Logical Form of Hierarchical Relation on Verbs and

 Extracting it from Definition Sentences in a Japanese DictionaryYoichi TOMIURA * , Teigo NAKAMURA *, Toru HITAKA * and Sho YOSHIDA **
* Department of Computer Science and Communication Engineering, Kyushu University Fukuoka, 812, JAPAN
** Department of Artificial Intelligence, Kyushu Institute of Technology
Iizuka, 820, JAPAN

ABSTRACT

We are studying how to extract hierarchical relation on verbs from definition sentences in a Japanese dictionary. The hierarchical relation on verbs has been dealt with as a binary relation on verbs, but it should be dealt with as logical relation on predicates. We will define the logical form of the hierarchical relation on verbs and then discuss which part of the syntactic structure of the definition sentence represents that relation. We will call the main predicate verb in this part the definition verb. Furthermore we will describe how to semiautomatically select the proper meaning of the definition verb and the proper correspondence between cases of an entry verb and the definition verb in order to extract the hierarchical relation as logical relation.

1 Introduction

The syntactic processing has been playing the main role in a natural language processing system. But we have come to know that we can't construct a practical system with only this processing and that the semantic processing is necessary for it. Inference plays an important role in the semantic processing, we therefore need a large knowledge base about meaning of words and we must treat it as logical relation.

Hierarchical relation between words is in-
evitable and transitive, and it is a important relation in the large knowledge base. Because inevitable relation holds at any time and the reliability of conclusions inferred from it doesn't fall down and transitive relation can be described efficiently.
There were some researches on extracting the hierarchical relation between words from definition sentences in a ordinary dictionary $[1][2][3][4]$. But they treated it as only binary relation between words. Verbs correspond to n-ary predicates on entities and we therefore must describe the correspondence between the variables (that is case or syntactic role) of a subordinate verb and ones of its superordinate verb. But this correspondence can't be described if the relation is treated as binary relation between words.

We will propose how to extract the hierarchical relation with a logical form on verbs from definition sentences in a Japanese dictionary. Firstly, we will define the logical form of the hierarchical relation on verbs and then discuss which part of the syntactic structure of the definition sentence represents that relation. We will call the main predicate verb in this part the definition verb. Secondly, we will describe how to semiautomatically select the proper meaning of the definition verb and the proper correspondence between the variables of an entry verb and ones of the definition verb. Lastly, we will report about the result of a experiment to extract the
hierarchical relation from the machine readable dictionary IPAL．
A verb will be corresponded to the n－ary pred－ icate according to a pattern of cases（syntactic roles）．Considering the polysemy of verbs，each meaning of a single verb must correspond to the distinct predicate．For example，＂愛する＂（love） as first meaning is used with the form of＂x_{1} が x_{2} を惣する＂$\left(x_{1} \text { love } x_{2}\right)^{*}$ and corresponds to ‘嗄する ${ }_{1}\left(x_{1}, x_{2}\right)$＇。
Furthermore，we will not deal with intensional verbs in this paper．

2 Logical Form of Hierarchical Relation on Verbs

Verbs correspond to predicates on entities．If $V^{L}\left(\eta_{1}, \cdots, \eta_{n}\right)$ is the subordinate predicate of $V^{U}\left(\xi_{1}, \cdots, \xi_{m}\right)$ ，both predicates have the same arity（i．e．$m=n$ ），there is a one－to－one corre－ spondence ψ from $\{1, \cdots, n\}$ to $\{1, \cdots, n\}$ ，and if $V^{L}\left(\xi_{1}, \cdots, \xi_{n}\right)$ is true，$V^{U}\left(\xi_{\psi(1)}, \cdots, \xi_{\psi(n)}\right)$ is also true at the same time．That is，

$$
\begin{equation*}
\forall \boldsymbol{x}\left[V^{L}(\boldsymbol{x}) \supset V^{U}(\boldsymbol{x})\right], \tag{1}
\end{equation*}
$$

where boldface \boldsymbol{x} stands for a tuple of variables． Strictly speaking，the logical form of the hierar－ chical relation on verbs is（1）．
For example，＂秋 t_{1}＂is the subordinate verb of＂挻取する」＂．To describe this logically，

$$
\forall x_{1} x_{2}\left[\text { 伦数 }{ }_{1}\left(x_{1}, x_{2}\right) \supset \text { 找取する } 1\left(x_{1}, x_{2}\right)\right] \text {, }
$$

