
Findings of the Association for Computational Linguistics: EACL 2024, pages 853–867
March 17-22, 2024 c©2024 Association for Computational Linguistics

Stateful Memory-Augmented Transformers for Efficient Dialogue Modeling

Qingyang Wu
Columbia University

qw2345@columbia.edu

Zhou Yu
Columbia University

zy2461@columbia.edu

Abstract
Transformer models have achieved great per-
formance in dialogue generation tasks. How-
ever, their inability to process long dialogue
history often leads to truncation of the context.
To address this problem, we propose a novel
memory-augmented transformer that is compat-
ible with existing pre-trained encoder-decoder
models and enables efficient preservation of the
dialogue history information. The new model
incorporates a separate memory module along-
side the pre-trained transformer, which can ef-
fectively interchange information between the
memory states and the current input context.
We evaluate the efficiency of our model on
three dialogue datasets and two language mod-
eling datasets. Experimental results show that
our method has achieved superior efficiency
and performance compared to other pre-trained
Transformer baselines.

1 Introduction

Recently, Transformers (Vaswani et al., 2017) have
achieved state-of-the-art results in many natural
language processing tasks, particularly in language
understanding and generation. In the field of open-
domain dialogue modeling, DialoGPT (Zhang
et al., 2020) has achieved great performance by
extending the Transformer decoder model GPT2
(Radford et al., 2019) by pre-training it on a large
corpus of open-domain dialogues. Subsequently,
Meena (Adiwardana et al., 2020) and BlenderBot
(Roller et al., 2021) further improved the perfor-
mance of response generation with larger Trans-
former encoder-decoder models.

However, the attention mechanism in
Transformer-based dialogue models, which
has complexity scaling quadratically with the
sequence length, makes them computationally
expensive for long context inputs. As an example,
BlenderBot (Roller et al., 2021) has to truncate
the input length to 128 tokens for better efficiency,
otherwise, the model’s computational cost would

(a) Stateless model: history information can only be in-
ferred from context.

(b) Stateful model: history information is carried by mem-
ory states M .

Figure 1: Illustration of Stateful vs. Stateless. “State"
means a model’s internal state representations. ct and rt
represent the dialog context and response at timestep t.
Stateful models can have smaller context size compared
to stateless models because of memory.

become infeasible for real-time conversation tasks
such as chatbot applications.

Many studies have addressed the challenge
of processing long sequences with Transformers
(Katharopoulos et al., 2020; Qin et al., 2022; Hua
et al., 2022; Dai et al., 2019; Rae et al., 2020). How-
ever, they focused on pure language modeling tasks
and are primarily decoder-only models. Another
limitation is that their models are not pre-trained
with large corpora, which increases difficulty for
performance comparison with existing pre-trained
Transformers. More recently, Beltagy et al. (2020)
addressed the problem by proposing Longformer
Encoder-Decoder (LED) based on the pre-trained
encoder-decoder model BART (Lewis et al., 2020)
for sequence-to-sequence tasks. It uses a sparse at-
tention window and achieves a linear time complex-
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ity. Nevertheless, LED is inefficient in dialogue
modeling, because it is stateless and depends on
the context to provide history information.

In this work, we utilize the idea of memory-
augmented Transformers (Wu et al., 2020; Bula-
tov et al., 2022; Burtsev and Sapunov, 2020) and
convert an existing pre-trained Transformer into
a stateful model with internal memory represen-
tations. A stateful model can keep history infor-
mation in its internal hidden states in contrast to
a stateless model. As shown in Figure 1, most
existing Transformer encoder-decoder models are
stateless. They rely on the input context to provide
history information, and therefore they typically re-
quire a larger context to avoid information loss. For
a stateful model, it can store history information in
its memory states. With a smaller context size, the
stateful model can still retain most of the history
information, which results in better efficiency than
a stateless model.

Memformer (Wu et al., 2020) achieves stateful-
ness by having internal memory states to store his-
tory information. The memory size is fixed so that
the model will prioritize memorizing important in-
formation. To interact with the memory, it consists
of a memory reader and a memory writer into a
Transformer encoder-decoder model. Memformer
has shown better efficiency on the language model-
ing dataset WikiText-103 (Merity et al., 2017) than
the decoder-only models Transformer-XL (Dai
et al., 2019) and Compressive Transformer (Rae
et al., 2020). However, Memformer only focused
on language modeling tasks and was not pre-trained
on large corpora and cannot be directly used for
downstream applications. Also, its structure does
not fit the existing pre-trained Transformer encoder-
decoder models.

To address these limitations in Memformer, we
propose MemBART with new architecture modi-
fications and training techniques that converts the
existing pre-trained Transformer encoder-decoder
model BART (Lewis et al., 2020) into a stateful
memory-augmented Transformer encoder-decoder
model. Specifically, we introduce a dual attention
stream to enhance the memory module, which is
accomplished by using a separate Transformer to
update the memory states at each layer. We also
implement a residual gated memory update mecha-
nism to better retain important history information.
At each timestep, the gating mechanism controls
the extent of keeping or overwriting each memory

slot’s values for the next timestep. We further pre-
train the memory module and enable the model to
memorize important history information. As Mem-
BART is a pre-trained model, it can be used for
broader downstream applications.

Our contributions focus on introducing a novel
stateful memory-augmented Transformer encoder-
decoder model that is compatible with the existing
pre-trained language model BART. We evaluate our
model’s performance on three dialogue datasets
and two language modeling datasets. Experimental
results demonstrate our model’s superior efficiency
in terms of latency and performance. We will re-
lease the checkpoints of our pre-trained MemBART
models.

