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Abstract 
We present a novel sentence reduction system for 
automatically removing extraneous phrases from 
sentences that  are extracted from a document for 
summarization purpose. The system uses multiple 
sources of knowledge to decide which phrases in an 
extracted sentence can be removed, including syn- 
tactic knowledge, context information, and statistics 
computed from a corpus which consists of examples 
written by human professionals. Reduction can sig- 
nificantly improve the conciseness of automatic sum- 
maries. 

1 Motivation 

Current automatic summarizers usually rely on sen- 
tence extraction to produce summaries. Human pro- 
fessionals also often reuse the input documents to 
generate summaries; however, rather than simply 
extracting sentences and stringing them together, as 
most current summarizers do, humans often "edit" 
the extracted sentences in some way so that  the re- 
sulting summary is concise and coherent. We ana- 
lyzed a set of articles and identified six major opera- 
tions that  can be used for editing the extracted sen- 
tences, including removing extraneous phrases from 
an extracted sentence, combining a reduced sentence 
with other sentences, syntactic transformation, sub- 
stituting phrases in an extracted sentence with their 
paraphrases, substituting phrases with more general 
or specific descriptions, and reordering the extracted 
sentences (Jing and McKeown, 1999; Jing and McK- 
eown, 2000). 

We call the operation of removing extraneous 
phrases from an extracted sentence sentence reduc- 
tion. It is one of the most effective operations that  
can be used to edit the extracted sentences. Reduc- 
tion can remove material at any granularity: a word, 
a prepositional phrase, a gerund, a to-infinitive or a 
clause. We use the term "phrase" here to refer to 
any of the above components that  can be removed in 
reduction. The following example shows an original 
sentence and its reduced form written by a human 
professional: 

Original sentence: 
When it arrives sometime next year in new 
T V  sets, the V-chip will give parents a new 
and potentially revolutionary device to block 
out programs they don' t  want their children 
to see. 

Reduced sentence by humans: 
The V-chip will give parents a device to block 
out programs they don' t  want their children 
to see. 

We implemented an automatic  sentence reduction 
system. Input to the reduction system includes 
extracted sentences, as well as the original docu- 
ment. Output  of reduction are reduced forms of 
the extracted sentences, which can either be used 
to produce summaries directly, or be merged with 
other sentences. The reduction system uses multiple 
sources of knowledge to make reduction decisions, 
including syntactic knowledge, context, and statis- 
tics computed from a training corpus. We evaluated 
the system against the output  of human profession- 
als. The program achieved a success rate of 81.3%, 
meaning that  81.3% of reduction decisions made by 
the system agreed with those of humans. 

Sentence reduction improves the conciseness of au- 
tomatically generated summaries, making it concise 
and on target. It can also improve the coherence of 
generated summaries, since extraneous phrases that  
can potentially introduce incoherece are removed. 
We collected 500 sentences and their corresponding 
reduced forms written by humans, and found that  
humans reduced the length of these 500 sentences 
by 44.2% on average. This indicates that  a good 
sentence reduction system can improve the concise- 
ness of generated summaries significantly. 

In the next section, we describe the sentence re- 
duction algorithm in details. In Section 3, we intro- 
duce the evaluation scheme used to access the perfor- 
mance of the system and present evaluation results. 
In Section 4, we discuss other applications of sen- 
tence reduction, the interaction between reduction 
and other modules in a summarizat ion system, and 
related work on sentence simplication. Finally, we 
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conclude with future work. 

2 S e n t e n c e  r e d u c t i o n  b a s e d  o n  
m u l t i p l e  s o u r c e s  o f  k n o w l e d g e  

The goal of sentence reduction is to "reduce without 
major loss"; that  is, we want to remove as many ex- 
traneous phrases as possible from an extracted sen- 
tence so that it can be concise, but without detract- 
ing from the main idea the sentence conveys. Ideally, 
we want to remove a phrase from an extracted sen- 
tence only i f  it is irrelevant to the main topic. To 
achieve this, the system relies on multiple sources 
of knowledge to make reduction decisions. We first 
introduce the resources in the system and then de- 
scribe the reduction algorithm. 

2.1 T h e  r e s o u r c e s  

(1) T h e  c o r p u s .  One of the key features of 
the system is that it uses a corpus consisting of 
original sentences and their corresponding reduced 
forms written by humans for training and testing 
purpose. This corpus was created using an auto- 
matic program we have developed to automatically 
analyze human-written abstracts. The program, 
called the decomposition program, matches phrases 
in a human-written summary sentence to phrases 
in the original document (Jing and McKeown, 
1999). The human-written abstracts were collected 
from the free daily news service "Communications- 
related headlines", provided by the Benton Founda- 
tion (http:/ /www.benton.org).  The articles in the 
corpus are news reports on telecommunication re- 
lated issues, but they cover a wide range of topics, 
such as law, labor, and company mergers. 

