$L R(k)$-Parsing of Coupled-Context-Pree Crammars*

Gisela Pitsch
FB Informatik, Universilait des Saatandes
D. 66123 Saarbrücken, Germany E-mail: pitschocs.uni-sb. de

Abstract

Coupled-Context-Free Crammars are a feneralization of context-free grammars obtained by combining nonterminals to parentheses which can only be substituted simultaneously. Referring to the generative capacity of the grammars we obtain an infinite hierarchy of languages that comprises the context-free languages as the first and all the languages generated by Tree Adjoining Cirammars (TACs) as the second ckment. Here, we present a generalization of the context-free $I R(k)$-notion, which characterizes subclasses of Conpled-Context-Free Cirammars - and therefore for TACs ... which can be parsed in linear time. The parsing procedure described works incrementally so that it can be used for on-fine parsing of natural language. lixamples show that important 'lree Adjoining Languages, e.g. those modelling cross-serial dependencies, can be generated by $I R(k)$-Coupled-Context-1'ree Crammars.

1. Introduction

In order io process natural langunges, we first have to model the syntax formally. Many investigations as, e.g., [lig84] show that this camot be done by contextfree grammars (Cl' is). For context-sensitive grammars which are powerful enough, it is known that the analysis is PSPACfecomplete. Thus, there is a trade-off between the power of the formalism and its analysis complexity. 'L'o solve this dilemma, much work has been done to characterize lamguage classes in between context-free and context-sensitive languages heing powerful enough to model the syntax of natural languges but endowed with a polynomial time analysis. Conpled-Context-Free Cirammars represent such a fomatism generalizing (WCis. 'Wom suitability to model syntactical phenomena follows from the fact that they include the languages penerated by the 'Tree Adjoining Grammars (TA(As) of [Jos87] as one subclass. Among other properties, both formalisms are able to model the limgnistic phenomemon of cross-serial dependencies, which is not context-free but frepuently appeas in natural langmages (cf. [shi86]).

The formalism of Compled-Context-Free Grammars has been introduced in [CITR92] and [Cua92]. It belongs to the Camily of regulated string rewriting systems investigated in [DP89]. The increased generative rapacity is obtained by allowing to rewrite simulanconsly a certain number of elements. Other regulated string rewriting systems as, e.g., the Scattered Context Crammars of [Gilfge] generalize CFGs by allowing simultaneous rewriting, of arbitrary combinations of elements. In [IPP89], it is shown that this results in languages which are not semilinear. But semilinearity is mportant since it formalizes the "constant-growth property" of natural languages (cf. [Jos85]). In contrast to these, all lamgages defined by onr formalism are semilincar

[^0]becanse of two restrictions. First, only those elements can be rewritten simultaneously which were produced by the sanc rowriting. Second, the Coupled-Context-liree Granmars consider dements rewrition simmlaneously as components of a parenthesis. Those can only be substituted if they form a parenthesis and they can only be substituted by sequences of parentheses correctly nested.

When chatacterizing Conpled-Context-Free Grammars by the maximal number of elements rewritten simultaneonsly - which we call the rank of the grammar - we get an infinite hierarchy. The generative capacity grows with the rank. The smallest element of the hierarchy - the one of rank 1 -. are CPGs. The next element, namely Coupled-Context-free Grammars of rank 2, gencrates the same class of languages as the Tree Adjoining Grammars of [JITV] and [Jos87]. Hence, all notions and algorithms designed for Coupled-Context-Free (irammars of rank 2 can easily be translated onto TACs (cl. [Gna02]).

Because of the emarged generative capacity, it is not surprising that the complexity of analysing languages generated by (oupled-Context-Pree Grammars is larger than it is in the context-free case. fieven increases with growing rank (cl. [HP94]). Therefore, we aim to characterize sublasses of the set of all langnages generated by Coupled-Context-Free Ciammars which are powerful enough to model the important phenomena of natural languages, but which are of a lower complexity.

The deteministic conlext-free parsing with $L R(k)$ grammars leads to a lincar time analysis (cf. [Knu65]), the best possible. Therefore, its generalization is very attractive. A first attempt in this direction was done in [SV90]. But there, only TACis are investigated. Here, we investigate the whole hierarchy of Compled-Context-Pree Crammars. Althongh their enlarged generative capacity seems to be contradictory to a lincar time complexity of the parsing algorithm, we can present an $/, R(k)$-notion for Coupled-Context-Free Crammars describing a class of languages, which can actually be analysed in linear time. This increase in power as to the linear-Lime analysis is paid hy an expensive preprocessing. It is taking into account, the complex relations between parentheses that involves the increase in complexity. However, these costs are to be paid only once for each grammar. The subelass described hy our $h(h(k)$-notion for a fixed k grows with the rank.

