
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics:
Student Research Workshop, pages 175–195

March 21-22, 2024 c©2024 Association for Computational Linguistics

Topic-guided Example Selection for Domain Adaptation
in LLM-based Machine Translation

Seth Aycock1,2* Rachel Bawden3

1Institute for Logic, Language and Computation, University of Amsterdam
2 Language Technology Lab, University of Amsterdam

3 Inria, Paris, France
s.aycock@uva.nl rachel.bawden@inria.fr

Abstract

Current machine translation (MT) systems per-
form well in the domains on which they were
trained, but adaptation to unseen domains re-
mains a challenge. Rather than fine-tuning on
domain data or modifying the architecture for
training, an alternative approach exploits large
language models (LLMs), which are perfor-
mant across NLP tasks especially when pre-
sented with in-context examples. We focus
on adapting a pre-trained LLM to a domain
at inference through in-context example selec-
tion. For MT, examples are usually randomly
selected from a development set. Some more
recent methods though select using the more
intuitive basis of test source similarity. We em-
ploy topic models to select examples based on
abstract semantic relationships below the level
of a domain. We test the relevance of these sta-
tistical models and use them to select informa-
tive examples even for out-of-domain inputs,
experimenting on 7 diverse domains and 11
language pairs of differing resourcedness. Our
method outperforms baselines on challenging
multilingual out-of-domain tests, though it does
not match performance with strong baselines
for the in-language setting. We find that adding
few-shot examples and related keywords con-
sistently improves translation quality, that ex-
ample diversity must be balanced with source
similarity, and that our pipeline is overly re-
strictive for example selection when a targeted
development set is available.1

1 Introduction

Adaptation of neural Machine Translation (MT)
models to unseen domains remains a difficult prob-
lem because it requires handling out-of-distribution
data at inference (Koehn and Knowles, 2017).
Large language models (LLMs) offer an alternative
method to the standard approach of fine-tuning an

*This work was primarily carried out while at Inria.
1Our code, topic models, and data splits are available at

www.github.com/Sethjsa/LLM-Dom-Ad.

MT model or selected layers therein (Luong and
Manning, 2015; Bapna and Firat, 2019). Openly
available models such as Llama-2 (Touvron et al.,
2023) and explicitly multilingual models includ-
ing BLOOM (BigScience Workshop et al., 2023)
and XGLM (Lin et al., 2022) perform well cross-
lingually in classification and generation tasks, in-
cluding many-to-many translation despite lacking
explicit MT training.

However, regardless of the choice of LLM, some
domains and vocabulary will remain under-exposed
or unseen, especially for low-resource languages.
Additionally, the optimal use of LLMs at infer-
ence to enhance translation quality remains under-
explored. Domain adaptation of LLM-based trans-
lation is therefore an open and persistent challenge.
Translation with LLMs requires prompting to elicit
outputs in the desired language and domain, either
via a zero-shot instruction or more effectively with
in-context examples (Zhang et al., 2023a). In this
work, we address the problem of domain adaptation
at inference by exploring in-context example selec-
tion. Selecting lexically, semantically or grammati-
cally relevant translation examples for prompting
LLMs is arguably more important when translating
out-of-domain texts, to help fill gaps in domain
vocabulary or demonstrate different styles.

Many works select examples randomly from
a development set (Brown et al., 2020; Chowd-
hery et al., 2022; Bawden and Yvon, 2023). How-
ever, other strategies have been developed. While
some works show example diversity helps task per-
formance (Zhang et al., 2022), intuitively we ex-
pect that examples showing translations of words
in or related to the test source will improve out-
put quality. Prior work has selected relevant ex-
amples based on n-gram overlap (Agrawal et al.,
2023), feature matching (Kumar et al., 2023) or
embedding similarity to the test source (Liu et al.,
2022). Here we test a method that exploits more
abstract semantic relationships that are also more
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fine-grained than domain categories. For this we
use a topic modelling pipeline (Grootendorst, 2022)
that predicts a topic for a source sentence, and se-
lects examples from this topic for translating in the
given domain. The motivation is two-fold: first,
we aim to test the continuing relevance of these
simple models to complement LLMs for MT; and
second, we aim to study the importance of semantic
similarity for domain adaptation at a more abstract
granularity than prior work, providing an alterna-
tive method for example selection.

In practice we test Llama-2-13B, a state-of-the-
art LLM, on MT in varied domains including medi-
cal, legal, educational, religious, and entertainment
texts. We test across several high and low-resource
languages from and into English: French, German,
Czech, Romanian, Finnish, Lithuanian, and Tamil.
We compare two uses of topic models for domain
adaptation: topic-guided few-shot example selec-
tion and adding topic keywords. We test these
against random baselines, information retrieval and
embedding similarity-based selection, as well as
simply adding domain labels. Our standard method
uses multilingual topic models to select examples
or keywords from seen domains across all tested
languages. We show that our topic-guided method
is robust to unseen domains and outperforms strong
baselines in this setting, but is too restrictive to
achieve competitive results against baselines for
simpler in-language tests, suggesting a trade-off
between similarity and diversity of examples.

2 Related Work

Domain adaptation methods for MT can be cate-
gorised as either data- or model-centric (Saunders,
2022). Data-centric approaches include fine-tuning
models on in-domain parallel data (Dakwale and
Monz, 2017) or synthetic backtranslated in-domain
data (Sennrich et al., 2016; Jin et al., 2020), which
is effective but costly in multilingual settings; or
fine-tuning with labels encoding domain-specific
information (Kobus et al., 2017; Stergiadis et al.,
2021), which restricts prediction to seen domains.
Model-centric approaches may use specialised ar-
chitectures (Park et al., 2022) or different train-
ing methods such as curriculum or meta-learning
(Zhang et al., 2019; Sharaf et al., 2020). Alterna-
tively, adapters (Bapna and Firat, 2019) may be
inserted into pre-trained models, with past work
using separate domain and language adapters, or
hierarchical domain adapters (Cooper Stickland

et al., 2021a; Chronopoulou et al., 2022). Contrary
to these approaches, we focus on domain adap-
tation of a pre-trained LLM at inference through
in-context example selection, which requires no
additional data manipulation or fine-tuning.

Recent work explores using pre-trained LLMs
as a form of unsupervised transfer learning
(Chronopoulou et al., 2020; Cooper Stickland et al.,
2021b). Many LLMs are competent in multilin-
gual translation despite lacking explicit MT train-
ing (Alves et al., 2023; Bawden and Yvon, 2023;
Hendy et al., 2023; Peng et al., 2023), though
LLMs often struggle in low-resource settings (Zhu
et al., 2023). For zero-shot translation, prompt
design is key, with prior work improving trans-
lation with instructions (Li et al., 2023), dictio-
nary hints (Ghazvininejad et al., 2023), chained
bilingual dictionary entries (Lu et al., 2023), or
chain-of-thought prompting to predict keywords,
topics, and relevant examples (He et al., 2023). In-
context learning, i.e. providing few-shot task exam-
ples, is effective for LLM prompting (Brown et al.,
2020), and various aspects of examples have been
shown to impact translation quality: Vilar et al.
(2023) find example quality outweighs domain
provenance or source similarity, while Zhang et al.
(2023a) show semantic similarity correlates with
improved performance, and Zhang et al. (2022)
show example diversity helps task performance
more generally. Prior example selection methods
include using n-gram-based BM25 retrieval plus a
reranking model (Agrawal et al., 2023), a regres-
sion model with manually defined features to score
retrieved prompts (Kumar et al., 2023), training a
dense retrieval model (Rubin et al., 2022), or se-
lecting based on proximity to the test source in
a pre-trained LLM’s embedding space (Liu et al.,
2022). In this work we intend to achieve similar
results using an alternative topic-guided selection
method, permitting more abstract semantic relation-
ships than n-gram overlap or embedding similarity.

Topic models are statistical tools that model la-
tent semantic structure in texts (Blei et al., 2010),
and while not state-of-the-art, these methods re-
main relevant for neural NLP. Prior work has inte-
grated topic models into neural MT architectures
to improve translation performance (Zhang et al.,
2016; Wang et al., 2021), or fused external topic
knowledge to improve domain robustness (Xezon-
aki et al., 2023). Aharoni and Goldberg (2020)
study in-domain training data selection methods us-
ing unsupervised clustering methods based on pre-
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[Label] Domain: EU biomedical texts.
[Keywords-10] Related keywords: stabilité, stabilumas, stability, lämpötilassa, temperatura, raumtemperatur, tempéra-

ture, teplotě, temperatūrai, conservée.
[Fewshot (1)] English: the lower operating value of ambient air temperature is minus 45 ° C; = Romanian: valoarea

inferioară a temperaturii de funct,ionare a aerului ambiant – minus 45 °C;
[Source] English: Keep your Humalog Mix50 Pen in use at room temperature (below 30°C) for up to 28

days. = Romanian:

[Prediction] S, terget,i penul Humalog Mix50 din uz la temperaturi de cameră (sub 30°C) pentru 28 de zile.
[Target] Ţineţi Humalog Mix50 Pen în curs de utilizare la temperatura camerei (sub 30°C) timp de până la 28

zile.

Table 1: An example illustrating our different prompting methods: domain labels, topic keywords, and a 1-shot
example for an English–Romanian example from EMEA, with predicted and target outputs for the Keywords-10
prompt. Information in square brackets is not included in the prompt.

trained language model embeddings, while Groo-
tendorst (2022) introduces a neural topic modelling
pipeline that clusters SBERT embeddings. We
build on these works and train multilingual topic
models to select relevant in-context examples for
prompting at inference. Our work tests the contin-
uing relevance of topic models in the context of
example selection against information retrieval and
embedding similarity baselines. The intuition is
that topic models identify semantic relationships
below the level of a domain but more abstract than
embedding similarity or n-gram overlap. We ex-
pect this intermediate level of semantic abstraction
will aid domain example selection for NMT.

3 Domain Adaptation Approach using
Topic Modelling

3.1 Defining a domain

We employ topic models as the core mechanism
of our domain adaptation approach. Traditionally
in MT, a domain is defined as being a different
source text, i.e. each corpus is taken as a differ-
ent domain (Koehn and Knowles, 2017). Other
definitions are more nuanced: Joshi et al. (2013)
consider domains as consisting of multiple meta-
data attributes; van der Wees et al. (2015) subdivide
domains into topic and genre characteristics; and
Aharoni and Goldberg (2020) take a data-driven
approach to defining domains, letting statistical
models elucidate fine-grained cross-corpus associa-
tions and sub-domains within corpora. Building on
the above, we suggest that domains can intuitively
be defined by sets of distinctive words, forming a
domain’s vocabulary. We expect these words to
be somewhat infrequent and pose a greater chal-
lenge for MT systems, suggesting this vocabulary
should be prioritised for adaptation. Our definition,
in addition to the data-driven approach, motivates

using topic models for domain adaptation since
they represent the latent semantic sets in a corpus.

3.2 Integrating domain information

Topic models find salient semantic relations be-
tween words or phrases in a corpus, representing
these relations with a small number of abstract
topics. Although typically modelled via the proba-
bilistic latent Dirichlet allocation (Blei et al., 2003),
we employ a different method which uses neural
text representations as the basis for topics (Groo-
tendorst, 2022). In these models, sentences are
converted to contextual embeddings which are clus-
tered based on similarity, then topic representations
are extracted from these clusters of sentences using
TF-IDF. Concretely, these topics consist of a set
of associated vocabulary, and a set of representa-
tive sentences from the training corpus containing
this vocabulary. We train multilingual topic models
over data from seen domains in all languages on
test. Once trained, any given input sentence can be
embedded and assigned to the closest topic in the
model. We therefore have three sources of addi-
tional information for each source sentence which
we integrate into the translation prompt: a corpus-
based domain label (Label), a list of keywords
from the closest topic (Keywords), and a topic-
guided set of representative examples (Fewshot).
We illustrate our methods for integrating multilin-
gual domain information in Table 1, with further
examples in Appendix B.

Domain labels We add a descriptive domain la-
bel for a source sentence based on the corpus it
comes from (i.e. following the standard definition
of a domain as a corpus), referred to in results as
Label. We avoid using the corpus name as these
are not uniformly informative and instead use a
short description (as shown in Table 3). We expect

177



this to slightly improve translation performance for
given domains by conditioning the model to adapt
to an expected style and topic.

Related Keywords For a given source sentence,
we predict the closest topic from our model and use
the 10 related keywords from that topic, referred
to as Keywords-10. We hypothesise that adding
keywords will marginally improve performance by
both conditioning the model’s generation context
on the current domain by introducing distinctive
domain vocabulary, and by acting as a stochastic
proxy for a multilingual lexicon, often providing
translations in other languages given the multilin-
gual nature of the topic model.

