from ICS. and then the whole process is repeated.

## 6 Experiments

We have conducted two experiments. The first experiment is concerned with the chustering techniguc and with verifying the effect of the proposed method. The second experiment is conducted to see how various part-of-speech pairs affect the chastering results.

### 6.1 Data for the Experiments

The corpus we have used is the Wall Street Journal which consists of $2,878,688$ occurrences of part-ofspeech tagged words [Church, 1991]. 73,225 different words. From this corpus, we obtained $5,940,193$ word pairs in a window size of 5 words, 2,743,974 different word pairs.
26 groups of verbs were used in the experiments, 108 vert) tokens with 56 different original form of verbs. These groups contain 10 different polysenons verbs. The groups of werls are divided into two different types. "typel' and "tyeen' 'typel' is a set of verbs containing one or more polysemons verbs. and 'type '2' does not contain any polysemous verbs. Each group is composed of 3 to 10 different veribs. The selection of verlos of 'type 1 ' was nade with the intention of processing verbs with wide nsages, as identitied in the Collins dictionary and thessaurus [Mce Leod, 1991]. Then, a number of synonyms of the chosen verbs were selected from the thesaurus. The clustering analysis is applied to (ach group) of verts. The same corpus and the groups of verbs are used thronghout the experiments.

### 6.2 Experiment-I

In Experiment-I. we used verb-10011 pairs, i.e. we assume an $h$-dimensional space, in which a verb is assigned a vector whose value of the $i$-th dimension is the value of ma between the vert and the noun assigned to the $i$-the axis. This is becaluse, in the small window sizes, the semantic relationships between these two words might be cuite strong, especially those between a verb and its object which permits the cffective recognition of ver)al polysemy. The inttected forms of the same nouns and verbs are teated as single muits. For example, 'time'(noun, singular) and 'times'(noun, pharal) are treated as single units. We obtained 228,665 different verb-nom pairs from 2,743,974 and from
these, we selected 6,768 different verb-nom pairs. 701 different varls and 1,796 nomens on condition that fre(fuencios and mu are not low $\left(N_{n!y} \geq 5, m u(x, y) \geq 3\right)$ to permit a reliable statistical analysis and used them in the experiments ${ }^{3}$. The results are shown in Table 1.
'Gable 1: The results of Experinuent-T

|  | groul) | cortect | incorrect |
| :---: | :---: | :---: | :---: |
| typel | 11 | 9 | 5 |
| type2 | 12 | 9 | 3 |
| totar(1/\%) | 26 () | $18(69.2)$ | $8(30.8)$ |

In 'Table 1, 'group' meaus the mumber of each gronp, type 1 and types; 'correct' means the unubler of groups of verlss which are chustered correctly: incortect means that they are not. Figute 3 shows cacle samb phe of the results, i.e type1-correct, type2-correct. type1-incorrect, and type2-incorrect. Wach valuc in Figure 3 shows the walue of the semantic compactness of a gromp of werbs.

In Figure 3, under the heading type1-correct, we (au see that 'take' is recognised as a polysemons verl) and has three different senses, "spend", 'Jny", and -obtain'. In a similar way, 'Close" has two different senses, "end' and 'open' and semantically close verbs ate grouped together. Under the heading type2 correct somantically similar verbs aro gromped together. However, under the healing type1-incorrect leawe' is incortectly recognised as a nom-polysenoms werb; also under the heading type2-incorrect come" is uncorrectly recognised as a polysemons verb.

### 6.3 Experiment-II

Wo have conducted an experinent using the rations pats-of-speech shown in Table 2.

| $r-y$ | pair (1) | 1air(2) | $x$ | ! 1 |
| :---: | :---: | :---: | :---: | :---: |
| noma-ver | 250,732 | 6,420 | 1,993 | 56.5 |
| rerb-adverl) | 23,248 | 1.200 | 250 | 320 |
| adrerlo-verb, | 35,146 | 902 | 163 | 377 |
| verb-preposition | 29.658 | 3.197 | 1.338 | 58 |

In Table 2, $x-y$ shows the type of part-of-speced pait of $t$ and $!$ in this order, where $r$ atid $!$ are the part-of-speech of the words. 'par(1)" shows the number of different part-of-speech pairs from 2, 43,974 and 'par(2)' shows the number of different pat-of-sperech pairs on condition that frecuencies and mat are $N_{s y} \geq$ 5. $m u(x, y) \geq 3$; $x$ and $y$ show the mumber of different word. We used these in Fxperinent-II. The results are shown in Thble 3.
 ar and $y$ in thin order in a winclow.

