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Abstract

In this work, we aim at developing an unsupervised abstractive summarization system in the
multi-document setting. We design a paraphrastic sentence fusion model which jointly performs
sentence fusion and paraphrasing using skip-gram word embedding model at the sentence level.
Our model improves the information coverage and at the same time abstractiveness of the gen-
erated sentences. We conduct our experiments on the human-generated multi-sentence com-
pression datasets and evaluate our system on several newly proposed Machine Translation (MT)
evaluation metrics. Furthermore, we apply our sentence level model to implement an abstrac-
tive multi-document summarization system where documents usually contain a related set of
sentences. We also propose an optimal solution for the classical summary length limit problem
which was not addressed in the past research. For the document level summary, we conduct
experiments on the datasets of two different domains (e.g., news article and user reviews) which
are well suited for multi-document abstractive summarization. Our experiments demonstrate that
the methods bring significant improvements over the state-of-the-art methods.

1 Introduction

The task of automatic document summarization aims at finding the most relevant informations in a text
and presenting them in a condensed form. A good summary should retain the most important con-
tents of the original document or a cluster of related documents, while being coherent, non-redundant
and grammatically readable. There are two types of summarizations: abstractive summarization and
extractive summarization. Abstractive methods need extensive natural language generation to rewrite
the sentences (Chali et al., 2017). Therefore, research community is focusing more on extractive sum-
maries, which selects salient (important) sentences from the source document without any modification
to create a summary. The abstractive techniques which are traditionally used are sentence compression,
syntactic reorganization and lexical paraphrasing. Summarization is classified as single-document or
multi-document based upon the number of source document. The information overlap between the doc-
uments from the same topic makes the multi-document summarization more challenging than the task of
summarizing single documents. However, in case of multi-document summarization where source doc-
uments usually contain similar information, the extractive methods would produce redundant summary
or biased towards specific source document (Nayeem and Chali, 2017a).

Multi-sentence compression (MSC) can be a useful solution for the above problem. It usually takes a
group of related sentences and produces an output sentence through merging the sentences about the same
topic, retaining the most important information and still maintain the grammaticality of the generated
sentence. MSC is a text-to-text generation process in which a novel sentence is produced as a result of
summarizing a set of similar sentences originally called sentence fusion (Barzilay and McKeown, 2005).
On the other hand, lexical paraphrasing aims at replacing some selected words with other similar words
while preserving the meaning of the original text. A good lexical substitution for a target word needs to
be semantically similar to the target word and compatible with the given context (Melamud et al., 2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
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For example, the sentence “Jack composed these verses in 1995” could be lexically paraphrased into
“Jack wrote these lines in 1995” without altering the sense of the initial sentence. The contributions of
this paper are as follows:

• We design a novel abstractive sentence generation model which jointly performs sentence fusion
and paraphrasing using skipgram word embedding model.

• We apply our sentence level model to design a full abstractive multi-document summarization sys-
tem and achieved the state-of-the-art results on two different datasets. Different from the recent
neural abstractive models, our model is completely unsupervised, full abstractive (not limited to
deletion based compressions) and applied to multi-document summarization.

• We also propose an optimal solution for the classical summary length limit problem in multi-
document setting.

2 Related Work

Abstractive summarization is generally much more difficult which involves sophisticated techniques for
meaning representation, content organization, sentence compression, sentence fusion, paraphrasing etc.
There has been a huge interest on compressive document summarization that tries to compress original
sentences to form a summary (Clarke and Lapata, 2006; Clarke and Lapata, 2008; Filippova, 2010) as
a first intermediate step towards abstractive summarization. Compressive summarization techniques in-
clude sentences which are compressed from original sentences without further modifications other than
word deletion. Sentence compression involving two or more sentences is called MSC (Multi-Sentence
Compression). Most of the previous MSC approaches rely on the syntactic parsing to build the depen-
dency tree for each related sentence in a cluster for producing grammatical compressions (Filippova and
Strube, 2008). Unfortunately, syntactic parsers are not available for all the languages. As an alternative,
word graph-based approaches that only require a POS tagger and a list of stopwords have been proposed
first by (Filippova, 2010). A directed word graph is constructed in which nodes represent words and
edges represent the adjacency between words in a sentence. Hence, compressed sentences are gener-
ated by finding k-shortest paths in the word graph. (Boudin and Morin, 2013) improved Filippova’s
approach by re-ranking the fusion candidate paths according to keyphrases to generate more informative
sentences. However, grammaticality is sacrificed to improve informativity in these works (Nayeem and
Chali, 2017b).

