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Motivat ions  
Les techniques stoch&stiques b4n6ficient aujourd'lmi 
d'un regain de popularit4. Cependant, les modules 
stochastiques utilis~s sont clairement inaddquats pour 
l 'analyse syntaxique des langues naturelles. Les for- 
malismes probabilistes qui out dr6 propos4s dans le do~ 
maine de la th4orie de la communication (processus de 
Markov et n-grammes) (Pratt ,  1942; Shannon, 1948; 
Shannon, 1951) ont ~te rapidement r6fut6s en linguis- 
tique. En effet, ces modules sont incapables de d$crire la 
syntaxe de mani~re hi4rarchique (sous forint d'arbre). 
De plus, les ph6nomSnes portant sur de longues dis- 
tances ne peuvent pas fitre pris en compte par ces for- 
malismes. Les grammaires stochastiques hors coutexte 
(Booth, 1969) permettent d%laborer une description 
hi4rarchique de la syntaxc. Ccpendant, aucune ap- 
proche utilisant les grammaires stoctlastiques hors con- 
texte (Lari and Young, 1990; Jelinek, Lafferty, and Mer- 
cer, 1990) est en pratique aussi efllcace que les processus 
de Markov ou les n-grammes. Eu effet, les rSgles hors 
contexte ne sont pas directement sensibles au mot et 
done £ une distribution de mots. 

Grammaires  Stochast iques  Lexi- 
calis~es d'Arbres Adjoints 
Les grammaires lexicalisdes d'arbres adjoiuts consistent 
d'un ensemble d'arbres, chacun a.ssoci4 £ un mot. Elles 
permettent de localiser la plupart des contraiutes syn- 
taxiques (par exemple, sujet-verbe, verbe-objet) tout 
en ddcrivant la syntaxe sous forme d'arbres. 

Dans cc papicr, la notion de derivation des gram- 
maires lexicalisdes d'arbres adjoints (tree-adjoining 
grammars) est modifi6e au cas de derivatious stochas- 
tiques. Le nouveau formalisme, les grammaires stochas- 
tiques lexicalisdes d'arbres adjoints (stochastic lexical- 
ized tree-adjoining grammars ou SLTAG) , a des pro- 
pridtds uniques car il maintient la notion de distribution 
cntrc mot tout en manipulant la syntaxe de maniSre 
hi6rarchique. 

Algorithmes 
Un algorithme pour calculer la probabilitd d'une phrase 
est pr4senter dans le papier. 

Ensuite, un algorithme qui permet de r4estimer les 
param~tres d'une grammaire stochastique lexicalisde 
d'arbres adjoints est ddcrit. Cette algorithme per- 
met de r~estimer les param~tres de fa~on 5. aug- 
menter apr~s chaque it6ration la probabilit6 du cor- 
pus. Cette algorithme peut 6tre utilis6 comme algo- 

rithme d'apprentissage. La grammaire initiale d'entrde 
g4n~re tous les roots de routes les faqons possibles. 
L'algorithme permct ensuite d'inf4rer unc grammaire 
b. partir du corpus. 

Evaluation Expdrimentale  
Nous avons testd l 'algorithme de r$estimation sur un 

corpus artificiel (Figure 1) et aussi sur les sequences 
de parties du discours (Figure 2) du corpus 'ATIS' 
(Hemphill, Godfrey, and Doddington, 1990). Dans les 
deux cas, l 'algorithme pour les grammaires stochas- 
tiques lexicalis~es d'arbres adjoints converge plus rapi- 
dement que celui pour les grammaires hors contexte 
(Baker, 1979). Ces expdriences confirment le fait que 
les grammaires stochastiques lexicalisdes d'arbres ad- 
joints permettent de mod~liser des distributions entre 
roots que les grammaires stochastiques hors contexte ne 
peuvent pas exprimer. 

1.8 

1.6 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

, , , , , , , , 

SLTAG -- 
\\ SCFG ..... - 

" \\ 

\ 

t t t I I I I I 

2 3 4 5 6 7 8 9 i0 
iteration 

Figure 1: Convergence avec un corpus (le phr~qes du 
language {a"b"ln > 0} 

i [ l 

SLTAG -- 
SCFG ..... 

5 i0 15 20 25 
itoration 

Figure 2: Convergence sur le ATIS Corpus 

ACheS Dr-; COLING-92. NANTES, 23-28 AOUT 1992 4 2 5 PROC. OF COLING-92, NANTES, AUG. 23-28, 1992 



Stochas t i c  Lexica l ized  T r e e - A d j o i n i n g  G r a m m a r s  * 

Yves Schabes 
D e p t .  o f  C o m p u t e r  & I n f o r m a t i o n  S c i e n c e  

U n i v e r s i t y  o f  P e n n s y l v a n i a  
P h i l a d e l p h i a ,  P A  1 9 1 0 4 - 6 3 8 9 ,  U S A  
schabes@unagi, cis. upenn, edu 

A b s t r a c t  

The notion of stochastic lexicalized tree-adjoining 
g rammar  (SLTAG) is formally defined. The parameters  
of a SLTAG correspond to the probability of combining 
two structures each one associated with a word. The 
characteristics of SLTAG are unique and novel since it is 
lexieally sensitive (as N-gram models or Hidden Markov 
Models) and yet hierarchical (as stochastic context-free 
grammars) .  

