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ABSTRACT 

In this paper we propose a novel text summarization model, the redundancy-constrained 
knapsack model. We add to the Knapsack problem a constraint to curb redundancy in the 
summary. We also propose a fast decoding method based on the Lagrange heuristic. Experiments 
based on ROUGE evaluations show that our proposals outperform a state-of-the-art text 
summarization model, the maximum coverage model, in finding the optimal solution. We also 
show that our decoding method quickly finds a good approximate solution comparable to the 
optimal solution of the maximum coverage model. 
 
KEYWORDS: Text summarization, Knapsack problem, Maximum coverage problem, Lagrange 
heuristics. 
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1 Introduction 

Many text summarization studies in recent years formulate text summarization as the maximum 
coverage problem (Filatova and Hatzivassiloglou, 2004; Yih et al., 2007; Takamura and 
Okumura, 2009; Gillick and Favre, 2009; Nishikawa et al., 2010; Higashinaka et al., 2010). The 
maximum coverage model, based on the maximum coverage problem, generates a summary by 
selecting sentences to cover as many information units (such as unigrams and bigrams) as 
possible. Takamura and Okumura (2009) and Gillick and Favre (2009) demonstrated that the 
maximum coverage problem offers great performance as a text summarization model. 
Unfortunately, its potential is hindered by the fact that it is NP-hard (Khuller et al., 1999). There 
is little hope that a polynomial time algorithm for the problem exists. 

Another theoretical framework for text summarization, the knapsack problem, avoids trying to 
cover unigrams or bigrams, and instead emphasizes the selection of important sentences under 
the constraint of summary length. The knapsack problem can be solved by a dynamic 
programming algorithm in pseudo-polynomial time (Korte and Vygen, 2008). However, the 
knapsack model, a text summarization model based on the knapsack problem, scores each 
sentence independently. While it can easily maximizes the sum of their scores, it threatens to 
generate redundant summaries unlike the maximum coverage model. 

To tackle this trade-off between summary quality and decoding speed, we propose a novel text 
summarization model, the redundancy-constrained knapsack model. Starting with the advantage 
of the knapsack model, it uses dynamic programming to achieve optimization in pseudo-
polynomial time. We add to it a constraint that curbs summary redundancy. Although this 
constraint can suppress summary redundancy, finding the optimal solution again becomes a 
challenge.  

To ensure that our proposed model can find good approximate solutions, we turn to the Lagrange 
heuristic (Haddadi, 1997). This is an algorithm that finds a feasible solution from the relaxed, 
infeasible solution induced by Lagrange relaxation. It is known to be effective in finding good 
approximate solutions for the set covering problem (Haddadi, 1997). 

We present the novelty and contribution of this paper as follows: 

 In this paper we define a novel objective function and decoding algorithm for multi-document 
summarization. The model and algorithm presented in this paper are new in the context of 
automatic summarization research. 

 Our proposal, the redundancy-constrained knapsack model, outperforms the maximum 
coverage model on the ROUGE (Lin, 2004) evaluation. 

 The approximate solution of our proposed model, found by our proposed decoding method, is 
comparable with the optimal solution of the maximum coverage model. We also show that 
this approximate solution is found far faster than the optimal solution of the maximum 
coverage model. 

This paper is organized as follows. In Section 2, we describe related work. In Section 3, we 
elaborate our proposed model. In Section 4, we explain the algorithm that finds a good 
approximate solution for our proposed model. In Section 5, we show results of experiments 
conducted to evaluate our proposal. In Section 6 we conclude this paper. 
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2 Related Work 

The text summarization model based on the maximum coverage problem was proposed by 
Filatova and Hatzivassiloglou (2004). They solved their model by a greedy algorithm (Khuller et 
al., 1999). Yih et al. (2007) solved the model by a stack decoder. Takamura and Okumura (2009) 
and Gillick and Favre (2009) formulated the model as Integer Linear Programming (ILP) and 
solved the model using a branch-and-bound method.  

The maximum coverage model has a trade-off between its performance and decoding speed. 
Although simple decoding algorithm like the greedy algorithm and the stack decoder can find an 
approximate solution quickly, in many cases it is far from optimal. The ILP-based approach can 
find the optimal solution but it spends too long in doing so. In contrast to the maximum coverage 
model, our proposed decoding algorithm uses the Lagrange heuristic to quickly find a good 
approximate solution comparable to the optimal solution of the maximum coverage model. 

