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Abstract

With more and more people around the world learning Chinese as a second language, the need of
Chinese error correction tools is increasing. In the HSK dynamic composition corpus, word usage
error (WUE) is the most common error type. In this paper, we build a neural network model that
considers both target erroneous token and context to generate a correction vector and compare it
against a candidate vocabulary to propose suitable corrections. To deal with potential alternative
corrections, the top five proposed candidates are judged by native Chinese speakers. For more
than 91% of the cases, our system can propose at least one acceptable correction within a list of
five candidates. To the best of our knowledge, this is the first research addressing general-type
Chinese WUE correction. Our system can help non-native Chinese learners revise their sentences
by themselves.

Title and Abstract in Chinese

非中文母語學習者中文寫作用詞錯誤之更正

以中文為第二語言的學習者與日俱增，遍及全球，對於中文更正工具的需求也相應而
生。在HSK動態作文語料庫中，用詞錯誤（WUE）是中文學習者最常犯的錯誤類型。在
這篇論文中，針對中文用詞的更正，我們建立了專屬的神經網路模型，同時參酌目標錯
誤詞彙及其前後文資訊，以產生推薦的更正方式。經過中文母語人士的評估，在91%的
測試案例中，系統所推薦的前五名候選詞彙，至少有一個是適當的更正方式。據我們所
知，這是目前第一個全面性的中文用詞錯誤更正之研究。我們的系統可以幫助非中文母
語人士自主修正其所寫的中文句子，促進華語文教學之成效。

1 Introduction

Grammatical error correction (GEC) tools can help language learners revise their writing. Chinese GEC
tools are in high demand since Chinese has become an increasingly popular second language worldwide.
Despite the increasing need, most of the existing studies on GEC are based on English learner data. The
method of correcting sentences in Chinese, a language which differs substantially from English in major
aspects such as the morphological structure and the distribution of learner errors, has not yet been fully
developed.

This paper focuses on the correction of Chinese word usage errors (WUEs). According to the definition
of Shiue and Chen (2016), a WUE refers to an incorrect token that involves morphological, syntactical,
or semantical problems. The token is either an incorrect word form, or a correct existent word that is
improper for its context.

Given a token in a sentence segment that is known to be erroneous, we aim to generate a suitable
correction for it. The criteria for a suitable correction are:
• Correctness: After substituting the erroneous token with the correction token, the result is a syn-

tactically and semantically correct Chinese sentence segment.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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• Similarity: The meaning of the correction is close to the writer’s intended meaning.
We discuss the criteria with the following example sentence segments.

(E1-1) *生活方式已經猛猛猛烈烈烈地改變了 ( The way of living has been fiercely changed. )
(E1-2) *生活方式已經暴暴暴烈烈烈地改變了 ( ... has been overpoweringly changed. )
(E1-3)生活方式已經緩緩緩慢慢慢地改變了 ( ... has been slowly changed. )
(E1-4)生活方式已經劇劇劇烈烈烈地改變了 ( ... has been dramatically changed. )

For wrong segment (E1-1), (E1-2) is not a correction since it is incorrect itself. The adverb “暴烈
地” (overpoweringly) does not collocate with the verb “改變” (change). (E1-3) is grammatical, but its
meaning differs from the original meaning of (E1-1), so neither is it suitable. (E1-4) is a good correction
that meets both criteria.

Nevertheless, there are some cases in which the similarity criterion is hard to meet. For example, the
intended meaning of (E2-1) is very difficult to recognize. (E2-2) is the ground-truth correction, but the
association between the original erroneous token “情緒” (emotion) and the correction “因素” (factor) is
unclear.

(E2-1) *發生這種情況的情情情緒緒緒很多 ( Many emotions happen this situation. )
(E2-2)發生這種情況的因因因素素素很多 ( Many factors can lead to this situation. )

When two criteria cannot be met at the same time, the correctness criterion should have higher priority,
since an incorrect sentence can confuse the language learner.

In this paper, target refers to the original erroneous token written by the language learner, and context
refers to other words in the sentence segment. A pair consisting of the target and its corresponding
correction is called a correction pair. In example (E1) and (E2), “猛烈” and “情緒” are targets, and
(猛烈, 劇烈) and (情緒, 因素) are correction pairs. According to the previous discussions, the major
challenge of the WUE correction task lies in the derivation of the intended semantics and the generation
of valid sentence segments.