Then, two basic algorithms for SLTAG arc intro- 
duced: an algori thm for comput ing the probability of a 
sentence generated by a SLTAG and an inside-outside- 
like iterative algori thm for est imating the parameters  
of a SLTAG given a t raining corpus. 

Finally, we should how SLTAG enables to define a 
lexicalized version of stochastic context-free grammars  
and we report  preliminary experiments showing some of 
the advantages of SLTAG over stochastic context-free 
grammars .  

1 M o t i v a t i o n s  

Although stochastic techniques applied to syntax mod- 
eling have recently regained popularity, current  lazl- 
guage models suffer from obvious inherent inadequacies. 
Early proposals such as Markov Models, N-gram mod- 
els (Pra t t ,  1942; Shannon, 1948; Shannon, 1951) and 
tlidden Markov Models were very quickly shown to be 
linguistically not appropriate  for natural  language (e.g. 
Chomsky (1964, pages 13-18)) since they are unable to 
capture long distance dependencies or to describe hier- 
archically the syntax of natural  languages. Stochastic 
context-free granunar  (Booth, 1969) is a hierarchical 
model more appropriate  for natural  languages, however 
none of such proposals (Lari and Young, 1990; Jelinek, 
Lafferty, and Mercer, 1990) perform as well as the sim- 
pler Markov Models because of the difficulty of captur-  
ing lexical information. The parameters  of a stochas- 
tic context-free grammar  do not correspond directly to 
a distr ibution over words since distributional phenom- 
ena over words tha t  are embodied by the application of 

*This work was partially supported by DARPA Grant N0014- 
90-31863, ARO Grant DAAL03-89-C-0031 and NSF Grant 1RI90- 
16592. We thank Aravind Joshi for suggesting the use of TAGs 
for statistical analysis during a private discussion that followed a 
presentation by bS'ed Jdinek during the June 1990 meeting of the  
DARPA Speech and Natural Language Workshop. We are also 
grateful to Peter Braun, FYed Jelinek, Mark Liberman, Mitch 
Marcus, Robert Mercer, Fernando Pereira said Stuart Shieber for 
providing vMu~ble comments. 

more than one context-free rule cannot be captured un- 
der the context-freeness assumption.  This leads to the 
difficulty of maintaining a s t andard  hierarchical model 
while captur ing lexieal dependencies. 

This  fact prompted researchers in na tura l  language 
processing to give up hierarchical language models in 
the favor of non-hierarchical statistical models over 
words (such as word N-grams models). Probably for 
lack of a bet ter  language model, it has also been ar- 
gued tha t  the phenomena tha t  such devices cannot cap- 
ture occur relatively infrequently. Such argumentat ion 
is linguistically not sound. 

Lexicalized tree-adjoining g rammars  (LTAG) t com- 
bine hierarchical s t ructures  while being hx ieany  sensi- 
tive and are therefore more appropriate  for statistical 
analysis of language. In fact, LTAGs are the simplest 
hierarchical formalism which can serve as the basis for 
lexicalizing context-free g rammar  (Schabes, 1990; Joshi 
and Sehabes, 1991). 

LTAG is a tree-rewriting system tha t  combines trees 
of large domain with adjoining and  substitution. The 
trees found in a TAG take advantage of the available ex- 
tended domain of locality by localizing syntactic depen- 
dencies (such as finer-gap, subject-verb, verb-objeet) 
and most semantic dependencies (such as predicate- 
argument  relationship). For example, the following 
trees can be found in a LTAG lexicon: 

S 
/ k  

NP,L VIP VP 

A 
V NPI NP NP VP* ADV 

L I I I 
uts J~n p~nutJ hungrily 

Since the elementary trees of a LTAG are minimal 
syntactic and semantic units, distributional analysis of 
the combination of these elementary trees based on a 
training corpus will inform us about  relevant statistical 
aspects of the language such as the classes of words 
appearing as arguments  of a predicative element, the 
distribution of the adverbs licensed by a specific verb, 
or the adjectives licensed by a specific noun. 

This kind of statistical analysis as independently sug- 
gested in (Resnik, 1991) can be made with LTAGs be- 
cause of their extended domain of locality but also be- 
cause of their lexiealized property.  

lWe attallnle familiarity throughout the paper with TAGs and 
its  lexicallzed variant, See, for instance, (Joehl, 1987), (Schabes, 
Abeill~, and Joehi, 1988), (Schabes, 1990) or (Joslfi and Schabes, 
1~1). 
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In this paper,  this intuition is made formally precise 
by defining the notion of a stochastic lexicalized tree- 
adjoining g rammar  (SLTAG). We present an algori thm 
for comput ing the probabili ty of a sentence generated 
by a SLTAG, and finally we introduce an iterative algo- 
r i thm for est imathlg the parameters  of a SLTAG given 
a training corpus of text. This algori thm can either 
be used for refining the parameters  of a SLTAG or for 
inferring a tree-adjoining g rammar  frmn a training cor- 
pus. We also report  preliminary experiments with this 
algorithm. 