The agorithm of $[S V 90]$ for $1 / R(k)$ - T'AGs does not fulfill the important Valid Prefix Property. 'This means that for any prefix of the input already accepted, there exists a suffix such that the whole word is in the language analysed. It allows to detect illegal inputs as soon as possible, which is necessary for efficient parsing. Our algorithm fulfills this property. Additionally, the algorithon as well as the notion defined here represent generalizations of their con-text-free comberparts which are natural in the sense that they strictly contain the context-free situation as the special case of Coupled-Context-Free Grammars of rank 1.

An example of an important $L R(k)$-Coupled-ContextFree Grammar is the one generating the language $\{w \$ w\}$ $\left.w \in\{a, b\}^{*}\right\}$ which reflects the syntactical construction of cross-serial dependencies.

The paper starts by defining the Coupled-Context-Free Grammars. Then, we shortly recall the context-free $L R-$ parsing procedure. Subsequently, the deterministic finite automaton used there to guide the analysis is modified such that it can handle Coupled-Context-Free Grammars. Based on it, the parsing algorithm for LIR(0)-Couplecl-Context-Free Grammars is derived. This results in the generalized definition of the $L R(0)$-notion. As for CFGs, the $L R(k)$-Coupled-Context-Free Grammars result from the $L R(0)$-ones by resolving decision conflicts using a lookahead of at most k symbols.

2 Coupled-Context-Free Grammars

Coupled-Context-Free Grammars are defined over extended semi-Dyck sets which are a generalization of semiDyck sets. Plements of these sets can be regarded as sequences of parentheses that are correctly nested. SemiDyck sets play an important role in the theory of formal languages. To extend the family of context-free languages by using them we consider parentheses of arbitrary finite order defined as follows:
Deffinition 1 (Parentheses Set)
A finite set $\mathcal{K}:=\left\{\left(k_{i, 1}, \ldots, k_{i, m_{i}}\right) \mid i, m_{i} \in N\right\}$ is a Parentheses Sct iff it satisfies $k_{i, j} \neq k_{i, m}$ for $i \neq l$ or $j \neq m$. The elements of \mathcal{K} are called Darentheses. All parentheses of a fixed length r are summarized as
$\mathcal{K}[r]:=\left\{\left(k_{i, 1}, \ldots, k_{i, m_{i}}\right) \in \mathcal{K} \mid m_{i}=r\right\}$
where $\mathcal{K}[0]:=\{\varepsilon\}$. (ε denotes the empty word.) The set of all (first) components of parenthesis in \mathcal{K} is denoted by
$\operatorname{comp}(\mathcal{K}):=\left\{k_{i} \mid\left(k_{1}, \ldots, k_{i}, \ldots, k_{r}\right) \in \mathcal{K}\right\}$ resp.
$\operatorname{comp}_{1}(\mathcal{K}):=\left\{k_{1} \mid\left(k_{1}, \ldots, k_{r}\right) \in \mathcal{K}\right\}$.
Straightforward from this, we get
Deflnition 2 (Extended Seni-Dyck Set)
Let \mathcal{K} be a parentheses set and T an arbitrary set where $T \cap \mathcal{K}=T \cap \operatorname{comp}(\mathcal{K})=\emptyset . E D(\mathcal{K}, T)$, the extended semiDyck set over \mathcal{K} and T, is inductively defined by
(E1) $T^{*} \subseteq E D(\mathcal{K}, T)$.
(E2) $\mathcal{K}[1] \subseteq E D(\mathcal{K}, T)$.
(E3) $u_{1}, \ldots, u_{r} \in E D(\mathcal{K}, T),\left(k_{1}, \ldots, k_{r+1}\right) \in \kappa[r+1]$ $\Longrightarrow \quad k_{1} u_{1} \cdots k_{r} u_{r} k_{r+1} \in E D(\mathcal{K}, T)$.
(E4) $u, v \in E D(\mathcal{K}, T) \Longrightarrow u \cdot v \in E D(\mathcal{K}, T)$.
(E5) $E D(\mathcal{K}, T)$ is the smallest set fulfilling conditions (E1)-(E4).
Now, we define how to generate new elements in $B D(\mathcal{K}, T)$ starting from given ones.
Definition 3 (Parenthesis Rewriting System)
A Parenthesis Rewriting System over $F D(\mathcal{K}, T)$ is a finite, nonempty set P of productions of the form
$\left\{\left(k_{1}, \ldots, k_{r}\right) \rightarrow\left(\alpha_{1}, \ldots, \alpha_{r}\right) \mid\right.$
$\left.\left(k_{1}, \ldots, k_{r}\right) \in \mathcal{K}, \alpha_{1} \cdot \ldots \cdot \alpha_{r} \in E D\left(\mathcal{K}, T^{\prime}\right)\right\}$.
The left and the right side of $p:=\left(X_{1}, \ldots, X_{r}\right) \rightarrow$ $\left(\alpha_{1}, \ldots, \alpha_{r}\right) \in P$ is denoted by

- $\mathcal{S}(p):=\left(X_{1}, \ldots, X_{r}\right)$, the source of p, and
- $\mathcal{D}(p):=\left(\alpha_{1}, \ldots, \alpha_{r}\right)$, the drain of p.