We treat WUE correction as a candidate selection problem and propose a neural network-based model
considering both target and context to rank correction candidates. Our main contributions are: (1)
Though the detection of Chinese WUE and correction of certain types have been studied, this is the
first research dealing with the correction of all types of WUEs. (2) To consider alternative corrections,
we perform human evaluation and show that our system can propose at least one acceptable correction
within the top five candidates for more than 91% of the cases. (3) We release the HSK WUE dataset with
additional human annotations.

2 Related Work

English GEC is a rather mature field of study in NLP. Several shared tasks have been conducted for
English GEC (Dale and Kilgarriff, 2011; Dale et al., 2012; Ng et al., 2013; Ng et al., 2014). Language
models, machine learning classifiers, rule-based classifiers, and machine translation models are used.
The machine translation approach has the advantage that there is no need to explicitly formulate the
types of the errors. A series of English GEC studies are based on the phrase-based statistical machine
translation (SMT) framework (Dahlmeier and Ng, 2011; Chollampatt et al., 2016b; Chollampatt et al.,
2016a; Chollampatt and Ng, 2017).

Nevertheless, the satisfactory performance of the SMT approach cannot be reached without sufficient
training data. In fact, Chollampatt et al. (2016a) have shown that the model trained with smaller training
data from writers with the same first language (L1) as writers of the test data performs even worse than
the model trained with larger training data from writers whose L1 differs from that of the test data. The
amount of available Chinese learner data are even less sufficient than that of English ones. Therefore,
as a preliminary research in Chinese WUE correction, we impose restrictions on our setting that there is
exactly one error in a sentence segment, the error position is known, and the error can be corrected by
replacing the erroneous token with an appropriate word.

The distribution of errors of non-native Chinese differ a lot from that of non-native English. In the
CoNLL 2013 shared task (Ng et al., 2013), the most frequent error types are article, preposition, noun
number, verb form, and subject-verb agreement. These error types are mostly in violation of English
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Figure 1: Overview of our correction generation model. The score of a correction candidate d is predicted
for replacing the target erroneous word “猛烈” (fiercely) with the target and the context information.

grammar rules, so it is relatively easy to grasp some patterns of correction. In contrast, in the HSK
dynamic composition corpus built by Beijing Language and Culture University, which is the largest
available Chinese learner corpus at the time of this study, WUE is the most frequent lexical-level error.
In most cases, a wrong usage of a word does not lead to violation of syntactic rules. Instead, its incor-
rectness cannot be determined without understanding the meaning of the whole sentence. As a result,
besides directly adopting the techniques used for English GEC, many aspects of Chinese GEC are worth
studying.

The Chinese spelling check task (Wu et al., 2013; Yu et al., 2014b; Tseng et al., 2015; Fung et al.,
2017) evaluates the detection and correction of character errors. The Shared Task for Chinese Grammat-
ical Error Diagnosis (Yu et al., 2014a; Lee et al., 2015; Lee et al., 2016; Rao et al., 2017) extends the
above task to word errors, including redundant word, missing word, word disorder and word selection.
Nevertheless, these tasks only deal with detection but not correction.

Some researchers focus on certain types of Chinese writing errors. For example, Yu and Chen (2012)
identify word ordering errors (WOEs), and Cheng et al. (2014) further recommend word ordering cor-
rection candidates with the use of ranking support vector machine (RankSVM).

Previous researches on Chinese WUE include segment-level (Shiue and Chen, 2016) and token-level
detection (Shiue et al., 2017). Huang et al. (2016) study the Chinese preposition selection problem,
which is subsumed by WUE correction. Gated recurrent unit (GRU)-based models are trained to select
the most suitable one from a closed set of 43 Chinese prepositions in a context.

Nevertheless, it is still worth investigating how to treat WUEs involving other types of words such as
verbs and nouns. Correcting errors of such open-set types could be much more difficult since the set of
candidates can be huge. To the best of our knowledge, this is the first research dealing with general-type
Chinese WUE correction.

3 Neural Network-based Correction Generation Model

As shown in Figure 1, our correction generation model is a multilayer perceptron (MLP) neural network
that takes target feature vector ftgt and context feature vector fctx as input and outputs a correction
vector MLP(ftgt, fctx). ftgt and fctx are derived either from the segment itself or with the help of some
external resources. Section 5 will give the details for several kinds of features we used.