2 Related Work

2.1 Stateful Language Models

Recurrent neural networks (RNN) are natu-
rally stateful models. Training RNNs on long
time-series data often requires truncated back-
propagation through time (Williams and Peng,
1990) and passing the internal states of the model
to the next batch. Stateful RNNs are also widely
used for recurrent reinforcement learning (Gold,
2003; Hausknecht and Stone, 2015), where the
states of the agent need to be maintained. There
have been variants of stateful RNNs (Weston et al.,
2015; Sukhbaatar et al., 2015; Graves et al., 2016)
studied to solve various tasks. However, due to par-
allel inefficiency, they are gradually succeeded by
large Transformer models (Vaswani et al., 2017).

Decoder-only Transformers can be stateful by
storing the previously computed keys and values.
Transformer-XL (Dai et al., 2019) and Compres-
sive Transformer (Rae et al., 2020) explore this
direction, but their states have a theoretical max-
imum range of maintaining the information from
previous tokens. Thus, they normally require a
large memory size to be effective.

Linear attention Transformers can act as RNNs
with states. They use a linearized kernel to approx-
imate softmax operation. Different variants of lin-
ear Transformers (Katharopoulos et al., 2020; Hua
et al., 2022; Qin et al., 2022) have been proposed
and achieved great performance in language mod-
eling tasks. However, there are no pre-trained large
linear Transformers yet. Similar models such as
Memorizing Transformer (Wu et al., 2022), Block-
Recurrent Transformer (Hutchins et al., 2022), Re-
current Memory Transformer (Bulatov et al., 2022)
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focus on language modeling tasks or synthetic tasks
and are not applicable for broader NLP tasks.

2.2 Stateless Language Models
For long documents processing, sparse Transform-
ers are another direction. The main idea is to apply
a sparse attention matrix to skip computations of
tokens that are far away. Many works (Child et al.,
2019; Zaheer et al., 2020; Beltagy et al., 2020)
have explored different sparse attention patterns
with linear complexity. Especially, Longformer ex-
tended the pre-trained BART (Lewis et al., 2020)
with sparse attention and introduced Longformer-
Encoder-Decoder (LED) for sequence-to-sequence
tasks. However, these models are stateless, which
are inefficient for dialogue modeling. They require
the context to be long enough to cover enough
history information. The context also needs to
be re-computed at every timestep due to bidirec-
tional attention. Besides, sparse Transformers need
full attention for the local window, which makes
them less competitive against non-sparse models
when the context is short. In contrast, our state-
ful memory-augmented method can have a shorter
context input while still memorizing the history
information.

3 Methods

In this section, we first describe the background of
memory-augmented Transformers. Then we intro-
duce an novel memory module that is compatible
with existing Transformer encoder-decoder mod-
els. We further pre-train the memory module with
the sequence denoising objective to initialize the
memorization capability. In the end, we analyze
the theoretical complexity of our proposed model
for dialogues.

3.1 Memory-Augmented Transformer
Memformer (Wu et al., 2020) modifies a Trans-
former encoder to interact with a fixed-size dy-
namic memory, so that it can store and retrieve
history information. It comprises a memory reader
and a memory writer. The memory reader utilizes
cross attention to retrieve history information from
the memory Mt:

QHl ,KM l , VM l = H lWQ,MtWK ,MtWV

Al = MHAttn(QHl ,KM )

H l+1 = Softmax(Al)VM

where H l is the input’s hidden states at layer l.

For the memory writer, each memory slot mi
t ∈

Mt is projected into a query to attend to itself and
the final layer’s input hidden states HL:

Qmi
t
,Kmi

t
= mi

tWQ,m
i
tWK

KHL , VHL = HLWK , HLWV

Ami
t
=MHAttn(Qmi

t
, [Kmi

t
;KHL ])

mi
t+1 =Softmax(Ami

t)[mi
t;VHL ]

Memory states are reset with the reset signal r.

r =

{
1, if t = 0

0 otherwise

M ′
t = LayerNorm((1− r)⊙Mt + vb)

Also, we normalize the memory states at every
timestep with a bias term vb as the forgetting mech-
anism. vb determines the initial memory M0 which
is LayerNorm(vb).

3.2 Dual Attention Stream
Memformer adds cross-attention layers between
self-attention and feed-forward layers to achieve
memory functionality. However, directly injecting
layers inside a pre-trained Transformer will inter-
fere the distribution of learnt knowledge and lead to
worse performance. Therefore, we aim to integrate
the memory module with a minimal influence of
the original pre-trained Transformers.

We propose a dual attention stream so that the
memory path has minimal interference with the
input sequence’s data path. Inside every layer l,
we separately project the input sequence H l and
the memory states M l to queries Q, keys K, and
values V :

QHl ,KHl , VHl = WHlH l

QM l ,KM l , VM l = WM lM l

Then, there are two attention streams to realize
memory reading and memory writing simultane-
ously at each layer:

AHl = Attention(QHl , [KM l ;KHl ])

H l+1 = Softmax(AHl)[VM l ;VHl ]

AM l = Attention(QM l , [KM l ;KHl ])

M l+1 = Softmax(AM l)[VM l ;VHl ]

Specifically, the attention stream AHl serves as
memory reading, where the input sequence’s hid-
den states H l gathers the information from the
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Figure 2: Left: Memformer with cross attention to read from memory and a separate memory writer to update
information in memory slots. Right: MemBART with the dual attention stream to handle memory reading and
writing simultaneously. This design reduces the interference with the pre-trained model’s distribution.

memory states Mt to get the next layer’s representa-
tion H l+1. The other attention stream AM l serves
as memory writing. Note that we update memory
states at every layer. Each memory slot ml ∈ M l

attend to itself and the input’s hidden states to ob-
tain the next layer’s memory slots M l+1. Each
memory slot does not interfere with other memory
slots when updating.

