Chart Parsing of Robust Grammars *

Sebastian Goeser
gsr@dhdibm1.bitnet
IBM Deutschland GmbH - GADL
Hans-Klemm-Str. 45
D-7030 Böblingen

1 Introduction

Robustuess is a formal behnviour of natural language grammars to assign a best partial description to linguistic events whose strong description is inconsistent or cannot be constructed. Events of this sort may be called defective with respect to a grammar fragment. Defectiveness arises from the performance use that human beings make of langrage. Since defectiveness can be seen as failure of linguistic description, the principal way to robustness is a method to wenken these descriptions.

Robust parsing, then, is parsing of robust granumars: a parser is robust iff it has the capability to interpret weak grammar fragments correctly. In this paper, I shall try to substantiate this claim by motivating n grammar dependent appronch to robust parsing and then describing a chart parsing algorithem for robust grammers. Though only e(ontext) f(ree) grammars will be adressed, there is an obvious extension of the nigorithm to amotated (unification-) grammars (WACSG formalism, see Goeser 1990) along the lines of (Shieber 1985).

Grammar based robustness tools have been explored in a variety of formalisms, e.g. the metarule device within the ATN formalism (Weischedel and Sondheimer 1893), entity data structures in a case frame approach (Hnyes 1984) or the weak description appronch in unification based grammars (Kudo et al. 1988, Goeser 1990). Parsing of grammars with ro-

[^0]bustness features competes with algorithmic approaches to robustness where parsing algorithms, (usunlly chart parsers except in Tomabechi and Tomitn (1988) where LR(k) parsing is advocated) are extended to include robustness features (Mellish 1989, Lang 1988) and/or heuristics to handle defect cases (Lnnger 1990, Stock et al. 1988).
Maybe the most critical issue in robust parsing is anbiguity, which emerges when constituency is loosened to some ef substring analysis. E.g. Mellish (1989) parses for $\mathrm{ncfg} G$ the (cf) set $P A R(G)$ which is the set of all strings containing a sequence of nonempty substrings which is in the of langunge $L(G)^{1}$. In the worst case scenario where all these sequences are in $L(G)$, we get for a $w \in L(G)$ with an ambiguity k (in (r) en exponential ambiguity of $k \times 2^{101}$ as an upper bound. Even in a non-worst case, which should be the case of renlistic cfgs, local ambiguities from substring analysis massively increase parsing time. E.g, in the (non-defective) example 1 , the arcs a, b, c are empirically valid while the arcs d,e are artefacts of an algorithm parsing $P \boldsymbol{A} \boldsymbol{R}(G)$.

[^1](1)

Reflecting syntactic defectiveness in a cfg menns to nssign it a configurational regularity. Obviously, there is syntactic defectivity which is syntactically nonregulnr, such ns corrupted output from a speech recognition device (Tommbechi and Tomitn 1988) ${ }^{2}$ or global constituent breaks (Gocser 1991), which can be subjected to syntactic prefix amalysis only. On the other hand, there are spoken language constructions (Lindgren 1987, Goeser 1991, langer 1990) and various kinds of "fragmentary utterances" (Carbonell and Hayes 1983) that definitively show configurational properties.

Let us look at a frequent spoken language construction called restart, as in the Germmin corpus example (2) ${ }^{3}$. Restarts follow a pattern $<\alpha \beta \quad \mathcal{A} \beta^{\prime} \gamma>$ where the strings α and γ but not β and β^{\prime} may be empty. The restart marker \mathcal{A} is optional: in 67 from 96 restart samples β, which mostly ends in a constituent break, and β^{\prime} were sepmated phonologically by tone constancy, a short panse or without any marking at all ${ }^{4}$. Restarts are a kind of constituent coordination not allowing for ellipsis phenomena such as gnoping, left deletion, split coordination or sluicing. The β substring is usually defective and may indeed contain arbitrary noise

[^2](see e.g. example (3)) ${ }^{5}$.
(2) da $[$ is es damm noch ein A there [is it then still $n \quad \mathcal{A}$ $\alpha \quad \beta$
kommt noch ein anderes Problem hinzul comes yet mother problem to-that] β^{\prime}
γ
(3) der Peter [hat konnte das dieses deshalb the Peter (has could the this therefore
chemaligen Lieferwagen
former truck
A hat das gekauft
\mathcal{A} has it bought]

