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Abstract: This paper outlines a framework for 
connectionist representation based on the 
composition of connectionist states under 
vector space operators. The framework is used 
to specify a level of connectionist structure 
defined in terms of addressable superposition 
space hierarchies. Direct and relative address 
systems (:an be defined for such structures 
which use the functional components of 
linguistic structures as labels. Unbounded 
dependency phenomena are shown to be related 
to the different properties of these labelling 
structures. 

Introduction 

One of the major problems facing 
connectionist approaches to NLP is how best to 
r~ccommodate the role of structure (Slack, 
]984). Fodor and Pylyshyn (1988) have 
argued that connectionist representations lack 
combinatorial syntactic and semantic structure. 
t::urthermore, they claim that the processes that 
operate on connectionist representational states 
function without regard to the inherent structure 
of the encoded data. The thrust of their criticism 
is that mental functions, such as NLP, are 
appropriately described in terms of the 
manipulation of combinatorial structures, such 
as formal languages, and that, at best, 
connectionisrn provides an implementation 
paradigm for mapping NLP structures and 
proceses onto their underlying neural 
substrates. 

If Fodor and Pylyshyn's arguments are 
correct then there can be no connectionist 
principles which influence the nature of theories 
developed at the level of symbol ic  
representation. However, the present paper 
shows that it is possible to define a level of 
connectionist structure, and moreover, that this 
level is involved in the explanation of certain 
linguistic phenomena, such as unbounded 
dependency. 

Connectionist Structure 

A theory of connectionist representation 
must show how combinatorial structure can be 
preserved in passing from the symbolic level of 
explanation to the connectionist level. One way 
of achieving this is by positing an intermediate 
level of description, called the level of 
Connectionist  Structure (CS), at which 
combinatorial structure is preserved but in 
terms of connectionist combinatory operators 
rather than the operators of formal languages. 

A framework for connectionist represent- 
ation is illustrated in figure 1. In a connectionist 
system the formal medium for encoding repre- 
sentations is a numerical vector corresponding 
to a point in a Vector Space, V. Formally, all 
connectionist representanons can be expressed 
as vectors of length k, defined over some 
numerical range. 
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atomic symbols, and a set of symbolic 
combinatory operators; the symbolic alphabet is 
mapped into V-space under the alphabet 
mapping, f~a. This mapping might have one or 
more desirable properties, such as faid,fulness, 
orthogonaIity, etc.. 

The other major component of the 
framework, f~co, maps symbolic combinatory 
operators  onto cor responding  vector  
combinatory operators. The CS level is defined 
in terms of structured vectors which are 
generated through applying the V-space  
combinatory operators to the set of vectors in 
the codomain of the alphabet mapping. The 
main reason for differentiating the CS level of 
representation is thatonly certain combinatory 
operators are available at this level, the most 
useful  ones being assoc ia t ion  and 
superposition, and this restricts the range of 
symbolic structures that can be encoded directly 
under a connect ionis t  representat ion.  
Essentially,  the CS level preserves the 
connectivity properties of the symbolic 
structures. 

Within this framework the CS level can be 
defined formally as a semiring, as follows 
D e f i n i t i o n .  The CS level comprises the 
quintuple (V, +, **, 0, 0) 1 where 
1. (V, +, 0) is a commutative monoid defining 
the superposition operator; 
2. (V, **, 0) is a monoid defining the 
association operator; 
3. ** distributes over +: 
The two identity elements correspond to 
identity vectors, where ~ is defined for zero- 
centred vectors (Slack, 1984). The vector 
combining operations of association and 
superposition are used to build connectivity 
configurations in memory. Moreover, using an 
appropriate threshold function, the super- 
position operator can simulate a rudimentary 
form of unification (Slack, I986). The most 
general ciass of structures that can be defined at 
the CS level using the two combinatory 
operators are addressable superposition space 
hierarchies (refen'ed to as ASSHs). 

CS Address Systems 

The f~co mapping can be used to define a 
correspondence between the symbolic 
operations of union and concatenation, and the 
CS operations of superposition and association, 
respectively. This allows the following 

1 Characters in bold denote elements of the 
vector space. 

homomorphism to be defined .f: S -> CS, 
mapping the semiring S into the CS semiring, 
where 

f(xUy) = f(x) + f(y) and f(x.y) = f(x) ** f(y), 

and the semiring S comprises the quintuple 
(L x, U, . ,  0, {0}) where L x is the finite set of 
strings defined over the symbolic alphabet X, 
and U and. denote the union and concatenation 
operators, respectively, with their correspond- 
ing identities. The existence of the homomorph- 
ism allows symbolic structures to address CS 
representations. However, the restriction on 
this mapping is that CS level address systems 
cannot capture the full expressive power of 
regular languages. This is because no CS level 
operator can be defined with the same closure 
properties as the Kleene star operator at the 
symbolic level. The implications of this con- 
straint become apparent in describing how 
symbolic structures can function as structural 
addresses for the CS level. 

