
Proceedings of COLING 2012: Posters, pages 53–62,
COLING 2012, Mumbai, December 2012.

Probabilistic Refinement Algorithms
for the Generation of Referring Expressions

Romina Al tamirano1 Carlos Areces1,2 Luciana Benot t i1

(1) FaMAF, Universidad Nacional de Córdoba, Argentina
(2) Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina

{ialtamir,areces,benotti}@famaf.unc.edu.ar

ABSTRACT
We propose an algorithm for the generation of referring expressions (REs) that adapts the
approach of Areces et al. (2008, 2011) to include overspecification and probabilities learned
from corpora. After introducing the algorithm, we discuss how probabilities required as input
can be computed for any given domain for which a suitable corpus of REs is available, and
how the probabilities can be adjusted for new scenes in the domain using a machine learning
approach. We exemplify how to compute probabilities over the GRE3D7 corpus of Viethen
(2011). The resulting algorithm is able to generate different referring expressions for the same
target with a frequency similar to that observed in corpora. We empirically evaluate the new
algorithm over the GRE3D7 corpus, and show that the probability distribution of the generated
referring expressions matches the one found in the corpus with high accuracy.

KEYWORDS: Generation of referring expressions, refinement algorithms, machine-learning.

53

1 Generation of referring expressions

In linguistics, a referring expression (RE) is an expression that unequivocally identifies the
intended target to the interlocutor, from a set of possible distractors. The generation of referring
expressions (GRE) is a key task of most natural language generation (NLG) systems (Reiter and
Dale, 2000, Section 5.4). Depending on the information available to the NLG system, certain
objects might not be associated with an identifier which can be easily recognized by the user.
In those cases, the system will have to generate a, possibly complex, description that contains
enough information so that the interlocutor will be able to identify the intended referent.

The generation of referring expressions is a well developed field in automated natural language
generation. Building upon GRE foundational work (Winograd, 1972; Dale, 1989; Dale and
Reiter, 1995), various proposals have investigated the generation of different kinds of referring
expressions such as relational expressions (“the blue ball next to the cube” (Dale and Haddock,
1991)), reference to sets (“the two small cubes” (Stone, 2000)), or more expressive logical
connectives (“the blue ball not on top of the cube” (van Deemter, 2002)). REs involving
relations, in particular, have received increasing attention recently. However, the classical
algorithm by Dale and Haddock (1991) was shown to be unable to generate satisfying REs in
practice (see the analysis over the cabinet corpus in (Viethen and Dale, 2006)). Furthermore,
the Dale and Haddock algorithm and many of its successors (such as (Kelleher and Kruijff,
2006)) are vulnerable to the problem of infinite regress, where the algorithm enters an infinite
loop, jumping back and forth between descriptions for two related individuals, as in “the book
on the table which supports a book on the table . . . ”

Areces et al. (2008, 2011) have proposed low complexity algorithms for the generation of
relational REs that eliminate the risk of infinite regression. These algorithms are based on
variations of the partition refinement algorithms of Paige and Tarjan (1987). The information
provided by a given scene is interpreted as a relational model whose objects are classified into
sets that fit the same description. This classification is successively refined till the target is
the only element fitting the description of its class. The existence of an RE depends on the
information available in the input scene, and on the expressive power of the formal language
used to describe elements of the different classes in the refinement. Refinement algorithms
effectively compute REs for all individuals in the domain, at the same time. The algorithms
always terminate returning a formula of the formal language chosen that uniquely describes the
target (if the formal language is expressive enough to identify the target in the input model).
Refinement algorithms require an ordered list of properties that can be used to described
the objects in the scene, and the naturalness of the generated REs strongly depends on this
ordering. The goal of this paper is twofold. First we show how we can add non-determinism and
overspecification to the refinement algorithms, by replacing the fixed ordering over properties
of the input scene by a probability of use for each property, and modifying the algorithm
accordingly. In this way, each call to the algorithm can produce different REs for the same
input scene and target. We will then show that given suitable corpora of REs (like the GRE3D7
corpora discussed in (Viethen, 2011)) we can estimate these probabilities of use so that REs are
generated with a probability distribution that matches the one found in corpora.