where＇镟 $t_{1}\left(\eta_{1}, \eta_{2}\right)$＇means that η_{1} drink η_{2} and ＇摄取する ${ }_{1}\left(\eta_{1}, \eta_{2}\right)$＇means that η_{1} take η_{2} ．
But there are v^{L} and v^{U} such that some ar－ guments in $V^{L}\left(\eta_{1}, \cdots, \eta_{n}\right)$ don＇t correspond to any arguments in $V^{U}\left(\xi_{1}, \cdots, \xi_{m}\right)$ or some in $V^{U}\left(\xi_{1}, \cdots, \xi_{m}\right)$ don＇t correspond to any argu－ ments in $V^{L}\left(\eta_{1}, \cdots, \eta_{n}\right)$ ，although v^{L} is a sub－ ordinate verb of v^{U} ．In this case，we conclude that the predicate denoted by $\exists y V^{L}(x, y)$ is a subordinate one of the predicate denoted by $\exists z V^{U}(x, z)$ ．Therefore，by generalizing（1），we get

[^0]$$
\forall x\left[\exists y V^{L}(\boldsymbol{x}, y) \supset \exists z V^{U}(\boldsymbol{x}, \boldsymbol{z})\right]
$$
that is，
\[

$$
\begin{equation*}
\forall x y \exists z\left[V^{L}(x, y) \supset V^{U}(x, z)\right] \tag{2}
\end{equation*}
$$

\]

We expand（2）further to restrict the domain of z ，and define the logical form of the hierarchical relation on verbs as follows．

Deflnition $1 v^{L}$ is a subordinate verb of v^{U} ，if for some N

$$
\forall x y \exists z\left[V^{L}(x, y) \supset N(z) \wedge V^{U}(x, z)\right]
$$

where boldface N stands for a tuple of predicate letters and $N(z)$ means $N_{1}\left(z_{1}\right) \wedge \cdots \wedge N_{n}\left(z_{n}\right)$ ．

A small letter，such as n, v ，and v^{L} ，stands for a linguistic expression and a capital letter，such as N, V ，and V^{L} ，stands for the predicate symbol corresponding to the linguistic expression repre－ sented by its small letter．

For example，＂濶う 1 ＂is a subordinate verb of ＂帯び る」＂because the following formula holds，

$$
\begin{aligned}
& \forall x y \exists z[\text { 潤う } 1(y, x) \supset \\
& \left.\quad \text { 水分 }(z) \wedge \text { 带びる }{ }_{1}(x, z)\right],
\end{aligned}
$$

where
㴖う ${ }_{1}\left(\eta_{1}, \eta_{2}\right) \quad: \eta_{2}$ is irrigated by η_{1} ，
水分 $(\eta): \eta$ is moisture，
带びる $\boldsymbol{Z}_{1}\left(\eta_{1}, \eta_{2}\right): \eta_{1}$ take on η_{2} ．

3 Extraction

3．1 Extracting the Hierarchical Ex－ pression in a Deflnition Sentence

Deflnition 2 The relation between an entry verb $v^{e} \dagger$ and its definition sentence s is

$$
\forall x\left[\exists y V^{e}(x, y) \equiv \exists z S(x, z)\right]
$$

For example，the definition sentence for＂般 t_{1} ＂（drink）is＂珄物を掫取する ${ }_{1}$＂（to take a drink） and the definition sentence for＂调 $)_{1}$＂is＂水分 をたっふりと帯びる ${ }_{1}$＂（to take on moisture fully）． We get

[^1]\[

$$
\begin{aligned}
& \forall x_{1} x_{2} \text { [做 } \boldsymbol{U}_{1}\left(x_{1}, x_{2}\right) \equiv \\
& \text { 倁物 } \left.\left(x_{2}\right) \wedge \text { 摄取する } Z_{1}\left(x_{1}, x_{2}\right)\right\} \text {, } \\
& \forall x \mid \exists y \text { 閏う }{ }_{1}(y, x) \equiv \\
& \exists z[\text { 水分 }(z) \wedge \text { たっかりと带びる } 1(x, z)]] \text {, }
\end{aligned}
$$
\]

where

```
乾を \(\left(\eta_{1}, \eta_{2}\right): \eta_{1}\) drink \(\eta_{2}\),
钦物 \((\eta) \quad: \eta\) is a drink,
捠取する \(\left(\eta_{1}, \eta_{2}\right) \quad: \eta_{1}\) take \(\eta_{2}\),
閏う \({ }_{1}\left(\eta_{1}, \eta_{2}\right) \quad: \eta_{2}\) is irrigated by \(\eta_{1}\),
水分 \((\eta) \quad: \eta\) is moisture,
たっふりと带びる \(1\left(\eta_{1}, \eta_{2}\right):\)
\(\eta_{1}\) take on \(\eta_{2}\) fully.
```

