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Abstract 

Although vast amounts of textual data are freely 
available, many NLP algorithms exploit only a 
minute percentage of it. In this paper, we study the 
challenges of working at the terascale. We present 
an algorithm, designed for the terascale, for mining  
is-a relations that achieves similar performance to a 
state-of-the-art linguistically-rich method. We fo-
cus on the accuracy of these two systems as a func-
tion of processing time and corpus size. 

1 Introduction 

The Natural Language Processing (NLP) com-
munity has recently seen a growth in corpus-based 
methods. Algorithms light in linguistic theories but 
rich in available training data have been success-
fully applied to several applications such as ma-
chine translation (Och and Ney 2002), information 
extraction (Etzioni et al. 2004), and question an-
swering (Brill et al. 2001). 

In the last decade, we have seen an explosion in 
the amount of available digital text resources. It is 
estimated that the Internet contains hundreds of 
terabytes of text data, most of which is in an 
unstructured format. Yet, many NLP algorithms 
tap into only megabytes or gigabytes of this 
information. 

In this paper, we make a step towards acquiring 
semantic knowledge from terabytes of data. We 
present an algorithm for extracting is-a relations, 
designed for the terascale, and compare it to a state 
of the art method that employs deep analysis of 
text (Pantel and Ravichandran 2004). We show 
that by simply utilizing more data on this task, we 
can achieve similar performance to a linguistically-
rich approach. The current state of the art co-
occurrence model requires an estimated 10 years 
just to parse a 1TB corpus (see Table 1). Instead of 
using a syntactically motivated co-occurrence ap-
proach as above, our system uses lexico-syntactic 
rules. In particular, it finds lexico-POS patterns by 
making modifications to the basic edit distance 
algorithm. Once these patterns have been learnt, 

the algorithm for finding new is-a relations runs in 
O(n), where n is the number of sentences. 

In semantic hierarchies such as WordNet (Miller 
1990), an is-a relation between two words x and y 
represents a subordinate relationship (i.e. x is more 
specific than y). Many algorithms have recently 
been proposed to automatically mine is-a (hypo-
nym/hypernym) relations between words. Here, we 
focus on is-a relations that are characterized by the 
questions “What/Who is X?” For example, Table 2 
shows a sample of 10 is-a relations discovered by 
the algorithms presented in this paper. In this table, 
we call azalea, tiramisu, and Winona Ryder in-
stances of the respective concepts flower, dessert 
and actress. These kinds of is-a relations would be 
useful for various purposes such as ontology con-
struction, semantic information retrieval, question 
answering, etc. 

The main contribution of this paper is a compari-
son of the quality of our pattern-based and co-
occurrence models as a function of processing time 
and corpus size. Also, the paper lays a foundation 
for terascale acquisition of knowledge. We will 
show that, for very small or very large corpora or 
for situations where recall is valued over precision, 
the pattern-based approach is best. 

2 Relevant Work 

Previous approaches to extracting is-a relations 
fall under two categories: pattern-based and co-
occurrence-based approaches. 

2.1 Pattern-based approaches 

Marti Hearst (1992) was the first to use a pat-
tern-based approach to extract hyponym relations 
from a raw corpus. She used an iterative process to 
semi-automatically learn patterns. However, a 
corpus of 20MB words yielded only 400 examples. 
Our pattern-based algorithm is very similar to the 
one used by Hearst. She uses seed examples to 
manually discover her patterns whearas we use a 
minimal edit distance algorithm to automatically 
discover the patterns. 
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Riloff and Shepherd (1997) used a semi-
automatic method for discovering similar words 
using a few seed examples by using pattern-based 
techniques and human supervision. Berland and 
Charniak (1999) used similar pattern-based tech-
niques and other heuristics to extract meronymy 
(part-whole) relations. They reported an accuracy 
of about 55% precision on a corpus of 100,000 
words. Girju et al. (2003) improved upon Berland 
and Charniak's work using a machine learning 
filter. Mann (2002) and Fleischman et al. (2003) 
used part of speech patterns to extract a subset of 
hyponym relations involving proper nouns. 

Our pattern-based algorithm differs from these 
approaches in two ways. We learn lexico-POS 
patterns in an automatic way. Also, the patterns are 
learned with the specific goal of scaling to the 
terascale (see Table 2). 

