
E V A L U A T I O N OF A P A R A L L E L C H A R T P A R S E R

R a l p h G r i s h m a n a n d M a h e s h C h i t r a o

C o m p u t e r S c i e n c e D e p a r t m e n t

N e w Y o r k U n i v e r s i t y

251 M e r c e r S t r e e t

N e w Y o r k , N e w Y o r k 10012

A b s t r a c t
W e d e s c r i b e a p a r a l l e l i m p l e m e n t a t i o n o f a

chart parser for a shared-memory multipro-
cessor. The speed-ups obtained with this
parser have been measured for a number
of small natural-language grammars. For
the largest of these, part of an operational
question-answering system, the parser ran 5
to 7 times faster than the serial version.

1. I n t r o d u c t i o n
We report here on a series of experiments to deter-
mine whether the parsing component of a natural
language analyzer can be easily converted to a par-
allel program which provides significant speed-up
over the serial program.

These experiments were prompted in part by
the rapidly growing availability of parallel proces-
sor systems. Parsing remains a relatively time-
consuming component of language analysis sys-
tems. This is particularly so if constraints are
being systematically relaxed in order to handle
ill-formed input (as suggested, for example, in
(Weischedel and Sondheimer, 1983)) or if there is
uncertainty regarding the input (as is the case for
speech input, for example). This time could be
reduced if we can take advantage of the new par-
allel architectures. Such a parallel parser could be
combined with parallel implementations of other
components (the acoustic component of a speech
system, for example) to improve overall system
performance.

2. B a c k g r o u n d
There have been a number of theoretical and algo-
rithmic studies of parallel parsing, beginning well
before the current availability of suitable experi-
mental facilities.

For general context-free grammars, it is possi-
ble to adapt the Cocke-Younger-Kasami algorithm
(Aho and Ullman 1972, p. 314 if) for parallel use.

This algorithm, which takes time proportional to
rt 3 (rt -" length of input string) on a single pro-
cessor, can operate in time n using n 2 proces-
sors (with shared memory and allowing concur-
rent writes). This algorithm, and its extension
to unification grammars, has been described by
Haas (1987b). The matrix form of this algorithm
is well suited to large arrays of synchronous pro-
cessors. The algorithm we describe below is basi-
cally a CYK parser with top-down filtering 1, but
the main control structure is an event queue rather
than iteration over a matrbc. Because tile CYK
matrix is large and typically sparse 2, we felt that
the event-driven algorithm would be more efficient
in our environment of a small number of asyn-
chronous processors (<< n 2 for our longest sen-
tences) and grammars augmented by conditions
which must be checked on each rule application
and which vary widely in compute time.

Cohen et al. (1982) present a general upper
bound for speed-up in parallel parsing, based ou
the number of processors and properties of the
grammar. Their more detailed analysis, and the
subsequent work of Sarkar and Deo (1985) focus
on algorithms and speed-ups for parallel parsing of
deterministic context-free grammars. Most pro-
gramming language grammars are deterministic,
but most natural language grammars are not, so
this work (based on shift-reduce parsers) does not
seem directly applicable.

Experimental data involving actual imple-
mentations is more limited. Extensive measure-
ments were made on a parallel version of the

1 We also differ f rom C Y K in t ha t we do not merge dif-
ferent ana lyses of the s ame s t r ing as the s ame symbol . As
a result , our p rocedure would not opera te in l inear t ime for
general (ambiguous) g r a m m a r s .

2For g r a m m a r # 4 given below and a 15-word sentence,
the mat r ix would have roughly 15,000 ent r ies (one en t ry for
each subs t r i ng and each symbo l in the equivalent C h o m s k y
no rma l form $ ranunar) , of which only abou t 1000 entr ies
are filled.

71

Hearsay-II speech understanding system (R. Fen-
nel and V. Lesser, 1977). However, the syntactic
analysis was only one of many knowledge sources,
so it is difficult to make any direct comparison be-
tween their results and those presented here. Bolt
Beranek and Newman is currently conducting ex-
periments with a parallel parser quite similar to
those described below (Haas, 1987a). BBN uses
a unification g rammar in place of the procedural
restrictions of our system. At the time of this writ-
ing, we do not yet have detailed results from BBN
to compare to our own.

