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Abstract

Neural machine translation (NMT) is a widely
popular text generation task, yet there is a con-
siderable research gap in the development of
privacy-preserving NMT models, despite sig-
nificant data privacy concerns for NMT sys-
tems. Differentially private stochastic gradi-
ent descent (DP-SGD) is a popular method
for training machine learning models with con-
crete privacy guarantees; however, the imple-
mentation specifics of training a model with
DP-SGD are not always clarified in existing
models, with differing software libraries used
and code bases not always being public, lead-
ing to reproducibility issues. To tackle this, we
introduce DP-NMT, an open-source framework
for carrying out research on privacy-preserving
NMT with DP-SGD, bringing together numer-
ous models, datasets, and evaluation metrics in
one systematic software package. Our goal is
to provide a platform for researchers to advance
the development of privacy-preserving NMT
systems, keeping the specific details of the
DP-SGD algorithm transparent and intuitive
to implement. We run a set of experiments on
datasets from both general and privacy-related
domains to demonstrate our framework in use.
We make our framework publicly available and
welcome feedback from the community.1

1 Introduction

Privacy-preserving natural language processing
(NLP) has been a recently growing field, in large
part due to an increasing amount of concern regard-
ing data privacy. This is especially a concern in
the context of modern neural networks memorizing
training data that may contain sensitive information
(Carlini et al., 2021). While there has been a body
of research investigating privacy for text classifica-
tion tasks (Senge et al., 2022) and language models
(Hoory et al., 2021; Anil et al., 2022), there has
not been as much focus on text generation tasks, in

1https://github.com/trusthlt/dp-nmt

particular neural machine translation (NMT). How-
ever, NMT is particularly worrying from a privacy
perspective, due to a variety of machine translation
services available online that users send their per-
sonal data to. This includes built-in NMT services
to existing websites, e-mail clients, and search en-
gines. After data has been sent to these systems, it
may be further processed and used in the develop-
ment of the NMT system (Kamocki and O’Regan,
2016), which has a significant risk of being memo-
rized if trained in a non-private manner.

One of the most popular methods for tackling
this privacy issue is differential privacy (DP), being
a formal framework which provides probabilistic
guarantees that the contribution of any single data
point to some analysis is bounded. In the case of
NLP and machine learning (ML), this means that a
data point associated with some individual which is
included in the model’s training data cannot stand
out ‘too much’ in the learning process of the model.

The DP-SGD algorithm (Abadi et al., 2016b) is
one of the most standard methods to achieve this
for ML systems, yet implementations of DP-SGD
often lack some technical details on the specifics
of the algorithm. In particular, this includes the
privacy amplification method assumed for calculat-
ing the privacy budget ε when composed over all
training iterations of the model. This means that
the exact strength of the privacy protection that
the resulting systems provide is not clear, with the
‘standard’ random shuffling method for iterating
over batches providing a weaker privacy guarantee
for the training data than Poisson sampling. With
different implementations using different software
libraries, the community currently does not have
a consistent platform for conducting experiments
for scalable differentially private systems, such as
NMT.

To tackle this problem, we develop a modular
framework for conducting research on private NMT
in a transparent and reproducible manner. Our pri-
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mary goal is to allow for a deeper investigation into
the applications of DP for NMT, all while ensuring
that important theoretical details of the DP-SGD
methodology are properly reflected in the imple-
mentation. Following previous work on DP-SGD
(Subramani et al., 2021; Anil et al., 2022), we im-
plement our framework in the JAX library (Brad-
bury et al., 2018), which provides powerful tools
that help to reduce the significant computational
overhead of DP-SGD, allowing for scalability in
implementing larger systems and more extended
training regimes.

Our primary contributions are as follows. First,
we present DP-NMT, a framework developed in
JAX for leading research on NMT with DP-SGD.
It includes a growing list of available NMT models,
different evaluation schemes, as well as numerous
datasets available out of the box, including standard
datasets used for NMT research and more specific
privacy-related domains. Second, we demonstrate
our framework by running experiments on these
NMT datasets, providing one of the first investi-
gations into privacy-preserving NMT. Importantly,
we compare the random shuffling and Poisson sam-
pling methods for iterating over training data when
using DP-SGD. We demonstrate that, in addition
to the theoretical privacy guarantee, there may in-
deed be differences in the model performance when
utilizing each of the two settings.

