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Abstract

Arrows are a key ingredient of schematic pictorial communication. This paper investigates the
interpretation of arrows through linguistic, crowdsourcing and machine-learning methodology.
Our work establishes a novel analogy between arrows and verbs: we advocate representing ar-
rows in terms of qualitatively different structural and semantic frames, and resolving frames to
specific interpretations using shallow world knowledge.

1 Introduction

Natural communication is multimodal—people get their ideas across not just through words but through
gestures, diagrams, illustrations, and even practical activity. Research in discourse has found suggestive
evidence for interpretative parallels across modalities; the challenge now is to substantiate these parallels
at large scale, by developing broad-coverage cognitive models of multimodal communication.

This paper illustrates the promise of new data sets to further such a general understanding of visual
communication. In particular, Kembhavi et al. (2016) have curated, annotated and released a sizeable
corpus of scientific diagrams in diverse domains. We draw on formal analysis, crowdsourcing, and
machine-learning experiments to carry out a systematic study of the interpretation of arrows in these
diagrams. The central insight in our work is to give a novel account of arrows using existing linguistic
concepts and methodology—specifically, ideas developed for explaining verb meaning in context.

We begin in Section 2 with a tour of work on multimodal communication, which has made a strong
case for parsing diagrams to organize basic conventional elements into recursive structural relationships,
and for interpreting such parses by combining compositional meaning with discourse-based inference.
We use this framework in Section 3 to motivate a linguistically-inspired approach to the interpretation of
arrows: we characterize arrows into four qualitatively different structures, analogous to verb subcatego-
rization frames; we associate each structure with a meaning, analogous to verb frame semantics (Baker
et al., 1998); and we describe the contextual supplementation some structures require, by analogy to the
co-compositionality of generative lexicon theory (Pustejovsky, 1998, GLT).

The remainder of the paper offers empirical evidence in support of our approach. Our first experiments,
presented in Section 4, assess our semantic frames for arrows in light of crowd workers’ judgments about
the Kembhavi et al. (2016) data set. People label our categories with high agreement, and the categories
account for the overwhelming majority of items in the corpus. Moreover, we find that arrows are normally
used in one sense per diagram, much as lexical items exhibit one sense per discourse (Gale et al., 1992).

Our next experiments, presented in Section 5, assess our approach to contextual interpretation: certain
frames must be supplemented with a salient relationship. Assuming one sense per diagram, we train
a machine-learning model that predicts this relationship from the textual content of the diagram. The
performance of the method corroborates our hypothesis (analogous to GLT) that these relationships can
and should be resolved based on relatively shallow encyclopedic knowledge.

Our contributions are primarily formal—to characterize the knowledge needed to model diagrams.
Fundamental challenges remain to apply such ideas in practice. We conclude in Section 6 with an
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Figure 1: Examples of diagrams with arrows from our four different semantic frames. Diagram (a) has
indication arrows, diagram (b) has action arrows, diagram (c) has direction arrows, and diagram (d) has
motion arrows. See Section 3.2.

appraisal of our contributions: we suspect many other abstract pictorial elements can be described using
linguistic concepts, enabling more expressive systems for diagram understanding and generation.

2 Related Work

Schematic pictorial content abounds in everyday communication, from informal interactions around a
whiteboard to figures in formal scientific and engineering documents. Consequently, diagrams have been
studied from the standpoint of design, as in Horn (1998); psychology, as in Larkin and Simon (1987);
computer graphics, as in Agrawala et al. (2003); computer vision, as in Alvarado and Davis (2004); and
common-sense reasoning, as in Forbus et al. (2011)—as well as natural language (NL) technology.