2 Adding non-determinism and overspecification

Refinement algorithms for GRE are based on the following basic idea: given a scene S, the
objects appearing in S are successively classified according to their properties into finer and
finer classes. A description (in some formal language L) of each class is computed every time a

54

class is refined. The procedure always stops when the set of classes stabilizes, i.e., no further
refinement is possible with the information available in the scene1. If the target element is in a
singleton class, then the formal description of that class is a referring expression; otherwise the
target cannot be unequivocally described (in L).

We present a modification of the algorithm in (Areces et al., 2008) where the fixed order of
properties in the input scene is replaced by a finite probability distribution. The resulting
algorithm (see Figure 3) is now non-deterministic: two runs of the algorithm with the same
input might result in different REs for objects in the scene. The input to the algorithm will be a
relational modelM = 〈∆, || · ||〉, where ∆ is the non-empty domain of objects in the scene, and
|| · || is an interpretation function that assigns to all properties in the scene its intended extension.
For example, the scene shown in Figure 1 could be represented by the modelM = 〈∆, || · ||〉
shown in Figure 2; where ∆= {e1, . . . , e7}, and ||green||, for example, is {e3, e4, e6}.

Figure 1: Input scene

e1

left
small

blue ball

e2

left
big

blue cube

e3

top left small green ball

e4

small
green
cube

e5

big
blue
ball

e6

big
green
cube

e7

top small blue cube

belowontop

leftof

rightof
belowontop

Figure 2: Scene as a relational model
On termination, the algorithm computes what are called the L -similarity classes of the input
modelM . Intuitively, if two elements in the model belong to the same L -similarity class, then
L is not expressive enough to tell them appart (i.e, no formula in L can distinguish them).

The algorithm we discuss uses formulas of the EL description logic language (Baader et al.,
2003) to describe refinement classes2. The interpretation of the EL formula ψu∃R.ϕ is the set
of all elements that satisfy ψ and that are related by relation R to some element that satisfy ϕ.

Algorithm 1 takes as input a model and a list Rs of pairs (R,R.puse) that links each relation
R ∈ REL, the set of all relation symbols in the model, to some probability of use R.puse. The
set RE will contain the formal description of the refinement classes and it is initialized by
the most general description >. For each R, we first compute R.rnduse, a random number in
[0,1]. If R.rnduse ≤ R.puse then we will use R to refine the set of classes. The value of R.puse
will be incremented by R.incuse in each main loop, to ensure that all relations are, at some
point, considered by the algorithm. This ensures that a referring expression will be found if it
exists; but gives higher probability to expressions using relations with a high R.puse. While RE
contains descriptions that can be refined (i.e., classes with at least two elements) we will call
the refinement function addL (R,ϕ,RE) successively with each relation in Rs. A change in one of
the classes, can trigger changes in others. For that reason, if RE changes, we exit the for loop to
start again with the relations of higher R.puse. If after trying to refine the set with all relations in
Rs, the set RE has not changed, then we have reached a stable state (i.e., the classes described
in RE cannot be further refined with the current R.puse values). We will then increment all

1Of course, if we are only interested in a referring expression for a given target we can stop the procedure as soon
as the target is the only element of some of the classes.

2Notice, though, that the particular formal language used is independent of the main algorithm, and different
addL (R,ϕ,RE) functions can be used depending on the language involved.

