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Abstract

This work focuses on the rapid development of linguistic annotation tools for resource-poor
languages. We experiment several cross-lingual annotation projection methods using Recurrent
Neural Networks (RNN) models. The distinctive feature of our approach is that our multilin-
gual word representation requires only a parallel corpus between source and target languages.
More precisely, our method has the following characteristics: (a) it does not use word alignment
information, (b) it does not assume any knowledge about foreign languages, which makes it ap-
plicable to a wide range of resource-poor languages, (c) it provides truly multilingual taggers.
We investigate both uni- and bi-directional RNN models and propose a method to include ex-
ternal information (for instance low level information from Part-Of-Speech tags) in the RNN to
train higher level taggers (for instance, super sense taggers). We demonstrate the validity and
genericity of our model by using parallel corpora (obtained by manual or automatic translation).
Our experiments are conducted to induce cross-lingual POS and super sense taggers.

1 Introduction

In order to minimize the need for annotated resources (produced through manual annotation, or by man-
ual check of automatic annotation), several research works were interested in building Natural Language
Processing (NLP) tools based on unsupervised or semi-supervised approaches (Collins and Singer, 1999;
Klein, 2005; Goldberg, 2010). For example, NLP tools based on cross-language projection of linguistic
annotations achieved good performances in the early 2000s (Yarowsky et al., 2001). The key idea of
annotation projection can be summarized as follows: through word alignment in parallel text corpora,
the annotations are transferred from the source (resource-rich) language to the target (under-resourced)
language, and the resulting annotations are used for supervised training in the target language. However,
automatic word alignment errors (Fraser and Marcu, 2007) limit the performance of these approaches.

Our work is built upon these previous contributions and observations. We explore the possibility of
using Recurrent Neural Networks (RNN) to build multilingual NLP tools for resource-poor languages
analysis. The major difference with previous works is that we do not explicitly use word alignment
information. Our only assumption is that parallel sentences (source-target) are available and that the
source part is annotated. In other words, we try to infer annotations in the target language from sentence-
based alignments only. While most NLP researches on RNN have focused on monolingual tasks1 and
sequence labeling (Collobert et al., 2011; Graves, 2012), this paper, however, considers the problem of
learning multilingual NLP tools using RNN.

Contributions In this paper, we investigate the effectiveness of RNN architectures — Simple RNN
(SRNN) and Bidirectional RNN (BRNN) — for multilingual sequence labeling tasks without using any
word alignment information. Two NLP tasks are considered: Part-Of-Speech (POS) tagging and Super
Sense (SST) tagging (Ciaramita and Altun, 2006). Our RNN architectures demonstrate very competitive
results on unsupervised training for new target languages. In addition, we show that the integration of

1Exceptions are the recent propositions on Neural Machine Translation (Cho et al., 2014; Sutskever et al., 2014)
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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POS information in RNN models is useful to build multilingual coarse-grain semantic (Super Senses)
taggers. For this, a simple and efficient way to take into account low-level linguistic information for
more complex sequence labeling RNN is proposed.

Methodology For training our multilingual RNN models, we just need as input a parallel (or multi-
parallel) corpus between a resource-rich language and one or many under-resourced languages. Such a
parallel corpus can be manually obtained (clean corpus) or automatically obtained (noisy corpus).

To show the potential of our approach, we investigate two sequence labeling tasks: cross-language
POS tagging and multilingual Super Sense Tagging (SST). For the SST task, we measure the impact
of the parallel corpus quality with manual or automatic translations of the SemCor (Miller et al., 1993)
translated from English into Italian (manually and automatically) and French (automatically).

Outline The remainder of the paper is organized as follows. Section 2 reviews related work. Section
3 describes our cross-language annotation projection approaches based on RNN. Section 4 presents the
empirical study and associated results. We finally conclude the paper in Section 5.