3. E n v i r o n m e n t

Our programs were developed for the NYU Ultra-
computer (Gottl ieb et al., 1983), a shared-memory
MIMD parallel processor with a special instruc-
tion, fetch-and-add, for processor synchronization.
The programs should be easily adaptable to any
similar shared memory architecture.

The programs have been writ ten in ZLISP,
a version of LISP for the Ul t racomputer which
has been developed by Isaac Dimitrovsky (1987).
Both an interpreter and a compiler are avail-
able. ZLISP supports several independent pro-
cesses, and provides both global variables (shared
by all processes) and variables which are local to
each process. Our programs have used low-level
synchronization operations, which directly access
the fetch-and-add primitive. More recent versions
of ZLISP also suppor t higher level synchroniza-
tion primitives and da ta structures such as parallel
queues and parallel stacks.

4. A l g o r i t h m s

Our parser is intended as par t of the PROTEUS
system (Ksiezyk et al. 1987). P R O T E U S uses
augmented context-free grammars - context-free
grammars augmented by procedural restrictions
which enforce syntactic and semantic constraints.

The basic parsing algori thm we use is a chart
parser (Thompson 1981, Thompson and Ritchie,
1984). Its basic da ta structure, the chart, consists
of nodes and edges. For an n word sentence, there
are n + 1 nodes, numbered O to n. These nodes
are connected by active and inactive edges which
record the state of the parsing process. If A
W X Y Z is a production, an active edge from
node nl to n2 labeled by A -+ W X . Y Z
indicates tha t the symbols W X of this production
have been matched to words nl + 1 through n2
of the sentence. An inactive edge from nl to n2

labeled by a category Y indicates that words n 1 + 1
through n2 have been analyzed as a consti tuent of
type Y. The "fundamental rule" for extending an
active edge states tha t if we have an active edge
A ---* W X . Y Z from nl to n 2 and an inactive
edge of category Y from n 2 to n3, we can build a
new active edgeA---* W X Y . Z f r o m n l ton3 .
If we also have an inactive edge of type Z from n 3
to n4, we can then extend once more, creating this
t ime an inactive edge of type A (corresponding to
a completed production) from nl to n4.

If we have an active edge A ---* W X . Y Z
from nl to n2, and this is the first t ime we have
tried to match symbol Y star t ing at n2 (there are
no edges labeled Y originating at n~), we perform
a seek on symbol Y at n2: we create an active
edge for each production which expands Y, and
try to extend these edges. In this way we generate
any and all analyses for Y star t ing at n2. This
process of seeks and extends forms the core of the
parser. We begin by doing a seek for the sentence
symbol S start ing a node 0. Each inactive edge
which we finally create for S from node 0 to node
n corresponds to a parse of the sentence.

The serial (uniprocessor) procedure 3 uses a
task queue called an agenda . Whenever a seek is
required during the process of extending an edge,
an entry is made on the agenda. When we can
extend the edge no further, we go to the agenda,
pick up a seek task, create the corresponding ac-
tive edge and then try to extend it (possibly giving
rise to more seeks). This process continues until
the agenda is empty.

Our initial parallel implementat ion was
straightforward: a set of processors all execute the
main loop of the serial program (get task from
agenda / create edge / extend edge), all operat-
ing from a single shared agenda. Thus the ba-
sic unit of computat ion being scheduled is a seek,
along with all the associated edge extensions. If
there are many different ways of extending an edge
(using the edges currently in the chart) this may
involve substantial computat ion. We therefore de-
veloped a second version of the parser with more-
fine-grained parallelism, in which each step of ex-
tending an active edge is treated as a separate task
which is placed on the agenda. We present some
comparisons of these two algorithms below.

There was one complication which arose in
the parallel implementations: a race condition in
the application of the " fundamenta l rule". Sup-
pose processor P1 is adding an active edge to the

3written by Jean Mark Gawron.