Our work is most directly inspired by prototypes in mulitmodal communication that use NL techniques
either to synthesize communicative presentations, as in André et al. (1993) and Feiner and McKeown
(1993), or to interpret multimodal user input, as in Johnston (1998), Johnston and Bangalore (2005) and
Bangalore and Johnston (2009). For example, Johnston (1998) argues for processing diagrams with a
syntactic parser, so that systems can recognize their essential hierarchical relationships, and for using a
constraint-based grammar formalism, so specific productions can inherit constraints from general rule
schemas, as in HPSG (Pollard and Sag, 1994). The success of such efforts shows that NL architectures
can effectively capture communicative acts across a diverse range of modalities and contexts. This leads
us to ask how we might develop domain-general tools and methodologies that could support such mul-
timodal architectures—perhaps following the successful application to text of wide-coverage grammars
(Copestake and Flickinger, 2000, among others) and parsers (de Marneffe et al., 2006, among others).

To pursue this direction, we build on an emerging trend of applying the theory of NL semantics and
discourse to multimodal communication, which includes work on the grammar of coreference, such as
Schlenker and Chemla (2017) for gesture, and Abusch (2013) and Cohn (2013) for comics, and work on
the grammar of coherence, such as Lascarides and Stone (2009) for gesture, and Bateman and Schmidt
(2013) and Cumming et al. (2017) for film. Looking at arrows is a novel contribution to this literature.

Of course, we can find many loose parallels to our ideas in work on diagrams across many disciplines.
For example, researchers from Alvarado and Davis (2004) to Tversky et al. (2000) have observed that
diagrams are composed from a small taxonomy of abstract elements, including arrows, that are grouped
together in hierarchical relationships. Researchers such as Alvarado and Davis (2004), Forbus et al.
(2011), and Horn (1998) have argued that these elements take on diverse interpretations, which must be
recovered in context using conceptual content from a specific domain. Researchers such as Agrawala et
al. (2003) and Forbus et al. (2011) have emphasized that effective diagrams abstract cognitively essential
information in consistent and recognizable ways.

Our findings are entirely compatible with such observations, but our contribution is to approach them
using the tools and methods of NL research. Other ways of implementing the ideas include custom archi-
tectures based on cognitive design principles, as in Agrawala et al. (2003), or structured user interaction,
as in Forbus et al. (2011), as well as general methods for visual recognition and grouping, as in Alvarado
and Davis (2004) and Kembhavi et al. (2016). Such approaches may be effective, especially for purely
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visual processing, but they make it difficult to compare and integrate the reasoning involved in interpret-
ing text and diagrams in combination, as well as to develop models that can be used simultaneously for
understanding, generation and mixed-initiative interaction—a key virtue of NL techniques.

Our work is made possible by Kembhavi et al. (2016). They have collected, annotated and distributed
a data set of more than 5000 diagrams scraped from the web using science education key phrases as
seeds for Google searches. We refer to this as the AI2D data set. Kembhavi et al. (2016) characterize
diagram content by associating diagrams with high-level questions and answers. Meanwhile, their work
formalizes the structure of diagrams using a graph-based representation that features a regimented set of
elements and relationships. Their annotation protocol broke this process of building these representations
down into a series of lightweight decisions that could be accomplished reliably by crowd workers on
Amazon Mechanical Turk. This annotation scheme, while useful in describing the shallow organization
and overall content of diagrams, says little about the semantic and pragmatic knowledge that connects
form and content. Our work addresses one case of this open problem.

3 Towards a Formal Analysis of Arrows

We start by exploring how linguistically-inspired representations might capture the intuitive structure
and interpretation of arrows. We draw on the AI2D examples in Figure 1, which are representative and
diverse: Figure 1a maps areas of the human brain; Figure 1b shows part of the food chain of a northern
forest; Figure 1c illustrates plate tectonics; and Figure 1d explains the seasons. Our observations about
the form, meaning and interpretation of arrows in these diagrams lays the groundwork for the experiments
we report in Sections 4 and 5 (and anticipates further formal investigations).

