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Abstract

Several semi-supervised representation learning methods have been proposed recently that mit-
igate the drawbacks of traditional bootstrapping: they reduce the amount of semantic drift in-
troduced by iterative approaches through one-shot learning; others address the sparsity of data
through the learning of custom, dense representation for the information modeled. In this work,
we are the first to adapt three of these methods, most of which have been originally proposed
for image processing, to an information extraction task, specifically, named entity classifica-
tion. Further, we perform a rigorous comparative analysis on two distinct datasets. Our analy-
sis yields several important observations. First, all representation learning methods outperform
state-of-the-art semi-supervised methods that do not rely on representation learning. To the best
of our knowledge, we report the latest state-of-the-art results on the semi-supervised named en-
tity classification task. Second, one-shot learning methods clearly outperform iterative repre-
sentation learning approaches. Lastly, one of the best performers relies on the mean teacher
framework (Tarvainen and Valpola, 2017), a simple teacher/student approach that is independent
of the underlying task-specific model.

1 Introduction

The paucity of labeled datasets presents tremendous challenges to training machine learning (ML) sys-
tems in the real world. Most natural language processing (NLP) tasks are data hungry. The recent success
of deep learning for NLP tasks is at least partially due to the fact that such models are exposed to large
quantities of labeled data. However, obtaining such rich labeled data is a costly proposition and seldom
feasible in many realistic scenarios.

Semi-supervised learning (SSL) mitigates the supervision cost by combining a minimal amount of
labeled data with a large amount of unlabeled data. In information extraction (IE), SSL often takes the
form of bootstrapping, which starts with a few seed examples, e.g., “Barack Obama” as an example of
a person’s name, and continues with an iterative approach that alternates between learning extraction
patterns such as word n-grams, e.g., the pattern “@ENTITY , former president” could be used
to extract person names, and applying these patterns to extract the desired structures (entities, relations,
etc.) (Riloff, 1996; Abney, 2007; Carlson et al., 2010b; Gupta and Manning, 2014; Gupta and Manning,
2015, inter alia). There are, however, two drawbacks to this direction. First, as learning in this iterative
framework advances, the task often drifts semantically (Komachi et al., 2008) into a related but different
space, e.g., from learning women names into learning flower names (McIntosh, 2010; Yangarber, 2003).
Second, the statistics used to estimate the quality of the learned patterns are often brittle due to the
sparsity of the extraction patterns.

Recently, several semi-supervised representation learning methods have been proposed to mitigate
these issues. One direction learns custom representations for both patterns and the structures to be
extracted to mitigate the sparsity mentioned above (see Section 4). A different direction, illustrated
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by the ladder networks (LN) and mean teacher (MT) frameworks (Rasmus et al., 2015; Tarvainen and
Valpola, 2017), replaces the iterative bootstrapping with one-shot learning driven by teacher/student
architectures, trained to maximize consistency of predictions between the teacher and the student on the
unlabeled data (Sections 5 and 6). Despite this progress, several important questions remain unanswered.
First, most of these methods have been proposed for vision, and it is unclear how useful they are for
lightly-supervised natural language processing tasks. Second, it is unknown how well these methods
compare against “traditional” bootstrapping that does not use representation learning. Third, it is unclear
how these representation learning methods compare against each other.

In this work, we answer the above questions by adapting all these methods to the same IE task, and
performing a rigorous comparative analysis. Specifically, the contributions of this paper are the follow-
ing:

• We are the first to adapt the mean teacher (MT) framework (Tarvainen and Valpola, 2017) to a
semi-supervised IE task, in particular named entity classification (NEC).

• We implement and evaluate the three semi-supervised representation learning approaches sum-
marized above for the same NEC task, using two distinct datasets (Pradhan et al., 2013; Tjong
Kim Sang and De Meulder, 2003), the same inputs, and the same evaluation measures to under-
stand how they compare both against each other and against more traditional semi-supervised NLP
approaches.