This dual attention stream allows the information
to exchange effectively between the memory slots
and the input sequence, while minimally affects the
original pre-trained Transformer’s knowledge.

3.3 Residual Gated Memory Update
The dual attention stream achieves memory reading
and writing simultaneously at each layer. However,
as the number of layers increases, the final layer’s
memory representation may be hard to retain the
previous timestep’s information.

As a workaround, we implement a residual gat-
ing mechanism. We let the encoder predict a score
zt ∈ (0, 1) with sigmoid to control the update of
each memory slot separately.

HMt+1 = Encoder(xt,Mt)

M ′
t+1 = MLP(HMt+1)

zt = σz(WzHMt+1 + bz)

Mt+1 = zt ⊙M ′
t+1 + (1− zt)⊙Mt

xt is the input sequence length. HMt+1 is the
final layer’s memory hidden states. M ′

t+1 is the
next timestep’s memory slots candidate.

3.4 Learning to Memorize Important
Information

As the memory size is fixed, the model needs to
learn what information to keep and what to forget,
but the memory module initially has no knowledge
of that. Therefore, it requires further pre-training
for the memory module to learn to memorize im-
portant information.

We use the sequence denoising objective as the
memory module’s pre-training objective. We split
a document into segments, add random masks to
these segments, and feed them into the model se-
quentially. This objective can teach the model
to memorize important information. If important
words such as named entities appear in previous
timesteps but are masked in the current input con-
text, the model can predict them back with the help
of memory. For less important words that can be in-
ferred from the context or grammar, the model can
choose not to store them in the dynamic memory.

3.5 Complexity Analysis

Our method is efficient in processing long se-
quences compared to traditional Transformers, es-
pecially in modeling dialogues. For example, con-
sider a dialogue with T turns, and N tokens at each
turn. The overall complexity for a Transformer
to process all the turns would be O(N2 + 2N2 +
. . . + TN2), or simply O(T 2N2). If we keep all
the history tokens, a traditional encoder-decoder
model would require to re-compute all the history
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tokens because of the bidirectional attention, which
increases the complexity. In practice, due to the
limitation of the maximum number of positional
embeddings and the GPU memory constraint, we
often truncate the dialog history to a fixed length.

In contrast, our stateful model can store the his-
tory information in the fixed-size memory. The
implementation has a complexity of O(TN2), and
it does not require re-computation for the history
tokens. For efficient Transformer models such as
Longformer, the complexity can be reduced from
O(T 2N2) to O(T 2N). However, when the con-
text length N is small, the number of turns T is
the leading factor for efficiency, where our method
shows better efficiency in theory.

4 Memory Module Pre-training

As mentioned above, the memory module needs to
be pre-trained to learn to memorize important in-
formation. However, to compare the effectiveness
of our proposed approach with the previous mod-
els, it would be expensive to pre-train all model
variants. Therefore, we use a simple text recall task
to evaluate different models before pre-training on
large corpora.

For all model variants, we choose BART (Lewis
et al., 2020) as the backbone as it has demonstrated
great performance on conversational datasets. We
also initialize the memory module’s self attention
and feed-forward parameters with the pre-trained
weights for better adaptation.

4.1 Model Selection with Text Recall Task

Figure 3: Loss curves for different models for the text
recall task.

The text recall task lets the model recover the
previous timestep’s input text, where the history
information can only flow through the memory
bottleneck.

We evaluate different model variants with the
text recall task to select the best model before pre-
training. The first is directly adding the memory
cross-attention layers into BART (Memformer),
which the model’s architecture is similar to Mem-
former (Wu et al., 2020). The second model
uses ReZero (Bachlechner et al., 2021) that it
applies a zero-initialized trainable weight when
adding the memory cross-attention layer, so that
the model’s output distribution is not changed ini-
tially (Memformer + ReZero). The third model is
our proposed MemBART where the memory mod-
ule shares the weights with BART (MemBART +
Shared weights). The last one is our final model
MemBART without sharing weights between the
memory module and the pre-trained Transformer
(MemBART).

The training details are in Appendix A. In Fig-
ure 3, we can observe that the original Memformer
(orange) did not converge to zero loss. MemBART
with shared weights (purple) also did not converge
and performed worse, suggesting that the memory
states should have different distribution space from
the word embeddings. Memformer with ReZero
(green) converged slowly in the end. In compari-
son, MemBART (blue) only used one quarter of
the time to reach nearly zero loss. The result shows
that our proposed memory module architecture is
compatible with the pre-trained BART and can be
efficiently trained for memorization tasks.

4.2 Sequence Denoising Pre-training

We have shown that the proposed MemBART has
outperformed Memformer and other model vari-
ants. Now, we pre-train MemBART with the se-
quence denoising objective for the memory mod-
ule to memorize important information. We have
two sizes of models: MemBART base (183M) and
MemBART large (558M). We use a similar pre-
training corpus to BART to avoid data leaking,
which includes a subset of BooksCorpus (Zhu et al.,
2015), CommonCrawl (Raffel et al., 2020), Open-
WebText (Gokaslan and Cohen, 2019). We filter
out documents that are less than 512 tokens for
better memory learning. We split the document
into segments with a window size of 512 and an
overlap of 128 tokens. At each timestep, we ran-
domly mask 30% of input sequence tokens. We pre-
train the model for 100k steps, which takes about
0.125% of the original pre-training cost of BART.
Other pre-training details are in Appendix B.
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Models \ Context 64 128 256 512*
PPL ↓ F1 ↑ PPL↓ F1 ↑ PPL↓ F1 ↑ PPL↓ F1 ↑