(Banerjee et al., 2015) proposed an abstractive multi-document summarization system using sentence
fusion approach of (Filippova, 2010) combined with Integer Linear Programming (ILP) sentence selec-
tion. Following (Banerjee et al., 2015) work, several recent approaches have been proposed with slight
modifications. Multiword Expressions (MWE) was exploited in (ShafieiBavani et al., 2016) to produce
more informative compressions. Recently, (Tuan et al., 2017) include syntax factor along with (Baner-
jee et al., 2015) to improve performance. However, all the above mentioned systems try to produce
compressions by copying the source sentence words, no paraphrasing is involved in the process.

Recently end-to-end training with encoder-decoder neural networks have achieved huge success in
case of abstractive summarization. These systems have adopted techniques such as encoder-decoder with
attention (Bahdanau et al., 2015; Luong et al., 2015) neural network models from the field of machine
translation to model the sentence summarization task. (Rush et al., 2015) was the first to use neural
sequence-to-sequence learning in headline generation task from a single document. Unfortunately, this
line of research under the term sentence summarization (Rush et al., 2015), which can generate only
a single sentence, somewhat misleadingly called text summarization in some follow-up research works
(Nallapati et al., 2016; Chopra et al., 2016; Suzuki and Nagata, 2017; Zhou et al., 2017; Ma et al., 2017).
There are some limitations to the above mentioned models, one is that the the produced output is also very
short (about 75 characters). Same as the headlines, their model produces ungrammatical sentences during
generation. However, there are some recent attempts which uses CNN/DailyMail corpus (Hermann et
al., 2015) as a supervised training data to generate multi-sentence summary from a single document (See
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et al., 2017; Li et al., 2017b; Paulus et al., 2017; Narayan et al., 2018a; Narayan et al., 2018b). The
recent abstractive summarization models actually produce compressive summaries by deleting the words
form a single source document, no direct paraphrasing was involved in the process. Hence, no new
words were generated which are different form the source document words (other than morphological
variation), which is pointed out by their own experimental results. Very recently, some researchers
employ neural network based framework to tackle the summarization problem in multi-document setting
(Yasunaga et al., 2017; Li et al., 2017a). (Yasunaga et al., 2017) is limited to extractive summmarization.
On the other hand, (Li et al., 2017a) is limited to compressive summary generation using an ILP based
model, and there is no explicit redundancy control in the summary side. Unfortunately, full abstractive
summarization in multi-document setting still lacks satisfactory solutions due to the lack of large multi-
document summarization datasets needed to train the computationally expensive sequence-to-sequence
models. In this paper, we tackle this issue in an unsupervised way using deep representation learning.

3 Paraphrastic Sentence Fusion Model

Most of the previous works rely only on deletion based compressions, either sentence compression or
fusion for abstracting sentences. Instead, in this paper we take the first step towards finding a joint
representation for sentence abstraction using sentence fusion and lexical paraphrase rather than treating
these two independently.

3.1 Word Graph Construction for Sentence Fusion

Given a cluster of related sentences we construct a word-graph following (Filippova, 2010; Boudin and
Morin, 2013). Let S = {s1, s2, ..., sn} be a set of related sentences, we construct a graph G = (V,E)
by iteratively adding sentences to it. The vertices are the words along with the parts-of-speech (POS)
tags and directed edges are formed by simply connecting the adjacent words in the sentences. Once
the first sentence is added, words from the other related sentences are mapped onto a node in the graph
provided that they have exactly the same lower cased word form and the same POS tag. Each sentence
is connected to dummy start and end nodes to mark the beginning and ending of the sentences. Figure 1
illustrates an example word-graph for the following two sentences,

