
Proceedings of the 27th International Conference on Computational Linguistics, pages 3240–3250
Santa Fe, New Mexico, USA, August 20-26, 2018.

3240

Neural Machine Translation Incorporating Named Entity

1Arata Ugawa 2Akihiro Tamura 2Takashi Ninomiya
1,3Hiroya Takamura 1Manabu Okumura

1Department of Information and Communications Engineering, Tokyo Institute of Technology
2Graduate School of Science and Engineering, Ehime University

3National Institute of Advanced Industrial Science and Technology

ugawa.a.aa@m.titech.ac.jp
{tamura, ninomiya}@cs.ehime-u.ac.jp

{takamura, oku}@pi.titech.ac.jp

Abstract

This study proposes a new neural machine translation (NMT) model based on the encoder-
decoder model that incorporates named entity (NE) tags of source-language sentences. Con-
ventional NMT models have two problems enumerated as follows: (i) they tend to have difficulty
in translating words with multiple meanings because of the high ambiguity, and (ii) these mod-
els’ ability to translate compound words seems challenging because the encoder receives a word,
a part of the compound word, at each time step. To alleviate these problems, the encoder of
the proposed model encodes the input word on the basis of its NE tag at each time step, which
could reduce the ambiguity of the input word. Furthermore, the encoder introduces a chunk-level
LSTM layer over a word-level LSTM layer and hierarchically encodes a source-language sen-
tence to capture a compound NE as a chunk on the basis of the NE tags. We evaluate the proposed
model on an English-to-Japanese translation task with the ASPEC, and English-to-Bulgarian and
English-to-Romanian translation tasks with the Europarl corpus. The evaluation results show
that the proposed model achieves up to 3.11 point improvement in BLEU.

1 Introduction

Neural machine translation (NMT) models based on the encoder-decoder model, also known as the
sequence-to-sequence model (Sutskever et al., 2014), have successfully shown their quality translation.
Consequently, various NMT models are studied in the field of machine translation. To date, the most suc-
cessful model is the bi-directional multi-layered encoder-decoder model with long short term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and an attention mechanism (Luong et al., 2015; Bahdanau
et al., 2015), also known as attention-based NMT. LSTM and the attention mechanism are introduced
to mitigate the difficulty in handling long sentences in the encoder-decoder model. The conventional
attention-based NMT model is known to achieve high translation accuracy in bilingual evaluation un-
derstudy (BLEU). However, this model encounters two general problems: (i) it tends to have difficulty
in translating words with multiple meanings because their translations have high ambiguity, and (ii)
translation of compound words seems difficult because the encoder receives only a word, a part of the
compound word, at each time step.

This study proposes a new NMT model based on the encoder-decoder model, incorporating named
entity (NE) information in source-language sentences. The proposed model alleviates the problems of the
conventional attention-based NMT by incorporating information of NE tags to the encoder and modeling
chunk information of NE tags as the encoder’s network structures. The encoder of the proposed model
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encodes the input word based on its NE tag at each time step to reduce the ambiguity of the input
word. Furthermore, the encoder introduces a chunk-level LSTM layer over a word-level LSTM layer
and hierarchically encodes a source-language sentence to capture a compound NE as a chunk based
on its NE tags. We evaluate the proposed model on an English-to-Japanese translation task with the
Asian Scientific Paper Excerpt Corpus (ASPEC) (Nakazawa et al., 2016) and English-to-Bulgarian and
English-to-Romanian translation tasks with the Europarl corpus. The evaluation results show that the
proposed model achieves up to 3.11 point improvement in BLEU.

The main contributions of this study are as follows:

1. Semantic class information of NE tags is incorporated to the encoder of the attention-based NMT
model.

2. Chunk information of NE tags is modeled as a part of network structures in the attention-based
NMT model.

2 Related Work

This section describes the attention-based NMT model, a previous NMT model incorporating linguistic
features of source-language sentences, and previous NMT models based on chunks/phrases.

2.1 Attention-based NMT Model
The attention-based NMT model is an NMT model, wherein an attention mechanism is introduced in the
encoder-decoder model. The encoder-decoder model consists of two recurrent neural networks (RNNs),
namely, an encoder and a decoder. Gated Recurrent Unit (Cho et al., 2014) or LSTM is typically used as
units of RNNs. In this work, LSTM is employed as units of RNNs.

