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1 Research interests

Speech production is nuanced and unique to every in-
dividual, but today’s Spoken Dialogue Systems (SDSs)
are trained to use general speech patterns to success-
fully improve performance on various evaluation met-
rics. However, these patterns do not apply to certain user
groups - often the very people that can benefit the most
from SDSs. For example, people with dementia pro-
duce more disfluent speech than the general population
(Boschi et al., 2017). The healthcare domain is now a
popular setting for spoken dialogue and human-robot in-
teraction research. This trend is similar when observing
company behaviour. Charities promote industry voice as-
sistants, the creators are getting HIPAA compliance, and
their features sometimes target vulnerable user groups
(Addlesee, 2023).

1.1 Data collection

Research on interactions between SDSs and people with
dementia is stifled due to the severe lack of data (Ad-
dlesee et al., 2019). Collecting natural spoken dialogue
data with vulnerable older adults is ethically challenging.
Consent must be witnessed by the participant’s carer, the
collection location must be designed to be accessible, and
collaboration with charities is often required to recruit
participants (Addlesee and Albert, 2020). Bespoke tools
are also required to collect data securely from vulnerable
participants (Addlesee, 2022).

In order to tackle this challenge, we have collected
two corpora of people with dementia interacting with
SDSs. The first corpus, called DEICTIC, contains in-
teractions captured between Amazon Alexa devices and
family members in 10 family homes. One member in
each family was diagnosed with dementia. This corpus
is currently being filtered for personally identifiable in-
formation, so its exact size is unknown, but we expect
to include over 300 interactions (including both multi-
turn and multi-party interactions). Once complete, a sub-
repository of TalkBank called DementiaBank1 will be
used to share data with other researchers studying com-
munication in the dementia domain.

The second corpus, yet to be named, is currently being

1https://dementia.talkbank.org/

User: EVA, Is Alex Rodriguez dating...
EVA: Sorry, I didn’t catch that. Dating who?
User: Jennifer Lopez
EVA: Yes, they are currently dating.

Table 1: Collaborative completion from understanding.

collected as part of the H2020 SPRING Project2. We no-
ticed in DEICTIC that multi-party interactions take place
at home, even though the system is only designed to have
dyadic interactions. Hospital staff that work in a memory
clinic also explained that patients typically attend their
appointments with a companion. We designed a data col-
lection framework to elicit a diverse range of multi-party
conversations between patients, their companions, and a
social robot called ARI (Addlesee et al., 2023). We have
collected over 50 multi-party conversations with various
versions of ARI (with a wizard-of-Oz setup, with a single
user system, and with a multi-user system).

1.2 Mid-utterance interruption recovery

Voice assistants interrupt people when they pause mid-
utterance, a frustrating interaction that requires the full
repetition of the entire sentence again. This impacts all
users, but particularly people with cognitive impairments
(Boschi et al., 2017). We know, however, that natural spo-
ken language unfolds over time. Our interlocutors pro-
cess each token as it is uttered, maintaining a partial rep-
resentation of what has been said (Marslen-Wilson, 1973;
Madureira and Schlangen, 2020; Kahardipraja et al.,
2021). That is, we understand the words that were al-
ready said if someone pauses mid-sentence. To avoid
waiting indefinitely while a conversation partner is paus-
ing, humans either prompt the turn-holder to collabora-
tively complete the question (Ginzburg and Sag, 2000;
Fernández et al., 2007; Poesio and Rieser, 2010), as
shown in Table 1, or suggest sentence completions them-
selves (referred to as cross-person compound contribu-
tions or gap-fillers (Purver et al., 2003; Howes et al.,
2011, 2012)), shown in Table 2.

We implemented both approaches to answer peo-
ple’s incomplete questions and semantically parse their
disrupted sentences. We constructed two novel cor-

2https://spring-h2020.eu/
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User: EVA, when is the next solar...