S1: In Asia Japan Nikkei lost 9.6% while Hong Kongs Hang Seng index fell 8.3%.
S2: Elsewhere in Asia Hong Kongs Hang Seng index fell 8.3% to 12,618.
As we can see, the two input sentences contain similar information, but differs in sentence length,

syntax, and the detail of information. The solid directed arrows connect the words in the first sentence
S1, while the dotted arrows join the words in the second sentence S2. After constructing the word-graph
using (Filippova, 2010; Boudin and Morin, 2013) as described above, we can generate K-shortest paths
from dummy start node to end node in the word graph (see Figure 1). For example, we can generate
these paths:

Ex1: In Asia Hong Kongs Hang Seng index fell 8.3%.
Ex2: Elsewhere in Asia Hong Kongs Hang Seng index fell 8.3%.
Ex3: Elsewhere in Asia Japan Nikkei lost 9.6% while Hong Kongs Hang Seng index fell 8.3%.
The above examples are sampled from the K-shortest paths generated from the word-graph G (K is

usually ranges from 50 to 200 according to the literature (Filippova, 2010; Boudin and Morin, 2013)).
The main challenge is to rank theseK fused sentences according to the information they contain. Hence,
we design a candidate ranking strategy to sort the generated K-shortest paths based on the information
coverage.

3.2 Candidate Ranking

We rank the fused candidates by applying TextRank algorithm (Mihalcea and Tarau, 2004) which in-
volves constructing an undirected graph where candidates are vertices, and weighted edges are formed
by connecting candidate sentences by a similarity metric. Original TextRank algorithm determines the
similarity based on the lexical overlap. However, this algorithm has a serious drawback: If two sentences
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Figure 1: Constructed Word graph and a possible compression path (light gray nodes)

are talking about the same topic without using any overlapped words, there will be no edge between
them. Instead, we apply the following representation of a sentence to capture the semantic information.

3.2.1 Sentence Embedding
A sentence is a sequence of words S = (w1, w2, ...., wL), where L is the length of the sentence. We
encode a sentence using bi-directional GRUs (Cho et al., 2014). In the simplest uni-directional case,
while reading input symbols from left to right, a GRU learns the hidden annotations ht at time t with

ht = GRU(ht−1, e(wt)) (1)

where, the ht ∈ IRn encodes all content seen so far at time t which is computed from ht−1 and e(wt),
where e(wt) ∈ IRm is the m-dimensional embedding of the current word wt. We use 300-dimensional
pre-trained word2vec embeddings1(Mikolov et al., 2013) for each word as input to GRU.

As shown in Figure 2, Bi-GRU processes the input sentence in both forward and backward direction
with two separate hidden layers calculated with GRUs, obtains the forward hidden states (

−→
h1, . . . ,

−→
hL)

and the backward hidden states (
←−
h1, . . . ,

←−
hL). For each position t, we simply concatenate both forward

and backward states into the final hidden state:

ht =
−→
ht ⊕

←−
ht (2)

in which operator ⊕ indicates concatenation.
−→
ht is calculated using Eq. (1) and

←−
ht is calculated using

the following equation.

←−
ht = GRU(

←−−
ht+1, e(wt)) (3)

−→
h0 is initialized as zero vector, and the output sentence embedding xi for the sentence Si is the last

hidden state:

xi = hL (4)

We start by constructing an undirected graph where fused sentence candidates are vertices, and
weighted edges are formed by measuring the cosine distance between the candidate sentence embed-
dings obtained from equation (4). After we have our graph, we run the TextRank (Mihalcea and Tarau,

1https://code.google.com/archive/p/word2vec/
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Figure 2: Sentence Embedding

2004) algorithm on it. This involves initializing a score of 1 for each vertex, and repeatedly applying
the TextRank update rule until convergence. After reaching convergence, we extract the fused candidate
sentences along with TextRank scores. For instance, Rank(Si) indicates the importance score assigned
to sentence Si.

3.3 Context Sensitive Lexical Substitution
3.3.1 Target Word Identification for Substitution
After constructing the word-graph as presented in section 3.1, we take only the nouns and verbs for
possible substitution candidates from the word-graph G. We didn’t consider the named entities, where,
NE ∈ {PER;LOC;ORG;MISC} for the substitution.

