Towards Machine Translation Using Contextual Information

\author{
Tim Cornish，Kimikazu l’ujita，Ryochi Sugimma
 \｛tim，lujita，sugimura\}(Misl.mei.co.jp
 Matsushita Electric Industrial Co It Cl
 Information and Communications＇Pechology Laboratory

}

1 Abstract

A proposal is made for the use of contextual in－ formation in the machine translation of dapanese and English．＇This paper descoibes the use of a Context Monitor to maintain contextual informa－ tion dynanically and the augmentation of appo－ priate features to a semantic network to emable simple inference．The approach taken is that of ＂best guess＂processing with the contextuat infor－ mation being handled with semantic information on a slatlow level．

2 Introduction

Current Machine Mranslation（A＇C）systems process input sentence by sentence．However，experience wilh English and Japanese has shown that some languages difler to such a degree that sentential translation yields poor results．Let us first compare the results of a conventional M＇I＇system with those we expect to get for M＇with context：
 デオツ機私を閒発した。
2．ビデオは收活部に思した。
3．二幾析时すぐに発巻した。
4．とても度く竞れた。

This might be translated by a current macline trans－ lation system as shown in Figure 1^{1} ：

It can clearly be seen that meaning in many sen－ tences is obscured．Let us compare this with the re－ sults of a system using simple contexthal information as shown in Pigure 2：

This second translation is much more colierent and better preserves the meaning of the original sentence，

An attempt has therefore been made to solve some of the problems of translating languages such as Japanese and Finglish using contextual information． Due to the considerations of wanting to produce a high quality small－sized MT system，the approach taken is to use the resources available in an existing M＇I system and to process the contextual information

[^0]1．The Chief Development Engineer developed two new＇I＇V models and four new video mod－ els last year．
2．a）A video was shipped to the Sales Section．
b）We／Someone shipped a video to the Sales Sec－ tion．
3．a）T＇wo models were released straght away．
b）We／Someone released two models straight away．
4．It sold very well．

Vigure 1：Conventional MT Results
1．The Chief Development Engineer developed two new＇TV motels and fonr new video mod－ ds last year．
2．He shipped the videos to the Sales Section
3．Ihey released two models straight away，
4．They sold very well．
Figure 2：Contextual MT Results

On a shallow level only，using the information gained to guide the transtation on a＂best guess＂basis．This kind of feature with rather light processing for the production of a higher quality transhation is desirable in a prachicat M＇I system because the advantages of large－seale processing for deep contextal information are likely to be limited in this application．

3 The MT System

The translation system presented here is a model sys－ ten which is being used lo investigate the technigues proposed．The translation part is carried out in PRO－ LOG using an IFG－like grammatical fomatism ${ }^{2}$ ． ＇The current dictionaries contain information to trans－ late about 300 words．There are 350 grammar rules which cover a wide range of sentence patiterus．

The context monitor operates using information re－ trieved from the f－structure of a sentence alter analy－ sis．＇Ithis information is then used during the transfer

[^1]of the source f structure to the target f－structure．As context processing is carried out on only a shallow level，only information for lexical item，number，per－ son，gender，case role etc is used in the context system， along with semantic information from the semantic network．The way that this information is used will be explained below in regard to the specific problems that the use of context is intended to resolve．

4 The Context Monitor

The context monitor proposed in this paper uses a standard focussing theory as a basis （［Sidner 81］），（Sidner 86］），although somewhat simpli－ fied according to the best guess approach that we are adopting．It is plamed to increase the complexity of this initial algorithm to reflect more current versions of the theory as the system is developed．
The context monitor has a number of basic data structures：Current Focus，Actor Focus，lotential Fo－ cus List，Potential Actor Focus List，Discourse Seg－ ment Stack and Actor Focus Stack．There is also a Current State List that maintains a record of all the semantic items currently ledel in any of the other data structures and the semantic features to which they are linked．This list is updated（entries added and removed）after every sentence．
In order to limit the scope of the context informat－ tion required in the context monitor，an analysis was made of the main differences between Japanese and English that provide problems for M＇T systems．The basis of the analysis was to find what information can be gained from context to solve these problems．