BART base 10.91 25.01 9.39 25.44 8.64 26.31 8.76 26.22
Memformer base (512) 9.14 25.37 8.95 25.81 8.64 27.23 - -
MemBART base (64) 8.68 27.34 8.58 27.37 8.46 27.05 - -

w/o history 10.52 25.54 9.44 26.52 8.57 26.23 - -
w/o pre-training 10.67 25.26 9.37 26.12 8.60 26.45 - -

MemBART base (128) 8.59 27.45 8.57 27.52 8.39 27.52 - -
MemBART base (256) 8.60 27.65 8.49 27.68 8.38 27.41 - -

GPT2-12 10.93 25.18 9.86 26.03 9.06 26.55 9.04 26.52
GPT2-24 9.51 25.46 8.56 26.52 7.82 27.19 7.81 27.20
BART large 9.12 25.50 8.01 26.84 7.33 28.67 7.31 28.64
MemBART large (128) 7.47 28.06 7.33 28.57 7.15 29.16 - -

Table 1: PersonaChat results. MemBART with 64 context length outperforms the baselines with 512 context length.
MemBART (64) means the memory size is 64. “w/o pre-training" means without pre-training the memory module.
* denotes that the context window can cover most dialogues.

Figure 4: Memory’s gradient norm during pre-training.
When the gradient is near the minimum, the model
performs terribly in downstream tasks.

In Figure 4, we show the magnitude of the gra-
dients flowing through memory states during pre-
training. At the early stage of the pre-training (less
than 20,000 steps), we observe that the MemBART
base model does not perform well in the down-
stream tasks. We suspect that when the gradient
norm is small, it means that model is not actively
using the memory states. Therefore, the gradient
norm serves as an indicator of when the memory
module is learnt. For MemBART large, the down-
stream tasks’ performance improves after 50,000
steps when the gradient norm reaches the maxi-
mum. This pattern suggests that it needs a certain
number of pre-training steps for the memory mod-
ule to learn to memorize important information,
and the large model needs more update steps to
learn memorization.

Datasets #Turns Avg. Len Max Len

PersonaChat 14.66 244 715
Persuasion 20.58 456 1,437
Multi-Session Chat 60.52 1,823 2,705

Arxiv - 13,409 156,605
PG19 - 105,830 1,181,156

Table 2: Dialogue and long document datasets statistics.

5 Downstream Tasks

In this section, we introduce the downstream tasks
and datasets for evaluation. Then, we show the re-
sults on the dialogue and language modeling tasks.

5.1 Experiment Setup

Datasets: We experimented on three different dia-
logue datasets: PersonaChat (Zhang et al., 2018),
PersuasionForGood (Wang et al., 2019), and Multi-
Session Chat (MSC) (Xu et al., 2022). Especially,
Multi-Session Chat addresses the problem of lack-
ing long-context dialogue datasets in the current
community. It is the largest human-human dataset
for long conversations with five sessions and av-
erage 60 turns of utterances. To further test the
model’s capability, we also evaluated our model on
two language modeling tasks: Arxiv and PG19
(Rae et al., 2020). Due to computational con-
straints, we selected the 2, 809 CS AI Arxiv papers,
and a subset of 200 books from PG19 for evalu-
ation. We split 10% of the data for testing. The
statistics of all the datasets are shown in Table 2.

Baselines: We compared MemBART with
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Base Models Context Latency (ms) ↓ Total ↓ Session 1 ↓ Session 2 ↓ Session 3 ↓ Session 4 ↓ Session 5 ↓
BART base 128 16.41 13.05 10.99 12.52 13.18 13.65 14.02
BART base 256 22.12 12.83 10.94 12.29 12.97 13.37 13.78
BART base 512 36.80 12.68 10.92 12.14 12.77 13.19 13.61
BART base 1,024 64.65 12.53 10.81 11.93 12.50 13.10 13.55
LED base 2,048 227.75 12.52 10.76 12.13 12.59 12.93 13.42

Memformer base (512) 128 24.37 12.77 10.99 12.50 13.09 13.46 13.81

MemBART base (128) 128 20.42 12.41 10.72 11.95 12.52 12.88 13.23
MemBART base (128) 256 32.09 12.25 10.62 11.76 12.37 12.71 13.06
MemBART base (128) 512 66.70 12.15 10.63 11.67 12.23 12.57 12.97

Large Models Context Latency (ms) Total Session 1 Session 2 Session 3 Session 4 Session 5

GPT2-12 512 65.77 13.99 12.81 13.45 14.03 14.33 14.78
GPT2-12 1,024 149.05 13.56 12.82 13.48 13.84 13.53 13.82

GPT2-24 512 172.43 11.65 11.07 11.14 11.66 11.86 12.20
GPT2-24 1,024 395.84 11.56 11.03 11.12 11.52 11.75 12.11

BART large 128 45.37 10.61 9.50 10.13 10.68 10.94 11.29
BART large 256 63.79 10.37 9.38 9.86 10.44 10.67 11.02
BART large 512 103.20 10.23 9.44 9.71 10.26 10.52 10.85
BART large 1,024 190.79 10.10 9.41 9.64 10.06 10.36 10.68
LED large 2,048 655.19 10.05 9.43 9.60 10.04 10.27 10.60

MemBART large (128) 128 59.51 10.17 9.22 9.61 10.24 10.47 10.85
MemBART large (128) 256 102.42 10.09 9.20 9.65 10.09 10.38 10.72
MemBART large (128) 512 197.79 9.99 9.22 9.51 10.03 10.23 10.58

Table 3: MSC test set perplexity results. Compared to LED 2048 context length, MemBART base is 11.15x faster
(227.75 vs. 20.42) and MemBART large is 6.40x faster (655.19 vs. 102.42). More details are in Appendix C.