2 DP-SGD and subsampling

We describe the main ideas of differential privacy
(DP) and DP-SGD in Appendix A. We refer to
Abadi et al. (2016b); Igamberdiev and Habernal
(2022); Habernal (2021, 2022); Hu et al. (2024) for
a more comprehensive explanation.

A key aspect of the DP-SGD algorithm (see
Alg. 1 in the Appendix) is privacy amplification
by subsampling, in which a stronger privacy guar-
antee can be obtained for a given dataset x when
a subset of this dataset is first randomly sampled
(Kasiviswanathan et al., 2011; Beimel et al., 2014).
If the sampling probability is q, then the overall
privacy guarantee can be analyzed as being approx-
imately qε.

A key point here is the nature of this sampling
procedure and the resulting privacy guarantee. The
moments accountant of Abadi et al. (2016b), which
is an improvement on the strong composition theo-
rem (Dwork et al., 2010) for composing multiple
DP mechanisms, assumes Poisson sampling. Un-

der this procedure, each data point is included in
a mini-batch with probability q = L/N , with L
being the lot size and N the size of the dataset. An
alternative method to Poisson sampling is uniform
sampling, in which mini-batches of a fixed size
are independently drawn at each training iteration
(Wang et al., 2019; Balle et al., 2018).

In practice, however, many modern implementa-
tions of DP-SGD utilize random shuffling, with
the dataset split into fixed-size mini-batches. Sev-
eral training iterations thus form an epoch, in which
each training data point appears exactly once, in
contrast to Poisson sampling for which the origi-
nal notion of ‘epoch’ is not quite suitable, since
each data point can appear in any training iteration
and there is no “single passing of the training data
through the model”. In Abadi et al. (2016b), the
term epoch is redefined as N

L lots, being essentially
an expectation of the number of batches when uti-
lizing N data points for training the model. While
simply shuffling the dataset can indeed result in
privacy amplification (Erlingsson et al., 2019; Feld-
man et al., 2022), the nature of the corresponding
privacy guarantee is not the same as the guaran-
tee achieved by Poisson sampling, generally being
weaker. We refer to Ponomareva et al. (2023, Sec-
tion 4.3) for further details.

3 Related work

3.1 Applications of DP-SGD to NLP

The application of DP-SGD to the field of NLP has
seen an increasing amount of attention in recent
years. A large part of these studies focus on differ-
entially private pre-training or fine-tuning of lan-
guage models (Hoory et al., 2021; Yu et al., 2021;
Basu et al., 2021; Xu et al., 2021; Anil et al., 2022;
Ponomareva et al., 2022; Shi et al., 2022; Wu et al.,
2022; Li et al., 2022; Yin and Habernal, 2022; Mat-
tern et al., 2022; Hansen et al., 2022; Senge et al.,
2022). A primary goal is to reach the best possible
privacy/utility trade-off for the trained models, in
which the highest performance is achieved with the
strictest privacy guarantees.

In the general machine learning setting, the exact
sampling method that is used for selecting batches
at each training iteration is often omitted, since this
is generally not a core detail of the training method-
ology. Possibly for this reason, in the case of pri-
vately training a model with DP-SGD, the sampling
method is also often not mentioned. However, in
contrast to the non-private setting, here sampling
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is actually a core detail of the algorithm, which
has an impact on the privacy accounting proce-
dure. In the case that experimental descriptions
with DP-SGD include mentions of epochs with-
out further clarification, this in fact suggests the
use of the random shuffling scheme, as opposed
to Poisson sampling, as described in Section 2. In
addition, sometimes the code base is not publicly
available, in which case it is not possible to validate
the sampling scheme used.