3.1 Formal Structure

An arrow consists of a head, a tail and a body.1 The head and tail can each be structurally linked to
another constituent in the diagram, to create a larger unit containing the arrow and its affiliates. Thus the
arrows of Figure 1a link the text at the tail to the pictorial element at the head; the arrows of Figure 1b link
two pictorial elements; and the arrows of Figure 1c are anchored into the scene rather than connected to
elements at the head or tail. We assume this structure in giving examples in running text: N→ p . This
schematizes an arrow with N at the tail and p at the head. Where arrows are not understood to depict
spatial information, we will use these schemas to abstract away from details of layout and rendering (so
p← N would be equivalent).

Three classes of form are particularly important to our further investigations:

1. arrows with pictorial elements at both the head and tail, as in N→ p ;
2. arrows with pictorial elements at the head and text at the tail, as in bishop→ B ; and

3. arrows with an empty head or tail area (and perhaps pictorial elements elsewhere), as in R→
or → .2

We see this structural variation as analogous to the syntactic subcategorization of verbs: the idiosyn-
cratic character of verbal complementation motivates a fine-grained account of syntactic combination.
For example, the verb get can take arguments of a range of different syntactic categories, involving noun
phrases, predicates and full sentences: “I got flowers for my mother”, “Get well soon”, “I get that this
is difficult”. In a similar way, arrows have optional argument positions (head and tail, comparable to
subject and object) which may be filled by elements of formally different categories (for example, with
textual or pictorial elements).

1We focus on simple arrows here of the form →, excluding double-headed arrows ↔ and pure line segments (—). Arrows
can also differ in rendering attributes such as width, perspective and color, which sometimes provide further cues to the role of
the arrow in the diagram.

2Arrows with pictorial elements at the tail and text at the head also occur: ♠ → oxygen . We hypothesize that these have
analogous properties to purely pictorial arrows, but defer investigation to future work.
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Figure 2: Part of a butterfly cycle of life diagram.

Just as with verbs, some structural possibilities for arrows seem not well-formed: it’s odd, for example,
to have text at the tail of an arrow and nothing at its head, as in # problem→ .3

As noted by many researchers (Alvarado and Davis, 2004; Johnston, 1998; Tversky et al., 2000),
diagrams are hierarchically organized. We hypothesize that arrows can contribute to the overall structure
of a diagram in diverse ways, just as verbs contribute in diverse ways to the structure of sentences and
discourse. Of course, an arrow can establish the overall structure of a diagram, as in Figure 2—just as
the main verb projects the root of a sentence. Arrows in diagrams can also be modified, for example
with labels and other annotations; we show a few such examples in Figures 3 and 4. In addition, many
arrows seem to attach to and modify existing elements, just as verbs can anchor relative clauses, which
adjoin in as modifiers to existing structure. For example, we might analyze the indication arrows of
Figure 1a as modifiers that expand on the presentation of individual brain regions, with the head of the
arrow playing a role analogous to an extracted argument in a subject or object relative clause—compare
the region we call the frontal lobe. Similarly, the direction arrows of Figure 1c are similar to locative
relative clauses—compare a place things are pushed eastward. Finally, the arrows of Figure 1b or 1d
seem broadly analogous to the use of sentence-final appositives to carry the discourse forward (Koev,
2012)—compare the prickly pear is eaten by the boar, which is eaten by the bear. Note, however, that
the two-dimensional structure of diagrams allows for new structural possibilities, such as the circular
dependencies exhibited in Figure 1d. Formalisms for encoding diagram structure involve generalized
notions of syntactic combination (Johnston, 1998). Integrating our account of arrow structure into such
a generalized syntactic framework remains a topic for future work.

3.2 Meaning Frames
Arrows have qualitatively different meanings. One difference is whether the path has spatial meaning.
For example, the arrows in Figure 1b indicate temporal or causal relationships with no spatial content.
By contrast, the arrows of Figure 1c are rendered in perspective with the diagram’s tectonic plates to
depict the direction of action in an earthquake.

