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A b s t r a c t  

This paper investigates the impact of Constraint 
Dependency Grammars (CDG) on the accuracy of 
an integrated speech recognition and CDG pars- 
ing system. We compare a conventional CDG with 
CDGs that are induced from annotated sentences 
and template-expanded sentences. The grammars 
are evaluated on parsing speed, precision/coverage, 
and improvement of word and sentence accuracy of 
the integrated system. Sentence-derived CDGs sig- 
nificantly improve recognition accuracy over the con- 
ventional CDG but are less general. Expanding the 
sentences with templates provides us with a mech- 
anism for increasing the coverage of the grammar 
with only minor reductions in recognition accuracy. 

1 Background 
The question of when and how to integrate language 
models with speech recognition systems is gaining in 
importance as recognition tasks investigated by the 
speech community become increasingly more chal- 
lenging and as speech recognizers are used in hu- 
man/computer interfaces and dialog systems (Block, 
1997; Pieraccini and Levin, 1992; Schmid, 1994; 
Wright et al., 1994; Zue et al., 1991). Many sys- 
tems tightly integrate N-gram stochastic language 
models, with a power limited to a regular grammar, 
into the recognizer (Jeanrenaud et al., 1995; Ney et 
al., 1994; Placeway et al., 1993) to build more ac- 
curate speech recognizers. However, in order to act 
based on the spoken interaction with the user, the 
speech signal must be mapped to an internal repre- 
sentation. Obtaining a syntactic representation for 
the spoken utterance has a high degree of utility for 
mapping to a semantic representation. Without a 
structural analysis of an input, it is difficult to guar- 
antee the correctness of the mapping from a sentence 
to its interpretation (e.g., mathematical expressions 
to internal calculations). We believe that significant 
additional improvement in accuracy can be gained 
in specific domains by using a more complex lan- 
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guage model that combines syntactic, semantic, and 
domain knowledge. 

A language processing module that is more pow- 
erful than a regular grammar can be loosely, mod- 
erately, or tightly integrated with the spoken lan- 
guage system, and there are advantages and dis- 
advantages associated with each choice (Harper et 
al., 1994). To tightly integrate a language model 
with the power of a context-free grammar with the 
acoustic module requires that the power of the two 
modules be matched, making the integrated system 
fairly intractable and difficult to train. By separat- 
ing the language model from the acoustic model, it 
becomes possible to use a more powerful language 
model without increasing computational costs or the 
amount of acoustic training data required by the rec- 
ognizer. Furthermore, a loosely-integrated language 
model can be developed independently of the speech 
recognition component, which is clearly an advan- 
tage. Decoupling the acoustic and language mod- 
els also adds flexibility: a wide variety of language 
models can be tried with a single acoustic model. 
Systems that utilize a language model that operates 
as a post-processor to a speech recognizer include 
(Block, 1997; Seneff, 1992; Zue et al., 1991). 

The goal of this research is to construct and ex- 
perimentally evaluate a prototype of a spoken lan- 
guage system that loosely integrates a speech recog- 
nition component with an NLP component that uses 
syntactic, semantic, and domain-specific knowledge 
to more accurately select the sentence uttered by a 
speaker. First we describe the system we have built. 
Then we describe the mechanism used to rapidly de- 
velop a domain-specific grammar that improves ac- 
curacy of our speech recognizer. 

2 O u r  S y s t e m  

We have developed the prototype spoken language 
system depicted in Figure 1 that integrates a speech 
recognition component based on HMMs with a pow- 
erful grammar model based on Constraint Depen- 
dency Grammar (CDG). The speech recognizer is 
implemented as a multiple-mixture triphone HMM 
with a simple integrated word co-occurrence gram- 
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mar (Ent, 1997; Young et al., 1997). Mel-scale cep- 
stral coefficients, energy, and each of their their first 
and second order differences are used as the under- 
lying feature vector for each speech frame. Model 
training is done using standard Baum-Welch Max- 
imum Likelihood parameter re-estimation on diag- 
onal covariance Gaussian Mixture Model (GMM) 
feature distributions. The speech recognizer em- 
ploys a token-passing version of the Viterbi algo- 
ri thm (Young et al., 1989) and pruning settings to 
produce a pruned recognition lattice. This pruned 
lattice contains the most likely alternative sentences 
that account for the sounds present in an utterance 
as well as their probabilities. Without any loss of in- 
formation, this lattice is then compressed into a word 
graph (Harper et al., 1999b; Johnson and Harper, 
1999), which acts as the interface between the rec- 
ognizer and the C D G  parser. The word graph algo- 
ri thm begins with the recognition lattice and elim- 
inates identical subgraphs by iteratively combining 
word nodes that have exactly the same preceding 
or following nodes (as well as edge probabilities), 
pushing excess probability to adjacent nodes when- 
ever possible. The resulting word graph represents 
all possible word-level paths without eliminating or 
adding any paths or modifying their probabilities. 
Word graphs increase the bandwidth of useful acous- 
tic information passed from the HMM to the CDG 
parser compared to most current speech recognition 
systems. 

