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Abstract

When communicating routes in natural lan-
guage, the concept of acquired spatial knowl-
edge is crucial for geographic information re-
trieval (GIR) and in spatial cognitive research.
However, NLP navigation studies often over-
look the impact of such acquired knowledge
on textual descriptions. Current navigation
studies concentrate on egocentric local descrip-
tions (e.g., ‘it will be on your right’) that re-
quire reasoning over the agent’s local percep-
tion. These instructions are typically given as a
sequence of steps, with each action-step explic-
itly mentioning and being followed by a land-
mark that the agent can use to verify they are
on the right path (e.g., ‘turn right and then you
will see...’). In contrast, descriptions based on
knowledge acquired through a map provide a
complete view of the environment and capture
its overall structure. These instructions (e.g.,
‘it is south of Central Park and a block north of
a police station’) are typically non-sequential,
contain allocentric relations, with multiple spa-
tial relations and implicit actions, without any
explicit verification. This paper introduces the
Rendezvous (RVS) task and dataset, which in-
cludes 10,404 examples of English geospatial
instructions for reaching a target location us-
ing map-knowledge. Our analysis reveals that
RVS exhibits a richer use of spatial allocentric
relations, and requires resolving more spatial
relations simultaneously compared to previous
text-based navigation benchmarks.2

1 Introduction

In today’s world, cell phones with powerful map-
ping applications are widely used. However, even
with this technology at our fingertips, many people
still rely on geospatial instructions to arrange ren-
dezvous locations by providing natural language

1This work was done partly during an internship at Google
Research.

2Data and code: https://github.com/OnlpLab/RVS.

I’m pretty far away, almost all the way to Central Park,
just 3–4 blocks from Columbus Circle. Walk north on
8th Ave., and I’m at a parking entrance a block north
of a police station.

Figure 1: An illustration example from the RVS dataset.
The RVS input consists of (1) a bird’s-eye instruction
of the goal location (shown at the bottom), (2) a starting
point (green marker), and (3) a map representation of
the environment. The output is the goal (red marker).

descriptions that reference landmarks and their
geospatial relation, e.g., ‘...a block north of a po-
lice station’ (Figure 1). Retrieving locations and
paths from natural language spatial descriptions is
essential for disaster areas (Hu et al., 2023), for the
billions of people without addresses (UPU, 2012;
Abebrese, 2019), and for Geographic Information
Retrieval (GIR), especially from the web (Spink
et al., 2002; Sanderson and Kohler, 2004).

In spatial cognitive research, it is widely ac-
cepted that spatial language is associated with cog-
nitive representations of the environment and orig-
inates from spatial memory (Hayward and Tarr,
1995). Thus, navigation instructions are affected
by the way individuals acquire spatial knowledge
over their environment (Tversky, 2005; Thorndyke
and Hayes-Roth, 1982; Kuipers, 1978). The domi-
nant theory for spatial knowledge acquisition, that
of Siegel and White (1975), describes three lev-
els of human knowledge about their environment:
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(i) Landmark knowledge: the ability to describe the
characteristics of distinct objects, which may be lo-
cated along a route, without indicating the relation-
ship or path between those landmarks, (ii) Route
knowledge: includes sequential information such
as directions for navigation instructions, and finally
(iii) Survey knowledge, which involves understand-
ing the layout and composition of the environment
and describing landmarks in relation to one another
using an external reference system, such as the
directional relationships between landmarks.

Instructions based on survey knowledge contain
a bird’s-eye view perception of the environment.
These higher-level descriptions involve allocentric
relations and cardinal directions (‘east of’), are
non-sequential, with implicit actions and multiple
spatial relations without any verification (e.g., ‘3–4
blocks north of Columbus Circle and north of a
police station’). They require geospatial numerical
reasoning (‘two buildings from’) and understand-
ing of complex shapes such as ‘Y-shaped street’
(Jayannavar et al., 2020; Lachmy et al., 2022).
They contain a mix of indefinite descriptions refer-
encing salient landmarks (‘a building’), as well as
proper names (‘the Empire State Building’).

Despite the importance of geospatial instruc-
tions in daily life, current NLP geospatial datasets
lack instructions that encompass all such levels of
acquired knowledge (Chen et al., 2019). While
many NLP geolocation tasks primarily involve in-
structions based on landmark knowledge (Wing
and Baldridge, 2014), text-based navigation tasks
focus on the second level — route knowledge —
with step-by-step local perception (Ku et al., 2020).
However, current spatial datasets are missing the
third level — survey knowledge — which involves
global perception and requires reasoning over mul-
tiple spatial relations simultaneously.

Here, we introduce the Rendezvous (RVS) task
to advance systems that can interpret high-level sur-
vey knowledge-based navigation instructions that
require global spatial reasoning. The input of the
task is a starting point, a non-sequential instruction
of a rendezvous location, and a map. The goal is
to retrieve the coordinates of the rendezvous point.
We crowdsourced 10,404 rendezvous instructions.
To gather instructions based on survey knowledge,
we presented participants with a map that provided
them with precise information that would have oth-
erwise required extensive exploration of the envi-
ronment (Thorndyke and Hayes-Roth, 1982; Uttal,

2000; Plumert et al., 2007; Tversky, 1996).
We collected instructions over three cities in the

USA: Manhattan, Pittsburgh and Philadelphia. The
use of multiple cities allows for a realistic zero-
shot setup where a model is trained on one city and
tested on another city unseen during training. This
new zero-shot setup is a challenging testbed for
models’ ability to generalize to new environments.
This is also relevant for handling changing envi-
ronments (Zhang and Choi, 2021). It is part of our
contribution to create a realistic and challenging
setup and show that current models do not suffice
in addressing this multifaceted challenge.