GPT2, BART, and Longformer (LED) under dif-
ferent context windows. We also evaluated Mem-
former+ReZero with memory length 512 (denoted
as “Memformer base (512)”) to show the effec-
tiveness of the new architecture. Note that Mem-
former+ReZero is pre-trained under the same set-
ting of MemBART-base. We used beam search
with a beam size of 4 when generation is needed.
For evaluation metrics, we reported perplexity
for all the datasets and word overlap F1 for Per-
sonaChat. We also measured the latency as an
important metric for efficiency, where the results
for all the models are in Table 3.

5.2 Dialogue Datasets Results

Table 1,4,3 show the results for PersonaChat, Per-
suasionForGood, and MSC, respectively. We list
several main observations below.

The memory module memorizes the history
information, and the pre-training is necessary.
In Table 1, we show that by resetting the memory
states (w/o history), MemBART performs similarly
to BART base. Also, without pre-training, it does
not initially learn to memorize the history.

MemBART can be much faster with a small
input context size while having better perfor-
mance. In PersonaChat, MemBART with 64 mem-

Models Context Length
128 256 512 1024*

BART base 10.93 10.90 10.80 10.78
MemBART base (64) 10.69 10.66 10.66 -

w/o history 10.86 10.79 10.75 -
MemBART base (128) 10.65 10.57 10.56 -
MemBART base (256) 10.59 10.56 10.54 -

GPT2-12 10.51 10.38 10.33 10.31
GPT2-24 9.37 9.20 9.14 9.11
BART large 9.54 9.40 9.24 9.27
MemBART large (128) 9.34 9.18 9.12 -

Table 4: Perplexity ↓ results for Persuasion dataset.
MemBART (64) means the memory size is 64. * de-
notes that the context length can cover most dialogs.

ory size and 64 context length can be on par
with the performance of BART with 512 context
length. The same pattern holds for PersuasionFor-
Good (Persuasion) and Multi-Session Chat(MSC)
dataset. Especially in MSC, MemBART base can
achieve similar perplexity (12.41) compared to
LED base with context length 2,048, but 11.15
times faster. MemBART large achieves similar
perplexity (10.09) compared to LED large with
context length 2,048, while 6.40 times faster.

Encoder-decoder models utilize history infor-
mation better than decoder-only models. For Per-
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Models Context Arxiv PG19

BART base 512 15.40 33.70
BART base 1,024 15.09 31.20
LED base 2,048 13.97 30.08
MemBART base (128) 512 14.34 29.81

GPT2-12 512 17.53 32.20
GPT2-12 1,024 15.35 28.31

GPT2-24 512 15.34 22.33
GPT2-24 1,024 13.84 20.86

BART large 512 12.92 24.08
BART large 1,024 12.31 23.07
LED large 2,048 11.82 23.04
MemBART large (128) 512 12.24 22.26

Table 5: Language Modeling perplexity scores on Arxiv
and PG19 datasets. Lower is better.

sonaChat and MSC, BART base and MemBART
large outperforms GPT2-12 and GPT2-24 respec-
tively. The exception is in Persuasion, where the
conversations contain more single-turn utterances.
This observation suggests that encoder-decoder
models utilize history information better, and it
is probably because of the bidirectional context.

MemBART’s performance improves as the
context size increases. BART and GPT2’s per-
formance improves when context size increases.
The results show that increasing the context size
for MemBART can also improve its performance,
although only by a small margin. We suspect that
using a larger context size can help the model to
enhance the memorization of history information
and alleviate situations where some information is
not kept in the memory.

Increasing memory size improves MemBART
performance. For MemBART models, the history
information is stored inside memory. Thus, we
want to study how the performance scales with the
memory size. We evaluated memory size 64, 128,
and 256. We observe that when increasing the size
of memory from 64 to 128, there is a large im-
provement, but from 128 to 256, the improvement
is marginal.

5.3 Language Modeling Datasets Results

We have also evaluated on two language model-
ing tasks Arxiv and PG19 to better understand the
model’s effectiveness. Due to the computational
constraint, we use subsets of the two datasets for
evaluation. We show the results in Table 5.

MemBART performs slightly worse than LED

Figure 5: Effects of changing memory size (left) and
time horizon (right).

large with 2048 context on Arxiv, but better on
PG19. We suspect that it is because Arxiv papers
are very structured and use terminologies across
the paper, but PG19 books have less long-term
dependency. The similar performance pattern can
also be observed between BART and GPT, which
suggests that encoder models are better at using
long-term information, and decoder models are
better at short-term information.

5.4 Ablation Studies

We also evaluate the effect of varying memory
sizes and back-propagation time horizons on Per-
sonaChat dataset with a context length of 64. When
varying the memory size, we set the time horizon to
5. In Figure 5, increasing the memory size has a sig-
nificant improvement for perplexity until it reaches
128. When varying the time horizon, memory size
is set to 128. In the right figure, the time horizon
being 1 (gradients cannot flow through memory)
achieved performance better than BART, suggest-
ing that the memory after pre-training can capture
history information. Increasing the time horizon to
2 can significantly improve the performance.

6 Conclusion

In conclusion, we introduce a new stateful memory-
augmented Transformer encoder-decoder model
that can preserve long dialogue history while be-
ing compatible with pre-trained encoder-decoder
models. By incorporating a separate memory mod-
ule with dual attention stream and residual gat-
ing mechanism, our model effectively interchanges
information between the memory states and the
pre-trained transformer. The experimental results
have demonstrated the superiority of our method in
terms of efficiency and performance, when compar-
ing with other pre-trained models such as BART,
GPT, and Longformer. For future work, we will
enhance other existing language models with the
stateful memory, expanding the range and capabili-
ties of our memory-augmented transformer models.
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Limitations

In our approach, we introduce additional pre-
training as we need to initialize the memory mod-
ule’s weights. This is necessary as the additional
pre-training enables the model to effectively pre-
serve long dialogue history while building on top
of pre-trained models such as BART. Note that the
additional pre-training cost is only 0.125% com-
pared to pre-training BART from scratch. After
pre-training, our model is several times more effi-
cient compared to the baselines.

