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Abstract 

We describe Talk'n'Travel, a spoken 
dialogue language system for making air 
travel plans over the telephone. 
Talk'n'Travel is a fully conversational, 
mixed-initiative system that allows the 
user to specify the constraints on his travel 
plan in arbitrary order, ask questions, etc., 
in general spoken English. The system 
operates according to a plan-based agenda 
mechanism, rather than a finite state 
network, and attempts to negotiate with 
the user when not all of his constraints can 
be met. 

Introduction 

This paper describes Talk'n'Travel, a spoken 
language dialogue system for making complex 
air travel plans over the telephone. 
Talk'n'Travel is a research prototype system 
sponsored under the DARPA Communicator 
program (MITRE, 1999). Some other systems 
in the program are Ward and Pellom (1999), 
Seneff and Polifroni (2000) and Rudnicky et al 
(1999). The common task of this program is a 
mixed-initiative dialogue over the telephone, in 
which the user plans a multi-city trip by air, 
including all flights, hotels, and rental cars, all in 
conversational English over the telephone. 

The Communicator common task presents 
special challenges. It is a complex task with 
many subtasks, including the booking of each 
flight, hotel, and car reservation. Because the 
number of legs of the trip may be arbitrary, the 
number of such subtasks is not known in 
advance. Furthermore, the user has complete 

freedom to say anything at any time. His 
utterances can affect just the current subtask, or 
multiple subtasks at once ("I want to go from 
Denver to Chicago and then to San Diego"). He 
can go back and change the specifications for 
completed subtasks. And there are important 
constraints, such as temporal relationships 
between flights, that must be maintained for the 
solution to the whole task to be coherent. 

In order to meet this challenge, we have sought 
to develop dialogue techniques for 
Talk'n'Travel that go beyond the rigid system- 
directed style of familiar IVR systems. 
Talk'n'Travel is instead a mixed initiative 
system that allows the user to specify constraints 
on his travel plan in arbitrary order. At any 
point in the dialogue, the user can supply 
information other than what the system is 
currently prompting for, change his mind about 
information he has previously given and even 
ask questions himself. The system also tries to 
be helpful, eliciting constraints from the user 
when necessary. Furthermore, if at any point the 
constraints the user has specified cannot all be 
met, the system steps in and offers a relaxation 
of them in an attempt to negotiate a partial 
solution with the user. 

The next section gives a brief overview of the 
system. Relevant components are discussed in 
subsequent sections. 

I System Overview 

The system consists of the following modules: 
speech recognizer, language understander, 
dialogue manager, state manager, language 
generator, and speech synthesizer. The modules 

68 



interact with each other via the central hub 
module of the Communicator Common 
Architecture. 

The speech recognizer is the Byblos system 
(Nguyen, 1995). It uses an acoustic model 
trained from the Macrophone telephone corpus, 
and a bigram/trigram language model trained 
from -40K utterances derived from various 
sources, including data collected under the 
previous ATIS program (Dahl et al, 1994). 

The speech synthesizer is Lucent 's commercial 
system. Synthesizer and recognizer both 
interface to the telephone via Dialogics 
telephony board. The database is currently a 
frozen snapshot of actual flights between 40 
different US cities (we are currently engaged in 
interfacing to a commercial air travel website). 
T h e  various language components are written in 
Java. The complete system runs on Windows 
NT, and is compliant with the DARPA 
Communicator Common architecture. 

The present paper is concerned with the dialogue 
and discourse management, language generation 
and language understanding components. In the 
remainder of the paper, we present more detailed 
discussion of these components, beginning with 
the language understander in Section 2. Section 
3 discusses the discourse and dialogue 
components, and Section 4, the language 
generator. 

2 Language Understanding 

2.1 Meaning Representation 

Semantic frames have proven useful as a 
meaning representation for many applications. 
Their simplicity and useful computational 
properties have often been seen as more 
important than their limitations in expressive 
power, especially in simpler domains. 

Even in such domains, however, flames still 
have some shortcomings. While most naturally 
representing equalities between slot and filler, 
flames have a harder time with inequalities, such 
as 'the departure time is before 10 AM',  or 'the 
airline is not Delta'. These require the slot-filler 

to be some sort of predicate, interval, or set 
object, at a cost to simplicity uniformity. Other 
problematic cases include n-ary relations ('3 
miles from Denver'), and disjunctions of 
properties on different slots. 