The symbolic structures that function as 
addresses to the CS level can be represented 
using directed, acyclic graphs (DAGS), and are 
referred to as address structure DAGs (AS- 
DAGs).  AS-DAGs codify the way in which 
symbolic labels address, or map onto, the 
nodes and edges of ASStts. In general, two 
possible types of address system can be 
defined, direct addressing and relative address- 
ing. A system of direct addressing involves 
specifying unique ASSH addresses explicitly. 
That is, a symbolic label functioning as an 
address, directly accesses a unique ASSH node. 
The alternative addressing scheme involves 
specifying nodes in the configuration in terms 
of their connectivity paths from some pre- 
defined origin node. This form of relative 
addressing requires, (a) a pre-specified origin, 
or root node, and (b) a labelling system for the 
connections within the configuration. 

The set of symbolic labels that serve as 
addresses in AS-DAGs can be partitioned into 
two classes, local and global labels, which m'e 
differentiated in terms of their function within 
an address structure. Global labels map onto 
the nodes of AS-DAGS providing direct address- 
es for the superposition spaces in ASSH config- 
urations. Local labels, on the other hand, map 
onto AS-DAG edges and specify the relative 
addresses of ASSH spaces. That is, they specify 
the locations of superposition spaces relative to 
the addresses of their dominating nodes. This 
relationship is illustrated in figure 2 showing 
how AS-DAGs map onto ASSHs. 
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The figure shows the CS level encoding of the 
LFG representation of the sentence The girl 
persuaded John to go (see Slack, 1990). The 
superposition space labelled 'JOIIN' in the AS- 
DAG can also be located using the compound 
a d d r e s s  'PERSUADE.obj ' .  2 The obvious 
question that arises is what possible rationale is 
there for this system of double addressing? 
With a system of direct addressing for ASSHs, 
the relative addressing scheme would appear 
redundant. 

At the symbolic level, local labels specify 
local structure, that is, how a node relates to its 
immediate descendents. In situations in which 
the local structure is uniform and finite, the V- 
space encodings of local labels can be fixed 
under O.a, mapping each label onto a constant 
vectorial encoding. This allows AS-DAGs to be 
viewed as configurations of local structures 
which can be located in V-space by fixing the 
vectorial encodings of their root-nodes. This 
means that global labels must be assigned 
dynamically under ~a. Putting the emphasis on 
local structure seems to make the direct 
addressing system redundant, but there are 
good reasons for needing direct access to 
superposition spaces. 

Defining arbitrary structural addresses as 
strings of local labels descending from a root- 
node can only be achieved under symbolic level 
control as the representational machinary 
necessary for interpreting concatenated label 
strings does not exist at the CS level. A string 
of local labels can only be encoded as a single 
AS-DAG edge corresponding to an uninterpreted 
label string. That is, the CS level comprises a 
set of superposition spaces which support 
structured access, and only a single ASSH edge 
can link two such spaces. This means that CS 
level access through relative addressing is 
limited to addresses comprising a single edge 
leading from an origin node. Building up 
addresses in this way necessitates an AS~DAG 
node labelling scheme such that the origin node 
can be defined iteratively. In other words, 
because the V-space encoding of local structure 
is fixed under f~a, relative addressing can only 
be specified on a local basis, with the only form 
of global addressing involving direct access to 
ASSH nodes, or superposition spaces. This 
limit on symbolic level access to connectionist 
representational states is an important source of 
locality constraints in encoding linguistic 
structures at the CS level (Slack, 1990) a. 

2 In the figure, global labels are shown in 
uppercase and local ]abels in lowercase. 

3 The representational framework has been 
implemented on a simple associative memory 
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Unbounded  Dependency:  Connect ivi ty  

One linguistic phenomenon which, rnore 
than any other, focuses on the problem of 
addressing structural configurations is that of 
unbounded dependency (UBD). Typically, in 
sentences like The boy who John gave the 
book to last week was Bill, the phrase The 
boy is {aken as the 'filler' for the missing 
argument, or 'gap', of the gave predicate, as 
indicated by the underline. At the level of 
constituent structure there are no constraints on 
the number of lexical items that can intervene 
between a filler and its corresponding gap. 
Such "unbounded dependencies" are typical of 
a class of linguistic phenomena in which the 
structural address of an element is determined 
by information which is only accessible over 
some arbitrary distance in the structure. To 
build the appropriate memory configuration, it 
is necessary to determine the address of the gap 
to which a filler belongs. However, because 
gaps and fillers can be separated by arbitrary 
distance in the input string, it is not possible to 
specify the set of potential predicate-argument 
relations that the filler can be involved in, and 
so a direct address cannot be identified. 
Instead, it is necessary to generate a relative 
address through the construction of a chain of 
global and local labels. 

