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Abstract

We investigate the usefulness of syntactic knowledge in estimating the quality of English-French
translations. We find that dependency and constituency tree kernels perform well but the error
rate can be further reduced when these are combined with hand-crafted syntactic features. Both
types of syntactic features provide information which is complementary to tried-and-tested non-
syntactic features. We then compare source and target syntax and find that the use of parse trees
of machine translated sentences does not affect the performance of quality estimation nor does
the intrinsic accuracy of the parser itself. However, the relatively flat structure of the French
Treebank does appear to have an adverse effect, and this is significantly improved by simple
transformations of the French trees. Finally, we provide further evidence of the usefulness of
these transformations by applying them in a separate task – parser accuracy prediction.

1 Introduction

Quality Estimation (QE) for Machine Translation (MT) involves judging the correctness of the output
of an MT system given an input and no reference translation (Blatz et al., 2003; Ueffing et al., 2003;
Specia et al., 2009). An accurate QE-for-MT system would mean that reliable decisions could be made
regarding whether to publish a machine translation as is or to re-direct it to a translator, either for post-
editing or to be translated from scratch. The scores produced by a QE system can also be used to choose
between translations, in a system combination framework or in n-best list reranking. The work presented
here takes place in the context of a wider study, the aim of which is to develop an English-French QE
system so that technical support material that is produced on a daily basis by a company’s English-
speaking customers can be translated automatically into French and made available with confidence to
the company’s French-speaking customer base.

It is reasonable to assume that syntactic features are useful in QE for MT as a way of capturing
the syntactic complexity of the source sentence, the grammaticality of the target translation and the
syntactic symmetry between the source sentence and its translation. This assumption has been borne out
by previous research which has demonstrated the usefulness of syntactic features for English-Spanish
QE (Hardmeier et al., 2012; Rubino et al., 2012). We focus more closely on understanding the role
of syntax by comparing the use of hand-crafted features and tree kernels (Collins and Duffy, 2002;
Moschitti, 2006), and by teasing apart the contribution of target and source syntax.

We find that both tree kernels and manually engineered features produce statistically significantly
better results than a strong set of non-syntactic features provided as a baseline by the organisers of the
2012 WMT shared task on QE for MT (Callison-Burch et al., 2012), and that both types of syntactic
features can be combined fruitfully with this baseline. Furthermore, we show that it is worthwhile to
combine tree kernels with hand-crafted features. Our tree kernel features are the complete set of tree
fragments of both the constituency and dependency trees of the source and target sentences. Our hand-
crafted feature set consists of an initial set of 489 constituency and dependency features which are then
reduced to a set of 144 with no significant loss in performance.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

2052



We then show that source (English) constituency trees significantly outperform target (French) transla-
tion constituency trees in this task. We hypothesise that this is happening because a) the French parser has
a lower accuracy compared to the English, or b) the target trees sentences are harder to parse, represent-
ing, as they do, potentially ill-formed machine translations which may result in noisier parse trees which
are harder to learn from. If the first hypothesis were true, we would expect to see a drop in the accuracy
of our QE system when we use lower-accuracy parses. We do not observe this. If the second hypothesis
were true, we would expect to observe that the target trees were also less useful than the source trees in
the opposite translation direction (French-English). Instead, we find that the target (English) constituency
trees significantly outperform the source (French) constituency trees, suggesting that the difference be-
tween source and target that we observe in the original English-French experiment is related neither to
intrinsic parser accuracy nor to translation direction but rather to the languages/treebanks.

We explore the extent to which the difference between French and English constituency trees is due
to the relatively flatter structure of the French treebank. We use simple transformation heuristics to
introduce more nodes into the French trees and significantly improve the performance. We also apply
these heuristics in a second task, parser accuracy prediction. This task is similar to QE for MT except
we are predicting the quality of a parse tree in the absence of a reference parse tree. We also find here
that the modified trees also outperform the original trees, suggesting that one must proceed with caution
when using French Treebank tree fragments in a machine-learning task.