2.2 Co-occurrence-based approaches 

The second class of algorithms uses co-
occurrence statistics (Hindle 1990, Lin 1998). 
These systems mostly employ clustering algo-
rithms to group words according to their meanings 
in text. Assuming the distributional hypothesis 
(Harris 1985), words that occur in similar gram-
matical contexts are similar in meaning. Curran 
and Moens (2002) experimented with corpus size 
and complexity of proximity features in building 
automatic thesauri. CBC (Clustering by Commit-
tee) proposed by Pantel and Lin (2002) achieves 
high recall and precision in generating similarity 
lists of words discriminated by their meaning and 
senses. However, such clustering algorithms fail to 
name their classes. 

Caraballo (1999) was the first to use clustering 
for labeling is-a relations using conjunction and 
apposition features to build noun clusters. Re-
cently, Pantel and Ravichandran (2004) extended 
this approach by making use of all syntactic de-
pendency features for each noun. 

3 Syntactical co-occurrence approach 

Much of the research discussed above takes a 
similar approach of searching text for simple sur-
face or lexico-syntactic patterns in a bottom-up 
approach. Our co-occurrence model (Pantel and 
Ravichandran 2004) makes use of semantic classes 

like those generated by CBC. Hyponyms are gen-
erated in a top-down approach by naming each 
group of words and assigning that name as a hypo-
nym of each word in the group (i.e., one hyponym 
per instance/group label pair). 

The input to the extraction algorithm is a list of 
semantic classes, in the form of clusters of words, 
which may be generated from any source. For ex-
ample, following are two semantic classes discov-
ered by CBC: 
(A) peach, pear, pineapple, apricot, 
mango, raspberry, lemon, cherry, 
strawberry, melon, blueberry, fig, apple, 
plum, nectarine, avocado, grapefruit, 
papaya, banana, cantaloupe, cranberry, 
blackberry, lime, orange, tangerine, ... 

(B) Phil Donahue, Pat Sajak, Arsenio 
Hall, Geraldo Rivera, Don Imus, Larry King, 
David Letterman, Conan O'Brien, Rosie 
O'Donnell, Jenny Jones, Sally Jessy Raph-
ael, Oprah Winfrey, Jerry Springer, Howard 
Stern, Jay Leno, Johnny Carson, ... 

The extraction algorithm first labels concepts 
(A) and (B) with fruit and host respectively. Then, 
is-a relationships are extracted, such as: apple is a 
fruit, pear is a fruit, and David Letterman is a host. 
An instance such as pear is assigned a hypernym 
fruit not because it necessarily occurs in any par-
ticular syntactic relationship with the word fruit, 
but because it belongs to the class of instances that 
does. The labeling of semantic classes is performed 
in three phases, as outlined below. 

3.1 Phase I 

In the first phase of the algorithm, feature vec-
tors are extracted for each word that occurs in a 
semantic class. Each feature corresponds to a 
grammatical context in which the word occurs. For 
example, “catch __” is a verb-object context. If the 
word wave occurred in this context, then the con-
text is a feature of wave. 

We then construct a mutual information vector 
MI(e) = (mie1, mie2, …, miem) for each word e, 
where mief is the pointwise mutual information 
between word e and context f, which is defined as: 
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Table 2. Sample of 10 is-a relationships discovered by 
our co-occurrence and pattern-based systems.  

CO-OCCURRENCE SYSTEM PATTERN-BASED SYSTEM 

Word Hypernym Word Hypernym 

azalea flower American airline 
bipolar disorder disease Bobby Bonds coach 

Bordeaux wine radiation therapy cancer 
treatment 

Flintstones television show tiramisu dessert 
salmon fish Winona Ryder actress 

 

Table 1. Approximate processing time on a single 
Pentium-4 2.5 GHz machine. 

TOOL 15 GB ORPUS 1 TB CORPUS 

POS Tagger 2 days 125 days 
NP Chunker 3 days 214 days 

Dependency Parser 56 days 10.2 years 
Syntactic Parser 5.8 years 388.4 years 

 

Table 2. Sample of 10 is-a relationships discovered by 
our co-occurrence and pattern-based systems.  

CO-OCCURRENCE SYSTEM PATTERN-BASED SYSTEM 

Word Hypernym Word Hypernym 

azalea flower American airline 
bipolar disorder disease Bobby Bonds coach 

Bordeaux wine radiation therapy cancer 
treatment 

Flintstones television show tiramisu dessert 
salmon fish Winona Ryder actress 
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where n is the number of elements to be clustered, 
cef is the frequency count of word e in grammatical 
context f, and N is the total frequency count of all 
features of all words. 