Now, we can define our grammars. The term "coupled" expresses that a certain number of context-free rewritings is executed in parallel and controlled by \mathcal{K}.

Definition 4 (Coupled-Context-Free Grammar) A Coupled-Context-Free Grammar over $\operatorname{BD}(\mathcal{K}, T)$ is an ordered 4 -tuple (\mathcal{K}, T, P, S) where P is a Parentheses Rewriting System over $E D(\mathcal{K}, T)$ and $S \in \mathcal{K}[1]$. There. fore, \mathcal{K} can be regarded as a set of coupled nonterminals. The set of all these grammars is denoted by $C C F G$.

At last, we give the definition of derivation in $C C P G$. Let $G=(\mathcal{K}, T, P, S) \in C C F G$ and $V:=\operatorname{comp}(\mathcal{K}) \cup T$. We define the relation $\Rightarrow G$ as a subset of $V^{*} \times V^{*}$ consisting of all derivalion sleps of rank r for G with $r \geq 1$. $\varphi \Rightarrow G \psi$ holds for $\varphi, \psi \in V^{*}$ if and only if there exist $\left(k_{1}, \ldots, k_{r}\right) \rightarrow\left(\alpha_{1}, \ldots, \alpha_{r}\right) \in P, u_{1}, u_{r+1} \in V^{*}$, and $t_{2}, \ldots, u_{r} \in E D(\mathcal{K}, T)$ such that

$$
\begin{aligned}
& \varphi=u_{1} k_{1} u_{2} k_{2} \cdots u_{r} k_{r} u_{r+1} \text { and } \\
& \psi=u_{1} \alpha_{1} u_{2} \alpha_{2} \cdots u_{r} \alpha, u_{r+1} .
\end{aligned}
$$

$\ddot{\Rightarrow} G$ denotes the reflexive, transitive closure of $\Rightarrow a$. Obviously, $u_{1} \cdot u_{r+1} \in E D(\mathcal{K}, T)$ follows from $S \stackrel{+}{\Rightarrow} \varphi$ for φ and ψ since the result of the substitution is a sequence of parentheses correctly nested if and only if the original word was. The language generated by C is defined as

$$
L(G):=\left\{w \in T * \mid S \not \dot{B}_{C} w\right\}
$$

Λ sequence $\varphi_{1}, \ldots, \varphi_{n}$ with $\varphi_{i} \Rightarrow c_{i} \varphi_{i+1}$ for all $1 \leq$ $i<n$ and $\varphi_{1}=\varphi, \varphi_{n}=\psi$ is called a derivation of ψ from p in G. A derivation is rightmost if and only if in each derivation step, the parenthesis ending at the rightmost point is substituted. In analogy to Cl'is, it is obvious that for any derivation in CCFO there exists exactly one rightmost derivation.
Example $1 G=(\{S,(X, \bar{X})\},\{a, b, c, d\}, P, S)$ is in $C C H C(2)$ where $P:=\{S \rightarrow X \$ \bar{X},(X, \bar{X}) \rightarrow(a X b, c \bar{X} d) \mid$ (ab, cil)\}. G generates the language $\left\{a^{n} b^{n} c^{n} d^{n} \mid n \geq 1\right\}$, e.g. $S \Rightarrow C X \$ \bar{X} \Rightarrow a$ aXb $b \subset \bar{X} d \Rightarrow a$ uaXbb\$cc $\bar{X} d d$ \Rightarrow a aaabbbcccddd
In order to be able to describe the generative capacity of Coupled-Context-Free Grammars of different ranks exactly, we need the following notions:
Definition 5 (Rank, CCFG(l))
Por any $G=(\mathcal{K}, T, P, S) \in C C H C$, let the rank of G be defined as $\operatorname{rank}(G):=: \max \left\{r \mid\left(k_{1}, \ldots, k_{r}\right) \in \mathcal{K}\right\}$. Then, we define for all $l \geq 1$:

$$
C C F Q(l):=\{G \in C C P O \mid \operatorname{rank}(G) \leq l\}
$$

The following theorem proven in [Ginad] shows that $C C l G$ builds up an infinite hierarchy of languages and, at the same lime, represents a proper extension of Cli C not exceeding the power of context-sensitive grammars: Theorem 1 (Hierarelyy)
Let CPL be the family of all context-free, CSL be family of all context-sensitive languages, TAL the family of all langataes generated by TAGs and CCPI(l) the one generaled by CCFG(l). It holds:
(1) $C F L=C C H L(1), T A L=C C H L(2)$.
(2) $\operatorname{CCFL}(l) \subsetneq C C F L(l+1)$ for all $l \geq 1$.
(3) CCFL(l) $\underset{\neq}{\neq} C S I$ for all $1 \geq 1$.

