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Abstract

Considerable effort has been devoted to building commonsense knowledge bases. However, they
are not available in many languages because the construction of KBs is expensive. To bridge the
gap between languages, this paper addresses the problem of projecting the knowledge in English,
a resource-rich language, into other languages, where the main challenge lies in projection ambi-
guity. This ambiguity is partially solved by machine translation and target-side knowledge base
completion, but neither of them is adequately reliable by itself. We show their combination can
project English commonsense knowledge into Japanese and Chinese with high precision. Our
method also achieves a top-10 accuracy of 90% on the crowdsourced English–Japanese bench-
mark. Furthermore, we use our method to obtain 18,747 facts of accurate Japanese commonsense
within a very short period.

1 Introduction

Commonsense has been considered to play a vital role in language understanding (LoBue and Yates,
2011), and considerable effort has been devoted to building knowledge bases (KBs) that organize com-
monsense (Zang et al., 2013). The largest multi-lingual commonsense KB is ConceptNet (Liu and Singh,
2004b). ConceptNet maintains knowledge as a triple of two concepts and relationship between them,
which we call fact. The characteristic of ConceptNet is that concepts are represented in undisambiguated
forms of words or phrases, which facilitates commonsense acquisition and inference in practice (Liu
and Singh, 2004a) and recently has proven useful for building word representations (Speer et al., 2017;
Camacho-Collados et al., 2017). We target ConceptNet in this paper.

A major problem lies in a large gap of quantity and quality between languages. The latest release
(v5.5.0) of ConceptNet has 2,828,394 unique English facts1, but the number of Japanese facts in Con-
ceptNet is only 69,902 (≈ 2.5%) even though Japanese knowledge takes up the eighth-largest portion
of the database. This problem is not specific to ConceptNet. English KBs are typically larger and of
higher quality than other languages. Although an adequate amount of knowledge of named entities
is often available in many languages thanks to semi-structured text on the web such as Wikipedia in-
fobox (Lehmann et al., 2014), commonsense is hard to obtain due to the lack of tractable and objective
information (Gordon and Van Durme, 2013).

It is not realistic to develop large knowledge resources in every language from scratch because of cost
constraints. Instead, this paper focuses on cross-lingual knowledge projection. We translate English
commonsense facts into a target language, aiming to gain large commonsense resources in the target
language efficiently.

The main challenge is projection ambiguity. For example, consider translating (bat, CapableOf,
fly) shown in Figure 1. Bat has four Japanese translations such as koumori [bat (animal)] and batto
[bat (stick)]. Fly has 27 translations such as tobu [fly (verb)] and hae [fly (insect)]. Thus, (bat, Capa-
bleOf, fly) results in 4× 27 = 108 Japanese translation candidates in total, and even after filtering them

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

∗This work was conducted while the first author was at Kyoto University.
1An English fact is a fact with two English concepts.
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Figure 1: Ambiguity of knowledge projection. (bat, CapableOf, fly) in English and 108 possible
translations in Japanese. The task is to identify the correct link between Japanese words (dash line) that
corresponds to the English link (solid line.)

by considering part-of-speech constraints we still have 64 candidates. This problem happens very fre-
quently because 42% of English concepts appearing in inter-language links have more than one Japanese
translation.

This is in contrast to previous studies explored cross-lingual knowledge projection focused on knowl-
edge of named entities (Feng et al., 2016; Klein et al., 2017; Chen et al., 2017). Their methods assume
one-to-one mapping of concepts across languages. This assumption is reasonable if concepts are named
entities because the majority of named entities has one or a few translations, e.g., France (English) and
Francia (Spanish).

In contrast, commonsense concepts are represented by common nouns, verbs, and phrases, and those
words/phrases have many translations by nature as shown in Figure 1. Such translation ambiguity, that
is, the knowledge projection ambiguity can be partially solved by machine translation (MT) and knowl-
edge base completion (KBC) techniques. Cross-lingual knowledge projection can be seen as a structured
version of an MT task. KBC models complete missing relations between concepts based on existing rela-
tions, which are also closely related to our task. Neither of them, however, can disambiguate knowledge
projection with adequate precision. We do not have sufficient training data for building a translation
model of facts because MT systems are generally developed not for structured knowledge but for un-
structured text. KBC models need to be trained on a sufficiently large KB in a target language.