Our linguistically-driven analysis shows that the
RVS task requires significantly more spatial allo-
centric reasoning, resolving more spatial relations
simultaneously, and with fewer explicit actions and
state verifications, compared with previous text-
based navigation benchmarks (Paz-Argaman and
Tsarfaty, 2019; Chen et al., 2019; Ku et al., 2020).

2 The RVS Task and Environment

In this work we address the task of following
geospatial instructions given in colloquial language
based on a dense urban map. The input to the RVS
task is as follows: (i) a map with rich details, given
as a knowledge graph; (ii) an explicit starting point,
given in coordinates (latitude and longitude); and
(iii) a geospatial instruction describing the loca-
tion of the goal in relation to the landmarks on the
map and the given starting point. The output of the
RVS task is the coordinates of the goal within the
boundaries of the map.

The map was created using OpenStreetMap
(OSM).3 We extracted landmarks and streets and
connected them to form a graph. To connect land-
marks that do not intersect with streets, we pro-
jected the landmarks onto the nearest streets (up
to four) and added the projected nodes and edges
connecting the landmarks and projections to the
graph.

3 Data Collection

We frame the data collection process as an
instructor-follower task, where an instructor needs
to communicate to a follower the rendezvous loca-
tion in relation to the follower’s current location.
The process is divided into two crowdsourced tasks:
communicating the goal location in writing (here,

3OSM is a user-updated map of the world. http://www.
openstreetmap.org
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(a) Manhattan (b) Pittsburgh (c) Philadelphia

Figure 2: The RVS instructions are collected over three cities (a–c).

Instruction Writing) and following (here, Valida-
tion), corresponding to the two roles – instructor
and follower. Appendix D presents a display of the
user-interface (UI) of the online assignment.

Task 1: Instruction Writing Using the RVS
map-graph (Section 2), we generated the starting
points and (within 2km) the respective goal points.
The instructor could view the points on an interac-
tive map with geo-data from OSM, and displayed
landmarks along the route, near the goal, in the gen-
eral area and beyond the route. The goal and nearby
landmarks were not shown by their proper names,
e.g., instead of ‘St. Vincent de Paul Church’ the
marker displayed ‘a church’. The instructor could
zoom in/out and pan to view the environment. The
instructor was requested to describe the location of
the goal in relation to the starting point and land-
marks, rather than providing a step-by-step route
description. To prevent easy geolocation by current
navigation and geolocation systems, such as street
corners, the instructor was restricted to mentioning
a maximum of one street by name.

Task 2: Validation In this task, the follower is
asked to follow the instruction displayed, by pin-
ning the goal location on an interactive map. As
the map includes sign symbols of places (e.g., a
cross symbol to denote a church), the display also
includes a legend with the equivalent symbols. An
instruction is considered qualified if the follower
pins the goal within 100 meters. This threshold is
the maximum radius of the geoshape of the gener-
ated goal from Task 1. Participants were also re-
quested to flag problematic instructions, i.e., those
that did not follow the rules in the instruction writ-
ing task. To determine the agreement rate among

participants, 50% of the instructions were validated
by at least two participants.

Instructor Training The main challenge of the
collection process is training instructors to write
high-quality instructions based on survey knowl-
edge (rather than step-by-step agent-centered de-
scriptions). To address this challenge, the follow-
ing procedure was implemented: (1) The process
starts by collecting an initial seed of ‘well-formed’
survey-based instructions written by a geospatial
expert. (2) At least three ‘well-formed’ survey-
based knowledge instructions were presented to an
unqualified participant one after the other, and the
instructor was requested to pinpoint the goal on a
map. (3) Once the instruction was written by the
instructor, it was reviewed by a geospatial expert
who provided feedback. (4) If a participant suc-
cessfully produced three well-formed survey-based
instructions in a row, the instructor was considered
qualified. Every instruction given by a qualified
instructor was added to the bank of well-formed
survey-based instructions and could be shown to
other instructors in training. As more instructors be-
came qualified, the variety of examples increased.

Quality Assessment We ensured instruction
quality by sampling instructions, discarding poor
ones, and giving feedback throughout the collec-
tion process based on the following criteria: (1)
participants who consistently received low distance
errors in the verification task (less than 30m aver-
age), as it might indicate they gave step-by-step
low-level instructions that are easier to follow; (2)
instructions that received high distance errors (at
least one verification over 2000m); and (3) instruc-
tions from participants who did not participate for
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City Area
Size (km^2)

Num. Landmarks
in Graph

Num.
Instructions

Avg. Path
Length (m)

Avg. Text
Length

Avg.
Entities4

Vocab.
Size

Manhattan 32.5 20,979 8,103 1,098.94 43.73 3.99 6,365
Pittsburgh 34.5 4,998 1,023 960.52 41.95 3.93 2,195
Philadelphia 74.5 10,302 1,278 1,096.66 42.96 3.95 2,438

Table 1: Data Statistics of RVS: statistics over different cities.

