
Proceedings of the 27th International Conference on Computational Linguistics, pages 331–342
Santa Fe, New Mexico, USA, August 20-26, 2018.

331

Par4Sim – Adaptive Paraphrasing for Text Simplification

Seid Muhie Yimam Chris Biemann
Language Technology Group

Department of Informatics, MIN Faculty
Universität Hamburg, Germany

{yimam,biemann}@informatik.uni-hamburg.de

Abstract

Learning from a real-world data stream and continuously updating the model without explicit
supervision is a new challenge for NLP applications with machine learning components. In this
work, we have developed an adaptive learning system for text simplification, which improves
the underlying learning-to-rank model from usage data, i.e. how users have employed the system
for the task of simplification. Our experimental result shows that, over a period of time, the
performance of the embedded paraphrase ranking model increases steadily improving from a
score of 62.88% up to 75.70% based on the NDCG@10 evaluation metrics. To our knowledge,
this is the first study where an NLP component is adaptively improved through usage.

Title and Abstract in Amharic

Par4Sim -- የሚጣጣም መልሶ መጻፍ፤ ፅሁፍን ለማቅለል

ከገሃዱ ዓለም የመረጃ ፍሰት መማርና ቀጥተኛ ድጋፍ ሳያስፈልገው ሞዴሉን በተከታታይ ለማሻሻል ማሽን
ለርኒንግ (በራሱ መማር የሚችል የኮምፒዩተር መርሃ ግብር) በሚያካትቱ የተፈጥሯዊ የቋንቋ ቴክኖሎጂ
(ተ.ቋ.ቴ - NLP) ጥናት አዲስ ፈተና ሆኗል። በዚህ ምርምር፤ ተጠቃሚዎች እንድን መተግበሪያ በመጠቀም
ላይ ሳሉ ማለትም በተጠቃሚዎች የተለያዩ ድርጊቶች መሰረት ውህቦችን ከበስተጀርባ ሆኖ በመሰብስሰብ
የማሽን ለርኒንጉን ሞዴል በማዘመን እየተጣጣመ መማር የሚችል የጽሁፍ አቅላይ ስርዓት ሰርተናል።
የሲስተማችንን ውጤታማነት ለማረጋገጥ፤ አንድን ፅሁፍ ለተለያዩ ተጠቃሚዎች በቀላሉ እንዲገባቸው
ለማድረግ ተጣጣሚ ትርጓሜዎችን እንደ ምሳሌ ወስደናል። በመሆኑም፤ አንድ ተጠቃሚ አንድን ፅሁፍ
መረዳት ሲያቅተው፤ የኛን ተንታኝ መተግበሪያ ተጠቅሞ አማራጭ ቃል ወይንም ሐረግ በመተካት ፅሁፍን
የበለጠ ቀላል ማድረግ ይችላል።
የሙከራ ውጤታችን እንደሚያሳየው ከሆነ፤ በተከታታይ ጊዜ ውስጥ እንዲማር/እንዲላመድ በሲስተሙ
ውስጥ የተሸጎጠው ደረጃ መዳቢ ሞዴል፤ በNDCG@10 የግምገማ ልኬቶች መሰረት፣ ሳያቋርጥ በመጨመር
ከ62.88% እስከ 75.70% ድረስ መሻሻል አሳይቷል። እኛ እስከምናውቀው ድረስ፤ ይህ ጥናት፤ የተፈጥሯዊ
የቋንቋ ቴክኖሎጂ (ተ.ቋ.ቴ - NLP) ትግበራዎች በአግልግሎት አጠቃቀም ጊዜ ውህቦችን በመሰብስብ
የማሽን ለርኒንግ ስልተ ቀመር ሞዴል አገልግሎት በሂደት ውስጥ እያለ እንዲሻሻል/እንዲላመድ የሚያደርግ
የመጀመሪያው ጥናት ነው።

1 Introduction

Traditionally, training data for machine learning-based applications are collected amass, using a specific
annotation tool. There are a number of issues regarding this approach of data collection. Most impor-
tantly, if the behavior of the target application changes over time, this makes the training data outdated
and obsolete, an issue known as concept drift (Žliobaitė et al., 2016).
In this regard, we opt to design an approach where data can be collected interactively, iteratively and

continuously using an adaptive learning model in a live and a real-world application. By adaptive, we
mean that the learning model gets signal from the usage data over a period of time and it automatically

