
T H E FIRST BUC REPORT

J e f f G o l d b e r g
T h e o r e t i c a l L i n g u i s t i c s P r o g r a m , B u d a p e s t U n i v e r s i t y (E L T E)

L h s z l 6 K ~.1 ra~i.n
R e s e a r c h Institute for Linguistics, B u d a p e s t

T h e o r e t i c a l L i n g u i s t i c s P r o g r a m , B u d a p e s t U n i v e r s i t y (E L T E)
D e p a r t m e n t of C o m p u t a t i o n a l L i n g u i s t i c s , U n i v e r s i t y of A m s t e r d a m

1. I n t r o d u c t i o n

The B u d a p e s t U n i f i c a t i o n G r a m m a r (BUG)
system described in this paper is a system for gener-
ating natural language parsers from feature-structure
based grammat ica l descriptions (graamnars). In the
current version, source grammars are limited to the
context-free phrase s tructure g rammar format. BuG
compiles source grmnmars into au tomata , which it
can then use for parsing input strings.

BUG was developed at the ftesearch Institute
for Linguistics (Budapest) and at the Theoretical
Linguistics Program, Budapest University (ELTE)
with the suppor t of O T K A (National Funds for
Research) of the Hungar ian Academy of Sciences. It
was written in C and is portable across Unix*, DOS
and VMS.

BUG differs from other unification-based
grammar-wri t ing tools in two major respects as
well as in a number of minor ways. One major
difference is tha t nu(~ uses f e a t u r e g e o m e t r i e s .
The feature geometry is a (recursive) definition
of well-formed feature structures, which must be
specified in the source grammar . The other major
difference is tha t BUG uses a built-in performance
restriction, called tile s t r i n g c o m p l e t i o n l imi t
(SCL). Using the str ing completion limit, we can
limit the generative power of a context-free grammar
to regular languages. The paper focuses on these two
innovations as well as a third feature of huG, which
is the separation of the structural description
(SD, conditions of application) from the structural
change (SC, effect of application) in source rules.

* Unix is a t rademark of AT&T.

2. Feature Geometr ie s

2.1. W h a t A r e F e a t u r e G e o m e t r i e s ?

Tile term f e a t u r e g e o m e t r y is taken from gen-
erative phonology, where it was introduced by
Clements (1985). A feature geometry determines
what feature s tructures are allowed by specifying
what (complex or atomic) values each path in a
feature s t ructure can have. In this way, a fea-
ture geometry expresses certain kinds of f e a t u r e
c o - o c c u r r e n c e r e s t r i c t i o n s (FCRs, Gazdar et
al., 1985), namely, those FCRs tha t are local in
the sense tha t they can be formulated in terms of
path continuation restrictions. For example, we can
incorporate the FCI t

[TENSE ~- PAST] z:~ [FINITE]

in a geometry by making TENSE a sub-feature of only
FINITE (and PAST a possible value of TENSE). On the
otlmr hand, we cannot encode a global F C R like

[SUBJ DEF : +] -:~ [INDIR_OBJ NUMBER : PLURAL].

Also, we cannot encode a global FCR such as

[TENSE = PAST] ~ [AGREEMENT]

unless we make TENSE a sub-feature of AGREEMENT
alone. This is impor tan t because allowing arbi t rary
or global constraints on wen-fornmd feature struc-
tures leads to undecidable systems if coupled with
structure sharing (Blackburn and Spaan, 1991).

Our feature geometries, jus t like the ones used ill
phonology, specify whether or not the continuations
of a given path are pairwise incmnpatible. For
example, the a t t r ibutes FINITE and NON-FINITE can
be made incompatible continuations of the a t t r ibute
VERB_FORM. As a result, in any actual feature
structure at most one edge can lead from a node that
a path ending in VERB_FORM leads to. What this
mechanism allows us to express are also local FCRs,
e.g.~

~([VERB..FORM FINITE] A [VERB-FORM NON-FINITE])

in this case.

ACRES DE COLING-92, NANTES, 23-28 AO~' 1992 9 4 5 PaGe. OF COLING-92, NANTES, AUG. 23-28, 1992

2 . 2 . H o w A r e F e a t u r e G e o m e t r i e s
U s e d ?