• We perform a thorough comparative analysis of all these methods, which highlights several impor-
tant observations. First, our analysis confirms that all these representation learning methods out-
perform state-of-the-art semi-supervised methods that do not rely on representation learning (Gupta
and Manning, 2015; Gupta and Manning, 2014; Zhu and Ghahramani, 2002). Second, one-shot
learning methods (the teacher/student approaches here) have superior performance compared to it-
erative representation learning approaches that are driven by objective functions tailored for the task
at hand (e.g., which maximize the similarity of embeddings for entities in the same class). Lastly,
the teacher/student approaches perform comparatively – each outperforms the other on one dataset
– despite the fact that MT is a simpler framework than LN. That is, in the mean teacher framework
both student and teacher are decoupled whereas in ladder networks there are connections between
the two, which makes porting LNs to new tasks more difficult.

2 Related Work

There is a large body of work in semi-supervised learning for NLP, which encompasses many different
types of techniques such as self-training or bootstrapping (Riloff, 1996; Abney, 2007; Carlson et al.,
2010a; Carlson et al., 2010b; McIntosh, 2010; Gupta and Manning, 2015, inter alia), co-training (Blum
and Mitchell, 1998), or graph-based methods such as label propagation (Delalleau et al., 2005). Among
these, perhaps the most-widely adopted approach in the NLP field is bootstrapping, which has been
used in many applications, including information extraction (Carlson et al., 2010a; Gupta and Manning,
2014; Gupta and Manning, 2015), lexicon acquisition (Neelakantan and Collins, 2015), named entity
classification (Collins and Singer, 1999) and sentiment analysis (Rao and Ravichandran, 2009). However,
as mentioned, most of these approaches suffer from brittle statistics due to the sparsity of the patterns
learned, and from semantic drift, due to their iterative nature. The methods we investigate in this paper
address these two limitations through representation learning and one-shot learning.

Auto-encoder frameworks have received considerable attention in the machine learning community
recently. Such frameworks include recursive auto-encoders (Socher et al., 2011), denoising auto-
encoders (Vincent et al., 2008), and others. They are primarily used as a pre-training mechanism before
supervised training. Recently, such networks have also been used for semi-supervised learning as they are
more amenable to combining supervised and unsupervised components of the objective functions (Zhai
and Zhang, 2015).

Ladder networks (LN) are stacked denoising auto-encoders with skip-connections in the intermediate
layers (Rasmus et al., 2015; Valpola, 2014). LNs have been shown to produce state-of-the-art perfor-
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mance on both supervised and semi-supervised tasks on the MNIST dataset in image processing. Our
work is among the first to apply LNs to NLP. While similar in spirit to Zhang et al. (2017), the only
other work we found that applies a denoising auto-encoder to a semi-supervised spelling correction task,
our work is much simpler, since it uses a multi-layer perceptron instead of convolution-deconvolution
operations (see Section 5). Further, we demonstrate that LNs perform very well on a complex IE task,
considerably outperforming several state-of-the-art approaches. In the same space, teacher-student net-
works have shown to provide state-of-the-art semi-supervised learning results on several image process-
ing tasks. The most prominent example of such a network is the Mean Teacher framework (Tarvainen and
Valpola, 2017).To our knowledge, we are the first to apply the MT framework to an IE task (Section 6).

Distributed representations of words serve as underlying representation for many NLP tasks. For
example, Levy and Goldberg (2014a) generalized the word2vec algorithm (Mikolov et al., 2013) to
use any arbitrary context instead of just individual words. Faruqui et al. (2015) demonstrated that em-
beddings learned without supervision can be retro-fitted to better conform to some semantic lexicon.
Generating custom embeddings that encode more specific semantic properties has been shown to be use-
ful for downstream tasks (Sharp et al., 2016). Riedel et al. (2013; Toutanova et al. (2015; Toutanova et
al. (2016) used knowledge bases in conjunction with surface patterns to learn custom representations for
relation extraction. Note, however, that most of these works that customize embeddings for a specific
task rely on some form of supervision. In contrast, our approach that learns a custom representation for
the NEC task is lightly supervised, with a only few seed examples per category (Section 4).