To alleviate these problems, we combine MT and target-side KBC. The MT and KBC models are
trained on separate datasets, and our model weights the estimates from the two models to generate final
results. To compute translation probabilities of facts with MT, we propose to convert a fact into plain
text with hand-crafted templates.

Our contributions are three-fold.

1. We propose a cross-lingual projection method for undisambiguated forms of commonsense. Our
method combines MT and target-side KBC to disambiguate knowledge projection across languages.
To utilize an MT model trained on unstructured text, we develop rule-based conversion of structured
knowledge.

2. We demonstrate that our method outperforms a projection method that assumes one-to-one mapping
of concepts, and single KBC and MT models. Furthermore, an experiment on a crowdsourced
dataset shows our method can find correct translations with a top-10 accuracy of 90%.

3. We obtained 18,747 accurate facts of Japanese commonsense using our method and crowdsourc-
ing, which are an equivalent or larger amount of the existing facts in ConceptNet for 12 relation
types. We release the resulting datasets as well as code to reproduce our experiments to the research
community.2

2 Related Work

Developing human language technologies for low-resource languages has been an important challenge
for years, and several studies attempted to bridge the resource gap across languages by cross-lingual

2https://github.com/notani/CLKP-MTKBC
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Relation e1 e2 English Japanese Chinese

AtLocation NP NP You are likely to find e1 in e2. e2 de e1 wo miru koto ga aru. Ni keyi zai e2 zhaodao e1.
CapableOf NP VP e1 can e2 e1 wa e2 koto ga dekiru . e1 hui e1.
MadeOf NP NP e1 is made of e2. e1 wa e2 kara tsukurareru. e1 keyi yong e2 zhi cheng.
UsedFor NP VP You can use e1 to e2. e1 wa e2 tame ni tsukawareru. e2 de shihou keneng hui

yong dao e1.

Table 1: Examples of templates for converting facts into sentences. Constraints of part-of-speech
on e1 and e2 (Speer and Havasi, 2012) are also presented. Some templates were developed by the
ConceptNet organizers. The rest of the templates can be found in the released code.

knowledge projection.
Klein et al. (2017) and Chen et al. (2017) represented concepts in multiple languages in a unified vector

space, and built knowledge base completion models based on vector representations. Their methods
ensure a concept in the source language has a similar vector representation to its target-side counterpart,
assuming each concept in the source language corresponds to exactly one concept in the target language.

There is a rich body of work on sense embedding, which allows one surface form of a word to have
sense-specific vectors (Neelakantan et al., 2014; Iacobacci et al., 2015). However, to the best of our
knowledge, previous studies in this field do not target sense vectors of concepts for cross-lingual knowl-
edge projection.

Several studies proposed methods for one-to-one projection of facts (Kuo and Hsu, 2010; Feng et al.,
2016). The work by Feng et al. (2016) is the most related to our study. Their model learns mappings
between English and Chinese facts by manually annotated alignments. Their experimental result showed
the model successfully resolved the projection ambiguity. Their experiment was, however, limited to
a narrow domain due to the cost of manual annotations, indicating the difficulty of obtaining sufficient
resources for learning a model.

Various types of commonsense is vital to understanding languages in a wide range of tasks such
as recognizing textual entailment (LoBue and Yates, 2011). Researchers have compiled resources to
maintain such knowledge. Cyc (Lenat, 1995) is a seminal big project that aims to organize commonsense
in logical forms. Logical forms are suitable for disambiguating the meaning of language, but we need
high expertise to acquire or utilize them. In contrast, ConceptNet (Liu and Singh, 2004b; Speer et
al., 2017) adopted natural language expressions such as words and phrases that may have ambiguities
to represent knowledge, which made it possible to collect millions of commonsense facts in multiple
languages via crowdsourcing.

3 Problem Setting

Suppose we project a fact fs in a source language into a target language. We obtain n candidate trans-
lations by following inter-language links. In ConceptNet, the links are built from data sources such as
Wiktionary and WordNet. We denote these candidates as f t1, · · · , f tn.