Within the framework of Government- 
Binding theory, these phenomena have been 
explained through identifying conditions 
defined on constituent trees that account for the 
distribution of gaps and fillers both within and 

system based on a functional partition of V- 
space into an Address Space and a Content 
Space (Kanerva, 1988). An important feature of 
this architecture is that by encoding the 
elements of both spaces as k-bit vectors, they are 
potentially interchangeable. This allows 
elements retrieved from content space to 
function as addresses to other memory 
locations, and vice versa. Thus, the memory 
consists of a set of superposition spaces, where 
each space has a label (or address), and where 
labels can be encoded as elements of other 
spaces resulting in a hierarchical structure. In 
a hybrid architecture based on a CS level 
memory, symbolic structures are encoded 
through symbolic labels addressing elements 
of the homomorphic ASSH configurations in 
memory. In other words, symbolic level 
activity is implemented as the manipulation of 
address space labels (see Slack, 1990). 

across natural languages. One such principle is 
based on the structural geomeu'y of constituent 
trees, in particular, their connectivity properties 
(Kayne, 1983). Kaplan and Zaenen (1988) 
have taken a different approach to UBD 
restrictions arguing that they are best explained 
at the level of predicate-argument relations, 
rather than in terms of constituent structure. 
Working within the LFG framework, their 
formal system is based on the idea of functional 
uncertainty expressions. For example, for 
topic-alization sentences these expessions have 
the general form (,x TOPIC)= (^ GF* GF) 
involving the Kleene closure operator, where 
GF stands tbr the set of primitive grammatical 
functions. These equations express an uncertain 
binding between the TOPIC function and some 
argument of a distant predicate. The uncertain- 
ty relates to the identification of the appropriate 
predicate. To resolve the uncertainty it is 
necessary to expand this expression and match 
it against the functional paths of missing 
arguments. Different computational strategies 
can be used to optimise the resolution process 
(Kaplan & Maxwell, 1988). What is common 
to both approaches is that they define a system 
for specifying the structural address of a gap 
relative to its corresponding filler. 

The notion of functional uncertainty, in 
common with other linguistic feature struct- 
ures, uses an address system based on regular 
languages (Kasper & Rounds, 1986). It is 
impossible, however, to use such addresses to 
access the CS level directly as the Kleene 
closure operator cannot be interpreted at this 
level. In their present form, functional uncert- 
ainty algorithms require some kind of 'sym- 
bolic level' memory in which to expand uncert- 
ainty expressions. 

An alternative account of UBD phenomena, 
also based on predicate-argument relations, can 
be tbunded on the notion of symbolic labels 
functioning as local and global addresses to the 
CS level. The problem of UBD can be decomp- 
osed into two sub-problems, one relating to 
local structure, the other relating to global 
indeterminacy. Consider the sentence fragment 
The girl John saw Bill talking to ...... where 
the problem is to specify the struci-ural address 
of the topicalised NP, The girl, as the missing 
argument of some COMP function 4. At the level 
of local structure, the structural address of the 
filler is minimally uncertain in that it can fulfil 

4 As the present discussion focuses on 
predicate-argument relations, we will continue 
to make use of LFG notation and constructs, 
such as grammatical functions. 
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only a small set of local roles, for the present 
case the OBJ function. However, the structural 
address of the appropriate local structure is 
maximally uncm~ain, as the filler item carries no 
information to constrain it. 