Finally, standard implementations of DP-SGD
in the Opacus (Yousefpour et al., 2021) and
TensorFlow Privacy (Abadi et al., 2016a) li-
braries often include descriptions of DP-SGD im-
plementations with randomly shuffled fixed-size
batches. For instance, while Opacus currently has a
DPDataLoader class which by default uses their
UniformWithReplacementSampler class
for facilitating the use of Poisson sampling, some
of the tutorials currently offered appear to also use
static batches instead.2 A similar situation is true
for TensorFlow Privacy.3 While these libraries sup-
port per-example gradients as well, several core
features of JAX make it the fastest and most scal-
able option for implementing DP-SGD (Subramani
et al., 2021), described in more detail below in
Section 4.

We therefore stress the importance of clarifying
implementation details that may not be as vital in
the general machine learning setting, but are very
relevant in the private setting. As described by
Ponomareva et al. (2023), it is an open theoretical
question as to how random shuffling and Poisson
sampling differ with respect to privacy amplifica-
tion gains, with known privacy guarantees being
weaker for the former.

3.2 Private neural machine translation

The task of private neural machine translation re-
mains largely unexplored, with currently no stud-
ies we could find that incorporate DP-SGD to an
NMT system. Wang et al. (2021) investigate NMT
in a federated learning setup (McMahan et al.,
2017), with differential privacy included in the ag-
gregation of parameters from each local model,
adding Laplace noise to these parameters. Several
other studies explore NMT with federated learning,

2https://opacus.ai/tutorials/building_
image_classifier.

3https://www.tensorflow.org/
responsible_ai/privacy/tutorials/
classification_privacy.

but do not incorporate differential privacy in the
methodology (Roosta et al., 2021; Passban et al.,
2022; Du et al., 2022). Hisamoto et al. (2020), ap-
plied a membership inference attack (Shokri et al.,
2017) on a 6-layer Transformer (Vaswani et al.,
2017) model in the scenario of NMT as a service,
with the goal of clients being able to verify whether
their data was used to train an NMT model. Finally,
Kamocki and O’Regan (2016) address the general
topic of privacy issues for machine translation as
a service. The authors examine how these MT ser-
vices fit European data protection laws, noting the
legal nature of various types of data processing that
can occur by both the provider of such a service, as
well as by the users themselves.

4 Description of software

The aim of our system is to offer a reliable and
scalable approach to achieve differentially private
machine translation. Figure 1 illustrates the cen-
tral structure of our system. The user can upload
a translation dataset that is either accessible on
the HuggingFace Datasets Hub4 or is provided by
us out of the box, and integrate it seamlessly for
both training and efficient privacy accounting, uti-
lizing HuggingFace’s Datasets library (Lhoest et al.,
2021).

Accelerated DP-SGD with JAX and Flax Our
goal is to accelerate DP-SGD training through the
use of a Transformer model implemented with
JAX and Flax (Bradbury et al., 2018; Heek et al.,
2023). The speed of training DP-SGD in the frame-
work can be considerably enhanced through vector-
ization, just-in-time (JIT) compilation, and static
graph optimization (Subramani et al., 2021). JIT
compilation and automatic differentiation are de-
fined and established on the XLA compiler. JAX’s
main transformation methods of interest for fast
DP-SGD are grad, vmap, and pmap, offering the
ability to mix these operations as needed (Yin and
Habernal, 2022). In the DP-SGD scenario, com-
bining grad and vmap facilitates efficient com-
putation of per-example gradients by vectorizing
the gradient calculation along the batch dimension
(Anil et al., 2022). Additionally, our training step
is decorated by pmap to leverage the XLA com-
piler on multiple GPUs, significantly accelerating
training speed. The framework offers to conduct
experiments with multiple encoder-decoder models

4https://huggingface.co/datasets
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Figure 1: Framework Pipeline. Similar components are represented with different colors. Green: Dataset selection.
Blue: Experimental configurations (including privacy settings). Grey: Dataset preparation. Orange: Model-specific
elements. Red: Model training. Purple: Model inference. Yellow: Output of experiments.

and integrate new seq2seq models, in addition to
existing ones, such as mBART (Liu et al., 2020),
T5 (Raffel et al., 2020), and mT5 (Xue et al., 2021).
When selecting a model, the corresponding prepro-
cessor will prepare the dataset accordingly. This
allows the software to be flexible and modular, en-
abling researchers to exchange models and datasets
to perform a range of private NMT experiments.