Given a word sequence of the source language x = (x1, x2, . . . , xj , . . . , xTx), the encoder generates a
hidden vector (h1, h2, . . . , hj , . . . , hTx). Each hidden state of the encoder hj ∈ Rd×1 is calculated using
LSTM, given the previous state hj−1 ∈ Rd×1 and the input word xj , as follows:

hj = fenc(hj−1, Ex(xj)), (1)

where fenc is the encoder’s LSTM, Ex is an embedding layer, and Ex(xj) is an embedding vector of the
word xj .

Then, the decoder sequentially generates a word sequence of the target language y =
(y1, y2, . . . , yi, . . . , yTy), given the final state of the encoder, hTx . The decoder outputs a word sequence
having the maximum logarithmic likelihood with respect to the input word sequence x as the output word
sequence y:

log p(y|x) =
Ty∑
i=1

log p(yi|y1:i−1, hTx). (2)

The probability distribution of the output word yi is calculated from the hidden state h̄i of the decoder:

p(yi|y1:i−1, hTx) = softmax(proj(h̄i)), (3)

where proj is a projection function to resize a decoder’s hidden state to a vector, wherein the vector’s
dimension is the target vocabulary size. softmax is a softmax function to convert the projected vector o
into a probability distribution by normalizing each element of o as follows:

o = proj(h̄i), (4)

softmax(o) =
exp(o)∑K

k=1 exp(ok)
, (5)

where K is the vocabulary size of the target language.



3242

To prevent deterioration of the translation performance for long source-language sentences, the
attention-based NMT tries to capture the relation between the states in the encoder and the decoder,
and the decoder generates the translations by referring to the history of the hidden states in the encoder.
In particular, the alignment score ai is calculated on the basis of the similarity between the decoder’s hid-
den state h̄i and each of the encoder’s hidden states c = (h1, h2, . . . , hj , . . . , hTx). The context vector si
is calculated as the weighted average, where a weight is ai, over all the encoder’s hidden states:

ai(j) =
exp(h̄i · hj)∑Tx

j′=1
exp(h̄i · hj′ )

, (6)

si =

Tx∑
j=1

ai(j)hj , (7)

where Tx is the length of the source-language sentence x, and · denotes the inner product. In the decoder,
the probability distribution of the output word is calculated on the basis of the context vector si in addition
to the decoder’s hidden state h̄i:

p(yi|y1:i−1, c) = softmax(proj([h̄i; si])), (8)

where [;] denotes the concatenation of the two vectors.

2.2 Linguistic Input Features for NMT

Sennrich and Haddow (2016) have improved the attention-based NMT model by using the linguistic
features of source-language sentences. In particular, the encoder receives the lemma, subword tags,
POS tags, and dependency labels of source-language sentences in addition to source-language words. A
lemma is the original form of the word. Subword tags express prefix, stem, and suffix. A POS tag is
part-of-speech information of a word, such as a noun or a verb. Moreover, a dependency label indicates
a syntactic relation between words, such as a head and dependents. The encoder converts each of the
linguistic features into its embedding vector, and then generates hidden states (h1, h2, . . . , hj , . . . , hTx)
from the word embedding vectors of source-language words x = (x1, x2, . . . , xj , . . . , xTx) and the
linguistic feature’s embedding vectors as follows:

hj = fenc(hj−1, (Eword(xj)[ ;
|F |
k=1Ek(xjk)])), (9)

where Eword is an embedding layer for source-language words, Ek is an embedding layer for the k-th
type of linguistic features, and |F | is the number of types of linguistic features (i.e., |F | = 4). Note that
the model has not used NE tags as a linguistic feature, and the incorporation of NE tags into NMT is still
under exploration.

2.3 NMT Based on Chunk/Phrase Units

Ishiwatari et al. (2017) have improved the attention-based NMT by designing chunk-based decoders,
each of which models global dependencies by a chunk-level decoder and local word dependencies by
a word-level decoder. In their decoders, the chunk-level decoder first generates a chunk representation.
Then, the word-level decoder predicts each target word from the chunk representation.

Wang et al. (2017) have improved attention-based NMT by integrating a phrase memory, which stores
target phrases provided by a statistical machine translation (SMT) (Pal et al., 2010) model, to perform a
phrase-by-phrase translation rather than a word-by-word translation. Their model dynamically selects a
word or phrase to be output at each decoding step.