Every candidate word d in a set D of all possible corrections is mapped to an embedding Ecand(d).
The details of candidate embedding model Ecand will be elaborated in Section 4. The training objective
of our model is to make MLP(ftgt, fctx) as close to Ecand(d̂) as possible, where d̂ is the ground-truth
correction. While MLP contains a bunch of trainable parameters, Ecand is fixed to preserve the ability to
generalize the corrections that are unseen in the training data.
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When testing, given the original erroneous sentence segment, our model selects the most probable
correction d∗:

d∗ = argmax
d∈D

cos(MLP(ftgt, fctx), Ecand(d)) (1)

In fact, this model can propose several candidates, ranked by their cosine similarities to the correction
vector. The goal is to rank the ground-truth correction toward the top of the list.

4 Candidate Embedding

For the candidate embedding model Ecand, we use the character-enhanced word embedding model
(CWE), in which word vectors (hereafter WE) and character vectors (hereafter CE) are learned jointly
(Chen et al., 2015). This model is developed based on one idiosyncratic characteristic of the Chinese
writing system, that meanings of individual characters in a word usually contribute to the meaning of
the word. Therefore, character-level information can help capture the meaning of Chinese words much
better.

On the other hand, one common case of WUE is that the characters within a word is wrongly chosen
or permuted. For instance, “決解” (jué jiě) is a misused form of “解決” (solve). Though the misused
form is a non-existent word, its character components serve as an important clue for discovering what
the writer originally means and help provide more suitable correction.

We adopt the position-based CWE (CWE+P), which keeps three embeddings for each character ac-
cording to the character’s position. This variant is designed to capture different morphological functions
of a Chinese character when it is at different positions in a word. A character vector is denoted as
CE(c, p), where c is the character and p = s,m, e depending on the position (start, middle or end, re-
spectively) of c within a certain word. The word representation is the word vector plus the average of
the component character vectors. For example, the representation of “農產品” (agricultural product) is
CWEw(農產品) = WE(農產品) + 1

3 [CE(農, s) + CE(產,m) + CE(品, e)]. If we ignore the internal
structure of the word, a misused form “農作品” (‘nóng zuò pı̌n’) is simply an out-of-vocabulary (OOV)
word and has no association with the correction “農產品”. With the use of CWE vectors, it is more
possible for the model to learn a transformation from the incorrect token to its correction.

5 Input Features

To meet the two criteria for suitable WUE correction, we adopt several target and context features as
input to the correction generation model. The division of ftgt and fctx is just for indicating the source of
information. These two feature vectors are concatenated and fed to the MLP model.

5.1 Target CWE+P Word Embedding

This set of features is derived from the same embedding model as we used for the candidate embedding.
The way of composing a representation of an existent word is also the same. For OOV word, the repre-
sentation is the average of the vectors of all characters. By doing so, among the three character vector
terms in the representation of “農作品”, CE(農, s) and CE(品, e) are shared with the correction vector
CWEw(農產品). The word and character vectors used to calculate this set of features are in the same
space with the candidate embedding, enabling the model to directly learn a transformation between a
correction pair. We use CWEw to denote this set of features.

5.2 Target CWE Position-Insensitive Character Embedding

Although a character’s position in a word could reflect its morphological function, non-native Chinese
learners might not be so familiar with Chinese morphology. One common type of morphological WUE
is incorrect ordering of characters within a word. For example, (*決解, 解決) is the tenth frequent
correction pair in our dataset. With the use of CWE+P embeddings, the similarity between these two
tokens might be underestimated since all the character vector terms are different.

To cope with this problem, we experimented with the CWE variant that only keeps one vector for
each Chinese character regardless of its position, but the performance is not as good as the model with
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CWE+P features. Alternatively, we design a separate set of character embedding features CWEc which
is the sum of the character embedding of all positions divided by the number of characters in the word.
For instance, CWEc(決解) = 1

2

∑
p=s,m,e [CE(決, p) + CE(解, p)]. As can be seen, CWEc(決解) will

contain CE(解, s) and CE(決, e), which are the terms of CWEw(解決).

5.3 Context2vec Features
Context2vec (Melamud et al., 2016) is a bidirectional LSTM-based model that can encode a “context”
into a real-valued vector. A context is a sequence of words with a certain position blanked out. For
instance, (E3-1) is a context:

(E3-1)可是每個人的 [ ]都千差萬別 ( but everyone’s [ ] is different )
The representation of a context is a combination of the sequence of words before and after the blank:

C2Vctx(w1...wp−1[ ]wp+1...wL) = LSTM(w1...wp−1)⊕ LSTM(wp+1...wL) (2)

where each wi is a token, L is the number of tokens, p is the index of the blank, and ⊕ is the vector
concatenation operation.

