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Abstract

Extracting the attribute value of a product from
the given product description is essential for e-
commerce functions like product recommenda-
tions, search, and information retrieval. There-
fore, understanding products in e-commerce
with greater accuracy certainly gives any re-
tailer the edge. However, they are limited to
contextual modeling and do not exploit rela-
tionships between the product description and
attribute values.

Through this paper, in a world where we move
and shift to more complicated models with ex-
tensive training time with models like LLMs,
we present a novel, more straightforward at-
tribute value extraction from product descrip-
tion leveraging graphs and graph neural net-
works. Our proposed method demonstrates im-
provements in attribute value extraction accu-
racy compared to the baseline sequence tagging
approaches while also significantly reducing
the computation time leading to lower carbon
footprint.

1 Introduction

In the dynamic landscape of e-commerce, where
a wide range of products are readily available to
consumers, efficient and accurate product under-
standing plays a pivotal role in facilitating seamless
user experiences. The attributes associated with
products, including details such as color, material,
brand, type, and more, hold the key to enabling
users to find their desired items more efficiently.

E-commerce platforms usually provide product
descriptions but consumers prefer a quick and in-
tuitive way to narrow down their search and make
informed purchasing decisions. Product titles usu-
ally contain attributes and their corresponding val-
ues but this data is mostly unstructured, noisy, and
often contains missing values. For example, in Fig-
ure 1, a product along with its context (description)
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Figure 1: A product description with its attributes and
their corresponding values represented as "Attribute:
Value".

is provided. Along with the description, there are
attribute-value pairs for attributes including Gen-
der, Brand, Feature, etc ; But, there also missing
attributes for values like Model number (value:
849558), Model name (value: Air VaporMax), etc.
Hence we need models that predict attribute values
for the attributes that have not been seen before.

The critical role of product attributes has driven
extensive research efforts to explore innovative
methods for their extraction and categorization.
Previous works, including those by Ghani et al.,
2006, Chiticariu et al., 2010, and Gopalakrishnan
et al., 2012, focused on attribute value extraction
using a rule-based approach. In this methodology,
a domain-specific seed dictionary played a crucial
role in identifying key phrases and extracting
attribute values. The rule-based systems relied on
predefined patterns and heuristics to recognize and
capture relevant information from unstructured
data, providing a foundational approach to
attribute extraction in the context of specific
domains. Other works proposed a Named-Entity
Recognition (NER) task (Putthividhya and Hu,
2011) for this problem; although NER relies
on pre-existing knowledge of named entities.
When faced with previously unseen brands,
models, or attributes, the system struggles to
identify and extract these values accurately. In
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such situations, a more context-aware approach,
like question-answering-based techniques that
employ sequence-to-sequence models, might be
more effective for attribute value extraction from
product descriptions. Later introduced works
that employed sequence-to-sequence models
performed better than the former models, however,
these approaches have a few shortcomings-

(a) they do not exploit the structural relationships
between product description and attribute values
across the dataset. For example, assume product
descriptions C1 and C2 share a common attribute
value T1. If there is another attribute value T2 rele-
vant to C2 and other similar product descriptions,
we can infer that T2 might also be relevant to C1.
Such transitive cues can be beneficial for identify-
ing missing attribute values.
(b) language models bring high computational costs
at massive scales as any task not only involves pre-
dicting multiple missing attribute values but also
requires precise organization of the most relevant
attribute values specific to the product. Graphs
are naturally suitable to make the relationships ex-
plicit such as product description-attribute value
networks.
(c) With the growing popularity of LLMs, we tend
to oversee the ecological impact they have on the
environment. They consume vast computational re-
sources, leading to significant energy use and high
carbon emissions.