Due to the lack of space, in this paper  tim algorithms 
are described succinctly without  proofs of correctness 
and more at tention is given to tile concepts and tech- 
niques used for SLTAG. 

2 S L T A G  

hfformally speaking, SLTAGs are defined by assigning 
a probabil i ty to tile event tha t  an  elementary tree is 
combined (by adjunct ion or substi tut ion) on a specific 
node of another  elementary tree. These events of com- 
bination are the stochastic processes considered. 

Since SLTAG are defined on the basis of the deriva- 
tion and since TAG allows for a notion of derivation 
independent  from the trees tha t  are derived, a precise 
mathemat ica l  definition of the SLTAG derivation must 
be given. For this purpose, we use stochastic linear in- 
dexed g rammars  (SLIG) to formally express SLTAGs 
derivations. 

Linear Indexed g rammar  (LIG) (Alto, 1968; Gazdar,  
1985) is a rewriting system in which the non-terminal  
symbols are augmented with a stack, in addition to 
rewriting non-terminals,  the rules of the g rammar  can 
have the effect of pushing or popping symbols on top of 
tile stacks tha t  are associated with each non-terminal  
symbol. A specific rule is triggered by the non-termlnal 
on the left hand  side of the rule and the top element of 
its associated stack. 

The product ions of a LIG are restricted to copy the 
stack corresponding to tile non-terminal being rewrit- 
ten to at most one stack associated with a non-terminal 
symbol on tile r ight hand  side of the produc t ion?  

In tile following, [..p] refers to a possibly unbounded 
stack whose top element is p and whose remaining par t  
is schematically wri t ten as ' . . ' .  [$] represents a stack 
whose only element is the bo t tom of the stack. While it 
is possible to define SLIGs in general, we define them for 
the part icular  case where the rules are binary branching 
and where tile left hand sides are always incomparable. 

A stochastic linear indexed grammar, G, is denoted 
by (VN, VT, VI, S, Prod), where VN is a finite set of non- 
terminal symbols; VT is a finite set of terminal symbols; 
VI is a finite set of stack symbols; S E VN is the s tar t  
symbol; Prod is a finite set of product ions of the form: 

Xo[$po] --* a 
Xo[..po] --. x~[..m] x~[$p~] 
x0[..po] -~ Xl[$pd x~[-.p~] 
Xo[$Po] --~ Xl[$pl]  X2[$p2] 

where Xk E Vjv, a E VT and po ~. VI, Pl,P2 E V[; P, a 
probabili ty distribution which assigns a probability, 0 < 
P(X[..z] ~ A) < 1, to a rule, X[..x] -* A ~. Prodsuch 

2LIGs have been s h o w n  to be weakly eqtfivalent to "Ibee- 
Adjoining Graramars (V~jay-Shanker, 1987). 

tha t  tbe sum of the probabilities of all the rules that  can 
be applied to any non-terminal  annota ted  with a stack 
is equal to one. More precisely if, VX E VN,Vp E VI: 

~ p(xt..pl -~ A) = 1 
A 

P ( X  [..p] --* A) should be interpreted as the probability 
tha t  X[..p] is rewrit ten as A. 

A derivation s tar ts  from S associated with the empty 
stack (S[$]) and each level of the derivation must be 
validated by a product ion rule. The language of a SLIG 
is defined as follows: L = {w E VT~ [ S [$]~w}.  

The probability of a derivation is defined as the prod- 
uct of tile probabilities of all individual rules involved 
(counting repetition) in the derivation, the derivation 
being validated by a correct configuration of the stack 
at each level. The probability of a sentence is then com- 
puted as the sum of the probabilities of all derivations 
of tile sentence. 

Following tile construction described in (Vijay- 
Shanker and Weir, 1991), given a LTAG, Glaa, we con- 
s t ruct  an equivalent LIG, G,ua.  Tile constructed LIG 
generates tile same language as Gtag and each deriva- 
tion of Gtaa corresponds to a unique LIG derivation 
corresponds to a unique derivation in G,ua (and con- 
versely). In addition, a probability is assigned to each 
production of the LIG. For simplicity of explanation 
and without  loss of generality we assume tha t  each node 
in an elementary tree in Gt,9 is either a leaf node (i.e. 
either a foot node or a non-empty terminal node) or 
binary branching, a The construction of the equivalent 
SLIG follows. 

The non-terminal  symbols of Gstia are the two sym- 
bols ' top '  (t) and ' bo t tom '  (b), tile set of terminal sym- 
bols is the same as the one of Gta9, the set of stack 
symbols is the set of nodes (not node labels) found in 
the elementary trees of Gla~ augmented with the bot- 
tom of tile stack ($), and tile s tar t  symbol is ' t op '  (t). 

For "all root nodes ~10 of an initial tree whose root is 
labeled by S, the following s tar t ing rules are added: 

t[$] ~ t[$,t0] (1) 
These rules s tate  tha t  a derivation must  s tar t  from the 
top of the root node of some initial tree. P is the prob- 
ability tha t  a derivation s tar ts  from the initial tree as- 
sociated with a lexical i tem and rooted by %. 

Then, for all node '/ in an elementary tree, the fol- 
lowing rules are generated. 