4．1 Plural Forms

Japanese is（in general ${ }^{3}$ ）ummarked for number．Fa－ glish，however，diferentiates between singular and plural．This fact causes problems when translating from Japanese to English as the mumber information required for the inflection and dectension of English is not available from the analysis of the Japanese．Fon example：

$$
\begin{aligned}
& \text { 少作は大㱜好きた。 } \\
& \text { (boy(s) subj dog(s) obj like) } \\
& \left\{\begin{array}{l}
\text { The boy likes the dog. } \\
\text { The boys like the dog. } \\
\text { The boy likes the dogs. } \\
\text { The boys like the dogs. } \\
\text { Boys like dogs. }
\end{array}\right.
\end{aligned}
$$

In the current system an initial sentence analyzed by the system is processed to find possible foci．Items which are in the plural or are in conjunction are stored as a set．The set as a whole is given plural number，

[^2]but consists of individual items or，as in the case of ＂two new TV models and four new vileo models＂，as sulset．s．Subsets or individual items within the sets are available as antecedents to subsequent referring expressions．

Thus，in the example text in Section 1，after the mitial sentence is analysed，the proposed focus is two new TV models and four new video models，the struc－ ture of which is shown in Figure 3 below：${ }^{4}$

```
[set]: [set2:
    [pred:terebi(TV),
        num:plur,
        mod:(pred:kishm(model),
            spec:[pred:ni(two),
                ...]]],
        ref:set2],
    [sel3:
        [pred:bideo(vileo),
        num:plur,
        mod:(pred:kishu(model),
            spec:[pred:yon(jour),
                ...|],
        ref:set3],
        rel:set1]
```

Figure 3：PROLOG Structure
Sentence 2 （ S 2 ）is analysed and a test is made to see if any tems in that sentence confirm or reject the proposed focus．＇The structure for the item ビッヲオ （＂it video／videos＂）is matched by mification with the structure for the proposed focus and can be matched with a subset of it，mamely 新しいビデ水㙨梀（＂A new video models＂）．＂What item is therefore taken to confirm the proposed focus．
＇Ihat proposed focus is，however，immediately PUSHed onto the focus stack because the subset of 4 videos is taken as the current focus ${ }^{5}$ ．The item ビデオ of $S 2$ inherits the features of the set of videos from $S L$ and is therefore expressed in the English with a pla－ ral form：＂pideos＂．It is hoped that in this way the context monitor will be able to distingnish between singular and phat in at least some cases．
la some cases there is no way of distingnishing be－ tween singular and ploma relerence in Japanese as in the case of the sentence below：


```
*゙佂べた。
\int'Taro and Manako bought a cake. They
ale it in the park.
    Taro and Manako bought (some)
    cakes. They ate thom in the pork.
```

[^3]In such cases the context monitor cannot resolve singular or plural and so the M＇J system default will be relied on．However，the context monitor at least allows for coherence with subsequent pronouns．

4．2 Translation of Pronouns

Japanese makes much use of the zero pronoun （marked here by＂ϕ＂），especially in the subject po－ sition，but equally for other roles．F＇or example：

\emptyset	\emptyset	b	食べて	い真いだっ
（ \downarrow	b	mon	tabete	shimatta）
（ $G_{\text {subj }}$	$\omega_{0, j}$	already	cal	$A U X]$

$\left\{\begin{array}{l}\text {（I）have already caten（it）} \\ \text {（They）have already eaten（them）} \\ \text {（IJe）has already caten（them）} \\ \text { ．．．}\end{array}\right.$
This means that there is no information available from the single sentence to aid the choice of equivalont bin－ glish pronoun（which mmst nommally be expressed）． As shown in 2 and 3 of the example text in ligure 1 ， M＇I＇systems use a number of methods to add an oved． pronoun，often involving the user in the final choice．

It is clamed that if there is a pronoun in a sentence， it must refer to the focus of that text segment（in order to continue the carrent segnent）and if there are more than one pronoms，at least one of them must refer to the focus．By tracking the focms of a text segment， $\$$ pronouns in Japanese should be able to be resolved so that an appropriate overt pronoun in Engilish can be selected for the translation．