Model training and inference The experimental
workflow of our framework works in two phases,
namely model training and model inference. For
both phases, the process begins with a data loader
that can be either a framework-provided dataset or
a user-specified dataset. Subsequently, the loaded
dataset is prepared based on user-defined param-
eters, including standard options (e.g. sequence
length), as well as parameters relating to DP-SGD
(e.g. data loader type, sampling method, and batch
size). After selecting the model, the user sepa-
rates it into different procedures according to the
model type. Subsequently, the model is initiated,
optionally from a checkpoint that has already been
trained. Then, the primary experiment is carried
out based on the specified mode, which includes (1)
fine-tuning on an existing dataset, (2) using an ex-
isting fine-tuned checkpoint to continue fine-tuning
on the dataset, or (3) inference without teacher
forcing.

Integrating DPDataloader from Opacus
One notable improvement in our software is the
incorporation of the DPDataloader from Opa-
cus (Yousefpour et al., 2021) for out-of-the-box
Poisson sampling. This is different from the exist-
ing approaches in JAX used by Yin and Habernal
(2022); Subramani et al. (2021); Ponomareva et al.
(2022), who employ iteration over a randomly shuf-
fled dataset, which theoretically provides weaker
DP bounds. Evaluation metrics such as BLEU (Pa-
pineni et al., 2002) and BERTScore (Zhang et al.,
2020) are available for each mode. We incorpo-
rate the differential privacy component during the
training phase of the systems.

Engineering challenges for LLMs Throughout
development, we encountered multiple engineer-
ing challenges. Initially, our academic budget lim-
itations made it difficult to train a larger model
due to the significant memory consumption during
per-example gradient calculations. Consequently,
we anticipated a relatively small physical batch
size on each GPU. We attempted to freeze parts of
the model for faster training and improved mem-
ory efficiency, as Senge et al. (2022) noted. How-
ever, in Flax, the freezing mechanism only occurs
during the optimization step and does not affect
per-example gradient computation. Therefore, it
does not solve the issue of limited physical batch
sizes. Multiple reports suggest that increasing the
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lot size leads to better DP-SGD performance due
to an improved gradient signal-to-noise ratio and
an increased likelihood of non-duplicated example
sampling across the entire dataset (Hoory et al.,
2021; Yin and Habernal, 2022; Anil et al., 2022).
However, compared to previous work on large mod-
els that mostly relied on dataset iteration (Yin and
Habernal, 2022; Ponomareva et al., 2022), imple-
menting the original DP-SGD with large lots using
Poisson sampling, a large language model (LLM)
with millions of parameters, and on multiple GPUs
presents a challenge that makes comparison dif-
ficult. To address this issue, we first conduct a
sampling process on a large dataset, then divide it
into smaller subsets that the GPU can handle. We
then build up the large lot using gradient accumula-
tion. It is crucial that we refrain from implementing
any additional normalization operations that might
change the gradient sensitivity (Ponomareva et al.,
2023; Hoory et al., 2021), prior to the noise addi-
tion step.

5 Experiments

To demonstrate our framework in use, fill the gaps
on current knowledge of the privacy/utility trade-
off for the task of NMT, as well as examine the
effects of using random shuffling vs. Poisson sam-
pling, we run a series of experiments with DP-SGD
on several NMT datasets, using a variety of privacy
budgets.

5.1 Datasets

We utilize datasets comprising two main types of
settings. The first is the general NMT setting for
comparing our models with previous work and in-
vestigating the effectiveness of DP-SGD on a com-
mon NMT dataset. For this we utilize WMT-16
(Bojar et al., 2016), using the German-English (DE-
EN) language pair as the focus of our experiments.