RVS RUN RxR TOUCHDOWN
Phenomenon p µ p µ p µ p µ Example from RVS
Proper Names 100 2 100 5.96 0 0 0 0 ...Duane Reade pharmacy...
Descriptions 96 2.48 8 0.12 100 8.3 100 9.2 ...There is a church across the street...
Coreference 64 0.88 40 0.48 64 5.3 60 1.1 ...It’s on the same block as...
Count 28 0.36 8 0.08 32 0.44 36 0.4 ...Southwest of the school are two bicycle parkings.
Cardinal Direction 96 2.2 16 0.2 0 0 0 0 Go southwest...
Complex shapes 60 1.08 44 0.76 20 0.2 8 0.8 ...a block west of the square shaped park...
Allocentric Relation 88 1.52 4 0.04 76 2.4 68 1.2 ...It is west of the bridge...
Egocentric Relation 4 0.04 76 1.36 60 2.3 92 3.6 You will pass an Ace Hardware on your left
Temporal Condition 8 0.08 72 1.56 52 0.8 84 1.9 ...Go straight south until you pass the library...
Explicit Actions 0 0 100 3.2 96 0.8 100 2.8 ...Turn left. Continue forward...
State Verification 20 0.2 56 0.64 84 3.1 72 1.5 ...you will see me at the alcohol shop.
Negative State Verification 4 0.04 4 0.04 0 0 0 0 ...If you see a bike parking, you have gone too far.
Spatial Knowledge
(Siegel and White, 1975)

Route 4 n/a 84 n/a 100 n/a 100 n/a ...turn right on the next street...
Survey 96 n/a 16 n/a 0 n/a 0 n/a Head east toward the river...

Table 2: Linguistic analysis: we analyze 25 randomly sampled instructions from RVS, RUN, RxR (only instruc-
tions given by speakers in the USA), and TOUCHDOWN (only the navigation task). p represents the % of instruc-
tions containing the phenomena, while µ represents the average number of occurrences within each instruction.

Feature p-value FDR corrected
p-value F-test

Num. of entities4 0.56 0.56 0.99
Num. of tokens 0.0 0.0 2.92
Human distance error 0.0 0.0 2.43

Table 3: One-way analysis of variance (ANOVA) tests
were conducted to examine the correlations between
goal types and linguistic and human verification fea-
tures. The p-values were corrected for False Discov-
ery Rate (FDR). A p-value lower than 0.05 indicates a
correlation between goal type and a feature.

over a month. For participants who failed their
reviews (i.e., did not follow the instructions), we
reviewed their next three instructions.

4 Data Statistics and Analysis

The RVS dataset contains 10,404 validated instruc-
tions paired with start and goal coordinates. The lo-
cations are divided among three cities: Manhattan,
Pittsburgh, and Philadelphia (Figure 2 and Table
1). In the instruction writing task, 146 different par-
ticipants provided survey-knowledge instructions.
149 participants completed the validation task, cor-
rectly validating 10,404 out of 16,104 tasks (64%).
89% of validations achieved correct location within
100 meters, indicating high human agreement.

4Extracted using ChatGPT – https://chat.openai.com

We conducted a qualitative linguistic analysis of
RVS to understand the type of geospatial reason-
ing required to solve the RVS task. We randomly
sampled and annotated 25 examples from the Man-
hattan and Pittsburgh areas of RVS and compared
them to previous datasets: RUN (Paz-Argaman
and Tsarfaty, 2019), TOUCHDOWN (Chen et al.,
2019), and RXR (Ku et al., 2020). Table 2 details
this analysis. While TOUCHDOWN and RXR con-
tain only mentions of indefinite descriptions, and
RUN contains almost exclusively proper names,
the RVS dataset contains a relatively balanced use
of both descriptions and proper names (not near the
goal). This creates a realistic challenge, reflecting
the various ways people refer to landmarks.

Crucially, instructions based on survey knowl-
edge use allocentric rather than egocentric spatial
relations. Since RXR and TOUCHDOWN rely on a
street/room-level view of the environment and their
participants have only a short time to become famil-
iar with the environment, the instructions contain
less spatial allocentric reasoning than RVS. The
RVS dataset displays more allocentric phenomena
than the RUN dataset, even though both datasets
include a map. This is because the RUN dataset
encourages participants to use egocentric relations
by displaying examples of egocentric relations. Ac-
cordingly, as shown in Table 2, geospatial mea-
sures found that RVS contains more survey-based
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Token Count Type
Carson 65 street and bridge
Forbes 62 avenue and sport stadium
Pittsburgh 54 city, station and university
Allegheny 29 avenue
Smallman 23 street

Table 4: Out-of-Vocabulary Analysis (OOV): Top-5 to-
kens in the Pittsburgh vocabulary that are absent from
the Manhattan vocabulary.

instruction in comparison to the other datasets.
On top of that, RUN, RXR, and TOUCHDOWN

all contain sequential instructions that include
many explicit actions and state verifications, mak-
ing it easier for the model to predict the correct
action and verify it after the action is taken. In con-
trast, the new RVS dataset includes non-sequential
instructions with relatively few state verifications
and no explicit actions.

To prevent simple string-match solutions, the
goal location in RVS is always given by its type
(e.g., ‘restaurant’, ‘parking’ etc.) and not by its
proper name. In Table 3 we perform one-way anal-
ysis of variance (ANOVA) tests, to check if there
are entity types easier to locate than others, and if
the type affects the instructions. We found that the
number of entities and tokens in instructions varied
with goal type (p<0.05), but human distance error
did not, indicating that human ability to geolocate
the goal is not affected by its entity type.

