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Abstract
This paper describes an indexing substrate for typed
feature structures (ISTFS), which is an efficient re-
trieval engine for typed feature structures. Given a
set of typed feature structures, the ISTFS efficiently
retrieves its subset whose elements are unifiable or
in a subsumption relation with a query feature struc-
ture. The efficiency of the ISTFS is achieved by
calculating a unifiability checking table prior to re-
trieval and finding the best index paths dynami-
cally.

1 Introduction
This paper describes an indexing substrate for typed
feature structures (ISTFS), which is an efficient re-
trieval engine for typed feature structures (TFSs)
(Carpenter, 1992). Given a set of TFSs, the ISTFS
can efficiently retrieve its subset whose elements are
unifiable or in a subsumption relation with a query
TFS.

The ultimate purpose of the substrate is aimed at
the construction of large-scale intelligent NLP sys-
tems such as IR or QA systems based on unification-
based grammar formalisms (Emele, 1994). Recent
studies on QA systems (Harabagiu et al., 2001) have
shown that systems using a wide-coverage noun tax-
onomy, quasi-logical form, and abductive inference
outperform other bag-of-words techniques in accu-
racy. Our ISTFS is an indexing substrate that en-
ables such knowledge-based systems to keep and
retrieve TFSs, which can represent symbolic struc-
tures such as quasi-logical forms or a taxonomy and
the output of parsing of unification-based grammars
for a very large set of documents.

The algorithm for our ISTFS is concise and effi-
cient. The basic idea used in our algorithm uses a
necessary condition for unification.

(Necessary condition for unification) Let Path F
be the set of all feature paths defined in
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TFS F , and FollowedType(π,F) be the
type assigned to the node reached by fol-
lowing path π.1 If two TFSs F and G
are unifiable, thenFollowedType(π,F) and
FollowedType(π,G) are defined and unifiable
for all π ∈ (Path F ∪Path G).

The Quick Check algorithm described in (Torisawa
and Tsujii, 1995; Malouf et al., 2000) also uses
this condition for the efficient checking of unifia-
bility between two TFSs. Given two TFSs and stat-
ically determined paths, the Quick Check algorithm
can efficiently determine whether these two TFSs
are non-unifiable or there is some uncertainty about
their unifiability by checking the path values. It is
worth noting that this algorithm is used in many
modern unification grammar-based systems, e.g.,
the LKB system (Copestake, 1999) and the PAGE
system (Kiefer et al., 1999).

Unlike the Quick Check algorithm, which checks
unifiability between two TFSs, our ISTFS checks
unifiability between one TFS andn TFSs. The
ISTFS checks unifiability by using dynamically de-
termined paths, not statically determined paths. In
our case, using only statically determined paths
might extremely degrades the system performance.
Suppose that any statically determined paths are not
defined in the query TFS. Because there is no path
to be used for checking unifiability, it is required to
unify a query with every element of the data set. It
should also be noted that using all paths defined in
a query TFS severely degrades the system perfor-
mance because a TFS is a huge data structure com-
prised of hundreds of nodes and paths, i.e., most of
the retrieval time will be consumed in filtering. The

1More precisely,FollowedType(π,F) returns the type as-
signed to the node reached by followingπ from the root node
of FSPATH(π,F), which is defined as follows.

FSPATH(π,F) = F tPV(π)
PV(π) =

{
the least feature structure where
pathπ is defined

That is,FollowedType(π,F) might be defined even ifπ does
not exist inF .



ISTFS dynamically finds the index paths in order of
highest filtering rate. In the experiments, most ‘non-
unifiable’ TFSs were filtered out by using only a few
index paths found by our optimization algorithm.

2 Algorithm
Briefly, the algorithm for the ISTFS proceeds ac-
cording to the following steps.

1. When a set ofdata TFSs is given, the ISTFS
prepares apath value tableand aunifiability
checking tablein advance.

2. When aquery TFS is given, the ISTFS re-
trieves TFSs which are unifiable with the query
from the set of data TFSs by performing the
following steps.

(a) The ISTFS finds the index paths by using
the unifiability checking table. The index
paths are the most restrictive paths in the
query in the sense that the set of the data
TFSs can be limited to the smallest one.

(b) The ISTFS filters out TFSs that are non-
unifiable by referring to the values of the
index paths in the path value table.

(c) The ISTFS finds exactly unifiable TFSs
by unifying the query and the remains of
filtering one-by-one, in succession.

This algorithm can also find the TFSs that are
in the subsumption relation, i.e., more-specific or
more-general, by preparing subsumption checking
tables in the same way it prepared a unifiability
checking table.

2.1 Preparing Path Value Table and
Unifiability Checking Table

Let D(= {F1,F2, . . . ,Fn}) be the set of data TFSs.
WhenD is given, the ISTFS prepares two tables, a
path value tableDπ,σ and a unifiability checking ta-
ble Uπ,σ , for all π ∈ Path D andσ ∈ Type . 2 A
TFS might have a cycle in its graph structure. In
that case, a set of paths becomes infinite. Fortu-
nately, our algorithm works correctly even if the set
of paths is a subset of all existing paths. Therefore,
paths which might cause an infinite set can be re-
moved from the path set. We define the path value
table and the unifiability checking table as follows:

Dπ,σ ≡ {F |F ∈D ∧ FollowedType(π,F) = σ}
Uπ,σ ≡ ∑

τ
(τ∈Type ∧ σtτ is defined)

|Dπ,τ |

2Type is a finite set of types.

