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A b s t r a c t  

In spoken dialogue systems, it is important for a 
system to know how likely a speech recognition hy- 
pothesis is to be correct, so it can reprompt for 
fresh input, or, in cases where many errors have 
occurred, change its interaction strategy or switch 
the caller to a human attendant. We have discov- 
ered prosodic features which more accurately predict 
when a recognition hypothesis contains a word error 
than the acoustic confidence score thresholds tradi- 
tionally used in automatic speech recognition. We 
present analytic results indicating that there are sig- 
nificant prosodic differences between correctly and 
incorrectly recognized turns in the T O O T  train in- 
formation corpus. We then present machine learn- 
ing results showing how the use of prosodic features 
to automatically predict correct versus incorrectly 
recognized turns improves over the use of acoustic 
confidence scores alone. 

1 I n t r o d u c t i o n  

One of the central tasks of the dialogue manager 
in most current spoken dialogue systems (SDSs) is 
error handling. The automatic speech recognition 
(ASR) component of such systems is prone to error, 
especially when the system has to operate in noisy 
conditions or when the domain of the system is large. 
Given that it is impossible to fully prevent ASR er- 
rors, it is important for a system to know how likely 
a speech recognition hypothesis is to be correct, so 
it can take appropriate action, since users have con- 
siderable difficulty correcting incorrect information 
that is presented by the system as true (Krahmer 
et al., 1999). Such action may include verifying the 
user's input, reprompting for fresh input, or, in cases 
where many errors have occurred, changing the in- 
teraction strategy or switching the caller to a human 
attendant (Smith, 1998; Litman et al., 1999; Langk- 
ilde et al., 1999). Traditionally, the decision to re- 
j ec t  a recognition hypothesis is based on acoustic 
confidence score thresholds, which provide a relia- 
bility measure on the hypothesis and are set in the 
application (Zeljkovic, 1996). However, this process 
often fails, as there is no simple one-to-one mapping 

between low confidence scores and incorrect recog- 
nitions, and the setting of a rejection threshold is 
a matter of trial and error (Bouwman et al., 1999). 
Also, some incorrect recognitions do not necessarily 
lead to misunderstandings at a conceptual level (e.g. 
"a.m." recognized as "in the morning"). 

The current paper looks at prosody as one possible 
predictor of ASR performance. ASR performance 
is known to vary based upon speaking style (Wein- 
traub et al., 1996), speaker gender and age, na- 
tive versus non-native speaker status, and, in gen- 
eral, the deviation of new speech from the training 
data. Some of this variation is linked to prosody, as 
prosodic differences have been found to character- 
ize differences in speaking style (Blaauw, 1992) and 
idiosyncratic differences (Kraayeveld, 1997). Sev- 
eral other studies (Wade et al., 1992; Oviatt et al., 
1996; Swerts and Ostendorf, 1997; Levow, 1998; Bell 
and Gustafson, 1999) report that hyperarticulated 
speech, characterized by careful enunciation, slowed 
speaking rate, and increase in pitch and loudness, 
often occurs when users in human-machine interac- 
tions try to correct system errors. Still others have 
shown that such speech also decreases recognition 
performance (Soltau and Waibel, 1998). Prosodic 
features have also been shown to be effective in 
ranking recognition hypotheses, as a post-processing 
filter to score ASR hypotheses (Hirschberg, 1991; 
Veilleux, 1994; Hirose, 1997). 

In this paper we present results of empirical stud- 
ies testing the hypothesis that prosodic features pro- 
vide an important clue to ASR performance. We 
first present results comparing prosodic analyses of 
correctly and incorrectly recognized speaker turns 
in TOOT, an experimental SDS for obtaining train 
information over the phone. We then describe ma- 
chine learning experiments based on these results 
that explore the predictive power of prosodic fea- 
tures alone and in combination with other automat- 
ically available information, including ASR confi- 
dence scores and recognized string. Our results in- 
dicate that there are significant prosodic differences 
between correctly and incorrectly recognized utter- 
ances. These differences can in fact be used to pre- 
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dict whether an utterance has been misrecognized, 
with a high degree of accuracy. 