Our out-of-vocabulary (OOV) analysis shows
that, unlike previous navigation datasets (Chen
et al., 2019; Ku et al., 2020; Anderson et al., 2018;
MacMahon et al., 2006), RVS presents a challenge
with novel entities in a city-split setup, training
on one city and testing on a different unseen city.
Specifically, our analysis of the vocabularies of
two different cities — Manhattan and Pittsburgh
— shows that 36.85% of the Pittsburgh vocabulary
is OOV, i.e., the tokens do not appear in the Man-
hattan vocabulary. Table 4 shows the top-5 OOV
tokens in Pittsburgh. 68% of OOV tokens are com-
monly used (82% of the OOV occurrences) city-
specific named entities, like ‘Carson Street’. Thus,
a city-split creates a profound OOV grounding chal-
lenge for previously unseen entities.

5 Models for RVS

As RVS presents a new multimodal task with
unique challenges, we aimed to provide a strong
baseline based on our insights from Section 4. We

model RVS as a sequence-to-sequence problem,
where we map the sequence of tokens in the in-
struction to a sequence of S2-Cells.5

Encoder The encoder encodes the instruction
and the starting point’s representation. Inspired by
Lu et al. (2022), who converted pixels to text-based
axis locations, we transformed the map’s S2-grid
into a two-dimension discrete coordinate system
(‘locX, locY’). The starting point’s coordinate is as-
signed to the S2-Cell containing its geometry. The
S2-Cell is linked to an axis position, so the starting
position is also assigned an axis position.

Decoder Since this is essentially a navigation
task without a step-by-step path, we train our model
to generate a high-level path, consisting of a se-
quence of locations starting with the starting point,
followed by prominent landmarks ordered by their
directional position from the goal, and ending with
the goal. We extracted the prominent landmarks
based on the RVS map-graph. As in the encoder,
we represent the location in a ‘locX, locY’ format.

The World as a Graph A location can be repre-
sented by its position (where the location is) or by
its semantics (what is present at the location, e.g.,
‘a bar’). Semantic knowledge is crucial for ground-
ing mentioned entities to their physical references
in the environment. To this end, we aim to con-
nect the semantic and positional knowledge using
a novel RVS map-graph. The RVS map-graph is
a heterogeneous graph containing location nodes
(semantic) and S2-cell nodes (positional). First,
we connected each location node to its smallest
containing S2-cell (see Figure 3), also instantiating
each S2-cell as an independent node in the graph.
Then, as the S2-geometry is a hierarchical structure,
we add both within-level and between-level edges
between S2-cell nodes. Specifically, we connect
each S2-cell to its immediate neighbors at the same
level, and we connect each S2-cell to its containing
S2-cell at the next level up in the hierarchy (see
Figure 3). To learn a joint embedding space for
locations and S2-cells, we compute random walks
on the graph using node2vec algorithm (Grover
and Leskovec, 2016). Following Yu et al. (2021),
we use linear projection to cluster the graph em-
beddings into K categories using the k-means algo-
rithm with cosine similarity distance. A new token

5S2Cells are based on S2-geometry, a hierarchical dis-
cretization of the Earth’s surface (Hilbert, 1935).
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Figure 3: The RVS model based on a T5 transformer and a graph representation of the environment.

is assigned to each category and added to the tok-
enizer’s vocabulary. We perform multiple clusters
and pass the graph’s tokens with the instruction’s
tokens to the transformer encoder.

6 Experimental Setup

Evaluation We use six evaluation metrics: (1)
100m accuracy, the task is considered completed
if the agent is within a 100m distance from the
goal; (2) 250m accuracy for coarse-grained accu-
racy evaluation; (3) mean distance error; (4) me-
dian distance error; (5) maximum distance error;
and (6) area under the curve (AUC) distance error.

Setup and Data-Split We use a zero-shot (ZS)
city-based split, where we train on one city, val-
idate on a second city, and test on a third city.
Specifically, RVS’s setup consists of (i) a training-
set containing 7,000 instructions from Manhat-
tan; (ii) a seen-city development-set containing
1,103 instructions from Manhattan; (iii) an unseen-
city development-set containing 1,023 instruc-
tions from Pittsburgh; and (iv) a test-set containing
1,278 instructions from Philadelphia. The ZS split
raises profound challenges (e.g., OOV) at inference
time, as described in Section 4.

Learning We use supervised learning by maxi-
mizing the log-likelihood of high-level paths. We
train the model with AdamW (Loshchilov and Hut-
ter, 2017) for optimization. Details of the learning
and hyperparameters are provided in Appendix B.1.

Systems We evaluate three non-learning base-
lines: (1) STOP: predicts the starting point as
the goal location; (2) CENTER: predicts the
closest location towards the center of the region
within a 1000-meter radius from the starting point;
(3) LANDMARK: predicts the location of a promi-
nent landmark in the map within a radius of 1000
meters. A landmark is considered prominent if it
has one of the following tags (appearing in descend-
ing order of importance): (a) Wikipedia page; (b)
Wikidata page; (c) a part of a brand; (d) a tourist
attraction; (e) an amenity; and (f) a shop.