In our Talk'n'Travel work, we have developed 
a meaning representation formalism called path 
constraints, which overcomes these problems, 
while retaining the computational advantages 
that made frames attractive in the first place. A 
path constraint is an expression of the form : 

(<path> <relation> <arguments>*) 

The path is a compositional chain of one or more 
attributes, and relations are 1-place or higher 
predicates, whose first argument is implicitly the 
path. The relation is followed by zero or more 
other arguments. In the simplest case, path 
constraints can be thought of as flattenings of a 
tree of frames. The following represents the 
constraint that the departure time of the first leg 
of the itinerary is the city Boston : 

LEGS.0.ORIG_CITY EQ B o S T o N  

Because this syntax generalizes to any relation, 
however, the constraint "departing before 10 
AM" can be represented in a syntactically 
equivalent way: 

LEGS.0.DEPART_TIME LT 1000 

Because the number of arguments is arbitrary, it 
is equally straightforward to represent a one- 
place property like "x is nonstop" and a three 
place predicate like "x is 10 miles from Denver". 

Like flames, path constraints have a fixed 
format that is indexed in a computationally 
useful way, and are simpler than logical forms. 
Unlike flames, however, path constraints can be 
combined in arbitrary conjunctions, disjunctions, 
and negations, even across different paths. Path 
constraint meaning representations are also flat 
lists of constraints rather than trees, making 
matching rules, etc, easier to write for them. 
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2.2 The GEM Understanding System 

Language understanding in Talk'n'Travel is 
carried out using a system called GEM (for 
Generative Extraction Model). GEM (Miller, 
1998) is a probabilistic semantic grammar that is 
an outgrowth of the work on the HUM system 
(Miller, 1996), but uses hand-specified 
knowledge in addition to probability. The hand- 
specified knowledge is quite simple, and is 
expressed by a two-level semantic dictionary. In 
the first level, the entries map alternative word 
strings to a single word class. For example, the 
following entry maps several alternative forms 
to the word class DEPART: 

Leave, depart, get out of => DEPART 

In the second level, entries map sequences of 
word classes to constraints: 

Name: DepartCity 1 
Head: DEPART 
Classes: [DEPART FROM CITY] 
Meaning: (DEST_CITY EQ <CITY>) 

The "head" feature allows the entry to pass one 
of its constituent word classes up to a higher 
level pattern, allowing the given pattern to be a 
constituent of others. 

The dictionary entries generate a probabilistic 
recursive transition network (PRTN), whose 
specific structure is determined by dictionary 
entries. Paths through this network correspond 
one-to-one with parse trees, so that given a path, 
there is exactly one corresponding tree. The 
probabilities for the arcs in this network can be 
estimated from training data using the EM 
(Expectation-Maximization) procedure. 

GEM also includes a noise state to which 
arbitrary input between patterns can be mapped, 
making the system quite robust to ill-formed 
input. There is no separate phase for handling 
ungrammatical input, nor any distinction 
between grammatical and ungrammatical input. 

3 Discourse and Dialogue Processing 

A key feature of the Communicator task is that 
the user can say anything at any time, adding or 
changing information at will. He may add new 
subtasks (e.g. trip legs) or modifying existing 
ones. A conventional dialogue state network 
approach would be therefore infeasible, as the 
network would be almost unboundedly large and 
complex. 

A signifigant additional problem is that changes 
need not be monotonic. In particular, when 
changing his mind, or correcting the system's 
misinterpretations, the user may delete subtask 
structures altogether, as in the subdialog: 

S: What day are you returning to Chicago? 
U: No, I don't want a return flight. 

Because they take information away rather than 
add it, scenarios like this one make it 
problematic to view discourse processing as 
producing a contextualized, or "thick frame", 
version of the user's utterance. In our system, 
therefore, we have chosen a somewhat different 
approach. 

The discourse processor, called the state 
manager, computes the most likely new task 
state, based on the user's input and the current 
task state. It also computes a discourse event, 
representing its interpretation of what happened 
in the conversation as a result of the user's 
utterance. 