Fewshot Examples Finally, we select the top n
representative examples from a topic for a given
source to use as in-context examples in the prompt,
known in testing as Fewshot (n). We describe the
variations of fewshot examples that are tested in
Section 4. We expect topic-guided fewshot exam-
ples to result in larger performance improvements
for these domains by showing semantically rele-
vant vocabulary, grammatical sentence-level trans-
lations, and examples of the expected target do-
main style and output format. We also expect more
examples to improve performance by giving fur-
ther explicit translations. The topic model’s ability
to select semantically similar examples within do-
mains, as opposed to random or n-gram matched
examples, may allow the LLM to observe transla-
tions of domain-distinctive vocabulary, improving
translation quality.

4 Experiments

Data and preprocessing We select several di-
verse high and low-resource languages: Czech (cs),
German (de), English (en), French (fr), Finnish
(fi), Lithuanian (lt), Romanian (ro), and Tamil (ta),
both into and out of English. These languages vary
from group 3 to 5 in Joshi et al.’s (2020) taxonomy
of language resourcedness. We test on 7 domains
with data in most languages: medical European
Medicines Agency texts (EMEA), transcribed TED
Talks (Reimers and Gurevych, 2020), localisation
files for KDE4 software, educational video tran-
scripts from QCRI (Abdelali et al., 2014) (QED),
Quran translations (Tanzil), EU legal texts (JRC),
and transcripts of TV and films from OpenSub-
titles2 (Lison et al., 2018) (Subs). All data was

2www.opensubtitles.org

obtained from OPUS (Tiedemann, 2012), and we
release our data splits, topic models, and code to
aid reproducibility and future research.3

Our preprocessing involves removing newlines
and sentences over 175 tokens with Moses scripts
(Koehn et al., 2007);4 removing sentences with
over 50% punctuation; correct language identifi-
cation using FastText (Joulin et al., 2017);5 and
sentence-level deduplication. For each domain-
language pair, our development and test sets con-
sist of 5000 and 500 sentences respectively (N.B.
Tanzil Tamil–English has only 4800 dev set sen-
tences). Development sets are used to train topic
models and as sources for example selection.

Models We used the HuggingFace (Wolf et al.,
2020) implementation of Llama-2-13B,6 with
greedy decoding up to 256 tokens. This model is
mainly English with substantial multilingual capa-
bilities, and is a state-of-the-art open-source LLM.
We note however that the training data is not pub-
lished, so our experiments are potentially at risk of
data contamination. Our results therefore can only
be considered in the context of this specific model.

While Llama-2 is not as performant on transla-
tion tasks as significantly larger models such as
GPT-3.5 (Hendy et al., 2023; Xu et al., 2023), we
chose Llama-2 for our experiments because it out-
performs similarly-sized, explicitly multilingual
LLMs including XGLM and BLOOMZ models
(Zhang et al., 2023b). Llama-2 is also more robust
to translation prompt perturbations than BLOOM
models (Chitale et al., 2024). Further, Llama-2’s
permissive licence and open-source weights are a
significant benefit against API-only models, lead-
ing to substantial research interest such as Llama-
2-based translation models including ALMA (Xu
et al., 2023). Our translation research on Llama-2
is therefore robustly motivated.

We implement our topic modelling pipeline
with BERTopic (Grootendorst, 2022).7 Our
topic models are trained on parallel development
sets; we focus on multilingual seen domain
models, and also test in-language all-domain
models. The multilingual setting is challenging
and tests generalisation: without full domain
coverage, methods must compensate, perhaps

3www.github.com/Sethjsa/LLM-Dom-Ad
4www.github.com/moses-smt/mosesdecoder
5www.fasttext.cc/docs/en/

language-identification.html
6www.huggingface.co/meta-llama/Llama-2-13b
7www.github.com/MaartenGr/BERTopic
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Template Prompt

Base L1: [source sentence] = L2:
Verbose Given the following source text in L1: [source sentence], a good L2 translation is:

Label Domain: [domain description] \n L1: [source sentence] = L2:
Keywords-10 Related keywords: [keyword list] \n L1: [source sentence] = L2:
Fewshot (n) L1: [example source] = L2: [example target] \n L1: [source sentence] = L2:

Table 2: Prompt templates for our experiments. In each prompt, both the source and target language are specified to
aid in the zero-shot setting. The bold L1 and L2 are replaced with full language names e.g. English or Lithuanian,
and [source sentence] is replaced by a given L1 sentence. The Fewshot prompt includes n example pairs.

Domain Description

EMEA EU biomedical texts
JRC EU legislative texts
KDE4 Software localization files
OpenSubtitles TV and movie subtitles
QED Educational video transcripts
Tanzil Religious Quran text
TED Public speaking transcripts

Table 3: Domain Label descriptions, providing similar
information across domains. Bold domains are treated
as seen in experiments.

by using related examples from non-target
languages. We expect the abstract cross-lingual
semantic relationships identified by topic mod-
els to show robustness across domains. All
models use embeddings from the 100-language
paraphrase-multilingual-MiniLM-L12-v2
model from SentenceTransformers (Reimers and
Gurevych, 2019), with UMAP dimensionality
reduction (McInnes et al., 2018) and HDBSCAN
clustering (Malzer and Baum, 2020). Our standard
topic model has 500 topics trained on multilingual
seen domains. Further details and hyperparameters
are available in Appendix C.

Prompt design Our baseline experiments use
the XGLM translation prompt (Lin et al., 2022),
denoted as Base, and we also test a more ver-
bose prompt, the two best performing MT prompts
from Bawden and Yvon (2023) for BLOOM. Ta-
ble 2 shows the format for our baselines and Label
(see Table 3), Keywords-10, and Fewshot settings.
Fewshot examples are selected from development
sets of seen domains in all languages, unless oth-
erwise specified; we expect this setting to be con-
ducive to cross-lingual transfer.

Baselines Our Base setup uses a zero-shot
XGLM-style prompt format. We implement two
simple example selection techniques: BM25, an un-
supervised information retrieval (Retrieval) tech-

nique based on n-gram matching; and sentence-
level embedding similarity (Similarity), find-
ing the closest sentences by cosine distance us-
ing the same SentenceTransformers model. For
each baseline, we select from seen-domain multi-
lingual development sets, and we additionally test
in-language data against in-language topic mod-
els. Further baselines and ablations are described
in Section 5. Finally, to contextualise our exper-
iments we include topline results for NLLB-200-
1.3B (Costa-jussà et al., 2022), a specialised trans-
lation model.

Evaluation We measure COMET scores us-
ing the wmt22-comet-da model (Rei et al.,
2022), and BLEU (Papineni et al., 2002) with
SacreBLEU8 (Post, 2018), included for inter-
pretability despite poorer correlation with human
judgments (Mathur et al., 2020). We build on the
lm-evaluation-harness9 (Gao et al., 2022) for
evaluation.

Postprocessing During initial tests we found the
model often repeated outputs or provided trans-
lations in other languages, as found by Bawden
and Yvon (2023). We therefore used a regular ex-
pression to capture the first L2 translation, discard-
ing output after (.+?:) or a newline. Translation
quality for trimmed results dramatically improves,
showing the extent of Llama-2’s overgeneration
issues, and all results presented are trimmed out-
puts. In Appendix D, we show changes in length
and correct language output for raw and trimmed
results, plus Base-raw COMET and BLEU scores
in Appendix E, confirming that trimming helps dis-
entangle translation quality from overgeneration.

8Signature: nrefs:1|case:mixed|eff:no|tok:13a|
smooth:exp|version:2.3.1

9www.github.com/EleutherAI/
lm-evaluation-harness

179

www.github.com/EleutherAI/lm-evaluation-harness
www.github.com/EleutherAI/lm-evaluation-harness


Dataset

Prompt Pair EMEA JRC KDE4 Subs QED Tanzil TED

NLLB-1.3B

en–de 82.5 86.5 78.9 79.5 80.6 76.9 84.3
en–ro 86.0 90.5 80.6 83.7 82.9 79.7 86.8
lt–en 82.4 86.4 75.7 79.8 80.4 – 83.5
mean 84.9 88.7 79.1 81.7 81.3 77.7 85.3

Base

en–de 71.8 74.0 72.1 75.0 74.4 68.5 78.2
en–ro 66.5 79.2 70.9 74.1 72.5 65.7 77.1
lt–en 62.4 62.5 55.6 54.3 56.7 – 58.6
mean 70.8 73.5 67.4 68.2 67.2 62.6 70.0

Label

en–de 76.2 80.6 73.8 75.9 77.1 70.4 79.8
en–ro 73.9 84.2 71.2 74.9 75.2 67.2 79.6
lt–en 65.5 65.0 63.4 54.2 58.1 – 59.7
mean 73.9 76.9 70.6 69.4 69.2 64.1 71.7

Keywords-10
(Seen)

en–de 77.6 81.2 75.8 75.9 77.4 70.1 80.0
en–ro 76.7 84.3 74.8 75.9 76.5 67.2 80.4
lt–en 67.4 67.1 63.7 56.9 59.4 – 60.4
mean 75.3 77.7 71.3 69.6 69.7 63.6 72.1

Fewshot
(3, Seen)

en–de 79.1 82.5 77.6 75.6 77.2 69.8 80.7
en–ro 80.1 85.9 77.8 75.9 76.6 68.2 80.7
lt–en 70.2 70.7 66.2 58.2 58.3 – 60.1
mean 77.0 79.4 74.5 70.3 69.6 63.8 72.5

Table 4: COMET results for main experiments includ-
ing domain labels (Label), 10 topic-guided keywords
(Keywords-10), topic-guided 3-shot (Fewshot), from
multilingual seen domains (Seen), and for topline NLLB
model. Prompts are zero-shot unless specified; best
performing mean results in bold; and a reference for
experiment names is found in Appendix A.

5 Results

Main Experiments We start by comparing our
three approaches for integrating domain informa-
tion into prompts, domain labels (Label), topic-
keywords (Keywords-10), and topic-guided 3-shot
examples (Fewshot), against our zero-shot prompt
(Base) and the topline NLLB model. We also tested
a verbose prompt to validate previous claims (Baw-
den and Yvon, 2023) and provide a point of refer-
ence, but since they are not central to our method,
we present these results in Appendix E.

Table 4 shows COMET scores for a selection
of representative high and low-resource language
pairs plus mean results over all pairs.10

We first note that the baseline zero-shot Llama-2
model shows substantially reduced performance
compared to the NLLB model, especially on the
lower-resource languages of Romanian and Lithua-
nian, which is to be expected from a specialist MT
model explicitly trained on these languages. NLLB
is thus a useful topline for our experiments. How-
ever, fewshot prompting helps Llama-2 begin to
approach the scores achieved by the NLLB model.

Experiments with a domain label in the transla-

10For full COMET and BLEU results over all 11 language
pairs, see Appendix E. We note BLEU scores follow patterns
in COMET results.

Dataset

Prompt Pair EMEA JRC KDE4 Subs QED Tanzil TED

Base

en–de 71.8 74.0 72.1 75.0 74.4 68.5 78.2
en–ro 66.5 79.2 70.9 74.1 72.5 65.7 77.1
lt–en 62.4 62.5 55.6 54.3 56.7 – 58.6
mean 70.8 73.5 67.4 68.2 67.2 62.6 70.0

Label

en–de 76.2 80.6 73.8 75.9 77.1 70.4 79.8
en–ro 73.9 84.2 71.2 74.9 75.2 67.2 79.6
lt–en 65.5 65.0 63.4 54.2 58.1 – 59.7
mean 73.9 76.9 70.6 69.4 69.2 64.1 71.7

Random
Label

en–de 75.6 80.4 73.4 75.7 76.9 70.2 79.8
en–ro 72.1 82.9 71.6 74.4 75.5 66.5 80.1
lt–en 64.0 62.7 60.7 54.6 57.0 – 58.7
mean 73.3 76.4 70.0 69.1 68.9 63.4 71.7

Table 5: COMET scores for Label prompts against Base
zero-shot and Random Label prompts.

tion prompt show increases in COMET scores of
up to 3 points over the baseline model, though the
effect is smaller for OpenSubtitles, perhaps due
to its heterogeneity, and greater for Tanzil, for the
opposite reason. This suggests the model is able to
use this minimal domain information to condition
the output style and improve translation quality in
highly restrictive domains such as Tanzil.

Results for prompting with 10 related keywords
show average improvements of 2-4 COMET over
the baseline, and up to 1 point over domain label
tests, except for the unseen Tanzil domain. This
suggests that the topic model-predicted keywords
are useful for the model, providing lexical infor-
mation beyond a domain description, and acting as
a proxy for a bilingual lexicon. We would expect
a handmade bilingual lexicon to improve results
further (Waldendorf et al., 2022) but we note that
quality lexicons are rare and thus keywords from
topic models are a useful approximation.