72

chart from node nl to n2 with the label A
W X . Y Z and, at the same time, processor P2 is
adding an inactive edge from node n2 to n3 with
the label Y. Each processor, when it is finished
adding its edge, will check the chart for possible
application of the fundamental rule involving that
edge. P1 finds the inactive edge needed to further
extend the active edge it just created; similarly,
P2 finds the active edge which can be extended
using the inactive edge it just created. Both pro-
cessors therefore end up trying to extend the edge
A ---* W X . Y Z and we create duplicate copies
of the extended edge A ---* W X Y . Z. This race
condition can be avoided by assigning a unique
(monotonically increasing) number to each edge
and by applying the fundamental rule only if the
edge in the chart is older (has a smaller number)
than the edge just added by the processor.

As we noted above, the context-free gram-
mars are augmented by procedural restrictions.
These restrictions are coded in P R O T E U S Re-
striction Language and then compiled into LISP.
A restriction either succeeds or fails, and in ad-
dition may assign features to the edge currently
being built. Restrictions may examine the sub-
structure through which an edge was built up from
other edges, and can test for features on these con-
sti tuent edges. There is no dependence on implicit
context (e.g., variables set by another restriction).
As a result, the restrictions impose no complica-
tions on the parallel scheduling; they are simply
invoked as part of the process of extending an
edge.

5. G r a m m a r s

These algorithms were tested on four grammars:

1. A "benchmark" grammar:

S ~ X X X X X X X X X X X X

X ~ a l b l c l d l e l f l g l h l i l J

2. A very small English grammar, taken from
(Grishman, 1986) and used for teaching pur-
poses. It has 23 nonterminal symbols and 38
productions.

3. Gramm ar #2 , with four restrictions added.

4. The grammar for the P R OTEUS question-
answering system, which includes yes-no and
wh- questions, relative and reduced relative
clauses. It has 35 non-terminal symbols and
77 productions.

6. M e t h o d
The programs were run in two ways: on a proto-
type parallel processor, and in simulated parallel
mode on a s tandard uniprocessor (the uniproce-
cessor version of ZLISP provides for relatively effi-
cient simulation of multiple concurrent processes).
The runs on our prototype multiprocessor, the
NYU Ultracomputer , were limited by the size of
the machine to 8 processors. Since we found that
we could sometimes make effective use of larger
numbers of processors, most of our data was col-
lected on the simulated parallel system. For small
numbers of processors (1-4) we had good agree-
ment (within 10%, usually within 2%) between the
speed-ups obtained on the Ultracomputer and un-
der simulation 4

7. R e s u l t s
We consider first the results for the test grammar,
#1, analyzing the sentence

333333333333

This g rammar is so simple that we can readily vi-
sualize the operation of the parser and predict the
general shape of the speed-up curve. At each to-
ken of the sentence, there are 10 productions which
can expand X, so 10 seek tasks are added to the
agenda. If 10 processors are available, all 10 tasks
can be executed in parallel. Additional processors
produce no further speed-up; having fewer proces-
sors requires some processors to perform several
tasks, reducing the speed-up. This general behav-
ior is borne out by the curve shown in Figure 1.
Note that because the successful seek (for the pro-
duction X --0 j) leads to the creation of an inactive
edge for X and extension of the active edge for S,
and these operations must be performed serially,
the maximal parallelism is much less than 10.

The next two figures compare the effective-
ness of the two algorithms - the one with coarse-
grained parallelism (only seeks as separate tasks)
and the other with finer-grain parallelism (each
seek and extend as a separate task). The finer-
grain algorithm is able to make use of more par-
allelism in situations where an edge can be ex-
tended in several different ways. On the other

4For larger numbers of processors (5-8) the speed-up
with the Ul t racomputer was consistently below that with
the simulator. This was due, we believe, to memory con-
tention in the Ultracomputer . This contention is a prop-
erty of the current bus-based pro to type and would be
greatly reduced in a machine using the target, network-
based architecture.