These qualitatively different interpretations are correlated with the structural description of an ar-
row. We see these constraints as analogous to the semantic frames assigned to verbs in databases like
FrameNet (Baker et al., 1998). A semantic frame is a conceptual structure describing an event or a rela-
tion and the participants in it. For example, “Mary sold her car to John” and “John bought Mary’s car”
describe the same semantic frame. We interpret each structural option with an appropriate underlying
conceptual representation, or frame, and assign each argument an appropriate role in the frame. Our
frames for arrows are INDICATION, ACTION, DIRECTION, and MOTION.

• The INDICATION frame, for arrows like those in Figure 1a, involves a SUBJECT (prototypically, a
pictorial element at the head), and a LABEL (text at the tail), as in bishop→ B . In indication, the
label represents the name, location or category of the subject.

• The ACTION frame, for arrows like those in Figure 1b, involves a SOURCE (prototypically, a pic-
torial element at the tail) and a TARGET (prototypically, a pictorial element at the head), which are

3The distinctive status of text means that arrows with text at the tail are often equivalent to line segments with text at one
end. In fact, only 19.09% of the labeling relations in AI2D are drawn with arrows; the rest are line segments. Other arrows
cannot be replaced by segments.
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understood to stand in a contextually-specified telic or agentive RELATION, as in N→ B . Such
arrows may represent causation, change, consumption, or transfer of possession depending on the
content of the diagram. Source and target may represent different objects or different states of the
same object.

• The DIRECTION frame, for arrows like those in Figure 1c, involves the DIRECTION indicated by
the rendering of the arrow. This direction gives a contextually-specified ATTRIBUTE of a SUBJECT,
which may be an element linked to the arrow (as in R→ ) but may also be whatever lies where
the arrow sits (as in → ). The implicit meaning of such arrows has to be recovered using
context. For instance, direction arrows can show the direction of traffic in street signs, the direction
of the wind in weather maps, and the flow of material in mechanical drawings.

• The MOTION frame, for arrows like those in Figure 1d, involves a MOVER, which is rendered twice,
both at the head and at the tail of the arrow, as in N→ N . The frame indicates a translation event
in which the mover starts in the tail configuration and ends at the head configuration.

Minimal pairs underscore the qualitative distinctions among these interpretations, which must therefore
rely on conventional knowledge, not just common sense. An element accomplishment −→� proba-
bly indicates that graduation amounts to an accomplishment (the INDICATION frame), while the inverse
element � −→ accomplishment probably means that graduation leads to accomplishment (the AC-
TION frame). The possibilities for ambiguity also support qualitative analyses of arrow meaning. For
example, in some diagrams, the element N→ N would represent an event in which a single N moves
through space (the MOTION frame); in others, it would represent one in which a first N does something
to a second (the ACTION frame). The experiments in Section 4 are focused at assessing whether (and
how) people represent and resolve such ambiguities.

3.3 Resolving Interpretation

Designers like Horn (1998) enumerate the specific interpretations of arrows seen in Figure 1: the meaning
be eaten of the arrows in Figure 1b, the meaning driving force of the arrows in Figure 1c, or the meaning
orbits of the arrows in Figure 1d. Such alternatives cannot be listed in a wide-coverage approach; they
have to be derived from the specific purpose and subject matter of the diagram. Work on verbs, such as
the generative lexicon theory of Pustejovsky (1998), offers a suggestive model for how this derivation
might go. Pustejovsky (1998) proposes that underspecified verbs (famously, begin) retrieve implicit
actions via the qualia structure—the natural action associates—of their arguments. The broader lesson
is that shallow associations can be a surprisingly good place to look for contextual interpretations. The
experiments of Section 5 substantiate this suggestion by seeing what features are needed to recover the
context-sensitive relation associated with the ACTION frame.