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


332

adapts to the need of the application. An adaptive learning model has a spectrum of advantages. First
of all, the model gets updated continuously. The model also provides suggestions through usage and the
user can correct the suggestions, which in turn improves the model’s performance. On top of this, there
is no need to collect a large set of training examples a priori, which might be difficult and expensive. We
also believe that instead of collecting training data in advance, it is a more natural way to get the training
examples from usage data by embedding the adaptive model in the application.
In this premise, we choose the advanced NLP task of text simplification in order to experiment with an

adaptive learning approach. Text simplification aims at reducing the complexity (syntactic and lexical)
of a text for a given target reader. According to the survey by Shardlow (2014), different approaches such
as lexical simplification, explanation generation, and machine translation are used for text simplification.
As far as our knowledge is concerned, there is no work regarding the use of an adaptive model, more
specifically adaptive paraphrasing based on usage data for the task of text simplification.
The main technical challenge is the integration of an adaptive paraphrasing model into a text simplifi-

cation writing aid tool in order to be able to attain whether it is possible to gain NLP component quality
through adaptive learning on usage data. The writing aid tool for text simplification using an adaptive
paraphrasing model (Par4Sim) consists of several components. The first component in the pipeline de-
termines the complex or difficult words or phrases (CPs), which is based on the work of Yimam et al.
(2017). Once the CPs are identified, the second component produces candidate suggestions from differ-
ent paraphrase resources. Candidates that do not fit the context in the sentence are filtered or excluded
based on a language model score. Finally, an adaptive ranking model reorders candidates based on their
simplicity and provides the ranked candidates to the user within an interactive writing aid tool.
This work is aiming to answer the following three research questions:

RQ1: How can an adaptive paraphrase ranking model be integrated into a text simplification writing aid
tool?
RQ2: How can an adaptive paraphrase ranking model be evaluated?
RQ3: Can we demonstrate the adaptivity of the approach?

This paper is organized as follows. In Section 2 we briefly review state-of-the-art works in adap-
tive learning and text simplification. Section 3 outlines the design procedures we have followed in the
development of the Par4Sim tool for the integration of adaptive paraphrasing in a text simplification ap-
plication in detail. In Section 4, a brief description of the data collection and statistics of the collected data
is presented. Section 5 describes the learning-to-rank machine learning algorithm employed to build an
adaptive ranking model, including the definition of employed feature representation and the evaluation
metrics. The experimental results obtained and the contributions of our research work are presented in
Section 6 and Section 7. Finally, Section 8 presents the conclusions of our work and indicates future
directions on the integration of adaptive approaches for NLP applications.

2 Related Work

Supervised machine learning approaches commonly rely on the existence of a fixed training set, which
is collected in advance.
The survey by Parisi et al. (2018) indicates that continual lifelong learning, the ability to learn continu-

ously by acquiring new knowledge is one of the challenges of modern computational models. The survey
further explains that one of the main problems of continual learning is that training model with new in-
formation interferes with previously learned knowledge. The work of To et al. (2009) indicates that the
integration of user feedback in an adaptive machine learning approach helps to improve the system’s per-
formance. It further shows that the approach helps to reduce the manual annotation efforts. Žliobaitė et
al. (2016) revealed that supervised machine learning approaches stationed with static datasets face prob-
lems during deployment in a real-world application due to concept drift (Tsymbal, 2004) as applications
start generating data streams continually. Applications with such properties include spam filtering and
intrusion detection.
Stream-based learning and online learning (Bottou, 1998) are alternative setups to a batch-mode adap-



333

tive learning system. For example, the work by Levenberg et al. (2010) shows that the deployment of
stream-based learning for statistical machine translation improves the performance of their system when
new sentence pairs are incorporated from a stream. The work by Wang et al. (2015) presents SOLAR, a
framework of scalable online learning algorithms for ranking, to tackle the poor scalability problem of
batch and offline learning models. The work by Yimam et al. (2016a) uses MIRA (Margin Infused Re-
laxed Algorithm) (Crammer and Singer, 2003), a perceptron-based online learning algorithm to generate
suggestions in an iterative and interactive annotation setup for a biomedical entity annotation task.
Most text simplification approaches employ basic machine translation models from parallel corpora

(Xu et al., 2016; Štajner et al., 2017) and using simple Wikipedia for English (Coster and Kauchak,
2011). Simple PPDB (Pavlick and Callison-Burch, 2016) is such a resource that is built automatically,
using machine translation techniques on a large number of parallel corpora.
The work by Lasecki et al. (2015) shows that using crowdsourcing for text simplification is a valid

approach. We also conducted our adaptive text simplification experiment on the Amazon Mechanical
Turk crowdsourcing platform using a specialized text simplification tool.