The CDG parser parses the word graph to identify 
the best sentence consistent with both the acoustics 
of the utterance and its own additional knowledge. 
The loose coupling of the parser with the HMM 
allows us to construct a more powerful combined 
system without increasing the amount of training 
data for the HMM or the computational complex- 
ity of either of the component modules. Our NLP 
component is implemented using a C D G  parser 
(Harper and Helzerman, 1995; Maruyama, 1990a; 
Maruyama, 1990b) because of its power and flexibil- 
ity, in particular: 

• It supports the use of syntactic, semantic, and 
domain-specific knowledge in a uniform frame- 
work. 

• Our CDG parser supports efficient simultaneous 
parsing of alternative sentence hypotheses in a 
word graph (Harper and Helzerman, 1995; Helz- 
erman and Harper, 1996). 

* Because CDG is a dependency grammar, it can 
better model free-order languages. Hence, CDG 
can be used in processing a wider variety of human 
languages than other grammar paradigms. 

• It is capable of representing and using context- 
dependent information unlike traditional gram- 
mar approaches, thus providing a finer degree of 
control over the syntactic analysis of a sentence. 

• A CDG can be extracted directly from sentences 
annotated with dependency information (i.e., fea- 
ture and syntactic relationships). 
We hypothesize that  the accuracy of the combined 

HMM/CDG system should benefit from the ability 
to create a grammar that covers the domain as pre- 
cisely as possible and that does not consider sen- 
tences that would not make sense given the domain. 
A corpus-based grammar is likely to have this degree 
of control. In the next section we describe how we 
construct a CDG from corpora. 

Figure 1: Block diagram of the loosely-coupled spo- 
ken language system. 

3 L e a r n i n g  C D G  R u l e s  

In this section, we introduce CDG and then describe 
how CDG constraints can be learned from sentences 
annotated with grammatical information. 

3.1 I n t r o d u c t i o n  t o  C D G  
Constraint Dependency Grammar  (CDG), first 
introduced by Maruyama (Maruyama, 1990a; 
Maruyama, 1990b), uses constraints to determine 
the grammatical dependencies for a sentence. The 
parsing algorithm is framed as a constraint satis- 
faction problem: the rules are the constraints and 
the solutions are the parses. A CDG is defined as 
a five-tuple, (2E, R, L, C, T),  where ~ = { a l , . . . ,  c%} 
is a finite set of lexical categories (e.g., determiner), 
R = { r l , . . . , r p }  is a finite set of uniquely named 
roles or role ids (e.g., governor, needl, need2), L = 
{ l l , . . . , l q }  is a finite set of labels (e.g., subject), 
C is a constraint formula, and T is a table that 
specifies allowable category-role-label combinations. 
A sentence s - W l W 2 W 3 . . . w n  has length n and 
is an element of ~*. For each word wi E ~ of a 
sentence s, there are up to p different roles (with 
most words needing only one or two (Harper et al., 
1999a)), yielding a maximum of n * p roles for the 
entire sentence. A role is a variable that  is assigned 
a role value, an element of the set L × (1, 2 , . . . ,  n}. 
Role values are denoted as l-m, where l E L and 
m E (1, 2 , . . . ,  n} is called the modifiee. Maruyama 
originally used a modifiee of NIL to indicate that a 
role value does not require a modifiee, but it is more 
parsimonious to indicate that there is no dependent 
by setting the modifiee to the position of its word. 

