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Abstract

We present ParrotTTS, a modularized text-to-
speech synthesis model leveraging disentan-
gled self-supervised speech representations. It
can train a multi-speaker variant effectively
using transcripts from a single speaker. Par-
rotTTS adapts to a new language in low re-
source setup and generalizes to languages not
seen while training the self-supervised back-
bone. Moreover, without training on bilin-
gual or parallel examples, ParrotTTS can trans-
fer voices across languages while preserving
the speaker-specific characteristics, e.g., syn-
thesizing fluent Hindi speech using a French
speaker’s voice and accent. We present exten-
sive results in monolingual and multi-lingual
scenarios. ParrotTTS outperforms state-of-the-
art multi-lingual text-to-speech (TTS) models
using only a fraction of paired data as lat-
ter. Speech samples from ParrotTTS and
code can be found at https://parrot-tts.
github.io/tts/

1 Introduction

Vocal learning forms the first phase of infants start-
ing to talk (Locke, 1996, 1994) by simply listen-
ing to sounds/speech. It is hypothesized (Kuhl
and Meltzoff, 1996) that infants listening to ambi-
ent language store perceptually derived represen-
tations of the speech sounds they hear, which in
turn serve as targets for the production of speech
utterances. Interestingly, in this phase, the infant
has no conception of text or linguistic rules, and
speech is considered sufficient to influence speech
production (Kuhl and Meltzoff, 1996) as can par-
rots (Locke, 1994).

Our proposed ParrotTTS model follows a similar
learning process. Our idea mimics the two-step
approach, with the first learning to produce sounds
capturing the whole gamut of phonetic variations.
It is attained by learning quantized representations
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Figure 1: (a) Traditional mel-based TTS and (b) Pro-
posed TTS model

of sound units in a self-supervised manner using the
raw audio data. The second phase builds on top of
the first by learning a content mapping from text to
quantized speech representations (or embeddings).
Only the latter step uses paired text-speech data.
The two phases are analogous to first learning to
talk followed by learning to read.

Figure 1 illustrates ParrotTTS contrasting it with
the traditional mel-based TTS. The SSL module
includes a speech-to-embedding (STE) encoder
trained on masked prediction task to learn an
embedding representation of the input raw au-
dio (Baevski et al., 2020; Hsu et al., 2021; Van
Den Oord et al., 2017). An embedding-to-speech
(ETS) decoder is independently trained to invert
embeddings to synthesize audio waveforms and is
additionally conditioned on speaker identity. This
learning to talk is the first of the two-step train-
ing pipeline. In the subsequent learning to read
step, a separate text-to-embedding (TTE) encoder
is trained to generate embeddings from text (or
equivalent phonetic) inputs. This step requires la-
beled speech with aligned transcriptions.

ParrotTTS offer several advantages over the tra-
ditional mel-based neural TTS models (Ren et al.,
2020; Wang et al., 2017). For instance, (a) Quan-
tized speech embedding has lower variance than
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that of Mel frames reducing the complexity to train
TTE (b) Direct waveform prediction bypasses po-
tential vocoder generalization issues (Kim et al.,
2021). (c) Reduced complexity helps in stabler
training of TTE encoder for either autoregressive
or non-autoregressive choice. For example, we
observe at least eight-fold faster convergence in
training iterations of our TTE module compared to
that of (Ren et al., 2020) and (Wang et al., 2017).

While our work closely relates with recent
works (Du et al., 2022; Wang et al., 2023; Siuz-
dak et al., 2022) utilizing self-supervised repre-
sentations for TTS synthesis, our focus differs by
aiming to achieve a unified multi-speaker, multi-
lingual TTS system in low-resource scenarios (Xu
et al., 2020). In our work, low-resource refers to
the scarcity of paired TTS data. Here are the key
distinctions of our model compared to recent ef-
forts:

• Unlike contemporary efforts concentrated on
large scale training (Wang et al., 2023), we focus
on low resource adaptation.

• We employ disentangled self-supervised repre-
sentations (Polyak et al., 2021) paired with inde-
pendently trained STE. This allows us to train
multi-speaker TTS using paired data from a sin-
gle speaker and still adapt it to novel voices with
untranscribed speech alone. In contrast, prior
efforts either limit to a single speaker TTS (Du
et al., 2022) or require paired text-audio data
from multiple speakers during training (Siuzdak
et al., 2022).

• We show that the ParrotTTS can be extended to a
new language with as little as five hours of paired
data from a single speaker. The model general-
izes to languages unseen during the learning of
self-supervised representation.

• Moreover, without training on any bilingual or
parallel examples, ParrotTTS can transfer voices
across languages while preserving the speaker-
specific characteristics. We present extensive
results on six languages in terms of speech nat-
uralness and speaker similarity in parallel and
cross-lingual synthesis.