(2) T h e  l ex icon .  The system also uses a large- 
scale, reusable lexicon we combined from multiple 
resources (Jing and McKeown, 1998). The resources 
that were combined include COMLEX syntactic dic- 
tionary (Macleod and Grishman, 1995), English 
Verb Classes and Alternations (Levin, 1993), the 
WordNet lexical database (Miller et al., 1990), the 
Brown Corpus tagged with WordNet senses (Miller 
et al., 1993). The lexicon includes subcategoriza- 
tions for over 5,000 verbs. This information is used 
to identify the obligatory arguments of verb phrases. 

(3) T h e  W o r d N e t  lex ica l  d a t a b a s e .  Word- 
Net (Miller et al., 1990) is the largest lexical 
database to date. It provides lexical relations 
between words, including synonymy, antonymy, 
meronymy, entailment (e.g., eat --+ chew), or cau- 
sation (e.g., kill --4 die). These lexical links are used 
to identify the focus in the local context. 

(4) T h e  s y n t a c t i c  p a r s e r .  We use the English 
Slot Grammar(ESG) parser developed at IBM (Mc- 
Cord, 1990) to analyze the syntactic structure of an 
input sentence and produce a sentence parse tree. 
The ESG parser not only annotates the syntactic 

category of a phrase (e.g., "np" or "vp"), it also an- 
notates the thematic role of a phrase (e.g., "subject" 
or "object"). 

2.2 T h e  a l g o r i t h m  

There are five steps in the reduction program: 
S t e p  1: S y n t a c t i c  p a r s i n g .  
We first parse the input sentence using the ESG 

parser and produce the sentence parse tree. The op- 
erations in all other steps are performed based on 
this parse tree. Each following step annotates each 
node in the parse tree with additional information, 
such as syntactic or context importance, which are 
used later to determine which phrases (they are rep- 
resented as subtrees in a parse tree) can be consid- 
ered extraneous and thus removed. 

S t e p  2:  G r a m m a r  c h e c k i n g .  
In this step, we determine which components of 

a sentence must  not be deleted to keep the sentence 
grammatical. To do this, we traverse the parse tree 
produced in the first step in top-down order and 
mark, for each node in the parse tree, which of its 
children are grammatically obligatory. We use two 
sources of knowledge for this purpose. One source 
includes simple, linguistic-based rules that use the 
thematic role structure produced by the ESG parser. 
For instance, for a sentence, the main verb, the sub- 
ject, and the object(s) are essential if they exist, but 
a prepositional phrase is not; for a noun phrase, the 
head noun is essential, but an adjective modifier of 
the head noun is not. The other source we rely on 
is the large-scale lexicon we described earlier. The 
information in the lexicon is used to mark the oblig- 
atory arguments of verb phrases. For example, for 
the verb "convince", the lexicon has the following 
entry: 

convince 

sense I : 

NP-PP :PVAL ( ' t o f ' ' )  
NP-T0-INF-OC 

sense 2 : 

NP 

This entry indicates that  the verb "convince" can 
be followed by a noun phrase and a prepositional 
phrase starting with the preposition "of" (e.g., he 
convinced me of his innocence). It can also be fol- 
lowed by a noun phrase and a to-infinitive phrase 
(e.g., he convinced me to go to the party). This 
information prevents the system from deleting the 
"of" prepositional phrase or the to-infinitive that is 
part of the verb phrase. 

At the end of this step, each node in the parse tree 
- -  including both leaf nodes and intermediate nodes 
- -  is annotated with a value indicating whether it is 
grammatically obligatory. Note that  whether a node 
is obligatory is relative to its parent node only. For 
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example, whether a determiner is obligatory is rela- 
tive to the noun phrase it is in; whether a preposi- 
tional phrase is obligatory is relative to the sentence 
or the phrase it is in. 