2 Related Work

Cross-lingual projection of linguistic annotations was pioneered by Yarowsky et al. (2001) who created
new monolingual resources by transferring annotations from resource-rich languages onto resource-poor
languages through the use of word alignments. The resulting (noisy) annotations are used in conjunc-
tion with robust learning algorithms to build cheap unsupervised NLP tools (Padó and Lapata, 2009).
This approach has been successfully used to transfer several linguistic annotations between languages
(efficient learning of POS taggers (Das and Petrov, 2011; Duong et al., 2013) and accurate projection
of word senses (Bentivogli et al., 2004)). Cross-lingual projection requires a parallel corpus and word
alignment between source and target languages. Many automatic word alignment tools are available,
such as GIZA++ which implements IBM models (Och and Ney, 2000). However, the noisy (non perfect)
outputs of these methods is a serious limitation for the annotation projection based on word alignments
(Fraser and Marcu, 2007).

To deal with this limitation, recent studies based on cross-lingual representation learning methods have
been proposed to avoid using such pre-processed and noisy alignments for label projection. First, these
approaches learn language-independent features, across many different languages (Durrett et al., 2012;
Al-Rfou et al., 2013; Täckström et al., 2013; Luong et al., 2015; Gouws and Søgaard, 2015; Gouws et
al., 2015). Then, the induced representation space is used to train NLP tools by exploiting labeled data
from the source language and apply them in the target language. Cross-lingual representation learning
approaches have achieved good results in different NLP applications such as cross-language SST and
POS tagging (Gouws and Søgaard, 2015), cross-language named entity recognition (Täckström et al.,
2012), cross-lingual document classification and lexical translation task (Gouws et al., 2015), cross
language dependency parsing (Durrett et al., 2012; Täckström et al., 2013) and cross-language semantic
role labeling (Titov and Klementiev, 2012).

Our approach described in next section, is inspired by these works since we also try to induce a
common language-independent feature space (crosslingual words embeddings). Unlike Durrett et al.
(2012) and Gouws and Søgaard (2015), who use bilingual lexicons, and unlike Luong et al. (2015) who
use word alignments between the source and target languages2 our common multilingual representation is
very agnostic. We use a simple (multilingual) vector representation based on the occurrence of source and
target words in a parallel corpus and we let the RNN learn the best internal representations (corresponding
to the hidden layers) specific to the task (SST or POS tagging).

In this work, we learn a cross-lingual POS tagger (multilingual POS tagger if a multilingual parallel
corpus is used) based on a recurrent neural network (RNN) on the source labeled text and apply it to tag
target language text. We explore simple and bidirectional RNN architectures (SRNN and BRNN respec-
tively). Starting from the intuition that low-level linguistic information is useful to learn more complex
taggers, we also introduce three new RNN variants to take into account external (POS) information in
multilingual SST.

2to train a bilingual representation regardless of the task

451



Figure 1: Overview of the proposed model architecture for inducing multilingual RNN taggers.

3 Unsupervised Approach Overview

To avoid projecting label information from deterministic and error-prone word alignments, we propose
to represent the word alignment information intrinsically in a recurrent neural network architecture. The
idea consists in implementing a recurrent neural network as a multilingual sequence labeling tool (we
investigate POS tagging and SST tagging). Before describing our cross-lingual (multilingual if a multi-
parallel corpus is used) neural network tagger, we present the simple cross-lingual projection method,
considered as our baseline in this work.

3.1 Baseline Cross-lingual Annotation Projection

We use direct transfer as a baseline system which is similar to the method described in (Yarowsky et
al., 2001). First we tag the source side of the parallel corpus using the available supervised tagger. Next,
we align words in the parallel corpus to find out corresponding source and target words. Tags are then
projected to the (resource-poor) target language. The target language tagger is trained using any machine
learning approach (we use TnT tagger (Brants, 2000) in our experiments).

3.2 Proposed Approach
We propose a method for learning multilingual sequence labeling tools based on RNN, as it can be seen
in Figure 1. In our approach, a parallel or multi-parallel corpus between a resource-rich language and
one or many under-resourced languages is used to extract common (multilingual) and agnostic words
representations. These representations, which rely on sentence level alignment only, are used with the
source side of the parallel/multi-parallel corpus to learn a neural network tagger in the source language.
Since a common representation of source and target words is chosen, this neural network tagger is truly
multilingual and can be also used to tag texts in target language(s).