Sometimes, it. is useful to "neglect" the relations between the components of a parenthesis for a short time. Then, we investigate $G^{\prime}:=\left(\operatorname{comp}(\mathcal{K}), T, P^{\prime}, S\right)$ instead of $G=(\mathcal{K}, T, P, S) \in C C F G$ for

$$
P^{\prime}:=\bigcup_{\left(k_{1}, \ldots, k,\right)-\left(\alpha_{1}, \ldots,\left(\alpha_{r}\right) \in I\right.}\left\{k_{i} \rightarrow \alpha_{i} \mid 1 \leq i \leq r\right\}
$$

Since $G^{\prime \prime}$ is certainly a CFG we denote $G^{\prime \prime}$ (resp. P^{\prime}) by $G F^{\prime}(G)$ (resp, $C P(P)$) in the sequel. Obviously, $G^{\prime \prime}$ satisfies $L\left(C^{\prime}\right) \subseteq L\left(C^{\prime}\right)$.

3 Context-Free LR-Parsing

Now, we shortly recall the deterministic context-free $L R(k)$-parsing strategy of Knuth (cf. [Knu65]). For simplicity, we restrict ourselves on the case $k=0$. 'The strategy essentially remains unchanged if lookahead is necessary. It uses a deterministic finite antomaton (dfa) to drive a pushdown stack while scanning the input from left to right. Thus, it constructs a rightmost derivation bottom-up. The states of the dfa for a given $J R(0)-\mathrm{CFH}^{\prime}$ consist of subsets of the set of all context.-free items for C (N, T, P, S), i.e. of the set $\{[X \rightarrow \alpha . \beta] \mid X \rightarrow \alpha \beta \in P\}$. They result from determining the deterministic version of the following nondeterministic antomaton for C :

- Bach context-free item is a state.
- 'There are threo kinds of state transitions:

$$
\begin{aligned}
\cdots & {[X \rightarrow \alpha . Y \beta] \xrightarrow{Y \in N}[X \rightarrow \alpha Y . \beta] } \\
- & {[X \rightarrow \alpha . a \beta] \xrightarrow{a \in T}[X \rightarrow \alpha \alpha . \beta], \text { and } } \\
- & {[Y \rightarrow \gamma . X \delta] \xrightarrow{\bullet}[X \rightarrow \alpha] }
\end{aligned}
$$

In the deterministic version, all those context-free items are grouped in one state which can he reached from the initial state by the same sequence of symbols, with any possible number of ε-transitions in-between.

The stack symbols are the states of the dfa. At first, the state containing the item $\left[S^{\prime} \rightarrow . S\right]$ is pushed. (The additional production $S^{\prime} \rightarrow S$ serves to define exactly the start and the end of the analysis.) Then, we iterate the following actions depending on the topmost state q :
(Shift) If q contains [$x \rightarrow \alpha, a f]$ and a is the next input symbol to be read, we push the state reached from q via a. (It contains at least $[X \rightarrow \alpha a . \beta]$.)
(Reduce) If q contains $[X \rightarrow \alpha$], we pop the $|\alpha|$ topmost states. Lect q^{\prime} be the state now on top of the stack. Then, we push the state reached via X from q^{\prime}. (q^{\prime} contains at least one item $[\gamma \rightarrow \gamma, X \delta]$ and $[X \rightarrow, \alpha]$ while the new topmost state contains [$Y \rightarrow \gamma X . \delta]$.)
The pushdown is driven deterministically by the dfa if this dfa contains no state where there are two different Reduce-items (Reduce-Rednce conflict) or as well a Shift-as a Reduce item (Shift-Reduce conflict). A ChG is $L R(0)$ ifl the states of its dfa show no Shift-Reduce and no Reduce-Reduce conflict. For $L R(k)$ grammars, conllicts in the $L H(0)$-dfa are solved by a lookahead of k symbols.

