
Integrating Stress and Intonation into a Concept - to -Speech S y s t e m

Georg DORFFNER
Ernst BUCHBERGER

Austrian Research Institute
for Artificial Intelligence

Schottengasse 3
A-1010 Vienna, Austria
and University of Vienna

emaih georg%ai-vie.uucp@relay.eu, net,
ernst%ai-vie.uucp@relay.eu.net

Abstract : The paper deals with the integration of
intonation algorithms into a concep t - to - speech

system for German 1). The algorithm for

computing the stress hierarchy of a sentence
introduced by Kiparski (1973) and the theory of
syntactic grouping for intonation patterns
developed by Bierwisch (1973) have been studied
extensively, but they have never been implemented
in a concep t - to - speech system like the one
presented here. We describe the back end of this
concep t - to - speech system: The surface generator
transfers a hierarchical dependency structure of a
sentence into a phoneme string by traversing it in a
recurs~ve-descent manner. Surface structures
unfold while generation p r o c e e d s , which means
that at no point of the process does the full
syntactic tree structure exist. As they depend on
syntactic features, both the indices introduced by
the Kiparski (degrees of stress) and the Bierwisch
(indexed border markers) formalism have to be
inserted by the generator. Th i s implies some
changes to the original algorithms, which are
demonstrated in this paper. The generator has
been tested in the domain of an expert system that
helps to debug electronic circuits. The synthesized
utterances of the test domain show significant
improvements over monotonous forms of speech
produced by systems not making use of intonation
information.

1. Introduction

The goal of the system, a part of which is described
in this paper, was to synthesize speech utterances
starting from a conceptual representation of the
knowledge to be uttered (concept-to-speech
system). Compared to speech reproduction, our
approach is far more flexible. In contrast to
t ex t - to - speech synthesis (Frenkenberger et.al.
1988) on the other hand, our approach allows for
an easier integration of prosodic elements, as
syntactic data such as phrases and tree
dependencies are directly available.

M a r k u s K O M M E N D A
Institut f. Nachrichtentechnik

und Hochfrequenztechnik
Technical University of Vienna

Gusshausstr. 25/389
A-1040 Vienna, Austria

emaih E38901 I@AWITUW01.BITNET

Appropriate formalisms for obtaining a basis for
stress and pitch information were introduced by
Kiparski (1973), who proposed an algorithm for
computing a stress hierarchy for a whole sentence,
and Bierwisch (1973), who showed how to
determine pitch variation patterns depending on
the phrasal structure of a sentence. Like Kiparsky's
stress markers, the boundary indices introduced by
Bierwisch can be computed from the syntactic
structure of the sentence.

In this respect, concep t - to - speech contrasts with
t ex t - to - speech systems: In t ex t - to -speech
synthesis - at least for the German language - it is
virtually impossible to carry out a complete
syntactic analysis because of the large number of
ambiguities which can only be resolved at the
semantic level. Thus, the derivation of prosodic
information in existing tex t - to -speech systems is
based on a very rudimentary syntactic analysis
which consists in a purely linear segmentation of
the input sentences (e.g. Kulas & Riihl 1982,
Zingle 1982, Schnabel 1988, Frenkenberger et al.
1988).

In concep t - to - speech synthesis, on the other
hand, we are in a position to exploit the inherently
available syntactic structure of the given text, so
that we can apply the formalisms described by
Bierwisch and Kiparsky.

Both processes are only theoretically developed
and have not been fully implemented in a working
system before. We have integrated these processes
into the surface generator of our
concep t - to - speech system and applied some
necessary changes and adaptations to them.

In this paper we concentrate on the computation of
stress and intonation markers, integrated into the
surface generation component . The reader

interested in the overall structure of the system, an
application domain and the first phase of
generation which starts with concepts and produces

1) This work was supported by the Jubiliiumsfonds der Oesterreichischen Nationalbank, as part of
project no. 2901.

1 89

the input structure to the surface generator
(henceforth 'deep structure') is referred to
Dorffner, Trost & Buchberger (1988).