In this work, our focus is on advancing the do-
main of product attribute value extraction through
a novel approach that leverages graph models and
graph neural networks (GNNs). Our primary goal
is to enhance the generalizability of existing ap-
proaches and provide more interpretable predic-
tions. We construct a product data graph using
a dataset comprising 110k product title-attribute
triples, enabling us to gain deeper insights into the
data. Leveraging graph-based neural network ar-
chitecture we performed a node classification task
to classify our title nodes with multiple attribute
values.

Through this work, we aim to contribute the
following:

• A Graph Neural Network (GNN) based ap-
proach for attribute value extraction from a
given product description.

• A Knowledge graph that captures the tran-
sitive relations and can predict the missing

attribute values through these transitive links
for up to k-number of hops.

• Using the GraphSAGE model, we are able to
reduce the training time significantly.

2 Related Work

Initial works focusing on the attribute value ex-
traction task involved the use of domain-specific
rules to detect attribute-value combinations from
product descriptions (Zhang et al., 2009). The first
learning-based approaches required substantial fea-
ture engineering and were limited in their capacity
to generalize to unknown features and attribute val-
ues.

The initial application of the bidirectional LSTM
with a Conditional Random Field layer (BiLSTM-
CRF model) for sequence tagging in attribute value
extraction was introduced by Huang et al., 2015.
Following this, Zheng et al., 2018 proposed an
end-to-end tagging model, OpenTag utilizing BiL-
STM, CRF, and attention mechanisms, eliminating
the need for dictionaries or hand-crafted features.
However, this methodology poses scalability chal-
lenges when dealing with a large set of attributes
and cannot identify emerging values for previously
unseen attributes. An extension to OpenTag, SU-
OpenTag was proposed by Xu et al., 2019 which
encodes both a target attribute and the product ti-
tle using the pre-trained language model, BERT
(Devlin et al., 2019). Wang et al., 2020 proposed
AVEQA which formulates the attribute value ex-
traction from products task as a multi-task approach
via Question Answering.

With the advancements in the field of language
models, recent works by Roy et al., 2021 leverage
large language models to extract attribute values
from product data. They formulated the attribute
value extraction as an instance of text infilling task
as well as an answer generation task for which
they utilized Infilling by Language Modeling (ILM)
(Donahue et al., 2020) for the infilling approach
and fine-tuned text-to-text transfer transformer (T5)
(Raffel et al., 2023) as an answer generation task.
These models outperform the existing models but
they fail to capture the intricate relations between
different products.

3 Problem Formulation

We can formulate this problem of attribute value
extraction as follows:
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Figure 2: A graph illustrating the Description-Attribute-
Value model for a given product and outlining the graph.

Given a product description, C, such that, C =
{C1, C2, C3, . . . , Ci} and an attribute A, the goal
is to predict the corresponding attribute value T as-
sociated with A where T = {T1, T2, T3, . . . , Tj},
where i and j are the number of unique source and
target nodes respectively. We consider the nodes
representing C as the Source node and T as the
Target node. For constructing the graph, the Prod-
uct Description, C, and the Attribute Values, T are
arranged in a graph G = (V,E) where V , the nodes
represent C ∪ T .
E = C × T is the set of edges denoting the ground

truth relation between product descriptions, C, and
the attribute values, T . We formulate our problem
as a multi-label node classification task which also
takes into consideration transitive relations between
the nodes. This formulation allows more compre-
hensive correlations to be inferred. For example,
from Figure 2 , we can infer that titles C1 and C2

share a common value T1. If there is another value
T2 relevant to C2, it can be inferred that T2 might
be relevant to C1 as well, i.e., one of the labels for
C1 could be T2. This formulation helps us improve
the interpretability of the obtained results. Table
1 depicts statistics of the graph modelled on the
entire AE-110K dataset after pre-processing.

3.1 Implementation

All the models are implemented using PyTorch
(Paszke et al., 2019).

For each product description i ∈ C, and attribute
value j ∈ T , we generated a D dimensional initial
representation of their textual features capturing
the semantic information of these values.