Assuming thatσ is the type of the node reached by
following π in a query TFS, we can limitD to a
smaller set by filtering out ‘non-unifiable’ TFSs. We
have the smaller set:

U ′
π,σ ≡

⋃
τ

(τ∈Type ∧ σtτ is defined)

Dπ,τ

Uπ,σ corresponds to the size ofU ′
π,σ . Note that the

ISTFS does not prepare a table ofU ′
π,σ statically, but

just prepares a table ofUπ,σ whose elements are in-
tegers. This is because the system’s memory would
easily be exhausted if we actually made a table of
U ′

π,σ . Instead, the ISTFS finds the best paths by re-
ferring toUπ,σ and calculates onlyU ′

π,σ whereπ is
the best index path.

Suppose the type hierarchy andD depicted in
Figure 1 are given. The tables in Figure 2 showDπ,σ
andUπ,σ calculated from Figure 1.

2.2 Retrieval

In what follows, we suppose thatD was given, and
we have already calculatedDπ,σ andUπ,σ .

Finding Index Paths

The best index path is the most restrictive path in the
query in the sense thatD can be limited to the small-
est set by referring to the type of the node reached
by following the index path in the query.

Suppose a query TFSX and a constantk, which is
the maximum number of index paths, are given. The
best index path inPath X is pathπ such thatUπ,σ is
minimum whereσ is the type of the node reached
by following π from the root node ofX. We can
also find the second best index path by finding the
pathπ s.t.Uπ,σ is the second smallest. In the same
way, we can find thei-th best index path s.t.i ≤ k.

Filtering

Supposek best index paths have already been cal-
culated. Given an index pathπ, let σ be the type of
the node reached by followingπ in the query. An
element ofD that is unifiable with the query must
have a node that can be reached by followingπ and
whose type is unifiable withσ . Such TFSs(=U ′

π,σ )
can be collected by taking the union ofDπ,τ , where
τ is unifiable withσ . For each index path,U ′

π,σ
can be calculated, and theD can be limited to the
smaller one by taking their intersection. After filter-
ing, the ISTFS can find exactly unifiable TFSs by
unifying the query with the remains of filtering one
by one.

Suppose the type hierarchy andD in Figure 1 are
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:CDR

:CAR

F1 =




cons
CAR: 1

CDR:




cons
CAR: 2

CDR:

[ cons
CAR: 3
CDR: nil

]






F2 =
[ cons

CAR: 4
CDR: nil

]
,

F3 =




cons
CAR: 5

CDR:

[ cons
CAR: 6
CDR: nil

]



D = {F1,F2,F3}

Figure 1: An example of a type hierarchy and TFSs
Dπ,σ

σ
π ⊥ integer 1 2 3 4 5 6 list cons nil
ε · · · · · · · · · {F1,F2,F3} ·
CAR: · · {F1} · · {F2} {F3} · · ·
CDR: · · · · · · · · · {F1,F3} {F2}
CDR:CAR: · · · {F1} · · · {F3} · · ·
CDR:CDR: · · · · · · · · · {F1} {F3}
CDR:CDR:CAR: · · · · {F1} · · · · · ·
CDR:CDR:CDR: · · · · · · · · · · {F1}· is an empty set.

Uπ,σ
σ

π ⊥ integer 1 2 3 4 5 6 list cons nil
ε 3 0 0 0 0 0 0 0 3 *3 0
CAR: 3 *3 1 0 0 1 1 0 0 0 0
CDR: 3 0 0 0 0 0 0 0 3 *2 1
CDR:CAR: 2 2 0 1 0 0 0 *1 0 0 0
CDR:CDR: 2 0 0 0 0 0 0 0 *2 1 1
CDR:CDR:CAR: 1 1 0 0 1 0 0 0 0 0 0
CDR:CDR:CDR: 1 0 0 0 0 0 0 0 1 0 1

Figure 2: An example ofDπ,σ andUπ,σ

QuerySetA QuerySetB
# of the data TFSs 249,994 249,994
Avg. # of unifiables 68,331.58 1,310.70
Avg. # of more specifics 66,301.37 0.00
Avg. # of more generals 0.00 0.00

Table 1: The average number of data TFSs and an-
swers forQuerySetAandQuerySetB

given, and the following queryX is given:

X =




cons
CAR: integer

CDR:

[ cons
CAR: 6
CDR: list

]