• If rhT/2 are ttle 2 children of a node r /sucb tha t  r/2 is 
on the spine (i.e. subsumes tile foot node), include: 

b[..~l ~&' tI$n, lt[-.,~l (2) 
Since (2) encodes an immediate dominat ion link de- 
fined by the tree-adjoining g rammar ,  its associated 
probabil i ty is one. 

• Similarly, if thT/~ are the 2 children of a node r /such 
tha t  r h is on the spine (i.e. subsumes the foot node), 
include: 

b[..rt] P=-*~ t["rl~]t[$~] (3) 
Since (3) encodes a~t immediate dominat ion link de- 
fined by the tree-adjoining g rammar ,  its associated 
probabili ty is one. 

aThe algorlthnm explained ill this paper cart be generalized t o  
lexicadized tree-adjoining granunars that need not be in Chottmky 
Normal Form using techniqu¢~ similar t h e  o n e  found in (Schabet, 
1991). 
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* If ~/tT/2 are the  2 children of  a node q such tha t  none 
of  t hem is on the spine, include: 

b[$~] p~l ]~[$I~1]t[$i~2 ] (4) 
Since (4) also encodes an immedia te  dominat ion link 
defined by the  t ree-adjoining g r a m m a r ,  its associated 
probabil i ty is one. 

• If  7? is a node labeled by a non- terminal  symbol  and 
if it does not  have an obligatory adjoining constraint ,  
then we need to consider the case tha t  adjunet ion 
might  not  take place. In this ease, include: 

t[..~] L b[..~] (5) 
The  probabil i ty  of rule (5) corresponds to the proba- 
bility t ha t  no adjunet ion takes place at node q. 

o If  t/ is an node on which the auxiliary tree fl can 
be adjoined,  the adjunet iou of fl can be predicted,  
therefore (assuming tha t  ~tr is the root node of fl) 
include: 

t["0] L t[..rl,,] (6) 
T h e  probabil i ty of rule (6) corresponds to the  proba- 
bility of  adjoining the auxiliary tree whose root node 
is ~/~, say/3,  on the node 0 belonging to some elemen- 
t a ry  tree,  say a.4 

• If  r)! is tim foot node of  an auxiliary tree fl tha t  has 
been adjoined, then the  derivation of the node below 
q]  mus t  resume.  In this case, include: 

b["0l]  ,~1 b[..] (7) 
T h e  above stochastic product ion is included with 
probabil i ty  one since the decision of adjunct ion has 
already been made  in rules of the form (6). 

• Finally, if r h is the root node of  an initial tree tha t  
can be subst i tu ted on a node marked  for subst i tut ion 
r), include: 

t[$~] L t[S~t] (g) 
Here, p is the probabili ty tha t  the initial tree rooted 
by ~/~ is subst i tu ted at  node q. It  corresponds to 
the  probabili ty of  subst i tu t ing the  lexicalized initial 
tree whose root node is 71, say 6, at the node q of a 
lexicalized e lementary  tree, say a .  5 

T h e  SLIG constructed as above is well defined if the 
following equalities hold for all nodes ~l: 

P(t[..~/] ---* b[..~/]) + E P(t[..~/] --* t[..q0~] ) = 1 (9) 

P(t[$~/] ---* t[$Ol]) ---- 1 (10) 

E P(t[$] -~ t[$O0]) = 1 (11) 

4Since the granmmr is lexicalized, both trees a and /3 are a~ 
sociated with lexical iter~s, mad the site node for adjtmction ~ 
correuponds to some syntactic modification. Such llde encapsu- 
lates S modifiers (e.g. s~tential adverbs as in "apparently John 
left"), VP modifiers (e.g. verb phr~e adverbs as in "John left 
abruptly}", NP modifiers (e.g. relative clauses as in "The man 
who left was happy"), N modifiers (e.g. adtieetive~ as in "prelty 
woman"), or even sententiM complements (e.g. John think8 that 
Harry is sick). 

s Among other cases, the probability of thi~ rule corr~ponds to 
the probability of filling some argument p(~ition by a lexiealized 
tree. It will encapsulate the distribution for Belectional restriction 
since the position of substitution is taken into account. 

A gramula r  satisfying (12) is called consistent. 6 

E P ( t [ $ ] ~ w ) =  1 (12) 
wEZ* 

Beside the distr ibutional  phenomena  tha t  we ment ioned 
earlier, SLTAG also captures  the effect of  adjoining con- 
s t ra ints  (selective, obl igatory or null adjoining) which 
are required for tree-adjoining g r a m m a r .  7 

3 A l g o r i t h m  for C o m p u t i n g  t h e  
P r o b a b i l i t y  o f  a S e n t e n c e  

We now define an bo t tom-up  a lgor i thm for SLTAG 
which computes  the probabil i ty of  an input  string. The  
a lgor i thm is an extension of  the  CKY- type  parser  for 
tree-adjoining g r a m m a r  (Vijay-Shanker,  1987). The  ex- 
tended a lgor i thm parses all spans of  the  input  str ing 
and also computes  tbelr  probabil i ty in a bo t tom-up  
fashion. 

Since the s tr ing on the frontier of  an  auxiliary is bro- 
ken up into two substr ings by the foot node, for the 
purpose of comput ing  the probabil i ty of  the sentence, 
we will consider the probabil i ty t ha t  a node derives two 
substr ings of the input  string. Th is  ent i ty will be called 
the inside probability. Its exact  definition is given be- 
low. 