4 The Finite Automaton

One possibility to generalize dfa is to construct the usual dfa for $C P(G), G \in C C P G$. In principle, this ielea is used in [SV90]. The following example shows that this produces umecessary conflicts: leet $Q=$ $(\{S,(X, X), D\},\{a, b, c, d\}, P, S) \in C C P G(2)$ for $P:=$ $\{S \rightarrow X X D \$, D \rightarrow D d|d,(X, \bar{X}) \rightarrow(b, c)|(a b, c d)\}$ and $L\left(G^{\prime}\right)=\left\{b c d^{n} \$\right.$, abcd $\left.d^{n} \$ \mid n \geq 1\right\}$. Its dfa is shown in Figure 1. G is not $L R(0)$ in this way since 1 his dfa obviously has a Shift-Reduce contlict (in the box doubly lined). 'This conflict camot be solved hy lookatiead since at this point, the lookahead is always d^{k}. Therefore, G is not $L h(k)$ for any $k \geq 0$. Hut this conflict is not necessary. li.g., when analysing bedd bottom-up, we first have to reduce $X \rightarrow b$. This implies that before coming to the conflict state, we have to choose X-, c in order to get a correct derivation. This is the case becanse X and X resulting from applying the production $S \rightarrow X \bar{X} \mid \$$ are

Figure 1: $d f a(G)$
coupled and therefore have to be substituted by conpled productions.

To avoid these conflicts, we extend the dfa. If we use the context-free L / R-parsing strategy, we know which production we have to choose for any $X_{i} \in \operatorname{comp}(K) \backslash \operatorname{comp}(K)$ becanse we first encounter and reduce the corresponding $X_{1} \in \operatorname{com} p_{1}(\mathcal{K})$. Suppose that, we can store the information about. $X_{2}, \ldots, X_{r},\left(X_{1}, \ldots, X_{r}\right) \in \mathcal{K}[r]$, when X_{1} is reduced, let us say as the "future". (How to do this is shown in Section 5.) Can we use this to avoid the conflict? Now, our antomaton needs additional transitions under such $p_{i} C O P(P)$ where $S\left(p_{i}\right) \not \subset$ comp (X) holds. Thus, we split ways inside the dfa which lead to conflict states. To formalize our automaton, we need the following

Definition 6 (1-Closure)

For all $X \in \operatorname{comp}_{1}(K)$, lel reachable $(X):=$
$\left\{Y \in \operatorname{com}_{1}(K) \mid \exists X \rightarrow Y \in \in C F(P)\right\}$.
reachable* (X) denotes its reflexive transative closure. For any $\downarrow \in \mathfrak{P}(\{[X \rightarrow \alpha \cdot \beta] \mid X \rightarrow \alpha \beta \in C \cdot(I)\})$, we define the I-Closure(q) as q united to the sel

$$
\begin{array}{ll}
\{[X-\alpha] \mid & X \in \operatorname{comp}_{1}(\mathcal{K}), X \rightarrow \alpha \in \overparen{O}(P) \text { and } \\
& \exists Y \in \operatorname{comp}(K):(\exists[Z-\beta, Y \gamma] \in q \\
& \text { and } \left.\left.X^{\prime} \in \text { rachable }(Y)\right)\right\} .
\end{array}
$$

1-Closure formalizes the construction of the deterministic version of a mondetemminstic finite antomaton as it is done for the dfa of CPGs. Its special feature is that it uses only those $X \rightarrow \alpha \in \mathcal{C} P(P)$ fulfilling $X \in$ comp (\mathcal{K}). If $X \in \operatorname{comp}(\mathcal{K}) \backslash \operatorname{com} p_{1}(\mathcal{K})$, the expanding production is determined by the corresponding first component.
Definition 7 ($D / A(C)$)
Let $Q=(\mathcal{K}, T, P, S) \in C O P G$. The Deterministic Pinite Automaton for $(B$ is defined as $D F A(C):=$

$$
\left(Q_{G}, \Sigma_{G}, \delta_{G}, S_{G}, r_{G}\right)
$$

where $S_{C}:=1-$ Closure $\left(\left\{\left[S^{\prime} \rightarrow . S\right]\right\}\right)$ is the initial state, $\Sigma_{G}:=\operatorname{comp}(\mathcal{K}) \cup T \cup\left\{p \in O F(P) \mid S(p) \notin \operatorname{comp}_{1}(\mathcal{K})\right\}$ the input alphabet, δ_{G} the transition function defined for $\xi \in \operatorname{comp}(\mathcal{K}) \cup T$ and $f_{i} \in \mathcal{C} \vec{l}^{\prime}(P), \mathcal{S}\left(f_{i}\right) \notin \operatorname{com} p_{1}(\mathcal{K}), b y$
$\delta_{G}(q, \xi):=1-$ Closure $\left(\left\{\left[X_{j} \rightarrow \alpha_{j} \xi . \beta_{j}\right] \mid\right.\right.$

$$
\left.\left.\left[X_{j} \rightarrow \alpha_{j} . \xi \not \beta_{j}\right] \in q\right\}\right)
$$