The second setting is the more specific target do-
main of private texts that we are aiming to protect
with differentially private NMT. For the sake of re-
producibility and ethical considerations, we utilize
datasets that imitate the actual private setting of
processing sensitive information, namely business
communications and medical notes, but are them-
selves publicly available. The first dataset is the
Business Scene Dialogue corpus (BSD) (Rikters
et al., 2019), which is a collection of fictional busi-
ness conversations in various scenarios (e.g. “face-
to-face”, “phone call”, “meeting”), with parallel

data for Japanese and English. While the original
corpus consists of half English → Japanese and
half Japanese → English scenarios, we combine
both into a single Japanese → English (JA-EN)
language pair for our experiments.

The second dataset is ClinSPEn-CC (Neves et al.,
2022), which is a collection of parallel COVID-19
clinical cases in English and Spanish, originally
part of the biomedical translation task of WMT-22.
We utilize this corpus in the Spanish → English
(ES-EN) direction. These latter two datasets simu-
late a realistic scenario where a company or public
authority may train an NMT model on private data,
for later public use. We present overall statistics
for each dataset in Table 1.

Dataset Lang. Pair # Trn.+Vld. # Test
WMT-16 DE-EN 4,551,054 2,999
BSD JA-EN 22,051 2,120
ClinSPEn-CC ES-EN 1,065 2,870

Table 1: Dataset statistics. Trn.: Train, Vld.: Validation.

5.2 Experimental setup

For each of the above three datasets, we fine-tune a
pre-trained mT5 model (Xue et al., 2021), opting
for the mT5-small5 version due to computational
capacity limitations described in Section 4. We
compare ε values of∞, 1000, 5, and 1, represent-
ing the non-private, weakly private, moderately pri-
vate, and very private scenarios, respectively (see
Lee and Clifton (2011); Hsu et al. (2014); Weiss
et al. (2023) for a more detailed discussion on se-
lecting the ‘right’ ε value). We fix the value of
δ to 10−8 for all experiments, staying well below
the recommended δ ≪ 1

N condition (Abadi et al.,
2016b).

For all of the above configurations, we compare
two methods of selecting batches of data points
from the dataset for our DP-SGD configurations,
namely random shuffling and Poisson sampling.
Following previous work (Hoory et al., 2021; Anil
et al., 2022; Yin and Habernal, 2022), we utilize
very large batch sizes for both of these methods,
setting L to a large value and building up the re-
sulting drawn batches with gradient accumulation
for the latter method, as described in Section 4. We
refer to Appendix B for a more detailed descrip-
tion of our hyperparameter search. We evaluate our

5https://huggingface.co/google/
mt5-small
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Figure 2: Test BLEU scores for each of the three
datasets using varying privacy budgets, comparing the
random shuffling and Poisson sampling methods to iter-
ate over the dataset. Non-private results are additionally
shown for each dataset (ε =∞) with random shuffling.
Lower ε corresponds to a stronger privacy guarantee.

model outputs using BLEU (Papineni et al., 2002),
and BERTScore (Zhang et al., 2020) metrics.

5.3 Results and Discussion
Figure 2 shows the results of our experiments, re-
porting BLEU scores on the test partition of each
dataset.

Privacy/utility trade-off We verify the sound-
ness of our models in the non-private setting (ε =
∞) by comparing with past non-private results, par-
ticularly for the commonly used WMT-16 dataset.
For WMT-16 DE-EN, we reach a BLEU score of
36.2, being similar to past models (e.g. Wei et al.
(2021) obtain a BLEU score of 38.6 using their
137B parameter FLAN model). In the case of BSD
and ClinSPEn-CC, these datasets are not as ‘stan-
dard’ within the NMT community, and therefore
have a more limited chance for comparison.

For private results, we can see a clear differ-
ence between the drop in WMT-16 performance
vs. that of BSD and ClinSPEn-CC. This is not at
all surprising, given that the latter two datasets are
vastly smaller in comparison to WMT-16, making
it far more difficult to train an NMT model, partic-
ularly in the noisy setting of DP-SGD. In addition,
ClinSPEn-CC contains a large amount of compli-
cated medical terminology that adds an extra layer
of difficulty for a model. We therefore need to

conduct further investigations into applications of
DP-SGD to very small datasets in order to reach
more meaningful ε values.