In Figure 2,Uπ,σ where theπ andσ pair exists in
the query is indicated with an asterisk. The best in-
dex paths are determined in ascending order ofUπ,σ
indicated with an asterisk in the figure. In this ex-
ample, the best index path isCDR:CAR:and its corre-
sponding type in the query is6. Therefore the unifi-
able TFS can be found by referring toDCDR:CAR:,6,
and this is{F3}.
3 Performance Evaluation
We measured the performance of the ISTFS on a
IBM xSeries 330 with a 1.26-GHz PentiumIII pro-
cessor and a 4-GB memory. The data set consist-
ing of 249,994 TFSs was generated by parsing the
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Figure 3: The size ofDπ,σ for the size of the data
set

800 bracketed sentences in the Wall Street Journal
corpus (the first 800 sentences in Wall Street Jour-
nal 00) in the Penn Treebank (Marcus et al., 1993)
with the XHPSG grammar (Tateisi et al., 1998). The
size of the data set was 151 MB. We also generated
two sets of query TFSs by parsing five randomly
selected sentences in the Wall Street Journal cor-
pus (QuerySetAandQuerySetB). Each set had 100
query TFSs. Each element ofQuerySetAwas the
daughter part of the grammar rules. Each element of
QuerySetBwas the right daughter part of the gram-
mar rules whose left daughter part is instantiated.
Table 1 shows the number of data TFSs and the av-



erage number of unifiable, more-specific and more-
general TFSs forQuerySetAandQuerySetB. The
total time for generating the index tables (i.e., a set
of paths, the path value table (Dπ,σ ), the unifiabil-
ity checking table (Uπ,σ ), and the two subsumption
checking tables) was 102.59 seconds. The size of
the path value table was 972 MByte, and the size of
the unifiability checking table and the two subsump-
tion checking tables was 13 MByte. The size of the
unifiability and subsumption checking tables is neg-
ligible in comparison with that of the path value ta-
ble. Figure 3 shows the growth of the size of the
path value table for the size of the data set. As seen
in the figure, it grows proportionally.

Figures 4, 5 and 6 show the results of retrieval
time for finding unifiable TFSs, more-specific TFSs
and more-general TFSs respectively. In the figures,
the X-axis shows the number of index paths that
are used for limiting the data set. The ideal time
means the unification time when the filtering rate is
100%, i.e., our algorithm cannot achieve higher ef-
ficiency than this optimum. The overall time is the
sum of the filtering time and the unification time.
As illustrated in the figures, using one to ten index
paths achieves the best performance. The ISTFS
achieved 2.84 times speed-ups in finding unifiables
for QuerySetA, and 37.90 times speed-ups in find-
ing unifiables forQuerySetB.

Figure 7 plots the filtering rate. In finding unifi-
able TFSs inQuerySetA, more than 95% of non-
unifiable TFSs are filtered out by using only three
index paths. In the case ofQuerySetB, more than
98% of non-unifiable TFSs are filtered out by using
only one index path.

4 Discussion

Our approach is said to be a variation ofpath in-
dexing. Path indexing has been extensively studied
in the field of automated reasoning, declarative pro-
gramming and deductive databases for term index-
ing (Sekar et al., 2001), and was also studied in the
field of XML databases (Yoshikawa et al., 2001). In
path indexing, all existing paths in the database are
first enumerated, and then an index for each path is
prepared. Other existing algorithms differed from
ours in i) data structures and ii) query optimization.
In terms of data structures, our algorithm deals with
typed feature structures while their algorithms deal
with PROLOG terms, i.e., variables and instanti-
ated terms. Since a type matches not only the same
type or variables but unifiable types, our problem is
much more complicated. Yet, in our system, hierar-
chical relations like a taxonomy can easily be repre-
sented by types. In terms of query optimization, our
algorithm dynamically selects index paths to mini-

mize the searching cost. Basically, their algorithms
take an intersection of candidates for all paths in a
query, or just limiting the length of paths (McCune,
2001). Because such a set of paths often contains
many paths ineffective for limiting answers, our ap-
proach should be more efficient than theirs.

5 Conclusion and Future Work
We developed an efficient retrieval engine for TFSs,
ISTFS. The efficiency of ISTFS is achieved by cal-
culating a unifiability checking table prior to re-
trieval and finding the best index paths dynamically.

In future work, we are going to 1) minimize the
size of the index tables, 2) develop a feature struc-
ture DBMS on a second storage, and 3) incorporate
structure-sharing information into the index tables.

References
B. Carpenter. 1992.The Logic of Typed Feature Struc-

tures. Cambridge University Press, Cambridge, U.K.
A. Copestake. 1999. The (new) LKB system. Technical

report, CSLI, Stanford University.
M. C. Emele. 1994. TFS – the typed feature struc-

ture representation formalism. InProc. of the Interna-
tional Workshop on Sharable Natural Language Re-
sources (SNLR-1994).

S. Harabagiu, D. Moldovan, M. Paşca, R. Mihalcea,
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Figure 4: Average retrieval time for finding unifiable TFSs:QuerySetA(left), QuerySetB(right)
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Figure 5: Average retrieval time for finding more-specific TFSs:QuerySetA(left), QuerySetB(right)
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Figure 6: Average retrieval time for finding more-general TFSs:QuerySetA(left), QuerySetB(right)
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Figure 7: Filtering rate:QuerySetA(left) andQuerySetB(right)
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