2. The Surface G e n e r a t o r

The deep structure which forms the input to the
surface generator consists of a hierarchical
structure of essentially two building blocks:
CLAUSEs, which roughly correspond to entire
sentences and PHRASEs like NPs, PPs or APs (fig.
1). A PHRASE can be modified by other

PHRASE

type noun, adj

head *lxm*wid

mods <phrase>, <clause> I

feats I

PHRASE-FEATURES

det def, indef

betont t, nil

vorfeld t, nil

p r o n . , t, nil

case e -zero , ,.,

num si,ng, plur, 10

Fig. 1

I_l

PHRASEs or CLAUSEs, thus forming a
hierarchical structure for complex utterances
(Dorffner, Kommenda & Frenkenberger 1988).

Surface generation now works on this hierarchical
structure of building blocks and transfers it into a
surface structure consisting of phonemic strings
which are subsequently synthesized. Our generator
differs from the often encountered two-step
approach - generate the syntactic tree with lexical
items as its leaves and morphological and other
features at tached to them, then scan all its leaves
and synthesize the lexical elements (see e.g.
McDonald 1983) - in an important way, for
reasons of efficiency and plausibility. The deep
structure, as introduced above, was designed so as
to already correspond to the surface structure of

the sentence 1), except for aspects of order and

function words. In other words, the (unordered)
hierarchy of deep structure building blocks is
isomorphic (after order has been imposed) to the
syntactic tree structure of the surface sentence.
This can be easily achieved in German, where

constituent order is much less strict than in other

languages, such as English. As a result of this
property of German, the position of phrases within
a sentence is not tied to their functional role and
thus does not have to be reflected in the deep
syntactic structure. This design of a deep structure
as being isomorphic to surface structure implies a
simplification in the surface generator, compared
to the two-step approach mentioned above: The
surface tree does not have to be produced entirely
before lexical items can be synthesized, but can
unfold while the hierarchy of building blocks is
scanned recursively.

The process of surface generation is as follows: For
each CLAUSE or PHRASE, a corresponding
surface building block (e.g. an NP) is generated,
depending on their features and lexical heads (fig.
2). Such a building block contains slots for either

NP-PP

prep det

Lexem <detp>

modl head modi

<phrase> Lexem <phra/
<clause> <clau~

Fig. 2

pointers to other building blocks or lexical items in
their correct order. Now each slot can be scanned
and synthesized (if it contains a lexical item) or
recursively t reated like the other building blocks
(Fig.3, Dorffner Kommenda & Frenkenberger
1988).

DS (CLAUSE)

r ~ c e s ~ - - - -] SS .. surface structure
/ building block eep structure [

DS .. deep structure
/

building block

S ~ pass element
P A SS. S to next component

surface structure ~ --~n'tlaesis

building block] z, ir~n.me 7
e.g. DETP

Fig. 3

This form of generation process has serious
consequences on the intended integration of
intonational information: All syntactic information

1) Strictly speaking, this differs from a deep structure as defined in Chomsky (1975)

90 2

is available during the process, but the syntactic
tree never exists in its entirety. Fur thermore,
indices have to be produced (during synthesis of
lexical items) before the remainder of the syntactic

structure has unfolded. At first sight this looks like
a major restriction and reduction of available
information. As it turns out, however, the
approaches of Kiparski and Bierwisch can both be
modified so as to fit into this scheme. An
interesting s ide-effect is that synthesis of speech,
starting :from deep structures, works in a strict
lef t - to-r ight manner , which seems psychologically

very plausible.