3 Task and Approaches

Named entity classification

We implement and evaluate the proposed semi-supervised learning approaches on the task of named
entity classification (NEC), defined as identifying the correct label of an entity mention in a given context.
In our setting, the context of a mention is defined as all the patterns that match that specific mention in
its context. In this work, we consider patterns to be n-grams of size up to 4 tokens on either side
of an entity. For instance, “@ENTITY , former President” is one of the patterns learned for
the class person. Using all these patterns as input, the classifier must infer the mention’s correct label.
Importantly, the NEC task can be defined at mention level, i.e., as the classification of individual mentions
of named entities as defined above, or at entity level, i.e., as the identification of all labels that apply to
all mentions of a given entity jointly (e.g., “Washington” = {person, location}). Here we focus on
mention classification, although in some of our evaluations we revert to entity classification, to be able
to compare against other approaches.

Semi-supervised representation learning

We propose three representation learning approaches for the NEC task: (i) Embedding-based bootstrap-
ping (Emboot), (ii) ladder networks (LN), and (iii) mean teacher (MT) architectures.

Emboot (Valenzuela-Escárcega et al., 2018) is an adaptation of iterative bootstrapping-based ap-
proaches, coupled with a component that learns custom representations (embeddings) for both the entities
and the patterns learned. As mentioned, such iterative approaches suffer from semantic drift, i.e., as the
learning advances, the learning often drifts into a related but different space. LN and MT are based on
the emerging paradigm of teacher-student architectures: both approaches aim to reconcile differences
between the teacher and the student models by minimizing a consistency cost when their predictions
do not concur. Teacher-student architectures are more robust to semantic drift due to their single-shot
semi-supervised learning algorithms.

Note that, of the above architectures, Emboot and MT additionally learn custom representations for
the unsupervised data provided which could potentially be informative representations to be used in a
downstream component aimed at interpreting the classifier decisions. Further, MT is the most flexi-
ble/customizable of all these architectures, as it is largely independent of the underlying task-specific
model. We show in our experiments that this simplicity is coupled with good performance on two differ-
ent datasets.
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In the next three sections, we discuss each of these approaches in detail.

4 Embedding-based Bootstrapping (Emboot)

This algorithm (based on our earlier work (Valenzuela-Escárcega et al., 2018)) iteratively grows a pool
of known entities (entPoolc) and patterns (patPoolc) for each category of interest c, and learns custom
embeddings for both. These pools are initialized with a few seed examples (seedsc) for each category.
For example, in our experiments we initialize the pool for a person names category with 10 names such
as Bill Clinton and Mother Teresa. Then the algorithm iteratively applies the following three steps for a
specified number of epochs:

(1) Learning custom embeddings: The algorithm learns custom embeddings for all entities and patterns
observed in the dataset, using the current entPoolcs. We train our embeddings for both entities and
patterns by maximizing the objective function J :

J = Skip-gram + Attract + Repel (1)

where the individual components of the objective function designed to model both the unsupervised,
language model part of the task as well as the light supervision coming from the seed examples. The
Skip-gram term is similar to Eq. 4 of Mikolov et al. (2013) (skip-gram with negative sampling), but,
crucially, adapted to operate over entities (rather than words), and a context consisting of the bag of
all patterns that match each entity (rather than context words). The Attract term, encourage entities or
patterns in the same pool to be close to each other (E.g. two person entities should be attracted to each
other), whereas the Repel term encourages that the pools be mutually exclusive, which is a soft version
of the counter training approach of Yangarber (2003) or the weighted mutual-exclusive bootstrapping
algorithm of McIntosh and Curran (2008) (e.g., person names should be far from organization names in
the semantic embedding space). They are depicted by the following two equations:

Attract =
∑
P

∑
x1,x2∈P

log(σ(V >x1Vx2)) (2)

Repel =
∑
P1,P2

if P1 6=P2

∑
x1∈P1

∑
x2∈P2

log(σ(−V >x1Vx2)) (3)

where P is the entity/pattern pool for a category, x1, x2 are entities/patterns in said pool in Eq 2. and
P1, P2 are different pools, and x1 and x2 are entities/patterns in P1, and P2, respectively.