The main advantage of using feature geometries
is that it makes the unification operation and
the unifiabi[ity test more efficient. Traditional
unification only fails if atomic values clash, whereas
geometry-based unification will fail if incompatible
continuations of a path are to be unified. As a
matter of course, this means that an extra check is
performed each time new continuations are created
during unification, lfowever, if the feature geometry
is reasonably structured (i.e., not flat), then the cost
of this extra checking is significantly less than the
gain from early unification failure. In the typical
case, the growth of the comparative advantage of
early unification failurc over traditional unification
(i.e., the proportion of all possibilities of failure to
the number of leaves) should grow faster than its
comparative disadvantage, i.e., the number of checks.

If feature geometries are used as intended, then
the major distinctions between linguistic objects
are made by attributes closer to the root of a
feature structure, and minor features are in deeply
subordinate positions. For example, the information
that something is a verb will be superordinate to the
information that it has a second person form. As a
consequence, the most frequent reason for the failure
of unification (which is a conflict between major class
features) will be detected earliest. Typically, the
opposite is true in traditional unification, i.e., only
conflicts between terminal nodes of feature structures
are detected. In such systems, major category clashes
are found early enough only if the feature structures
are very fiat, which is undesirable for other reasons.

Moreover, the use of feature geometries assists
the grammar-writer to develop her/his grammar in
two ways. First, requiring the grammar-writer to
specify a feature geometry and write rules accordingly
forces her/him to take the semantics of features and
feature structures more seriously than is typically
the case. Second, since feature geometries define the
set of possible feature structures, they also determine
which paths can share values. The checking of
structure sharing is not necessary during run-time
unification, because it can be succeaqfufiy dealt with
at compile-time, thus providing additional error
checking on the grammar. These two by-products
of using feature geometries should lead to better
grammar-writing.

3. T h e S t r i n g C o m p l e t i o n L i m i t

3 .1 . W h a t I s t h e S C L ?

The s t r i ng c o m p l e t i o n l imi t , which is a small
integer parameter of BUG's compiler, expresses a
performance limitation that BUG incorporates into
the automaton it produces. Imposing constraints on
the complexity of derivation trees has a long tradition
in linguistics. Most proposals of this sort, such as
Yngve's (1961), which lirrfits the depth of possible
derivation trees, or limitations on the direction of
their branching (e.g., Yngve, 1960) are either too
weak or too strong on their own. However, there is a
suggestion that we find broad enough in its coverage,
and yet conceptually simple. This is Kornai's (1984)
hypothesis, in terms of which any string that can
he the beginning of a grammatical string can be
completed with k or less terminal symbols, where
k (i.e., the SCL) is a small integer. For example,
consider:

(1) This is1 the2 dog3 that4 chaseds thes eat7 thats

ate9 theto r a t l l tha t l2 s to le l3 the l4 eheese l5
thaq6

In this string, each portion up to a numbered
position can be completed with at most one word,
as the following table illustrates (position numbers
are on the left, completions in the middle, and the
minimum completion length K on the right):

(1') 1 ,5 ,9 , 13: . . . John . K = 1

2, 6, 10, 14: . . . cheese . K = 1

3, 7, 11, 15: K = 0
4, 8, 12, 16: . . . s t inks . K = 1

On the other hand, the following string, although its
portions up to each number are grammatical, will be
excluded if the SOL is smaller than 5:

(2) The 1 cheese2 thats the4 rats that6 the7 eats

thats t h o o dogtt ehasedl~ a te is stolet4

The corresponding table is:

(2 t) 1: . . cheese s t inks .

2: . . ro~s.

3: . . ro ts s t inks .

4: . . rat ate rots.

5: . . ate rots.

6: . . s t i nks ate rots .

7: . . . cat chased ate s t inks .

8: . . . chas ed ate s t inks .

9: . . . s t i nks ate s to le rots.

10: . . . dog chased ate s to le s t inks .

11: . . . chas ed ale s to le s t inks .

12: . . . a te s tole s t inks .

13: . . . s to le s t inks .