Context2vec also keeps the embeddings of individual words, which are called target embeddings1 by
Melamud et al. (2016). We use C2Vtgt to denote the vector of target word. Both target embeddings and
the parameters in the LSTM layers are updated during training. The objective of the model is to predict
the target word that actually occurs in the training sentence, given the encoded context vector.

The formulation of context makes Context2vec suitable for the sentence completion task. A candidate
to fill the blank can be selected according to how similar its vector is to the context vector. That is, given
a context where the p-th position is the blank, the best candidate d∗ would be:

d∗ = argmax
d∈D

cos(C2Vtgt(d),MLP(C2Vctx(w1...wp−1[ ]wp+1...wL))) (3)

where MLP is a non-linear projection that maps the context representation to a vector with dimension-
ality same as that of the target embeddings. Melamud et al. (2016) have shown the promising results
of Context2vec in several sentence completion benchmarks. For the example context (E3-1), the best
candidate selected in this way using our trained model is “境況”, which can be put into the blank and the
result is a correct sentence segment.

(E3-2)可是每個人的 [境況]都千差萬別 ( but everyone’s [situation] is different )
In fact, (E3-1) is extracted from a wrong segment in our dataset. The original erroneous segment and

the corresponding correction are shown in (E3-3).
(E3-3)可是每個人的(*對應,反應)都千差萬別

( but everyone’s (correspondence, reaction) is different )
Given the original segment, one can conclude that the candidate “境況” (situation) selected by Con-

text2vec is less suitable compared to the ground-truth “反應” (reaction), according to the similarity
criterion. Therefore, WUE correction is different from sentence completion in that if the model ignores
the word originally written by the language learner, it is likely to generate a correction that changes the
meaning of the original sentence segment.

To take both context and target information into account, we include two feature vectors C2Vtgt and
C2Vctx , which belong to target and context features, respectively. C2Vtgt refers to the embedding of the
original erroneous token, which can reveal important information about the writer’s intended meaning as
we discussed above.

5.4 Target POS Features
We analyze the part-of-speech (POS) tags before and after correction, and show the most frequent POS
changes in the validation set in Table 1. The POS tagging is performed by using Stanford CoreNLP

1Note that the definition of “target” in the Context2vec paper is slightly different from ours. In our definition, target only
refers to the original erroneous token, while for Context2vec, target can refer to any word to be put into the blank, regardless of
whether the result is a correct sentence.
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Original POS Correction POS # instances Frequency
Unchanged 722 68.70%

VV NN 27 2.57%
NN VV 21 2.00%
P VV 17 1.62%

DEC DEV 15 1.43%
VV P 13 1.24%
AD VV 10 0.95%
VV VA 10 0.95%

Table 1: Part-of-speech changes occurring at least 10 times.

(Manning et al., 2014). As can be seen, the POS tag does not change after the correction in nearly 70%
of the cases. Besides, there are some systematic changes. For example, non-native Chinese learners
seem to confuse some nouns with some verbs, so we can observe the interchanging phenomenon of the
VV and NN tags. The case of VV and P is similar. These systematic changes indicate that it is possible
to reduce the candidate vocabulary. We tried to limit the candidates to the POS transitions observed in
the training and validation set. However, this results in slightly lower accuracy and MRR. Therefore,
instead of modifying the candidate set directly, we encode the POS of the erroneous token in a one-hot
vector and feed this feature to the correction generation model. This allows the model to learn different
transformation function for different source POS, that is, the POS of the erroneous token.

6 Language Model Re-ranking

One drawback of our MLP correction generation model is that the correctness criterion does not explic-
itly take priority over the similarity criterion. In our experiments, we found that our model sometimes
generates segments that seriously violate the correctness criterion, since it can bias toward the similarity
criterion. (E4) is an example.
Wrong segment:

(E4-1) *到山頂之之之間間間路走得不容易 ( The road between the hilltop was not easy to walk. )
Model prediction:

(E4-2) *到山頂期期期間間間路走得不容易 ( The road period the hilltop ... )
Ground-truth correction:

(E4-3)到山頂的的的路走得不容易 ( The road to the hilltop ... )
The candidate “期間” (period) is selected since it is similar to the target “之間” (between), but the

result sentence segment is incorrect. It is necessary to deal with this problem since the correctness
criterion is more important, as we previously discussed in the introduction.