Topic-guided 3-shot examples provide the
largest performance boost of up to 6 COMET points,
outperforming keywords on all domains. Gains are
smaller again for OpenSubtitles; and the unseen
Tanzil and QED domain results are marginally out-
performed by Label and Keywords results respec-
tively, though performance remains competitive.
This shows the difficulty of selecting relevant out-
of-domain examples for domains with more dis-
tinctive vocabulary or styles. Overall these results
support our hypothesis that while domain labels
and keywords provide useful domain and lexical
information, especially in restrictive domains, few-
shot examples help the model to better mimic the
task and produce the desired output format.

Our main results show substantial improvements
in translation quality using our example selection
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Dataset

Prompt Pair EMEA JRC KDE4 Subs QED Tanzil TED

Base

en–de 71.8 74.0 72.1 75.0 74.4 68.5 78.2
en–ro 66.5 79.2 70.9 74.1 72.5 65.7 77.1
lt–en 62.4 62.5 55.6 54.3 56.7 – 58.6
mean 70.8 73.5 67.4 68.2 67.2 62.6 70.0

Keywords-10
(Seen)

en–de 77.6 81.2 75.8 75.9 77.4 70.1 80.0
en–ro 76.7 84.3 74.8 75.9 76.5 67.2 80.4
lt–en 67.4 67.1 63.7 56.9 59.4 – 60.4
mean 75.3 77.7 71.3 69.6 69.7 63.6 72.1

Keywords-30
(Seen)

en–de 77.5 81.3 76.3 75.8 77.7 70.2 80.1
en–ro 76.0 84.4 72.4 75.4 76.7 66.8 80.2
lt–en 67.8 67.4 64.0 57.5 59.7 – 60.1
mean 75.3 77.7 71.1 69.5 69.7 63.4 72.1

Keywords-10
(Seen,
Random Topic)

en–de 76.5 81.3 75.4 76.0 77.3 70.2 80.1
en–ro 75.4 84.7 73.0 75.6 76.4 67.3 80.0
lt–en 64.4 64.8 61.8 54.9 57.6 – 59.2
mean 74.2 77.4 70.7 69.5 69.5 63.5 71.9

Random
Keywords-10
(Seen)

en–de 76.9 81.2 75.6 76.2 77.2 70.4 80.2
en–ro 75.4 84.3 73.7 75.9 76.4 67.4 80.1
lt–en 66.3 65.3 61.9 56.1 58.8 – 60.7
mean 74.4 77.4 71.0 69.8 69.6 63.8 72.2

Table 6: COMET scores for topic-guided Keywords-10
and Keywords-30, random topic Keywords-10, and
Random Keywords-10 from multilingual seen domains.

method. We now ablate each method against var-
ious baselines to further understand the source of
these improvements.

Domain Labels While adding domain labels im-
proves translation quality, we now test with ran-
domised labels from the set of 7 labels to under-
stand the source of improvements. The results in
Table 5 show that, while prompting with the true
domain label leads to overall better quality outputs
across languages and domains, the random domain
label tests produce similar improvements over the
baseline, trailing the true label results by approxi-
mately 0.5 COMET points for most domains. This
suggests that the presence of any additional struc-
tured information conditions the model to focus on
the translation task, whether or not that information
is directly useful for the current sentence.

Related Keywords We test various ablations
of the Keywords prompt in Table 6. The
Keywords-30 prompt is constructed using 10 key-
words each from the top 3 predicted topics. Here
we see equivalent or marginally lower quality com-
pared to the standard Keywords-10 setting (less
than 1 COMET point difference), suggesting that
most gains stem from the first few keywords. The
random topic setting adds keywords from a ran-
domly selected topic from seen domains, and re-
sults are consistently lower than topic keywords,
with results from Lithuanian to English showing
substantial degradation across domains (up to −3

Dataset

Prompt Pair EMEA JRC KDE4 Subs QED Tanzil TED

Base

en–de 71.8 74.0 72.1 75.0 74.4 68.5 78.2
en–ro 66.5 79.2 70.9 74.1 72.5 65.7 77.1
lt–en 62.4 62.5 55.6 54.3 56.7 – 58.6
mean 70.8 73.5 67.4 68.2 67.2 62.6 70.0

Fewshot
(3, Seen)

en–de 79.1 82.5 77.6 75.6 77.2 69.8 80.7
en–ro 80.1 85.9 77.8 75.9 76.6 68.2 80.7
lt–en 70.2 70.7 66.2 58.2 58.3 – 60.1
mean 77.0 79.4 74.5 70.3 69.6 63.8 72.5

Fewshot
(3, Seen,
Random Topic)

en–de 79.0 81.5 76.9 75.3 77.1 69.8 80.1
en–ro 79.2 85.0 76.0 75.5 76.9 67.6 80.8
lt–en 59.8 60.7 52.3 49.5 51.5 – 53.5
mean 75.1 77.1 70.9 68.4 68.5 63.5 71.2

Random
Fewshot
(3, Seen)

en–de 77.0 80.5 75.2 75.3 76.7 69.8 79.4
en–ro 78.1 84.9 75.7 76.2 76.9 68.1 80.4
lt–en 70.9 71.6 69.7 69.1 68.1 – 72.3
mean 73.9 75.6 71.5 69.7 68.7 61.1 71.3

Table 7: COMET scores for Fewshot examples predicted
by the multilingual seen-domain topic model, from one
random topic, and random examples from seen domains
across languages.

COMET points). This indicates related keywords
may provide more utility in low-resource settings.
Finally, Random Keywords-10 selects individual
words randomly from multilingual seen domains,
i.e. the topic model’s training set. This setting
is competitive with and on some domains outper-
forms the topic keyword prompts; while topic key-
words provide semantically relevant words, and
random topic keywords provide irrelevant but se-
mantically consistent keywords, this setting pro-
vides genuinely diverse keywords, which appears
to help performance. This suggests there is a trade-
off between semantic relevance (through topic mod-
elling) and information diversity in the prompt. In
sum, only marginal gains can be attributed to the
topic-guided method, suggesting the choice of key-
words has less of an effect than the presence of
keywords themselves.

Fewshot Examples We test topic-guided fewshot
examples against random baselines, all 3-shot: few-
shot examples from one random topic (Fewshot
(Random Topic)), and random fewshot examples
from seen multilingual data (Random Fewshot).
The results in Table 7 show that while Fewshot
(Random Topic) and Random Fewshot improve on
the Base setting, the best results by 1-4 COMET

points are achieved by the topic-guided example se-
lection. This suggests that although there are gains
to be had from simply adding random examples,
the semantic relevance of these examples can lead
to further improvements in translation performance.
We expect this is due to a combination of both in-
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Dataset

Prompt Pair EMEA JRC KDE4 Subs QED Tanzil TED

Fewshot
(3, Seen)

en–de 79.1 82.5 77.6 75.6 77.2 69.8 80.7
en–ro 80.1 85.9 77.8 75.9 76.6 68.2 80.7
lt–en 70.2 70.7 66.2 58.2 58.3 – 60.1
mean 77.0 79.4 74.5 70.3 69.6 63.8 72.5

Retrieval
(3, Seen)

en–de 76.4 79.8 74.6 73.8 76.0 68.9 78.5
en–ro 76.7 83.2 74.4 74.5 74.8 66.3 79.3
lt–en 70.8 71.7 69.5 69.6 68.1 – 72.3
mean 73.2 74.9 70.6 68.8 67.9 60.5 70.6

Similarity
(3, Seen)

en–de 76.3 80.6 76.2 74.8 75.9 68.8 79.0
en–ro 77.5 84.7 76.4 75.2 75.9 67.3 80.4
lt–en 70.9 71.6 69.7 69.4 68.1 – 72.4
mean 73.9 76.0 71.9 69.5 68.5 61.2 71.1

Table 8: COMET scores for Fewshot topic-guided ex-
amples, Retrieval selected examples, and embedding
similarity selected examples (Similarity), all from
seen domains across languages.

creased embedding similarity and n-gram overlap.
The topic model selects a topic probabilistically,
and although there may be noise within the topic—
for example, the representative sentence pairs are
not always in the same language or the correct tar-
get language—the semantic cohesiveness of these
sentences outweighs the noise present in randomly
selected examples. We can therefore attribute a
small amount of quality improvements to the pro-
posed topic-guided method.

We also test our topic-guided selection method
against strong baselines inspired by prior work: a
Retrieval method using BM25, and an embed-
ding Similarity approach. For both we select ex-
amples from multilingual seen domains to control
the data available for selection, since our standard
topic model was tested in this challenging set-up.

The results in Table 8 show competitive perfor-
mance for Retrieval and Similarity baselines
against each other. However, our topic-guided
fewshot method achieves the best results across
domains by up to 3 COMET points. We also see
slightly larger improvements for tests on unseen do-
mains (QED, Tanzil and TED). Our method is more
robust to all three unseen domains since it relies on
an intermediate level of semantic relations, more
complex than n-gram overlap, more abstract than
raw embedding similarity, and finer-grained than
domain-level selection. The Retrieval baseline
especially suffers in the unseen domains, under-
performing or matching the baseline zero-shot set-
ting for QED and Tanzil, we expect because with
lower or zero vocabulary overlap, n-gram match-
ing fails where embeddings can exploit contextual
information.

Dataset

Prompt Pair EMEA JRC KDE4 Subs QED Tanzil TED

Fewshot
(1, Seen)

en–de 78.1 81.3 75.9 74.8 76.3 69.0 79.8
en–ro 78.5 84.6 75.5 74.7 75.5 67.6 80.1
lt–en 64.0 68.3 62.4 55.8 57.3 – 58.1
mean 74.8 78.5 72.3 69.3 68.9 63.5 71.6

Fewshot
(3, Seen)

en–de 79.1 82.5 77.6 75.6 77.2 69.8 80.7
en–ro 80.1 85.9 77.8 75.9 76.6 68.2 80.7
lt–en 70.2 70.7 66.2 58.2 58.3 – 60.1
mean 77.0 79.4 74.5 70.3 69.6 63.8 72.5

Fewshot
(5, Seen)

en–de 79.5 82.4 78.2 75.8 77.4 70.3 80.1
en–ro 80.4 85.8 78.3 76.1 77.1 68.9 81.2
lt–en 70.9 71.2 67.9 58.1 59.0 – 60.3
mean 77.3 79.6 74.9 70.5 70.0 64.1 72.6

Table 9: COMET scores for increasing Fewshot exam-
ples, from 1-shot to 5-shot, using our standard multilin-
gual seen-domain 500 topic model.

Number of Examples We present topic-guided
fewshot results in Table 9 for 1, 3, and 5-shot set-
tings. The results show gains of circa 1 COMET

point from 1-shot to 3-shot, and even smaller gains
of approximately 0.3 COMET in overall perfor-
mance from 3 to 5-shot. This suggests that 3 ex-
amples are sufficient to provide substantial trans-
lation improvements over a zero-shot baseline,
with diminishing returns for adding extra exam-
ples, corroborating results for BLOOM (Bawden
and Yvon, 2023). Lithuanian–English results show
low-resource languages, especially those not in the
model’s training data, may benefit more from ad-
ditional examples; here we see continued improve-
ments from 1 to 3 to 5-shot.

Going Further We also test various topic model
sizes. While most experiments use the multilin-
gual seen-domain 500-topic model (trained on the
devsets of 4 domains totalling 140,000 parallel sen-
tences), we also experiment with 200- and 1000-
topic models. The results in Table 10 are mixed;
some domains exhibit improved performance with
larger models, but the improvements for the 1000-
topic model are small or negligible over the 500-
topic model. This is unexpected; a larger topic
model implies more semantic variety and thus a
wider choice sentences to select for a given test
source. However, we observed that in the Fewshot
(3, Seen, 500 topic) setting across languages and
domains, a ‘general’ catch-all topic is selected for
3.1% of tests, and the top 5 topics make up 16% of
selected topics, when a uniform distribution would
result in each topic having a 0.2% selection rate.
Therefore the overselection of certain topics, and
consequent reduction of sentences available for se-
lection, is likely to reduce performance. We also
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Dataset

Prompt Pair EMEA JRC KDE4 Subs QED Tanzil TED

Fewshot
(3, Seen,
200 topic)

en–de 79.4 81.9 76.3 75.7 76.6 69.9 79.8
en–ro 79.8 85.7 76.4 76.0 76.8 68.6 80.7
lt–en 71.0 65.7 64.6 54.9 56.5 – 56.9
mean 77.2 78.3 72.9 69.6 69.4 63.9 71.7

Fewshot
(3, Seen,
500 topic)

en–de 79.1 82.5 77.6 75.6 77.2 69.8 80.7
en–ro 80.1 85.9 77.8 75.9 76.6 68.2 80.7
lt–en 70.2 70.7 66.2 58.2 58.3 – 60.1
mean 77.0 79.4 74.5 70.3 69.6 63.8 72.5

Fewshot
(3, Seen,
1000 topic)

en–de 79.0 82.3 78.1 75.6 76.6 70.4 79.7
en–ro 79.8 85.8 77.0 75.9 76.6 68.4 80.1
lt–en 71.2 70.9 64.6 56.3 57.8 – 59.7
mean 77.4 79.5 74.1 69.9 69.6 63.9 72.0

Table 10: COMET scores for Fewshot examples from
200, 500, and 1000-topic seen-domain multilingual
models.

note that the homogeneity of examples within top-
ics is likely to degrade performance since example
diversity helps for other tasks (Zhang et al., 2022).
Therefore issues remain with the restrictiveness of
this method, which we leave open to future work.