Table 3: The results of Experiment-II

| x-y | correct(1/1) | incorrect(\%) |
| :---: | :---: | :---: |
| 110141-9er) | 10(38.5) | 16(61.5) |
| vorb-adverls | $5(19.2)$ | $21(80.8)$ |
| axtserb-verb) | 6(23.0) | 20(76.0) |
| verb-preposition | $6(23.0)$ | 20(76.0) |

## 7 Discussion

In Experiment- F , described in the previons section. 18 out of 26 gronps of verts are analysed correctly and the percentage attains 60.2 \% in all. Howewer, as shown in Table I, there ate 8 groups which coukd not be recognised correctly. The errors are dassified into two types: 1 . Errors of recogntion of polysemous verbs as non-polysemous ones; and ${ }^{2}$. Frrors of recognition of non-polysemons verise as polysemons oness. The mumber of groups classified into each error type is 4 and 7 . respectively. The canse of these errors is that co-occurting nomus shared by two verbs seem to be slanted in these data. For example, observing the corpus, we cau see that leare has at least two senses. 'retire" and "reman'. The following sentences are from the Wall Steent Jontrad.
(s6) Kaplan left his joh at warner-lambert.
(s6) Ahout 12 / have retired from a full-time jol
(s7) They cau even leawe a sticky problem, in Hic form of higher brokerage commissions.
(si) but remain a serions problem.
Howerer typel-incorrect in Figure 3 shows that "eare is incorredy recognised as a non-polysemons verb. This error was caused by the fact that the value of the semantic compactuess of retire and 'remain' was smaller than that of any other pais of words and by the fart that the catedinality of a sot of nomes which co-occur with retire and 'romain is larger than that of any other pair of words. We provisionally conclude that the ase of verb-noun pairs aloue is not appropriate for all the groups of rerbs.

In Experiment-II. the overall results ate not as good as those of Bxperiment-I. Howerer, we conkl observe some interesting characteristics, wamely, some groups which could not be andysed correctly by using verbnoun pairs conld be analysed comectly by using rets). adverb pairs ob verb-preposition pairs. The results show that 3 out of 8 groups such as typel-incorrect iu Figure 3 which were incorrect in Lxperiment-1 could be analysed correcty by using verb-aduob paiss. Also, ant other 3 groups such as type2-incorrect could be analysed correctly by using verb-preposition pairs. Wr

[^2]

Figure 3: The results of the clustering analysis
can therefore expect that we may be able to obtain more accurate clusters by merging these three kinds of part-of-speech pairs into one larger set. Because these three different pairs show distinet characteristics of contexts in which a verb appears. Wo have been ronducting more experiments on these.

## 8 Conclusion

We have given a definition of polyseny from the riewpoint of clustering, and proposed an overlapping clustering method which automatically recognises verbal polysemies from a textual corpus. The significaur fear tare of our approach is that every separate meaning of a word is recognisecl in terms of other words that appear in the corpus. Whether a word is polysemons or not depends on whether a set of other words exists whose usage corresponds to one of the meanings of a polysemons word. As a result, our method can awoid human intuition in the judgement of distinct word meanings and thus, human intervention.

The results of the experiments demonstrate the applicability of automatic method of recognition of polssemons verlos. We have conducted more experiments by changing parameters such as the threshold values for fregucncies $\left(N_{r y}\right)$ and mu ( $m u(x, y)$ ) in order to ser how these parameters affect the performance of the dustering algorithm. We have also extended our technique to the disambiguation of word senses. We hope to report these results soon.

## References

Church. Fímeth WV. al.. 1991, Using Statisties in Lexical Analysis, Lowicel ocquistion: Paplotiting on-lime resowrees to build a lemicon. (Zernik Uri (ed.)), pages 115164. Loudon, Lawrener Erlbanm Associates.

Hindle Donald. 1990. Nom classification from predicateargument structures. In 28 th Amual Meeting of the Association for Computational Linguistics, pages 268 275. Pittshurgh, Pennsylvana. Association for Comprtational Linguisties, Morristown. New Jersey.
Smadja, Frank A.. 1993. Retricving Collocations from Text: Xtract. In Computational Linguistices, pages 143175. 19 (1093) 1.

Zemik Uri. 1901. 'Jranin vs. Tran2: Tagging Word Scuses in Corpus, Lexical acquistion: Exploiting on-line resources to build a leaicon, Wri Zomik(Ed.). pages 91-112. London, Lawrence Enlbamen Assoctatess.
Brown. Peter F. et al.. 1991. Word-Scuse Disambiguation Using Statistical Methods. In Proc. of the 29th Annual Meeting of the $A C L$. pages $20+270$.
Jardine N. and Sibson R.. 1968. The constutution of hicrachic and non-hicmathic classifications. In Computer Jourwal, pages 175-184.

Church, Fiennetll W.. 1988. A stoclanstic parts programme and nom phases for murestrided text. In Proce. of the 2nd conforence on applied natural language processing. pages 136-143.
Mcrood, Willian T.. 1987. The new Collons dectionary and thesuarus in one volume, Londons, HaperCollins Pul)lishers.


[^0]:    *FUKUMOIO is now at Deparment of Electrical Fingineering and Computer Science, Faculty of Engineering, Yamanashi University. E-mail. fukumoto@skye.esi.ymanashi.ac.jp
    ${ }^{1}$ Wall Street Journal was prepared by $\triangle C L$ (Association for Computational Linguistics' Data Collection Initiative:) in 1991.

[^1]:    ${ }^{2}$ In this case, we set $\alpha$ in (1) equals to 3.0.

[^2]:    ${ }^{1}$ Wo do not consider here general ervors of semantic clus-
     but ame jutged fo consitute at sematitic claster. Becates this
    

