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Abstract

Social media based micro-blogging sites like Twitter have become a common source of real-time
information (impacting organizations and their strategies), and are used for expressing emotions
and opinions. Automated analysis of such content therefore rises in importance. To this end, we
explore the viability of using deep neural networks on the specific task of emotion intensity pre-
diction in tweets. We propose a neural architecture combining convolutional and fully connected
layers in a non-sequential manner - done for the first time in context of natural language based
tasks. Combined with lexicon-based features and transfer learning, our model achieves state-
of-the-art performance, outperforming the previous best system by 4.4% Pearson correlation on
the WASSA’17 EmoInt shared task dataset. We investigate the performance of deep multi-task
learning models trained for all emotions at once in a unified architecture and get encouraging re-
sults. Experiments performed on evaluating correlation between emotion pairs offer interesting
insights into the relationship between them. The code for our experiments is publicly available.

1 Introduction & Related Work

One can use text in any language not only to express a variety of emotions but also to convey the as-
sociated ‘intensity’ of the emotion. Emotion intensity is the degree of an emotion (like anger or fear)
expressed by the speaker or author. For example, ‘When you lose somebody close to your heart you lose
yourself as well. Crying my heart out!!!’ expresses more sadness than, say, ‘All friends are out of town.
Feeling a bit lonely...’. Automatic detection of emotion intensity can be useful for natural language based
systems. An e-commerce firm seeking to publicize positive reviews of its products would want to use the
statements expressing high amount of joy or happiness. The intensity of anger expressed in a grievance
can be used to automatically decide the priority of addressing complaints. A possible example scenario:
based on the tweet ‘X box one controller jockey update is the fucking worst! #fuming’ expressing a
higher intensity of anger than the tweet ‘New madden bundle code for x box one is stupid, takes forever
to download lol’, may point to the need of prioritizing addressing issues with the new jockey stick before
looking into the madden bundle of the same product (an Xbox One).

The WASSA’17 workshop conducted the EmoInt shared task (Mohammad and Bravo-Marquez,
2017b) where given a tweet and the emotion it exhibits, systems had to predict the intensity of this
given emotion as a real valued score between 0 and 1. We use the shared task setting and the dataset they
provide to develop and evaluate all our approaches. The main contributions of our work are:

a) A neural architecture for emotion intensity detection which combines convolutional layers with fully
connected layers in a non-sequential or ‘parallel’ fashion. Such a combination of these neural models or
layers has been explored in computer vision (Antol et al., 2015; Vijayanarasimhan et al., 2017) but, to the
best of our knowledge, our work is the first to utilize this in Natural Language Processing based tasks.
Our results will motivate the NLP community to take an increased interest in such architectures. We also
rely on lexicon-based linguistic information in our network, and use transfer learning by incorporating
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activations of a pre-trained convolutional neural network which uses emojis to learn representations for
related tasks of sentiment and emotion detection in tweets (Felbo et al., 2017). Our model achieves state
of the art performance on the EmoInt dataset.

b) Two multi-task neural network based models which successfully handle all emotions jointly, as
opposed to having a separate network for each individual emotion. Our best multi-task learning based
approach performs relatively well when compared to other approaches and previous systems while ben-
efiting from better generalization, speed and lesser trainable network parameters.

c) A comprehensive set of ablation tests to show how the various components within our models
contribute, to help guide the design of future systems for our task as well as other, related tasks.

d) Experiments to gauge the correlation between different pairs of emotion and an effort to link our
observations with past findings in linguistic and psychological experiments.

e) Error analysis to assess reasons for erroneous intensity prediction in tweets.
The code for all our approaches is publicly available 1.
Most datasets and systems focus on emotion classification or detecting the presence or absence of an

emotion (Brooks et al., 2013; Alm et al., 2005; Aman and Szpakowicz, 2007; Bollen et al., 2011; Wang
et al., 2016). To the best of our knowledge, apart from the dataset used for conducting the EmoInt shared
task, there is only one resource annotated for the intensity of emotion in text, which was released by
Strapparava and Mihalcea (2007) as part of SemEval 2007. Annotators gave a score between 0 and 100
for the degree of emotion in newspaper headlines using a slide bar in a web interface.