3.2 Phase II 

Following (Pantel and Lin 2002), a committee 
for each semantic class is constructed. A commit-
tee is a set of representative elements that unambi-
guously describe the members of a possible class. 
For example, in one of our experiments, the com-
mittees for semantic classes (A) and (B) from Sec-
tion 3 were: 

A) peach, pear, pineapple, apricot, mango, 
raspberry, lemon, blueberry 

B) Phil Donahue, Pat Sajak, Arsenio Hall, 
Geraldo Rivera, Don Imus, Larry King, 
David Letterman 

3.3 Phase III 

By averaging the feature vectors of the commit-
tee members of a particular semantic class, we 
obtain a grammatical template, or signature, for 
that class. For example, Figure 1 shows an excerpt 
of the grammatical signature for semantic class 
(B). The vector is obtained by averaging the fea-
ture vectors of the words in the committee of this 
class. The “V:subj:N:joke” feature indicates a sub-
ject-verb relationship between the class and the 
verb joke while “N:appo:N:host” indicates an ap-
position relationship between the class and the 
noun host. The two columns of numbers indicate 
the frequency and mutual information scores. 

To name a class, we search its signature for cer-
tain relationships known to identify class labels. 
These relationships, automatically learned in 
(Pantel and Ravichandran 2004), include apposi-
tions, nominal subjects, such as relationships, and 

like relationships. We sum up the mutual informa-
tion scores for each term that occurs in these rela-
tionships with a committee of a class. The highest 
scoring term is the name of the class. 

The syntactical co-occurrence approach has 
worst-case time complexity O(n2k), where n is the 
number of words in the corpus and k is the feature-
space (Pantel and Ravichandran 2004). Just to 
parse a 1 TB corpus, this approach requires ap-
proximately 10.2 years (see Table 2). 

4 Scalable pattern-based approach 

We propose an algorithm for learning highly 
scalable lexico-POS patterns. Given two sentences 
with their surface form and part of speech tags, the 
algorithm finds the optimal lexico-POS alignment. 
For example, consider the following 2 sentences: 
1) Platinum is a precious metal. 

2) Molybdenum is a metal. 

Applying a POS tagger (Brill 1995) gives the 
following output: 

 

Surface Platinum is a precious metal . 
POS NNP VBZ DT JJ NN . 

 

Surface Molybdenum is a metal . 
POS NNP VBZ DT NN . 

 

A very good pattern to generalize from the 
alignment of these two strings would be 

 

Surface  is a  metal . 
POS NNP     . 

 

We use the following notation to denote this 
alignment: “_NNP is a (*s*) metal.”, where  
“_NNP represents the POS tag NNP”. 

To perform such alignments we introduce two 
wildcard operators, skip (*s*) and wildcard (*g*). 
The skip operator represents 0 or 1 instance of any 
word (similar to the \w* pattern in Perl), while the 
wildcard operator represents exactly 1 instance of 
any word (similar to the \w+ pattern in Perl). 

4.1 Algorithm 

We present an algorithm for learning patterns at 
multiple levels. Multilevel representation is de-
fined as the different levels of a sentence such as 
the lexical level and POS level. Consider two 
strings a(1, n) and b(1, m) of lengths n and m re-
spectively. Let a1(1, n) and a2(1, n) be the level 1 
(lexical level) and level 2 (POS level) representa-
tions for the string a(1, n). Similarly, let b1(1, m) 
and b2(1, m) be the level 1 and level 2 representa-
tions for the string b(1, m). The algorithm consists 
of two parts: calculation of the minimal edit dis-
tance and retrieval of an optimal pattern. The 
minimal edit distance algorithm calculates the 
number of edit operations (insertions, deletions and 
replacements) required to change one string to 
another string. The optimal pattern is retrieved by 

{Phil Donahue,Pat Sajak,Arsenio Hall} 
 N:gen:N  
  talk show 93 11.77 
  television show 24 11.30 
  TV show 25 10.45 
  show 255 9.98 
  audience 23 7.80 
  joke 5 7.37 
 V:subj:N  
  joke 39 7.11 
  tape 10 7.09 
  poke 15 6.87 
  host 40 6.47 
  co-host 4 6.14 
  banter 3 6.00 
  interview 20 5.89 
 N:appo:N  
  host 127 12.46 
  comedian 12 11.02 
  King 13 9.49 
  star 6 7.47 

Figure 1. Excerpt of the grammatical signature for the 
television host class. 
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keeping track of the edit operations (which is the 
second part of the algorithm). 