Role values are assigned to roles to record the syn- 
tactic dependencies between words in the sentence. 
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The governor role is assigned role values such that  
the modifiee of the word indicates the position of the 
word's governor or head (e.g., DET-3, when assigned 
to the governor role of a determiner, indicates its 
function and the position of its head). Every word 
in a sentence has a governor role. Need roles are 
used to ensure the requirements of a word are met. 
For example, an object is required by a verb that  
subcategorizes for one, unless it has passive voice. 
The required object is accounted for by requiring 
the verb's need role to be assigned a role value with 
a modifiee that points at the object. Words can 
have more than one need role, depending on the lex- 
ical category of the word. The table T indicates the 
roles that a word with a particular lexical category 
must support. 

A sentence s is said to be g e n e r a t e d  by the gram- 
mar G if there exists an assignment A that  maps a 
role value to each of the roles for s such that  C is 
satisfied. There may be more than one assignment 
of role values to the roles of a sentence that satisfies 
C, in which case there is ambiguity. C is a first- 
order predicate calculus formula over all roles that 
requires that  an assignment of role values to roles be 
consistent with the formula; those role values incon- 
sistent with C can be eliminated. A subformula P~ 
of C is a predicate involving =, <, or >, or predi- 
cates joined by the logical connectives and, or ,  i f ,  
or not .  A subformula is a unary constraint if it con- 
tains only a single variable (by convention, we use 
zl)  and a binary constraint if it contains two vari- 
ables (by convention zl  and z2). An example of 
a unary and binary constraint appears in Figure 2. 
A CDG has an arity parameter a, which indicates 
the maximum number of variables in the subformu- 
las of C, and a degree parameter  d, which is the 
number of roles in the grammar. An arity of two 
suffices to represent a grammar at least as power- 
ful as a context-free grammar (Maruyama, 1990a; 
Maruyama, 1990b). In (Harper et al., 1999a), we 
developed a way to write constraints concerning the 
category and feature values of a modifiee of a role 
value (or role value pair). These constraints loosely 
capture binary constraint information in unary con- 
straints (or beyond binary for binary constraints) 
and results in more efficient parsing. 

A u, liwy ¢~nst]llnt requiring that • role vmluo 
IlmlgnlKI to the vernot role of I determiner 
h a v e  the label D ~  lind • modlflee pointing to 
• lub4NIqtNl~t wocd* 

(if (and (= (category x 1) determiner) 
(= (rid x 1 ) G)) 

(and (= (label x 1 ) DET) 
(> (rood x 1 ) (pos Xl))) ) 

A binary oonatrllnt requiring that • role vllue 
with the libel S Ill lgned to • ne~dl role of one 
word pOklt It Imother word whole governor 
role I= mml~gnened • role veltm with the libel 8UBJ 
and • rnodlflee that point• beck at the flrat word. 

(if (and (= (label x I ) S) 
(= (rid Xl)  N1) 
(= (rnod Xl)  (pos x2)) 
(= (rid x2) G)) 

(and (= (label x2) SUBJ) 
(= (rood x2) (pos xl)))) 

Figure 2: A Unary and binary constraint for CDG. 

The white box in Figure 3 depicts a parse for 

the sentence Clear the screen from the Resource 
Management corpus (Price et al., 1988) (the ARV 
and ARVP in the gray box will be discussed later), 
which is a corpus we will use to evaluate our speech 
processing system. We have constructed a conven- 
tional CDG with around 1,500 unary and binary 
constraints (i.e., its arity is 2) that  were designed 
to parse the sentences in the corpus. This CDG 
covers a wide variety of grammar constructs (includ- 
ing conjunctions and wh-movement) and has a fairly 
rich semantics. It uses 16 lexical categories, 4 roles 
(so its degree is 4), 24 labels, and 13 lexical fea- 
ture types ( subca t ,  agr,  case, vtype (e.g., progres- 
sive), mood, gap, inverted, voice, behavior (e.g., 
mass), type (e.g., interrogative, relative), semtype, 
t a k e s d e t ,  and c o n j t y p e ) .  The parse in Figure 3 is 
an assignment of role values to roles that  is consis- 
tent with the unary and binary constraints. A role 
value, when assigned to a role, has access to not only 
the label and modifiee of its role value, but also the 
role name of the role to which it is assigned, informa- 
tion specific to the word (i.e., the word's position in 
the sentence, its lexical category, and feature values 
for each feature), and information about the lexical 
class and feature values of its modifiee. Our unary 
and binary constraints use this information to elim- 
inate ungrammatical  assignments. 