Before considering solutions to these two 
crab-problems, it is necessm'y to clarify how the 
in fo rmat iona l  componen t s  of  l inguist ic  
structures such as f-structures function as 
addresses to the CS level. Elements of the set 
GF can function as both local and global 
addresses to memory configurations. Each GF 
~:lement defines a component of local structure 
~md as such can function as a local label in the 
:relative address chain for an AS-DAG node. In 
addition, GF labels can be associated with fixed 
memory locations, thereby funct ioning as 
:;~lobal addresses. For example, the symbol 
COMP can be used to label an AS-DAG edge 
ibrming a constituent of a relative address, and 
at the same time provide direct access to a fixed 
k)cation, that is, label an AS-DAG node. These 
~:wo addressing functions can be distinguished 
~y usm~ the labels COMP and COMP to 

1 P g ~ ,enote the local and global addresses, respect- 
ively° 

in encoding f--structures at the CS level, 
each sub-structure maps onto a separate 
:¢uperpositon space (Slack, 1986). This form of 
direct addressing requires a set of  global 
~,'~ymbolic labels that uniquely identify each sub- 
s!:ructure. The predicate names of f-structures 
provide such a labeling system. In this case, 
each predicate name constitutes a unique origin 
fi~r definir,,g relative local addresses° Hence, 
!,:~cal labets like COMPp specify locations 
rc:lative to a predicate 'p', that is, their immedi~ 
ate dominating node in the AS.-DA(L 

These labeling systems can be used to solve 
the two UBD sub-problems. On encountering a 
filler item in the input string, the analyser must 
allocate some structural location in memory at 
which to store the infi,mnation carried by the 
• .5 J~ern . Part of that information specifies the 
fi/!er's local address. For example, the inform-- 
a i.ion carried by the phrase the girl might  
include an encoding of the functional sub- 
s, ructure [OBJ ** [pred 'girl' + spec the + hum sg]] 6. 
At some later point  in processing,  this 
information will be superposed, or unified, 
with stored information about the structm'e of 
some local tree. For example, the predicate talk 

5 Problems of structural ambiguity are not 
being considered at this point. 
6 This encoding utilises the fact that memory 
acldresses carl also be encoded as memory 
contents, and vice versa. 

may encode through subcategorisation tile local 
structure talk(subj, obj, comp). If the OgJ func- 
tion remains unspecified, the filler information 
will unify at this location in memory, enabling 
its structural address to be specified ielative to 
the address of  the predicate talk. The syntactic 
analyser can solve the memory allocation prob- 
lem by generating the label TOPIC, enabling the 
encoding: TOPICg -> [OBJ*a[NP features]]Tto be 
created. This encoding solves the local depend~- 
ency problem. 

To solve the problem of global indete> 
minacy,  the analyser  must also build an 
encoding like 

COMPp -> TOPICg 

the effect of  which is to move the topicalised 
information through connected COMP locations. 
in other words, it corresponds to the control 
equat ion TOPIC = COMP* at the symbolic 

level a. 
The principle underlying this latter encoding 

is that COMP labels a specific location in 
memory determined relative to the locanon with 
the global address 'p'. This means that the local 
label is automatically reassigned as each new 
local structure unfolds. The operation of 
reassignment involves two concurrent actions: 
1) Direct  labelling - the structural location 
labelled by COMPp is reqabelled using the new 
predicate name as a global label; 2) Bui ld  
connection - a new location is connected into 
the structm'e with the label COMPpwhere 'p' is 
bound to the new predicate name. The effect of 
the last action is to p a s s  the topicalised 
information onto the next connected level of 
local structure. Obviously, if the first action 
occurs without the second, the filler label will 
not be passed as the COMPp -> TOPICg 
encoding will become undefined. Once this 
happens the COMP~ address is no longer 
retrievable mr  further processing. However, 
the second action can only ¢mcur if the building 
of a COMPp edge is licensed by the information 
carried by the predicate 'p'. For example, 
consider the partial fostructure shown in figure 
3 and the corresponding AS-DAG configuration. 
A topicalised NP originating at the top-level 

7 This notation specifies address-content 
associations; 
AS-DAG address -> superposition space 
contents. 
8 As stated previously, the operator * cannot be 
mapped directly to the CS level. 
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node can be passed down the COMPp reassign- 
ment chain descending from the same node, but 
it cannot be passed to the COMP embedded in 
the SUBJ f-structure. The COMPp -> TOPICg 
encoding is undefined at the location addressed 
by the SUBJp label, because the COMP function 
cannot be licensed by the SUBJ predicate. 

In brief, functional uncertainty expressions 
such as (^ TOPIC) = (^ COMP* OBJ) cannot be 
mapped directly to the CS level as structural 
addresses. Instead, the uncertainty is captured 
by the CS encodings COMPp-> TOPICg and 
TO. PICg -> OBJ**[NP features]. As the connect- 
lvxty structure unfolds in memory, the action of 
reassigning COMPp places restrictions on the set 
of structural addresses to which the topicalised 
information can be passed. Using predicate- 
argument structures as address systems for the 
CS level leads to the conclusion that 
connectivity, defined at this level of linguistic 
structure, determines the distribution of fillers 
and gaps within a language. 
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