4 Distinguishing Semantic Categories

The linguistic approach of Section 3 raises empirical questions about qualitative ambiguities in diagrams.
Do people distinguish between arrows that signal indication, action, direction and motion frames? Can
we develop corpora that annotate our frame distinctions explicitly? AI2D annotations already distinguish
indication arrows from other arrows, but do not encode our other distinctions, so we conducted a series
of human-subjects experiments to address these questions. The studies were conducted with the approval
of our human subjects review committee. The data is available electronically.4

4.1 Materials

The annotations in the AI2D dataset suggest that 2077 diagrams have arrows, but the annotations are not
always accurate. We removed 196 diagrams that do not have arrows. Further, to focus on clear cases,
we removed 232 diagrams: those whose action arrows involved words, question marks or letters at the

4https://github.com/malihealikhani/Arrows_are_Verbs
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arrow type count
obj–obj 985
txt–obj 378
two–loc 138
empty 70
other 17

txt–obj two–loc empty other
obj–obj 6 3 3 17
txt–obj 2 2 2
two–loc 16 2
empty 1

Table 1: Results of experiment 1. Left, counts of diagrams tagged with a unique arrow category. Right,
counts of diagrams tagged with exactly two arrow categories. We had only 5 diagrams tagged with three
categories and no diagrams tagged with more.

head rather than pictorial elements (as in our ♠ → oxygen example, the majority of exclusions); those
whose illustrations were cropped and incomplete, and cases such as “flash cards” that involved multiple
renderings (a small number of further cases). This left us with 1634 diagrams from the AI2D dataset.

4.2 Methods

In the first experiment, our goal was to look at the structural features of arrows, as well as the semantic
distinction between the MOTION and ACTION frames. (In pilot studies, we found that offering subjects
a broad range of options let them categorize arrows more reliably.) In each interaction, subjects saw a
diagram and were asked to answer if any arrows in this diagram are:

1. between two different objects
2. between a label and an object
3. between two different locations of an object
4. between empty areas
5. none of the above

Option 1 is indicative of arrows in the ACTION frame (obj-obj). Option 2 corresponds to the INDICA-
TION frame (txt-obj); Option 3, to the MOTION frame (two-loc); and Option 4, to the DIRECTION frame
(empty). Subjects were able to choose more than one answer, as diagrams sometimes include multiple
kinds of arrows. (See Figure 3.)

The goal of the second experiment was to see if people interpret empty arrows in line with the DIREC-
TION frame. In each interaction, subjects saw one of the 93 diagrams labeled as having empty arrows in
Experiment 1, and answered whether any arrows in this diagram showed:

1. the direction of the movement of the objects
2. the different locations of the objects
3. none of the above

Option 1 and 2 explain the interpretation of the DIRECTION (dir) and MOTION (mov) frames respectively.
In all, we recruited 860 subjects through Amazon Mechanical Turk. subjects were all US citizens,

high school graduates and had a computer to be able to participate in the experiments. Subjects gave
written consent and received $0.10 for the first experiment and $0.30 for the second experiment for their
participation in each human intelligence task (HIT), an estimated hourly rate of $15.00. Each HIT asked
subjects to characterize all the arrows in three separate diagrams. Each diagram has one data point in the
dataset; in addition, we collected additional data collecting multiple responses for a random subset of the
data (544 diagrams in Experiment 1, 47 in Experiment 2) to assess reliability.

4.3 Results

We followed Chen et al. (2005) in measuring inter-rater agreement. Their method is a generalization of
Kappa statistics for cases that multiple raters are involved in a multi categorization task. For the first
experiment, the overall kappa is 0.9744. For the second experiment, the overall kappa is 0.8517. This
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type count
dir 72
mov 9
other 0

mov other
dir 3 7
mov 2

Table 2: Results of Experiment 2. Left, dia-
grams with a unique response. Right, diagrams
with two responses. No diagrams had all three
responses.

Diagram No. of Top Arrow
category items arrow rate
Group A 353 txt–obj 97.73%
Group B 1007 obj–obj 94.44%
Group C 221 two-loc 84.31%
Group D 71 empty 91.57%

Table 3: Grouping diagrams by topic gives a
strong indication of the structure and meaning
of arrows.

indicates that subjects strongly agreed on their judgements, suggesting that the structural and interpretive
distinctions that underwrite our semantic frames are clear to human interpreters.