Algorithm for calculating the minimal edit distance 
between two strings 

D[0,0]=0 
for i = 1 to n do  D[i,0] = D[i-1,0] + cost(insertion) 
for j = 1 to m do D[0,j] = D[0,j-1] + cost(deletion) 
for i = 1 to n do 
 for j = 1 to m do 
  D[i,j] = min( D[i-1,j-1] + cost(substitution), 
        D[i-1,j] + cost(insertion), 
        D[i,j-1] + cost(deletion)) 
Print (D[n,m]) 

Algorithm for optimal pattern retrieval 

i = n, j = m; 
while i ≠ 0 and j ≠ 0 
 if D[i,j] = D[i-1,j] + cost(insertion) 
  print (*s*), i = i-1 
 else if D[i,j] = D[i,j-1] + cost(deletion) 
  print(*s*), j = j-1 
 else if a1i = b1j 
  print (a1i), i = i -1, j = j =1 
 else if a2i = b2j 
  print (a2i), i = i -1, j = j =1 
 else 
  print (*g*), i = i -1, j = j =1 

We experimentally set (by trial and error): 
cost(insertion)  = 3 
cost(deletion)  = 3 
cost(substitution) = 0 if a1i=b1j 
  = 1 if a1i≠b1j, a2i=b2j 
  = 2 if a1i≠b1j, a2i≠b2j 

4.2 Implementation and filtering 

The above algorithm takes O(y2) time for every 
pair of strings of length at most y. Hence, if there 
are x strings in the collection, each string having at 
most length y, the algorithm has time complexity 
O(x2y2) to extract all the patterns in the collection. 

Applying the above algorithm on a corpus of 
3GB  with 50 is-a relationship seeds, we obtain a 
set of 600 lexico-POS. Following are two of them: 

1) X_JJ#NN|JJ#NN#NN|NN _CC Y_JJ#JJ#NN|JJ 
|NNS|NN|JJ#NNS|NN#NN|JJ#NN|JJ#NN#NN 

e.g. …caldera or lava lake… 

2) X_NNP#NNP|NNP#NNP#NNP#NNP#NNP#CC#NNP 
|NNP|VBN|NN#NN|VBG#NN|NN ,_, _DT 
Y_NN#IN#NN|JJ#JJ#NN|JJ|NN|NN#IN#NNP 
|NNP#NNP|NN#NN|JJ#NN|JJ#NN#NN 

e.g. …leukemia, the cancer of ... 

Note that we store different POS variations of 
the anchors X and Y. As shown in example 1, the 
POS variations of the anchor X are (JJ NN, JJ NN 
NN, NN). The variations for anchor Y are (JJ JJ 
NN, JJ, etc.). The reason is quite straightforward: 

we need to determine the boundary of the anchors 
X and Y and a reasonable way to delimit them 
would be to use POS information.  All the patterns 
produced by the multi-level pattern learning algo-
rithm were generated from positive examples. 
From amongst these patterns, we need to find the 
most important ones. This is a critical step because 
frequently occurring patterns have low precision 
whereas rarely occurring patterns have high preci-
sion. From the Information Extraction point of 
view neither of these patterns is very useful. We 
need to find patterns with relatively high occur-
rence and high precision. We apply the log likeli-
hood principle (Dunning 1993) to compute this 
score. The top 15 patterns according to this metric 
are listed in Table 3 (we omit the POS variations 
for visibility). Some of these patterns are similar to 
the ones discovered by Hearst (1992) while other 
patterns are similar to the ones used by Fleischman 
et al. (2003). 

4.3 Time complexity 

To extract hyponym relations, we use a fixed 
number of patterns across a corpus. Since we treat 
each sentences independently from others, the 
algorithm runs in linear time O(n) over the corpus 
size, where n is number of sentences in the corpus. 

5 Experimental Results 

In this section, we empirically compare the pat-
tern-based and co-occurrence-based models pre-
sented in Section 3 and Section 4. The focus is on 
the precision and recall of the systems as a func-
tion of the corpus size. 