2 T h e  TOOT C o r p u s  

Our corpus consists of a set of dialogues between 
humans and TOOT, an SDS for accessing train 
schedules from the web via telephone, which was 
collected to study both variations in SDS strat- 
egy and user-adapted interaction (Litman and Pan, 
1999). TOOT is implemented on a platform com- 
bining ASR, text-to-speech, a phone interface, a 
finite-state dialogue manager, and application func- 
tions (Kamm et al., 1997). The  speech recognizer is 
a speaker-independent hidden Markov model system 
with context-dependent phone models for telephone 
speech and constrained grammars for each dialogue 
state. Confidence scores for recognition were avail- 
able only at the turn, not the word, level (Zeljkovic, 
1996). An example T O O T  dialogue is shown in Fig- 
ure 1. 

Subjects performed four tasks with one of sev- 
eral versions of TOOT, that  differed in terms of locus 
of initiative (system, user, or mixed), confirmation 
strategy (explicit, implicit, or none), and whether 
these conditions could be changed by the user during 
the task. Subjects were 39 students, 20 native speak- 
ers of standard American English and 19 non-native 
speakers; 16 subjects were female and 23 male. Dia- 
logues were recorded and system and user behavior 
logged automatically. The concept accuracy (CA) of 
each turn was manually labeled by one of the exper- 
imenters. If the ASR output  correctly captured all 
the task-related information in the turn (e.g. time, 
departure and arrival cities), the turn was given a 
CA score of 1 (a semantically correct recognition). 
Otherwise, the CA score reflected the percentage of 
correctly recognized task information in the turn. 
The dialogues were also transcribed by hand and 
these transcriptions automatically compared to the 
ASR recognized string to produce a word error rate 
(WEPt) for each turn. Note that  a concept can be 
correctly recognized even though all words are not, 
so the CA metric does not penalize for errors that  
are unimportant  to overall utterance interpretation. 

For the study described below, we examined 1994 
user turns from 152 dialogues in this corpus. The 
speech recognizer was able to generate a recognized 
string and an associated acoustic confidence score 
per turn for 1975 of these turns. 1 1410 of these 1975 
turns had a CA score of 1 (for an overall conceptual 
accuracy score of 71%) and 961 had a WER of 0 (for 
an overall transcription accuracy score of 49%, with 
a mean W ER per turn of 47%). 

1For the remaining turns, ASR output "no speech" (and 
TOOT played a timeout message) or "garbage" (TOOT played 
a rejection message). 

3 D i s t i n g u i s h i n g  C o r r e c t  f r o m  
I n c o r r e c t  R e c o g n i t i o n s  

We first looked for distinguishing prosodic charac- 
teristics of misrecognitions, defining misrecognitions 
in two ways: a) as turns with WER>0;  and b) as 
turns with CA<I .  As noted in Section 1, previous 
studies have speculated that hyperarticulated speech 
(slower and louder speech which contains wider pitch 
excursions) may be associated with recognition fail- 
ure. So, we examined the following features for each 
user turn: 2 

• maximum and mean fundamental frequency 
values (F0 Max, F0 Mean) 

• maximum and mean energy values (RMS Max, 
RMS Mean) 

• total duration 

• length of pause preceding the turn (Prior Pause) 

* speaking rate (Tempo) 

• amount  of silence within the turn (% Silence) 

F0 and I:LMS values, representing measures of pitch 
excursion and loudness, were calculated from the 
output  of Entropic Research Laboratory 's  pitch 
tracker, get_fO, with no post-correction. Timing vari- 
ation was represented by four features. Duration 
within and length of pause between turns was com- 
puted from the temporal labels associated with each 
turn's beginning and end. Speaking rate was ap- 
proximated in terms of syllables in the recognized 
string per second, while % Silence was defined as the 
percentage of zero frames in the turn, i.e., roughly 
the percentage of time within the turn that  the 
speaker was silent. These features were chosen based 
upon previous findings (see Section 1) and observa- 
tions from our data. 