Method of dataset iteration When compar-
ing random shuffling with Poisson sampling, we
can see practically no difference for BSD and
ClinSPEn-CC, most likely due to the low DP-SGD
results for these two datasets. The differences are
more notable for WMT-16, where there is a clear
gap between the two sets of configurations. For
instance, at ε = 1, WMT-16 shows a BLEU score
of 19.83 when using random shuffling, in contrast
to 2.35 with Poisson sampling. The latter method
therefore shows a far greater drop from the non-
private setting, improving more gradually as ε is
increased.

There are several possible explanations for this.
With Poisson sampling, while each data point has
an equal probability of being drawn to make up a
particular batch, it is possible that some data points
end up being drawn more frequently than others for
several training iterations. This may have an impact
on the model learning process, possibly missing
out on the signal from certain useful data points at
various stages of training. Another reason may be
that we simply require additional hyperparameter
optimization with Poisson sampling, expanding the
search space further.

6 Conclusion

We have introduced DP-NMT, a modular frame-
work developed using the JAX library, with the
goal of leading research on neural machine transla-
tion with DP-SGD. To demonstrate our framework
in use, we have presented several experiments on
both general and privacy-related NMT datasets,
comparing two separate approaches for iterating
over training data with DP-SGD, and facilitating
in filling the research gap on the privacy/utility
trade-off in this task. We are continuing to actively
expand the framework, including the integration
of new models and NMT datasets. We hope that
our framework will help to expand research into
privacy-preserving NMT and welcome feedback
from the community.

Ethics and Limitations

An important ethical consideration with regards
to our framework is its intended use. We strive
to further the field of private NMT and improve
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the current knowledge on how to effectively apply
differential privacy to data used in NMT systems.
However, applications of differential privacy to tex-
tual data are still at an early research stage, and
should not currently be used in actual services
that handle real sensitive data of individuals.

The primary reason for this is that our under-
standing of what is private information in textual
data is still very limited. Applications of differen-
tial privacy in the machine learning setting provide
a privacy guarantee to each individual data point.
In the context of DP-SGD, this means that if any
single data point is removed from the dataset, the
impact on the resulting model parameter update is
bounded by the provided multiplicative guarantee
in Eqn. 1. In other words, it does not stand out ‘too
much’ in its contribution to training the model.

For textual data, a single data point will often be
a sentence or document. However, this does not
mean that there is a one-to-one mapping from indi-
viduals to sentences and documents. For instance,
multiple documents could potentially refer to the
same individual, or contain the same piece of sen-
sitive information that would break the assumption
of each data point being independent and identi-
cally distributed (i.i.d.) in the DP setting. Thus,
we require further research on how to properly ap-
ply a privacy guarantee to individuals represented
within a textual dataset. We refer to Klymenko
et al. (2022); Brown et al. (2022); Igamberdiev and
Habernal (2023) for a more comprehensive discus-
sion on this.
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A Background on Differential Privacy
and DP-SGD

Differential Privacy Differential privacy (DP) is
a mathematical framework which formally guar-
antees that the output of a randomized algorithm
M : X → Y abides by the following inequality in
Eqn. 1, for all neighboring datasets x, x′ ∈ X , i.e.
datasets which are identical to one another, with
the exception of one data point (Dwork and Roth,
2013)

Pr[M(x) ∈ S] ≤ eε Pr[M(x′) ∈ S] + δ, (1)

for all S ⊆ Y .
We refer to the algorithm M as being (ε, δ)-

differentially private, where ε ∈ [0,∞), also
known as the privacy budget, represents the
strength of the privacy guarantee. A lower ε value
represents an exponentially stronger privacy pro-
tection. δ ∈ [0, 1] is a very small constant which
relaxes the pure differential privacy of (ε, 0)-DP,
providing better composition when iteratively ap-
plying multiple DP mechanisms to a given dataset.

In order to transform a non-private algorithm f :
X → Y into one satisfying an (ε, δ)-DP guarantee,
we generally add Gaussian noise to the output of
f . Overall, the whole process restricts the degree
to which any single data point can stand out when
applying algorithmM on a dataset.