(2) Pattern promotion: We generate the patterns that match the entities in each pool entPoolc, rank those
patterns using point-wise mutual information (PMI) with the corresponding category, and select the top
ranked patterns for promotion to the corresponding pattern pool patPoolc.

(3) Entity promotion: Entities are promoted to entPoolc using a classifier that estimates the likelihood of
an entity belonging to each class (Gupta and Manning, 2015). We differ from Gupta and Manning (2015)
in that we use a multi-class classifier instead of many binary classifiers, and in the features used. Our
feature set includes, for each category c: (a) edit distance between the candidate entity e and current ecs
∈ entPoolc, (b) the PMI (with c) of the patterns in patPoolc that matched e in the training documents, and
(c) similarity between e and ecs in some semantic space. For the latter feature group, we use two sets of
vector representations for entities. The first is the set of custom embedding vectors learned in step (1) for
entities. The second includes pre-trained word embeddings (for multi-word entities, we simply average
the embeddings of the component words). We use these vectors to compute the cosine similarity score
of a given candidate entity e to the entities in entPoolc, and add the average and maximum similarities
as features. The top 10 entities classified with the highest confidence for each class are promoted to the
corresponding entPoolc after each epoch.
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... profits grew by 10% in the last quarter said Ann Stephens , the president of the ...
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Figure 1: Architecture of the ladder network (Rasmus et al., 2015) (left), and network initialization of input vector X for the
NEC task, where X captures the entity mention modeled and all the patterns matching it in the corresponding sentence (right).

5 Ladder Networks

Ladder networks (LN) (Rasmus et al., 2015) is a neural network architecture designed to use unsuper-
vised learning as a scaffolding for the supervised task. It is a denoising autoencoder (DAE) with noise
introduced in every layer. It consists of two sets of encoders, a clean one and another corrupted with
noise, and a decoder. In addition, there are skip connections between the encoder and decoder (see left
part of Figure 1). The ladder network is defined as follows:

X̃, Z̃(1), . . . Z̃(L), ỹ = fcorr(X) (4)

X,Z(1), . . . Z(L), y = fclean(X) (5)

X̂, Ẑ(1), . . . Ẑ(L) = g(Z̃(1), . . . Z̃(L)) (6)

where X , X̃ and X̂ is an input datapoint, its corrupted version, and its reconstruction, respectively; Z(l)

and Z̃(l) are clean and corrupted hidden representations in the l-th layer; and, lastly, y, ỹ are the clean and
corrupted activations, converted to a probability distribution over the label set (using a softmax layer).

For our NEC task, X is the concatenation of an entity mention and its context embedding vectors,
and y represents the mention’s label (e.g., person). We initialize the words in the entities and patterns
around them with pre-trained word embeddings. To obtain a single embedding for an entity mention
and its context we: (a) average word embeddings to obtain a single embedding for the entity mention
and each of its patterns; and (b) average the resulting pattern embeddings to produce the embedding of
the corresponding context. We then concatenate the mention’s embedding and context embedding to be
given as input to the ladder network. This process is depicted schematically in the right part of Figure 1.
We introduce noise by adding a random Gaussian to the pre-trained embeddings with a fixed mean and
standard deviation.