To ensure that  our results were speaker indepen- 
dent, we calculated mean values for each speaker's 
recognized turns and their misrecognized turns for 
every feature. Then, for each feature, we created 
vectors of speaker means for recognized and misrec- 
ognized turns and performed paired t-tests on the 
vectors. For example, for the feature "F0 max",  
we calculated mean maxima for misrecognized turns 
and for correctly recognized turns for each of our 
thirty-nine speakers. We then performed a paired 
t-test on these thirty-nine pairs of means to de- 
rive speaker-independent results for differences in F0 
maxima between correct and incorrect recognitions. 

Tables 1 and 2 show results of these compar- 
isons when we calculate misrecognition in terms of 

2While the features were automatically computed, turn 
beginnings and endings were hand segmented in dialogue-level 
speech files, as the turn-level files created by TOOT were not 
available. 
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Toot: 
User: 
Toot: 

User: 
Toot: 

Hi, this is AT&T Amtrak schedule system. This is TOOT.  How may I help you? 
I want the trains from New York City to Washington DC on Monday at 9:30 in the evening. 
Do you want me to find the trains from New York City to Washington DC on Monday 
approximately at 9:30 in the evening now? 
Yes. 
I am going to get the train schedule for you . . .  

Figure 1: Example Dialogue Excerpt with TOOT. 

Table 1: Comparison of Misrecognized (WER>0)  
vs. Recognized Turns by Prosodic Feature Across 
Speakers. 

Fe tur0 I st tlMeanMisrecdRocd PII 
*F0 M a x  7.83 30.31 Hz 0 
*F0 Mean 3.66 ~I.12 Hz 0 
*RMS Max 5.70 235.93 0 
RMS Mean -.57 -8.50 .57 
*Duration 10.30 2.20 sec 0 
*Prior Pause 5.55 .35 sec 0 
Tempo -.05 .15 sps .13 
*% Silence -5.15 -.06% 0 

*significant at a 95% confidence level 

Table 2: Comparison of Misrecognized (CA<I)  
vs. Recognized Turns by Prosodic Feature Across 
Speakers. 

Fe turo I st t  ° nMisrecdl rlq ecd 
*F0 Max 5.60 29.64 Hz 0 
F0 Mean 1.70 2.10 Hz .10 
*RMS Max 2.86 173.87 .007 
RMS Mean -1.85 -27.75 .07 
*Duration 9.80 2.15 sec 0 
*Prior Pause 4.05 .38 sec 0 
*Tempo -4.21 -.58 sps 0 
% Silence -1.42 -.02% .16 

*significant at a 95% confidence level (p< .05) 

W E R > 0  and C A < l ,  respectively. These results in- 
dicate that  misrecognized turns do differ from cor- 
rectly recognized ones in terms of prosodic features, 
although the features on which they differ vary 
slightly, depending upon the way "misrecognition" 
is defined. Whether  defined by W E R  or CA, mis- 
recognized turns exhibit significantly higher F0 and 
RMS maxima, longer durations, and longer preced- 
ing pauses than correctly recognized speaker turns. 
For a traditional W E R  definition of misrecognition, 
misrecognitions are slightly higher in mean F0 and 
contain a lower percentage of internal silence. For a 
CA definition, on the other hand, tempo is a signif- 
icant factor, with misrecognitions spoken at a faster 
rate than correct recognitions - -  contrary to our hy- 
pothesis about the role of hyperarticulation in recog- 
nition error. 

While the comparisons in Tables 1 and 2 were 
made on the means of raw values for all prosodic fea- 
tures, little difference is found when values are nor- 
malized by value of first or preceding turn, or by con- 
verting to z scores. 3 From this similarity between the 
performance of raw and normalized values, it would 
seem to be relative differences in speakers' prosodic 
values, not deviation from some 'acceptable' range, 
that  distinguishes recognition failures from success- 
ful recognitions. A given speaker's turns that  are 

The only differences occur for CA defined misrecognition, 
where normalizing by first ut terance results in significant dif- 
ferences in mean RMS, and normalizing by preceding turn 
results in no  significant differences in tempo. 

higher in pitch or loudness, or that  are longer, or 
that  follow longer pauses, are less likely to be recog- 
nized correctly than that  same speaker's turns that  
are lower in pitch or loudness, shorter, and follow 
shorter pauses - -  however correct recognition is de- 
fined. 