We also evaluate two learning models described
in Section 5. The first model is based on T5, and
the second model T5+GRAPH, is based on T5 with
an addition of a graph-based representation of the
environment. This representation is described in
Section 5 and depicted in Figure 3.
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Method 100m Accuracy 250m Accuracy Mean Error Median Error Max Error AUC of Error
Manhattan Seen-city Development Results

HUMAN 88.12 95.64 74 4 2,996 0.10
STOP 0.00 1.54 1,084 1,124 1,929 0.41
CENTER 0.27 1.45 930 998 1,000 0.40
LANDMARK 0.54 5.26 776 815 1,384 0.39
T5 27.92 (0.39) 52.63 (0.45) 362 (9) 231 (3) 2,957 (641) 0.32 (0.00)

T5+GRAPH 29.40 (1.18) 54.67 (1.04) 357 (7) 216 (8) 3,889 (826) 0.31 (0.01)

Pittsburgh Unseen-Development Results
HUMAN 86.94 92.94 99 7 2,951 0.13
STOP 0.00 2.05 960 954 1,912 0.40
CENTER 0.00 0.10 992 999 999 0.41
LANDMARK 1.47 9.48 677 691 1,345 0.38
T5 0.49 (1.47) 2.34 (1.44) 1,171 (24) 1,107 (14) 4,701 (101) 0.41 (0.00)

T5+GRAPH 0.49 (1.01) 2.91 (1.37) 1,067 (77) 1,039 (56) 4,102 (727) 0.40 (0.00)

Philadelphia Unseen-city Zero-shot Results
HUMAN 93.64 97.97 27 3 2,708 0.05
STOP 0.00 1.80 1,096 1,135 1,958 0.41
CENTER 0.16 0.47 942 998 1,000 0.41
LANDMARK 1.02 7.90 707 713 1,384 0.38
T5 0.26 (0.05) 1.80 (0.27) 1,362 (43) 1,308 (35) 6,911 (454) 0.42 (0.00)

T5+GRAPH 0.31 (0.05) 1.93 (0.20) 1,140 (16) 1,161 (8) 5,277 (372) 0.41 (0.00)

Table 5: Results over the test and development sets. The distance errors are presented in meters. For the learning
models, we report the mean over three random initializations and the standard-deviation (STD) is in brackets.

Split p Min c Max c Avg. c Example from RVS
Seen-City 61 3 9 5.4 I am northeast of you at a toilet near the corner of Bayard Street. To

its south is a park and the Louis J. Lefkowitz State Office Building...Unseen-City 13 2 8 5.05

Table 6: Spatial relations analysis of 20 samples. c and p represent the number and percentage of spatial relations
to the location predicted by T5+GRAPH that match those mentioned in the text, respectively. In the examples, the
matched relations are underlined, and the unmatched relations are double-underlined.

Type of Pred. and True Goal Relation p c

On the same S2-Cell 25 5
Same cardinal-direction from start point 95 19
On the same street 45 9
Have the same type of entity 50 10

Table 7: Error analysis of 20 instructions and their cor-
responding T5+GRAPH results in the seen-city split. c
and p represent the number and percentage of the in-
structions that contain the types of relation between the
predicted goal and the true goal.

7 Results

Table 5 shows the seen-city development, and
unseen-city zero-shot (ZS) results for our six eval-
uation metrics. The human performance provides
an upper bound for the RVS task performance,
while the simple STOP is a simple lower bound
baseline. Although the T5+GRAPH outperforms
the non-learning baselines (STOP, CENTER, and
LANDMARK) in the seen-city split, there is still a
gap of 58.72% and 40.97% in the 100m and 250
accuracies, respectively. The LANDMARK model

outperforms other non-learning models, suggesting
that the goal location is more likely to be around
prominent landmarks than in other areas.

Despite the 2km maximum distance between the
start and goal, we did not constrain our models or
teach them S2-Cell distances. So the maximum
error of the learned models was greater than 2km.
The improved performance of the T5+GRAPH over
the T5 indicates that the added graph can capture
semantic geospatial information.

The novel ZS city-split setup we introduced pro-
vides a profound challenge for natural language
understanding due to the appearance of new spatial
relations and new entities in the environment. This
can be seen in the inability of the learning model
to generalize from seen to unseen environments, re-
sulting in low performance, even underperforming
the non-learning LANDMARK baseline.

Tables 6 and 7 show an error analysis of 20 ex-
amples of the T5+GRAPH’s results in seen-city
and unseen-city splits. As shown in Table 6, the
model must consider multiple spatial relations to
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handle RVS. 6 However, the model only success-
fully manages to predict a goal that matches the
spatial relations mentioned in the text in 61% and
13% for the seen-city and unseen-city splits, respec-
tively. Table 7 shows that in the seen-city split, the
model correctly identifies the cardinal directions in
most cases, suggesting that it has learned the out-
line configuration of the map. In half of the cases,
the model correctly identifies the type of the entity.
The model correctly identified the street in 45% of
cases, and in 88.89% of those cases, the street was
mentioned by name in the text. This is lower than
the 90% of all sampled instructions that mentioned
street names, suggesting that simply mentioning a
street by name is not sufficient for the model to cor-
rectly produce a location on that street. In 25% of
the cases, the granularity of the S2-Cells is not high
enough to distinguish between the predicted and
true goal, suggesting that a higher level of S2-Cell
could reduce these cases.

Following Table 3, we conducted an ANOVA
test and found no correlation between goal type
and distance error for T5+Graph (p-value = 0.34).