55

Algorithm 1: Computing L -similarity classes
Input: A modelM and a list Rs ∈ (REL× [0,1])∗ of relation symbols with their puse values, ordered by puse
Output: A set of formulas RE such that {||ϕ|| | ϕ ∈ RE} is the set of L -similarity classes ofM
RE← {>} // the most general description > applies to all elements in the scene
for (R,R.puse) ∈ Rs do

R.rnduse = Random(0,1) // R.rnduse is the probability of using R
R.incuse = (1 − R.puse) / MaxIterations // R.puse are incremented by R.incuse in each loop

repeat
while ∃(ϕ ∈ RE).(#||ϕ||> 1) do // while some class has at least two elements

RE’← RE // make a copy for future comparison
for (R, R.puse) ∈ Rs do

if R.rnduse ≤ R.puse then // R will be used in the expression
for ϕ ∈ RE do addEL (R, ϕ, RE) // refine all classes using R

if RE 6= RE’ then // the classification has changed
exit // exit for-loop to try again highest R.puse

if RE = RE’ then // the classification has stabilized
exit // exit while-loop to increase R.puse

for (R,R.puse) ∈ Rs do R.puse← R.puse+ R.incuse // increase R.puse
until ∀((R,R.puse) ∈ Rs).(R.puse≥ 1) // R.puse are incremented until they reach 1

Algorithm 2: addEL (R, ϕ, RE)

if FirstLoop? then // are we in the first loop?
Informative← TRUE // allow overspecification

else Informative← ||ψu ∃R.ϕ|| 6= ||ψ||; // informative: smaller than the original?
for ψ ∈ RE with #||ψ||> 1 do

if ψu ∃R.ϕ is not subsumed in RE and // non-redundant: can’t be obtained from RE?
||ψu ∃R.ϕ|| 6= ; and // non-trivial: has elements?
Informative then

add ψu ∃R.ϕ to RE // add the new class to the classification
remove subsumed formulas from RE // remove redundant classes

Figure 3: Refinement algorithm with probabilities and overspecification for the EL -language

the R.puse values and start the procedure again. Algorithm 2 almost coincides with the one
in (Areces et al., 2008). The for loop will refine each descriptions in RE using the relation
R and the other descriptions already in RE, under certain conditions. The new description
should be non-redundant (it cannot be obtained from classes already in RE), non-trivial (it is
not empty), and informative (it does not coincide with the original class). If these conditions
are met, the new description is added to RE, and redundant descriptions created by the new
description are eliminated. The if statement at the beginning of Algorithm 2 disregards the
informativity test during the first loop of the algorithm allowing overspecification.

3 Learning to describe new objects from corpora

The algorithm presented in the previous section assumes that each relation R used in a referring
expression has a known probability of use R.puse. In this section, we describe how to learn these
probabilities from corpora. We use the GRE3D7 corpus to illustrate our learning set up.

56

The REs in the corpus were produced by 294 participants, each producing 16 referring ex-
pressions for 16 scenes. In this way, 140 descriptions for 32 different scenes were obtained,
resulting in a corpus of 4480 REs describing a target in a 3D scene containing seven objects.
Each description was elicited in the absence of a preceding discourse. A sample scene is shown
in Figure 1 (the target is marked with an arrow). For more details on the corpus see (Viethen,
2011, Chapter 5). Importantly for our purposes, the corpus not only contains propositional
REs (as other benchmark corpora in the area, e.g., (Gatt et al., 2008)) but also relational REs
naturally produced by people. For example, the RE “small ball on top of cube” is used to describe
the target in Figure 1. As our algorithm is one of the few that can generate relational REs in
an efficient and reliable way, a corpus of relational REs is needed to test its full potential. It is
worth mentioning that, although people only used 16 propositional properties and 4 relational
properties in their REs, and converged to between 10 and 30 different descriptions of the same
target, the possible different correct relational REs for a generation algorithm are in the order of
several hundred. Hence, reproducing the corpus distribution is a complex task.

We calculate R.puse values for each training scene in the corpus in the following way. First, we
use the REs in the corpus C to define the relational modelM used by the algorithm. Then we
calculate the value of puse for each relation R in the model as the percentage of REs in which
the relation appears. I.e., R.puse= (# of REs in C in which R appears)/(# of REs in C). The
values R.puse obtained in this way should be interpreted as the probability of using R to describe
the target in modelM , and we could argue that they are correlated to the saliency of R in the
scene. For that reason, for example, in the scene in Figure 1 the value of ball.puse is 1, while the
value of cube.puse is 0.178. These probabilities will not be useful to describe different targets in
different scenes. We will now see how we can use them to obtain values for new targets and
scenes using a machine learning approach.