Meanwhile Ishiwatari et al. (2017) and Wang et al. (2017) have incorporated chunks identified by a
chunker and a SMT model, respectively, our work focuses on chunk information of NE tags. Note that
our proposed model can incorporate general chunk information, such as chunks found by a chunker. We
will leave this aspect for future work.
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3 NMT Incorporating NE Tags

In this section, we propose a new NMT model, incorporating NE tags of source-language sentences.
By considering NE types of source-language words, we aim to improve translation performance for
words with multiple meanings. Furthermore, by using chunk information of NE tags (e.g., IO or BIO
information), we aim to improve translation performance for compound words.

The proposed model assumes that an NE tag is attached to each word in source-language sentences
by using an NE tagger. The proposed model receives the sequence of NE tags along with the sequence
of source-language words and generates each encoder’s hidden state on the basis of not only source-
language words but also NE tags. Furthermore, the proposed model introduces a chunk-level LSTM layer
over a word-level LSTM layer into the encoder and hierarchically encodes a source-language sentence.

In Section 3.1, we overview NE tags, and in Section 3.2, we describe the model architecture of the
proposed model.

3.1 Named Entity (NE)
NEs are words/phrases for specific entities, such as the name of persons, organizations, and locations.
Moreover, NEs are sometimes extended to include time expressions and numerical representations. In
CoNLL2003 shared task1, the four types of NEs, namely ‘person’, ‘organization’, ‘location’, and ‘names
of miscellaneous’, have been used. In Message Understanding Conference (MUC)2, the seven kinds
of NEs, namely ‘person’, ‘location’, ‘organization’, ‘time’, ‘date’, ‘money’, and ‘percent’, have been
used. Information Retrieval and Extraction Exercise (IREX)3 have used the eight kinds of NEs, where
‘artifact’ is added to the NEs used in MUC. Moreover, on Ontonotes 5.04, the 18 kinds of NEs have been
defined. NEs could be considered as a kind of semantic category of words/phrases. Therefore, NEs have
contributed to many NLP tasks, including SMT. Note that NEs have not been used in NMT.

NE Recognition is a classification task to identify NE words/phrases and their NE categories in given
input sentences. In the tasks, NEs are usually expressed by chunk tags, such as BIO and IO tags, for
words because an NE might be a phrase. For example, the sentence ‘I arrived at Tokyo Station at 10:20.’
is tagged by BIO2 tags as follows: ‘I:O arrived:O at:O Tokyo:B-location Station:I-location at:O 10:20:B-
time .:O’, where B, I, and O indicate the beginning, inside, and outside of NEs, respectively. In this work,
we used IO tags. By IO tags, NE words/phrases are represented as I (inside) and the others are expressed
as O (outside). An example of the tagged sentence is as follows: ‘I:O arrived:O at:O Tokyo:I-location
Station:I-location at:O 10:20:I-time .:O’.

As mentioned above, NE tags include two features: (i) semantic class of words (e.g., location and time)
and (ii) chunk information (e.g., I and O). By using the first feature, we aim to decrease the ambiguity
of source-language words and improve the performance for words with high ambiguity. By using the
second feature, we aim to capture the chunks of compound words and improve the performance for
compound words.

3.2 Model Architecture
Figure 1 shows the encoder of the proposed model. The encoder of the proposed model is composed of
three components, namely, the embedding layer, word-level LSTM layer, and chunk-level LSTM layer.

The encoder receives the sequence of NE tags, tag = (tag1, tag2, . . . , tagi, . . . , tagTx), along with
the sequence of source-language words, x = (x1, x2, . . . , xi, . . . , xTx), where tagi denotes the NE tag
of xi. At each time step i, the encoder generates the word embedding vector for the source-language
word xi through a word embedding layer Ex. Additionally, the embedding vector for the NE tag tagi is
generated through a tag embedding layer Etag. Then, these vectors are added:

x̂i = Ex(xi) + a ∗ Etag(tagi), (10)
1https://www.clips.uantwerpen.be/conll2003/
2http://www.itl.nist.gov/iaui/894.02/related_projects/muc/proceedings/muc_7_toc.

html
3http://nlp.cs.nyu.edu/irex/
4https://catalog.ldc.upenn.edu/ldc2013t19
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Figure 1: Encoder of the Proposed Model

where a is a parameter to control the influence of NE tags and is optimized in model training. The added
vector, x̂i, is fed to a word-level LSTM component.