It is expected that this kind of unsuitable candidates can be eliminated by a language model (LM), if
we assume that LM probability reflects the level of correctness of a sentence segment. Therefore, we
emphasize the correctness criterion by incorporating LM scores of traditional n-gram LM or Recurrent
Neural Network Language Model (RNNLM) (Mikolov et al., 2011) into the candidate selection process.
One possible approach is to apply a probability cut-off and discard candidates that result in segments
with low probability. Nevertheless, the “acceptable” LM probability varies from sentence to sentence
since it can be affected by, for instance, length and lexical complexity of the sentence. Though we can
let the cutoff be a function of various factors, it is difficult to design such a function explicitly.

Therefore, instead of performing combination of scores, we combine the rank proposed by the LM
with the rank based on our correction generation model. One advantage of this approach is that the
range of ranks is the same for all instances given fixed candidate vocabulary size, so the ranks can be
evaluated with the same standard across different instances. For a candidate correction, let rLM be its
rank based on the LM probability, and rMLP be the rank based on its cosine similarity to the correction
vector generated by our MLP model. We adopt the following weighted harmonic mean to obtain a new
“rank” for the candidate.

rcom =
1

α
rLM

+ 1−α
rMLP

(4)
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where α is a parameter that can be tuned with the validation set (actual values will be given in Sec-
tion 8.2). Preliminary experiments show that harmonic mean performs better than arithmetic and geo-
metric mean. Though rcom may not be an integer, it can be interpreted as a rank. The correction with
smaller rcom is considered better.

7 Experimental Settings

We adopt the HSK WUE dataset released by Shiue et al. (2017)2 and follow their train/validation/test
split. We use Stanford CoreNLP (Manning et al., 2014) for Chinese word segmentation and POS tagging.
For each split, we filter the instances where the correction is not within the top 50,000 frequent words in
the Chinese part of the ClueWeb corpus3 (Yu et al., 2012). This decision is made based on the fact that
the vocabulary used by non-native language learners is limited. After filtering, the number of instances
in the train, validation, and test sets are 8,205, 1,026, and 1,025, respectively. With punctuation marks
and English words eliminated, the candidate vocabulary size |D| is 48,394.

Our MLP model has two hidden layers of size 1,024. The activation function is Rectified Linear
Unit (ReLU) and the dropout rate is set to 0.2. The parameters are optimized with Adagrad (Duchi et
al., 2011) under a cosine proximity objective function. CWE (embedding size 400), Context2vec (300
units), 5-gram LM and RNNLM (size-128 GRU) are all trained on Chinese ClueWeb. Please refer to
Appendix A for detailed parameter settings.

8 Automatic Evaluation

8.1 Result before LM Re-ranking

We first evaluate our correction generation model with the single ground-truth correction per segment.
The results are shown in Table 2. The baselines include the two LMs and the Context2vec sentence com-
pletion method, which selects a candidate most similar to the context but ignores the original erroneous
token. The 5-gram LM is the strongest baseline for the WUE correction task.

The second part of Table 2 shows the result of a set of experiments with Context2vec features. The
MLP model with only C2Vctx features differs from the Context2vec baseline in that it is trained with the
WUE dataset. Learning a transformation from the erroneous token to the correction seems to be easier
than guessing a correction only from context, probably because some common correction pairs can be
learned. The model using only C2Vtgt achieves performance substantially better than that using only
C2Vctx. Note that the Context2vec vectors does not lay in the same space with the CWE+P vectors we
used for Ecand. This indicates that our model is indeed capable of learning a transformation, not just
copying the vector terms from the input features. Combining C2Vtgt and C2Vctx can further enhance
the performance.

The third part of Table 2 shows another set of experiments, in which different kinds of features are
included incrementally starting from the CWE+P target features. The last row indicates the performance
when all features are used. The model with CWEw features performs better than that with C2Vtgt, since
CWE+P composes a vector representation for OOV targets such as “農作品”, giving the model more
clues for generating the correction. The position-insensitive character feature CWEc slightly improves
the performance over CWEw. After including Context2vec context and target features, the model can
consider the context and reaches accuracy 0.3512. Finally, incorporating POS information further en-
hances the accuracy to 0.3717 (p < 0.05 significance) and MRR to 0.4378.