We selected eight different scenes for testing from the GRE3D7 corpus, and for each, we used
the rest of the corpus for training. We used linear regression (Hall et al., 2009) to learn a
function estimating the value of puse for each relation in the domain. We used simple, domain
independent features that can be extracted automatically from the relational model:

target-has(R) := true if the target is in R
#relations := number of relations the target is in
#bin-relations := number of the binary relations the target is in
landmark-has(R) := true if a landmark (i.e., an object directly related to the target) is in R
discrimination(R) := 1 divided the number of objects in the model that are in R

Despite its simplicity, the functions obtained by linear regression are able to learn interesting
characteristics of the domain. E.g., they correctly model that the saliency of a color depends
strongly on whether the target object is of that color, and it does not depend on its discrimination
power in the model. They also correctly predict that the ontop relation is used more frequently
than the horizontal relations (leftof and rightof), as reported in (Viethen, 2011). Interestingly,
they also indicate a characteristic of the GRE3D7 corpus not mentioned in previous work: size
is more frequently used for overspecification when the target and landmark have the same size
(it is used in overspecified REs in 49% of the descriptions for scenes where target and landmark
have the same size, and only 25% of the time when target and landmark have different size).

4 Evaluation

We present a quantitative evaluation of the algorithm proposed. In particular, we show that the
probabilistic refinement algorithm with overspecification is able to generate a distribution of
REs similar to that observed in corpora. We discuss in detail the experiments we run for the

57

Referring Expressions
Corpus Algorithm Accuracy

#Cor %Cor #Alg %Alg %Acc
ball,green 91 65.00 6376 63.76 63.76
ball,green,small 23 16.43 3440 34.40 16.43
ball,green,small,on-top(blue,cube,large) 8 5.71 0 0.00 0.00
ball,green,on-top(blue,cube) 5 3.57 0 0.00 0.00
ball,green,on-top(blue,cube,large) 5 3.57 0 0.00 0.00
ball,green,small,on-top(blue,cube) 2 1.43 0 0.00 0.00
ball,on-top(cube) 1 0.71 27 0.27 0.27
ball,green,small,on-top(blue,cube,large,left) 1 0.71 0 0.00 0.00
ball,small,on-top(cube,large) 1 0.71 2 0.02 0.02
ball,green,top 1 0.71 0 0.00 0.00
ball,small,on-top(cube) 1 0.71 3 0.03 0.03
ball,green,on-top(cube) 1 0.71 0 0.00 0.00
ball,front,green 0 0.00 97 0.97 0.00
ball,front,green,small 0 0.00 13 0.13 0.00
ball,front,top 0 0.00 12 0.12 0.00
ball,green,left 0 0.00 11 0.11 0.00
ball,top 0 0.00 10 0.10 0.00
ball,green,left,small 0 0.00 5 0.05 0.00
ball,left,top 0 0.00 2 0.02 0.00
ball,small,top 0 0.00 1 0.01 0.00
ball,front,on-top(cube,left) 0 0.00 1 0.01 0.00
Total 140 100.00 10000 100 80.51

Table 1: REs in the corpus and those produced by our algorithm for Figure 1

scene shown in Figure 1 (Scene 3 in the GRE3D7 corpus), then summarize the results for the
other seven scenes we used for testing.

