
A Symmetrical Approach to Parsing and Generation

Marc Dymetman, Pierre Isabelle and Frangois Penault

CCRIT, Communica t ions Canada. 1575 Bld Chomedey . Laval (Qu6bec) H7V 2X2 C A N A D A

Abstract . Lexicat Grammars are a class of unification grammars which share a fixed rule component,
for which there exists a simple left-recursion elimination transformation. The parsing and generation
programs ale seen as two dual non-left-recursive versions of the original grammar, and are implemented
through a standard top-down Prolog interpreter. Formal criteria for termination are given as conditions
on lexical entries: during parsing as well as during generation the processing of a lexical entry constimes
some amount of a guide; the guide used for parsing is a list of words remaining to be analyzed, while the
guide for generation is a list of the semantics of constituents waiting to be generated.

I . I n t r o d u c t i o n
S y m m e t r y b e t w e e n p a r s i n g and

generat ion . There is a natural appeal to the attempt
to characterize parsing and ge~;era~ion in a symmetrical
way. This is because the statement of the problem of
revers ibi l i ty is naturally synlmetr ical : parsing is
concerned with recovering semantic content from
phonological content, generation phonological content
from semantic content. It has been noted by several
researchers ([$88], tN891, [SNMP891) that certain
problems (left-recursion) and techniques (left-corner
processing, linking, Ear!ey deduction) encountered in
the parsing domain hJ, 'e o,rrelates in the generation
domain. It is then na!:ural to wy and see parsing and
generation as instances of a single paradigm; [$881 and
[D[88, DI90I are attempts in this direction, but are
hindered by the fact that there is no obvious correlate
in gene,'ation of the string indexing techniques so
prominent in parsing {string indices in chart parsing,
differential lists m DCG parsing).

Guides . What we propose here is to take a step
back .and abstract file notion of string index to that of a
;,¢¢iUc. This gci~er,d notion ,,viii apply to both parsing
aud generation, but it wi/! be instantiated differently in
the va'o modes. The purpose of a guide is to orient the
proof procedure , speci f ic to ei ther parsing or
generation, in such a way that: (i) the guide is
initialized as a direct function of the input (the string
in parsing, thc semantics in generation), (it) the current
stale of the ,~uide strongly constrains the next access lo
the lexicon, (iii) after lexical access, the size of the
guide strictly decreases (,gMde-consumption co~lditic.1,
see section 3). Once a guide is specified, the generation
problem (respect ively the parsing problem I) then
reduces to a problem fornml!y simihtr to the problem of
parsing v, ith a DCG [PW80} containing no empty
p r o d u c t i o n s 2 (ie rules whose right-hand side is the
empty string []).

Several parsing techniques can be applied to this
problem; we will be concerned here with a top-down
parsing approach directly implementable through a
standard Prolog interpreter. This approach relies on a
lefi-recl~r,sioll-climination trans/brmation for a certain
class of definite clause programs (see section 33.

The ability 1o specify guides, for parsing or for
generat ion, depends on certain compos i t iona l i ty
hypotheses which the underlying grammar has to
satisfy.

I Thb, hall of the statcmenl ma> seem tautological, but it is not: see the attempt
:it a reinlerprctalion of left exirap~sition iri terms of guides in section 5.

2 Al~o <'ailed meh' r.h 'x I11781.

H y p o t h e s e s on c o m p o s i t i o n a H i t y . The
parsing and general ion problems can be rendered
t ractable only if certain hypmheses are made
concerning the composit ion of linguistic structures.
Thus generation can be arduous if the semantics
associated with the composition of two structures is the
nm'estricted lambda-application 3 of tile first structure's
semantics on the second structure's semantics: this is
because knowledge of the mother's semantics does not
constrain in a usable way the semantics of the
d a u g h t e r s . 4 On the contrary, parsing is greatly
simplified if the string associated with the composition
of two strqctures is the concatenation of tile strings
associated with each st,ucture: one can then use string
indexing to orient and control tl'e progression of the
parsing process, as is done in DCG under tile guise of
"dil'ferential lisls".

l , e× ica l G r a n l m a r . The formalism of Lexical
Grammar (LG) makes explicit certain compositionality
hypotheses which ensure the existence of guides for
parsing as well as for generation.

A Lexical Grammar has two parts: a (variable)
lexicon and a (fixed) rule component . The rule
component, a definhe clause specification, spells out
basic linguistic compositionality rules: (i) how a well-
formed linguistic structure A is composed from well-
formed structures B and (27: (it) what .:ire the respective
statuses of B and C (left consti tuent vs ri,,,ht
constituent, syntactic head vs syntactic dependenl ,
semantic f-wad vs semantic depemlent): and (iii) how the
string (,'esp. semantics, subcategorizat ion list)
associated with A is related to the strinoA (resp.
semantics, subcategorization lists) associated with
/3 and C (see sectioi, 2).

The ability to define a guide for parsing is a
(simple) consequence of the fact that the string
associated with A is the concatenation of the strings
associated with B and (.,5. The ability to define a guide
for generation is a (less simple) consequence of LG's
hypotheses on subcategorization (see sections 2 and 4).