$\delta_{c}\left(\eta, f_{i}\right):=1$ Closure $\left(\left\{\left[S\left(f_{i}\right) \rightarrow . D\left(f_{i}\right)\right] \mid\right.\right.$

$$
\left.\left.\exists\left[X_{j} \rightarrow \alpha_{j} \cdot \mathcal{S}\left(f_{i}\right) \beta_{j}\right] \in q\right\}\right)
$$

Q_{a} is the set of the states given by
$\left\{q \mid \exists u \in(\operatorname{comp}(\mathcal{K}) \cup T \cup C H(P))^{*}: \delta_{G}\left(S_{G}, u\right)=q\right\}$,
and $F_{G}:=\left\{q \in Q_{G} \mid[X \rightarrow \alpha.] \in q, X \rightarrow \alpha \in O F(P)\right\}$ is the set of the final states.

Figure 2: $D F A(G)$

The first difference to the usual context-free automaton is that we allow transitions under $f_{i} \in C P(P)$, if we have $\mathcal{S}\left(f_{i}\right) \notin \operatorname{comp}_{1}(\mathcal{K})$. The second point is that we use 1-Closure instead of the usual closure. $D F A(G)$ for the example grammar is shown in Figure 2. The conflict is removed because we can now distinguish two cases by looking at the information additionally stored. In [SV90], only the first idea was realized obviously leading to a weaker automaton.

5 The Analysis

To use $D F A(G)$, the usual pushdown is extended by a data-structure consisting in a list of partial derivation trees. This list future collects all information determined by Reduce's relative to first nonterminal components and is used to drive the transitions under $p \in C F(P)$ in $D F A(G)$ as soon as we have to investigate nonterminal components $X_{i} \notin \operatorname{comp}_{1}(\mathcal{K})$. The change between the two different kinds of control leads to a new characterization of conflicts.

For better explanation, we use a list past parallel to future where all Reduce operations performed so far are stored. An example for the new data-structures is shown in Figure 3. We use it to explain how they are built up during the analysis. The first operations on this past were Shift $\left(w_{1}\right)$, Shift $\left(w_{2}\right)$, Reduce $\left(A \rightarrow w_{2}\right)$. From CFGs, we know that any Reduce takes place at the end of the sentential form generated so far. This remains true. Tlus, we can argue completely analogons as far ats past is concerned.

But we investigate coupled productions as, e.g., $\left(Z_{1}, Z_{2}\right) \rightarrow\left(w_{1} A, U_{1} U_{2}\right), A,\left(Z_{1}, Z_{2}\right),\left(U_{1}, U_{2}\right) \in \kappa$. We know that coupled nonterminal comporents are located at the same depth of the derivation tree and that they are substituted by components of the same coupled production. Therefore, when inserting any $p, S(p) \in \operatorname{comp}(\mathcal{K})$, in past, e.g., $Z_{1} \rightarrow w_{1} A$, we additionally insert the coupled productions, e.g., $Z_{2} \rightarrow U_{1} U_{2}$, in future. In general,

Figure 3: The New Data-Structures
there are two cases to distinguish depending on p_{1} inserted in past. If $\mathcal{D}\left(p_{1}\right)$ contains only symbols in $\mathcal{K}[1] \cup T$ (i.e. only uncoupled ones), the coupled p_{2}, \ldots, p_{r} are inscrted as the first up to the $(r-1)$ th element in future. (E.g. for $\left(Z_{1}, Z_{2}\right) \rightarrow\left(w_{1} A, U_{1} U_{2}\right)$) Otherwise, we behave as it is done for $\left(Y_{1}, Y_{2}\right) \rightarrow\left(Z_{1} N, Z_{2} Q_{1} Q_{2}\right)$ in ligure 3. L.e, the subtrecs in future for those symbols in $\mathcal{D}\left(p_{2}\right), \ldots, \mathcal{D}\left(p_{r}\right)$ coupled to first components in $\mathcal{D}\left(p_{1}\right)$ become the sons of these elements. Thus, we maintain the property that the symbols at each fixed depth in past and future together form an clement of $B D(K, T)$.