Using puse learned as described in Section 3 and running our algorithm 10000 times, we obtain
14 different referring expressions for Figure 1. It is already interesting to see that with the
puse values learned from the corpus the algorithm generates only a small set of RE with a high
probability. Of these 14 different REs, 5 are the most frequent REs found in the corpus of 140
REs associated to the Scene; indeed, 98% of the utterances generated by the algorithm for this
scene appear in the corpus. The remaining 9 REs generated by the algorithm, not present in the
corpora, are very natural as can be observed in Table 1. The table lists the REs in the corpus and
the REs generated by the algorithm using the learned puse. For each RE, we indicate the number
of times it appears in the corpus (#Cor), the proportion it represents (%Cor), the number of
times it is generated by our algorithm (#Alg) and the proportion it represents (%Alg). Finally,
the accuracy (%Acc) column compares the REs in the corpus with the REs generated by the
algorithm. The accuracy is the proportion of perfect matches between the algorithm output
and the human REs from the corpus. The accuracy metric has been used in previous work for
comparing the output of an RE generation algorithm with the REs found in corpora (van der
Sluis et al., 2007; Viethen, 2011) and it is considered a strict comparison metric for this task.

To put our results in perspective we compare in Table 2 our algorithm with a number of possible
variations. All numbers shown in the table represent accuracy with the corresponding corpus.
The first column shows the values obtained when we run the algorithm over the scene with the
values of puse obtained from the scene itself. As we could expect, this column has the highest
average accuracy. The second column shows the results of the algorithm runs with puse learned

58

Scene puse Learned puse Random puse Uniform puse

Scene 1 85.75% 84.49% 17.95% 5.37%
Scene 3 82.81% 80.51% 9.89% 4.40%
Scene 6 90.11% 83.30% 4.13% 4.16%
Scene 8 86.52% 64.06% 16.32% 9.75%
Scene 10 89.49% 75.80% 7.56% 3.70%
Scene 12 80.21% 81.29% 57.09% 6.68%
Scene 13 89.98% 50.79% 9.30% 3.59%
Scene 21 92.13% 80.01% 8.45% 6.77%
Average 87.13% 75.03% 16.34% 5.55%

Table 2: Accuracy between the REs in the corpus and those generated using puse values computed
from the scene, machine learned, random and uniform.

from corpora as explained in Section 3. In most cases the accuracy is rather high and the average
accuracy is still high. The relatively low accuracy obtained in Scene 13 is explained mostly by
the poor estimation of the puse value for the large relation. In the corpus, relations small and
large are used much more when the target cannot be uniquely identified using taxonomical
(ball and cube) and absolute (green and blue) properties, but the features we used for machine
learning do not capture such dependencies. In spite of this limitation, the average of the second
column is 75%, indicating that puse values learned from the corpus are good enough to be used
to generate REs for new scenes from the domain. The last two columns can be considered as
baselines. In the first one we generate random values for puse. The accuracy obtained is in most
cases poor, but with a noticeable variation due to chance. In addition to poor accuracy, when
random puse values were used many of the generated REs where unnaturally sounding like
“small on the top of a blue cube that is below of something that is small.” In the last column we
present the accuracy for an artificial run, where all the REs generated in any of the previous
columns were assigned the same probability.

Figure 4: Cross-entropy between the corpus dis-
tribution and different runs of the algorithm

We also computed the entropy of the prob-
ability distribution of REs found in the cor-
pus, and the cross-entropy between the cor-
pus distribution of REs and the execution of
each algorithm we just described (see (Ju-
rafsky and Martin, 2008) for details on
cross-entropy evaluation). Figure 4 shows
the results for the eight scenes we are con-
sidering. The cross-entropies from the first
two runs (scene and learned) are, in general,
much closer to the corpus entropy than ran-
dom’s and uniform’s cross-entropies, and
to each other. Only in Scene 12 random
approaches, by chance, the other two.

5 Discussion and Conclusions

We extend Areces et al. (2008) algorithm to generate REs similar to those produced by humans.
The modifications we proposed are based on two observations. First, it has been argued that
no fixed ordering of properties is able to generate all REs produced by humans and, second,

59

humans frequently overspecify their REs (Engelhardt et al., 2006; Arts et al., 2011; Viethen,
2011). We tested the proposed algorithm on the GRE3D7 corpus and found that it is able to
generate a large proportion of the overspecified REs found in the corpus without generating
trivially redundant referring expressions. Viethen (2011) trains decision trees that achieve
65% average accuracy on the GRE3D7 corpus. This approach is able to generate overspecified
relational descriptions, but they might fail to be referring expressions. Indeed, because the
method does not verify the extension of the generated expression over a model of the scene, the
generated descriptions might not uniquely identify the target. As we have already discussed, our
algorithm ensures termination and it always finds a referring expression if one exists. Moreover,
it achieves an average of 75% of accuracy over the 8 scenes used in our tests.