5.1 Experimental Setup 

We use a 15GB newspaper corpus consisting of 
TREC9, TREC 2002, Yahoo! News ~0.5GB, AP 
newswire ~2GB, New York Times ~2GB, Reuters 
~0.8GB, Wall Street Journal ~1.2GB, and various 
online news website ~1.5GB. For our experiments, 
we extract from this corpus six data sets of differ-
ent sizes: 1.5MB, 15 MB, 150 MB, 1.5GB, 6GB 
and 15GB. 

For the co-occurrence model, we used Minipar 
(Lin 1994), a broad coverage parser, to parse each 
data set. We collected the frequency counts of the 
grammatical relationships (contexts) output by 
Minipar and used them to compute the pointwise 
mutual information vectors described in Section 
3.1. For the pattern-based approach, we use Brill’s 
POS tagger (1995) to tag each data set. 

5.2 Precision 

We performed a manual evaluation to estimate 
the precision of both systems on each dataset. For 
each dataset, both systems extracted a set of is-a 

Table 3. Top 15 lexico-syntactic patterns discovered 
by our system. 

X, or Y X, _DT Y _(WDT|IN) Y like X and 
X, (a|an) Y X, _RB known as Y _NN, X and other Y 
X, Y X ( Y ) Y, including X, 
Y, or X Y such as X Y, such as X 
X is a Y X, _RB called Y Y, especially X 
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relationships. Six sets were extracted for the pat-
tern-based approach and five sets for the co-
occurrence approach (the 15GB corpus was too 
large to process using the co-occurrence model – 
see dependency parsing time estimates in Table 2). 

From each resulting set, we then randomly se-
lected 50 words along with their top 3 highest 
ranking is-a relationships. For example, Table 4 
shows three randomly selected names for the pat-
tern-based system on the 15GB dataset. For each 
word, we added to the list of hypernyms a human 
generated hypernym (obtained from an annotator 
looking at the word without any system or Word-
Net hyponym). We also appended the WordNet 
hypernyms for each word (only for the top 3 
senses). Each of the 11 random samples contained 
a maximum of 350 is-a relationships to manually 
evaluate (50 random words with top 3 system, top 
3 WordNet, and human generated relationship). 

We presented each of the 11 random samples to 
two human judges. The 50 randomly selected 
words, together with the system, human, and 
WordNet generated is-a relationships, were ran-
domly ordered. That way, there was no way for a 
judge to know the source of a relationship nor each 
system’s ranking of the relationships. For each 
relationship, we asked the judges to assign a score 
of correct, partially correct, or incorrect. We then 
computed the average precision of the system, 
human, and WordNet on each dataset. We also 
computed the percentage of times a correct rela-
tionship was found in the top 3 is-a relationships of 
a word and the mean reciprocal rank (MRR). For 
each word, a system receives an MRR score of 1 / 
M, where M is the rank of the first name judged 
correct. Table 5 shows the results comparing the 
two automatic systems. Table 6 shows similar 

results for a more lenient evaluation where both 
correct and partially correct are judged correct. 

For small datasets (below 150MB), the pattern-
based method achieves higher precision since the 
co-occurrence method requires a certain critical 
mass of statistics before it can extract useful class 
signatures (see Section 3). On the other hand, the 
pattern-based approach has relatively constant 
precision since most of the is-a relationships se-
lected by it are fired by a single pattern. Once the 
co-occurrence system reaches its critical mass (at 
150MB), it generates much more precise hypo-
nyms. The Kappa statistics for our experiments 
were all in the range 0.78 – 0.85. 

Table 7 and Table 8 compare the precision of the 
pattern-based and co-occurrence-based methods 
with the human and WordNet hyponyms. The 
variation between the human and WordNet scores 
across both systems is mostly due to the relative 
cleanliness of the tokens in the co-occurrence-
based system (due to the parser used in the ap-
proach). WordNet consistently generated higher 
precision relationships although both algorithms 
approach WordNet quality on 6GB (the pattern-
based algorithm even surpasses WordNet precision 
on 15GB). Furthermore, WordNet only generated a 
hyponym 40% of the time. This is mostly due to 
the lack of proper noun coverage in WordNet. 

On the 6 GB corpus, the co-occurrence approach 
took approximately 47 single Pentium-4 2.5 GHz 
processor days to complete, whereas it took the 
pattern-based approach only four days to complete 
on 6 GB and 10 days on 15 GB. 