In-language example selection Finally, we test
language-specific 500-topic models to test whether
the above results hold in a more restrictive sce-
nario assuming the availability of in-language de-
vsets in all domains, which is not always pos-
sible. Note here there are no unseen domains,
though we include the multilingual seen-domain
model for comparison. The results in Table 11
show improvements of 1-2 COMET for the all-
domain language-specific models against the seen-
domain multilingual model. We also provide
language-specific Retrieval and Similarity re-
sults, which show even greater improvements com-
pared to in-language topic-guided fewshot exam-
ples. Both baselines outperform the in-language
topic model by 2 to 5 COMET, approaching the
topline NLLB results in Table 4. This suggests
that in the more restrictive scenario where we
have full domain coverage in the target language
pair, Retrieval and Similarity methods are very
strong baselines because there is a greater proba-
bility of similar vocabulary, semantics, and syntax,
while the topic model’s noise and highly homoge-
nous examples may hinder performance. However,
in the more challenging scenario of the main re-
sults with unseen multilingual domains, our topic-
guided method is more robust to domain shift.

6 Conclusion

We investigate the use of topic models for transla-
tion prompt construction and in-context example

Dataset

Prompt Pair EMEA JRC KDE4 Subs QED Tanzil TED

Fewshot
(3, Seen)

en–de 79.1 82.5 77.6 75.6 77.2 69.8 80.7
en–ro 80.1 85.9 77.8 75.9 76.6 68.2 80.7
lt–en 70.2 70.7 66.2 58.2 58.3 – 60.1
mean 77.0 79.4 74.5 70.3 69.6 63.8 72.5

Fewshot
(3, Language)

en–de 79.7 82.7 78.7 76.3 77.6 71.4 80.9
en–ro 81.3 86.9 79.1 77.2 78.2 71.1 81.9
lt–en 71.8 71.6 67.4 61.0 62.9 – 65.6
mean 77.9 80.2 75.4 71.0 71.3 65.2 73.4

Retrieval
(3, Language)

en–de 81.5 84.0 79.8 75.8 76.9 73.4 80.3
en–ro 83.7 87.7 80.4 77.2 78.1 75.2 82.3
lt–en 77.0 75.3 74.9 61.8 65.8 – 67.9
mean 81.2 82.5 78.8 72.4 73.4 71.0 75.3

Similarity
(3, Language)

en–de 80.5 83.2 79.3 75.9 77.9 73.8 80.2
en–ro 83.5 87.6 79.9 78.2 78.3 74.0 82.7
lt–en 76.8 75.9 73.2 64.9 67.3 – 69.2
mean 80.6 82.2 77.2 72.6 72.9 67.5 74.5

Table 11: COMET scores for language-specific fewshot
settings against our standard multilingual seen-domain
Fewshot setup.

selection to aid domain adaptation for LLM-based
MT. We train a multilingual topic model which, in a
challenging multilingual seen-domain setting, out-
performs random and statistical baselines, showing
the importance of semantically similar examples.
Our method offers a lightweight, robust solution
for when no parallel data is available for a new
domain. However if suitable (in-domain and in-
language) development data is available then infor-
mation retrieval and embedding similarity-based
methods are more performant, simpler solutions.
In future work, we intend to assess the transferabil-
ity of our method to LLM-based translation more
generally by testing across various LLMs, includ-
ing more explicitly multilingual models. With this
work we show an example of how statistical mod-
els can complement the performance of Llama-2,
an English-centric LLM, in translation tasks to and
from English.

Limitations

We recognise our work has limitations including: 1)
We experimented with only one pre-trained LLM,
Llama-2-13B. Further investigation is required to
understand how our results and prompts would vary
across a) different model families and b) varying
model scales. We note therefore that our results
are not generalisable to other LLMs, pending fur-
ther work. 2) While we consider a variety of high-
and low-resource pairs, all our tests are into or
out of English. Further work is required to test
other pairs, including both high–high and low–low
resource pairs. We note that this may be more
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difficult due to the reduced availability of good
quality in-domain parallel data. 3) Our conclusions
must be understood with the caveat that we do not
know our chosen model’s training data, including
datasets and language distributions, beyond the ba-
sic information provided by Touvron et al. (2023).
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A Results legend

In Table 12 we provide a brief reference for the
experimental naming used in results tables.

Label Description

Base Zero-shot XGLM-style prompt

Label Descriptive domain label + Base prompt

Keywords-10
10 related keywords selected from topic
+ Base prompt

Fewshot
Example source-target pairs selected by
topic model + Base prompt

(1, Seen) 1-shot; selected from multilingual seen
domains

(3, Language) 3-shot; selected from all-domain in-
language data

(200 topic) Selected using a 200-topic model.

(Random Topic) Examples/keywords selected from one
random topic.

Table 12: Reference for experimental terminology.

B Further examples

In Table 13 we provide further examples of the
prompt format, and predicted outputs, for Label,
Keywords-10 (Seen), and Fewshot (3, Seen) set-
tings.

C Topic Model Hyperparameters

We use UMAP and HDBSCAN implemen-
tations from cuML.11 Our embedding model
is paraphrase-multilingual-MiniLM-L12-v2
from SentencePiece. This language model is a
MiniLM model (Wang et al., 2020) distilled from
XLM-R (Conneau et al., 2020) and thus is ex-
pected to have some knowledge of the 100 lan-

11www.github.com/rapidsai/cuml
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[Label] Domain: TV and movie subtitles.
[Source] Lithuanian: Šis miestas, ir viskas jame... = English:

[Prediction] This city, and all of it...
[Target] This city, everyone in it...

[Keywords-10] Related keywords: juice, nápojů, grapefruitsaft, štáva, grapefruit, drinks, greipfrutų, vartoti, pomer-
ančová, frucht.

[Source] English: fruits — and they will be held in honour, = German:

[Prediction] früchte — und sie werden in Ehren gehalten werden.
[Target] Früchte, und sie werden geehrt

[Fewshot] English: (c) With effect from 1 July 1972 the text of Article 4 (2) and (3) shall be replaced by the
following: = French: c) Le texte de l’article 4 paragraphes 2 et 3 est remplacé par le texte suivant, avec
effet au 1er juillet 1972:
English: 9. Article 28 shall be replaced by the following: = French: 9) L’article 28, est remplacé par le
texte suivant:
English: (h) the text of Part L. PORTUGAL shall be replaced by the following: = French: h) Le texte
de la partie L. PORTUGAL est remplacé par le texte suivant:

[Source] English: a) in paragraph 1 the following subparagraph shall be added: = French:

[Prediction] a) au paragraphe 1, le sous-alinéa suivant est ajouté:
[Target] a) au paragraphe 1, l’alinéa suivant est ajouté:

Table 13: Three examples illustrating our different prompting methods: domain labels, topic keywords, and a
3-shot topic-guided example from seen domains. We show examples for Lithuanian–English, English–German, and
English–French in OpenSubtitles, Tanzil, and JRC domains respectively, with predicted and target outputs below
the example prompts.

guages used in training. After dimensionality re-
duction and clustering, the inputs are tokenized
using CountVectorizer and weighted with cTF-IDF
(Pedregosa et al., 2011). The standard BERTopic
hyperparameters are as follows: 500 topics, 10
keywords/topic, with stopwords removed for the
vectorisation step; no stopwords were available for
Lithuanian, so we used the top 100 most frequent
words from our multi-domain development set.

Other parameters follow the standard implemen-
tation of BERTopic: UMAP: number of compo-
nents = 5, number of neighbours = 15, metric = co-
sine distance; HBDSCAN: minimum samples=10.
Finally we use the KeyBERT-inspired implementa-
tion to select the best 10 keywords to represent a
topic, which avoids the repetitive selection of func-
tion words and stopwords. We also note here that
predicting the nearest topic for a given input does
not significantly slow down the inference process,
with a rate of 80-100 iterations per second.

D Length and Language ID results

We present raw and trimmed results in Tables 14
and 15 for length and correct language identifica-
tion respectively, for a selection of settings (Base,
Verbose and Fewshot (3, Seen)). These results il-
lustrate how the trimming procedure vastly reduces
the length and improves the correct language iden-
tification of the outputs; note especially the high

sentence lengths and low correct language identifi-
cation for Base-raw experiments.

E Full COMET and BLEU results

We present full COMET and BLEU results in Ta-
bles 16–23, which follow the same patterns pre-
sented in Section 5.
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Dataset

Prompt Pair EMEA JRC KDE4 Subs QED Tanzil TED

Base-raw

en–cs 91.8 85.7 76.0 20.7 41.0 73.4 34.2
en–de 51.5 95.2 69.2 15.1 32.4 32.2 28.9
en–fi 94.5 89.3 77.7 29.7 40.1 – 44.0
en–fr 58.3 82.8 74.6 24.2 44.3 63.5 34.2
en–lt 99.2 84.6 69.9 25.2 53.4 – 57.0
en–ro 83.7 87.8 65.7 19.6 36.4 57.7 35.5
en–ta – – 57.6 14.1 50.5 27.3 22.8
cs–en 27.8 43.9 28.3 7.9 14.8 31.3 16.0
fr–en 28.5 45.8 32.2 8.8 17.0 25.3 18.2
lt–en 29.9 52.8 31.4 7.8 18.0 – 19.1
ro–en 28.7 44.9 31.1 9.8 15.9 19.1 17.5

mean 59.4 71.3 55.8 16.6 33.1 41.2 29.8

Base

en–cs 16.7 25.0 6.4 7.8 12.0 17.3 14.4
en–de 15.6 28.1 11.6 7.7 13.8 16.5 15.8
en–fi 17.3 19.5 6.5 7.2 11.8 – 14.3
en–fr 18.3 29.7 13.6 8.4 14.6 16.7 17.2
en–lt 16.6 30.1 6.9 8.6 18.0 – 22.1
en–ro 17.9 28.4 7.2 8.9 14.3 18.0 16.1
en–ta – – 27.9 11.5 27.9 24.3 19.9
cs–en 19.2 31.5 9.9 7.6 13.5 24.3 15.9
fr–en 17.3 31.4 15.5 7.9 14.6 17.1 16.8
lt–en 22.4 40.6 14.4 6.8 16.3 – 17.1
ro–en 19.0 31.5 9.7 8.0 14.1 16.8 16.0

mean 18.0 29.6 11.8 8.2 15.5 18.9 16.9

Verbose-raw

en–cs 16.7 26.4 6.7 8.7 13.4 17.7 14.9
en–de 15.9 28.1 11.3 8.2 14.2 17.6 16.8
en–fi 13.8 19.0 5.8 7.4 11.2 – 12.6
en–fr 19.1 30.0 14.9 9.2 16.6 18.4 18.9
en–lt 19.7 33.5 6.7 11.1 25.0 – 27.4
en–ro 18.1 27.7 7.3 8.1 14.6 17.5 16.7
en–ta – – 9.4 14.0 24.4 22.4 21.1
cs–en 26.4 40.2 11.7 11.5 19.3 30.4 22.4
fr–en 17.3 29.7 15.1 7.9 14.3 17.7 16.5
lt–en 20.6 35.3 8.2 7.2 16.9 – 18.4
ro–en 18.5 30.3 7.8 8.2 14.8 17.7 16.4

mean 18.6 30.0 9.5 9.2 16.8 19.9 18.4

Verbose

en–cs 16.6 26.4 6.6 8.7 13.4 17.7 14.9
en–de 15.8 28.1 11.2 8.2 14.2 17.6 16.8
en–fi 13.6 19.0 5.8 7.4 11.2 – 12.6
en–fr 19.0 30.0 14.9 9.2 16.6 18.4 18.9
en–lt 19.7 33.5 6.7 11.1 25.0 – 27.4
en–ro 18.1 27.7 7.3 8.1 14.5 17.5 16.7
en–ta – – 9.4 14.0 24.4 22.4 21.1
cs–en 26.4 40.2 11.7 11.5 19.3 30.4 22.4
fr–en 17.2 29.7 15.0 7.9 14.3 17.7 16.5
lt–en 20.5 35.3 8.2 7.2 16.9 – 18.4
ro–en 18.5 30.3 7.8 8.2 14.8 17.7 16.4

mean 18.5 30.0 9.5 9.2 16.8 19.9 18.4

Fewshot-raw
(3, Seen)

en–cs 17.5 26.0 7.0 7.0 12.4 16.6 14.1
en–de 18.1 27.0 13.3 7.8 14.1 17.5 16.4
en–fi 14.6 19.7 5.9 6.5 12.5 – 12.3
en–fr 20.1 29.1 16.2 9.0 16.2 17.8 18.0
en–lt 18.4 29.9 6.1 8.9 20.9 – 23.2
en–ro 19.3 27.6 7.1 8.0 14.4 17.1 16.3
en–ta – – 8.3 10.0 23.1 21.4 18.1
cs–en 18.2 30.4 7.2 7.4 12.7 21.7 15.8
fr–en 17.3 30.0 14.4 7.7 14.4 17.3 16.4
lt–en 17.5 31.4 7.2 6.5 13.8 – 15.3
ro–en 18.5 29.7 8.0 7.8 13.9 16.7 15.8

mean 18.0 28.1 9.2 7.9 15.3 18.3 16.5

Fewshot
(3, Seen)

en–cs 14.7 24.3 6.1 6.8 12.0 16.6 13.9
en–de 15.1 26.2 11.2 7.7 13.6 16.6 16.3
en–fi 12.8 17.8 5.2 6.5 11.0 – 12.1
en–fr 18.1 28.9 14.9 8.6 15.6 17.3 17.9
en–lt 17.1 29.4 5.8 8.8 20.7 – 23.1
en–ro 17.4 27.3 6.8 8.0 14.0 17.1 16.1
en–ta – – 8.0 9.9 22.9 21.4 18.1
cs–en 18.1 30.4 7.1 7.4 12.7 21.7 15.8
fr–en 16.5 29.8 14.3 7.7 14.4 17.2 16.4
lt–en 17.2 31.0 7.1 6.5 13.8 – 15.3
ro–en 17.9 29.5 7.3 7.8 13.9 16.7 15.8

mean 16.5 27.5 8.5 7.8 15.0 18.1 16.4

Table 14: Average length measured in space-tokenized
words for selected settings.