14: . . . s t inks .

(This seems to show that the SCL in terms
must be 3 or 4.)

K---2
K = I
K = 2
K---3
K = 2
K = 3
K = 4
K = 3
K = 4
K---5
K ~ 4
K = 3
K = 2
K = I

of words

ACRES DE COLING-92, NANTES, 23-28 AOt]T 1992 9 4 6 PROC. OF COL1NG-92, NANTEs, AUG. 23-28, 1992

As (2) shows, the SCL imposes a limit on the
depth of center-embedding; but, as can be seen
from (1), it does not constrain the depth of fight-
branching structures . Left branching, however, is
limited, though the effect of this limitation is less
pronounced than in the case of center-embedding.
The example with the highest K tha t we could find
in English can be accommodated if k is 3:

(3) Aflerl as verya

(3') 1: . . . walkiug~ sleep! K : 2

2: . . . walk, sleep! K = "2

3: . . . long walk, sleep! K : 3

Although the current implementation of BUG
uses the context-free source grammar format, in
which so-called cross-serial dependencies cannot be
expressed, it s worth noting that the SCL also puts
an upper bound on tile length of these:

(4) John, t Even Carlos3 and4 Peters married

respectivelys Sally, T Paul, s Susan9 andla

lnez.

(4') 1: . . . sleeps. K = 1
2,3: . . . and Peter sleep. K = 3
4: ._ Peter sleep. K = 2

5: .. sleep. K : 1

6: .. Sally, Paul, Susan and Iaez. K = 5

7: .. Paul, Susan and lnez. K = 4
8: .. Susan and lnez. K = 3

9: .. and Inez. K = 2

10: .. lncz. K = 1

The SCL has two additional consequences (and
maybe more). First, it excludes certain lexical
categories, such as modifiers of adjective modifiers
(if k < 4). If, say, shlumma were a word of that
category, then we would need at least 4 words to
complete Af ter a sh lumma. . . (cf. (3) above). Second,
all upper limit is placed on the uumber of obligatory
daughters of non-terminal nodes.

3 , 2 . H o w I s t h e S C L U s e d ?

The way in which we can produce the biggest regular
subset of a context-free language that respects the
SCL can be sketched as follows. First we produce
an RTN (recursive transition network) equivalent to
the source grammar , call it A. (An RTN is like a
finite-state automaton, but its input symbols may
be RTNs or terminal symbols.) Then we assign a
minimum completion length (K in the tables above)
to each node (accepting states will bare K = 0). If B
is an RTN accepted by the transition from state st
to state s2 in A, then we try to replace the transition
with B itself, so tha t initial s tate of B becomes st
and its accepting states become s~. (This can be
done with s t andard techniques.) Since the K-value
of s2 may be bigger than 0, assigning K values to
some states of B may be impossible (if those values

would exceed k). We leave out those states (and
whatever additional states and transitions depend on
them).

In those cases when the above procedure would
not terminate (i.e., when s2 is an accepting s tate
in A and B is the same RTN as some other RTN
C the acceptance of which takes the machine to
s~, we eliminate the transition corresponding t o B,
and collapse sl with the initial state of C (with the
s tandard technique). So the procedure will terminate
in all cases. In the current implementation, we use
the actual finite-state network so produced, but (as
our reviewer notes) we could as well use the RTN
directly, and compute whether the SCL is respected
as we go. We have not made experiments with
this latter solution, so we cannot compare it with
our current solution in terms of space and time
requirements.

4 . S D V e r s u s S C

One of tile most impor tan t aznong BUG's features
is the separation of s t r u c t u r a l d e s c r i p t i o n s from
s t r u c t u r a l c h a n g e s in source rules. Although the
unificationalists have been asserting that this old-
fashioned distinction should be abandoned (arguing
tha t pieces of information coming from different
sources have the same status), many voices have
been raised to show tha t the origins of a piece of
information may mat ter (see Zaenen and Kart tunen,
1984; Pullum and Zwicky, 1986; Ingria. 1990).