3 Design of the Par4Sim System

Par4Sim is a text simplification tool based on an adaptive paraphrasing paradigm. Unlike the traditional
text simplification approaches, Par4Sim mimics a normal text editor (writing aid tool). The tool embeds
basic text simplification functionalities such as providing suggestions for complex phrases, allowing edit-
ing of the texts in place and so on. Our setup is that authors wishing to simplify text can use the tool,
without a priori machine learning model, but the system learns from the user interactions in an iterative
and interactive manner. In order to run a distributed and web-scale simplification experiment, we have
integrated the tool into an existing crowdsourcing platform.
Hence, our targeted users for the Par4Sim experiments are workers from the AmazonMechanical Turk

(MTurk) crowdsourcing platform. As a large number of workers are available in the MTurk platform, we
paid special attention in the development of the tool regarding response time, accessibility, and reliability.
The tool comprises a front-end component to edit texts and a back-end component, which exposes most
of the requests using REST API services. Figure 1 shows the main components of the tool. The detailed
instructions for the MTurk task are displayed in Figure 2.
While it is impossible to host complex systems inside the MTurk infrastructure, MTurk supports ex-

ternal human intelligence tasks (HITs) where workers can easily access our system through the MTurk
interface. Par4Sim’s user interface is embedded into theMTurk web page, but every activity is handled by
our own server. This design gives us full control on the collection of the dataset, for training new ranker
models, and for updating the model iteratively and seamlessly while we still use the MTurk infrastructure
to recruit workers and pay rewards for a web-scale experiment.
As it can be seen in Figure 1, complex words or phrases (CPs) are automatically highlighted (yellow

background color and underlined in cyan color). The highlighting of the CPs is based on the work of
Yimam et al. (2017). Furthermore, the users can highlight their own CPs and our system will provide
ranked candidates. Details about the generation of candidates and the ranking model are provided in
Section 4. Besides the highlighting of CPs and providing ranked candidates, the system further provides
the following functionalities.

• Reload text: If the worker wants to get the original text with the CPs re-highlighted, she can reload
the content using the Reload button, subject to confirmation.

• Undo and redo: At any particular time, workers can undo or redo the changes they have made using
the Undo and Redo buttons.

• Highlight difficult words: It is also possible to request our system to automatically highlight dif-
ficult words. This functionality is particularly important if the worker has changed the original text
but she is not sure if the amended text is in fact simpler. Once the system highlights some words
or phrases, she can still check if the suggestions provided by the system could still simplify the text
further.



334

Figure 1: The Par4Sim UI as it is displayed inside the MTurk webpage with the instruction ”Simplify the
following sentences for targeted readers”. The targeted readers are explained in the detailed instruction
as children, language learner, and people with reading impairments.

• Show instruction / Original texts: The instructions (see Figure 2) are visible at the beginning of
each task. Once workers have accepted the task, the instructions will be hidden automatically so
that the workers can focus on the simplification task in a clean window. During simplifying the text,
the worker can display the instructions below the text editor if she wants to refer to the instructions.
Workers can also compare the simplified version of the text with the original text.

• Show animation: Crowdworkers prefer a very short task description or the task should be easy
enough to be understood by most workers. Since the simplification task is difficult, we decided to
include an animated video showing important steps in the text simplification process. The video
animation starts as soon as the task description is displayed and is hidden once the task is started.
The worker can refer to the animation while completing the task.

With these functionalities, we provided a text simplification aid that comes very close to how a sim-
plification application would look like. The goal was to provide a realistic environment in order to test
the adaptive approach within a user-centric scenario. While we embedded the application into MTurk in
order to attract paid users, it is straightforward to provide this web-based application online or locally.

4 Task Description and Dataset

In this paper, we address text simplification, which is the task to simplify a given text that is assumed to
be difficult to understand for particular readers such as language learners, children or people with reading
impairments. A text simplification pipeline usually starts with the complex word or phrase identification.



335

Figure 2: The detailed instructions of Par4Sim, which are displayed at the beginning of the task and
hidden afterwards. The worker can display the instruction when required.