The paper’s novel contributions are as follows:

1. Evidence that syntactic information is useful in English-French QE for MT and further evidence
that it is useful in QE for MT in general

2. A comparison of two methods of representing syntactic information in QE
3. A more comprehensive set of syntactic features than has been previously been used in QE for MT
4. A comparison of the role of source and target syntax in English-French QE for MT
5. A set of heuristics that can be applied to French Treebank trees resulting in performance improve-

ments in the tasks of both QE for MT and parser accuracy prediction

The rest of this paper is organised as follows: we discuss related work in using syntax in QE in
Section 2, we describe the data in Section 3, and we then go on to describe the QE framework and the
systems built in Section 4. We follow this with an investigation of the role of source and target syntax in
Section 5 before presenting our heuristics to modify the French constituency trees in Section 6.

2 Related Work

Features extracted from parser output have been used before in training QE for MT systems. Quirk
(2004) uses a single syntax-based feature which indicates whether a full parse for the source sentence
could be found. Hardmeier et al. (2012) employ tree kernels to predict the 1-to-5 post-editing cost of a
machine-translated sentence. They use tree kernels derived from syntactic constituency and dependency
trees of the source side (English) and only dependency trees of the translation side (Spanish). The tree
kernels are used both alone and combined with non-syntactic features. The combined setting ranked
second in the 2012 shared task on QE for MT (Callison-Burch et al., 2012). Rubino et al. (2012) explore
a variety of syntactic features extracted from the output of both a hand-crafted broad-coverage gram-
mar/parser and a statistical constituency parser on the WMT 2012 data set. They find that the syntactic
features make an important contribution to the overall system. In a framework for combining QE and
automatic metrics to evaluate MT output, Specia and Giménez (2010) use part-of-speech (POS) tag lan-
guage model probabilities of the MT output 3-grams as features for QE and features built upon syntactic
chunks, dependencies and constituent structure to build automatic MT evaluation metrics. Avramidis
(2012) builds a series of models for estimating post-editing effort using syntactic features such as parse
probabilities and syntactic label frequency. In a similar vein, Gamon et al. (2005) use POS tag trigrams,
CFG rules and features derived from a semantic analysis of the MT output to classify it as fluent or
disfluent.
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In this work, we compare the use of tree kernels and hand-crafted features extracted from the con-
stituency and dependency trees of the source and target sides of a translation pair, as well as comparing
the role of source and target syntax. In addition, we conduct a more in-depth analysis of these approaches
and compare the utility of syntactic information extracted from the source side and target sides of the
translation.

3 Data

While there is evidence to suggest that predicting human evaluation scores is superior to predicting
automatic metrics in QE for ME (Quirk, 2004), it has also been shown that human judgements are not
necessarily consistent (Snover et al., 2006). A more practical consideration is that human evaluation
exists for just a few language pairs and domains. To the best of our knowledge, the only available
English-to-French data set which contains human judgements of translation quality are as follows:

• CESTA (Hamon et al., 2007), which is selected from the Official Journal of the European Commis-
sion and also from the health domain. In addition to the domain (and style) difference to newswire
(the domain on which our parsers are trained), a major stumbling block which prevents us from
using this data set is its small size: only 1135 segments have been evaluated manually.
• WMT 2007 (Callison-Burch et al., 2007), which contains only 302 distinct source segments (each

with approx. 5 translations) only half of which is in the news domain.
• FAUST1, which is out-of-domain and difficult to apply to our setting as the evaluations and post-

edits are user feedbacks, often in the form of phrases/fragments.

Thus, we instead attempt to predict automatic metric scores as there is a sufficient amount of parallel
text for our language pair and domain. We use BLEU2(Papineni et al., 2002), TER3(Snover et al., 2006)
and METEOR4 (Denkowski and Lavie, 2011), which are the most-widely used MT evaluation metrics.
All metrics are applied at the segment level.5

We randomly select 4500 parallel segments from the News development data sets released for the
WMT13 translation task (Bojar et al., 2013). In order to be independent of any one translation system,
we translate the data set with the following three systems and randomly choose 1500 distinct segments
from each:

• ACCEPT6: a phrase-based Moses system trained on training sets of WMT12 releases of Europarl
and News Commentary plus data from Translators Without Borders (TWB)
• SYSTRAN: a proprietary rule-based system
• Bing7: an online translation system

The data set is randomly split into 3000 training, 500 development and 1000 test segments. We use the
development set for tuning model parameters and building hand-crafted feature sets, and the test set for
testing model performance and analyses purposes.