"~ By tmrestricted lambda-application, we mean functional application
lbtlowed by, ivwriting to a ilOl'tlla] lollll,

4 In theories favoring such an approach (such as GPSG IGKPS871), parsing
may be computatiollally tractable, but generation does not seem to be. These
theories can be questioned as plausible computational models, for they should
be judged on Iheir ability to account for production behavior (generation) as
well as for understanding behavior {parsing).

5 A fairly standard assumption, ll: empty string lealizalions are allowed, then
extraposifion call still be handled, as '~ketched in section 5.

90 1

(P0) Lexical Grammar rules

/ N
conse Kvat J ve addit i on conserva t J ve add:i t i on

of parsing guide o[gent.ration guide

. / \
guided parsing guided generation

(Plp) program (Plg) program
(leli-recursive) (lefl-recursive)

ieft-recdrsJ.on e] il[lJ nat Jol]

I l

guided parsing guided generation
(P2p) program (P2g) program

(non left-recursive (non left-rccursive

Fig. 1. A symmetrical approach to parsing and
generation: paper overview

P a r s i n g a n d G e n e r a t i o n w i t h l , e x i c a l
G r a m m a r . Fig. I gives an overview of our approach
to parsing and generation. Let us briefly review the
niain points:

- - (P0) is a definite clause specification of the
original LG rules. It contains a purely
declarative definition of linguistic
compositionality, but is unsuitable for direct
implementation (see section 2).

..... (Pip) (resp (Plg)) is a guided conservative
ex tens ion of (P0) for parsing (resp. for
generation); that is, (Plp) (resp (Plg)) is a
specification which describes the same
linguistic structures as (P0), hut adds a certain
redundancy (guiding) to help constrain the
imrsing (resp. generation) process, t towever,
these definite clause programs are not yct
adequate for direct top-down implementation,
since they are left-recursive (see section 3).

- - (Plp) and (Pig) can be seen as symmetrical
instantiations of a common program schema
(P1); (Pl) can be transformed into (P2), an
equivalent non-leftorecursive program schema
(see section 3).

- - (P2p) (resp (P2g)) is the non-left-recursive
version of (Plp) (resp. (Pig)). Under the
guide-consumption condition, it is guaranteed
to terminate in top-down interpretation, and to
enumerate all solutions to the parsing (resp.
generation) problem (see section 4).

For lack o/' space, theorems are stated here without
proofs'; these, and more details, can be]bund in [D9Ob].

2 . L e x i c a l G r a m m a r
Rule c o m p o n e n t The fixed rule component of

LG (see Fig. 3) describes in a generic way the
combination of constituents. A constituent A is either
lexical ly specif ied (second clause in the phrase
definition), or is a combination of two constituents /3
and C (first clause in the p h r a s e definition). B and C
play complementary roles along the following three
dimensions:

- - combine .strings : B is to the hift of C in the
surface order, or conversely to the right of C.
This information is attached to each
constituent through the string order feature.

- - combine syns : B is the syn tac t i c -head and C
the syntact ic-dependent , or conversely
(syn order feature).

.... combine seres : B is the semant i c -head and C
the semant ic-dependent , or conversely
(sere_order feature).

Because B and C play symlnetr ical roles (' , these
seemingly eight combinations actually redttce to four
different cases. To avoid duplicating cases, in the
definition o1' the p h r a s e predicate, the symmetry has
been "broketf ' by arbitrarily imposing that B be the

left constituent. 7
Fig. 2 gives an example of a derivation tree in LG,

using the lexicon of Fig. 4.

A

B

ma<v / ' ~ " ~ h

D E
of Te;;

F G
v is i ted nolre dane

A.subcat = [] A.sem : C.sem
B.subcat = [J = D.scm
C.subcat = [BJ = often(,visit(marv,nd))
D.subcat = left E.sem = F.sem
E.subcat = [B] = visit(mary,nd)
F.subcat = IG,B] B.sem = mary
G.subcat = [] G.sem = nd

Fig. 2. A derivation in LG
(heavy lines correspond to semantic-heads)

Our notion of s e m a n t i c - h e a d is a variant of that
given in [SNMP89], where a daughter is said to be a
semantic-head if it shares the semantics of its mother.
The c o m b i n e s e re s predicate is responsible for
assigning sere -I-wad status (versus sem dep status) to a
phrase, and for-imposing the following constraints:

i. the semantic-head shares its semantics with its
mother,

it. the semantic-head always subeategorizes its sister
((b) in Fig. 3),

iii. the mother's subeategorizat ion list is the
concatenation of the semantic-dependent list and
of the semantic-head list minas the element just
incorporated ((c) in Fig. 3). 8

The subcategorization list attached to a constituent X
corresponds to constituents higher in the derivation
tree which are expected to fill s e m a m i c roles inside X.
Subcalegorization lists are percolated flom the lexical
entries up the deriw~tion tree according to iii.