2 Recursive partial string grammars

Recursive partin] string grammars (RPSGs) are cfgs with n set of atart symbols and with rule whose left hand side may be indexed with the keyword SET, SUB, or PAR. The SET index on a rule's LHS licenses the adjunction of any start symbol to the right or left of its RHS string. The SUB index licenses arbitrary terminnl strings to the right or left of the indexed symbol's lexical projection. The PAR index includes $S U C$ and additionally licenses any terminal strings within this lexical projection. (Left and right sided indices SETL, SUBL and SETR, SUBR,respectively, are also in use). In n derivation relation \Rightarrow for RPSGs nn indexed symbol A_{y} unifies with entegory A to give A_{y}. Formally, $S E T$ adjunction participates in the cf derivntion relation, while SUB and $P A R$ are interpreted by a recursive generation function gen operating on derivations:
gen $_{u}: t \times\left(\text { Cat }_{\text {ind }} \text { U Ler }\right)^{+} \rightarrow\{0,1\}$
where w is n derivation, t its tree structure, Catind the set of indexed or non-indexed nomtermunals and hex the set of terminals. The example derivation tree (4) shows $S E T$ adjunction (dotted lines) and areas where arbitrary

[^3]substrings are licensed by an indexed node. Generally, local arbitrariness within a string may be eaily modelled with an RPSG. Though finite cfls are turned into infinite ones through RPSG indexing, the syntactic description with RPSG is still configurational up to certain local adjunctions.

3 Basic algorithm

As a parsing algorithon to start from, Earley's (1971) chart parser has been chosen, which has a top-down component adnptable to the top-down percolation of index information, and which guarnatees n worst ense complexity of $O\left(n^{3}\right)$ even for maximal ambiguity. We use the declarative Earley varinnt in Dörre (1987) . For ncfg $G=\langle$ Cat, Lex, P, S set \rangle, where Cat is n set of non-terminals, Lex a set of terminals, P a set of rules and Sset a set of start symbols, it is characturized by the following predictor concept:

- the predictor is a relation $D(i, A) \subseteq$ $n^{+} \times$Cal between n vertex $i \leq n$ and a non-terminal A. It is integrated into the completer and scanner components (see below), This has the advantage that no cyclic items i.e. items with an empty string of parsed symbols, hnve to be asserted to the chart.
- initinlization is the specinl predictor case $D(0, S)$ where S is a start symbol.

Let $V=$ Cat U Lex, $A \longrightarrow \alpha \beta \in P$ and $0 \leq i<j \leq n$. Chart $[i, j]$ be the set of arcs between vertices i and j nnd $\stackrel{*}{\Rightarrow}$ be the transitive cover of the derivation relation. Then evcry item in the chart may be characterized by the following membership condition ${ }^{6}$ which respects both top-down (TD) and bottom-up (BU) information. Remark that for the (basis variant of the) Earley algorithm, while item membership depends on top-down predictor information, the acceptance of input strings is independent of the predictor (Kilbury 1985).
$A \rightarrow \alpha, \beta \in$ Chart $[i, j]$ iff
© ese Dörre 1987
$\left[\mathbf{T D} \mid \exists \mathcal{S} \in S\right.$ set $S \xlongequal{*} \Rightarrow w^{\mathbf{0}, \dot{i}} \boldsymbol{A} \delta \wedge$
$[\mathbf{B U}] \alpha \stackrel{*}{\Longrightarrow} \boldsymbol{w}^{i, j}$ where $\delta \in V^{*}$

4 The RPSG variant

4.1 Item Concept

In the RPSG variant, items are represented as PROLOG facts

```
item( lumber, Lind, Aind, LHS,
    Parsed, To_Parse, Heflist)
```

where itenn number, the -possibly indexed- left hand symbol, the list of parsed aymbols and the list of symbols yet to parse are well-known item parts. The variables Lind and Rind represent the status of substring generation to the left and to the right of the Parsed string, respectively. Lind \neq Rind is possible even for the $S U B$ index, since items represent prefix information on a constituent, whereas a $P A R$ index alwnys effects Lind $=$ Rind. Partial string information from higher nodes, which is justified only within the appropriate derivation, must be distinguished from $S U B$ or $P A R$ indexing of an item's LHS symbol, which nlways licences arbitrary substrings. To allow reconstruction of A derivation, Reflist records the pairs of items (or pairs of rule and item, see below) an item is completed from, or it equals lex for lexical items ${ }^{7}$. To state the clart membership condition of the RPSG variant, we geveralize the function gen to an argument pair of strings of terminals and possibly indexed non-terminals:
$\operatorname{gen}^{*}:\left(V_{i n, d}^{+}\right)^{2} \rightarrow\{0,1\}$
where
$g e n^{*}(\alpha, \beta)=1$ iff β can be generated from α $\left(\alpha, \beta \in V_{i n d}^{+}\right)$