4 Syntax-based QE

One way to employ syntactic information in a machine-learning task is to manually compile a set of
features that can be extracted automatically from a parse tree. An example of one such feature is the
label of the root of the tree. Another method is to directly use these trees in a tree kernel (Collins and
Duffy, 2002; Moschitti, 2006). This approach allows exponentially-sized feature spaces (e.g. all subtrees

1http://www.faust-fp7.eu/faust/Main/DataReleases
2Version 13a of MTEval script was used at the segment level.
3TER COMpute 0.7.25: http://www.cs.umd.edu/˜snover/tercom/
4METEOR 1.4: http://www.cs.cmu.edu/˜alavie/METEOR/
5We present 1-TER to be more easily comparable to BLEU and METEOR. There is no upper bound for TER scores unlike

the other two metrics. Scores higher than 1 occur when the number of errors is higher than the segment length. To avoid this,
scores higher than 1 are cut-off to 1 before being converted to 1-TER.

6http://www.accept.unige.ch/Products/D_4_1_Baseline_MT_systems.pdf
7http://www.bing.com/translator

2054



of a tree) to be efficiently modelled using dynamic programming and has shown to be effective in many
natural language processing tasks including parsing and named entity recognition (Collins and Duffy,
2002), semantic role labelling (Moschitti, 2006), sentiment analysis (Wiegand and Klakow, 2010) and
QE for MT (Hardmeier et al., 2012). Although there can be overlap between the information captured by
the two approaches, each can capture information that the other one cannot. In addition, while tree ker-
nels involve minimal feature engineering, hand-crafted features offer more flexibility. Moschitti (2006)
shows that combining the two is beneficial. We use both hand-crafted features and tree kernels, applied
separately and combined together.

For parsing the English and French data into their constituency structures, a PCFG-LA parser8 is
used. We train the English parser on the training section of the Wall Street Journal (WSJ) section of the
Penn Treebank (PTB) (Marcus et al., 1993). The French parser is trained on the training section of the
French Treebank (FTB) (Abeillé et al., 2003). We obtain dependency parses by converting the English
constituency parses using the Stanford converter (de Marneffe and Manning, 2008) and the French
parses using Const2Dep (Candito et al., 2010). We evaluate the performance of the QE models using
Root Mean Square Error (RMSE) and Pearson correlation coefficient (r). To compute the statistical
significance of the performance differences between QE models, we use paired bootstrap resampling
following Koehn (2004). We randomly resample (with replacement) a set of N instances from the
predictions of each of the two given systems, where N is the size of the test set. We repeat this sampling
N times and count the number of times each of the two settings is better in terms of each measure (RMSE
and Pearson r). If a setting is better more than 95% of the time, we consider it statistically significant
at p < 0.05.

In the following sections, we first describe our baseline systems and then the quality estimation sys-
tems build using tree kernels, hand-crafted features and a combination of both.

4.1 Baseline QE Systems

In order to verify the usefulness of syntax-based QE, we build two baselines. The first baseline (BM) uses
the mean of the segment-level evaluation scores in the training set for all instances. In the second baseline
(BW), the 17 baseline features of the WMT12 QE Shared Task are used. BW is considered a strong baseline
as the system that used only these features was ranked higher than many of the participating systems.
We use support vector regression implemented in the SVMLight toolkit9 to build BW. The Radial Basis
Function (RBF) kernel is used. The results for both baselines are presented in the first two rows of
Table 1. Since BW is a stronger baseline than BM, we will compare all syntax-based systems to BW only.

4.2 Syntax-based QE with Tree Kernels

Tree kernels are kernel functions that compute the similarity between two instances of data represented
as trees based on the number of common fragments between them. Therefore, the need for explicitly en-
coding an instance in terms of manually-designed and extracted features is eliminated, while benefitting
from a very high-dimensional feature space. Moschitti (2006) introduces an efficient implementation
of tree kernels within a support vector machine framework. Instead of extracting all possible tree frag-
ments, the algorithm compares only tree fragments rooted in two similar nodes. This algorithm is made
available through SVMLight-TK software10, which is used in this work.

In order to extract tree kernels from dependency trees, the labels on the arcs must be removed. Fol-
lowing Tu et al. (2012), the nodes in the resulting tree representation are word forms and dependency
relations, omitting POS tag information. An example is shown in Figure 1. A word is a child of its
dependency relation to its head. The dependency relation in turn is the child of the head word. This
continues until the root of the tree.