We will refer to the subsequenee of  the  input  string 
w = ax ""  aN f rom position i to j ,  w{'. It  is defined as 
follows: 

w~/'~f { a i + t "  .uj , i f i > _ j '  i f / <  j 

Given a s tr ing w = a t . . .  a N and a SLTAG rewri t ten 
as in (1-8) the inside probability, F ( p o s ,  71, i , j ,  k,l) ,  is 
defined for all nodes 7/ contained in an e lementary  tree 

and for pos E {t,b}, and for all indices 0 < i < j < 
k < I < N as follows: 

(i) If  the node 7/does not subsume the foot node 
of (~ (if there  is one),  then  j and k are un- 
bound  and: 
l~ (pos, ~, i , - ,  - ,  I) d~=l P(pos[$@~ w~) 

(it) If  the node y/subsumes the  foot node 7/! of e ,  
then: 

l~  (pos, rL i, j ,  k, l) a~l P ( p o s [ $ @ ~  w{ b[$o l lw~ ) 

In (ii), only the top element  of the  s tack ma t t e r s  since 
as a consequence of the eonstrnct ion of  the SLIG, we 
have tha t  if pos[$tl]~ w~b[$rll]w ~ then  for all s tr ing 

7 e V/~ we also have pos[$Tr/]~ w~b[$7~l]w~.S 
Initially, all inside probabilit ies are set to zero. Then,  

the computa t ion  goes bo t t om-up  s ta r t ing  f rom the pro- 
ductions int roducing lexieal i tems: if r/ is a node such 
tha t  b[$7/] --~ a, then: 

1 i f l = i + l A a = w ~  +t (1~ 
I W ( b ' T l ' i ' - ' - ' l )  = 0 otherwise.  

Then ,  the  inside probabilit ies of  larger substr ings are 
computed  bo t tom-up  relying on the recurrence equa- 

~We will not investigate tim conditions under which (12) holds. 
We conjecture that the techniques used for dmcking the eolmis- 
tency of stochastic context-free grammars (Booth and Thomp6on, 
1 9 7 3 )  c a n  be adapted to SLTAG. 

r For example, for a given node 0 setting to zero the probability 
o[ all rules of the forts (6) ht~ the effect of blocking adjunction. 

8Thls can be seen by obae~.ing that for any node on the path 
from the root node to the foot node of an auxiliary tree, the stack 
remains unchanged. 
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lions s ta ted in Appendix A. This computat ion takes 
in the worst case O(IGl~N6)-time and O(IGINa)-space 
for a sentence of lengtb N. 

Once the inside probabilities cmnputed,  we obtain 
the probability of the sentence flu follows: 

P(w)aJP(t[$]~,~) = Z~(t, $, 0 , - , - ,  Iwl) (14) 
Wc now consider the problem of re-estimating a 

SI,TAG. 

4 I n s i d e - O u s i d e  A l g o r i t h m  for 
1 % e e s t i m a t i n g  a S L T A G  

Given a set of positive example sentences, W = 
{ w t ' " w K } ,  we would like to compute the probabil- 
ity of each rule of a given SLTAG in order to maximize 
thc probabili ty tha t  the corpus were generated by this 
SLTAG. An algori thm solving this problem can be used 
in two different ways. 

The first use is as a reestimation algorithm. In ttfis 
approach, the input  SI,'1'A(~ derives s tructures  that  arc 
reasonable according to some criteria (such as a linguis- 
tic theory and some a priori kuowledge of the corpus) 
and the intended use of the algori thm is to refine the 
probability of each rule. 

The second use is as a learning algori thm. At the first 
iteration, a SLTAG which generates all possible struc- 
tures over a given set of nodes and terminal symbols is 
used. Initially the probabili ty of each rule is randomly 
assigned and then tile algori thm will re-estimate tbese 
probabilities. 

Informally speaking, given a first est imate of the pa- 
rameters of a SLTAG, the algori thm re-estimates these 
parameters  on the basis of the parses of each sentence in 
a training corpus obtained by a CKY-tyt)e parser. The 
algori thm is designed to derive a new estimate after 
each iteration such tha t  the probabili ty of the corpus 
is increased or equivalently such tha t  tile cross entropy 
estimate (negative log probability) is decreased: 

log~(e(r0)) 
l t (W,G)  - weW (15) 

wEW 
In order to derive a new estimate, the algori thm 

needs to compute for all seutences in W the in- 
side probabilities and  the outside probabilities. Given 
a string w = a l . . . a N ,  tbe outside probability, 
0 ~ (pos, ~, i, j ,  k, It, is defined for all nodes r I contained 
in an elementary tree a and for pos E {t,b}, and for all 
indices 0 < i < j < k < l < N as follows: 

(it If the node r /does not subsume the foot node 
of a (if there is one), then j and k axe un- 
bound asld: 

..de] 
O'° (P os, O, i, - ,  - ,  t) - 

P(B"/ C V~ s.t. t[$]=~ Wio pos[$Ttl] w~) 
(ii) If the node ~/does subsume the foot node ~/! 

of a then: 
0 '~ (pos, O, i, j ,  k, l) aeJ- 

/'(37 ~ V~* s.t. 

t [$ ]~  Wlo pos[$Trl] w~ and b[$7~ll]~w]) 

Once the inside probabilities computed,  the outside 

probabilities can be computed top-down by consider- 
ing smaller spans of the input  str ing s tar t ing with 
O " ( t , $ , O , - , - , N )  = 1 (by definition). This is done 
by comput ing the recurrence equations s ta ted in Ap- 
pendix B. 