3.3.2 Substitution Selection
The PPDB 2.0 (Pavlick et al., 2015) provides millions of lexical, phrasal and syntactic paraphrases which
come into packages of different sizes (going from S to XXXL). For our model, we use the lexical XXL.
For instance, we can gather lexical substitution set S = {gliding, sailing, diving, travelling} for the target
word (t = flying) from PPDB 2.0. We hardcoded the model to select substitutes with the same POS tag
and that are not a morphological variant (e.g., fly, flew, flown ).

3.3.3 Substitution Ranking
Word embeddings are low-dimensional vector representations of words such as word2vec (Mikolov et
al., 2013) that recently gained much attention in various semantic tasks. Word2vecf (Levy and Goldberg,
2014) is an extension of word2vec to produce syntax-based word embeddings. They show that these
embeddings tend to capture functional word similarity (as in manage → supervise) rather than topical
similarity (as in manage → manager). We use the word and context vectors released by (Melamud et
al., 2015) which was shown to perform strongly on lexical substitution task. These embeddings contain
600d (600 dimension) vectors for 173k words and about 1M syntactic contexts processed using the
dependency based word2vecf model (Levy and Goldberg, 2014). Their measure addCos for estimating
the appropriateness of a substitute s from the substitution set S, for the target word t in the set of the
target word’s context elements C = {c1, c2, ..., cn}, which is defined as follows,

addCos(s|t, C) =
cos(s, t) +

∑
c∈C cos(s, c)

|C|+ 1

Finally, we select the best substitution s according to maximum addCos scores over 0.7 and attach it
with the target word vertex t in the word-graph G along with the addCos score. For the other vertices
which don’t have substitution alternatives, we assign an addCos score of zero in the word-graph G.

3.3.4 Confidence Score
Once the substitutions are placed into the word-graph G, in order to maintain the grammaticality and the
reliability of the final generated sentences, we use a 3-gram language model, which assigns probabilities
to sequence of words in a generated candidate. Suppose that a candidate contains a sequence of m
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words {w1, w2, w3, . . . , wm}. The score CS (Confidence Score) assigned to each candidate is defined as
follows:

CS(w1, ..., wm) =
1

1− ScoreLM (w1, ..., wm)

In our experiment, we used a language model that is trained on the English Gigaword corpus2. In
the word-graph G, for each substitution candidate we calculate the confidence score with the adjacent
vertices (in our case words) and calculate their average. We also assign this confidence score with the
substitution vertex in the word-graph G.

Finally, we rank the K candidate fusions and find the N -best paraphrastic sentence fusion which
balances the information coverage and the abstractiveness. The score of a candidate sentence fusion c
is given by the following linear combination between the candidate rank score and the abstractiveness
score (where, we set α = 0.5 to give equal importance and scaling the score to [0,1]).

score(c) = α ·Rank(c) + (1− α) ·
Vend∑

Vi=Vstart

addCos(Vi) + CS(N(Vi)) (5)

where, addCos(Vi) is the addCos score of the vertex Vi and N(Vi) is the neighbours of the vertex Vi
from the word-graph G.

4 Multi-Document Abstractive Summarization

In this section, we apply our sentence level paraphrastic fusion model to generate multi-document level
abstractive summary under a certain length limit (L). Our system takes a set of related documents as
input and preprocesses them which includes tokenization, Part-Of-Speech (POS) tagging, removal of
stopwords, filtering punctuation marks and Lemmatization. We use NLTK toolkit3 to preprocess each
sentence to obtain a more accurate representation of the information. In the following, we successively
describe each of the steps involved in the document summarization process.

4.1 Sentence Clustering

The sentence clustering step allows us to group similar sentences. We use a hierarchical agglomerative
clustering (Murtagh and Legendre, 2014) with a complete linkage criteria. This method proceeds incre-
mentally, starting with each sentence considered as a cluster, and merging the pair of similar clusters
after each step using bottom up approach. The complete linkage criteria determines the metric used for
the merge strategy, which means largest distance between a sentence in one cluster and a sentence in
the other candidate cluster. In building the clusters, we use the cosine similarity between the sentence
embeddings obtained from equation (5). We set a similarity threshold (τ = 0.5) to stop the clustering
process by using a hold out dataset SICK4 of SemEval-2014 (Marelli et al., 2014) for getting optimal
performance. If we cannot find any cluster pair with a similarity above the threshold (τ = 0.5), the
process stops, and the clusters are released. The clusters may be small, but are highly coherent as each
sentence they contain must be similar to every other sentence in the same cluster. This sentence clustering
step is very important due to two main reasons,

• Selecting at most one sentence from each cluster of related sentences will decrease redundancy from
the summary side.