When a zero pronoun is detected in a sentence，if an antecedent can be found for it，and that antecedent， is a set of items，the overt pronoun inserted in fie： Paglish will be plural．
＇Thus in 4 of the example from Figure 2 ，we see that
 ysed as referring to the two video models released and is therefore translated with a plumal pronomn：＂They sold very well＇．

Note，however，that there is ambiguity in Sentence

 refers to the Chid Development finginer or the Sales Section．

When faced with ambiguity such as this，large－scale attempts at context understanding might use infer－ ence plans to solve the ambiguity．However，because of the limitations of a small size $\mathrm{N}^{\prime} \mathrm{I}^{\text {s }}$ system and the fact that even lage seale deep level semantic process－ ing has not been satisfactorily realised for manimed domains（with which our M＇I＇system is intended to work），we decided to attempt limited inferencing by the addition of some features and links to the seman－ tic network of the M＇T system．The inferencing able to be performed by such a method is quite sinuple，but．
is hoped to be sufficient for our needs in accordance with the best gucss policy．

4．3 Semantic Networks

Semantic networks are basically a hierarchy of con－ cepts which are linked to one another in a network type structure．Semantic networks were introduced by Quillian in $1908[Q u l l i a n$ 6：3］and were widely used in athempts at Knowledge Based Systems，partien－ barly diring the latie 1980 s．

As an example of such a system let us briefly consider the system for Japanese－binglish tramba－ lion msing，contextual information proposed by 11 ． Lsahara aud S．Ishizaki（［Isahara 80］，［Isahara 87］， ［1shizaki 80］and［Isahara 90］）as one Knowledge Based approach and compare it to the teehniques used in the systen proposed in the curent paper．
＇The translation system OON＇TRAST＇transkated dapanese newspaper articles into Finglish．However， a major diffremce reguding our system is hat con－ text understanding involved analysing a sentence A （eg with an overt subjecol）and a sentence 13 （eg with a covert subjed．）and then mateling these sentences agamst a mamber of sentence patterns．If a match was fomed these would form a text，patern C ，with A alud 13 as subparts．The subject of A woutd be used （if sutable）to provide the subjeet for B．Ry adding furlier sentences and text patemens，a representation of the entire text would be formed and this text repre spatation transated into an binglish equivalent text．

However，this technigue reties on the fact that you can predict atl the types of sentence that will ocen and how they combine to form an entire text（per haps possible for the types of newspaper articles the （ON＇IRAS＇V system amed to translate）．Mowever，if a sentence canmot fit into one of the preprepared pat terns，the system will fail．Onr system is intended for more general language and as we camol predict the length of a lext or what kinds of sentence will occur within that text，he Context Monitor provides on－ going contextual amalysis withont prepresuming the length or nature of the text．

OON＇RAS＇also melies on making a representa tion of the entipe lext．In our system there is mo un－ derstanding of the ovemall text structure（according to our shallow level approach）．lastead，the objects and events referred to in the text ame analysed and made avaibable to resolve subsequent analysis prob－ lens．＇The tramshation remains sentence by sentence， alhongle the general context of the text is monitored．

Frinally，Semantie Neworks，such as that proposed by［sahara ot al．，are static networks．The links do not change between nodes．The possible paths that are available thromgh the network may change but the links thenselves clo not change．In our system，the basic semantic network is static，defining irrefabable relations between the concepts in the hierarchy，but． on top of this，other links are augmented onto the
network and these links can change dynamically in respect to the specific objects and concepts referred to in the text. This provides a powerful augmentation to the basic network.

4.4 The Augmented Semantic Network

The semantic network in this system is basically a hierarchy of Objects, States and Events. The addition of features to the semantic network in effect adds links to the network. Two kinds of link are proposed: permanent links and temporary links. Permanent links are conditions that must be true for a certain action or state-of-aflairs to hold. The other, temporary, links are used to create a default state for the objects mentioned in the text. As the text is processed, these links may change, so that the information available to the system will differ from one sentence to the next.