Our work focuses on improving the efficiency of
the encoder-decoder models. Many recent works
(Tay et al., 2022; Soltan et al., 2022) show that
encoder-decoder models may have competitive per-
formance compared to GPT-3 and are much more
efficient, which adds the value of our work. Also,
casual decoder models can be easily transformed
into non-causal decoder models, which make it
possible to apply our method to the decoder-only
models.

Another important thing to note is the difference
in our work compared to retrieval-augmented mod-
els like the recent Unlimiformer (Bertsch et al.,
2023) and LongMem (Wang et al., 2023). In
general, there is no free lunch for memorization.
Retrieval-augmented models normally require to
store the historical encodings into memory and
retrieve them later when needed. However, the stor-
ing process results in an increasing memory cost
when there is more history. In contrast, our method
has a constant memory cost which by default can
process inputs of infinite length.

Ethical Considerations

In this work, we focused on the efficiency of the
modeling. We pre-trained our model on a large
corpus similar to BART. We used the existing fil-
tered data to guarantee safety. However, there is
still chance that offensive and toxic data are used
during pre-training. Also, as dialogue models are
becoming more efficient and powerful, they may be
misused for scam, harassment, propaganda... We
will address these problem in the future with ex-
isting techniques (Xu et al., 2020) to build safer
dialogue models.
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A Different Model Variants

We evaluate different model variants to select the
model with best memory effectiveness. We choose
the text recall task for evaluation. The task is con-
structed as recalling previous text segment. Sup-
pose we have an a document split into text segments
x0, x1, . . . , xt. The encoder receives an input xt
at timestep t. The decoder needs to predict xt−1.
In this way, memory has to compress the previous
information into the memory.

Memformer The first model is directly applying
Memformer by adding the memory cross-attention
layers to BART. The cross-attention layer is be-
tween the attention layer and the MLP layer. Below
is the simplified formulation without showing the
normalization:

H l = H l + Attn(H l)

H l = H l + CrossAttn(H l,Mt)

H l = H l + MLP(H l)

Memformer + ReZero uses ReZero (Bachlech-
ner et al., 2021) by adding a zero-initialized train-
able weight α when adding the memory cross-
attention layer, and therefore the model’s output
distribution will get updated smoothly.

H l = H l + Attn(H l)

H l = H l + αCrossAttn(H l,Mt)

H l = H l + MLP(H l)

MemBART + Shared weights A direct variant
of our approach is sharing the weights between the
memory module and the pre-trained Transformer.
This is similar to append trainable prompting em-
beddings to the input sequence.

MemBART is our proposed approach. The main
difference from Memformer is the memory module,
where the memory reading and writing are handled
with a separate Transformer. The information flow
between the memory module and the pre-trained
Transformer is achieved by the dual attention flow
to minimally influence the original model distribu-
tion.

The detailed training hyper-parameters are
shown in the Table 6. The back-propagation time
horizon is set to 2 because it is sufficient for this
task. The training takes approximately less than 12
hours to finish on one A6000 GPU.
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Hyperparams All models

Encoder Layers 6
Decoder Layers 6
Hidden size 768
Attention heads 12
Memory size 32

Context length 512
Batch size 8
Warm-up steps 1k
Learning rate 3e-5
Time horizon 2
Dropout 0.0
Weight decay 0.01
Maximum Update steps 100k

Table 6: Hyper-parameters for the text recall task.

B Sequence Denoising Pre-training
Details

As mentioned, we use the same training objective
as BART. Also, the pre-training corpus is selected
to similar to BART. Since our model is highly based
on BART, we use the same tokenization as BART.
We filter out documents that are shorter than 512
tokens. Each document is split into segments with
a window size of 512 and an overlap of 128 tokens.

Hyperparams MemBART-base MemBART-large

Encoder Layers 6 12
Decoder Layers 6 12
Hidden size 768 1024
Attention heads 12 16

Context length 512 512
Stride 128 128
mask ratio 0.3 0.3
permutation ratio 0.0 0.0
replace length 1 1

Batch size 32 32
Warm-up steps 5k 5k
Learning rate 3e-5 1e-5
Time horizon 6 6
Dropout 0.0 0.0
Weight decay 0.01 0.01
Update steps 100k 100k

Table 7: Hyper-parameters for training MemBART-base
and MemBART-large.

We pre-train our models with the hyper-
parameters shown in Table 7. Note that training
100k steps only takes about 0.125% of the origi-
nal pre-training cost of BART. The pre-training for
MemBART-base takes about 4 day on four A6000
GPUs. The pre-training for MemBART-large takes

about 8 days on four A6000 GPUs. We also train a
Memformer+ReZero model for comparison using
the same setting as MemBART base.

B.1 Batch Processing and Dispatch

Figure 6: The illustration of how documents or dia-
logues are processed and batched.

As batches are temporal-dependent in our
paradigm, we implement a batch dispatcher to
efficiently process the documents and dialogues
as shown in Figure 6. In this paradigm, a num-
ber of the agents whose size is equal to the batch
size share the same data queue to fetch documents.
When finished processing a document, the agent
pops a new document from the shared queue, and
it splits the document into text segments or utter-
ances to output one context input at each timestep.
The agent also handles the reset signal and to-
ken padding when documents have varied lengths.
All the agents are synchronized, and the batch is
collected at each timestep. This paradigm sim-
plifies the preservation of the temporal order in
batches and the alignment between varied-length
documents or dialogues. We use this batch dis-
patcher across all our experiments.