3. Insert ion of Kiparski Stress Markers

Kiparski (1973) introduced two rules for
computing stress markers based on a syntactic tree:

(1) (a) t t ead stress rule:

the first (lef t -most) node keeps its index,
all others are incremented by 1

(b) Tail stress rule:

the last (right-most) node keeps its index,
all others are incremented by 1

The algorithm works as follows:

(2) -ass ign the index 1 to each stressable lexical

i tem
- s c a n the tree bot tom-up and apply rule (]a)

or (lb) to each significant node

This algorithm works strictly b o t t o m - u p and thus
requires the entire syntactic tree. As a result, it
cannot be integrated into our generator in this
form. It is, however, possible to rewrite the
algorithm so that it works top-down and
depth-f i rs t so as to fit into the generation scheme
described above. The new algorithm is the
following:

O) Introduce a pair of indices and maintain it as
follows while scanning the tree top down. At the
root, start with the pair (1 1).

- at each significant node that has at least two
significant successor nodes, do the following,

given the index pair (n m):
- with head stress rule:

assign the pair (n m+l) to the first successor
assign the pair (n+m 1) to all the others

- with tail stress rule:
assign the pair (n re+l) to the last successor

assign the pair (n+m 1) to all the others
- at the leaves of the tree (= lexical entry), with

assigned pair (n m):
- n is the Kiparski marker for the lexical item

If one considers the preferred successor (head or
tail, depending on the rule) as the winner of the
rule and all others as losers, algorithm (3) can be

interpreted as follows: The second index of a pair
(m) counts how often a node is on the winning
side. All losers have to increment their marker by
that amount . Thus, at each decision, the winner

keeps its marke r (n), while the markers of all the
others have to be increased by m (n+m). As there
can be only one leaf that is on the winning side
each time, it is ensured that only one lexical item
receives marke r 1.

A similar algorithm could be applied to yield the
stress pat tern within complex words (which are
quite numerous in German) . However, as the
lexicon of the generator contains morphemes and

complex lexernes with pointers to each morpheme,
a decision about stress within a word can be stored
lexically and no algorithmic t reatment is necessary.
A syllable now receives a Kiparski marker if

- it is in a stressable morpheme (lexical feature)

- it is marked by the lexical entry o f the (possibly

complex) word A N D
- algorithm (3) has assigned an index pair to the

lexical entry

The so computed marker is inserted into the
phonemic string during the morphologic synthesis
of the word.

4. Insert ion of Bierwisch Boundary Indices

Bierwisch (1973) suggests inserting a marker at
each word boundary to express how many
significant nodes dominate both words involved.
His algorithm was designed in a bo t tom-up
fashion. We show again that it can be formulated
top -down (as required in our system):

(4) Assign an index to each node. At the root,
start with 1. For each node with index i

for each successor do, left to right:
- i f the successor is a lexical item, synthesize it

and append i as boundary marker

- i f the successor is a significant node, assign
index i+ l

- otherwise assign index i
when all nodes on that level have been processed,
- overwrite the index that was written last with i

The problem that a lef t - to-r ight process cannot
know whether the following word is on the same
level in the tree is solved by permitting to overwrite
a marker already written.

5. Acoust ic Real izat ion of Prosodic Patterns

Starting from the above stress and boundary
markers , the prosodic structure of a sentence is
derived by applying a phonological rule set. In

3 91

particular, some of the previously computed
boundaries are deleted, others receive a pause
marker. Furthermore, the resulting phrases are
provided with an intonation contour, which,
according to Bierwisch (1973), is specified in terms
of so-called SON values. In a subsequent phonetic
component the phrasal structure and the SON
values are exploited to generate the acoustic
correlates of the prosodic information, in
particular, the duration of phonetic segments and
pauses and the pitch values for all voiced phones.

6. An Example

An annotated example shall illustrate the process
of generation. Take the following sentence:

Betr•gt die Spannung am Kondensator 10 Volt?
(Is the voltage at the capacitor equal to 10 Volts?)