Thereby, in addition to Shift's which are handed as usual, we know what to do during a sequence of Reduce operations relative to elements of comp (\mathcal{K}). Now, let us be in the situation that we have to use the information in future, e.g. a transition under $B_{2} \rightarrow a=: p_{i}$ from the topmost state. 'lhen, we create a pointer presence walking on fulure. We push $\delta_{G}\left(q_{10}, p_{i}\right)$ and make presence point onto the first son ξ of $D\left(p_{i}\right)$. Let q be the new topmost state. We have to distinguish three cases:
$\xi \in T:$ If ξ is the next input symbol, we push $\delta_{G}(q, \xi)$. Otherwise, the whole input is rejected. presence now points on the brother of ξ.
$\xi \in \operatorname{comp}(\mathcal{K}) \backslash \operatorname{comp},(\mathcal{K}):$ future already stores the expansion $\xi \rightarrow \beta$. We push $\delta_{O}(\eta, \xi \rightarrow \beta)$. presence now points on the first symbol in β.
$\xi \in \operatorname{comp}_{1}(\mathcal{K}):$ fuiure does not store information about ξ, but ξ and its compled compouents represent a complete independent analysis problem which has to be solved recursively. E.g., this is the case for D, $\left(U_{1}, U_{2}\right)$, and $\left(Q_{1}, Q_{2}\right)$. The recursive call of the procedure starts with the topmost state since it contains all items $[\xi \rightarrow . \alpha]$. Each recursion needs separate data-structures. Details are clescribed in [Pit93].
If presence cncounters no brother, we have to reduce. Let $Y \rightarrow \gamma$ be the production at whose last symbol presence points. We pop $|\gamma|+1$ states. The additional pop compared to the context free case results from the transition under $Y \rightarrow \gamma$. presence walks to the brother of Y in future and we push $\delta_{G}\left(q^{\prime}, Y\right)$ if q^{\prime} is the new topmost state. If Y is the root of the first tree in future, its complete subtree is moved from future to past and presence is deleted.

We ouput $p \in P$ when reducing its last component. Thns, our result is a rishtmost derivation in inverse order.

6 The Definition

So far, we did not discuss the situation that there are distinct transitions fitting for the same state in $D P^{\prime} A\left(C_{i}\right)$. Shift-Reduce and Reduce-Reduce conflicts are forbidden as they are for Cliss. The new conllicts result if we have to decide whether we push $\delta_{G}\left(q_{t o p}, f_{j}\right), f_{j} \in C F(P)$, or Shift resp. Reduce as usual. If a state η shows such a "new" conflict, it contains two items of the kind $\left[Z_{i} \rightarrow \gamma_{i} . Y_{j} y_{i}\right]$ and $\left[X_{1} \rightarrow \alpha_{1}, \xi \beta_{l}\right], \xi \in T$, or $\left[X_{1} \rightarrow \alpha_{l}.\right]$. This is easy to decide as far as we are walking on future, since the information necessary is stored there. Thas, we only have a real conflict if $i=1$ and $l=1$ holds for the above items. Obvionsly, this canot be decided deterministically, since we would have to know about the struchure of the derivation tree not constructed so far. E.g., in the first conflict, we would have to say whether ξ is a son of Y_{j} (choose $\delta_{G}\left(q, Y_{j} \rightarrow \mathcal{D}\left(f_{j}\right)\right)$) or whether ξ is a son of X_{1} (choose $\left.\delta_{G}(4, \xi)\right)$. It follows that we need a modified defintion of "comflicts" compared to CFGs.

Definition 8 (Conflict)
For any $G=(\mathcal{K}, I, I, S) \in C C H G, O H A(C$,$) shows a$ conflict if at least one of its states contains a subset of the following kind:

$$
\begin{aligned}
& (R-R)\left\{[X \rightarrow \alpha .]_{1}[Y \rightarrow \beta .] \mid X, Y \in \operatorname{com} \mu_{1}(K),\right. \\
& X \rightarrow \alpha, Y \rightarrow \beta \in O H(l)\} \\
& (S-R)\left\{[X \rightarrow \alpha .],[Y \rightarrow \beta . \mu \gamma] \mid X, Y \text { © } \operatorname{comp}_{1}(\mathcal{K})\right. \text {, } \\
& X \rightarrow \alpha, Y \rightarrow \beta a \gamma \in \subset P(P), a \in T) \\
& (S-b)\left\{[X \cdots \alpha \cdot a \beta],\left[K \cdots \gamma . Y_{j} y\right] \mid X, X \in \operatorname{comp}_{1}(K),\right. \\
& X \rightarrow c a \beta, Z \rightarrow \gamma Y_{j} \eta \in C P^{\prime}(P), \\
& \left.\| \in T, Y_{j} \in \operatorname{comp}(\kappa) \backslash \operatorname{comp}(\kappa)\right\} \\
& (R-H)\left\{[X \rightarrow \alpha \cdot],\left[Z \rightarrow \gamma . Y_{j} \eta\right] \mid \bar{X}, Z \in \operatorname{com}_{1}(\hat{K}),\right. \\
& Y_{j} \in \operatorname{comp}(K) \backslash \operatorname{comp}_{1}(K), \\
& X-+\alpha, Z+\gamma Y ; \eta \in C P(P),\}
\end{aligned}
$$

Uefinition 9 ($M / R(0)$ in $C C P C$)
$G \in C O F G$ is $I / R(0) \longleftrightarrow>H A A(C)$ has no conflicts.
Theorem 2 Let $G \in C C A C$ be $L R(0)$. Our algorithm deterministically solves the wordproblem for any w $\in T^{*}$, $n:=|w|$, in time $O(n)$ by constructinga rightmost derivation relative to G if $w(S(C)$, and, if $w \notin l(G)$, by rejecting the input. In addition, the algorithm shows the Valial I'refix Property.