Step 3: Context  information. 
In this step, the system decides which components 

in the sentence are most related to the main topic 
being discussed. To measure the importance of a 
phrase in the local context, the system relies on lex- 
ical links between words. The hypothesis is that  
the more connected a word is with other words in 
the local context, the more likely it is to be the 
focus of the local context. We link the words in 
the extracted sentence with words in its local con- 
text, if they are repetitions, morphologically related, 
or linked in WordNet through one of the lexical re- 
lations. The system then computes an importance 
score for each word in the extracted sentence, based 
on the number of links it has with other words and 
the types of links. The formula for computing the 
context importance score for a word w is as follows: 

9 

ContextWeight(w) = ~-~(Li x NUMi(w)) 
i-----1 

Here, i represents the different types of lexical 
relations the system considered, including repeti- 
tion, inflectional relation, derivational relation, and 
the lexical relations from WordNet. We assigned a 
weight to each type of lexical relation, represented 
by Li in the formula. Relations such as repetition 
or inflectional relation are considered more impor- 
tant and are assigned higher weights, while relations 
such as hypernym are considered less important  and 
assigned lower weights. NUMi(w) in the formula 
represents the number of a particular type of lexical 
links the word w has with words in the local context. 

After an importance score is computed for each 
word, each phrase in the "sentence gets a score by 
adding up the scores of its children nodes in the parse 
tree. This score indicates how important  the phrase 
is in the local context. 

Step 4: Corpus evidence. 
The program uses a corpus consisting of sen- 

tences reduced by human professionals and their 
corresponding original sentences to compute how 
likely humans remove a certain phrase. The system 
first parsed the sentences in the corpus using ESG 
parser. It then marked which subtrees in these parse 
trees (i.e., phrases in the sentences) were removed 
by humans. Using this corpus of marked parse trees, 
we can compute how likely a subtree is removed 
from its parent node. For example, we can compute 
the probability that  the "when" temporal  clause is 
removed when the main verb is "give", represented 
as Prob("when-clause is removed"l"v=give"),  

or the probability that  the to-infinitive modifier 
of the head noun "device" is removed, represented as 
Prob("to-infinitive modifier is removed"l"n=device").  
These probabilities are computed using Bayes's 
rule. For example, the probability that  the "when" 
temporal clause is removed when the main verb is 
"give", Prob("when-clause is removed ' l "v=give ' ) ,  
is computed as the product of 
Prob("v=give"["when-clause is removed") (i.e., 
the probability that  the main verb is "give" 
when the "when" clause is removed) and 
Prob("when-clause is removed") (i.e., the probabil- 
ity that  the "when" clause is removed), divided by 
Prob("v=give") (i.e., the probability that  the main 
verb is "give"). 

Besides computing the probability that  a phrase is 
removed, we also compute two other types of proba- 
bilities: the probability that  a phrase is reduced (i.e., 
the phrase is not removed as a whole, but  some com- 
ponents in the phrase are removed), and the proba- 
bility that  a phrase is unchanged at all (i.e., neither 
removed nor reduced). 

These corpus probabilities help us capture hu- 
man practice. For example, for sentences like "The 
agency reported that  ...", "The other source says 
that  ...", "The new study suggests that  . . . ' ,  the that- 
clause following the say-verb (i.e., report, say, and 
suggest) in each sentence is very rarely changed at 
all by professionals. The system can capture this hu- 
man practice, since the probability that  that-clause 
of the verb say or report being unchanged at all 
will be relatively high, which will help the system 
to avoid removing components in the that-clause. 

These corpus probabilities are computed before- 
hand using a training corpus. They are then stored 
in a table and loaded at running time. 

Step 5: Final Decision.  
The final reduction decisions are based on the re- 

sults from all the earlier steps. To decide which 
phrases to remove, the system traverses the sentence 
parse tree, which now have been annotated with dif- 
ferent types of information from earlier steps, in the 
top-down order and decides which subtrees should 
be removed, reduced or unchanged. A subtree (i.e., 
a phrase) is removed only if it is not grammatically 
obligatory, not the focus of the local context (indi- 
cated by a low importance score), and has a reason- 
able probability of being removed by humans. 

Figure 1 shows sample output  of the reduction 
program. The reduced sentences produced by hu- 
mans are also provided for comparison. 

3 E v a l u a t i o n  

3.1 T h e  e v a l u a t i o n  s c h e m e  

We define a measure called success rate to evaluate 
the performance of our sentence reduction program. 
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Example 1: 
Original sentence : When it arrives sometime next year in new T V  sets, the V-chip will give 
p a r e n t s  a new and potential ly revolut ionary device to block out  p rograms  they  don ' t  
w a n t  t h e i r  children to s e e .  
Reduction program: The V-chip will give parents a new and potentially revolutionary device to 
block out programs they don't want their children to see. 
Professionals : The V-chip will give parents a device to block out programs they don't want 
their children to see. 