For this experiment, we have used parts of the dataset fromYimam et al. (2017), which already contains
manually identified complex phrases (CP). In this dataset, the complex phrases are manually identified
by 10 native and 10 non-native English speakers. The dataset has been already used for the complex
word identification (CWI) shared task 20181. Please refer Yimam et al. (2017) for the details of the
dataset. We purposely used the manually identified and verified CPs because 1) we do not want to mix
the identification and the simplification tasks, and 2) we want to test the adaptive learning approach in a
controlled setting.
We have generated candidate suggestions from different paraphrase resources. The following resources

are used to generate candidate suggestions:

• Lexical and Distributional resources: We useWordNet (Miller, 1995) and distributional thesaurus
(Biemann et al., 2013) to produce candidate results for CPs. We apply lemmatization to reduce the
CPs into their base forms and retrieve the top 10 synonyms respectively the top 10 similar words
from the lexical resources.

• PPDB 2.0 and Simple PPDB: PPDB (Pavlick et al., 2015) is the largest paraphrase resource to date.
The recently released simple PPDB (Pavlick and Callison-Burch, 2016) is a particularly relevant
resource for the task of text simplification. For each CPs (source entry in PPDB), we retrieve the
top 10 candidates (target entry in PPDB).

• Phrase2Vec: We have trained a Phrase2Vec model (Mikolov et al., 2013) using English Wikipedia
and the AQUAINT corpus of English news text (Graff, 2002). Mikolov et al. (2013) pointed out that
it is possible to extend the word-based model to a phrase-based model using a data-driven approach
where each phrase or multi-word expressions are considered as individual tokens during the training
process. We have used a total of 79,349 multiword expression and phrase resources, which are
obtained from the work of Yimam et al. (2016b). We trained the Phrase2Vec embeddings with 200

1https://sites.google.com/view/cwisharedtask2018/ (Yimam et al., 2018)

https://sites.google.com/view/cwisharedtask2018/


336

dimensions using skip-gram training and a window size of 5. We retrieve the top 10 similar words
to the CPs as candidates.

Obviously, the number of candidate suggestions obtained from these different resources is enormous
and we should limit the size before providing to the ranker model. The candidates are ordered by a
languagemodel score. We trained a tri-gram language-model (Pauls andKlein, 2011) using theWikipedia
articles. The number of candidates is limited to 10; these are re-ranked using the learning-to-rank model.
For each HIT, we provide between 5 and 10 sentences for simplification. A HIT is then assigned to

10 workers as we need a graded relevance to train the learning-to-rank model (see Section 5). In the
experiment, we make sure that a HIT is submitted only in one iteration and most importantly, during the
evaluation of the ranking model performance, we make sure that the training data from previous iterations
should not contain HITs from the current iteration.
In this experiment, a total of 18,036 training instances have been collected. Figure 3 shows how the

training instances collected from the usage data looks like. The number at the end of the simplified
sentence shows the number of workers provided the same simplified sentence.

Figure 3: Examples of usage data as training instances. Here affiliated is a CP and associated, merged,
aligned, and partnered are the simpler options provided by 6, 2, 1, and 1 workers respectively.

More detailed statistics are shown in Table 1. From Table 1, we see that around 70% of the workers
(mainly from India and the US) have successfully completed the task.

#workers #visitors
instances 18036 10758
workers 164 71
countries 11 3

Table 1: Statistics of workers and simplification instances collected during all 9 iterations in the experi-
ment. The column #workers shows the number of workers who have accepted and submitted the result
while the column #visitors shows the number of workers who did not submit their results.

5 Learning-to-Rank

Learning-to-rank refers to a machine learning technique for training a model based on existing labels or
user feedback for ranking task in areas like information retrieval, natural language processing, and data
mining (Li, 2014). Learning-to-rank consists of a learning and ranking system. The system is trained
by providing pairs of requests/queries and a target/ideal ranking for retrieved items. The learning model
then constructs a ranking model on the basis of the training data ranking lists.
Ranklib2, a well-known learning-to-rank library in Java from the Lemur Project is used to build the

ranking models. Specifically, we have used the LambdaMART algorithm to train our learning and rank-
ing models. LambdaMART combines LambdaRank and MART (Multiple Additive Regression Trees)
(Burges, 2010; Donmez et al., 2009). While MART uses gradient boosted decision trees for prediction
tasks, LambdaMART uses gradient boosted decision trees using a cost function based on NDCG for
solving a ranking task.

2https://sourceforge.net/p/lemur/wiki/RankLib/

https://sourceforge.net/p/lemur/wiki/RankLib/


337

Normalized Discounted Cumulative Gain (NDCG) (Järvelin and Kekäläinen, 2002; Wang et al., 2013)
is a family of ranking measures such as mean average precision (MAP) and Precision at K. NDCG is well-
suited for our experiment for its capability of incorporating graded judgments. The graded judgments are
obtained from the number of workers suggesting the candidate for the given CP target.