6 Remark: the rules are m)t DCG rules, bul simply d<finite (orl]o!¢ 0 (tau.sc.~

7 If line (a) in the definitioll of phrase were omitled, the same ~('l e l lingtListic
strUCtLIFeS Wollld result, but some strLlcltlres ',A'otl[d be described twice, Line
(a) is simply onc means of clinlinating these spurious ambiguities. '[he S~llllC
el'lEcl would be produced by rephlcing (a) by fi.sem enter = sere]wad or by
B,spl ordcr = s>w head.

8 hi fact, because of d~e constraints imposed by co#tM;w ,syn,s (see discussion
bclm~) one of these lwo lists has to be empty.

2
91

phrase(A) :- phrase(B), phrase(C),
B.string order = left,
COlnbine(B,C,A).

phrase(A) :- term(A).

(a)

combine(B,C,A) :-
(combine_s t r ings (B,C,A) ;combine_s t r ings (C,B,A)) ,
(combine syns(B ,C,A);conrbine syns(C,B,A)) ,
(combine_sems(B ,C,A);combine sems(C,B ,A)).

combine_st r ings(B,C,A) :-
B.string_order = left, C.string_order = right,
append(B.s t r ing ,C.s t r ing ,A,s t r ing) .

combine s e m s (B , C , A) : -
B.sem order = sere head, C.sem_order = sem_dep,
A.sem = g.sem,
B.subcat = [CIRest],
append(C.subcat ,Rest ,A.subcat) .

combine syns(B,C,A) :-
B.syn_order = syn head, C.syn_order = syn_dep,
A.cat = B.cat,
(B.sem_order = sere_head, C.subcat = []

% complement
; C.sem order = sere_head, C.subcat = [_]).

% modifier

(b)
(c)

Fig. 3. The rules Hf Lexical Grammar 9

Semantic-heads need not correspond to syntactic-
heads. In the case of a mod~fi'er like often, in paris, or
hidden by john, the modif ie r phrase, which is the
s y n t a c t i c - d e p e n d e n t , is the semantic-head and
semant ica l ly subca tegor izes its sister: thus, in the
example of Fig. 2, the modifier phrase D semant ical ly
subcategorizes its sister E; combine sen:s has then the
effect of unifying tile semantics of E (visit(ntary,nd)) to
the substructure X in the semaatics (often(X)) attached

) -e to D (see the lexical e n t y for ~jten in Fig, 4). This is
reminiscent of work done in c'ttegorial gramnmr (see for
instance IZKC~ ~l), where a n 'odifier is seen as having a
category of the fornl A/A, aud acts ;.Is a functor on the
group it modifies.

The combine syms predicate is responsible for
assigning swz_head status (v e r s t l s s y n d c p status) to a
phrase, and for ensuring the following constraints:

i. Tile category cat of the ssntact ic-head is
transmitted to the mother. The category of a
phrase is lherefore always a projection of the
category (n . v p a ..) of some lexical item.

ii. When the syntactic-dependent is the same as tile
semamic-dependent , then the syntactic-
dependent is semantically saturated (its subcat
is empty). This is the case when the syntactic-
dependent plays the syntactic role of a
complement to its syntactic-head.

iii. When the syntactic-dependent is tile same as
the semantic-head, then tile syntactic-
dependent 's subcat contains only one
e lement m. This is the case when the syntactic-
dependent plays the syntactic role of a
rood(fief to its syntactic-head.

The lexicon in LG Because LGs have a
fixed rule component , all specific linguistic knowledge

9 Here, as in the sequel, we have made use of a "dot notation" for functional
access to the different featttros of a linguistic structure A: for instance, A . c a t
represen%; the content of tile ('at feature ill A.

l0 The "external argument" of the modifier, identified with the ~;emantic-
dependent by tile semantic combhmtkm rule.

term(T) :- T.sem = mary,
T.string =]mary],
T.cat = n, T.subcat = 11.

term(T) :- T.sem = n o t r e d a m e ,
T.string = [notre,darnel,
T.cat = n, T.subcat = [].

term(T) :- T.sem = paris,
T.string = [paris],
T.cat = n, T.subcat = [].

term(T) :- T.sem = die(S.sem),
T.string = [d i ed] ,
T.cat = v, T.subcat = IS],
S.string order = left,
S.cat = n, S.syn_order = syn_dep.

term(T) :- T.sem = visit(S.sem,O.sem),
T.string = [visited],
T.cat = v, T.subcat = tO,S],
S.string order = left, S.cat = n,
S.syn_order = syn dep,
O.string order = right, O.cat = n,
O.syn_order = syn dep.

term(T) :- T.sem = in(S.sem,O.sem),
T.string = [in],
T.cat = p, T.subcat = tO,S],
S.string_order = left, S.cat = v,
S.syn order = syn head,
O.string_order = right, O.cat = n,
O.syn_order = syn dep.

term(T) :- T.sem = often(S.sem),
T.string = [often],
T.cat = adv, T.subcat = IS],
S.string_order = _, % may be left or right
S.cat = v, ,S.syn o r d e r = syn head.

Fig. 4. Lexical entries in LG 11

is contained in the lexicon. Fig. 4 lists a few pos~'~ble
lexical entries.