Example 2: 
Original sentence : Som and Hoffman 's  creation would allow broadcasters  to i n s e r t  
multiple ratings into a show, enabling the V-chip to filter out racy or violent material but leave 
unexceptional portions of a show alone. 
Reduction Program: Som and Hoffman's creation would allow broadcasters to insert multiple rat- 
ings into a show. 
Professionals : (the same) 

Figure 1: Sample output of sentence reduction program 

The success rate computes the percentage of sys- 
tem's reduction decisions that agree with those of 
humans. 

We compute the success rate in the following way. 
The reduction process can be considered as a series 
of decision-making process along the edges of a sen- 
tence parse tree. At each node of the parse tree, 
both the human and the program make a decision 
whether to remove the node or to keep it. If a node 
is removed, the subtree with that node as the root is 
removed as a whole, thus no decisions are needed for 
the descendants of the removed node. If  the node is 
kept, we consider that node as the root and repeat 
this process. 

D 

B E G 
/ \  / ' , ,  

A C F H 

? 
A 

D 

t 
B E G 

C F H 

Reduced: A B D G H 

Figure 3: Reduced form by a human 

D 

B E G 

A C F H 

Reduced: B C D 

Input: A B C D E F G H Figure 4: Reduced form by the program 

Figure 2: Sample sentence and parse tree 

Suppose we have an input sentence ( A B C D E -  
FGH),  which has a parse tree shown in Figure 2. 
Suppose a human reduces the sentence to ( A B D G H ) ,  
which can be translated to a series of decisions made 
along edges in the sentence parse tree as shown in 
Figure 3. The symbol "y" along an edge means the 
node it points to will be kept, and "n" means the 
node will be removed. Suppose the program reduces 
the sentence to (BCD) ,  which can be translated sim- 
ilarly to the annotated tree shown in Figure 4. 

We can see that along five edges (they are D--+B, 
D--+E, D--+G, B--+A, B-+C), both the human and 
the program made decisions. Two out of the five 
decisions agree (they are D--+B and D--4E), so the 
success rate is 2/5 (40%). The success rate is defined 
a s :  

# of edges along which the hu- 
man and the program have made 

success rate = the same decision 
the total # of edges along which 
both the human and the progam 
have made decisions 
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Note that  the edges along which only the human 
or the program has made a decision (e.g., G--+F and 
G--+F in Figure 3 and Figure 4) are not considered 
in the computat ion of success rate, since there is no 
agreement issue in such cases. 

3 .2  E v a l u a t i o n  r e s u l t  

In the evaluation, we used 400 sentences in the cor- 
pus to compute the probabilities that  a phrase is 
removed, reduced, or unchanged. We tested the pro- 
gram on the rest 100 sentences. 

Using five-fold validation (i.e., chose different 100 
sentences for testing each t ime and repeating the ex- 
periment five times), The program achieved an aver- 
age success rate of 81.3%. If  we consider the baseline 
as removing all the prepositional phrases, clauses, 
to-infinitives and gerunds, the baseline performance 
is 43.2%. 

We also computed the success rate of program's  
decisions on particular types of phrases. For the de- 
cisions on removing or keeping a clause, the system 
has a success rate of 78.1%; for the decisions on re- 
moving or keeping a to-infinitive, the system has a 
success rate of 85.2%. We found out that  the system 
has a low success rate on removing adjectives of noun 
phrases or removing adverbs of a sentence or a verb 
phrase. One reason for this is that  our probabili ty 
model can hardly capture the dependencies between 
a particular adjective and the head noun since the 
training corpus is not large enough, while the other 
sources of information, including g rammar  or con- 
text information, provide little evidence on whether 
an adjective or an adverb should be removed. Given 
that  whether or not an adjective or an adverb is 
removed does not affect the conciseness of the sen- 
tence significantly and the system lacks of reliability 
in making such decisions, we decide not to remove 
adjectives and adverbs. 

On average, the system reduced the length of the 
500 sentence by 32.7% (based on the number of 
words), while humans reduced it by 41.8%. 

The probabilities we computed from the training 
corpus covered 58% of instances in the test corpus. 
When the corpus probabili ty is absent for a case, 
the system makes decisions based on the other two 
sources of knowledge. 