This established, we can look at the distribution of annotations. Our first results appear in Table 1.
Observe that only 38 diagrams seem to have an arrow classified in the “other” category; this suggests
that our taxonomy has good coverage of frequent patterns. Further, the vast majority of the diagrams
(1571 of 1634) feature exactly one kind of arrow; this is reminiscent of findings that words are used with
one sense per discourse (Gale et al., 1992). This suggests that diagram understanding systems should be
designed to look at a diagram holistically and prefer uniform interpretations for all the arrows.

Table 2 specifically focuses on the second experiment, which looked at whether DIRECTION is the
appropriate semantic frame for empty arrows. The results are again consistent with our meaning frames.
In particular, the 72 diagrams tagged as having just direction interpretations in Experiment 2 include
68 of the 70 diagrams tagged as having just empty arrows in Experiment 1. In addition, 12 out of 16
diagrams that were tagged with more than one option in Experiment 1 were reported to have multiple
kinds of arrows in Experiment 2.

The AI2D dataset groups diagrams into different categories such as “Atom Structure” and “Moon
Phase Equinox”. We made four larger groups of diagrams categories for diagrams in AI2D: Group A
includes diagram that map out scientific structures; Group B includes diagrams that present interactions
between elements; Group C explains changing geometric configurations; and Group D highlights mo-
mentary spatial relationships.5 These categories turn out to be highly correlated with a particular struc-
ture and interpretation of arrows: see Table 3. This provides further evidence that diagram interpretation
should be guided holistically by general domain knowledge.

4.4 Exceptions

In an effort to understand the limitations of our taxonomy, we inspected the diagrams tagged as having
multiple types of arrow and additional types of arrow.

We found that when designers use arrows to represent different meanings, they almost always render
those arrows with different shapes or colors to represent different meanings. Each kind of arrow therefore
has a consistent interpretation in the diagram after all. The left and the middle diagrams in Figure 3 show
two examples of diagrams of this kind. The right diagram however is an example of the few that do not
follow this principle.

We designed an experiment with the same terms and conditions as Experiment 2 to test the hypothesis
that different kinds of arrows in complex diagrams have different appearances. We chose all diagrams
that were tagged in Experiment 1 with more than one option (excluding diagrams that were tagged with
“other”) and asked participants to report how many different kinds of arrows with different appearances
they see in each diagram. The result of the experiment shows that 21 out of 23 diagrams were reported to
have more than one kind of arrow. This is in particular important in designing systems that can generate
or understand diagrams. Such systems must allow each shape to get a different interpretation.

5Specifically, Group A is AI2D typesOf, partsOfA, atomStructure, partsOfTheEarth, circuits, solarSystem, rockStrata.
Group B is Photosynthethis, lifeCycles, foodChainsWebs, waterCNPCycle, volcano, rockCycle. Group C is moonPhaseE-
quinox. Group D is faultsEarthquakes, eclipses.
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Figure 3: Authors typically render arrows with different interpretations differently. Left: thin circular
arrows depict the moon’s orbit (motion) while thick straight arrows depict the force of gravity (direction).
Right: red arrows represent the direction of the movement of the moon where the white arrows are
between two different locations of the moon.

Figure 4: Examples of diagrams tagged as having other kinds of arrows.

Diagrams with arrows that were labelled as having additional kinds of arrows don’t straightforwardly
suggest omissions in our structural inventory. One case we might consider is arrows linked at their head
to other arrows—a generalization of our INDICATION frame. The right diagram in Figure 4, includes
such arrows. One arrow shows the direction of flow of the atmosphere; another arrow links that arrow
to text explaining that the flow arises through the moon’s gravity. A few other diagrams that come with
arrows that are annotating another set of arrows were tagged other as well.