The deep structure of the sentence, which is the
input to the surface generator is depicted in fig.4,

CLAUSE]
lxm: betrag

lcX~e: SePaznenrUo ng even

PHRASE 3
lxm: Kondensator
case: location

Fig.4

the corresponding syntactic tree, which is unfolded
during generation, in fig.4a. Both structures have
been simplified.

sl I, 1,1--.4._1 I
Betr~igt NP-PP P-PP

I , ; , i , i l i , i , i
/ I I I I

die Spannung] 10 Volt
NP-PP

I / I I\l\ I
am Kondensator

Fig.4a

Each building block in the dependency structure
(to the left) has a feature case which indicates the
conceptual role of the element (adapted from

Engel 1982). e-zero, for example, refers to the
nominative phrase or subject of a sentence. The
structure to the right consists of the surface
building blocks. Each slot (drawn as a box)
corresponds to a possible position which can be
filled with a lexical item or another building block,
depending on the features of CLAUSE and
PHRASE. Slots that remain empty are ignored
during synthesis. One can see in this example that
the tree of CLAUSEs and PHRASEs has a
corresponding isomorphic tree of S and NP-PPs
(there are other surface elements like AP, as well),
with the exception that in the former ca,;e there is
no order information yet. This illustrates the above
mentioned isomorphism between deep and surface
structure.

Generation starts at the root of the deep structure,
the CLAUSE. A Kiparski pair (1 1) and a
Bierwisch index 1 are assigned, The corresponding
surface building block, S, is generated, filled with
the lexical item betrdgt (verb) and with the two
PHRASES in their correct position (which can be
determined by looking at the features and using
some default heuristics as in Engel 1982). The
structure at this point looks like the one in fig.5:

S kip: (1 1) bier: 1

._-1---4---1/1-¢-i 3
Betrgigt / ~ . _ . . ° .

J PHRASE 1 [PHRASE
I lxm: Spannung lxm: Volt |
I case: e-zero ca.se: e - s e ~

I
PHRASE 2

Ixrn: Kondensator
case: location

Fig. 5

Note that betrgigt can already be synthesized, even
though the rest of the syntactic structure has not
unfolded yet. For algorithm (3), actually three
nodes in Kiparski's notation are comprised in S:
Satz, S and D. Therefore, for (3) the structure has
to be viewed as if it looked like the one in fig. 6.

(3) applied to Satz yields the pair (1+1 1) for
betrgigt and (1 1+1) for S (tail stress). S has only
one successor, therefore (3) does not apply. It
does, however, apply to D, where the pairs (1+2 1)
and (1 2+1) are computed for the two PHRASEs
(tail stress). The Bierwisch index is simply
incremented by 1 for both PHRASEs. Thus the
string in the lower left of fig.6 can already be
written (phonemes are given in an ASCII
representation of IPA notation, stress markers are
preceded by ", boundary indices by #).

92 4

Satz kip: (1 1) bier: 1

S
Betr~gt

kip: (2 1) I

kip: (3 1) r, ~ . ~ ~ 4 . ~ : (1 2) kip: (1 3)
bier: 2 / "~ bier : 2

-VH
RASE 1 PHRASE 3

[lxm: Spannung lxm: Volt
[case: e-zero case: e-seven

#0 b$ t r '2Egt #1

Fig. 6

The process now recursively continues by
generating the left PHRASE (Kiparski pair (3 1),
Bierwisch index 2). As above, a corresponding
surface building block (NP-PP) is generated and
filled with lexical items and the modifying
PHRASE ("am Kondensator") . The structure so
produced is shown in fig.7.

NP-PP 1

die Spannung

kip: (3 2)

PHRASE 2
lxm: Kondensator
case: location _ _

"-I kip: (3 1)
_3 bier: 2

kip: (4 1)
bier: 3

#0 b$tr"2Egt #1 dI #2 Sp"3an=N #2

Fig. 7

Algorithm (3) is applied once (tail stress) and
yields a stress marker 3 for Spannung. The
Bierwisch index is incremented once again for the
nested PHRASE 2 (note that the Kiparski pair for
that PHRASE is the same as for a loser although it
is behind the 'tail'. Kiparski, in his original article,
did not mention pos t -head modifiers). This
PHRASE will subsequently be generated
accordingly. The lower right of fig. 7 shows the
result at this stage. The determiner die is not a
stressable item and therefore does not receive a
stress :marker. The noun, on the other hand, is

provided with the marker 3.