• Selecting sentences from the diverse set of clusters will increase the information coverage from the
document side as well.

2Available : http://www.keithv.com/software/giga/ (We used the 64K NVP vocabulary version)
3http://www.nltk.org/
4http://clic.cimec.unitn.it/composes/sick.html



1197

For each cluster of related sentences, we generate 10-best (N = 10) abstractive fused sentences us-
ing our model described in section 3, the generated sentences differ in lengths as well as information.
However, for the clusters containing only one sentence, we use our context sensitive lexical substitution
model presented in section 3.3 to generate just the abstractive version of the source sentence.

4.2 Abstractive Sentence Selection

In our work, we use the concept-based ILP framework introduced in (Gillick and Favre, 2009) with
some suitable changes to select the best subset of sentences. This approach aims to extract sentences that
cover as many important concepts as possible, while ensuring the summary length is within a given bud-
geted constraint. Unlike (Gillick and Favre, 2009) which uses bigrams as concepts, we use keyphrases
as concepts. Keyphrases are the words or phrases that represent the main topics of a document. Sen-
tences containing the most relevant keyphrases are important for the summary generation. We extract
the keyphrases from the document cluster using RAKE5 (Rose et al., 2010). We assign a weight to each
keyphrase using the score returned by RAKE.

Let w̄i be the weight of keyphrase i and ki a binary variable that indicates the presence of keyphrase i
in the selected parafused sentences. Let lj be the number of words or characters in sentence j, sj a binary
variable that indicates the presence of sentence j in the selected parafused sentence set and L the length
limit for the set. Let Occij indicate the occurrence of keyphrase i in sentence j, the ILP formulation is,

max : (
∑
i

w̄iki +
∑
j

(score(sj) +
lj
L

) · sj) (6)

Subject to :
∑
j

ljsj ≤ L (7)

sjOccij ≤ ki, ∀i, j (8)

∑
j

sjOccij ≥ ki, ∀i (9)

∑
j∈gc

sj ≤ 1, ∀gc (10)

ki ∈ {0, 1} ∀i (11)

sj ∈ {0, 1} ∀j (12)

We try to maximize the weight of the keyphrases and our ParaFuse model’s score (6), while avoiding
repetition of those keyphrases (8, 9) and staying under the maximum number of words or characters
allowed for the selected parafused sentences (7). In order to ensure at most one sentence per parafused
cluster in the summary, we add an extra constraint (10), this will ensure non-redundancy from the sum-
mary side. In this process, we select the optimal combination of abstractive sentences that maximize
information coverage while minimizing redundancy.

5https://github.com/aneesha/RAKE
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4.3 Summary Length Limit Problem
One of the essential properties of the text summarization systems is the ability to generate a summary
with a fixed length (DUC 2004, Task-2 (Multi-Document): Length limit = 100 Words). According to
(Hong et al., 2014) all the multi-document summarizer from the previous research either truncated the
summary to 100th word, or removed the last sentence from the summary set. However, the first option
produces a certain ungrammatical sentence, the later one can lose a lot of information in the worst case, if
the sentences are long. Recently, (Kikuchi et al., 2016) propose four methods in order to tackle this issue,
two of them are based on different decoding procedures without model architecture modification and the
other two are learning-based, i.e., the models take the desired length information as input and encode it
into the model architecture. However, their model is limited to headline generation task, where models
generate a single sentence headline of a document. In this work, we tackle this issue in multi-document
setting by generating N -best paraphrastic fusion length variations of a cluster of related sentences. Our
model can effectively produce different length variations because of the shortest path strategy from start
node to end node (see section 3.1 for the examples). In our ILP formulation for the document level
summary generation, we try to maximize the total summary length in the objective function (equation
(6)) to optimally solve the length limit problem. Under any circumstances, our model can choose a
shorter variation of a sentence automatically to be included in the summary.