4.4.1 The Links

The division between Objects, States and Events is reflected in the type of feature given to semantic items. For example, Events typically contain features about the sort of things that are affected by that event; States contain information the types of objects that may be in that state; Objects contain information about any subparts or if they themselves are typically part of another (larger) object and what type of Event they are typically involved in.

On this basis, the following types of link are proposed:
\star Condition ($=c$): (permanent) a condition that must hold for a State or Event to come about.
\star Before Condition ($\mathrm{BC}::$): (permanent) a condition that must be true before an Event or State comes about.

* After Condition ($\mathrm{AC}::$): (permanent) a condition that becomes true after an Event or State comes about.
* Ilas Subpart (has): (temporary) an Object has related subparts or is a subpart of another Object.
* Characteristic (has Semantic_Label): (temporary)
an Object has the characteristic of Semantic_Label (usually an Abstract_Relation: Size, Shape Colour etc.). This takes the form of: "Item has Semantic_Label", such as "Peterhas Existence Lifespan". This states that an item with the semantic item $P e$ ter has an existence of some kind and further locates that item on a path of the network to the alstract relation of Lifespan. In this way, nodes between these two points are all available for reference by the inference system.
* Ability (able_to): (temporary) This is not fully defined in the current system but represents characteristic features of items e.g. "door" often appears in the theme position of the Events Open and Shut.

These tinks are considered sufficient for the current capabilities of the system. Links may be deleted or others added as the range of the sytem widens, if this is thought necessary or desirable.

4.4.2 Permanent \& Temporary Links

The difference between permanent and temporary links is in the nature of the information that they convey. Permanent links are those that are augmented to the network and conncet nodes one to the other in accordance with the features found in those nodes. ${ }^{1}$ Before Condition and After Condition links are permanent, although the information contained in the nodes that they connect to will only become available to the context monitor in accordance with the tense and aspect of the verb (i.e. an After Condition is obviously only valid after the completion of the (for example) action denoted by a verb has finished. Temporary links are those that supply default information to the context monitor concerning nodes that it is concerned with. Thus, for example, an entry for a bird might state that it is Able_'to Fly. However, if the input text were to state that a particular bird is unable to fly, that Able_To link would be cancelled. Thus temporary links provide the information that the context monitor uses, using the temporary links to spread throughout the network (within set search constraints) and gathering information that can be used for inferencing.

4.4.3 Example of the Augmented Features

An example of the features used to augment the senantic network can be given using the example:

Peter heard that John had died. He was very sad.

Given the dictionary entry shown (here simplified) below, "Petcr" will be analysed as a male proper noun.

$$
\begin{gathered}
\text { die(n, 'Peter', }[\text { semfeat: }[\text { human:yes }] \\
\text { proper:yes, } \\
\text { bender:mase, } \\
\text { pred;peter] })
\end{gathered}
$$

When the embedded clanse is analysed, "John" will be analysed in a similar way. The semantic feature human:yes locates these two lexical items as subsumed by the semantic feature "Living" in the network. Augmented features for a male human such as the objects referred to by the names Peter and John are shown below in Figure 4 below along with possible entries for the Event die and the State be sad.

It can be seen that one of the Before Conditions of the Event Die is that the actor role is filled by an item that has the semantic reature "Tiving". The clefault assumption for "John" is that lie is Ituman

Figure 4：Augmented Features
and therefore Living．Iowever，the After Conditions of the Event Die cancel the feature Living in connec－ tion with＂John＂（＇nol＇means that a Ceature and all the other features underneath it in the tree should not be reachable by that item），and state that the item should be associated with the feature＂Corpse＂ （a semantic label in the system for something that was living but is no longer）．Thus the semantic item ＂John＂is first linked with the semantic feature＂Hu－ man＂and all the other featmes inherited from that feature．Ilowever，the features associated with the semantic item＂Die＂cause the links associated with ＂John＂to change．＇This means that when the sec－ ond sentence is analysed，the possible candidates for the experiencer role of the semantic item＂BC．Sal＂ are analysed，an item with the semantic feature＂ An － imate＂will be sought，and so the itenn＂John＂will not be considered in the search as it is no longer on a path reachable by＂Animate＂．＂Peler＂is therefore the only possible antecedent．