73

S
p '

E
E
D

U
P

'2

, | |

5, I0 15

PROCESSORS

IS

S
I*
E :

E "I0
I)

U
P

2

1

• ; 0 2'o ~0 , ,'0
P R O C E S S O R S

Figure 1: Speed-up (relative to serial parser) for
grammar ~1 and sentence jjj.~i~_~j.

sp • 2

D

. , i i

I 0 2 0 3 0 4 0

P R O C E S S O R S

Figure 2: Speed-up (relative to serial parser) for
grammar ~2 (small grammar without restrictions)
on a 3-word sentence for the coarse-grained algo-
r i thm (1) and the fine-grained algorithm(2).

hand, it will have more scheduling overhead, since
each extend operation has to be entered on and
removed from the agenda. We therefore can ex-
pect the finer-grained algorithm to do better on
more complex sentences, for which many different
extensions of an active edge will be possible. We
also expect the finer-grained algorithm to do bet-
ter on grammars with restrictions, since the evalu-
ation of the restriction substantially increases the
time required to extend an edge, and so reduces
in proportion the fraction of time devoted to the
scheduling overhead. The expectations are con-
firmed by the results shown in Figures 2 and 3.

Figure 2, which shows the results using a short
sentence and grammar ~2 (without restrictions),
shows that neither algorithm obtains substantial
speed-up and that the fine-grained algorithm is

Figure 3: Speed-up (relative to serial parser) for
grammar # 3 (small grammar with restrictions)
on a 14-word sentence for the coarse-grained al-
gorithm (1) and the fine-grained algorithm(2).

in fact slightly worse. Figure 3, which shows the
results using a long sentence and grammar ~3
(with restrictions), shows that the fine-grained al-
gorithm is performing much better.

The remaining three figures show speed-up re-
sults for the fine-grained algorithm for grammars
2, 3, and 4. For each figure we show the speed-

" up for three sentences: a very short sentence (2-3
words), an intermediate one, and a long sentence
(14-15 words). In all cases the graphs plot the
number of processors vs. the true speed-up - the
speed-up relative to the serial version of the parser.
The value for 1 processor is therefore below 1, re-
flecting the overhead in the parallel version for en-
forcing mutual exclusion in access to shared data
and for scheduling extend tasks.

Grammars 2 and 3 are relatively small (38
productions) and have few constraints, in par-
ticular on adjunct placement. For short sen-
tences these grammars therefore yield a chart with
few edges and little opportunity for parallelism.
For longer sentences with several adjuncts, on
the other hand, these grammars produce lots of
parses and hence offer much greater opportunity
for parallelism. Grammar 4 is larger (77 produc-
tions) and provides for a wide variety of sentence
types (declarative, imperative, wh-question, yes-
no-question), but also has tighter constraints, in-
cluding constraints on adjunct placement. The
number of edges in the chart and the opportu-
nity for parallelism are therefore fairly large for
short sentences, but grow more slowly for longer
sentences than with grammars 2 and 3.

These differences in grammars are reflected

74

i5

~ 3

.....,i 2

i | , i
1 0 2 0 ~,0 4 0

P R O C E S S O R S .

Figure 4: Speed-up (relative to serial parser) for
grammar ~2 (small grammar without restrictions)
using the fine-grained algorithm for three sen-
tences: a 10 word sentence (curve 1), a 3-word
sentence (curve 2) and a 14-word sentence (curve
3).

!

S I0.
P
E
E
D

U
p 5

S
p 2"

E
E
D

U
P

.I

A i

10 2 0 3'0 4 0

PROCESSORS

Figure 5: Speed-up 'relative to serial parser) for
grammar ~3 (small grammar with restrictions)
using the fine-grained algorithm for three sen-
tences: a 14-word sentence (curve 1), a 5-word
sentence (curve 2), and a 3-word sentence (curve
3).

p . 6

E
E
D

U 4
p

.-----* I

• 1 0 2 0 3 0 " 4 0

PROCESSORS"

Figure 6: Speed-up (relative to serial parser) for
grammar ~4 (question-answering grammar) us-
ing the fine-grained algorithm for three sentences:
a 15-word sentence (curve 1), a 2-word sentence
(curve 2), and a 8-word sentence (curve 3).

in the results shown in Figures 4-6. For the
small grammar without restrictions (grammar
#2), the scheduling overhead for fine-grain par-
allelism largely defeats the benefits of parallelism,
and the overall speed-up is small (Figure 4). For
the same grammar with restrictions (grammar
#3), the effect of the scheduling overhead is re-
duced, a.s we explained above. The speed-up is
modest for the short sentences, but high (15) for
the long sentence with 15 parses (Figure 5). For
the question-answering grammar (grammar ~4),
the speed-up is fairly consistent for short and long
sentences (Figure 6).