8.2 Effect of LM Re-ranking

We apply LM re-ranking to the candidate ranks generated by the best correction generation model. The
results of two alternative LMs are shown in Table 3. Although there is only slight improvement on the
accuracy, the MRR and hit rates increase substantially after LM re-ranking is applied. The 5-gram LM

2http://anthology.aclweb.org/attachments/P/P17/P17-2064.Datasets.zip ; corresponding ground-truth corrections retrieved
from: http://202.112.195.192:8060/hsk/login.asp

3http://www.lemurproject.org/clueweb09/
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Target Context Accuracy MRR Hit@5 Hit@10 Hit@50

Baselines (No training
on the WUE dataset)

- 5-gram LM 0.1659 0.2438 0.3268 0.4029 0.5951
- RNNLM 0.1468 0.2208 0.2847 0.3611 0.5793
- C2Vctx 0.0714 0.1170 0.1575 0.2114 0.3611

Correction Generation Model
with Context2vec Features

- C2Vctx 0.1249 0.1746 0.2273 0.2741 0.4010
C2Vtgt - 0.2507 0.3030 0.3561 0.3932 0.5024
C2Vtgt C2Vctx 0.3249 0.3891 0.4566 0.4976 0.6185

Correction Generation Model
with CWE + Other Features

CWEw 0.2898 0.3545 0.4195 0.4693 0.5971
+ CWEc 0.2946 0.3570 0.4234 0.4722 0.6078
+ C2Vtgt + C2Vctx 0.3512 0.4250 0.5024 0.5571 0.6800
+ POS 0.3717 0.4378 0.5063 0.5688 0.6956

Table 2: Performance of the correction generation model with various target and context features.

Model Accuracy MRR Hit@5 Hit@10 Hit@50 Hit@100
Best MLP 0.3717 0.4378 0.5063 0.5688 0.6956 0.7415
+ 5-gram LM 0.3727 0.4605 0.5561 0.6439 0.8039 0.8488
+ RNNLM 0.3727 0.4527 0.5278 0.6205 0.7808 0.8302

Table 3: Performance with LM re-ranking.

gives slightly better MRR than RNNLM. The optimal α for 5-gram LM and RNNLM are 0.355 and
0.255, respectively.

(E5) is an example in which LM re-ranking helps promote the rank of the answer. Though sharing a
common Chinese character, the meaning of “一起” (together) and “一直” (always, all the time) are not
quite similar. Thus, the MLP rank is very low. In contrast, the LM rank is high, since “就...都不...” (have
always not...) is a suitable context for “一直”. The higher combined rank leads to enhanced MRR.

(E5)我從上小學起成績就(*一起,一直)都不理想
( Since I began elementary school, my grade has (together, always) been unsatisfactory. )
rLM = 7, rMLP = 1284→ Combined rank: 19

9 Human Evaluation

In the automatic evaluation, there is only one answer for each test instance. However, correction can
be highly subjective and alternatives may exist. Moreover, since the HSK WUE dataset is composed
of sentence segments, the model has no access to the context outside of the segment. This results in
difficulties in making the choice among several candidate corrections that are different in meaning but all
seem to be acceptable. Table 4 shows an example. The erroneous token “定心” (‘dı̀ng xı̄n’) is not a valid
noun in Chinese. The meaning of character “定” is related to “stable, fixed”, and the meaning of “心”
is related to “mind”. The top five candidates proposed by our system are all differ from the ground-truth
correction. However, except for the rank 3 candidate, all other four candidates are acceptable corrections.
This example shows that the single-answer automatic evaluation can underestimate the performance of
our system. Therefore, we perform human evaluation, in which the top candidates proposed by our
model are judged by annotators.

Wrong segment 不過我們要以堅定的定定定心心心與病對抗 (but we should fight against the disease with strong ‘dı̀ng xı̄n’.)
System 1st 不過我們要以堅定的自自自信信信與病對抗 (... with strong self-confidence.)
System 2nd 不過我們要以堅定的信信信念念念與病對抗 (... with strong faith.)
System 3rd 不過我們要以堅定的理理理智智智與病對抗 (... with strong rationality.)
System 4th 不過我們要以堅定的自自自信信信心心心與病對抗 (... with strong sense of self-confidence.)
System 5th 不過我們要以堅定的毅毅毅力力力與病對抗 (... with strong persistence.)
Ground-truth 不過我們要以堅定的決決決心心心與病對抗 (... with strong determination.)