Additionally, it’s worth mentioning that certain
methods (Wang et al., 2023) depend partially or
entirely on Automatic Speech Recognition (ASR)
to obtain paired data. It should be noted that these
ASR models are trained using substantial amounts
of supervised data, inaccessible in low resource
settings.

While architecturally similar to other SSL-based
TTS (Wang et al., 2023; Siuzdak et al., 2022), our
primary contribution lies in achieving promising
outcomes in the low resource scenario, where mini-
mal paired data from a single speaker per language
is accessible for TTS training.

2 Related work

2.1 Foundational Neural TTS models

Traditional neural TTS model encodes text or pho-
netic inputs to hidden states, followed by a de-
coder that generates Mels from the hidden states.
Predicted Mel frames contain all the necessary in-
formation to reconstruct speech (Griffin and Lim,
1984) and an independently trained vocoder (Oord
et al., 2016; Kong et al., 2020) transforms them
into time-domain waves. Mel predicting decoders
could be autoregressive/sequential (Wang et al.,
2017; Valle et al., 2020; Shen et al., 2018) or
non-autoregressive/parallel (Ren et al., 2019, 2020;
Łańcucki, 2021). Non-autoregressive models addi-
tionally predict intermediate features like duration,
pitch, and energy for each phoneme. They are
faster at inference and robust to word skipping or
repetition errors (Ren et al., 2020). Multi-speaker
capabilities are often achieved by conditioning the
decoder on speaker embeddings (one-hot embed-
dings or ones obtained from speaker verification
networks (Jia et al., 2018; Sivaprasad et al., 2021)).
Training multi-speaker TTS models requires paired
text-audio data from multiple speakers. Methods
relying on speaker-embeddings can, in theory, per-
form zero-shot speaker adaptation; however, the
rendered speech is known to be of poorer quality,
especially for speakers not sufficiently represented
in the train set (Tan et al., 2021).

2.2 Raw-audio for TTS

Unsupervised speech synthesis (Ni et al., 2022)
does not require transcribed text-audio pairs for
training. They typically employ unsupervised
ASR (Baevski et al., 2021; Liu et al., 2022a) to
transcribe raw speech to generate pseudo labels.
However, their performance tends to be bounded by
the performance of the unsupervised ASR model,
which still has to close a significant gap compared
to supervised counterparts (Baevski et al., 2021).
Switching to a multi-speaker setup further widens
this quality gap (Liu et al., 2022b).

Some prior works have looked at adapting TTS
to novel speakers using untranscribed audio (Yan
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et al., 2021; Luong and Yamagishi, 2019; Taigman
et al., 2017). Unlike ours, their methods require a
large amount of paired data from multiple speakers
during initial training. Some of these (Luong and
Yamagishi, 2019; Taigman et al., 2017) jointly train
the TTS pipeline and the modules for speaker adap-
tation but model training’s convergence is trickier.
In contrast, ParrotTTS benefits from the disentan-
glement of linguistic content from speaker informa-
tion, making adaptation easier with stabler training
as we observe in our experiments.

2.3 Self-supervised learning
Self-supervised learning (SSL) methods are be-
coming increasingly popular in speech process-
ing due to their ability to utilize abundant unla-
beled data. Techniques like masked prediction,
temporally contrastive learning, and next-step pre-
diction are commonly used to train SSL models.
Popular models like Wav2vec2 (Baevski et al.,
2020), VQ-VAE (Van Den Oord et al., 2017), Au-
dioLM (Borsos et al., 2022) and HuBERT (Hsu
et al., 2021) have been successfully deployed in
tasks like ASR (Baevski et al., 2020), phoneme
segmentation (Kreuk et al., 2020), spoken language
modeling (Lakhotia et al., 2021), and speech resyn-
thesis (Polyak et al., 2021).

Our work is related to recent efforts (Du et al.,
2022; Wang et al., 2023; Siuzdak et al., 2022) that
utilize self-supervised audio embeddings in text-
to-speech synthesis. However, those of Du et al.
(2022) and Siuzdak et al. (2022) require speaker-
specific SSL embeddings while we use generic
HuBERT embeddings (Hsu et al., 2021; Lee et al.,
2022) train for multiple speakers.

2.4 Multi-lingual TTS
It is challenging to build an unified TTS model
supporting multiple languages and speakers, even
more so for cross lingual synthesis, i.e., allowing
multiple languages to be spoken in each of the
speaker’s voices. The primary challenge is in ac-
quiring paired data to train language dependent
components that often includes its embeddings.
The trick ParrotTTS employs to break this data
dependence is to decouple acoustics from content
handling, of which only the latter is language de-
pendent and requires paired data while the former
is deferred to self-supervised models.

Initial attempts (Liu and Mak, 2019; Zhang et al.,
2019) address these by conditioning the decoder on
language and speaker embeddings, but the results

were subpar due to entanglement of text represen-
tation with language/speaker information. Recent
approaches (Zhang et al., 2019; Cho et al., 2022;
Nekvinda and Dušek, 2020) addressed this issue
by incorporating an explicit disentanglement loss
term, using reverse gradients through a language
or speaker classification branch.