In the following, we assume tha t  r I subsumes the foot 
node r/l within a same elementary tree, and also that  tll 
subsumes the foot node ~111 (within a same elementary 
tree). The other cases are handled similarly. Table 1 
shows the reestimation formulae for the adjoining rules 
(16) and the null adjoining rules (17). 

(16) corresponds to the average number of time tha t  
tl . . . .  le L[..T1] .-* t[..yqv] is used, and (17) to th . . . . . .  
age number of times no adjunction occnrred on T/. The 
denominators of (16) and of (17) estimate the average 
number of times tha t  a derivation involves tlLe expan- 
sion oft[-.~/]. The numerator  of(16)  estimates the aver- 
age number of times that  a derivation involves the rule 
t[.-7/] -~ t[..Tirfl]. Therefore, for example, (16) estimates 
the probability of using the rule/['-~7] ~ l["rplt]. 

The algorittun reiterates until H(W, G) is unchanged 
(within some epsilon) between two iterations. Each it- 
eration of the algori tbm requires at  most O(IGIN e) 
time for each sentence of length N. 

5 G r a m m a r  I n f e r e n c e  w i t h  
S L T A G  

The reestimation algori thm explained in Section 4 can 
be used botll to reestimate the paramcters  for a SI,TAG 
derived by some other mean or to infer a g rammar  from 
scratch. Ill the following, we investigate g rammar  In- 
ference from scratch. 

The initial g rammar  for the reestimation algoritiim 
consists of all SLIG rules for the tress ill Lexical- 
ized Normal I~brm (ill short  LNF) over a given set 

= {aill .< i _< T} of terminal symbols, with suit- 
ably assigned non zero probability: 9 

S 0 $4 

s h t~ a i 

The above normal form is capable not only to de- 
rive any lexicalized tree-adjoining language, but  also 
to impose ally binary bracketing over the strings of the 
language. The latter proper ty  is impor tant  as we would 
like to be able to use bracketing information in the ilL- 
put  corpus as in (Pereira and Schabes, 1992). 

The worst case complexity of tim reestimation algo- 
r i thm given iu Section 4 with respect to the length of 
the input str ing (O(NS)) makes this approach in gen- 
eral impractical for LNF grammars .  

However, if only trees of the form fit a' and a~" (or 
only of tile form /~ '  and a ~ ) ,  the language generated 
is a context-free language and can be handled more 
efficiently by the reest imation algorithnL 

9Adjoining constraints can be u~d in tiffs normal form, They 
will be reflected in the SLIG eq~vaient grammar. Indices have 
been added on S nodes in order to be able to uniquely refer to 
each node in the granunar. 
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w•wP•W ) x QW(t[..~/] ~ t[.-r/rp]) 

P(t[-.t/] ---, t[..~Tt/t]) = 1 (16) 
~wp--- ~ x [R~0/) + ~_~O'~(t[..O] --, t[..~/r/,])] 

1 

to~w 
/3(t[..r/] ---+ b[..~/]) = 1 (17) 

Ot°(t["r/] ~ t["r/rY]) = Z P(t["O]--* t["O~Y])×Iw(t 'o / ' i ' r ' s ' l )x lW(b 'o ' r ' j ' k ' s )xOW(t '~ l ' i ' j ' k ' l )  (18) 
i)r,j~k,t)l 

/~w(r/) = ~ P(t[..r/] ~ b[..r/]) x l~ ( t , o , i , j , k , l )  x O~°(b,)l,i,j,k,l) (19) 
i , j ,k,I 

Table 1: Keestimation of adjoining rules (16) and null adjoining rules (17) 

It can be shown that  if, only trees of the form ~a~ and 
~a~ are considered, the reestimation algorithm requires 
in the worst case O(Na)- t ime)  ° 

The system consisting of trees of the form ~ '  and c~ ~ 
can be seen as a stochastic lexicalized conle~:t-free gram- 
mars since it generates exactly context-free languages 
while being lexically sensitive. 

In the following, due to the lack of space, we report 
only few experiments on grammar inference using these 
restricted forms of SLTAG and the reestimation algo- 
ri thm given in Section 4. We compare the results of 
the TAG inside-outside algorithm with the results of 
the inside-outside algorithm for context-free grammars 
(Baker, 1979). 

These preliminary experiments suggest that SLTAG 
achieves faster convergence (and also to a better solu- 
tion) than stochastic context-free grmnmars. 

5.1 I n f e r r i n g  t h e  L a n g u a g e  {a"b"]n > 0} 

We consider first an artificial language. The train- 
ing corpus consists of 100 sentences in the language 
L = {a"b'~ln > 0} randomly generated by a stochastic 
context-free grammar. 