The RPSG membership condition, then, is:

$$
\begin{aligned}
& A_{\eta} \rightarrow \alpha, \beta \in \text { Chart }[i, j] \text { iff } \\
& \text { i, The Ref List in nleo used for parse forest conutruc- } \\
& \text { tion, see eg. Doerre (1987) for a diacus sion }
\end{aligned}
$$

$\left[T D \mid \exists S \in S s_{i=t_{i n d}} \operatorname{gen}^{*}\left(S, w^{(n, i} A_{\eta} \delta\right)=1 \wedge\right.$
[BU] gern ${ }^{*}\left(x, w^{i, j}\right)=1$ or $\alpha=\epsilon$
where $\alpha, \beta, \delta \in\left(\dot{Y}_{i n d}\right)^{*}$

4.2 The Predictor

The predictor of the RPSG variant ${ }^{8}$ is, again, a relation over vertices and non-termunals. In contrast to the basis variant, however, a null predictor would be incorrect for the RPSG variant, since the acceptance of a string now depends on the substring information percolated by the predictor. The first predictor clause allows an "initialisation" for cuery vertex. The second clanse formulates the expectation of a non-terminal A_{η} by an active item i.e. an item with a nonempty list To-Parse, and the third the expectation by passive ilems with n $S E T$ index. Clanse 4 expects a start symbol on the basis of left adjunction to $n S E T$ indexed symbol. The following proposition, n proof of which is available from the nuthor, states the correctness of this predictor formalization.
$\operatorname{gen}^{\star}\left(S, w^{0, i} \Lambda_{\eta} \delta\right)=1$ iff $D\left(i, A_{\eta}\right)$
for $n S \in S$ set $t_{i n d}$

4.3 The Completer

The completer component integrates the predictor relation and the substring generation function aud lens two rules for rightside and
${ }^{3}$ see Appendix A for a complete formal charncteriwation of the RPSG clinat parser
leftside adjunction under a set-indexed symbol. Given that the conditions in the if-clause (and the looknhead condition, see below) yield, the completer ndds new items to the chart ${ }^{9}$. Clnuse 1 of the RPSG completer, is, up to the generation function instead of derivntion, equivalent to the completer of the basis varient: Given a rightside passive item, it adds a new item both for a matching active item and for the prediction of an nppropriate rules's LHS symbol. Thus, no cyclic items have to be crented. Furthermore, since R.PSGs do not have e productions, there is no need to handle cyclic items at oll. Clause 2 does rightside ndjunction of a start symbol item to a passive SET indexed item. In left adjunction according to clause 3 , the adjoined (passive) item can again be licensed both by another (active or passive) $S E T$ indexed item or by the predictor relation.

4.4 Scammer and Lookahead

Since the scmmer component may be seen ns A lexical case of the completer, the RPSG algorithm could be reduced to n siagle active completer component and the controlling relntion D (Kilbury 1985). Remark that the scanner allows for RPSG rules with RHS strings of terminals and non-terminals. A partinl looknhead of 1 , being npplied to netive items only, has proven advantageous in the besic variant (Dörre 1987). In the RPSG variant, the length of the lookahead must be conditioned to the foct that zero or more non-derived but generated words may follow a given vertex. The looknhend fails if, for the first To-Parse sym-

[^4]bol, there is no first derivable lexical item, thent is accessible given the actual substring information.

Unfortunately, the scanner is not independent from this lookahead, since, in many cases, the item licensed by a lookahead operation onto n lexical item i is exnetly the item licensing i within the predictor relation. That is, from a procedural viewpoint of entering items into the chart, the lookahead condition and the predictor block ench other for certain lexical items. In this situation we decided to have a scanner without a predictor relation, thus paying for looknhead with an increased local lexical ambiguity.