Nekvinda and Dušek (2020) propose MetaTTS,
that uses a contextual parameter generation through
language-specific convolutional text encoders. Cho
et al. (2022) extend MetaTTS with a speaker reg-
ularization loss and investigate different input for-
mats for text. Knowledge sharing (Prakash et al.,
2019) and distillation (Xu et al., 2020) have been
explored for multi-lingual TTS. Recently, Wu et al.
(2022) employ a data augmentation technique
based on a cross-lingual voice conversion model
trained with speaker-invariant features extracted
from a speech representation.

Certain limitations still persist in existing ap-
proaches (Nekvinda and Dušek, 2020; Chen et al.,
2019; Zhang et al., 2019; Zhang and Lin, 2020).
For example, many of them rely on Tacotron (Wang
et al., 2017) as their backbone, which is prone to
word alignment and repetition errors. Prior multi-
lingual TTS models typically support only 2-3 lan-
guages simultaneously or require extensive train-
ing data as noted by Nekvinda and Dušek (2020).
Additionally, they have not yet capitalized on self-
supervised embeddings and our efforts aim to ad-
dress this gap.

3 ParrotTTS architecture

ParrotTTS has three modules; two encoders that
map speech or text inputs to common embed-
ding space (referred to as STE and TTE respec-
tively) and a decoder (ETS) that renders speech
signal from these embeddings. Our speech encoder-
decoder choices are borrowed from (Polyak et al.,
2021). Our speech decoder ETS is a modified ver-
sion of HiFiGAN (Kong et al., 2020). Text encoder
TTE is an encoder-decoder architecture and we
experiment with both autoregressive (AR) and non-
autoregressive (NAR) choices for the same.

3.1 Speech encoder STE

The self-supervised HuBERT model we use for
our STE is pre-trained on large raw audio data
from English, on BERT-like masked prediction
task (Devlin et al., 2018) to learn “combined acous-
tic and language model over the continuous inputs”
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Figure 2: (a) ParrotTTS performs a two stage training. In stage1, ETS is trained to synthesize speech from discrete
units obtained though an independently trained STE module. In Stage2, TTE learns to map text sequence to
corresponding speech units obtained from STE. (b) and (c) illustrate the explored TTE architectures.

of speech. It borrows the base architecture from
Wav2vec 2.0 (Baevski et al., 2020) with convolu-
tions on raw inputs followed by a few transformer
layers, however, replaces its contrastive loss with a
BERT-like classification. The “noisy” classes for
this classification are derived by clustering MFCC
features of short speech signals. Encoder input is
audio signal X = (x1, ....xT ) sampled at a rate of
16kHz. Let Er denote the raw-audio encoder, and
its output be,

hr = (h1, ...., hT̂ ) := Er(X),

where T̂ = T/320 indicates downsampling and
each hi ∈ {1, . . . ,K} with K being the number of
clusters in HuBERT’s clustering step, set to 100 in
our experiments. For multi-lingual experiments, in-
stead of using HuBERT, we utilize mHuBERT (Lee
et al., 2022), which is trained on a multi-lingual
corpus. We use K=1000 for mHuBERT embed-
dings.

3.2 Speech decoder ETS

We adapt the HiFiGAN-v2 decoder for our ETS to
decode from h = (hr,hs) to speech, where hs is
the one-hot speaker embedding. It has a generator
G and a discriminator D. G runs h through trans-
posed convolutions for upsampling to recover the
original sampling rate followed by residual block
with dilations to increase the receptive field to syn-
thesize the signal, X̂ := G(h).

The discriminator distinguishes synthesized X̂
from the original signal X and is evaluated by
two sets of discriminator networks. Multi-period
discriminators operate on equally spaced samples,
and multi-scale discriminators operate at different

scales of the input signal. Overall, the model at-
tempts to minimize D(X, X̂) over all its parame-
ters to train ETS.

3.3 Text encoder TTE
The third module we train, TTE is a text en-
coder that maps phoneme/character sequence P =
(p1, . . . , pN ) to embedding sequence hp =
(h1, . . . , hN̂ ). We train a sequence-to-sequence
architecture to achieve this hp := Ep(P ). Ep ini-
tially encodes P into a sequence of fixed dimen-
sional vectors (phoneme embeddings), conditioned
upon which its sequence generator produces vari-
able dimensional hp. Embedding hp is intended
to mimic hr := Er(X) extracted from the audio
X corresponding to the text P . Hence, the require-
ment of transcribed data (X,P ) to derive the tar-
get hr for training TTE by optimizing over the
parameters of Ep.