Parse for "Clear the screen" 

I 1 t h 2 e - ~  3 Clear ~ n  

¢a~=comlnon 
t vtype=lnf =ulxa~t3= I behav=count 

N m t / ~ r a m  

-G=root-1 G=de~3 
N2=S~3 
N3=S-1 

{'~t l=det erm~ner, type1 ==definite, subcat l=count3s, 
ddl=G •bell=de (< pOSXl) mod Xl) ) 

J"~tl---determiner, typel=definite, subcat 1--cour~3s, ddl=G, 
~ ~,bell=det, (< (pos Xl) (rood Xl)), Cat2=noun, c~se2=common, I 1 
t b e.hav2=count, type2=none, semty~2=display, agl2=3s, J] 
] rid2=G, label2==obi, (< (rood x2) (POs x2)), 

(rood x2) (pos Xl)), (= (rood xl) (pos x2)) J = 

Figure 3: A CDG parse (see white box) is repre- 
sented by the assignment of role values to roles as- 
sociated with a word with a specific lexical category 
and one feature value per feature. ARVs and ARVPs 
(see gray box) represent grammatical  relations that 
can be extracted from a sentence's parse. 

3.2 L e a r n i n g  C D G  C o n s t r a i n t s  

The grammaticality of a sentence in a language de- 
fined by a CDG was originally determined by apply- 
ing the constraints of the grammar to the possible 

104  



role value assignments. If the set of all possible role 
values assigned to the roles of a sentence of length n 
is denotedS1 =Y;.x R x P O S x L x M O D x  F t x  
. . .  x Fk, where k is the number of feature types, 
Fi represents the set of feature values for that type, 
P O S  = {1, 2 , . . . ,  n} is the set of possible positions, 
M O D  = {1, 2 , . . . ,  n} is the set of possible modi- 
flees, and n is sentence length (which can be any 
arbitrary natural number), then unary constraints 
partition $1 into grammatical and ungrammatical 
role values. Similarly, binary constraints partit ion 
the set $2 = $1 x $1 = S~ into compatible and in- 
compatible pairs. Building upon this concept of role 
value partitioning, it is possible to construct another 
way of representing unary and binary constraints 
because CDG constraints do not need to reference 
the exact position of a word or a modifiee in the 
sentence to parse sentences (Harper and Helzerman, 
1995; Maruyama, 1990a; Maruyama, 1990b; Menzel, 
1994; Menzel, 1995). 

To represent the relative, rather than the abso- 
lute, position information for the role values in a 
grammatical sentence, it is only necessary to repre- 
sent the positional relations between the modifiees 
and the positions of the role values. To support an 
arity of 2, these relations involve either equality or 
less-than relations over the modifiees and positions 
of role values assigned to the roles zl  and x2. Since 
unary constraints operate over role values assigned 
to a single role, the only relative position relations 
that can be tested are between the role value's posi- 
tion (denoted as Pz l )  and its modifiee (denoted as 
Mzl);  one and only one of the following three re- 
lations must be true: (P~:I < Mzl) ,  (Mzl < Pz l ) ,  
or (Pzl  = Mzl) .  Since binary constraints operate 
over role values assigned to pairs of roles, zl  and z2, 
the only possible relative position relations that can 
be tested are between Pz l  and Mxt,  P:e2 and Mx2, 
Pz l  and Mz~, Pz2 and Mxt,  Pz t  and Px2, Mxl and 
Mz2. Note that each of the six has three positional 
relations (as in the case of unary relations on Pz l  
and Mzt)  such that one and only one of them is 
simultaneously true. 

The unary and binary positional relations provide 
the necessary mechanism to develop an alternative 
view of the unary and binary constraints. First, we 
develop the concept of an abstract role value (ARV), 
which is a finite characterization of all possible role 
values using relative, rather than absolute, position 
relations. Formally, an ARV for a particular gram- 
mar G = (~,, R, L, C, T, F t , . . . ,  Fk) is an element of 
the set: .dl = E x R ×  L x F t  × . . . x F k x U C ,  where UC 
encodes the three possible positional relations be- 
tween Pxl and Mxl. The gray box of Figure 3 shows 
an example of an ARV obtained from the parsed sen- 
tence. Note that .At is a finite set representing the 

space of all possible ARVs for the grammar1; hence, 
the set provides an alternative characterization of 
the unary constraints for the grammar,  which can 
be partitioned into positive (grammatical) and neg- 
ative (ungrammatical) ARVs. During parsing, if a 
role value does not match one of the elements in the 
positive ARV space, then it should be disallowed. 
Positive ARVs can be obtained directly from the 
parses of sentences: for each role value in a parse for 
a sentence, simply extract its category, feature, role, 
and label information, and then determine the po- 
sitional relation that  holds between the role value's 
position and modifiee. 