5.1 Features
To train the learning-to-rank model, we have designed a set of features that are important for text simplifi-
cation. Based on the works of (Yimam et al., 2017; Horn et al., 2014), we have implemented the following
list of features for the ranking model, which are partially derived from the candidate generating resources.

• Frequency and length: Due to the common use of these features in selecting the most simple lexical
substitution candidate (Bott et al., 2012), we use three length features specifically the number of
vowels, syllables, and characters and three frequency features: the frequency of the word in Simple
Wikipedia, the frequency of the word in the document, and the frequency of the word in the Google
Web 1T 5-Grams.

• Lexical and distributional thesaurus resources: We also use the number of similar words to the
CPs and candidate suggestion based on lexical resources such as WordNet and distributional the-
saurus as possible features. The features are normalized and scaled using the featran’s3 min-max
scaler tool.

• PPDB 2.0 and simple PPDB: From the PPDB 2.0 and simple PPDB resources (cf. Sect. 4), we
use associated scores as given by the resource, i.e.: ppdb2score, ppdb1score, paraphraseScore, and
simplificationScore.

• Word embeddings feature: We use the Phrase2Vec embeddings as described in Section 4 to obtain
vector representations for targets (CPs) and candidates. The cosine similarity of the candidates with
the whole sentences as well as the cosine similarity of the candidates with the tri-gram words (one
word to the left and one word to the right of the target CP) are used as features. The vector repre-
sentations of the sentences and the tri-grams are the average of the individual vector representations
of words in the sentences and the tri-grams.

6 Experiments

6.1 Baseline system
Our baseline system is built using a general purpose paraphrasing dataset from Yimam et al. (2016b).
The dataset is based on essay sentences from the ANC4 and BAWE corpora (Alsop and Nesi, 2009). We
use the same feature extraction approach (see Section 5) for the development of the baseline model.
As it can be seen in Table 2, the results from each iteration are compared with the baseline system. We

noted that the generic paraphrase datasets do not quite fit the task of text simplification as the need of the
task is different. The lower performance on the baseline system can be attributed to the fact that the texts
for the baseline system are collected from a different genre (essay sentences). We have to make clear that
the first and all the subsequent iterations in the adaptive process do not use the baseline system.

6.2 Adaptive systems
We start with an empty ranking model (iteration 1), where candidates obtained from the resources are
provided to the workers without an implied ranking. After collecting enough usage data from iteration
1, we trained a ranking model, which is used to re-rank candidates for the texts in the next iteration
(iteration 2). Texts in iteration 2, which are exclusively different from those in iteration 1 are provided
to the workers. Once workers completed the simplification task at iteration 2, we re-evaluate the ranking
of candidates in iteration 2 based on the usage data (using NDCG@10 metric). An NDCG@10 score of

3https://github.com/spotify/featran
4http://www.anc.org/

https://github.com/spotify/featran
http://www.anc.org/


338

Testing NDCG@10
Training instances on previous iterations

#sentences baseline 1 ≤ 2 ≤3 ≤4 ≤5 ≤6 ≤7 ≤8
1 115 - - - - - - - - -
2 214 60.66 62.88 - - - - - - -
3 207 61.05 63.39 65.52 - - - - - -
4 210 58.21 60.73 65.93 67.46 - - - - -
5 233 56.10 62.53 65.66 66.00 70.72 - - - -
6 215 62.18 61.05 66.51 67.86 69.88 72.36 - - -
7 213 57.00 62.07 64.02 64.88 67.28 69.27 74.14 - -
8 195 56.56 59.53 62.11 63.03 64.54 67.40 71.05 75.83 -
9 224 56.14 63.48 65.58 65.87 69.18 69.51 71.31 71.40 75.70

Table 2: NDCG@10 results for each iteration of the testing instances using training instances from the
previous iteration. For example, for testing at iteration 2, the NDCG@10 result using training data from
the previous iteration, i.e. iteration 1, is 62.88. The baseline column shows the performance in each
iteration using the generic paraphrasing dataset used to train the baseline ranking model.