One could model Ep to generate hp autoregres-
sively one step at a time, which we refer to as AR-
TTE model (Figure 2(b)). Input phoneme sequence
is encoded through a feed-forward transformer
block that stacks self-attention layers (Vaswani
et al., 2017) and 1D convolutions similar to Fast-
Speech2 (Ren et al., 2019). Decoding for hp uses
a transformer module with self-attention and cross-
attention. Future-masked self-attention attends to
ground truth at train and to previous decoder pre-
dictions at inference. Cross-attention attends to
phoneme encoding in both cases.

Alternatively, for a non-autoregressive choice
of Ep, the model NAR-TTE determines the out-
put length N̂ followed by a step to simultaneously
predict all N̂ entries of hp. Figure 2(c) depicts
NAR-TTE where the input phoneme sequence en-
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coding is similar to that of AR-TTE. The duration
predictor and length regulator modules are respon-
sible for determining N̂ followed by the decoding
step to generate hp. In multi-lingual scenario, we
investigate both character and phoneme sequences
for representing the input text. For character repre-
sentation, we extract the tokens using a dictionary
created by iterating over the entire text corpus. In
contrast, for phoneme representation, we utilize an
off-the-shelf phonemizer (version: 3.2.1) (Bernard
and Titeux, 2021) to extract phonemes belonging
to the IPA vocabulary, which are common across
languages.

4 Experiments

We perform experiments in monolingual and
multi-lingual scenarios. Details of various Par-
rotTTS models trained and of those each of them
is compared to is covered below.

4.1 ParrotTTS training

Datasets (monolingual) For single language exper-
iments, we use two public datasets. LJSpeech (Ito
and Johnson, 2017) provides 24 hours high qual-
ity transcribed data from a single speaker. Data
are split into two, with 512 samples set aside for
validation and the remaining available for model
training. VCTK (Veaux et al., 2017) with about
44 hours of transcribed speech from 108 different
speakers is used for the multi-speaker setup. It has
a minimum, average, and maximum of 7, 22.8, and
31 minutes per speaker speech length, respectively.

Datasets (multi-lingual) We collate our multi-
lingual dataset using publicly available corpora
containing samples from multiple speakers in six
languages: (1) 80.76 hours of Hindi and Marathi
from (SYSPIN-IISC, 2022) from 2 speakers, re-
spectively; (2) 71.69 hours of German (GmbH.,
2017) from 3 speakers; (3) 83.01 hours of Spanish
(GmbH., 2017) from 3 speakers; (4) 10.70 hours
of French (Honnet et al., 2017) from 1 speaker;
(5) 23.92 hours of English (Ito and Johnson, 2017)
from 1 speaker. Overall the dataset comprises of
354.12 hours of paired TTS data from 12 speakers
across all six languages. We resample all speech
samples to 16 kHz.

STE training. We use a 12 layer transformer
model for HuBERT training. It is trained using 960
hour-long LibriSpeech corpus (Panayotov et al.,
2015). The multi-lingual variant mHuBERT is
trained using 13.5k hours of English, Spanish and

French data from VoxPopuli unlabelled speech cor-
pus (Lee et al., 2022; Wang et al., 2021). In both
cases, the model splits each T seconds long audio
into units of T/320 seconds and maps each of the
obtained units to a 768 dimensional vector.

TTE training (monolingual). We use LJSpeech
to train two different TTE encoder modules;
TTELJS that uses all the data from our LJSpeech
train set and a second, TTE 1

2
LJS with only half the

data. This is used to understand the effect of train-
ing data size on TTS performance. All variants
of TTE we experiment with are trained only on
samples from the single speaker in LJSpeech data.

Text converted to phoneme sequence as de-
scribed by Sun et al. (2019) are inputs with hr

targets extracted from STE for training. Addition-
ally, NAR-TTE requires phonetic alignment to train
the duration predictor. We use Montreal forced-
aligner (McAuliffe et al., 2017) to generate them
for its training. We use cross-entropy loss with the
100 clusters derived from discretization codebook
of HuBERT units as classes.

TTE training (multi-lingual). Focusing on low-
resource setting, we use only 5 hours of paired data
for a single speaker in each language to train the
TTE that totals to merely 30 hours of paired data
across six languages. We report the evaluation met-
rics for seen speakers where the model has seen
the speaker paired data and unseen speakers whose
paired data is not used to train the TTE. To evaluate
the performance on various text representations,
we train two variants of the TTE , the character
TTE (CTE) and the phoneme TTE (PTE). CTE
uses character tokens across the languages to learn
sound units while PTE uses phoneme tokens. Addi-
tionally, we employ Deep Forced Aligner (in Indian
Languages , SYSPIN) to align ground-truth speech
and input text representations to train the duration
predictor. Cross-entropy loss with 1000 clusters of
mHuBERT are used as classes to predict hp.