Our goal is to estimate a projection score h(f ti |fs), and find the most appropriate target-side fact that
maximizes the score.

f̂ t = argmax
f t
i

h(f ti |f s) (1)

4 Method

We propose two methods to combine MT and target-side KBC models for estimating projection scores.

4.1 Machine Translation (MT)

MT models consider contexts to find bilingual mapping of sentences. Given “I saw a bat in the zoo.” as
a source sentence, the model will assign a higher translation probability to “doubutsuen de koumori wo
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= 𝑃 koumori A bat⋯ . × 𝑃 wa koumori, A bat⋯ . × ⋯× 𝑃 . dekiru, ⋯ , koumori, A bat⋯ .
1
7

𝑥𝑀𝑇 𝑘𝑜𝑢𝑚𝑜𝑟𝑖,CapableOf, tobu | bat,CapableOf, fly

= 𝑃 koumori wa tobu koto ga dekiru . | A bat can fly .
1
7

𝒆𝟏 wa 𝒆𝟐 koto ga dekiru . 𝒆𝟏 can 𝒆𝟐 .

Figure 2: Calculating a translation probability of a fact using an MT model. For simplicity, this
example does not use subword units. In addition, we omit special symbols that represent the beginning
and end of a sentence in this figure.

mita.” [I saw a bat (animal) in the zoo.] than to “doubutsuen de batto wo mita.” [I saw a bat (stick) in the
zoo.]

In contrast to our problem, typical MT focuses on plain texts, and only unstructured parallel texts are
normally available for training MT models. Thus, we convert facts into natural language expressions be-
forehand. We use a rule-based approach to generate an expression for each fact, for example, “e1 can e2”
corresponding to (e1, CapableOf, e2). Fortunately, some facts in ConceptNet already have such language
expressions (Speer and Havasi, 2012). For the rest of the facts, we develop simple templates based on
the existing expressions. Table 1 shows examples of templates in English, Japanese and Chinese.3 We
refer to part-of-speech tags of concepts to generate natural-sounding sentences.

Using sentences of facts, we define a score from the MT model as a translation probability of the
language expression normalized by the target-side length m.

xMT(f t|fs) =
(
P(W t|W s)

)1/m
,

(2)

where W t and W s are sentences of f t and fs, respectively. To define P(W t|W s), we employ an off-the-
shelf sequence-to-sequence model with an attention mechanism (Bahdanau et al., 2014), which is one of
the recent successful MT models.

Figure 2 illustrates the translation probability of a Japanese fact (koumori, CapableOf, tobu) given an
English fact (bat, CapableOf, fly). We first obtain language expressions of the facts using hand-crafted
templates and compute a translation probability with the translation model.

4.2 Knowledge Base Completion (KBC)
KBC models evaluate the plausibility of a given fact based on existing information on the KB. For
example, if we already know many animals with wings can fly and bats have wings, we can imagine that
bats also can fly. We train a KBC model on the target-side KB.

We use a bilinear model used in several previous studies (e.g., (Li et al., 2016)) as a component of
our model, where concepts and relations are represented as vectors and matrices, respectively. This
component can also be replaced with other KBC models.4

Given a fact f t = (e1, r, e2), the bilinear model outputs the value of plausibility as follows.

xKBC(f t) = σ(uT
1 Mru2), (3)

where σ is a sigmoid function, ui ∈ Rd (i = 1, 2) corresponds to vectors of concepts e1 and e2,
Mr ∈ Rd×d corresponds to a matrix of relation r, and d is a hyper parameter. We construct concept
vectors by averaging pre-trained d′-dimensional word embeddings as several previous studies did to boost
the predictive performance (Socher et al., 2013; Li et al., 2016). The following nonlinear transformation
reduces the dimensionality for computational efficiency.

ui = tanh(Wvi + b), (4)
3We provide the templates in the released code.
4Potential alternatives can be found in the survey paper by Wang et al. (2017).
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where vi ∈ Rd′(i = 1, 2) is a pre-trained concept vector, and W ∈ Rd×d′ is a weight, b ∈ Rd(d < d′)
is a bias term. The model parameters are learned to minimize a cross-entropy function on training facts.