C Multi-Session Chat Full Experiments

We have shown the full experiments on multi-
session chat under different settings. Latency is
measured with dummy inputs based on the context
length during training. The label’s length is fixed to
128, and the batch size is 4. We report the average
of 10 runs and the corresponding variance. We se-
lect the best models based on the validation set and
then evaluate them on the test set. The validation
results are shown in Table 9. The test results are
shown in Table 10.

One observation is that Longformer would pad
the sequence to the multiples of 1, 024 due to the
sparse attention mechanism. This behavior results
in very slow performance when the context size is
small.
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Another observation is that for later sessions,
especially Session 4 and 5, history information
matters. For Session 5, BART base gets 4.5% per-
formance loss when the context size is truncated to
128. BART large gets 6.5% performance loss due
to truncation. In contrast, as MemBART has mem-
ory, the performance difference is smaller when
using different context sizes.

D The Number of Parameters

Models #Parameters

BART base 139M
MemBART base 183M

BART large 406M
MemBART large 558M

Table 8: The number of parameters for BART and Mem-
BART.

We show the number of parameters of BART
and MemBART in Table 8. Since MemBART in-
corporates additional memory module. It is slightly
larger than its counterpart BART model. But as a
trade-off, MemBART is much faster than BART.

E GPU Memory Efficient Training

Memformer proposed a variant of gradient check-
pointing to efficiently train this type of stateful
models. The GPU memory consumption scales
linearly with the back-propagation time horizon be-
cause it requires unrolling the computation graph
as equal to the number of timesteps.

We applied this efficient training algorithm for
the MemBART large model model with time hori-
zon 6. Without efficient back-propagation method,
it would consume a large amount of GPU memory,
which makes the training infeasible. MRBP tra-
verses the critical path in the computational graph
during the forward pass and recomputes the par-
tial computational graph for the local timestep dur-
ing the backward pass. The algorithm takes an
input with a rollout xt, xt+1, . . . , xT and the previ-
ous memories Mt,Mt+1, . . . ,MT if already being
computed. It then obtains each timestep’s memory
and stores those memories in the replay buffer. The
following is the algorithm details:

Algorithm 1: BP through Memory Replay
Input: rollout=[xt, xt+1, . . . , xT ]: a list

containing previous inputs
memories=[Mt,Mt+1, . . . ,MT ]:
memory from the previous

▷ Initialize a list for
back-propagation

1 replay = list([Mt])
▷ Forward pass & no gradient

2 for t = t, t+ 1, . . . , T − 1 do
3 Mt+1, _ = Model(xt, Mt)
4 replay.append(Mt+1)
5 end
▷ Backward pass with gradient

6 ∇Mt+1 = 0
7 for t = T, T − 1, . . . , t+ 1, t do

▷ Recompute
8 Mt+1, Ot = Model(xt, Mt, rt)
9 loss = L(Ot)

10 loss.backward()
11 Mt+1.backward(∇Mt+1)
12 ∇Mt+1 = ∇Mt

13 end
▷ Update the memories

14 memories = Buffer
15 memories.pop()
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Base Models Context Latency (ms) Total Session 1 Session 2 Session 3 Session 4 Session 5

BART base 128 16.41±0.73 12.72 10.84 13.19 13.15 13.17 12.77
BART base 256 22.12±0.89 12.50 10.77 12.85 12.89 12.96 12.58
BART base 512 36.80±1.17 12.33 10.71 12.61 12.67 12.81 12.43
BART base 1,024 64.65±0.72 12.22 10.69 12.46 12.38 12.77 12.38

Longformer base 256 110.07±0.28 12.55 10.78 12.92 12.93 13.07 12.57
Longformer base 512 113.73±3.16 12.35 10.73 12.64 12.66 12.87 12.40
Longformer base 1,024 115.96±0.25 12.20 10.67 12.55 12.46 12.65 12.26
Longformer base 2,048 227.75±0.13 12.16 10.69 12.54 12.46 12.58 12.15

MemBART base (64) 128 17.23±1.19 12.17 10.6 12.60 12.54 12.55 12.14
MemBART base (64) 256 29.39±0.73 12.06 10.59 12.40 12.36 12.47 12.09
MemBART base (64) 512 59.73±0.66 11.95 10.57 12.28 12.22 12.33 11.98

MemBART base (128) 128 20.42±1.47 12.12 10.6 12.50 12.45 12.51 12.14
MemBART base (128) 256 32.09±0.18 11.96 10.49 12.29 12.28 12.37 11.97
MemBART base (128) 512 66.70±1.83 11.86 10.50 12.15 12.14 12.27 11.89

MemBART base (256) 128 26.56±0.57 12.11 10.58 12.51 12.43 12.47 12.13
MemBART base (256) 256 40.92±0.63 12.00 10.50 12.35 12.34 12.40 12.01
MemBART base (256) 512 75.54±0.14 11.83 10.47 12.11 12.10 12.24 11.86

Large Models Context Latency (ms) Total Session 1 Session 2 Session 3 Session 4 Session 5

GPT2-12 128 16.24±1.13 14.17 12.87 14.57 14.5 14.51 14.03
GPT2-12 256 30.80±0.48 13.91 12.70 14.20 14.23 14.25 13.81
GPT2-12 512 65.77±0.74 13.76 12.68 14.03 14.02 14.11 13.67
GPT2-12 1,024 149.05±0.38 13.33 12.66 14.04 13.82 13.26 12.71