The objective function is a combination of a supervised training cost and unsupervised reconstruction
costs at each layer (including the hidden layers):

Cost = −
N∑

n=1

logP (ỹn = y∗n|Xn)+

M∑
n=N+1

L∑
l=1

λlReconstCost(Z
(l)
n , Ẑ(l)

n ) (7)

where the first term is the supervised cross-entropy based on the N labeled datapoints
(X1, y

∗
1), (X2, y

∗
2), . . . (XN , y

∗
n), and the second term is the reconstruction loss on the M unlabeled

datapoints XN+1, XN+2, . . . XN+M , for each layer l. Typically M � N .
Pezeshki et al. (2016) analyze the different architectural aspects of LN and note that the lateral con-

nections and corresponding reconstruction costs (second term in the above cost function) are critical for
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Figure 2: Mean Teacher architecture for the named entity classification task. Ewi are words contained in the current entity
mention; Wi are words that occur in a pattern that matches the entity mention; and <E> is a placeholder token to indicate
where the entity mention occurs inside a pattern.

semi-supervised learning. In other words, it is important for unlabeled data to be used for regularization
to be able to learn good abstractions in the different layers. We have similar observations for the NEC
task (see Experiments).1

6 Mean Teacher Framework

The mean teacher framework (Tarvainen and Valpola, 2017) belongs to a general class of teacher-student
algorithms that learn with unlimited unlabeled data and limited supervision. The broad motivation be-
hind MT is provided by the shortcomings of auto-encoders, which suffer from confirmation bias in
semi-supervised settings, i.e., when they use their own predictions instead of gold labels (Tarvainen and
Valpola, 2017; Laine and Aila, 2016). To mitigate confirmation bias, the teacher weights in MT are
averaged over the training epochs, akin to the averaged perceptron. This provides a more robust scaf-
folding that the student model can rely on during training when gold labels are not available (Tarvainen
and Valpola, 2017).

The MT architecture is summarized in Figure 2. It consists of two models with identical architectures
where one is termed the teacher, and the other the student. The weights in the teacher network are set
through an exponential moving average of the student weights. The input to both of these models is the
same datapoint, which is augmented by some noise that is specific to each model. In the case of our NEC
task, we introduce noise through random word dropout in the patterns that apply to an entity mention.

The MT algorithm is designed for semi-supervised tasks, where only a few of the data points are
labeled. The cost function is a combination of two different type of costs: classification and consistency.
The classification cost applies to supervised data points, and can be instantiated with any supervised
cost function (e.g., we used categorical cross-entropy). The consistency costs is used for unlabeled data
points, and aims to minimize the differences in predictions between the teacher and the student models.
The consistency cost, J is:

J(θ) = Ex,η′ ,η
[
‖f(x, θ′ , η′)− f(x, θ, η)‖2

]
(8)

where this function is defined as the expected distance between the prediction of the teacher model (with
weights θ

′
and noise η

′
) and the prediction of the student model (with weights θ and noise η).

The student weights are updated via back propagation. The teacher weights are deterministically
updated after each mini batch of gradient descent on the student, through an exponentially weighted
moving average (EMA) from the previous iterations of the student, given by the following equation:

1LNs for semi-supervised named entity classification was presented by our earlier work (Nagesh and Surdeanu, 2018).
In this work, we compare LNs with MT and provide a more in-depth analysis of these frameworks under the umbrella of
teacher-student architectures.
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θ
′
t = αθ

′
t−1 + (1− α)θt (9)

where θ
′
t is defined at training step t as the EMA of successive weights θ (Tarvainen and Valpola, 2017).

We explored two different architectures for the student model:

Simple model (MT simple): In this model, we used bag-of-word averaging to obtain embeddings for
entity mentions and the patterns matching them. In particular, we: (a) average word embeddings to
obtain a single embedding for the entity mention and each of its patterns; and (b) average the resulting
pattern embeddings to produce the embedding of the corresponding context. We then concatenate the
mention’s embedding and context embedding to be given as input to the mean teacher framework. This
process is depicted schematically in the right part of Figure 1. This replicates the input processing in LN.

Custom Embedding model (MT custom): We use a bidirectional LSTM layer on top of the word
embedding layer. We train a biLSTM on both the entity tokens and a separate LSTM for each of the
pattern tokens. We average each of pattern LSTM representations and concatenate the entity and pattern
representations as depicted in the right part of Figure 1. The addition of the LSTM layer, enables this
model learn custom embeddings. These embeddings are further analyzed in Section 7.