Based on preliminary experiments on our development set, we use subset tree kernels, where the tree
fragments are subtrees rooted at any node in the tree so that no production rule expanding a node in the

8https://github.com/CNGLdlab/LORG-Release. The Lorg parser is very similar to the Berkeley parser (Petrov
et al., 2006), the main difference being its unknown word handling mechanism (Attia et al., 2010).

9http://svmlight.joachims.org/
10http://disi.unitn.it/moschitti/Tree-Kernel.htm
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BLEU 1-TER METEOR

RMSE r RMSE r RMSE r

BM 0.1626 0 0.1965 0 0.1657 0
BW 0.1601 0.1766 0.1949 0.1565 0.1625 0.2047
TK 0.1581 0.2437 0.1888 0.2774 0.1595 0.2715
BW+TK 0.1570 0.2696 0.1879 0.2939 0.1576 0.3111
HC 0.1603 0.1998 0.1913 0.2365 0.1610 0.2516
BW+HC 0.1587 0.2418 0.1899 0.2611 0.1585 0.2964
SyQE 0.1577 0.2535 0.1887 0.2797 0.1594 0.2743
BW+SyQE 0.1568 0.2802 0.1879 0.2937 0.1576 0.3127

Table 1: QE performances measured by RMSE and Pearson r; BM: Mean baseline, BW: WMT 17 base-
line features, TK: tree kernels, HC: hand-crafted features, SyQE: full syntax-based systems (TK+HC).
Statistically significantly better scores compared to their counterpart (upper row in the row block) are in
bold.

root

came

cc      advmod      nsubj      punct

And       then           era            .    

                  det      amod

                        the    American 

Figure 1: Tree Kernel Representation of Dependency Structure for And then the American era came.

subtree is split. Unlike subtree kernels, subset tree kernels allow tree fragments with non-terminals as
leaves. We tune the C parameter for Pearson r on the development set, with all other parameters left as
default.

We build a system with all four parse trees for every training instance, which includes the constituency
and dependency trees of the source and target side of the translation. The third row of Table 1 shows
the performance of this system which is named TK. The results achieved using this system represent a
statistically significant improvement over the BW baseline results. In order to examine their complemen-
tarity, we combine these tree kernels and the baseline features (BW+TK) in the fourth row of Table 1.
This combined system performs better than the two individual systems.

While BLEU prediction is the most accurate (lowest RMSE), METEOR prediction appears to be the
easiest to learn (highest Pearson r). TER prediction seems to be more difficult than BLEU and METEOR
prediction, especially in terms of prediction error. This is probably related to the distribution of each of
these metric scores in our data set. The standard deviations (σ) of BLEU, TER and METEOR scores are
0.1620, 0.1943 and 0.1652 respectively. The substantially higher σ of TER scores makes them harder to
predict accurately leading to higher prediction error.

4.3 Syntax-based QE with Hand-crafted Features

We design a set of constituency and dependency feature types, some of which have previously been used
by the works described in Section 2 and some introduced here. Each feature type contains at least two
features, one extracted from the source and the other from the translation. Numerical feature types can
be further instantiated by extracting the ratio and differences between the source and target side feature
values. Some feature types are parametric meaning that they can be varied by changing the value of a pa-
rameter. For example, the non-terminal label is a parameter for the non-terminal-label-count
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Constituency
∗1 Label of the root node of the constituency tree

2 Height of the constituency tree which is the number of edges from root node to the farthest terminal (leaf) node
∗3 Number of nodes in the constituency tree

4 Log probability of the constituency parse assigned by the parser
∗5 Parseval F1 score of the tree with respect to a tree produced by the Stanford parser (Klein and Manning, 2003)
∗6 Right hand side of the CFG production rule expanding the root node

7 All non-lexical and lexical CFG production rules expanding the tree nodes
∗8 Average arity of the non-lexical CFG production rules expanding the constituency tree nodes

9 Counts of each non-terminal label in the tree
∗10 POS unigrams, 3-grams and 5-grams

11 POS n-gram scores against language models trained on the POS tags of the respective treebanks using the SRILM
toolkit (http://www.speech.sri.com/projects/srilm/) with Witten-Bell smoothing

∗12 Counts of each 12 universal POS tags (Petrov et al., 2012)
∗13 Location of the first verb in the sentence in terms of the token distance from the beginning
∗14 Average number of POS n-grams in each n-gram frequency quartile of the POS corpora of the respective treebanks