3.2.1 Common Words Representation
In our agnostic representation, we associate to each word (in source and target vocabularies) a com-
mon vector representation, namely Vwi, i = 1, ..., N , where N is the number of parallel sentences (bi-
sentences in the parallel corpus). If w appears in i-th bi-sentence of the parallel corpus then Vwi = 1.

The idea is that, in general, a source word and its target translation appear together in the same bi-
sentences and their vector representations are close. We can then use the RNN tagger, initially trained
on source side, to tag the target side (because of our common vector representation). This simple repre-
sentation does not require multilingual word alignments and it lets the RNN learns the optimal internal
representation needed for the annotation task (for instance, the hidden layers of the RNN can be consid-
ered as multi-lingual embeddings of the words).
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Figure 2: High level schema of RNN used in our work.

3.2.2 Recurrent Neural Networks
There are two major architectures of neural networks: Feedforward (Bengio et al., 2003) and Recurrent
Neural Networks (RNN) (Schmidhuber, 1992; Mikolov et al., 2010). Sundermeyer et al. (2013) showed
that language models based on recurrent architecture achieve better performance than language models
based on feedforward architecture. This is due to the fact that recurrent neural networks do not use a
context of limited size. This property led us to use, in our experiments, the Elman recurrent architecture
(Elman, 1990), in which recurrent connections occur at the hidden layer level.

We consider in this work two Elman RNN architectures (see Figure 2): Simple RNN (SRNN) and
Bidirectional RNN (BRNN). In addition, to be able to include low-level linguistic information in our
architecture designed for more complex sequence labeling tasks, we propose three new RNN variants to
take into account external (POS) information for multilingual Super Sense Tagging (SST).

A. Simple RNN
In the simple Elman RNN (SRNN), the recurrent connection is a loop at the hidden layer level. This
connection allows SRNN to use at the current time step hidden layer’s states of previous time steps. In
other words, the hidden layer of SRNN represents all previous history and not just n−1 previous inputs,
thus the model can theoretically represent long context.

The architecture of the SRNN considered in this work is shown in Figure 2. In this architecture, we
have 4 layers: input layer, forward (also called recurrent or context layer), compression hidden layer and
output layer. All neurons of the input layer are connected to every neuron of forward layer by weight
matrix IF and RF , the weight matrix HF connects all neurons of the forward layer to every neuron of
compression layer and all neurons of the compression layer are connected to every neuron of output layer
by weight matrix O.

The input layer consists of a vectorw(t) that represents the current wordwt in our common words rep-
resentation (all input neurons corresponding to current word wt are set to 0 except those that correspond
to bi-sentences containing wt, which are set to 1), and of vector f(t− 1) that represents output values in
the forward layer from the previous time step. We name f(t) and c(t) the current time step hidden layers
(our preliminary experiments have shown better performance using these two hidden layers instead of
one hidden layer), with variable sizes (usually 80-1024 neurons) and sigmoid activation function. These
hidden layers represent our common language-independent feature space and inherently capture word
alignment information. The output layer y(t), given the input w(t) and f(t − 1) is computed with the
following steps :

f(t) = Σ(w(t).IF (t) + f(t− 1).RF (t)) (1)

c(t) = Σ(f(t).HF (t)) (2)

y(t) = Γ(c(t).O(t)) (3)

Σ and Γ are the sigmoid and the softmax functions, respectively. The softmax activation function is
used to normalize the values of output neurons to sum up to 1. After the network is trained, the output
y(t) is a vector representing a probability distribution over the set of tags. The current word wt (in input)
is tagged with the most probable output tag.
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Figure 3: SRNN variants with POS information at three levels: (a) input layer, (b) forward layer, (c)
compression layer.

For many sequence labeling tasks, it is beneficial to have access to future in addition to the past context.
So, it can be argued that our SRNN is not optimal for sequence labeling, since the network ignores future
context and tries to optimize the output prediction given the previous context only. This SRNN is thus
penalized compared with our baseline projection based on TnT (Brants, 2000) which considers both left
and right contexts. To overcome the limitations of SRNN, a simple extension of the SRNN architecture
— namely Bidirectional recurrent neural network (BRNN) (Schuster and Paliwal, 1997) — is used to
ensure that context at previous and future time steps will be considered.