Table 4: An example of alternative corrections.

9.1 Annotation Guideline

Each instance of annotation consists of two sentence segments:
(S0): the original wrong segment
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(S1): a correction segment, which is either the ground-truth or one of the top k proposed candidates
We set k = 5 ; however, only the candidates ranked before the ground-truth need annotation. For

example, if our system gives rank 3 to the ground-truth correction, only the ground-truth, the first candi-
date and the second candidate need to be judged by human. For the 1,025 test segments, a total of 3,692
annotation instances are generated.

An annotator is asked to answer (at most) two questions for each annotation instance. The questions
and the instructions given to the annotators are shown in Table 5. The answers to both questions are
either Yes (1) or No (0). If the answer to Q1 is No, the answer to Q2 must be No, since (S1) violates the
correctness criterion; we will skip Q2 in such cases. As long as the meaning of (S1) is similar to that of
(S0), the annotator should answer Yes, regardless of whether (S0) is incorrect. In case the meaning of
(S0) is not understandable, as illustrated by (E2-1), the annotator should answer Yes. This corresponds
to our previous claim that the correctness criterion is more important.

Q1 (is g): Is (S1) a correct sentence segment?

1. If (S1) is ungrammatical, please answer No.
2. If (S1) is grammatical but its semantics is not logical, or violates some common-sense knowledge, please

also answer No.
3. Since we split sentences into segments by punctuation marks, if you encounter an “incomplete” sentence,

please answer Yes to it, if it is itself correct and can be completed in some reasonable way.

Q2 (is c): Is (S1) a correction of (S0)?

1. This question will be presented only if you answered Yes to Q1, which means the grammaticality of
candidate correction (S1) has been confirmed.

2. If the meaning of (S1) is the intended meaning of (S0), please answer Yes; otherwise please answer No.

Table 5: WUE correction annotation instructions.

There are 10 annotators who are native speakers of Chinese. They are properly trained by giving
examples selected from the validation set for every case in the instructions. Each annotation instance
is assigned to two annotators randomly, so we can assume that the difficulty of the data assigned to
each annotator is the same. Therefore, we calculate the average inter-annotator agreement of all pairs
of annotators. The average Cohen’s Kappa for Q1 and Q2 are 0.4205 and 0.4070 respectively, showing
moderate level of agreement. If the two annotators disagree on either question, a third annotator is
introduced to break the tie. We use majority voting to determine the final answer.

9.2 Evaluation with Human Annotation
Total 95.60% of the ground-truth corrections and 82.73% of the system top candidates are judged as
correct by the annotators. This indicates that the grammaticality of the system output is acceptable. We
use the updated rank of the test instances, which is the rank of the highest ranked candidate that meets
both correctness and similarity criteria according to annotation results, to re-evaluate our best model.
The performance before and after applying annotation results are shown in Table 6.

As can be seen, there is large performance increase in all metrics, verifying the existence of alternative
corrections. Both accuracy and MRR increase by more than 30%. Moreover, the hit@5 rate is above
91%, which means that for most of the test data, at least one of the top five candidates is an acceptable
correction. A language learner can choose the one that is close to his or her intended meaning from the
list of candidates. In fact, only the writer knows the exact “intended meaning”, so it is nearly impossible
for a system to guess the right meaning all the time. We argue that a fairly short list of candidates can be
helpful for learning to write in foreign languages.

Evaluation Accuracy MRR Hit@5 Hit@10 Hit@50 Hit@100
Ground-truth 0.3727 0.4605 0.5561 0.6439 0.8039 0.8488
+ Annotation 0.6829 0.7784 0.9122 0.9171 0.9502 0.9600

Table 6: Human evaluation results.
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10 Error Analysis

We analyze the human evaluation result according to different POS tags of the erroneous token. The
results of POS tags that occur more than 20 times are shown in Table 7. The most frequent POS tags,
VV, NN and AD, which are open-set word types, contribute the most difficult cases. The accuracy is less
than 70% and MRR is less than 80%. On the other hand, for closed-set word types such as prepositions
(P), our system performs very well, reaching accuracy 0.81 and MRR 0.88. DEV is the POS tag of
Chinese adverb marker “地”. The marker inherits very regular usage, and regular pattern of learner
errors, so the system can achieve perfect performance. This also indicates that our system is capable
of handling various kind of errors, and there is no need to include a separate rule-based module for a
specific error type.