Dependency
∗1 POS tag of the top node (dependent of the dummy root node) of the dependency tree
∗2 Number of dependents of the top node
∗3 Sequence of all dependency relations which modify the top node
∗4 Sequence of the POS tags of the dependents of the top node
∗5 Average number of dependents per node
∗6 Height of the tree computed in the same way for the constituency tree
∗7 3- and 5-gram sequences of dependency relations of the tokens to their head
∗8 Number of most frequent dependency relations in our News training set
∗9 Dependency relation n-gram scores against language models trained on the respective treebanks for each language
∗10 Average number of dependency relation n-grams in each n-gram frequency quartile of the respective treebanks
∗11 Pairs of tokens and their dependency relations to their head

Table 2: Constituency and dependency feature types

feature type. Therefore, it instantiates as several features, one for each non-terminal-label.
As in BW, we use support vector machines (SVM) to build the QE systems using these hand-crafted

features. We keep only those features which fire for more than a threshold which is set empirically on
the development set. Table 2 lists our syntax-based feature types and their descriptions. Those that have,
to the best of our knowledge, not been used in QE for MT before are marked with an asterisk.

The total number of feature-value pairs in the full feature set is 489. Since this feature set is large
and contains many sparse features, we attempt to reduce it through ablation experiments in which we
directly compare the effect of leaving out features that we suspect may be redundant. For example, we
investigate whether either the ratio or difference of the source and target numerical features or both of
them are redundant by building three systems, one without ratio features, one without difference features
and one with neither. This process is also carried out for log probability and perplexity features, original
and universal POS-tag-based features, n-gram and language model score features, lexical and non-lexical
CFG rules, and n-gram orders (i.e. 3-gram vs. 5-gram features). This process proved useful: we found,
for example, that either 3- or 5-grams worked better than both together and features based on universal
POS tags better than those based on original POS tags.

The final reduced feature set contains 144 features-value pairs. We build one QE system with all 489
features HC-all and one with the reduced set of 144 features HC . Table 3 compares the performance on
the development and test set. The system with the reduced feature set performs consistently better than
the HC-all system on the development set, mostly with statistically significant differences. However,
on the test set, the performance degrades albeit not statistically significantly. Considering a more than
70% reduction in feature set size, this relatively small degradation is tolerable. We use the reduced
feature set as our hand-crafted feature set for the rest of the work.

Compared to TK in Table 1 (third and fourth versus fifth and sixth rows), the performances are lower
for all MT metrics, though not statistically significantly. It is worth noting that we observed an opposite
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BLEU 1-TER METEOR

RMSE r RMSE r RMSE r

Development Set

HC-all 0.1567 0.3026 0.1851 0.2746 0.1575 0.2996
HC 0.1540 0.3398 0.1819 0.3263 0.1547 0.3452

Test Set

HC-all 0.1603 0.2108 0.1902 0.2510 0.1607 0.2493
HC 0.1603 0.1998 0.1913 0.2365 0.1610 0.2516

Table 3: QE performance with all hand-crafted syntactic features HC-all and the reduced feature set
HC. Statistically significantly better scores compared to their counterpart (upper row) are in bold.

RMSE r

TK-CD-ST 0.1581 0.2437

TK-CD-S 0.1584 0.2294
TK-CD-T 0.1597 0.2101

TK-C-S 0.1583 0.2312
TK-C-T 0.1608 0.1479

TK-D-S 0.1598 0.1869
TK-D-T 0.1598 0.2102

Table 4: BLEU prediction performances with tree kernels of only source S or translation T side trees.
The scores in bold are statistically better than their counterparts in the same row block. The original
result with source and target combined is provided for reference in the first row.

behaviour on the development set, where hand-crafted features largely outperform tree kernels. This
suggests that the tree kernels are more generalisable. We also combine these features with the WMT
17 baseline features (BW+HC). This combination also improves over both syntax-based and baseline
systems, confirming again the usefulness of syntactic information in addition to surface features.

We combine tree kernels and hand-crafted features to build a full syntax-based QE system (SyQE),
which improves over both TK and HC (Table 1) . The improvements for TER and METEOR prediction
are slight but statistically significant for BLEU prediction. This system is also combined with BW in
BW+SyQE (the last row of Table 1), resulting in statistically significant gains for all metrics.

5 Source and Target Syntax in Syntax-based QE

We now turn our attention to the parts played by source and target syntax in QE for MT. To save space,
we present only the BLEU scores for the tree kernel systems. Table 4 shows the results achieved by
systems built using either the source or target side of the translations.