The word-level LSTM layer is a bi-directional LSTM, which encodes an input sentence by word. The
bi-directional LSTM consists of a forward LSTM, LSTMf , and a backward LSTM, LSTM b. The
forward LSTM obtains hidden states (hf1 , . . . , h

f
Tx
) from the beginning to the end of the sentence:

hfi = LSTMf (hfi−1, x̂i). (11)

The backward LSTM obtains hidden states (hbTx
, . . . , hb1) from the end to the beginning of the sentence:

hbi = LSTM b(hbi+1, x̂i). (12)

Then, the bi-directional LSTM computes the average of hfi and hbi as the i-th word-level encoder’s hidden
state hi:

hi = (hfi + hbi)/2. (13)

The hidden state hi is fed to the chunk-level LSTM layer.
The chunk-level LSTM layer is a uni-directional forward LSTM, LSTM c, which receives the hidden

states of the word-level layer and encodes a source sentence by chunk identified by NE tags. Based on
the chunk information of NE tags, the hidden states of the chunk-level LSTM layer, (hc1, . . . , h

c
Tx
), is

calculated as follows:

hci =

{
LSTM c(hci−1, hi) if tagi is ‘O’ or the last part of the NE tags
hci−1 otherwise

(14)

The decoder of the proposed model is the same as in the conventional attention-based NMT model.
The initial state of the decoder is set to the sum of the final state of the word-level LSTM layer and that
of the chunk-level LSTM layer.

4 Experiment

This section compares the proposed model, which incorporates NE tags of source sentences, with a
conventional NMT model, which does not use NE tags, under English-to-Japanese (En-Jp), English-to-
Bulgarian (En-Bg), and English-to-Romanian (En-Ro) translation tasks to confirm the effectiveness of
the proposed model.
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Table 1: Statistics on Experimental Data (# of parallel sentences)
Training Data Development Data Test Data

En-Jp 1,320,591 1,768 1,802
En-Bg 363,112 3,000 3,000
En-Ro 357,247 1,972 3,000

Table 2: Vocabulary Size
Source Language Target Language

En-Jp 78,591 57,771
En-Bg 27,872 30,000
En-Ro 27,651 30,000

4.1 Experimental Data

We evaluated the En-Jp translation performance on the ASPEC, which is used in WAT 20175, and the
En-Bg and En-Ro translation performance on the Europarl corpus (Koehn, 2005).

The English and Japanese sentences are tokenized by spaCy6 and KyTea (Neubig et al., 2011), re-
spectively. The Bulgarian and Romanian sentences are tokenized by byte-pair encoding (Sennrich et
al., 2016) implemented in sentencepiece7, where we set the vocabulary size to 30,000. The words that
appeared less than five times in the En-Jp training data and those less than twice in the English side of
the En-Bg and En-Ro training data were replaced with the special symbol ⟨UNK⟩. In the training, all
words were lowercased by lowercase.perl8, and long sentences with over 50 words were filtered out.

In the En-Jp task, we used the development and test data employed in WAT 2017. In the En-Ro task,
we used the newsdev-2016 as the development data and randomly sampled 3,000 parallel sentences from
the training data as the test data. In the En-Bg task, we randomly sampled 3,000 parallel sentences
from the training data for the development data and test data. The statistics on the experimental data are
summarized in Table 1 and Table 2.

We used spaCy NE tagger9, which was trained from the OntoNotes5.010 corpus attached with NE tags,
to identify NE tags of English sentences in the proposed model. Table 3 shows the types of NE tags, and
Table 4 gives the Top 3 NE types on the training corpus.

4.2 Competing Models

We compared the proposed model (Proposed) with the standard attention-based encoder-decoder NMT
model, wherein the encoder is two stack bi-directional LSTM and the decoder is two stack forward LSTM
(Baseline). Note that the proposed model introduces the embedding layer for NE tags and chunk-level
forward LSTM layer into Baseline. We also compared the proposed model with the simulated model of
Sennrich and Haddow (2016) (Baseline Concat). In Baseline Concat, the encoder generates a hidden
state from the concatenated vector of the embedding vector for an input word and that for its NE tag at
each time step (refer to Equation (9)). The network structures other than the embedding layer are the
same as in Baseline.

All of the embedding size and hidden size of the encoder and decoder both in the baselines and
proposed model are set to 256. The parameter a, which controls the effect of NE tags, is initialized
to 0.5.

We used Adam (Kingma and Ba, 2015) with a mini-batch size of 64, 128, and 64 for learning each
parameter in the En-Jp, En-BG, and En-Ro tasks, respectively. We also employed a gradient clipping

5http://orchid.kuee.kyoto-u.ac.jp/WAT/WAT2017/index.html
6https://spacy.io/
7https://github.com/google/sentencepiece
8http://www.statmt.org/moses/
9https://spacy.io/usage/linguistic-features#101

10https://catalog.ldc.upenn.edu/ldc2013t19
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Table 3: Types of NE Tags

NE Type Descriptions
PERSON people, including fictional

NORP nationalities or religious or political groups
FACILITY buildings, airports, highways, bridges, etc.