The dialogue manager is a separate module, as 
has no state managing responsibilities at all. 
Rather, it simply computes the next action to 
take, based on its current goal agenda, the 
discourse event returned by the state manager, 
and the new state. This design has the advantage 
of making the dialogue manager considerably 
simpler. The discourse event also becomes 
available to convey to the user as confirmation. 

We discuss these two modules in more detail 
below. 
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3.1 State Manager 

The state manager is responsible for computing 
and maintaining the current task state. The task 
state is simply the set of path constraints which 
currently constrain the user's itinerary. Also 
included in the task state are the history of user 
and system utterances, and the current subtask 
and object in focus, if any. 

The state manager takes the N-best list of  
recognition hypotheses as input. It invokes the 
understanding module on a hypothesis to obtain 
a semantic interpretation. The semantic 
interpretation so obtained is subjected to the 
following steps: 

1. Resolve ellipses if any 
2. Match input meaning to subtask(s) 
3. Expand local ambiguities 
4. Apply inference and coherency rules 
5. Compute database satisfiers 
6. Relax constraints if neccesary 
7. Determine the most likely alternative and 

compute the discourse event 

At any of these steps, zero or more alternative 
new states can result, and are fed to the next 
step. If zero states result at any step, the new 
meaning representation is rejected, and another 
one requested from the understander. If no more 
hypotheses are available, the entire utterance is 
rejected, and a DONT_UNDERSTAND event is 
returned to the dialogue manager. 

Step 1 resolves ellipses. Ellipses include both 
short responses like "Boston" and yes/no 
responses. In this step, a complete meaning 
representation such as ' (ORIQCITY EQ 
BOSTON)' is generated based on the system's 
prompt and the input meaning. The hypothesis is 
rejected if this cannot be done. 

Step 2 matches the input meaning to one or more 
of the subtasks of the problem. For the 
Communicator problem, the subtasks are legs of 
the user's itinerary, and matching is done based 
on cities mentioned in the input meaning. The 
default is the subtask currently in focus in the 
dialogue. 

A match to a subtask is represented by adding 
the prefix for the subtask to the path of the 
constraint. For example, "I want to arrive in 
Denver by 4 PM" and then continue on to 
Chicago would be : 

LEGS.0.DEST_CITY EQ DENVER 
LEGS.0.ARRIVE_TIME LE 1600 
LEGS. 1.ORIG_CITY EQ DENVER 
LEGS. 1.DEST CITY EQ CHICAGO 

In Step 3, local ambiguities are expanded into 
their different possibilities. These include 
partially specified times such as "2 o 'c lock"  

Step 4 applies inference and coherency rules. 
These rules will vary from application to 
application. They are written in the path 
constraint formalism, augmented with variables 
that can range over attributes and other values. 
The following is an example, representing the 
constraint a flight leg cannot be scheduled to 
depart until after the preceding flight arrives: 

LEGS.$N.ARRIVE 
LT 
LEGS. $N+ 1 .DEPART 

States that violate coherency constraints are 
discarded. 

Step 5 computes the set of objects in the 
database that satisfy the constraints on the 
current subtask. This set will be empty when the 
constraints are not all satisfiable, in which case 
the relaxation of Step 6 is invoked. This 
relaxation is a best-first search for the satisfiable 
subset of the constraints that are deemed closest 
to what the user originally wanted. Alternative 
relaxations are scored according to a sum of 
penalty scores for each relaxed constraint, 
derived from earlier work by Stallard (1995). 
The penalty score is the sum of two terms: one 
for the relative importance of the attribute 
concerned (e.g. relaxations of DEPART_DATE 
are penalised more than relaxations of 
AIRLINE) and the other for the nearness of the 
satisfiers to the original constraint (relevant for 
number-like attributes like departure time). 
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The latter allows the system to give credit to 
solutions that are near fits to the user's goals, 
even if they relax strongly desired constraints. 
For example, suppose the user has expressed a 
desire to fly on Delta and arrive by 3 PM, while 
the system is only able to find a flight on Delta 
that arrives at 3:15 PM. In this case, this flight, 
which meets one constraint and almost meets the 
other, may well satisfy the user more than a 
flight on a different airline that happens to meet 
the time constraint exactly. 

