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1 Research interests

Many companies use dialogue systems for their cus-
tomer service, and although there has been a rise in the
usage of these systems (Costello and LoDolce, 2022),
many of these systems still face challenges in compre-
hending and properly responding to the customer (Følstad
et al., 2021). In our project1 we aim to figure out how to
develop and improve these conversational agents. Part
of this project, focuses on the detection of breakdown
patterns and the possible solutions (repairs) to mitigate
negative results of these errors.

1.1 Conversational breakdowns

Breakdowns lead to frustration and an overall down-
graded customer experience (Ashktorab et al., 2019).
Therefore it is important to be able to detect these break-
downs and properly solve them to mitigate these negative
effects. One of the important questions to start with when
looking at breakdowns is to define what a breakdown ac-
tually is and what triggers this breakdown (or taking a
different perspective, what happens within conversations
without breakdowns?) In the next section I will first dis-
cuss the research plan we have to figure out if there are
different kinds of breakdowns and eventually in Section
1.2 if we can solve the consequent issues through repairs.
In this project we will focus on text-based task-oriented
customer service chatbots; incorporating features such as
speech will lead to very different breakdowns (for exam-
ple arising from the ASR part of a system).

Errors are often the cause of leading to a breakdown,
which leads to the user not being able to continue the con-
versation (Higashinaka et al., 2015b). There have been
attempts to create taxonomies of errors for open-domain
systems (Higashinaka et al., 2015a, 2021). Similar to our
project, the work of Reinkemeier and Gnewuch (2022)
focuses on a text based dialogue system in a specific do-
main (in their case an insurance company). They aim to
find the causes of conversational breakdowns by conduct-
ing a cluster analysis of messages leading to breakdowns.
We will follow a similar approach as Reinkemeier and
Gnewuch (2022) by trying to cluster utterances and fig-
ure out if we can detect reasons for initiating repairs. We

1https://www.conversationalagentsresearch.com/

use real-life Dutch chatbot data from a railroad company.
The conversations cover a diverse range of topics, from
asking for a ticket refund to travel directions.

Are there any linguistic patterns to be found in utter-
ances before breakdowns occur? Or are there certain
topics the chatbot is not capable of handling? To figure
out the potential reasons for breakdowns, we use repairs
as a proxy. The advantage of using the railroad chatbot
dataset is that it has a fixed set of chatbot initiated repairs.
From this set we have selected three general repairs that
are used in various situations:

1. Not understanding the user and asking for rephras-
ing: ‘Unfortunately I don’t fully understand what
you mean. Could you rephrase the question in dif-
ferent words? Tip: I understand short and concise
questions the best.’

2. Not being able to help and redirecting to human em-
ployee: ‘I’m sorry, I believe I can not help you yet.
Shall I connect you with my colleague?’

3. Apologising and redirecting to human employee:
‘I’m sorry to hear that something isn’t to your sat-
isfaction. I can unfortunately not register your com-
plaint, but my colleague from customer support is
happy to help. Click on the button below.’

These repairs are used anytime the chatbot is not ca-
pable of answering the customer query (the last focuses
on complaints but is also used in situations were the
customers is slightly negative). Possibly not all break-
downs/miscommunications are caught with this approach
(for example when the chatbot answers with an irrelevant
answer) but the dataset is too large to manually examine
every conversation.

Similar to Reinkemeier and Gnewuch (2022) we will
use a clustering approach to figure out if there are pat-
terns to be found in breakdowns. We will add multiple
features partly derived from Reinkemeier and Gnewuch
(2022) who use for example semantic weight and per-
centage of unknown words. For example, we will also
use the number of sentences, characters, and tokens in an
utterance. We also will create more complex features as
well. As an example we will make use of commonness
as described by Meij et al. (2012). Making use of an-
chors, this metric scores commonness of n-grams based
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on Wikipedia data. We will combine this score together
with training data of the bot. This means that words with
high scores for commonness, that are not part of the train-
ing data, might indicate a wrong interpretation.