DP-SGD A popular method for applying DP to
the domain of machine learning is through differen-
tially private stochastic gradient descent (DP-SGD)
(Abadi et al., 2016b). The core of the methodol-
ogy relies on adding two extra steps to the orig-
inal stochastic gradient descent algorithm. For
any input data point xi, we first calculate the gra-
dient of the loss function for a model with pa-
rameters θ, L(θ), at training iteration t. Hence,
gt(xi) = ∇θtL(θt, xi).

We then incorporate a clipping step, in which the
ℓ2-norm of gt(xi) is clipped with clipping constant

103

https://doi.org/10.48550/arXiv.2307.06708
https://doi.org/10.48550/arXiv.2307.06708
https://doi.org/10.48550/arXiv.2307.06708
https://doi.org/10.18653/v1/2022.fl4nlp-1.3
https://doi.org/10.18653/v1/2022.fl4nlp-1.3
https://doi.org/10.18653/v1/2021.findings-emnlp.369
https://doi.org/10.18653/v1/2021.findings-emnlp.369
https://doi.org/10.18653/v1/2021.findings-emnlp.369
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2022.nllp-1.14
https://doi.org/10.18653/v1/2022.nllp-1.14
https://doi.org/10.48550/arXiv.2109.12298
https://doi.org/10.48550/arXiv.2109.12298
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr


C, as in Eqn. 2, in order to constrain the range
of possible values. This is followed by a pertur-
bation step, adding Gaussian noise to the clipped
gradients, as in Eqn. 3.

ḡt(xi) =
gt(xi)

max
(
1, ||gt(xi)||2

C

) (2)

ĝt =
1

L

∑

i∈L

(
ḡt(xi) +N (0, σ2C2I)

)
(3)

Importantly, L represents the lot size, being a group
of data points that are randomly drawn from the full
training dataset at each iteration. The final gradient
descent step is then taken with respect to this noisy
gradient ĝt. We outline the DP-SGD algorithm in
more detail in Algorithm 1.

Algorithm 1 DP-SGD

1: function DP-SGD(f(x; Θ), (x1, . . . ,xn),
|L|— ‘lot’ size, T — # of steps)

2: for t ∈ (1, 2, . . . , T ) do
3: Add each training example to a ‘lot’ Lt

with probability |L|/N
4: for each example in the ‘lot’ xi ∈ Lt do
5: g(xi)← ∇L(θt,xi) ▷ Compute

gradient
6: ḡ(xi) ← g(xi)/max (1, ∥g(xi)∥/C)

▷ Clip gradient
7: g̃(xi)← ḡ(xi) +N (0, σ2C2I) ▷

Add noise
8: ĝ ← 1

|L|
∑|L|

k=1 g̃(xk) ▷ Gradient
estimate of ‘lot’ by averaging

9: Θt+1 ← Θt − ηtĝ ▷ Update parameters
by gradient descent

10: return Θ

B Hyperparameters

We present our hyperparameter search space as fol-
lows. We experiment with learning rates in the
range [10−5, 0.01] and maximum sequence lengths
in [8, 64]. Following previous work, we utilize
large batch and lot sizes for our experiments, find-
ing 1, 048, 576 to be the best for WMT-16, 2, 048
for BSD, and 256 for ClinSPEn-CC. We build up
these batch sizes using gradient accumulation with
a physical batch size of 16. In the case of Pois-
son sampling, we first sample using large lot sizes
and build the resulting drawn batch using gradi-
ent accumulation, as described in Section 4. We

train models for up to 25 epochs, using the same
definition for epochs as in Abadi et al. (2016b) in
the Poisson sampling setting, being N

L . We take
the ceiling in case of L not cleanly dividing into N .
Each configuration is run using 5 seeds for the BSD
and ClinSPEn-CC datasets and 3 seeds for WMT-
16, reporting the mean and standard deviation of
results.

We additionally present our computational run-
times in Table 2. All experiments are run on up to
two 80GB NVIDIA A100 Tensor Core GPUs.