Different algorithms for the generation of overspecified referring expressions have been recently
proposed (de Lucena and Paraboni, 2008; Ruud et al., 2012). To our knowledge, they have
not been evaluated on the GRE3D7 corpus and, hence, comparison is difficult. de Lucena and
Paraboni (2008) and Ruud et al. (2012) algorithms have been evaluated on the TUNA-AR
corpus (Gatt et al., 2008) where they have achieved a 33% and 40% accuracy respectively. As
the TUNA-AR corpus includes only propositional REs, it would be interesting future work to
evaluate how these algorithms perform in corpora with relational REs such as GRE3D7.

The way we introduce overspecification is inspired by the work of Keysar et al. (1998) on
egocentrism and natural language production. Keysar et al. argue that when producing language,
considering hearers point of view is not done from the outset but it is rather an afterthought;
adult speakers produce REs egocentrically, just like children do, but then adjust REs so that the
addressee is able to identify the target unequivocally. The first, egocentric, step is a heuristic
process based in a model of saliency of the scene that contains the target. Our definition of
puse is intended to capture the saliences of the properties for different scenes and targets. The
puse of a relation changes according to the scene. This is in contrast with previous work where
the saliency of a property is constant in a domain. Keysar et al. argue that the reason for this
generate-and-adjust procedure may have to do with information processing limitations of the
mind: if the heuristic that guides the egocentric phase is well tunned, it succeeds with a suitable
RE in most cases and seldom requires adjustments. Interestingly, we observe a similar behavior
with our algorithm: when puse values learned from the domain are used, the algorithm is not
only more accurate but also much faster than when using random pusevalues.

Besides testing our algorithm over the rest of the scenes in the GRE3D7 corpus, as future
work we plan to evaluate our algorithm on more complex domains like those provided by
Open Domain Folksonomies (Pacheco et al., 2012). We will also explore corpora obtained
through interaction such as the GIVE Corpus (Gargett et al., 2010) where it is common to
observe multi shot REs. Under time pressure, subjects will first produce an underspecified
expression that includes salient properties of the target (e.g., “the red button”). And then,
in a following utterance, they add additional properties (e.g., “to the left of the lamp”) to
make the expression a proper RE identifying the target uniquely. The source code and the
documentation for the algorithm are distributed under the GNU Lesser GPL and can be obtained
at http://code.google.com/p/bisimulation-gre.

Acknowledgments. This work was partially supported by grants ANPCyT-PICT-2008-306, ANPCyT-
PICT-2010-688, the FP7-PEOPLE-2011-IRSES Project “Mobility between Europe and Argentina applying
Logics to Systems” (MEALS) and the Laboratoire Internationale Associé “INFINIS”.

60

References

Areces, C., Figueira, S., and Gorín, D. (2011). Using logic in the generation of referring
expressions. In Pogodalla, S. and Prost, J., editors, Proceedings of the 6th International
Conference on Logical Aspects of Computational Linguistics (LACL 2011), volume 6736 of Lecture
Notes in Computer Science, pages 17–32, Montpelier. Springer.

Areces, C., Koller, A., and Striegnitz, K. (2008). Referring expressions as formulas of description
logic. In Proceedings of the 5th International Natural Language Generation Conference (INLG’08),
pages 42–49, Morristown, NJ, USA. Association for Computational Linguistics.

Arts, A., Maes, A., Noordman, L., and Jansen, C. (2011). Overspecification facilitates object
identification. Journal of Pragmatics, 43(1):361–374.