B. Bidirectional RNN

An unfolded BRNN architecture is given in Figure 2. The basic idea of BRNN is to present each training
sequence forwards and backwards to two separate recurrent hidden layers (forward and backward hidden
layers) and then somehow merge the results. This structure provides the compression and the output
layers with complete past and future context for every point in the input sequence. Note that without the
backward layer, this structure simplifies to a SRNN.

C. RNN Variants

As mentioned in the introduction, we propose three new RNN variants to take into account low level
(POS) information in a higher level (SST) annotation task. The question addressed here is: at which layer
of the RNN this low level information should be included to improve SST performance? As specified in
Figure 3, the POS information can be introduced either at input layer or at forward layer (forward and
backward layers for BRNN) or at compression layer. In all these RNN variants, the POS of the current
word is also represented with a vector (POS(t)). Its dimension corresponds to the number of POS tags
in the tagset (universal tagset of Petrov et al. (2012) is used). We propose one hot vector representation
where only one value is set to 1 and corresponds to the index of current tag (all other values are 0).

3.2.3 Network Training
The first step in our approach is to train the neural network, given a parallel corpus (training corpus),
and a validation corpus (different from train data) in the source language. In typical applications, the
source language is a resource-rich language (which already has an efficient tagger or manually tagged
resources). Our RNN models are trained by stochastic gradient descent using usual back-propagation
and back-propagation through time algorithms (Rumelhart et al., 1985). We learn our RNN models with
an iterative process on the tagged source side of the parallel corpus. After each epoch (iteration) in
training, validation data is used to compute per-token accuracy of the model. After that, if the per-token
accuracy increases, training continues in the new epoch. Otherwise, the learning rate is halved at the start
of the new epoch. Eventually, if the per-token accuracy does not increase anymore, training is stopped
to prevent over-fitting. Generally, convergence takes 5–10 epochs, starting with a learning rate α = 0.1.

The second step consists in using the trained model as a target language tagger (using our common
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vector representation). It is important to note that if we train on a multilingual parallel corpus with N
languages (N > 2), the same trained model will be able to tag all the N languages.

Hence, our approach assumes that the word order in both source and target languages are similar. In
some languages such as English and French, word order for contexts containing nouns could be reversed
most of the time. For example, the compound word the European Commission would be translated into
la Commission européenne. In order to deal with the word order constraints, we also combine the RNN
model with the cross-lingual projection model in our experiments.

3.3 Dealing with out-of-vocabulary words
For the words absent from in the initial parallel corpus, their vector representation is a vector of zero
values. Consequently, during testing, the RNN model will use only the context information to tag the
OOV words found in the test corpus. To deal with these types of OOV words3, we use the CBOW model
of (Mikolov et al., 2013) to replace each OOV word by its closest known word in the current OOV word
context. Once the closest word is found, its common vector representation is used (instead of the vector
of zero values) at the input of the RNN.

3.4 Combining Simple Cross-lingual Projection and RNN Models
Since the simple cross-lingual projection model M1 and RNN model M2 use different strategies for
tagging (TnT is based on Markov models while RNN is a neural network), we assume that these two
models can be complementary. To keep the benefits of each approach, we explore how to combine them
with linear interpolation. Formally, the probability to tag a given word w is computed as

PM12(t|w) = (µPM1(t|w,CM1) + (1− µ)PM2(t|w,CM2)) (4)

where, CM1 and CM2 are the context of w considered by M1 and M2 respectively. The relative impor-
tance of each model is adjusted through the interpolation parameter µ. The word w is tagged with the
most probable tag, using the function f described as

f(w) = arg max
t

(PM12(t|w)) (5)

4 Experiments
Our models are evaluated on two labeling tasks: Cross-language Part-Of-speech (POS) tagging and
Multilingual Super Sense Tagging (SST).

4.1 Multilingual POS Tagging
We applied our method to build RNN POS taggers for four target languages - French, German, Greek
and Spanish - with English as the source language.