However, most of the “other” examples may simply have been difficult to understand. Some of these
diagrams, like the left diagram in Figure 4, have arrows whose path are cutting each other. Similarly,
some have labels that are not in proper places—for example very far from the tail of the arrow—or
other unnecessary and distracting elements, such as mountains and clouds in a food chain diagram.
These observations suggest that certain visual features can increase users’ cognitive load in interpreting
action diagrams. We suspect that viewers’ cognitive limitations are an important constraint in diagram
generation—a suggestion we return to in the conclusion.

4.5 Limitations

The experiments of Section 4 suggest that people agree on the structural organization of arrows in dia-
grams, and they also assign arrows consistently into semantic frames based on the identity of depicted
objects and the broad significance of the arrow. While these results support a linguistic approach to
diagram organization, they require substantial development to inform automatic diagram understanding.
Automatic methods have trouble recognizing structural links between diagram elements (Kembhavi et
al., 2016). Successful practical methods for diagram parsing rely on sketch stroke order (Johnston, 1998;
Alvarado and Davis, 2004), which is not available in AI2D. Inferring coreference among schematic pic-
torial elements is also a challenging open problem, since current machine learning models of computer
vision are notoriously bad at line art.
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5 Interpretation of Action Arrows

The result of the experiments in section 4 showed that the specific import of arrows varies across contexts,
but is typically consistent within a diagram and strongly contained by its subject matter. This means
that once we know that an arrow falls into the direction, motion or indication category we have the
interpretation of the arrow. However, in order to come up with the exact relation that explains the action
arrows, we need to take a further step. In this section, we look specifically at how to predict the specific
relation associated with an action arrow. Previous work has focused on resolving these interpretations
using handcrafted knowledge bases describing specific domains (Alvarado and Davis, 2004; Forbus
et al., 2011). Our analogy with verbs suggests that shallow methods based on element statistics and
simple machine learning methods may provide more practical methods for inferring the domain-specific
meaning of arrows in particular cases.

We carried out computational experiments to assess this hypothesis. Our machine learning classifier
takes as input the verbal information in a diagram, such as label text and other annotations, and predicts
the likely interpretation of all its action arrows.

5.1 Dataset and experimental setup

To link action arrows with their interpretations, we ran a pilot study on Mechanical Turk with 56 diagrams
(5% of the diagrams that were tagged with action arrows in Experiment 1). Each subject saw a single
diagram and responded to the prompt: “If you remove the arrows in this diagram, what words would
you replace them with to convey the same meaning?” The results were consistent with the hypothesis
that each diagram uses arrows to convey a single relation; unsurprisingly, however, the responses used
diverse vocabulary (Furnas et al., 1987), so could not be used directly as training data for a classifier.6

Instead, we associated diagrams with arrow meanings consistently based on AI2D categories: We used
“turn into” for cycle of life and rock cycle diagrams; “eat/be eaten” for food chain web diagrams and
“produce/receive” for photosynthesis diagrams.

AI2D includes multiple diagrams with similar content. We want to test whether we can learn general
patterns for classifying arrows, not just memorize the features of individual examples. Thus, we orga-
nized our experiment in blocks using diagrams with different subject matter. We divided the data into
three: we randomly split the receive class (it has only 93 datapoints), but we divide the two other groups,
turn into and eats, based on three existing categories in AI2D (cycle of rocks, volcano, cycle of life) and
three subcategories that we found in food web data (ocean, large birds, big cats). Since the number of
blocks is small, we report cross-validation results leaving out one fold as test data.

5.2 Models

We used a bag of words (BoW) model with the SVM classifier as our baseline.
We compared the baseline to a convolutional neural network (CNN) with one convolution layer over

pretrained word embeddings (Collobert et al., 2011; Kim, 2014). We used a max-over-time pooling
operation and dropout regularization. See Table. 5. This setting enabled us to measure the effectiveness
of considering distributional similarity in our classification task and thus the importance of generalizing
based on shallow semantic knowledge.