4.3 Combination of Scores
We combine the two scores explained above to generate a score for each pair of f ti and fs. Our model
h takes x(f ti |fs) =

(
xKBC(f ti ), xMT(f ti |fs)

)
as an input (for simplicity, we omit f ti and fs, hereafter),

and calculates a projection score, where xKBC and xMT are normalized before calculation.
We first describe two options for h(x), (1) a linear transformation and (2) a multi-layer perceptron,

and next explain the inference procedure of parameters below.
Linear Transformation: First, a linear transformation (LIN) model combines xKBC and xMT linearly.
The model has a different weight vector and a bias term for each relation because the accuracy of KBC
and MT varies for different relation types.

h(x) = wT
r x + br wr ∈ R2, br ∈ R. (5)

Multi-layer Perceptron: LIN is a very simple model and may cause underfitting. Thus, we introduce a
multi-layer perceptron (MLP) model with one hidden layer to increase the model capacity. The model
has an input layer, one hidden layer, and an output layer. MLP calculates h(x) by the equation below.

h(x) = w(2)
r

T
z(x) + b(2)

r (6)

z(x) = tanh
(
W (1)Tx + b(1)

)
(7)

W (1) ∈ R2×c, b(1) ∈ Rc,w(2)
r ∈ Rc, b(2)

r ∈ R.

Note that the common weight matrix and bias are used across relations in Equation (7) in order to
capture the global intermediate representations of projections.
Inference: Given training instances of fact-to-fact projection, we estimate the model parameters that
compute high scores to correct translations and low scores to incorrect translations. The training data
consists of a correct translation set T+ and an incorrect translation set T−. T−(x+) denotes a set of
incorrect translations that have the same English fact as x+ ∈ T+.

For each x+ ∈ T+, we define the following margin-based loss function.

loss(x+) = max (0, 1 + h(x+)− h(x−)), (8)

where x− is randomly extracted from T−(x+). We sum this loss function over T+, and obtain the model
parameters Θ by minimizing the summed loss function.

Θ̂ = argmin
Θ

∑
x+∈T+

loss(x+) (9)

5 Experiments

We conducted two experiments to compare our method with baseline methods.

5.1 Data
We use automatically and manually constructed datasets for evaluating knowledge projection methods.
Throughout the experiments, facts are obtained from ConceptNet version 5.5.0.5

5.1.1 Automatically Built Datasets
The first experiment used semi-automatically built datasets of English–Japanese and English-Chinese
projection. We call these AUTO datasets. The English–Japanese AUTO dataset was constructed in three
steps:

5https://github.com/commonsense/conceptnet5/wiki/Downloads
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Fact (unique) Translation
Language f t fs T+ T−

En→Ja 22,508 2,767,450 33,724 5,612,716
En→Zh 2,294 11,648 2,861 12,348

(a) AUTO

Fact (unique) Translation
f t fs T+ T−

13194 200 832 12,365

(b) MANUAL (En→ Ja)

Table 2: Statistics of dataset.

1. We translated each English fact fs into Japanese facts f t1, f
t
2, · · · with inter-language links in Con-

ceptNet. Those that violated part of speech constraints (Speer and Havasi, 2012) were discarded.
2. If a translated fact f ti already existed in Japanese ConceptNet, we considered the pair of the English

and Japanese facts to be a positive projection, i.e., (fs, f ti ) ∈ T+. Otherwise, we include the pair in
a set of negative projection T−.

3. The previous step resulted in millions of obvious negative projection, which is often directed to
rare Japanese words. To reduce such projection, we counted co-occurrences of all pairs of concepts
in 200 million Japanese web sentences and discarded Japanese facts whose concepts do not occur
together.

We applied the same procedure to Chinese facts, where we used the Chinese Gigaword Fifth Edition6

in step 3. The size of the AUTO dataset is reported in Table 2(a). The English–Japanese dataset is
larger than the English–Chinese dataset because the number of English–Japanese inter-language links in
ConceptNet is four times larger than English–Chinese links. We can gain data by harvesting links from
lexical resources such as dictionaries and multi-lingual WordNet, which is left as future work.