At a glance, it can be seen that the source side constituency tree kernels outperform the target side
ones, while the opposite is the case for dependency tree kernels. The differences for constituency trees
are however substantially bigger. When both constituency and dependency trees are combined, the source
side trees perform better (TK-CD-S vs. TK-CD-T).

The following three hypotheses could explain this difference between TK-C-S and TK-C-T:

1. The Role of Parser Accuracy: The fact that French parsing models do not reach the high Parseval
F1s achieved by English parsing models could explain the difference in usefulness between the
French and English consistuency trees. On the standard parsing test sets, the English parsing model
achieves an F1 of 89.6 and the French an F1 of 83.4.

2. Parsing Machine Translation Output: The difference between the source and target could be
happening because the target side is machine translation output and (presumably) represents a lower
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Sombre  Matter  Affects  de  vol  Probes   spatiale

NP

NP

NP

PP

SENT

NC

ET ET P

ET ET ET

Figure 2: Parse tree of the machine translation of Dark Matter Affects Flight of Space Probes to French

quality set of sentences than the source (see Figure 2 for an example of a parse tree for a poor
translation).

3. Differences in Annotation Strategies: The difference between the source and target could be due
to the idiosyncrasies of the underlying treebanks which is not carried over via the conversion tools
to the dependency structure.

Hypotheses 1 and 2 relate the usefulness of parse trees in QE to the intrinsic quality of the parse trees.
French constituency trees are less accurate than English ones, either because the French parsing model
is not as accurate as the English one (Hypothesis 1) or because the possibly ungrammatical nature of the
French parsing input adversely affects the quality of the parse tree (Hypothesis 2). Although this low
quality would be expected to affect the dependency trees in the same way since they are directly derived
from the consistency trees, this is not the case and it appears that the problematic aspects of the French
parses are abstracted away from the dependency trees.

To test the first hypothesis, we investigate the role of parser accuracy in QE. For both languages, we
substitute the standard parsing models used in all our prior experiments with “lower-accuracy” mod-
els trained using only a fraction of the training data (following Quirk and Corston-Oliver (2006)). The
English parsing model achieves an F1 of 72.5 and the French an F1 of 66.5, representing drops of ap-
proximately 17 points from the original models. The RMSE and Pearson r of the new QE model are
0.1583 and 0.2350 compared to 0.1581 and 0.2437 of the one trained with original trees (see also the
third row of Table 1). These results show that the use of these lower-accuracy models has only a minimal
and statistically insignificant effect on QE performance, suggesting that intrinsic parser accuracy is not
the reason why the target constituency trees are less useful than the source constituency trees.11

To investigate the second hypothesis, we switch the translation direction to French-to-English. There-
fore, we now parse the well-formed French input sentences and the machine-translated English segments.
If the second hypothesis were true, the target side parse trees in this direction would still underperform
the source side ones. The results are shown in Table 5. All the systems using target trees outperform
those using source trees. The difference between source and target in the models that use constituency
trees is especially substantial and statistically significant. Thus, it is apparent that the suspected lower
quality of constituency parse trees of MT output is not the reason for the lower QE performance.

We now seek the answer in our third hypothesis, i.e. in the difference between the annotation schemes
of the PTB and the FTB. One major difference, noted by, for example, Schluter and van Genabith (2007),
is that the FTB has a relatively flatter structure. It lacks a verb phrase (VP) node and phrases modifying
the verb are the sibling of the verb nucleus. We investigate this further in the next section.

6 Modifying French Parse Trees

In order to test whether the annotation strategy is a reason for the lower performance of French con-
stituency tree kernels, we apply a set of three heuristics which introduce more structure to the French
parse trees (1&2) or simply make them more PTB-like (3):

• Heuristic 1 automatically adds a VP node above the verb node (VN) and at most 3 of its immediate
adjacent nodes if they are noun or prepositional phrases (NP or PP).