GPT2-24 128 42.39±2.50 11.91 11.15 12.17 12.10 12.10 11.83
GPT2-24 256 81.80±0.18 11.66 10.98 11.83 11.83 11.86 11.62
GPT2-24 512 172.43±0.12 11.52 10.99 11.63 11.64 11.72 11.48
GPT2-24 1,024 395.84±0.64 11.43 10.96 11.59 11.48 11.62 11.37

BART large 128 45.37±1.31 10.42 9.31 10.75 10.61 10.68 10.44
BART large 256 63.79±0.40 10.15 9.17 10.35 10.34 10.40 10.20
BART large 512 103.20±2.40 10.00 9.22 10.12 10.12 10.28 10.03
BART large 1,024 190.79±0.29 9.87 9.20 10.03 9.91 10.09 9.90

Longformer large 256 316.42±2.37 10.25 9.28 10.43 10.41 10.55 10.30
Longformer large 512 322.68±1.74 10.06 9.24 10.18 10.15 10.38 10.13
Longformer large 1,024 334.87±5.54 9.90 9.20 10.06 9.95 10.15 9.92
Longformer large 2,048 655.19±5.25 9.87 9.23 10.09 9.90 10.04 9.89

MemBART large (128) 128 59.51±0.91 9.99 9.17 10.19 10.14 10.22 10.02
MemBART large (128) 256 102.42±2.07 9.92 9.08 10.10 10.06 10.15 9.95
MemBART large (128) 512 197.79±4.85 9.79 9.08 9.90 9.88 10.03 9.84

Table 9: Complete Multi-Session Chat results on the validation set. Latency is measured with the average of 10 runs.
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Base Models Context Latency (ms) Total Session 1 Session 2 Session 3 Session 4 Session 5

BART base 128 16.41±0.73 13.05 10.99 12.52 13.18 13.65 14.02
BART base 256 22.12±0.89 12.83 10.94 12.29 12.97 13.37 13.78
BART base 512 36.80±1.17 12.68 10.92 12.14 12.77 13.19 13.61
BART base 1,024 64.65±0.72 12.53 10.81 11.93 12.50 13.10 13.55

Longformer base 256 110.07±0.28 12.87 10.78 12.36 13.02 13.45 13.88
Longformer base 512 113.73±3.16 12.69 10.77 12.19 12.79 13.22 13.67
Longformer base 1,024 115.96±0.25 12.55 10.74 12.12 12.59 13.02 13.48
Longformer base 2,048 227.75±0.13 12.52 10.76 12.13 12.59 12.93 13.42

MemBART base (64) 128 17.23±1.19 12.42 10.72 11.95 12.52 12.93 13.23
MemBART base (64) 256 29.39±0.73 12.34 10.66 11.86 12.46 12.84 13.16
MemBART base (64) 512 59.73±0.66 12.23 10.66 11.78 12.32 12.66 13.02

MemBART base (128) 128 20.42±1.47 12.41 10.72 11.95 12.52 12.88 13.23
MemBART base (128) 256 32.09±0.18 12.25 10.62 11.76 12.37 12.71 13.06
MemBART base (128) 512 66.70±1.83 12.15 10.63 11.67 12.23 12.57 12.97

MemBART base (256) 128 26.56±0.57 12.38 10.67 11.90 12.51 12.86 13.20
MemBART base (256) 256 40.92±0.63 12.25 10.59 11.76 12.38 12.74 13.07
MemBART base (256) 512 75.54±0.14 12.09 10.57 11.62 12.18 12.53 12.90

Large Models Context Latency (ms) Total Session 1 Session 2 Session 3 Session 4 Session 5

GPT2-12 128 16.24±1.13 14.36 12.91 13.80 14.43 14.79 15.22
GPT2-12 256 30.80±0.48 14.13 12.80 13.57 14.21 14.53 14.93
GPT2-12 512 65.77±0.74 13.99 12.81 13.45 14.03 14.33 14.78
GPT2-12 1,024 149.05±0.38 13.56 12.82 13.48 13.84 13.53 13.82

GPT2-24 128 42.39±2.50 12.03 11.17 11.52 12.07 12.30 12.62
GPT2-24 256 81.80±0.18 11.78 11.02 11.28 11.82 12.04 12.36
GPT2-24 512 172.43±0.12 11.65 11.07 11.14 11.66 11.86 12.20
GPT2-24 1,024 395.84±0.64 11.56 11.03 11.12 11.52 11.75 12.11

BART large 128 45.37±1.31 10.61 9.50 10.13 10.68 10.94 11.29
BART large 256 63.79±0.40 10.37 9.38 9.86 10.44 10.67 11.02
BART large 512 103.20±2.40 10.23 9.44 9.71 10.26 10.52 10.85
BART large 1,024 190.79±0.29 10.10 9.41 9.64 10.06 10.36 10.68

Longformer large 256 316.42±2.37 10.43 9.34 9.95 10.52 10.75 11.11
Longformer large 512 322.68±1.74 10.28 9.37 9.77 10.32 10.57 10.92
Longformer large 1,024 334.87±5.54 10.13 9.42 9.66 10.11 10.38 10.72
Longformer large 2,048 655.19±5.25 10.05 9.43 9.60 10.04 10.27 10.60

MemBART large (128) 128 59.51±0.91 10.17 9.22 9.61 10.24 10.47 10.85
MemBART large (128) 256 102.42±2.07 10.09 9.20 9.65 10.09 10.38 10.72
MemBART large (128) 512 197.79±4.85 9.99 9.22 9.51 10.03 10.23 10.58

Table 10: Complete Multi-Session Chat results on the test set. Latency is measured with the average of 10 runs.
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