8. Discuss ion
Through relatively small changes to an existing se-
rial chart parser, we have been able to construct an
effective parallel parsing procedure for natural lan-
guage grammars. For our largest grammar (#4),
we obtained consistent speed-ups in the range ofh-
7. Grammars for more complex applications, and
those allowing for ill-formed input, will be consid-
erably larger and we can expect higher speed-ups.

One issue which should be re-examined in the
parallel environment is the effectiveness of top-
down filtering. This filtering, which is relatively
inexpensive, blocks the construction of a substan-
tial number of edges and so is generally beneficial
in a. serial implementation. In a parallel environ-
ment, however, the filtering enforces a left-to-right
sequencing and so reduces the opportunities for
parallelism. We intend in the near future to try
a version of our algorithm without top-down ill-

75

tering in order to determine the balance between
these two effects.

9. A c k n o w l e d g e m e n t s
This report is based upon work supported by the
Defense Advanced Research Projects Agency un-
der Contract N00014-85-K-0163 from the Office
of Naval Research, by the National Science Foun-
dation under Grant No. DCR-8501843 and by the
International Business Machines Corp. under con-
tract 534816.

References
[1] Alfred Aho and Jeffrey Ullman, 1972, The

Theory of Parsing, Translation, and Compiling
- Volume I: Parsing, Prentice-Hall, Englewood
Cliffs, NJ.

[2] Jacques Cohen, Timothy Hickey, and Joel Kat-
coff, 1982 Upper bounds for speedup in parallel
parsing, J. Assn. Comp. Mach. 29 (2), pp. 408-
428.

[3] Isaac Dimitrovsky, 1987 ZLISP 0.7 Reference
Manual, Department of Computer Science, New
York University, New York.

[4] R. Fennel and V. Lesser, 1977, Parallelism in
AI problem solving: a case study of Hearsay II,
IEEE Trans. Comp. C-26, pp. 98-111.

[5] Allan Gottlieb, Ralph Grishman, Clyde
P. Kruskal, Kevin P. McAuliffe, Lawrence
Rudolph, and Marc Snir, 1983, The NYU Ultra-
computer - Designing an MIMD Shared Mem-
ory Parallel Computer, IEEE Trans. Comp.,
pp. 175-189.

[6] Andrew Haas, 1987a, Parallel parsing, Talk
at Workshop on JANUS and Parallel Parsing,
Feb. 24-25, Bolt Beranek and Newman, Cam-
bridge, MA.

[7] Andrew Haas, 1987b, Parallel Parsing for Uni-
fication Grammars. Proc. IJCAI-87, pp. 615-
618.

[8] Tomasz Ksiezyk, Ralph Grishman, and John
Sterling, 1987, An equipment model and its
role in the interpretation of noun phrases. Proc.
IJCAI-87, pp. 692-695.

[9] Dilip Sarkar and Narsingh Deo, 1985, Esti-
mating the speedup in parsing, Report CS-
85-135, Computer Science Dept., Washington
State University.

[10] Henry Thompson, 1981, Chart parsing and
rule schemata in phrase structure grammar,

Proc. 19th Annl. Meeting Assn. Computational
Linguistics, Stanford, CA, 167-72.

[11] Henry Thompson and Graeme Ritchie, 1984,
Implementing natural language parsers. In Ar-
tificial Intelligence Tools, Techniques and Ap-
plications, T. O'Shea and M. Eisenstadt, eds.,
Harper and Row, New York.

[12] Ralph M. Weischedel and Norman K. Sond-
helmet, 1983, Meta-rules as a Basis for Pro-
cessing Ill-Formed Input, Am. J. Computational
Linguistics, 9(3-4), pp. 161-177.

76