We perform our experiments on a Twitter dataset (Mohammad and Bravo-Marquez, 2017a) (Table 4).
Users from many backgrounds express emotions via tweets. Increasing activity of bots on Twitter (Gilani
et al., 2017) and companies aiming to accurately respond to tweets about their products or services makes
Twitter an attractive domain for sentiment analysis (Fan and Gordon, 2014; Nakov et al., 2016).

Twenty two systems participated in the EmoInt shared task. Approaches included random forest re-
gressors, neural approaches and lexicon-based methods (Mohammad and Bravo-Marquez, 2017b).

2 Proposed Neural Framework: LE-PC-DNN

We propose a novel neural network based architecture that combines - (i) Convolutional layers, (ii) Fully-
connected layers, (iii) Linguistic features, and (iv) Pretrained CNN activations in a non-sequential fashion
(detailed below). The architecture and the hyperparameter setting is consistent across all emotions.

2.1 Embedding Layer (l(1))
The input to our network’s first layer is a sequence of tokens {w1, w2, ...wn} (padded when necessary).
l(1) begins by associating each word w with a feature vector ew, also called word embeddings (Bengio et
al., 2003). The obtained embedding matrix E ∈ Rn∗d serves as the input to next layer.

The model consists of two different types of layers - Parallelly-connected layers and Sequential fully-
connected layers (Figure 1).

2.2 Parallelly-connected layers

The output E of the embedding layer (l(1)) above is fed to two parallel layers - the CNN layer (l(2)a ),
which applies convolutional operation on the embedding matrix E followed by a max-pooling-over-
time operation to get the l(2)a layer representation (Figure 1) and the Average Embedding Layer (l(2)b ),
which is calculated by taking the mean of word embeddings E across the length of the tweet, giving us
a d-dimensional feature vector. l(2)b is supposed to capture the global context of the tweet. The CNN
layer and the average embedding layer are both fully connected to layers l(3)a and l(3)b respectively after
applying Dropout (Srivastava et al., 2014) in each case to control over-fitting of parameters.

The network consists of two more parallel layers (l(2)c , l(2)d ), which process the input tweet T directly.
For emotion intensity prediction task, the Linguistically Informed Layer (l(2)c ) uses the TweetToLexi-
conFeatureVector filter developed in the Affective Tweets2 package to get 43 tweet-level features, cal-

1https://github.com/Pranav-Goel/Neural Emotion Intensity Prediction
2https://github.com/felipebravom/AffectiveTweets
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culated using several lexicons (details in Mohammad and Bravo-Marquez (2017b)). Sentiment-based
lexicons and other resources of linguistic knowledge can capture some aspects of data that are different
than those learned by CNN/LSTM relying on word embeddings (Chen et al., 2017) and boost perfor-
mance (Ebert et al., 2015). There are different ways to use linguistic features with neural architectures
(Ebert et al., 2015; Park et al., 2016). We incorporate these external features in a simple manner (Fig-
ure 1). The input to the layer l(2)c is a tweet T . Applying TweetToLexiconFeatureVector filter gives a
43-dimensional feature vector.

We also use Pretrained CNN features (l(2)d ) by leveraging the activations of a Convolutional Neu-
ral Network (CNN) pre-trained on emoji prediction task called DeepMoji (Felbo et al., 2017) 3. This
CNN was trained on 1.3 billion emoji-containing tweets and tested on eight benchmark datasets within
emotion, sarcasm and sentiment detection. Since emoji prediction is closely related to emotion intensity
prediction, we hypothesize that transferring knowledge via pre-trained CNN activations could help im-
prove performance for our task. Each tweet is converted into a 2304-dimensional feature vector l(2)d by
feeding the tweet into the DeepMoji-CNN and extracting activations of the last hidden layer.

2.3 Sequential Fully-Connected Layers (l(4), l(5), l(6))

The layer (l(4)) is obtained by concatenating the feature activations of layers l(3)a , l
(3)
b , l

(2)
c ,&l

(d)
d . l(4) is

connected to l(5), which is a fully-connected layer. Additionally, a linear hidden layer (l(6)) with lesser
number of neurons is introduced on top of l(5).