5 Status and Conclusion

The algorithm described has been implemented and tested as part of the WACSG system that is based on the Stuttgart LFG system (Eisele 1987).
Chart parsing of robust ef grammars is a powerful method to cope with the configurational aspects of defectiveness. It is part of a major enterprise to re-analyze robustness not as a parsing problem but as a problem of weak linguistic description. Therefore, any formal work on the linguistics of defectiveness can be expected to improve our methods of robust parsing.

6 Bibliography

[1] Carboncll, J. and Hayes, P.: Recovery Strategies for Parsing Extragrammatical Language, in: AJCL 9, 3-4, 1983
[2] Dörre, J.: Weiterentwicklung des EarleyAlgorithmus fïr kontextfreie und ID/LP. Grammntiken, LiLog-Report 28, IBM Deutschland 1987
[3] Earley, J.: An Efficient Context-free Parsing Algorithm, in: CACM 13, 2, 1970
[4] Goeser, S.: A linguistic Theory of Robustness, in: Proc. of COLING-13, Helsinki 1990
[5] Goeser, S.: Eine linguistische Theoric der Robustheit, Konstanz 1991
[6] Hayes, P.J.: Entity-Oriented Parsing, in: COLING-10, Stanford 1984
[7] Kilbury, J.: Chart Parsing and the Earley algorithm, in: Klenk, U. (ed.): Kontextfreie Syntaxen und verwandte Systeme, Max Niemeyer, Tübingen 1985
[8] Kwasny, S.C. and and Sondheimer, N.K.: Relaxntion Techniques for Parsing Grammatically Ill-Formed Input, in: AJCL 7,2, 1981
[θ] Lang, B.: Parsing Incomplete Sentences, in: Proc. COLING-12, Budapest 1988
[10] Langer, H.: Parsing Spoken Langunge, in: Proc. COLING-13, Helsinki 1990
[11] Mellish, C.S.: Some Chart-Based Techniques for parsing Ill-formed Input, in: Proc. ACL 27, Vancouver 1987
[12] Shieber, S.M.: Using Restriction to Extend Parsing Algorithms for Complex Fenture Based Formalisms, in: Proc. ACI, 25, 1985
[13] Stock, O., Falcone, R., Insimnamo, P.: Island Parsing and Bidirectional Charts, in: Proc. COLING 12, Budapest 1988
[14] Tomabechi, H. and Tomita, M.: The Integration of Unification-Based Pragmatics for Real-Time Understanding of Noisy Continuous Speech Input, in: Proc. AAAI 7, Saint Paul 1988.
[15] ULMER TEXTBANK: A machine-readable corpus of spoken langunge from psychotherapentic discourse, University of Ulm
[16] Weischedel, R.M. and Sondheimer, N.K.: Metarules ns n Basis for Processing IIlFormed Input, in: AJCL 9, 3-4, 1983

Appendix

Algorithm: An RPSG Chart Parser

Input:

1. RPSG $G=<$ Cat $_{\text {ind }}$, Lex, P, S set ${ }_{\text {ind }}$
2. string $w=w_{1}, \ldots w_{n}$

Output:

"nccepted", if $S \longrightarrow \alpha$. \in Chart $[i, j]$ where $S \in S \operatorname{set}_{\text {ind }}$ and $\operatorname{gen}^{*}\left(\alpha, w^{0, n}\right)=1$

condition (predictor) :

Let $D\left(i, A_{\eta}\right) \subseteq n^{+} \times C \alpha t_{\text {ind }}$
$D\left(i, A_{\eta}\right)$ iff

1. $\exists S_{\zeta} \in S_{s e t_{i n d}} \operatorname{gen}^{\star}\left(S_{\zeta}, g^{i} A_{\eta} \delta\right)=1$ or
2. $\exists C_{\zeta} \longrightarrow \alpha \cdot B_{\lambda} \beta \in C h a r t[j, k] \quad k \leq i \wedge$ $g e^{\star}\left(B_{\lambda}, g^{i-k} A_{\eta} \delta\right)=1$ or
3. $\exists C_{S K T} \longrightarrow \alpha, \in C h a r t[j, k] \quad k \leq i \wedge$

$$
\exists D_{\zeta} \in S \operatorname{set} t_{\text {ind }} g e n^{\star}\left(D_{\zeta}, g^{i-k} A_{1} \delta\right)=1 \quad \text { or }
$$

condition (lookahead) :