4.4 Experiments
In this section, we present our experimental details for assessing the performance of the sentence level
paraphrastic fusion model and multi-document level abstractive summarization system as described
above. We give details on the datasets we used, evaluation metrics, and the baseline systems used for
comparison with our approach.

4.4.1 Sentence Level Experiments
We generate 50 shortest paths from start to end node for each cluster of related sentences using our
paraphrastic sentence fusion model. The paths shorter than eight words or that do not contain a
verb are filtered. To ensure pure abstractive compression generation, we remove the paths that have
cosineSimilarity ≥ 0.9 to any of the original sentence in the cluster. We then select 3-best candidates
from K paths using the scoring function in equation (5). For fair evaluation, we also select the 3-best
candidates for the baseline systems that we compare with our model.

Dataset: We conduct experiments on the human generated sentence fusion dataset released by (McK-
eown et al., 2010). This dataset consists of 300 English sentence pairs taken from newswire clusters
accompanied by human-produced sentence fusions rewrites collected via Amazon’s Mechanical Turk
service6. We filtered the sentences which have no main verbs. The resulting set contains 296 pairs of
sentences.

Evaluation Metric: We evaluate our system automatically using various automatic metrics. BLEU
(Papineni et al., 2002) is the most commonly used metric for Machine Translation evaluation. BLEU
relies on exact matching of n-grams and has no concept of synonymy or paraphrasing. SARI (Xu et
al., 2016) a recently proposed metric which compares System output Against References and against the
Input sentence. SARI computes the arithmetic average of n-gram precision and recall of three rewrite
operations: addition, copying, and deletion which correlates well with human references. METEOR-E7

(Servan et al., 2016) is an augmented version of METEOR (Denkowski and Lavie, 2014) using dis-
tributed representations which can easily measure the abstractiveness. Compression Ratio is a measure
of how terse a compression. A compression ratio of zero implies that the source sentence is fully un-
compressed. We define Copy Rate as how many tokens are copied to the abstract sentence from the
source sentence without paraphrasing in the following equation (13). Lower copy rate score means more
paraphrasing is involved in the abstract sentence. Copy rate of 100% means no paraphrasing.

6http://www.mturk.com
7https://github.com/cservan/METEOR-E
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Input Sentences

Bush, who initially nominated Roberts to replace retiring Justice Sandra Day O’Connor,
tapped him to lead the court the day after Rehnquist’s death.
President Bush initially nominated Roberts in July to succeed retiring Justice Sandra
Day O’Connor.

(Filippova, 2010) president bush initially nominated roberts to replace retiring justice sandra day o’connor .

(Boudin and Morin, 2013) bush , who initially nominated roberts in july to succeed retiring justice sandra day o’connor ,
tapped him to lead the court the day after rehnquist ’s death .

(Banerjee et al., 2015) bush , who initially nominated roberts to replace retiring justice sandra day o’connor ,
tapped him to lead the court the day after rehnquist ’s death .

Paraphrastic Fusion (ours) president bush initially recommended roberts in july to substitute retiring justice sandra
day o’connor , tapped him to run the court the day after rehnquist ’s death .

Table 1: The output generated by the baseline and our system (the paraphrased words are marked bold)

Model BLEU SARI METEOR-E Compression Ratio Copy Rate

(Filippova, 2010) 40.6 34.6 0.31 0.57 99.8
(Boudin and Morin, 2013) 44.0 37.2 0.36 0.42 99.9

(Banerjee et al., 2015) 42.3 36.5 0.34 0.45 99.8
Paraphrastic Fusion (ours) 42.5 37.4 0.43 0.41 76.2

Table 2: Comparison with baselines and our Paraphrastic Fusion model across different automatic
evaluation metrics (the scores are averaged)

Copy Rate =
|Sorig ∩ Sabs|
|Sabs|

(13)