Dataset

Prompt Pair EMEA JRC KDE4 Subs QED Tanzil TED

Base-raw

en–cs 30.0 62.0 23.0 76.8 70.8 66.2 79.2
en–de 57.2 58.4 40.6 92.0 86.0 87.6 88.6
en–fi 12.8 31.6 11.4 56.8 49.2 – 53.0
en–fr 44.4 47.0 21.2 73.8 67.6 55.6 80.0
en–lt 13.6 42.6 23.4 67.0 48.8 – 52.2
en–ro 24.6 60.8 28.8 80.4 79.8 70.4 81.6
en–ta – – 48.4 78.4 43.0 87.6 79.0
cs–en 91.8 91.6 89.2 97.8 98.4 97.4 99.6
fr–en 95.4 95.2 95.0 99.2 99.2 99.0 99.8
lt–en 88.4 91.0 86.0 94.6 96.2 – 95.4
ro–en 92.4 91.4 89.6 97.6 98.0 98.6 99.2

mean 55.1 67.2 50.6 83.1 76.1 82.8 82.5

Base

en–cs 41.4 79.8 59.8 82.8 78.4 90.0 83.4
en–de 67.2 76.0 64.8 94.8 89.2 97.0 93.0
en–fi 22.2 61.0 36.2 65.4 57.6 – 58.0
en–fr 62.8 81.4 64.4 80.4 79.6 94.0 88.4
en–lt 19.0 59.4 43.2 72.8 56.2 – 57.8
en–ro 41.0 82.8 56.4 86.0 85.6 96.6 85.2
en–ta – – 51.0 79.4 43.4 87.4 79.8
cs–en 96.6 97.8 94.0 98.0 99.2 99.4 99.6
fr–en 96.8 98.4 96.2 99.2 99.2 99.6 99.8
lt–en 91.2 94.8 89.4 94.6 96.4 – 96.0
ro–en 96.6 98.6 93.4 97.4 98.6 99.6 99.6

mean 63.5 83.0 68.1 86.4 80.3 95.5 85.5

Verbose-raw

en–cs 95.0 98.8 89.8 93.0 96.0 97.8 98.2
en–de 96.8 98.2 94.0 98.0 97.4 98.6 98.8
en–fi 95.6 96.6 92.4 95.2 96.8 – 98.4
en–fr 95.4 98.6 91.6 93.0 95.2 99.0 97.4
en–lt 91.8 92.6 88.0 90.2 94.0 – 95.2
en–ro 96.6 99.0 87.2 93.0 97.0 99.0 98.4
en–ta – – 85.6 92.0 95.6 93.6 94.6
cs–en 97.8 97.4 92.0 97.8 99.4 99.2 99.8
fr–en 97.0 98.6 93.8 98.8 99.2 100.0 99.4
lt–en 92.8 95.8 84.8 95.6 96.8 – 96.2
ro–en 97.0 98.8 88.4 97.6 99.2 100.0 99.6

mean 95.6 97.4 89.8 94.9 97.0 98.4 97.8

Verbose

en–cs 94.8 98.6 89.6 93.0 96.0 97.8 98.2
en–de 96.8 98.2 94.0 98.0 97.4 98.6 98.8
en–fi 95.4 96.6 92.4 95.2 96.8 – 98.4
en–fr 95.2 98.6 91.4 93.0 95.2 99.0 97.4
en–lt 91.8 92.6 88.0 90.2 94.0 – 95.2
en–ro 96.6 99.0 87.2 93.0 96.8 99.0 98.4
en–ta – – 85.6 92.0 95.6 93.6 94.6
cs–en 97.8 97.4 92.0 97.8 99.4 99.2 99.8
fr–en 96.8 98.6 93.6 98.8 99.2 100.0 99.4
lt–en 92.8 95.8 84.8 95.6 96.8 – 96.2
ro–en 97.0 98.8 88.4 97.6 99.2 100.0 99.6

mean 95.5 97.4 89.7 94.9 96.9 98.4 97.8

Fewshot-raw
(3, Seen)

en–cs 95.4 97.6 91.4 91.8 94.2 98.0 97.6
en–de 95.4 99.2 92.6 99.4 98.4 97.8 99.4
en–fi 95.4 96.0 88.4 96.4 95.2 – 98.4
en–fr 94.8 99.0 92.8 92.4 94.4 98.4 98.0
en–lt 93.8 97.2 86.4 90.2 93.8 – 94.8
en–ro 96.4 99.4 85.8 92.8 95.4 99.0 98.4
en–ta – – 95.2 98.0 96.0 99.8 98.8
cs–en 98.2 99.4 94.2 98.2 99.4 100.0 99.6
fr–en 98.2 99.8 96.6 98.8 99.6 99.8 99.6
lt–en 96.2 98.4 90.0 95.8 98.0 – 98.6
ro–en 97.4 99.4 91.4 98.2 98.6 99.4 99.6

mean 96.1 98.5 91.3 95.6 96.6 99.0 98.4

Fewshot
(3, Seen)

en–cs 96.0 98.2 92.0 92.0 94.8 98.2 97.6
en–de 97.4 99.8 93.8 99.6 99.0 99.8 99.6
en–fi 97.2 98.0 89.0 96.4 96.6 – 98.4
en–fr 96.4 99.6 93.4 94.2 96.4 99.6 98.0
en–lt 95.0 97.6 86.8 90.2 94.2 – 94.8
en–ro 98.2 99.8 86.2 92.8 95.4 99.2 98.4
en–ta – – 95.8 98.0 95.4 99.8 98.8
cs–en 98.4 99.4 94.4 98.2 99.4 100.0 99.6
fr–en 98.4 99.8 96.4 98.8 99.6 99.8 99.6
lt–en 96.4 98.6 90.0 95.8 98.0 – 98.6
ro–en 97.6 99.6 91.2 98.2 98.6 99.4 99.6

mean 97.1 99.0 91.7 95.8 97.0 99.5 98.5

Table 15: Average correct language identification (%)
measured with FastText’s language ID tool.
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Dataset

Prompt Pair EMEA JRC KDE4 Subs QED Tanzil TED

NLLB-1.3B

en–cs 88 91.8 81.8 84.1 83.4 77.6 86.4
en–de 82.5 86.5 78.9 79.5 80.6 76.9 84.3
en–fi 87 90.9 80.9 84.2 84.9 – 87.7
en–fr 83.7 88.6 78 79.1 80.2 78.2 84
en–lt 84.7 90.6 78.8 81.4 81.3 – 85.6
en–ro 86 90.5 80.6 83.7 82.9 79.7 86.8
en–ta – – 76.9 80.1 73.2 85.2 83.9
cs–en 86 86.1 79.9 81.6 81.5 74.3 84.2
fr–en 84.6 87.5 79.4 80.7 82.8 75.5 85.9
lt–en 82.4 86.4 75.7 79.8 80.4 – 83.5
ro–en 84.5 87.6 79.2 84 83.2 73.9 86.4

mean 84.9 88.7 79.1 81.7 81.3 77.7 85.3

Base

en–cs 65.7 76.6 71.6 70.8 69.6 63.2 72.1
en–de 71.8 74.0 72.1 75.0 74.4 68.5 78.2
en–fi 65.4 68.8 68.4 70.3 70.3 – 71.3
en–fr 75.2 79.6 72.9 72.6 73.9 68.7 78.9
en–lt 54.7 45.9 59.9 52.0 47.8 – 47.3
en–ro 66.5 79.2 70.9 74.1 72.5 65.7 77.1
en–ta – – 39.5 46.9 35.9 28.9 37.9
cs–en 82.4 81.3 77.3 76.3 77.8 66.6 80.7
fr–en 82.7 83.9 78.0 79.2 81.2 73.2 84.8
lt–en 62.4 62.5 55.6 54.3 56.7 – 58.6
ro–en 81.4 83.7 75.7 78.3 79.0 66.2 83.6

mean 70.8 73.5 67.4 68.2 67.2 62.6 70.0

Base-raw

en–cs 49.8 52.4 43.6 62.3 60.3 47.0 65.2
en–de 61.7 56.9 51.6 68.0 67.3 63.3 72.3
en–fi 50.4 46.6 44.2 61.1 61.5 – 63.8
en–fr 61.3 60.8 48.0 65.4 64.6 52.4 72.3
en–lt 42.9 38.5 41.4 46.2 42.5 – 43.0
en–ro 48.9 55.5 45.4 66.0 64.0 50.6 69.1
en–ta – – 34.2 44.4 34.7 31.4 37.7
cs–en 75.7 75.3 64.1 70.5 72.5 64.0 76.6
fr–en 75.3 77.5 67.6 73.3 75.8 69.4 80.3
lt–en 58.4 58.9 48.7 51.3 54.4 – 56.6
ro–en 74.6 76.9 62.9 72.4 74.6 64.4 79.2

mean 59.9 59.9 50.2 61.9 61.1 55.3 65.1

Verbose

en–cs 77.9 82.1 75.2 71.5 74.4 66.8 77.7
en–de 77.3 79.2 73.5 75.5 76.6 70.6 80.0
en–fi 77.8 79.6 73.5 75.6 78.2 – 80.9
en–fr 78.4 83.0 73.5 73.7 76.2 70.9 80.7
en–lt 48.7 44.4 60.7 52.0 46.2 – 44.9
en–ro 78.4 83.9 72.7 75.7 76.7 69.8 81.9
en–ta – – 48.9 46.1 36.1 32.2 38.7
cs–en 72.5 73.6 72.4 72.0 71.7 62.6 73.1
fr–en 80.4 83.2 75.6 78.0 79.2 73.2 82.9
lt–en 65.9 67.1 60.1 59.5 61.4 – 63.7
ro–en 80.4 82.8 73.9 78.9 79.7 67.2 83.7

mean 73.8 75.9 69.1 69.0 68.8 64.2 71.7

Label

en–cs 74.1 81.0 72.0 72.3 70.9 65.6 75.1
en–de 76.2 80.6 73.8 75.9 77.1 70.4 79.8
en–fi 72.1 77.3 70.9 75.0 76.4 – 78.3
en–fr 79.2 83.7 73.7 75.2 76.7 69.7 81.2
en–lt 49.7 45.5 60.1 51.7 46.8 – 44.0
en–ro 73.9 84.2 71.2 74.9 75.2 67.2 79.6
en–ta – – 49.3 47.9 38.5 29.3 39.6
cs–en 83.1 82.4 81.3 77.4 79.0 68.6 81.9
fr–en 83.1 85.1 80.7 79.7 81.8 73.9 85.3
lt–en 65.5 65.0 63.4 54.2 58.1 – 59.7
ro–en 82.1 84.0 80.0 79.3 80.3 68.1 84.4

mean 73.9 76.9 70.6 69.4 69.2 64.1 71.7

Label-R

en–cs 72.6 80.5 72.9 72.0 70.9 65.7 74.5
en–de 75.6 80.4 73.4 75.7 76.9 70.2 79.8
en–fi 72.0 77.6 71.4 74.2 75.7 – 79.2
en–fr 78.8 83.3 73.9 74.8 76.7 69.4 81.0
en–lt 49.6 45.8 59.4 51.9 46.3 – 45.4
en–ro 72.1 82.9 71.6 74.4 75.5 66.5 80.1
en–ta – – 47.9 47.4 38.4 30.1 39.3
cs–en 82.9 82.5 80.1 77.2 78.8 66.0 81.6
fr–en 83.0 84.6 79.8 79.4 81.8 73.0 85.2
lt–en 64.0 62.7 60.7 54.6 57.0 – 58.7
ro–en 82.0 83.6 78.8 78.8 80.2 66.2 84.0

mean 73.3 76.4 70.0 69.1 68.9 63.4 71.7

Table 16: COMET scores for various zero-shot transla-
tion prompts, and for zero-shot NLLB tests.