2.4 Output Layer (ŷ)

Finally, we use a sigmoid neuron after l(6) to compute the intensity score ŷ of between 0 and 1.
It is quite common to have fully connected layers or small feedforward neural networks connected

in a sequential or hierarchical manner to sequence-to-sequence models like CNNs/LSTMs (Lee and
Dernoncourt, 2016; Plahl et al., 2013). The feedforward networks in this case take in the pooled output
of CNNs/LSTMs as input. Our architecture (Figure 1), however, combines feedforward, convolutional
layers and manually extracted features in a non-hierarchical manner (layer l(3)a ) as well as in hierarchical
fashion (layer l(3)b ). Such a non-sequential combination of fully-connected and convolutional networks
is novel for NLP tasks, to the best of our knowledge (though this has been used by the vision community
(Antol et al., 2015; He et al., 2017; Vijayanarasimhan et al., 2017)). We call this neural framework with
a non-hierarchical or parallel combination of CNNs/LSTMs, fully-connected layers, lexical features
and pretrained CN activations as PC-DNN (Parallel Combination of Deep Neural Networks). As it
incorporates Linguistic features (layer l(2)c ) and Emoji-based pretrained CNN activations (layer l(2)d ) as
well, we will refer to the network discussed in this section as LE-PC-DNN (Figure 1).

3 Deep Multi-Task Learning (DMTL): Handling all Emotions in a Unified Architecture

Multi-task Learning (Caruna, 1993; Caruana, 1998) has resulted in successful systems for various NLP
tasks (Collobert and Weston, 2008), especially in cross-lingual settings (Huang et al., 2013). MTL was
first applied to Emotion Intensity prediction in (Goel et al., 2017). In their neural architecture, the initial
network layers are shared across multiple emotions upto a certain point, after which the architecture gets
diverged for each emotion. The objective is to jointly train on different emotion datasets such that initial
layers increase generalization and the individual final layers can learn task specific features. The network
input features are the concatenation of average word embeddings across the length of the tweet and
linguistic features (using Tweet2LexiconFeatureExtractor), and the neural layers were fully-connected.

3.1 LE-PC-DMTL for Emotion Intensity Prediction

The above DMTL model only uses feed-forward layers as the input is a 1-dimensional representation
of the tweet. Our proposed LE-PC-DNN network, on another note includes convolutional layers and
pre-trained CNN activations in the architecture. The model however is separate for each emotion. We

3https://github.com/bfelbo/DeepMoji
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Figure 1: Network architecture for the LE-PC-DNN model: Various components - Lexicon-based fea-
tures, an Emoji detecting CNN’s pre-trained activations, fully connected layers, and a CNN/LSTM un-
dergo a Parallel Combination (parallelly-connected) to form a Deep Neural Network (Section 2).

can combine the different emotion models of LE-PC-DNN architecture into a unified network by using
the idea of Multi-Task learning proposed in (Goel et al., 2017). In order to that, we adopt the initial
architecture of LE-PC-DNN and then the final fully-connected layers are different for each emotion.

Our basic model (Figure 2a) consists of two different types of layers: shared representation layers and
task-specific representation layers. The network receives a tweet-emotion pair (T, e) and produces an
intensity score between 0 and 1.

3.1.1 Shared Representation Layers
These layers receive tweets from all emotions which helps in achieving better generalization as the layers
are forced to learn features which work for multiple subtasks. Similar to LE-PC-DNN (Figure 2a), there
are four such levels of layers - l(1) (Embedding layer), l(2) (CNN layer, Avg. Embedding layer, Linguistic
layer, Pretrained CNN features), l(3) (Fully-connected layers), and l(4) (concatenation layer).

3.1.2 Task-specific Representation Layers
The last two layers are allowed to be different across the different sub-tasks to learn task-specific features.

1. Fully Connected Layers (l(5), l(6)): For every emotion, a ReLu transformation will map shared
layer l(4) to task-specific layers l(5) (l(5)a , l

(5)
f , l

(5)
j , l

(5)
s - separate for each emotion), with the separate

outputs going to another hidden layers - l(6)a , l
(6)
f , l

(6)
j , l

(6)
s .

2. Output Layer (ŷ) : l(6) is connected to a single sigmoid output neuron – ŷ, which gives the pre-
dicted intensity score between 0 and 1.
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Figure 2: (a) LE-PC-DMTL: A deep multi-task learning neural network that uses parallelly connected
components - a CNN/LSTM, fully connected layers, a feature vector derived from linguistic lexicons
and pre-trained activations of a network trained for Emoji detection (DeepMoji). So, a Lexicon and
Emoji detection based, Parallelly Connected Deep Multi-Task Learning neural network and (b) LE-PC-
DMTL-EI: This network branches differently to exploit the different pairwise correlations between the
different emotions (some emotion pairs sharing more layers than others), to optimize performance. So,
a Lexicon and Emoji detection based, Parallelly Connected Deep Multi-Task Learning neural network,
optimized specifically for the task of Emotion Intensity detection. Both these models handle all the four
emotions together in a single architecture (Section 3).