Let $F \subseteq P^{\circ} \times n^{2}$.
$F\left(C_{n} \rightarrow \alpha \cdot \boldsymbol{\rho}^{\prime}, i, j\right)$ iff

1. ($\beta^{\prime}=\epsilon$ or
$\beta^{\prime}=B \beta$ and $\operatorname{gen}^{*}\left(B, g^{k-j} w^{k, k+1} \delta\right)=1$
for $\left.B \in C a t_{\text {ind }}, j \leq k \leq n\right)$ and
2. $C_{n} \longrightarrow \alpha, \beta^{\prime} \mapsto \operatorname{Chart}[i, j]$
method:

- scanner: For $0 \leq i<j \leq n$:
if $\quad B_{C} \longrightarrow w^{i, i+1} u^{\prime} w^{j-1, j} \in P$ (where $w^{\prime} \in P P_{y^{\prime}, \prime}$ oder $w^{\prime}=\epsilon$) and $\operatorname{gen}^{\star}\left(B_{\zeta}, w^{i, j}\right)=1$.
then $\mathrm{F}\left(B_{C} \longrightarrow w^{i, i+j} w^{\prime} w^{j-1 . j}, i, j\right)$
- completer: For $0 \leq i<j \leq 1 \leq n$:

1. if $\quad\left(A_{\eta} \longrightarrow \alpha \cdot B \beta \in\right.$ Chart $[i, j]$ or

$$
\left.D\left(j, A_{\eta}\right) \quad \text { and } \quad A_{\eta} \longrightarrow B \beta \in \mathrm{P} \quad \text { and } \quad \alpha=\epsilon\right) \quad \text { and }
$$

$$
B_{\zeta} \rightarrow \gamma \in \operatorname{Chart}[k, 1] \quad \text { and } \operatorname{gen}^{*}\left(\alpha B_{6}, w^{i, 1}\right)=1
$$

then $\mathrm{F}\left(\boldsymbol{A}_{\eta} \longrightarrow \alpha B_{\zeta} \cdot \beta, i, 1\right)$
2. if $\quad B_{C} \longrightarrow \gamma$. \in Chart $[k, 1]$ and $B \in S$ set and $\boldsymbol{A}_{S B T} \longrightarrow \alpha, \in \operatorname{Chart}[i, j]$ and $\operatorname{gen}^{*}\left(\alpha B_{C}, w^{i, T}\right)$,
then $\mathbf{F}\left(A_{S E T} \rightarrow \alpha B_{\zeta}, i, j\right)$
3. if $A_{\eta} \longrightarrow \alpha . \in \operatorname{Chart}\left[\mathrm{i}_{1} \mathrm{j}\right]$ and $A_{\eta} \in S_{\text {set }}$ and $\left(\boldsymbol{B}_{\text {SET }} \longrightarrow \boldsymbol{\beta} . \gamma \in \operatorname{Chart}[k, 1] \quad\right.$ or $D\left(l, B_{S E T}\right)$ and $\beta=\epsilon \quad$ and $\left.\quad B_{S E T} \longrightarrow . \gamma \in P\right)$ and $\operatorname{gen}^{*}\left(A_{\eta} \beta, w^{i, \prime}=1\right)$,
then $\mathrm{F}\left(B_{S B_{T} T} \longrightarrow A_{\eta} \beta \cdot \gamma, i, 1\right)$

[^0]: ${ }^{0}$ The work reported has been done while the author reccived an LGF ginnt at the University of Stuttgatt.

[^1]: ${ }^{1}$ See Goeser (1990) for a more formal discussion of $P A R(G)$.

[^2]: ${ }^{3}$ Thhis mnterinl may show phonologicnl regularitien, of courat
 ${ }^{2}$ All corpus evidence reported here in piychotherapentic discourse from the ULMER TEXTBANK
 'Therefore, Langer's (1900) restant hearistics secmus empirienlly inndeguate innafar as it postulates a syntactic restart marker.

[^3]: ${ }^{4}$ For a more thorough discusion of restart agntinx, see Goener (1991).

[^4]: ${ }^{0}$ The relation F inchudes the operation \rightarrow which procedurally neserts new items to the chart