POS # Tests Accuracy MRR Hit@5 Hit@10 Mean rank Std.
VV 316 0.67 0.77 0.91 0.92 26.12 6.75
NN 277 0.64 0.73 0.88 0.88 73.97 11.50
AD 130 0.65 0.75 0.88 0.89 96.16 13.41
P 62 0.81 0.88 0.95 0.95 3.10 1.92

VA 45 0.60 0.76 0.98 0.98 1.98 1.08
DEV 23 1.00 1.00 1.00 1.00 1.00 0.00
PN 21 0.71 0.80 0.95 0.95 2.33 1.40

Table 7: Performance on most frequent POS tags.

11 Conclusion

In this paper, given a Chinese sentence segment with a known error position, we aim to generate correc-
tion candidates that not only result in a correct segment, but also preserve the original meaning of the
writer. Our MLP correction generation model takes target and context features as input and outputs a
correction vector, which can be compared against the vectors of the candidate vocabulary. We apply LM
re-ranking to put emphasis on correctness, avoiding misleading corrections.

In the single-ground-truth automatic evaluation, we achieve accuracy 0.3727 and MRR 0.4605. With
human evaluation, in which the top five proposed candidates are judged by native Chinese speakers to
include some alternative acceptable corrections, the accuracy increases to 0.6829 and MRR to 0.7784.
Moreover, the hit@5 rate reaches 0.9122. Since a list of five candidates is rather short, a language learner
can choose a suitable one from the candidate list and revise his or her sentences even without the help of
a language teacher.

To enable future investigations, the dataset we used is attached. We have dealt with semantic simi-
larity and similarity in overlapping Chinese characters in this paper. Nevertheless, we have not handled
phonetical similarity. For example, in the correction pair (影響,印象), the source of confusion is that the
pronunciation of “影響” (influence ‘yı̌ng xiǎng’) and “印象” (impression ‘yı̀n xiàng’) are very similar.
Pronunciation information can serve as clues for selecting the suitable correction.
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A Detailed Model Settings

A.1 MLP Model Parameters

We implement our MLP correction generation model with Keras (Chollet, 2015). Table 8 shows the
parameters. Models with this setting generally perform the best on the validation set across different
combinations of features. The activation function is not applied at the output layer, so that the model
output can fit better to the candidate embedding of the ground-truth correction.
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When the validation accuracy does not increase for two consecutive epochs, the training process is
terminated. In most cases, our model converges in 5 to 9 epochs. We choose the model with the highest
validation accuracy for each feature combination to evaluate on the test set.

Parameter Value
Hidden layer size 4096
Number of hidden layers 2
Activation function ReLU
Dropout rate 0.2
Cost function cosine proximity
Optimizer Adagrad
Initial learning rate 0.01
Batch size 32

Table 8: Parameter settings of our MLP model.

A.2 CWE Parameters
We use the publicly released implementation of CWE4 to train the CWE+P model on the Chinese
ClueWeb corpus. We set the embedding size to 400 and train for 20 iterations. All other hyperparameters
are left default.

A.3 Context2vec Parameters
We use the publicly available toolkit5 to obtain the Context2vec context and target representation model.
The training is also performed on the Chinese ClueWeb corpus. We set the number of units to 300 and
train for 5 epochs.

A.4 N-gram LM Settings
We fit a 5-gram language model with KenLM6 on Chinese ClueWeb. The modified Kneser-Ney smooth-
ing (Heafield et al., 2013) is applied to handle unseen n-grams.

A.5 RNNLM Parameters
We use the Faster RNNLM toolkit7, which speeds up the training process of the original RNNLM by
using the Hierarchical Softmax (HS) or Noise Contrastive Estimation (NCE). We choose NCE because
it gives better performance on our WUE validation set.

We process the ClueWeb corpus before training. The words whose frequency is less than 10 are
replaced with a “<unk>” token. When testing, an OOV word is treated as “<unk>”. We split 10% of
the corpus for validation. The toolkit automatically adjusts the learning rate and early-stops the training
process based on validation entropy. The hyperparameter settings are shown in Table 9.

Hyperparameter Value
Layer type GRU
Layer size 128
Number of negative samples 20

Table 9: Hyperparameter settings of our RNNLM.
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