We conducted five-fold cross validation by splitting the datasets into training (60%), validation (20%)
and test (20%) sets.

5.1.2 Manually Built Dataset
The AUTO datasets are large but may not be accurate enough to test methods because the target KBs
were small by nature, and many true Japanese facts were not identified as correct projection in step 2.
Thus, we next built an accurate but small testing dataset annotated by humans. We call this dataset
MANUAL. Due to the cost constraint, this dataset was only built for English–Japanese projection.

We used crowdsourcing to annotate the data. Human workers were gathered in a Japanese crowd-
sourcing platform Yahoo! Crowdsourcing7.

1. We extracted the 200 most confident English facts based on the scores in ConceptNet. We only used
English concepts with fewer than 20 inter-language links.8 In addition, we removed facts containing
dirty words.9

2. We projected the English facts into Japanese with inter-language links as we did in step 1 of the
AUTO datasets.

3. Crowd workers annotated the Japanese facts with five-level labels: (1) ”false, or does not make
sense”, (2) ”true only in a few contexts”, (3) ”true in several contexts”, (4) ”true in many contexts”,
and (5) ”true”. Each Japanese fact was judged by five workers.

4. We aggregated the collected judgments by taking median.

The size of the resulting dataset is reported in Table 2(b). An English fact had 66 translations on
average. We used this dataset only for evaluation. To conduct this evaluation, we trained our models on
the whole AUTO datasets.

6The LDC catalog number is LDC2011T13.
7http://crowdsourcing.yahoo.co.jp
8We found a few concepts had extremely many links (e.g., /c/en/person), and most of the links are inappropriate.
9We use a dirty word list on google twunter lol (https://gist.github.com/jamiew/1112488).
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MRR Acc@1 Acc@10

PPMI .183 .081 .406
MT .306 .190 .546
KBC .352 .232 .610
MTransE .185 .097 .372

LIN (EQ) .363† .233 .626†

LIN .363† .230 .633†

MLP .370† .234 .644†

(a) En→Ja

MRR Acc@1 Acc@10

PPMI .667 .466 .980
MT .742 .585 .982
KBC .673 .480 .975
MTransE .762 .626 .976

LIN (EQ) .768 .624 .986
LIN .766 .620 .985
MLP .772 .629 .988†

(b) En→Zh

Table 3: Results on the AUTO dataset. † denotes LIN (EQ), LIN and MLP outperformed all the
baselines significantly (paired t-test with α = 0.05.)

5.2 Baselines and Proposed Methods
We compare the performance of our proposed methods with the following baselines.

• PPMI: Positive pointwise mutual information of two concepts consisting of a target-side fact f t.
We count the co-occurrence of the concepts in the 200 million web sentences for Japanese, and in
the Chinese Gigaword Fifth Edition for Chinese concepts.
• MT: The neural MT model with an attention mechanism, which computes xMT in the proposed

methods. We used an implementation by Neubig (2015) and train a model on 3.25M (en-ja) and
2.97M (en-zh) sentence pairs from dictionaries and newswire corpora. BPE (Sennrich et al., 2016)
was used to reduce the vocabulary size.
• KBC: The target-side bilinear KBC model which was used as the component to produce xKBC. The

Japanese and Chinese models were trained on 59,274 and 318,361 facts, respectively.
• MTransE: The multi-lingual translation-based KBC model (Chen et al., 2017) which learns

TransE (Bordes et al., 2013) and concept-to-concept alignment jointly. Chen et al. (2017) proposed
five different alignment models and reported the fourth variant performed best in their experiments.
Thus we use the variant in our experiments.

The proposed methods LIN and MLP use estimates of MT and KBC models above. We also include
LIN (EQ), a variant of LIN, which equally combines scores from MT and KBC after normalizing each
score to a [0, 1]-range. We use the Adam optimizer (Kingma and Ba, 2014) for training models. We
provide implementation details and hyperparameter settings in the appendix.

5.3 Results
We report mean reciprocal rank (MRR), top-1 and -10 accuracy (Acc@1 and Acc@10) on the test set.10

To calculate these metrics on the MANUAL dataset with five-way labels, we binarized the labels by con-
sidering (5) true label as positive and the others as negative because we aim to find the most appropriate
projection for each English fact. We removed English facts which only had positive/negative Japanese
translations when calculating MRR and accuracy. Besides, we also report nDCG (normalized discounted
cumulated gain) using the five-way labels.