In order to determine the effectiveness of our common words representation described in section
3.2.1, we also investigated the use of state-of-the-art bilingual word embeddings (using MultiVec Toolkit
(Bérard et al., 2016)) as input to our RNN.

4.1.1 Dataset
For French as a target language, we used a training set of 10, 000 parallel sentences, a validation set
of 1000 English sentences, and a test set of 1000 French sentences, all extracted from the ARCADE II
English-French corpus (Veronis et al., 2008). The test set is tagged with the French TreeTagger (Schmid,
1995) and then manually checked.

For German, Greek and Spanish as a target language, we used training and validation data extracted
from the Europarl corpus (Koehn, 2005) which are a subset of the training data used in (Das and Petrov,
2011; Duong et al., 2013). This choice allows us to compare our results with those of (Das and Petrov,
2011; Duong et al., 2013; Gouws and Søgaard, 2015). The train data set contains 65, 000 bi-sentences ; a
validation set of 10, 000 bi-sentences is also available. For testing, we use the same test corpora as (Das
and Petrov, 2011; Duong et al., 2013; Gouws and Søgaard, 2015) (bi-sentences from CoNLL shared

3words which do not have a known vector representation
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Model
Lang. French German Greek Spanish

All words OOV All words OOV All words OOV All words OOV
Simple Projection 80.3 77.1 78.9 73.0 77.5 72.8 80.0 79.7
SRNN MultiVec 75.0 65.4 70.3 68.8 71.1 65.4 73.4 62.4
SRNN 78.5 70.0 76.1 76.4 75.7 70.7 78.8 72.6
BRNN 80.6 70.9 77.5 76.6 77.2 71.0 80.5 73.1
BRNN - OOV 81.4 77.8 77.6 77.8 77.9 75.3 80.6 74.7
Projection + SRNN 84.5 78.8 81.5 77.0 78.3 74.6 83.6 81.2
Projection + BRNN 85.2 79.0 81.9 77.1 79.2 75.0 84.4 81.7
Projection + BRNN - OOV 85.6 80.4 82.1 78.7 79.9 78.5 84.4 81.9
(Das, 2011) — — 82.8 — 82.5 — 84.2 —
(Duong, 2013) — — 85.4 — 80.4 — 83.3 —
(Gouws, 2015a) — — 84.8 — — — 82.6 —

Table 1: Token-level POS tagging accuracy for Simple Projection, SRNN using MultiVec bilingual word
embeddings as input, RNN5, Projection+RNN and methods of Das & Petrov (2011), Duong et al (2013)
and Gouws & Søgaard (2015).

tasks on dependency parsing (Buchholz and Marsi, 2006)). The evaluation metric (per-token accuracy)
and the Petrov et al. (2012) universal tagset are used for evaluation.

For training, the English (source) sides of the training corpora (ARCADE II and Europarl) and of
the validation corpora are tagged with the English TreeTagger toolkit. Using the matching provided by
Petrov et al. (2012), we map the TreeTagger and the CoNLL tagsets to the common Universal Tagset.

In order to build our baseline unsupervised tagger (based on a Simple Cross-lingual Projection – see
section 3.1), we also tag the target side of the training corpus, with tags projected from English side
through word-alignments established by GIZA++. After tags projection, a target language POS tagger
based on TnT approach (Brants, 2000) is trained.

The combined model is built for each considered language using cross-validation on the test corpus.
First, the test corpus is split into 2 equal parts and on each part, we estimate the interpolation parameter
µ (Equation 4) which maximizes the per-token accuracy score. Then each part of test corpus is tagged
using the combined model tuned on the other part, and vice versa (standard cross-validation procedure).

We trained MultiVec bilingual word embeddings on the parallel Europarl corpus between English and
each of the target languages considered.

4.1.2 Results and discussion

Table 1 reports the results obtained for the unsupervised POS tagging. We note that the POS tagger
based on bidirectional RNN (BRNN) has better performance than simple RNN (SRNN), which means
that both past and future contexts help select the correct tag. Table 1 also shows the performance before
and after performing our procedure for handling OOVs in BRNNs. It is shown that after replacing OOVs
by the closest words using CBOW, the tagging accuracy significantly increases.