Proof: The linear time complexity follows since we only need a constant amount of additional steps per contextfree step lor past and future. $D H^{\prime} A(C)$ is determined only once for each G. 'The VIP' holds since it holds for the context-free algorithm and future additionally ensures that the coupling is correct.

IR $R(k)$-Conpled-Context Firee Crammars result liom the above by resolving, conflicts in $D H^{\prime} A\left(G^{i}\right)$ by adding a lookahead set to the items which are involved in a conflict. ل'or this purpose, wo use the mappings $F I R S T_{k}$ and FOLIOW W_{k} as defined for $L L(k)$-Conpled-ContextFree Grammars in [Pit94]. 'There, these mappings are generalized such that they take the coupling between the components of each ronterminal into account instead of working simply on $C V^{\prime}(G)$. Thus, we treat only complete parentheses as it context-free nonterminal and the result is much more exact as, e.g., in [SV90]. This results in an adequate generalization of the $L A(k)$-notion lor $C C P C:$

Figure 4: $1,=\left\{a^{n} b^{n} c^{n} d^{n} \mid n \geq 1\right\}$

Example 2 The language $\left\{a^{n} b^{n} e^{n} d^{n} \mid n \geq 1\right\}$ generated by the grammar in lixample 1 shows the IIR(0)-property. DF $A(G)$ is shown in Figure 4.

Example 3 The languge $\left\{w \$ w \mid w \in\{a, b\}^{*}\right\}$ modelling cross-serial dependencies can be generated by the LR(1)grammar $(\{S,(X, X)\},\{\$, a, b\}, P, S) \in C C P G(2)$ where $P:=\{S \rightarrow X \mathbb{X},(X, \bar{X}) \rightarrow(a X, a \bar{X})|(b X, b \bar{X})|(\varepsilon, \varepsilon)\}$.

References

[1)P89] J. Dassow, G. Pxun: Remulated Rewriting in Formal Language Theory. Springer 1989
[Gll69] S.A. Greibach, J.F. Hoperoft: Scallered Context Grammars. J. Comput. Syst. Sci. 3 (1969), pp. 232-247
[GMR92] Y. Guan, C. Hotz, A. Reichert: Tree Crammars with multilinear Interprelation. Technical Roport, Univ. Saarbrïcken 1992
[Gua92] Y. Gian: Klammergrantmatiken, Netzgranmatiken und Interpretationen von Netzen. PhD) thesis, Univ. Satarbrucken 1992
[11P94] C. Hotz, (i. Pitsch: Fast Uniform Analysis of Coupled-Conlext-free Cirammars. In l'roce of ICA1, "9A
[Hig84] .I Higginhotham: Bughish is not a Context-hree Language. ling. Inquiry 15 (1984), pp. 225-235
[JNT75] A.K. Joshi, I.S. Levy, M. Takahashi: Tree Adjunct Grammars. J. Compht. Syst. Sci. 10 (1975), pp. 136-163
[Jos85] A.K. Joshi. Tree Adjoining Crammars: How Much Context-Sensitivity is Required to Jrovide Reasonalle Structural Descriptions. In Natural Language Parsing, Cambridge University Press 1985, pp. 200250
[Jos87] A.K. Joshi: Introduction to Thee Acloining (irammory. In Mathematics of Language, John Menjamins I'ublishing Company 1987
[Knu65] D.E. Knuth. On the Translation of Languages from hefl to Right. Information and Control 8 (1965), pp. 607-6339
[Pit93] C. Pitsch: Analyse von Klammergrammatiken. PhD) thesis, Univ. Saarbrücken 1993
[Pit9d] (G. Pitsch: $L /(k)$ Porsing of Coupled-Contextfree Grommors. to appeat in Computational |neelligence 1994
[Ghibg] S. Shieber. Puidence against Conteat Freeness of Natural Language. Linguistics and Philosophy 8 (1986), pr, 333-343
[SV90] Y. Schabes, K. Vijay-Shanker: Deterministic Lefl to Right Parsing of Tree Adjoining Languages. ACl'90, pr. 276-283

[^0]: This research has been supported by a Graduicrtenkollegfellowship of the Deutsche Forschung gemeinschafl.