5.3.1 AUTO
Table 3 shows MRR, Acc@10 and Acc@1 on the test datasets for English–Japanese and English–
Chinese projection. LIN (EQ), LIN and MLP outperformed MT and KBC in most cases, indicating
combining them helped find correct translations. LIN (EQ) performed on par with LIN even though LIN
(EQ) does not learn combination weights from the training data. This result could be attributed to the
limited capacity of a linear model and motivates us to use MLP.

MTransE achieved high precision on the English–Chinese dataset, but failed to yield correct predic-
tions on the English–Japanese dataset. The essential difference between the two language pairs is in

10Some previous studies reported meanrank, but MRR is more robust to outliers than meanrank.
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En→Ja
MRR Acc@1 Acc@10 nDCG@10

PPMI .450 .282 .859 .632
MT .544 .380 .866 .689
KBC .448 .303 .775 .610
MTransE .260 .148 .521 .473

LIN (EQ) .600† .472† .894 .711†

LIN .602† .472† .894 .711†

MLP .606† .472† .901 .714†

#factsen 142 200

Table 4: Result on the MANUAL dataset. † denotes LIN (EQ), LIN and MLP outperformed all the
baselines significantly (paired t-test with α = 0.05.)

Rank Concepts
MLP MT KBC e1 e2 Label

1 6 8 ao [blue] shikisai [color] true
2 9 4 heki [blue] shikisai [color] true
3 2 35 brû [blue] shikisai [color] true

(a) (blue, RelatedTo, color)

MLP MT KBC e1 e2 Label

1 5 1 rokku [rock (music)] myûjikku [music] true
2 9 2 rokku [rock (music)] ongaku [music] true
3 25 5 rokku [rock (music)] fumen [music score] true in several contexts

· · · · · ·
15 1 49 iwa [rock (stone)] myûjikku [music] false

(b) (rock, IsA, music)

Table 5: Improved examples. Top ranked projections by MLP are reported with labels and ranks given
by MT and KBC.

the degree of the ambiguity, that is, the English–Chinese projection is not as ambiguous as the English–
Japanese projection on our dataset because of the lack of English–Chinese links in ConceptNet v5.5.0.
This characteristic boosted the performance of MTransE, which assumes one-to-one projection of con-
cepts.

We observed the performance of the baselines varied across relations. MT was inaccurate at lexical
relations such as Antonym and Synonym but outperformed KBC on HasFirstSubevent, HasLastSubevent,
and UsedFor. MLP outpeformed single MT and KBC for the most of the relations by combining them.

5.3.2 MANUAL
Table 4 shows the result on the MANUAL dataset. The differences between the proposed methods
and the baselines are statistically significant except for Acc@10 (paired t-test with α = 0.05.) All the
methods resulted in better scores on this dataset than on the AUTO dataset. Although PPMI appears to
be accurate, in fact it failed to provide valid scores to 8,894 out of 13,197 examples as the co-occurrences
of their concepts were not observed in the corpus. Likewise, the MANUAL dataset had many concepts
that were not in the training data for MTransE, which seriously degraded its performance.

The examples in Table 5 show that MLP well combined the strength of MT and KBC models as we
hypothesized. In Table 5(a), MLP put a weight on MT since it learned on the training set that MT tends to
be more reliable at RelatedTo relation than KBC. The ratio RelatedTo facts was higher on the MANUAL
dataset than the AUTO dataset, and we think this was the reason why MT outperformed KBC. Table 5(b)
is an example in which KBC mitigated erroneous predictions by MT. MT preferred iwa [stone] to rokku
[rock music], whereas KBC provided the high score to the latter. We found a pre-trained word vector
of rokku was similar to those of music genres such as hevimetaru [heavy metal] and jazu [jazz], which
could help KBC to identify the word sense of rock occurring with music.
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Rank Concepts
MLP KBC MT e1 e2 Label

1 11 5 *iso [rocky coast] *sunago [sand/grit] false
2 1 61 *iso [rocky coast] suna [sand/grit] true only in a few con-

texts
3 4 43 *umibe [seashore] sand [sand/grit] true in several contexts

(beach, RelatedTo, sand)

Table 6: Failed example. Top ranked projections by MLP are reported with labels and ranks given by
MT and KBC. * denotes a rare Japanese word.
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Figure 3: Number of obtained and existing Japanese facts.