Figure 2a clearly demonstrates that replacement of individual bottom layers with shared layers reduces
the network’s parameters significantly, less hyper-parameters required to be fine-tuned and speedup dur-
ing training the network compared to the scenario of having separate networks for each emotion.

3.2 LE-PC-DMTL-EI: A Task-Optimized DMTL Model
The architecture of our proposed LE-PC-DMTL model is that the shared layers will be common across
all emotions, irrespective of the degree of correlation between any particular pair. The correlations
between emotions are investigated via experiments described in section 6. We would like the model to
incorporate or learn relationships between different emotions and not treat all emotions or subtask in a
similar manner since we cannot expect all emotions to be related to each other in the same way.

Inspired by Lu et al. (2016) and some results discussed in section 6, we propose to learn a network
architecture which allows grouping of similar emotions and separate branching of unrelated tasks. Here
we remove the constraint of feature sharing up to a certain level and allow sharing of more parameters
between correlated emotions.

Learning the Network Architecture: We initialize the network with our basic LE-PC-DMTL model
(Figure 2a). Our objective is to learn an architecture where similar emotions are grouped together and
uncorrelated emotions are branched out. After initialization, we refine the architecture step-by-step by
experimenting with various combinations. Since manual exploration of such a combinatorially large
space is not possible, we follow two heuristics:

1. A model is favored over other if it gives a higher Pearson correlation on the cross-validation set.

2. Models where emotion pairs having high positive correlation (Section 6) share more parameters.

The refinement process is repeated manually for fixed iterations or until no further gain in Pearson corre-
lation is observed (on development set). Since we start from our basic multi-task model, the final model
would definitely be an improved version. We apply this heuristic-based algorithm to the EmoInt shared
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Emotion Train Dev Test Total
Anger 857 84 760 1701
Fear 1147 110 995 2252
Joy 823 74 714 1611

Sadness 786 74 673 1533
Total 3613 342 3142 7097

Table 1: The number of instances (tweets) in the EmoInt shared task dataset

Model / LE-PC-DNN LE-PC-DMTL LE-PC-DMTL-EI
Emotion L

(2)
a L

(3)
a L

(3)
b L(5) L(6) L

(5)
x L

(6)
x L

(5)
x L

(6)
x

Anger
CNN

(250,Max)
128 256 128 32

64 32
256

64
Fear 75 40

75
Sadness 64 32

Joy 40 20 125 50

Table 2: Summary of network hyperparameters for our proposed models (Figures 1 and 2).

task dataset (Mohammad and Bravo-Marquez, 2017b). The resulting architecture is shown in Figure 2b.
Though the algorithm is general, the resulting architecture is meant to be optimal for the task to which
it is applied. We refer to this resulting architecture as LE-PC-DMTL-EI (LE-PC-DMTL for Emotion
Intensity prediction). Note that the pairwise correlations (heuristic 2) is only a guiding principle - the
multi-task model discovers the optimal branching or sharing of layers based on the performance across a
lot of variations. The captions of Figures 1 and 2 also serve to summarize the three models we propose.

4 Experimental Setting

4.1 Data

We use the training, development, and testing datasets provided within the WASSA EmoInt shared task
(Mohammad and Bravo-Marquez, 2017b) to train and evaluate the various approaches (Table 4). The
data files include the tweet ID, the tweet, the emotion of the tweet and the emotion intensity. Details
regarding creation and annotation can be found in Mohammad and Bravo-Marquez (2017a).

4.2 Implementation Details

Word Embeddings: We use publicly available pre-trained word embeddings called the Twitter word2vec
model (Godin et al., 2015). These were trained on 400 million tweets for the ACL-WNUT 2015 shared
task (Baldwin et al., 2015) using the word2vec approach (Mikolov et al., 2013). The large number of
tweets in training data makes it a better choice than others available. We choose it over other pre-trained
models like Google word2vec (Mikolov et al., 2013) and the GloVe (Pennington et al., 2014) Twitter
model. This was backed by cross validation results (not shown for brevity).