Iteration 2 Iteration 3 Iteration 4
Workers Instances (#) positive (%) NDCG score Instances (#) positive (%) NDCG score Instances (#) positive (%) NDCG score
AXXXL5 950 10.21 51.35 2661 10.11 55.87 2771 9.78 56.57
AXXX3N 1591 10.31 45.45 3130 10.29 48.72 5367 10.23 47.98
AXXXMY 1117 10.12 55.15 2753 10.10 61.35 4809 10.13 63.76
AXXXI7 70 10.00 49.33 2162 10.59 64.10 3988 10.38 66.82
AXXX56 1190 10.42 54.63 2468 10.29 56.24 4477 10.27 58.79
AXXXS1 824 10.19 54.45 1845 10.24 55.28 3045 10.15 58.78
AXXXM9 448 10.04 55.25 896 10.04 56.00 2669 11.09 58.61
AXXXAM 1594 10.16 60.59 2999 10.17 61.96 4611 10.13 63.28
AXXX3E 615 10.73 59.44 1038 10.69 59.51 3451 10.66 62.59
AXXXGI 100 24.00 45.05 1979 11.22 56.72 3160 10.79 57.35

Table 3: TheNDCG result for 10 different workers. Instances shows the total number of training instances
used form the previous iteration while positive shows the total number of positive feedback provided by
the user. The workers ID are obscured to protect their privacy.

62.88 is obtained (see Table 2), which is already better than using the baseline system (60.66). Figure 4
shows the learning curve over the different iterations conducted in the experiment.
Similarly, training instances collected from iteration 1 and iteration 2 are used to train a ranking model,

which is used to re-rank candidates for texts in the next iteration (iteration 3). We continued the experi-
ment for nine iterations and we record the performance at each iteration.
We have observed that the ranking model substantially improves on every iteration based on the

NDCG@10 ranking evaluation measure. Table 2 also shows that if we test the performance on each
of the models from the earlier iterations, the performance of the system declines, thus the system can
make good use of more usage data if available. For example, on iteration 6, testing on a ranking model
that is trained based on training instances from iteration 1 up to iteration 5 (≤5) produces an NDCG@10
score of 72.36 while testing on the ranking model trained based on training instances from iteration 1 up
to iteration 4 (≤4) produces an NDCG@10 score of 69.88.
Furthermore, we have explored the effect of the adaptive system for individual workers. In this case,

we have built simulated unique models for the 10 top workers, who have participated in at least 4 different
batches (iterations) of the task. We use the first iteration the worker has participated as an initial model,
and start using the model for the subsequent iterations. As we can see from Table 3 and Figure 5, the
NDCG scores improve consistently over the iterations. The results also revealed that text simplification
can be modeled differently based on the user needs (personalization).



339

Figure 4: Learning curve showing the increase of NDCG@10 score over 9 iterations.

Figure 5: The increase of NDCG@10 score over 3 iterations for the top 10 workers ordered by their
productiveness (who have have completed most HITs over several iterations).



340

7 Discussion

Most text simplification systems, and for that matter, most NLP models, are based on a traditional collect
and train approach where first all the required training data are annotated , then training and evaluation
is carried out after the data collection. To our knowledge, this experiment is the first scientific work to
conduct an adaptive approach for text simplification where signals from usage data are collected in an
interactive and iterative approach to improve the model of an NLP component.
We have demonstrated that our approach is noble in many aspects: 1) the adaptive learning model is

integrated in the real-world NLP application (live-usage – RQ1), 2) the performance of the integrated
adaptive model improves through usage data of the NLP application (adaptability – RQ3), 3) the in-
tegrated learning model potentially adapts to the needs of the user or user groups through usage data
(personalized NLP –RQ3), and 4) we also have shown that adaptive systems can be evaluated incremen-
tally, by comparing the system’s suggestions by the ranking model to the actual ranking provided by the
users (incremental evaluation – RQ2) .
In this research, we also have showcased how to perform web-scaled and real-time adaptive data col-

lection using the Amazon MTurk crowdsourcing platform. The MTurk crowdsourcing platform has been
mainly used to collect datasets for tasks that are not complex and difficult to complete such as identify-
ing named entities or biomedical entities in a text, categorizing texts for spam, labeling an image with
appropriate captions and so on. Using MTurk’s external HIT, we are able to show that the MTurk crowd-
sourcing platform can be successfully used for complex NLP applications such as text simplification with
a writing aid tool, which normally is limited to a lab-based experiment.