We call the main predicate verb of a definition sentence the definition verb．If the definition sentence of a entry verb v^{e} corresponds to

$$
\begin{equation*}
\boldsymbol{N}(\boldsymbol{\eta}) \wedge V^{d}(\eta) \tag{3}
\end{equation*}
$$

then we can easily derive the hierarchical rela－ tion between v^{e} and its definition verb v^{d} from Definition 2．In this paragraph，we assume that the meaning of the definition verb has been se－ lected correctly and we will omit the number of the meaning of definition verbs．How to select it will be given in 3．2．
A definition sentence does not always corre－ spond to the logical form as（3）．But if we can get the sentence s^{d} which is a part of the defi－ nition sentence s and corresponds to the logical form as（3）and $S \supset S^{d}$ ，then we can also derive the hierarchical relation between the entry verb and the definition verb．We call s^{d} the hierarchi－ cal expression in a definition sentence（HED）． Now，we will discuss which part of the syntactic structure of the definition sentence is HED．

Deflnition 3 We get rid of modifiers out of a simple sentence s ．We call the rest of s the ker－ nel sentence s^{k} of s ．

Since there isn＇t a expression corresponding to a universal quantifier in the definition sentence of a verb，we can conclude the following charac－ teristic．

Characteristic 1 If s^{k} is the kernel sentence of a simple sentence s ，then $S \supset S^{k}$ and the logical form of S^{*} is（3）．

For example，the kernel sentence of＂体の傭み を一時的に消す＂（to kill a pain in the body tem－ porally）is＂痛みを消す＂（to kill a pain）and its logical form is

$$
\text { 痛め }\left(\eta_{2}\right) \wedge \text { 消す }\left(\eta_{1}, \eta_{2}\right) \text {, }
$$

and the following formula holds，

$$
\begin{aligned}
& \forall \eta_{1} \eta_{2} \eta_{3}\left[S\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \supset\right. \\
& \left.\quad \text { 病み }\left(\eta_{2}\right) \wedge \text { 消す }\left(\eta_{1}, \eta_{2}\right)\right],
\end{aligned}
$$

where $S\left(\eta_{1}, \eta_{2}, \eta_{3}\right)$ is the formula corresponding to＂体の痡みを一時的に消す＂and means that η_{2} is a pain，η_{3} is a body，and η_{1} kill η_{2} in η_{3} temporally，＇倠み (η)＇means that η is a pain．＇陗す $\left(\eta_{1}, \eta_{2}\right)$＇means that η_{1} kill η_{2} ．
There is a sentence s which satisfies the fol－ lowing characteristic．

Characteristic 2 A sentence s includes a sen－ tence s^{\prime} and $S \supset S^{\prime}$ ．

If the definition sentence s of a verb is com－ plex，then s satisfies Characteristic 2 and s^{\prime} is its main clause．For example，the main clause of the sentence＂何かがかかさるように付着する＂ （something adheres to X as it covers X ）is＂何か が付着する＂（something adheres to），and it cor－ responds to the following formula，

$$
\text { 何か }\left(\eta_{1}\right) \wedge \text { 付着する }\left(\eta_{1}, \eta_{2}\right) \text {, }
$$

and the following formula holds，

$$
\begin{aligned}
& \forall \eta_{1} \eta_{2}\left[S\left(\eta_{1}, \eta_{2}\right) \supset\right. \\
& \left.\quad \text { 何加 }\left(\eta_{1}\right) \wedge \text { 付着する }\left(\eta_{1}, \eta_{2}\right)\right],
\end{aligned}
$$

where $S\left(\eta_{1}, \eta_{2}\right)$ is the formula corresponding to＂何かががかさるように付着する＂and means that something η_{1} adhere to η_{2} as η_{1} covers η_{2} ，＇何か (η)＇means that η is something，and ＇付着する $\left(\eta_{1}, \eta_{2}\right)$＇means that η_{1} adhere to η_{2} ．
Meaning of the compound sentence s ，in which two sentences（ s_{1}, s_{2} ）are connected by a con－ junction corresponding to＇and＇in English，is ei－ ther＇$S_{1} \wedge S_{2}$＇or＇after S_{1}, S_{2}＇．Therefore，an operator needs to decide the relation between s_{1} and s_{2} ．In the former case，s satisfies Char－ acteristic 2 and s^{\prime} can be both s_{1} and s_{2} ．For example，a sentence＂何かを投げて勢いよく接触 させる＂（to throw something and have it touched
hard）consists of two sentences．One is＂何かを投げる＂（to throw something），the other is＂势い よく接触させる＂（to have it touched hard），and two sentences correspond to following formulae respectively，