4．5 Articles

Japanese does not use definite and indefinite arti－ cles and so when there is no ovent determiner in the Japanese，one must be supplied for the English trans－ lation．For example，Sentence 2 of our example text：

ビデオは敗劳新に思卑した。
They passed the videos to the Sales Section．
Where a simple default rule is used for articles，this could equally be machine translated as：they passed videos to the Sales Division ${ }^{6}$ ，where it can be consid－ ered that some of the sense of the original sentence is lost．

While the use of contextual information camot solve all of the problems of articles，it is hoped that at least in some cases incorrect possibilities can be climi－ nated（following the＂best gucss＂policy）．In the cases that the context monitor cannot decide an artide，the MT＇system default will be relied upon．

To decide between a definite and indefinite article in English，a simple rule of thumb in the present system is that once an object has been specified in a context，

[^4]all subsequent references to that partictar object in the same context will be definite ${ }^{7}$ ．

In the method proposed here，as objects are anal－ ysed，they are given a unique reference number（ref） that separates them from all other oljects of the same type．Thus，the first time that an object is analysed， it will be made indefinite，unless the reference can be analysed as being a generic one（e．g．The lion is a dangerous animal etc）．

From then on，if an item in the text can be linked to an item which is the current focus，a potential focus or an item on the focus stack，it will be made definite in the Buglish translation．Therefore，the two video models of Sentence 3 are recognised as a subset of the four videos that form the focus and are given the definite article．

Note also that ats subparts of objects are included in the features attached to semantic items using the has feature，objects related to an item already mentioned can also be treated to some extent and translated with definite articles：

> Hanako bought a new video. She took it back to the shop as the tape head was damaged.

This，however，a very simple approach and cannot． account for all possible uses of the definite／indefinite articles．However，the approach outlined above also follows the＂best guess＂strategy；where this strategy fails the normal delault rules of the translation system take over．

4．6 Restrictions on the Repetition of Pronouns

In Euglish，overt pronouns are repeatable and in some cases ohligatory in a sentence to preserve meaniug．In Japaluese，however，overt pronouns are not repatable as shown in the below ${ }^{\text {s }}$ ．

> He does his work when he wants to.

It is therefore desirable to have a routine in an N＇T system to replace overt pronoms in English with \emptyset or l＂分（＇jithun＇oneself）in dapancse．In this case， the use of the pronom he in English will be analysed and recognised as referring to the same person using

[^5]the processes outlined above. Separate rules concerning co-occurrence of pronouns can then be used to substitute ϕ or 自分 ('jibun' himself) in the Japanese translation.

5 Limitations \& Problems

As shown above, the inferencing carried ont is very simple. It depends entirely on the links between nodes of the network and there is an obvious limit as to how complicated those links may become before the processing required to search all the nodes linked to a particular item becomes prohibitive. At the current stage of planning, a structure (a semantic ilem) may be linked to another via one node (constrained to be an Abstract Relation). There are no current plans to increase the number of such linking nodes.

The inference mechanism is also expected to perform poorly where actions denoted by a verb are complex. 'This is due to the very simple feature descriptions that we use in the system. It might therefore be desirable that, if the processing is not completed within, for example, a constrained time, the process be terminated and the context monitor left to rely on semantic feature matching alone.

Another major problem is writing the features for the links in the network. At the moment, all features are written by hand, but it is hoped that simitar information might be extracted from semantic and caseframe dictionaries.
The context monitor is currently writion in PROLOG ${ }^{9}$. The program currently consists of several hundred lines of PROLOC.

6 Final Remarks

The idea of using contextual information in Machine Translation has been proposed before (for example [Wada 90], [Eberle 92],[Haenelt 92]), however, there seems to be little research carried ont in the field. MT research still seems to take the sentence as the basic unit of translation and the quality of their raw output suffers as a result. We have proposed how some of the errors of J-E \& E-J transtation can be solved and have outlined a Context Monitor with simple inferencing.