These initial features, which we could call word
embeddings were generated using pretrained Fast-
Text (Bojanowski et al., 2017) and BERT (Devlin
et al., 2019). These word embeddings provide a

Property Value

Nodes 52,028
Source Nodes 39,445
Target Nodes 12,586
Edges 85,872
Avg Degree 3.3009
Density 0.0634

Table 1: Graph Statistics

dense representation of words in a continuous vec-
tor space, enabling the model to capture semantic
relationships and nuances. Additionally, BERT
works well with numerical text hence if the value
is composed of numbers the model can grasp the
semantics of the value well. For implementing
the graph neural network to process the graph-
structured data, we have implemented the Graph-
SAGE (Graph Sample and Aggregation) model
(Hamilton et al., 2017), which performs neighbor
sampling and aggregation to generate embeddings
for each node in the graph. Our model architecture
can be explained as follows:

Let G = (V,E) be the input graph, where V is
the set of nodes and E is the set of edges. For each
node vi ∈ V , there is an initial node feature vector
xi representing the textual features:

xi ∈ RD

where D is the dimensionality of the word em-
beddings. In our case, D equals 768, representing
the dimension of the BERT embeddings. Sampling
neighbors of each node vi is done as :

N(vi) = {vi,1, vi,2, . . . , vi,k} (1)

where k is the number of sampled neighbors. Then
a mean aggregator is applied for aggregating infor-
mation from the node and its neighbors:

h′i = Aggregate({hi,1, hi,2, . . . , hi,k}) (2)

Then the aggregated representation is concate-
nated with the initial node embedding:

hi = Concat(h′i, xi) (3)

Finally, the model is trained to minimize the
difference between predicted and ground truth at-
tribute values:

Minimize
∑

i∈N
Loss(hi, ground_truthi) (4)
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Attributes Train Dev Test
Brand Name 50,413 5,601 14,055
Material 22,814 2,534 6,355
Color 5,594 621 1,649
Category 5,906 590 1,649
All 77,207 10,920 22,169

Table 2: The table represents the most frequently occur-
ring attributes (Brand Name, Material, Color, Category)
from the AE-110K dataset.

The Cross-Entropy Loss is calculated between
the predicted probabilities and the true labels.
Training using backpropagation and stochastic gra-
dient descent (SGD) is performed and the model
parameters are updated.

For k-hop architecture, repeat sampling and ag-
gregation for k hops:

h
(1)
i , h

(2)
i , . . . , h

(k)
i (5)

The representations from each hop can be con-
catenated as:

hi = Concat(h
(1)
i , h

(2)
i , . . . , h

(k)
i ) (6)

4 Experiment Setup

4.1 Dataset
We have used the publicly available AE-110K
dataset1 from The Sports and Entertainment cat-
egory of AliExpress (Xu et al., 2019). This dataset
contains 110,484 triples, wherein each triple con-
sists of the product title (context), attribute, and
value each separated by a delimiter. For our task,
we pre-processed the dataset to handle triples with
empty values as well as triples where the attribute
value was denoted by ’-’ and ’/’. The resultant
dataset consists of 110,296 triples with 2761 unique
attributes and 12,607 unique attribute values. We
divided the data randomly into a 7:1:2 ratio. Specif-
ically, we chose 77,207 triples as our training set,
10,920 triples as the validation set, and the remain-
ing 22,169 triples as our test dataset. Table 2 shows
the most frequently occurring attributes in the AE-
110K dataset.

4.2 Evaluation Metrics
The model’s performance was assessed on the test
set, by employing a comprehensive set of metrics.