McDonald (2007) showed that the text summarization model based on the knapsack problem can 
be solved by dynamic programming in pseudo-polynomial time. We leverage this knowledge to 
develop a novel algorithm that can find good approximate solutions for our proposed model. 

3 Redundancy-Constrained Knapsack Model 

In this section we elaborate our proposed text summarization model, the redundancy-constrained 
knapsack model. We first introduce the maximum coverage model and show its relationship with 
the knapsack model. We then explain the redundancy-constrained knapsack model and a variant 
that includes the Lagrange multipliers. 

We consider there are n input sentences containing m unique information units, such as unigrams 
and bigrams. Let x = (x1, …, xn) be a binary vector whose element xi is a decision variable 
indicating whether sentence i is contained in the summary. If sentence i is contained in the 
summary, xi = 1. Let z = (z1, …, zm) be a binary vector whose element zj is a decision variable 
indicating whether information unit j is contained in the summary. If information unit j is 
contained in the summary, zj = 1. Let w = (w1, …, wm) be a vector whose element wj indicates the 
importance of information unit j. Let A be a matrix whose element aji indicates the number of 
information units, j, contained in sentence i. If sentence i contains two information units j, aji = 2. 
Let l = (l1, …, ln) be a vector whose element li indicates the length of sentence i. Let K be the 
maximum summary length desired. 

The maximum coverage model can be formulated as follows: 

  max   1   

  . .   2   

  0,1 3   

  0,1 4   

    5   

As mentioned above, the maximum coverage model selects sentences to cover as many 
information units as possible. If the summary contains information units 3 and 4, the value of the 
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objective function is the sum of w3 and w4. To maximize the objective function, the summary has 
to cover as many information units with high w values as possible. 

Next, we describe the knapsack model. If constraint (2) is Ax = z and constraint (4) is , 
which is an m-dimensional vector whose elements are the natural numbers including 0, the model 
is the knapsack model. The knapsack model can be solved by dynamic programming in pseudo-
polynomial time O(nK). However, due to the change of constraint (4) which prevents redundancy 
in the summary, the summary generated by the knapsack model is likely to be redundant. We 
suppress this redundancy through the addition of a constraint. 

We describe our novel proposal, the redundancy-constrained knapsack model, below. 

  max   6   

  . .   7   

  0,1 8   

  | 0, 9   

    10   

 in constraint (9) is an integer more than or equal to 0, and is the upper bound of zj, the 
number of information units, j, contained in the summary. That is, in the redundancy-constrained 
knapsack model, constraint (9) limits zj to lie in the range 0 to rj. Thus redundancy in the 
summary can be reduced by vector r. Although the model originally can be solved easily, 
constraint (9) explodes the search space so fining the optimal solution under redundancy 
constraint (9) is difficult1. 

To make the model tractable, we draw on Lagrangian relaxation. We add Lagrange multipliers to 
objective function (6) and relax constraint (9). 

  max 11   

  . .   12   

  0,1 13   

  14   

    15   

Non-negative Lagrange multipliers λ , λ , … , λ  impose a penalty on objective function 
(11) when constraint (9) is violated. If the summary contains more than rj information units, j, its 
importance wj is reduced by Lagrange multiplier λ . Therefore, the number of information units, j, 
contained in the summary will decrease when the model is solved again by dynamic 
programming and the redundancy in the summary will be reduced (we detail our algorithm in the 

                                                           
1 The  redundancy‐constrained  knapsack  problem  can  also  be  solved  in  pseudo‐polynomial  time.  However  its 
runtime is O ∏ , which is in effect exponential time. 
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next section). The Lagrange multipliers  are calculated by solving the Lagrange dual problem of 
min max  using the subgradient method. Constraint (9) is an 

inequality constraint, so an optimal solution on the model can’t be found unlike dependency 
parsing (Koo and Collins, 2010) and statistical machine translation (Chang and Collins, 2011), 
but an approximate solution can, however, be found by the decoding algorithm proposed below. 

4 Decoding with Lagrange heuristic 

We propose the following algorithm to find an approximate solution on objective function (11) in 
Algorithm 1. We outline our decoding algorithm below. 

(1). Let all Lagrange multipliers λ  be 0. 
(2). Iterate following steps T times. 