8 Related Work

As people move they perceive their surroundings
and acquire knowledge of the space, known as
cognitive mapping (Tolman, 1948). One influen-
tial cognitive mapping theory (Siegel and White,
1975) divides cognitive mapping ability into three
levels. Landmark knowledge, consisting of land-
marks (e.g., mountains and buildings) and their
attributes (e.g., location, size, color), Route knowl-
edge, altered by the traveler’s changing viewpoint
(Taylor and Tversky, 1992a,b, 1996) and coded
directly (e.g., “turn right, then straight”) (Tlauka
and Wilson, 1994), or as condition-action rules
based on landmark-direction associations (e.g.,
“turn right at the church, then straight” (Kuipers,
1978; Thorndyke, 1981)), and survey knowledge,
where people form a ‘cognitive map’ of the envi-
ronment, an overview of the geospatial layout, and
gain awareness of relationships between different
geospatial components, even outside the route. Sur-
vey knowledge is independent of a person’s own
position, and enables her to form different routes,
refer to cardinal directions, describe landmarks at
different resolution levels, and describe complex

6A comparative analysis of 20 RXR instructions revealed
that up to two spatial relations per navigational step necessitate
reasoning for successful completion.

shapes of abstract features such as ‘blocks’. Such
information is less likely to be acquired from direct
experience in the environment, but is portrayed on
maps (Thorndyke and Hayes-Roth, 1982). Thus,
instructions based on such knowledge mirror the
complex understanding of the environment.

In grounded NLP tasks, participants acquire
knowledge over an environment provided with the
task. This environment can be based on different
sources, most commonly visual sensors with real
(Qi et al., 2020; Blukis et al., 2018; Wang et al.,
2018) or synthetic imagery (Yan et al., 2018; Misra
et al., 2018; Shridhar et al., 2020). In a visual
environment, participants travel through the envi-
ronment, view it from a point on the ground that is
on the same plane as the objects, and acquire route
knowledge. Thorndyke and Hayes-Roth (1982)
found that subjects who learned an environment
by walking through it were limited to route-based
knowledge and used egocentric spatial relation ex-
pressions (e.g., ‘on your right’) in their instruc-
tions. This observation was reinforced by Chen
et al. (2019) analysis of TOUCHDOWN (Chen et al.,
2019) and R2R (Anderson et al., 2018) — two
navigation tasks with walk-through environments.

Another type of environment uses maps (Ander-
son et al., 1991; Paz-Argaman and Tsarfaty, 2019;
Vogel and Jurafsky, 2010; Levit and Roy, 2007; Va-
sudevan et al., 2021; de Vries et al., 2018), where
instructors can view the environment from above
and gain survey knowledge of global geospatial re-
lations. However, previous works with maps have
either presented small, simplistic environments
(Anderson et al., 1991; de Vries et al., 2018) or the
task’s setup has encouraged participants to give ego-
centric sequential instructions limited to the route
(Paz-Argaman and Tsarfaty, 2019; de Vries et al.,
2018; Vasudevan et al., 2021). In contrast, RVS
focuses on instructions that encode survey knowl-
edge and require configurational and allocentric
reasoning over a large, entity-dense environment.

There are sharp differences between indoor (Ku
et al., 2020; Anderson et al., 2018) and outdoor
(Chen et al., 2019; Paz-Argaman and Tsarfaty,
2019; de Vries et al., 2018; Vasudevan et al., 2021;
Anderson et al., 1991) navigation instructions. In-
door environments contain many entities referred
to as definite descriptions (e.g., ‘the chair’) and few
landmarks that can be referred to by their proper
name (‘The Blue Room in the White House’). In
outdoor environments, people tend to mix the use
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of proper names (e.g., ‘the Empire State build-
ing’) and definite descriptions (e.g., ‘the school’).
However, previous outdoor navigation tasks ei-
ther contain only definite descriptions (Chen et al.,
2019; Vasudevan et al., 2021) or almost exclusively
proper names (Paz-Argaman and Tsarfaty, 2019).
RVS contains a balanced amount of both.

9 Where Do We Go From Here?

Bridging the Human-AI Gap A substantial
gulf separates current models’ performance from
human performance in the RVS task. In seen
environments, models lag behind by 58.72% in
100-meter accuracy and 212 meters in median er-
ror. This gap widens further in unseen environ-
ments, with a staggering 93.33% difference in 100-
meter accuracy and 1,158 meters in median error.
The challenge of bridging this gap could unlock
thrilling research avenues that push the boundaries
of this task.

Spatial Large Language Models One promis-
ing approach to tackle this challenge lies in the de-
velopment of spatial large language models (LLMs)
specifically pre-trained for geolocation based on
textual descriptions. Such models could unlock
the vast potential of textual geospatial information
readily available online (Spink et al., 2002; Sander-
son and Kohler, 2004). They could empower natu-
ral language-driven geospatial queries and support
Geo-Information Retrieval (GIR) processes. Ad-
ditionally, generating instructions that describe a
location based on relative landmarks – rather than
explicit actions like ‘turn right’, which are not al-
ways relevant or sufficient for navigation in many
parts of the world — can enable people to follow
instructions which are less ‘robotic’, more natural,
and more relevant. Looking beyond navigation,
spatial LLMs could also play a crucial role in en-
hancing the accessibility and usability of geospatial
data. By enabling users to interact with maps and
spatial information using natural language, LLMs
can bridge the gap between human language and
spatial data representations, making these resources
more accessible to a wider range of users.

Seeing the Streets: Integrating Visual Cues
Humans perceive the world through different sig-
nals (e.g., images and sounds) that they get from
their senses. Similarly, to understand the world,
artificial intelligence research also tries to solve
problems that use multimodal data (Antol et al.,

2015; Paz-Argaman et al., 2020; Ji et al., 2022).
While maps are one modality that can be used in
navigation, it is interesting to note that regions of
the maps can be augmented by street view images,
such as Google Street View imagery,7 to integrate
the visual modality in the RVS dataset. Alterna-
tively, the RVS dataset represents maps as symbolic
world representations, which do not account for the
visual perception of maps by humans. Therefore,
it would be interesting to use image representation
instead of graphs in the RVS dataset.8 Visual de-
scriptions that appear in RVS, like the shape of a
"triangular block" are far more evident in images
than in the symbolic map representation.