Similarly the set of legal abstract role value pairs 
(ARVPs), A2 = ] E x R x L x F t x . . . x F k x ~ x R x L x  
F1 x . . .  x Fk x BC, where BC encodes the positional 
relations among Pxl ,  Mxt,  Px2, and Mx2, provides 
an alternative definition for the binary constraints 2. 
The gray box of Figure 3 shows an example of an 
ARVP obtained from the parsed sentence. Positive 
ARVPs can be obtained directly from the parses of 
sentences. For each pair of role values assigned to 
different roles, simply extract their category, feature, 
role, and label information, and then determine the 
positional relations that  hold between the positions 
and modifiees. 

An enumeration of the positive ARV/ARVPs can 
be used to represent the CDG constraints, C, and 
ARV/ARVPs are PAC-learnable from positive ex- 
amples, as can be shown using the techniques of 
(Natarajan, 1989; Valiant, 1984). ARV/ARVP con- 
straints can be enforced by using a fast table lookup 
method to see if a role value (or role value pair) is 
allowed (rather than propagating thousands of con- 
straints), thus speeding up the parser. 

4 E v a l u a t i o n  U s i n g  t h e  N a v a l  
R e s o u r c e  M a n a g e m e n t  D o m a i n  

An experiment was conducted to determine the 
plausibility and the benefits of extracting CDG con- 
straints from a domain-specific corpus of sentences. 
For our speech application, the ideal CDG should be 
general enough to cover sentences similar to those 
that  appear in the corpus while being restrictive 
enough to eliminate sentences that are implausible 
given the observed sentences. Hence, we investigate 
whether a grammar  extracted from annotated sen- 
tences in a corpus achieves this precision of cover- 
age. We also examine whether a learned grammar 
has the ability to filter out incorrect sentence hy- 
potheses produced by the HMM component of our 
system in Figure 1. To investigate these issues, we 
have performed an experiment using the standard 

1,fit 1 can also include informat ion abou t  the possible lexical 
categories and feature values of the modifiee of Xl. 

2.A2 can also include informat ion abou t  the possible lexical 
categories and feature values of the modifiees of Xl and x2. 
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Resource Management (RM) (Price et al., 1988) and 
Extended Resource Management (RM2) ((DARPA), 
1990) corpora. These mid-size speech corpora have 
a vocabulary of 991 words and contain utterances of 
sentences derived from sentence templates based on 
interviews with naval personnel familiar with naval 
resource management tasks. They were chosen for 
several reasons: they are two existing speech corpora 
from the same domain; their manageable sizes make 
them a good platform for the development of tech- 
niques that require extensive experimentation; and 
the sentences have both syntactic variety and rea- 
sonably rich semantics. RM contains 5,190 separate 
utterances (3,990 testing, 1,200 training) of 2,845 
distinct sentences (2,245 training, 600 testing). We 
have extracted several types of CDGs from annota- 
tions of the RM sentences and tested their generality 
using the 7,396 sentences in RM2 (out of the 8,173) 
that  are in the resource management domain but are 
distinct from the RM sentences. We compare these 
CDGs to each other and to the conventional CDG 
described previously. 

The corpus-based CDGs were created by extract- 
ing the allowable grammar relationships from the 
RM sentences that  were annotated by language ex- 
perts using the SENATOR annotation tool, a CGI 
(Common Gateway Interace) HTML script written 
in GNU C + +  version 2.8.1 (White, 2000). We 
tested two major CDG variations: those derived di- 
rectly from the RM sentences (Sentence CDGs) and 
those derived from simple template-expanded RM 
sentences (Template CDGs). For example, "List 
MIDPAC's deployments during (date)" is a sentence 
containing a date template which allows any date 
representations. For these experiments, we focused 
on templates for dates, years, times, numbers, and 
latitude and longitude coordinates. Each template 
name identifies a sub-grammar which was produced 
by annotating the appropriate strings. We then an- 
notated sentences containing the template names as 
if they were regular sentences. Approximately 25% 
of the 2,845 RM sentences were expanded with one 
or more templates. 