As shown in the same table, our RNN models accuracy is close to that of the simple projection tag-
ger. It achieves comparable results to Das and Petrov (2011), Duong et al. (2013) (who used the full
Europarl corpus while we use only a 65, 000 subset of it) and to Gouws and Søgaard (2015) (who used
extra resources such as Wiktionary and Wikipedia). Interestingly, RNN models learned using our com-
mon words representation (section 3.2.1) seem to perform significantly better than RNN models using
MultiVec bilingual word embeddings.

It is also important to note that only one single SRNN and BRNN tagger applies to German, Greek and
Spanish; so this is a truly multilingual POS tagger! Finally, as for several other NLP tasks such as lan-
guage modelling or machine translation (where standard and NN-based models are generally combined
in order to obtain optimal results), the combination of standard and RNN-based approaches (Projec-
tion+_) seems necessary to further optimize POS tagging accuracies.

5For RNN models, only one (same) system is used to tag German, Greek and Spanish
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4.2 Multilingual SST
In order to measure the impact of the parallel corpus quality on our method, we also learn our SST models
using the multilingual parallel corpus MultiSemCor (MSC) which is the result of manual or automatic
translation of SemCor from English into Italian and French.

4.2.1 Dataset
SemCor The SemCor (Miller et al., 1993) is a subset of the Brown Corpus (Kucera and Francis, 1979)
labeled with the WordNet (Fellbaum, 1998) senses.
MultiSemCor The English-Italian MultiSemcor (MSC-IT-1) corpus is a manual translation of the En-
glish SemCor to Italian (Bentivogli et al., 2004). As we already mentioned, we are also interested in
measuring the impact of the parallel corpus quality on our method. For this we use two translation
systems: (a) Google Translate to translate the English SemCor to Italian (MSC-IT-2) and French (MSC-
FR-2). (b) LIG machine translation system (Besacier et al., 2012) to translate the English SemCor to
French (MSC-FR-1).
Training corpus The SemCor was labeled with the WordNet synsets. However, because we train models
for SST, we convert SemCor synsets annotations to super senses. We learn our models using the four
different versions of MSC (MSC-IT-1,2 - MSC-FR-1,2), with modified Semcor on source side.
Test Corpus To evaluate our models, we used the SemEval 2013 Task 12 (Multilingual Word Sense
Disambiguation) (Navigli et al., 2013) test corpora, which are available in 5 languages (English, French,
German, Spanish and Italian) and labeled with BabelNet (Navigli and Ponzetto, 2012) senses. We map
BabelNet senses to WordNet synsets, then WordNet synsets are mapped to super senses.

4.2.2 SST Systems Evaluated
The goals of our SST experiments are twofold: first, to investigate the effectiveness of using POS infor-
mation to build multilingual super sense tagger, secondly to measure the impact of the parallel corpus
quality (manual or automatic translation) on our RNN models (SRNN, BRNN and our proposed vari-
ants). To summarize, we build four super sense taggers based on baseline cross-lingual projection (see
section 3.1) using four versions of MultiSemcor (MSC-IT-1, MSC-IT-2, MSC-FR-1, MSC-FR-2) de-
scribed above. Then we use the same four versions to train our multilingual SST models based on SRNN
and BRNN. For learning our multilingual SST models based on RNN variants proposed in part (C) of
section 3.2.2, we also tag SemCor using TreeTagger (POS tagger proposed by Schmid (1995)).

4.2.3 Results and discussion
Our models are evaluated on SemEval 2013 Task 12 test corpora. Results are directly comparable with
those of systems which participated to this evaluation campaign. We report two SemEval 2013 (unsuper-
vised) system results for comparison:

• MFS Semeval 2013 : The most frequent sense is the baseline provided by SemEval 2013 for Task
12, this system is a strong baseline, which is obtained by using an external resource (the WordNet
most frequent sense).

• GETALP : a fully unsupervised WSD system proposed by (Schwab et al., 2012) based on Ant-
Colony algorithm.