5.3 Recall 

The co-occurrence model has higher precision 
than the pattern-based algorithm on most datasets. 

Table 4. Is-a relationships assigned to three randomly selected words (using pattern-based system on 15GB dataset). 

RANDOM WORD HUMAN WORDNET PATTERN-BASED SYSTEM (RANKED) 

Sanwa Bank bank none subsidiary / lender / bank 
MCI Worldcom Inc. telecommunications company none phone company / competitor / company 
cappuccino beverage none item / food / beverage 

 
Table 5. Average precision, top-3 precision, and MRR 
for both systems on each dataset. 

 PATTERN SYSTEM CO-OCCURRENCE SYSTEM 

 Prec Top-3 MRR Prec Top-3 MRR 

1.5MB 38.7% 41.0% 41.0% 4.3% 8.0% 7.3% 
15MB 39.1% 43.0% 41.5% 14.6% 32.0% 24.3% 

150MB 40.6% 46.0% 45.5% 51.1% 73.0% 67.0% 
1.5GB 40.4% 39.0% 39.0% 56.7% 88.0% 77.7% 

6GB 46.3% 52.0% 49.7% 64.9% 90.0% 78.8% 

15GB 55.9% 54.0% 52.0% Too large to process 

 

Table 6. Lenient average precision, top-3 precision, 
and MRR for both systems on each dataset. 

 PATTERN SYSTEM CO-OCCURRENCE SYSTEM 

 Prec Top-3 MRR Prec Top-3 MRR 

1.5MB 56.6% 60.0% 60.0% 12.4% 20.0% 15.2% 

15MB 57.3% 63.0% 61.0% 23.2% 50.0% 37.3% 
150MB 50.7% 56.0% 55.0% 60.6% 78.0% 73.2% 

1.5GB 52.6% 51.0% 51.0% 69.7% 93.0% 85.8% 
6GB 61.8% 69.0% 67.5% 78.7% 92.0% 86.2% 

15GB 67.8% 67.0% 65.0% Too large to process 
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However, Figure 2 shows that the pattern-based 
approach extracts many more relationships. 

Semantic extraction tasks are notoriously diffi-
cult to evaluate for recall. To approximate recall, 
we defined a relative recall measure and conducted 
a question answering (QA) task of answering defi-
nition questions. 

5.3.1 Relative recall 
Although it is impossible to know the number of 

is-a relationships in any non-trivial corpus, it is 
possible to compute the recall of a system relative 
to another system’s recall. The recall of a system 
A, RA, is given by the following formula: 

 
C

C
R A

A =  

where CA is the number of correct is-a relation-
ships extracted by A and C is the total number of 
correct is-a relationships in the corpus. We define 
relative recall of system A given system B, RA,B, as: 
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Using the precision estimates, PA, from the pre-
vious section, we can estimate CA ≈ PA × |A|, where 
A is the total number of is-a relationships discov-
ered by system A. Hence, 
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Figure 3 shows the relative recall of A = pattern-
based approach relative to B = co-occurrence 

model. Because of sparse data, the pattern-based 
approach has much higher precision and recall (six 
times) than the co-occurrence approach on the 
small 15MB dataset. In fact, only on the 150MB 
dataset did the co-occurrence system have higher 
recall. With datasets larger than 150MB, the co-
occurrence algorithm reduces its running time by 
filtering out grammatical relationships for words 
that occurred fewer than k = 40 times and hence 
recall is affected (in contrast, the pattern-based 
approach may generate a hyponym for a word that 
it only sees once). 

5.3.2 Definition questions 
Following Fleischman et al. (2003), we select 

the 50 definition questions from the TREC2003 
(Voorhees 2003) question set. These questions are 
of the form “Who is X?” and “What is X?” For 
each question (e.g., “Who is Niels Bohr?”, “What 
is feng shui?”) we extract its respective instance 
(e.g., “Neils Bohr” and “feng shui”), look up their 
corresponding hyponyms from our is-a table, and 
present the corresponding hyponym as the answer. 
We compare the results of both our systems with 
WordNet. We extract at most the top 5 hyponyms 
provided by each system. We manually evaluate 
the three systems and assign 3 classes “Correct 
(C)”, “Partially Correct (P)” or “Incorrect (I)” to 
each answer. 