8 Conclusion and Future Directions

In this work, we have shown that the integration of an adaptive paraphrase ranking model effectively
improves the performance of text simplification task. We have designed a full-fledged, web-scale based
text simplification system where we have integrated an adaptive paraphrase ranking model into the tool.
Our tool is integrated with the Amazon Mechanical Turk crowdsourcing platform to collect usage data

for text simplification.
To evaluate the performance of the adaptive system on the collected usage data, we have evaluated

ranking model performance in an iterative way. In every iteration, we use the usage data exclusively
from the previous iterations (except the first iteration that is used solely as a training data and we do not
evaluate it) to training the learning-to-rank model. The result shows that, in every iteration, there is a
large increase in performance based on the NDCG@10 evaluation metric.
We believe that this experiment is a showcase on how to develop a personalized NLP application.

Using a similar approach, one can effectively deploy Par4Sim for a different purpose such as to write
technical documents. The research also sheds light on a domain or task adaptions. One can use datasets
collected for general purpose domains and it is possible to adapt the model based on the usage data over
a period of time. This is a much cheaper alternative than collecting labeled datasets anew.
In the future, we would like to run a long-turn study with arbitrary users and arbitrary texts using a

freely available online tool. Specifically for text simplification, the approach can be employed to pro-
vided graded complexity level of texts, as it is done for instance in the Newsela instructional content
platform5. We also envision further possible tasks where adaptive learning helps, such as collaborative
text composing and recommender systems.
The software is openly available under ASL 2.0 license and the resources and datasets used in this

paper are released under CC-BY6. The demo of the tool as it was used inside the MTurk browser can be
accessed online.7

5https://newsela.com/data/
6https://uhh-lt.github.io/par4sim/
7https://ltmaggie.informatik.uni-hamburg.de/par4sim/

https://newsela.com/data/
https://uhh-lt.github.io/par4sim/
https://ltmaggie.informatik.uni-hamburg.de/par4sim/


341

Acknowledgement

This work has been partially supported by the SEMSCH project at the University of Hamburg, funded
by the German Research Foundation (DFG).
We would like to thank the PC chairs, ACs, and reviewers for their detailed comments and suggestions

for our paper. We also would like to thank colleagues at LT lab for testing the user interface. Special
thanks goes to Rawda Assefa and Sisay Adugna for the proofreading of the Amharic abstract translation.

References
Sian Alsop and Hilary Nesi. 2009. Issues in the development of the British Academic Written English (BAWE)

corpus. Corpora, 4(1):71–83.

Biemann, C., Riedl, and M. 2013. Text: Now in 2D! A Framework for Lexical Expansion with Contextual
Similarity. Journal of Language Modelling, 1(1):55–95.

Stefan Bott, Luz Rello, Biljana Drndarevic, and Horacio Saggion. 2012. Can Spanish Be Simpler? LexSiS: Lexical
Simplification for Spanish. In Proceedings of COLING 2012, pages 357–374, Mumbai, India.

Léon Bottou. 1998. On-line Learning in Neural Networks. chapter On-line Learning and Stochastic Approxima-
tions, pages 9–42. New York City, NY, USA.

Christopher J. C. Burges. 2010. FromRankNet to LambdaRank to LambdaMART: AnOverview. Technical report,
Microsoft Research.

William Coster and David Kauchak. 2011. Simple English Wikipedia: A New Text Simplification Task. In
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies: Short Papers - Volume 2, HLT ’11, pages 665–669, Portland, OR, USA.

Koby Crammer and Yoram Singer. 2003. Ultraconservative Online Algorithms for Multiclass Problems. J. Mach.
Learn. Res., 3:951–991.

Pinar Donmez, Krysta M. Svore, and Christopher J.C. Burges. 2009. On the Local Optimality of LambdaRank. In
Proceedings of the 32Nd International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’09, pages 460–467, Boston, MA, USA.

David Graff. 2002. The AQUAINT Corpus of English News Text LDC2002T31. InWeb Download. Philadelphia:
Linguistic Data Consortium.

Colby Horn, CathrynManduca, and David Kauchak. 2014. A Lexical Simplifier UsingWikipedia. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages
458–463, Baltimore, MA, USA.

Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated Gain-based Evaluation of IR Techniques. ACM Trans-
actions on Information and System Security, 20(4):422–446.

Walter S. Lasecki, Luz Rello, and Jeffrey P. Bigham. 2015. Measuring Text Simplification with the Crowd. In
Proceedings of the 12th Web for All Conference, W4A ’15, pages 4:1–4:9, Florence, Italy.

Abby Levenberg, Chris Callison-Burch, andMiles Osborne. 2010. Stream-based TranslationModels for Statistical
Machine Translation. In Human Language Technologies: The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, pages 394–402, Los Angeles, CA, USA.