Consider a typical entry, for instance the cntry for
in. This entry specifies a possible leaf T of a derivation
tree. T has the following properties:

i. T has string [in], and is of category p
(prepos i t ion) .

ii. T semantically subcalegorizes two phrases: O
(the object of the preposition), of category n.
and S (the "implicit subject" of the
preposition), of category v. By the general
constraints associated with combine seres,
this means that S and O will both have
semantic-dependent status.

iii. In the surface order, S is to the left of its
semantic-head, while O is to the right of its
semantic-head.

iv. The semantics in(S.sem,O,sem) of 7 is obtained
by unification from the semantics of its
subcategorized consti tuents S and O.

v. S is constrained to having syntact icqmad status,
and O to having syntactic-dependent status.
Because of the constraints imposed by
combine syns, this means that O will be a
syntactic complement of the preposition, and
that the preposit ional phrase will be a
modifier of its "subject" S.

Idioms. The lexical apparatus allows for a direct
account of certain types of idiomatic constructions. For
instance, if the lexical entries of Fig. 5 are added to the

For eas ~ is f ex msilion, tile c)tltlib itioll of he tense to the semantics of
verbs is ignored here.

92 3

lexicon, then the express ion "X kicked the bucket" will
he ass igned the semant ics die(X). Entry (a) expresses
the fact that (in its idiomatic use), the verb form kicked
subca tegor i zes for a subjec t S and an object 0 w h o s e
s e m a n t i c s is t h e b u c k e t , and is i t se l f a s s igned the
semant ics dietS.sere).

term(T) :- T .sem = die(S.sem),
T.s t r ing = [kicked],
T.cat = v, T. subca t = [O,SI ,
S.str ing order = left, S.cat = n,
S.syn order = syn_dep ,
O.s t r ing order = right, O.cat = n,
O.syn order = syn dep,
O.sem = the_bucket .

term(T) :- T .sem = the_bucket , (b)
T.s l r ing = l the ,bucket] ,
T.cat = n, T.subcat = [I.

(a)

Fig. 5. Id ioms in LG

3 . G u i d e s a n d l e f l - r e c u r s i o n e l i m i n a t i o n
G u i d e , i . Cons ider a finite str ing l t, and let 12 be a

proper suffix o f ll , l 3 be a proper suffix of 12, and so
on. This opera t ion call only be iterated a finite number
of t imes. The notion of guide-structure genera l izes this
~,;ituation.

DEFINITION 3.1. A guide-structure is a partially
ordered set G which respects the d e s c e n d i n g cha in
c o n d i t i o n , i.e the condition that in G all strictly
decreasing ordered chains 11 > 12 > ... > l i > ... are
,finite.

C o n s i d e r now the fo l l owing e l emen ta ry def in i te
clause program (P0')t2:

a(A) :- a(B), ~(B.A). (P0)

a(A) :- ttA).

We assume here that g) is an abbrevia t ion which
,,;lands for a dis junct ion (C:,'-...'('k) of conjunct ions Q o f
goals o f the form a(A) , t(A), or {T=S} (unification
: :oals) where the T, S are v a r i a b l e s or par t i a l ly
ius tan t i a t ed te rms . A m o n g the va r i ab l e s a p p e a r i n g
in s ide 'i), on ly the " in t e r f ace" va r i ab les A, B are
exp l i c i t l y m e n t i o n e d . We fu r the r a s s u m e that the
de f in ing c lauses (not shown) for the t p redica te have
r ight- .hand s ides w h i c h are c o n j u n c t i o n s o f term
u n i f i c a t i o n g o a l s { T = S } . We call t the l e x i c o n
predicate, and a the generie nonterminal predicate.

Cons ide r now the fo l lowing program (Pl) , cal led a
guided extension of (P0):

a'(A,Li,,,Lout) :- a'(B,Li,,Li,ter) , (P l)
ff~'(B ,A ,Lmter,Lma).

a'(A,Lm,Lma) .'- t'(A,Lin,Lout).

(P l) is ob ta ined from (P0) in the fo l lowing way: (i)
guide variables (Lin, Linte r, Lout)have been threaded
t h roughou t (P0), and (it) the l - p r e d i c a t e t has been
rcphtced by a 3-predica te t ' w h i c h is a s sumed to be a
r<finement of t, ie, J b r all A, Li,, Lot . , t'(A,Lip~,Lour)
imp.lies t(A).

Program (P l) is a more cons t r a ined vers ion of
p rogram (P0): t ' can be seen as a version of t which is
able to "consult" Liv ~, thus coos t ra in ing lexical access at
each step. We will be interested in programs (P l) which
respec t two cond i t ions : (i) the g u i d e - c o n s u m p t i o n

I! Only programs of the (P0) form are discussed here, but the subsequent
discussion of guides generalizes easily to arbitrary definite clause programs.

c o n d i t i o n , and (it) the c o n s e r v a t i v e ex t ens ion
condition.

I)~iFlNrrlOY 3.2. Program (PI) is said to satisfy the
guide-consumption condition if/" (i) the guide variables
take their values in some guide-structure G, and (it) any
call to t ' (A,Lin,Lout) with Lin fully instantiated returns
with Lou t ./idly instantiated and strictly smaller in G.