The DAEBAK! (Navigli and Lapata, 2010) and the UMCC-DLSI systems (Gutiérrez Vázquez et al.,
2011) have also participated to SemEval 2013 Task 12. However, they use a supervised approach 6.

Table 2 shows the results obtained by our RNN models and by two SemEval 2013 WSD systems.
SRNN-POS-X and BRNN-POS-X refer to our RNN variants: In means input layer, H1 means first
hidden layer and H2 means second hidden layer. We achieve the best performance on Italian using
MSC-IT-1 clean corpus while noisy training corpus degrades SST performance. The best results are
obtained with combination of simple projection and RNN which confirms (as for POS tagging) that both
approaches are complementary.

6DAEBAK! and UMCC-DLSI for SST have obtained: 68.1% and 72.5% on Italian; 59.8% and 67.6 % on French
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Model Italian French

B
as

el
in

e MSC-IT-1 MSC-IT-2 MSC-FR-1 MSC-FR-2
trans man. trans. auto trans. auto trans auto.

Simple Projection 61.3 45.6 42.6 44.5

SS
T

B
as

ed
R

N
N

SRNN 59.4 46.2 46.2 47.0
BRNN 59.7 46.2 46.0 47.2
SRNN-POS-In 61.0 47.0 46.5 47.3
SRNN-POS-H1 59.8 46.5 46.8 47.4
SRNN-POS-H2 63.1 48.7 47.7 49.8
BRNN-POS-In 61.2 47.0 46.4 47.3
BRNN-POS-H1 60.1 46.5 46.8 47.5
BRNN-POS-H2 63.2 48.8 47.7 50
BRNN-POS-H2 - OOV 64.6 49.5 48.4 50.7

C
om

bi
na

tio
n

Projection + SRNN 62.0 46.7 46.5 47.4
Projection + BRNN 62.2 46.8 46.4 47.5
Projection + SRNN-POS-In 62.9 47.4 46.9 47.7
Projection + SRNN-POS-H1 62.5 47.0 47.1 48.0
Projection + SRNN-POS-H2 63.5 49.2 48.0 50.1
Projection + BRNN-POS-In 62.9 47.5 46.9 47.8
Projection + BRNN-POS-H1 62.7 47.0 47.0 48.0
Projection + BRNN-POS-H2 63.6 49.3 48.0 50.3
Projection + BRNN-POS-H2 - OOV 64.7 49.8 48.6 51.0

S-
E MFS Semeval 2013 60.7 52.4

GETALP (Schwab et al., 2012) 40.2 34.6

Table 2: Super Sense Tagging (SST) accuracy for Simple Projection, RNN and their combination.

We also observe that the RNN approach seems more robust than simple projection on noisy corpora.
This is probably due to the fact that no word alignments are required in our cross language RNN. Finally,
BRNN-POS-H2-OOV achieves the best performance, which shows that the integration of POS informa-
tion in RNN models and dealing with OOV words are useful to build efficient multilingual super senses
taggers. Finally, it is worth mentioning that integrating low level (POS) information lately (last hidden
layer) seems to be the best option in our case.

5 Conclusion

In this paper, we have presented an approach based on recurrent neural networks (RNN) to induce multi-
lingual text analysis tools. We have studied Simple and Bidirectional RNN architectures on multilingual
POS and SST tagging. We have also proposed new RNN variants in order to take into account low level
(POS) information in a super sense tagging task. Our approach has the following advantages: (a) it uses
a language-independent word representation (based only on word co-occurrences in a parallel corpus),
(b) it provides truly multilingual taggers (1 tagger for N languages) (c) it can be easily adapted to a new
target language (when a small amount of supervised data is available, a previous study (Zennaki et al.,
2015a; Zennaki et al., 2015b) has shown the effectiveness of our method in a weakly supervised context).

Short term perspectives are to apply multi-task learning to build systems that simultaneously perform
syntactic and semantic analysis. Adding out-of-language data to improve our RNN taggers is also possi-
ble (and interesting to experiment) with our common (multilingual) vector representation.
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