Hang Li. 2014. Learning to Rank for Information Retrieval and Natural Language Processing: Second Edition.
Morgan & Claypool Publishers, 2nd edition.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. 2013. Distributed Representa-
tions of Words and Phrases and their Compositionality. In Advances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information Processing Systems 2013, pages 3111–3119, Stateline, NV,
USA.

George A. Miller. 1995. WordNet: A Lexical Database for English. Commun. ACM, 38(11):39–41.

G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. 2018. Continual Lifelong Learning with Neural
Networks: A Review. ArXiv e-prints, 1802.07569.



342

Adam Pauls and Dan Klein. 2011. Faster and Smaller N-gram Language Models. In Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human Language Technologies - Volume 1,
HLT ’11, pages 258–267, Portland, OR, USA.

Ellie Pavlick and Chris Callison-Burch. 2016. Simple PPDB: A Paraphrase Database for Simplification. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), pages 143–148, Berlin, Germany.

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch. 2015.
PPDB 2.0: Better paraphrase ranking, fine-grained entailment relations, word embeddings, and style classifi-
cation. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 425–430,
Beijing, China.

Matthew Shardlow. 2014. A survey of automated text simplification. International Journal of Advanced Computer
Science and Applications, 4(1):58–70.

Hoai-Viet To, Ryutaro Ichise, and Hoai-Bac Le. 2009. An Adaptive Machine Learning Framework with User
Interaction for Ontology Matching. In the IJCAI 2009 Workshop on Information Integration on the Web, pages
35–40, Pasadena, CA, USA.

Alexey Tsymbal. 2004. The Problem of Concept Drift: Definitions and Related Work. Technical report, Depart-
ment of Computer Science, Trinity College: Dublin, Ireland.

Sanja Štajner, Marc Franco-Salvador, Simone Paolo Ponzetto, Paolo Rosso, and Heiner Stuckenschmidt. 2017.
Sentence Alignment Methods for Improving Text Simplification Systems. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 97–102, Vancouver,
Canada.

Yining Wang, Liwei Wang, Yuanzhi Li, Di He, Wei Chen, and Tie-Yan Liu. 2013. A Theoretical Analysis of
Normalized Discounted Cumulative Gain (NDCG) Ranking Measures. In Machine Learning Research, pages
25–54, Princeton, NJ, USA.

Jialei Wang, Ji Wan, Yongdong Zhang, and Steven Hoi. 2015. SOLAR: Scalable Online Learning Algorithms
for Ranking. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1692–
1701, Beijing, China.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris Callison-Burch. 2016. Optimizing Statistical
Machine Translation for Text Simplification. Transactions of the Association for Computational Linguistics,
4:401–415.

Seid Muhie Yimam, Chris Biemann, Ljiljana Majnaric, Šefket Šabanović, and Andreas Holzinger. 2016a. An
adaptive annotation approach for biomedical entity and relation recognition. Brain Informatics, 3(3):157–168.

SeidMuhie Yimam, Héctor Martínez Alonso, Martin Riedl, and Chris Biemann. 2016b. Learning Paraphrasing for
Multiword Expressions. In Proceedings of the 12th Workshop on Multiword Expressions, pages 1–10, Berlin,
Germany.

Seid Muhie Yimam, Sanja Štajner, Martin Riedl, and Chris Biemann. 2017. CWIG3G2 - Complex Word Identifi-
cation Task across Three Text Genres and Two User Groups. In Proceedings of the Eighth International Joint
Conference on Natural Language Processing (Volume 2: Short Papers), pages 401–407, Taipei, Taiwan.

Seid Muhie Yimam, Chris Biemann, Shervin Malmasi, Gustavo H. Paetzold, Lucia Specia, Sanja Štajner, Anaïs
Tack, and Zampieri Marcos. 2018. A Report on the Complex Word Identification Shared Task 2018. In The
13thWorkshop on Innovative Use of NLP for Building Educational Applications, NAACL 2018Workshops, pages
66–78, New Orleans, LA, USA.

Indrė Žliobaitė, Mykola Pechenizkiy, and João Gama. 2016. An Overview of Concept Drift Applications. In
Nathalie Japkowicz and Jerzy Stefanowski, editors, Big Data Analysis: New Algorithms for a New Society,
pages 91–114.


	Introduction
	Related Work
	Design of the Par4Sim System
	Task Description and Dataset
	Learning-to-Rank
	Features 

	Experiments
	Baseline system
	Adaptive systems

	Discussion
	Conclusion and Future Directions