11See (Kaljahi et al., 2013) for a more detailed exploration of the role of parser accuracy in QE for MT.
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RMSE r

TK-FE/CD-ST 0.1561 0.2334

TK-FE/CD-S 0.1574 0.1830
TK-FE/CD-T 0.1559 0.2423
TK-FE/C-S 0.1581 0.1578
TK-FE/C-T 0.1556 0.2336
TK-FE/D-S 0.1577 0.1655
TK-FE/D-T 0.1579 0.1886

Table 5: BLEU prediction performances with tree kernels for Fr-En direction (FE) (C: constituency, D:
dependency, S: source, T: translation)

RMSE r

TK-C-T 0.1608 0.1479
TK-C-Tm 0.1591 0.2143
TK-CD-ST 0.1581 0.2437
TK-CD-STm 0.1574 0.2609

Table 6: QE with tree kernels using original and modified French trees (m)

• Heuristic 2 stratifies some of the production rules in the tree by grouping together every two equal
adjacent POS tags under a new node with a tag made of the POS tag suffixed with St.
• Heuristic 3 moves coordinated nodes (the immediate left sibling of the COORD node) under COORD.

Figure 3 shows examples of the application of each of these methods. We apply these heuristics to
the parsed MT output in the English-French translation direction and rebuild the tree kernel system with
translation side constituency trees (TK-C-T) and the full tree kernel system (TK-CD-ST) with the mod-
ified trees. The results are presented in Table 6. Despite the possibility of introducing linguistic errors,
these heuristics yield a statistically significant improvement in QE performance. Unsurprisingly, the
changes are bigger for the system with only translation side constituency trees as in the full system there
are three other tree types involved. These results suggest that the structure of the French constituency
trees is a factor in the lower performance of its tree kernels in QE.12

The gain achieved by applying these heuristics is related to the fact that there are more similar frag-
ments extracted from the modified structure which are useful for the tree kernel system. For example, in
the original top left tree in Figure 3, there is no chance that a fragment consisting only of VN and NP –
a very common structure and thus useful in calculating tree similarity – will be extracted by the subset
tree kernel. The reason is that this kernel type does not allow the production rule to be split (in this case
the rule expanding the S node). However, after applying Heuristic 1, the fragment equivalent to VP ->
VN NP production rule can be easily extracted. Among the three heuristics, the first one contributes the
largest part of the improvement; the other two have a very slight effect according to the results of their
individual application, though they contribute to the overall performance when all three are combined.

The success of using modified French trees in improving tree kernel performance may of course de-
pend on the data set and even the task in hand, and may not be generalisable. We next explore this
question by applying the modification to a different task and a different data set.

6.1 Parser Accuracy Prediction
The task we choose is parser accuracy prediction, the aim of which is to predict the accuracy of a parse
tree without a reference (QE for parsing). The task was previously explored for English by Ravi et al.

12We also see a slightly smaller improvement for the hand-crafted features using the modified French trees. The combina-
tion of tree kernels and hand-crafted features with the modified trees leads to a statistically significant improvement over the
combination with the original trees.
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Figure 3: Application of tree modification heuristics on example French translation parse trees

RMSE r

PAP 0.1239 0.4035
PAPm 0.1233 0.4197

Table 7: Parser Accuracy Prediction (PAP) performance with tree kernels using original and modified
French trees (m)

(2008). We build a tree kernel model to predict the accuracy of French parses. To train the system, we
parse the training section of FTB with our French parser and score them using F1. We use the FTB
development set to tune the SVM C parameter and test the model on the FTB test set. Two parser
accuracy prediction models are then built using this setting, one with the original parse trees and the
second with the modified parse trees produced using the three heuristics listed above. The results are
presented in Table 7.

Both RMSE and Pearson r improve with the modified trees, where the r improvement is statistically
significant. Although the improvement we observe is not as large as the one we observed for the QE for
MT task, the results add weight to our claim that the structure of the FTB trees should be optimised for
use in tree kernel learning.

7 Conclusion

We analysed the utility of syntactic information in QE of English-French MT and found it useful both
individually and combined with standard QE features. We found that tree kernels are a convenient and
effective way of encoding syntactic knowledge but that our hand-crafted feature set also brings additional,
useful information. As a result of comparing the role of source and target syntax, we also found that the
constituent structure in the FTB could be amended to be more useful in QE for MT and parser accuracy
prediction. Now that we have explored the role of syntax in this project, our next step is try to further
improve our QE system by adding semantic information. However, there are many other ways in which
the research in this paper could be further extended. Our focus is on the language pair English-French
and the QE task but it would certainly be interesting to perform a similar analysis on the role of syntax
in QE for other language pairs, or to investigate the impact of French tree modification on other tasks.
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