ETS training. We train a single-speaker ETS,
SS-ETS using only speech clips from LJSpeech
since its training does not require transcriptions.
Similarly, our multi-speaker ETS, MS-ETS de-
coder model uses only raw audio of all speakers
from VCTK data (Veaux et al., 2017). So only em-
beddings hr extracted from VCTK audio clips are
used along with one-hot speaker vector hs. We em-
phasize that VCTK data were used only in training
the multi-speaker-ETS module, and the TTE has
not seen any from this set. For multi-lingual sce-
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nario, we train a multi-speaker ETS using speech-
only data with 12 speakers from all six languages.

4.2 Comparison to prior art
Single Speaker TTS: We train Tacotron2 (Wang
et al., 2017) and FastSpeech2 (Ren et al., 2020)
using the ground truth transcripts of LJspeech and
referred to as SS-Tacotron2 and SS-FastSpeech2.
We additionally trained an unsupervised version
of FastSpeech2 by replacing the ground truth tran-
scripts with transcriptions obtained from the ASR
model. FastSpeech2-SupASR uses supervised
ASR model (Radford et al., 2022) to generate
the transcripts while Tacotron2-UnsupASR (Ni
et al., 2022) alternatively uses unsupervised ASR
Wav2vec-U 2.0 (Liu et al., 2022a). We further
adapt WavThruVec (Siuzdak et al., 2022) to our
setup and train a model (SS-WavThruVec) using
intermediate embeddings extracted from Wav2Vec
2.0 (Baevski et al., 2020). Additionally, we apply a
similar approach to the embeddings obtained from
VQ-VAE (Van Den Oord et al., 2017) and term it as
SS-VQ-VAES. We compare against three variants
of ParrotTTS;

1. AR-TTELJS+SS-ETS that is autoregressive
TTE trained on full LJSpeech with single
speaker ETS,

2. NAR-TTELJS+SS-ETS that pairs TTE with
non-autoregressive decoding trained on full
LJSpeech with single speaker ETS, and

3. NAR-TTE 1
2

LJS+SS-ETS that uses TTE with
non-autoregressive decoding trained on half
LJSpeech with single speaker ETS.

Multi-speaker TTS: We compare against a fully
supervised Fastspeech2 baseline trained on VCTK
using paired data from all speakers and that we re-
fer to as MS-FastSpeech2. For ParrotTTS we bor-
row the TTE module trained on LJSpeech and use
the raw audio of VCTK to train the multi-speaker
ETS module. We refer to this multi-speaker vari-
ant of our ParrotTTS model as NAR-TTELJS+MS-
ETS that uses non-autoregressive decoding.

For a fair comparison, we also curate a multi-
speaker TTS baseline using a combination of
single-speaker TTS and a voice cloning model.
We use FastSpeech2 trained on LJspeech with
state-of-the-art voice cloning model (Polyak et al.,
2021) in our experiments and refer to this model as
VC-FastSpeech2. We also compare against multi-
speaker TTS trained by obtaining pseudo labels

from a supervised ASR called MS-FastSpeech2-
SupASR. Additionally, we also report numbers
from GT-Mel+Vocoder that converts ground truth
Mels from actual audio clip back to speech using
a vocoder (Kong et al., 2020) for a perspective of
best achievable with ideal Mel frames.
Multi-lingual TTS: We compare against, (a)
FastSpeech2-MLS which is a fully-supervised
FastSpeech2 model and (b) state-of-the-art
meta learning-based multi-lingual TTS model
MetaTTS (Nekvinda and Dušek, 2020). Both these
models are trained on the entirety of train data
(354 hours of transcribed speech). In contrast, the
TTE training in ParrotTTS model (our sole module
that needs paired data) uses only 1/12th of this i.e,
a total of 30 hours of paired text-speech (5 hours
per language). The remaining data is used for eval-
uation purposes, serving as the test set. We refer
to this model as NAR-TTE 1

12
MLS+ML-ETS. We

also compare character (CTE) and phoneme (PTE)
tokenization for encoding text in this setting.

4.3 Evaluation metrics

We evaluate the intelligibility of various models
using Word Error Rate (WER) with the pre-trained
Whisper small model (Radford et al., 2022). We
validate the speaker adaptability using Equal Error
Rate (EER) from a pre-trained speaker verification
network proposed in (Desplanques et al., 2020) and
trained on VoxCeleb2 (Chung et al., 2018). The
WER and EER metrics are computed on entire
validation set. We perform subjective evaluations
using Mean Opinion Score (MOS) with five native
speakers per language, rating samples synthesized
by different models, where five sentences from the
test set are randomly selected for evaluation.