ORG companies, agencies, institutions, etc.
GPE countries, cities, states
LOC non-GPE locations, mountain ranges, bodies of water

PRODUCT objects, vehicles, foods, etc. (not services.)
EVENT named hurricanes, battles, wars, sports events, etc.

WORK OF ART titles of books, songs, etc.
LAW named documents made into laws

LANGUAGE any named language
DATE absolute or relative dates or periods
TIME times smaller than a day

PERCENT percentage, including ‘%’
MONEY monetary values, including unit

QUANTITY measurements, as of weight or distance
ORDINAL ‘first’, ‘second’, etc.

CARDINAL numerals that do not fall under another type
OTHER others

Table 4: Top 3 NE Types
Corpus Top 3 NE Types
En-Jp O: 94.1%，ORG: 1.65%，CARDINAL: 1.12%
En-Bg O: 91.3%，ORG: 3.56%，DATE: 1.16%
En-Ro O: 91.2%，ORG: 3.58%，DATE: 1.16%
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Table 5: Experimental Results (BLEU score (%))
Baseline Baseline Concat Proposed

En-Jp 29.38 28.17 29.62
En-Bg 37.99 37.48 38.38
En-Ro 34.31 36.77 37.44

technique with the clipping value of 5.0, dropout with the dropout ratio of 0.2, and the weight decay with
the coefficient of 1.0× 10−6. The training stopped after 30 epochs, and the model that achieved the best
BLEU score on the development data, was used for testing.

4.3 Results

We evaluated the translation performances via the case-insensitive BLEU4 metric (Papineni et al., 2002),
which is computed by multi-bleu.perl11. Table 5 shows the experimental results.

From Table 5, the proposed model is better than Baseline for all the translation tasks, which shows
that the effectiveness of the incorporation of NE tags of source sentences into NMT. In addition, the
proposed model outperforms Baseline Concat for all the translation tasks. This observation indicates
that the proposed model makes use of NE tags more effectively than the previous model (Sennrich and
Haddow, 2016).

5 Discussion

This work aims to improve the translation performance for compound words and words with multiple
meanings by using NE tags of source sentences. In this section, we discussed the effectiveness of the
proposed model through actual examples. Table 6 shows the output examples of the baseline model,
Baseline, and the proposed model for three English sentences.

The word ‘first’ has multiple meanings in Japanese (e.g., 最初の (beginning), 一つの (one of), 一位
の (top)). (a) of Table 6 shows that the proposed model correctly translates the word ‘first’, whereas
the baseline model does not. We guess the reason is that the proposed model could disambiguate the
meanings of the word ‘first’ on the basis of the NE tag ‘ORDINAL’.

From (b) in Table 6, the proposed model correctly translates the English phrase ‘between 0.2 to 0.5’
into the Japanese phrase ‘０．２～０．５’, whereas the baseline model fails and results in ‘over- trans-
lation’ (i.e., the Japanese words ‘～０．０５’ are generated twice). Probably, the reason is that the

Table 6: Output Examples of Baseline and Proposed Models
(a) Example1

Input about 60 % of the first peak showed ca2 + dependence .
NE tags I-PERCENT I-PERCENT I-PERCENT O O I-ORDINAL O O O O O O
Reference: 最初のピークの約６割がｃａ２＋依存性を示した．
Baseline: １つのピークの約６０％はｃａ＋依存性を示した．
Proposed: 最初のピークの約６０％はｃａ２＋依存性を示した．
(b) Example 2

Input quantum yields of their decomposition are between 0.2 to 0.5 ,
depending on their substituents .