Preprocessing: Before forming word vector based embeddings of the Twitter tweets, we employed
some preprocessing steps including removal of URLs and user mentions, stripping punctuations from
word boundaries, hashtag segmentation (‘#wearethebest’ to ‘we are the best’ using the Word Segment 4

module in Python) and elongation removal (‘goooooood’ to ‘good’) (inspired by the work in Akhtar et
al. (2017)). Such preprocessing helped in improving cross-validation performance.

Network Hyper-Parameters and Architecture Settings: We show the final hyper-parameter val-
ues for the LE-PC-DNN (section 2), and the multi-task models LE-PC-DMTL and LE-PC-DMTL-EI
(section 3) in Table 2. These values were chosen on the basis of 7-fold cross validation results on the
combined training and validation sets. We changed various network hyper-parameters like number of
layers, output dimensionality, the type of pooling for CNNs (max versus average) and dropout value.

4https://github.com/grantjenks/wordsegment
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Training: The network parameters are learned by directly minimizing the Mean Absolute Error be-
tween the actual and predicted intensity values. We optimize the above function by back-propagating
through layers via Mini-batch Gradient Descent. We use a batch size of 8, 25-30 training epochs and
Adam optimization algorithm (Kingma and Ba, 2014) with the parameters set as α = 0.001, β1 =
0.9, β2 = 0.999 and ε = 10−9. These settings are common across all our models.

4.3 Evaluation
We evaluate the performance of all systems using the Pearson correlation coefficient (r) between gold
ratings and predicted output intensities. This was the metric used in the EmoInt shared task. The Pearson
coefficient measures linear correlation between two variables and is always between -1 and 1. A high
(positive) value indicates strong (positive) correlation and a value of 0 indicates no correlation. We use
following baselines to benchmark our results:

1. Weka: The Weka system (Mohammad and Bravo-Marquez, 2017a) served as the baseline for
EmoInt shared task (Mohammad and Bravo-Marquez, 2017b) . It uses an SVM regressor on pre-
trained word embeddings and lexicon based features.

The other two baselines are the two top performing systems in the shared task:

2. Prayas: (Goel et al., 2017) used weighted ensembling technique to combine 3 different
models - feedforward neural network on average word embeddings and sentiment features,
CNN/LSTM+max-pooling on concatenated word embeddings, and deep multi-task learning model
(described in Section 3). Note that they combine only the outputs (predicted intensities) of their
different models, but the fact that combining outputs of different models helped with performance
indicates that the architectures are able to complement each other. Our model (Figure 1) exploits
this observation by letting the network learn how to best combine different neural models.

3. IMS: (Köper et al., 2017) use a random forest regressor on features based on manually created
resources, automatically extended lexicons and the output of CNNs/LSTMs.

5 Results and Discussion

We show the Pearson correlation scores for all our proposed neural models and baselines (section 4.3)
on the test set in Table 3. The major takeaways from these results and the ablation tests (Figure 3) are:

• State-of-the-Art Performance The proposed LE-PC-DNN model (section 2) outperforms all the
baselines for all emotions (except for sadness in which our proposed multi-task architecture LE-
PC-DMTL-EI fares better), setting a new state of the art score of 0.791 on average. It significantly
outperforms the previous best model (Prayas) by 4.4% Pearson score on average.

• A Solid Case for Multi-Task Learning for Emotion Intensity Prediction: While the multi-task
architecture used in the system Prayas (Goel et al., 2017) used just fully-connected layers, our pro-
posed multi-task models uses CNNs, lexicon-based features and activations of a pre-trained CNN
(section 3, Figure 1) to improve performance by a comprehensive 9.6-11.0% Pearson score (the
last 3 columns of Table 3) and also gives competitive scores when compared to our state-of-the-art

Emotion LE-PC-DNN Prayas IMS Weka LE-PC-DMTL-EI LE-PC-DMTL MTL (Prayas)

Anger 0.767 0.765 0.767 0.639 0.735 0.731 0.645
Fear 0.791 0.732 0.705 0.652 0.760 0.755 0.677
Joy 0.803 0.762 0.726 0.654 0.785 0.758 0.654

Sadness 0.803 0.732 0.690 0.648 0.808 0.786 0.672

Average 0.791 0.747 0.722 0.648 0.772 0.758 0.662

Table 3: Pearson correlations (r) obtained by the systems on the full test sets.
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Figure 3: Ablation test visualizations (scores are average Pearson correlation: a) Effect of Transfer
Learning, b) Effect of removing one of the parallel connected components from LE-PC-DNN architecture
(Figure 1), c) Comparing individual parallel components of LE-PC-DNN (section 2.2), d) Comparing
number of trainable parameters and e) training time with proposed multi-task learning models.