DEFINITION 3.3. Program (P1) is said to be a
conservative extension of (PO) iff: a (A) is provable in

(PO) e:> there exist Lin,Lou t such that a ' (A,Lin ,Lout) is
provable in (P1).

The ~ par t o f the p r e v i o u s d e f i n i t i o n is
au tomat ica l ly sat isf ied by any program (P1) def ined as

above . The ~ part, on the o the r hand, is not, hut
depends on fur ther condi t ions on the r e f inemen t t ' o f t.
Saying that (PI) is a conserva t ive ex tens ion o f (P0) is
tantamount to saying that (P1) adds some redundancy to
(P0) , w h i c h can be c o m p u t a t i o n a l l y e x p l o i t e d to
cons t r a in p rocess ing .

Lef t -recurs ion e l imin a t ion 13. Program (PI)
is lef t - recurs ive: in a t op -down interpretat ion, a call to
a ' will resul t in ano the r immed ia t e call to a ' , and
there fore will loop. On the o ther hand the fo l lowing
p rog ram (P 2) is not l e f t - r ecurs ive , and T h e o r e m 3.4
shows fllat it is equivalent to (Pl) :

a'(A,,,Li.,L .) :- t'(Ao,Li,l,Lo), aux(Ao,A,l,Lo,L,fl,
aux(An,An,Ln,L.).
aux(Ai,An,Li,L n) :- ff)i'Ai,Ai+t,Li,Li+l),

aux(A i+ 1 ,A n,Li + I ,L.).

(P2)

Here , ,.to' and t ' are the same as in (P1), and a new
predicate aux, called the auxiliary nonterminal predicate
has been introduced.~4

THFORFM 3.4. Programs (P]) and (P2) are equivalent
in predicate a'.l 5

The fact tMt (p2) is not l e f t - recurs ive does not
alone guarantee terminat ion of t op -down interpretat ion.
H o w e v e r , if (P I) r e s p e c t s the g u i d e - c o n s u m p t i o n
c o n d i t i o n and a fu r the r c o n d i t i o n , the n o - e h a i n
condition, then (P2) does indeed terminate. 16

DEFINrrIoN 3.5, Program (P1) is said to re,v~ect the
no-chain condition llf each goal conjunction Ci'
appearing in ©' contains at least one call to a' or to t'.

THEOREM 3.6. Suppose (PI) satisfies both the
guide-consumpt ion condit ion attd the no-chain
condition. Then relative to top-down, depth-first,
interpretation of (P2), the query a (A ,L0 ,Ln) , with L 0
completely instantiated, has a finite SLD search tree] 7
associated with it (in other words, all its solut ions will
be enumera t ed through backt racking , and the program
will terminate) .

4 . P a r s i n g a n d g e n e r a t i o n in L e x i c a l
G r a m m a r

The rules of Fig. 3 are comple te ly symmetr ica l in
the i r s p e c i f i c a t i o n o f s y n t a c t i c c o m p o s i t i o n a l i t y ,

13 The general problem of left-recm'sion elimination m I)CGs (including
chain rules and mall rules [H78]) is studied in [D90al; the existence of a
Generali=ed Greibaeh Normal Form is proven, and certain decidability results
are givcll.
14 The (PI) ~ (I)2) translbrmation is closely related to lej?-eorner parsing
[MTIIMY83], which can in fact be recovered fronl this transformation
through a certain encoding t)rocedurc (see ID90b]),
15 That is: a'(A,LM,Lou t) is a consequence of (P l) i ff a'(A,Lin.Lout) is a
consequcnce o[(P2).
16 In tile context of (?FGs, tile no chain condition would Colrk~spolld it) a
gl 'alll l / lal without ¢]la[l~ rides, alld tile guide collgtllilption Collditioll [o a
granlmar without null rules.
17 See [L87] A)r a definition of SI,D search tree.

4 93

(B,Lo,Lt)
mary

(A,L0,L4)

1
(C , L I , L 4)

(D,L, ,L2)
(E,L2,L4) o/re,,

(F,L2,L3) (G,L3,L4)

visited notre dame

L 0 = [mary,often,visited,notre,dame]
L 1 = [often,visited,notre,dame]
L 2 = [visited,notre,dame]
L 3 = [notre,dame]

L 4 = []

Fig. 6. A guide for parsing

" s t r i n g " c o m p o s i t i o n a l i t y and s e m a n t i c
c n m p o s i t i o n a l i t y is. The symmetry between string
composit ionali ty attd semantic composit ionali ty will
allow us to treat parsing and generation as dual aspects
of the same algorithm.

Orienting the rules. The p h r a s e predicate can
be rewritten in either one of the two forms: phrase j) ,
where emphasis is put on the relative linear order of
const i tuents (h, f t vs. r igh t) , and p h r a s e _ g , where
emphasis is put on the relat ive semantic status
(semantic head vs. semantic dependent) of constituents.

phrases~(A) :-phrase_p(B), 'I'(B,A). (POp)
phrase p(A) :- term(A)

where 'I'(B,A) stands for:

• t'(B,AJ - p h r a s e ~ (C L
B.strin3 order = left,
combine(B,C,A).

and
phrase_g(A) :- phrase g(B), G(B,A). (P0g)
phrase_g(A) :- term(A)

where G(B,A) stands for:

G(B.A) -~ phrase_g(C),
B.sem order = head,
combine(B,C,A).