$$
\begin{aligned}
& \text { 何か }\left(\eta_{2}\right) \wedge \text { 投げる }\left(\eta_{1}, \eta_{2}\right), \\
& \text { 㢣いよく接触させる }\left(\eta_{1}, \eta_{2}, \eta_{3}\right) .
\end{aligned}
$$

And two sentences are simultaneous．So follow－ ing formulae hold，

$$
\begin{aligned}
& \forall \eta_{1} \eta_{2} \eta_{3}\left[S\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \supset\right. \\
& \text { 何加 } \left.\left(\eta_{2}\right) \wedge \text { 投げる }\left(\eta_{1}, \eta_{2}\right)\right], \\
& \forall \eta_{1}, \eta_{2} \eta_{3}\left[S\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \supset\right. \\
& \left.\quad \text { 等いよく接触 させる }\left(\eta_{1}, \eta_{2}, \eta_{3}\right)\right],
\end{aligned}
$$

where $S\left(\eta_{1}, \eta_{2}, \eta_{3}\right)$ is the formula corresponding to＂何かを投げて然いよく接解させる＂and means that η_{1} throw η_{2} and have η_{2} touched hard to η_{3} ．＇何か (η)＇means that η is something．＇投 げる $\left(\eta_{1}, \eta_{2}\right)$＇means that η_{1} throw η_{2} 。＇㸡いよ く接能させる $\left(\eta_{1}, \eta_{2}, \eta_{3}\right)$＇means that η_{1} have η_{2} touched hard to η_{3} ．

To apply Characteristic 2 repeatedly，we con－ clude that there is a definition sentence s which include a simple sentence s^{\prime} and $S \supset S^{\prime}$ and that the kernel sentence of s^{\prime} is HED．For ex－ ample，the sentence s＂ある 6 のをまっすぐにす るためにその物の両端を持って両方閊に力を加え る＂（to hold both ends of something and apply force to both sides in order to make it straight） is complex．It therefore satisfies Characteristic 2 and $S \supset S_{1}$ ，where s_{1} is its main clause＂その物の両端を持って陑方向に力を加える＂（to hold both ends of something and apply force to both sides）．s_{1} is a compound sentence and is com－ posed of s_{2}＂その物の両端を持つ＂（to hold both ends of something）and s_{3}＂両方間に力を加える＂ （to apply force to both sides）and two sentence is simultaneous．s_{1} therefore satisfies Charac－ teristic 2 and $S_{1} \supset S_{2}$ and $S_{1} \supset S_{3}$ ．Therefore， $S \supset S_{2}$ and $S \supset S_{3}$ ．Because s_{2} and s_{3} are simple sentences，the kernel sentences of s_{2} and s_{3} are HEDs．When the definition sentence is simple，its kernel sentence is HED．

If we decide the proper meaning of the defi－ nition verb and the proper correspondence from cases of v^{e} to cases of v^{d} correctly，we conclude

$$
\begin{align*}
& \quad V_{x y} y z\left[V^{e}(x, y) \supset\right. \tag{4}\\
& \left.\quad N_{x}(x) \wedge N_{x}(x) \wedge V^{d}(x, z)\right] .
\end{align*}
$$

We can get a hierarchical relation between v^{ε} and v^{d} as follows from（4），

$$
\forall x y \exists z\left[V^{e}(x, y) \supset N_{z}(z) \wedge V^{d}(x, z)\right]
$$

3．2 Necessary Condition and Meuris－ tic

In this paragraph we supposed that an entry verb v^{e} has HED．
What we call the selectional restriction has been used to narrow down candidates for syn－ tactic structure in the syntactic processing．It is the restriction about the semantic category of a noun phrase which a certain verb can take as a certain case．The semantic category has been called the semantic marker or semantic prim－ itive．For example，semantic categories of the subjective noun phrase and the objective noun phrase for the verb＂钦t＂（drink）must be＇ani－ mal＇and＇liquid＇respectively．We use this infor－ mation to semiautomatically select the proper meaning of v^{d} and the proper correspondence from cases of v^{e} to cases of v^{d} ．The information is mentioned in the Japanese dictionary we used for the experiment of extraction．