5 Results

5.1 Single-speaker TTS

Naturalness and intelligibility. As shown in Ta-
ble 1, ParrotTTS is competitive to state-of-the-art
in the single-speaker setting. In the autoregressive
case, our AR-TTELJS+SS-ETS has a statistically
insignificant drop (of about 0.05 units) on the MOS
scale relative to the Tacotron2 baseline. The non-
autoregressive case has a similar observation (with
a 0.01 drop) on MOS in our NAR-TTELJS+SS-
ETS model relative to FastSpeech2. This empiri-
cally establishes that the naturalness of the speech
rendered by ParrotTTS is on par with the currently
established methods. The WER scores show a sim-
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Model MOS ↑ WER ↓

Traditional TTS

SS-FastSpeech2 3.87 4.52
SS-Tacotron2 3.90 4.59
FastSpeech2-SupASR 3.78 4.72
Tacotron2-UnsupASR 3.50 11.3

WavThruVec SS-WavThruVec 3.57 6.27
VQ-VAE SS-VQ-VAES 3.12 21.78

ParrotTTS
AR-TTELJS+SS-ETS 3.85 4.80
NAR-TTELJS+SS-ETS 3.86 4.58
NAR-TTE 1

2
LJS+SS-ETS 3.81 6.14

Table 1: Subjective and objective comparison of TTS models in the single speaker setting.

Model VCTK MOS ↑ WER ↓ EER ↓
GT-Mel+Vocoder Yes 4.12 2.25 2.12
MS-FastSpeech2 Yes 3.62 5.32 3.21
MS-FastSpeech2-SupASR No 3.58 6.65 3.85
VC-FastSpeech2 No 3.41 7.44 8.18
WavThruVec-MS No 3.17 6.79 5.08
NAR-TTELJS+MS-ETS No 3.78 6.53 4.38

Table 2: Comparison of the multi-speaker TTS models on the VCTK dataset. Column 2 indicates if the correspond-
ing method uses VCTK transcripts while training.

ilar trend with a statistically insignificant drop (of
under 0.2pp1) among the autoregressive and non-
autoregressive model classes. The performance
of SS-WavThruVec and SS-VQ-VAES is lower in
both naturalness and intelligibility, indicating that
the utilization of Wav2Vec 2.0 and VQ-VAE em-
beddings results in a decrease in performance.

Supervision and data efficiency. In the study
to understand how the degree of supervision af-
fects TTS speech quality, we see a clear drop by
0.28 MOS units in moving from the FastSpeech2-
SupASR model that employs supervised ASR for
transcriptions to Tacotron2-UnsupASR model us-
ing unsupervised ASR. Despite some modeling
variations, this is generally indicative of the impor-
tance of clean transcriptions on TTS output quality,
given that all other models are within 0.05 MOS
units of each other.

The data requirement for TTS supervision needs
to be understood in light of this impact on output
quality, and we show how ParrotTTS helps cut
down on this dependence. TTE is the only mod-
ule that needs transcriptions to train, and we show
that by reducing the size of the train set by half in
NAR-TTE 1

2
LJS+SS-ETS the MOS is still compa-

rable to that of the model trained on all data NAR-

1Percentage points abbreviated as pp.

TTELJS+SS-ETS (with only about 0.04 units MOS
drop). Finally, the MOS numbers of FastSpeech2-
SupASR, need to be read with some caution since
the supervised ASR model used, Whisper, is it-
self trained with plenty of transcriptions (spanning
over 600k hours) from the web, including human
and machine transcribed data achieving very low
WERs on various public and test sets. So, the ma-
chine transcriptions used in FastSpeech2-SupASR
are indeed close to ground truth.

5.2 Multi-speaker TTS

Naturalness and intelligibility. Table 2 summa-
rizes results from our multi-speaker experiments.
NAR-TTELJS+MS-ETS clearly outperforms all
other models ranking only below GT-Mel+Vocoder
that re-synthesizes from ground truth Mels. In-
terestingly, ParrotTTS fares even better than MS-
FastSpeech2, which is, in turn, better than other
models that ignore transcripts at the train, namely,
MS-FastSpeech2-SupASR and VC-FastSpeech2.
On the WER metric for intelligibility, ParrotTTS is
about 1pp behind supervised MS-FastSpeech2 but
fares better than the other two models that discard
VCTK transcripts for training. WavThruVec-MS
model leveraging Wav2Vec 2.0 embeddings has a
noticeable quality drop in the multi-speaker setting
with lowest MOS.
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GT CTE (Ours) PTE (Ours) FS2-MLS MetaTTS
Hindi 3.78 ± 0.14 3.33 ± 0.19 3.22 ± 0.15 3.33 ± 0.12 2.12 ± 0.12

Marathi 4.81 ± 0.07 3.78 ± 0.12 3.04 ± 0.19 3.59 ± 0.15 2.13 ± 0.15
German 3.54 ± 0.20 3.33 ± 0.19 3.58 ± 0.12 3.21 ± 0.16 1.8 ± 0.15
French 3.83 ± 0.19 2.23 ± 0.14 4.17 ± 0.19 3.50 ± 0.16 1.7 ± 0.16
English 4.20 ± 0.12 3.11 ± 0.11 3.50 ± 0.10 2.50 ± 0.18 1.6 ± 0.17
Spanish 3.67 ± 0.12 3.5 ± 0.21 3.67 ± 0.20 2.50 ± 0.21 2.1 ± 0.15