It is interesting to note that  the features we found 
to be significant indicators of failed recognitions (F0 
excursion, loudness, long prior pause, and longer du- 
ration) are all features previously associated with 
hyperarticulated speech. Since prior research has 
suggested that  speakers may respond to failed recog- 
nition at tempts  by hyperarticulating, which itself 
may lead to more recognition failures, had we in fact 
simply identified a means of characterizing and iden- 
tifying hyperart iculated speech prosodically? 

Since we had independently labeled all speaker 
turns for evidence of hyperarticulation (two of the 
authors labeled each turn as "not hyperart iculated",  
"some hyperarticulation in the turn",  and "hyperar- 
t iculated", following Wade et al. (1992)), we were 
able to test this possibility. We excluded any turn 
either labeler had labeled as partially or fully hy- 
perarticulated, and again performed paired t-tests 
on mean values of misrecognized versus recognized 
turns for each speaker. Results show that  for both 
WER-defined and CA-defined misrecognitions, not 
only are the same features significant differentiators 
when hyperarticulated turns are excluded from the 
analysis, but in addition, tempo also is significant 
for WER-defined misrecognition. So, our findings 
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for the prosodic characteristics of recognized and of 
misrecognized turns hold even when perceptibly hy- 
perarticulated turns are excluded from the corpus. 

4 P r e d i c t i n g  M i s r e c o g n i t i o n s  U s i n g  
M a c h i n e  L e a r n i n g  

Given the prosodic differences between misrecog- 
nized and correctly recognized utterances in our 
corpus, is it possible to predict accurately when a 
particular utterance will be misrecognized or not? 
This section describes experiments using the ma- 
chine learning program RIPPER (Cohen, 1996) to au- 
tomatically induce prediction models, using prosodic 
as well as additional features. Like many learning 
programs, RIPPER takes as input the classes to be 
learned, a set of feature names and possible values, 
and training data  specifying the class and feature 
values for each training example. RIPPER outputs 
a classification model for predicting the class of fu- 
ture examples. The model is learned using greedy 
search guided by an information gain metric, and is 
expressed as an ordered set of if-then rules. 

Our predicted classes correspond to correct recog- 
nition (T) or not (F). As in Section 3, we examine 
both WER-defined and CA-defined notions of cor- 
rect recognition, and represent each user turn as a 
set of features. The features used in our learning 
experiments include the raw prosodic features in Ta- 
bles 1 and 2 (which we will refer to as the feature set 
"Prosody"),  the hyperarticulation score discussed in 
Section 3, and the following additional potential pre- 
dictors of misrecognition (described in Section 2): 

• ASR grammar 

• ASR confidence 

• ASR string 

• system adaptability 

• dialogue strategy 

• task number 

• subject 

• gender 

• native speaker 

The first three features are derived from the ASR 
process (the context-dependent grammar used to 
recognize the turn, the turn-level acoustic confidence 
score output  by the recognizer, and the recognized 
string). We included these features as a baseline 
against which to test new methods of predicting 
misrecognitions, although, currently, we know of no 
ASR system that includes recognized string in its 
rejection calculations. 4 TOOT itself used only the 

4Note that, while the entire recognized string is provided 
to the learning algorithm, RIPPER rules test for the presence 
of particular words in the string. 

first two features to calculate rejections and ask the 
user to repeat the utterance, whenever the confi- 
dence score fell below a pre-defined grammar-specific 
threshold. The other features represent the exper- 
imental conditions under which the data  was col- 
lected (whether users could adapt TOOT's dialogue 
strategies, TOOT's initial initiative and confirmation 
strategies, experimental task, speaker's name and 
characteristics). We included these features to de- 
termine the extent to which particulars of task, sub- 
ject, or interaction influenced ASR success rates or 
our ability to predict them; previous work showed 
that  these factors impact TOOT's performance (Lit- 
man and Pan, 1999; Hirschberg et al., 1999). Except 
for the task, subject, gender, native language, and 
hyperarticulation scores, all of our features are au- 
tomatically available. 