After the final lexical item of PHRASE 2,
Kondensator, a boundary marker 3 will be written.
Now the last part of (4) comes to bear. As it is the
end of the phrase, it is overwritten by the marker
of the dominating phrase (NP-PP 1), 2. It is also

the end of NP-.PP 1, so it is finally overwritten by
the marker assigned to S, which is 1. The output at
this stage is the following:

#0 b$tr"2Egt #1 dl #2 Sp"3an=N #2

Ham #3 k0nd$ns"4Ator #1

After that, PHRASE 3 - the next one attached to S
- is generated, in an analogous fashion.

7. Discussion and Conclusion

The experiences with the described generator have
shown thai: synthesis of German utterances in a
concep t - to - speech system is possible while both
synthesizing intonation patterns using syntactic
information and maintaining the efficient process
structure of the generator designed for the specifics
of the German language. The assumptions under
which it was applied are a single-sentence system
without contextual or pragmatic information.
Problems rooted in the lack of such information
have therefore not been solved. The speech
produced this way shows considerable
improvement over monotonous versions or versions
which cannot make full use of syntactic
information. Furthermore, the approach can easily
be extended to include additional aspects of
intonation such as emphasis of elements over

others.

Despite the success of the system described in this
paper, some limitations have been discovered. In
the test domain long sentences with complex and
multiply nested phrases were quite frequent. Some
of them included pos t -head modifiers such as
"rechts unten" (= "to the lower right"), in additon
to other modifiers like several adjectives. The
algorithm by Bierwisch produced boundary
markers between the beginning and the end of
"rechts unten" that were only slightly greater than
the surrounding ones. Synthesis of the utterance,
however, revealed that the modifier was spoken
with an unnaturally high pitch and a pause that was
too short.]Manually altering the indices to lower
values, which would mean that "rechts unten" is a
constituent on sentence level rather than a noun
modifier, lead to better results. Thus, the
top-down scheme of the algorithm would have to
be broken in this case.

Future work will be required to discover other
limitations and to adapt the process to overcome
them.

5 93

References

Bierwisch M.: Regeln f/)r die Intonation
deutscher S~itze. In: Studia Grammatica VII,
Berlin, 3rd ed., 1973.

Chomsky N,: Reflections on language, MIT Press,
Cambridge, MA, 1975.

Dorffner G., Kommenda M., Frenkenberger S.:
Ein OberflSchengenerator zur Erzeugung
geschriebener und gesprochener Sgtze;
Austrian Research Institute for Artificial
Intelligence, Vienna, TR 88-10, 1988.

Dorffner G., Trost H., Buchberger E.:
Generating spoken output for an expert system
interface, OGAI-Journal 3-4, 36-41, 1988.

Engel U.: Syntax der deutschen
Gegenwartssprache, 2nd ed., Erich Schmidt,
Berlin, 1982.

Frenkenberger S., Kommenda M., Pounder A.:
Automatische Wortklassifizierung und
Prosodiebestimmung im Sprachausgabesystem
GRAPHON; ITG-Fachbericht 105, Digitale
Sprachverarbeitung, 19 8 8.

Kiparsky P.: l)ber den deutschen Akzent. In:
Studia Grammatica VII, Berlin, 3rd ed., 1973.

Kulas W., Rfihl H.-W.: Satzzerlegung ffir ein
Sprachausgabesystem mit unbegrenztem
Wortschatz, Fortschritte der Akustik -
FASE/DAGA'82, pp.1017-1019, 1982.

McDonald D.: Natural language generation as a
computational problem; in: Brady & Berwick
(eds.): Computational models of discourse,
MIT Press, 1983.

Schnabel B.: Developpement d'un syst~me de
synth~se de l'Allemand a partir du texte, Th~se
de doctorat, Universit~ Stendhal, Grenoble,
1988.

Zingl~ H.: Traitement de la prosodie en Allemand
dans un syst~me de synth~se de la parole,
Thi~.se d'Etat, Universitd de Strasbourg II,
1982.

94 6