To see how important it is to semantically understand the input by using sequential and structural
information, we experiment with hierarchical attention RNNs (Yang et al., 2016). We made a look-up
table for vocabulary, converted all words to integers and applied a one hot encoder. Next, we padded the
input sequences, and fed them through Embedding, LSTM and Dense layers. Model Architectures are
described in detail in Appendix A.

We trained the models to minimize binary cross entropy. Text was fed in left to right and top to bottom
based on the position in the diagram.

644 responses consisted of a single verb (differing across subjects: turn into, metamorphose), and 5 included two verbs
with similar meanings (develop, turn into), while 7 included nouns or short sentences.
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data size CNN RNN SVM

fold 1
train: 1175

0.859 0.704 0.571
test: 269

fold 2
train: 1101

0.841 0.749 0.623
test: 343

fold 3
train: 1287

0.862 0.673 0.466
test: 175

Avg
train: 1187

0.842 0.708 0.553
test: 262

Table 4: Accuracy of predicting implicit RELATION for diagrams with ACTION arrows.

5.3 Results

Table 4 gives our experimental results. The CNN architecture works best. Its overall effectiveness
corroborates our hypothesis that arrows pick up straightforward action associates of the objects they
connect. The improvement over the SVM model suggests that distributional similarity is an effective
proxy to the world knowledge needed to understand a diagram. The improvement over RNNs suggests
that linguistic structure is not important for this task.

Error analysis revealed three major problems. The majority of the examples that our models failed
to classify were the ones that contain labels that are shared between categories. For example, words
such as “animal” and “plant” show up in both “turn into” and “eat” categories. We also had problems
with diagrams labeled in languages other than English, and some diagrams with irrelevant labels, such
as photosynthesis diagrams with “car” and “factory” labels.

Working with labels enable us to take into account the pictorial information that is available in a
diagram without using a vision classifier. We can see that having a knowledge of the category of the
diagram suffices for resolving the underspecification problems.

6 Conclusion

Arrows, we have argued, have a constrained form, meaning and interpretation, which can be theorized us-
ing linguistic concepts. This means, in particular, that we can ask subjects to report their interpretation of
arrows in linguistic terms and use machine learning methods to resolve ambiguities in the interpretation
of arrows in qualitative, linguistically-motivated ways. Vision researchers sometimes compare diagram
understanding to scene understanding (Kembhavi et al., 2016). That may be right when it comes to
grouping elements in diagrams together and recognizing pictorial elements—though much research on
those topics is still needed. When it comes to organizing the content of a diagram as a whole, we think
discourse modeling and other NL techniques also offer important tools.

Many of our findings echo designers’ advice about effective diagrams (Tufte, 2001). They are simple.
They have limited figurative content. Most of them have one kind of arrow that’s easy to interpret based
on general background knowledge. If they have multiple kinds the shape of the arrows are different
so that the reader can distinguish between the two kinds of meanings that he has to infer. Our results
therefore promise to help inform systems for diagram generation (Agrawala et al., 2003).

Our empirical work explores only a small number of the ways arrows vary—and diagrams include
a wide range of other elements that we think can be studied with methods like ours. More generally,
the minimal pairs we sketched in Section 3 suggest that we can operationalize interpretive constraints
on multimodal communication with predictive, wide-coverage methods. We hope to contribute to such
formalisms going forward.
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A Learning Experiment Parameters

Model learning code is available with the electronic resources accompanying this paper at https:
//github.com/malihealikhani/Arrows_are_Verbs. Key parameters for our machine
learning experiments are provided in Table 5.

Model Operation Input Kernel size Output Activation

CNN

Embedding – – 128 –
Conv Embedding (3, 128) 100 Relu
Dropout Conv – 300 rate=0.5
Dense Dropout 100 1 Sigmoid

RNN
Embedding – – (20, 64) Relu
LSTM Embedding 64 64 –
Dense LSTM 64 3 Tanh

Table 5: CNN and RNN architecture details.