This evaluation is different from the evaluation 
performed by the TREC organizers for definition 
questions. However, by being consistent across all 

Total Number of Is-A Relationships vs. Dataset
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Figure 2. Number of is-a relationships extracted by 
the pattern-based and co-occurrence-based approaches. 

 

Table 7. Average precision of the pattern-based sys-
tem vs. WordNet and human hyponyms. 

 PRECISION MRR 

 Pat. WNet Human Pat. WNet Human 

1.5MB 38.7% 45.8% 83.0% 41.0% 84.4% 83.0% 

15MB 39.1% 52.4% 81.0% 41.5% 95.0% 91.0% 
150MB 40.6% 49.4% 84.0% 45.5% 88.9% 94.0% 
1.5GB 40.4% 43.4% 79.0% 39.0% 93.3% 89.0% 

6GB 46.3% 46.5% 76.0% 49.7% 75.0% 76.0% 
15GB 55.9% 45.6% 79.0% 52.0% 78.0% 79.0% 

 

Table 8. Average precision of the co-occurrence-
based system vs. WordNet and human hyponyms. 

 PRECISION MRR 

 Co-occ WNet Human Co-occ WNet Human 

1.5MB 4.3% 42.7% 52.7% 7.3% 87.7% 95.0% 

15MB 14.6% 38.1% 48.7% 24.3% 86.6% 95.0% 
150MB 51.1% 57.5% 65.8% 67.0% 85.1% 98.0% 
1.5GB 56.7% 62.8% 70.3% 77.7% 93.0% 98.0% 

6GB 64.9% 68.9% 75.2% 78.8% 94.3% 98.0% 
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Figure 3. Relative recall of the pattern-based approach 
relative to the co-occurrence approach. 
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systems during the process, these evaluations give 
an indication of the recall of the knowledge base. 
We measure the performance on the top 1 and the 
top 5 answers returned by each system. Table 9 
and Table 10 show the results. 

The corresponding scores for WordNet are 38% 
accuracy in both the top-1 and top-5 categories (for 
both strict and lenient). As seen in this experiment, 
the results for both the pattern-based and co-
occurrence-based systems report very poor per-
formance for data sets up to 150 MB. However, 
there is an increase in performance for both sys-
tems on the 1.5 GB and larger datasets. The per-
formance of the system in the top 5 category is 
much better than that of WordNet (38%). There is 
promise for increasing our system accuracy by re-
ranking the outputs of the top-5 hypernyms. 

6 Conclusions 

There is a long standing need for higher quality 
performance in NLP systems. It is possible that 
semantic resources richer than WordNet will en-
able them to break the current quality ceilings. 
Both statistical and symbolic NLP systems can 
make use of such semantic knowledge. With the 
increased size of the Web, more and more training 
data is becoming available, and as Banko and Brill 
(2001) showed, even rather simple learning algo-
rithms can perform well when given enough data. 

In this light, we see an interesting need to de-
velop fast, robust, and scalable methods to mine 
semantic information from the Web. This paper 
compares and contrasts two methods for extracting 
is-a relations from corpora. We presented a novel 
pattern-based algorithm, scalable to the terascale, 
which outperforms its more informed syntactical 
co-occurrence counterpart on very small and very 
large data. 

Albeit possible to successfully apply linguisti-
cally-light but data-rich approaches to some NLP 
applications, merely reporting these results often 
fails to yield insights into the underlying theories 
of language at play. Our biggest challenge as we 
venture to the terascale is to use our new found 
wealth not only to build better systems, but to im-
prove our understanding of language. 
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Table 9. QA definitional evaluations for pattern-based 
system. 

 TOP-1 TOP5 

 Strict Lenient Strict Lenient 

1.5MB 0% 0% 0% 0% 

15MB 0% 0% 0% 0% 
150MB 2.0% 2.0% 2.0% 2.0% 
1.5GB 16.0% 22.0% 20.0% 22.0% 

6GB 38.0% 52.0% 56.0% 62.0% 
15GB 38.0% 52.0% 70.0% 74.0% 

 

Table 10. QA definitional evaluations for co-
occurrence-based system. 

 TOP-1 TOP5 

 Strict Lenient Strict Lenient 

1.5MB 0% 0% 0% 0% 

15MB 0% 0% 0% 0% 
150MB 0% 0% 0% 0% 
1.5GB 6.0% 8.0% 6.0% 8.0% 

6GB 36.0% 44.0% 60.0% 62.0% 
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