10 Conclusion

This work presents the RVS task and dataset, which
present a new focus on understanding geospa-
tial instructions based on survey knowledge of
urban environments. Our analysis shows that
the data presents profound spatial-reasoning chal-
lenges such as allocentric relations, multiple rela-
tions, cardinal directions, and more, requiring mod-
els with novel representations of the environment
that can enhance and complement the language un-
derstanding capacity of LLMs. Our results show
that our zero-shot city split set-up presents a major
challenge, leaving ample space for further research
on this benchmark and task.

Limitations

In the data collection process (described in Sec-
tion 3) we showed participants an interactive map
with the start and goal points, as well as landmarks
along the route, near the goal, and in the general
area beyond the route. One of our guidelines for
collecting the data is to allow participants to use
a mix of proper names and definite descriptions
without giving the location of the goal by mention-
ing proper names adjacent to it, so that a named
entity recognition (NER) system would not be able
to locate the goal. To enforce this guideline, we
displayed the landmarks with different levels of
information: for landmarks near the goal (less than
200m), we displayed partial information, excluding
the proper name; for landmarks far from the goal

7StreetLearn dataset (Mirowski et al., 2019) contains im-
ages for the Manhattan and Pittsburgh regions in RVS.

8The GitHub repository for the RVS dataset contains maps’
imagery, which can be accessed at the following link: https:
//github.com/OnlpLab/RVS
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(more than 200m), we displayed all the informa-
tion. For example, for a landmark of a restaurant
with the tag name ‘Kofoo’, we displayed multiple
tags without the tag name if it was located near
the goal: ‘amenity: restaurant, cuisine: ‘korean’.
This allowed the participant to refer to ‘Kofoo’ as a
‘restaurant‘ or a ‘korean restaurant’. To achieve this,
we displayed pop-up markers of the landmarks and
requested the participants to provide the instruc-
tions using only descriptions of landmarks in the
pop-up markers (see Appendix D). While aiming to
minimize information overload (IO), our study pre-
sented only 40 of these landmark pop-up markers
on the map. Landmark selection prioritized promi-
nence based on pre-defined tags like "wikipedia"
and "brand." However, this approach restricted user
choice and potentially introduced bias. In dense
areas like Manhattan, showcasing merely 40 land-
marks concealed 99.81% of potential reference
landmarks. Moreover, relying solely on specific
tags may have neglected other prominent features
readily used for navigation, such as easily identi-
fiable landmarks on street corners. This potential
mismatch between presented and naturally chosen
landmarks could have influenced navigational ac-
curacy. While increasing the displayed landmarks
seems intuitive, it could exacerbate IO and prolong
search times for relevant landmarks. Thus, the chal-
lenge lies in striking a balance between minimizing
IO and providing sufficient landmarks for accurate
wayfinding.
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A Data Collection Details

Participants We collected the RVS dataset using
Amazon Mechanical Turk (MTurk). We did not col-
lect any information that could be used to identify
the participants. We presented the task to the par-
ticipants as part of a research on navigation instruc-
tions. We worked with both past MTurk workers
and new workers who had a 99% percentage assign-
ment approval rate and at least 500 approved HITs.
Only English speakers were allowed to participate.
The base pay was $0.40 for writing instructions
and $0.15 for completing a validation task. Instead
of giving bonuses based on successful validation,
we rewarded workers who generated high-quality
instructions based on survey-knowledge that met
our criteria, such as not mentioning more than one
street by name. After evaluating worker perfor-
mance through random sampling of instructions,
we offered bonuses ranging from $0.5 to $2.0 to
those who performed well. All but three of the 149
participants who took part in the validation task
also participated in the instruction writing task.

Instructions vs. Descriptions Although our ‘in-
structions’ are non-sequential and thus differ from
typical instructions in previous navigation tasks
(Paz-Argaman and Tsarfaty, 2019; Chen et al.,
2019; Ku et al., 2020), we chose the term ‘instruc-
tion’ and not ‘description’ for the following rea-
sons: (1) The term ‘descriptions’ is used in a ge-
olocation task where place descriptions are given
(Paz-Argaman et al., 2023). Unlike RVS, in geolo-
cation tasks there is no assumption for a starting
point (Krause and Cohen, 2020, 2023). In RVS,
we give instructions on how to find point B, given
point A as a starting point. (2) Instructions are usu-
ally sequential, but they don’t have to be (e.g., a set
of assembly instructions for a toy is non-sequential
because the steps can be followed in any order and
still result in a completed toy).

Multiple Validations In order to determine the
agreement rate among participants, at least two
participants validated 50% of the instructions, as
shown in Figure 4.

Selection of Cities The study selected three
cities to create a realistic scenario where training
is done on one city and testing is done on another.
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Meet me at the church on West 23rd street. It will be
southeast of your current location. On your way, you
will see Shirley Goodman Resource Center, which is
three blocks north and half a block west of the church.
The church is in the middle of the block, if you reach
a college you have gone too far.

Figure 4: Example of Multiple Validations: (i) starting
point (green marker), (ii) goal (red marker), and (iii)
predicted goal by participants (black markers).