LE-PC-DNN model trained on and used for each emotion individually. Out of our two multi-task
models, LE-PC-DMTL-EI (section 3.2) gives better performance by 1.4% Pearson score. It benefits
from being optimized for our task by exploiting the correlation among certain pairs of emotions.
The major advantage of using the multi-task models offer is the use of a unified architecture instead
of separate models for each emotion, which means less computational complexity. This is estab-
lished in Figures 3d and 3e, which show that our LE-PC-DMTL and LE-PC-DMTL-EI architectures
(section 3) have less than one-third number of trainable parameters and take less than one-third the
training time compared to our LE-PC-DNN model (section 2). This established the viability of our
multi-task approach, which will only increase with the number of different emotions!

• Effect of Transfer Learning: Removing the deepmoji pre-trained CNN activations (section 2.2)
has a significant effect of performance of all our proposed models including the multi-task ones
(Figure 3a), with the drop of 5% Pearson score in case of the PC-DNN model (section 2) being
the most notable. Transferring features from a related task (like emoji detection) trained on a much
larger dataset (1.3 billion tweets compared to about just 1,000 in our case) proves to be very useful in
terms of prediction performance. This also means that the representations learned by the Deepmoji
model (Felbo et al., 2017) work well for the emotion intensity detection task.

• Impact of the Different Non-Sequential Components in our Neural Architecture: From Figures
3b and 3c, it is clear that all of our parallelly connected components (components 1, 2 and 3 in
Figure 1) have a positive role in the overall performance. Lexicon-based features and pre-trained
activations of a CNN trained for Emoji detection task (section 2; component 3 in Figure 1) contribute
the most followed by CNN and then the fully-connected layers.

Note: For the training time results shown in Figure 3e, the experiments were run on a CPU with 4 GB
RAM and 1.7 GHz Intel core i5 processor. Also, the time for LE-PC-DNN is the sum of the times taken
for training of the individual models (since the architecture is run separately for each emotion unlike
multi-task models which handle all emotions in one architecture).

6 Cognitive Implications of Emotions’ Pairwise Similarity

To quantify various correlations that different pairs of emotions exhibit in social media microblogs, we
perform two experiments. First, we train the best-performing LE-PC-DNN model on one emotion and
test on another emotion (Table 4) (also explored in Mohammad and Bravo-Marquez (2017a)). Then, we
train the model on the combined datasets of two emotions and see the performance on the test sets of
individual emotions (Table 5) to further test how well different pairs of emotions complement each other.
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Emotion i/j anger fear joy sadness

anger 0.766 0.447 -0.526 0.443
fear 0.533 0.791 -0.57 0.712
joy -0.592 -0.387 0.803 -0.537

sadness 0.586 0.628 -0.567 0.803

Table 4: Pearson correlation scores (trained on
emotion j (row); tested on emotion i (column)).

Emotion i/j anger fear joy sadness

anger - 0.779 0.66 0.79
fear 0.73 - 0.687 0.802
joy 0.637 0.675 - 0.728

sadness 0.745 0.787 0.677 -

Table 5: Pearson correlation scores (trained on
combined data of emotion i, j; tested on i).

6.1 Training on One Emotion and Testing on Another
Table 4 shows that there exists significant correlations between all the emotions, ranging from absolute
Pearson scores of 0.387 (between fear and joy) to 0.803. This indicates that all emotions are at least
somewhat correlated. This is backed in part by observations made in Wilson-Mendenhall et al. (2013),
where the authors claim that ‘all human emotions share core affective properties’ (note that they relied
on arousal and valence of emotions).