In the final step, the alternative new states are 
rank-ordered according to a pragmatic score, and 
the highest-scoring alternative is chosen. The 
pragmatic score is computed based on a number 
of factors, including the plausibility of 
disambiguated times and whether or not the state 
interpreted the user as responding to the system 
prompt. 

The appropriate discourse event is then 
deterministicaUy computed and returned. There 
are several types of discourse event. The most 
common is UPDATE, which specifies the 
constraints that have been added, removed, or 
relaxed. Another type is REPEAT, which is 
generated when the user has simply repeated 
constraints the system already knows. Other 
types include QUESTION, TIMEOUT, and 
DONT UNDERSTAND. 

3.1 Dialogue Manager 

Upon receiving the new discourse event from 
the state manager, the dialogue manager 
determines what next action to take. Actions 
can be external, such as speaking to the user or 
asking him a question, or internal, such as 
querying the database or other elements of the 
system state. The current action is determined by 
consulting a stack-based agenda of goals and 
actions. 

The agenda stack is in turn determined by an 
application-dependent library of plans. Plans are 
tree structures whose root is the name of the goal 
the plan is designed to solve, and whose leaves 
are either other goal names or actions. An 
example of a plan is the following: 

Completeltinerary => 
(Prompt "How can I help you?") 
(forall legs $n 

GetRoutelnfo 
GetSpecificFlight 
GetHotelAndCar 
GetNextLeg)) 

This is a plan for achieving the goal 
Completeltinerary. It begins with a open-ended 
prompt and then iterates over values of the 
variable $N for which constraints on the prefix 
LEGS.$N exist, working on high-level subgoals, 
such as getting the route and booking a flight, 
for each leg. The last goal determines whether 
there is another leg to the itinerary, in which 
case the itera 

The system begins the interaction with the high- 
level goal START on its stack. At each step, the 
system examines the top of its goal stack and 
either executes it if it is an action suitable for 
execution, or replaces it on the stack with its 
plan steps if it is a goal. 

Actions are objects with success and relevancy 
predicates and an execute method, somewhat 
similar to the "handlers" of Rudnicky and Xu 
(1999). An action has an underlying goal, such 
as finding out the user's constraints on some 
attribute. The action's success predicate will 
return true if this underlying goal has been 
achieved, and its relevancy predicate will return 
true if it is still relevant to the current situation. 
Before carrying out an action, the dialogue 
manager first checks to see if its success 
predicate returns false and its relevancy 
predicate returns true. If either condition is not 
met, the action is popped off the stack and 
disposed of without being executed. Otherwise, 
the action's execute method is invoked. 

The system includes a set of  actions that are 
built in, and may be parameterized for each each 
domain. For example, the action type ELICIT is 
parameterized by an attribute A, a path prefix P, 
and verbalization string S. Its success predicate 
returns true if the path 'P.A' is constrained in the 
current state. Its execute method generates a 
meaning frame that is passed to the language 
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generator, ultimately prompting the user with a 
question such as "What city are you flying to?" 

Once an action's execute method is invoked, it 
remains on the stack for the next cycle, where it 
is tested again for success and relevancy. In this 
case, if the success condition is met - that is, if 
the user did indeed reply with a specification of 
his destination city - the action is popped off the 
stack. If the system did not receive this 
information, either because the user made a 
stipulation about some different attribute, asked 
a question, or simply was not understood, the 
action remains on the stack to be executed again. 
Of  course, the user may have already specified 
the destination city in a previous utterance. In 
this case, the action is already satisfied, and is 
not executed. In this way, the user has 
flexibility in how he actually carries out the 
dialogue. 

In certain situations, other goals and actions may 
be pushed onto the stack, temporarily 
interrupting the execution of  the current plan. 
For example, the user himself may ask a 
question. In this case, an action to answer the 
question is created, and pushed onto the stack. 
The dialogue manager then executes this action 
to answer the user's question before continuing 
on with the plan. Or the state manager may 
generate a clarification question, which the 
dialogue manager seeks to have the user answer. 

Actions can also have a set of  conditional 
branchings that are tested after the action is 
executed. If present, these determine the next 
action to execute or goal to work on. For 
example, the action that asks the user "Do you 
want a return flight to X?" specifies the branch 
to be taken when the user replies in the negative. 
This branch includes an action that asks the user 
"Is Y your final destination?", an action that is 
executed if the user did not specify an additional 
destination along with his negative reply. 