The best guess approach tries to define a problem and specify the information needed to solve that problem. The context monitor system searches for specific information from the input sentence and if it cannot find it, it simply does nothing, allowing the defaults of the translation system to supply the necessary information. The search routines of the context monitor look for that specific information at as earlier a stage as possible in the process and so if that information is

[^6]not found, the next rontine is tried as quipkly as possible in order not to decrease the overall translation speed by a significant amount.

Even when the context monitor fails and the MT system defaults are relied upon, the context monitor ensures consistency with subsequent sentences.

Complicated texts are likely to lead to the Context Monitor failing often but it, is still felt that the better translation produced in many more cases and the fact that interference with the speed of the transtation is uegligible mean that the prospects for a compactsized personal M'T system producing better quality translations are very promising.

References

[Amores 89]	G. Anores, MSc. Dissertation, UMIST, 1989.
[Eberle 92]	K. Eberte, W. Kasper, C. Rohrer, Contextual Constraints for MTT, TMI-92 Proceedings, pp213-224.
[Hachelt 92]	K. Hamelt, Towards a Quality Improvement in Machine Translation: Modelling Discourse Structure und Including Discourse Develop. ment in the Determination of Transtation Equivalents, TMI-92 Proceedings.
[Tsalamat 86]	II. Ysahara \& S. Ishizaki, Context Analysis System for Japanese Texi, OOLINC8G, pp244-246.
[Isahama 87]	11. Isahara, K. Hashida and S. Ishizaki, Constraint Based Inforence for Concept Unification in Contextual Analysis (in Japanese), Proc of 35 h Meeting of the Information Processing Society of Japan, 1987, ppl240-1249.
[Tshizaki 89]	S. Ishizaki \& II. Isahara, Contextual Information Translation System CONTRAST (in Japanese), Journal of the Information Processing Society of Tapan, vet.30, no. 10, pp1405-6, 1989.
[tsahara 90]	II. Isahama \& S. Ishizali, Natural Language Understanding System with Concept lierarchy, Proc. of Pacific Rim Intemational Conference. on AI ' \mathscr{O}, pp322-27.
[Quillian (i3]	M. R. Quillian, Semantic Mem. ory, in Semantic: Infomation Processing, ol M. Minsky, 1968, pp227-270.
[Sidner 81]	C. I. Sid uer, Focasimy for Interpelation of Pronouns, American Jommat of Compmotional IAnguistics, Vol.7, 217.213.
[Siduer 86]	C. [. Siluer, focusing ith the Comprehension of Definite Araphora in Readings in Natural Language Processing, eds $\bar{B} . J$. Crosk, K.S. Jones, B.L. Webler, 1986.
[Wada 90]	II. Wada, Discourse Processing in ATT: Prob. lems in Pronominal Trunsilution, COLING-90, pp73-75.

[^0]: ${ }^{1}$ There is obvionsly a great difference in results between sys－ tems，but these translations represent typical（turediterl）result．s from a mumber of systems，a）and b）options depend on the default settings of individual systems

[^1]: The orginal program for Phelist－Spanish translation de－ woped by G．Amores［Amores＇so］has been widely adapted

[^2]: ${ }^{3}$ Note the use of 䢒（＇lachi＇）with mainly people and animals， and some pronoms：彼（＇kare＇－he）vs 彼 $\mathrm{C}_{\text {（ }}$（＇karera＇－they）

[^3]: ${ }^{4}$ in a simplified form，showing relewand detail only．Madics are transtations for explamation only and do not appear in the structure proper
 ${ }^{5}$ The system curmoly deats only with local focus－theme is no accoum of global focus

[^4]: 6 assuming that the nom is defined as phatal by some offer process，otherwise a video is also a possibility

[^5]: ${ }^{7}$ This basic principle is supplemented by rules based on syn－ tactic constrnctions ete
 ${ }^{8}$＇This example taken from［Wama 90］

[^6]: ${ }^{9}$ Not all of the fealures mentioned in this paper are currenty implemented