Table 3 shows the relative performance of a num- 
ber of the feature sets we examined; results here 
are for misrecognition defined in terms of WER. 5 A 
baseline classifier for misrecognition, predicting that  
ASR is always wrong (the majority class of F), has 
an error of 48.66%. The best performing feature 
set includes only the raw prosodic and ASR features 
and reduces this error to an impressive 6.53% + / -  
.63%. Note that  this performance is not improved 
by adding manually labeled features or experimen- 
tal conditions: the feature set corresponding to ALL 
features yielded the statistically equivalent 6.68% 
+ / -  0.63%. 

With respect to the performance of prosodic fea- 
tures, Table 3 shows that using them in conjunction 
with ASR features (error of 6.53%) significantly out- 
performs prosodic features alone (error of 12.76%), 
which, in turn, significantly outperforms any single 
prosodic feature; duration, with an error of 17.42%, 
is the best such feature. Although not shown in 
the table, the unnormalized prosodic features sig- 
nificantly outperform the normalized versions by 7- 
13%. Recall that  prosodic features normalized by 
first task utterance, by previous utterance, or by 
z scores showed little performance difference in the 
analyses performed in Section 3. This difference may 
indicate that  there are indeed limits on the ranges 
in features such as F0 and RMS maxima, duration 
and preceding pause within which recognition per- 
formance is optimal. It seems reasonable that  ex- 
treme deviation from characteristics of the acoustic 
training material should in fact impact ASR perfor- 
mance, and our experiments may have uncovered, if 
not the critical variants, at least important  acoustic 
correlates of them. However, it is difficult to com- 

SThe errors and standard errors (SE) result from 25-fold 
cross-validation on the 1975 turns where ASR yielded a string 
and confidence. When two errors plus or minus twice the stan- 
dard error do not overlap, they are statistically significantly 
different. 
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Table 3: Estimated Error for Predicting Misrecognized Turns (WER>0). 

Features Used Error ] SE 

Prosody, ASR Confidence, ASR String, ASR Grammar 6.53% .63 
ALL 6.68% .63 
Prosody, ASR String 7.34% .75 
ASR Confidence, ASR String, ASR Grammar 9.01% .70 
Prosody, ASR Confidence, ASR Grammar 10.63% .88 
Prosody, ASR Confidence 10.99% .87 
Prosody 12.76% .79 
ASR String 15.24% 1.11 
Duration 17.42% .88 
ASR Confidence, ASR Grammar 17.77% .72 
ASR Confidence 22.23% 1.16 
ASR Grammar 26.28% .84 
Tempo 32.76% 1.03 
Hyperarticulation 35.24% 1.46 
% Silence 36.46% .79 
Prior Pause 36.61% .97 
F0 Max 38.73% .82 
RMS Max 42.23% .96 
F0 Mean 46.33% 1.10 
RMS Mean 48.35% 1.15 

II Majority Baseline J. 48.66%_%_[___~ 

pare our machine learning results with the statisti- 
cal analyses, since a) the statistical analyses looked 
at only a single prosodic variable at a time, and b) 
data points for that analysis were means calculated 
per speaker, while the learning algorithm operated 
on all utterances, allowing for unequal contributions 
by speaker. 

We now address the issue of what prosodic fea- 
tures are contributing to misrecognition identifica- 
tion, relative to the more traditional ASR tech- 
niques. Do our prosodic features simply correlate 
with information already in use by ASR systems 
(e.g., confidence score, grammar), or at least avail- 
able to them (e.g., recognized string)? First, the 
error using ASR confidence score alone (22.23%) 
is significantly worse than the error when prosodic 
features are combined with ASR confidence scores 
(10.99%) - -  and is also significantly worse than 
the use of prosodic features alone (12.76%). Simi- 
larly, the error using ASR confidence scores and the 
ASR grammar (17.77%) is significantly worse than 
prosodic features alone (12.76%). Thus, prosodic 
features, either alone or in conjunction with tradi- 
tional ASR features, significantly outperform these 
traditional features alone for predicting WER-based 
misrecognitions. 