A) Find the optimal solution on objective function (11) by dynamic programming. 
B) If the solution by (A) satisfies all constraints, return the solution. If not, use the heuristic 

to find a feasible solution from the optimal solution by (A). 
C) If solution (B) exceeds the lower bound, update the lower bound.  
D) Update the Lagrange multipliers. 

(3). Output the solution corresponding to the lower bound. 

 
Algorithm 1: An iterative decoding algorithm with Lagrange heuristic. α is a parameter that controls the step size of λ. s is 
a vector whose element, si, indicates the score of sentence i. The score is calculated by function sentence. Function dpkp 
implements the dynamic programming algorithm for the knapsack problem in Algorithm 2. bl and bu indicate the lower 
bound and upper bound of the objective function, respectively, and are also used to decide the step size of λ. Function 
score calculates the score of summary x. Function count counts the information units contained in summary x, which is 
indicated by vector z. xl preserves the solution corresponding to the lower bound bl. 

This iterative algorithm based on the Lagrange heuristics (Haddadi, 1997) can find a feasible 
solution at each iteration. If the algorithm doesn’t converge in T iterations, the algorithm returns 
the most recent lower bound, which is the best feasible solution. If convergence is achieved, the 
solution is feasible. We show a dynamic programming algorithm to solve the knapsack problem 
in Algorithm 2. The Lagrange multipliers are updated by the following formula (Korte and 

input A, K, l, m, n, w
input α, r 
initialize  = 0, s = 0, x = 0, z = 0 
initialize bl = ∞, bu = +∞, xl = 0 
for t = 1…T 

s = sentence(A, , m, n, w) 
x = dpkp(K, l, n, s) 
if score(A, m, n, x, w)  bu 

bu = score(A, m, n, x, w) 
z = count(A, m, n, x) 
if z violates r 

x = heuristic(A, K, l, m, n, w) 
if score(A, m, n, x, w)  bl 

bl = score(A, m, n, x, w)
xl = x 

 = update(α, bl, bu, , m, r, z) 
else 

return x 

return xl 
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Vygen, 2008): 

  λ max λ α , 0 16   

where α is a parameter that controls the step size of λ ;  and  are the lower and upper bounds; 
d is a subgradient of the Lagrange dual problem. This formula is based on the following search 
strategy: 

(1). If the gap between the upper and lower bounds is large, λ  should be updated substantially. 
(2). λ  should be updated in proportion to the gap between zj and rj. 

Our heuristic, which recovers a feasible solution from the infeasible solution, is implemented as a 
greedy algorithm. We outline it below: 

(1). Remove iteratively a sentence from the summary until the summary satisfies the redundancy 
constraint. The sentence whose score divided by its length is the least among the sentences 
that have information units violating the redundancy constraint is removed. 

(2). If the summary satisfies the constraint, remove the sentences contained in the summary and 
its length from the original problem, generate a sub-problem, and then solve this sub-
problem by the greedy method (Khuller et al., 1999). 

 
Algorithm 2: A dynamic programming algorithm for the knapsack problem. The algorithm fills out two dimensional 
arrays T and U. T[i][j] preserves the maximum score achieved at the time of i and j. U[i][j] remembers whether sentence i 
is added to achieve the maximum score at the time of i and j. After filling out T and U, the best solution can be found by 
backtracking U. 

5 Experiment 

We evaluate our proposed method in terms of two criteria. 

(1). ROUGE: We evaluate the quality of summaries produced from ROUGE (Lin, 2004). 
(2). Time: We measure the time taken to generate the summaries of 30 input document sets. 

We compare the following four methods: 

input K, l, n, s
initialize x = 0 
for j = 0…K 

T[0][j] = 0 
for i = 1…n 

for j = 0…K 
T[i][j] = T[i - 1][j] 
U[i][j] = 0 

for j = l[i]…K 
if T[i - 1][j - l[i]] + s[i]  T[i][j] 

T[i][j] = T[i - 1][j - l[i]] + s[i]
U[i][j] = 1 

j = K 
for i = n…1 

if U[i][j] = 1 
xi = 1 
j = j - l[i] 

return x
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(1). Redundancy-constrained knapsack model (RCKM): Our proposed method. Find the 
optimal solution of Equation (11) using lp_solve2 solver. 

(2). Redundancy-constrained knapsack model with the Lagrange heuristic (RCKM-LH): 
Our proposed method. Find the approximate solution of Equation (11) by our proposed 
algorithm shown in Algorithm 1. We evaluate the proposed algorithm with 10 iterations (T 
= 10) and 100 (T = 100) iterations. 