1.2 ... and Repairs
Miscommunication is an important concept in human
language (see for an extensive discussion for example
Healey et al. (2018)), sometimes resulting in breakdowns.
It is not always possible to prevent breakdowns, which
underscores the importance of repairs. As breakdowns
occur in many different situations it is necessary to criti-
cally think about the ‘best’ repair for any given situation.
So, after focusing on breakdowns we like to find out how
to mitigate these breakdowns by using repairs. As was
discussed in Section 1.1 we have used the existing re-
pairs as a proxy to detect breakdowns. We could wonder
if these repairs are actually the best repairs to fix a conver-
sational breakdown. Different forms of breakdowns, sys-
tems or different user groups might need different repair
strategies. Ashktorab et al. (2019) for example discuss
that chit-chat systems have different goals with repairs
(not repairing but engaging for further conversation).

Repair is an important notion studied in conversation
analysis to study problem resolving in conversation. The
basis of the notion is explained by Schegloff et al. (1977).
The notion of repair is later also applied on dialogue sys-
tems as breakdowns in conversation with bots are com-
mon. Ashktorab et al. (2019) investigate user preference
for eight repair strategies. Some of these strategies oc-
cur in commercial systems, others are novel strategies
that incorporate some of the inner workings of the algo-
rithms behind the dialogue system. They find that both
providing options and giving explanations are preferred
by users (Ashktorab et al., 2019). Bohus and Rudnicky
(2005) focus on non-understanding errors and recovery
strategies in spoken systems. They compare the recovery
strategies and also investigate how the user responds to
these strategies. A different approach is taken by Cuadra
et al. (2021) who investigate the self repair of a spoken
system (Amazon Alexa) and how it affects the interac-
tion. They show that if an error occurs, a repair is ap-
preciated but when no error occurs a repair can worsen
the experience. Lastly, Skantze (2005) examine how hu-
mans recover from speech recogniser errors by corrupting
speech output. These errors will be similar in spoken dia-
logue systems. They show that if participants face speech
recognition errors, they will ask task-related questions.

2 Spoken dialogue system (SDS) research
Since my submission last year, much has changed within
the field of dialogue systems. With the advent of Chat-
GPT and subsequent open alternatives (such as Alpaca
(Taori et al., 2023) and Open Assistant), there has been

renewed (media)attention for dialogue systems and chat-
bots. These new technologies will bring new possibili-
ties for research into dialogue systems but also new chal-
lenges. I suspect that much more research will focus on
the challenges and problems these systems will bring,
in for example the context of education (Kasneci et al.,
2023) and hospitality (Gursoy et al., 2023). I also suspect
that the (general) public gets more and more familiar with
these systems and the (assumed) capabilities of systems
like chatGPT. Due to both positive and negative attention
to these technologies, expectations of the public towards
dialogue systems will also shift. Therefore it seems im-
portant to learn more about expectations of users and the
ways in which we can manage those expectations. Previ-
ous research has already shown that expectation manage-
ment is an important factor. For a chatbot to be success-
ful the user needs to know what to expect from the be-
ginning (Brandtzaeg and Følstad, 2018). Previous work
has also stressed the importance of understanding the user
perceptions and expectations before building the chatbot
(Zamora, 2017), and creating chatbots with characteris-
tics that are in line with users’ expectations (Chaves and
Gerosa, 2021). Users tend to evaluate chatbots worse
when the experience does not line up with their expec-
tations (de Sá Siqueira et al., 2023). Similar research is
now also done with chatGPT, for example surveying the
expectations of healthcare workers on adopting chatGPT
in their work (Temsah et al., 2023).

3 Suggested topics for discussion
Breakdowns and repairs Can we mitigate negative

effects after encountering erroneous chatbots with only
repairs or are there other solutions as well? Should we
tailor repairs to specific situations or breakdowns?

Cooperate with industry In what way can academia
cooperate with industry and how far should we go to
make our research usable directly for industry? For which
purposes can our research be used in the industry? Re-
search has already shown that big tech companies shape
research to cater to their needs (Whittaker, 2021; Abdalla
and Abdalla, 2021), having its influence grow over the
last few years (Abdalla et al., 2023).

Incorporating ChatGPT What are the issues with in-
corporating current technologies like ChatGPT in dia-
logue systems for both research and industry? Can we
overcome issues with interpretability, transparency and
replicability? How should we evaluate closed models
if we don’t know what is exactly in the training data
(Rogers et al., 2023)? Should our focus be on the more
open models such as Stanford Alpaca (Taori et al., 2023)?
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