The initial grammar consists of the trees ~ ' ,  fl~, c~ a 
and ab with random probability of adjoining and null 
adjoining. 

The inferred grammar models correctly the language 
L. Its rules of the form (I), (5) or (fi) with high prob- 
ability follow (any excluded rule of the same form has 
probability at least l0 -a3 times lower than the rules 
given below). The structural rules of the form (2), (3), 
(4) or (7) are not shown since their probability always 
remain 1. 

Z°This can be Been by ol~ervin g that, for exaanple in 
l(posji, i,j,k,I), it i~ n e c e ~ y  the ea~ that k = l, nnd also 
by noting that k is superfluous. 

t[$,Tg] s:~4 t[S,lg,78] 
t[$og] o_~ t[$,lg,lg] 
t[.-t/~] z_~,o b[,.~7~] 
t [ ~ ]  ,..~o b[,~] 
t[..~] ~,° b [ ~ ]  
t[..o~] 1~0 b[..o~] 

In the above grammar, a node S'k in a tree c~ a o r / ~  
associated with the symbol a is referred as t/~, and a 
node S~ in a tree associated with b as r/~. 

We also conducted a similar experiment with 
the inside-outside algorithm for context-free grammar 
(Baker, 1979), starting with all pc~sible Chomsky Nor- 
mal Form rules over 4 non-terminals and the set of ter- 
minal symbols {a,b} (72 rules). The inferred grammar 
does not quite correctly model the language L. Fur- 
thermore, the algorithm does not converge as fast as in 
the case of SLTAG (See Figure 1). 

1 . 8  

1 . 6  

1 ,4  

1 .2  

1 

0 . 8  

0 . 6  

0 .4  

I I I I I I I I  

SLTAG - -  
SCFG . . . . .  " \ 

2 3 4 5 6 7 8 9 1 0  
iteration 

Figure 1: Convergence for the Language {anb"ln > 0} 

5.2 E x p e r i m e n t s  on  the ATIS Corpus 

We consider the part-of-speech sequences of the spoken- 
language transcriptions in the Texas Instruments sub- 
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set of the Air Travel hfformation System (ATIS) corpus 
(Hemphill, Godfrey, and Doddington,  1990). This cor- 
pus is of interest since it has been used for infcrring 
stochastic context-free grammars  from partially brack- 
eted corpora (Pereira and Sehabes, 1992). We use the 
da ta  given by Pereira and Schabes (1992) on raw text 
and compare with an inferred SLTAG. 

The initial g rammar  consists of all trees (96) of the 
form fl~, a ~ for all 48 terminal symbols for part-of- 
speech. As shown in Figure 2, the grannnar  converges 
very rapidly to a lower value of the log probability 
than the stochastic context-free g rammar  reported by 
Pereira and Schabes (1992). 

16 

14 

12 

i0 

SCFG ..... " 

i i i t 

5 10 15 20 25 
iteration 

Figure 2: Convergence for ATIS Corpus 

6 C o n c l u s i o n  

A novel stat ist ical  language model and fundamental  al- 
gorithms for this model have been presented. 

SLTAGs provide a stochastic model both hierarchi- 
cal and sensitive to lexical information. They combiae 
the advantages of purely |exical models such ms N-gram 
distributions or Ilidden Markov Models and the one 
of ifierarchical modes as stochastic context-free gram- 
mars without  their inhercnt limitations. The parame- 
ters of a SLTAG correspond to the probabili ty of com- 
bining two structures  each one associated with a word 
and therefore capture  linguistically relevant distribu- 
tions over words. 

An algori thm for comput ing the probabili ty of a sen- 
tence generated by a SLTAG was presented as well as 
an iterative a lgori thm for es t imat ing the parameters of 
a SLTAG given a t raining corpus of raw text. Simi- 
larly to its context-free counterpart ,  the reestimation 
algori thm can be extended to handle partially parsed 
corpora (Pereira and Schabes, 1992). 

Prel iminary experiments with a context-free subset 
of SLTAG confirms tha t  SLTAG enables faster conver- 
gence than stochastic context-free g rammars  (SCFG). 
This is the case since SCFG are unable to represent 
lexieal influences on distribution except by a statisti- 
cally and eomputat ional ly  impractical proliferation of 
nonterminal symbols, whereas SLTAG allows for a lexi- 
eally sensitive distributional mmlysis while maintaining 
a hierarchical s t ructure.  

Furthermore,  the techniques explained in this paper 
apply to other grammat ica l  formalisms such as combi- 
natory categorial g rammars  and modified head gram- 
mars since they have been proven to be equivalent to 

tree-adjoining grammars  and linear indexed grmnmars 
(Joshi, Vijay-Shanker, and Weir, 1991). 

Due to the lack of space, only few experiments with 
SLTAG were reported. A full version of tile paper  will 
be available by tile time of the meeting and more exper- 
imental details will be reported during the presentation 
of the paper. 