Dataset

Prompt Pair EMEA JRC KDE4 Subs QED Tanzil TED

Keywords-10
(Seen)

en–cs 78.6 83.3 74.8 73.0 74.8 65.8 76.9
en–de 77.6 81.2 75.8 75.9 77.4 70.1 80.0
en–fi 75.5 79.5 73.8 73.8 76.8 – 80.5
en–fr 80.4 84.2 76.1 75.7 77.3 69.8 81.7
en–lt 48.8 44.9 61.2 51.1 45.4 – 43.8
en–ro 76.7 84.3 74.8 75.9 76.5 67.2 80.4
en–ta – – 46.1 47.1 37.3 30.8 37.9
cs–en 83.2 82.9 79.5 77.5 79.3 66.3 81.6
fr–en 83.3 85.0 80.1 79.3 81.7 72.9 85.2
lt–en 67.4 67.1 63.7 56.9 59.4 – 60.4
ro–en 81.9 84.2 78.5 79.6 80.5 65.7 84.2

mean 75.3 77.7 71.3 69.6 69.7 63.6 72.1

Keywords-30
(Seen)

en–cs 78.2 83.0 75.6 72.7 73.9 65.9 76.9
en–de 77.5 81.3 76.3 75.8 77.7 70.2 80.1
en–fi 75.9 79.2 73.0 74.3 77.0 – 80.7
en–fr 80.2 84.6 75.7 75.7 77.6 69.8 81.4
en–lt 48.4 44.6 60.1 50.4 44.9 – 43.5
en–ro 77.1 84.9 74.7 75.7 77.2 68.1 81.4
en–ta – – 45.5 46.0 36.8 30.3 38.1
cs–en 83.1 82.9 80.0 77.5 79.2 64.9 81.9
fr–en 83.1 85.0 79.4 79.3 81.6 72.9 85.0
lt–en 67.8 67.4 64.0 57.5 59.7 – 60.1
ro–en 82.0 84.5 77.8 79.7 80.6 65.4 84.4

mean 75.3 77.7 71.1 69.5 69.7 63.4 72.1

Keywords-10
(Seen,
Random Topic)

en–cs 76.6 83.5 74.0 73.3 73.9 65.4 76.0
en–de 76.5 81.3 75.4 76.0 77.3 70.2 80.1
en–fi 73.9 79.3 72.8 74.2 77.2 – 80.4
en–fr 79.7 84.0 75.8 75.5 77.3 69.8 81.6
en–lt 47.8 44.4 60.6 51.7 46.0 – 44.0
en–ro 75.4 84.7 73.0 75.6 76.4 67.3 80.0
en–ta – – 45.7 47.3 37.9 30.5 38.3
cs–en 83.1 82.6 80.2 77.4 78.7 66.2 81.7
fr–en 83.0 85.0 79.8 79.4 81.6 72.9 85.0
lt–en 64.4 64.8 61.8 54.9 57.6 – 59.2
ro–en 82.1 84.2 78.6 79.7 80.2 65.4 84.3

mean 74.2 77.4 70.7 69.5 69.5 63.5 71.9

Random
Keywords-10
(Seen)

en–cs 76.7 83.0 75.8 73.5 74.2 66.3 77.0
en–de 76.9 81.2 75.6 76.2 77.2 70.4 80.2
en–fi 73.4 79.3 74.0 75.2 77.2 – 80.9
en–fr 80.1 84.3 75.4 75.4 77.4 69.9 81.7
en–lt 46.9 44.6 60.8 51.5 45.3 – 43.9
en–ro 75.4 84.3 73.7 75.9 76.4 67.4 80.1
en–ta – – 46.1 47.5 37.9 30.3 37.8
cs–en 83.0 82.6 79.8 77.5 79.2 66.6 81.9
fr–en 83.3 85.1 79.3 79.3 81.7 73.3 85.2
lt–en 66.3 65.3 61.9 56.1 58.8 – 60.7
ro–en 82.3 84.1 78.5 79.6 80.5 66.4 84.5

mean 74.4 77.4 71.0 69.8 69.6 63.8 72.2

Table 17: COMET scores for topic-guided and random
keyword prompts.
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Dataset

Prompt Pair EMEA JRC KDE4 Subs QED Tanzil TED

Fewshot
(1, Seen,
500 topics)

en–cs 79.0 84.1 77.7 71.6 73.6 65.0 76.7
en–de 78.1 81.3 75.9 74.8 76.3 69.0 79.8
en–fi 76.1 81.4 75.8 74.7 77.4 – 79.7
en–fr 80.1 85.2 75.4 75.2 76.1 69.8 80.6
en–lt 47.8 46.0 62.0 51.7 45.2 – 42.8
en–ro 78.5 84.6 75.5 74.7 75.5 67.6 80.1
en–ta – – 49.6 47.9 36.1 30.2 39.0
cs–en 82.2 83.5 80.3 77.3 79.1 66.9 81.5
fr–en 81.5 85.6 80.3 79.4 81.7 73.1 85.3
lt–en 64.0 68.3 62.4 55.8 57.3 – 58.1
ro–en 81.2 85.1 80.0 79.4 80.0 66.1 83.8

mean 74.8 78.5 72.3 69.3 68.9 63.5 71.6

Fewshot
(3, Seen,
500 topics)

en–cs 80.5 84.9 80.8 73.7 74.9 66.4 77.2
en–de 79.1 82.5 77.6 75.6 77.2 69.8 80.7
en–fi 79.3 82.5 78.3 76.0 78.5 – 81.5
en–fr 81.2 85.4 77.9 75.9 77.3 70.2 81.3
en–lt 49.4 46.5 64.6 52.2 45.3 – 44.8
en–ro 80.1 85.9 77.8 75.9 76.6 68.2 80.7
en–ta – – 51.8 48.7 36.5 31.3 39.4
cs–en 83.9 84.3 82.2 77.9 79.2 66.7 81.8
fr–en 83.9 86.2 81.5 79.8 82.0 72.8 85.3
lt–en 70.2 70.7 66.2 58.2 58.3 – 60.1
ro–en 82.6 85.4 80.9 79.3 80.1 65.3 84.3

mean 77.0 79.4 74.5 70.3 69.6 63.8 72.5

Fewshot
(5, Seen,
500 topics)

en–cs 80.7 85.1 81.1 74.0 75.6 66.9 78.1
en–de 79.5 82.4 78.2 75.8 77.4 70.3 80.1
en–fi 79.7 82.6 79.0 77.3 79.0 – 81.5
en–fr 80.9 85.5 78.2 75.9 77.4 70.3 81.9
en–lt 50.4 46.9 64.5 52.0 45.5 – 44.7
en–ro 80.4 85.8 78.3 76.1 77.1 68.9 81.2
en–ta – – 51.4 49.1 37.2 31.6 39.0
cs–en 84.2 84.3 82.3 77.8 79.3 66.1 81.7
fr–en 83.9 86.4 81.8 79.9 82.0 72.9 85.4
lt–en 70.9 71.2 67.9 58.1 59.0 – 60.3
ro–en 82.6 85.5 81.2 79.7 80.4 65.6 84.3

mean 77.3 79.6 74.9 70.5 70.0 64.1 72.6

Fewshot
(3, Seen,
200 topics)

en–cs 80.6 83.0 79.8 73.5 74.3 67.2 76.7
en–de 79.4 81.9 76.3 75.7 76.6 69.9 79.8
en–fi 79.4 82.4 77.3 76.0 79.0 – 80.8
en–fr 80.6 85.2 76.5 74.8 77.6 70.2 80.8
en–lt 50.9 46.9 63.8 52.5 45.4 – 44.2
en–ro 79.8 85.7 76.4 76.0 76.8 68.6 80.7
en–ta – – 51.2 48.4 37.2 30.7 38.8
cs–en 83.9 82.7 77.9 77.1 79.1 65.8 81.4
fr–en 83.5 85.3 81.3 78.9 81.4 73.1 85.0
lt–en 71.0 65.7 64.6 54.9 56.5 – 56.9
ro–en 82.9 84.6 76.4 78.3 79.4 65.4 83.9

mean 77.2 78.3 72.9 69.6 69.4 63.9 71.7

Fewshot
(3, Seen,
1000 topics)

en–cs 80.9 85.0 80.2 73.0 74.4 66.2 77.6
en–de 79.0 82.3 78.1 75.6 76.6 70.4 79.7
en–fi 79.7 82.3 78.3 75.9 78.8 – 80.8
en–fr 80.8 85.4 77.5 75.4 77.4 70.1 81.0
en–lt 51.3 46.9 64.6 51.7 45.6 – 43.6
en–ro 79.8 85.8 77.0 75.9 76.6 68.4 80.1
en–ta – – 51.6 48.5 36.7 30.9 38.4
cs–en 84.1 84.2 81.9 77.6 79.5 66.4 81.6
fr–en 83.6 86.3 81.3 79.6 81.7 72.9 85.2
lt–en 71.2 70.9 64.6 56.3 57.8 – 59.7
ro–en 83.3 85.7 80.3 79.4 80.0 65.6 83.9

mean 77.4 79.5 74.1 69.9 69.6 63.9 72.0

Fewshot
(3, Seen,
Random Topic,
500 topics)

en–cs 80.2 83.9 78.6 73.1 74.5 65.9 77.2
en–de 79.0 81.5 76.9 75.3 77.1 69.8 80.1
en–fi 78.6 80.1 77.4 75.4 78.3 – 80.2
en–fr 80.5 84.9 75.7 75.1 76.7 69.7 81.4
en–lt 49.1 45.7 62.2 50.7 45.2 – 43.2
en–ro 79.2 85.0 76.0 75.5 76.9 67.6 80.8
en–ta – – 49.7 47.6 36.2 30.8 38.7
cs–en 82.2 81.7 76.9 75.7 77.3 65.8 80.2
fr–en 82.4 84.8 79.1 78.3 80.9 73.1 84.6
lt–en 59.8 60.7 52.3 49.5 51.5 – 53.5
ro–en 80.5 82.5 75.5 76.6 78.6 65.4 83.0

mean 75.1 77.1 70.9 68.4 68.5 63.5 71.2

Table 18: COMET scores for various topic-guided few-
shot example experiments.

Dataset

Prompt Pair EMEA JRC KDE4 Subs QED Tanzil TED

Random
Fewshot
(3, Seen)

en–cs 78.3 83.1 77.8 73.1 74.3 65.3 76.0
en–de 77.0 80.5 75.2 75.3 76.7 69.8 79.4
en–fi 76.4 77.8 76.7 75.0 78.2 – 80.5
en–fr 80.0 84.5 76.0 75.2 76.8 69.5 81.0
en–lt 50.7 47.3 63.9 52.6 47.6 – 45.7
en–ro 78.1 84.9 75.7 76.2 76.9 68.1 80.4
en–ta – – 51.5 48.7 39.5 31.2 39.7
cs–en 76.4 73.7 74.3 74.0 71.8 57.8 75.2
fr–en 76.2 77.1 71.7 73.0 73.2 65.7 77.1
lt–en 70.9 71.6 69.7 69.1 68.1 – 72.3
ro–en 74.6 75.0 73.6 74.2 73.0 61.4 76.7

mean 73.9 75.6 71.5 69.7 68.7 61.1 71.3

Fewshot
(3, Language)

en–cs 81.9 86.2 81.5 74.1 76.6 66.3 78.7
en–de 79.7 82.7 78.7 76.3 77.6 71.4 80.9
en–fi 80.4 82.6 79.4 77.1 79.6 – 81.8
en–fr 81.3 86.2 78.7 75.8 77.5 71.5 81.6
en–lt 51.5 49.6 67.3 52.8 47.4 – 45.0
en–ro 81.3 86.9 79.1 77.2 78.2 71.1 81.9
en–ta – – 53.2 48.9 42.3 33.7 39.7
cs–en 84.4 84.3 81.2 78.1 79.9 67.0 82.3
fr–en 83.6 86.6 81.7 79.5 81.7 73.7 85.4
lt–en 71.8 71.6 67.4 61.0 62.9 – 65.6
ro–en 83.2 85.8 81.2 80.2 81.1 67.3 84.5

mean 77.9 80.2 75.4 71.0 71.3 65.2 73.4

Similarity
(3, Language)