The restriction that if a verb v_{k} can take a noun phrase with a case c the semantic category of the noun phrase is D is cxpressed logically as follows，

$$
\begin{equation*}
\forall x\left[V_{k}(x) \supset D\left(x_{i}\right)\right], \tag{5}
\end{equation*}
$$

where x_{i} is the argument corresponding to the case c ，and k is the meaning number of v ．We call D in（5）the domain for c of v_{k} ．For example，

$$
\begin{aligned}
& \forall \eta_{1} \eta_{2}\left[\text { 俀 } \uplus_{1}\left(\eta_{1}, \eta_{2}\right) \supset\right. \\
& \left.\quad \operatorname{animal}\left(\eta_{1}\right) \wedge \operatorname{liquid}\left(\eta_{2}\right)\right],
\end{aligned}
$$

where＇钦 $t_{1}\left(\eta_{1}, \eta_{2}\right)$＇means that η_{1} drink η_{2} ．
If the semantic category of a noun n is D ，

$$
\begin{equation*}
\forall x[N(x) \supset D(x)] . \tag{6}
\end{equation*}
$$

We call D in（6）the domain for n ．
If the k－th meaning is proper as v^{d} in the def－ inition sentence of v^{e} and the correspondence from i －th case of v^{e} to j －th case of v_{k}^{d} is correct， then the following formula holds，

Assumption 1 We assume $\exists \mathfrak{x V}(\boldsymbol{x})$ is true for each verb v and $\exists x N(x)$ is true for each noun n ．

We conclude

$$
\begin{equation*}
\exists x\left[D^{e}(x) \wedge D^{n}(x) \wedge D^{d}(x)\right] \tag{8}
\end{equation*}
$$

from $\exists x V^{e}(\boldsymbol{x})$（Assumption 1）and（7），where

$$
\begin{aligned}
& \forall \eta\left[V^{e}\left(\cdots, \eta_{i}, \cdots\right) \supset N^{e}\left(\eta_{i}\right)\right], \\
& \forall \eta\left[V_{k}^{d}\left(\cdots, \eta_{j}, \cdots\right) \supset N^{d}\left(\eta_{j}\right)\right], \\
& \forall \eta\left[N(\eta) \supset D^{n}(\eta)\right] .
\end{aligned}
$$

We establish（8）as the necessary condition in which the correspondence is valid．We check（8） with $\exists x N(x)$（Assumption 1）and the relation between domain predicates．

Necessary Condition If the k－th meaning is proper as v^{d} in the definition sentence of v^{e} and the correspondence from i－th case of v^{e} to j－th case of v_{k}^{d} is correct，then

$$
\exists x\left[D^{e}(x) \wedge D^{n}(x) \wedge D^{d}(x)\right]
$$

where D^{e} is the domain for i－th case of v^{e} and D^{d} is one for j－th case of v_{k}^{d} and the noun of j－th case of v_{k}^{d} in the definition sentence is n and the domain for n is D^{n} ．

The meaning of an entry verb v^{e} is defined by using the definition verb v^{d} ．Then，the less the number of the variables appearing either only in v^{e} or only in v^{d}（i．e．（size of tuple \boldsymbol{y} ）+ （size of tuple z ）in the formula（4）），the more v^{d} restricts the meaning of v^{e} ．An editor of a dictionary would select such a definition verb． We therefore establish the following heuristic．

Heuristic The less the number of the variables appearing either only in v^{e} or only in v_{k}^{d} ，the more we have chance of correct selection for meaning of v^{d} and the correspondence of the variables．

3．3 Example of Extraction

In this paragraph the method how to extract the hierarchical relation on verbs will be intro－ duced．We suppose following definitions about ＂愛する＂and＂持つ＂。

愛する

I［（human）かs（human）を］■（a） とても好きだという気持ちを持つ。（to experience a strong feeling of fondness）