For both student and teacher models, we initialized the words in the entity mentions and corresponding
patterns with pre-trained word embeddings. We have a linear-ReLU-linear fully connected layers from
the embedding layer before computing the loss.

7 Experiments

7.1 Experimental Setup2

Datasets: We used two datasets, the CoNLL-2003 shared task dataset (Tjong Kim Sang and De Meul-
der, 2003), which contains 4 entity types, and the OntoNotes dataset (Pradhan et al., 2013), which con-
tains 113, both of which are benchmark datasets for supervised named entity recognition (NER). These
datasets contain marked entity boundaries with labels for each marked entity. Here we only use the en-
tity boundaries but not the labels of these entities during the training of our bootstrapping systems. To
simulate learning from large texts, we ran the actual experiments on the train partitions.4

Baselines: We compared against two baselines:

Explicit Pattern-based Bootstrapping (EPB): This is our implementation of the state-of-the-art boot-
strapping system of Gupta and Manning (2015), adapted to NEC. The algorithm grows a pool of known
entities and patterns for each category of interest, from a few seed examples per category, by iterating
between pattern promotion and entity promotion. The former is implemented using a ranking formula
driven by the point-wise mutual information (PMI) between each pattern with the corresponding cate-
gory; the top ranked patterns are promoted to the pattern pool in each iteration. The latter component
promotes entities using a classifier that estimates the likelihood of an entity belonging to each class. Our
feature set includes, for each category c: (a) edit distance between the candidate entity e and known en-
tities for c; (b) the PMI (with c) of the patterns in the pool of c that matched e in the training documents;
and (c) similarity between e and entities in c’s pool in some semantic space.5 Entities classified with the
highest confidence for each class are promoted to the corresponding pool after each epoch.

2For ease of reproducibility, we release the code for the various semi-supervised learning algorithms at https://
github.com/clulab/releases/tree/master/coling2018-ssl-nec

3We excluded numerical categories such as DATE.
4Although we run the evaluation on the train dataset, we do not use the labels present in it, as it is a semi-supervised task. In

general, in any machine learning dataset, usually the test dataset is quite small compared to train. Since we wanted to analyze
the performance in a larger context, we used the train dataset (without the labels).

5We used pre-trained word representations, averaged for multi-word entities, to compute cosine similarities between pairs
of entities.
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CoNLL Ontonotes
EPB 40.75 21.07
LP 26.07 19.40

Emboot 67.97 45.20
Ladder 68.92 (±2.9) 65.20 (±3.2)

MT simple 69.50 (±2.7) 51.10 (±4.8)
MT custom 66.81 (±3.5) 36.17 (±2.5)

Table 1: Overall Accuracies (entity-based)

CoNLL Ontonotes
Ladder 71.58 (± 1.6) 72.04 (± 0.7)

MT simple 73.91 (± 3.4) 66.27 (± 1.9)
MT custom 68.14 (± 4.3) 64.04 (± 3.8)

Table 2: Overall Accuracies (mention–based)

Label Propagation (LP): We used the implementation available in the scikit-learn package of
the LP algorithm (Zhu and Ghahramani, 2002).6 In each bootstrapping epoch, we run LP, select the
entities with the lowest entropy, and add them to their top category. Each entity is represented by a
feature vector that contains the co-occurrence counts of the entity and each of the patterns that matches
it in text.7

Settings: For each entity mention, we consider a n-gram window of size 4 on either side as a pattern. We
initialized the mention and contexts embeddings input to either the ladder network or the mean teacher as
well as the baseline systems with pre-trained embeddings from Levy and Goldberg (2014b) (size 300d)
as this gave us improved results on the baseline compared to vanilla word2vec initialization. We used
a 600d dimensional embedding for each datapoint (300 each from entity and context concatenated). We
used a 3-layer ladder network with dimensions 600-500-K where K is the number of labels present in
the dataset. Further, we used a noise of 0.3 for the corrupted encoder and reconstruction cost for the
3-layers were 1000-10-0.1. In the custom embeddings architecture of the mean teacher framework we
used an bi-directional LSTM of size 200d on the entities and the each of the patterns in the context.
The hidden size of fully connected layer was set to 300. We used a random word dropout of size 1 on
the patterns to be input to the student and the teacher. Following Tarvainen and Valpola (2017), in the
MT runs, we set the consistency cost weight to 1 and consistency-rampup to 5. We set the supervised
examples (mentions along their corresponding contexts and labels) randomly. For CoNLL we used 40
and Ontonotes 440 examples, with equal representation from their labels’ set.