Table 3: Comparison of naturalness MOS on seen speakers with FastSpeech2-MLS (FS2-MLS) and MetaTTS model

GT CTE (Ours) PTE (Ours) FS2-MLS MetaTTS
Hindi 4.22 ± 0.18 3.28 ± 0.19 3.05 ± 0.20 3.22 ± 0.21 2.02 ± 0.18

Marathi 4.48 ± 0.13 3.63 ± 0.18 3.11 ± 0.18 3.15 ± 0.19 1.91 ± 0.19
German 3.17 ± 0.22 2.72 ± 0.23 3.55 ± 0.20 2.05 ± 0.22 1.8 ± 0.17
Spanish 3.67 ± 0.19 3.17 ± 0.17 3.33 ± 0.18 3.17 ± 0.19 1.3 ± 0.16

Table 4: Comparison of naturalness MOS on unseen speakers with FastSpeech2-MLS (FS2-MLS) and
MetaTTS model

Speaker adaptability. VC-FastSpeech2 is the
closest in terms of experimental setup since it is
limited to transcriptions from LJSpeech for train-
ing similar to ours, with VCTK used only for adap-
tation. In this case, EER of NAR-TTELJS+MS-
ETS is about twice as good as that of VC-
FastSpeech2. However, improvements are visible
when VCTK transcripts are part of training data
but remain within 1pp relative to ParrotTTS while
GT-Mel+Vocoder continues to dominate the score-
board leaving room for further improvement.

5.3 Multi-lingual TTS

The results from our multi-lingual experiments are
in Tables 3, 4, 5, and 6. It is notable that speech
rendered by ParrotTTS has superior naturalness
compared to baselines that are trained with twelve
times more paired samples stressing its viability for
low-resource languages. Further, the naturalness
also changes with the text tokenization method.
Choosing character tokens for Indic languages out-
performed phoneme tokens while it was the oppo-
site for the European languages. ParrotTTS with
the best performing tokeniser in each language was
superior to FastSpeech2-MLS and MetaTTS for
both seen speakers (Table 3) as well as unseen
speakers (Table 4). It is interesting to note that
scores for ParrotTTS were better than groundtruth
and this is possibly due to noise in original sample
that was suppressed by HuBERT embeddings that
are known to discard ambient information.

Speaker similarity. Results in Table 5 con-
sistently demonstrate the superiority of Par-

rotTTS over FastSpeech2-MLS and MetaTTS, in-
dicating its effectiveness in separating speaker and
content information. This is attributed to the de-
coder being conditioned solely on speaker ID while
sharing the acoustic space across all languages.

Cross lingual synthesis. We also assess the
model’s performance in synthesizing samples of
a speaker in a language different from native lan-
guage. Table 6 presents these results comparing
naturalness of MOS in a cross-lingual setting. The
first column lists a pair of languages of which
the first is the speaker’s native language while the
second is language of text that is rendered. Par-
rotTTS achieved higher MOS demonstrating strong
decoupling of content from speaker characteristics
that is controlled in the decoder. Further, more than
90% of the participants were able to discern the
nativity of the synthesized speech.

6 Conclusion

We investigate a data-efficient ParrotTTS model
that leverages audio pre-training from self-
supervised models and ties it to separately trained
speech decoding and text encoding modules. We
evaluate this architecture in various settings. Qual-
ity of rendered speech with as little as five hours
of paired data per language is on par with or su-
perior to competitive baselines. This is the key
result from our experiments that we believe will
help scale TTS training easily to new languages by
bringing low-resource ones into the same quality
range as the resource-rich ones. Moreover, we have
released an open-source, multi-lingual TTS model
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Language Our model FS2-MLS MetaTTS
Hindi 4.29 ± 0.18 3.92 ± 0.21 2.23 ± 0.19

Marathi 4.21 ± 0.16 3.83 ± 0.08 2.12 ± 0.16
German 4.09 ± 0.11 3.25 ± 0.14 2.05 ± 0.14
French 3.87 ± 0.20 3.50 ± 0.19 2.24 ± 0.17

English 3.94 ± 0.18 3.00 ± 0.19 2.32 ± 0.19
Spanish 4.33 ± 0.17 3.50 ± 0.19 2.0 ± 0.18

Table 5: Comparison of speaker similarity MOS with FastSpeech2-MLS (FS2-MLS) and MetaTTS model

Speaker-Text Our model FS2-MLS MetaTTS
Hindi-Spanish 3.87 ± 0.22 3.25 ± 0.19 1.26 ± 0.15

Marathi-English 3.63 ± 0.21 3.5 ± 0.22 1.23 ± 0.19
French-Hindi 4.07 ± 0.12 2.71 ± 0.21 1.23 ± 0.16