持っ
I［（human）が（hand）に（concrete）を］手に何かを持つ。（to have something with one＇s hand）
II［（human）が（human）に（mental）を］誰加に対してある感情を抱く。（to expe－ rience a feeling toward somebody）
III［（all＿entities）か（abstract）を］
何らかの属性や設備を有する。（to have some property or equipment）
（a）means that＂＂愛する ${ }_{1}$＂is used with the form of ＂$n p_{1}$ が $n p_{2}$ を愛する＂and the semantic cate－ gory of $n p_{1}$ and $n p_{2}$ must have＇human＇．We get the following knowledge about domain of words．

$$
\begin{aligned}
& \forall \eta\left[\text { 愛する } \boldsymbol{Z}_{1}\left(\eta_{1}, \eta_{2}\right) \supset\right. \\
& \text { human } \left.\left(\eta_{1}\right) \wedge \operatorname{human}\left(\eta_{2}\right)\right] \text {, } \\
& \forall \eta\left(\text { 持つ }{ }_{1}\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \supset \mid h u \operatorname{man}\left(\eta_{1}\right) \wedge\right. \\
& \left.\wedge \text { hand }\left(\eta_{2}\right) \wedge \operatorname{concreat}\left(\eta_{3}\right)\right] \text {, } \\
& \forall \eta\left[\text { 持 } \supset_{2}\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \supset \mid h u \operatorname{man}\left(\eta_{1}\right) \wedge\right. \\
& \text { Ahuman }\left(\eta_{2}\right) \wedge \text { mental }\left(\eta_{3}\right) \| \text {, } \\
& \forall \eta\left(\text { 持つ }{ }_{3}\left(\eta_{1}, \eta_{2}\right) \supset\right. \\
& \text { all.entities } \left.\left(\eta_{1}\right) \wedge \text { abstract }\left(\eta_{2}\right)\right] \text {, } \\
& \forall \eta[\text { 気持ち }(\eta) \supset \operatorname{mental}(\eta)] .
\end{aligned}
$$

＇all＿entities＇expresses the set of all entities．We suppose the following relation between domain predicates，

$$
\begin{aligned}
& \forall \eta[\text { human }(\eta) \vee \operatorname{hand}(\eta) \supset \operatorname{concrete}(\eta)], \\
& \forall \eta[\text { mental }(\eta) \supset \operatorname{abstract}(\eta)], \\
& \forall \eta[\text { concrete }(\eta) \vee \operatorname{abstract}(\eta) \supset \\
& \quad \text { all_entities }(\eta)], \\
& \exists \eta \eta[\operatorname{concrete}(\eta) \wedge \operatorname{abstract}(\eta)], \\
& \neg \exists \eta[\operatorname{human}(\eta) \wedge \operatorname{hand}(\eta)] .
\end{aligned}
$$

We parse the definition sentence＂とても好き だという気持ちを持つ＂for the entry verb＂愛す
z 1 ＂，and we find this sentence is simple and its kernel sentence＂苆持ちを持っ＂is HED．We narrow down candidates for the meaning of the definition verb＂持つ＂on parsing by selectional restriction．Meanings of＂持つ＂that satisfy se－ lectional restriction are II and III．Since we can infer

$$
\exists x[\text { human }(x) \wedge \text { all_entities }(x)]
$$

from Assumption 1 and the relation between domain predicate，the correspondence from the first case of＂雯する 3_{1}＂to the first case of＂持 － 3 ＂satisfies the necessary condition described in paragraph 3．2．Since we can infer

$$
\neg \exists x[\operatorname{human}(x) \wedge \operatorname{mental}(x) \wedge \operatorname{abstract}(x)],
$$

the correspondence from the first case of＂要与万 $_{1}$＂to the second case of＂持つ 3 ＂does not sat－ isfy the necessary condition．After all，for＂持 ∂_{2}＂and＂持 \supset_{3}＂，partial one－to－one correspon－ dences which satisfy the necessary condition are

```
持つ \({ }_{2}\) : a. \(\}\),
    b. \(\{<1,1\rangle\}, \quad\) c. \(\{<1,2\rangle\}\),
    d. \(\{<2,1\rangle\}, \quad\) e. \(\{<2,2\rangle\}\),
    f. \(\{\langle 1,1\rangle,<2,2\rangle\}\),
    g. \(\{<1,2\rangle,\langle 2,1\rangle\}\),
特つ \(_{3}: h .\{ \}\),
    i. \(\{<1,1\rangle\}, \quad j .\{<2,1\rangle\}\),
```