Although annotating a corpus of sentences can be 
a labor intensive task, we used an iterative approach 
that is based on parsing using grammars with vary- 
ing degrees of restrictiveness. A grammar can be 
made less restrictive by ignoring: 
* lexical information associated with a role value's 

modifiee in the ARVPs, 
o feature information of two role values in an ARVP 

not directly related based on their modifiee rela- 
tions, 

. syntactic information provided by two role values 
that  are not directly related, 

• specific feature information (e.g., semantics or 
subcategorization). 

Initially, we bootstrapped the grammar by annotat- 
ing a 200 sentence subset of the RM corpus and ex- 
tracting a fairly general grammar from the annota- 
tions. Then using increasingly restrictive grammars 
at each iteration, we used the current grammar to 
identify sentences that  required annotation and ver- 
ified the parse information for sentences that  suc- 
ceeded. This iterative technique reduced the time 
required to build a CDG from about one year for the 
conventional CDG to around two months (White, 
2000). 

Several methods of extracting an ARV/ARVP 
grammar from sentences or template-extended sen- 
tences were investigated. The ARVPs are extracted 
differently for each method; whereas, the ARVs 
are extracted in the same manner regardless of the 
method. Recall that  ARVs represent the set of ob- 
served role value assignments. In our implementa- 
tion, each ARV includes: the label of the role value, 
the role to which the role value was assigned, the 
lexical category and feature values of the word con- 
taining the role, the relative position of the word and 
the role value's modifiee, and the modifiee's lexical 
category and feature values (modifiee constraints). 
We use modifiee constraints for ARVs regardless of 
extraction method because their use does not change 
the coverage of the extracted grammar and not using 
the information would significantly slow the parser 
(Harper et al., 1999a). Because the ARVP space is 
larger than the ARV space, we investigate six varia- 
tions for extracting the pairs: 

1. Ful l  M o d :  contains all grammar and feature 
value information for all pairs of role values from 
annotated sentences, as well as modifiee con- 
straints. For a role value pair in a sentence to be 
considered valid during parsing with this gram- 
mar, it must match an ARVP extracted from the 
annotated sentences. 

2. Full:  like Ful l  M o d  except it does not impose 
modifiee constraints on a pair of role values during 
parsing. 

3. F e a t u r e  M o d :  contains all grammar relations 
between all pairs of role values, but  it consid- 
ers feature and modifiee constraints only for pairs 
that  are directly related by a modifiee link. Dur- 
ing parsing, if a role value pair is related by a 
modifiee link, then a corresponding ARVP with 
full feature and modifiee information must appear 
in the grammar for it to be allowed. If the pair 
is not directly related, then an ARVP must be 
stored for the grammar relations, ignoring feature 
and modifiee constraint information. 

4. F e a t u r e :  like F e a t u r e  M o d  except it does not 
impose modifiee constraints on a pair of role val- 
ues during parsing. 

5. D i r e c t  M o d :  stores only the grammar,  feature, 
and modifiee information for those pairs of role 
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Table 1: Number of ARVs and ARVPs extracted for 
each RM grammar. 
ARVP Sentence  I Templa te  Percen t  
Variation CDG [ C D G  Increase 
Full Mod 270,034 408,912 
Full 165,480 200,792 
Feature  Mod 
Feature  
Direct  Mod 
Direct  
ARVs 

49,468 
36,558 
41,124 
28,214 
4,424 

56,758 
40,308 
47,004 
30,554 
4,648 

51.43% 
21.34% 
14.74% 
10.26% 
14.30% 
8.29% 
5.06% 

Table 2: Number of successfully parsed sentences in 
RM2 using the conventional CDG and CDGs derived 
from sentences only or template-expanded sentences. 
A R V P  ~: Parsed  with ~ Parsed with 
Variation Sentence  C D G  Templa te  C DG 
Full Mod 
Full 
Feature  Mod 
Feature  
Direct  Mod 
Direct  
Convent ional  

3,735 (50.50%) 
4,509 (60.97%) 
5,365 (72.54%) 
5,772 (78.04%) 
5,464 (73.88%) 
5,931 (80.19%) 
7,144 (96.59%) 

4,461 (60.32%) 
5,316 (71.88%) 
5,927 (80.14%) 
6,208 (83.94%) 
5,979 (80.84%) 
6,275 (84.82%) 
not applicable 

values that are directly related by a modifiee link. 
During parsing, if a role value pair is related by 
such a link, then a corresponding ARVP must ap- 
pear in the grammar for it to be allowed. Any 
pair of role values not related by a modifiee link 
is allowed (an open-world assumption). 