Unlike the approach taken by Ward and Pellom 
(1999), which seeks to avoid scripting entirely 
by driving the dialogue off the current status of 
the itinerary, the Talk'n'Travel dialogue 
manager thus seeks to allow partially scripted 
dialogue where appropriate to the situation. 

4 Language Generation 

The language generator takes a meaning frame 
from the dialogue manager, and generates a text 
string in English for it. It uses a set of  pattern- 
based rules that map constraints into alternative 
syntactic realisations. For example, the 
following rule allows a constraint on departure 
time to be realized as "leave at 3 PM" 
or "3 PM flight": 

LEG.$N.DEPART_TIME EQ $X 
=~ [leave at $X], 

[nom-comp $X] 

Different realization rules can be selected for 
depending upon whether the constraint is to be 
realized as an assertion or as a description. The 
generation algorithm assembles the selected 
realizations for each constraint into a simplified 
syntax tree, selecting appropriate inflections of 
verb and noun heads as it does so. Terminal 
values in constraints are realized as type-specific 
nominals, such as "3 PM" or "Delta". 

A crucial feature of the generation process is 
that it adds to each prompt a paraphrase of  the 
most recent discourse event, corresponding to 
what the system thinks the user just said. This 
helps keep the conversation grounded in terms 
of mutual understanding between the 
participants. 

5 Example Scenario 

The following is an example dialog with the 
system: 

S: Welcome to Talk'n'Travel. How can I help 
you? 
U: I need a flight from Boston to Denver 
tomorrow. 
S: On Thursday, November 18, flying from 
Boston to Denver. What time do you want to 
leave? 
U: I want to leave before 10 AM. 
S: Leaving before 10 AM. Do you have an 
airline preference? 
U: Continental. 
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S: Continental. I 'm sorry, there are no flights on 
Continental leaving before 10 AM. I can get 
you a flight on Continental leaving at 10:10 AM 
instead. Would that be OK? 
U: Yes. 
S: OK, I 've got you on Continental flight 429, 
departing Boston at 10:10 AM, arriving at 
Denver at 3:44 PM. Do you want to book a 
return flight from Denver to Boston? 
U: Yes, on Monday. 
S: Alright, we'll add a flight on Monday, 
November 22, from Boston to Denver to your 
itinerary. I have a Continental flight at 7 AM. 
Is that OK? 
U. Anything later? 
S: Leaving after 7 AM. There are no flights on 
Continental after 7 AM. I can get you a flight 
after 7 AM on Frontier, Northwest, and United 
instead. Would that be OK? 
U: How about United. 
S: United. I have a United flight at 8:01 AM. Is 
that flight OK? 
U: Yes. 
S: OK, I 've got you on United flight 1762, 
departing Denver at 8:01 AM, arriving at Boston 
at 1:42 PM. 

6 Current Status and Conclusions 

The Talk'n'Travel system described here was 
successfully demonstrated at the DARPA 
Communicator Compare and Contrast 
Workshop in June 1999. We are currently 
collecting data with test subjects and are using 
the results to improve the system's performance 
in all areas, in preparation for the forthcoming 
common evaluation of Communicator systems 
in June 2000. 

8 of the subjects were successful. Of successful 
sessions, the average duration was 387 seconds, 
with a minimum of 272 and a maximum of 578. 
The average number of user utterances was 25, 
with a minimum of 18 and a maximum of 37. 
The word error rate of the recognizer was 
11.8%. 

The primary cause of failure to complete the 
scenario, as well as excessive time spent on 
completing it, was corruption of the discourse 
state due to recognition or interpretation errors. 
While the system informs the user of the change 
in state after every utterance, the user was not 
always successful in correcting it when it made 
errors, and sometimes the user did not even 
notice when the system had made an error. If the 
user is not attentive at the time, or happens not 
to understand what the synthesizer said, there is 
no implicit way for him to find out afterwards 
what the system thinks his constraints are. 

While preliminary, these results point to two 
directions for future work. One is that the system 
needs to be better able to recognize and deal 
with problem situations in which the dialogue is 
not advancing. The other is that the system 
needs to be more communicative about its 
current understanding of the user's goals, even 
at points in the dialogue at which it might be 
assumed that user and system were in 
agreement. 
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