For example，the correspondence g means that the first case of＂悬する1＂corresponds to the second case of＂持つ，＂and the second case of ＂櫄する ${ }_{1}$＂corresponds to the first case of＂持 ○ 2 ＂。
Because the number of the variables which ap－ pear either only in the entry verb or in the defi－ nition verb for the correspondence g is 1 and one for the correspondence i is 2 ，the pair of＂持つ ${ }_{2}$＂ and the correspondence g is prior to the pair of ＂持 $Э_{3}$＂and the correspondence i by the heuris－ tic．The pair of＂持つ ${ }_{2}$＂and the correspondence f and the pair of＂持 \supset_{2} and the correspondence g are given the highest priority by the heuristic after all．

It is decided by a operator that the second meaning of 持っ and the correspondence f are proper，and we get
$\forall x \exists z \mid$ 梅す $Z_{1}\left(x_{1}, x_{2}\right) \supset$
気持ち $(z) \wedge$ 掉つ ${ }_{2}\left(x_{1}, x_{2}, z\right)$ ］．

4 Experiment of Extraction

We have experimented on extracting the hi－ erarchical relation using the machine－readable dictionary IPAL（IPA ：Information－technology Promotion Agency，Japan ；IPAL：IPA Lexicon of the Japanese language for computers）． 861 verls and 3379 meanings are contained in this dictionary．The definition sentence of an entry verb and the pattern of cases for the entry verb and the domain for each of the cases of the entry verb are given in this dictionary（see Appendix）． And we can also get the domain for a noun from this dictionary．

We made a lexical functional grammar which outputs the logical form of HED as a feature． We parsed the definition sentences and got 1709 HEDs whose main predicate verb are given as an entry verb in this dictionary with this gram－ mar．We have extracted the hierarchical rela－ tions on verbs from 1288 IIEDs．The average number of candidates which are given the high－ est priority by the heuristic described in para－ graph 3.2 is 4.6 and there is the correct solution in 4.6 candidates at the rate of 70.4% ．The num－ ber of meanings of verbs in the highest layer in the hierarchy is 288 ，and the average level in the hierarchy is 2.7 ．Maybe this value is so little． We think in this point since IPAL is a basic verb dictionary its entry verbs are in a comparatively high ordinate in hierarchy of all verbs．

5 Conclusion

We have defined the logical form of the hi－ erarchical relation on verbs and have described how to extract it from definition sentences in a Japanese dictionary．

The method described in this paper is for a Japanese dictionary，but it can be applied to other languages dictionary，too．

Reference

［1］Robert A．Amsler，A Taxonomy for English Nouns and Verbs，Proc．of the 19 th Annual Meeting of the ACL pp．133－138， 1981
［2］H．Tsurumaru，T．Hitaka，S．Yoshida，An Attempt to Automatic Thesaurus Construction from an Ordinary Japanese Language Dictio－ nary，Proc．of COLING＇86，pp．445－447， 1986
［3］J．Nakamura，M．Nagao，Exiraction of Se－ mantic Information from an Ordinary English Dictionary and its Evaluation，Proc．of COL－ ING＇ 88 ，pp．459－464， 1988
［4］Louise Guthrie，Brian M．Slator，Yorick Wilks，Rebecca Bruce，Is There Content in Empty Heads ？，Proc．of COLING＇90，pp．138－ 143， 1990
［5］Y．Tomiura，T．Hitaka，S．Yoshida， Extracting Superordinate－subordinate Relation between Verbs from Definition Sentence in Japanese Dictionary，Information Processing Society of Japan，Natural Language Special In－ terest Group Technical Report，No．73－9，pp．17－ 24，1989，（in Japanese）