LEMMA 4.1. phrase_p and phrase g are both
equivalent to phrase.

The phrase j) (resp. p h r a s e g) programs are now
each in the format of the (P0) program of section 3,
where a has been renamed: phrase p (resp. phrase_g),
and 09: P(resp. G).

These programs can be extended into guided
programs (Plp) and (Plg), as was done in section 3:

phrasej / (A,Lin,Lou t) :- (Plp)
phrase p'(B,Lin,Linter), P'(B,A,Linter,Lout).

phrase_p'(A,Lin,Lout) :- term~o'(A,Lin,Lout).
where:

and

W(B,A,Li,lte,.,Lout) -~ phrase~/(C,Linte,,Lout),
B.string order = h'fi,
combine(B,C,A).

(Dp)

phrase g '(A ,L m,Lou t) :- (P 1 g)

phr ase_g'(B ,Li,,,Linte,.), G'(B ,A,Lmter,Lom).
phrase g'(A,Lm,Lout) :- term g'(A,Lin,Lout).

where:

G(B,A,Linte,.,Lout) =~ phrase g'(C,Linter,Lout), (Dg)
B.sem order = head,
combi-ne(B,C.A).

In these programs, term p' and t e rm_g ' are the
refinements of term (corresponding to t' in program
(P1) of section 3) used for parsing and generation
respect ively. Their definit ions, which contain the
substance of the guiding technique, are given below.

N.B. Programs (Plp) and (Pig) respect the no-
chain c o n d i t i o n : p h r a s e _ p ' is called inside 'P', and
phrase_g' is called inside G'.

A conserv'ltive guide for parsing. Let us
define term_p' in the following way:

term I/(A,Lin,Lou t) :- term(A),
append(A.string,Lo,,.Li,~).

(Gp)

It is obvious that term p' is a refinement of term.
Using the definition of combines t r i ngs" in section 2,
one can easily show that program (PIp) is a
conservative extension of program (POp).

The guide-structure G p is the set of character
strings, ordered in the following way: st] <_ st2 iff s t l
is a suffix of st2. If the lexicon is such that for an 5 '
entry term(A) , A.s tr ing is instantiated and is different
from the empty list, then it can easily be shown that
(PIp) respects the guide-consumption condimm.

The guide just introduced for parsing is simply a
restatement in terms of guides of the usual differential
lists used in the Prolog translation of DCG rules.

A conservative guide for g e n e r a t i o n . Let
us define t e rm g" in the following way (using the
auxiliary predicate extract sems):

term_g'(A,Lin.Lo, t) .'- term(A),
L m=[A.sem/Lmter],
extract sems(A.subcat,SubcatSems),
append(SubcatSems,Li,te!.,Lont).

extract_sems([],/]).
extract_sems([X/Rest],[X.sem/RestSems]).'-

extract sems(Rest .RestSems).

(Gg)

The guide structure L used for generation is a list of
semantic structures, initially instantiated to I S . s e m i ,
where S is the linguistic structure to be generated, of
which the semantics S . s e m is known. When a call
term g'(A,Lin,Lo,a) to the lexicon is made, with Lin
instantiated to a list of semantic structures, the lexical
s t ructure A selected is constrained to be such that its
semantics A . s e m is the first item on the Lin list. The
A . s e m element is "popped" from the guide, and is
replaced by the list of the semantics of the phrases
subcategorized by A. (Fig. 7 illustrates the evolution of
the guide in generation.)

18 This symmetry should not be obscured by tile fact that, in order to avoid
duplicating clauses with the same logical content, the presentation of tile rules
appears otherwise (see above the discussion of "broken symmetry").

94 5

(A,L0,L4)

(C,Lo,L3) {B,L3,L4)
_ , i ~ mary

(D,Lo,LI) (E,LbL3)

(F,L,,L2> <G,L2,L3>

visited non'e dante

L 0 : [often(visit(rnary,nd))]
L 1 = [visit(mary,nd)]
L 2 = [nd,mary]
L 3 = [mary]
1. 4 = []

Fig. 7. A guide for generation

It is" obvious that term_g' is then a refinement of
t e r m , and fur thermore , using the def ini t ion of
eombine sems in section 2, one can prove:

Lt",MMA 4.2. Progranl (Plg) is a conservative
extension of program (POg).

7'he guide.consumption eonditio~ in generation.
Let us define recursively the size of an LG semantic
representation as the function fi'om terms to natural
numbers such that:

size]atom] = 1

size[atom(T I T,)] = 1 + sizelTl] + ... + sizelT,J

Assume now that, for any entry t e r m (A) , the
lexicon respects the following condition:

I f A.se,n is fully instantiated, then the A.subcat
list is instantiated sufficiently so that, for any
element X of this list, (i) X.sem is J'ully
instantiated, and (ii) X.sem has a strictly smaller
size than A.sem.