The negative emotions (‘anger’, ‘fear’ and ‘sadness’) are positively correlated with each other and
negatively correlated with ‘joy’. The correlations are asymmetric, i.e., a pair of emotions does not show
similar predictive power in either direction. For example, training on anger predicts intensity of sadness
with 0.443 correlation with actual sadness intensities (a drop of about 0.36 Pearson score from when
training happens on the sadness training set), whereas training on sadness predicts intensity of anger
with 0.586 correlation (a drop of about 0.22 Pearson score). These last two observations match well with
the results of the experiments carried out in Rutherford et al. (2008). In that work, visual aftereffects
of certain emotional scenarios on the participants’ faces were observed in various settings. They found
that the results of their functional approach suggests (in their own language): “Negative emotions are
many and specific. In contrast, positive emotions are few and less specific.” The results further backed
their hypothesis that “emotions share an asymmetric relationship as a group, in which numerous negative
emotions together oppose the relatively small set of positive emotions”. Schwartz and Weinberger (1980)
also hint at the asymmetric nature of emotions (for fear and anger in particular).

6.2 Training on a Combined Dataset of Two Emotions and Testing on Both of them
Table 5 investigates the impact of combining the datasets of two emotions for training. All negative
emotions (anger, fear and sadness) exhibit good performance in this scenario. The Pearson correlation
suffers a drop of 0.02-0.03 in case of anger, and training on combined datasets of fear and sadness
results in very similar performance for the individual emotions as compared to using just the individual
emotion’s dataset for training (the results in the diagonal of Table 4). The idea for using combined
emotion datasets was motivated in Mohammad and Bravo-Marquez (2017a), who hinted at an increase
in performance when combining fear and sadness training sets (but we do not see an increase, although
the performance remains basically unaffected). High correlation among the negative emotions was also
established in Barrett (2006) and Feldman (1993). However, the specific relationship between fear and
sadness seems to be unexplored. It is possible that this relationship is a characteristic of the domain
of Twitter tweets or our dataset. These observations comply with our LE-PC-DMTL-EI architecture
(Figure 2b), where the emotion ‘joy’ is the first to get separated while the emotions ‘fear’ and ‘sadness’
are learned jointly for many layers in the architecture which gave optimal performance.

7 Error Analysis

We present some examples from the test dataset (Table 6) where the predictions were off by about 0.3 in
intensity in either direction. Note that intensities are real-values scores between 0 and 1. To help future
systems better predict emotion intensity in tweets, we present plausible explanations for the errors:

• Incorrect Modeling of the Full Tweet Context: It can become necessary to correctly model the
overall context of the tweet. In Tweet #2, words like ‘angry’,‘anger’ and ‘hurt’ indicate high inten-
sity of anger. But the tweet is more of a moral preaching than an angry outburst, which explains an
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# Tweet Emotion Actual
Intensity

Predicted
Intensity

1
Oi @THEWIGGYMESS you’ve absolutely fucking killed me.. 30 mins
later im still crying with laughter.. Grindah.. Grindah...hahahahahahaha Joy 0.846 0.417

2
People are #hurt and #angry and it’s hard to know what to do with that
#anger Remember, at the end of the day, we’re all #humans #bekind Anger 0.25 0.580

3
T minus 10 hours till I meet with a designer who wants me to model

his new fashion line !!! Fear 0.667 0.286

4 Ibiza blues hitting me hard already wow Sadness 0.833 0.533

Table 6: Examples of tweets with absolute difference in predicted and actual intensity greater than 0.3

actual anger intensity of 0.25. In Tweet #1, the latter half of the tweet makes it clear that ‘absolutely
fucking killed me’ is a strong expression of joy and not some negative emotion.

• Context Outside the tweet: Tweet #3 requires common sense or world knowledge to know that an
important meeting drawing near is generating anxiety with high intensity. This fear or anxiety is not
obvious from the text itself which might explain the predicted intensity of 0.291 when the actual
intensity is 0.667. Tweet #4 suffers from a similar problem. World knowledge is required to know
the relationship between ‘Ibiza blues’ and sadness.

• Metaphors: Metaphorical expressions, like ‘crying with laughter’ in Tweet #1 or ‘Ibiza blues’ in
Tweet #4, pose a significant challenge to computational models (Ghosh et al., 2015).

We carried out the above analysis after concluding all the experiments. The number of tweets where
the predicted intensity was higher than actual and vice-versa were almost equal for any emotion. Hence,
our system is not biased towards predicting higher or lower intensities than the annotated ones.