6. D i r e c t :  like D i r e c t  M o d  except it does not im- 
pose modifiee constraints on a pair of role values 
during parsing. 

Grammar  sizes for these six grammars, extracted 
either directly from the 2,845 sentences or from the 
2,845 sentences expanded with our sub-grammar 
templates, appear in Table 1. The largest gram- 
mars were derived using the Ful l  M o d  extrac- 
tion method, with a fairly dramatic growth result- 
ing from processing template-expanded sentences. 
The F e a t u r e  and D i r e c t  variations are more man- 
ageable in size, even those derived from template- 
expanded sentences. 

Size is not the only important  consideration for 
a grammar. Other important  issues are grammar 
generality and the impact of the grammar on the 
accuracy of selecting the correct sentence from the 
recognition lattice of a spoken utterance. After 
extracting the CDG grammars from the RM sen- 
tences and template-expanded sentences, we tested 
the generality of the extracted grammars by using 
each grammar to parse the 7,396 RM2 sentences. 
See the results in Table 2. The grammar with the 
greatest generality was the conventional CDG for 
the RM corpus; however, this grammar also has 
the unfortunate attribute of being quite ambigu- 
ous. The most generalizable of extracted grammars 
uses the D i r e c t  method on template-expanded sen- 
tences. In all cases, the template-expanded sen- 
tence grammars gave better coverage than their cor- 
responding sentence-only grammars. 

We have also used the extracted grammars to 
post-process word graphs created by the word graph 
compression algorithm of (Johnson and Harper, 
1999) for the test utterances in the RM corpus. As 
was reported in (Johnson and Harper, 1999), the 
word-error rate of our HMM recognizer with an em- 
bedded word pair language model on the RM test set 

of 1200 utterances was 5.0%, the 1-best sentence ac- 
curacy was 72.1%, and the word graph coverage ac- 
curacy was 95.1%. Also, the average uncompressed 
word graph size was 75.15 nodes, and our compres- 
sion algorithm resulted in a average word graph size 
of 28.62 word nodes. When parsing the word graph, 
the probability associated with a word node can ei- 
ther represent its acoustic score or a combination 
of its acoustic and stochastic grammar score. We 
use the acoustic score because (Johnson and Harper, 
1999) showed that  by using a word node's acoustic 
score alone when extracting the top sentence candi- 
date after parsing gave a 4% higher sentence accu- 
racy. 

For the parsing experiments, we processed the 
1,080 word graphs produced for the RM test set 
that  contained 50 or fewer word nodes after com- 
pression (out of 1,200 total) in order to efficiently 
compare the 12 ARV/ARVP CDG grammars and 
the conventional CDG (the larger word graphs re- 
quire significant time and space to parse using the 
conventional CDG). These 1,080 word graphs con- 
tain 24.95 word nodes on average with a standard 
deviation (SD) of 10.80, and result in 1-best sen- 
tence accuracy was 75% before parsing. The num- 
ber of role values prior to binary constraint propa- 
gation differ across the grammars with an average 
(and SD) for the conventional grammar of 504.99 
(442.00), for the sentence-only grammars of 133.37 
(119.48), and for the template-expanded grammars 
of 157.87 (145.16). Table 3 shows the word graph 
parsing speed and the path, node, and role value 
(RV) ambiguity after parsing; Table 4 shows the 
sentence accuracy and the accuracy and percent cor- 
rect for words. Note that  percent correct words is 
calculated using N - D - S  and word accuracy using N 
N - D - S - I  where N is the number of words, D is N 
the number of deletions, S is the number of substi- 
tutions, and I is the number of insertions. 