Under these conditions, one can define a guide-structure
Gg (see [D90b]), and one can prove:

LEMMA 4.3. Program (Plg) satL@'es the guide-
consumption condition.

The result ing programs for parsing and
g e n e r a t i o n . After the lef t - recurs ion e l iminat ion
transforrnation of section 3 is performed, the parsing
and generation programs take the following forms:

phrase p'(An,Lm,Ln) :- term l/(Ao,Lin,Lo),
aux fl(Ao,A n,LO,Ln).

a ux_j)(A n,A ,,L n ,L pO .
aux J~(Ai,An,Li,Ln) .'- fP'(Ai,Ai+ 1,Li,Li+ l),

auxj)(Ai+ l,An,Li+ l,Ln)"

phrase_g'(An,Li,,,Ln) .'- term_g'(Ao,Li,,,Lo),
aux_g(Ao,A~,Lo,Ln).

attx__g(A n,A ,~,Ln,L").
atcr_ ,g(Ai,An,Li,L,) :- G'(Ai,Ai+ I,Li,Li+ I),

aux_g(Ai+ 1 ,A,~,Li+ l ,L,,).

That is, after explicit ing term_p', term_g', ft" and G'
(see (Gp), (Gg), (Dp), (Dg), above), these programs
take the forms (P2p) and (P2g) in Fig. 8; for

parse(S.string,S.sem) :-
S.cat =v, S.subeal=[],
phrase_p'(S,S.string,[]).

% S is a sentence

phrasej)'(A,, ,Li, ,L n) .'- term(A),
append(A.string,Lo,Lin),
aux.p(A o,A n,l,O,Ln).

au-v j)(A n,An,Lt,,Ln).
aux p(Ai,An,Li,Ln) :- phrasej/(C,Li,Li+l),

Ai.string order= le/'t,
combine(A i, C,A i+ l),
aux p(Ai+l,An,Li+t,L,).

(P2p)

generate(S.string,S.sem) .'-
S.eat =v, S.subcat=[],
phrase g'(S,lS.sem],l /).

% S is a sentence

phrase g'(A,,,Lin,Ln) .'- term(A),
Lit ' = [A .sem/Linte,.],
extract sems(A.subeat,SubeatSems),
append(SubeatSems,Li,te,.,Lo),
aux g(Ao,A,,Lo,Ln).

atzx g(A n,A n,L n,Ln).
au.r g(Ai,A,~,L i,L") .'- phrase_g'(C,L i,Li+ l),

Ai.sem_order = head,
c ombine(A i,C,A i + l),
aux g(Ai+ l,An,Li+ 1,L").

extract_seres(/i,]]).
extractsems([X/Rest],lX.sem/RestSemsl).-

extract sems(Rest,RestSems).

(P2g)

Fig. 8. The final parsing and generation programs parse
and generate

convenience interface predicates parse and generale arc
provided.

Under the conditions on the lexicon given above
- - which are satisfied by the lexicon of Fig. 4 - ,
programs (Plp) and (Pig) both respect the guide-
consumption condition; they also respect the no-chain
condit ion (see remark following the description of
(Pip) and (Plg)); Theorem 3.6 applies, and we have the
following result:

/ f parse(A.string,A.sem) (resp.
gencrate(A.string,A.sem)) is called with A.string
instantiated (re,v). A.sem inslantialed), then all
solutions will be enumerated on baeklracking, and
the query will terminate.

5. Further research
Handl ing extrapos i t inn with guides . The

specific guides defined above for parsing and generation
are not the only possible ones. If for some reason
certain conditions on the lexicon are to be relaxed,
then more sophisticated guides must and can be defined.

Thus, the guide introduced above for parsing
essentially assumes that no lexical entry has an empty
string realization. This condition may be too strict for
cer ta in purposes , such as hand l ing t r a c e s .
In te res t ing ly , however , the guide consumpt ion
condition can still be imposed in these cases, if one
takes care to suitably enrich the notion of guide.

I,et us assume, fl)r instance, that there be a general
syntactic constraint to the effect that two empty lexical

6 95

items cannot immediately follow each other 19. Let us
then posit as a guide structure, instead of a list L of
words, a couple <L,B>, where B is a variable restricted
to taking values 0 or 1. Suppose further that these
couples are ordered "lexicographically", ie that:

VL, L',B,B'

L < L' ~ <L,B> < <L',B'>

L = L'A B < B ' ~ <L,B> < <L,B'>.

It is easy to see that the set of guides is then a
partially ordered set which respects the descending
chain condition.

Let us finally assume that term_p' is redefined in
the following manner:

term p'(A,<Lin,Bin>,<Lout,Bout>) :-
term(A),
append(A.strin g ,Lout,Lin) ,
(A.string = [], Bin =l, Bout = 0
; A.string #[] ,B in = ,Bout = 1).

It can be shown that this definition of guide_parse is
sufficient to ensure the guide-consumption condition,
and therefore guarantees the termination of the parsing
process.