Manhattan was selected as the training set because
it is the most entity-dense environment and will
allow for maximum unique paths. Additionally,
Manhattan and Pittsburgh were chosen because the
StreetLearn dataset (Mirowski et al., 2019) released
Google Street View imagery for these areas, which
might allow future integration of images.

Path Length Limitation To ensure accurate,
precise, and geolocatable navigation instructions
for participants, we implemented a two-kilometer
radius limitation. Our preliminary experiments
with MTurk participants revealed that they experi-
enced difficulties in finding the goal location when
the distance between the start point and the goal
exceeded two kilometers. Additionally, the RVS
dataset is designed to facilitate high-granularity ur-
ban geolocation, making it essential to restrict the
navigation range to a manageable distance.

B T5-based models

The Graph Embedding The graph was con-
structed using three levels of S2-Cells: 15, 16,
and 17. At level 16, each sub-graph consisting
of four neighboring S2-Cells was fully connected.

All S2-Cells in the graph were linked to their par-
ent S2-Cell based on the S2-geometry’s hierarchy
(i.e., level 17 S2-Cells were connected to level 16
S2-Cells and level 16 S2-Cells were connected to
level 15 S2-Cells). Extracted entities from OSM
and Wikidata were linked to the smallest level
17 S2-Cell that encompassed their geometry. The
node of the entity included additional data such as
its geometry, type, and name. Random walks on
the graph were performed using node2vec (Grover
and Leskovec, 2016).

Experimental Setup Details For both T5-base
models, we use a pre-trained ‘T5-Base’ model from
Hugging Face Hub, which is licensed under the
Apache License 2.0. The T5 model was trained
on the Colossal Clean Crawled Corpus (C4, Raf-
fel et al. (2020)). The cross-entropy loss function
was optimized with AdamW optimizer (Loshchilov
and Hutter, 2017). The hyperparameter tuning is
based on the average results run with three different
seeds. We used a learning rate of 1e-4. The S2-cell
level was searched in [15, 16, 17, 18] and 16 was
chosen. The number of clusters for the quantiza-
tion process was searched in [50, 100, 150, 200,
250] and 150 was chosen. We used 2 quantization
layers. Number of epochs for early stopping was
based on their average learning curve. We used the
following parameters for the node2vec algorithm:
an embedding size of 1024, a walk length of 20,
200 walks, a context window size of 10, a word
batch of 4, and 5 epochs.

B.1 S2-Geometry

S2Cells are a hierarchical discretization of the
Earth’s surface, enabling efficient representation
and computation of geospatial data. S2Cells are
based on S2-geometry a mathematical framework
for representing and computing shapes on the
sphere (Hilbert, 1935). Each cell is a quadrilateral
bounded by four geodesics (shortest path between
two points on a curved surface). The top level of
the hierarchy is obtained by projecting the six faces
of a cube onto the unit sphere, and lower levels are
obtained by subdividing each cell into four children
recursively. S2Cells are globally uniform, i.e., all
of the cells at the same level have the same size and
shape, regardless of where they are located on the

8Wikidata is a free and open knowledge base that acts
as central storage for structured data of its Wikimedia sis-
ter projects, including Wikipedia, Wikivoyage, Wiktionary,
Wikisource, and others
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Model 100m Accuracy 250m Accuracy Mean Error Median Error Max Error AUC of Error
Train on Pittsburgh

T5 0.00 1.09 1,085 1,119 1,969 0.41
T5+GRAPH 0.18 2.45 1,219 1,172 5,954 0.41

Train on Philadelphia
T5 0.00 1.54 1,085 1,124 1,929 0.41
T5+GRAPH 0.27 1.72 1,869 1,232 7,436 0.42

Table 8: Results for testing on Manhattan using different training sets from Pittsburgh or Philadelphia.

Earth’s surface. The level is defined as the number
of times the cell has been subdivided (starting with
a face cell). Cells levels range from 0 to 30. The
smallest cells at level 30 are called leaf cells; there
are 6 ∗ 4

30 of them in total, each about 1cm across
on the Earth’s surface.

C Results over Alternative Splits

In Table 5 we showed the results on a split that was
trained on Manhattan, with Pittsburgh as the devel-
opment set and Philadelphia as the test set. How-
ever, Manhattan is demographically different from
Pittsburgh and Philadelphia and contains more en-
tities on the map. In Table 8 we show results
over different permutations of the cities – testing
on Manhattan and training on either Pittsburgh or
Philadelphia. However, as the development Pitts-
burgh set and test Philadelphia sets contain few
instructions (1,103 and 1,278 instructions, respec-
tively), it seems they do not contain enough data to
support learning. This claim is supported in Table
8 which shows the results for testing on Manhattan
with different training sets. The T5 model, in both
splits learns to predict close locations to the start-
ing point, or even the exact location as the starting
point. It therefore does not go over the limited
range of 2K distance and has a very low accuracy.
The T5+GRAPH model has a higher accuracy but
the model also predicts location over the limited
range, resulting in a very high mean error distance.
Additionally, the results for all models trained on
Pittsburgh were slightly better than the ones trained
on Philadelphia, which might be due to the size of
the region, Philadelphia being more than twice as
large as Pittsburgh, the T5+GRAPH model strug-
gles to learn connections — i.e., grounding. —
between text and the environment.

D Participant Application Interface

The tasks are performed via an online assignment
application, depicted in Figures 5 and 6.
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Figure 5: Participant Interface: the instruction writing task.

Figure 6: Participant Interface: the validation task.
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