Another interesting finding from our experiments 
is the predictive power of information available to 
current ASR systems but not made use of in calcu- 
lating rejection likelihoods, the identity of the recog- 

nized string. This feature is in fact the best perform- 
ing single feature in predicting our data (15.24%). 
And, at a 95% confidence level, the error using 
ASR confidence scores, the recognized string, and 
grammar (9.01%) matches the performance of our 
best performing feature set (6.53%). It seems that, 
at least in our task and for our ASR system, the 
appearance of particular words in the recognized 
strings is an extremely useful cue to recognition ac- 
curacy. So, even by making use of information cur- 
rently available from the traditional ASR process, 
ASR systems could improve their performance on 
identifying rejections by a considerable margin. A 
caveat here is that this feature, like grammar state, 
is unlikely to generalize from task to task or recog- 
nizer to recognizer, but these findings suggest that 
both should be considered as a means of improving 
rejection performance in stable systems. 

The classification model learned from the best per- 
forming feature set in Table 3 is shown in Figure 2. 6 
The first rule RI P P ER finds with this feature set is 
that if the user turn is less than .9 seconds and the 
recognized string contains the word "yes" (and possi- 
bly other words as well), with an acoustic confidence 
score > -2.6, then predict that the turn will be cor- 
rectly recognized.7 Note that all of the prosodic fea- 

6Rules are presented in order  of impor tance  in classifying 
data .  When  mult iple  rules are applicable, RIPPER uses the 
first rule. 

7The confidence scores observed in our  da t a  ranged f rom 
a high of -0.087662 to a low of-9.884418. 
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if  (duration 
if (duration 
if  (duration 
if (duration 
if (duration 
if (duration 
if (duration 
if (duration 
if (duration 
if (duration 
if (duration 
if (duration 
else F 

< 0.897073) A (confidence > -2.62744 ) A (string contains 'yes') then  T 
< 1.03872 ) A (confidence > -2.69775) A (string contains 'no') then  T 
< 0.982051) A (confidence > -1.99705) A (tempo > 3.1147) then  T 
< 0.813633) A (duration > 0.642652) A (confidence > -3.33945) A (F0 Mean > 176.794) then  T 
< 1.30312) A (confidence > -3.37301) A (% silences ~_ 0.647059) then  T 

0.610734) A (confidence > -3.37301) A (% silences > 0.521739) then  T 
< 1.09537) A (string contains 'Baltimore') then  T 
< 0.982051) A (string contains 'no') then  T 
< 1.1803) A (confidence > -2.93085) A (grammar ---- date) then  T 
< 1.09537) A (confidence > -2.30717) A (% silences > 0.356436) A (F0 Max > 249.225) then  T 
< 0.868743) A (confidence > -4.14926 ) A (% silences > 0.51923) A (F0 Max > 205.296) then  T 
< 1.18036) A (string contains 'Philadelphia') then  T 

Figure 2: Ruleset for Predicting Correctly Recognized Turns (WER = 0) from Prosodic and ASR Features. 

tures except for RMS mean, max, and prior pause 
appear in at least one rule, and that  the features 
shown to be significant in our statistical analyses 
(Section 3) are not the same features as in the rules. 
But,  as noted above, our data  points in these two 
experiments differ. It is useful to note though, that  
while this ruleset contains all three ASR features, 
none of the experimental parameters was found to 
be a useful predictor, suggesting that  our results are 
not specific to the particular conditions of and par- 
ticipants in the corpus collection, although they are 
specific to the lexicon and grammars.  

Results of our learning experiments with mis- 
recognition defined in terms of CA rather than W ER 
show the overall role of the features which predict 
WER-defined misrecognition to be less successful 
in predicting CA-defined error. Table 4 shows the 
relative performance of the same feature sets dis- 
cussed above, with misrecognition now defined in 
terms of CA<I .  As with the WER experiments, the 
best performing feature set makes use of prosodic 
and ASR-derived features. However, the predictive 
power of prosodic over ASR features decreases when 
misrecognition is defined in terms of CA - -  which is 
particularly interesting since ASR confidence scores 
are intended to predict WER rather than CA; the er- 
ror rate using ASR confidence scores alone (13.52%) 
is now significantly lower than the error obtained 
using prosody (18.18%). However, prosodic features 
still improve the predictive power of ASR confidence 
scores, to 11.34%, although this difference is not sig- 
nificant at a 95% confidence level. And the error 
rate of the three ASR features combined (11.70%) is 
reduced to the lowest error rate in our table when 
prosodic features are added (10.43%); this error rate 
is (just) significantly different from the use of ASR 
confidence scores alone. Thus, for CA-defined mis- 
recognitions, our experiments have uncovered only 
minor improvements over traditional ASR rejection 
calculation procedures. 