Variations on this idea are possible: for instance,
one could define the guide as a couple <L,X> where X is
a list of left-extraposed constituents (see [P81]). Any
time a constituent is added to the extraposition list X,
this operation is required to consume some words from
L, and any time a trace is encountered, it is required to
"cancel" an element of X. Because the lexicographical
order defined on such guides in the following way:

k ' L , L ' , X , X '

L < L' -~ <L,X> < <L',X'>

L= L' ,,~ X < X' ~ <L,X> < <L,X'>.

respects the descending chain condition, the parsing
process will be guaranteed to terminate.

6. C o n c l u s i o n
This paper shows that parsing and generation can

be seen as symmetrical, or dual, processes exploiting
one and the same grammar and lexicon, and using a
basic l<ft-recursion elimination t ransformation.
Emphasis is on the simplicity and symmetry of
linguistic description, which is mostly contained in
the lexicon; compositionality appears under three
aspects: s t r ing c o m p o s i t i o n a l i t y , semant ic
compositionality, and syntactic compositionality. The
analysis and generation processes each favor one
aspect: string compositionality in analysis, semantic
compositionality in generation. These give rise to two
guides (analysis guide and generation guide), which are
generalizations of string indexes. The left-recursion
elimination transformation described in the paper is
stated using the general notion of guide, and is
provably guaranteed, under certain explicit conditions,
to lead to termination of the parsing and generation
processes. We claim that the approach provides a
simple, yet powerful solution to the problem of
grammatical bidirectionality, and are currently testing it
as a possible replacement for a more rule-oriented

19 A counter-example to this simplistic assumption is not hard to come by: the
person who I john persuaded e I PRO to drink. However, the assumption gives
the flavor of a possible set of strategies for handling empty categories.

grammatical component in the context of the CRITTER
translation system [!DM88].

Acknowledgments
Thanks to Michel Boyer, Jean-Luc Cochard and

Elliott Macklovitch for discussion and comments.

References
[D90a] Dymetman, Marc. A Generalized Greibach

Normal Form for Definite Clause Grammars. Laval,
Qu6bec: Minist~re des Communications Canada, Centre
Canadien de Recherche sur l'Informatisation du Travail.

[D90b] Dymetman, Marc. L e f t - R e c u r s i o n
Elimination, Guiding, and Bidirectionality in Lexical
Grammars (to appear).

[DI88] Dymetman, Marc and Pierre lsabelle.
1988. Reversible Logic Grammars for Machine
Translation. In Proceedings of the Second International
Conference on Theoretical and Methodological Issues in
Machine Translation of Natural Languages. Pittsburgh:
Carnegie Mellon University, June.

[DI90] Dymetman, Marc and Pierre Isabel]e.
1990. Grammar Bidirectionality through Controlled
Backward Deduction. In Logic and Logic Grammars for
Language Processing, eds. Saint Dizier, P. and S.
Szpakowicz. Chichester, England: Ellis Horwood.

[GKPS87] Gazdar, Gerald, Ewan Klein, Geoffrey
Pullum and Ivan Sag. 1985. Generalized Phrase Structure
Grammar. Oxford: Basil Blackwell.

[H78] Han'ison, Michael A. 1978. lhtroduction
to Formal Language Theory. Reading, MA: Addison-
Wesley.

[IDM88] Isabelle, Pierre, Marc Dymetman and
Etliott Macklovitch. 1988. CRITTER: a Translation
System for Agricultural Market Reports. In Proceedings
of the 12th International Conference on Computational
Linguistics, 261-266. Budapest, August.

[L87] Lloyd, John Wylie. 1987. Foundations of,
Logic Programming, 2rid ed. Berlin: Springer-Verlag,

[MTHMY831 Matsumoto Y., H. Tanaka, H.
Hirikawa, H. Miyoshi, H. Yasukawa, 1983. BUP: a
bottom-up parser embedded in Prolog. New Generation
Computing 1:2, 145-158.

[PWS0] Pereira, Fernando C. N. and David H. D.
Warren. 1980. Definite Clause Grammars for Language
Analysis. Artificial Intelligence: 13, 231-78.

[P81] P e r e i r a , Fernando C. N. 198l .
Extraposition Grammars. Computational Linguistics
7:4, 243-56.

[$88] Shieber, Stuart M. 1988.. A Uniform
Architecture for Parsing and Generation. In Proceedings
of the 12th International Conference on Computational
Linguistics, 614-19. Budapest, August.

[SNMP89] Shieber, Stuart, M., Gertjan van
Noord, Robert Moore and Fernando Pereira. 1989. A
Semantic-Head-Driven Generation Algorithm for
Unification-Based Formalisms. In Proceedings of the
27th Annual Meeting of the Association for
Computational Linguistics, 7-17. Vancouver, BC,
Canada, June.

[N89] Van Noord, Jan. 1989. BUG: A Directed
Bottom-up Generator for Unification Based Formalisms.
Working Papers in Natural Language Processing No. 4.
Utrecht, Holland: RUU, Department of Linguistics.

[ZKC87] Zeevat, H., E. Klein, and J. Calder.
1987. Unification Categorial grammar. Edinburgh:
University of Edinburgh, Centre for Cognitive Science,
Research Paper EUCCS/RP-2I.

96 7