8 Conclusion & Future Work

We proposed various deep neural architectures for the task of emotion intensity prediction on micro-
blogging data, specifically, Twitter data. This problem was recently brought to light by the EmoInt shared
task (Mohammad and Bravo-Marquez, 2017b). Combining fully-connected layers with CNN in a parallel
or non-sequential manner helped performance, and while we see such combinations in works tackling
Vision tasks, the NLP community should also try this in their experiments. Transfer learning proved
very effective in terms of performance since it helped us utilize the pre-trained activations of a CNN
trained on more than a billion tweets for the related task of emoji detection in the same domain of Twitter
tweets. These techniques when combined allow us to set the new state-of-the-art performance in emotion
intensity detection, considerably outperforming all previous systems. We also proposed two deep neural
network based multi-task learning methods with one of them learning to group similar emotions together
using a heuristic based algorithm. The models compare well with the best performing system, and give
significant gains in terms of computational complexity when compared to having a separate architecture
for each emotion. Our multi-task model will be even more useful when the number of emotions are large.
The optimized multi-task model and focused correlation tests brought out an especially strong correlation
between ‘fear’ and ‘sadness’ for our dataset. Our error analysis on the test set using predictions from the
best performing system will help future systems aiming to predict emotion intensity in tweets.

For future work, we would like to exploit topic modeling to find out correlations between certain topics
and high intensity emotional outbursts, and to see if knowing the topic of a tweet can help with intensity
prediction. We also plan to exhibit our models’ effectiveness in real-world applications by using them,
for example, to rank product reviews in terms of priority on basis of the emotion intensity. Another
planned direction is to extend the four emotions used in this task to Ekman’s six basic emotions (anger,
happiness, surprise, disgust, sadness, and fear) (Ekman and Friesen, 1971).
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Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A neural probabilistic language
model. Journal of machine learning research, 3(Feb):1137–1155.

Johan Bollen, Huina Mao, and Alberto Pepe. 2011. Modeling public mood and emotion: Twitter sentiment and
socio-economic phenomena. ICWSM, 11:450–453.

Michael Brooks, Katie Kuksenok, Megan K Torkildson, Daniel Perry, John J Robinson, Taylor J Scott, Ona Ani-
cello, Ariana Zukowski, Paul Harris, and Cecilia R Aragon. 2013. Statistical affect detection in collaborative
chat. In Proceedings of the 2013 conference on Computer supported cooperative work, pages 317–328. ACM.

Rich Caruana. 1998. Multitask learning. In Learning to learn, pages 95–133. Springer.

R Caruna. 1993. Multitask learning: A knowledge-based source of inductive bias. In Machine Learning: Pro-
ceedings of the Tenth International Conference, pages 41–48.

Ruey-Cheng Chen, Evi Yulianti, Mark Sanderson, and W. Bruce Croft. 2017. On the benefit of incorporating
external features in a neural architecture for answer sentence selection. In Proceedings of SIGIR ’17, pages
1017–1020. ACM.

Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language processing: Deep neural
networks with multitask learning. In Proceedings of the 25th international conference on Machine learning,
pages 160–167. ACM.

Sebastian Ebert, Ngoc Thang Vu, and Hinrich Schütze. 2015. A linguistically informed convolutional neural
network. In WASSA@ EMNLP, pages 109–114.

Paul Ekman and Wallace V Friesen. 1971. Constants across cultures in the face and emotion. Journal of person-
ality and social psychology, 17(2):124.

Weiguo Fan and Michael D Gordon. 2014. The power of social media analytics. Communications of the ACM,
57(6):74–81.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad Rahwan, and Sune Lehmann. 2017. Using millions of emoji
occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm. In Proceedings
of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1615–1625.

Lisa A Feldman. 1993. Distinguishing depression and anxiety in self-report: Evidence from confirmatory factor
analysis on nonclinical and clinical samples. Journal of consulting and clinical psychology, 61(4):631.

Aniruddha Ghosh, Guofu Li, Tony Veale, Paolo Rosso, Ekaterina Shutova, John Barnden, and Antonio Reyes.
2015. Semeval-2015 task 11: Sentiment analysis of figurative language in twitter. In Proceedings of the 9th
International Workshop on Semantic Evaluation (SemEval 2015), pages 470–478.

Zafar Gilani, Reza Farahbakhsh, and Jon Crowcroft. 2017. Do bots impact twitter activity? In Proceedings of the
26th International Conference on World Wide Web Companion, pages 781–782. International World Wide Web
Conferences Steering Committee.



2925
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