5 D i s c u s s i o n  
A statistical comparison of recognized versus mis- 
recognized utterances indicates that  F0 excursion, 
loudness, longer prior pause, and longer duration 
are significant prosodic characteristics of both WER  
and CA-defined failed recognition at tempts.  Results 
from a set of machine learning experiments show 
that  prosodic differences can in fact be used to im- 
prove the prediction of misrecognitions with a high 
degree of accuracy (12.76% error) for WER-based 
mi s recogn i t i ons -  and an even higher degree (6.53% 
error) when combined with information currently 
available from ASR systems. The use of ASR confi- 
dence scores alone had a predicted W ER of 22.23%, 
so the improvement over traditional methods is quite 
considerable. For CA-defined misrecognitions, the 
improvement provided by prosodic features is con- 
siderably less. One of our future research directions 
will be to understand this difference. 

Another future direction will be to address the is- 
sue of just w h y  prosodic features provide such use- 
ful indicators of recognition failure. Do the features 
themselves make recognition difficult, or are they 
instead indirect correlates of other phenomena not 
captured in our study? While the negative influence 
of speaking rate variation on ASR has been reported 
before (e.g. (Ostendorf et al., 1996), it is tradition- 
ally assumed that  ASR is impervious to differences 
in F0 and RMS; yet, it is known that  F0 and RMS 
variations co-vary to some extent with spectral char- 
acteristics (e.g. (Swerts and Veldhuis, 1997; Fant et 
al., 1995)), so that it is not unlikely that  utterances 
with extreme values for these may differ critically 
from the training data. Other prosodic features may 
be more indirect indicators of errors. Longer ut- 
terances may simply provide more chance for error 
than shorter ones, while speakers who pause longer 
before utterances and take more time making them 
may also produce more disfluencies than others. 

We are currently replicating our experiment on a 
new domain with a new speech recognizer. We are 
examining the W99 corpus, which was collected in a 
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Table 4: Estimated Error for Predicting Misrecognized Turns (CA<l).  
Features Used [ Error 

Prosody, ASR Confidence~ ASR String, ASR Grammar 10.43% .63 
ALL 10.68% .71 
Prosody, ASR Confidence, ASR Grammar 11.24% .68 
Prosody, ASR Confidence 11.34% .64 
ASR Confidence, ASR String, ASR Grammar 11.70% .68 
ASR Confidence 13.52% .82 
ASR Confidence, ASR Grammar 13.52% .84 
ASR String 13.62% .83 
Prosody, ASR String 15.04% .84 
Prosody 18.18% .85 
Duration 18.38% .90 
ASR Grammar 22.73% .96 
Tempo 24.61% 1.28 
Hyperarticulation 25.27% 1.05 
F0 Mean 28.61% 1.19 
F0 Max 28.76% .90 
RMS Mean 28.86% 1.17 
% Silence 28.91% 1.23 
RMS Max 29.01% 1.16 
Prior Pause 29.22% 1.26 
Majority Baseline [ 28.61% 

spoken dialogue system that supported registration, 
checking paper status, and information access for the 
IEEE Automatic Speech Recognition and Under- 
standing Workshop (ASRU99) (Rahim et al., 1999). 
This system employed the AT&T WATSON speech 
recognition technology (Sharp et al., 1997). Prelim- 
inary results indicate that our TOOT results do in 
fact hold up across recognizers. We also are extend- 
ing our TOOT corpus analysis to include prosodic 
analyses of turns in which users become aware of 
misrecognitions and correct them. In addition, we 
are exploring whether prosodic differences can help 
explain the "goat" phenomenon - -  the fact that 
some voices are recognized much more poorly than 
others (Doddington et al., 1998; Hirschberg et al., 
1999). Our ultimate goal is to provide prosodically- 
based mechanisms for identifying and reacting to 
ASR failures in SDS systems. 
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