Dataset ε Iteration Method Epoch Time
WMT-16 ∞ Random shuffling 2 h 45 m 08 s
WMT-16 1000 Random shuffling 2 h 59 m 15 s
WMT-16 1000 Poisson sampling 4 h 08 m 01 s
WMT-16 5 Random shuffling 1 h 30 m 03 s
WMT-16 5 Poisson sampling 4 h 02 m 35 s
WMT-16 1 Random shuffling 1 h 29 m 49 s
WMT-16 1 Poisson sampling 4 h 09 m 02 s
BSD ∞ Random shuffling 0 h 01 m 17 s
BSD 1000 Random shuffling 0 h 01 m 59 s
BSD 1000 Poisson sampling 0 h 01 m 49 s
BSD 5 Random shuffling 0 h 00 m 52 s
BSD 5 Poisson sampling 0 h 01 m 49 s
BSD 1 Random shuffling 0 h 01 m 09 s
BSD 1 Poisson sampling 0 h 02 m 15 s
ClinSPEn-CC ∞ Random shuffling 0 h 00 m 09 s
ClinSPEn-CC 1000 Random shuffling 0 h 00 m 05 s
ClinSPEn-CC 1000 Poisson sampling 0 h 00 m 28 s
ClinSPEn-CC 5 Random shuffling 0 h 00 m 10 s
ClinSPEn-CC 5 Poisson sampling 0 h 00 m 27 s
ClinSPEn-CC 1 Random shuffling 0 h 00 m 15 s
ClinSPEn-CC 1 Poisson sampling 0 h 00 m 27 s

Table 2: Sample epoch runtimes for each configuration.
Some differences between configurations arise due to
different optimal hyperparameters, with larger sequence
lengths leading to longer epoch times.

C Detailed Results
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Dataset ε Iteration Method Test BLEU Test BERTScore
WMT-16 ∞ Random shuffling 36.19 (0.13) 0.95 (0.00)
WMT-16 1000 Random shuffling 20.86 (0.56) 0.92 (0.00)
WMT-16 1000 Poisson sampling 15.12 (0.08) 0.91 (0.00)
WMT-16 5 Random shuffling 19.24 (0.52) 0.92 (0.00)
WMT-16 5 Poisson sampling 7.23 (0.21) 0.89 (0.00)
WMT-16 1 Random shuffling 19.83 (0.64) 0.92 (0.00)
WMT-16 1 Poisson sampling 2.35 (0.07) 0.84 (0.00)
BSD ∞ Random shuffling 10.09 (2.75) 0.90 (0.01)
BSD 1000 Random shuffling 1.36 (0.67) 0.87 (0.01)
BSD 1000 Poisson sampling 1.01 (0.07) 0.87 (0.00)
BSD 5 Random shuffling 0.06 (0.05) 0.85 (0.01)
BSD 5 Poisson sampling 0.06 (0.06) 0.84 (0.02)
BSD 1 Random shuffling 0.00 (0.01) 0.45 (0.22)
BSD 1 Poisson sampling 0.00 (0.00) 0.65 (0.15)
ClinSPEn-CC ∞ Random shuffling 5.42 (2.41) 0.86 (0.02)
ClinSPEn-CC 1000 Random shuffling 0.03 (0.02) 0.75 (0.01)
ClinSPEn-CC 1000 Poisson sampling 0.70 (0.19) 0.78 (0.00)
ClinSPEn-CC 5 Random shuffling 0.80 (0.56) 0.79 (0.00)
ClinSPEn-CC 5 Poisson sampling 0.83 (0.27) 0.79 (0.00)
ClinSPEn-CC 1 Random shuffling 0.50 (0.20) 0.78 (0.00)
ClinSPEn-CC 1 Poisson sampling 0.54 (0.22) 0.78 (0.00)

Table 3: Detailed results of each experimental configuration. Scores shown as “mean (standard deviation)”. Results
show the average over 3 seeds for the WMT-16 dataset, and 5 seeds for BSD and ClinSPEn-CC.
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