Appendix

A． 1 Example of Contents of IPAL

〈見出し〉もつ 〈通番〉001
〈No〉005〈枚数〉012〈意味〉何かに対 して，ある感情を抱く。〈類撞〉抱く〈分名1》〈感覚•疲労•䁄眠など）〈分番1〉（2，300）〈分名2〉（感想）（分番2〉（411b）〈童昧分類〉動作（動き），生理•心理，知临•恩考（素䟕》持（も）つ（活用〉五段〈語幹〉mot《自他〉他〈派可〉もてる〈派使〉もたす〈文型〉N 1カ N2ニ N3＝〈文1〉私は 将来に希望を 持っている。〈文2〉彼は 相手のやり方に 反感を 持った。《速語素〉 O2，NG2， O1〈格1〉加〈素1〉HUM／ORG《名1》彼／政府〈格2〉二〈素2〉CON／ABS〈名 2〉自分，彼女，新人，相手国，車，花，山／生活，将来，竍画，政府のやり方〈格3〉 $\begin{aligned} & \text {（素3〉 }\end{aligned}$ MEN〈名3〉自信，関心，期待，不満，ゆと
感，反感，效意〈ウ1〉二使役〈ウ2〉直受，間受，敬〈ツ3〉タ〈ヴ4〉ニヨッテ〈ウ7〉能動〈テ1）未来〈テ2〉結果残存〈テ3〉テシマ ウ，カケル，ハジメル，ダス，ツツケル〈ム1〉命令（ム 2＞意志•锄鸲 〈ム3〉タイ・タカル， ナサイ，ナ（禁止）〈ム4〉3a（マナ）マス，ナ 1〈慣用〉根に～。
$\langle\cdots\rangle$ expresses what the filed following it means．＇b＇is a entry．＇持つ＇is the notation of the entry with Chinese character．＂何かに対 して，ある感情を抱く。＇is a definition sentence． ＇005＇following 〈N 0〉 represents the definition sentence corresponds the fifth meaning of＇bつ （持つ）＇．The Japanese word following 《格 i \rangle and symbols following 〈素 $i\rangle$ represent a pattern of the cases for 持 ∂_{5} and the domain for each case of the verb．That is，＇持 D_{5}＇is used with the form＇$N P_{1}$ が $N P_{2}$ に $N P_{3}$ を持つ＇， and the semantic category of $N P_{1}$ is＇human＇ or＇organization＇，and one of $N P_{2}$ is＇concrete object＇or＇abstract object＇，and one of $N P_{3}$ is ＇mental object＇．We can get

$$
\begin{aligned}
& \forall x\left[\text { 持つ }{ }_{5}\left(x_{1}, x_{2}, x_{3}\right) \supset\right. \\
& \\
& \quad\left[\text { human }\left(x_{1}\right) \vee \text { organization }\left(x_{1}\right)\right] \wedge \\
& \quad\left[\operatorname{concrete}\left(x_{2}\right) \vee \operatorname{abstract}\left(x_{2}\right)\right] \wedge \\
& \left.\quad \text { mental }\left(x_{3}\right)\right]
\end{aligned}
$$

from these informations．Japanese words follow－ ing 〈名 $i\rangle$ are example of $N P_{i}$ ．We can get the domain for nouns from these informations．For example，we can get

$$
\forall x[\text { 政府 }(x) \supset \text { organization }(x)] \text {, }
$$

where＂政府＇means＇government＇．We used the above informations．

A． 2 A Example of Extracted Rela－ tions

示す ${ }_{3}\left(x_{1}, y, x_{2}, x_{3}\right)$ つ表わす $3\left(x_{1}, x_{2}, x_{3}\right)$
出す ${ }_{17}\left(x_{1}, x_{2}, y\right) \supset$
$\exists x\left[[\right.$ しぐさ $(z) \vee$ 表情 $(z)] \wedge$ 表わす $\left.3\left(x_{1}, x_{2}, z\right)\right]$
暎く $1\left(x_{1}, x_{2}\right) \supset \exists z$ 表わす $3\left(x_{1}, x_{2}, z\right)$
㨚げ $Z_{3}\left(x_{1}, x_{2}\right) \supset \exists z$ 示す $_{3}\left(x_{1}, z_{1}, x_{2}, z_{2}\right)$
揭げる $\mathbf{H}_{4}\left(x_{1}, x_{2}, x_{3}\right) \supset$
$\exists z\left[\right.$ 人 (z) 人示す $\left.3\left(x_{1}, z, x_{3}, x_{2}\right)\right]$
表わす ${ }_{2}\left(x_{1}, x_{2}, x_{3}\right) \supset$ 出す ${ }_{17}\left(x_{1}, x_{2}, x_{3}\right)$
漏らす $2\left(x_{1}, x_{2}, y\right)$ つ
$\exists z[$［声 $(z) \vee$ 表情 $(z)] \wedge$ 出す $\left.{ }_{17}\left(x_{1}, z, x_{2}\right)\right]$
示す $2\left(x_{1}, x_{2}, x_{3}\right)$ つ 表わす $2\left(x_{1}, x_{2}, x_{3}\right)$
見せる ${ }_{10}\left(x_{1}, x_{2}, x_{3}\right) \supset$ 示す $_{2}\left(x_{1}, x_{2}, x_{3}\right)$

[^0]: ＊Syntactic role is represented by means of a postposi－ tion，such as＂が＂and＂を＂，in Japanese．

[^1]: ${ }^{\dagger}$ For convenience，we will omit the number of the meaning of an entry verb．