4.5 Baseline Systems and Results
We compare our system with (Filippova, 2010), (Boudin and Morin, 2013)8 and (Banerjee et al., 2015)9.
Table 1 shows the output generated by the baseline and our system. We report our system’s performance
compared with the baselines in terms of different evaluation metrics in Table 2. Our model balances the
information coverage (BLUE, SARI) and complete abstractiveness (METEOR-E, Copy Rate) instead
of over compressing the generated sentences (Compression Ratio). We get slightly higher score in
SARI because of the multiple human abstractive rewrites along with input sentence. The Copy Rate
score of other baseline systems clearly indicates the fact that they are doing completely deletion based
compression, no paraphrasing is involved. Moreover, we also get higher score in METEOR-E metric
because of the lexical substitution operation. As expected, we get little lower BLEU score compared to
(Boudin and Morin, 2013) for two main reasons (1) We tried to balance between information coverage
and abstractiveness (2) BLEU works well on surface level lexical overlap.

4.5.1 Multi-Document Level Experiments
Dataset: We consider the generic multi-document summarization dataset provided at Document Under-
standing Conference (DUC 2004)10 which is one of the main benchmark dataset in the multi-document
summarization field. It contains 50 document clusters and each is composed of 10 news wire articles
about a given topic from the Associated Press and The New York Times that are published between 1998
to 2000. The dataset also contains multiple human-written summaries which are used for the evaluation
of system-generated summaries. The Opinosis (Ganesan et al., 2010) is another dataset consists of short
user reviews in 51 different topics collected from TripAdvisor, Amazon, and Edmunds. The dataset is
well suited for multi-document summarization which includes 5 different golden summaries for each
topic created by human authors.

8https://github.com/boudinfl/takahe
9https://github.com/StevenLOL/AbTextSumm

10http://duc.nist.gov/duc2004/



1200

Dataset Models R-1 R-2 R-WE-1 R-WE-2

DUC 2004

LexRank (Erkan and Radev, 2004) 35.95 7.47 36.91 7.91
Submodular (Lin and Bilmes, 2011) 39.18 9.35 40.03 9.92
RegSum (Hong and Nenkova, 2014) 38.57 9.75 39.12 10.33

ILPSumm (Banerjee et al., 2015) 39.24 11.99 40.21 12.08
PDG* (Yasunaga et al., 2017) 38.45 9.48 39.07 10.24

ParaFuse doc (ours) 40.07 12.04 42.31 12.96

Opinosis 1.0

TextRank (Mihalcea and Tarau, 2004) 27.56 6.12 28.20 6.45
Opinosis (Ganesan et al., 2010) 32.35 9.13 33.54 9.41

Biclique (Muhammad et al., 2016) 33.03 8.96 33.91 9.25
ParaFuse doc (ours) 33.86 9.74 34.46 10.09

Table 3: Results on DUC 2004 (Task-2) and Opinosis 1.0

Evaluation Metric: We evaluate our summarization system using ROUGE11 (Lin, 2004) on DUC
2004 (Task-2, Length limit (L) = 100 Words) and Opinosis 1.0 (L = 15 Words). However, ROUGE
scores are unfairly biased towards lexical overlap at surface level. Taking this into account, we also
evaluate our system using ROUGE-WE (Ng and Abrecht, 2015), which considers word embeddings
to compute the semantic similarity of the words. We report limited length recall performance for both
the metrics, as our system generated summaries are forced to be concise through some constraints (such
as length limit constraint). Therefore, we consider using just the recall score since precision is of less
concern in this scenario.

4.5.2 Baseline Systems & Results

The summaries generated by the baseline LexRank (Erkan and Radev, 2004) and the state-of-the-art
summarizers (Submodular (Lin and Bilmes, 2011) and RegSum (Hong and Nenkova, 2014) ) on the
DUC 2004 dataset were collected from (Hong et al., 2014). In case of ILPSumm12 (Banerjee et al.,
2015) and PDG* (Yasunaga et al., 2017), we use the author provided implementation to generate sum-
mary from their model. For Opinosis 1.0 dataset, we use an open source implementation of TextRank
(Mihalcea and Tarau, 2004)13. Moreover, we use the author provided implementation for the Opinosis
(Ganesan et al., 2010) and Biclique (Muhammad et al., 2016) to generate summaries. According to the
Table 3, our multi-document level model ParaFuse doc achieves the best summarization performance
on all the ROUGE metrics for both the datasets. The slight increase in terms of R-WE metric clearly
justifies the fact of abstractiveness proposed in this work which highly correlates with human references.