Note that both MT and LN classify individual mentions, whereas Emboot and the two baselines clas-
sify entities. To facilitate the comparison between MT and LN and the baselines, for MT and LN we
generate entity-level predictions by averaging the scores of the top predictions of all mentions corre-
sponding to the same entity, and then select the label with the highest score for each entity. Further,
to create the precision/throughput curves we we sorted the predictions returned by the LN and MT in
decreasing order of their activation scores, and introduce multiple cutout thresholds to generate the pre-
cision/throughput points for the curves. We ran the baselines until they predicted labels for all the entities.
For the baselines, in each iteration we promoted 100 entities per category.8

To compare with the baselines, which classify entities rather than mentions, we sorted the predictions
returned by the LN and MT in decreasing order of their activation scores and chose the most confident
entity label (when all its mention scores were averaged). For each of the LN and MT results, we report
averaged results of 5 random runs (along with the standard deviation).

7.2 Results and Observations
Tables 1 and 2 shows the overall accuracies of the various systems on entity-based and mention-based
evaluations, respectively. The key observation is that there is a consistent improvement in performance in
approaches that are based on representation learning (namely, Emboot 9, LN and MT) on both datasets
compared to traditional bootstrapping techniques (EPB and LP). Furthermore, we observe that one-
shot learning systems such as Ladder and MT have a clear edge over the embedding based iterative

6
http://scikit-learn.org/stable/modules/generated/sklearn.semi_supervised.LabelPropagation.html

7We experimented with other feature values, e.g., pattern PMI scores, but all performed worse than raw counts.
8We also ran a cautious approach of promoting 10 entities per category per iteration and noticed that the former had slightly

better performance.
9Note: The Emboot results are for 20 epochs only. As running more number of epochs to cover the entire dataset does not

complete even after a long time and sometimes results in memory overflow in the current implementation.
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Figure 3: Overall results on the CoNLL (left) and Ontonotes (right) datasets. Throughput is the number of entities classified,
and precision is the proportion of entities that were classified correctly.

bootstrapping (Emboot). To our knowledge, the results in Table 2 are the new state of the art for this
semi-supervised NEC task.

While MT and LN outperform Emboot on both datasets, it is yet not fully clear why. As mentioned,
MT and LN use one-shot learning whereas Emboot is iterative and, thus, more prone to semantic drift.
However, a second potential cause for this difference is that MT and LN assemble their input representa-
tion from word-level embeddings, whereas Emboot learns from scratch embeddings for atomic entities
and patterns, which forces it to work with sparser information. We leave this analysis, as well as efforts
to align these three frameworks more closely, as future work.

Figure 3 shows the precision vs. throughput curves for the baselines, LN and MT approaches. We
see that on both the datasets the one-shot learning methods outperform the iterative baselines by a large
margin. Further we notice that both LN and MT variants are reasonably stable for most of the curve
whereas EPB degrades quickly. Bootstrapping systems inherently suffer from semantic drift: as the
iterations progress the system begins to drift into a different semantic space due to incomplete statistics
and ambiguity (Komachi et al., 2008).

MT outperforms slightly LN on the CoNLL dataset, whereas LN performs better than MT on
OntoNotes. We speculate that the latter result is caused by the fact that the space of hyper parame-
ters were not sufficiently explored in the MT framework. For example, we ran LN for approximately 200
iterations, and we ran the MT experiments for 20 epochs. We will investigate a larger hyper parameter
space in future work. However, the comparable performance of the two approaches is an encouraging
result for MT, which is the simpler architecture of the two. With MT, we can “plug in” any task simply
by generating a different input vector X (and, potentially, a different scheme to insert noise), whereas
LN requires an adaptation of the entire architecture due to the tight connections between teacher and
student.