1https://raw.githubusercontent.com/
lanmanok/ACL19_Scaling_Up_Open_Tagging/
master/publish_data.txt

We calculated average metrics for F1-score, pre-
cision (P), and recall (R). The objective is to as-
sess the model’s ability to accurately predict the
attributes associated with each product title node
in the graph. The metrics are represented by F1

score, P, and R respectively. Let ui and gi be the
gold standard and generated values for the i-th sam-
ple respectively and let N be the total number of
samples in the test set, then:

P =
1

N

N∑

i=1

|vi ∩ gi|
|gi|

(7)

R =
1

N

N∑

i=1

|vi ∩ gi|
|vi|

(8)

4.3 Baselines
We compare our models with SUOTag (Scaling Up
Open Tag) Xu et al., 2019 and ILM-T5 (Roy et al.,
2021).

• SUOTag (Xu et al., 2019) employs a
BiLSTM-based architecture with attention
and CRF components. It utilizes pre-trained
BERT embeddings for word representation
and employs two separate BiLSTMs for title
and attribute modeling. An attention layer
is applied to capture the semantic interac-
tion between attributes and titles. The output
layer utilizes a CRF layer to predict tag se-
quences, considering dependencies between
output tags. (Lafferty et al., 2001).

• ILM-T5 (Roy et al., 2021) presents the prob-
lem formulation to generate product attribute
values as two tasks - (i) an instance of text
infilling task leveraging the Infilling by Lan-
guage Modeling (ILM) and pre-trained GPT-2
small (Radford et al., 2019) model and (ii) as
an answer generation task using the text-to-
text transfer transformer (T5) model.

4.4 Result
Table 3 presents the performance of the AttriSAGE
model in comparison to the baseline models on
the AE-110K dataset. AttriSAGE works well on
a large set of attributes. With even a simple and
compact graph-based network like ours, we can
achieve performance comparable to LLMs, which
demonstrates substantial improvements compared
to sequence tagging models. Our model achieved
an F1 score of 80.45, signifying a notable improve-
ment over the sequence tagging models.
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Model Precision Recall F1

SUOTag 70.81 71.31 71.06
ILM 83.35 83.38 83.37
T5 83.89 83.75 83.82
AttriSAGE 79.06 81.90 80.45

Table 3: Performance of Different Models on AE-110K

Additionally, our AttriSAGE model significantly
reduces overall training time and efficiently man-
ages computational resources compared to Large
Language Models. The model was trained on the
NVIDIA DGX A100 GPU and it took 2-3 hours
to execute, showing improvement in terms of both
time and resource utilization.

5 Discussions

Our model’s success in capturing the essence of
the dataset can be attributed to its interpretabil-
ity. We have utilized the structured format of a
graph to restructure the data, which aligns with
the analysis capabilities of a graph neural network.
Unlike an LLM, which predicts the next token in
the same dataset, our graph neural network excels
in analyzing structured data and making accurate
predictions leveraging a graph’s ability to learn
from its neighborhood. By capturing the relation-
ships between data points through the graph, our
model has achieved significant levels of accuracy.
Moreover, our model’s interpretability allows us
to comprehend the rationale behind its predictions,
which is crucial for maintaining its dependability
and credibility.

6 Conclusion and Future Work

In this work, we have proposed a novel approach
to extract attribute values from unstructured prod-
uct data with the help of graphical representation.
Representing the e-commerce data as graphs and
leveraging graph techniques to extract the attribute
values helped in understanding the underlying rela-
tionships between different products and forming
transitive relations between products and their cor-
responding values.

We plan on extending this work to build an ad-
vanced multi-hop model architecture that can make
better predictions under diverse scenarios, includ-
ing handling missing values, exploring strategies
for imputing the most frequent values, and address-
ing other issues and datasets.

Limitations

The current method has only been tested on a single
dataset, which is the primary limitation of this work.
Although the results are promising in this particular
context, the generalizability of the method across
diverse datasets and under different scenarios re-
mains untested. To overcome this limitation, future
work would expand the experiments to include a
more varied selection of datasets. Furthermore, this
work currently only focuses on the GraphSAGE ar-
chitecture. Alternative graph-based architectures
with different configurations and hyperparameter
settings could be explored to enhance the current
findings and results.
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