In collaboration with Aravind Joshi, Fernando 
Pereira and Stuar t  Slfieber, we are currently investigat- 
ing additional algorithnLs and applications for SLTAG, 
methods for lexical clustering and autonratic construc- 
tion of a SLTAG from a large training corpus. 
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A C o m p u t i n g  t h e  I n s i d e  P r o b -  

a b i l i t i e s  

In the following, the inside and outside probabilities are 
re]ative to the input string w. 3 t" stands for the the set of 
foot nodes, S for the set of nodes on which substitution can 
occur, ~ for the set of root nodes of initial trees, and ,4 for 
the set of non-terminal nodes of auxiliary trees. The inside 
probability can be computed bottom-up with the following 
recurrence equations. For all node v/found in an elementary 
tree, it can be shown that: 

1. If  b[$r/] ~ a, I(b,7, i , - , - , I )  = d l  if  / = i +  1 and if 
a = w~ +1, 0 otherwise. 

2. ] f71  E3 c, l(b,7/ , i , j ,k, t)= l if i= j and if 
k = l, 0 otherwise. 

3. If  b[..7] ~ t[..Talt[$7~]: l(b, 7, i , j ,k,I)= 

E l(t ,7j , i , j ,k,m) x l(t,7~,m,--,-,t) 
m = k  

4. If b[..7] - -  t[$oa]t[..7z] , l(b, 7, i,j,k,I) = 

~ I(t, 71 , i , - , - ,m)  xl(t ,72,m,j,k,I)  
m ~ i +  l 

~. ff b[$t~] ~ t[$~dt[$7~], ~(b, 7, i, - ,  - ,  0 = 

E l ( t 'T t ' i ' - ' - - 'm)  x l(t, 7~,m,- , - , I )  
m ~ i + l  

6. For all node 7 on which adjunction can be performed: 
l ( t , , , i , j ,  k, 0 = 

1(b, , ,  i, j, k , t )  × P(t[..7] ~ b[..,l]) 

+ × l(b, 7,r,j,k,s) 
× e(t[..7] - t[-., ,id) 

7. For all node 7 E S: l(t, 7, i , - , - , l )  = 
Z l ( t ' T l ' i ' - - ' - - ' l )  × P(t[$7] ~ t[$Ta]) 

'h  

8. I ( t , $ , i , - , - , l )=  E I(t,7, i,-,-,I)×P(t[$] ~ t[$0]) 

)l 
B C o m p u t i n g  t h e  O u t s i d e  

P r o b a b i l i t i e s  

The outside probabilities can be computed top-down recur- 
sively over smaller spans of the input string once the in- 
side probabilities have been computed. First, by definition 
we have: O(t, $, 0 , - ,  - ,  N) = 1. The following recurrence 
equations hold for all node y found in an elementary tree. 

1. If 7 E "g, O(t, 7, 0, - ,  - ,  N) = e(t[$] ~ t[$7]). 
And for all (i,j) ~ (0, N),  O(t ,~ , i , - , - , j )  = 

o( t ,  ,10, i , - , - , j )  × P(@%] ~ @)~]) 
2. If 7 is an interior node which subsumes the foot node 

of the elementary tree it belongs to, O(t, ~, i, j, k, l) = 
~ O(b,%,i,j,k,q) ) 

× l(t, 7~, 1,-, - ,  q) 
q=t+, × P(b["70] ~ t["Tlt[$7~]) 

i-1 O(b, qo,p,j,k,l ) ) 
+ Z  × l ( t '71 'P ' - ' - ' i )  

~=0 x P(b[.-70] ~ t[$7,lt[..7]) 
3. If T/ is an interior node which does not subsume the 

foot node of the elementary tree it belongs to, we have: 
o ( t , 7 , i , - , - , t )  = 

v O(b,)lo,i,-,-,q) ) 
E × l ( t ' ) h ' l ' - ' - ' q )  

q=lq-i × P(b[$70] ~ t[$7]t[$72]) 

+ × I(t ,7~,p,- , - ,Q 
× P(b[$7ol ~ t[$7,]t[$7]) 

+ ~ O(b'7°'i'j 'Lq) 
× I(t, 72,l,j,k,q) 

,=, ~=,+, .= .  × P(b[ .m)  ~ @71t[..Td) 

+ × I(t, 71,p,j,k,i) 
× P(b[..%] ~ t[ . .7#[$7]) 

4. If T/ E.4,  then: O(t,7, i , j ,k , l )= 
k - l ~ ( O ( t ' ' l ° ' i ' p ' q ' l )  ) 

~o ~ × l(t, 7o,j,p,q,k) 
p=j q=~+, × P(t["7o] ~ t[-.%rl]) ~f~%(o(t,%,i,-,-,t)) 

+ × l( t , ) lo , j , - , - ,k)  
× P(t[$%] ~ t[$%7]) 

5. If 7 is a node which subsumes the foot node of the ele- 
mentary tree it belongs to, we have: O(b, 7, i, j, k, I) = 

O(t ,  7, i, j ,  k, l) × e ( t [ " 7 ]  ~ b[..~/]) 

+ × l(t, 7o,p,i,l,q) 
% p=o q=* \ x P(t["7o]- t["7o)?]) 

6. And finally, if )1 is a node which does not subsume 
the foot node of the elementary tree it belongs to: 
O(b, 7, i , - , - , t )  = 

o(t ,  7, i, - ,  - ,  t) x P(t[$7] ~ b[$7]) 

+ × l(t,%,p,i,l,q) 
70 p=o q=~ \ x P(t[$7o] ~ t[$7oY/]) 
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