en–cs 83.9 87.2 83.2 74.6 78.0 71.0 79.2
en–de 80.5 83.2 79.3 75.9 77.9 73.8 80.2
en–fi 82.3 86.7 80.7 76.9 81.3 – 82.5
en–fr 82.3 86.5 79.3 75.6 77.5 74.7 81.7
en–lt 63.2 56.9 70.4 58.1 53.0 – 52.1
en–ro 83.5 87.6 79.9 78.2 78.3 74.0 82.7
en–ta – – 52.7 56.0 45.3 36.2 39.0
cs–en 85.0 84.7 84.0 78.2 79.9 68.9 82.5
fr–en 84.3 86.8 83.3 79.6 82.0 72.3 85.4
lt–en 76.8 75.9 73.2 64.9 67.3 – 69.2
ro–en 84.2 86.3 82.8 80.6 81.1 69.1 85.4

mean 80.6 82.2 77.2 72.6 72.9 67.5 74.5

Similarity
(3, Seen)

en–cs 76.2 82.0 77.8 71.9 73.6 64.7 74.6
en–de 76.3 80.6 76.2 74.8 75.9 68.8 79.0
en–fi 76.3 78.1 77.0 74.5 77.5 – 80.0
en–fr 79.6 85.0 76.4 74.5 76.3 69.2 80.3
en–lt 55.0 51.5 65.2 54.2 48.2 – 46.5
en–ro 77.5 84.7 76.4 75.2 75.9 67.3 80.4
en–ta – – 52.9 49.8 39.2 33.2 40.2
cs–en 76.5 73.7 73.9 73.7 71.8 58.5 75.3
fr–en 76.1 77.3 71.7 72.6 73.4 66.2 77.2
lt–en 70.9 71.6 69.7 69.4 68.1 – 72.4
ro–en 74.6 75.0 73.5 74.0 73.1 61.7 76.4

mean 73.9 76.0 71.9 69.5 68.5 61.2 71.1

Retrieval
(3, Language)

en–cs 85.1 87.3 83.2 74.9 77.6 72.7 79.2
en–de 81.5 84.0 79.8 75.8 76.9 73.4 80.3
en–fi 83.2 87.4 81.7 77.9 80.9 – 82.8
en–fr 82.4 87.0 79.1 75.9 77.9 75.6 81.5
en–lt 66.1 58.0 73.0 57.6 54.6 – 52.3
en–ro 83.7 87.7 80.4 77.2 78.1 75.2 82.3
en–ta – – 63.3 58.0 52.0 60.4 48.6
cs–en 84.8 85.0 84.6 77.9 80.3 69.3 82.8
fr–en 84.6 86.8 84.3 79.6 81.8 72.4 85.2
lt–en 77.0 75.3 74.9 61.8 65.8 – 67.9
ro–en 83.9 86.2 82.8 80.3 81.2 69.3 85.5

mean 81.2 82.5 78.8 72.4 73.4 71.0 75.3

Retrieval
(3, Seen)

en–cs 75.8 81.0 75.8 69.2 72.0 63.9 72.6
en–de 76.4 79.8 74.6 73.8 76.0 68.9 78.5
en–fi 75.0 76.9 75.0 74.0 75.7 – 79.0
en–fr 78.9 84.0 74.5 74.4 76.3 68.6 80.1
en–lt 51.3 47.1 62.7 51.8 46.9 – 46.0
en–ro 76.7 83.2 74.4 74.5 74.8 66.3 79.3
en–ta – – 51.5 48.8 39.1 31.6 40.2
cs–en 76.3 73.2 73.9 73.7 71.7 57.8 75.2
fr–en 76.0 76.8 71.5 72.4 72.9 65.7 76.9
lt–en 70.8 71.7 69.5 69.6 68.1 – 72.3
ro–en 74.6 74.9 73.4 74.2 72.9 61.3 76.5

mean 73.2 74.9 70.6 68.8 67.9 60.5 70.6

Table 19: COMET scores for few-shot baseline experi-
ments.
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Dataset

Prompt Pair EMEA JRC KDE4 Subs QED Tanzil TED

NLLB-1.3B

en-cs 32.6 42.2 25.6 25.8 24.4 18.1 24.2
en–de 34.6 39.8 24.9 25.8 28.3 30.7 30.1
en–fi 27 24.8 22.9 19.4 22.8 – 21.9
en–fr 40.4 52.1 36.8 30 37.9 30 38
en–lt 25.3 37.9 16.8 17 22.5 – 21.3
en–ro 41.3 35.5 26.8 30.7 27.4 23.8 30.7
en–ta – – 12 16.5 4.7 9.7 6.9
cs–en 46.7 50 31.8 35.2 31.6 25.4 34.1
fr–en 46.6 56.1 38.3 33 38 24.3 38.7
lt–en 36 50.2 25 30.1 32.4 – 33.3
ro–en 49.4 54.4 33.9 41.9 38.4 22.7 42

mean 38 44.3 26.8 27.8 28 23.1 29.2

Base

en–cs 8.6 15.4 17.0 8.9 10.0 4.0 11.5
en–de 18.5 20.2 16.0 18.2 19.6 11.1 21.0
en–fi 5.3 5.0 13.7 5.0 6.4 – 6.0
en–fr 20.8 28.3 25.4 20.5 25.3 12.1 27.2
en–lt 4.0 3.2 4.4 1.1 0.9 – 0.9
en–ro 9.0 18.7 14.6 11.2 13.6 4.9 17.5
en–ta – – 0.1 0.6 0.8 0.1 0.1
cs–en 29.7 32.5 21.6 24.5 24.4 10.5 27.0
fr–en 37.2 40.2 34.9 27.6 34.9 16.8 34.2
lt–en 8.6 11.5 4.4 4.2 7.2 – 8.6
ro–en 35.6 37.9 22.2 29.6 29.8 9.9 34.2

mean 17.7 21.3 15.8 13.8 15.7 8.7 17.1

Base-raw

en–cs 1.5 4.4 1.2 3.0 2.7 0.9 4.6
en–de 5.3 5.8 2.4 8.0 7.7 6.0 10.7
en–fi 1.0 1.1 1.0 1.0 1.8 – 1.9
en–fr 6.4 9.6 4.8 5.9 7.7 2.9 12.8
en–lt 0.7 1.2 0.4 0.3 0.3 – 0.3
en–ro 1.9 5.9 1.3 4.7 5.0 1.4 7.3
en–ta – – 0.1 0.5 0.6 0.1 0.1
cs–en 19.9 22.8 6.3 23.2 22.0 7.9 27.0
fr–en 21.6 26.2 14.8 25.4 29.3 11.5 31.8
lt–en 6.3 8.6 1.8 3.6 6.3 – 7.4
ro–en 22.5 25.5 5.6 23.2 27.0 9.7 32.4

mean 8.7 11.1 3.6 9.0 10.0 5.1 12.4

Verbose

en–cs 15.7 18.6 15.6 7.6 10.7 4.0 13.0
en–de 22.2 24.0 18.2 14.8 19.8 11.6 20.9
en–fi 11.2 7.4 14.0 5.2 10.4 – 10.8
en–fr 28.1 33.3 32.8 17.7 25.6 11.3 27.3
en–lt 3.9 4.2 5.0 0.8 1.1 – 1.2
en–ro 20.7 21.2 17.0 12.2 15.3 4.5 19.1
en–ta – – 0.6 0.5 0.4 0.0 0.2
cs–en 20.6 25.6 14.5 13.6 16.6 7.3 19.1
fr–en 33.1 37.6 31.6 22.9 31.2 15.2 31.2
lt–en 10.7 13.6 7.4 4.9 8.3 – 9.0
ro–en 33.4 34.9 21.7 24.9 27.3 10.7 32.6

mean 20.0 22.0 16.2 11.4 15.2 8.1 16.8

Label

en–cs 13.8 19.4 20.5 12.1 11.2 4.4 13.7
en–de 22.8 25.5 19.0 18.7 22.1 12.5 21.7
en–fi 9.0 7.5 16.6 7.1 10.1 – 11.6
en–fr 28.8 33.7 31.7 22.7 29.7 13.2 29.2
en–lt 4.2 4.2 5.3 1.1 0.9 – 1.2
en–ro 16.3 22.7 15.5 13.8 16.4 5.2 20.3
en–ta – – 1.4 0.6 0.6 0.0 0.1
cs–en 33.2 37.3 31.4 26.1 26.2 14.8 28.1
fr–en 39.2 43.4 37.3 28.8 35.9 18.3 35.6
lt–en 12.7 14.7 11.7 5.1 8.3 – 8.7
ro–en 39.0 42.1 31.1 31.7 30.9 12.2 34.7

mean 21.9 25.1 20.1 15.3 17.5 10.1 18.6

Label-R

en–cs 12.9 18.9 19.4 11.2 12.3 4.3 12.5
en–de 22.1 25.5 18.1 18.1 21.1 12.3 22.4
en–fi 9.1 7.9 17.3 6.5 10.0 – 11.1
en–fr 28.0 33.3 30.8 21.5 28.9 12.8 30.1
en–lt 4.3 4.2 5.2 0.7 0.9 – 1.4
en–ro 15.1 21.5 16.2 13.7 16.6 5.0 19.5
en–ta – – 0.7 0.6 0.5 0.0 0.1
cs–en 33.1 35.3 29.1 25.3 25.4 9.6 27.2
fr–en 38.5 41.0 37.8 28.1 35.6 16.3 34.8
lt–en 11.2 13.5 11.2 4.8 7.6 – 8.5
ro–en 38.3 39.0 27.5 30.8 30.6 9.5 34.9

mean 21.3 24.0 19.4 14.7 17.2 8.7 18.4

Table 20: BLEU scores for various zero-shot translation
prompts, and for zero-shot NLLB tests.

Dataset

Prompt Pair EMEA JRC KDE4 Subs QED Tanzil TED

Keywords-10
(Seen)

en–cs 16.4 21.8 13.0 11.3 14.2 4.2 15.2
en–de 23.7 26.4 18.7 18.4 21.6 12.3 22.4
en–fi 10.6 8.0 13.4 6.3 11.6 – 12.6
en–fr 31.1 34.8 33.9 22.8 29.4 13.0 30.8
en–lt 3.4 4.3 5.4 1.0 0.9 – 1.3
en–ro 20.9 23.5 21.0 14.5 17.3 5.1 20.2
en–ta – – 0.5 0.8 0.5 0.1 0.1
cs–en 32.7 35.9 22.6 26.2 26.3 10.1 27.2
fr–en 38.8 42.0 35.1 28.2 36.1 16.5 35.1
lt–en 11.3 16.1 8.9 5.7 8.6 – 9.1
ro–en 38.9 41.1 27.9 32.6 31.0 10.2 35.7

mean 22.8 25.4 18.2 15.3 18.0 8.9 19.1

Keywords-30
(Seen)

en–cs 16.5 21.2 13.7 12.0 13.2 4.3 15.8
en–de 22.9 26.4 19.4 18.5 23.5 12.1 23.1
en–fi 11.2 7.9 9.4 6.5 10.8 – 12.9
en–fr 30.8 35.2 34.0 22.9 30.5 12.7 30.2
en–lt 3.6 3.9 4.0 0.7 0.9 – 1.1
en–ro 21.0 24.1 20.5 14.0 19.4 5.3 21.0
en–ta – – 0.6 0.5 0.5 0.0 0.2
cs–en 32.9 37.5 23.8 25.5 26.1 9.3 27.2
fr–en 37.6 41.3 34.4 28.4 35.6 16.4 34.9
lt–en 11.5 14.6 6.4 5.9 9.1 – 9.2
ro–en 39.9 40.6 21.6 32.1 30.9 9.8 35.1

mean 22.8 25.3 17.1 15.2 18.2 8.7 19.2

Keywords-10
(Seen,
Random Topic)

en–cs 15.4 21.9 13.7 12.3 12.1 4.4 13.9
en–de 22.1 26.3 18.4 18.6 22.3 12.0 22.1
en–fi 9.8 8.3 14.5 6.5 11.5 – 13.1
en–fr 29.2 34.7 33.3 24.0 30.5 12.5 31.5
en–lt 3.9 4.2 5.7 1.2 1.1 – 1.3
en–ro 19.5 23.3 17.9 14.8 17.6 5.1 19.8
en–ta – – 0.5 0.7 0.5 0.0 0.1
cs–en 32.8 35.7 22.8 25.9 26.1 9.9 27.7
fr–en 38.6 41.9 33.9 28.3 35.8 16.2 35.3
lt–en 10.7 14.0 6.4 4.9 8.4 – 8.6
ro–en 38.5 40.0 28.0 32.2 30.9 9.2 34.8

mean 22.0 25.0 17.7 15.4 17.9 8.7 18.9

Random
Keywords-10
(Seen)

en–cs 15.5 21.7 19.1 11.6 13.8 4.6 14.0
en–de 23.5 26.3 20.2 18.5 22.5 12.3 22.2
en–fi 10.2 7.9 18.6 6.4 11.2 – 14.2
en–fr 30.0 35.0 32.6 23.5 30.5 12.8 31.0
en–lt 2.9 3.9 4.7 1.1 1.1 – 1.5
en–ro 19.5 23.6 19.3 15.9 17.8 5.0 20.2
en–ta – – 0.4 0.6 0.5 0.0 0.2
cs–en 33.0 36.0 27.5 25.1 26.7 10.2 27.9
fr–en 37.9 42.4 31.4 28.0 35.9 17.0 35.1
lt–en 12.5 13.6 7.1 5.7 7.6 – 9.7
ro–en 38.9 39.8 25.9 32.0 31.3 10.0 35.2

mean 22.4 25.0 18.8 15.3 18.1 9.0 19.2

Table 21: BLEU scores for topic-guided and random
keyword prompts.
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Dataset