Spanish-German 4.14 ± 0.20 2.29 ± 0.21 1.45 ± 0.19
English-German 3.57 ± 0.15 2.43 ± 0.18 1.56 ± 0.16

English-Hindi 3.57 ± 0.19 2.57 ± 0.18 1.23 ± 0.19
French-German 3.93 ± 0.17 2.71 ± 0.18 1.18 ± 0.17
Spanish-French 3.71 ± 0.18 2.57 ± 0.17 1.4 ± 0.16

Hindi-Marathi 4.13 ± 0.21 3.25 ± 0.19 1.3 ± 0.18
Marathi-French 2.87 ± 0.19 2.75 ± 0.18 1.25 ± 0.19

Table 6: Comparison of naturalness MOS for cross-lingual speech synthesis with FastSpeech2-MLS (FS2-MLS)
and MetaTTS model

to enable the wider application of our findings to
resource-scarce and less privileged languages.

7 Limitations and Future Work

The mHuBERT self-supervised representation uti-
lized in this study may not accurately reproduce the
pronunciation of certain words native to Indian lan-
guages, given its pre-training exclusively on Span-
ish, French, and English. To address this limitation,
our future work will focus on fine-tuning the mHu-
BERT model to encompass a more comprehensive
set of sound units native to South Asian languages
and potentially develop a universal representation
of sound units.

An unexplored aspect in our research is the
examination of emotive speech and controllable
generation. Hubert embeddings, as known, lack
prosody information, creating a challenge in incor-
porating emotional nuances into speech. In our
forthcoming research, we intend to address this
by concatenating emotive embeddings, enabling
the synthesis of speech with diverse emotions and
prosody. Additionally, the NAR model’s duration
predictor may exhibit a bias toward the style of
a single seen speaker. Our subsequent research
endeavors will explore methods to achieve speaker-
adaptive duration prediction and introduce controls

to influence duration prediction in the synthesis
process.

8 Ethical Considerations

Our research is grounded in ethical considerations.
We recognize the potential of text-to-speech syn-
thesis in various domains, such as accessibility,
human-computer interaction, telecommunications,
and education. However, we acknowledge the risk
of misuse, particularly with regards to unethical
cloning and the creation of false audio recordings.
Our experiments strictly use publicly available
datasets and our method does not aim to synthe-
size someone’s voice without their consent. We are
mindful of the negative consequences associated
with these actions. While the benefits currently out-
weigh the concerns, we strongly advocate for the
research community to actively explore methods
for detecting and preventing misuse.

It is important to note that our approach is trained
on a limited set of languages and has not been val-
idated on different languages or individuals with
speech impediments. Therefore, the dataset and
results may not be representative of the entire pop-
ulation. A comprehensive understanding of this
issue necessitates further studies in conjunction
with linguistic and socio-cultural insights.
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A Appendix

Figure 3: Evolution of attention matrix with training
steps for Tacotron2 and AR-TTE

Figure 4: Attention loss plotted against training steps
Tacotron2 and AR-TTE

A.1 Stabler training and faster inference

In Figure 3 and Figure 4, we compare training pro-
files of Tacotron2 and AR-TTE keeping batch size
the same. As visualized in Figure 3, the attention
matrix in Tacotron2 takes about 20k iterations to
stabilize with an anti-diagonal structure and pre-
dict a phoneme-aligned Mel sequence. AR-TTE, in
contrast, is about ten times faster at predicting a dis-
crete HuBERT unit sequence that aligns with input
phonemes taking only about 2k iterations to arrive
at a similar-looking attention plot. While the snap-
shots are illustrative, we use the guided-attention
loss described by Tachibana et al. (2018) as a met-
ric to quantify the evolution of the attention matrix
through training steps. As shown in Figure 4, the
loss dives down a lot sooner for ParrotTTS relative
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to its Tacotron2 counterpart. In a similar compar-
ison, we observe that NAR-TTE converges (20k
steps) about eight times faster than FastSpeech2
(160k steps).

We suppose that the faster convergence derives
from the lower variance of discrete embeddings in
ParrotTTS as opposed to the richness of Mels that
are complete with all acoustic variations, including
speaker identity, prosody, etc. The output speech is
independent of inputs given the Mel-spectrogram
unlike ParrotTTS embeddings that further need
cues like speaker identity in later ETS module. We
hypothesize that segregating content mapping away
from learning acoustics like speaker identity helps
improve training stability, convergence, and data
efficiency for the TTE encoder.

The proposed NAR-TTE system also improves
inference latency and memory footprint, which
are crucial factors for real-world deployment. On
NVIDIA RTX 2080 Ti GPU, we observe Par-
rotTTS serves 15% faster than FastSpeech2, re-
ducing the average per utterance inference time to
11ms from 13 ms. Furthermore, the TTE module
uses 17M parameters in contrast to 35M parame-
ters of the Mel synthesizer module in Fastspeech2.
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