The structural description in a BUG rule specifies
the conditions under which the rule cml be applied
in the parsing process. Tha t is, when parsing, it
refers to the r ight-hand side of the rewrite rule only,
and it is never used to update any feature structure.
The structural change, on the other hand, describes
wbat action to take when the structural description
is satisfied, i.e., how to build a new feature s t ructure
(when parsing, this corresponds to the left-hand
side of tile context-free rule). Tbus, s t ructural
descriptions are used to check unifiability, whereas
the application of s t ructural changes actually builds

structure.

In usual unification-based grammars, the con-
ditions of applying a rule are satisfied if some
unification succeeds. In BUG, what determines
whether a rule should apply is unifiability. Unifiabil-
ity differs from unification in a crucial respect,
which is illustrated by the following example:

A: [1
B: [NUMBER = SINGULAR]
C: [NUMBER = PLURAL]

A is unifiable with B and A is unifiable with C,
even though B is not unifiable with C. Therefore,
if a s t ructural description requires unifiability of A

AcrEs DE COLING-92, NANTES. 23-28 AOOT 1992 9 4 7 PROC. OF COLlNG-92, NAMES. AUQ. 23-28, 1992

with both B and C, it will be satisfied. IIowever,
if we were to formulate tiffs requirement in terms of
unification, as is currently done in unification-based
grammars , then A, B and C will not satisfy this
requirement. A similar example from 'real life' is
the requirement that the auxiliary verb should agree
with each subject of a co-ordination:

(5) *Is/*Are Jean leaving and the others arrzving?

In this example, SUMNER of is is not unifiable with
tha t of lhe ethers, and NUMBER of arc is not unifiable
with that of Jean, so traditional unification-based
g rammars and BUG would yield the same (correct)
result. Now, consider:

(6) Will Jean leave and the others arrive?

This sentence is in because will's NUMBER is unifiable
with both tha t of Jean and that of the others,
although the unification of all three NUMBEII. values
still leads to failure. So s o u will behave correctly in
this case.

5 , G e n e r a t i v e C a p a c i t y

Somewhat misleadingly, we have avoided so far mak-
hag a distinction between the context-free grammar
format and context-free grammars . In actual fact,
it is well-known tha t a unification-based grammar
in the context-free format is not context-free unless
the number of possible feature structures arising in
all its possible derivations is finite. By the same
token, the a u t o m a t a compiled by BU~ would not
recognize a regular language if we did not constrain
the possible feature structures that they give rise
to. The separat ion of SDs from SCS allows ~IUG
to avoid this problem. Since SDs are only used in
unifiability tests and are never modified at run-time,
they can be constrained in such a way that they
yield a finite set of equivalence classes of feature
structures. Moreover, carrying out SCs only affects
the s tructures being built and cannot interfere with
the t ra jectory through the automaton. Incidentally,
this means tha t unification (but not unifiability
tests!) may never fail. For tha t purpose, we use an
associative, idempotent and commutative version of
'default unification' (see Bouma, 1990), which we
are not going into here. The automaton produced
by BU~ is, thus, actually finite-state. We consider
this an extremely important benefit, if not the most
important one, of separating SDs from SCs in a
g rammar-wr i t ing system.

R e f e r e n c e s

Blackburn, Patrick and Edith Spaan. 1991. 'Some
complexity results for Attr ibute Value Struc-
tures' . ' ib appear in: Proceedings of the Eightb
Amsterdam Colloquium.

Bouma, Gosse. 1990. 'Defaults in unification gram-
mar ' , In: Proceedings of the 28th Annum Meet-
ing of the ACL, ACL, Pittsburgh.

Clements, George N. 1985. 'The geometry of phono-
logical features' . Phonology Yearbook 2, 223-
250.

Gazdar, Gerald, Ewan Klein, Geoffrey Pullum and
Ivan Sag. 1985. Generalized Phrase Structure
Grammar . Harvard University Press, Cambridge
MA.

Ingria, Robert J.P. 1999. 'The limits of unification'.
In: 28th Annum Meeting of ACL: Proceedings of
the Conference. ACL, Morristown, NJ. Pp. 194-
204.

Kornai, A n d r e . 1984. 'Natural Languages and the
Chomsky Hierarchy' . In: Proceedings of the
ACL Second European Chapter Conference.
ACL, Geneva. Pp. 1-7.