5 Conclusion

In this paper, we designed a new abstractive fusion generation model at the sentence level which jointly
performs sentence fusion and paraphrasing. Our sentence level model is very well suited for full abstrac-
tive multi-document summarization which was justified by the experimental results on two benchmark
datasets of different domains. Furthermore, we designed an optimal solution for the classical summary
length limit problem in multi-document setting.

Acknowledgements

We would like to thank the anonymous reviewers for their useful comments. The research reported in
this paper was conducted at the University of Lethbridge and supported by the Natural Sciences and
Engineering Research Council (NSERC) of Canada discovery grant and the University of Lethbridge.

11ROUGE-1.5.5 with options: -n 2 -m -u -c 95 -x -r 1000 -f A -p 0.5 -t 0
12https://github.com/StevenLOL/AbTextSumm
13https://github.com/davidadamojr/TextRank



1201

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to

align and translate. In ICLR 2015.

Siddhartha Banerjee, Prasenjit Mitra, and Kazunari Sugiyama. 2015. Multi-document abstractive summarization
using ilp based multi-sentence compression. In Proceedings of the 24th International Conference on Artificial
Intelligence, IJCAI’15, pages 1208–1214. AAAI Press.

Regina Barzilay and Kathleen R. McKeown. 2005. Sentence fusion for multidocument news summarization.
Comput. Linguist., 31(3):297–328, September.

Florian Boudin and Emmanuel Morin. 2013. Keyphrase extraction for n-best reranking in multi-sentence com-
pression. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pages 298–305, Atlanta, Georgia, June. Association for
Computational Linguistics.

Yllias Chali, Moin Tanvee, and Mir Tafseer Nayeem. 2017. Towards abstractive multi-document summarization
using submodular function-based framework, sentence compression and merging. In Proceedings of the Eighth
International Joint Conference on Natural Language Processing, IJCNLP 2017, Taipei, Taiwan, November 27
- December 1, 2017, Volume 2: Short Papers, pages 418–424.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014. On the properties of neural
machine translation: Encoder–decoder approaches. pages 103–111, October.

Sumit Chopra, Michael Auli, and Alexander M. Rush. 2016. Abstractive sentence summarization with attentive
recurrent neural networks. In Proceedings of the 2016 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, pages 93–98, San Diego, California,
June. Association for Computational Linguistics.

James Clarke and Mirella Lapata. 2006. Models for sentence compression: A comparison across domains, training
requirements and evaluation measures. In Proceedings of the 21st International Conference on Computational
Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics, ACL-44, pages
377–384, Stroudsburg, PA, USA. Association for Computational Linguistics.

James Clarke and Mirella Lapata. 2008. Global inference for sentence compression: An integer linear program-
ming approach. Journal of Artificial Intelligence Research, 31:399–429.

Michael Denkowski and Alon Lavie. 2014. Meteor universal: Language specific translation evaluation for any
target language. In Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 376–380,
Baltimore, Maryland, USA, June. Association for Computational Linguistics.

Günes Erkan and Dragomir R. Radev. 2004. Lexrank: Graph-based lexical centrality as salience in text summa-
rization. J. Artif. Int. Res., 22(1):457–479, December.

Katja Filippova and Michael Strube. 2008. Sentence fusion via dependency graph compression. In Proceed-
ings of the Conference on Empirical Methods in Natural Language Processing, EMNLP ’08, pages 177–185,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Katja Filippova. 2010. Multi-sentence compression: Finding shortest paths in word graphs. In Proceedings of the
23rd International Conference on Computational Linguistics, COLING ’10, pages 322–330, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Kavita Ganesan, ChengXiang Zhai, and Jiawei Han. 2010. Opinosis: A graph-based approach to abstractive
summarization of highly redundant opinions. In Proceedings of the 23rd International Conference on Com-
putational Linguistics, COLING ’10, pages 340–348, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Dan Gillick and Benoit Favre. 2009. A scalable global model for summarization. In Proceedings of the Workshop
on Integer Linear Programming for Natural Langauge Processing, ILP ’09, pages 10–18, Stroudsburg, PA,
USA. Association for Computational Linguistics.
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