Table 6 shows failed examples. KBC, MT, and the proposed methods produced low scores for the
correct facts in these examples. This was because some negative examples contained rare words, and both
MT and KBC gave them high scores. We found KBC was particularly inaccurate for facts containing
OOV words. In practice, discarding rare words would be a reasonable choice in order to achieve high
precision.

6 Japanese Commonsense Knowledge Construction

The previous experiments have shown our method can score projection candidates with high precision.
We now use our method to collect Japanese commonsense resources of high quality.

We first sampled 10,000 English facts that cover 20 relation types.11 In the same way as step 1 in
Section 5.1.1, we obtained Japanese counterparts of them. We then used the MLP model, which achieved
the best score on the MANUAL dataset, and computed scores of the projection candidates.

Although top-10 predictions are likely to contain correct projection as shown in Table 4, we further
used crowdsourcing to refine the projected knowledge. We showed crowd workers top 10 confident
Japanese facts that were generated from the same English fact, and the workers chose all correct Japanese
facts if any. Each set of candidates was judged by five workers. Here, we converted facts into natural
language by the hand-crafted templates described in Section 4.1 so that workers can easily understand
the meaning. All the facts were checked by 838 workers only for 25 hours. Their annotations were
aggregated by majority voting.

As a result, we obtained 18,747 facts. Note that one English fact can have multiple Japanese coun-
terparts. Figure 3 shows the distribution of the obtained facts against the existing Japanese facts in
ConceptNet. The current Japanese facts concentrated on a few relation types such as IsA and RelatedTo,
and most of the relation types do not have many facts. Indeed, we have already collected an equivalent
or larger amount of commonsense knowledge for 12 relation types.12

11The sampled English facts include AtLocation, CapableOf, Causes, CausesDesire, CreatedBy, Desires, Entails, HasA,
HasFirstSubevent, HasLastSubevent, HasPrerequisite, HasProperty, InstanceOf, IsA, MadeOf, MannerOf, MotivatedByGoal,
PartOf, ReceivesAction, and UsedFor.

1212 types include CapableOf, CausesDesire, CreatedBy, Desires, Entails, HasA, HasFirstSubevent, HasPrerequisite,
HasProperty, MadeOf, MannerOf, and ReceivesAction.
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7 Conclusion and Future Work

We proposed a method to project knowledge stored in English into other languages. We focused on
commonsense knowledge that is required to understand human communications. The main challenge of
cross-lingual knowledge projection is the ambiguity of projection. To resolve this ambiguity, our method
combines MT and target-side KBC models. Experiments showed the proposed method outperformed
baseline methods by large margins consistently. We projected 10,000 English into Japanese and obtained
18,747 accurate facts using our method and crowdsourcing. There are still more than 450,000 English
facts with inter-language links to Japanese, and we are planning to project them into Japanese by our
proposed method and crowdsourcing refinement. We will release the resulting resources to research
communities in order to facilitate research in many languages.
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A Experimental Setup

In experiments (Section 5), we built the baselines and our combination methods (Section 4) in the fol-
lowing procedures. Facts are from ConceptNet version 5.5.0. Japanese words in concepts are normalized
using the morphological analyzer JUMAN++ (Morita et al., 2015). We used the Adam (Kingma and Ba,
2014) for training models. Initial learning rates α are described below.