EVA:
The next solar eclipse is on the 20th
April 2023

Table 2: Prediction of question completion.

pora to measure a recovery pipeline’s ability to com-
plete these tasks. One corpus interrupts questions orig-
inally collected for Knowledge Base Question Answer-
ing (KBQA), where a semantic parser is used to con-
vert questions into an executable meaning representa-
tion over some given knowledge. For example, a sys-
tem may be asked to answer “What is the population
of Portugal?” when given Wikipedia as a knowledge
base. Both the questions and their semantic representa-
tions (in SPARQL, a knowledge graph query language)
were interrupted, resulting in a corpus of 21,000 inter-
rupted questions (see Tables 1 and 2) (Addlesee and Da-
monte, 2023a). The second corpus was generated by dis-
rupting almost 80,000 sentences more generally, along
with their abstract meaning representations (AMR) (Ad-
dlesee and Damonte, 2023b).

We used the current state-of-the-art systems on the
corresponding original tasks, given the full original ut-
terances, as performance upper bounds. Our best-
performing systems performed remarkably well, identi-
fying where the missing information is located in the
utterance’s semantic representation. In the KBQA do-
main, our best pipeline answered only 0.77% fewer ques-
tions than the SotA upper bound (Addlesee and Damonte,
2023a). When inspecting sentences more generally, our
recovery pipeline lost only 1.6% graph similarity f-score
(Smatch) compared to the AMR upper bound (Addlesee
and Damonte, 2023b). We have therefore shown that in-
terruption recovery pipelines could potentially be used to
improve voice assistant accessibility, and general robust-
ness to noisy environments like family homes, or public
spaces (like hospital waiting rooms).

To confirm that our pipelines do improve accessibil-
ity in practice, a user study must take place. We have
shown that our approach is feasible, but response gen-
eration would also be needed for an actual user study.
We plan to use our interrupted corpora to elicit clarifica-
tions from humans. We can then evaluate whether today’s
LLMs can safely generate clarification requests to elicit
the repair turn from the user.

1.3 Real-time semantic parsing
Our incremental semantic parsers in Section 1.2 work
when given sentences interrupted at a single point be-
fore named entities (where mid-sentence pauses typically
occur (Croisile et al., 1996; Seifart et al., 2018; Slegers
et al., 2018)), but the next generation of SDSs need to
process tokens in real-time (Addlesee and Eshghi, 2021).

We have developed a fully incremental graph-based se-
mantic parser by combining Dynamic Syntax (Kempson
et al., 2001; Cann et al., 2005) with RDF (Lassila et al.,
1998) – called DS-RDF (Addlesee and Eshghi, 2021). A
prototype was built3, but we have since extended the lex-
icon to be wider coverage. We are also working on an
LLM-based approach. We plan to evaluate both of these
approaches on our collected corpora. We expect to find
that the LLM-based approach has a wider-coverage, but
that DS-RDF does not hallucinate as frequently. This
is particularly crucial when interacting with vulnerable
users in a hospital setting (Addlesee, 2023).

2 Spoken dialogue system (SDS) research
The next generation of SDSs need to: (1) process lan-
guage incrementally, token-by-token to be more respon-
sive and enable handling of conversational phenomena;
(2) reason incrementally allowing meaning to be estab-
lished beyond what is said; and (3) be transparent and
controllable, allowing designers as well as the system it-
self to easily establish reasons for particular behaviour
and tailor to particular user groups, or domains. The
boom of chatGPT (and co) is extremely exciting, but
point 3 is a huge concern. Both startups and big tech
companies are applying these new approaches to every
domain they can, including healthcare. A disastrous news
story seems inevitable when one of these systems pro-
vides a vulnerable user with a harmful response (e.g. a
child, or person with a cognitive impairment). I think the
controllability of these systems will be a huge focus for
SDS researchers over the next few years.

3 Suggested topics for discussion
• Real-time time speech processing

• Multi-party dialogue

• Ethical Data Collection

• LLM controllability and grounding
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