Some of the errors made by the system result from 
the errors by the syntactic parser. We randomly 
checked 50 sentences, and found that  8% of the er- 
rors made by the system are due to parsing errors. 
There are two main reasons responsible for this rela- 
tive low percentage of errors resulted from mistakes 
in parsing. One reason is that  we have taken some 
special measures to avoid errors introduced by mis- 
takes in parsing. For example, PP a t tachment  is a 
difficult problem in parsing and it is not rare that  
a PP is wrongly attached. Therefore, we take this 

into account when marking the obligatory compo- 
nents using subcategorization knowledge from the 
lexicon (step 2) - we not only look at the PPs that  
are attached to a verb phrase, but  also PPs tha t  are 
next to the verb phrase but  not attached, in case 
it is part  of the verb phrase. We also wrote a pre- 
processor to deal with particular structures that  the 
parser often has problems with, such as appositions. 
The other reason is that  parsing errors do not always 
result in reduction errors. For example,  given a sen- 
tence "The spokesperson of the University said that  
. . . ' ,  al though that-clause in the sentence may  have a 
complicated structure and the parser gets it wrong, 
the reduction system is not necessarily affected since 
it may decide in this case to keep that-clause as it 
is, as humans  often do, so the parsing errors will not 
mat te r  in this example.  

4 Discussion and related work 
The reduction algori thm we present assumes generic 
summarizat ion;  that  is, we want to generate a sum- 
mary  that  includes the most  impor tan t  information 
in an article. We can tailor the reduction system 
to queries-based summarizat ion.  In that  case, the 
task of the reduction is not to remove phrases that  
are extraneous in terms of the main topic of an arti- 
cle, but phrases tha t  are not very relevant to users' 
queries. We extended our sentence reduction pro- 
gram to query-based summariza t ion  by adding an- 
other step in the algori thm to measure the relevance 
of users' queries to phrases in the sentence. In the 
last step of reduction when the system makes the fi- 
nal decision, the relevance of a phrase to the query is 
taken into account, together with syntactic, context, 
and corpus information.  

Ideally, the sentence reduction module should in- 
teract with other modules in a summariza t ion  sys- 
tem. It  should be able to send feedback to the ex- 
traction module if it finds tha t  a sentence selected by 
the extraction module may  be inappropriate  (for ex- 
ample, having a very low context importance score). 
I t  should also be able to interact with the modules 
that  run after it, such as the sentence combination 
module, so tha t  it can revise reduction decisions ac- 
cording to the feedback from these modules. 

Some researchers suggested removing phrases or 
clauses from sentences for certain applications. 
(Grefenstette, 1998) proposed to remove phrases in 
sentences to produce a telegraphic text that  can 
be used to provide audio scanning service for the 
blind. (Corston-Oliver and Dolan, 1999) proposed 
to remove clauses in sentences before indexing doc- 
uments for Informat ion Retrieval. Both studies re- 
moved phrases based only on their syntactic cate- 
gories, while the focus of our system is on deciding 
when it is appropriate to remove  a phrase. 

Other researchers worked on the text simplifica- 
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tion problem, which usually involves in simplifying 
text but not removing any phrases. For example, 
(Carroll et al., 1998) discussed simplifying newspa- 
per text by replacing uncommon words with com- 
mon words, or replacing complicated syntactic struc- 
tures with simpler structures to assist people with 
reading disabilities. (Chandrasekar et al., 1996) dis- 
cussed text simplification in general. The difference 
between these studies on text simplification and our 
system is that a text simplification system usually 
does not remove anything from an original sentence, 
although it may change its structure or words, but 
our system removes extraneous phrases from the ex- 
tracted sentences. 

5 C o n c l u s i o n s  a n d  f u t u r e  w o r k  

We present a novel sentence reduction system which 
removes extraneous phrases from sentences that 
are extracted from an article in text summariza- 
tion. The deleted phrases can be prepositional 
phrases, clauses, to-infinitives, or gerunds, and mul- 
tiple phrases can be removed form a single sen- 
tence. The focus of this work is on determining, 
for a sentence in a particular context, which phrases 
in the sentence are less important and can be re- 
moved. Our system makes intelligent reduction deci- 
sions based on multiple sources of knowledge, includ- 
ing syntactic knowledge, context, and probabilities 
computed from corpus analysis. We also created a 
corpus consisting of 500 sentences and their reduced 
forms produced by human professionals, and used 
this corpus for training and testing the system. The 
evaluation shows that 81.3% of reduction decisions 
made by the system agreed with those of humans. 

In the future, we would like to integrate our sen- 
tence reduction system with extraction-based sum- 
marization systems other than the one we have de- 
veloped, improve the performance of the system fur- 
ther by introducing other sources of knowledge nec- 
essary for reduction, and explore other interesting 
applications of the reduction system. 
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