A.1 MT Model

We built the neural MT model with lamtram (Neubig, 2015). The English–Japanese parallel corpora
included 3,253,923 sentence pairs from dictionaries and newswire:

• JEC Basic Sentence Data13

• EDICT 14

• Eijiro15

• Tatoeba Project16

• Open Multilingual WordNet (Bond and Foster, 2013)
• JENAAD (Utiyama and Isahara, 2003)

We extracted 2,965,845 English–Chinese sentence pairs from LDC17. We segmented words by byte-
pair encoding (BPE) with vocabulary size 8,003 for each language. This vocabulary includes three
special symbols indicating the beginning and the end of the sentence, and the out-of-vocabulary word.
We trained the BPE model (Sennrich et al., 2016) on the training set with sentencepiece18. Hyper param-
eters were tuned based on perplexity on randomly selected 1,000 sentence pairs. The best setting was
the encoder/decoder of LSTM with 512 hidden nodes, dropout of rate 0.25, and learning rate α = 0.001
for the both language pairs.

A.2 KBC Model

A bilinear model (Section 4.2) was trained on 59,274 Japanese and 317,161 Chinese facts in ConceptNet.
They are already sorted by a confidence score. We excluded facts in the training and evaluation datasets
for knowledge projection (Section 5.1.)

Following Li et al. (2016), we define concept vectors by taking an average of predefined word embed-
dings. Japanese word embeddings of 256 dimensions were trained on 200 million sentences from the
web. Chinese word embeddings of 300 dimensions were obtained from the CoNLL 2016 data.19 We
normalized concept vectors using the mean and variance calculated on the training set.

In hyper parameter tuning, the most confident 600 facts were used for evaluation, the second most
confident 600 facts were used for early stopping in training, and the remaining facts were used for
training. These facts were treated as positive examples, and we generated negative examples by randomly
swapping one component of each fact. Once the best parameters were determined, the most confident
600 facts were used for early stopping, and the other facts were used to train a model.

We removed positive examples with out-of-vocabulary (OOV) words from the datasets. Instead, we
added facts with a OOV vector as negative examples to the training data because rare words are often
incorrect.

We selected dimensionality d ∈ {100, 150}, regularization coefficients for Mr and the other parame-
ters λ1, λ2 ∈ {0.001, 0.0001, 0.00001}, learning rate α ∈ {0.1, 0.01}, and batch size β ∈ 200, 400, 800.

13http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JEC\%20Basic\%20Sentence\%20Data
14http://www.edrdg.org/jmdict/edict.html
15ISBN: 978-4757428126
16https://tatoeba.org
17The catalog numbers are LDC2002L27, LDC2002T01, LDC2003T17, LDC2004T07, LDC2004T08, LDC2005T10,

LDC2005T34, LDC2006T04, LDC2007T02, LDC2012T16, LDC2012T20, and LDC2012T24.
18https://github.com/google/sentencepiece
19CoNLL 2016 Shared Task Multilingual Shallow Discourse Parsing, http://www.cs.brandeis.edu/˜clp/

conll16st/dataset.html



1520

The resulting parameters for the Japanese facts were d = 150, λ1 = 0.00001, λ2 = 0.001, α = 0.1, and
β = 200. Those for the Chinese facts were d = 100, λ1 = 0.001, λ2 = 0.0001, α = 0.1, and β = 400.

A.3 MTransE
MTransE (Chen et al., 2017) was trained with the implementation provided by Chen et al. (2017). We
set batch size 100 to speed up training although the original code adopted online learning (i.e., batch
size is 1). We empirically found mini batch learning did not impair the performance. We enumerated all
combinations reported by Chen et al. (2017) for tuning dimensionality d, weight of the alignment model
γ, norm l, learning rate α. The resulting parameters for the English–Japanese dataset are d = 100,
γ = 2.5, l = L2, and α = 0.5. Those for the English–Chinese dataset are d = 100, γ = 2.5, l = L2,
and α = 0.1.

A.4 LIN and MLP
The proposed methods were trained using estimates of KBC and MT described above. The valida-
tion set was used for early stopping in training, and selecting the best hyper parameters. We con-
ducted a grid search for learning rate α ∈ {0.5, 0.25, 0.125, 0.0625, 0.03125} and dimensionality
d ∈ {8, 16, 32, 64, 128} (only for MLP). The resulting configurations are reported below.

• LIN: α = 0.125 for the English–Japanese dataset, and α = 0.5 for the English–Chinese dataset
• MLP: α = 0.5 and d = 16 for the English–Japanese dataset, and α = 0.5 and d = 32 for the

English–Chinese dataset