Qualitative analysis: In Figure 4, we plot the t-SNE (van der Maaten and Hinton, 2008) projections of
the learned custom embeddings from the MT framework. We contrast these projections with the t-SNE
projections of the entities constructed by averaging the vectors present in the entity tokens, as provided
by the pre-trained embeddings we used to initialize the various models. It is interesting to note that
we can see clear clustering of the entities in both datasets for MT. The number of clusters is roughly
equal to the number of classes present in the datasets. This is especially accentuated on the OntoNotes
dataset.Upon closer observation on a small number of data points, we could ascertain that the clusters
were semantically meaningful. On the other hand, we do not see such a clustering of the pre-trained
embeddings (word2vec). This opens the gates for further investigation of these custom embeddings to
construct interpretable deep learning models.

Amount of training data vs. accuracy: Table 3 lists the accuracies of LN and MT simple approaches
on all the data points, as we varied the amount of supervision. As expected, as we increase the amount
of supervision, we observe improvements in accuracy. More importantly, the table shows both LN and
MT outperform the overall accuracy of EPB (right-most points in Figure 3) with much fewer annotations
(e.g., with 55 annotations in OntoNotes, LN and MT outperform the performance of EPB with 550
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Figure 4: t-SNE projections of the learned embeddings of four models: (i) pre-trained word2vec on the CoNLL dataset; (ii)
the custom MT model on CoNLL; (iii) pre-trained word2vec on OntoNotes; (iv) custom MT on OntoNotes.

CoNLL OntoNotes
Num. labels % Train Ladder MT Num. labels % Train Ladder MT

20 0.152 46.46 72.74 55 0.082 26.04 57.05
40 0.303 66.46 80.53 110 0.164 48.53 58.40
80 0.606 75.37 80.96 220 0.328 59.66 58.87

160 1.212 81.11 82.06 440 0.656 73.10 61.72
320 2.424 80.94 82.58 880 1.313 73.58 61.96
640 4.848 82.51 82.60 1760 2.626 73.23 67.38
1280 9.696 81.22 83.31 3520 5.253 73.77 70.52
2560 19.393 81.34 83.47 7040 10.507 73.31 72.65
5120 38.787 81.26 84.88 14080 21.014 82.47 73.50

10240 77.575 81.91 86.30 28160 42.029 83.32 75.91

Table 3: Number of labeled examples used for training and corresponding accuracy on the two datasets.

annotated examples).

8 Conclusion

To our knowledge, this is the first work that rigorously analyzes several recent semi-supervised
representation-learning approaches in the context of an information extraction task – named entity clas-
sification, in particular. To achieve this, we adapted two teacher-student methods that were initially
proposed for image processing to the named entity classification task, and compared them against an
iterative representation learning that learns custom embeddings for the underlying data, as well as other
semi-supervised learning approaches that do not rely on representation learning. Our analysis, which was
performed on two NEC datasets, highlighted several important observations, which, we believe, should
inform the design of future semi-supervised IE systems. First, all representation learning methods inves-
tigated outperform state-of-the-art semi-supervised methods that do not rely on representation learning.
Second, one-shot learning methods outperform iterative approaches, which suggests that one-shot learn-
ing is a practical solution to control for semantic drift. Third, the mean teacher framework performs
comparatively similar to ladder networks, despite its simplicity and independence of the underlying task-
specific model. These results advocate for a modular take on semi-supervised IE, where the learning is
performed by a generic MT framework, which is then extended for specific tasks through independent
components that model the corresponding data and task.

As part of future work, we would like to explore other tasks such as fine-grained entity typing, where
the number of labels are an order of magnitude larger. Further, another interesting avenue for further
research is to perform semi-supervised relation extraction, which is a significantly more challenging task
and would be greatly benefited by such techniques.
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