Baader, F., McGuiness, D., Nardi, D., and Patel-Schneider, P., editors (2003). The Description
Logic Handbook: Theory, implementation and applications. Cambridge University Press.

Dale, R. (1989). Cooking up referring expressions. In Proceedings of the 27th annual meeting
on Association for Computational Linguistics, pages 68–75.

Dale, R. and Haddock, N. (1991). Generating referring expressions involving relations. In
Proceedings of the 5th conference of the European chapter of the Association for Computational
Linguistics (EACL’91), pages 161–166.

Dale, R. and Reiter, E. (1995). Computational interpretations of the Gricean maxims in the
generation of referring expressions. Cognitive Science, 19(2):233–263.

de Lucena, D. J. and Paraboni, I. (2008). USP-EACH frequency-based greedy attribute selection
for referring expressions generation. In Proceedings of the 5th International Conference on
Natural Language Generation (INLG 2008), pages 219–220. Association for Computational
Linguistics.

Engelhardt, P., Bailey, K., and Ferreira, F. (2006). Do speakers and listeners observe the gricean
maxim of quantity? Journal of Memory and Language, 54(4):554–573.

Gargett, A., Garoufi, K., Koller, A., and Striegnitz, K. (2010). The give-2 corpus of giving
instructions in virtual environments. In Proceedings of the 7th International Conference on
Language Resources and Evaluation (LREC), Malta.

Gatt, A., Belz, A., and Kow, E. (2008). The tuna challenge 2008: Overview and evaluation
results. In Proceedings of the 5th International Conference on Natural Language Generation
(INLG 2008), pages 198–206. Association for Computational Linguistics.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009). The
WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1):10–18.

Jurafsky, D. and Martin, J. (2008). Speech and Language Processing. Pearson Prentice Hall,
second edition.

Kelleher, J. and Kruijff, G.-J. (2006). Incremental generation of spatial referring expressions in
situated dialog. In Proceedings of the 21st International Conference on Computational Linguistics
and the 44th annual meeting of the Association for Computational Linguistics, pages 1041–1048.

61

Keysar, B., Barr, D. J., and Horton, W. S. (1998). The Egocentric Basis of Language Use. Current
Directions in Psychological Science, 7(2):46–49.

Pacheco, F., Duboue, P., and Domínguez, M. (2012). On the feasibility of open domain referring
expression generation using large scale folksonomies. In Proceedings of the 2012 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 641–645, Montréal, Canada. Association for Computational Linguistics.

Paige, R. and Tarjan, R. (1987). Three partition refinement algorithms. SIAM Journal on
Computing, 16(6):973–989.

Reiter, E. and Dale, R. (2000). Building Natural Language Generation Systems. Cambridge
University Press, Cambridge.

Ruud, K., Emiel, K., and Mariët, T. (2012). Learning preferences for referring expression
generation: Effects of domain, language and algorithm. In INLG 2012 Proceedings of the Seventh
International Natural Language Generation Conference, pages 3–11, Utica, IL. Association for
Computational Linguistics.

Stone, M. (2000). On identifying sets. In Proceedings of the 1st International Natural Language
Generation Conference (INLG’00), pages 116–123.

van Deemter, K. (2002). Generating referring expressions: Boolean extensions of the incre-
mental algorithm. Computational Linguistics, 28(1):37–52.

van der Sluis, I., Gatt, A., and van Deemter., K. (2007). Evaluating algorithms for the
generation of referring expressions: Going beyond toy domains. In Proceedings of Recent
Advances in Natural Language Processing.

Viethen, H. A. E. (2011). The Generation of Natural Descriptions: Corpus-Based Investigations of
Referring Expressions in Visual Domains. PhD thesis, Macquarie University, Sydney, Australia.

Viethen, J. and Dale, R. (2006). Algorithms for generating referring expressions: Do they
do what people do? In Proceedings of the 4th International Natural Language Generation
Conference (INLG’06), pages 63–70.

Winograd, T. (1972). Understanding natural language. Cognitive Psychology, 3(1):1–191.

62