Pullum, Geoffrey K., mad Arnold M. Zwicky. 1986.
'Phonological resolution of syntactic feature
conflict'. Language 62, 751-773.

Zaenen, Annie and Lauri Kart tunen. 1984. 'Morpho-
logical non-distinctness and co-ordination'. In:
ESCOL 84, pp. 309-320.

Yngve, Victor II. 1961. 'The depth hypothesis' .
Language 61, 283-305.

Yngve, Victor It. 1960. 'A model and an hypothesis
for language structure ' . Proceedings of the
American PhilosophicM Society 104, 444 466.

ACTES DE COLING-92, NANTES. 23-28 AOt3"r 1992 9 4 8 PROC. OF COLING-92. NANTES. AUG. 23-28, 1992

A p p e n d i x : E x a m p l e B U G source files
and run

;c,eometry for simple categorial grammar

; Major features: category and semantics,

• both of them may be present

• at the same time

< > = {cat sem}
; Category is simple or complex

; (but not both):

<cat> = [simple complex]

; Simple category is np, s or n:

< c a t simple> = Lap s n]

; A complex category consists of an input,

• a result, and a slash:

<cat complex> = {inp res slash)

; The input must be a simple category here:

<cat complex inp> = <sat simple>

; The result may be any category:

<cat complex res> = <cat>

; The slash is either forward or backward:

<cat complex slash> = [forw back]

; SemaJ1tics is analogous to category:

<sem> = [sim cam]

; (no constraint on simple values)

<sere cam> = {fun arg)
<sem cam fu~> = <sem>

<sem cam art> = <sem>

;End of geometry
;

;Start category:

; Name of start category:

Sentence

; SD:

; it has to be o5 category s:

<Sentence cat simple s>

; SC:

; only the semantics is kept:

<sem> = <Sentence sem>

;End o5 start category
;

;Rules:

; The name o5 forward application rule:

"Forward application"

; Production schema:

RES -~> FUN ARC,

; SD:

; FUN must be a complex category
; with forward slash:

<FUN cat complex slash forw>

; ARC, must have a simple category:

<ARG cat simple>

; FUN's input must b e ARG's category:

<FUN cat complex inp> == <ARG cat simple>

; SC:

; RES's c a t e g o r y is FUM's result:

<cat> = <FUN c a t complex res>
; RES's semantics is as expected:

<sam cola f u n > = <FUN sam>

<s am cam a r g > = <ARC, s am>
; .

; Backward application is very similar:

"Backward application"

RES --> ARC, FUN

<FUN cat complex slash back>

<ARC, cat simple>

<FUN cat complex inp> == <ARC, cat simple>

<cat> = <FUN cat complex ~es>

<sem cam fun> = <FUN sem>

<sem cam arg>= <ARG sem>

;End of rules
................................

;Sample lexical items:

• '-' indicates the beginning of a lexicon:

"Joe" ; np 'JOE'

<cat simple up>

<sere sire JOE>

"hit" ; (s\np)/np 'HIT'

; Note how parentheses can be used

• for abbreviation:

<cat complex> (

<inp np>

<res complex>

<lap up>

<res simple s>

<slash back>
)

<slash ~oru>
)

<sere sire HIT>

"the" ; np/n 'THE'

<cat complex> (

<inp n>
<res simple up>

<slash foru>
)

<sere sire THE>

"ball" ; n 'BALL'

<cat simple n>

<sere sim BALL>

;End of lexical items

#Example run:

Y, bug -i cat cat

(Re-)compiling cat.gs --> c a t . g o .

(R e -) c o m p i l i n g l e x i c o n c a t . l s - - > c a t . l o .

J o e

h i t

t h e

b a l l

Loading lexicon cat.lo.

==> Joe hit the ball.

sem cam art sim JDE

fun cam fun sire HIT

art cam fun sire THE

a r t sire BALL

A c i x s DE CO[, ING-92 , NANJES, 23-28 A o u r 1992 9 4 9 I'ROC. OF COL1NG-92 , NANTES, AUG. 23-28. 1992