NE tags I-ORG O O O O O I-CARDINAL I-CARDINAL I-CARDINAL I-CARDINAL O
O O O O O

Reference: それらの分解の量子収量は，それらの置換基に依存して，０．２～０．５である。
Baseline: 分解の量子収率は０．２～０．０５～０．０５になり，それらの ⟨UNK⟩に依存して０．０５５．０５μｍである。
Proposed：この分解の量子収量は，それらの ⟨UNK⟩に依存して０．２～０．５である。
(c) Example 3

Input a new electromagnetic coupling structure has been proposed for a millimeter wave dr - vco .
NE tags O O O O O O O O O O I-CARDINAL O I-GPE I-GPE I-GPE O
Reference: ミリ波ｄｒ ‐ ｖｃｏ用の新しい電磁結合構造を提案した。
Baseline: ミリ波ｄｒ板のための新しい電磁結合構造を提案した。
Proposed: ミリ波ｄｒ ‐ ｖｃｏの新しい電磁結合構造を提案した。

11http://www.statmt.org/moses/
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Table 7: Experimental Results to Confirm the Effectiveness of Chunk Information
Baseline Baseline Chunk Proposed IO Proposed

En-Jp 29.38 28.61 29.51 29.62
En-Bg 37.99 37.55 37.93 38.38
En-Ro 34.31 35.48 35.78 37.44

proposed model could consider the four words as one phrase on the basis of the chunk information (I/O)
of the NE tags.

Furthermore, as can be seen from (c) in Table 6, the compound word ‘dr - vco’ is correctly translated
to ‘ｄｒ ‐ ｖｃｏ ’ by the proposed model, whereas it is wrongly translated by the baseline model.
This finding also indicates that the proposed model is better for the translation of compound words. An
interesting observation from (c) is that although the NE type of ‘dr - vco’ is wrong (i.e., the correct type
is ‘OTHER’ although the attached type is ‘GPE’), the proposed model translates the compound word
correctly. This finding indicates that the chunk information of NE tags could be useful to NMT even if
the NE type is not correctly identified.

The above examples indicate that both semantic class information of words (i.e., NE types) and chunk
information (i.e., I/O) of NE tags could be helpful to NMT. To quantitatively confirm the pure effective-
ness of chunk information of NE tags, we evaluated the performance of the proposed model that uses
only chunk information of NE tags (Proposed IO). In particular, Proposed IO receives either of ‘I’ tag
or ‘O’ tag as the NE tag. In addition, we evaluate the Baseline model that naively uses chunk information
of NE tags (Baseline Chunk). In Baseline Chunk, each source sentence is preliminarily chunked on the
basis of NE tags and each chunk is treated as a word. For example, the two words ‘donald:I-PERSON
trump:I-PERSON’ are concatenated into one chunk ‘donald trump’ and the chunk is treated as one word.

Table 7 summarizes their performance. As can be seen from Table 7, Baseline Chunk is worse than
Baseline in the En-Jp and En-Bg tasks although Baseline Chunk outperforms Baseline in the En-Ro task.
This finding indicates that the naive incorporation of chunk information of NE tags could have negative
effect to NMT. Table 7 also shows that Proposed IO is at least comparable to, or better than, Baseline.
This observation indicates that only chunk information of NE tags could improve NMT performance in
the proposed model. We conjecture that chunking increases vocabulary sizes. Thus, the naive incorpora-
tion (i.e., Baseline Chunk) might suffer from the data sparseness problem, whereas Proposed IO might
alleviate the sparseness problem by the hierarchical structure of the encoder (i.e., word-level LSTM
layer). In addition, Table 7 shows that Proposed outperforms Proposed IO for all the tasks. This finding
indicates that NE types enable further improvement in NMT performance.

6 Conclusion

We have proposed a new encoder-decoder NMT model, which alleviates the problems of word am-
biguities and compound words in the conventional attention-based NMT by incorporating NE tags of
source-language sentences. The encoder of the proposed model encodes both input word and NE tag at
each time step and has a chunk-level LSTM layer over a word-level LSTM layer to hierarchically encode
a source-language sentence.

The experiments on the English-to-Japanese translation task with the ASPEC show that the proposed
model achieved 0.24 point improvement in BLEU. In addition, the experiments on the English-to-
Bulgarian and English-to-Romanian translation tasks with the Europarl corpus show that the proposed
model achieved 0.39 and 3.11 point improvements in BLEU, respectively.

We qualitatively analyzed translation results to investigate the effectiveness of the NE information in
the encoder-decoder model and found several examples that show the effectiveness of either semantic
class information or chunk information of NE tags.

Finally, we also conducted experiments to evaluate how chunk information (i.e., I/O) of NE tags con-
tributed to improve the translation accuracy without semantic class information. From the experiments,
we observed that chunk information could improve the translation accuracy, and the translation accuracy
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was further improved by adding semantic information of NE tags.
Future work includes finding good models to incorporate NE tags and verify the effectiveness of the

proposed models for other datasets. In addition, we would like to incorporate an NE tagging model to
the proposed model to learn both the NE model and machine translation model.
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