(3). Maximum coverage model (MCM): Baseline. Find the optimal solution using lp_solve. 
(4). Knapsack model (KM): Baseline. Find the optimal solution using the algorithm shown in 

Algorithm 2. 

5.1 Data 
We use the TSC-3 corpus (Hirao et al., 2004) for evaluation. It is an evaluation corpus for multi-
document summarization and was used in Text Summarization Challenge 33. It contains 30 
Japanese news article sets, 352 articles and 3587 sentences. Each set has three reference 
summaries. Detailed information of the corpus is shown in (Hirao et al, 2004). 

5.2 Parameter settings 
We set the three essential parameters as follows: 

 α: We set α as the inverse of the number of times that Lagrange multipliers have been 
updated. 

 r: The allowed redundancy rj can be set for each information unit j. We set rj = tf  where 
tfj is the number of information units, j, contained in the input document set and  is the 
floor function. 

 w: we simply set j as a content word, and weight wj based on tf-idf (Filatova and 
Hatzivassiloglou, 2004; Clarke and Lapata, 2007), tf log  . N and dfj are the total 

number of documents and the number of documents containing word j in the corpus, 
respectively. They are calculated from the Mainichi Shimbun corpora4 2003 and 2004. 

α is used only by RCKM-LH. r is used by RCKM and RCKM-LH. w is used by all methods. 
Although r and w are can be estimated in a more sophisticated fashion such as the supervised 
approach, in this paper we simply estimate these parameters from just the input documents, i.e. 
the unsupervised approach. The use of the supervised approach is a future topic. 

5.3 Results and Discussions 
We show the results of the ROUGE evaluation in Table 1. Our proposed method, RCKM, yielded 
the top score. The differences between RCKM and other methods are significant5 according to 
the Wilcoxon signed-rank test (Wilcoxon, 1945). The differences between KM and other 
methods are also significant. One reason for the success of the proposal is that the references 
usually contain some redundant information units. Interestingly, reference summaries contain two 
or more instances of the same word. In Figure 1, we show the frequency distribution of content 
word occurrence. Obviously, some of words occur more than once in the document. The study of 

                                                           
2 http://lpsolve.sourceforge.net/ 
3 http://lr‐www.pi.titech.ac.jp/tsc/tsc3‐en.html 
4 http://mainichi.jp/ 
5 P < 0.01 
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text coherence evaluation leverages this repetition to capture the coherence (Barzilay and Lapata, 
2005); to make a text coherent, sometimes the same words are used in two successive sentences. 
In the context of automatic text summarization research, this repetition is referred to as Lexical 
Chain and can be leveraged to find important sentences (Barzilay and Elhadad, 1997). While 
MCM considers these repetitions as redundant information, RCKM can permit some redundancy 
in the summary. In view of this, redundancy parameter r can be estimated from the aspect of text 
coherence.  

 
Figure 1: Frequency distribution of content word occurrence in the references. The horizontal axis indicates the frequency 
of content word occurrence in one reference; the vertical axis indicates the number of words. For example, there are 2093 
words that occur once in one reference; there are 10 words that occur more than 9 times in one reference. This graph 
shows that some words occur more than once in one reference. 

We also show the time spent for decoding in Table 1. MCM decoding took more than one week. 
KM can be quickly decoded by dynamic programming. The solver can decode RCKM far faster 
than MCM. RCKM-LH solves the dynamic programming iteratively. Hence the time is roughly 
proportional to the number of iterations. 

 ROUGE-1 ROUGE-2 Time (sec.) 

RCKM 0.493 0.238 2642.4 

RCKM-LH (10) 0.454 0.217 72.4 

RCKM-LH (100) 0.466 0.223 649.8 

MCM 0.459 0.218 924349.3 

KM 0.443 0.204 8.1 

Table 1: ROUGE evaluation results and time taken to summarize 30 input document sets. 

6 Conclusion 

Our proposed model, the redundancy-constrained knapsack model, improves the quality of 
summaries significantly compared to a state-of-the-art system, the maximum coverage model. 
Our model can be decoded by the Lagrange heuristic, and the algorithm proposed here can 
quickly find approximate solutions of good quality. 

Immediate future work is to estimate redundancy parameter r from large corpora. Although there 
are a lot of studies on estimating the weight of units, the allowed redundancy for each word has 
received less attention. We also plan to test our proposal on other corpora and evaluation criteria. 
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