Prompt Pair EMEA JRC KDE4 Subs QED Tanzil TED

Fewshot
(1, Seen,
500 topics)

en–cs 16.9 21.5 23.0 11.0 13.6 4.3 13.6
en–de 24.7 25.7 20.7 17.6 21.2 11.3 22.0
en–fi 11.3 9.0 17.3 6.6 12.8 – 13.1
en–fr 30.3 35.3 33.5 23.1 29.2 12.9 29.0
en–lt 4.8 4.9 6.6 0.8 1.0 – 1.1
en–ro 22.8 23.3 21.4 14.3 17.0 5.0 20.2
en–ta – – 0.7 0.7 0.3 0.0 0.2
cs–en 33.7 38.4 27.8 26.1 25.8 10.9 27.5
fr–en 37.6 44.6 36.7 28.7 35.8 16.5 35.3
lt–en 12.7 17.5 11.0 5.2 8.1 – 7.8
ro–en 40.3 43.7 32.0 31.6 30.1 10.1 34.9

mean 23.5 26.4 21.0 15.1 17.7 8.9 18.6

Fewshot
(3, Seen,
500 topics)

en–cs 18.1 22.3 24.8 12.2 13.5 4.2 15.4
en–de 25.9 27.0 21.7 19.1 23.4 11.9 24.0
en–fi 13.2 9.3 20.9 7.5 13.4 – 13.4
en–fr 32.0 36.7 35.2 23.8 29.2 12.6 30.8
en–lt 5.2 4.9 7.8 1.2 1.3 – 1.7
en–ro 25.0 26.4 23.5 15.4 17.1 5.5 21.4
en–ta – – 1.2 1.0 0.5 0.0 0.3
cs–en 36.5 39.6 32.5 27.4 25.5 10.6 28.0
fr–en 41.7 46.4 39.7 29.7 35.7 16.7 35.4
lt–en 16.5 19.2 13.1 6.7 8.4 – 9.2
ro–en 41.0 45.3 32.9 31.9 30.8 9.6 35.6

mean 25.5 27.7 23.0 16.0 18.1 8.9 19.6

Fewshot
(5, Seen,
500 topics)

en–cs 20.4 23.2 23.6 11.9 14.5 4.4 15.3
en–de 26.6 27.7 22.4 19.0 23.5 12.2 23.9
en–fi 12.7 10.4 21.4 8.1 13.3 – 13.0
en–fr 32.1 36.1 35.2 24.1 29.6 12.5 30.5
en–lt 5.4 5.4 7.1 1.0 1.1 – 1.6
en–ro 25.8 25.8 23.4 16.8 18.2 5.7 20.9
en–ta – – 1.0 1.0 0.6 0.0 0.2
cs–en 38.1 41.1 33.0 27.5 25.6 10.1 27.8
fr–en 42.4 47.9 40.5 29.5 35.9 16.2 35.6
lt–en 16.6 20.3 13.5 6.1 9.1 – 9.2
ro–en 41.6 45.5 34.0 33.1 31.0 9.4 35.5

mean 26.2 28.3 23.2 16.2 18.4 8.8 19.4

Fewshot
(3, Seen,
200 topics)

en–cs 17.7 20.6 24.8 12.4 12.9 4.8 14.5
en–de 25.8 26.0 22.4 18.3 22.9 11.7 22.7
en–fi 12.4 9.8 19.6 6.4 13.7 – 12.4
en–fr 31.7 36.0 34.4 22.9 30.1 12.8 30.5
en–lt 6.3 6.1 6.9 1.3 1.1 – 1.3
en–ro 24.5 25.2 22.7 16.4 18.8 5.6 21.8
en–ta – – 1.3 0.6 0.5 0.0 0.1
cs–en 38.4 38.0 28.2 25.8 25.6 9.6 27.6
fr–en 41.8 45.1 40.1 28.8 35.0 17.1 34.9
lt–en 17.3 16.0 11.5 4.8 7.8 – 8.3
ro–en 41.4 44.1 25.8 30.6 30.8 9.2 34.4

mean 25.7 26.7 21.6 15.3 18.1 8.8 19.0

Fewshot
(3, Seen,
1000 topics)

en–cs 18.5 22.8 23.7 11.2 13.5 4.3 13.9
en–de 26.0 27.1 21.3 17.4 23.0 12.0 22.8
en–fi 12.9 10.9 20.9 6.9 13.1 – 12.9
en–fr 31.5 35.7 35.0 23.4 30.5 12.8 30.7
en–lt 5.4 5.3 6.7 1.0 1.2 – 1.2
en–ro 25.0 25.5 23.5 16.9 18.3 5.4 20.3
en–ta – – 1.1 1.0 0.4 0.0 0.2
cs–en 38.2 40.4 32.4 26.3 25.9 9.7 27.5
fr–en 41.4 46.8 40.0 29.2 35.2 15.6 35.1
lt–en 17.6 21.1 11.9 5.0 8.1 – 8.8
ro–en 43.0 45.6 32.5 32.4 31.6 9.7 35.2

mean 25.9 28.1 22.6 15.5 18.3 8.7 19.0

Fewshot
(3, Seen,
Random Topic,
500 topics)

en–cs 17.8 21.6 23.6 12.6 13.2 4.5 14.7
en–de 25.4 26.7 21.5 17.6 22.5 12.1 23.2
en–fi 12.3 8.4 19.7 6.9 12.7 – 13.1
en–fr 31.4 35.3 33.7 23.9 29.2 13.1 31.2
en–lt 4.6 4.5 5.1 1.0 1.1 – 1.4
en–ro 22.6 24.2 22.2 16.2 18.1 5.3 21.6
en–ta – – 0.6 0.8 0.4 0.0 0.1
cs–en 33.4 35.5 26.4 23.6 24.3 9.5 26.5
fr–en 38.5 42.6 37.6 27.6 35.3 17.1 34.9
lt–en 9.8 13.7 3.4 2.2 5.0 – 6.4
ro–en 38.7 39.7 24.0 29.2 29.6 9.2 33.2

mean 23.4 25.2 19.8 14.7 17.4 8.8 18.8

Table 22: BLEU scores for various topic-guided fewshot
example experiments.

Dataset

Prompt Pair EMEA JRC KDE4 Subs QED Tanzil TED

Random
Fewshot
(3, Seen)

en–cs 16.1 21.6 22.2 13.0 14.5 4.4 13.3
en–de 23.0 25.8 19.3 18.1 21.6 11.8 23.3
en–fi 11.6 7.6 19.3 7.4 12.4 – 12.6
en–fr 30.3 34.6 33.1 23.6 28.4 12.2 29.9
en–lt 4.9 4.8 7.8 1.1 1.3 – 1.8
en–ro 20.9 24.0 20.9 16.0 18.7 5.1 20.8
en–ta – – 1.4 1.0 0.8 0.0 0.2
cs–en 5.3 6.3 8.1 3.4 1.9 0.2 1.4
fr–en 6.3 6.6 7.1 3.7 2.8 0.5 2.7
lt–en 4.4 3.5 5.1 0.8 1.2 – 0.9
ro–en 5.8 5.5 7.0 2.3 2.6 0.1 2.8

mean 12.9 14.0 13.8 8.2 9.7 4.3 10.0

Fewshot
(3, Language)

en–cs 19.4 24.5 24.6 12.6 16.2 5.4 15.5
en–de 26.9 27.4 23.0 18.4 23.4 13.1 23.8
en–fi 13.3 10.2 23.0 7.2 14.8 – 14.8
en–fr 34.1 38.0 36.3 24.2 30.3 15.3 30.1
en–lt 6.0 7.6 8.5 1.5 1.5 – 1.8
en–ro 28.5 29.1 24.1 18.6 19.7 7.6 21.7
en–ta – – 1.2 0.8 1.2 0.4 0.4
cs–en 38.2 40.3 31.0 26.5 27.8 14.0 28.7
fr–en 41.6 47.5 39.8 29.1 35.9 18.4 35.6
lt–en 17.5 22.5 14.5 7.3 10.9 – 12.8
ro–en 42.0 45.8 34.1 32.4 32.0 12.8 36.7

mean 26.8 29.3 23.6 16.2 19.4 10.9 20.2

Similarity
(3, Language)

en–cs 29.6 28.9 27.8 13.0 16.1 19.0 16.6
en–de 30.6 32.8 24.9 17.8 24.8 23.2 23.0
en–fi 21.1 22.8 23.6 8.4 19.3 – 16.6
en–fr 38.3 42.7 36.9 23.0 29.1 31.4 32.0
en–lt 12.4 12.3 17.4 2.5 5.7 – 6.2
en–ro 35.2 34.2 28.0 19.8 19.3 24.8 23.3
en–ta – – 1.5 2.3 2.0 0.5 0.2
cs–en 45.2 43.2 36.8 26.7 28.2 16.4 30.0
fr–en 46.8 49.6 43.0 28.7 36.4 18.0 36.5
lt–en 28.3 28.2 23.6 10.9 17.3 – 18.9
ro–en 48.4 49.9 35.7 33.6 32.8 13.9 37.8

mean 33.6 34.5 27.2 17.0 21.0 18.4 21.9

Fewshot
(3, Seen)

en–cs 17.5 22.9 22.9 11.1 12.5 3.9 12.9
en–de 24.3 27.0 20.4 17.4 20.9 11.5 21.8
en–fi 12.5 12.1 21.3 6.3 11.9 – 12.7
en–fr 30.1 37.0 33.3 22.0 28.5 11.9 29.3
en–lt 6.9 7.5 12.4 1.9 1.3 – 1.4
en–ro 24.0 25.6 22.0 15.7 17.0 4.9 20.1
en–ta – – 1.8 1.1 0.8 0.0 0.1
cs–en 5.4 6.1 7.8 3.0 1.8 1.6 1.5
fr–en 6.4 6.9 8.0 2.8 3.8 1.3 4.3
lt–en 4.4 3.8 5.1 0.7 1.2 – 0.9
ro–en 5.8 5.1 6.6 2.2 3.0 1.0 2.3

mean 13.7 15.4 14.7 7.7 9.3 4.5 9.8

Retrieval
(3, Language)

en–cs 31.4 30.9 29.1 12.5 17.9 21.4 18.0
en–de 34.0 35.3 26.4 18.8 23.2 23.1 23.5
en–fi 24.0 25.5 27.0 9.2 19.3 – 18.3
en–fr 39.3 43.9 39.7 23.0 31.4 34.3 30.8
en–lt 15.8 14.0 18.8 2.7 6.5 – 7.4
en–ro 36.7 35.6 30.1 19.9 19.5 28.9 22.4
en–ta – – 6.6 3.9 4.5 25.1 6.2
cs–en 44.7 44.7 38.7 26.6 28.9 16.9 30.0
fr–en 47.3 50.3 45.2 29.3 36.0 17.7 36.8
lt–en 27.9 28.5 27.4 9.8 16.8 – 18.9
ro–en 48.3 49.9 40.6 33.0 32.8 14.3 38.4

mean 34.9 35.9 30.0 17.2 21.5 22.7 22.8

Retrieval
(3, Seen)

en–cs 15.0 20.4 19.3 9.7 11.6 4.3 10.9
en–de 23.7 25.5 19.9 15.9 21.3 11.7 22.1
en–fi 10.8 7.6 19.4 6.7 9.0 – 12.3
en–fr 29.2 35.1 32.8 21.7 29.2 12.1 29.8
en–lt 4.9 4.4 6.9 0.7 1.3 – 1.5
en–ro 20.2 22.4 20.2 15.0 16.2 4.9 20.6
en–ta – – 1.4 0.9 1.1 0.0 0.2
cs–en 5.1 3.5 7.2 1.7 1.1 0.1 1.4
fr–en 5.7 5.2 6.4 1.9 2.0 0.1 1.6
lt–en 4.4 3.6 5.1 1.0 0.9 – 0.9
ro–en 5.2 4.3 5.9 3.5 2.1 0.1 2.0

mean 12.4 13.2 13.1 7.2 8.7 4.2 9.4

Table 23: BLEU scores for few-shot baseline experi-
ments.
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