The most selective RM sentence grammar, Full  
M o d ,  achieves the highest sentence accuracy, but 
at a cost of a greater average parsing time than 
the other RM sentence grammars.  Higher accu- 
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ARVP Variat ion Parse Time (sec.) 
Full Mod 33.89 (41.12) 
Templa te  Full Mod 41.85 (51.75) 
Full 29.73 (36.68) 
Templa te  Full 36.80 (46.90) 
Feature  Mod 11.46 (14.46) 
Templa te  Feature  Mod 13.80 (18.47) 
Feature  11.60 (14.97) 
Templa te  Feature  14.24 (19.63) 
Direct  Mod 13.93 (19.73) 
Templa te  Direct  Mod 17.28 (26.56) 
Direct  19.95 (36.89) 
Templa te  Direct  28.02 (69.50) 
Covent ional  83.48 (167.51) 

No. Pa ths  
2.21 (1.74) 
2.78 (3.75) 
2.83 (2.92) 
3.40 (5.19) 
3.9 (5.97) 

4.22 (6.93) 
5.19 (8.36) 
6.86 (14.83) 

No. Nodes  
10.59 (3.44) 
10.76 (3.64) 
10.87 (3.54) 
11.03 (3.74) 
11.20 (3.94) 
11.28 (4.06) 
11.72 (4.22) 
11.94 (4.52) 

4.25 (6.49) 11.46 (4.27) 
4.62 (8.61) 11.45 (4.28) 

808 (18.52) 12.81 (5.73) 
9.98 (25.52) 12.95 (5.95) 

51.33 (132.43) 17.14 (8.02) 

No. RVs 
19.51 (8.32) 
19.93 (8.76) 
20.32 (8.86) 
20.77 (9.47) 

21.43 (10.49) 
21.81 (11.17) 
23.41 (12.72) 
24.47 (14.41) 
22.79 (13.44) 
22.95 (13.34) 
32.85 (34.65) 
33.36 (35.66) 
77.19 (76.26) 

Table 3: Average parse times (SD), number of paths (SD), number of nodes (SD), and number of role values 
(SD) remaining after parsing the 1,080 word graphs of 50 or fewer word nodes produced for the RM test set 
using the 13 CDGs. 

ARVP Variat ion Sentence Accuracy  ~o Cor rec t  Words  Word  Accuracy 
Full Mod 
Templa te  Full Mod 
Full 
Templa te  Full 
Feature  Mod  
Templa te  Fea ture  Mod 
Feature  
Templa te  Feature  
Direct  Mod 
Templa te  Direct  Mod 
Direct 
Template Direct  
Convent ional  

91.94% 
91.57% 
91.57% 
91.20% 
90.56% 
90.19% 
90.28% 
89.91% 
90.46% 
90.09% 
89.91% 
89.44% 
81.20% 

98.55% 
98.50% 
98.49% 
98.45% 
98.38% 
98.34% 
98,35% 
98.29% 
98.37% 
98.32% 
98.30% 
98.25% 
97.11% 

98.19% 
98.14% 
98.11% 
98.05% 
97.95% 
97.90% 
97.91% 
97.85% 
97.91% 
97.86% 
97.82% 
97.75% 
96.10% 

Table 4: The sentence accuracy, percent correct words, and word accuracy from parsing 1,080 word graphs 
of 50 or fewer word nodes produced for the RM test set using the 13 CDGs. 

racy appears to be correlated with the ability of the 
constraints to eliminate word nodes from the word 
graph during parsing. The least restrictive sentence 
grammar,  D i r e c t ,  is less accurate than the other 
sentence grammars and offers an intermediate speed 
of parsing, most likely due to the increased ambigu- 
ity in the parsing space. The fastest grammar was 
the F e a t u r e - M o d  grammar, which also offers an 
intermediate level of accuracy. Its size (even with 
templates), restrictiveness, and speed make it very 
attractive. The template versions of each grammar 
showed a slight increase in average parse times (from 
processing a larger number of role values) and a 
slight decrease in parsing accuracy. The conven- 
tional grammar was the least competitive of the 
grammars both in speed and in accuracy. 

5 C o n c l u s i o n  a n d  F u t u r e  D i r e c t i o n s  

ity to improve sentence accuracy of our speech sys- 
tem. To achieve balance between precision and cov- 
erage of our corpus-induced grammars,  we have ex- 
panded the RM sentences with templates for expres- 
sions like dates and times. The grammars extracted 
from these expanded sentences gave increased RM2 
coverage without sacrificing even 1% of the sentence 
accuracy. We are currently expanding the number of 
templates in our grammar in an a t tempt  to obtain 
full coverage of the RM2 corpus using only template- 
expanded RM sentences. We have recently added 
ten semantic templates to the grammar and have 
improved the coverage by 9.19% without losing any 
sentence accuracy. We are also developing a stochas- 
tic version of CDG that  uses a statistical ARV, which 
is similar to a supertag (Srinivas, 1996). 
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